
Text Classification for Telugu: Datasets,
Embeddings and Models for Downstream NLP Tasks

Thesis submitted in fulfillment
of the requirements for the degree of

Doctor of Philosophy
in

Computer Science and Engineering

by

Mounika Marreddy
20172152

mounika.marreddy@research.iiit.ac.in

International Institute of Information Technology
Hyderabad - 500 032, INDIA

May 2023

Copyright © Mounika Marreddy, 2023
All Rights Reserved

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Text Classification for Tel-
ugu: Datasets, Embeddings and Models for Downstream NLP Tasks” by Mounika
Marreddy, has been carried out under my supervision and is not submitted elsewhere for a
degree.

Date Advisor: Prof. Radhika Mamidi

To My Family and Advisor

Acknowledgments

I thank my supervisor, Dr. Radhika Mamidi, for her continued genuine support throughout
my PhD. I am thankful for her understanding of my situation and encouraging me on every step
I achieved. She supported me and encouraged me during and after my pregnancy time which
was so moving. I am grateful to her for all the interactive sessions that helped me identify my
research plan, hurdles during the data preparation, discussing ideas, and drafting corrections.
I am indebted to her for the way she gave me the freedom to explore ideas, listen to each one of
them with patience, and provide helpful directions on how those ideas will work in the research
direction. Thank you for all the research discussions and guidance for my further career plans.

I want to thank my mother, father, husband, and daughter, without whom I would not have
completed this PhD journey. Thank you to each one of you for all your support and motivation
to finish my PhD. I express my gratitude to my brother for his moral support during the initial
days of my research. He gave me the confidence that I am capable of doing research.

I am fortunate to be a part of the Language Technologies Research Center, IIIT Hyderabad.
This is where I got the confidence that I could learn new topics that help me do research. I
am honored to interact with faculty like Prof. Dipti M Sharma, Dr. Vasudev Varma, and Dr.
Manish Shrivatsava. Thank you, everyone, for sharing the knowledge to improve my academic
and research skills. I want to thank research scholar Pruthwik for giving me all the necessary
information throughout my PhD life.

I like to thank Subbareddy Oota, Lakshmi Vakada Sireesha, Venkata Charan Chinni, Suma
Reddy, Radha Agarwal, and Aditya Avvaru for being my teammates. I am truly fortunate to
have worked with the most flexible and hardworking people. I also want to thank my friends,
lab mates, and my family members who supported and motivated me throughout the PhD
journey at IIIT Hyderabad.

v

Abstract

Language understanding has become crucial in different text classification tasks in Natu-
ral Language Processing (NLP) applications to get the desired output. Over the past decade,
machine learning and deep learning algorithms have been evolving with efficient feature repre-
sentations to give better results. The applications of NLP are becoming potent, domain, and
language-specific. For resource-rich languages like English, the NLP applications give desired
results due to the availability of large corpora, different kinds of annotated datasets, efficient
feature representations, and tools.

Due to the lack of large corpora and annotated datasets, many resource-poor Indian lan-
guages struggle to reap the benefits of deep feature representations. Moreover, adopting existing
language models trained on large English corpora for Indian languages is often limited by data
availability, rich morphological variation, syntax, and semantic differences. Most of the work
being done in Indian languages is from a machine translation perspective. One solution is to use
translation for re-creating datasets in low resource languages from English. But in case of In-
dian languages like Telugu, the meaning may change and some crucial information may be lost
due to translation. This is because of their structural differences, morphological complexities,
and semantic differences.

In this thesis, our main objective is to mitigate the low-resource problem for Telugu. Overall,
to accelerate NLP research in Telugu, we present several contributions: (1) A large Telugu raw
corpus of 80,15,588 sentences (16,37,408 sentences from Telugu Wikipedia and 63,78,180 sen-
tences crawled from different Telugu websites). (2) Annotated datasets in Telugu for sentiment
analysis, emotion identification, hate speech detection, sarcasm identification, and clickbait de-
tection. (3) For the Telugu corpus, we are the first to generate pre-trained distributed word
and sentence embeddings such as Word2Vec-Te, GloVe-Te, FastText-Te, MetaEmbeddings-Te,
Skip-Thought-Te. (8) We pre-trained different contextual language models for Telugu such as
ELMo-Te, BERT-Te, RoBERTa-Te, ALBERT-Te, Electra-Te, and DistilBERT-Te, word and
sentence embeddings using graph-based models: DeepWalk-Te and Node2Vec-Te, and Graph
AutoEncoders (GAE). (4) We propose the multi-task learning model (MT-Text GCN) to recon-
struct word-sentence graphs on TEL-NLP data while achieving multi-task text classification
with learned graph embeddings. We show that our pre-trained embeddings are competitive or
better than the existing multilingual pre-trained models: mBERT, XLM-R, and IndicBERT.

vi

vii

Lastly, the fine-tuning of pre-trained models show higher performance than linear probing re-
sults on five NLP tasks. We also experiment with our pre-trained models on other NLP tasks
available in Telugu (Named Entity Recognition, Article Genre Classification, Sentiment Analy-
sis, and Summarization) and find that our Telugu pre-trained language models (BERT-Te and
RoBERTa-Te) outperform the state-of-the-art system except for the sentiment task. We hope
that the availability of the created resources for different NLP tasks will accelerate Telugu NLP
research which has the potential to impact more than 85 million people.

In this thesis, we aim at bridging the gap by creating resources for different NLP tasks
in Telugu. These tasks can be extended to other Indian languages that are closer to Telugu
culturally and linguistically by translating these resources without losing information like verb
forms, cultural terms, vibhaktis etc. This is the first work that employs neural methods to
Telugu language —a language that does not have good tools like NER, parsers and embeddings.
Our work is the first attempt in this direction to provide good models in Telugu language by
exploring different methods with available resources.

It can also help the Telugu NLP community evaluate advances over more diverse tasks and
applications. We open-source our corpus, five different annotated datasets (SA, EI, HS, SAR,
and clickbait), lexicons, pre-trained embeddings, and code here1. The pre-trained Transformer
models for Telugu are available here2.

1https://github.com/mounikamarreddy/NLP-for-Telugu-Language.git
2https://huggingface.co/ltrctelugu

Related publications

Journal Proceedings

1. Mounika Marreddy, Subba Reddy Oota, Lakshmi Vakada Sireesha, Venkata Charan
Chinni, Radhika Mamidi,“Am I a Resource-Poor Language? Datasets, Embeddings, Mod-
els and Analysis for four different NLP tasks in Telugu Language,” in ACM Transactions
on Asian and Low-Resource Language Information Processing (TALLIP)-2022.

Conference Proceedings

1. Mounika Marreddy, Subba Reddy Oota, Lakshmi Vakada Sireesha, Venkata Cha-
ran Chinni, Radhika Mamidi,“Multi-Task Text Classification using Graph Convolutional
Networks for Large-Scale Low Resource Language,” in International Joint Conference on
Neural Networks (IJCNN)-2022.

2. Mounika Marreddy, Subba Reddy Oota, Lakshmi Vakada Sireesha, Venkata Charan
Chinni, Radhika Mamidi,“Clickbait Detection in Telugu! Building from Scratch?,” in
International Joint Conference on Neural Networks (IJCNN)-2021.

3. Subba Reddy Oota, Aditya Avvaru, Mounika Marreddy, Radhika Mamidi, “Affect in
Tweets using Experts Model,” in Pacific Asia Conference on Language, Information and
Computation (PACLIC)-2018.

Workshop Proceedings

1. Mounika Marreddy, Lakshmi Vakada Sireesha, Venkata Charan Chinni, Subba Reddy
Oota, Radhika Mamidi “Multi-Task Text Classification using Graph Convolutional Neural
Networks for Resource-Poor Language,” in (WiML-NIPS)-2020. (Extended Abstract)

2. Mounika Marreddy, Subba Reddy Oota, Radha Agarwal, Radhika Mamidi, “Eval-
uating the Combination of Word Embeddings with Mixture of Experts and Cascading
gcForest in Identifying Sentiment Polarity,” in (KDD-WISDOM)-2019.

viii

ix

Work in progress

1. Lakshmi Vakada Sireesha, Anudeep Ch, Subba Reddy Oota, Mounika Marreddy, Rad-
hika Mamidi,“GAE-ISumm”: Unsupervised Graph-Based Summarization of Indian Lan-
guages.

Other Accepted Works

1. Subba Reddy Oota, Jashn Arora, Veeral Agarwal, Mounika Marreddy, Raju Bapi,
Manish Gupta, “Neural Language Taskonomy: Which NLP Task is most Predictive of
fMRI Brain Activity?,” in (NAACL)-2022.

2. Suma Reddy, Subba Reddy Oota, Mounika Marreddy, Radhika Mamidi,“TeluguNER:
Leveraging Multi-Domain Named Entity Recognition with Deep Transformers,” in Asso-
ciation for Computational Linguistics (ACL-SRW)-2022.

3. Lakshmi Vakada Sireesha,Venkata Charan Chinni,Mounika Marreddy,Subba Reddy
Oota, Radhika Mamidi,“Unsupervised Graph based Telugu News Articles Text Summa-
rization” in (WiML-NeurIPS-2020) - (Extended Abstract).

Contents

Chapter Page

1 Introduction . 1
1.1 Text Classification . 1
1.2 Observations and Research Issues . 3

1.2.1 Observations . 3
1.2.2 Research Issues . 4

1.3 Research Methodology . 5
1.4 Overview of the Thesis . 5

1.4.1 About the Problem Statement . 6
1.4.2 Understanding the Intensity of Tweets using Feature Representations . . 6
1.4.3 Evaluating the Feature Representations 7
1.4.4 General Annotation Schema for NLP Tasks in Telugu 7
1.4.5 TEL-NLP Dataset and Multi-task GCN for Text Classification 7
1.4.6 Datasets, Embeddings, and Models for Text Classification Tasks 8
1.4.7 Dataset, Embeddings, and Models for Clickbait Detection 8

1.5 Contributions of the Thesis . 9
1.6 Organization of the Thesis . 9

2 Related Work . 11
2.1 Feature Representation Methods . 11

2.1.1 Lexicon Based Features . 11
2.1.2 Traditional Feature Representation Methods 11

2.1.2.1 Bag-of-Words (BoW) . 12
2.1.2.2 TF-IDF . 12
2.1.2.3 Words Co-Occurrence Features 12

2.1.2.3.1 Co-Occurrence Matrix Construction 13
2.1.3 Word Embedding Representations . 13

2.1.3.1 Word2Vec . 13
2.1.3.1.1 Shortcomings of Earlier Approaches 13
2.1.3.1.2 Contributions of Word2Vec 13
2.1.3.1.3 Model Architectures . 14

2.1.3.2 GloVe . 14
2.1.3.2.1 Contributions . 14
2.1.3.2.2 Model Architecture . 15

2.1.3.3 FastText . 15
2.1.4 Sentence Embedding Representations . 16

x

CONTENTS xi

2.1.4.1 Skip-Thought Vectors . 16
2.1.4.1.1 Skip-Thought Model Training Details 16

2.1.5 Contextual Word Representations . 17
2.1.5.1 ELMo (Deep contextualized word representations) 17

2.1.5.1.1 Limitations with Previous Methods 17
2.1.5.1.2 Contributions of ELMo 17

2.1.5.2 BERT (Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding) . 19

2.1.5.2.1 Problem with Previous Methods 19
2.1.5.2.2 Contributions of BERT 19
2.1.5.2.3 BERT Model Framework 19
2.1.5.2.4 Input/Output Representations 20

2.2 Text Classification Tasks in English Language . 20
2.2.1 Sentiment Analysis . 20
2.2.2 Emotion Identification . 20
2.2.3 Hate-speech Detection . 21
2.2.4 Sarcasm Detection . 21
2.2.5 Clickbait Detection . 21

2.3 Text Classification Tasks for Telugu Language . 22
2.4 Deep Learning for Multi-task Text Classification 22

2.4.1 Sentiment Analysis in the Telugu Language 23
2.4.2 Telugu Pre-trained Embeddings . 23

2.5 Differentiater of the Proposed Approaches . 24
2.6 Summary . 24

3 Affect in Tweets using Experts Model . 25
3.1 Background . 25
3.2 Dataset Description . 25
3.3 Approach . 26

3.3.1 MoE Description . 26
3.3.2 Our Proposed Approach . 27

3.4 Preprocessing and Feature Extraction . 28
3.4.1 Deep-Emoji Features . 29
3.4.2 Word-Embedding Features . 29
3.4.3 Skip-Thought Features . 29
3.4.4 Lexicon Features . 29
3.4.5 Hash-tag Intensity Features . 30
3.4.6 Stylometric Features . 30
3.4.7 Unsupervised Sentiment Neuron Features 30

3.5 Experimental Setup and Results . 30
3.5.1 Training Strategy . 31
3.5.2 Results . 32
3.5.3 Metrics . 33

3.6 Conclusion . 34

xii CONTENTS

4 Evaluating Word Representations with Sentiment Analysis 35
4.1 Background . 35
4.2 Model Architecture . 35

4.2.1 MoCE Architecture . 36
4.2.2 Multigrained gcForest Architecture . 36

4.3 Experimental Setup . 38
4.3.1 Dataset Description . 38
4.3.2 Feature Extraction . 39
4.3.3 Training Strategy . 39

4.4 Results and Discussion . 39
4.4.1 Evaluation of Embeddings using MoCE 40
4.4.2 Polarity Identification using gcForest . 41

4.5 Conclusion . 41

5 General Annotation Schema for Five NLP Tasks in Telugu 43
5.1 Telugu Raw Corpus Creation . 43
5.2 Data Annotation process . 43
5.3 Annotation Guidelines for Five Tasks in Telugu 44

5.3.1 Telugu Sentiment Analysis (SA): . 45
5.3.2 Telugu Emotion Identification (EI): . 45
5.3.3 Telugu Hate-speech Detection (HS): . 45
5.3.4 Telugu Sarcasm Detection (SAR): . 46
5.3.5 Telugu Clickbait Detection: . 47

5.4 Annotation Tool . 47
5.5 Annotators Fair Compensation: . 48
5.6 Summary . 49

6 TEL-NLP Dataset and Multi-task GCN for Text Classification 50
6.1 Background . 50
6.2 TEL-NLP Dataset Details . 51
6.3 Proposed Method . 52

6.3.1 GCN and Graph AutoEncoder . 52
6.3.2 Multi-task Text GCN (MT-Text GCN) 52
6.3.3 Building Text Graph . 54

6.4 Experimental Setup and Results . 54
6.4.1 Baselines . 55
6.4.2 Telugu Word Embeddings . 55
6.4.3 Deep Learning Methods . 56
6.4.4 Random Walk based Representations . 56
6.4.5 Graph based Representations . 56
6.4.6 Model Setup . 56

6.5 Results and Analysis . 57
6.5.1 Graph based Node Embeddings . 59
6.5.2 Qualitative Analysis . 60
6.5.3 Quantitative Analysis . 60
6.5.4 Error Analysis . 61

CONTENTS xiii

6.6 Summary . 62

7 Datasets, Embeddings, and Models for Text Classification Tasks 64
7.1 Background . 64
7.2 Dataset Description . 65

7.2.1 Corpus Collection Process . 65
7.2.2 Data Pre-processing . 65
7.2.3 Data Statistics . 66

7.3 Feature Representation Methods . 67
7.3.1 Baseline Feature Representations . 67

7.3.1.1 Building Telugu Lexicon Features 68
7.3.1.2 Extraction of Telugu Lexicon Features 69
7.3.1.3 Telugu Bag-of-Words Representation 69
7.3.1.4 Telugu TF-IDF Representation 69

7.3.2 Generation of Telugu Word Embeddings 69
7.3.2.1 Word2Vec-Telugu (Word2Vec-Te) 70
7.3.2.2 GloVe-Telugu (Glove-Te) . 70
7.3.2.3 FastText-Telugu (FastText-Te) 70
7.3.2.4 Meta-Embeddings-Telugu (Meta-Embeddings-Te) 71
7.3.2.5 Qualitative Analysis of Telugu Word-Embeddings 71

7.3.3 Telugu Sentence Level Embeddings . 73
7.3.3.1 Telugu Skip-Thought Representations (Skip-Thought-Te) 74
7.3.3.2 Telugu ELMo Embeddings (ELMo-Te) 75

7.3.4 Telugu Transformer Models . 77
7.3.4.1 BERT-Telugu (BERT-Te): . 77
7.3.4.2 RoBERTa-Telugu (RoBERTa-Te): 77
7.3.4.3 ALBERT-Telugu (ALBERT-Te): 77
7.3.4.4 DistilBERT-Telugu (DistilBERT-Te): 78

7.4 Experimental Setup and Methods Training . 78
7.4.1 Logistic Regression Training . 78
7.4.2 Imbalanced Dataset Handling . 79
7.4.3 LSTM Method Training . 79
7.4.4 Challenging Tasks . 79
7.4.5 Fine-tuning of Pretrained Transformers 79
7.4.6 Dataset Splitting . 80
7.4.7 Model Training Details . 80

7.5 Telugu Pretrained Word and Sentence Embeddings 80
7.5.1 Text Classification Evaluation . 80
7.5.2 Error Analysis . 83

7.6 LSTM Model Results: . 85
7.7 Comparison of Telugu Pretrained Transformers with mBERT, XLM-R, and In-

dicBERT . 86
7.7.1 Do Linear Probing on Telugu Pretrained Transformers Outperform the

existing Multilingual Language Models? 87
7.7.2 Do Fine-tuning of Telugu Pretrained Transformers Outperform the Ex-

isting Multilingual Language Models? . 87

xiv CONTENTS

7.7.3 Do Telugu Pretrained Transformer Models Outperform the State-of-the-
art Telugu Datasets? . 89

7.7.4 Performance on the Three Datasets . 90
7.8 Ethical Statement . 91
7.9 Privacy Concerns of Crawled Data . 92
7.10 Social Impact . 92
7.11 Summary . 93

8 Dataset, Embeddings and Models for Clickbait Detection 94
8.1 Background . 94
8.2 A New Dataset for Detecting Clickbait in Telugu 95
8.3 Feature Representation Methods . 96

8.3.1 Traditional Features . 96
8.3.2 Hand-Crafted Features . 96
8.3.3 Distributed Word Representations . 97
8.3.4 Skip-Thought Sentence Vectors . 98
8.3.5 Context Level Features . 98

8.4 Methodologies . 100
8.5 Experiments and Results . 100

8.5.1 Results and Analysis . 101
8.5.2 Comparative Analysis . 102
8.5.3 Error Analysis . 103
8.5.4 LIME Results . 104
8.5.5 Statistical Analysis . 104

8.6 Summary . 105

9 Summary, Conclusions and Future Work . 107
9.1 Summary . 107
9.2 Conclusions . 108
9.3 Limitations . 108
9.4 Future Work . 109

Bibliography . 110

List of Figures

Figure Page

1.1 Sample of Telugu language comments on different social and news media platforms 3
1.2 Example sentences with labels from different tasks in Telugu, WX, and English

translation . 4

3.1 Proposed Experts model . 27
3.2 Feature Importance: Comparison of Pearson Scores for each feature vector and

concatenated vector . 34

4.1 Proposed Mixture of Classification Experts (MoCE) model. Here, Expert1 cap-
tures positive reviews and Expert2 captures negative reviews. 38

4.2 Cascading gcForest Architecture . 39
4.3 Figure presents the accuracy of amazon 20 products using gcForest on four word

embeddings Word2Vec, GloVe, BERT, and ELMo. 40

5.1 Sample of annotated sentences for SA task in Telugu, WX and English 45
5.2 Sample of annotated sentences for EI task in Telugu, WX and English translation 46
5.3 Sample of annotated sentences for HS task in Telugu, WX and English translation 46
5.4 Sample of annotated sentences for SAR task in Telugu, WX and English translation 46
5.5 Sample of annotated sentences for clickbait task in Telugu, WX and English

translation . 47
5.6 Figure shows a sample web interface for annotation process and example of user1

annotated sentences . 48

6.1 MT-Text GCN Pipeline: Rows in Z are low-dimensional node embeddings learned
by the encoder from input graph A. LightGBM classifier outputs predicted labels
l̂, and compares with actual labels l. LMSE (reconstruction loss) denotes the
mean squared error (MSE) between the reconstructed graph A

′ and the empirical
graph A. The sigmoid cross-entropy loss denoted by LMTCLA

. 53
6.2 Example of reconstruction (red)/ classification (blue) loss with different λ (top),

train and validation learning curves shows a good fit at λ = 0.2 (bottom). Each
point on the curve is the average of loss with corresponding λ 55

6.3 Top 8 similar words for the word “competition” using (i) MT-Text GCN-W+S
(ii) Te-W2V (iii) Te-GloVe and (iv) Te-FT . 59

6.4 Test accuracy results for four tasks (i) SA (ii) EI (iii) HS and (iv) SAR by varying
embedding dimensions . 61

xv

xvi LIST OF FIGURES

6.5 Confusion matrices of MT-Text GCN-W+S for three best performing tasks: (a)
SA (b) EI (c) HS and (d) SAR using ST-Text GCN-W+S 61

6.6 MT-Text GCN-W+S: Wrong predictions by the model on four text classification
tasks: SA, EI, HS, SAR . 62

7.1 Pre-processing of broken sentences by correcting the type errors 66
7.2 Top 8 similar words using Word2Vec-Te . 71
7.3 Top 8 similar words using GloVe-Te . 71
7.4 Top 8 similar words using FastText-Te . 71
7.5 Top 8 similar words using Meta-Embeddings-Te 72
7.6 Word-Embedding Arithmetic Operations . 73
7.7 Top 8 nearest neighbour of sentences predicted using Skip-Thought-Te model for

the input sentence s1 (top row) . 74
7.8 Five sentences used in ELMo-Te visualization . 75
7.9 Layer-1 ELMo-Te vector for the word “పƶ/pani/work” 76
7.10 Layer-2 ELMo-Te vector for the word “పƶ/pani/work” 76
7.11 Comparison of F1-score performance of input word representations i) Sequence of

Tokens ii) Word2Vec-Te iii) GloVe-Te iv) FastText-Te and v) Meta-Embeddings-
Te. The LSTM model is used as a training model for each of the feature repre-
sentations in the (a) SA and (b) EI setups. 86

7.12 ROC curves for SA task: (a) BERT-Te and (b) RoBERTa-Te. The labels for the
three classes are as follows: class 0 - Negative, class 1 - Neutral, and class 2 -
Positive. 90

7.13 ROC curves for EI task: (a) BERT-Te and (b) RoBERTa-Te. The labels for the
five classes are as follows: class 0 - Anger, class 1 - Fear, class 2 - Happy, class 3
- No, and class 4 - Sad. 90

7.14 ROC curves for HS task: (a) BERT-Te and (b) RoBERTa-Te. The labels for the
two classes are as follows: class 0 - No, and class 1 - Yes. 91

7.15 ROC curves for SAR task: (a) BERT-Te and (b) RoBERTa-Te. The labels for
the two classes are as follows: class 0 - No, and class 1 - Yes. 91

8.1 Comparison of F1-score performance of input word representations i) Sequence
of Tokens ii) Word2Vec iii) GloVe iv) FastText and v) Meta-Embedding. The
LSTM model is used as a trained model for each of the feature representations
in the 2-class setups are shown here . 102

8.2 Comparison of F1-score performance of i) Facebook FastText, ii) Subword Byte
Pair iii) BERT-Multilingual-Case iv) XLM-R v) XLM-MLM vi) ELMo-Telugu
vii) BERT-Telugu viii) ALBERT-Telugu ix) RoBERTa-Telugu and x) ELECTRA-
Telugu embeddings. The LightGBM classifier is used to train each of the feature
representations in the clickbait task setup is shown here 103

8.3 Local Interpretable Model-Agnostic explanations: showcase the words highlighted
for both LR and LightGBM models . 106

List of Tables

Table Page

3.1 SemEval-2018 Task-1 Dataset Details . 26
3.2 Model-Parameters . 31
3.3 Comparison of Regression results of various models with our Experts Model . . . 31
3.4 Comparison of Classification results of various models with our Experts Model . 32
3.5 Comparison of Valence-reg results of various models with our Experts Model . . 32
3.6 Comparison of Valence-oc results of various models with our Experts Model . . . 32
3.7 Comparison of E-c results of various models with our Experts Model 33

4.1 Model Parameters of Cascading gcForest . 37
4.2 Comparison of word embedding results of 20 domains of Dranziera dataset with

our MoCE Model. The values in the table indicates the percentage of positive
reviews captured by Expert1 and percentage of negative reviews captured by
Expert2. 37

4.3 Detailed results of domains (Dom) of Amazon product reviews dataset by the
Baselines, existing method results and by passing combination of word embed-
dings to gcForest . 42

6.1 Statistics of the TEL-NLP dataset . 52
6.2 TEL-NLP results on four tasks in terms of F1-score using: (A) traditional

features, (B) distributed word embeddings, (C) deep learning representations,
(D) random walk embeddings, (E) pre-trained multi-lingual transformers, and
(F) our proposed method: MT-Text GCN and its variations. All these methods
were trained on Telugu corpus. Since HS data has a class imbalance issue, we
report the weighted F1-score . 58

7.1 Pre-processing of text using normalization . 66
7.2 Dataset Statistics for the four NLP tasks . 67
7.3 Statistics of lexicons in each NLP task . 67
7.4 Sample of positive sentiment lexicons in Telugu, WX, and English 67
7.5 Sample of negative sentiment lexicons in Telugu, WX, and English 67
7.6 Sample of happy emotion lexicons in Telugu, WX, and English 68
7.7 Sample of angry emotion lexicons in Telugu, WX, and English 68
7.8 Sample of sad emotion lexicons in Telugu, WX, and English 68
7.9 Sample of fear emotion lexicons in Telugu, WX, and English 68
7.10 Sample of hate-speech lexicons in Telugu, WX, and English 68

xvii

xviii LIST OF TABLES

7.11 Text Classification Results using Different feature sets with Logistic Regression
classifier under different sampling methods with No/Over/Under-Sampling: (a)
SA (b) EI. 80

7.12 Text Classification Results using Different feature sets with Logistic Regression
classifier under different sampling methods with No/Over/Under-Sampling: (a)
HS (b) SAR. 81

7.13 Confusion Matrix for SA with ELMo-Te . 85
7.14 Confusion Matrix for EI with ELMo-Te . 85
7.15 Confusion Matrix for HS with ELMo-Te . 85
7.16 Confusion Matrix for SAR with ELMo-Te . 85
7.17 Models and their Training Corpus sizes. B: Billions, M: Millions 87
7.18 Linear Probing Results: Comparison of Text classification results with linear

probing on existing pretrained Telugu word embeddings and our Telugu pre-
trained Transformers on four different NLP tasks. 88

7.19 Fine-tuning Results: Comparison of Text classification results with fine-tuning
on existing multilingual pretrained Transformers as well as our Telugu pretrained
Transformers on four different NLP tasks. 89

7.20 p-values for post hoc pairwise tests across four NLP tasks. Here, ∗ denotes that
the two pairs of models are significantly different (i.e. p � 0.05). 89

7.21 Fine-tuning Results on Telugu datasets: Comparison of Text classification results
with fine-tuning on existing multilingual pretrained transformers as well as our
Telugu pretrained transformers on three datasets. 92

8.1 Analysis of structural features . 96
8.2 Analysis of POS Tag features . 97
8.3 Clickbait Detection Results: Different feature sets classification comparison for

Logistic Regression, and LightGBM models using different sampling methods
with No/Over/Under-Sampling . 99

8.4 Clickbait Detection Results: The table display the fine tuning results of the
existing pre-trained language models . 101

8.5 ELMo: Confusion matrix for clickbait classification 103
8.6 ELMo: Wrong predictions by the model . 104
8.7 BERT: Confusion matrix for clickbait classification 104
8.8 ALBERT: Confusion matrix for clickbait classification 104
8.9 RoBERTa: Confusion matrix for clickbait classification 105
8.10 ELECTRA: Confusion matrix for clickbait classification 105
8.11 Lime: Input sentence in Telugu, WX, and English 106
8.12 Post-hoc Tukey test results . 106

Chapter 1

Introduction

1.1 Text Classification

Text classification is a well-studied problem in the field of NLP, which has important appli-
cations like sentiment analysis (SA) [92, 21, 129, 113], emotion identification (EI) [1, 122, 73, 7],
hate-speech detection (HS) [68, 145, 47, 106], and sarcasm detection (SAR) [55, 54, 76, 69]. Un-
derstanding text’s contextual and semantic representation is one of the main challenges in text
classification. Also, the traditional methods represent text with hand-crafted features, including
structural and part-of-speech (POS) tagging features, and depend on data availability.

Efficient feature representations are the cornerstones of NLP text classification applications.
Particularly, the English language has many word embedding representations at contextual [97,
35] and non-contextual levels [80, 95]. These representations help in solving NLP tasks like
sentiment analysis [92, 102], question answering [14, 132], and semantic role labeling [118, 27].
However, the quality of the embeddings is impacted by the size of the mono-lingual corpora [80,
13]. Also, the input representation for Indian languages is very sparse and unsatisfactory due
to the absence of a large corpus and annotated datasets.

Most of the resources created for Indian languages are from a machine translation perspec-
tive. However, for other NLP tasks, the available resources are significantly fewer. Hence, cre-
ating abundant data, tools, and machine learning or deep learning models for Indian languages
is the need of today as it will help increase communication and understanding of contextual dif-
ficulties. Further, these resources are helpful for NLP applications like text classification, text
summarization, question answering, and automated document evaluation, which might moti-
vate future endeavors in Indian languages like Telugu, the language selected for the current
research work.

Recently, most social media, e-commerce, and news platforms have started allowing users to
express their opinions and thoughts in their native language, as shown in Figure 1.1. Specifically,
many applications and tools, including Google, Instagram, Facebook, and WhatsApp, provide
native language selection and translation options. From Figure 1.1, we observe that people post

1

different types of responses online. For example, hateful comments on Facebook posts, sarcastic
tweets on Twitter posts, sentimental and emotional comments on YouTube movie videos, and
Telugu news articles. Moreover, on platforms like Facebook and Instagram, posts using Indian
native languages get 50% more responses compared to English posts1. Hence, motivated by the
immense use of such online platforms and apps, we investigate and use the available data for
creating a large corpus, better-annotated datasets, models, and tools in Telugu.

The problem is challenging because creating such large corpora and annotated data requires
standard annotation guidelines, manual power, cost, and sentence pre-processing, including
ambiguous ones (lexical, semantic, and structural levels). In addition, the pre-processing of
Indian languages is arduous from English because of the morphology and syntax. The second
challenge is to verify the quality of the annotated data, as the data we created is multi-domain
and taken from different sources, as mentioned above. Since anyone can create articles on
Wikipedia, which sometimes may not be authentic, there is a need to verify the facts. We
extracted the relevant Telugu data from other websites to make a better corpus to overcome
this challenge. In addition to handling imbalanced datasets, verifying contexts for ambiguous
sentences is challenging. Overall, we attempt to create a web-based annotation tool to simplify
the annotation tasks for an end-user.

Some concerted and noteworthy efforts have been made to build the pre-trained word-
embedding models for Telugu, including Word2Vec in [87], an n-gram-based skip-gram model
to train the FastText embeddings in [13]. Similar to the n-gram approach, sub-word pre-trained
word embeddings based on Byte-Pair Encoding (BPE) are trained on Telugu Wikipedia in [48].
Also, the recent successful multi-lingual pre-trained transformer models such as mBERT [34]
and Cross-Lingual Language Model (XLM-R) [29] use Telugu corpus as one of the multi-lingual
corpora for training. However, these models do not have high-quality representations for all lan-
guages. For example, mBERT performs worse than non-BERT models on several downstream
tasks for the bottom 30 percent of languages in terms of dataset size upon which mBERT is
trained [130]. The main drawback of these methods is that they are never tested on large
Telugu annotated corpora, and no benchmark results are available for different NLP tasks in
Telugu. Recently, [57] introduced a multi-lingual language model (pre-trained in many Indian
languages), IndicBERT, to evaluate the downstream tasks of eleven major Indian languages.
However, these models do not focus on a specific language and are particularly unwieldy due to
their large number of parameters. Therefore, creating resources and building language models
in the mono-lingual setting of our selected low-resource language, Telugu, is essential.
From this work, we want to bridge the gap by creating resources for Telugu. Examples of
Telugu language sentences from our corpus, their WX notation (a standard notation used for
Indian languages)2, and English translation are reported in the Figure 1.2. From Figure 1.2,
we observe that it is possible to create sentences having all kinds of conversations, opinions,

1http://tiny.cc/1yuzpz
2https://en.wikipedia.org/wiki/WX_notation

2

http://tiny.cc/1yuzpz
https://en.wikipedia.org/wiki/WX_notation

Facebook:	Hate	Comments	in	Telugu	Language Youtube:	Sentiment	Comments	in	Telugu	Language

News	Article	in	Telugu	LanguageTwitter:	Sarcasm	Comments	in	Telugu	Language

Figure 1.1: Sample of Telugu language comments on different social and news media platforms

and expressions and obtain valuable insights. Hence, creating copious data for multiple NLP
tasks can overcome the limitations and help the researchers make the best models for Telugu.

1.2 Observations and Research Issues

We list some observations that overcome the fundamental limitations of Telugu NLP models
and resources and present the research issues.

1.2.1 Observations

1. Corpus Creation: For the Telugu language, we do not have an available corpus to
generate pre-trained embeddings. We are the first to create a large Telugu corpus of
80,15,588 sentences crawled from websites publishing Telugu data. We make the corpus
publicly available.

2. Lack of Annotated Datasets: We create different large annotated datasets for the five
NLP tasks in the Telugu language, in contrast to earlier works that experimented with
tiny data for a single task [87]. We publicly released the five annotated datasets.

3

Figure 1.2: Example sentences with labels from different tasks in Telugu, WX, and English
translation

3. Absence of Efficient Feature Representations: Creating copious data for multiple
NLP tasks can overcome the limitations and help researchers make the best models for
Telugu. We create fifteen different feature representations from scratch on 80,15,588
sentences. In particular, we create recent pre-trained language models for Telugu such
as ELMo-Te, BERT-Te, RoBERTa-Te, ALBERT-Te, and DistilBERT-Te on our large
Telugu corpora. These embeddings are made publicly available.

4. Non-availability of Telugu Machine Learning Models: Unlike English, very few
preliminary works have covered text classification in Telugu. Unfortunately, all these
works were limited to existing baseline models that use either small annotated datasets [86]
or restricted to single task text classification [87]. Hence, we propose a multi-task graph
convolutional network (MT-Text GCN) to jointly (i) perform graph reconstruction and
(ii) do multi-task text classification on four significant NLP tasks - SA, EI, HS, and SAR.
We also introduce linear probing and fine-tuning of Telugu pre-trained transformers and
compare them with multi-lingual pre-trained transformers. We perform linear probing
and fine-tuning on NLP tasks (SA, EI, HS, and SAR) and the available state-of-the-art
Telugu datasets. We also did a complete end-to-end automated Telugu clickbait detection
model.

1.2.2 Research Issues

Based on the preceding observations, we notice that no significant effort has been made to
create a raw corpus, guidelines for annotation, annotated datasets, and models for the Telugu
language. The main research issues identified are: to create a large corpus, annotated datasets
for text classification, develop feature representations from scratch, and build machine or deep
learning models for Telugu.

4

1.3 Research Methodology

A research method is a set of instructions for solving a problem. The common components
of a research method are stages, tasks, methods, techniques, and tools. Research methods
are broadly classified into the scientific method and the mathematical method. Scientifically,
the first step is to observe the world, propose a theoretical model of behavior, measure and
analyze it, confirm the model’s hypothesis or theory, and repeat the process if possible. The
mathematical method proposes a formal theory or a set of axioms, develops the idea, derives
the results, and compares it with empirical observations. The scientific method can be divided
into two models: Engineering and empirical.

Engineering method: Here, the existing solutions were observed, and better solutions were
proposed, designed, and developed. The evaluation metrics were defined to measure and analyze
the solutions, and the process is repeated until no more improvements are possible.

Scientific method: Here, models are proposed, and efforts were made to develop statistical
and quantitative methods. These models are applied to the case studies to measure and analyze
the model validation. The process is repeated for a few iterations to develop a standard model.

The proposed approach in this thesis comes under the category of the engineering method.
We first observed existing text classification methods for Telugu and identified the drawbacks.
We created the resources, datasets, and tools for the text classification tasks in Telugu. However,
these help to build feature representations and models in Telugu. We made an effort in the
Telugu language and developed the corpus, annotated data, machine learning, and deep learning
resources.

1.4 Overview of the Thesis

In this thesis, as the initial works, we experimented with available feature representation
methods in the English language. Also, we proposed a mixture of the expert model to evaluate
the quality of word embeddings. By analyzing the results of the feature representations in
English, we feel that for the success of NLP in any language, one needs to develop the feature
representations from scratch. We created a corpus and made 18 feature representations from
scratch in the Telugu language. We have created various Telugu annotated datasets for multi-
ple NLP text classification tasks in Telugu. We proposed graph-based architectures, machine
learning, and deep learning-based models. We compared our results with existing multi-lingual
representations and got the best results with the created representations. The overview of the
problem framework and the proposed architectures are as follows:

5

1.4.1 About the Problem Statement

More than 6000 languages are spoken worldwide, yet the available Speech and NLP datasets
only cover a limited number of languages, usually a few hundred. Consequently, the performance
of the best Speech and NLP models is primarily optimized for a small subset of languages.
Researchers have been focusing on a multi-lingual approach in recent years, although it has
been challenging to encompass even a hundred languages within this framework.

Relying on a paradigm that builds model architectures primarily based on English, French,
Spanish, and a few other European languages, with the expectation that these models will
generalize effectively to all 6000 languages, has proven to be ineffective. Our qualitative and
quantitative experiments in Telugu (a mono-lingual context) have shown that creating pre-
trained models from scratch yields superior results compared to existing multi-lingual models.

Moreover, there is a pressing need to develop language-specific models for various languages
and language families worldwide. By combining the insights gained from these individual mod-
els, we can strive towards creating comprehensive multi-lingual models. This thesis addresses
the challenge of the low-resource problem of Telugu language NLP processing by building a
large corpus, multiple annotated datasets, and pre-trained architectures from scratch. Machine
learning and deep learning models specifically designed for Telugu were also developed in this
research endeavor.

1.4.2 Understanding the Intensity of Tweets using Feature Representations

The main goal of our first work is to understand the importance of feature representations in
a given NLP task (i.e., Estimating the intensity of emotion) using English data. Estimating the
intensity of emotion has gained significance as modern textual inputs in potential applications
like social media, e-retail markets, psychology, advertisements, etc., carry a lot of emotions,
feelings, and expressions along with their meaning. The intensity of emotion from text has
emerged as an increasingly important and standardizing modern textual input in potential
applications like social media, e-retail markets, psychology, advertisements, etc. However, tra-
ditional sentiment analysis approaches primarily focus on classifying the sentiment in general
(positive or negative) or at an aspect level (very positive, low negative, etc.) and cannot ex-
ploit the intensity information. Moreover, automatically identifying emotions like anger, fear,
joy, sadness, disgust, etc., from text introduces challenging scenarios where a single tweet may
contain multiple emotions with different intensities and some emotions may co-occur in some
tweets. This work proposes an architecture, the Experts Model, inspired by the standard Mix-
ture of Experts (MoE) model. The key idea here is each expert learns different sets of features
from the feature vector which helps in better emotion detection from the tweet. We compared
our Experts Model’s results with baseline results and the top five performers of SemEval-2018
Task-1, Affect in Tweets (AIT). The experimental results show that our proposed approach

6

deals with the emotion detection problem and stands at the top-5 results. The detailed work
is presented in Chapter 3.

1.4.3 Evaluating the Feature Representations

The following work with English data evaluates the existing pre-trained embeddings using
a mixture of expert model. The main aim of this work is to see which feature representation
is important for a particular NLP task (in this case, I experimented with sentiment analysis).
Neural word feature embeddings have delivered impressive results in many Natural Language
Processing tasks. The quality of the word embedding determines the performance of a super-
vised model. However, choosing the right word embeddings for a given dataset is a primary
challenge for enhancing the results. In this paper, we have evaluated neural word embeddings
on sentiment analysis task in two steps: (i) propose a mixture of classification experts (MoCE)
model for the sentiment classification task, (ii) compare and improve the classification accuracy
by different combination of word embedding as the first level of features and pass it to cascade
model inspired by gcForest for extracting various features. We argue that each expert learns
certain positive or negative examples corresponding to its category in the first step. In the
second step, resulting features on a given task (polarity identification) can achieve competitive
performance with state-of-the-art accuracy methods, precision, and recall using gcForest. The
detailed work is presented in Chapter 4.

1.4.4 General Annotation Schema for NLP Tasks in Telugu

From here, we focus on the primary motivation of the thesis, i.e., to mitigate the low resource
problem of the mono-lingual language (Telugu). In this chapter, we explained the process of
developing a large annotated work, the annotation process, and the NLP tasks we considered
in Telugu. A detailed explanation is presented in Chapter 5.

1.4.5 TEL-NLP Dataset and Multi-task GCN for Text Classification

In this work, we study the use of GCN for the Telugu language in single and multi-task set-
tings for four natural language processing (NLP) tasks, viz. sentiment analysis (SA), emotion
identification (EI), hate-speech (HS), and sarcasm detection (SAR). To evaluate the perfor-
mance of GCN with one of the Indian languages, Telugu, we analyze the GCN-based models
with extensive experiments on four downstream tasks. In addition, we created an annotated
Telugu dataset, TEL-NLP, for the four NLP tasks. Further, we propose a supervised graph
reconstruction method, Multi-Task Text GCN (MT-Text GCN) on the Telugu that leverages to
simultaneously (i) learn the low-dimensional word and sentence graph embeddings from word-
sentence graph reconstruction using graph autoencoder (GAE) and (ii) perform multi-task text

7

classification using these latent sentence graph embeddings. We argue that our proposed MT-
Text GCN achieves significant improvements on TEL-NLP over existing Telugu pre-trained
word embeddings [78], multi-lingual pre-trained Transformer models. The detailed work is
presented in Chapter 6.

1.4.6 Datasets, Embeddings, and Models for Text Classification Tasks

In this work, we explore the traditional to recent efficient representations to overcome the
challenges of low resource language, Telugu. In particular, our main objective is to mitigate the
low-resource problem for Telugu. Overall, we present several contributions to a resource-poor
language, viz. Telugu. (i) a large annotated data (35,142 sentences in each task) for multi-
ple NLP tasks such as sentiment analysis, emotion identification, hate-speech detection, and
sarcasm detection, (ii) we create different lexicons for sentiment, emotion, and hate-speech for
improving the efficiency of the models, (iii) pre-trained word and sentence embeddings, and (iv)
different pre-trained language models for Telugu such as ELMo-Te, BERT-Te, RoBERTa-Te,
ALBERT-Te, and DistilBERT-Te on a large Telugu corpus consisting of 80,15,588 sentences
(16,37,408 sentences from Telugu Wikipedia and 63,78,180 sentences crawled from different
Telugu websites). Further, we show that these representations significantly improve the per-
formance of four NLP tasks and present the benchmark results for Telugu. We argue that our
pre-trained embeddings are competitive or better than the existing multi-lingual pre-trained
models. Lastly, the fine-tuning of pre-trained models shows higher performance than linear
probing results on four NLP tasks. We also experiment on publicly available Telugu datasets
(Named Entity Recognition, Article Genre Classification, and Sentiment Analysis), find that
our Telugu pre-trained language models (BERT-Te and RoBERTa-Te) outperform the state-
of-the-art system except for the sentiment task. The detailed work is presented in Chapter
7.

1.4.7 Dataset, Embeddings, and Models for Clickbait Detection

In this work, we present an annotated clickbait dataset of 112,657 headlines that can be used
for building an automated clickbait detection system for Telugu, a resource-poor language. We
show that the pre-trained language models trained on Telugu outperform the existing pre-
trained models on clickbait task. On a large Telugu clickbait dataset of 112,657 samples, the
Light Gradient Boosted Machines (LGBM) model achieves an F1-score of 0.94 for clickbait
headlines. For Non-Clickbait headlines, an F1-score of 0.93 is obtained, similar to that of the
Clickbait class. The detailed work is presented in Chapter 8.

8

1.5 Contributions of the Thesis

As mentioned earlier, there is a need to create a corpus, annotate datasets and embeddings,
and develop machine learning and deep learning models to understand contextual predictions
and decisions better. To our knowledge, no such resources are available for Telugu, and we
are the pioneers in creating a large corpus of copious labeled Telugu data for five NLP tasks
sentiment, emotion, hate-speech, sarcasm, clickbait, and pre-trained language models. The
main contributions of this thesis are as follows:

• We created a large Telugu corpus of 80,15,588 sentences (16,37,408 sentences from Telugu
Wikipedia and 63,78,180 sentences crawled from different Telugu websites).

• We created annotated datasets for sentiment analysis, emotion identification, hate speech
detection, sarcasm identification, and clickbait detection.

• For the Telugu language, we are the first to create lexicons, Word2Vec, GloVe, FastText,
Skip-Thought vectors, pre-trained language models for Telugu such as ELMo-Te, BERT-
Te, RoBERTa-Te, ALBERT-Te, and DistilBERT-Te, word embeddings using random
walk-based models: DeepWalk, Node2Vec, and Graph AutoEncoders (GAE) from scratch
on the created Telugu corpus.

• We propose the multi-task learning model (MT-Text GCN) to reconstruct word-sentence
graphs while achieving multi-task text classification with learned graph embeddings.

• We outperformed the multilingual pre-trained language models such as mBERT [34],
XLM-R [70], Sub-word Byte Pair [48], Facebook FastText [13], and IndicBERT [57].

The sentence-level corpora, annotated datasets, lexicons, pre-trained words, sentence embed-
dings, and pre-trained transformer models are publicly available under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License. We open-source our corpus,
four different datasets, lexicons, embeddings, and code3. The pre-trained transformer models
for Telugu are available here4.

1.6 Organization of the Thesis

The rest of the thesis is organized as follows:

• Chapter 2. Related work: In this chapter, we discuss the literature survey of existing
datasets in Telugu and the different feature representations available for English and
about the NLP tasks.

3https://github.com/mounikamarreddy/NLP-for-Telugu-Language.git
4https://huggingface.co/ltrctelugu

9

• Chapter 3. Evaluating Word representations using Sentiment Analysis: This
is the first work to understand how feature representations are essential for sentiment
analysis. We have evaluated neural word embeddings on sentiment analysis task in two
steps: (i) proposed a mixture of classification experts (MoCE) model for the sentiment
classification task, (ii) to compare and improve the classification accuracy by different
combinations of word embedding as the first level of features and pass it to cascade model
inspired by gcForest for extracting various features.

• Chapter 4. Affects in Tweets using Experts Model: In this work, we propose
an architecture, the Experts Model, inspired by the standard Mixture of Experts (MoE)
model. The key idea here is each expert learns different sets of features from the feature
vector, which helps in better emotion detection from the tweet. We compared our Experts
Model’s results with baseline results and the top five performers of SemEval-2018 Task-1,
Affect in Tweets (AIT).

• Chapter 5. General Annotation Schema for Five NLP Tasks in Telugu: In this
chapter, we present the corpus creation, annotation process, annotation guidelines with
Telugu examples, the tool we created to ease the annotation process, and fair compensa-
tion to the annotators.

• Chapter 6. TEL-NLP Dataset and Multi-task GCN for Text Classification:
In this chapter, we present an annotated TEL-NLP dataset in Telugu covering four
NLP tasks (16,234 samples for SA, HS, SAR, and 9,675 samples for EI). We propose a
supervised graph reconstruction method, Multi-Task Text GCN (MT-Text GCN), for the
Telugu language in single and multi-task settings for four natural language processing
(NLP) tasks.

• Chapter 7. Datasets, Embeddings, and Models for Text Classification Tasks:
In this chapter, our main objective is to mitigate the low-resource problem for Telugu.
We present an annotated dataset of 35,142 sentences for four NLP tasks. We developed
machine learning models that automatically detect the task outputs using traditional to
recent successful feature representations built from scratch.

• Chapter 8. Dataset, Embeddings and Models for Clickbait Detection: In this
chapter, we present an annotated clickbait dataset of 112,657 headlines that can be used
for building an automated clickbait detection system for the Telugu language.

• Chapter 9. Summary, Conclusions, and Future Work: In this chapter, we present
the thesis’s summary, conclusions, limitations, and future scope.

10

Chapter 2

Related Work

In this chapter, we present the related work for feature representation methods and the
literature survey on the existing NLP tasks for English language.

2.1 Feature Representation Methods

Just as in other types of machine learning tasks, we must find a way to represent our data
(a series of texts) to our systems (e.g., a text classifier) in NLP. This representation should be
an efficient representation of the text, capture the context-related information, and validate it
to do math operations, which, in turn, captures a semantic representation of the text. In this
section, we will be looking at feature engineering strategies that often leverage tradition and
advanced deep learning models. Specifically, we will be covering the lexicons, BoW, TF-IDF,
Word2Vec, GloVe, FastText, Skip-Thought, ELMo, and BERT models as described below.

2.1.1 Lexicon Based Features

The lexicon-based approach involves calculating orientation for a document from the se-
mantic orientation of words, phrases, or word senses in the document. Generally, in automatic
sentiment analysis, dictionaries annotated with words sentiment orientation are used. These
dictionaries can be created manually using the main word in the sentence, which exhibits
the sentiment or semi-automatically [50] using existing resources like WordNet or automati-
cally [124] by using seed words and then expanding the list. Lexicons [61, 128] have leveraged
as useful and successful feature for sentiment analysis. These results provide a word-level
foundation for identifying sentiment or emotion in sentences and documents.

2.1.2 Traditional Feature Representation Methods

The two traditional feature representation methods Bag-Of-Words (BoW) [126], and TF-
IDF [105] are successful in many of the NLP tasks. Although these methods are simple to

11

implement, yet produce better results. In the next subsections, we discuss these two traditional
feature extraction methods.

2.1.2.1 Bag-of-Words (BoW)

A bag-of-words (BoW) is a representation of text that describes the occurrence of words
within a document. In this approach, we use the tokenized words for each observation and
build the vocabulary by identifying the unique words in the corpus. Once the vocabulary file
is built, we need to vectorize our documents by counting how many times each word appears.
The intuition is that documents are similar if they have similar content. Further, from the
content alone, we can learn something about the meaning of the document. The complexity
of the BoW method comes both in deciding how to design the vocabulary of known words (or
tokens) and how to score the presence of known words.

2.1.2.2 TF-IDF

To overcome the limitation of highly frequent words with no informational content, an ap-
proach named Term frequency-Inverse document frequency (TF-IDF) [105] is one such model
used to rescale the frequency of words by how often they appear in all documents so that the
scores for frequent words across all documents are penalized. TF-IDF weight is a statistical
measure used to evaluate how important a word is to a document in a collection or corpus. The
importance increases proportionally to the number of times a word appears in the document
but is offset by the frequency of the word in the corpus.

• Term Frequency: is a scoring of the frequency of the word in the current document.

• Inverse Document Frequency: is a scoring of how rare the word is across documents.

Wi,j = tfi,j ∗ log(
N

dfi
) (2.1)

Here tfi,j is the number of occurrences of i in j, dfi is the number of documents containing i
and ’N’ is the total number of documents.

2.1.2.3 Words Co-Occurrence Features

Words co-occurrence statistics describe how words occur together that, in turn, captures the
relationships between words. Words co-occurrence statistics are computed simply by counting
how two or more words occur together in a given corpus. Co-occurrence matrices capture a lot
of the information you need for natural language processing (NLP). They contain both semantic
and syntactic information. Also, terms with related meanings (a semantic relationship) often
have high co-occurrence with each other (for example, sporting terms tend to cluster together).

12

Words with a similar syntactic role often have similar co-occurrence patterns (for example, in
English, verbs often co-occur with the word “to”).

2.1.2.3.1 Co-Occurrence Matrix Construction Given a corpus of N words, we need a
table of size NxN to represent bigram/trigram/n-gram (depends on window size) frequencies
of all possible word-pairs. Such a table is highly sparse as most frequencies are equal to zero.
However, this co-occurrence matrix is not the word vector representation that is generally used.
Instead, this Co-occurrence matrix is decomposed using techniques like PCA (Principle Com-
ponent Analysis), SVD (Singular Value Decomposition), etc. into factors, and a combination
of these factors forms the word vector representation.

2.1.3 Word Embedding Representations

Word embedding methods allow the words with similar meaning understood by machine
learning algorithms. Moreover, these distributed word representations capture a large number
of precise syntactic and semantic word relationships. In this section, we describe different word
embeddings, such as Word2Vec, GloVe, and FastText.

2.1.3.1 Word2Vec

2.1.3.1.1 Shortcomings of Earlier Approaches Traditional feature representation meth-
ods such as BoW, TF-IDF, ignores the order of the word; for example, this is bad = bad is this.
Another feature method LSA (Latent Semantic Analysis), used the concept of Bag-of-words,
where words are represented in the form of encoded vectors. It is a sparse vector representation
where the dimension is equal to the size of the vocabulary. If the word occurs in the dictionary,
it is counted, else not. Moreover, all the above-mentioned methods ignore the context and
semantics of words.

2.1.3.1.2 Contributions of Word2Vec

• Word2Vec [80] introduce techniques that can be used for learning high-quality word vec-
tors from huge data sets with billions of words, and with millions of words in the vocab-
ulary.

• In Word2Vec, the word representations are dense and having reduced dimension (depends
on the number of hidden neurons).

• Try to maximize the accuracy of word vector operations by developing new model archi-
tectures that preserve the linear regularities among words.

• Design a new comprehensive test set for measuring both syntactic and semantic regular-
ities, and show that many such regularities can be learned with high accuracy.

13

• Two new model architectures proposed for learning distributed representations of words
that try to minimize computational complexity.

2.1.3.1.3 Model Architectures Word2Vec is not a single algorithm but a combination of
two techniques – CBOW(Continuous Bag Of Words) and SG (Skip-Gram) model. Both of these
are shallow neural networks that map word(s) to the target variable, which is also a word(s).
Both of these techniques learn weights that act as word vector representations.

• The objective of CBOW is to predict the current word based on neighboring words.

• The objective of SG is to predict the neighboring words based on window size given the
current word.

The training objective of the Skip-Gram model is to find word representations that are useful
for predicting neighboring words in a sentence or document.

Let w1, w2, w3,.....,wT represent the sequence of training words. The objective of SG is to
maximize the log probability and is given by the below equation:

1

T

T∑
t=1

∑
−c≤j≤c,j ̸=0

logp(
wt+j

wj
) (2.2)

where c is the training context size. The SG formulation defines p(wt+j/wj) using the below
softmax function:

p(wO/wI) =
exp(v′TwO

vwI)∑
W
w=1 exp(v′TwvwI)

(2.3)

where vw and v’w are the “input” and “output” representations of w, and W is the number
of words in the vocabulary.

2.1.3.2 GloVe

Another well-known model that learns vectors or words from their co-occurrence information,
i.e., how frequently they appear together in large text corpora, is Global Vectors (GloVe) [95].
While word2Vec is a predictive model — a feed-forward neural network that learns vectors to
improve the predictive ability, GloVe is a count-based model.

2.1.3.2.1 Contributions

• The main idea of GloVe [95] is to utilize the statistics of the whole corpus.

• GloVe takes global information into account while learning the dimensions of meaning.

• GloVe model efficiently uses statistical information by training on a word-word co-occurrence
matrix rather than on the entire sparse matrix or individual context windows in a large
corpus.

14

2.1.3.2.2 Model Architecture The way GloVe predicts surrounding words is by maximiz-
ing the probability of a context word occurring given a center word by performing a dynamic
logistic regression. The main intuition underlying the model is the simple observation that
ratios of word-word co-occurrence probabilities have the potential for encoding some form of
meaning.

Given that i and j are two words that co-occur, we can optimize a word vector by minimizing
the difference between the dot product of the word vectors for i and j, and the log of the number
of times i and j co-occur, squared, and the objective function of the glove is given by the below
equation:

Ĵ =

W∑
i,j

f(Xi,j)(w
T
i w̃j − logXij)

2 (2.4)

where Ĵ is the objective function, W is the size of vocabulary, wT
i wj is the dot product of

vectors wi and wj , Xij is the count of the number of times i and j co-occur. Here f(Xij) is the
weighing function to avoid undefined value of objective function when i and j never co-occur
(Xij=0 and log 0 is undefined).f(Xij) has a few properties. First, f(Xij) = 0 when Xij = 0.
This means that when i and j don’t co-occur, you don’t need to calculate (uiTvj− logP ij)2, we
can just stop at f(Xij). Secondly, f(Xij) helps counteract the problem of balancing the weight
of very common or very uncommon words.

2.1.3.3 FastText

The word embeddings trained using Word2Vec, and GloVe models, ignore the internal struc-
ture of the words, represent a distinct word vector. This is the main drawback of morpholog-
ically abundant languages. Moreover, these models do not provide vectors for rare or out-of-
vocabulary words. To overcome the above limitations, the authors introduced a FastText model
in [56], an extension of the Word2Vec model. Since FastText model considers the bag of char-
acter n-grams to represent each word [56], it allows us to compute rare word representations as
well. The objective function of FastText is to minimize the below equation:

−1

N

N∑
n=1

ynlog(f(BAxn)) (2.5)

where xn is the normalized bag of features of the n-th document, yn is the label, A and B the
weight matrices.

FastText supports training continuous bag of words (CBOW) or Skip-gram models using
negative sampling, softmax or hierarchical softmax loss functions.

15

2.1.4 Sentence Embedding Representations

In literature, several researchers use deep learning approaches for learning sentence vectors
that mapped from word vectors such as recurrent networks, recursive networks, convolutional
networks, and recurrent convolutional networks. All these methods learn the representation of a
sentence in a supervised fashion, i.e., depends on the class label. As a result, the representations
of a sentence are of high quality, but specific to the respective tuned task.

Motivated by the recent successful language models which try to learn the sentence vectors
in an unsupervised fashion, we discuss the Skip-Thought vectors.

2.1.4.1 Skip-Thought Vectors

Skip-Thought model is a sentence encoding-decoding model that produces a fixed-length
vector for every given sentence [67]. Inspired by the Word2Vec approach, the skip-thought
model extends the skip-gram model to generate sentence embeddings from word embeddings.
Rather than predicting the context given the input word, the skip-thought model predicts both
the next and previous sentences given the target sentence.

The skip-thought model have three parts:

• Encoder:Takes the sentence x(i) at index i and generates a fixed-length representation
z(i). This is a recurrent network with GRU activation that takes the words in a sentence
sequentially.

• Previous Decoder Network: Takes the embedding z(i) and “tries” to generate the
sentence x(i-1). This also is a recurrent network with conditioned GRU that generates
the sentence sequentially.

• Next Decoder Network: Takes the embedding z(i) and “tries” to generate the sentence
x(i+1). Again a recurrent network similar to the Previous Decoder Network.

2.1.4.1.1 Skip-Thought Model Training Details

• Skip-thought assumes that when a sentence leads to a better reconstruction of neighboring
sentences, then that particular sentence is the main essence.

• The decoders are trained to minimize the reconstruction error of the previous and the
next sentences given the embedding z(i).

• This reconstruction error is back-propagated to the Encoder, which now has a “motiva-
tion” to pack as much information about sentence x(i) that will help the decoders minimize
the error in generating the previous and next sentences.

16

• The end product of Skip-Thoughts is the encoder, which is used to generate fixed-length
representations of sentences that can be used for several downstream tasks such as senti-
ment classification, semantic similarity, etc.

• In skip-thought model given a tuple (si−1, si, si+1) of contiguous sentences, with si the
i-th sentence of a book, the sentence si is encoded and tries to reconstruct the previous
sentence si−1 and next sentence si+1.

Given a tuple (si−1, si, si+1), the objective optimized is the sum of the log-probabilities for
the forward and backward sentences conditioned on the encoder representation and is given by
the below equation:

∑
t

logP (wt
i+1|w<t

i+1, hi) +
∑
t

logP (wt
i−1|w<t

i−1, hi) (2.6)

2.1.5 Contextual Word Representations

2.1.5.1 ELMo (Deep contextualized word representations)

ELMo (Embeddings from Language Model) [97] overcomes the limitations of traditional word
embedding methods by learning contextualized word embeddings from the language model.

2.1.5.1.1 Limitations with Previous Methods Traditional NLP techniques and frame-
works were great when asked to perform basic tasks. Traditional word embeddings such as
Word2Vec, GloVe, and FastText come up with the same vector for the word in both the sen-
tences. Hence, the system would fail to distinguish between the polysemous words. These word
embeddings just cannot grasp the context in which the word was used.

2.1.5.1.2 Contributions of ELMo

• Embeddings from Language Models (ELMos) use language models to obtain embeddings
for individual words while taking the entire sentence or paragraph into account.

• Concretely, ELMos use a pre-trained, multi-layer, bi-directional, LSTM-based language
model and extract the hidden state of each layer for the input sequence of words. Then,
they compute a weighted sum of those hidden states to obtain an embedding for each
word.

• ELMo improves the performance of models across a wide range of tasks, spanning from
question answering and sentiment analysis to named entity recognition.

17

With out labelling data we can train vast amounts of running text. Given a sequence of N
tokens, (t1, t1,, tN), the forward language model computes the probability of sequence by
modelling the probability if token tk given the history (t1, t1, .., tk−1):

p(t1, t2, ..., tN) =
N∏
k=1

p(tk|t1, t2, .., tk−1) (2.7)

The backward language model predicts the previous token given the future context and is given
by the below equation:

p(t1, t2, ..., tN) =

N∏
k=1

p(tk|tk+1, tK+2, .., tN) (2.8)

A biLM combines both forward and backward language models. The objective function is to
maximize the log likelihood of the forward and backward language models and is given by the
below equation:

N∑
k=1

(logp(tk|t1, .., tk−1; Θx,Θ
→
LSTM ,Θs) + logp(tk|tk+1, .., tN ; Θx,Θ

←
LSTM ,Θs)) (2.9)

where Θx, Θs are the token representation and softmax layer parameters. ELMo equation for
task specific representation is given by the below equation:

ELMotaskk = γtask
L∑

j=0

staskj hLMk,j (2.10)

where γ is of practical importance to aid the optimization process and γtask allows the task
model to scale the entire ELMo vector, staskj are softmax normalized weights, hLMk,j are top layer
biLSTM outputs.

The training process of ELMo is as follows:

1. First, we built a vocabulary file that contains all the unique words along with three extra
tokens <S>, </S>, </UNK>.

2. The vocabulary file is in the descending order where the most frequently occurring word
in the top.

3. A data file that contains all the sentences in the corpus where one sentence per line.

4. We split the data into different files in which 70% of the data we considered for training,
remaining data held-out for testing.

5. A configuration file consists of the vocabulary size, number of tokens to train the ELMo
model, output dimension of each token.

6. Each embedding is of dimension 1024.

18

2.1.5.2 BERT (Pre-training of Deep Bidirectional Transformers for Language Un-

derstanding)

BERT [33] is a deep learning model that has given state-of-the-art results on a wide variety
of natural language processing tasks. It stands for Bidirectional Encoder Representations for
Transformers.

2.1.5.2.1 Problem with Previous Methods Language models only use left context or
right context, but language understanding is bidirectional. The feature-based approach, such
as ELMo [97], uses task-specific architectures that include the pre-trained representations as
additional features. The fine-tuning approach, such as the Generative Pre-trained Transformer
(OpenAI GPT) [104], introduces minimal task-specific parameters, and is trained on the down-
stream tasks by simply fine-tuning all pre-trained parameters. The major limitation of these
techniques is that standard language models are unidirectional, and this limits the choice of
architectures that can be used during pre-training.

2.1.5.2.2 Contributions of BERT

• BERT uses masked language models to enable pre-trained deep bidirectional representa-
tions. In masked language modeling instead of predicting every next token, a percentage
of input tokens is masked at random, and only those masked tokens are predicted.

• BERT is also trained on a next sentence prediction task to better handle tasks that require
reasoning about the relationship between two sentences (e.g., question answering).

• BERT is the first fine-tuning based representation model that achieves state-of-the-art
performance on a large suite of sentence-level and token-level tasks, outperforming many
task-specific architectures.

2.1.5.2.3 BERT Model Framework There are two steps in the BERT framework: pre-
training and fine-tuning. During pre-training, the model is trained on unlabeled data over differ-
ent pre-training tasks. For fine-tuning, the BERT model is first initialized with the pre-trained
parameters and all of the parameters are fine-tuned using labeled data from the downstream
tasks.

BERT uses the transformer architecture (the attention mechanism that learns contextual
relationships between words in a text) for its underlying model. A basic transformer consists of
an encoder to read the text input and a decoder to produce a prediction for the task. Since the
BERT goal is to generate a language representation model, it only needs the encoder part. The
input to the encoder for BERT is a sequence of tokens, which are first converted into vectors
and then processed in the neural network.

19

There are four types of pre-trained versions of BERT depending on the scale of the model
architecture: BERT-Base: 12-layer, 768-hidden-nodes, 12-attention-heads, 110M parameters
BERT-Large: 24-layer, 1024-hidden-nodes, 16-attention-heads, 340M parameters

2.1.5.2.4 Input/Output Representations

• Token embeddings: A [CLS] token is added to the input word tokens at the beginning of
the first sentence, and a [SEP] token is inserted at the end of each sentence.

• Segment embeddings: A marker indicating Sentence A or Sentence B is added to each
token. This allows the encoder to distinguish between sentences.

• Positional embeddings: A positional embedding is added to each token to indicate its
position in the sentence.

2.2 Text Classification Tasks in English Language

In this section, we focus on five major popular NLP tasks, such as Sentiment Analysis,
Emotion Identification, Hate-Speech Detection, Sarcasm Detection, and Clickbait Detection.
We describe each one of the tasks below:

2.2.1 Sentiment Analysis

Sentiment analysis is one of the most popular tasks in the field of NLP. It helps in identifying
and analyzing the subject information present in a user-written text [92, 102, 21, 139, 112].
Moreover, it is a well-established task in many business applications like movie reviews can cause
or damage the revenue of the movie, and product reviews can encourage the quality of a product
or damage the product sales. In literature, sentiment analysis performed on either sentence
level or document level provides personal information to a user about his/her opinion [102,
123, 120, 136]. Further, with the recent developments of efficient deep feature representations
yields better accuracies and tools for the English language. However, the amount of research
work on sentiment analysis in Telugu is less compared to resource-rich language English due
to the dearth of qualitative tools in the Telugu language. For sentiment analysis, the model
should automatically predict the given text as “positive”, “negative”, or “neutral”.

2.2.2 Emotion Identification

People communicate their expressions, feelings, and thoughts on different topics in social
media using emotional words. In the literature for the resource-rich language English, emo-
tion identification has been applied to different domains including social media mining [116],

20

literature analysis [107], lyrics and music analysis [79], and the analysis of emoticons using
deep moji [40]. Like Sentiment Analysis, Emotion Identification in textual conversations fo-
cuses on mapping words, sentences, or documents to emotion categories such as “joy”, “sad-
ness”, “anger”, “fear”, “trust”, “disgust”, “anticipation”, and “surprise”, based on the models
of [38, 99].

2.2.3 Hate-speech Detection

With the increase of social media platforms, the online content proliferates indefinitely, so
does the rampant of hate-speech. Since users can express their freedom of speech at social
media platforms causes the spreading of abusing information about other users 1. Moreover,
we can observe the hate-speech at different levels of users (i) local communities, (ii) members
of different organizations (iii) users at the national level (terror attacks). As such, the content
present in social media platforms like Twitter, YouTube, Facebook is harmful; the automatic
removal of hate-speech content circumvent the spreading of hate-speech information. Many
researchers are working from the past decade for automated hate-speech detection in the English
language [68, 145, 127, 90]. For hate-speech, the model should automatically predict the given
text as “yes” or “no”.

2.2.4 Sarcasm Detection

With the enormous growth of the social media web, allow users to display their intent in
the form of offensive or figurative language, including sarcasm, irony, humor, in public [8, 54].
Like sentiment and emotion text, sarcasm text should not be interpreted literally; it requires a
more sophisticated understanding based on associations with the context or world knowledge.
Moreover, the sarcasm task is often identified as a trope whose actual meaning differs from
what is literally enunciated. Due to its nature, understanding sarcasm also emerges in the
machine learning community. With the recent deep learning language models, the sarcasm task
was successful in resource-rich English language [55, 142, 3]. For Sarcasm detection, the model
should automatically predict the given text as “yes” or “no”.

2.2.5 Clickbait Detection

With the impact of clickbait headlines in social media platforms, research on clickbait de-
tection has addressed the issues of data creation, feature representation, and model building to
automate the solution. The earlier works in the literature relied on creating annotated datasets
and a rich set of hand-crafted features to categorize headlines as clickbait or non-clickbait [18].
Similar to the work mentioned above, there are a publicly available clickbait dataset developed

1https://twitter.com/search?q=%23racism&src=typeahead_click

21

https://twitter.com/search?q=%23racism&src=typeahead_click

on Twitter by considering the news genre, tweets from Twitter, and importance-based acquisi-
tion in [101], the headline from tweets, and gatekeeper-based acquisition in [2]. Here, [101] uses
common words and extracted some other tweet specific features to classify tweets as clickbait
or not. Furthermore, in [12], the authors described and constructed a new clickbait dataset by
choosing the eight types of clickbait headlines. The main limitation of these works are that
they focus on using hand-crafted features rather than automated ones to categorize the clickbait
news headlines. For clickbait detection, the model should automatically predict the sentence
as “yes” or “no”.

2.3 Text Classification Tasks for Telugu Language

In the field of NLP, as discussed above, the well-established tasks in the English are sentiment
analysis, emotion identification, hate-speech detection, sarcasm detection, and Clickbait. Unlike
English, Indian languages are resource-poor due to the absence of corpus, resources, and tools.
Also, most of the resources created for Indian languages are for machine translation. One
of the solution is to translate existing English datasets for different NLP tasks in to Indian
languages. However, by doing translation the, contextual meaning, syntactic and semantic
structures will be affected and result in less accuracy [100]. Hence, creating abundant data,
tools, and machine/deep learning models for Indian languages is the need of today as it will
help increase communication and understand contextual difficulties. Further, these resources are
helpful for NLP applications like sentiment analysis, text summarization, question answering,
and automated document evaluation, which might motivate future endeavors in Telugu and
other Indian languages.

The literature survey manifests that several authors worked on limited samples of Telugu
data to solve the SA task. In particular, the earlier works in the literature focuses on creating
sentiment-specific words and use a dictionary-based approach by considering the translated
English sentiment words in SentiWordNet [31]. Similar to the work mentioned above, Telugu
WordNet developed in [5, 88] using Hindi synsets. These works focus on translating from one
language to another rather than directly creating words that are significant in understanding
the context. Recently as an extension to the works mentioned above, (OntoSenseNet) [94], and
BCSAT [93] created sentiment specific words for Telugu. However, the dataset is too small and
limited to word-level meaning.

2.4 Deep Learning for Multi-task Text Classification

There is a vast literature tackling the single-task text (ST-Text) classification using deep
learning models such as CNNs [62, 143] or RNNs [74]. However, these ST-Text classification
approaches increase costs to build the resources and fail to combine multiple tasks. Multi-task

22

learning can improve the classification performance of related tasks by learning these tasks in
parallel [17]. The literature survey shows that multi-task learning has been proven effective in
solving similar NLP text classification problems [74, 131].

In the current research, graph neural networks has attracted wide attention [10], and applied
on various NLP tasks such as text classification [121, 134], semantic role labeling [77], and
machine translation [9]. The earlier works in text classification using GCN focused with nodes
being either words or documents to construct a single large graph [32]. Some authors construct
a single graph by jointly embedding the documents and words as nodes (Text GCN) [134] while
considering the global relations between documents and words. The main drawback of the
existing GCN works is that they cannot capture the contextual word relationships within the
document. [144] developed a model, TextING, for inductive text classification to overcome the
above limitations. [65] introduced GCN to embed the graph structure in a lower embedding
space using neural networks. Motivated by [64], [66] propose a graph AutoEncoder framework
in chapter-6 for Telugu that uses GCN as an encoder to get the latent representation of each
node and simple inner product as a decoder to reconstruct the graph.

2.4.1 Sentiment Analysis in the Telugu Language

Despite enormous research that happened in multiple tasks of NLP for English, only a few
authors worked on SA for Telugu [87, 94, 42]. In [87, 86, 42], authors provided Telugu SA data
from different domains, categorized into three classes as “positive”, “negative”, and “neutral”.
However, the authors considered only 2X (2 persons) annotations (not sufficient for valid data),
and these limited samples were used for model creation. In [42], authors did not report the
features used for training the model, which does not make any valid comparison. Recently, [24]
developed a deep learning-based model for Telugu SA to learn representations of resource-poor
languages by jointly training with English corpora using a Siamese network. In these works, the
model is trained on the English-Hindi corpus, and they apply transfer learning on the Telugu
corpus, resulting in low accuracy. Several authors [125, 123] use deep learning-based models
such as Convolutional Neural Networks (CNN), Long-Short Term Memory Networks (LSTM)
to perform the SA task on Telugu data. However, in these works, the corpus is small, used the
2X annotated dataset, and the model’s accuracy is low, considering the baseline model.

We did not notice any literature in Telugu language for other NLP tasks. We are the first to
handle different NLP tasks in Telugu language and to propose a multi-task GCN architecture
for Telugu.

2.4.2 Telugu Pre-trained Embeddings

There have been some concerted and noteworthy efforts to build the pre-trained word-
embedding models for the Telugu, includingWord2Vec in [87], an n-gram based skip-gram model

23

to train the FastText embeddings in [13]. Similar to the n-gram approach, sub-word pre-trained
word-embeddings based on Byte-Pair Encoding (BPE) are trained on Telugu Wikipedia in [48].
Also, the recent successful multilingual pre-trained Transformer models such as mBERT [34],
and Cross-Lingual Language Model (XLM-R) [29], use Telugu corpus as one of the multilin-
gual corpora for training. However, these models do not have high quality representations
for all languages. For example, mBERT performs worse than non-BERT models on several
downstream tasks for the bottom 30 percent of languages in terms of dataset size upon which
mBERT is trained [130]. The main drawback of these methods is that they never tested on large
Telugu annotated corpora, and no benchmark results are available for different NLP tasks in
Telugu. Recently, [57] introduced a multilingual language model (pre-trained on many Indian
languages), IndicBERT, to evaluate the downstream tasks of major eleven Indian languages.
However, these models do not focus on specific language and are particularly unwieldy due to
their large number of parameters. Therefore, we see it important to explore language models
in the monolingual setting for low-resource language, Telugu.

2.5 Differentiater of the Proposed Approaches

From this work, we want to bridge the gap by creating the resources for Telugu. Creating
copious data for multiple NLP tasks can overcome the limitations and help the researchers
make the best models for Telugu. Hence there is a need to create a corpus, annotate datasets,
embeddings, and develop machine learning and deep learning models to understand contextual
predictions and decisions better. To our knowledge, no such resources are available for Telugu,
and we are the pioneers in creating large corpus, copious labeled Telugu data for four NLP tasks
such as sentiment, emotion, hate-speech, sarcasm, clickbait and pre-trained language models.

2.6 Summary

In this chapter, we presented the existing literature on available English feature represen-
tations that can be used to build NLP applications. We have presented the text classification
NLP tasks in English language. Also, we have presented a literature survey about the NLP
task related work done on mono-lingual (Telugu) language.

In the next chapter, we present our initial works that are done with the existing English
data. These experiments are used to understand how the feature representations are useful in
sentiment and emotion identification tasks.

24

Chapter 3

Affect in Tweets using Experts Model

In this chapter, we present the work that I have done to understand how the feature repre-
sentation methods are useful in identifying the intensity of an emotion in emotion identification
task.

3.1 Background

Estimating the intensity of emotion has gained significance as modern textual inputs in po-
tential applications like social media, e-retail markets, psychology, advertisements etc., carry a
lot of emotions, feelings, expressions along with its meaning. However, the approaches of tradi-
tional sentiment analysis primarily focuses on classifying the sentiment in general (positive or
negative) or at an aspect level(very positive, low negative, etc.) and cannot exploit the inten-
sity information. Moreover, automatically identifying emotions like anger, fear, joy, sadness,
disgust etc., from text introduces challenging scenarios where single tweet may contain multiple
emotions with different intensities and some emotions may even co-occur in some of the tweets.
In this paper, we propose an architecture, Experts Model, inspired from the standard Mixture
of Experts (MoE) model. The key idea here is each expert learns different sets of features from
the feature vector which helps in better emotion detection from the tweet. We compared the re-
sults of our Experts Model with both baseline results and top five performers of SemEval-2018
Task-1, Affect in Tweets (AIT). The experimental results show that our proposed approach
deals with the emotion detection problem and stands at top-5 results.

3.2 Dataset Description

We used the dataset from SemEval-2018 Task 1: AIT 1 for training our system. There
is a total of five subtasks: EI-reg (Emotion Intensity regression), EI-oc (Emotion Intensity

1https://competitions.codalab.org/competitions/17751#learn_the_details-datasets

25

https://competitions.codalab.org/competitions/17751#learn_the_details-datasets

ordinal classification), V-reg (Valence regression), V-oc (Valence ordinal classification) and E-c
(Emotion multi-label classification). Each subtask has three datasets: train, dev, and test. In
this paper, we worked on the all five subtasks mentioned above. The dataset details are briefly
shown in Table 3.1.

Table 3.1: SemEval-2018 Task-1 Dataset Details

Dataset train dev test Total
EI-reg, EI-oc

anger 1701 388 1002 3091
fear 2252 389 986 3011
joy 1616 290 1105 2905

sadness 1533 397 975 2905
V-reg, V-oc 1181 886 3259 2567

E-c 6838 886 3259 10953

3.3 Approach

We took inspiration from the Mixture of Experts (MoE) [51, 91] regression and classification
models, where each expert tunes to some set of features out of all the features.

3.3.1 MoE Description

In this subsection, we briefly describe the MoE model to enable the readers to relate our
model to MoE architecture. The MoE architecture consists of a number of experts and a
gating network. In MoE, there are parameters for each of the expert and a separate set of
parameters for gating network. The expert and gate parameters are trained simultaneously
using Expectation Maximization [52] or Gradient Descent Approach [53].

Consider the following regression problem. Let X = {x(n)}Nn=1 are N input vectors (samples)
and Y = {y(n)}Nn=1 are N targets for each input vector. Then, MoE model is described in terms
of parameter θ = {θg, θe} where θg is set of the gate parameters and θe is sets of the expert
parameters. Given a sample x from among N samples, the total probability of predicting target

26

y can be written in terms of the experts as

P (y|x, θ) =

I∑
i=1

P (y, x|θ)

=
I∑

i=1

P (i|x, θg)P (y|i, x, θe)

=

I∑
i=1

gi(x, θg)P (y|i, x, θe) (3.1)

where I is the number of experts, the function gi(x, θg) = P (i|x, θg) represents the probability
of selecting ith expert given x and P (y|i, x, θe) represents the probability of ith expert giving y

on seeing x.
The MoE training maximizes the log-likelihood of the probability in equation 3.1 to learn

the parameters’ set θ [140].

Figure 3.1: Proposed Experts model

3.3.2 Our Proposed Approach

We used the similar architecture, however with some modifications, to measure the intensity
of an emotion in a tweet (regression) or predict an emotional intensity (classification). In our
proposed approach, we pre-train each expert, to get parameters θe, on the training samples,
unlike traditional MoE model. Each expert, in itself, can be a separate Regression/Classification
model like Multi-level Perceptron (MLP) model or Long Short-Term Memory (LSTM) model

27

or any other model that best suits the data and task at hand. Once each expert is trained
separately, we train only the gating network based on Gradient Descent Approach. The Detailed
description of the model is depicted in Figure 3.1 and explained below.

We build different models - Neural Network Classifier/Regressor, Gradient Boosting Classi-
fier/Regressor, XGBoost Classifier/Regressor, Random Forest Classifier/Regressor, Lasso Re-
gressor and Light Gradient Boosting Classifier/Regressor and train each of them with the
extracted feature vector of each tweet. We obtain this feature vector by concatenating all of
the features discussed in Section 5. We assign parameters θg, weights and bias, for each Clas-
sifier/Regressor at the gating network. Later, we train the gating network to fit the predicted
ŷ of each expert i with actual y and learn the best θg.

Let w[i] denote weight of each expert i at the gating network. Let b[i] denote the bias term
for each expert i at the gating network. Let I be the number of experts. We define the Error
function (E) as

E =
I∑

i=1

1

2
prob[i]

(
y[i]− ŷ[i] + b[i]

)2
where prob[i] is softmax probability of weight w[i], y[i] is the actual y of ith expert for some
sample x. Similarly, ŷ[i] is the predicted y of ith expert for same sample x. It is to be noted
that ∀i y[i] = y.

For each sample x and y, we train the gating network using the update equations of gradients
as follows:

∂E

∂w[i]
=

1

2
prob[i]

(
1− prob[i]

)(
y[i]− ŷ[i] + b[i]

)2
∂E

∂b[i]
= prob[i]

(
y[i]− ŷ[i] + b[i]

)
and

w[i] = w[i]− η ∗ ∂E

∂w[i]

b[i] = b[i]− η ∗ ∂E

∂b[i]

where η is the learning rate.

3.4 Preprocessing and Feature Extraction

To preprocess each tweet, first we break all the contractions (like “can’t” to “cannot”, “I’m”
to “I am” etc,.) followed by spelling corrections, decoding special words and acronyms (like “e

28

g” to “eg”, “fb” to “facebook” etc,.) and symbol replacements (like “$” to “dollar”, “=” to “is
equal to” etc). Later, we tokenized each tweet using NLTK tweet tokenizer 2.

The basic idea of using different experts and eclectic features is from the intuition that
each expert learn from different aspects of the concatenated features. Hence, we explored and
extracted a variety of features; and used only the features which best performs among all the
explored ones are explained in the following subsections.

3.4.1 Deep-Emoji Features

Deep-Emoji [41] performs prediction using the model trained on a dataset of 1246 million
tweets and achieves state-of-the-art performance within sentiment, emotion and sarcasm detec-
tion. We can use the architecture of Deep-Emoji and train the model using millions of tweets
from social media to get a better representation of new data. Using the pre-trained Deep-Emoji
model, we extracted two different set of features - one, 64-dimensional vector from the softmax
layer and the other, 2304-dimensional vector from attention layer.

3.4.2 Word-Embedding Features

In this paper, we tried four different pre-trained word-embedding approaches such as Word2Vec [80],
GloVe [95], Edinburgh Twitter Corpus [98] and FastText [13] for generating word vectors. We
used the GloVe model of 300 dimensions.

3.4.3 Skip-Thought Features

Skip-Thoughts vectors [67] model is in the framework of encoder-decoder models. Here,
an encoder maps words to sentence vector and a decoder is used to generate the surrounding
sentences. The main advantage of Skip-Thought vectors is that it can produce highly generic
sentence representations from an encoder that share both semantic and syntactic properties of
surrounding sentences. Here, we used Skip-Thought vector encoder model to produce a 4800
dimension vector representation of each tweet.

3.4.4 Lexicon Features

We also chose various lexicon features for the model. The lexicon features include AFINN
Lexicon [89] (calculates positive and negative sentiment scores from the lexicon), MPQA Lex-
icon [128] (calculates the number of positive and negative words from the lexicon), Bing Liu
Lexicon [11] (calculates the number of positive and negative words from the lexicon), NRC
Affect Intensities, NRC-Word-Affect Emotion Lexicon, NRC Hash-tag Sentiment Lexicon, Sen-
timent140 Lexicon [44] (calculates positive and negative sentiment score provided by the lexicon

2https://www.nltk.org/api/nltk.tokenize.html

29

https://www.nltk.org/api/nltk.tokenize.html

in which tweets are annotated by lexicons), and SentiWordNet [6] (calculates positive, negative,
and neutral sentiment score). The final feature vector is the concatenation of all the individual
features.

3.4.5 Hash-tag Intensity Features

The work by [81] describes that removal of the emotion word hashtags causes the emotional
intensity of the tweet to drop. This indicates that emotion word hashtags are not redundant
with the rest of the tweet in terms of the overall intensity. Here, we used Depeche mood
dictionary [115] to get the intensities of hashtag words. We average the intensities of all hashtags
of a single tweet to get the total intensity score.

3.4.6 Stylometric Features

Tweets and other electronic messages (e-mails, posts, etc.) are written far shorter, way more
informal and much richer in terms of expressive elements like emoticons and aspects at both
syntax and structure level, etc. Common techniques use stylometric features [4] which are
categorized into 5 different types: lexical, syntactic, structural, content specific, and idiosyn-
cratic. In this paper, we used 7 stylometric features such as “number of emoticons”, “number
of nouns”, “number of adverbs”, “number of adjectives”, “number of punctuations”, “number
of words”, and “average word length”.

3.4.7 Unsupervised Sentiment Neuron Features

Unsupervised sentiment neuron model [103] provides an excellent learning representation of
sentiment, despite being trained only on the text of Amazon reviews. A linear model using this
representation results in good accuracy. This model represents a 4096 feature vector for any
given input tweet or text.

3.5 Experimental Setup and Results

To train our proposed approach, we consider a total of five learning models, one for each
expert: Gradient Boosting, XGBoost, Light Gradient Boosting, Random Forest, and Neural
Network(NN) for subtasks EI-reg and V-reg. While for the subtasks EI-oc and V-oc, we consider
all the models except NN model. For subtask E-c, we consider all the models except Light
Gradient Boosting model.

30

Table 3.2: Model-Parameters

Model Parameters
n_estimators: 3000,

Gradient Boosting Learning rate: 0.05
Max_depth: 4

n_estimators: 100
XGBoosting learning_rate: 0.1

max_depth: 3
Optimizer: adam

Neural Network Activation : relu
n_estimators: 250

Random Forest max_depth: 4
n_estimators: 720

Light Gradient Boosting learning_rate: 0.05
num_leaves: 5

Table 3.3: Comparison of Regression results of various models with our Experts Model

EI-reg (Pearson (all instances)) EI-reg (Pearson (gold in 0.5-1))
Team macro-avg anger fear joy sadness macro-avg anger fear joy sadness

SeerNet 0.799(1) 0.827 0.779 0.792 0.798 0.638(1) 0.708 0.608 0.708 0.608
NTUA-SLP 0.776(2) 0.782 0.758 0.771 0.792 0.610(2) 0.636 0.595 0.636 0.595
PlusEmo2Vec 0.766(3) 0.811 0.728 0.773 0.753 0.579(5) 0.663 0.497 0.663 0.497

psyML 0.765(4) 0.788 0.748 0.761 0.761 0.593(4) 0.657 0.541 0.657 0.541
Experts Model 0.753(5) 0.789 0.742 0.748 0.733 0.598(3) 0.656 0.582 0.546 0.608
Median Team 0.653(23) 0.654 0.672 0.648 0.635 0.490(23) 0.526 0.497 0.420 0.517

Baseline 0.520(37) 0.526 0.525 0.575 0.453 0.396(37) 0.455 0.302 0.476 0.350
Note : The numbers inside parenthesis in both macro-avg columns represent the rank

3.5.1 Training Strategy

At the input layer, we used a concatenation vector of all features: Deep-Emoji, Skip-Thought,
Lexicons, Stylometric, BoW, Tf-IDF, Glove, Word2Vec, Edinburgh, and HashTagIntensity
which is same for each expert. We combined both training and dev data and used them
for training our model. The training model is validated by stratified K-fold approach in which
the model is repeatedly trained on K-1 folds and the remaining one fold is used for validation.

In order to tune the hyper-parameters of our experts model, we adopt a grid search cross-
validation for each learning model. Using grid search cross-validation, we set the various types
of parameters based on the learning model. Table 3.2 shows the parameter settings for all
experts.

31

Table 3.4: Comparison of Classification results of various models with our Experts Model

EI-oc (Pearson (all classes)) EI-oc (Pearson (some emotion))
Team macro-avg anger fear joy sadness macro-avg anger fear joy sadness

SeerNet 0.695(1) 0.706 0.637 0.720 0.717 0.547(1) 0.559 0.458 0.610 0.560
PlusEmo2Vec 0.659(2) 0.704 0.528 0.720 0.683 0.501(4) 0.548 0.320 0.604 0.533

psyML 0.653(3) 0.670 0.588 0.686 0.667 0.505(3) 0.517 0.468 0.570 0.463
Amobee 0.646(4) 0.667 0.536 0.705 0.673 0.480(5) 0.458 0.367 0.603 0.493

Experts Model 0.636(5) 0.658 0.576 0.666 0.644 0.520(2) 0.493 0.502 0.579 0.509
Median Team 0.530(17) 0.530 0.470 0.552 0.567 0.415(17) 0.408 0.310 0.494 0.448

Baseline 0.394(26) 0.382 0.355 0.469 0.370 0.296(26) 0.315 0.183 0.396 0.289
Note : The numbers inside parenthesis in both macro-avg columns represent the rank

Table 3.5: Comparison of Valence-reg re-
sults of various models with our Experts
Model

V-reg (Pearson)
Team (all instances) (gold in 0.5-1)

SeerNet 0.873 0.697
TCS Research 0.861 0.680
PlusEmo2Vec 0.860 0.691
NTUA-SLP 0.851 0.688
Amobee 0.843 0.644

Experts Model 0.830 0.670
Median Team 0.784 0.509

Baseline 0.585 0.449

Table 3.6: Comparison of Valence-oc re-
sults of various models with our Experts
Model

V-oc (Pearson)
Team (all instances) (gold in 0.5-1)

SeerNet 0.836 0.884
PlusEmo2Vec 0.833 0.878

Amobee 0.813 0.865
psyML 0.802 0.869
EiTAKA 0.796 0.838

Experts Model 0.738 0.773
Median Team 0.682 0.754

Baseline 0.509 0.560

3.5.2 Results

To evaluate our computational model, we compare our results with SemEval-2018 Task-1 (Af-
fect in Tweets) baseline results, top five performers and Median Team (as per SemEval-2018 re-
sults). The results in the EI-reg, EI-oc, V-reg, V-oc, E-c are shown in Tables 3.3, 3.4, 3.5, 3.6, 3.7
respectively. The tables illustrate (a) the results obtained by our proposed approach, (b) top
five performers in SemEval-2018, (c) the results obtained by a baseline SVM system using
unigrams as features and (d) Median Team among all submissions. From the Tables 3.3 and
3.4, we observe that our model (considering only macro-average for Pearson Correlation) for
EI-reg and EI-oc stands within 5 places among 48 submissions. A quick walk-through of Ta-
ble 3.3 for individual emotions shows that anger and fear ranks 3rd and 4th respectively for
EI-reg Pearson(all instances) and for EI-reg Pearson(gold in 0.5-1), fear stands at 3rd position
and sadness equals score of top performer. Similarly, Table 3.4 for classification results shows
that anger and fear ranks 4th and 3rd respectively for EI-oc Pearson(all classes) and for EI-oc
Pearson(some emotion), anger, fear, joy and sadness stands at positions 4th, 1st, 4th and 3rd

respectively. It is to be noted that in both tables 3.3 and 3.4, the numbers inside parenthesis
under column “macro-avg” represent the rank according to macro-avg Pearson scores. These

32

Table 3.7: Comparison of E-c results of various models with our Experts Model

E-c
Team (acc.) (micro F1) (macro F1)

NTUA-SLP 0.588(1) 0.701 0.528
TCS Research 0.582(2) 0.693 0.530
PlusEmo2Vec 0.576(4) 0.692 0.497

psyML 0.574(5) 0.697 0.574
Experts Model 0.578(3) 0.691 0.581
Median Team 0.471(17) 0.599 0.464

Baseline 0.442(21) 0.570 0.443
Note : The numbers inside parenthesis in

accuracy column represent the rank

values shows that our model stands at 3rd and 2nd positions in EI-reg Pearson(gold in 0.5-1)
and EI-oc Pearson(some emotion) respectively. Tables 3.5 and 3.6 illustrate that the results
from our model are among the top 10 submissions of subtasks V-reg and V-oc. Table 3.7 shows
the results of multi-label emotion classification (11 classes). Our model is among the top 3
submissions for Jaccard similarity (accuracy) metric, in top 5 for micro F1 metric and topped
the submissions for macro F1 metric.

3.5.3 Metrics

We use the competition metric, Pearson Correlation Coefficient with the Gold ratings/labels
from SemEval-2018 task-1 AIT for EI-reg, EI-oc, V-reg and V-oc. Further, macro-average was
calculated by averaging the correlation scores of four emotions: anger, fear, joy, and sadness for
the tasks EI-reg and EI-oc. Along with Pearson Correlation Coefficient, we use some additional
metrics for each subtask. The additional metric used for EI-reg and V-reg tasks was to calculate
the Pearson correlation only for a subset of test samples where the intensity score was greater
than or equal to 0.5. For the classification subtasks EI-oc and V-oc, we use the additional metric
Pearson correlation calculated only for some emotion like low emotion, moderate emotion, or
high emotion. However, for the multi label emotion classification E-c, we used the official
evaluation metrics Jaccard Similarity (accuracy), micro average F1 score and macro average F1
score of all the classes.

Figure 3.2 shows the influence of each feature type on scores for predicting the intensity or
emotion. We can observe from Figure 3.2 that for “Deep-Emoji” and “Deep-Emoji-Softmax”
features, Pearson scores are dominating other feature types. Feature types - Skip-Thought,
Lexicons, Glove, and Edinburgh features are contributing approximately similar in each of
the four emotions. However, Stylometric features and features from Unsupervised sentiment
neurons are performing worse.

33

(a) Emotion: Anger
(b) Emotion: Fear

(c) Emotion: Joy (d) Emotion: Sadness

Figure 3.2: Feature Importance: Comparison of Pearson Scores for each feature vector and
concatenated vector

3.6 Conclusion

In this paper, we have proposed a novel approach inspired from standard Mixture-of-Experts
model to predict the intensity of an emotion(Regression) or level of an emotion (Classification)
or multi-label emotion classification. Experiment results show that our proposed approach
can effectively deal the emotion detection problem and stands at top-5 when compare with
SemEval-2018 Task-1 AIT results and baseline results. The source code is publicly available at
https://goo.gl/NktJhF so that researchers and developers can work on this exciting problem
collectively.

In the next chapter, we present our second work on English language where we evaluated
different feature representations using experts model on sentiment analysis task.

34

https://goo.gl/NktJhF

Chapter 4

Evaluating Word Representations with Sentiment Analysis

In this chapter, we evaluated the combination of different feature representations using
mixture of experts for sentiment analysis task.

4.1 Background

Neural word embeddings have been able to deliver impressive results in many Natural Lan-
guage Processing tasks. The quality of the word embedding determines the performance of a
supervised model. However, choosing the right set of word embeddings for a given dataset is a
major challenging task for enhancing the results. In this paper, we have evaluated neural word
embeddings on sentiment analysis task in two steps: (i) proposed a mixture of classification
experts (MoCE) model for sentiment classification task, (ii) to compare and improve the clas-
sification accuracy by different combination of word embedding as first level of features and
pass it to cascade model inspired by gcForest for extracting diverse features. We argue that in
the first step, each expert learns a certain positive or negative examples corresponding to its
category and in the second step resulting features on a given task (polarity identification) can
achieve competitive performance with state-of-the-art methods in terms of accuracy, precision
and recall using gcForest.

4.2 Model Architecture

We use a mixture of experts based model, whose architecture is inspired from [53]. The
mixture of experts architecture is composed of gating network and several expert networks,
each of which solves a function approximation problem over a local region of the input space.
The detailed overview of our model is shown in Figure 4.1 where the input is a text vector
extracted from recently successful neural embeddings such as Word2Vec, GloVe, ELMo, &
BERT. These input features pass through both the gating network and two of the experts.

35

The gating network uses a probabilistic model to choose the best expert for a given input text
vector.

4.2.1 MoCE Architecture

Given an input feature vector x from the one of the neural word embedding method, we
model its posterior probabilities as a mixture of posteriors produced by each expert model
trained on x.

p(y|x) =
K∑
j=1

P (Sj |x, θ0)p(y|x, Sθj)

=

K∑
j=1

gSj (x, θ0)p(y|x, Sθj) (4.1)

Here, P (Sj |x, θ0) = gSj (x, θ0) is the probability of choosing Sth
j expert for given input x.

Note that
∑K

j=1 gSj (x, θ0) = 1 and gSj (x, θ0) ≥ 0, ∀j ∈ [K]. gSj (x, θ0) is also called gating
function and is parameterized by θ0.

Since the class labels {y1, y2,...,yn} are independent and identically distributed sample of
outcome variables from a population modelled by a K-component finite mixture model. Here,
the outcome variable is discrete (either positive or negative sentiment). Due to this reason,
in this paper, we choose p(y|x, Sθj) as a Gaussian probability density for each of the experts,
denoted by:

p(y|x, Sθj) =
1

(|σj |2π)1/2
exp

(
− 1

2σ2
j

(y −Wjx)T (y −Wjx)
)

(4.2)

where Sθj ∈ Rm×n is the weight matrix associated with the Sth
j expert. Thus, Sθj = {Wj}.

We use softmax function for the gating variable gSj (x, θ0).

gSj (x, θ0) =
exp

(
vT
j x
)

∑K
i=1 exp

(
vT
i x
) (4.3)

where vj ∈ Rn, ∀j ∈ [K]. Thus, θ0 = {v1, . . . ,vK}. Let Θ be the set of all the parameters
involved for the K-experts. Thus, Θ = {θ0, (W1), . . . , (WK)}. Here, we train the MoCE model
and update the weights iteratively using expectation-maximization (EM) algorithm.

4.2.2 Multigrained gcForest Architecture

In order to improve the classification performance of each dataset, we passed the input
feature vector to a multigrain gcForest model for better feature representation. The gcForest

36

Table 4.1: Model Parameters of Cascading gcForest

Model Parameters
n_foldss: 5

n_estimators: 100
XGB max_depth: 5

learning_rate: 0.1
n_foldss: 5

n_estimators: 100
LGBM max_depth: 5

learning_rate: 0.1
n_foldss: 5

RF n_estimators: 100
n_foldss: 5

ET n_estimators: 100

Table 4.2: Comparison of word embedding results of 20 domains of Dranziera dataset with our
MoCE Model. The values in the table indicates the percentage of positive reviews captured by
Expert1 and percentage of negative reviews captured by Expert2.

Word2vec GloVe BERT ELMo
Domain Expert1 Expert2 Expert1 Expert2 Expert1 Expert2 Expert1 Expert2

Amazon_Instant_Video 0.81 0.86 0.81 0.86 0.54 0.55 0.71 0.72
Automotive 0.81 0.85 0.85 0.82 0.54 0.55 0.72 0.72

Baby 0.73 0.87 0.97 0.05 0.61 0.67 0.77 0.72
Beauty 0.02 0.98 0.86 0.82 0.55 0.54 0.68 0.71
Books 0.82 0.83 0.84 0.83 0.57 0.57 0.75 0.68

Clothing_Accessories 0.90 0.79 0.85 0.88 0.66 0.74 0.78 0.73
Electronics 0.98 0.04 0.85 0.81 0.56 0.55 0.73 0.75
Health 0.80 0.83 0.81 0.84 0.59 0.55 0.71 0.73

Home_Kitchen 0.81 0.87 0.88 0.83 0.59 0.59 0.69 0.73
Movies_TV 0.85 0.80 0.03 0.97 0.54 0.57 0.72 0.76

Music 0.80 0.86 0.85 0.80 0.64 0.62 0.78 0.79
Office_Products 0.99 0.02 0.87 0.80 0.65 0.64 0.80 0.82

Patio 0.03 0.99 0.99 0.04 0.31 0.55 0.69 0.67
Pet_Supplies 0.82 0.80 0.82 0.80 0.54 0.56 0.71 0.73

Shoes 0.92 0.84 0.92 0.86 0.60 0.65 0.77 0.75
Software 0.82 0.84 0.87 0.71 0.55 0.55 0.71 0.73

Sports_Outdoors 0.78 0.87 0.79 0.87 0.58 0.59 0.69 0.73
Tools_Home_Improvement 0.85 0.78 0.85 0.79 0.55 0.54 0.70 0.77

Toys_Games 0.88 0.85 0.87 0.85 0.45 0.43 0.75 0.73
Video_Games 0.81 0.83 0.04 0.99 0.43 0.39 0.71 0.73

model we motivate from [149], where the cascade structure, as illustrated in Figure 4.2, where
each cascading level receives input from the preceding level and the processed result passed to
the next level.

The raw input feature vector is given to gcForest with different dimension associated with
pretrained embeddings. Each cascading level contains different ensemble based forest models i.e
an ensemble of ensembles yields the diversity in feature construction. Here, each forest produces
a class distribution for each instance and finally estimate the average of all class distributions
across the ensemble based forests gives an output vector. The output vector is concatenated
with the original feature vector and passed to the next cascading level. In order to avoid the risk
of over fitting, each forest uses K-fold cross-validation to produce the class vector. Moreover,

37

Input

Exp1

Text	features	extracted	from	
	Word2Vec	or	GloVe or BERT

or	ELMO

Exp2

Gating
Function

Sentences	with	Higher
Probability	from	Each	Expert

w1 w2

"Save	your	money	and	time.	This	is	nonsense	attempting	to	be

	arty	and	important.	I'd	also	forgotten	how	dire	an	actor	Hawke	is.

	Save	your	time?	There	is	no	explanation	or	direction.	Honey	Boo	

Boo	has	better	writin.\n"

"This	movie	was	requested	by	my	husband	to	watch	it.	It	was	alot	of

	fun	but	since	the	movie	is	too	old	there	is	alot	of	glitching.\n"

"Dickens	is	always	good--	this	miniseries	captured	the	essence	of	

the	book.	The	humor,	the	melancholoy,	the	bleak	and	the	brightness.

	The	characterizations	were	perfect.	Whole-heartedly	recommend	this

	miniseries.\n"
"Hilarious	movie.	Streamed	cleanly	from	Amazon.	No	problems	

with	the	playback.	This	is	definitely	a	cult	humor	film	with	a	special	

type	of	humor.\n'

captures positive reviews

captures negative reviews

Figure 4.1: Proposed Mixture of Classification Experts (MoCE) model. Here, Expert1 captures
positive reviews and Expert2 captures negative reviews.

the complexity of a model can be controlled by checking the training error and validation error
to terminate the process when the training is adequate.

4.3 Experimental Setup

In order to evaluate the word embeddings, we choose sentiment analysis task to perform the
experiments. Here, we briefly describe the dataset Amazon Product Reviews.

4.3.1 Dataset Description

Amazon product domains: This corpus is a collection of 20 product reviews derived from
Task-1 of ESWC Semantic Challenge-2019. The 20 different Amazon product domains names
are mentioned here 1, and this corpus belongs to sentiment analysis task. The data for the
Task-1 will consist of 50k reviews for each domain of which 25k reviews are positive and 25k
reviews are negative. The evaluation metrics for method evaluation are precision, recall, and
macro F1-score.

1http://www.maurodragoni.com/research/opinionmining/events/challenge-2019/

38

http://www.maurodragoni.com/research/opinionmining/events/challenge-2019/

Lightgbm

Random Forest

Xgboost

Extratrees

Text features
extracted from
Word2Vec,

GloVe, BERT,
or ELMO

Lightgbm

Random Forest

Xgboost

Extratrees

Lightgbm

Random Forest

Xgboost

Extratrees

Level­
1

Level­
2

Level­
n

Concatenate

Avg Max

Fi
na
l P
re
di
ct
io
n

Figure 4.2: Cascading gcForest Architecture

4.3.2 Feature Extraction

In this paper, we mainly focused on four successful pretrained word embeddings such as:
Word2Vec (embeddings are of 300 dimensions) [80], GloVe (embeddings are of 300 dimen-
sions) [95], BERT (embeddings are 768 dimensions each) [33], and ELMo (embeddings are 1024
dimensions each) [97].

4.3.3 Training Strategy

Using the approach discussed in Section 2, we trained a separate mixture of classification
experts model (MoCE) for the dataset Amazon Product Reviews with the associated task
sentiment analysis using all the embeddings. The input to the MoCE model is a text vector
and output is the corresponding classes based on a specific task. Here, we select the number
of experts based on the number of output classes. The gating function selects one of the
experts with higher probability score for the corresponding input. The selected expert predicts
the target label using that particular expert weights. Both expert parameters and gating
parameters are updated using the iterative expectation-maximization (EM) algorithm. The
training model is validated by K-fold approach in which the model is repeatedly trained on K-1
folds and the remaining one fold is used for validation. The proposed model is trained until the
model reaches the convergence with a lower bound of 1e−5 or a maximum of 100 iterations.

4.4 Results and Discussion

Here, we conducted the experiments in two steps. In the first step, we evaluated the four
word embeddings using MoCE model and the second step describes better feature representation

39

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20

A
c
c
u
ra
c
y

Domain

Word2Vec

GloVe

BERT

ELMo

Figure 4.3: Figure presents the accuracy of amazon 20 products using gcForest on four word
embeddings Word2Vec, GloVe, BERT, and ELMo.

using cascading gcForest outperforms the state-of-the-art results on amazon product review
datasets.

4.4.1 Evaluation of Embeddings using MoCE

Experiments are conducted on the 20 Amazon product domains dataset by passing input
as text vector extracted from recent successful neural word embeddings and output as corre-
sponding target classes positive or negative. We split the dataset into 40000 reviews in training
and 10000 reviews into testing. The MoCE model performance was evaluated by training and
testing the different subsets of the 50000 reviews in a 5-fold cross-validation scheme.

Table 4.2 presents the performance results of each embedding scheme where the two experts
discriminate both positive and negative examples. From the table 4.2, we can observe that
both GloVe and Word2Vec embeddings having better discrimination where one of the experts
captures majority positive sentiment examples as other expert capture more negative sentiment
examples. Here, we use test dataset of total 10000 examples out of which 5000 samples are
positive and 5000 samples are negative. For example, from the Table 4.2 consider the Shoes
domain dataset, for the GloVe Embedding: expert1 captures 92% positive sentiment samples
and expert2 captures 86% negative sentiment samples, shows better discrimination and similarly
with the Word2Vec and ELMo. Word embeddings like Word2Vec and GloVe embedding feature

40

as input, MoCE model isolate the positive and negative examples by two experts. In contrary,
for the domains Baby, Electronics, Office_Products and Patio (here expert1 only captures all
the positive and negative samples), this is mainly because of expressing the opinion in reviews
are almost similar in both classes. However, in the case of BERT and ELMo embedding: both
experts isolate the samples for all the domains to capturing of context-sensitive information.

4.4.2 Polarity Identification using gcForest

Using the MocE results described in Table 4.2, we can observe the better feature represen-
tation of each pretrained word embedding model based on the experts which discriminate the
positive or negative samples. In order to validate and improve the classification performance,
we also built the cascading gcForest classification model described in section 4.2.2. We use
four ensemble forest models such as LightGBM [59], XGboost [20], Random Forest, and Extra
Trees classifier in each cascading layer. The configuration of the gcForest model is shown in
Table 4.1. Here, we use a 5-fold cross-validation method to avoid the overfitting problem. With
this method, the model outperforms the state-of-the-art results mentioned in [37] for different
combination features such as GloVE, Word2Vec, ELMo & BERT as shown in Table 4.3. We also
improve the classification performance of each domain dataset by using the above mentioned
four embeddings. Since, gcForest doesnot require more hyper-parameters and deeper layers to
train to achieve good performance and very fast to train.

Figure 4.3 illustrates each domain results for all the pretrained embeddings with an evalua-
tion metric accuracy. From the figure 4.3, we can observe that Word2Vec, GloVe, and ELMO
methods perform better when compared to BERT embeddings in terms of accuracy and similar
comparison we observed in table 4.2 using an evaluation metric F1-score. One of the main
reason why BERT & ELMo do not perform better than Word2Vec & GloVe is that to fine-tune
language models (LMs) likes BERT/ELMo for a specific dataset training for few epochs get-
ting better results instead of simply using pretrained embeddings. In Table 4.3, we describes
the comparison between previous state-of-the-art methods and using gcForest. The combina-
tion of word embedding results comparison we observed in Table 4.3 and it outperforms the
state-of-the-art results.

4.5 Conclusion

Neural word embeddings have been able to deliver impressive results in many Natural Lan-
guage Processing tasks. However, choosing the right set of word embeddings for a given dataset
is a major challenging task for enhancing the results. In this paper, we have evaluated four
neural word embedding methods such as Word2Vec, GloVe, ELMo, & BERT on sentiment
analysis task in two steps (i) a mixture of classification experts (MoCE) model for sentiment

41

Table 4.3: Detailed results of domains (Dom) of Amazon product reviews dataset by the Base-
lines, existing method results and by passing combination of word embeddings to gcForest

Tested System (Macro F1- Score)
Dom SVM ME DBPDDPCNNGWE NS gcF
(1) 0.70 0.70 0.72 0.71 0.80 0.80 0.80 0.87
(2) 0.72 0.71 0.72 0.70 0.73 0.79 0.85 0.87
(3) 0.69 0.72 0.71 0.69 0.84 0.79 0.85 0.86
(4) 0.69 0.72 0.74 0.73 0.82 0.81 0.85 0.88
(5) 0.69 0.69 0.69 0.69 0.78 0.75 0.79 0.86
(6) 0.69 0.72 0.80 0.78 0.77 0.81 0.86 0.97
(7) 0.68 0.69 0.73 0.70 0.79 0.77 0.86 0.87
(8) 0.67 0.66 0.69 0.69 0.78 0.79 0.86 0.86
(9) 0.72 0.69 0.71 0.69 0.75 0.82 0.87 0.88
(10) 0.73 0.72 0.70 0.71 0.75 0.79 0.80 0.86
(11) 0.69 0.65 0.71 0.72 0.76 0.77 0.80 0.86
(12) 0.73 0.73 0.72 0.70 0.79 0.80 0.87 0.87
(13) 0.69 0.71 0.70 0.69 0.86 0.80 0.86 0.86
(14) 0.68 0.73 0.67 0.66 0.82 0.79 0.84 0.85
(15) 0.67 0.73 0.83 0.81 0.81 0.84 0.86 0.97
(16) 0.74 0.69 0.72 0.71 0.79 0.76 0.85 0.86
(17) 0.67 0.73 0.71 0.71 0.76 0.81 0.87 0.89
(18) 0.73 0.73 0.68 0.69 0.79 0.79 0.85 0.85
(19) 0.66 0.69 0.74 0.71 0.77 0.84 0.86 0.88
(20) 0.69 0.70 0.70 0.70 0.72 0.78 0.82 0.84
SVM (Support Vector Machines), ME (Maximum Entropy)

DBP (Domain Belonging Polarity), NS (NeuroSent)
DDP (Domain Detection Polarity), gcF(gcForest)

CNN (Convolutional Neural Networks)
GWE(Google Word Embeddings)

classification task, (ii) to compare and improve the classification accuracy by different combi-
nation of word embedding as first level of features and pass it to cascade model inspired by
gcForest for extracting diverse features. In the future, we plan to experiment on all NLP tasks
by using a hierarchical mixture of experts and conduct experiments on other standard datasets
with a primary focus on all aspects of word embeddings.

From the further parts of the thesis we are presenting how we solved popular NLP tasks
in Telugu language. We considered five NLP tasks for this purpose. In the next chapter, we
present the general annotation schema for the five NLP tasks in Telugu language.

42

Chapter 5

General Annotation Schema for Five NLP Tasks in Telugu

In this chapter, we will explain the annotation process, annotation guidelines, the tool we
created for annotation, and the details regarding the compensation to the annotators.

5.1 Telugu Raw Corpus Creation

The absence of large corpus in Telugu necessitated the construction of corpus to Telugu data.
Sentences are collected from Telugu websites like visalandhra 1, telugutimes 2, telugumirchi
3, telugu360 4, surya 5, prajasakti6, NTV 7, namastheandhra 8, greatandhra 9, eenadu 10,
andhrabhoomi 11. To further broaden the scope of our data, we selected the sentences from
different domains such as ’Movies’, ’Sports’, and ’Political’. Our Telugu corpus consists of
63,78,180 sentences crawled from the above-mentioned websites. Besides, we added the available
Wikipedia dump of 16,37,408 sentences to our corpus. The total corpus has 80,15,588 sentences.

5.2 Data Annotation process

For any NLP text classification annotation process, the main task is identifying the main
contextual words that lead to the correct label (for SA, is it “positive”, “negative” or “neutral”).
So once identified, they can be used as information for further training the machine learning
and deep learning models. The annotation process involves identifying the main contextual

1https://visalaandhra.com/
2http://www.telugutimes.net
3http://www.telugumirchi.com
4https://www.telugu360.com
5www.telugu.suryaa.com
6http://www.prajasakti.com
7https://www.ntvtelugu.com
8http://www.namasteandhra.com
9https://telugu.greatandhra.com

10https://www.eenadu.net
11http://www.andhrabhoomi.net

43

https://visalaandhra.com/
http://www.telugutimes.net
http://www.telugumirchi.com
https://www.telugu360.com
www.telugu.suryaa.com
http://www.prajasakti.com
https://www.ntvtelugu.com
http://www.namasteandhra.com
https://telugu.greatandhra.com
https://www.eenadu.net
http://www.andhrabhoomi.net

words in raw text and categorizing them into various predefined labels. These labels can be
chosen based on the requirement or the granularity to which we want to identify sentiment or
emotion or hate speech, and so on. Some of the most common labels for SA tasks are “positive”,
“negative”, and “neutral”. The basic labels for EI task are “angry”, “fear”, “sad”, and “happy”.
The HS, SAR, and clickbait labels are “yes” and “no”. Some of the most common labels for the
NER task include names, place, organizations, temporal expressions, medical terms, quantities,
monetary values, etc.

The annotation process can be divided into two sub-problems. The first one is to identify
the meaningful words from a sentence that contains the proper information to decide the label
for that sentence. The second is to assign a fitting label for that sentence from the predefined
list of labels for a specific task.

We select five users (5X) to annotate the data, all at the primary level of linguistic back-
ground and fluent Telugu native speakers. Each user has explained the annotation process by
reading the guidelines and examples. All the annotators should read the sentence carefully
and determine whether or not it expresses the sentiment, emotion, hate speech, sarcasm, or
clickbait. If so, then categorize each task into the respective labels given in the guidelines.
The annotator had to correctly annotate at least 80% sentences for four tasks to qualify and
complete the annotation process.
We randomly chose 100 sentences from the data at the initial step and asked each user to
provide the labels for different NLP tasks. After the annotation, we manually checked the
corresponding labels and discussed them with each user for justification. Further, we give the
correct labels for wrongly annotated examples and explain the reason for choosing that label.
We iterate the above steps three times to ensure that the quality of annotations should be at
least 80%. Users who successfully passed the initial set of sentences annotated the remaining
sentences of the dataset. Of those sentences, 15% were additional hidden test sentences to
continuously assess the five annotator’s quality. Accuracy of 80% on test sentences was the
threshold for including their annotations in the final dataset. To avoid the redundant text, we
considered the Jaccard similarity for discarding duplicate sentences (above 90% match) and
reported the datasets.

5.3 Annotation Guidelines for Five Tasks in Telugu

We followed different guidelines for each NLP task to annotate the data. To assign a proper
label, we need to look into the word, and sometimes it can be even a group of words like
chunks or phrases. For example, in the sentence “I do not like this movie”, we need to consider
two words “not” and “like” to assign the sentiment label like “negative”, emotion labeled as
“sad”, hate speech, sarcasm, and clickbait label as “no”. The sentences will be tagged with the
following labels based on the current text classification annotation task’s specific NLP task.

44

5.3.1 Telugu Sentiment Analysis (SA):

The five annotators has to read the Telugu sentence and identify whether the sentence has
“positive”, “negative”, or “neutral” sentiment. Then each annotator has to select the fitting
label to that sentence by reading the guidelines provided to them. The sample of annotated
sentences in Telugu, WX, and English format for the SA is given in Figure 5.1.

Figure 5.1: Sample of annotated sentences for SA task in Telugu, WX and English

5.3.2 Telugu Emotion Identification (EI):

For EI task, the annotators should read the telugu sentence and identify the fitting label.
The labels we considered for Telugu EI are “angry”, “fear”, “happy”, “sad”, or “no emotion”.
The annotators were required to select one of the five labels for each Telugu sentence. To the
best of our knowledge, we are the first that leverage the annotations and consider the task of
EI for the Telugu language. Figure 5.2 shows the sample of emotion sentences along with labels
reported in Telugu, WX, and English format.

5.3.3 Telugu Hate-speech Detection (HS):

The content on social media platforms like Twitter, YouTube, and Facebook is harmful; the
automatic removal of hate-speech content prevents the spreading of hate-speech information.
Many researchers have been working for the past decade for automated hate-speech detection in
the English [68, 145, 127, 90]. However, we need a Telugu system that automatically identifies
hate-speech comments where users post comments in their native language. To the best of our
knowledge, we are the first that leverage the annotations and consider the task of hate-speech
for the Telugu language. Although hate-speech detection is a challenging problem due to its
content difference between users, creating a labeled data and automated system describes the
variance difficulties that arise from the text. For the hate-speech task, annotators were required
to select a label for hate speech. The labels for hate speech are “yes” and “no”. The examples
in Telugu, WX, and English format for hate speech are given in Figure 5.3.

45

Figure 5.2: Sample of annotated sentences for EI task in Telugu, WX and English translation

Figure 5.3: Sample of annotated sentences for HS task in Telugu, WX and English translation

5.3.4 Telugu Sarcasm Detection (SAR):

Motivated by the recent successful contextual word features, we created a sarcasm dataset
for Telugu and empirically tested it with different embeddings.To the best of our knowledge,
we are the first that leverage the annotations and consider the task of SAR for the Telugu
language. For this task, annotators were required to select a label for sarcasm. The labels for
sarcasm are “yes” and “no”. The examples in Telugu, WX, and English format for sarcasm are
given in Figure 5.4.

Figure 5.4: Sample of annotated sentences for SAR task in Telugu, WX and English translation

46

5.3.5 Telugu Clickbait Detection:

Clickbait detection aims to identify the popular headlines that catch users’ attention to read
and click on the web link. Also, clickbait headlines typically provide sufficient information
to make readers curious but insufficient to fulfill their curiosity, making them click the linked
content. One of the reasons to attract user’s attention is to generate revenue from the subscrip-
tions, clicks, and views made by their readers [36]. We created a clickbait dataset for Telugu
and empirically tested it with different embeddings. For this task, annotators were required to
select a label for clickbait. The labels for clickbait are “yes” and “no”. The examples in Telugu,
WX, and English format for clickbait are given in Table 5.5.

Figure 5.5: Sample of annotated sentences for clickbait task in Telugu, WX and English trans-
lation

To make the annotation process unbiased and with the motivation to produce the quality
annotated datasets for Telugu, we handled the work with a third party. In this thesis, the
annotation work for all the datasets was done by Elance IT Solutions Private Limited12.

5.4 Annotation Tool

To annotate the data, we create a web-based user interface to simplify the task, as shown in
Figure 5.6. Based on the guidelines, each user should read the sentence carefully and determine
whether or not it expresses the sentiment, emotion, hate speech, sarcasm, or clickbait. If so,
then categorize each task into the respective labels given in the guidelines. For example, in the
SA task, the annotators need to select either “positive”, “negative”, or “neutral” based on the
context and meaning of the words. All the responses were saved in the database. We consider
majority voting out of five label responses for giving the final label for a sentence. To the best

12http://elancerits.com/

47

http://elancerits.com/

of our knowledge, we are the first that leverages the annotations and consider different NLP
tasks for the Telugu language.

Annotation
Web

Interface

User1
Annotated
Samples

Figure 5.6: Figure shows a sample web interface for annotation process and example of user1
annotated sentences

Inter-Annotator Agreement: We made the five annotators work on a smaller dataset for
verification as a first step to performing the annotation. The Fleiss’ kappa score13 was 0.95.
The inter-annotator agreement on the whole dataset annotation was reported as 0.91.

5.5 Annotators Fair Compensation:

For all our annotation work, we provided the data to an Elancer IT Solutions Private
Limited14 company. To perform the annotation process for every task, Elancer IT Solutions
Private Limited chose five native speakers of Telugu with excellent fluency, the company itself
properly remunerates all the annotators.

13https://en.wikipedia.org/wiki/Fleiss%27_kappa
14http://elancerits.com/

48

5.6 Summary

In this chapter, we presented the general process of corpus creation, annotators guidelines,
examples of Telugu annotated sentences for five NLP tasks and fair compensation to the anno-
tators.

In the next chapter, we present our Multi-task Text GCN architecture that we developed
using TEL-NLP dataset for SA, EI, HS and SAR. The work on clickbait dataset creation and
detection is presented in chapter 8.

49

Chapter 6

TEL-NLP Dataset and Multi-task GCN for Text Classification

This chapter explains creating a novel architecture using GCN in a multi-task setting for
Telugu. We developed an annotated TEL-NLP dataset for four different tasks viz. SA, EI, HS
and SAR. The experiments show that our proposed MT-Text GCN improved the classification
performance across the tasks. As we need a different set of syntactic features the fifth task
clickbait detection is presented in chapter 6.

6.1 Background

To evaluate the performance of GCN with one of the Indian languages, Telugu, we analyze
the GCN-based models with extensive experiments on four downstream tasks. In addition,
we created an annotated Telugu dataset, TEL-NLP, for the four NLP tasks. Further, we
propose a supervised graph reconstruction method, Multi-task Text GCN (MT-Text GCN) on
the Telugu, that leverages to simultaneously (i) learn the low-dimensional word and sentence
graph embeddings from word-sentence graph reconstruction using graph autoencoder (GAE)
and (ii) perform multi-task text classification using these latent sentence graph embeddings. We
argue that our proposed MT-Text GCN achieves significant improvements on TEL-NLP over
existing Telugu pre-trained word embeddings [78], and multilingual pre-trained Transformer
models: mBERT [34], and XLM-R [28]. On TEL-NLP, we achieve a high F1-score for four
NLP tasks: SA (0.84), EI (0.55), HS (0.83) and SAR (0.66). Finally, we show our model’s
quantitative and qualitative analysis of the four NLP tasks in Telugu. We open-source our
TEL-NLP dataset, pre-trained models, and code1.

In summary, the main contributions of this chapter are as follows:

• We propose the multi-task learning model (MT-Text GCN) to reconstruct word-sentence
graphs while achieving multi-task text classification with learned graph embeddings.

1https://github.com/scsmuhio/MTGCN_Resources

50

• TEL-NLP is the largest NLP dataset in Telugu, covering four NLP tasks (16,234 samples
for SA, HS, SAR, and 9,675 samples for EI), unlike previous works, which focused only
on a single task (SA) with a limited dataset of 2500 samples [86].

• For the Telugu language, we are the first to generate word embeddings using random walk
based models: DeepWalk and Node2Vec, and Graph AutoEncoders (GAE).

• Our MT-Text GCN enabled better performance on Telugu when compared with multi-
lingual pre-trained transformer models on four NLP tasks.

6.2 TEL-NLP Dataset Details

This section presents our dataset creation, TEL-NLP, for four NLP tasks such as SA, EI,
HS, and SAR in Telugu. Here, we describe the dataset creation and annotation, inter-annotator
agreement, and report the dataset statistics.
Dataset Creation and Annotation We sampled the 20k sentences from the existing large
Telugu raw corpus [78] and given to Elance IT Solutions Private Limited2 to perform the anno-
tation task. Also, the annotation was carried out for four NLP tasks, viz. sentiment, emotion,
hate-speech, and sarcasm. We create a web-based user interface to simplify the annotation
task. Each user has to log in and do the annotation. The user interface shows the sentence and
the respective labels for the four tasks. Five native speakers of Telugu with excellent fluency
performed this annotation task. We provided the annotators with detailed definitions for each
task with example sentences. All the annotators should read the sentence carefully and select
the fitting label for that particular sentence. When the users click the submit button, their
responses are saved in the database. To qualify and complete the annotation process, each
annotator must correctly annotate at least 80% sentences from the sample dataset. After two
rounds of sanity checks, we obtained 16,234 labeled sentences for SA, HS, SAR, and 9,675 for
EI. We considered “positive” and “negative” labels for the SA task. “fear”, “angry”, “sad”, and
“happy” labels for the EI task, “yes” and “no” for HS and SAR datasets. As we considered the
four basic emotions for the EI task, we got fewer samples when compared with other tasks.
Inter-Annotator Agreement We made the five annotators work on a smaller dataset for
verification as a first step to performing the annotation. The Fleiss’ kappa score3 was 0.95.
The inter-annotator agreement on the whole dataset annotation was reported as 0.91
TEL-NLP Description We performed our experiments on SA, EI, HS, and SAR datasets.
The TEL-NLP dataset description and number of nodes in the graph are provided in Table 6.1.

2http://elancerits.com/
3https://en.wikipedia.org/wiki/Fleiss%27_kappa

51

http://elancerits.com/

Table 6.1: Statistics of the TEL-NLP dataset

Task # Words # Sentences # Nodes # Classes
SA 41501 16234 57735 2 (Positive: 9,488, Negative: 6,746)

4 (Fear: 121, Angry: 388)
EI 28447 9675 57735 (Sad: 5,135, Happy: 4,031)
HS 41501 16234 57735 2 (Yes: 370, No: 15,864)
SAR 41501 16234 57735 2 (Yes: 402, No: 15, 832)

6.3 Proposed Method

In this section, we will explain (i) the overview of Graph Convolutional Network (GCN) [65]
and Graph AutoEncoder (GAE), (ii) the proposed MT-Text GCN approach, and (iii) the pro-
cedure to build word-word, sentence-sentence, and word-word + word-sentence graphs.

6.3.1 GCN and Graph AutoEncoder

GCN is a multi-layer neural network that convolves a neighboring node’s features and prop-
agates its embedding vectors to its nearest neighborhoods. Consider a weighted, undirected
graph denoted by G : = (V, A, X), where V is a set of N nodes, and A ∈ RNXN is the symmetric
adjacency matrix and X ∈ RNXM is the node feature matrix with each node dimension M. The
Graph AutoEncoder [111] (GAE) obtains a reduced dimensional representation (Z ∈ RNXK)
of the input graph (A). Intuitively, starting from the node embedding, the GAE model can
reconstruct an adjacency matrix A

′ close to the empirical graph (A), then the Z vectors should
capture some essential characteristics of the graph structure. To reconstruct the graph, we
stack an inner product decoder to this GAE as follows:

A
′
= f(AH(1)W1) (6.1)

Z = H(1) = f(AXW0) (6.2)
where f denotes the activation function, H(1) denotes the layer-1 output (latent representa-
tion), W0 and W1 denotes the weight parameters learned from the encoder and decoder model,
respectively.

6.3.2 Multi-task Text GCN (MT-Text GCN)

Given an input graph A, our main objective is to build and train a model to reconstruct
a graph (GAE) to learn word and sentence embeddings. These learned embeddings are used
to perform multi-task text classification. Here, we perform multi-task text classification by
providing sentence representations in two ways : (i) learned sentence embeddings from GAE,
and (ii) each sentence is represented by taking the average of learned word embeddings from
GAE. The proposed MT-Text GCN pipeline is shown in Fig 6.1. We use a 2-layer GCN of

52

which layer-1 acts as encoder and layer-2 as the decoder. The encoder (Z) and decoder output
(A′) using the layer-1 latent representations can be estimated from the Equations 6.1 and 6.4.

We use a LightGBM classifier to perform the multi-task text classification. Overall, the final
objective function is given as

L = LMSE(A,A
′
) + λ× LMTCLA

(l̂, l) (6.3)
where, LMSE (reconstruction loss) denotes the mean squared error (MSE) between the re-
constructed graph A

′ and the empirical graph A. The sigmoid cross-entropy loss denoted by
LMTCLA

evaluate classification performance between predicted labels l̂ and ground truth labels
(l). The λ parameter tunes the trade-off between reconstruction and classification performance.
The model performance for different values of λ are reported in Fig 6.2.

GAE

Sentiment Emotion
Hate

Speech Sarcasm

Wj

Si

Sj

Wi

Wj

Si

Sj

Wi

Reconstruction
Loss

Graph (A)

sent 1

sent 2

sent n

word 1

word 2

word m

SentencesWords

Text data
Z

l
l'

MTCLA(l',l)

LMSE(A,A')

Multi-Task Loss

Wj

Si

Sj

Wi

Original Graph (A)

Wj

Si

Sj

Wi

Reconstructed Graph (A')Encoder DecoderLatent Features (Z)

GAE

Reconstructed Graph (A')

Figure 6.1: MT-Text GCN Pipeline: Rows in Z are low-dimensional node embeddings learned by
the encoder from input graph A. LightGBM classifier outputs predicted labels l̂, and compares
with actual labels l. LMSE (reconstruction loss) denotes the mean squared error (MSE) between
the reconstructed graph A

′ and the empirical graph A. The sigmoid cross-entropy loss denoted
by LMTCLA

53

6.3.3 Building Text Graph

We set the node feature vector (X) as an identity matrix, i.e., every word/sentence/word+sentence
represents a one-hot vector, given as input to MT-Text GCN.

Word-level Graph (W): To construct a word-level graph, we explicitly calculated the global
word co-occurrence matrix with a window size of 3, and the number of nodes is equal to
the number of unique words in the vocabulary. Since point-wise mutual information (PMI) [30]
yields better results than word co-occurrence count [134], we adopt PMI as a metric to calculate
the weights between any two words. We use the global word-word co-occurrence matrix as the
adjacency matrix (A), where the edge between the two words is calculated using PMI.

PMI(i, j) = log
p(i, j)

p(i)p(j)
(6.4)

p(i, j) =
#W (i, j)

#W
(6.5)

p(i) =
#W (i)

#W
(6.6)

where #W(i, j) is the number of sliding windows that contain words i and j, #W(i) is the
number of sliding windows that contain the word i, #W is the total number of sliding windows
in the dataset.

Sentence-level Graph (S): In this graph, nodes represent the sentences, and we use pre-
trained word embeddings (Word2Vec) to obtain sentence vector representation by averaging
all the word vectors of the sentence. We use cosine distance to calculate the similarity score
between two nodes.

Word+Sentence-level Graph (W+S): In this graph, words and sentences act as nodes, we
adopt the global word co-occurrence statistics and TF-IDF frequencies to fill the edge weights
between the nodes.

Aij =



PMI(i, j), i, j are words

TF-IDFij , i is word, j is sentence

1, i = j

0, otherwise

(6.7)

6.4 Experimental Setup and Results

This section describes different features such as traditional features, pre-trained word em-
beddings, random walk-based representations, and MT-Text GCN model training setup. This
chapter uses Light Gradient Boosting Method (LightGBM) as a classifier to train the models
for all the feature representations.

54

0 0.5 1 1.5 2

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0

0.5

1

1.5

2
Classification Loss Reconstruction Loss

Choice of λ

C
la

ss
ifi

ca
tio

n
Lo

ss

Re
co

ns
tr

uc
tio

n
Lo

ss

Figure 6.2: Example of reconstruction (red)/ classification (blue) loss with different λ (top),
train and validation learning curves shows a good fit at λ = 0.2 (bottom). Each point on the
curve is the average of loss with corresponding λ

6.4.1 Baselines

We compare our MT-Text GCN with traditional features, distributed word representations,
and random walk based methods.
Traditional Features We use the traditional Bag-of-words (BoW) [126] and TF-IDF fea-
tures [105] as our baseline methods to perform text classification on four NLP tasks. The BoW
model uses the frequency of words in a sentence as a feature. The BoW model with term
frequency times inverse document frequency of words in a document is used as the TF-IDF
feature.

6.4.2 Telugu Word Embeddings

We use the existing pre-trained Telugu word embeddings [78] to perform the text classifica-
tion on our dataset, TEL-NLP: (1) A Te-Word2Vec (Te-W2V) model trained on a large
Telugu corpus with 300-hidden dimensions as word representations. (2) Te-GloVe based word

55

vectors (each word is a 200-dimension vector). (3) A 200-dimension Te-FastText (Te-FT) em-
beddings. (4) Te-Meta-Embeddings (Te-ME), an ensemble of Telugu Te-W2V, Te-GloVe,
and Te-FT embeddings are used to create Te-ME of 300 dimension [78].

6.4.3 Deep Learning Methods

CNN: Proposed by [62], we perform convolution and max-pooling operations on Telugu word
embeddings to get a representation of text that is used for text classification.
LSTM: Defined in [119, 74], we use the last hidden state as text representation to perform
text classification. We train LSTM with five input representations (i) One-Hot encoding and
(ii) the four pre-trained Telugu word embeddings [78].

6.4.4 Random Walk based Representations

DeepWalk (DW): Proposed by [96], this approach uses local information obtained from
truncated continuous feature representations random walks, equivalent to sentences to learn
latent representations of nodes in a graph.
Node2Vec (N2V): A framework for learning nodes in the graph by using a biased random
walk procedure, which efficiently explores diverse neighborhoods in [45]. To accommodate the
morphological richness in Indian languages like Telugu, we consider the different small window
sizes (2,3,4) for creating the co-occurrence matrices.

6.4.5 Graph based Representations

GCN-W: A word-level graph CNN model that operates convolution over word-word adjacency
matrix [134], in which first-order approximation of Chebyshev filter is used.
GCN-S: A sentence-level graph CNN model that operates convolution over sentence embed-
dings similarity matrix [147], in which first-order approximation of Chebyshev filter is used.
GCN-W+S: A word+sentence level graph CNN model that operates convolution over word-
word and word-sentence embeddings similarity matrix [134], in which first-order approximation
of Chebyshev filter is used.

6.4.6 Model Setup

To perform text classification using GCN, we set the first convolution layer’s embedding
size as 200 and the input feature vector as a one-hot vector for different GCN models such as
GCN-W, GCN-S, GCN-W+S, and MT-Text GCN. We use the Adam optimizer [63] with an
initial learning rate of 0.001, RELU as the activation function at the first GCN layer, and L2
weight decay equal to 5e−4. We applied the dropout with a probability of 0.5 after the first
GCN layer and trained all the GCN models for a maximum of 100 epochs. We set the callbacks

56

and checkpoints in which the model training stops automatically if the validation loss does not
decrease for ten consecutive epochs. For the GCN-W model, we set the context window size as
three while constructing a word-word co-occurrence matrix using PMI as an input adjacency
matrix. Here, we jointly perform the reconstruction of a graph using GAE and the latent node
representations from GAE to build the classification model. The experiments were performed
on a single V100 16GB RAM GPU machine.

To determine the choice of λ, we perform an extensive grid search and the corresponding re-
sults are shown in Fig 6.2. As the λ increases, the reconstruction performance deteriorates, and
classification loss improves. When λ = 0, the reconstruction loss yields the best score, whereas
classification loss is peak. We chose λ = 0.2 based on the performance of both reconstruction
and classification loss. Fig 6.2 depicts the model training vs. validation loss performance when
passing the parameter λ =0.2. Here the first layer embedding dimensions are 200. Fig 6.2 tells
us that both training and validation loss decreased as the number of epochs increased. We also
experimented with GCN-W and GCN-S on a single task for different embedding dimensions,
and corresponding F1 scores for each model are shown in Table 6.2.
Dataset Splitting: We followed the 5-fold cross-validation split for all the methods. One fold
was used for the test (20% data), and the 4-fold data was split into train/validation (70/10).
We calculated the average of 5-folds and reported the results in Table 6.2.
Classification Metrics: Table 6.2 reports each task classification results, such as F1-score for
various models, except for the HS task. Since our HS task data has a class imbalance issue, we
report the weighted F1 score.

6.5 Results and Analysis

The effectiveness of our proposed model is evaluated by comparing it with traditional fea-
tures, different word embeddings [78], deep learning methods, node embeddings, and existing
pre-trained multilingual transformer models mBERT [34] and XLM-R [28]. The results can be
analyzed from the Table 6.2 as follows:
Traditional Features: We considered the traditional feature representations BoW and TF-
IDF generated from the Telugu corpus as the baselines. Since our baseline features do not
capture the semantic and contextual information, the baseline system achieves lower F1 scores
for all tasks, as shown in Table 6.2, block (A).
Distributed Word-Embeddings: For each text classification task, we used the pre-trained
word-embeddings generated from the Telugu corpus (Te-W2V, Te-GloVe, Te-FT, and Te-
ME) [78] as input, and the results are reported in Table 6.2. With the local (Te-W2V, Te-FT)
and global (Te-GloVe) contextual word embeddings, the system achieves an improved F1 score
compared to the baseline model for all the four NLP tasks in which Te-FT embeddings have
shown better performance than other word-embeddings, as shown in Table 6.2, block (B). How-

57

ever, from Table 6.2, we observe that the performance of sarcasm task results is deficient and
equal to random guessing due to the high class imbalance problem.

Table 6.2: TEL-NLP results on four tasks in terms of F1-score using: (A) traditional features,
(B) distributed word embeddings, (C) deep learning representations, (D) random walk em-
beddings, (E) pre-trained multi-lingual transformers, and (F) our proposed method: MT-Text
GCN and its variations. All these methods were trained on Telugu corpus. Since HS data has
a class imbalance issue, we report the weighted F1-score

Tasks→ SA EI HS SAR
Block Feature set↓ F1-score F1-score F1-score F1-score
(A) BoW 0.60 0.32 0.56 0.50

TF-IDF 0.61 0.32 0.58 0.50
Te-W2V 0.79 0.44 0.63 0.50

(B) Te-GloVe 0.79 0.43 0.68 0.52
Te-FT 0.83 0.50 0.66 0.55
Te-ME 0.82 0.48 0.68 0.50
CNN 0.64 0.30 0.63 0.51
LSTM 0.81 0.45 0.71 0.53
LSTM-TeW2V 0.75 0.49 0.68 0.52

(C) LSTM-TeGloVe 0.66 0.35 0.67 0.51
LSTM-TeFT 0.72 0.41 0.67 0.53
LSTM-TeME 0.65 0.38 0.68 0.52
DW 0.56 0.30 0.70 0.50
N2V-WS2 0.77 0.48 0.66 0.54

(D) N2V-WS3 0.78 0.47 0.80 0.55
N2V-WS4 0.78 0.46 0.82 0.58

(E) mBERT 0.68 0.42 0.50 0.50
XLM-R 0.64 0.34 0.50 0.50
ST-TextGCN-W 0.69 0.36 0.75 0.64

(F) ST-Text GCN-S 0.77 0.43 0.82 0.65
ST-Text GCN-W+S 0.82 0.48 0.83 0.67
MT-Text GCN-W+S 0.84 0.55 0.83 0.63

Deep Learning Methods: Although the deep learning models such as CNN and LSTM
generated from Telugu corpus outperform the baseline setting, CNN with randomly initialized
word embedding yields a lower F1-score when compared with different word embeddings, dis-
played in Table 6.2, block(C). The LSTM-based model outperforms the traditional features and
performs better than CNN. Moreover, the sequence of tokens with one-hot representation as
input to LSTM yields a better F1 score than four pre-trained word embeddings, except for the
EI task. These results infer that LSTMs do not address the long-term dependency problems
in morphologically rich languages, Telugu, which affects the classification performance of four
tasks.
Random Walk based Approaches: From Table 6.2, block(D) describes the results of random
walk based models (DW / N2V) generated from the Telugu corpus as input to the LightGBM
model for four tasks. We make the following observations from Table 6.2: (i) the DW embed-
dings report a low F1-score for four tasks when compared to all the methods except the baseline
setting in Table 6.2. (ii) We observe that the N2V embeddings learned from the three context
graphs (i.e., varying the different context window sizes: 2, 3, and 4) given as an input, the
model displays an increasing F1-score and reports better results with a context window size of
3 & 4. (iii) Compared to distributed word embeddings and deep learning methods, N2V-WS3
and N2V-WS4 display higher F1 scores for the HS and SAR tasks. (iv) These results demon-
strate that N2V is ideal for learning both local and global neighbors so that it can construct

58

Figure 6.3: Top 8 similar words for the word “competition” using (i) MT-Text GCN-W+S (ii)
Te-W2V (iii) Te-GloVe and (iv) Te-FT

more semantic vertex neighborhoods, and it is better at classifying the text classification tasks
on the imbalanced datasets (HS and SAR), while DW has the limitation of no control over
explored neighborhoods.
pre-trained Transformers: We evaluate whether fine-tuning the existing pre-trained mul-
tilingual transformer models mBERT [34], and XLM-R [28] is useful for adapting each of the
NLP tasks. From Table 6.2, we find that fine-tuning results show better performance than
baseline, CNNs, and DW methods. However, the performance is lower compared to Telugu
pre-trained word embeddings, N2V embeddings, and our proposed MT-Text GCN reported in
Table 6.2, block(E). The average length of sentences in these Telugu NLP tasks is much longer
than that in English datasets. Moreover, the graph is constructed using word-sentence statis-
tics, meaning long texts may produce more sentence connections transited via an intermediate
word node. This potentially benefits graph mechanisms, leading to better performances with
MT-Text GCN multilingual transformers.

6.5.1 Graph based Node Embeddings

ST-Text GCN Results: We present the single task text classification results for models
trained on word-word (ST-Text GCN-W), sentence-sentence (ST-Text GCN-S), and word-word
+ word-sentence (ST-Text GCN-W+S) graphs in Table 6.2, block(F). (i) From Table 6.2, we
infer that sentence embeddings learned from ST-Text GCN-S show a better classification per-
formance across four individual tasks compared to word embeddings obtained from ST-Text

59

GCN-W. (ii) Further, the single task text classification model trained on the W+S graph
achieved high performance compared to ST-Text GCN-W and ST-Text GCN-S. (iii) These
results indicate that graph-based models learned better contextual representation for each sen-
tence rather than sentence representation obtained from an average of word embeddings. (iv)
Unlike ST-Text GCN-S, we are not providing any edge information between a sentence to
sentence. However, we observe that the latent sentence embeddings learned from ST-Text
GCN-W+S reports better than ST-Text GCN-S in Table 6.2. (v) Although EI and SAR tasks
have a data imbalance problem, all the GCN models yield better results than other feature
representations. We reported that the quantitative analysis of each task is displayed in Fig
6.4.

MT-Text GCN Results: Like ST-Text GCN-W+S, we use the sentence embeddings as input
to the classification model when training the MT-Text GCN-W+S. Table 6.2 shows that (i) the
classification performance of SA and HS tasks has increased the performance in the multi-task
setting. (ii) The classification performance of the SAR task was deficient, possibly due to class
imbalance and lack of solid correlations across some task pairs. (iii) Overall, from Table 6.2, we
observe that GCN-based models outperform all the tasks except a little less for the SAR task.

6.5.2 Qualitative Analysis

This study tried to understand how MT-Text GCN helps in regularizing word embeddings.
Since word vectors are numerical representations of contextual similarities between the words,
they can be manipulated and made to perform unusual tasks like finding the degree of similarity
between two words [80]. To verify the quality of generated Telugu word-embeddings, we extract
the top-8 semantically related words for “(competition)” using Te-W2V, Te-GloVe, Te-FT, and
compared with MT-Text GCN-W+S, as shown in Fig 6.3. From Fig 6.3, we can observe that the
semantically related words obtained for MT-Text GCN-W+S are similar to Te-W2V, Te-GloVe,
and Te-FT.

6.5.3 Quantitative Analysis

Fig 6.4 showcase the classification performance (F1-score) of the models ST-Text GCN-W
and ST-Text GCN-S on SA, EI, HS, and SAR datasets with different embedding dimensions
at the first GCN layer. From Fig 6.4, we can observe that ST-Text GCN-S shows better
classification performance and an increasing F1-score with different embedding dimensions when
compared to ST-Text GCN-W. These results infer that the increase in the dimension yields an
improved accuracy over all the tasks.

60

Figure 6.4: Test accuracy results for four tasks (i) SA (ii) EI (iii) HS and (iv) SAR by varying
embedding dimensions

Figure 6.5: Confusion matrices of MT-Text GCN-W+S for three best performing tasks: (a) SA
(b) EI (c) HS and (d) SAR using ST-Text GCN-W+S

6.5.4 Error Analysis

We analyzed the error cases in detail for the class labels that belong to each task. We
observed from Fig 6.5a that for the SA task: (i) 20% of the negative class samples are predicted
as positive, and (ii) 12% of the positive class samples are predicted as negative. For EI, we
observe from the Fig 6.5b that (i) 78% of angry class samples, 65% of fear class samples, 17%
of happy class samples are predicted sad, and (ii) 11% of sad class samples are predicted happy.
These results infer that our system is more biased towards the Sad class samples due to the
class imbalance problem in Angry and Fear class samples. Fig 6.5c shows the confusion matrix
for the HS task, and we make the following observations: (i) The recall of yes (88%) and no
(82%) classes are much higher, (ii) our model makes a higher percentage of false negatives (i.e.,
18% of no class samples are predicted yes). This is mainly due to the class imbalance issue, and
we report the weighted F1 score for HS task data in the results Table 6.2. For the SAR task,

61

we observe that (i) 43% of yes class samples are predicted no (i.e., our system makes more false
positives), and (ii) the presence of false negatives (0.4%) is low compared to the HS task, as
shown in Fig 6.5d.

Figure 6.6: MT-Text GCN-W+S: Wrong predictions by the model on four text classification
tasks: SA, EI, HS, SAR

Fig 6.6 displays the failure cases for four tasks, and we make the following observations: (i)
The model could not recognize “idiomatic” and “noun phrase ellipses” in the SA task. (ii) For
the EI task, the model misunderstood the word “increase” in a positive sense in this context and
was unable to parse sentences with “complex syntax”. For instance, sentence 3 in Fig 6.6 shows
that the relative clause of English gets translated to an adjectival construction, and the noun
phrase in the prepositional phrase gets verbalized in Telugu. Moreover, the Telugu sentence had
more verbs (finite and non-finite) than English, making it complex for our model to understand.
(iii) In the HS task, the model got confused with positive words and also misunderstood the
word “reprimanded” in a negative sense in this context. (iv) Like the SA task, the model could
not recognize “idiomatic” or “metonymy” in the SAR task.

6.6 Summary

In this chapter, we propose an MT-Text GCN to jointly (i) perform graph reconstruction, (ii)
learn word embeddings, (iii) learn sentence embeddings, and (iv) do multi-task text classification
on four significant NLP tasks - SA, EI, HS, and SAR. The experimental results show that our
proposed model reports an improved classification performance across three tasks. In the future,

62

we aim to create pre-trained transformer models for Telugu. We believe that this work will
pave the way for better research in resource-poor languages.

In the next chapter, we present our main work where we tried to solve the low resource prob-
lem of Telugu. We present an extended dataset to TEL-NLP along with pre-trained transformer
feature representations.

63

Chapter 7

Datasets, Embeddings, and Models for Text Classification Tasks

This chapter tries to solve the low resource problem of Telugu by creating corpus, different
annotated datasets for four NLP tasks viz. SA, EI, HS and SAR. We created several pre-trained
feature representations with the help of Telugu raw corpus. We made all the resources publicly
available to other researchers.

7.1 Background

Due to the lack of a large annotated corpus, many resource-poor Indian languages strug-
gle to reap the benefits of recent deep feature representations in Natural Language Processing
(NLP). Moreover, adopting existing language models trained on large English corpora for In-
dian languages is often limited by data availability, rich morphological variation, syntax, and
semantic differences. In this chapter, we explore the traditional to recent efficient represen-
tations to overcome the challenges of low resource language, Telugu. In particular, our main
objective is to mitigate the low-resource problem for Telugu: Overall, we present several con-
tributions to a resource-poor language viz. Telugu. (i) a large annotated data (35,142 sen-
tences in each task) for multiple NLP tasks such as sentiment analysis, emotion identification,
hate-speech detection, and sarcasm detection, (ii) we create different lexicons for sentiment,
emotion, and hate-speech for improving the efficiency of the models, (iii) pre-trained word
and sentence embeddings, and (iv) different pre-trained language models for Telugu such as
ELMo-Te, BERT-Te, RoBERTa-Te, ALBERT-Te, and DistilBERT-Te on a large Telugu cor-
pus consisting of 80,15,588 sentences (16,37,408 sentences from Telugu Wikipedia and 63,78,180
sentences crawled from different Telugu websites). Further, we show that these representations
significantly improve the performance of four NLP tasks and present the benchmark results for
Telugu. We argue that our pre-trained embeddings are competitive or better than the exist-
ing multilingual pre-trained models: mBERT, XLM-R, and IndicBERT. Lastly, the fine-tuning
of pre-trained models show higher performance than linear probing results on four NLP tasks
with following F1-scores: Sentiment (68.72), Emotion (58.04), Hate-Speech (64.27) and Sarcasm

64

(77.93). We also experiment on publicly available Telugu datasets (Named Entity Recognition,
Article Genre Classification, and Sentiment Analysis), find that our Telugu pre-trained lan-
guage models (BERT-Te and RoBERTa-Te) outperform the state-of-the-art system except for
the sentiment task. We open-source our corpus, four different datasets, lexicons, embeddings,
and code https://github.com/Cha14ran/DREAM-T. The pre-trained transformer models for
Telugu are available at https://huggingface.co/ltrctelugu.

The main contributions of this work are as follows:

• We created a large Telugu corpus of 80,15,588 sentences (16,37,408 sentences from Telugu
Wikipedia and 63,78,180 sentences crawled from different Telugu websites).

• We create a large annotated data of 35,142 sentences for the four NLP tasks in the Telugu
language, in contrast to earlier works experimented with tiny data for a single task.

• We build sentiment, emotion, and hate-speech lexicons at the word level and train the
classifiers to estimate the performance as a baseline.

• We create pre-trained language models for Telugu such as ELMo-Te, BERT-Te, RoBERTa-
Te, ALBERT-Te, and DistilBERT-Te on our large Telugu corpus (80,15,588 sentences).

• We create the benchmark results empirically for four NLP tasks in the Telugu language.

• We outperform the multilingual pre-trained language models such as mBERT [34], XLM-
R [70], Sub-word Byte Pair [48], Facebook FastText [13], and IndicBERT [57].

7.2 Dataset Description

This section presents the process of collecting the Telugu corpus, pre-processing steps, and
creating annotated data for four NLP tasks.

7.2.1 Corpus Collection Process

We manually identified a few online Telugu websites that publish movie reviews and news
related to business, politics, sports, national and international. Data is collected from Telugu
websites and the links to each website is mentioned in chapter 3, section 5.1. From these websites
we crawled our corpus of 63,78,180 sentences. we added the available Telugu Wikipedia dump
of 16,37,408 sentences and the total Telugu corpus consists of 80,15,588 sentences.

7.2.2 Data Pre-processing

The following steps were taken to ensure good quality input data for our models.

65

https://github.com/Cha14ran/DREAM-T
https://huggingface.co/ltrctelugu

Text Conversion
Money “10.46” - “10:46”
Abbreviations “E.D” - “E:D”

“S.S.C” - “S:S:C”
Units of Measurement “k.m” - “k:m”

“9.2” - “9:2”
Overs & Run Rate “4.5” - “4:5”
Domains “.com” - “:com”

Table 7.1: Pre-processing of text using normalization

Figure 7.1: Pre-processing of broken sentences by correcting the type errors

• Handling of broken sentences: Indic Tokenizer1 is used for splitting the paragraph into
sentences. We observed a few broken sentences due to typo errors, as shown in Figure 7.1.
We manually merged these sentences.

• Text normalization: The text normalization includes expanding abbreviations, conversion
of unit measurements, run rates, etc., changes reported in Table 7.1.

• Sentences with no information: We removed sentences that contain one or two words.
Those include sentences with only names, locations, or dates, as they do not provide any
information.

• Imbalanced data: We partially addressed this with data chosen from multiple domains
with an appropriate number of samples. Further, we experimented with over and under-
sampling techniques to handle class imbalance present in each task.

• Removal of special characters: We removed the special characters like arrow marks and
Chinese characters from the corpus.

7.2.3 Data Statistics

The detailed statistics of the data in each domain for each task are tabulated in Table 7.2.
From Table 7.2, we observe that in the movie domain, we have 9,882 sentences. In the political
domain, we have 14,306 sentences and 10,954 sentences present in the sports domain.

1https://github.com/anoopkunchukuttan/indic_nlp_resources

66

https://github.com/anoopkunchukuttan/indic_nlp_resources

Table 7.2: Dataset Statistics for the four NLP tasks

Tasks # Total Instances # Domains # Classes # Instances Top Classes
Sentiment

35142

movies
3

9882 Neutral(5344),Pos(3135),Neg(1403)
politics 14306 Neutral(7640), Pos(3461), Neg(3205)
sports 10954 Neutral(5924),Pos(2892),Neg(2138)

Emotion
movies

5
9882 Neutral(7679), Happy(1336), Sad(776), Angry(47), Fear(44)

politics 14306 Neutral(9869), Sad(2604), Happy(1539), Angry(245), Fear(49)
sports 10954 Neutral(7919),Sad(1755),Happy(1156),Angry(96),Fear(28)

Hate-speech
movies

2
9882 No(9845), Yes(37)

politics 14306 No(14076), Yes(230)
sports 10954 No(10851), Yes(103)

Sarcasm
movies

2
9882 No(9778), Yes(104)

politics 14306 No(14118), Yes(188)
sports 10954 No(10844), Yes(110)

Table 7.3: Statistics of lexicons in each NLP task

Task #Lexicons
Sentiment Analysis positive (3846), negative(4501)

Emotion Identification anger (351), fear (118), happy (3763), sad (4746)
Hate-speech hate (155)

7.3 Feature Representation Methods

To simulate the models, we built the below hand-crafted and automated feature represen-
tations on Telugu corpus (80,15,588 sentences) from scratch. The following set of features was
implemented to use in our four tasks.

7.3.1 Baseline Feature Representations

The three traditional feature representation methods like lexicon [50, 133, 43], Bag-Of-Words
(BoW) [126], and Term Frequency-Inverse document Frequency (TF-IDF) [105] are successful
in many of the NLP tasks. Although these methods are simple to implement, yet produce
better results. We implement these on our Telugu corpus. We consider these three feature
representation methods our baseline compared with created embeddings for Telugu from further
subsections. Below, we discuss these traditional methods.

Table 7.4: Sample of positive sentiment lexi-
cons in Telugu, WX, and English

Telugu_word WX_word English_word
మంĞ maMci Good

ƶķǲƏ nijAyiwI Honest
కృతజ� తȒ kqwajFawalu Thanks
ƵªǱƶ¤ nyAyAnni Justice

సంƕషం saMwoRaM Joy
మద¢ Ɛ maxxawu Support
Ȥజయం vijayaM Success

ఆశ ASa Hope
Ȥజయ vijaya Victory
గెȐĞ geVlici Won

Table 7.5: Sample of negative sentiment lexi-
cons in Telugu, WX, and English

Telugu_word WX_word English_word
చెŲ ceVdu Bad

అƵªǱƶ¤ anyAyAnni Injustice
అȤȭ±స aviSvAsa Antitrust

అƸǧనం anumAnaM suspected
అసభª asaBya Rude

అక¾ మంÿ akramaMgA Illegally
Ǒర� ǽì PorjarIki Forgery

మృƎ mqwi Death
ఓటǨ otami Defeat
Ȥఫలం viPalaM Fail

67

Table 7.6: Sample of happy emotion lexicons
in Telugu, WX, and English

Telugu_word WX_word English_word
Ȥజయం vijayaM Success

ǻƄంĝǾ rANiMcAru Excelled
మంĞ maMci Good
హర³ ం harRaM Elation

అదృష� ంÿ axqRtaMgA Good luck
ĭంǀయƵ� CAMpiyangA Champion
అగ¾ Ɂ¡ నంȗ agrasWAnaMlo Top

సంచలనం saMcalanaM Buzz
ఆనందơయకం AnaMxaxAyakaM Pleasure

అƤ¨తం axBuwaM Awesome

Table 7.7: Sample of angry emotion lexicons
in Telugu, WX, and English

Telugu_word WX_word English_word
ɃǼయè nippulu Serious

మంŰపů� Ǿ maMdipaddAru Infuriated
ĂǾ½ ÿ gurrugA Horses

ŰǧంÓ dimAMd Demand
కŦన kaTina Strict

ƶర§ంƬంĝǾ nirbaMXiMcAru Detained
ఆగ¾ హంƕ AgrahaMwo Enraged

óపం kopaM Anger
హెచ�Ǽక heVccarika Warning

ఆȃǀంĝǾ AropiMcAru Accused

Table 7.8: Sample of sad emotion lexicons in
Telugu, WX, and English

Telugu_word WX_word English_word
ÿయపů� Ǿ gAyapaddAru Injured

ఆంƩళన AMxolYana Worry
అసంతృǀ asaMwqpwi Discontent

హతª hawya Murder
ఘర³ ణ GarRaNa Clash
ǉ¯ Ǉ PlApwo Flap

îప¥ïȐన kuppakUlina Collapse
పǻభవం parABavaM Humiliation

పǻజయం parAjayaM Defeated
ơǾణంÿ xAruNaMgA Worse

Table 7.9: Sample of fear emotion lexicons in
Telugu, WX, and English

Telugu_word WX_word English_word
ɋరá hArar Horror

ȷÅ kaTina Shock
భయంƕ BayaMwo Fear

హెచ�ǼంĞ heVccariMci Alert
దడ xada Shore

భయపŰ Bayapadi Worried
హడȐǇǱǾ hadalipoyAru Startled
హెచ�Ǽంచడంƕ heVccariMcadaMwo Warning

డెÓ deVd Dead
ơŰ xAdi Attack

7.3.1.1 Building Telugu Lexicon Features

Lexicons play an important role when dealing with tasks like SA [50, 128, 39], EI [133, 83, 84],
and HS [43, 15, 16]. Moreover, one can use these lexicons (e.g., positive and negative lexicons)
as features to improve the accuracy of the models [61, 85, 23, 82]. These lexicons provide a
word-level foundation for identifying polarity, emotion, or hatred in sentences and documents.
This simple lexicon method shows surprising accuracy in [82].
In this chapter, we create sentiment (“positive”, “negative” words), emotion (“anger”, “sad”,
“happy”, “fear” words), and hate-speech (“hate” words) lexicons manually from the annotated
Telugu corpus. The detailed count of each task lexicons is shown in Table 7.3. To extract the
sentiment/emotion/hate-speech lexicons, we ask the annotators to provide the main word that
expresses the polarity/emotion/hate feeling and task labels. We show case the samples of “pos-
itive” and “negative” Telugu sentiment lexicons in Tables 7.4, and 7.5. Tables 7.6, 7.7, 7.8, 7.9

Table 7.10: Sample of hate-speech lexicons in Telugu, WX, and English

Telugu_word WX_word English_word
Ɍంస hiMsa Violence

ȣǼ¤ంÇ vArniMg Warning
ఆగ¾ హం AgrahaM Wrath

ƶɟ పెś� Ǿ nippu peVttAru Set on fire
హెచ�ǼంĝǾ heVccariMcAru Warned
మంŰపů� Ǿ maMdipaddAru Infuriated

అసభªకరంÿ asaByakaraMgA Obscenity
ఘర³ ణ GarRaNa Friction

అవǧƶంģ avamAniMce Demeans
ȤషȣǴȦల viRavAyuvula Fumes

68

report the samples of “happy”, “sad”, “fear”, and “angry” Telugu emotion lexicons. We display
the Telugu hate-speech sample lexicons in Table 7.10. Since sarcasm is very difficult to identify
through a lexicon, as one person may feel that word/phrase sarcastic, and others may feel it
real. Also, it became difficult to tell the annotators regarding this. So, we decided to create
lexicons for the remaining three tasks (SA, ED, and HS).

7.3.1.2 Extraction of Telugu Lexicon Features

We built the lexicon feature representation of each sentence in the following way: 1) First,
the lexicons are considered corresponding to their task (e.g., emotion lexicons used for emotion
identification task). 2) For each sentence, we calculated the relative frequency of ”happy” words
in a category of happy lexicons according to the Eq 7.1.

RFh(Wc) =
f(Wc)

Totalh(Wc)
(7.1)

Where, f(Wc) represent the count of happy words in a sentence, Totalh(Wc) denotes the total
count of happy lexicons. 3) Similarly, we measured the relative frequency of “sad”, “fear”, and
“anger” lexicons. 4) The final feature vector is the concatenation of all the individual features,
i.e., dimension of four for the emotion task.

7.3.1.3 Telugu Bag-of-Words Representation

To extract the BoW features [126] for our data, we build a vocabulary from the annotated
dataset. We filtered the stopwords (highly frequently occurring words in the Telugu language)
and extracted the top 2000 words as our features resulted in a dataset size of 35,412 (samples)
x 2000 (features). Since BoW provides the binary representation (word presence or absence),
it can not capture semantics, grammar, word context (local and global), and order.

7.3.1.4 Telugu TF-IDF Representation

Some problems, such as the influence of high-frequency words, limit the good features when
we train a BoW model. TF-IDF [105] is one such model that diminishes the problem of frequent
high words. TF-IDF is mainly popular in the research community and industry due to its
retrieval capability of documents based on ranking. TF-IDF suppresses the stop-words ranking
automatically without the removal of stop-words in the training process. We use the top 2000
features for the training process. However, TF-IDF does not address semantics, grammar, and
word context in a language model.

7.3.2 Generation of Telugu Word Embeddings

Word embedding methods allow the machine learning algorithms to understand and detect
words with similar meanings. Moreover, these distributed word representations capture many

69

precise syntactic and semantic word relationships. This section describes the generation of dif-
ferent word embeddings such as Word2Vec-Te, GloVe-Te, FastText-Te, and Meta-Embeddings-
Te for Telugu language and visualizes the semantic space captured across the words.

7.3.2.1 Word2Vec-Telugu (Word2Vec-Te)

Word2Vec model provides a non-deterministic way to determine the word representations [80].
It can learn similar word vectors for words in a similar context. Here, we generated the
Word2Vec-Te embeddings i.e. Word2Vec on large Telugu corpora of 80,15,588 sentences. We
used the Skip-Gram (SG) Word2vec [80] model with an extensive vocabulary size of 4,60,000
words where each word frequency is at least 5. The number of hidden neurons is 300, and the
context window size is 5 as hyper-parameters for training the model.

7.3.2.2 GloVe-Telugu (Glove-Te)

The input used in the GloVe-Te model is a non-zero word-word co-occurrence matrix [95],
which adds the global context information by default, unlike the use of local context inWord2Vec [80].
The corpora and training details are provided below:

• We tokenize the corpus with Polyglot tokenizer2, build a vocabulary size of 4,60,000.

• The word vector dimension is 50.

• We use the parameters with a learning rate of 0.05, and the context window size is 10.

7.3.2.3 FastText-Telugu (FastText-Te)

Since the FastText model considers the bag of character n-grams to represent each word [56],
it allows us to compute embedding representations for rare words. To learn the representations
of a Telugu word, we follow the below steps in the training of FastText-Te.

• The word vector dimension is 200.

• We considered the words in the vocabulary with a frequency of at least 5 in the training
set and obtained a vocabulary size of 4,62,232.

• We use the context window size as 5.

2https://github.com/ltrc/polyglot-tokenizer

70

https://github.com/ltrc/polyglot-tokenizer

nidivigala

(���,0.41)

(�డ�న,0.34)

(సమ��క��,0.33)

(�డ��,0.31)

(వ�వ��,0.31)

(����,0.31)

���గల

(����,0.44)

(��స�న�,0.32)

nidivigala

(��హం,0.83)

(�ం�� ,0.75)

(����ర� ం,0.64)

(ఆ�ంగనం,0.55)

(అత�హత�,0.54)

(�గ�ం��,0.54)

���

(���,0.84)

(ఆత�హత�,0.55)

nidivigala

(���,0.53)

(��కంజ�,0.50)

(���,0.46)

(��ం�� ,0.45)(ఆ�క�త�,0.45)

(కం��ట�,0.45)

(���,0.31)

���

(బ��,0.68)
(Ring) (Race)

(Leading) (Leading)

(Confident)

(Confident)(Stronghold)

(Trailing)

(Engagement)

(Marriage)

(Marriage) (Married)

(Suicide)

(Suicide)

(Divorce)

(Embrace)

(Duration)(Length)

(Length)

(Length)(Distance)

(Diameter)

(Duration) (Time)

Figure 7.2: Top 8 similar words using Word2Vec-Te

nidivigala

(���ల,0.74)

(����,0.70)

(�కన� ,0.69)

(���,0.69)

(��ల�,0.65)

(���కల,0.62)

���గల

(�కండ� ,0.74)

(���ల,0.69)

nidivigala

(��హం,0.81)

(����ర� ం,0.73)

(�ం�� ,0.74)

(���,0.72)

(��ద� �,0.69)

(జంట,0.67)

���

(���,0.82)

(��� �,0.72)

nidivigala

(��ం��,0.74)

(బ��,0.73)

(అర� త,0.72)

(��త�,0.71)(���న,0.71)

(��� �,0.70)

(�� నం,0.70)

���

(���� ,0.74)
(Competitions)

(Ring)

(Won) (Winner)

(Eligible)

(Steal)

(Position)

(Participant)

(Marriage) (Married)

(Couple)

(Marriage)

(Marriage)

(Engagement)

(Daughter)

(Couple)

(Duration)

(Length)(Short)

(Minutes)

(Minutes)(Seconds)

(Seconds)(Pages)

Figure 7.3: Top 8 similar words using GloVe-Te

7.3.2.4 Meta-Embeddings-Telugu (Meta-Embeddings-Te)

Meta-embeddings are shown to be successful for English, and it has two benefits compared
to individual embedding sets: (i) enhancement of performance and (ii) improved coverage of the
vocabulary [137]. These prior studies motivate us to create Meta-Embeddings for the Telugu
language by using an ensemble of Word2Vec-Te, GloVe-Te, and FastText-Te embeddings. In
this work, we created the Meta-Embeddings-Te using the average of encoded source embeddings.
The dimension of Meta-Embeddings-Te is 300.

7.3.2.5 Qualitative Analysis of Telugu Word-Embeddings

Since word vectors are numerical representations of contextual similarities between words
they can be manipulated and made to perform unusual tasks like finding the degree of similarity
between two words, arithmetic operations among the words [80, 95]. To verify the quality of

nidivigala

(����,0.83)

(����,0.78)

(���కల,0.78)

(����,0.76)

(����,0.73)

(��� ���,0.65)

���గల

(���,0.83)

(����,0.76)

nidivigala

(��హం,0.89)

(��� �,0.86)

(��� �టల,0.86)

(��� �,0.85)

(�ం�� ,0.84)

(��హం�,0.84)

���

(���,0.92)

(��� ,0.85)

nidivigala

(బ��,0.82)

(����,0.79)

(���,0.78)

(���� ,0.76)(అభ��� ��,0.75)

(���,0.74)

(���న���,0.73)

���

(����,0.82)

(Candidates) (Competitions)

(Competition)

(Competition)

(Competition)

(Ring)

(Race)

(Winner)

(Marriage) (Marriage)

(Marriage)

(Marriage)

(Wedding)

(Marriage)

(Married)

(Wedding)

(Duration)

(Length)

(Short)

(Long)

(Length)

(Length)

(Length)(Full	Duration)

Figure 7.4: Top 8 similar words using FastText-Te

71

nidivigala

(����,0.95)

(���కల,0.93)

(�కండ� ,0.92)

(�కన� ,0.92)

(�డ�న�,0.91)

(����,0.91)

���గల

(���,0.95)

(����,0.92)

nidivigala

(��హం,0.98)

(�ం�� ,0.96)

(����ర� ం,0.96)

(��� �,0.94)

(�� �ం�,0.94)

(�� �ం���,0.93)

���

(���,0.98)

(��హ,0.94)

nidivigala

(���,0.94)

(���� ,0.93)

(�� ��� ,0.93)

																														

(��,0.92)

(అభ��� �,0.92)

���

(బ��,0.96)

	(అభ��� ��,0.93)

																							
	
(అభ��� �,0.92)

(Seconds)

(Seconds)

(Duration)

(Length)

(Short)

(Length)

(Length)

(Long)

(Marriage)

(Marriage)

(Marriage)

(Married)

(Wedding)

(Engagement)(Love)

(Love)

(Candidates)(Candidate)

(Candidates) (Competitions)

(Competition)

(Ring) (Race)

(Positions)

Figure 7.5: Top 8 similar words using Meta-Embeddings-Te

generated Telugu word-embeddings, we extract the top-8 semantic words for “(Competition)
Ǉŝȗ ”, “(Marriage) పెȚ¯ ”, “(Short time) ƶŰȤగల”. We obtained these results using the four
generated word-embeddings mentioned above which are displayed in the Figures 7.2, 7.3, 7.4,
and 7.5. In the Word2Vec-Te, the similar words are semantically similar to “(Competition)
Ǉŝȗ ”, “(Marriage) పెȚ¯ ”, “(Short time) ƶŰȤగల”. On the other hand, GloVe-Te method give
related words along with semantically similar words like { (Winning) గెȐĞƵ, (winning) ȤĽతÿ,
(position) Ɂ¡ నం } for “(Competition) Ǉŝȗ ”, { (Daughter) ïƐǾ, (couple) జంట, (engagement)
ƶȮ�ƍర¡ ం } for “(Marriage) పెȚ¯ ”, and {(minutes) ƶǨȷల, (seconds) సెకండ¯ , (pages) ǅĹలƕ} for
“(Short time) ƶŰȤగల”.

FastText-Te feature vectors are related to morphological word representations and also address
the problems like word semantics, context, and data sparsity [56]. From the Figure 7.4, we
observe that words like { (competitions) Ǉŝȗ¯ , (competition) Ǉŝȗƻ} for “(Competition) Ǉŝȗ
”, { (Bridesmaids) పెȚ¯ ƶ, (bridesmaids) పెȚ¯ ǁటȒ } for “(Marriage) పెȚ¯ ”, and {(Long) ƶŰȤ, (Long)
ƶŰȤƶ} for “(Short time) ƶŰȤగల” are related to morphological structure of the words. Moreover,
we can observe that the semantic words from Figure 7.4 are similar to Word2Vec-Te and GloVe-
Te. Finally, Meta-Embeddings-Te provides the advantages of three methods, Word2Vec-Te,
GloVe-Te, and FastText-Te, with top similar words shown in Figure 7.5.

We performed arithmetic operations to evaluate the four-word embeddings. For example, as
shown in Figure 7.6, we can retrieve words that have semantic relations from the Word2Vec-Te
model, such as Organization-Company: vector(ఆǀã) - vector(కంపెƷ) + vector(అరŜ) = vec-
tor(ǚƿ¥ǲ). Similarly, words that have syntactic relationships such as the Singular-Plural:
vector(ǧమయª) - vector(అతŲ) + vector(అƍ) = vector(ǝరª). These empirical results show
that the Word2Vec-Te approach successfully learned the meaning of words in the Telugu lan-
guage. We also observe that FastText-Te and Meta-Embeddings-Te are better at performing
the arithmetic operations similar to Word2Vec-Te. The first example in the GloVe-Te model
resulted in successful arithmetic operations compared with the second example.

72

W
or
d2
Ve
c	A

rit
hm

eti
c	O

pe
ra
tio
ns

Gl
oV
e	A

rit
hm

eti
c	O

pe
ra
tio
ns

Fa
stT

ex
t	A

rit
hm

eti
c	O

pe
ra
tio
ns

M
eta

-E
mb

ed
din

g	A
rit
hm

eti
c

Op
er
ati
on
s

Figure 7.6: Word-Embedding Arithmetic Operations

7.3.3 Telugu Sentence Level Embeddings

In literature, several researchers use deep learning approaches for learning sentence vectors
that mapped from word vectors such as recurrent networks [49], recursive networks [114], con-
volutional networks [62, 58], and recurrent convolutional networks [22, 146]. All these methods
learn the representation of a sentence in a supervised fashion, i.e., depending on the class label.
As a result, the representations of a sentence are of high quality but specific to the respective
downstream task.

Motivated by the recent successful language models which try to learn the sentence vectors in an
unsupervised fashion. This section discusses two methods, including Skip-Thought vectors and
ELMo. We trained these two methods on Telugu corpus from scratch to produce the sentence
vectors.

73

Figure 7.7: Top 8 nearest neighbour of sentences predicted using Skip-Thought-Te model for
the input sentence s1 (top row)

7.3.3.1 Telugu Skip-Thought Representations (Skip-Thought-Te)

The Skip-Thought model is a sentence encoding-decoding model that produces a fixed-length
vector for every given sentence [67]. Inspired by the Word2Vec approach, the Skip-Thought
model extends the skip-gram model to generate sentence embeddings from word embeddings.
The Skip-Thought model consists of three parts such as (i) an encoder network, (ii) a previous
decoder network, and (iii) the following decoder network. We use the same Skip-Thought
architecture that is RNN encoder with GRU and RNN decoder with conditional GRU to train
the model [25]. The training process of the Skip-Thought model for Telugu corpus is as follows

• We use a mini-batch size of 32, Adam optimizer in training.

• Initially, we trained on 20,000 vocabulary from the Telugu corpus.

• We trained a uni-directional encoder (uni-skip) with 2400 dimensions.

• The number of epochs to train the model is 5,00,000.

• We expanded the vocabulary size of 4,60,000 using vocab expansion and skip-gramWord2Vec
vectors.

• When encoding sentences, no other pre-processing is done other than tokenization using
Polyglot tokenizer.

• The model runs for three days on a 16GB GPU machine.

74

Figure 7.8: Five sentences used in ELMo-Te visualization

To evaluate our skip-thought-Te model, we predicted the top-8 nearest sentences for a given
input query shown in Figure 7.7. These nearest neighbors were scored by cosine similarity from
a random sample of 20,00,000 sentences from our corpus. From the Figure 7.7, we observe that
the nearest neighbor sentences are related to their corresponding input query.

7.3.3.2 Telugu ELMo Embeddings (ELMo-Te)

Earlier word embeddings such as Word2Vec-Te, GloVe-Te, FastText-Te, and Meta-Embeddings-
Te provide a unique word representation throughout our Telugu corpus. This unique repre-
sentation is the main limitation of these methods, especially words with different contexts.
To overcome these limitations and capture the long-term dependencies, researchers proposed
a new architecture, Embeddings from Language Models (ELMo). ELMo is a successful NLP
framework developed by AllenNLP [97]. Unlike earlier embeddings, these ELMo embeddings
represent the words contextually using a bidirectional LSTM model. Moreover, ELMo embed-
dings do not miss the out of vocabulary words due to character embedding representations
for each token and provide state-of-the-art results in many NLP tasks. This chapter creates
ELMo-Te embeddings for Telugu, trained on large corpora of 8 million sentences. To train the
ELMo-Te model from scratch for Telugu, we provide the data in the following format.

• First, we built a vocabulary file that contains all the unique words along with three extra
tokens <S>, </S>, </UNK>.

• The vocabulary file is in descending order where the most frequently occurring word is at
the top.

• The data file contains one sentence per line from the corpus.

75

• We split the data into different files in which 70% of the data is considered for training,
while the remaining data is held out for testing.

• A configuration file consists of the vocabulary size, the number of tokens to train the
ELMo model, and the output dimension of each token.

• We used 262 characters for training.

• Each embedding is of 1024 dimensions.

• Total number of train tokens is 2,086,488 and vocabulary size 793,384.

PCA-1 PCA-1

PC
A
-

2

Layer	1	ELMo	vectors	of	the	word	pani Layer	1	ELMo	vectors	of	the	word	work

ఈ	అ��త�న	ప�	పం���దవ	శ�బ� ం	�� రంభం�	జ��ం�

�	�ద�	�� �	బ��	వద� 	ప���� ం�

ఉ���	ప� ���	కష� ప�	ప���� �

ఈ	భవనం�	వంద��	మం�	ప���� ���

ఆం�	��� �	��న	ఈ	అంద�న	ప�	��	��	ఇష� ం

Figure 7.9: Layer-1 ELMo-Te vector for the word “పƶ/pani/work”

PCA-1 PCA-1

PC
A
-

2

Layer	2	ELMo	vectors	of	the	word	pani Layer	2	ELMo	vectors	of	the	word	work

Figure 7.10: Layer-2 ELMo-Te vector for the word “పƶ/pani/work”

Visulazing ELMo-Te Contextual Vectors: ELMo embeddings are used to generate the
context vectors, and for visualization, principal component analysis (PCA) is used to project

76

the vectors to a 2D space. We will visualize layer 1 and 2 contextual vectors for the word
with multiple senses - “work”. “Work” is a word that acts as a noun(means something done
or made) and a verb(means to work). We considered the five sentences depicted in Figure 7.8
that contain either one of the two senses mentioned above: Figures 7.9, 7.10 are the projection
results using PCA for the 5 sentences mentioned in Figure 7.8. Looking at layer one vectors
shown in Figure 7.9, we can not immediately tell one cluster apart from the other. However, we
know that the left three vectors have “work” as a verb, and the right two vectors have “work”
as a noun. For layer two vectors from Figure 7.10, we observe apparent clustering of work
as a verb in the lower right corner and then another cluster of work as a noun in the upper
left corner. The above results indicate that the cluster formations seem more precise, and the
distance between cluster centroid is larger in the layer-2 ELMo-Te vector space than in layer-1.
Moreover, layer-2 handles the Word Sense Disambiguation task with a higher F1-score than
using the first layer [46]. Our observation of the greater distance in the layer-2 vector space
from Figure 7.10 shows a possible explanation of similar finding for the ELMo-Te embeddings
as well.

7.3.4 Telugu Transformer Models

7.3.4.1 BERT-Telugu (BERT-Te):

BERT is a pre-trained language model [35] that provides bi-directional contextual informa-
tion, while earlier methods have uni-directional context. Like pre-trained BERT [35] (model
trained on the Books Corpus [150] and English Wikipedia), we choose a model based on the
transformer structure of BERT-base-cased for Telugu (large corpora of 8 million sentences) [78].
The BERT-base-cased model consists of 12 transformer blocks, 768 hidden dimensions, 12 self-
attention blocks, and 110 million parameters in total.

7.3.4.2 RoBERTa-Telugu (RoBERTa-Te):

The recent successful RoBERTa model [75] is an optimized pre-trained language model
that improves on BERT, trained on 160GB of text (3-4 times the amount of data used for
pretraining BERT). Similar to BERT-Te, we build RoBERTa-Te, a pre-trained RoBERTa-base
model for Telugu (large corpora of 8 million sentences). The RoBERTa-base model consists of 12
transformer blocks, 768 hidden dimensions, 12 self-attention blocks, and 110 million parameters
in total.

7.3.4.3 ALBERT-Telugu (ALBERT-Te):

ALBERT (a lite BERT) [71] model is a novel pretraining method that mainly contributed to
three solutions to overcome limitations of the BERT model, including (i) parameter reduction

77

using factorized embedding parameterization, (ii) cross-layer parameter sharing, and (iii) inter-
sentence coherence loss. To create a Telugu pre-trained ALBERT model (ALBERT-Te) for
Telugu, we use an ALBERT-base-v2 model consisting of 12 transformer blocks, 128 hidden
dimensions, 12 self-attention blocks, and 11 million parameters in total.

7.3.4.4 DistilBERT-Telugu (DistilBERT-Te):

DistilBERT [110] is a reduced BERT’s model that shows the effectiveness of transformer-
based language models in a production setting as well as reduces BERT’s model size by 40%.
The DistilBERT-Te) Model is pre-trained on 8 million Telugu sentences where the model con-
sists of only 66 million parameters.

7.4 Experimental Setup and Methods Training

To measure the performance of four tasks, we perform the following experiments: (i) First,
we create the baseline results using lexicons, BOW, and TF-IDF. (ii) Second, we use the Tel-
ugu pretrained word embedding methods such as Word2Vec-Te, GloVe-Te, FastText-Te, and
Meta-Embeddings-Te to compare the performance with the baseline models for four of the NLP
tasks. (iii) Third, we create models on sentence specific embeddings, Skip-Thought-Te vectors,
and context-specific embeddings ELMo-Te. (iv) Finally, we use Telugu pretrained transformer
models such as BERT-Te, RoBERTa-Te, ALBERT-Te, and DistilBERT-Te for overall compari-
son. We use two classifier methods in the training process, including simple Logistic Regression
(LR) [138], and a deep learning method LSTM [49]. To understand how each class performs,
we choose classification metrics such as macro-average precision, recall, and F1-score that give
equal weight to each class to evaluate system performance.

7.4.1 Logistic Regression Training

The input to the logistic regression model [138] is a text vector extracted from one of the
feature representation methods mentioned above, and the target output consists of class labels
depending on the task we used in training. Formally, we represent the extracted text vector
as X ∈ RN×D and target class labels Y ∈ RN×C , where N denotes the number of training
examples, D denotes the dimension of input text representation, and C denotes the number
of classes in a task. The logistic regression objective function for the ith example is given as
follows.

f(θ) =
1

N
[
N∑
i=1

−Yi log(hθ(Xi)) + (1− Yi) log(1− hθ(Xi))]

Here, θ are the learnable weight parameters.

78

We consider the LR results in our baseline training results to compare with the linear probing
and fine-tuning the transformer model results. In the multi-class case, we set to “multinomial”
while training the ED task with Logistic regression. We train a Logistic Regression classifier on
training data with regularization by passing the parameters: {C = 20.0, dual = False, penalty
= l2}.

7.4.2 Imbalanced Dataset Handling

From Table 7.2, we observe that each task data has a class imbalance issue; for example,
from Table 7.2, we observe that the majority class (“no”) has ∼10x more instances than the
“yes” class in hate-speech and sarcasm tasks. To circumvent this problem, we tried methods
such as SMOTE (Synthetic Minority Oversampling Technique) [19] based over-sampling and
random under-sampling [135] techniques.

7.4.3 LSTM Method Training

In the literature, LSTMs [49] are successful in dealing with sequence-based problems in the
field of NLP [148, 141]. Using LSTM architecture, we tried the five different feature represen-
tations as input in the training process. Rather than averaging each word vector to get the
sentence representation, we learn sentence embeddings through an LSTM model. We train the
LSTM model as follows: (i) Sequence of tokens with embedding features as input at the input
layer, and (ii) Sequence of tokens with four Telugu pretrained word embeddings (Word2Vec-Te,
GloVe-Te, FastText-Te, and Meta-Embeddings-Te) features as token input at the input layer.
Further, we add two dense layers with 256 and 128 neurons. Finally, we predict the class label
for each NLP task at the last step.

7.4.4 Challenging Tasks

Hate-speech and Sarcasm prove to be the more challenging tasks. On both tasks, Telugu
pretrained language models improve on mBERT, XLM-R, and IndicBERT.

7.4.5 Fine-tuning of Pretrained Transformers

In order to fine-tune a pretrained Transformer model, we observe that the following hyper-
parameters yields best performances: (i) Batch size: 32, (ii) Learning rate: 3e−5, (iii) Number
of training epochs: 10, (iv) ϵ constant set to 1e−8 to avoid division by zero in the AdamW
calculation when the gradient approaches to zero, and (v) AdamW as optimizer. To avoid
the over-fitting problem, we stopped training if the validation loss did not decrease for five
consecutive epochs. To account for memory constraints, we use a smaller maximum sequence
length of 128 during fine-tuning of pretrained models.

79

7.4.6 Dataset Splitting

We split our labeled dataset into train/dev/test (70%/10%/20%), where we fine-tuned our
models with train & dev datasets and results on a held-out test set used for only the best
system.

7.4.7 Model Training Details

We train and fine-tune all our models on a single GPU (11GB RAM) with Nvidia GEForce
GTX.

7.5 Telugu Pretrained Word and Sentence Embeddings

7.5.1 Text Classification Evaluation

Here, our main objective is to perform text classification of four NLP tasks: (i) SA: the task
is to predict the sentiment class (“positive”, “negative”, “neutral”) of a given sentence, (ii) EI:
the task is to predict the emotion class (“Neutral”, “Angry”, “Fear”, “Happy”, and “Sad”),
(iii) HS: the task is to predict the hate-speech class (“Yes” or “No”), and (iv) SAR: the task
is to predict the given sentence has sarcasm or not. To handle the class-imbalance problem,
we use the under-sampling [135] & over-sampling [19] methods to calculate the results. Here,
we present the results of SA, EI, HS, and SAR in Tables 7.11(a), 7.11(b), 7.12(a), and 7.12(b),
respectively.

Table 7.11: Text Classification Results using Different feature sets with Logistic Regression
classifier under different sampling methods with No/Over/Under-Sampling: (a) SA (b) EI.

(a) Sentiment Analysis
Sampling Method→ NS OS US

Feature set↓ P R F1 P R F1 P R F1
Lexicon-Based 49 63 51 59 56 57 54 53 54
BOW 58 51 52 53 55 54 50 53 50
TF-IDF 60 51 52 55 57 55 52 55 52
Word2Vec-Te 62 54 56 58 62 59 56 60 57
GloVe-Te 61 52 54 58 62 58 55 59 55
FastText-Te 64 57 59 62 67 63 60 64 61
Meta-Embeddings-Te 64 51 53 60 64 61 57 61 58
Skip-Thought-Te 60 54 55 60 57 58 54 59 55
ELMo-Te 65 61 62 62 66 63 61 65 62

P = Precision, R = Recall, F1 = F1-score

(b) Emotion Identification
Sampling Method→ NS OS US

Feature set↓ P R F1 P R F1 P R F1
Lexicon-Based 40 27 27 30 35 30 29 34 28
BOW 44 30 31 32 36 32 24 35 19
TF-IDF 53 28 31 32 42 32 24 33 20
Word2Vec-Te 50 29 32 33 30 33 30 49 28
GloVe-Te 43 27 29 32 49 30 30 45 26
FastText-Te 50 32 35 35 57 36 29 49 27
Meta-Embeddings-Te 42 25 25 34 54 34 30 47 25
Skip-Thought-Te 52 30 33 33 44 35 28 44 24
ELMo-Te 55 37 39 38 54 41 31 50 29

P = Precision, R = Recall, F1 = F1-score

SA: From Table 7.11(a), we observe that lexicon-based sentiment features as input in the over-
sampling setup report an F1-score of 57% better than BoW (54% F1-score) and TF-IDF (55%
F1-score). We observe an increase in recall for standard features using under-sampling meth-
ods compared with the lexicon approach. Among the four Telugu pretrained word-embeddings,
FastText-Te, and Meta-Embeddings-Te features improve the F1-score by 6-8% compared to
baseline. For ELMo-Te features, we observe an F1-score of 63% similar to FastText-Te and

80

Table 7.12: Text Classification Results using Different feature sets with Logistic Regression
classifier under different sampling methods with No/Over/Under-Sampling: (a) HS (b) SAR.

(a) Hate-Speech
Sampling Method→ NS OS US

Feature set↓ P R F1 P R F1 P R F1
Lexicon-Based 50 49 50 55 60 56 56 57 56
BOW 49 50 50 52 52 50 51 69 45
TF-IDF 49 50 50 52 52 50 51 71 47
Word2Vec-Te 87 52 54 55 78 54 52 79 48
GloVe-Te 66 51 52 54 82 51 51 75 46
FastText-Te 92 55 58 55 80 54 52 81 50
Meta-Embeddings-Te 50 50 50 55 81 53 52 78 49
Skip-Thought-Te 50 50 50 55 71 58 52 77 48
ELMo-Te 67 59 60 58 66 61 52 82 51

P = Precision, R = Recall, F1 = F1-score

(b) Sarcasm
Sampling Method→ NS OS US

Feature set↓ P R F1 P R F1 P R F1
BOW 49 50 50 50 51 48 50 50 49
TF-IDF 50 50 50 51 54 49 50 60 39
Word2Vec-Te 49 50 50 50 54 44 50 57 37
GloVe-Te 49 50 50 50 58 41 50 53 36
FastText-Te 49 50 50 51 55 42 50 58 39
Meta-Embeddings-Te 49 50 50 50 58 42 50 57 36
Skip-Thought-Te 50 50 50 53 63 53 51 73 46
ELMo-Te 58 52 53 56 64 58 52 76 46

P = Precision, R = Recall, F1 = F1-score

Meta-Embeddings-Te. Statistical significance using one-Anova test [60] on the over-sampling
results (F1-score) from Table 7.11(a) provides an F-statistic [F(8,20) = 24.34,P = 6.9e-9] which
concludes that nine feature representations are significantly different. We use the post-hoc
Tukey-HSD test [109] to obtain the results between different pairs such as ELMo-Te vs. GloVe-
Te (0.3782), BoW vs. Sentiment-lexicons (0.9), BoW vs. TF-IDF (0.7704), and BoW vs.
Skip-Thought (0.0447), all these pairs are not significantly different. On the other-hand, the sta-
tistically significant different pairs are (i) Sentiment-lexicons vs Meta-Embeddings-Te (0.001),
(ii) Sentiment-lexicons vs Word2Vec-Te (0.0034), (iii) Meta-Embeddings-Te vs TF-IDF (0.001),
and (iv) TF-IDF vs Word2Vec-Te (0.0098).

EI: Table 7.11(b) list the results of five-class EI task. The first block describes the baseline
feature results, where we use the emotion lexicons and traditional feature methods like BoW
and TF-IDF as input. The emotion lexicon features as input yield an F1-score of 30% is lower
than traditional feature representations BoW (32% F1-score) and TF-IDF (32% F1-score).
The second block displays the four Telugu pretrained word embedding feature results, where
FastText-Te outperforms the baseline with an F1-score of 36% in the over-sampling strategy.
Moreover, the remaining pretrained word embeddings except GloVe-Te perform better than
traditional methods. These results show that the pretrained Telugu word embeddings can
capture semantic information. The last block report the results of sentence-specific embeddings
and contextual embeddings. ELMo-Te outperforms both baseline and Telugu pretrained word
embeddings with an F1-score of 41%. In contrast, the skip-thought-Te achieves an F1-score of
35% similar to word-embedding results.

We use F1-scores of each feature representation over-sampling results to perform the Anova test.
The one-way ANOVA test provides an F-statistic [F(8,20) = 5.058,P = 0.00124] concluding that
the nine feature representations are significantly different. We use the post-hoc Tukey-HSD test
to obtain the results between various pairs such as ELMo-Te vs. GloVe-Te (0.1131), BoW vs.
Emotion-lexicons (0.9), BoW vs. Tf-IDF (0.9), BoW vs. Skip-Thought-Te (0.8331) and state
that they are not significantly different. On the other hand, the statistically significant different
pairs are (i) BOW vs ELMo-Te (0.0077), (ii) ELMo-Te vs Emotion-lexicons (0.0025). These

81

results indicate that FastText-Te, Meta-Embeddings-Te, and ELMo-Te feature methods are
statistically significant.
HS: For the hate-speech task, we report the results in Table 7.12(a). The first three rows in
Table 7.12(a) depict the baseline results. Observations from Table 7.12(a) that hate-speech
lexicons have an improved F1-score of 56% compared to traditional features BoW (51%) and
TF-IDF (53%). The four Telugu pretrained word-embedding features show equally better
results in the over-sampling setting. Also, these four embeddings resulted in a good recall
score in the under-sampling setting. ELMo-Te outperforms the word-embeddings and baseline
features among the contextual embeddings with an F1-score of 61% and a recall of 66% in
the over-sampling setting. Although skip-thought features do not perform well on SA and
EI tasks, having an increased F1-score of 58% and recall of 71% in the HS task. Moreover,
skip-thought-Te features outperform the baseline and pretrained word embedding features.
The one-way ANOVA test provides an F-statistic [F(8,20) = 5.134,P = 0.00113] which concludes
that the nine feature representations are significantly different. We use the post-hoc Tukey-
HSD test to obtain the results between various pairs such as ELMo-Te vs. GloVe-Te (0.5318),
BoW vs. hate-speech lexicons(0.1657), BoW vs. Tf-IDF (0.9), BoW vs. Skip-Thought-Te
(0.0792) and state that they are not significantly different. On the other hand, the statistically
significant different pairs are (i) BOW vs ELMo-Te (0.0015), (ii) ELMo-Te vs Tf-IDF (0.0015).
SAR: Among the four NLP tasks we used in this paper, sarcasm is challenging as it requires
a deep understanding of contextual differences in a sentence. Despite the above challenge, our
feature methods perform well on SAR Telugu data, as shown in Table 7.12(b). The baseline
features resulted as BoW (F1-score 49%), TF-IDF (F1-score 51%), and word-embedding fea-
tures as input perform extremely low and equal to random guessing. Also, the performance
is low compared to the other three NLP tasks mentioned above. The last block displays the
sentence-specific and contextual embeddings, where the ELMo-Te feature method outperforms
all the baseline and the other embedding methods with an F1-score of 58%.
The one-way ANOVA test provides an F-statistic [F(7,18) = 2.28,P = 0.069] which concludes
that eight feature representations are not significantly different. We use the post-hoc Tukey-
HSD test to obtain the results between different pairs such as ELMo-Te vs. GloVe-Te (0.1087),
BoW vs. Tf-IDF (0.9), BoW vs. Skip-Thought-Te (0.6872), which states that they are not
significantly different.

From the Table 7.11(a), 7.11(b), 7.12(a), and 7.12(b), we make the following insights:

• Contextualized word-embedding ELMo-Te performs better in solving the identification of
SA, EI, HS, and SAR even in a resource-poor language setting.

• Skip-thought-Te features are lacking in dealing with the sentiment labels.

• Skip-thought-Te features achieved better F1-score in EI task.

82

• The word embeddings without context representation as input perform equally with con-
textual word embedding ELMo-Te.

• The use of sentiment and emotion lexicons achieves better performance than Bow and
TF-IDF.

• The pretrained word embeddings with n-gram representation (FastText-Te) better cate-
gorize the hate-speech samples.

• The use of under-sampling and over-sampling methods yield better recall and F1-score in
the imbalanced setting.

7.5.2 Error Analysis

We now provide a detailed error analysis of the four NLP tasks, and we report the confusion
matrices using the ELMo-Te.
SA: The confusion matrices for SA are depicted in Table 7.13. We observe from Table 7.13 that
F1-score of the (i) “Negative” class is (63%), (ii) “Neutral” class is (69%), and (iii) “Positive”
class is (57%) showcase the major difference. In ELMo-Te feature representation, the “positive”
class performance is better, whereas the “negative” class results are comparatively low. Among
the 3-classes, our system confused between “neutral” vs. “positive” classes and “neutral” vs.
“negative” classes. We also perform the qualitative analysis of the predictions as presented next.
Our system makes incorrect predictions where the sentences consist of the implicit sentiment.
In the following sentence, the aspect term is “ɌÑ| hit” denoting “positive” sentiment. However,
the system predicts the target label as “negative” sentiment as captured from the phrase “పెద¢
ɌÑ |huge hit”.

• Telugu Sentence: ఆã రెű ƿటȒ ĝȏ పెద¢ ɌÑ అǱªǲ.

• Wx Sentence: Al reVdI pAtalu cAlA peVxxa hit ayyAyi.

• English: Already, songs have been a huge hit.

EI: The confusion matrix for the EI is depicted in Table 7.14. We observe from the Table 7.14
that F1-score of the (i) “Anger”(29%), (ii) “Fear”(9%), (iii) “Happy”(82%), (iv) “Neutal”(79%),
and (v) “Sad” class (54%) is the performance difference between five classes. In ELMo-Te feature
representation, classes such as “Happy”, “Neutral”, and “Sad” have better performance than the
remaining two classes. This performance difference is due to the fewer samples in “Anger” and
“Fear” classes. Among the five-classes, our system confused between “Neutral” vs. “Happy”,
“Neutal” vs. “Sad”, and “Happy” vs. “Sad” classes. Our system makes incorrect predictions
where the sentences consist of implicit emotion. In the following sentence, the actual emotion is
”Anger”. However, the system predicts the target label as a ”Sad” emotion due to the presence
of the word ”డెÖ death”.

83

• Telugu Sentence: నìȑ డెÖ సǼ� Ǌకెట¯ ƕ ǿ:óŞ¯ şŧ ģɂనŞ¯ తెȒɉ ంƢ.

• Wx Sentence: nakilI deVw sartiPikeVtlawo rU:kotlu lUtI cesinatlu weVluswoMxi.

• English: It is reported that crores of rupees have been looted with fake death certificates.

HS: We now describe the detailed error analysis of the hate-speech detection and report the
confusion matrix in Table 7.15. From Table 7.15, we observe that the F1-score of the (i)“No”
class yields 99% (ii)“Yes” class reports 30% is the main difference between the performance
of the two classes. In ELMo-Te feature representation, the “No” class performance is better
than the “yes” class due to class imbalance. However, ELMo-Te displays better performance
when capturing hate-speech related content amidst feature representations. By considering the
weighted average, our system displays an F1-score of 99%. We also perform the qualitative
analysis of the predictions as presented next. The hate-speech model with ELMo-Te represen-
tation displays valid predictions for the sentences where most annotators are given incorrect
labels. For example, the below sentence does not have the hate-speech word, but the annota-
tors were given a ’Yes’ label. However, our model correctly predicts the target label as “No”,
capturing the context.

• Telugu Sentence: ƍķÿ మȃɁǼ ఈ ǝమల వªవɋరం చర�ƷǱంశంÿ ǧǼంƢ.

• Wx Sentence: wAjAgA marosAri I BAmala vyavahAraM carcanIyAMSaMgA mAriMxi.

• English: The affair has become the subject of debate once again.

Our system makes incorrect predictions where the sentences consist of abusing words. In the
following sentence, for the hate-speech terms “హెచ�Ǽంĝర| warning ”, “ƿ¾ ƃల దక�వƶు |no Lives
”, the actual label is “yes”. However, the system predicts the target label as “no” for the input
sentence.

• Telugu Sentence: మȃɁǼ ఇక�డ కƶǀɇ ƿ¾ ƃȒ దక�వƶ ëǼ©îȒ, ƶǻ©ణ ɂబ§ంƢƶ హెచ�ǼంĝǾ.

• Wx Sentence: marosAri ikkada kanipiswe prANAlu xakkavani kArmikulu, nirmANa sib-
baMxini heVccariMcAru.

• English: The workers have warned the construction crew that their lives will not be found
if they appear again.

SAR: We report the detailed error analysis of the sarcasm detection and report the confusion
matrix in Table 7.16. From Table 7.16, we observe that the F1-score of the (i)“No” class yields
98% and (ii)“Yes” class reports 60% is the main difference between the performance of the
two classes. In ELMo-Te feature representation, the “No” class performance is better than
the “Yes” class due to class imbalance. However, ELMo-Te performs better when capturing
sarcasm related content amidst feature representations. We also perform the qualitative analysis

84

Table 7.13: Confusion Matrix for SA with
ELMo-Te

Predicted
Negative Neutral Positive

Actual
Negative 1245 328 147
Neutral 737 3020 968
Positive 263 705 1373

Table 7.14: Confusion Matrix for EI with
ELMo-Te

Predicted
Anger Fear Happy Neutral Sad

Actual
Anger 61 0 0 19 18
Fear 7 4 1 8 11
Happy 5 2 572 361 88
Neutral 136 28 863 4519 814
Sad 70 4 75 281 839

Table 7.15: Confusion Matrix for HS with
ELMo-Te

Predicted
No Yes

Actual No 8647 40
Yes 74 25

Table 7.16: Confusion Matrix for SAR with
ELMo-Te

Predicted
No Yes

Actual No 6685 34
Yes 162 148

of the predictions as presented next. The sarcasm model with ELMo-Te representation displays
valid predictions for the sentences where the annotation was complex. For example, the below
sentence does not have the presence of idioms or exclamation marks. However, our model
correctly predicts the target label as “Yes”, capturing the context.

• Telugu Sentence: సెకంůÜ ȗ మ న ǖర¾ ల î ప ƤƸ పెš� ȏ òƶ¤ ɃƸ¯ ఉండ ǛƐƵ¤ǲ.

• Wx Sentence: seVkaMdAPlo mana burralaku paxunu peVttelA koVnni sInlu uMdabowun-
nAyi.

• English: There are going to be some scenes in the second half to sharpen my hair.

Our model makes incorrect predictions where the sentences consist of “metonymy” in the SAR
task. In the following sentence, the actual label is “Yes”. However, the system predicts the
target label as “No” for the input sentence.

• Telugu Sentence: ƹªĸȏంÓ ǜలǾ¯ ƔȐ ǧªÊ ȗ ȯ¾ లంకƸ 136 పǾĂల Ɠů ƕ ĞƐ ģȭǾ.

• Wx Sentence: nyUjilAMd bOlarlu woVli myAclo SrIlaMkanu 136 paru gulake kuppa
kUlcAru.

• English: New Zealand bowlers thrashed Srilanka by 136 runs in the first match..

7.6 LSTM Model Results:

Figure 7.11 showcases both SA (left) and EI (right) results, where we train LSTM on (i)
sequence of tokens and (ii) with the four-word embeddings. Here, we train the LSTM on
five input representations, including (i) sequence of tokens, (ii) pretrained word embedding
representations (Word2Vec-Te, GloVe-Te, FastText-Te, and Meta-Embeddings-Te) for the two

85

Figure 7.11: Comparison of F1-score performance of input word representations i) Sequence
of Tokens ii) Word2Vec-Te iii) GloVe-Te iv) FastText-Te and v) Meta-Embeddings-Te. The
LSTM model is used as a training model for each of the feature representations in the (a) SA
and (b) EI setups.

NLP tasks: SA and EI. Here, we do not use the LSTM method for HS, and SAR tasks as these
tasks have high class imbalance problems. When we train LSTM with a sequence of tokens
in the first case, we consider the following parameters in training: For the first hidden layer,
an embedding layer is used with 3-inputs (vocabulary size:15000, size of the vector space in
which words embedded:512, length of input sequence:50); Our second hidden layer is an LSTM
with 256 neurons as output; The last dense layer denotes the number of classes (3 for SA, 5
for EI); We use the Adam optimizer, and dropout is 0.5. The difference between the first and
second cases is that we consider the pretrained word embedding feature dimension instead of
vector space where words are embedded. From Figure 7.11, we observe that LSTM with the
sequence of tokens as input yields a better F1-score of 58% and 37% for SA and EI, respectively.
However, using pretrained word embedding vectors as input, the results of SA and EI tasks
using LSTM are not better than the sequence of tokens. We assume that the LSTM model
explores more during training and is thus more robust to learn word context at inference rather
than pretrained word representations at embedding layer with no word context. Overall, the
F1-measure of SA and EI for LSTM is lower than the results obtained from pretrained word
and sentence embeddings, as displayed in Tables 7.11(a), 7.11(b), 7.12(a), and 7.12(b).

7.7 Comparison of Telugu Pretrained Transformers with mBERT,

XLM-R, and IndicBERT

Table 7.17 report the training corpus size and model parameters of Telugu pretrained Trans-
formers as well as multilingual pretrained Transformers such as mBERT [34], XLM-R [70], and

86

IndicBERT [57]. Here, we noticed that both mBERT and XLM-R are pretrained on Wikipedia
data of 104 languages whereas IndicBERT is pretrained on Indian languages corpora (OS-
CAR) [117] (English corpora translated to each Indian language). On the other hand, Telugu
pretrained Transformers are trained on Telugu Wikipedia data (1.6 million sentences) and the
corpora extracted from many popular Telugu websites (6.4 million sentences).
We now introduce both linear probing and fine-tuning of Telugu pretrained Transformers and
compare with multilingual pretrained Transformers. We perform linear probing and fine-tuning
on four NLP tasks (SA, EI, HS, and SAR) and the available state-of-the-art Telugu datasets.
We address the following challenges:

7.7.1 Do Linear Probing on Telugu Pretrained Transformers Outperform the
existing Multilingual Language Models?

In this subsection, we present the comparative results on linear Probing of Telugu pre-
trained and existing Multilingual Transformers, as reported in Table 7.18. For four NLP tasks,
we extract the [CLS] token representation for each input sentence using Telugu pretrained
transformers as well as existing multilingual language models: mBERT [34], Cross-Lingual
Language Model (XLM) [70], and IndicBERT [57]. Further, we compare the existing pre-
trained word embeddings such as Sub-word Byte Pair embeddings [48], and Facebook FastText
word-embeddings [13]. We observe that probing on Telugu pretrained Transformers including,
BERT-Te, RoBERTa-Te, and DistilBERT-Te outperform the existing pretrained embeddings
across three NLP tasks: SA, EI, and SAR. In the two-class setup for the hate-speech task,
the performance of all the models are similar to random guessing. This is mainly due to the
presence of a high class imbalance problem. Overall, these results indicate that the performance
of probing results from Table 7.18 are lower than results in Table 7.11(a), 7.11(b), and 7.12(a)
except for the SAR task.

Table 7.17: Models and their Training Corpus sizes. B: Billions, M: Millions

Model #Sentences #Parameters
mBERT 18.2B (Telugu 1.6M) 110M
XLM-R 295B (Telugu 1.6M) 125M
IndicBERT 452.8M (Telugu 47.9M) 12M
BERT-Te 8.1M 108M
RoBERTa-Te 8.1M 125M
DistilBERT-Te 8.1M 66M
ALBERT-Te 8.1M 11M

7.7.2 Do Fine-tuning of Telugu Pretrained Transformers Outperform the
Existing Multilingual Language Models?

After linear probing on pretrained models, we evaluate whether fine-tuning the Telugu pre-
trained and existing multilingual transformer models performs better than probing tasks for

87

Table 7.18: Linear Probing Results: Comparison of Text classification results with linear prob-
ing on existing pretrained Telugu word embeddings and our Telugu pretrained Transformers
on four different NLP tasks.

Sentiment Emotion Hate-Speech Sarcasm
Feature set↓ F1-score F1-score F1-score F1-score
Facebook Fast Text 40.03 21.13 49.90 49.20
Subword BYte Pair 40.10 18.07 50.00 49.60
mBERT 40.03 23.21 49.50 49.30
XLM-R base 38.20 19.54 49.60 49.80
IndicBERT 40.68 30.16 50.00 66.49
BERT-Te 49.67 43.74 52.61 68.59
ALBERT-Te 41.25 28.16 49.90 61.32
RoBERTa-Te 45.86 44.21 50.00 66.74
DistilBERT-Te 43.45 38.53 50.00 66.49

each of the four NLP tasks. In order to fine-tune the pretrained transformer, we use Simple-
Transformers library 3, and the hyper-parameters used for fine-tuning is mentioned in subsec-
tion 7.4.5. From Table 7.19, we find that fine-tuning results show better performance than
baseline, pretrained word embeddings, sentence embeddings, and probing methods. From Ta-
ble 7.19, we observe that both BERT-Te and RoBERTa-Te models yield higher F1-scores than
other models for four NLP tasks.

Statistical Significance In order to estimate the statistical significance of the performance
differences, we performed the post hoc pairwise tests for all the models across the four NLP
tasks. We found that BERT-Te is statistically significant and better than mBERT, XLM-R, and
IndicBERT for all tasks except for SAR. Lastly, IndicBERT is not statistically significant with
mBERT and XLM-R for three NLP tasks such as SA, EI, and SAR except for HS task. Further,
we compared BERT-Te with RoBERTa-Te, and DistilBERT-Te models. From Table 7.20, we
observe that BERT-Te is not statistically significant with RoBERTa-Te, and DistilBERT-Te
models for SA, EI, and SAR except for HS task. Detailed p-values are mentioned in Table 7.20,
the ∗ denotes that the two pairs of models are significantly different (i.e. p � 0.05).

AUC-ROC Curves To evaluate the model performance of two best performing representations
(BERT-Te, and RoBERTa-Te), we plot the Area Under Curve Receiver Operator Characteristic,
a.k.a AUC-ROC curves that show the performance of a classification model at all possible
thresholds. Figures 7.12, 7.13, 7.14, and 7.15 report the ROC plots for the four NLP tasks.
These ROC curves typically feature a false positive rate on the X-axis and a true positive rate
on the Y-axis. It is evident from the Figures 7.12, 7.13, 7.14, and 7.15 that the AUC-ROC cruve
for the Logistic Regression is doing a better a job across each class for the four NLP tasks.

3https://simpletransformers.ai/

88

Table 7.19: Fine-tuning Results: Comparison of Text classification results with fine-tuning on
existing multilingual pretrained Transformers as well as our Telugu pretrained Transformers on
four different NLP tasks.

Sentiment Emotion Hate-Speech Sarcasm
Feature set↓ F1-score F1-score F1-score F1-score
BERT-Te 68.72 56.66 64.27 76.28
ALBERT-Te 63.82 54.95 58.23 75.84
RoBERTa-Te 66.09 58.04 60.49 77.93
DistilBERT-Te 63.76 57.60 58.09 75.93
IndicBERT base 64.92 49.29 60.07 75.27
mBERT 65.16 50.01 49.70 75.35
XLM-R 65.76 50.02 49.70 74.71

Table 7.20: p-values for post hoc pairwise tests across four NLP tasks. Here, ∗ denotes that the
two pairs of models are significantly different (i.e. p � 0.05).

Models compared Sentiment Emotion Hate-Speech Sarcasm
BERT-Te vs mBERT 0.0404* 0.032* 0.036* 0.0491*
BERT-Te vs XLM-R 0.042* 0.032* 0.036* 0.0482*

BERT-Te vs IndicBERT 0.049* 0.046* 0.041* 0.087
IndicBERT vs mBERT 0.076 0.121 0.044* 0.092
IndicBERT vs XLM-R 0.082 0.193 0.046* 0.112

BERT-Te vs RoBERTa-Te 0.188 0.203 0.048* 0.071
BERT-Te vs DistilBERT-Te 0.049* 0.253 0.038* 0.087

7.7.3 Do Telugu Pretrained Transformer Models Outperform the State-of-
the-art Telugu Datasets?

Here, we fine-tune our Telugu pretrained Transformers and existing multilingual Transformer
models on the three state-of-the-art Telugu datasets. The fine-tuning is done independently for
each task and pretrained model. We describe the three Telugu datasets as follows:

ACTSA (Sentiment Analysis): We experimented with the publicly available dataset ACTSA [86]
to perform the sentiment analysis task. The ACTSA dataset contains the following labels:
”Positive”, ”Negative”, and ”Neutral”.

Article Genre Classification: The task is to predict the genre/topic of a given news article
or news headline. We use the news article headline dataset created in IndicCorp [57]. The cat-
egories are determined from URL components. The dataset consists of three generic categories
which are (i) ”entertainment”, (ii) ”sports”, and (iii) ”business”.

Named Entity Recognition(WikiAnn): We use the Telugu WikiAnn NER dataset 4 cre-
ated from Wikipedia by utilizing cross language links to propagate English named entity labels
to other languages. The WikiAnn NER dataset contains the following coarse grained labels in
this dataset: Person (PER), Organisation (ORG), and Location (LOC).

4https://elisa-ie.github.io/wikiann/

89

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(a) BERT-Te: Receiver operating characteristic for SA

micro-average ROC curve (area = 0.86)
macro-average ROC curve (area = 0.84)
ROC curve of class 0 (area = 0.91)
ROC curve of class 1 (area = 0.79)
ROC curve of class 2 (area = 0.81)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(b) RoBERTa-Te: Receiver operating characteristic for SA

micro-average ROC curve (area = 0.87)
macro-average ROC curve (area = 0.84)
ROC curve of class 0 (area = 0.92)
ROC curve of class 1 (area = 0.80)
ROC curve of class 2 (area = 0.82)

Figure 7.12: ROC curves for SA task: (a) BERT-Te and (b) RoBERTa-Te. The labels for the
three classes are as follows: class 0 - Negative, class 1 - Neutral, and class 2 - Positive.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(a) BERT-Te: Receiver operating characteristic for EI

micro-average ROC curve (area = 0.96)
macro-average ROC curve (area = 0.88)
ROC curve of class 0 (area = 0.91)
ROC curve of class 1 (area = 0.90)
ROC curve of class 2 (area = 0.85)
ROC curve of class 3 (area = 0.84)
ROC curve of class 4 (area = 0.91)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

(b) RoBERTa-Te: Receiver operating characteristic for EI

micro-average ROC curve (area = 0.96)
macro-average ROC curve (area = 0.89)
ROC curve of class 0 (area = 0.92)
ROC curve of class 1 (area = 0.92)
ROC curve of class 2 (area = 0.84)
ROC curve of class 3 (area = 0.84)
ROC curve of class 4 (area = 0.91)

Figure 7.13: ROC curves for EI task: (a) BERT-Te and (b) RoBERTa-Te. The labels for the
five classes are as follows: class 0 - Anger, class 1 - Fear, class 2 - Happy, class 3 - No, and class
4 - Sad.

7.7.4 Performance on the Three Datasets

To further evaluate our Telugu pretrained Transformers, we compare our results in Table 7.21
with the state-of-the-art system used in [57]. Our Telugu pretrained transformers outperform
the multilingual models (mBERT, XLM-R, and IndicBERT) on two datasets: Article Genre
Classification and WikiAnn. Since mBERT model is pretrained on Telugu Wikipedia data, we
noticed that the performance of mBERT is relatively higher for the tasks based on Wikipedia
data, namely WikiAnn NER and Article Genre Classification. Similarly, IndicBERT is bene-
fiting from exposure to translated data of multiple Indian languages during pretraining. Hence,
IndicBERT showcase better performance on ACTSA and Article Genre Classification datasets.
However, using the corpora of both Telugu Wikipedia and news websites data, our Telugu
pretrained models achieve an accuracy of 99.38% and 87.16% higher compared to the state-of-
the-art systems [57]. On the other hand, the pretrained Telugu language models report lower

90

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(a) BERT-Te: Receiver operating characteristic for HS

micro-average ROC curve (area = 1.00)
macro-average ROC curve (area = 0.81)
ROC curve of class 0 (area = 0.81)
ROC curve of class 1 (area = 0.81)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(b) RoBERTa-Te: Receiver operating characteristic for HS

micro-average ROC curve (area = 1.00)
macro-average ROC curve (area = 0.85)
ROC curve of class 0 (area = 0.85)
ROC curve of class 1 (area = 0.85)

Figure 7.14: ROC curves for HS task: (a) BERT-Te and (b) RoBERTa-Te. The labels for the
two classes are as follows: class 0 - No, and class 1 - Yes.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(a) BERT-Te: Receiver operating characteristic for SAR

micro-average ROC curve (area = 0.99)
macro-average ROC curve (area = 0.92)
ROC curve of class 0 (area = 0.92)
ROC curve of class 1 (area = 0.92)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

(b) RoBERTa-Te: Receiver operating characteristic for SAR

micro-average ROC curve (area = 0.99)
macro-average ROC curve (area = 0.92)
ROC curve of class 0 (area = 0.92)
ROC curve of class 1 (area = 0.92)

Figure 7.15: ROC curves for SAR task: (a) BERT-Te and (b) RoBERTa-Te. The labels for the
two classes are as follows: class 0 - No, and class 1 - Yes.

performance on ACTSA as compared to XLM-R and IndicERT. This reinforces the expectation
that F1-score is sensitive to large corpora size for the ACTSA task.

7.8 Ethical Statement

We created a Telugu corpus of 80,15,588 sentences. We created different datasets for NLP
tasks in the Telugu language. The Telugu NLP datasets are now available for SA, EI, HS, SAR,
Clickbait, and NER. We open-source our corpus, five different annotated datasets (SA, EI, HS,
SAR, and Clickbait), lexicons, embeddings, and code 5,6,7. The pre-trained Transformer models
for Telugu are also made available8.

5https://github.com/Cha14ran/DREAM-T
6https://github.com/subbareddy248/Clickbait-Resources
7https://github.com/scsmuhio/MTGCN_Resources
8https://huggingface.co/ltrctelugu

91

Table 7.21: Fine-tuning Results on Telugu datasets: Comparison of Text classification results
with fine-tuning on existing multilingual pretrained transformers as well as our Telugu pre-
trained transformers on three datasets.

ACTSA NewsHeadlines WikiAnn
Feature set↓ F1-score F1-score F1-score
BERT-Te 59.40 99.38 87.03
ALBERT-Te 46.21 99.22 83.00
RoBERTa-Te 56.75 99.10 87.16
DistilBERT-Te 57.86 99.21 84.02
IndicBERT base [57] 61.18 99.20 84.38
mBERT [57] 48.53 98.67 84.31
XLM-R [57] 62.45 99.33 81.71

We reused publicly available datasets like ACTSA, IndicCorp, WikiAnn, and LREC-NER to
compare state-of-the-art methods. ACTSA [86] is used to perform the sentiment analysis task.
The ACTSA dataset contains the following labels: ”positive”, ”negative”, and ”neutral”. The
task for Article Genre Classification is to predict the genre/topic of a given news article or news
headline. We use the news article headline dataset created in IndicCorp [57]. The categories
are determined from URL components. The dataset consists of three generic categories which
are (i) ”entertainment”, (ii) ”sports”, and (iii) ”business”. We use the Telugu WikiAnn NER
dataset 9 created from Wikipedia by utilizing cross-language links to propagate English named
entity labels to other languages (under ODC-By license 10). The WikiAnn NER dataset contains
the following coarse-grained labels in this dataset: Person (PER), Organisation (ORG), and
Location (LOC). WikiAnn dataset can be downloaded from 11. The LREC-NER dataset 12 is
licensed under Creative Commons License. Please read their terms of use 13 for more details.

7.9 Privacy Concerns of Crawled Data

We have gone through the privacy policy of various websites mentioned in the thesis. For
example, the website privacy policy of greatandhra14 is provided here15. We do not foresee any
harmful uses of using the data from these websites.

7.10 Social Impact

Multilingual pre-trained models are usually evaluated by their capacity for knowledge trans-
fer across languages. This can be done either by training the NLP model on English data

9https://elisa-ie.github.io/wikiann/
10https://opendatacommons.org/licenses/by/
11https://drive.google.com/drive/folders/1Q-xdT99SeaCghihGa7nRkcXGwRGUIsKN?usp=sharing
12http://ltrc.iiit.ac.in/ner-ssea-08/index.cgi?topic=5
13http://ltrc.iiit.ac.in/ner-ssea-08/index.cgi?topic=5
14www.greatandhra.com
15https://www.greatandhra.com/privacy.php

92

https://opendatacommons.org/licenses/by/
https://drive.google.com/drive/folders/1Q-xdT99SeaCghihGa7nRkcXGwRGUIsKN?usp=sharing
http://ltrc.iiit.ac.in/ner-ssea-08/index.cgi?topic=5
http://ltrc.iiit.ac.in/ner-ssea-08/index.cgi?topic=5
www.greatandhra.com
https://www.greatandhra.com/privacy.php

only or English plus Telugu NLP data using, for example mBERT representations. It allows
the model to benefit from high-resource languages. During the testing phase, the NLP model
is evaluated in Telugu only. However, this thesis evaluated the NLP model which was only
training and testing on Telugu data. The reason for this is to let the models understand the
Telugu language.

This thesis creates a large raw Telugu corpus, two large, strongly annotated datasets cor-
responding to four text classification tasks, and one large annotated dataset for the clickbait
task. Further, we propose a supervised graph reconstruction method, Multi-Task Text GCN
(MT-Text GCN) on the Telugu, that leverages to simultaneously (i) learn the low-dimensional
word and sentence graph embeddings from word-sentence graph reconstruction using graph
autoencoder (GAE) and (ii) perform multi-task text classification using these latent sentence
graph embeddings. Our proposed MT-Text GCN and feature representations achieve signif-
icant improvements on developed datasets over existing multilingual pre-trained Transformer
models: mBERT [34], and XLM-R [28].

Our investigation neither introduces any social/ethical bias to the model nor amplifies any
bias in the data. We do not foresee any direct social consequences or ethical issues.

7.11 Summary

The resource-poor Indian languages (e.g., Telugu) is not much matured in comparison to
resource-rich languages such as English due to a lack of sufficient resources. In this chapter,
we presented our contributions for Telugu: (i) creation of a large corpus to generate contextual
Telugu word embeddings/sentence embeddings from scratch, (ii) creation of large annotated
data for four NLP tasks, (iii) creation of lexicons for sentiment, emotion, and hate-speech. (iv)
creation of Telugu pre-trained transformer representations. The large Telugu corpora (8 million
sentences), annotated data of four NLP tasks, pre-trained word, and sentence embeddings,
pre-trained Telugu transformers are publicly available here16 and the pre-trained trandformer
models are available here 17.

In the next chapter, we present the dataset and models for automatic clickbait detection in
Telugu language.

16https://github.com/Cha14ran/DREAM-T
17https://huggingface.co/ltrctelugu

93

Chapter 8

Dataset, Embeddings and Models for Clickbait Detection

This chapter explains the process of creating our annotated clickbait dataset, feature repre-
sentations from scratch, for building an automatic clickbait detection system.

8.1 Background

Clickbait headlines have become a nudge in social media and news websites. The methods
to identify clickbaits are mainly being developed for English. There is a need for the same in
other languages with the increase in the usage of social media platforms in different languages.
In this work, we present an annotated clickbait dataset of 112,657 headlines that can be used
for building an automated clickbait detection system for Telugu, a resource-poor language. Our
contribution in this chapter includes (i) generation of the latest pre-trained language models,
including RoBERTa, ALBERT, and ELECTRA trained on a large Telugu corpus of 8,015,588
sentences that we had collected, (ii) data analysis and benchmarking of the performance of
different approaches ranging from hand-crafted features to state-of-the-art models. We show
that the pre-trained language models trained in Telugu outperform the existing pre-trained
models, viz. BERT-Mulingual-Case [34], XLM-MLM [70], and XLM-R [28] on clickbait task.
On a large Telugu clickbait dataset of 112,657 samples, the Light Gradient Boosted Machines
(LGBM) model achieves an F1 score of 0.94 for clickbait headlines. For Non-Clickbait headlines,
an F1 score of 0.93 is obtained, similar to that of the Clickbait class. We open-source our dataset,
pre-trained models, and code1. Our contributions to this work can be summarized as follows:

• We publicly released an annotated dataset of 112,657 Telugu clickbait and non-clickbait
headlines that can be a crucial resource for building automated clickbait detection systems
in Telugu.

1https://github.com/subbareddy248/Clickbait-Resources

94

• We generated the three latest pre-trained language models, including RoBERTa [75],
ALBERT [71], and ELECTRA [26] for Telugu language, trained on large Telugu corpus
(8,015,588 sentences) from scratch.

• We developed a benchmark system for detecting clickbait headlines written in Telugu by
investigating a wide range of features from traditional to state-of-the-art representations.

• We explored the feasibility of different neural architectures and pre-trained transformer
models in this problem.

• We presented a detailed analysis of the methods and results and compare the existing
pre-trained embeddings for detecting clickbait headlines in Telugu.

8.2 A New Dataset for Detecting Clickbait in Telugu

We followed certain guidelines for collecting the data extensively for clickbait and non-
clickbait headlines.
Inter-Annotator Agreement The annotation process on sentences for clickbait is a subjective
task. In the guidelines to annotators, we defined the attractiveness of clickbait headlines as
something that generates interest, arouses curiosity by using suspenseful language there, and
motivates the user to click on the link. Moreover, the attractiveness of the sentences is related
to one’s interests and curiosity. We made the five annotators work on a smaller dataset for
verification as a first step of performing the annotation. The Fleiss’ kappa score2 was 0.95.
Then the annotation on the whole dataset was done, for which the inter-annotator agreement
was 0.91.
Clickbait vs Non-Clickbait: To collect the clickbait and non-clickbait headlines, we manually
selected four Telugu websites, including, Prajasakti3, Gulte4, Andhrabhoomi5, Manatelangana6

which publish gossips, trends, and latest buzzes. While collecting misleading headlines from
these sites, we found that most sites have the same headlines. To avoid the redundant text,
we considered the Jaccard similarity for discarding duplicate sentences (above 90% match) and
reported 112,657 headlines. To filter the non-clickbait (i.e., the headlines in these domains which
are not attractive to users), we provided the data and a web-based framework to an Elancer
IT Solutions Private Limited7, an annotation company for labeling the headlines. We choose
five native Telugu language speakers from Elancer IT Solutions Private Limited company to

2https://en.wikipedia.org/wiki/Fleiss%27_kappa
3http://www.prajasakti.com
4https://telugu.gulte.com
5http://www.andhrabhoomi.net
6https://www.manatelangana.news/
7http://elancerits.com/

95

annotate headlines as clickbait and non-clickbait. Since five annotators label each headline, we
obtained a ‘substantial’ inter-annotator agreement with a Fleiss’ kappa score of 0.91.
Dataset Statistics Taking the majority vote as ground truth, 79,190 headlines were marked
as clickbait and 33,467 as non-clickbait.

8.3 Feature Representation Methods

This section discusses the detailed analysis of various feature representation methods ranging
from hand-crafted to automated features to develop the models. To perform better training,
we use the romanized text format, i.e., whole Telugu corpus and annotated data converted into
WX notation8. In this chapter, we use Polyglot tokenizer9 for tokenizing the sentences.

8.3.1 Traditional Features

To extract the traditional features like Bag-Of-Words (BoW) and Term frequency-Inverse
document frequency (TF-IDF), we built a feature set that resulted in a dataset size of 112,657
(samples) x 2000 (features).

8.3.2 Hand-Crafted Features

Structural Features Here, we will discuss how the sentence structure and punctuation features
can help discriminate between clickbait and non-clickbait headlines. From the Table 8.1, we
observe that frequency of the presence of exclamation marks (!), question marks (?), word length
< 4, and Hapax Legomena Ratio (number of unique words occurred only once

total number of words) are high in clickbait
headlines. However, the average length of the sentence and the number of stop words display
high values for non-clickbait.

Table 8.1: Analysis of structural features

Average occurences Clickbait Non-Clickbait
Average length 4.98 12.25

Average stopwords 0.51 2.28
Average Hapax Legomena Ratio 0.13 0.10
Average Dis Legomena Ratio 0.03 0.01

Ratio of sentences with word length<4 0.17 0.16
Ratio of sentences with word length>6 0.02 0.02
Ratio of sentences with Exclamation 0.15 0.01

Ratio of Sentences with Question mark 0.12 0.02

Part-of-Speech (POS) Features The POS tagging features are often useful for understanding
particular patterns in morphologically complex languages like Telugu. We use a feature set that

8https://github.com/irshadbhat/indic-wx-converter
9https://github.com/ltrc/polyglot-tokenizer

96

Table 8.2: Analysis of POS Tag features

Pos Tag Features Clickbait Non-Clickbait
Average nouns per sentence 2.60 5.62
Average verbs per sentence 0.61 2.14

Average adjectives per sentence 0.07 0.25
Average adverbs per sentence 0.08 0.35
Average pronouns per sentence 0.09 0.34

Average postpositions per sentence 0.06 0.22
Average punctuations per sentence 0.94 1.29

includes the number of nouns (NN), number of verb mains (VM), number of symbols (SYM),
number of adverbs (RB), number of prepositions (PSP), number of adjectives (JJ), and number
of pronouns (PRP) from each sentence using part-of-speech (POS) tagging10. Table 8.2(b)
reports the average number of times each POS tag occurs in the two kinds of headlines.

8.3.3 Distributed Word Representations

Distributed word representations capture many precise syntactic and semantic word rela-
tionships in text classification problems. This subsection describes the generation of different
word embeddings such as Word2Vec, GloVe, FastText, and Meta-Embeddings on large Telugu
corpora (Wikipedia + Crawled corpus) consisting of 8,015,588 sentences.
Word2Vec Embeddings Word2Vec model provides a non-deterministic way to determine the
word representations [80]. It can learn similar word vectors for words in a similar context. We
used the Skip-Gram (SG) Word2vec [80] model with a large vocabulary size of 460,000 words,
where each word frequency is at least 5. The number of linear neurons in the hidden layer is
300, and the context window size is five as the hyper-parameters used for the model training.
GloVe Embeddings The input used in the GloVe model is a non-zero word-word co-occurrence
matrix [95], which adds the global context information by default, unlike the use of local context
in Word2Vec [80]. We use the parameters with a learning rate of 0.05, the context window size
is 10, and the word vector dimension is 50.
FastText Embeddings Since the FastText model considers the bag of character n-grams to
represent each word [56], it allows us to compute rare word representations. We considered the
words with a frequency of at least three in the vocabulary and obtained a vocabulary size of
462,232 in the training process. We use a successful Skip-Gram model with a context window
size of 5, and the word vector dimension is 200.
Meta-Embeddings Meta-embeddings are shown to be successful for resource-rich language
English, and it has two benefits compared to individual embedding sets: (i) enhancement of
performance and (ii) improved coverage of the vocabulary [137]. These prior studies motivate us
to create Meta-Embeddings for the Telugu language by using an ensemble of Telugu Word2Vec,
GloVe, and FastText embeddings. In this work, we created the Meta-Embeddings using the

10https://bitbucket.org/sivareddyg/telugu-part-of-speech-tagger/src

97

average of encoded source embeddings that yields each word vector dimension of 300 used for
extracting the text features.

8.3.4 Skip-Thought Sentence Vectors

The Skip-Thought model is a sentence encoding-decoding model that produces a fixed-length
vector for every given sentence [67]. Inspired by the Word2Vec approach, the skip-thought
model extends the Skip-Gram model to generate sentence embeddings from word embeddings.
Rather than predicting the context given the input word, the skip-thought model predicts both
the next and previous sentences given the target sentence.

8.3.5 Context Level Features

Earlier word embeddings such as Word2Vec, GloVe, FastText, and Meta-Embeddings pro-
vide a unique word representation throughout the corpus. This unique representation is the
main limitation of these methods, especially words with different contexts. To overcome these
limitations, in this section, we describe the recent state-of-the-art pre-trained models, including
ELMo, BERT, RoBERTa, ALBERT, and ELECTRA. The parameters used for pre-training the
models on Telugu are reported here11.
ELMo Embeddings for Telugu Embeddings from Language Models (ELMo) is a successful
NLP framework developed by AllenNLP [97] group. Unlike earlier embeddings, the ELMo
embeddings represent the words contextually using a bidirectional LSTM model. We generate
ELMo embeddings for the Telugu language, trained on a large Telugu corpus with 2,086,488
train tokens and a vocabulary size of 793,384.
BERT Embeddings for Telugu BERT model [33] provides a word contextual information by
looking at previous and next words, which is one of the main limitations of earlier methods. To
train the BERT model from scratch for the Telugu language corpus, we build a vocabulary size
of 832,000 using the BERTWordPiece tokenizer. We use the hidden representation associated
with the CLS token as a numeric representation of the given sentence.
RoBERTa Embeddings for Telugu The recent successful RoBERTa model [75] is an op-
timized pre-training language model that improves on BERT, the self-supervised method that
achieves state-of-the-art results. The main objectives of RoBERTa model include (i) training
the model longer, with bigger batches, over more data; (2) removing the following sentence pre-
diction approach; (3) training on longer sequences; and (4) dynamically changing the masking
pattern applied to the training data. Here, we use a vocabulary size of 200,000 and a hidden
word dimension of 768 when training RoBERTa masked language model on the Telugu corpus.
ALBERT Embeddings for Telugu ALBERT (A lite BERT) [71] model is a novel pre-training
method that mainly contributed to three solutions to overcome limitations of the BERT model,

11https://github.com/subbareddy248/Clickbait-Resources

98

including (i) parameter reduction using factorized embedding parameterization, (ii) Cross-layer
parameter sharing, and (iii) Inter-sentence coherence loss. With the advantage of a minimal
number of parameters and yet achieve state-of-the-art results than the BERT model [71]. To
train ALBERT embeddings for Telugu, we use a subword-byte level tokenizer to build the
vocabulary size of 105,686 with the hidden embedding dimension is of 768.

Table 8.3: Clickbait Detection Results: Different feature sets classification comparison for Logis-
tic Regression, and LightGBM models using different sampling methods with No/Over/Under-
Sampling

Logistic Regression LightGBM
Sampling Method→ NS OS US NS OS US
Feature set↓ P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
BoW 0.87 0.82 0.84 0.83 0.84 0.84 0.84 0.84 0.83 0.89 0.80 0.83 0.84 0.84 0.84 0.83 0.84 0.83
TF-IDF 0.86 0.82 0.83 0.81 0.83 0.82 0.81 0.83 0.82 0.90 0.81 0.84 0.82 0.83 0.83 0.81 0.83 0.82
Structure-Based 0.90 0.87 0.88 0.87 0.88 0.87 0.87 0.88 0.87 0.90 0.87 0.88 0.87 0.88 0.87 0.87 0.88 0.87
Pos Tagging Set 0.90 0.87 0.88 0.87 0.88 0.87 0.87 0.88 0.87 0.90 0.87 0.88 0.87 0.88 0.87 0.87 0.88 0.87
Word2Vec 0.75 0.73 0.74 0.74 0.77 0.75 0.74 0.77 0.75 0.90 0.88 0.89 0.89 0.89 0.89 0.86 0.88 0.87
GloVe 0.66 0.63 0.63 0.67 0.69 0.67 0.67 0.70 0.67 0.83 0.81 0.82 0.82 0.83 0.82 0.79 0.82 0.80
FastText 0.78 0.77 0.77 0.76 0.80 0.77 0.76 0.80 0.77 0.90 0.89 0.89 0.90 0.89 0.90 0.87 0.89 0.88
Meta-Embeddings 0.75 0.73 0.74 0.74 0.78 0.75 0.73 0.76 0.74 0.91 0.89 0.90 0.90 0.90 0.90 0.88 0.90 0.88
Skip-Thought 0.92 0.90 0.91 0.91 0.91 0.91 0.89 0.90 0.90 0.92 0.90 0.91 0.91 0.91 0.91 0.89 0.91 0.90
BERT 0.89 0.86 0.87 0.86 0.87 0.86 0.85 0.88 0.86 0.90 0.87 0.89 0.88 0.88 0.88 0.86 0.88 0.87
ALBERT 0.89 0.84 0.86 0.85 0.85 0.85 0.85 0.85 0.85 0.89 0.85 0.86 0.86 0.86 0.86 0.86 0.86 0.86
RoBERTa 0.93 0.91 0.92 0.91 0.92 0.91 0.90 0.91 0.90 0.93 0.91 0.92 0.92 0.91 0.92 0.90 0.92 0.91
ELECTRA 0.88 0.86 0.87 0.87 0.87 0.87 0.86 0.87 0.86 0.91 0.89 0.90 0.90 0.90 0.90 0.88 0.90 0.89
ELMo 0.95 0.94 0.94 0.94 0.94 0.94 0.93 0.94 0.93 0.95 0.93 0.94 0.94 0.94 0.94 0.93 0.94 0.94
NS = No-Sampling, OS = Over-Sampling, US = Under-Sampling, P = Precision, R = Recall, F1 = F1-score

ELECTRA Embeddings for Telugu Recently developed language models such as BERT [33],
ALBERT [71], and RoBERTa [75] fall under the category of masked language models that pre-
dict words that have been masked out of the input. Thus, masked language models only predict
a small subset — the 15% that was masked out, reducing the amount learned from each sen-
tence.

The recent state-of-the-art model ELECTRA uses a new pre-training approach, called re-
placed token detection (RTD), that trains a bidirectional model (like a Masked Language
Model(MLM)) while learning from all input positions (like an LM). The ELECTRA model
used the GANs approach to distinguish between “real” and “fake” input tokens in the training
process. It corrupts the input by replacing some input tokens with incorrect but plausible fakes.
We create ELECTRA-small embeddings for the Telugu language, trained on a Telugu corpus
with a vocabulary size of 388,292 and a hidden dimension of 256.

99

8.4 Methodologies

We experimented with the two off-the-shelf machine learning classifiers, including, logistic
regression (baseline) [138], and LightGBM [59] to evaluate our clickbait dataset. We also
experimented with a deep learning architecture LSTM [49] to perform clickbait classification.
Logistic Regression (LR) We train a Logistic Regression classifier on the training data with
regularization by passing the parameters: {C = 20.0, dual = False, penalty = l2}. Formally,
the input to the logistic regression model [138] is a text vector extracted from one of the feature
representation methods shown in Section 8.3.
LightGBM We choose the LightGBM model [59] as one of our training methods because of its
high speed and consumption of less memory on large datasets. To train the LightGBM model,
we used the same input feature representations as the LR model. We pass the hyper-parameters:
{max_depth = 1, min_child_samples = 13, number of decision trees = 100, boosting type =
gradient boosting, learning_rate = 1.0} when training the model.
Long Short-Term Memory Networks (LSTM) In the literature, LSTMs [49] are successful
in dealing with sequence-based problems in the field of NLP [148]. Using LSTM architecture,
we tried the five different feature representations as input in the training process. We train
each LSTM model separately for extracted token features and four-word embeddings.
Choice of Hyper-Parameters We used genetic algorithm for hyper-parameter tuning [72]
to optimize both LR and LightGBM models. The hyper-parameters which resulted in the best
F1 score were considered.
Imbalanced Dataset Handling From section 8.2, we observe that clickbait data has a class
imbalance issue, as the majority class (“Yes”) has ∼3x more instances compared to the “No”
class. To circumvent this problem, we tried methods such as random undersampling and
SMOTE (Synthetic Minority Oversampling Technique) [19] to generate synthetic samples for
the minority class (non-clickbait dataset) in the over-sampling method.

8.5 Experiments and Results

Dataset Splitting We followed the stratified 5-fold cross-validation setup where 4-folds data
is used for training, and one-fold is used for testing the model. We calculated the average of
5-folds and reported the results.
Evaluation Metrics We use classification metrics such as macro-average precision, recall, and
F1-score to evaluate our methods. To understand how each class performs, we choose macro
averaging, which gives each class equal weight to evaluate systems performance across the two
classes.

100

8.5.1 Results and Analysis

The results for our 14-feature representations with two machine learning models are reported
in Table 8.3. Impressively, the ELMo-Telugu features outperform all the feature representations,
with the best model, LightGBM, in the over-sampling setting yielding an F1 score of 0.94. We
observed the following observations from Table 8.3.
Baseline Results: We considered the two traditional feature representations (BoW and TF-
IDF) as our baseline features. Since the traditional features do not capture the semantic and
syntactic information, the baseline system achieves an F1 measure of 0.84.
Hand-Crafted Feature Results: Hand-crafted features such as Structure-based and POS-
tagging outperforms the baseline features with an increasing F1 score of 0.04.
Word-Vector Results: The four rows in the third block of the Table 8.3 employ the word-
embedding results when passing the input features as Word2Vec, GloVe, FastText, and Meta-
Embeddings. With the local and global context word-embeddings, the system achieves an
F1-measure of 0.89 (Word2Vec) and 0.82 (GloVe), using the LightGBM method over-sampling
strategy. Like Word2Vec, GloVe, FastText and Meta-Embedding features as input yield an
F1-score of 0.90 using the LightGBM method in the over-sampling strategy. Among the four
word-embeddings, FastText, and Meta-Embedding features improve the F1 measure by 0.06
compared with baseline. However, the performance of word embedding results when trained
with Logistic Regression is lower than other methods. To interpret the results of LR and
LightGBM models for Word2Vec, we use the Local Interpretable Model-Agnostic Explanations
(LIME) [108] tool to showcase the highlighted words causing the model toward clickbait or
non-clickbait prediction in the sub-section 8.5.4.
Skip-Thought and Contextual Embeddings Results: Using the sentence embedding
method Skip-Thought performed the best with an F1 score of 0.91, higher than the methods
mentioned above. Overall, LGBM provides better results across BERT-based models with sim-
ilar performance. The best F1-score is obtained when RoBERTa (0.92) and ELECTRA (0.90)
feature sets are used. ELMo increases the system’s performance to a 0.94 F1 score, higher than
all feature methods with contextual embedding features.

Table 8.4: Clickbait Detection Results: The table display the fine tuning results of the existing
pre-trained language models

Fine-Tuning
Models↓ Precision Recall F1-score
BERT 0.89 0.86 0.87
ALBERT 0.89 0.84 0.86
RoBERTa 0.91 0.87 0.89
ELECTRA 0.88 0.86 0.87
Bert-Multilingual-case 0.74 0.79 0.74
XLM-Roberta-base 0.78 0.83 0.79

101

Figure 8.1: Comparison of F1-score performance of input word representations i) Sequence of
Tokens ii) Word2Vec iii) GloVe iv) FastText and v) Meta-Embedding. The LSTM model is
used as a trained model for each of the feature representations in the 2-class setups are shown
here

LSTM Results: Figure 8.1 showcase the clickbait detection results of LSTM trained on (i)
sequence of tokens, and (ii) with the four-word embeddings. From Figure 8.1, we observe
that LSTM with the FastText features as input yields a better F1-score of 0.89 similar to the
Table 8.3. Moreover, GloVe word vectors as input to LSTM report a 0.88 F1 score higher than
the F1 score displayed in Table 8.3.

Overall, except for distributed word-embedding results, the remaining pre-trained models
perform similarly to Logistic Regression and LightGBM models.
Fine-Tuning Results: We evaluate whether fine-tuning the existing pre-trained language
models (BERT-Multilingual-case, XLM-Roberta-base) and the pre-trained models built on Tel-
ugu is useful for adapting the click-bait task. From Table 8.4, we find that fine-tuning results
show better performance than earlier word embeddings and baselines. However, extracting the
features from pre-trained language models has increased performance as it may allow us to
adapt general-purpose representations, as reported in Table 8.3.

8.5.2 Comparative Analysis

Figure 8.2 showcase the comparative results on clickbait-detection task, where the features
extracted from existing pre-trained embeddings trained on the Telugu language, such as Bert-
Multilingual-Case [34] (768-dimension), Cross-Lingual Language Model with RoBERTa (XLM-
R) [28] (1024-dimension), Cross-Lingual Masked Language Model (XLM-MLM) [70] (1280-
dimension), Sub-word Byte Pair embeddings [48] (300-dimension), and Facebook FastText
word-embeddings [13] (200-dimension). We compare the embeddings BERT, RoBERTa, AL-
BERT, ELECTRA, and ELMo trained on Telugu corpus (Wikipedia + Crawled Data) with

102

Figure 8.2: Comparison of F1-score performance of i) Facebook FastText, ii) Subword Byte
Pair iii) BERT-Multilingual-Case iv) XLM-R v) XLM-MLM vi) ELMo-Telugu vii) BERT-
Telugu viii) ALBERT-Telugu ix) RoBERTa-Telugu and x) ELECTRA-Telugu embeddings. The
LightGBM classifier is used to train each of the feature representations in the clickbait task
setup is shown here

the above-mentioned pre-trained embeddings. Our generated pre-trained embeddings for the
Telugu language outperform the existing pre-trained embeddings in the two-class clickbait-
detection task. Our best model’s performance is from the ELMo feature representation with an
F1-score of 0.94, an improvement of 0.05 than existing pre-trained methods. These results indi-
cate that the performance of the generated pre-trained embeddings BERT, ELMo, RoBERTa,
and ELECTRA on Telugu corpus would have been much better than existing pre-trained em-
beddings.

Table 8.5: ELMo: Confusion matrix for clickbait classification

Predicted
Non-Clickbait Clickbait

Actual Non-Clickbait 6092 545
Clickbait 604 15291

8.5.3 Error Analysis

We analyzed the error cases in detail for the clickbait and non-clickbait samples. We ob-
served from Table 8.5 that (i) 3.8% cases clickbait headlines predicting as non-clickbait, and
(ii) 8.2% cases non-clickbait headlines predicting as clickbait. Our system makes incorrect pre-
dictions where the sentences contain the implicatures. Table 8.6 display the failure cases where
the model got confused due to the pragmatic notations like “Implicatures”, “Deictics”, and
“Noun Ellipsis”. We report the detailed confusion matrices for contextualized word embeddings

103

Table 8.6: ELMo: Wrong predictions by the model

Headline Act Pred Reason
వృơ£ పª ల�ƃలƸ ƥరం ģయůƶì ఇȤ ǉȗ అవ±ంŰ....
vqxXApya lakRaNAlanu xUraM ceyadAniki.... yes no Model could not
Follow these to get rid of the signs of aging ... understand the implicature
ȣŜȗ తెలంÿణ ǇȑɄȒ ǪంƤƵ¤Ǿ...
vAtilo weVlaMgANa polIsulu muMxunnAru... yes no Model could not understand
Among them, the Telangana police are leading ... the deictic information
Ǟన¤ óƃȗ¯ దǻªǂ ģɄ న¤ ǇȑɄ బృందం...
Binna koNAllo xaryApwu ceswunna polIsu bqMxa... no yes Model guessed Noun
Police team investigating from different angles ... ellipsis as clickbait

Table 8.7: BERT: Confusion matrix for clickbait classification

Predicted
Non-Clickbait Clickbait

Actual Non-Clickbait 5510 1184
Clickbait 1027 14811

(BERT, ALBERT, RoBERTa, and ELECTRA) in Tables 8.7, 8.8, 8.9,and 8.10 respectively.
Observations from the Tables 8.7, 8.8, 8.9,and 8.10 that both ELECTRA and RoBERTa models
have low false positives compared to BERT and ALBERT.

8.5.4 LIME Results

Figure 8.3 showcases the words highlighted for both LR and LightGBM models using LIME.
We can observe from Figure 8.3 that the LightGBM model captures attractive words when
compared with the LR model. Although the input sentence in Table 8.11 is a clickbait, the LR
model predicted it as non-clickbait, whereas the LightGBM model predicted it correctly.

8.5.5 Statistical Analysis

Statistical significance using one-Anova test [60] showcases the significant difference between
the 14 feature representations used in the above experiments. We perform the statistical sig-
nificance test on a clickbait-detection task with a two-class setup. To perform the Anova test,
we use the three-sampling results (F1-measure) of two training classifiers, LR and LightGBM.
The one-way Anova test provides an F-statistic [F(13,70) = 9.8035, P = 2.9e−11] concludes 14
feature representations are significantly different. We use the post-hoc Tukey-HSD test [109]
to obtain the results between different pairs reported in Table 8.12.

Table 8.8: ALBERT: Confusion matrix for clickbait classification

Predicted
Non-Clickbait Clickbait

Actual Non-Clickbait 5367 1327
Clickbait 1375 14463

104

Table 8.9: RoBERTa: Confusion matrix for clickbait classification

Predicted
Non-Clickbait Clickbait

Actual Non-Clickbait 5776 918
Clickbait 604 15234

Table 8.10: ELECTRA: Confusion matrix for clickbait classification

Predicted
Non-Clickbait Clickbait

Actual Non-Clickbait 5412 1282
Clickbait 565 15273

8.6 Summary

In this chapter, we present a new annotated dataset of approximately 113k headlines that
can be used for building an automated clickbait detection system for a resource-poor language
Telugu. The evaluation of two machine learning classifiers and LSTM-based models suggest
that simple machine learning classifiers with ELMo features perform better than the baseline
and LSTM-based models. As a future task, we aim to look at the strength of clickbait (going
beyond the binary class) and explore related tasks like fake news identification or sarcasm
detection.

In the next chapter, we present the summary, conclusions, limitations and future work of
the thesis.

105

Table 8.11: Lime: Input sentence in Telugu, WX, and English

Headline
Ʌరª 24.. ఏంŜ కథ?.
sUrya 24.. eMti kaWa?
Surya 24 .. What story ?.

LightGBMLogistic	Regression

Figure 8.3: Local Interpretable Model-Agnostic explanations: showcase the words highlighted
for both LR and LightGBM models

Table 8.12: Post-hoc Tukey test results

Feature Pairs P-value Statistically Significant
(ALBERT vs. GloVe) 0.001 Yes
(BERT vs. GloVe) 0.001 Yes
(BOW vs. ELMo) 0.001 Yes
(BOW vs. GloVe) 0.0081 Yes
(ELECTRA vs. GloVe) 0.001 Yes
(ELMo vs. FastText) 0.001 Yes
(ELMo vs. Meta-Embeddings) 0.001 Yes
(ELMo vs. TF-IDF) 0.001 Yes
(GloVe vs. POS Tags) 0.001 Yes
(GloVe vs. Structure Based) 0.001 Yes
(ALBERT vs. Meta-Embeddings) 0.9 No
(Structure Based vs. Pos Tags) 0.9 No
(BoW vs. ELECTRA) 0.792 No
(BoW vs. TF-IDF) 0.9 No
(TF-IDF vs. Word2vec) 0.9 No
(RoBERTa vs. Word2vec) 0.0101 No
(ELECTRA vs. TF-IDF) 0.5856 No
(FastText vs. Skip-Thought) 0.1215 No
(Skip-Thought vs. Word2vec) 0.0232 No

106

Chapter 9

Summary, Conclusions and Future Work

In this chapter, the summary, conclusions and future work of the thesis is presented.

9.1 Summary

In this thesis, our primary goal is to solve the data scarcity problem for Telugu, a low-resource
problem. We present several contributions to overcome the problem: (1) A large Telugu raw
corpus of 80,15,588 sentences (16,37,408 sentences from Telugu Wikipedia and 63,78,180 sen-
tences crawled from different Telugu websites). (2) A TEL-NLP annotated dataset in Telugu
covering four NLP tasks (16,234 samples for sentiment analysis (SA), hate-speech detection
(HS), sarcasm detection (SAR), and 9,675 samples for emotion identification (EI)). (3) For the
Telugu corpus, we are the first to generate word and sentence embeddings using graph-based
models: DeepWalk-Te and Node2Vec-Te, and Graph AutoEncoders (GAE). (4) Also, we propose
the multi-task learning model (MT-Text GCN) to reconstruct word-sentence graphs on TEL-
NLP data while achieving multi-task text classification with learned graph embeddings. (5) We
extended samples in the annotated dataset (35,142 sentences in each task) for multiple NLP
text classification tasks such as SA, EI, HS, and SAR. (6) We create different lexicons for sen-
timent, emotion, and hate-speech for improving the efficiency of the machine learning models.
(7) From scratch, we pre-trained distributed word and sentence embeddings such as Word2Vec-
Te, GloVe-Te, FastText-Te, MetaEmbeddings-Te, Skip-Thought-Te. (8) We pre-trained different
contextual language models for Telugu such as ELMo-Te, BERT-Te, RoBERTa-Te, ALBERT-
Te, Electra-Te, and DistilBERT-Te trained on 80,15,588 Telugu sentences. (9) We created a
clickbait dataset of 112,657 samples to create an automatic clickbait detection in Telugu.

Further, we show that these representations significantly improve the performance of five
NLP tasks and present the benchmark results for Telugu. We argue that our pre-trained em-
beddings are competitive or better than the existing multilingual pre-trained models: mBERT,
XLM-R, and IndicBERT. Lastly, the fine-tuning of pre-trained models show higher perfor-
mance than linear probing results on five NLP tasks. We also experiment with our pre-trained

107

models on other NLP tasks available in Telugu viz. Named Entity Recognition, Article Genre
Classification, and, Sentiment Analysis and find that our Telugu pre-trained language models
(BERT-Te and RoBERTa-Te) outperform the state-of-the-art system except for the sentiment
task. We hope that the availability of the created resources for different NLP tasks will ac-
celerate Telugu NLP research which has the potential to impact more than 85 million people.
It can also help the Telugu NLP community evaluate advances over more diverse tasks and
applications. We open-source our corpus, five different annotated datasets (SA, EI, HS, SAR,
and Clickbait), lexicons, embeddings, pre-trained transformer models, and code.

9.2 Conclusions

The resource-poor Indian languages (e.g., Telugu) are not much mature compared to resource-
rich languages such as English due to insufficient resources. In our thesis, we made several
contributions to Telugu (i) creation of a large corpus to generate contextual Telugu word em-
beddings, sentence, and graph embeddings from scratch, (ii) creation of large annotated data for
five NLP tasks, (iii) creation of lexicons for sentiment, emotion, and hate-speech. (iv) creation
of Telugu pre-trained Transformers. (v) creation of Multi-task GCN architecture to improve
the performance in Telugu. Our results on five NLP tasks improve over different existing pre-
trained embeddings. We open-source our corpus, five different annotated datasets (SA, EI, HS,
SAR, and Clickbait), lexicons, embeddings, and code 1. The pre-trained Transformer models
for Telugu are available here2.

9.3 Limitations

The main idea of this thesis is to create resources for Telugu. Also, build a corpus, annotated
datasets, feature representations, and models for the Telugu language. We have proposed a few
architectures for these annotated datasets. The results are encouraging when compared with
the existing multi-lingual representations and models. However, we observed a few limitations
to the thesis and mentioned below:

• To start with the Telugu language, we created resources and then annotated datasets for
the basic NLP tasks. However, there is a scope to go deep into each task and develop
datasets for fine grained tasks.

• We considered experiments with few tasks as they are the popular NLP tasks in English.
In addition, to these tasks, other NLP tasks like summarization, inference tasks, and
question answering can be considered.

1https://github.com/mounikamarreddy/NLP-for-Telugu-Language.git
2https://huggingface.co/ltrctelugu

108

• There is a scope to do the experiments with multiple Indian languages and then compare
the results. We cannot compare as no existing datasets are available for these tasks in
other languages. There is scope to compare the experimental results in a multi-lingual
setting.

9.4 Future Work

The proposed work has many directions for future work, a few of them are as follows:

• We want to include datasets for more fine-grained tasks like aspect-based sentiment analy-
sis, target aspect-based sentiment analysis, fine-grained emotion identification, fake news
detection, bizarre news detection, and so on.

• One aspect is how easily we can map any natural language tasks into a human-readable
prompted form, which should lead to zero-shot generalization.

• It would be interesting to perform cross-task generalization on unseen datasets by adding
more task instructions to each dataset.

• We would like to evaluate how the knowledge transfer from Telugu helps the other Dra-
vidian languages.

• Experiments can reveal the understanding of what each layer of the pre-trained language
model learns related to the structure of the Telugu language.

• Experiments to conduct the interpretability of pre-trained language models where the
language model is different w.r.t to each fine-tuned task.

109

Bibliography

[1] M. Abdul-Mageed and L. Ungar. Emonet: Fine-grained emotion detection with gated recurrent

neural networks. In Proceedings of the 55th annual meeting of the association for computational

linguistics (volume 1: Long papers), pages 718–728, 2017.
[2] A. Agrawal. Clickbait detection using deep learning. In 2016 2nd International Conference on

Next Generation Computing Technologies (NGCT), pages 268–272. IEEE, 2016.
[3] S. Amir, B. C. Wallace, H. Lyu, and P. C. M. J. Silva. Modelling context with user embeddings

for sarcasm detection in social media. arXiv preprint arXiv:1607.00976, 2016.
[4] R. T. Anchiêta, F. A. R. Neto, R. F. de Sousa, and R. S. Moura. Using stylometric features for

sentiment classification. In International Conference on Intelligent Text Processing and Compu-

tational Linguistics, pages 189–200. Springer, 2015.
[5] S. Arulmozi and M. K. Murty. Building telugu wordnet using expansion approach. In The WordNet

in Indian Languages, pages 201–208. Springer, 2017.
[6] S. Baccianella, A. Esuli, and F. Sebastiani. Sentiwordnet 3.0: an enhanced lexical resource for

sentiment analysis and opinion mining.
[7] Y. Bao, Q. Ma, L. Wei, W. Zhou, and S. Hu. Multi-granularity semantic aware graph model for

reducing position bias in emotion-cause pair extraction. arXiv preprint arXiv:2205.02132, 2022.
[8] F. Barbieri, H. Saggion, and F. Ronzano. Modelling sarcasm in twitter, a novel approach. In

Proceedings of the 5th Workshop on Computational Approaches to Subjectivity, Sentiment and

Social Media Analysis, pages 50–58, 2014.
[9] J. Bastings, I. Titov, W. Aziz, D. Marcheggiani, and K. Sima’an. Graph convolutional encoders

for syntax-aware neural machine translation. In Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing, pages 1957–1967, 2017.
[10] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,

A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al. Relational inductive biases, deep learning,

and graph networks. arXiv preprint arXiv:1806.01261, 2018.
[11] K. Bauman, B. Liu, and A. Tuzhilin. Aspect based recommendations: Recommending items

with the most valuable aspects based on user reviews. In Proceedings of the 23rd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 717–725. ACM, 2017.

110

[12] P. Biyani, K. Tsioutsiouliklis, and J. Blackmer. ” 8 amazing secrets for getting more clicks”:

Detecting clickbaits in news streams using article informality. In Thirtieth AAAI Conference on

Artificial Intelligence, 2016.
[13] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with subword

information. Transactions of the Association for Computational Linguistics, 5:135–146, 2017.
[14] E. Brill, S. Dumais, and M. Banko. An analysis of the askmsr question-answering system. In Pro-

ceedings of the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP

2002), pages 257–264, 2002.
[15] P. Burnap and M. L. Williams. Cyber hate speech on twitter: An application of machine classifi-

cation and statistical modeling for policy and decision making. Policy & Internet, 7(2):223–242,

2015.
[16] P. Burnap and M. L. Williams. Us and them: identifying cyber hate on twitter across multiple

protected characteristics. EPJ Data science, 5(1):11, 2016.
[17] R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.
[18] A. Chakraborty, B. Paranjape, S. Kakarla, and N. Ganguly. Stop clickbait: Detecting and pre-

venting clickbaits in online news media. In 2016 ieee/acm international conference on advances

in social networks analysis and mining (asonam), pages 9–16. IEEE, 2016.
[19] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: synthetic minority

over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.
[20] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd

acm sigkdd international conference on knowledge discovery and data mining, pages 785–794.

ACM, 2016.
[21] Z. Chen, N. Ma, and B. Liu. Lifelong learning for sentiment classification. arXiv preprint

arXiv:1801.02808, 2018.
[22] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties of neural machine

translation: Encoder–decoder approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax,

Semantics and Structure in Statistical Translation, pages 103–111, 2014.
[23] Y. Choi and C. Cardie. Learning with compositional semantics as structural inference for sub-

sentential sentiment analysis. In Proceedings of the 2008 Conference on Empirical Methods in

Natural Language Processing, pages 793–801, 2008.
[24] N. Choudhary, R. Singh, I. Bindlish, and M. Shrivastava. Sentiment analysis of code-mixed

languages leveraging resource rich languages. arXiv preprint arXiv:1804.00806, 2018.
[25] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural

networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.
[26] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning. Electra: Pre-training text encoders as

discriminators rather than generators. arXiv preprint arXiv:2003.10555, 2020.

111

[27] T. Cohn and P. Blunsom. Semantic role labelling with tree conditional random fields. 2005.

[28] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek, F. Guzmán, É. Grave, M. Ott,

L. Zettlemoyer, and V. Stoyanov. Unsupervised cross-lingual representation learning at scale. In

Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages

8440–8451, 2020.

[29] A. Conneau and G. Lample. Cross-lingual language model pretraining. In Advances in Neural

Information Processing Systems, pages 7057–7067, 2019.

[30] O. P. Damani. Improving pointwise mutual information (pmi) by incorporating significant co-

occurrence. In Proceedings of the Seventeenth Conference on Computational Natural Language

Learning, pages 20–28, 2013.

[31] A. Das and S. Bandyopadhyay. Sentiwordnet for indian languages. In Proceedings of the Eighth

Workshop on Asian Language Resouces, pages 56–63, 2010.

[32] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs with

fast localized spectral filtering. In Advances in Neural Information Processing Systems, pages

3844–3852, 2016.

[33] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[34] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Multilingual bert -r.

https://github.com/google-research/bert/blob/master/multilingual.md, 2018.

[35] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional trans-

formers for language understanding. In Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume

1 (Long and Short Papers), pages 4171–4186, 2019.

[36] J. C. S. Dos Rieis, F. B. de Souza, P. O. S. V. de Melo, R. O. Prates, H. Kwak, and J. An. Breaking

the news: First impressions matter on online news. In Ninth International AAAI conference on

web and social media, 2015.

[37] M. Dragoni and G. Petrucci. A neural word embeddings approach for multi-domain sentiment

analysis. IEEE Transactions on Affective Computing, 8(4):457–470, 2017.

[38] P. Ekman. An argument for basic emotions. Cognition & emotion, 6(3-4):169–200, 1992.

[39] A. Esuli and F. Sebastiani. Sentiwordnet: A publicly available lexical resource for opinion mining.

In LREC, volume 6, pages 417–422. Citeseer, 2006.

[40] B. Felbo, A. Mislove, A. Søgaard, I. Rahwan, and S. Lehmann. Using millions of emoji occurrences

to learn any-domain representations for detecting sentiment, emotion and sarcasm. arXiv preprint

arXiv:1708.00524, 2017.

112

[41] B. Felbo, A. Mislove, A. Søgaard, I. Rahwan, and S. Lehmann. Using millions of emoji occurrences

to learn any-domain representations for detecting sentiment, emotion and sarcasm. In Conference

on Empirical Methods in Natural Language Processing (EMNLP), 2017.

[42] R. R. R. Gangula and R. Mamidi. Resource creation towards automated sentiment analysis in

telugu (a low resource language) and integrating multiple domain sources to enhance sentiment

prediction. In Proceedings of the Eleventh International Conference on Language Resources and

Evaluation (LREC 2018), 2018.

[43] N. D. Gitari, Z. Zuping, H. Damien, and J. Long. A lexicon-based approach for hate speech

detection. International Journal of Multimedia and Ubiquitous Engineering, 10(4):215–230, 2015.

[44] A. Go, R. Bhayani, and L. Huang. Twitter sentiment classification using distant supervision.

[45] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages

855–864, 2016.

[46] C. Hadiwinoto, H. T. Ng, and W. C. Gan. Improved word sense disambiguation using pre-trained

contextualized word representations. arXiv preprint arXiv:1910.00194, 2019.

[47] T. Hartvigsen, S. Gabriel, H. Palangi, M. Sap, D. Ray, and E. Kamar. Toxigen: A large-scale

machine-generated dataset for adversarial and implicit hate speech detection. arXiv preprint

arXiv:2203.09509, 2022.

[48] B. Heinzerling and M. Strube. BPEmb: Tokenization-free Pre-trained Subword Embeddings in 275

Languages. In Proceedings of the Eleventh International Conference on Language Resources and

Evaluation (LREC 2018), Miyazaki, Japan, May 7-12, 2018 2018. European Language Resources

Association (ELRA).

[49] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780,

1997.

[50] M. Hu and B. Liu. Mining and summarizing customer reviews. In Proceedings of the tenth ACM

SIGKDD international conference on Knowledge discovery and data mining, pages 168–177. ACM,

2004.

[51] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts.

Neural computation, 3(1):79–87, 1991.

[52] M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural

computation, 6(2):181–214, 1994.

[53] M. I. Jordan and L. Xu. Convergence results for the em approach to mixtures of experts archi-

tectures. Neural Networks, 8(9):1409–1431, 1995.

[54] A. Joshi, P. Bhattacharyya, and M. J. Carman. Automatic sarcasm detection: A survey. ACM

Computing Surveys (CSUR), 50(5):1–22, 2017.

113

[55] A. Joshi, V. Tripathi, K. Patel, P. Bhattacharyya, and M. Carman. Are word embedding-based

features useful for sarcasm detection? In Proceedings of the 2016 Conference on Empirical Methods

in Natural Language Processing, pages 1006–1011, 2016.

[56] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. Bag of tricks for efficient text classification.

arXiv preprint arXiv:1607.01759, 2016.

[57] D. Kakwani, A. Kunchukuttan, S. Golla, N. Gokul, A. Bhattacharyya, M. M. Khapra, and P. Ku-

mar. inlpsuite: Monolingual corpora, evaluation benchmarks and pre-trained multilingual lan-

guage models for indian languages. In Proceedings of the 2020 Conference on Empirical Methods

in Natural Language Processing: Findings, pages 4948–4961, 2020.

[58] N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A convolutional neural network for modelling

sentences. In Proceedings of the 52nd Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 655–665, 2014.

[59] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. Lightgbm: A highly

efficient gradient boosting decision tree. In Advances in Neural Information Processing Systems,

pages 3146–3154, 2017.

[60] H.-Y. Kim. Analysis of variance (anova) comparing means of more than two groups. Restorative

dentistry & endodontics, 39(1):74–77, 2014.

[61] S.-M. Kim and E. Hovy. Determining the sentiment of opinions. In Proceedings of the 20th

international conference on Computational Linguistics, page 1367. Association for Computational

Linguistics, 2004.

[62] Y. Kim. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882,

2014.

[63] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[64] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,

2013.

[65] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.

arXiv preprint arXiv:1609.02907, 2016.

[66] T. N. Kipf and M. Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,

2016.

[67] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and S. Fidler. Skip-

thought vectors. In Advances in neural information processing systems, pages 3294–3302, 2015.

[68] R. Kshirsagar, T. Cukuvac, K. McKeown, and S. McGregor. Predictive embeddings for hate

speech detection on twitter. arXiv preprint arXiv:1809.10644, 2018.

114

[69] S. Kumar, A. Kulkarni, M. S. Akhtar, and T. Chakraborty. When did you become so smart, oh wise

one?! sarcasm explanation in multi-modal multi-party dialogues. arXiv preprint arXiv:2203.06419,

2022.

[70] G. Lample and A. Conneau. Cross-lingual language model pretraining. Advances in Neural

Information Processing Systems (NeurIPS), 2019.

[71] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut. Albert: A lite bert for

self-supervised learning of language representations. arXiv preprint arXiv:1909.11942, 2019.

[72] T. T. Le, W. Fu, and J. H. Moore. Scaling tree-based automated machine learning to biomedical

big data with a feature set selector. Bioinformatics, 36(1):250–256, 2020.

[73] Z. Li, F. Tang, M. Zhao, and Y. Zhu. Emocaps: Emotion capsule based model for conversational

emotion recognition. arXiv preprint arXiv:2203.13504, 2022.

[74] P. Liu, X. Qiu, and X. Huang. Recurrent neural network for text classification with multi-

task learning. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial

Intelligence, pages 2873–2879, 2016.

[75] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,

and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint

arXiv:1907.11692, 2019.

[76] Y. Liu, Y. Wang, A. Sun, Z. Zhang, J. Guo, and X. Meng. A dual-channel framework for sarcasm

recognition by detecting sentiment conflict. arXiv preprint arXiv:2109.03587, 2021.

[77] D. Marcheggiani and I. Titov. Encoding sentences with graph convolutional networks for semantic

role labeling. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language

Processing, pages 1506–1515, 2017.

[78] M. Marreddy, S. R. Oota, L. S. Vakada, V. C. Chinni, and R. Mamidi. Clickbait detection in

telugu: Overcoming nlp challenges in resource-poor languages using benchmarked techniques. In

2021 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2021.

[79] R. Mihalcea and C. Strapparava. Lyrics, music, and emotions. In Proceedings of the 2012 Joint

Conference on Empirical Methods in Natural Language Processing and Computational Natural

Language Learning, pages 590–599. Association for Computational Linguistics, 2012.

[80] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations

of words and phrases and their compositionality. In Advances in neural information processing

systems, pages 3111–3119, 2013.

[81] S. Mohammad and F. Bravo-Marquez. Emotion intensities in tweets. In Proceedings of the 6th

Joint Conference on Lexical and Computational Semantics (* SEM 2017), pages 65–77, 2017.

[82] S. M. Mohammad, S. Kiritchenko, and X. Zhu. Nrc-canada: Building the state-of-the-art in

sentiment analysis of tweets. arXiv preprint arXiv:1308.6242, 2013.

115

[83] S. M. Mohammad and P. D. Turney. Emotions evoked by common words and phrases: Using

mechanical turk to create an emotion lexicon. In Proceedings of the NAACL HLT 2010 workshop on

computational approaches to analysis and generation of emotion in text, pages 26–34. Association

for Computational Linguistics, 2010.

[84] S. M. Mohammad and P. D. Turney. Crowdsourcing a word–emotion association lexicon. Com-

putational Intelligence, 29(3):436–465, 2013.

[85] K. Moilanen and S. Pulman. Sentiment composition. 2007.

[86] S. S. Mukku and R. Mamidi. Actsa: Annotated corpus for telugu sentiment analysis. In Proceedings

of the First Workshop on Building Linguistically Generalizable NLP Systems, pages 54–58, 2017.

[87] S. S. Mukku, S. R. Oota, and R. Mamidi. Tag me a label with multi-arm: Active learning for

telugu sentiment analysis. In International Conference on Big Data Analytics and Knowledge

Discovery, pages 355–367. Springer, 2017.

[88] A. Nandy. Beyond words: Pictograms for indian languages.

[89] F. Å. Nielsen. A new anew: Evaluation of a word list for sentiment analysis in microblogs. arXiv

preprint arXiv:1103.2903, 2011.

[90] C. Nobata, J. Tetreault, A. Thomas, Y. Mehdad, and Y. Chang. Abusive language detection in

online user content. In Proceedings of the 25th international conference on world wide web, pages

145–153, 2016.

[91] S. J. Nowlan and G. E. Hinton. Evaluation of adaptive mixtures of competing experts. In Advances

in neural information processing systems, pages 774–780, 1991.

[92] B. Pang and L. Lee. Seeing stars: Exploiting class relationships for sentiment categorization with

respect to rating scales. In Proceedings of ACL, pages 115–124, 2005.

[93] S. Parupalli, V. A. Rao, and R. Mamidi. Bcsat: A benchmark corpus for sentiment analysis in

telugu using word-level annotations. In Proceedings of ACL 2018, Student Research Workshop,

pages 99–104, 2018.

[94] S. Parupalli and N. Singh. Enrichment of ontosensenet: Adding a sense-annotated telugu lexicon.

arXiv preprint arXiv:1804.02186, 2018.

[95] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In

Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543, 2014.

[96] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In

Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 701–710, 2014.

[97] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer. Deep

contextualized word representations. arXiv preprint arXiv:1802.05365, 2018.

116

[98] S. Petrović, M. Osborne, and V. Lavrenko. The edinburgh twitter corpus. In Proceedings of the

NAACL HLT 2010 Workshop on Computational Linguistics in a World of Social Media, pages

25–26, 2010.

[99] R. Plutchik. The nature of emotions: Human emotions have deep evolutionary roots, a fact

that may explain their complexity and provide tools for clinical practice. American scientist,

89(4):344–350, 2001.

[100] A. Poncelas, P. Lohar, A. Way, and J. Hadley. The impact of indirect machine translation on

sentiment classification. arXiv preprint arXiv:2008.11257, 2020.

[101] M. Potthast, S. Köpsel, B. Stein, and M. Hagen. Clickbait detection. In European Conference on

Information Retrieval, pages 810–817. Springer, 2016.

[102] Q. Qian, M. Huang, J. Lei, and X. Zhu. Linguistically regularized lstms for sentiment classification.

arXiv preprint arXiv:1611.03949, 2016.

[103] A. Radford, R. Jozefowicz, and I. Sutskever. Learning to generate reviews and discovering senti-

ment. arXiv preprint arXiv:1704.01444, 2017.

[104] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language understanding

by generative pre-training. 2018.

[105] J. Ramos et al. Using tf-idf to determine word relevance in document queries. In Proceedings of

the first instructional conference on machine learning, volume 242, pages 133–142. Piscataway,

NJ, 2003.

[106] A. Ramponi and S. Tonelli. Features or spurious artifacts? data-centric baselines for fair and

robust hate speech detection. In Proceedings of the 2022 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Technologies, pages

3027–3040. Association for Computational Linguistics, 2022.

[107] A. J. Reagan, L. Mitchell, D. Kiley, C. M. Danforth, and P. S. Dodds. The emotional arcs of

stories are dominated by six basic shapes. EPJ Data Science, 5(1):31, 2016.

[108] M. T. Ribeiro, S. Singh, and C. Guestrin. ” why should i trust you?” explaining the predictions

of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge

discovery and data mining, pages 1135–1144, 2016.

[109] G. D. Ruxton and G. Beauchamp. Time for some a priori thinking about post hoc testing.

Behavioral ecology, 19(3):690–693, 2008.

[110] V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled version of bert: smaller,

faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[111] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, and M. Welling. Modeling

relational data with graph convolutional networks. In European Semantic Web Conference, pages

593–607. Springer, 2018.

117

[112] R. Sharma, A. Somani, L. Kumar, and P. Bhattacharyya. Sentiment intensity ranking among

adjectives using sentiment bearing word embeddings. In Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Processing, pages 547–552, 2017.
[113] W. Shi, F. Li, J. Li, H. Fei, and D. Ji. Effective token graph modeling using a novel labeling

strategy for structured sentiment analysis. arXiv preprint arXiv:2203.10796, 2022.
[114] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts. Recursive

deep models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013

conference on empirical methods in natural language processing, pages 1631–1642, 2013.
[115] J. Staiano and M. Guerini. Depeche mood: a lexicon for emotion analysis from crowd annotated

news. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics

(Volume 2: Short Papers), volume 2, pages 427–433, 2014.
[116] S. Stieglitz and L. Dang-Xuan. Emotions and information diffusion in social media—sentiment

of microblogs and sharing behavior. Journal of management information systems, 29(4):217–248,

2013.
[117] P. J. O. Suárez, B. Sagot, and L. Romary. Asynchronous pipeline for processing huge corpora on

medium to low resource infrastructures. In 7th Workshop on the Challenges in the Management

of Large Corpora (CMLC-7). Leibniz-Institut für Deutsche Sprache, 2019.
[118] R. S. Swier and S. Stevenson. Exploiting a verb lexicon in automatic semantic role labelling. In

Proceedings of Human Language Technology Conference and Conference on Empirical Methods in

Natural Language Processing, pages 883–890, 2005.
[119] D. Tang, B. Qin, X. Feng, and T. Liu. Effective lstms for target-dependent sentiment classification.

In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics:

Technical Papers, pages 3298–3307, 2016.
[120] D. Tang, B. Qin, and T. Liu. Document modeling with gated recurrent neural network for

sentiment classification. In Proceedings of the 2015 conference on empirical methods in natural

language processing, pages 1422–1432, 2015.
[121] K. Tayal, N. Rao, S. Agrawal, and K. Subbian. Short text classification using graph convolutional

network. In NIPS workshop on Graph Representation Learning, 2019.
[122] R. Tokuhisa, K. Inui, and Y. Matsumoto. Emotion classification using massive examples extracted

from the web. In Proceedings of the 22nd International Conference on Computational Linguistics-

Volume 1, pages 881–888. Association for Computational Linguistics, 2008.
[123] M. Tummalapalli, M. Chinnakotla, and R. Mamidi. Towards better sentence classification for

morphologically rich languages. 2018.
[124] P. D. Turney. Thumbs up or thumbs down?: semantic orientation applied to unsupervised clas-

sification of reviews. In Proceedings of the 40th annual meeting on association for computational

linguistics, pages 417–424. Association for Computational Linguistics, 2002.

118

[125] B. Varshit, B. V. Vishal, D. M. M. K. Reddy, and R. Mamidi. Sentiment as a prior for movie

rating prediction. In Proceedings of the 2nd International Conference on Innovation in Artificial

Intelligence, pages 148–153, 2018.
[126] H. M. Wallach. Topic modeling: beyond bag-of-words. In Proceedings of the 23rd international

conference on Machine learning, pages 977–984, 2006.
[127] Z. Waseem and D. Hovy. Hateful symbols or hateful people? predictive features for hate speech

detection on twitter. In Proceedings of the NAACL student research workshop, pages 88–93, 2016.
[128] T. Wilson, J. Wiebe, and P. Hoffmann. Recognizing contextual polarity in phrase-level sentiment

analysis. In Proceedings of the conference on human language technology and empirical methods

in natural language processing, pages 347–354. Association for Computational Linguistics, 2005.
[129] H. Wu and X. Shi. Adversarial soft prompt tuning for cross-domain sentiment analysis. In

Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 2438–2447, 2022.
[130] S. Wu and M. Dredze. Are all languages created equal in multilingual bert? In Proceedings of the

5th Workshop on Representation Learning for NLP, pages 120–130, 2020.
[131] L. Xiao, H. Zhang, and W. Chen. Gated multi-task network for text classification. In Proceedings

of the 2018 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages 726–731, 2018.
[132] C. Xiong, S. Merity, and R. Socher. Dynamic memory networks for visual and textual question

answering. In International conference on machine learning, pages 2397–2406, 2016.
[133] C. Yang, K. H.-Y. Lin, and H.-H. Chen. Building emotion lexicon from weblog corpora. In Pro-

ceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion

Volume Proceedings of the Demo and Poster Sessions, pages 133–136, 2007.
[134] L. Yao, C. Mao, and Y. Luo. Graph convolutional networks for text classification. In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 33, pages 7370–7377, 2019.
[135] S.-J. Yen and Y.-S. Lee. Under-sampling approaches for improving prediction of the minority

class in an imbalanced dataset. In Intelligent Control and Automation, pages 731–740. Springer,

2006.
[136] A. Yessenalina, Y. Yue, and C. Cardie. Multi-level structured models for document-level sentiment

classification. In Proceedings of the 2010 conference on empirical methods in natural language

processing, pages 1046–1056. Association for Computational Linguistics, 2010.
[137] W. Yin and H. Schütze. Learning word meta-embeddings. In Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1351–

1360, 2016.
[138] H.-F. Yu, F.-L. Huang, and C.-J. Lin. Dual coordinate descent methods for logistic regression and

maximum entropy models. Machine Learning, 85(1-2):41–75, 2011.

119

[139] L.-C. Yu, J. Wang, K. R. Lai, and X. Zhang. Refining word embeddings for sentiment analysis.

In Proceedings of the 2017 conference on empirical methods in natural language processing, pages

534–539, 2017.

[140] S. E. Yuksel, J. N. Wilson, and P. D. Gader. Twenty years of mixture of experts. IEEE transactions

on neural networks and learning systems, 23(8):1177–1193, 2012.

[141] L. Zhang, S. Wang, and B. Liu. Deep learning for sentiment analysis: A survey. Wiley Interdis-

ciplinary Reviews: Data Mining and Knowledge Discovery, 8(4):e1253, 2018.

[142] M. Zhang, Y. Zhang, and G. Fu. Tweet sarcasm detection using deep neural network. In Pro-

ceedings of COLING 2016, The 26th International Conference on Computational Linguistics:

Technical Papers, pages 2449–2460, 2016.

[143] X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional networks for text classification.

Advances in neural information processing systems, 28:649–657, 2015.

[144] Y. Zhang, X. Yu, Z. Cui, S. Wu, Z. Wen, and L. Wang. Every document owns its structure:

Inductive text classification via graph neural networks. arXiv preprint arXiv:2004.13826, 2020.

[145] Z. Zhang, D. Robinson, and J. Tepper. Detecting hate speech on twitter using a convolution-gru

based deep neural network. In European semantic web conference, pages 745–760. Springer, 2018.

[146] H. Zhao, Z. Lu, and P. Poupart. Self-adaptive hierarchical sentence model. In Twenty-Fourth

International Joint Conference on Artificial Intelligence, 2015.

[147] J. Zhao, M. Liu, L. Gao, Y. Jin, L. Du, H. Zhao, H. Zhang, and G. Haffari. Summpip: Unsuper-

vised multi-document summarization with sentence graph compression. In Proceedings of the 43rd

International ACM SIGIR Conference on Research and Development in Information Retrieval,

pages 1949–1952, 2020.

[148] P. Zhou, Z. Qi, S. Zheng, J. Xu, H. Bao, and B. Xu. Text classification improved by integrating

bidirectional lstm with two-dimensional max pooling. arXiv preprint arXiv:1611.06639, 2016.

[149] Z.-H. Zhou and J. Feng. Deep forest: Towards an alternative to deep neural networks. arXiv

preprint arXiv:1702.08835, 2017.

[150] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler. Aligning

books and movies: Towards story-like visual explanations by watching movies and reading books.

In The IEEE International Conference on Computer Vision (ICCV), December 2015.

120

	Introduction
	Text Classification
	Observations and Research Issues
	Observations
	Research Issues

	Research Methodology
	Overview of the Thesis
	About the Problem Statement
	Understanding the Intensity of Tweets using Feature Representations
	Evaluating the Feature Representations
	General Annotation Schema for NLP Tasks in Telugu
	TEL-NLP Dataset and Multi-task GCN for Text Classification
	Datasets, Embeddings, and Models for Text Classification Tasks
	Dataset, Embeddings, and Models for Clickbait Detection

	Contributions of the Thesis
	Organization of the Thesis

	Related Work
	Feature Representation Methods
	Lexicon Based Features
	Traditional Feature Representation Methods
	Bag-of-Words (BoW)
	TF-IDF
	Words Co-Occurrence Features
	Co-Occurrence Matrix Construction

	Word Embedding Representations
	Word2Vec
	Shortcomings of Earlier Approaches
	Contributions of Word2Vec
	Model Architectures

	GloVe
	Contributions
	Model Architecture

	FastText

	Sentence Embedding Representations
	Skip-Thought Vectors
	Skip-Thought Model Training Details

	Contextual Word Representations
	ELMo (Deep contextualized word representations)
	Limitations with Previous Methods
	Contributions of ELMo

	BERT (Pre-training of Deep Bidirectional Transformers for Language Understanding)
	Problem with Previous Methods
	Contributions of BERT
	BERT Model Framework
	Input/Output Representations

	Text Classification Tasks in English Language
	Sentiment Analysis
	Emotion Identification
	Hate-speech Detection
	Sarcasm Detection
	Clickbait Detection

	Text Classification Tasks for Telugu Language
	Deep Learning for Multi-task Text Classification
	Sentiment Analysis in the Telugu Language
	Telugu Pre-trained Embeddings

	Differentiater of the Proposed Approaches
	Summary

	Affect in Tweets using Experts Model
	Background
	Dataset Description
	Approach
	MoE Description
	Our Proposed Approach

	Preprocessing and Feature Extraction
	Deep-Emoji Features
	Word-Embedding Features
	Skip-Thought Features
	Lexicon Features
	Hash-tag Intensity Features
	Stylometric Features
	Unsupervised Sentiment Neuron Features

	Experimental Setup and Results
	Training Strategy
	Results
	Metrics

	Conclusion

	Evaluating Word Representations with Sentiment Analysis
	Background
	Model Architecture
	MoCE Architecture
	Multigrained gcForest Architecture

	Experimental Setup
	Dataset Description
	Feature Extraction
	Training Strategy

	Results and Discussion
	Evaluation of Embeddings using MoCE
	Polarity Identification using gcForest

	Conclusion

	General Annotation Schema for Five NLP Tasks in Telugu
	Telugu Raw Corpus Creation
	Data Annotation process
	Annotation Guidelines for Five Tasks in Telugu
	Telugu Sentiment Analysis (SA):
	Telugu Emotion Identification (EI):
	Telugu Hate-speech Detection (HS):
	Telugu Sarcasm Detection (SAR):
	Telugu Clickbait Detection:

	Annotation Tool
	Annotators Fair Compensation:
	Summary

	TEL-NLP Dataset and Multi-task GCN for Text Classification
	Background
	TEL-NLP Dataset Details
	Proposed Method
	GCN and Graph AutoEncoder
	Multi-task Text GCN (MT-Text GCN)
	Building Text Graph

	Experimental Setup and Results
	Baselines
	Telugu Word Embeddings
	Deep Learning Methods
	Random Walk based Representations
	Graph based Representations
	Model Setup

	Results and Analysis
	Graph based Node Embeddings
	Qualitative Analysis
	Quantitative Analysis
	Error Analysis

	Summary

	Datasets, Embeddings, and Models for Text Classification Tasks
	Background
	Dataset Description
	Corpus Collection Process
	Data Pre-processing
	Data Statistics

	Feature Representation Methods
	Baseline Feature Representations
	Building Telugu Lexicon Features
	Extraction of Telugu Lexicon Features
	Telugu Bag-of-Words Representation
	Telugu TF-IDF Representation

	Generation of Telugu Word Embeddings
	Word2Vec-Telugu (Word2Vec-Te)
	GloVe-Telugu (Glove-Te)
	FastText-Telugu (FastText-Te)
	Meta-Embeddings-Telugu (Meta-Embeddings-Te)
	Qualitative Analysis of Telugu Word-Embeddings

	Telugu Sentence Level Embeddings
	Telugu Skip-Thought Representations (Skip-Thought-Te)
	Telugu ELMo Embeddings (ELMo-Te)

	Telugu Transformer Models
	BERT-Telugu (BERT-Te):
	RoBERTa-Telugu (RoBERTa-Te):
	ALBERT-Telugu (ALBERT-Te):
	DistilBERT-Telugu (DistilBERT-Te):

	Experimental Setup and Methods Training
	Logistic Regression Training
	Imbalanced Dataset Handling
	LSTM Method Training
	Challenging Tasks
	Fine-tuning of Pretrained Transformers
	Dataset Splitting
	Model Training Details

	Telugu Pretrained Word and Sentence Embeddings
	Text Classification Evaluation
	Error Analysis

	LSTM Model Results:
	Comparison of Telugu Pretrained Transformers with mBERT, XLM-R, and IndicBERT
	Do Linear Probing on Telugu Pretrained Transformers Outperform the existing Multilingual Language Models?
	Do Fine-tuning of Telugu Pretrained Transformers Outperform the Existing Multilingual Language Models?
	Do Telugu Pretrained Transformer Models Outperform the State-of-the-art Telugu Datasets?
	Performance on the Three Datasets

	Ethical Statement
	Privacy Concerns of Crawled Data
	Social Impact
	Summary

	Dataset, Embeddings and Models for Clickbait Detection
	Background
	A New Dataset for Detecting Clickbait in Telugu
	Feature Representation Methods
	Traditional Features
	Hand-Crafted Features
	Distributed Word Representations
	Skip-Thought Sentence Vectors
	Context Level Features

	Methodologies
	Experiments and Results
	Results and Analysis
	Comparative Analysis
	Error Analysis
	LIME Results
	Statistical Analysis

	Summary

	Summary, Conclusions and Future Work
	Summary
	Conclusions
	Limitations
	Future Work

	Bibliography

