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Abstract

Multi-agent systems (MAS) are distributed systems composed of multiple autonomous

agents interacting to achieve a common or conflicting goal. MAS tackles complex and

dynamic problems that a single agent cannot solve, resulting in better problem-solving

skills, enhanced reliability, and improved scalability. This thesis explores the challenges

facing MAS, particularly related to their game-theoretic, fairness, security, and privacy

guarantees.

A game-theoretically sound MAS is one where the agent interaction can be modeled

as a game and analyzed using game-theoretic concepts. This leads to a more stable and

efficient system, as agents are incentivized to make decisions that align with the system

goals. This thesis focuses on civic crowdfunding, a method for raising funds through

voluntary contributions for public projects (e.g., public parks). Our work enriches the

existing literature by designing more inclusive mechanisms and providing fairer rewards

and efficiency over the blockchain.

Fairness is also an essential aspect of MAS as it ensures that the actions and outcomes

of agents are equitable and just, resulting in MAS’s long-term stability and sustainability.

This thesis looks at fair incentives in Transaction Fee Mechanisms (TFM). Blockchains

employ TFMs to include transactions from the set of outstanding transactions in a block.

We argue that existing TFMs’ incentives are misaligned for a cryptocurrency’s greater

market adoption. We propose TFMs that provide fairer rewards to the transaction creators

and minimize the surplus collected to the creators.
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Last, security and privacy are crucial aspects of MAS, as the autonomy and decentral-

ization of agents in MAS can lead to the exposure of sensitive information. In this thesis,

we specifically focus on privacy guarantees for MAS like (i) auctions, (ii) voting, and (iii)

distributed constraint optimization (DCOPs). We propose privacy-preserving applications

that preserve agents’ sensitive information while proving the computation’s verifiability.
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Chapter 1

Introduction

“Multiagent systems seem to be a natural metaphor for understanding

and building a wide range of what we might crudely call artificial social

systems.”

– Michael Wooldridge [298]

“Privacy is not an option, and it shouldn’t be the price we accept for

just getting on the Internet.”

– Gary Kovacs (CEO of Accela, former CEO of Mozilla Corporation)

⋆ ⋆ ⋆ ⋆ ⋆

Artificial Intelligence (AI) has become an integral part of our lives, influencing various

aspects and bringing about significant changes. AI impacts our daily lives in several ways,

including the smart devices we wear and the personal assistants we interact with through

recommendations, cybersecurity, e-learning, language translation, and many, many more.

Research in AI generally focuses on developing theories, techniques, and systems of one

or more cognitive entities [269]. Over the last several decades, AI systems have matured,

tackling complex and more realistic problems well beyond the scope of an individual agent.
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Figure 1.1: Representative real-world Applications of Multi-agent Systems. These include

automated trading systems (image credit: [282]), distributed sensor networks (image credit:

[277]), commercial games (image credit: [11]), and air-traffic management systems (image

credit: [96]).

An AI agent’s capacity is limited by its knowledge, computational resources, and perspec-

tive [269]. Simon [259] refers to this limitation as bounded rationality; this remains one

of the key reasons for creating problem-solving organizations. Modularity and abstraction

are powerful tools by which one can tackle complex problems.

1.1 Motivation

Such complex problem-solving organizations comprise dynamic environments where sev-

eral agents interact, influencing each other actions and outcomes. These entities, whether

individuals, organizations, or AI agents, contribute to a larger system where their decisions
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impact themselves and the overall dynamics. Such systems are ubiquitous in modern times,

including but not limited to traffic management, robotics, social networks, emergency re-

sponses, and financial markets.

1.1.1 Real-world Applications

Figure 1.1 provides an overview of some of these applications. We will describe some of

them in detail next.

1 Automated Trading Systems:

Automated trading systems, where each trader is an autonomous agent interacting

with other agents and the market to make trading decisions [23, 171, 238]. The agents

can include market-making, trend-following, or mean-reverting agents. These agents can

buy and sell stocks, bonds, commodities, or currencies based on market conditions, risk

preferences, and trading strategies.

2 Distributed Sensor Networks:

Distributed sensor networks are networks comprising sensors as agents that can com-

municate with other sensors and perform tasks such as data collection, processing, and

fusion [35, 170, 279]. The study of distributed sensor networks under the lens of agents

interacting with each other in a dynamic environment is particularly relevant in applica-

tions like environmental monitoring, smart cities, surveillance, and industrial automation,

where real-time data collection, analysis, and decision-making are critical.

3 Commercial Games:

Video games are applications incorporating design patterns reminiscent of virtual dy-

namic environments. Entities like game objects or actors function as autonomous agents,

engaging in interactions with one another to simulate intricate systems. These agents

can interact with fellow characters and the environment, aiming to accomplish objectives,

express emotions, and craft immersive experiences [122, 186].

4 Air-traffic Control Systems:

3



Figure 1.2: The Contract Net Protocol (image credit: [64])

Air traffic control systems are services that provide guidance to aircraft in controlled

airspaces and information and support to pilots in uncontrolled airspaces. Such control

systems aim to ensure safety, order, and efficiency for air traffic. We can imagine these

as systems where each aircraft is an agent that can negotiate with other aircraft and

ground stations to coordinate flight plans, avoid collisions, and optimize route and fuel

consumption [37, 176, 210].

Next, we will examine classic case studies of such complex systems with multiple inter-

acting agents.
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1.1.2 Case Study: The Contract Net Protocol

The Contract Net Protocol, introduced by Smith [261] in 1980, is probably one of

the earliest protocols to propose a distributed solution for task allocation among a group

of autonomous agents. Task allocation is a common problem in various domains, such as

distributed and/or cloud computing, manufacturing units, smart grids, and even search and

rescue operations. The Contract Net Protocol provides a communication channel between

the manager and the agents it wishes to allocate the tasks to (referred to as “contractors”).

The manager proposes tasks to the participating contractors. These contractors send

“proposals” to the manager based on which the manager chooses the allocations. Figure 1.2

depicts an illustration of the protocol.

The success of the Contract Net Protocol was instrumental in driving research in sys-

tems with multiple interacting agents. The protocol’s ability to facilitate decentralized

task allocation in multi-agent environments inspired further exploration into enhancing

cooperation and coordination among autonomous agents. Furthermore, introducing game

theory to these systems sparked interest in negotiation strategies without direct human

intervention. This found practical applications in various domains, with e-commerce being

a classic example [213].

1.1.3 Case Study: Llotja (a fish market) of Blanes

In the realm of online marketplaces, automated negotiation mechanisms, influenced by

the principles of the Contract Net Protocol and game theory, have been employed to op-

timize resource allocation, pricing strategies, and overall system efficiency, showcasing the

impact of these advancements in real-world scenarios. In one of the classic proposals in

1999, Noriega et al. [213] show how to take an instance of a traditional auction place, the

Llotja (a fish market) of Blanes, and convert it into a virtual and dynamic electronic fish

market. More concretely, the virtual market comprises autonomous agents – compromising

customers and vendors – that perform the functions essential for an auction. These func-

5



tions include vendor/customer and goods registration, the bidding process, good delivery,

and payment settlement.

Agents: Interacting, Coordinating, Competing. The common theme among these

applications is that the agents interact with each other, either in collaboration or competi-

tion, with their actions and decisions having repercussions on both their own trajectories

and the broader system. This “collective” behavior allows the agents to overcome com-

putational limitations due to bounded rationality, lack of resources, and perspective. The

dynamics arising from these interactions often lead to emergent behaviors and complex

system-level outcomes. To further study the nature of agents’ collective behavior, re-

searchers introduced multi-agent systems (MAS) as an area that investigates the control

and modeling of such complex systems made up of autonomous agents.

1.2 Multi-agent Systems (MAS)

The observation by Simon [259] that an individual agent is limited by its knowledge, re-

sources, and perspective (i.e., bounded rationality) hinted that to cater to complex systems,

it is essential to have modularity. Furthermore, as seen in Chapter 1.1, collaborative behav-

ior is instrumental in various practical scenarios. This motivates the study of Multi-agent

systems (MAS) that (i) offer modurality [269] and (ii) help formally study the behavior of

collaborative agents in dynamic environments. In fact, from Sycara et al. [268], an effective

way to solve a complex problem is by designing multiple functionally specific and (nearly)

modular components (aka “agents”) that specialize in solving a particular problem aspect.

The general idea of a MAS is to create a decomposition in which agents use “the most ap-

propriate paradigm for solving its particular problem” [269]. For interdependent problems,

MASs require agents to coordinate with each other to ensure that the interdependencies

get resolved.

6



1.2.1 Characteristics of MAS

The general characteristics of MAS include [269]: (i) agents have incomplete information

or ability to solve the problem (i.e., their viewpoints are limited), (ii) there is no system

of global control, (iii) data are decentralized, and (iv) computation is asynchronous. The

first characteristic ensures the underlying problem is too complex for an individual agent

to solve. The second characteristic allows room for interconnection and interpretation of

existing legacy systems. The third characteristic results in scenarios naturally regarded

as a society of autonomous and interacting agents. Last, the fourth characteristic pro-

motes solutions that use information sources that may be spatially distributed. We further

illustrate these characteristics through the following example of meeting-scheduling.

Example 1.1: Meeting-scheduling [113]

Consider the meeting-scheduling problem [113]. Each agent is a scheduler that man-

ages the calendar of its user. We have independent agents for each user in the system

that manage their calendars. Here, we have no global control and decentralized data.

The agents can also be customized to reflect the constraints or preferences of their

users. Thus, no single agent can derive an optimal schedule independently.

Meeting-scheduling is a quintessential example of a MAS [113, 269]. It highlights the

importance of collaborative agents – no single agent can derive a useful schedule on its

own. However, it also illustrates the need for the collaboration to be private. If the agents

exchange information (i.e., their users’ private calendars) in the plain, they risk leaking

sensitive user information. So, while collaboration helps an MAS reach more useful out-

comes, it is imperative that these MAS also satisfy certain desirable properties pertaining

to agent behavior and information exchange (e.g., privacy of the user information). We

will discuss some of these properties later in Chapter 1.4.

7



Figure 1.3: Overview of the Multi-agent System (MAS) applications studied in this thesis.

In particular, we look at civic crowdfunding (top-left), voting (top-right), auctions (bottom-

left), and distributed constraint optimization (bottom-right).

1.2.2 MAS: Other Real-world Applications

Post the formalization of multi-agent systems as an established research area, the dis-

tributed vehicle motoring (DVMT) [88, 89] emerged as one of its most well-known appli-

cations. In DMVT, a set of geographically distributed agents monitor the vehicles that

pass through their areas. These agents attempt to interpret what vehicles pass through the

global areas and track their movements. Other earlier examples include OASIS [177], an

agent-based air-traffic control system used in Sydney, Australia, WARREN [268] which

was a financial portfolio management system, and YAMS [227] whose aim is to efficiently

manage the production process across multiple factories that also comprise independent

components among themselves.

8



1.3 MAS: Applications In Focus

This thesis studies several practical multi-agent systems. Looking back at the meeting-

scheduling problem from Example 1.1, one may observe that the independent agents must

communicate among others to decide on an (i) “optimal” schedule that (ii) satisfies the

individual user constraints. In the MAS literature, such problems are referred to as dis-

tributed constraint optimization (DCOP) problems. In addition, we also look at a couple

of e-governance and e-commerce applications. First, civic crowdfunding, which is an ef-

fective method of using the “power of the crowd” to raise money specifically for public

projects (e.g., public parks). Second, voting, particularly general elections. Last, we look

at auctions, in particular, (i) combinatorial auctions, which involve agents bidding for

more than one subset of items among those being auctioned, and (ii) transaction fee mech-

anisms, which involve adding transactions to the next block in a blockchain from the set

of outstanding transactions. Figure 1.3 depicts these applications in terms of the agent

interaction and the application outcome. Details follow.

1.3.1 Civic Crowdfunding

In civic crowdfunding (CC), a social planner seeks voluntary contributions from indi-

viduals specifically to crowdfund public projects. Typical examples include public parks,

libraries, bridges, and other community welfare projects. It is important to note that such

public projects are (i) non-rivalrous, i.e., an agent consuming the project (e.g., using a

bridge for commute) does not decrease the amount for others, and (ii) non-excludable, i.e.,

an agent cannot be stopped from consuming the project.

Unfortunately, because of these properties, a strategic or a rational agent may prefer

not to contribute to a project. Instead, the agent may believe that the other agents may

contribute, and it can merely consume the project once it gets crowdfunded. The CC

literature refers to this lack of incentive for an agent to contribute as “free-riding” [19].

9



Thus, there is a need to design incentive mechanisms for such strategic agents to contribute

to the project.

To overcome free-riding, Zubrickas [312] proposes that the social planner provide con-

tributing agents with refunds if the project does not meet its target by its deadline. The

author’s proposal induces a game among the agents such that they are incentivized to con-

tribute. In fact, the game admits an equilibrium such that the project gets crowdfunded,

and the social planner is not required to provide refunds! In this thesis, we look at several

interesting new directions to the work by Zubrickas [312]. More concretely, we (i) relax the

restricted assumptions made on agent behavior and the information they hold, (ii) look

towards the efficiency of deploying the process over blockchain [203, 297], and (iii) extend

the theory for the multi-project or combinatorial case. For further details, we refer the

reader to Chapter 1.5.2.1, Chapter 1.5.2.2, Chapter 1.5.2.3 and Chapter 1.5.2.4.

1.3.2 Voting

Elections play a vital role in democratic governance, allowing societies to select rep-

resentatives when direct democracy isn’t feasible. Modern representative democracies

have employed elections since the 17th century, allowing eligible citizens to participate

in decision-making by casting their votes. The key to designing a fair election is ensuring

that voters can freely express their preferences.

A natural method to design such fair elections is to ensure (i) voter anonymity, (ii)

vote concealment, (iii) vote immutability (i.e., a vote, once cast, cannot be altered), and

(iv) double voting inhibition. In literature, works exist that ensure a subset of these

properties [27, 136, 304] or do so at the cost of their scalability (i.e., the number of voters

the system can practically process) [307]. Our goal in this space is to design a fair election

protocol that is also scalable. For further details, we refer the reader to Chapter 1.5.3.1.
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1.3.3 Auctions

As seen in Chapter 1.1.3, auctions are a classic MAS application. Typically, auctions

involve agents acting as bidders who bid for their items of interest. The seller allocates the

items to the (sub) set of bidders based on their bids and certain allocation rules. Auctions

differ based on the allocation and payment rules (e.g., first-price auctions, Vickrey or

second-price auction [284]) or the number of items being auctioned (e.g., single item &

single unit, single item & multi-unit, combinatorial auctions). In this thesis, we focus

on Transaction Fee Mechanisms (TFMs), a classic application of auctions for transaction

inclusion in cryptocurrencies like Bitcoin [203] and Ethereum [297] as well as combinatorial

auctions.

1.3.3.1 Transaction Fee Mechanism Design

In cryptocurrencies like Bitcoin [203] and Ethereum [297], the miner, i.e., the agent

who proposes the next block, includes a set of transactions to its block from the set of

outstanding transactions – referred to as the mempool. Naturally, as the miner is self-

interested, it looks to maximize its revenue by adding the set of transactions that pay the

maximum transaction fees to it. Zooming out, this means that the transaction creators ‘bid’

for a slot in the miner’s block. The miner acts as the seller that allocates the transactions

to its block and receives the transaction fee as payment. Roughgarden [245] introduces

this miner-transaction creator interaction as a Transaction Fee Mechanism (TFM) design.

E.g., Bitcoin’s TFM can be considered a first-price auction where the miner optimally adds

transactions that maximize its revenue, and the transaction creators pay the transaction

fee they commit to.

While the transaction fee acts as an incentive that allows TFMs to satisfy several impor-

tant agent-specific incentive properties [62, 103, 245], recent data suggest that transaction

fees have grown considerably more than required [193]. This may limit the cryptocur-

rencies market penetration. For instance, the commission-less UPI payment network has
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superseded the long-established commission-based debit/credit card payment network in

India [1]. Motivated by this, we look at designing TFMs that look to reduce the transaction

fees collected from the transaction creators as well as ‘fair’ TFMs that allow transactions

with zero fees to have a non-zero probability of being included in the miner’s block. For

further details, we refer the reader to Chapter 1.5.2.5 and Chapter 1.5.2.6.

1.3.3.2 Combinatorial Auctions

We next focus on combinatorial auctions. These auctions allow bidders, agents in our

language, to bid for multiple subsets of items simultaneously. Combinatorial auctions

also generate more revenue than other type of auctions [292]. Popular examples include

procurement auctions, spectrum auctions [190], and airport take-off slot auctions [237].

However, using auctions directly is a security and privacy risk for an agent’s bid and

its subset of items. Disclosure of an agent’s public identity reveals its interest in acquiring

auctioned items. The revelation of an agent’s bidding information (bid value and the

combination of preferred items) to an auctioneer or other participating agents may expose

its profits, economic situations, and preferences for specific items to its contemporaries.

An auctioneer may further exploit this information in future auctions. Consequently, we

desire an auction protocol in which only the winning agents’ combination of preferred items

is made public while preserving the privacy of the identities and the bidding information

of the other agents. Preserving the privacy of the participating agents and their private

information is integral to such mechanisms. To summarize, we look to design a privacy-

preserving combinatorial auction that preserves each agent’s bidding information from the

public and the auctioneer, even after the auction ends. For further details, we refer the

reader to Chapter 1.5.3.2.
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1.3.4 Distributed Constraint Optimization Problems (DCOPs)

At last, we take a re-look at DCOPs (see Example 1.1). DCOP is a problem where

agents collectively compute their value assignments to maximize (or minimize) the sum

of resulting constraint rewards. In DCOP, constraints quantify each agent’s preference

for each possible assignment. DCOPs help model various multi-agent coordination and

resource allocation problems like meeting-scheduling and graph-coloring-related applica-

tions such as mobile radio frequency assignments. For instance, consider the problem of

meeting-scheduling in which several Chief Executive Officers (CEOs) aim to decide a date

and time to meet. Each CEO will have a constraint for each date and time slot assignment,

quantifying its preference for the assignment. The preferences may depend on the CEOs’

availability and favorable slots. In this scenario, the CEOs cannot directly employ a cen-

tralized coordinator to decide on an agreeable meeting slot. The coordinator will require

information regarding the CEOs’ availability – which is often sensitive. Alternatively, the

CEOs can generate a suitable schedule by modeling the problem as a DCOP and using

any DCOP-solving algorithms. However, researchers show that despite their distributed

nature, DCOP algorithms may themselves leak sensitive information [100].

While several privacy-preserving algorithms exist [99, 100, 167, 272, 273], they rely on

computationally expensive cryptographic primitives and secure multi-party computation

protocols. This dependence results in the algorithms not being scalable, i.e., the algorithms

are only practical to deploy for a small number of agents. In this thesis, we look at designing

a private DCOP algorithm that preserves (constraint) privacy and is also scalable. For

further details, we refer the reader to Chapter 1.5.3.3.

1.4 MAS: Desirable Properties

So far, we have introduced MAS and looked at several real-world deployments of them.

Furthermore, we discussed MAS applications studied as part of this thesis. What remains
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unclear is the requirements that an MAS should satisfy so that it is desirable for real-world

deployment. In this thesis, we focus on the following desirable properties of a MAS.

Definition 1.1: What qualifies as a “good” Multi-agent System?

We say that a MAS is desirable if it satisfies all or any combination of the following

properties:

1. Game-theoretic Soundness

2. Fairness

3. Security and Privacy

Given their increasing adoption, we believe that multi-agent systems must satisfy these

properties. In fact, a large body of work pertaining to these properties can be found in

contemporary AI research [3, 7, 86, 87, 138, 161, 195, 240, 289, 312]. We discuss these

properties in detail next.

1.4.1 Game-theoretic Soundness

As alluded to briefly in Chapter 1.3, often in MAS, the participating agents may be

strategic, i.e., the agents may opt for strategies (outside of the desired strategy) such that

the “deviating” strategy increases their utility. Consequently, the rich game theory liter-

ature aims to tackle this strategic behavior through incentives or modeling agents’ utility

behavior. Mechanism design is a game-theoretic tool concerned with settings where a so-

cial planner faces the problem of aggregating the announced preferences of multiple agents

into a collective decision when the agents exhibit strategic behavior. E.g., e-governance

applications such as auctions and e-commerce applications such as civic crowdfunding.

Through mechanism design, researchers aim to promote agents’ equilibrium strategies into

those desired.
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Some popular game theory properties in mechanism design1 include Dominant Strategy

Equilibrium (DSE), Nash Equilibrium (Pure and Bayesian) (NE), Individual Rationality

(IR), and Incentive Compatibility (IC) [205]. For instance, a strategy is DSE if the agent

receives maximum utility with it irrespective of the strategy employed by the remaining

agents. With a slight difference, a strategy is pure-NE if the agent receives maximum utility

with it only if the remaining agents employ the same strategy. IR states that playing a

given strategy guarantees non-negative utility to the agent. Lastly, IC states that an agent

receives maximum utility when eliciting its true preference/valuation. From a mechanism

design perspective, we examine civic crowdfunding (CC) and transaction fee mechanisms

(TFMs), delving into the desirable properties they satisfy.

1.4.2 Fairness

Typically, fairness in MAS revolves around two categories: (i) group fairness, which

involves fair classification in ML systems, and (ii) algorithmic fairness, which deals with

fair resource allocation of goods (or chores).

1.4.2.1 Group Fairness

Machine Learning (ML) systems are frequently employed in decision-making. E.g.,

criminal risk assessment, credit approvals, and online advertisements. Researchers have

observed that these ML systems inadvertently introduce societal bias [61]2. For instance,

the firm ProPublica conducted a study of a risk assessment tool that was widely used by the

judiciary system in the US [234]. ProPublica observed that the risk values for recidivism

estimated for African-American defendants were, on average, higher than for Caucasian

defendants. Since then, research on fairness in ML gained traction, especially in quantifying

and satisfying several notions of fairness. Popular group fairness notions require different

sensitive groups (e.g., age or race) to receive beneficial outcomes in similar proportions.

1Chapter 2.1 provides a comprehensive summary of the game theory and mechanism design literature.
2nytimes.com/2019/12/19/technology/facial-recognition-bias.html
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These include Demographic Parity, Disparate Impact, and Equalized odds. For details, we

refer the reader to [191].

1.4.2.2 Algorithmic Fairness

This category revolves around allocating (say) m indivisible items among (say) n agents

who report their valuations for the items. The objective is to ensure fair allocation for

a desirable notion of fairness. Such a scenario often arises in the division of inheritance

among family members, divorce settlements, and distribution of tasks among workers (e.g.,

spliddit.org).

Envy-freeness (EF) is the most common notion of fairness here. EF ensures that no

agent has higher utility for other agent’s allocation [109]. Other notions, such as Propor-

tionality, ensure that every agent receives at least 1/n of its complete bundle value [265].

There is also a relaxation of PROP, the max-min share (MMS) allocation [18]. Imagine

asking an agent to divide the items into n bundles and take the minimum-valued bundle.

The agent would divide the bundles to maximize the minimum utility, which is the agent’s

MMS share. An MMS allocation guarantees every agent its MMS share. For further details,

we refer the reader to [9, 17].

1.4.2.3 Other Categories of Fairness

Researchers have recently highlighted the need for fairness for algorithms in general [65].

Here, we look at two such applications based on fair-incentive mechanisms.

1. Crowdsourcing. Schmidt [253] introduce the idea of fair rewards in human-centered

crowdsourcing . Fair crowdsourcing platforms are necessary to ensure the participa-

tion of the crowd. As a result, recent research has focused on mechanisms with the

fair provision of rewards [118, 119, 137, 200].

2. Cryptocurrencies. In the world of decentralized cryptocurrencies like Bitcoin [203]

and Ethereum [42], a lack of fairness can also correspond to strategic miners collecting
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transactions with higher transaction fees and leaving out those with more minor (or

no) transaction fees [257]. Naturally, works such as [257] increase the fairness in

transaction order by proposing BitcoinF, which allocates a section of the block space

that must include transactions in first-in-first-out order.

Chapter 2.4 formally describes the fairness notions presented here. Particularly, we look

at fair incentives in TFMs – ensuring a reduction in the agent’s transaction fee to increase

a cryptocurrency’s market penetration.

1.4.3 Privacy

As mentioned, MAS applications are widely used in various domains. For further accep-

tance, mostly when multiple agents interact with the system, we must aim to preserve the

privacy of participants’ information in such applications. Researchers resolve the privacy

challenges in MAS either through (i) cryptosystems or (ii) differential privacy (DP).

Cryptosystems. This approach involves a fusion of various cryptographic primitives (e.g.,

encryptions, commitments, hashes, secure multi-party computation) to provide required

privacy guarantees. Researchers have successfully used such an approach for several MAS

applications including deep learning [60, 101, 198, 299, 308], reinforcement learning [145,

224, 266], and artificial intelligence [179, 178, 195, 225, 226, 274].

To assert the correctness of the computation over encrypted data/information, i.e.,

security of the privacy-preserving protocol, zero-knowledge proofs (ZKPs) are employed.

ZKP is a method by which a party, called a Prover (P), can convince another party,

called a Verifier (V), that it knows some information ω, without revealing ω (or any

other information related to ω). A few standard ZKP techniques include commit-response

methods [87, 195], Fiat-Shamir heuristic [104] and zk-SNARKs [178, 179].

Differential Privacy (DP). This technique involves randomizing computation or adding

calibrated random noise to the statistics before releasing them [91]. DP has emerged as

the premier alternative to traditional cryptosystems for privacy preservation in the last
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decade. Similar to the earlier approach, DP also finds use in privacy-preserving MAS

literature for deep learning [3, 206, 221, 256], reinforcement learning [58, 112, 286], and

artificial intelligence [139, 288].

We refer the reader to Chapter 3 for a comprehensive summary of the required security

and privacy preliminaries. We construct privacy-preserving applications for MAS, such as

DCOPs, voting, and combinatorial auctions.

1.5 Our Goal and Contributions

We first define the broad goal of the thesis. Next, we zoom in a level and summarize

the concrete contributions made.

1.5.1 Our Goal

We remark that MAS is a field of artificial intelligence (AI) that studies how multi-

ple agents interact with each other and their environment to achieve specific objectives.

MAS has applications in various domains such as finance, transportation, healthcare, etc.

However, as these systems involve multiple agents with potentially conflicting goals and

interests, we believe that ensuring their security and privacy, game-theoretic soundness,

and fairness is of utmost importance.

This report focuses on these aspects, and Table 1.1 presents a taxonomy of our contri-

butions in this space. Specifically, we work on popular MAS applications such as voting,

where the goal is to determine the preference of a group of agents for a set of alternatives;

combinatorial auctions, where agents bid on combinations of items; distributed constraint

optimization, where agents work together to find solutions to a problem with constraints;

and civic crowdfunding with refunds, where agents contribute money towards a collective

goal and are refunded if the goal is not met.

Our contributions in these areas involve designing algorithms and protocols that ensure

the security and privacy of agents’ information, promote fair and efficient outcomes, and
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MAS Chapter
Security Game-theoretic

Fairness
& Privacy Soundness

Civic Crowdfunding [72, 74, 75, 76, 77] Chapters 4, 5, 6, 7

Transaction Fee Mechanism [78, 79] Chapters 8, 9

Voting [73] Chapter 10

Combinatorial Auction [70, 71] Chapter 11

Distributed Constraint Optimization [80] Chapter 12

Table 1.1: Taxonomy of this thesis’ contributions and the subset of the MAS desirable

properties they consider.

are robust to various manipulation and attacks. We analyze existing MAS applications,

identify vulnerabilities or limitations, and propose solutions to these issues.

1.5.2 PART A: Game-theoretically Sound and Fair Mechanism Design

The first part of this thesis focuses on game-theoretically sound and fair incentive-based

mechanism design. In particular, we focus on MAS, such as Civic Crowdfunding (CC) and

Transaction Fee Mechanisms (TFMs). More concretely, PART A comprises the following

contributions.

1.5.2.1 Civic Crowdfunding for Agents with Asymmetric Belief and Negative

Preferences

Agent Preferences. We also focus on aggregating citizen preferences for public projects

through civic crowdfunding. Existing civic crowdfunding mechanisms such as PPR and

PPS consider only citizens with positive valuations towards the public project. Public

projects aim to cater to the majority, so they should be provisioned only if the majority

prefers it. For this, in Chapter 4 (based on [74, 75]), we propose a methodology to convert

existing civic crowdfunding mechanisms for positive preferences to cater to markets having

both types of agents. Specifically, we adapt existing PPR and PPS mechanisms to design
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PPRN and PPSN that incentivize agents to contribute towards or against the project’s

provision based on their preference.

Agent Beliefs. Moreover, as mentioned earlier, the mechanisms assume that each agent

has a symmetric belief about the project getting provisioned. To address asymmetric

beliefs, in Chapter 4 (based on [74, 75]), we propose a novel reward scheme, Belief Based

Reward (BBR), based on the Robust Bayesian Truth Serum (RBTS) mechanism. BBR

rewards agents based on their belief in the project’s provision. Using this reward scheme,

we introduce a general framework for civic crowdfunding, allowing agents with asymmetric

beliefs about the project to get provisioned and incentivizing them to contribute towards

the project’s provision. Based on this framework, we also design two mechanisms, PPRx

and PPSx, adapting PPR and PPS, respectively, and prove that the project is provisioned

at equilibrium in both mechanisms.

1.5.2.2 Efficient Civic Crowdfunding over Blockchain

In Chapter 5 (based on [76]), we identify essential properties a refund bonus scheme

must satisfy to curb free-riding while avoiding the race condition. We prove Contribution

Monotonicity and Time Monotonicity as sufficient conditions for this. We show these

conditions are also necessary if a unique equilibrium is desirable. We propose three refund

bonus schemes satisfying these conditions, leading to three novel mechanisms for CC -

PPRG, PPRE, and PPRP. We show that PPRG is the most cost-effective when deployed

as an SC. We prove that under certain modest assumptions, in PPRG, the project is funded

at equilibrium.

1.5.2.3 Combinatorial Civic Crowdfunding with Budgeted Agents

The existing CC literature mentioned above (i.e., [52, 53, 74, 75, 76, 312]) only focuses on

the crowdfunding of a single project. To this end, in Chapter 6 (based on [77]), we present

several foundational results for CC for multiple projects. Given budget-constrained agents,
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we argue that funding the welfare optimal subset may be desirable. We show that the

optimal subset is funded at equilibrium under specific assumptions on the overall budget

and agents’ individual budgets. For any other scenario, an agent may be incentivized to

deviate from funding the optimal set. However, computing the optimal deviation in the

multi-project case is NP-Hard.

1.5.2.4 Analyzing Civic Crowdfunding under Dynamic Beliefs

As mentioned above, in Chapter 4, we relax the assumption on agents’ beliefs by incor-

porating agents with asymmetric beliefs. However, the mechanisms proposed in Chapter 4

still assume that the agent’s beliefs are static, i.e., they do not evolve with time. This as-

sumption seems restrictive — in CC, agents can observe the remaining time to the deadline

and the net contribution at any time. Thus, agent beliefs may evolve with time and be in

line with the information at hand. In Chapter 7 (based on [72]), we argue that an agent’s

dynamic belief will evolve as a random walk. Based on this assumption, we characterize the

equilibria of the CC game (i.e., the equilibrium point and agent strategies) if the dynamic

belief evolves as a (i) martingale, (ii) sub-martingale, or (iii) super-martingale.

1.5.2.5 Achieving Fairness in Transaction Fee Mechanism Design

Prominent cryptocurrencies like Bitcoin and Ethereum handle over a million transac-

tions daily, creating a scenario where strategic miners aim to maximize their utility by

selecting transactions with higher fees. The transaction fee mechanism (TFM) design lit-

erature aims to understand miners’ and transaction creators’ optimal behavior. As such,

it focuses on standard incentive properties, which may not be sufficient for a cryptocur-

rency’s increased market penetration. In Chapter 8 (based on [79]), we argue that a TFM

is deemed ”fair” to transaction creators when it satisfies specific notions, including Zero-fee

Transaction Inclusion and Monotonicity. We show that existing TFMs either fail to satisfy

these notions or do so at a considerable cost to miners’ utility. In response, we present
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a new set of TFMs that satisfy the desirable incentive properties and our novel fairness

notions.

1.5.2.6 Designing Redistribution Mechanisms for Reducing Transaction Fees

in Blockchains

Recall that Transaction Fee Mechanisms (TFMs) manage agent transactions in blockchains,

determining transaction fees. However, transaction fees have become high due to rising

demand and limited block resources. To address this, in Chapter 9 (based on [78]), we intro-

duce Transaction Fee Redistribution Mechanisms (TFRMs). TFRMs redistribute the VCG

payments from TFMs as rebates to minimize fees using Redistribution mechanisms [129].

In particular, we propose two TFRMs that satisfy several desirable incentive properties

while resulting in a non-zero reduction of transaction fees, even in the presence of a strate-

gic miner.

1.5.3 PART B: Security and Privacy

PART B is the privacy-focused part of this thesis. We particularly focus on the pri-

vacy of interacting agents in MAS, such as voting, combinatorial auction, and distributed

constrained optimization.

1.5.3.1 FASTEN: Fair and Private Voting

Electing democratic representatives via voting has been common since the 17th century.

However, these mechanisms raise concerns about fairness, privacy, vote concealment, fair

calculations of tally, and proxies voting on behalf of the voters. Ballot voting, and in recent

times, electronic voting via electronic voting machines (EVMs), improves fairness by relying

on centralized trust. Homomorphic encryption-based voting protocols also assure fairness

but cannot scale to large-scale elections such as presidential elections. To resolve these

issues, Chapter 10 (based on [73]) leverages the blockchain technology of distributing trust
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to propose a smart contract-based protocol, namely, FASTEN. There are many existing

protocols for voting using smart contracts. We observe that these either are not scalable

or leak the vote tally during the voting stage, i.e., do not provide vote concealment.

In contrast, we show that FASTEN preserves voters’ privacy, ensures vote concealment

and immutability, and avoids double voting. We prove that the probability of privacy

breaches is negligibly small. Further, our cost analysis of executing FASTEN over Ethereum

is comparable to most of the existing election costs.

1.5.3.2 STOUP: Secure and Trustworthy Combinatorial Auction

As mentioned, MAS applications are widely used in a variety of domains. For further

acceptance, mostly when multiple agents interact with the system, we must aim to preserve

the privacy of participants’ information in such applications. Towards this, Yao’s Million-

aires’ problem (YMP) [300], i.e., to determine the richer among two millionaires privately,

finds relevance. To this end, Chapter 11 (based on [71]) presents a novel, practical, and

verifiable solution to YMP, namely, Secure Comparison Protocol (SCP). We show that SCP

achieves this comparison in a constant number of rounds without encryption and does not

require continuous participant involvement. SCP uses semi-trusted third parties - which

we refer to as privacy accountants - for comparison, who do not learn any information

about the values. The probability of information leaks is negligible in the problem size.

We leverage the Ethereum network in SCP for pseudo-anonymous communication, un-

like computationally expensive secure channels such as Tor. We present a Secure, Truthful

cOmbinatorial aUction Protocol (STOUP) for single-minded bidders to demonstrate SCP’s

significance. We show that STOUP, unlike previous works, preserves the privacies relevant

to an auction, even from the auctioneer. We demonstrate the practicality of STOUP

through simulations.
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1.5.3.3 Differentially Private Multi-agent Constraint Optimization

Several optimization scenarios involve multiple agents that desire to protect the pri-

vacy of their preferences. There are distributed algorithms for constraint optimization

that provide improved privacy protection through secure multiparty computation. How-

ever, it comes at the expense of high computational complexity. It does not constitute

a rigorous privacy guarantee for optimization outcomes, as the result of the computation

itself may compromise agents’ preferences. In Chapter 12 (based on [80]), we show how

to achieve privacy, specifically differential privacy, by randomizing the solving process. In

particular, we present P-Gibbs, which adapts the SD-Gibbs algorithm to obtain differential

privacy guarantees with much higher computational efficiency. Graph coloring and meet-

ing scheduling experiments show the algorithm’s privacy-performance trade-off for varying

privacy budgets and the state-of-the-art SD-Gibbs algorithm.

1.6 Thesis Outline

We divide the thesis into two parts, with PART A on game-theoretic soundness and

PART B on security, privacy, and blockchains.

• Chapter 2. With a particular focus on PART A, Chapter 2 presents the required

preliminaries for game theory and mechanism design, combinatorial auctions, civic

crowdfunding, and fair reward mechanisms.

• Chapter 3. Likewise, towards PART B, Chapter 3 provides the required crypto-

graphic background, summarizing cryptographic primitives such as hash functions,

encryptions, and commitments, as well as zero-knowledge proofs, differential privacy,

blockchains and Transaction Fee Mechanisms (TFMs).

PART A: Game-theoretic Soundness
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• Chapter 4. This chapter presents civic crowdfunding for agents with asymmetric

beliefs and negative valuation.

• Chapter 5. Here, we present several efficient refund bonus schemes for blockchain-

based civic crowdfunding.

• Chapter 6. With this chapter, we present our model of combinatorial civic crowd-

funding with budgeted agents.

• Chapter 7 Here, we characterize the underlying game induced in civic crowdfunding

in the presence of agents with dynamic beliefs.

• Chapter 8. Pivoting to TFMs and fair incentive mechanisms, we present TFMs that

satisfy novel fairness notions while retaining desirable game-theoretic properties.

• Chapter 9. For the last chapter for PART A, we look at reducing the explosion

of transaction fees in TFMs. Particularly, we employ a Redistribution mechanism-

based approach that offers rebates to agents to reduce the fee they pay for transaction

inclusion.

PART B: Security and Privacy

• Chapter 10. Moving forward with PART B, this chapter presents our novel fair

and private voting protocol, namely FASTEN.

• Chapter 11. This chapter presents STOUP, a blockchain-based private and verifi-

able combinatorial auction.

• Chapter 12. We end PART B by looking at differentially private multi-agent

constraint optimization in this chapter.

• Chapter 13. We conclude this thesis with this chapter with a discussion on the

contributions presented, their potential impact, and promising directions to further

explore in the future.

25



Chapter 2

Preliminaries: Game Theory

This thesis chapter provides a comprehensive overview of fundamental

concepts in game theory, mechanism design, civic crowdfunding, and

fair reward mechanisms. Game theory is a theoretical framework to an-

alyze strategic interactions among rational actors, providing insights into

decision-making processes and outcomes. Mechanism design, an exten-

sion of game theory, is crucial for designing incentive-compatible mecha-

nisms that encourage desirable behaviors. The chapter then delves into

civic crowdfunding, a method to exhibit participatory decision-making

in which communities collectively fund projects. By combining insights

from game theory and mechanism design, the chapter presents a litera-

ture survey of known civic crowdfunding mechanisms that guarantee a

project’s funding at equilibrium. Additionally, we look at fair reward

mechanisms for crowdsourcing, addressing challenges related to the eq-

uitable distribution of rewards among participants.

⋆ ⋆ ⋆ ⋆ ⋆
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HHH
HHH

HHH
A1

A2
H T

H (-100, 100) (100, -100)

T (100, -100) (-100, 100)

Table 2.1: Player Utilities for Matching Pennies (Example 2.1)

2.1 Game Theory

This thesis focuses on multi-agent systems. Naturally, we desire a tool that can model

the interaction between these agents, depending on their type and environment. Game

theory helps model the interaction between these agents. In general, game theory assumes

that the agents part of the system are rational, i.e., they are interested in maximizing their

utility. An agent’s utility structure may be cooperative or conflicting.

Generally, a game is described by four properties [205]: (i) Agents: individual/group of

individuals making decisions, (ii) Rules, (iii) Outcomes, and (iv) Preferences. For illustra-

tive purposes, consider the following example.

Example 2.1: Matching Pennies

1. Agents: {A1, A2}

2. Rules: Each player simultaneously flips a coin

3. Outcomes: {(H,H), (T,H), (H,T ), (T, T )}

4. Preferences: Table 2.1 gives the player’s preferences. If the two coins get the

same outcome, A1 pays USD 100 to A2; otherwise, A2 pays USD 100 to A1

Strategic Form Game. While Example 2.1 presents the constituents of a game, it is

often useful to represent the game formally. That is,
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Definition 2.1: Strategic Form Game [205]

A strategic form game Γ is the tuple ⟨A, {Si}i∈A, {ui}i∈A⟩ wherein,

1. A = {1, . . . , n} where n ∈ Z≥1 are the set of agents

2. {Si}i∈A where each Si is the strategy of agent i

3. {ui}i∈A s.t. ui : S1 × S2 × . . .× Sn → R is the utility function of agent i

Every agent ‘plays’ their strategy simultaneously in the strategic form game and reports

it to a central coordinator (often referred to as the social planner). The planner then com-

putes the outcome and individual utilities. Let us look at the famous Prisoner’s Dilemma1

game to understand Definition 2.1 better.

Example 2.2: Prisoner’s Dilemma

We have two prisoners, i.e., A = {1, 2}. Let the prosecutor act as the social planner without
evidence to convict the prisoners. The prosecutor develops a clever plan to obtain a confes-

sion: The prisoners are made to sit separately so they cannot mutually communicate. Each

prisoner i’s strategy is either confessing or defecting. Their utilities are defined as follows.

• If both confess, they receive 5 years of jail time each, i.e., u1(C,C) = u2(C,C) = −5.
• If prisoner 1 confesses while prisoner 2 defects, prisoner 1 gets 1 year and prisoner 2

gets 10 years of jail time, i.e., u1(C,D) = −1 and u2(C,D) = −10.
• If prisoner 2 confesses while prisoner 1 defects, prisoner 2 gets 1 year and prisoner 1

gets 10 years of jail time, i.e., u1(D,C) = −10 and u2(D,C) = −1.
• If both defect, they receive 2 years of jail time each, i.e., u1(D,D) = u2(D,D) = −1.

Table 2.2 presents the prisoners’ utility in the matrix-form. The row agent is Agent 1,

and the first value corresponds to its utility, while Agent 2 is the column player, and the

1Veritasium’s video is a great watch for those interested in the significance of Prisoner’s Dilemma and
game theory in general (youtube.com/watch?v=mScpHTIi-kM).
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second value corresponds to its utility. C denotes the prisoner’s choice to confess, and D

denotes the prisoner’s choice to defect.

PPPPPPPPPPPPP
Agent 1

Agent 2
D C

D (-2, -2) (-10, -1)

C (-1, -10) (-5, -5)

Table 2.2: Player Utilities for Prisoner’s Dilemma

Given such a setting, it is natural to wonder what strategies the prisoners should adopt

to guarantee themselves a desirable (or optimal) outcome. Such a question leads us to the

game theory concept of equilibrium.

2.1.1 Dominant Strategy Equilibrium

From Example 2.2, each agent’s strategy comprises either confessing or defecting. Each

agent wishes to choose a strategy that maximizes its utility. If there exists a strategy (e.g.,

confessing) that maximizes the utility of agent 1 irrespective of the strategy of agent 2,

then we say that the strategy is dominant. Furthermore, we refer to the agents’ dominant

strategy profile as the dominant strategy equilibrium, defined as follows.

Definition 2.2: Weakly Dominant Strategy Equilibrium [205]

Given the game Γ, we refer to the strategy profile s⋆ = (s⋆1, . . . , s
⋆
n) as dominant

strategy equilibrium if ∀i ∈ A, the strategy s⋆i is a dominant strategy, i.e.,

ui(s
⋆
i , s−i) ≥ ui(si, s−i),∀si ∈ Si, si ̸= s⋆i and s−i ∈ S−i (2.1)

such that ∃s−i ∈ Si for which ui(s
⋆
i , s−1) > ui(si, s−i).
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Here, s−i denotes the strategy tuple of all agents except agent i. Adding to Defini-

tion 2.2, if the strict inequality exists ∀si in Eq. 2.1, ∀i, we say that the profile is strongly

dominant strategy equilibrium.

Dominant Strategy in Prisoner’s Dilemma. We see from Table 2.2 that confess-

confess is the dominant strategy profile in Prisoner’s Dilemma. This is because, for Agent 1,

u1(C,C) > u1(D,C) and u1(C,D) > u1(D,D). Likewise, for Agent 2, u2(C,C) > u2(D,C)

and u2(C,D) > u2(D,D).

Pareto Optimality. The dominant strategy equilibrium utility for both the agents in the

Prisoner’s Dilemma is −5. However, Table 2.2 shows that defect-defect would have given

the agents a higher utility of −2 each. We say that equilibrium is not Pareto optimal

if (i) a change in the strategy profile (from s⋆ to s̃) improves the utility of at least one

agent without affecting the utility of the remaining agents (“Pareto” improves) and (ii) s̃

is Pareto optimal if there are no possible Pareto improvements.

Dominant Strategy Equilibrium May Not Exist. While the dominant strategy

equilibrium is useful for the agents to play (guaranteeing maximal payoff irrespective of

the others’ strategy), unfortunately, such an equilibrium may not always exist.

For instance, recall the matching pennies game from Example 2.1. Here, consider the

agent A1. If A1 choosesH, its utility u1(H,H) = −100 if A2 also choosesH and u1(H,T ) =

100 if A2 chooses T . That is, u1(H,T ) > u1(H,H). However, if A1 chooses T , then

u1(T,H) = 100 and u1(T, T ) = −100. That is, u1(T,H) > u1(T, T ). So, there is no

dominant strategy for A1.

Given this non-existence, researchers look towards other equilibrium concepts that may

provide the desirable properties of dominant strategy equilibrium and may possibly be

guaranteed to exist for any instance of Γ. To this end, we next look at Nash equilibrium.

30



2.1.2 Nash Equilibrium

Nash equilibrium is a weaker equilibrium concept proposed by John Nash in 1950 [208],

which states that a given strategy profile is Nash equilibrium if each agent following the

strategy maximizes its utility, given that all the remaining agents are following their strat-

egy from the same profile. More formally2,

Definition 2.3: (Pure-strategy) Nash Equilibrium [205, 208]

Given the game Γ, we refer to the strategy profile s⋆ = (s⋆1, . . . , s
⋆
n) as pure-strategy

Nash equilibrium if ∀i ∈ A, the strategy s⋆i satisfies

ui(s
⋆
i , s

⋆
−i) ≥ ui(si, s

⋆
−i),∀si ∈ Si (2.2)

In other words, it is Nash equilibrium for an agent to play the strategy specified by s⋆

if all the remaining agents follow s⋆. That is, it is the agent’s best response as it cannot

receive a higher utility by unilaterally deviating from s⋆.

(Mixed-strategy) Nash Equilibrium Always Exist. Our discussion so far has re-

volved around pure-strategy equilibrium wherein each agent plays a fixed strategy as de-

fined in s⋆. Nash Jr [208] presents the general mixed-strategy Nash equilibrium where

agents choose a probability distribution over possible pure strategies. As we have seen so

far, agents may put 100% of the probability on one pure strategy. Thus, pure strategies

are a subset of mixed strategies.

Notably, John Nash [208, 207] also showed that mixed-strategy Nash equilibria will

always exist, unlike for the dominant strategy case.

Matching Pennies. Taking a re-look at Example 2.1, we see that the game has no pure-

strategy Nash equilibrium as there is no pair of pure strategies such that neither agent

would want to switch if told what the other would do. However, the game indeed has

2For completeness, the pure-strategy Nash equilibrium was first proposed by Cournot [66]. In his work,
Nash Jr [208] generalized the concept for mixed strategies (agents randomly choose their strategy from a
probability distribution).
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a mixed-strategy Nash equilibrium wherein each agent chooses head or tail with equal

probability, i.e., 1
2 . Such a probability distribution allows each agent to make the other

agent indifferent about choosing heads or tails, implying that no agent has an incentive to

try another strategy.

2.1.2.1 PPAD-Completeness

Nash [207] showed the existence of Nash equilibrium. However, the question of “how

long does it take until economic agents converge to an equilibrium” [83] remained unclear.

Daskalakis, Goldberg, and Papadimitriou [83] addressed this question by studying the

complexity of computing the mixed Nash equilibrium in a game. Traditional computational

problems fall into (i) polynomial-time solvable or (ii) NP-Hard. However, the authors argue

that NP-hardness cannot be applied to this problem as we know that every game has a

mixed-strategy solution. As such, Daskalakis, Goldberg, and Papadimitriou [83] propose

a new class of problems called PPAD, a subclass of NP. They showed that computing the

mixed NE of a game is PPAD-complete [83, Theorem 3.1].

PPAD-Completeness. While the proof of the above result is outside the scope of this

thesis, we present an intuitive understanding of what it means for a problem to be PPAD-

complete. PPAD (Polynomial Parity Argument, Directed version) is a complexity class

dealing with decision problems related to finding fixed points of certain functions. PPAD

completeness is a concept that is used to classify the difficulty of problems within this class.

A problem is PPAD-complete if it is in PPAD and is as hard as any problem in PPAD.

In other words, if you can efficiently solve a PPAD-complete problem, you can efficiently

solve any problem in PPAD.
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Example 2.3: PPAD-complete: Example

Consider the “End-of-the-line” (EOL) problem. In EOL, we are given a polynomial-

time computable function f : {0, 1}n → {0, 1}n. The goal is to find an x such that

f(x) = x and the function f is such that there is at least one fixed point.

2.1.3 Sub-game Perfect Nash Equilibrium

The examples of Matching pennies and the Prisoner’s Dilemma are simultaneous-move

games. In these games, the agents simultaneously play their strategies. In a sequential

game, where the agents may observe the actions of the other agents, we require a tweak

to the classic Nash equilibrium concept. Instead, we require a strategy profile that is the

best response of every agent during the game, i.e., the best response for every sub-game

induced during it. Such a strategy profile is said to be a Sub-game Perfect Equilibrium.

Definition 2.4: Sub-game Perfect Nash Equilibrium [205]

Given the game Γ, we refer to the strategy profile s⋆ = (s⋆1, . . . , s
⋆
n) as Sub-game

Perfect Nash Equilibrium if ∀i ∈ A, the strategy s⋆i satisfies

ui(s
⋆
i , s

⋆
−i|Hti

) ≥ ui(si, s
⋆
−i|Hti

), ∀si ∈ Si, ∀Ht. (2.3)

Here, Ht is the history of the game Γ till time t. The history comprises the agents’

information that has arrived till time t. More formally, Ht is the tuple that includes the

time remaining before the deadline from t, the target, the refund bonus, and the total

contribution made till t. Furthermore, s⋆−i|Hti
implies that agents who arrive after ti follow

the strategy specified in s⋆−i. A strategy profile is a Sub-game Perfect Nash Equilibrium if

it is Nash equilibrium for each agent to follow the strategy given by the profile irrespective

of the events till that time.
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2.2 Mechanism Design

In Chapter 2.1, we introduce the concept of game theory and discuss several concepts

with the idea of an agent maximizing its utility. However, several scenarios exist where

decisions are made considering the interests of a group of people or community (e.g., public

decision-making or resource allocation in organizations). In these scenarios, we can consider

the people involved as agents. Each scenario comprises a set of possible outcomes. We say

that each agent involved has preferences over the set of outcomes.

The social planner (e.g., the head of the organization) is tasked with designing a game

among these (conflicting) agents. The planner must construct various rules/incentives

to facilitate a desirable outcome in the presence of these rational agents. This “reverse

engineering” of game theory is called Mechanism design.

2.2.1 Overview

Consider a classic auction setting. Here, we have multiple agents (acting as bidders),

each bidding to own a single item being auctioned. Each agent has a private valuation for

the item. The valuation represents the utility the agent will receive if it acquires the item.

The auctioneer (acting as the social planner) wishes to find the optimal outcome, which in

this case corresponds to the outcome where the agent with the highest valuation receives

the item.

The auction setting described has two major challenges. Firstly, we have preference

elicitation wherein the social planner must design the auction game to elicit each agent’s

true valuation. In general, the planner either uses monetary benefits (“mechanisms with

money”) or enforces certain constraints (“mechanisms without money”) to enable truthful

elicitation. That is, mechanisms that, at equilibrium, incentivize agents to report their

true valuations. The second challenge is that of preference aggregation, which corresponds

to computing the optimal outcome, given each agent’s valuations.
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With this backdrop, we next discuss the mechanism design environment required to

model the auction setting discussed, or in general, any setting, as a game.

2.2.2 The Mechanism Design Environment

Consider the following definition, which provides a general setting for formulating, an-

alyzing, and solving mechanism design problems.

Definition 2.5: The Mechanism Design Environment [205]

A typical mechanism design environment comprises:

1. The set of agents A = {1, . . . , n}. Each agent is assumed to be intelligent and

rational.

2. The set of outcomes, or alternatives, X . The agents collectively choose from

X .
3. Agents privately observe preferences over the alternatives in X . Formally, each

agent i derives a preference by observing a private signal or type θi.

4. The set Θi denotes the private values of agent i, ∀i ∈ A. The set of all

type profiles is Θ = Θ1 × . . . × Θn. A typical type profile is denoted by

θ = (θ1, . . . , θn).

5. The private values of the agents have a common prior distribution Φ ∈ ∆(Θ).

6. An agent’s preference over the outcomes is represented by the utility function

ui : X × Θi → R. That is, given x ∈ X and θi ∈ Θi, ui(x, θi) denotes the

utility that agent i having type θi ∈ Θi receives from its choice x ∈ X .
7. The set of outcomes X , agents A, types Θi,∀i, the distribution Φ and utility

functions ui, ∀i are assumed to be common knowledge among the agents. But,

the observed valuation θi by agent i is its private information.

To further understand the environment, consider the following example of an auction.
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Example 2.4: Mechanism Design Environment for an Auction

Consider a simple auction setting with an auctioneer (agent 0) and two bidders

(agents 1 and 2). We have A = {0, 1, 2}. Also, Θ0 = {0} as the auctioneer has no

value for keeping the item with itself. Likewise, Θ1 = [0, 1] and Θ2 = [0, 1]. The set of

outcomes are X = {(y0, y1, y2, t0, t1, t2) : yi ∈ {0, 1} |
∑

i yi ≤ 1; ti ∈ R,
∑

i ti ≤ 0}.

In Example 2.4, yi = 1 implies that agent i receives the item while the agent does

not if yi = 03. Example 2.4 also introduces the transfer variable ti, ∀i, which for an

auction corresponds to the payment for the agent i. One can observe that if
∑

i ti > 0,

the mechanism will need money from an external source not part of the mechanism. In

general, we have
∑

i ti ≤ 0. For the auction-specific case, the agents 1 and 2 pay for the

item while agent 0 receives the payment as the auctioneer. In other words, t0 = −(t1+ t2),

i.e.,
∑

i ti = 0.

Given this construction, we now take an in-depth look at the two challenges in mecha-

nism design: (i) preference aggregation and (ii) preference elicitation.

2.2.3 Preference Aggregation

This is understood as the aggregation of agents’ preference rankings of two or more social

alternatives into a single, collective preference ranking (or choice) over these alternatives.

Here, θi’s generate preferences over outcomes for player i. To this end, we define a social

choice function that takes the private valuations as inputs and outputs a collective decision.

3We also remark that depending on how the item is being allocated to the agents, the domain of yi, or
the value which yi takes may also change. If the item is being allocated randomly, we have yi ∈ [0, 1]. For
the deterministic, non-divisible case, yi ∈ {0, 1}.
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Definition 2.6: Social Choice Function (SCF) [205]

Given a type profile Θ = (Θ1, . . . ,Θn), an outcome x ∈ X is called a social choice

or collective choice, where f : Θ → X is called the SCF. That is f assigns to each

possible type profile (θ1, . . . , θn) a collective choice from the set of alternative X .

We illustrate the social choice function using a first-price auction based on the setting

described in Example 2.4.

Example 2.5: SCF for First Price Auction

For the mechanism defined in Example 2.4, let f(θ) =

(y0(θ), y1(θ), y2(θ), t0(θ), t1(θ), t1(θ), t2(θ)) denote the social choice function

for a first-price auction. We assume that in the case of a tie, agent 1 receives the

item. We have, y0(θ) = 0,∀θ. Furthermore,

y1(θ) =


1 θ1 ≥ θ2

0 otherwise

y2(θ) =


1 θ2 > θ1

0 otherwise

Also, t1(θ) = −y1(θ) · θ1, t2(θ) = −y2(θ) · θ2 and t0(θ) = −(t1(θ) + t2(θ)).

We can also write the SCF for a second-price auction, i.e., an auction where the highest

bidder receives the item but pays the second-highest bid. One can observe that only the

payments of the agents will change in this case.
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Example 2.6: SCF for Second Price Auction

For the mechanism defined in Example 2.4, let f(θ) =

(y0(θ), y1(θ), y2(θ), t0(θ), t1(θ), t1(θ), t2(θ)) denote the social choice function

for a second-price auction. We assume that in the case of a tie, agent 1 receives the

item. We have, y0(θ) = 0,∀θ. Furthermore,

y1(θ) =


1 θ1 ≥ θ2

0 otherwise

y2(θ) =


1 θ2 > θ1

0 otherwise

In this case, we now have t1(θ) = −y1(θ) · θ2, t2(θ) = −y2(θ) · θ1 and t0(θ) =

−(t1(θ) + t2(θ)).

The second-price auction from Example 2.6 is also called a Vickrey auction, after the

Novel prize-winning work of Vickrey [284]. Lastly, the process of computing f(θ) is also

referred to as the preferrence aggregation problem. The problem usually comes in the form

of an optimization problem.’

2.2.3.1 SCF: Important Properties

We now discuss two crucial properties of a SCF, namely, Pareto Optimality and Dicta-

torship.

2.2.3.1.1 Pareto Optimality Our equilibrium discussion briefly focused on Pareto

optimal equilibrium, i.e., no agent can move away from the equilibrium strategy and receive

a strictly higher utility while the other agents receive the same utility. Pareto Optimality

for a SCF is similar, defined formally as follows.
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Definition 2.7: Pareto Optimality or Ex-post Efficiency [205]

A social choice function f : Θ→ X is said to be ex-post efficient (or paretian) if for

every θ ∈ Θ, f(θ) is Pareto optimal. That is ∄x ∈ X such that,

ui(x, θ) ≥ ui
(
f(θ), θ

)
∀i ∈ A

with a strict inequality for at least one agent.

Intuitively, it is an economic state where resources (items) are allocated most efficiently,

and it is obtained when a distribution strategy exists where one party’s situation cannot

be improved without worsening another party’s situation.

Example. Consider the single-item, multi-unit auction setting where the auctioneer wishes

to allocate a single item (available in multiple but fixed units) among n agents. Any

allocation for this will always be Pareto Optimal; the only way to make someone better off

than before would be to give them more units of the item, implying that at least one other

agent gets less than their previous share since the quantity is fixed.

2.2.3.1.2 Dictatorship If a mechanism’s outcome reflects a single agent’s preferences,

we say that it is a dictatorship mechanism. More formally,

Definition 2.8: Dictatorship [205]

A SCF f : Θ→ X is dictatorial if there exists an agent d ∈ A, such that ∀θ ∈ Θ,

ud
(
f(θ), θ

)
≥ ud(x, θ) ∀x ∈ A.

If a SCF does not contain a dictator, we say it is non-dictatorial.

Non-dictatorship is a property of the SCF, which requires that the results of the vot-

ing cannot simply mirror that of any single agent’s preferences without considering other

agents.
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Example. The Dictator Game [148], is a degenerate game in Game Theory, where the

first agent, the dictator, determines how to split an endowment (such as a cash prize)

between themselves and the second agent. The second agent, the recipient, simply receives

the remainder of the endowment left by the dictator. The recipient’s role is entirely passive

and has no input into the game’s outcome.

2.2.4 Preference Elicitation

Preference Elicitation is how agents are made to state (or “elicit”) their preferences. This

is also called information revelation problem. As we will see, this is achieved either by a

direct mechanism or an indirect mechanism, and involves equilibrium in Bayesian Games,

which can be of the type (very weakly) dominant strategy equilibrium and Bayesian Nash

equilibrium.

2.2.4.1 Direct and Indirect Problems

Recall that the agent’s valuation is private to itself. To solve the preference aggregation

problem, f(θ), the first step is to find a way by which to get the agent to elicit their type

information. Mechanism design literature relies on either direct or indirect mechanisms for

such a truthful elicitation.

Here, we define these mechanisms formally. From Definition 2.5, we know that the set

of outcomes X , agents A, types Θi, ∀i, the distribution Φ and utility functions ui, ∀i are
common knowledge among the agents. Let us first define a mechanism in this context.

The set Si for each agent i ∈ A is the set of actions available. The agent i uses its type θi

to choose an action si ∈ Si.

Definition 2.9: Mechanism [205]

A mechanism M = ((Si)i∈A, g(·)) is a collection of action sets (S1, . . . , Sn) and an

outcome function g : S → X .
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Given this definition, the case where the agents are asked to reveal their types becomes

its special case, referred to as the direct revelation mechanism.

Definition 2.10: Direct Revelation Mechanism (DRM) [205]

Given the SCF f : Θ → X , the mechanism D = ((Θi)i∈A,f(·)) is referred to as the

DRM.

One can immediately observe that the DRM is a special case of the mechanism from

Definition 2.9, i.e., M = ((Si)i∈A, g(·)) with Si = Θi,∀i ∈ A and g = f . A mechanism that

is not a DRM is called an indirect mechanism.

Indirect mechanisms aim to provide agents with a choice of actions and specify an

outcome for each action profile. This induces a game among the agents such that the

strategies played by the agents in the game’s equilibrium will indirectly reflect their original

types. More formally, indirect mechanisms induce a Bayesian game.

Definition 2.11: Bayesian Game

We are given the set of agents A, with types (Θ1, . . . ,Θn) having a common prior

ϕ ∼ ∆(Θ) and a set of outcomes X . If each agent i ∈ A has the utility ui :

X × Θi → R, then a mechanism M = (S1, . . . , Sn, g(.)) induces the Bayesian game

Γb : (N, (Θi), (Si), (pi), (Ui)) among the agents with each agent i ∈ A utility as

ui(g(s1, . . . , sn), θi).

Examples. An example of a DRM is Borda count, wherein each agent must explicitly give

its complete preference order of all possible types. An example of an indirect mechanism is

majority voting, where private information related to the actual ordering of candidates by

an agent is not required, but the agent is required to play a strategy based on its preferred

preference type. Additionally, the sealed-bid first-price or second-price auctions seen earlier

are indirect mechanisms.
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2.2.4.2 Generalized Vickrey Auction

We wrap up our discussion on preference aggregation and preference elicitation by look-

ing at the famous generalized Vickrey auction.

Example 2.7: Generalized Vickrey Auction (GVA)

We have the set of A = {1, . . . , n} bidding for the items {1, . . . ,m} with M as

the power set for [m]. We get an indirect mechanism M = ((Si)i∈A, g(·), where
Si ⊂ (R+)2

m−1 is the set of bids that agent i can submit to the auctioneer. The

function g(·) is the outcome rule given by g(b) = ((y⋆i (S, b))i∈A,S⊂M , t1(b), . . . , tn(b))

where b = (b1, . . . , bn) is the bidding profile with bi as agent i’s bid.

The functions y⋆i (·, ·) are referred to as the winner determination rules, and the

function ti(·) are the payment rules.

The winner determination problem in Example 2.7 is the solution to the following op-

timization problem:

Maximize

n∑
i=1

∑
S⊂M

bi(S) · yi(S, b)

subject to (i)
∑
S⊂M

yi(S, b) ≤ 1,∀i ∈ A

(ii)
∑

S⊂M |j∈S

n∑
i=1

yi(S, b) ≤ 1,∀j ∈M

(iii) yi(S, b) ∈ {0, 1}∀i ∈ A, S ⊂M

Furthermore, the payment rule is as follows,

ti(b) =
∑
j ̸=i

vj(k
⋆(b), bj)−

∑
j ̸=i

vj(k
⋆
−1(b−i), bj), (2.4)

where vj(k
⋆(b), bj) =

∑
S⊂M bj(S)·y⋆j (S, b) is the total value of the bundle which is allocated

to the agent j. The term vj(k
⋆
−1(b−i), bj) =

∑
S⊂M bj(S) · y⋆j (S, b−i) is the total value of
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the bundle that agent j ̸= i will get if agent i is not present in the system. Eq. 2.4 is a

useful payment structure (for reasons apparent in Chapter 2.2.5.1) and is often referred to

as Vickrey, Clark, Groves (VCG) payments.

The interested reader can also observe that if the set M consists of just one item, then

the winner determination rule y⋆i will be the same as the one presented for the Vickrey

auction (Example 2.6). Thus, the name Generalized Vickrey Auction.

2.2.5 Properties of a Mechanism

Our discussion on mechanism design highlights preference revelation (or elicitation)

and aggregation as the primary challenges. We saw different types of mechanisms (di-

rect/indirect) that aim to elicit the agent’s private information to aggregate them using an

SCF. However, we desire that the elicitation is truthful. As such, we must ensure that an

agent’s true revelation is its best response, consistent with our rationality and intelligence

assumptions. One popular approach towards this is to offer appropriate incentives. This

leads to the notion of incentive compatibility, first introduced by Hurwicz [142], offering

appropriate incentives so that agents prefer to elicit their private information truthfully.

2.2.5.1 Incentive Compatibility

In Chapter 2.1, we saw two types of equilibrium, namely dominant strategy and Nash.

The first states gave a strategy that is an agent’s best response irrespective of the others’

strategy, whereas the second states that the strategy is an agent’s best response only

when the others’ also choose the same strategy. Analogously, we also have two types of

incentive compatibility: firstly, when truthful elicitation is the best response for each agent

irrespective of other agents’ reports, and secondly, when truthful elicitation is the best

response for each agent when the other agents report truthfully. The first definition is

referred to as dominant strategy incentive compatibility (DSIC) and the second as Nash
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incentive compatibility (NIC). Note that, as truthful elicitation is always with respect to

types, only direct mechanisms are relevant when defining incentive compatibility.

Before formally defining DSIC and NIC, we first define the general notion of incentive

compatibility.

Definition 2.12: Incentive Compatibility [205]

A SCF f : Θ1× . . .×Θn → X is incentive compatible (or truthfully implementable)

if the Bayesian game induced by the DRM D = ((Θi)i∈A, f(·)) has a pure strategy

equilibrium s∗(·) = (s∗1(·), . . . , s∗n(·)) in which s∗i (θi) = θi,∀θi ∈ Θi, ∀i ∈ A.

Informally, Definition 2.12 states that truth revelation by each agent comprises an equi-

librium of the game induced by D. One can observe that if an SCF f(·) is incentive

compatible then the DRM D = ((Θi)i∈A, f(·)) can implement it. In other words, directly

asking the agents to report their types and using this information in f(·) to get the social

outcome will solve both our mechanism design challenges, namely, preference elicitation

and preference aggregation.

2.2.5.1.1 Dominant Strategy Incentive Compatibility (DSIC) We say that the

game induced by a DRMD is DSIC if truth revelation by each agent constitutes a dominant

strategy equilibrium of D. More formally,

Definition 2.13: DSIC [205]

A SCF f : Θ1×. . .×Θn → X is dominant strategy incentive compatible (or truthfully

implementable in dominant strategies) if the DRM D = ((Θi)i∈A, f(·)) has a weakly

dominant strategy equilibrium s∗(·) = (s∗1(·), . . . , s∗n(·)) in which s∗i (θi) = θi,∀θi ∈
Θi,∀i ∈ A.

We said earlier that Vickrey auctions (Example 2.6) are of particular interest. This is

because these are DSIC, as shown next.
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Claim 2.1. In a second-price auction (Example 2.6), every agent i ∈ A has a dom-

inant strategy: set its bid bi equal to its private valuation θi. That is, this strategy

maximizes the utility of the agent i, no matter what the other agents bid.

Proof. Choose an arbitrary agent, say agent i ∈ A. Agent i has valuation θi, and it knows

the other agents’ bids b−i. To prove the claim, we must show that agent i’s utility is

maximized if bi = θi. Let B = maxj ̸i bj be the highest bid among all agents except i. Since

this is a second-price auction, if bi < B, then i is not the winner, and its utility is 0. If

bi ≥ B4, then i wins and pays the value B such that its utility is θi −B.

Consider the following two cases. In Case 1, we have θi < B. The highest utility i can

get is max{0, θi − B} = 0, and it achieves this by bidding truthfully. In Case 2, we have

θi ≥ B. The highest utility i can now get is max{0, θi − B} = θi − B. It achieves this

utility by bidding truthfully.

2.2.5.1.2 Nash Incentive Compatibility We say that the game induced by a DRM

D is NIC if truth revelation by each agent constitutes a Nash equilibrium of D. More

formally,

Definition 2.14: NIC [205]

A SCF f : Θ1 × . . . × Θn → X is Nash incentive compatible (or truthfully im-

plementable in Nash equilibrium) if the DRM D = ((Θi)i∈N , f(·)) has a Nash

equilibrium s∗(·) = (s∗1(·), . . . , s∗n(·)) in which s∗i (θi) = θi, ∀θi ∈ Θi, ∀i ∈ A.

2.2.5.2 Individual Rationality

The incentive compatibility property allows a social planner to resolve the primary

challenges while designing a mechanism. In contrast, individual rationality is a property of

4For completeness, note that the assumption is that the tie gets broken in agent i’s favor. However, the
claim is independent of how the tie gets broken.
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the participating agents, which ensures that the agents are not worse off by participating in

the mechanism. More concretely, it ensures non-negative utility for the agents. The precise

definition of individual rationality depends on the precise stage of the mechanism, either

(i) post every agent’s participation, (ii) post the agent’s participation, and (iii) before any

agent’s participation. For the definitions, let ui(θi) be the utility that agent i receives by

withdrawing from the mechanism, given θi as its type.

Definition 2.15: Ex-Post Individual Rationality (Ex-post IR) [205]

When the agent knows the types of all the agents. Then, the SCF f satisfies ex-post

participation (or individual rationality) constraints when,

ui(f(θi, θ−i), θi) ≥ ui(θi), ∀ (θi, θ−i) ∈ Θ.

Definition 2.16: Interim Individual Rationality (Interim IR) [205]

For this, each agent i ∈ A only knows its own type θi. Then, the SCF f satisfies

interim participation (or individual rationality) constraints when,

Eθ−i
[ui(f(θi, θ−i), θi)|θi] ≥ ui(θi), ∀ (θi) ∈ Θi.

Definition 2.17: Ex-Ante Individual Rationality (Ex-Ante IR) [205]

Each agent i ∈ A is unaware of its own type. Then, the SCF f satisfies ex-ante

participation (or individual rationality) constraints when,

Eθ[ui(f(θi, θ−i), θi)] ≥ Eθi [ui(θi)].

The three variants of IR are related as follows.

Proposition 2.1. Given a SCF f : Θ→ X , we have the relation:

f(·) is ex-post IR =⇒ f(·) is interim IR =⇒ f(·) is ex-ante IR
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We see from Proposition 2.1 that ex-post IR is the strongest property among the three

IR properties. That is, ensuring ex-post IR ensures interim and ex-ante IR.

The wonderful Vickrey auction (Example 2.6) is not only DSIC but also ex-post IR, as

shown next.

Claim 2.2. In a second-price auction (Example 2.6), every truthful agent is guaranteed

non-negative utility.

Proof. By construction, all losing agents receive utility 0. If an agent i wins, its utility is

θi−p, where p is the second-highest bid. Since i won and is truthful (that is, it bid bi = θi)

and p is the second-highest bid, we have p ≤ θi =⇒ θi − p ≥ 0.

2.2.5.3 Gibbard-Satterwaite Impossibility Theorem

Intuitively, DSIC is a desirable property for an SCF. After all, DSIC will ensure that it

is beneficial for an agent to report its type truthfully, irrespective of the strategy employed

by the other agents. Unfortunately, the desirability of DSIC often comes at the cost of

certain other desirable properties.

More concretely, the Gibbard-Satterwaite (G-S) Impossibility Theorem, proved inde-

pendently by Gibbard [117] and Satterthwaite [250], shows that the DSIC property will

force an SCF to be dictatorial if the utility environment is an unrestricted one5.

Preference Relations [205]. Before formally presenting the theorem, we first step the

following notations. Recall that for an agent i ∈ A, its preference over the set X is described

by a utility function ui : X × Θi → R. That is, for every possible type θi ∈ Θi, we can

define a utility function ui
(
·, θi
)
over the set X . Let this utility function induce a unique

preference relation ≿i (θi) over X . For instance,

x ≿ y ⇐⇒ ui(x, θi) ≥ ui(y, θi).

5The GS theorem is a brilliant reinterpretation of the famous Arrow’s impossibility theorem [13].
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The above preference relation is often called a rational preference relation. More concretely,

the relation ≿ is rational if it posses: (i) Reflexivity : ∀x ∈ X , x ≿ x, (ii) Completeness:

∀x, y ∈ X , x ≿ y or y ≿ x or both, and (iii) Transitivity : ∀x, y, z ∈ X , x ≿ y and y ≿ z,

then x ≿ z.

1. Strict-total Preference Relation. The relation ≿ is strict-total if it possesses

Reflexivity, Completeness, and Transitivity. Moreover, it also satisfies the antisym-

metry property, i.e., for any ∀x, y ∈ X such that x ̸= y; we have either x ≿ y or y ≿ x

but not both.

The curious reader may notice that strict total satisfies the property of a “greater

than or equal to” relationship on the real line. As such, it is also referred to as

the linear order relation. Denote R as all rational preference relations and P as the

strict-total preference relations on X . Trivially, P ⊂ R.

2. Ordinal Preference Relation. We have, for every possible type θi ∈ Θi, ∀i ∈ A,
defined a utility function ui

(
·, θi
)
over the set X . Let this utility function induce

a unique preference relation ≿i (θi) over X . The set Ri = {≿ : ≿ = ≿i (θi) for

some θi ∈ Θi} is known as the ordinal preference relations for agent i. Trivially,

Ri ⊂ R, ∀i ∈ A.

With all the groundwork in place, we now formally present the G-S theorem next.

Theorem 2.1 (Gibbard-Satterwaite (G-S) Impossibility Theorem [117, 250]). Given

a SCF f : Θ→ X , if

1. (Condition 1). The outcome set X is such that 3 ≤ |X | <∞

2. (Condition 2). Ri = P,∀i ∈ A

3. (Condition 3). The SCF f(·) is onto, f(Θ) = X , that is, the image of SCF f(·)
is the set X .
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Then, the SCF f(·) is truthfully implementable in dominated strategies (DSIC)

if and only if it is dictatorial.

We refer the reader to [187, Proposition 23.C.3] for the proof of the theorem. We

summarize some immediate implications of G-S theorem next.

1. Condition (1) asserts that |X | = 3. |X | = 1 corresponds to a trivial solution. When

|X | = 2, it is of more interest but still restricted. This may correspond to the

crowdfunding of public projects (e.g., a public park) where the decision is yes/no

(either construct the park or not).

2. Condition (2) asserts that Ri = P, ∀i ∈ A. That is, an agent’s preferences cover

the entire space of strict-total preference relations on X . Suppose, if |X| = 4, then

the total number of preference ordering possible would equal 4!, i.e., the number of

distinct permutations. Then, each agent i maintains |Ri| = 24 preferences.

3. Condition (3) along with f being monotonic, implies that f is an onto function; that

is, for every x ∈ X there is a preference profile [≿] such that f([≿]) = x.

To construct DSIC mechanisms, that is, avoid the G-S impossibility, we must relax at

least one of the three conditions outlined in Theorem 2.1. Here, we see that Condition (2)

enforces that each agent’s preferences span the entire space. Restricting these preferences

can violate Condition (2) but still ensure that agents’ preferences are sufficiently covered.

For this, we move to quasilinear settings, where monetary payments are added to valuation

functions, which enables us to change the order of preferences.

2.2.5.4 Quasi-linear Environment

As mentioned above, the quasi-linear setting allows us to violate the conditions for the

G-S theorem and, in turn, allows the social planner to construct useful mechanisms. In
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this environment, we overload the alternative/outcome x ∈ X with a vector of the form

x = (k, t1, . . . , tn). Here, k ∈ K where K is the set of project choices or allocations and is

assumed to be finite, in general. As before, ti ∈ R,∀i corresponds to the monetary transfer

to agent i. If ti > 0, agent i receives the money and pays the money if ti < 0. The general

setup assumes that there is no external funding source, i.e.,
∑

i∈A ti ≤ 0. To summarize,

the alternative X is,

X =

{
(k, t1, . . . , tn) : k ∈ K; ti ∈ R, ∀ i ∈ A;

∑
i∈A

ti ≤ 0

}
.

SCF in Quasi-linear Setting. The social choice function (SCF) in this setting takes

the form f(θ) = (k(θ), t1(θ), . . . , tn(θ)) where, for every θ ∈ Θ, we have k(θ) ∈ K and∑
i ti(θ) ≤ 06.

Agent’s Utility in Quasi-linear Setting. Given a direct revelation mechanism (DRM)

D = ((Θi)i∈A, f(·)), an agent i’s utility function takes the following quasi-linear form:

ui(x, θi) = ui((k, t1, . . . , tn), θi) = vi(k, θi) +mi + ti.

Here, mi denotes agent i’s initial endowment of the money, and the function vi(·, θi) is i’s
valuation function.

From our definition of the mechanism design environment (Definition 2.5), we know that

the utility functions are ui(·) are common knowledge. In the quasi-linear environment,

this implies that each agent j ̸ i (and the social planner) has knowledge about vi(·, θi).
Furthermore, in many scenarios, for a DRM D = ((Θi)i∈A, f(·)), the set Θi is actually the

set of feasible vi(·, θi) for agent i. Each possible function represents the possible types of

agent i, implying that reporting a type is equivalent to reporting a valuation function.

While we formally introduce the quasi-linear setting here, we remark that typical exam-

ples of such mechanisms were previously discussed, including the first-price (Example 2.5),

second-price (Example 2.6), and the GVA (Example 2.7).

6To remain consistent with the literature, we use the notation k both as an element of K and as the
function k : Θ → K. The underlying context will make clear the role of k.
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In the quasi-linear environment, we also have two important properties of an SCF,

namely, allocation efficiency and strong budget balance.

2.2.5.4.1 Allocative Efficiency The allocative efficiency of an SCF implies that the

allocation k(θ) is such that it maximizes the sum of the values of all the agents. In other

words, the items are allocated to the agents who value them the most.

Definition 2.18: Allocative Efficiency (AE) [205]

We say that an SCF f(·) = (k(·), t1(·), . . . , tn(·)) is allocatively efficient if for each

θ ∈ Θ, k(θ) satisfies the following condition:

k(θ) ∈
argmax

k ∈ K

n∑
i=1

vi(k, θi). (2.5)

Equivalently,
n∑
i=1

vi(k(θ), θi) =
max

k ∈ K

n∑
i=1

vi(k, θi).

Definition 2.18 implicitly assumes that given any θ,
∑n

i=1 vi(., θi) : K → R attains

a maximum over the set K. Moving forward, we will use k∗(·) for a function k(·) that

satisfies Eq. (2.5). As the definition shows, AE is a desirable property for any SCF.

2.2.5.4.2 Strong Budget Balance Consider the following definition.

Definition 2.19: Budget Balance [205]

We say that an SCF f(·) = (k(·), t1(·), . . . , tn(·)) is budget balanced, if for each

θ ∈ Θ, t1(θ), . . . , tn(θ) satisfy the following condition:

n∑
i=1

ti(θ) = 0. (2.6)
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Definition 2.19 is also commonly referred to as strong budget balance with weak budget

balance used for the condition
∑n

i=1 ti(θ) ≤ 0. For the rest of the thesis, with budget

balance, we refer to the strong variant.

The budget balance property ensures that the total receipts equal the payments made,

implying a “closed” system with no surplus or deficit. Likewise, a weak budget balance

implies that the total payments are either greater or equal to the total receipts.

AE + BB =⇒ (ex-post) Efficient. We now show an SCF is ex-post efficient (Defini-

tion 2.7) if and only if it is AE and BB.

Lemma 2.1. An SCF f(·) = (k(·), t1(·), . . . , tn(·)) is ex-post efficient in the quasi-

linear environment if and only if it is allocative efficient and budget balance.

Proof. (SKETCH.) The proof consists of three parts: (i) showing that AE + BB =⇒
(ex-post) efficiency, (ii) not AE =⇒ not (ex-post) efficient, and (iii) not BB =⇒ not

(ex-post) efficient. Each part can be individually shown with algebraic manipulations. We

refer the reader to [205] for the formal proof.

All SCFs are non-dictatorial. This result connects nicely to the G-S theorem in that the

quasi-linear setting implies that SCFs are non-dictatorial. In light of this, the social planner

can look for SCFs that are ex-post-efficient and DSIC. Or perhaps, using Lemma 2.1, look

for SCFs that are AE, BB and DSIC.

Lemma 2.2. All social choice functions in quasi-linear environments are non-dictatorial.

Proof. If possible, assume that an SCF f(·) is dictatorial in the quasi-linear environment.

That is, there exists an agent called the dictator, say d ∈ A, such that for each θ ∈ Θ, we

have

ud(f(θ), θd) ≥ ud(x, θd) ∀ x ∈ X .

52



Recall the utility of an agent in the quasi-linear environment. We have, ud(f(θ), θd) =

vd(k(θ), θd) + td(θ). We define the following alternative x ∈ X :

x =

 (k(θ), (ti = ti(θ))i ̸=d, td = td(θ)−
∑n

i=1 ti(θ)) :
∑n

i=1 ti(θ) < 0

(k(θ), (ti = ti(θ))i ̸=d,j , td = td(θ) + ϵ, tj = tj(θ)− ϵ) :
∑n

i=1 ti(θ) = 0

where ϵ > 0 is any arbitrary number, and j is an agent such that j ̸= d. One can verify

that for this outcome x, we have ud(x, θd) > ud(f(θ), θd), which contradicts the fact that

d is a dictator.

In summary, Chapter 2.2.5.4 shows that for a desirable mechanism, the social planner

must look for an SCF that satisfies AE, BB, and DSIC. Next, we investigate the existence

of such mechanisms.

2.2.5.5 Auction Theory

With Chapter 2.2.5.5, we introduce the famous VCG mechanism, which shows the

existence of a social choice function (SCF) that is both allocative efficient (AE) and DSIC

in the quasi-linear setting.

2.2.5.5.1 VCG Mechanisms VCG mechanism is a landmark result in mechanism

design and is named after its inventors, William Vickrey, Edward Clarke, and Theodore

Groves. As mentioned before, Vickrey [284] proposed the famous second-price or Vickrey

auction (Example 2.6). Clarke [63] and Groves [129] generalized the mechanism to present

a broad class of DSIC mechanisms for the quasi-linear environment (recall that we have

already seen the extension for auctions with Example 2.7). VCG mechanisms are the most

extensively studied among the set of quasi-linear mechanisms. Their popularity stems

from the strong properties they satisfy and their mathematical elegance. Let us now take

a detailed look at this class of mechanisms.

Groves’ Theorem [129]. We now discuss a sufficient condition for an allocative efficient

SCF to be DSIC in the quasi-linear environment.
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Theorem 2.2 (Groves’ Theorem [129]). Consider an SCF f(θ) = (k(θ), t1(θ), . . . , tn(θ))

that is allocative efficient (AE). Then f(·) is also DSIC if it satisfies the following pay-

ment structurea

ti(θ) =

∑
j ̸=i

vj(k
∗(θ), θj)

+ hi(θ−i) ∀ i = 1, . . . , n (2.7)

Here, hi : Θ−i → R is an arbitrary function that honors the feasibility condition∑
i ti(θ) ≤ 0 ∀ θ ∈ Θ.

aIn mechanism design literature, Eq. 2.7 is also referred to as the Groves payment/incentive scheme.

Proof. The proof uses proof by contradiction. We assume that f(·) is AE and satisfies

Eq. 2.7 but is not DSIC. That is, f(·) does not satisfy the following necessary and sufficient

condition for DSIC: ∀i ∈ A, ∀θ ∈ Θ,

ui(f(θi, θ−i), θi) ≥ ui(f(θ
′
i, θ−i), θi) ∀θ

′
i ∈ Θi, ∀θ−i ∈ Θ−i.

From the above, for agent i, we have,

ui(f(θ
′
i, θ−i), θi) > ui(f(θi, θ−i), θi)

for some θi ∈ Θi, for some θ−i ∈ Θ−i, and for some θ
′
i ∈ Θi. For agent i, there exists

θi ∈ Θi, θ
′
i ∈ Θi, θ−i ∈ Θ−i such that

vi(k
∗(θ

′
i, θ−i), θi) + ti(θ

′
i, θ−i) +mi > vi(k

∗(θi, θ−i), θi) + ti(θi, θ−i) +mi.

Recall that

ti(θi, θ−i) = hi(θ−i) +
∑
j ̸=i

(k∗(θi, θ−i), θj)

ti(θ
′
i, θ−i) = hi(θ−i) +

∑
j ̸=i

(k∗(θ
′
i, θ−i), θj).

Substituting these, we get

vi(k
∗(θ

′
i, θ−i), θi) +

∑
j ̸=i

vi(k
∗(θ

′
i, θ−i), θj) > vi(k

∗(θi, θ−i), θi) +
∑
j ̸=i

vi(k
∗(θi, θ−i), θj),
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which implies
n∑
i=1

vi(k
∗(θ

′
i, θ−i), θi) >

n∑
i=1

vi(k
∗(θi, θ−i), θi).

We see that the above inequality contradicts the assumption that f(·) is AE, completing

the proof.

We can use the Groves payment structure from Eq. 2.7 to design a direct revelation

mechanism (DRM) whose SCF is AE and satisfies Eq. 2.7. We refer to such a DRM as the

Groves mechanism.

Definition 2.20: Groves Mechanism [205]

A DRM D = ((Θi)i∈N , f(·)) wherein the SCF f(θ) = (k(θ), t1(θ), . . . , tn(θ)) satisfies

AE and Eq. 2.7 is known as the Groves mechanism.

The Groves mechanism is also popularly referred to as the Vickrey, Clarke, Groves

(VCG) mechanism.

Eq. 2.7 is also Necessary. Theorem 2.2 presents a sufficient condition under which

an AE SCF is also DSIC. Green et al. [123] provides a set of conditions under which the

Groves payment structure is also necessary for an AE SCF to be DSIC.

Theorem 2.3 (Green-Laffont’s First Characterization Theorem [123]). Let F denote

the set of all possible functions f : K → R. Assume that for each agent i ∈ A, we have

{vi(·, θi) : θi ∈ Θi} = F, i.e., every possible valuation function from K to R arises for

some θi ∈ Θi. Then, any SCF f(·) will be DSIC if and only if it satisfies Eq. 2.7.

In Theorem 2.3, every possible valuation function from K to R exists for any θi ∈ Θi.

However, depending upon K’s structure, it is quite possible that for some type profile

θ = (θ1, . . . , θn), the maximum of the function
∑n

i=1 vi(·, θi) over the set K may not exist.

In such cases, the set of AE SCFs is empty. One way to overcome this is to assume that

the set K is finite. Another is to restrict the allowable valuation functions to the class
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of continuous functions. Our next characterization, again from Green et al. [123], F is

replaced with Fc where Fc denotes the set of all possible continuous functions f : K → R.

Theorem 2.4 (Green-Laffont’s First Characterization Theorem [123]). Let Fc denote

the set of all possible but continuous functions f : K → R. Assume that for each agent

i ∈ A, we have {vi(·, θi) : θi ∈ Θi} = Fc, i.e., every possible valuation function from

K to R arises for some θi ∈ Θi. Then, any SCF f(·) will be DSIC if and only if it

satisfies Eq. 2.7.

2.2.5.5.2 Clarke (Pivotal) Mechanism. Clarke [63] independently proposed a spe-

cial case of Groves mechanism, referred to as Clarke, or the pivotal mechanism. It is a

special case as it uses a natural form of hi(·) (refer to Theorem 2.2). In Clarke’s mechanism,

we have,

hi(θ−i) = −
∑
j ̸=i

vj(k
∗
−i(θ−i), θj) ∀ θ−i ∈ Θ−i,∀ i = 1, . . . , n (2.8)

Here, k∗−i(θ−i) ∈ K−i is the choice of an allocation (e.g., item) that is AE if there were

only the n− 1 agents j ̸= i. Formally, k∗−i(θ−i) must satisfy the following condition:

∑
j ̸=i

vj(k
∗
−i(θ−i), θj) ≥

∑
j ̸=i

vj(k, θj) ∀ k ∈ K−i (2.9)

where the set K−i is the set of allocation (e.g., items distributed) choices available when

agent i is absent. Substituting the value of hi(·) from Eq. 2.8 in Eq. 2.7, we get the following

expression for agent i’s transfer in Clarke’s mechanism,

ti(θ) =

∑
j ̸=i

vj(k
∗(θ), θj)

−
∑
j ̸=i

vj(k
∗
−i(θ−i), θj)

 . (2.10)

A careful reader will observe that these transfers are identical to the payments proposed

for the Generalized Vickery Auction (GVA) in Eq. 2.4. Indeed, this payment rule is ap-

pealing. Given a type profile θ = (θ1, . . . , θn), the monetary transfer to agent i in Eq. 2.10
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is given by the total value of all agents other than i under an efficient allocation when

agent i is present in the system minus the total value of all agents other than i under an

efficient allocation when agent i is absent in the system.

We summarize this discussion with this: Groves mechanisms are referred to as VCG

mechanisms, as the Clarke mechanism is a special case of the Groves mechanism, and the

Vickrey mechanism is a special case of the Clarke mechanism.

2.2.5.5.3 Impossibility of an SCF Satisfying DSIC and Ex-post-Efficiency.

Recall that our original goal was to construct a DSIC and ex-post-efficient SCF (the allo-

cations are Pareto-optimal). Equivalently, from Lemma 2.1, we want an SCF that is AE,

BB, and DSIC. We were off to a good start with the Groves mechanism being AE and

DSIC. If the Groves mechanism is also budget-balanced (BB), we arrive at an ideal SCF.

To this end, we re-look at the hi(·) functions introduced with Groves’ theorem. Unfor-

tunately, Green et al. [123] show that in the quasi-linear environment, if the set of possible

agent types is sufficiently rich, then we cannot have an SCF that is AE, BB, and DSIC.

More formally,

Theorem 2.5 (Green-Laffont Impossibility Theorem [123]). Suppose for each agent

i ∈ A we have F = {vi(·, θi) : θi ∈ Θi}, i.e., every possible valuation function from K

to R arises for some θi ∈ Θi. Then, there exists no SCF that is ex-post efficient and

DSIC.

In other words, the Green-Laffont Impossibility Theorem states that if the agent types

are sufficiently rich, then we cannot find a way to define hi(·)’s in Eq. 2.7 such that∑n
i=1 ti(θ) = 0.

2.2.5.6 Combinatorial Auctions

The Generalized Vickrey Auction from Example 2.7 is actually the Clarke mechanism

applied to a combinatorial auction. Combinatorial auctions are simply auctions where the
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Agents {A} {B} {A,B}

1 - - 10

2 5 - -

3 - 5 -

Table 2.3: Agent Valuations [205]

bids correspond to bundles or combinations of different items. This thesis focuses on the

“forward” combinatorial auction7, where a seller auctions different types of goods/items

and buyers are interested in purchasing certain subsets of these items. We refer the reader

to [68] and [211, Chapter 11] for a comprehensive discussion on combinatorial auctions.

2.2.5.6.1 VCG Mechanisms: GVA Re-visited. For illustration, from [205], con-

sider a seller who auctions two items, A and B. We have three interested agents {1, 2, 3}.
The subsets (or bundles) available to buyers are {A}, {B} and {A,B}. Table 2.3 presents

the agent valuations for these bundles, with “-” denoting the fact that an agent is not

interested in that bundle.

Applying Clarke’s mechanism here, firstly, we know that agents will bid their valuation

since the mechanism is DSIC. Next, we have two allocative efficient (AE) allocations: (i)

allocate {A,B} to agent 1 and (ii) allocate bundle {A} to agent 2 and bundle {B} to agent

3. Both the allocations give a value of 10. Suppose the seller chose the second allocation.

Now, payments to agents 2 and 3 are computed using the Clarke payment rule (Eq. 2.10).

For the payments, let us see what happens when agents 2 and 3 are removed separately

from the mechanism. If agent 2 were not present, the seller would give agent 1 the bundle

{A,B}, resulting in a total value of 10. The Vickrey discount to agent 2 is 10 − 10 = 0,

resulting in agent 2’s payment of 5 + 0 = 5. Likewise, for the agent 3 also, the payment is

7A reverse combinatorial auction is one in which a buyer requires different types of goods, and several
sellers are interested in selling different subsets to it.
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5. This results in a net revenue of 10 for the seller (i.e., it has captured the entire consumer

surplus).

However, the VCG mechanism for the combinatorial auction need not always generate

the optimal revenue. Replacing the valuation of 5 to 10 in Table 2.3 for agents 2 and 3

will lead to zero revenue for the seller. That is, guaranteeing a mechanism that is AE and

DSIC came at a cost to the seller.

2.2.5.6.2 Combinatorial Auctions: Standard Model For ease of discussion, mov-

ing forward in Chapter 2.2.5.6, we use the following definition to denote a combinatorial

auction.

Definition 2.21: Combinatorial Auction [211]

Model: We have a seller/auctioneer AU interested in selling M = {1, . . . ,m}
indivisible items. There are A = {1, . . . , n} interested, and rational, buyers. For

each i ∈ A, the valuation function ϑi describes its preferences. That is, for each

possible subset Si ∈ 2M, ϑi is a real-valued function such that ϑi(Si) denotes agent i’s

valuation if it gets the bundle Si. Moreover, given the allocations S = (S1, . . . , Sn),

let pi(S) denote the payment for an agent i if it gets the bundle Si. Each agent

i ∈ A quasi-linear utility is: ui(S, {ϑi}i∈A) = ϑi(Si)− pi(S, {ϑi}i∈A).
Allocation Rule: As before, let K denote the allocation function, which takes the

valuations as inputs and outputs the list of bundles allocated to each agent.

Payment Rule: Let p = (p1(·), . . . , pn(·) denote the payments for the agents in A.
That is, the combinatorial auction is characterized by the tuple (K, p).

Given Definition 2.21, we can define two useful properties:

• Feasible Allocation. An allocation S = (S1, . . . , Sn) is feasible if Si ∩ Sj = ∅ for

every i ̸= j in A.
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• Social Welfare. We define the social welfare of an allocation S as
∑

i∈A ϑi(Si). A

socially efficient allocation maximizes the social welfare among all allocations.

Computational Complexity. Unfortunately, computing allocation and payments for

a combinatorial auction is computationally hard. In fact, the hardness remains for even

simple special cases. We study one such simple case next.

2.2.5.6.3 The Single-minded Case The single-minded case is a restriction of com-

binatorial auctions wherein agents are interested in a single specific bundle of items and

get a scalar value if they get this whole bundle (or any super-set) and get zero value for

any other bundle. Formally,

Definition 2.22: Single-minded Valuation Function [211]

A single-minded valuation function is a function in which there exists a bundle of

items S⋆ and a value ϑ⋆ ∈ R+ such that ϑ(S) = ϑ⋆, ∀S ⊇ S⋆ and ϑ(S) = 0 for all

other S. A single-minded bid is the pair (S⋆, ϑ⋆).

As obvious, it is easy to represent single-minded valuations since agents are required only

to hold a single parameter for valuation and a single bundle of information. This is unlike

the general combinatorial auction case where the bidders must maintain their valuation

functions, which are exponential in the number of items m. Despite their simplicity in

terms of representation, the single-minded case is also computationally hard.

Computational Complexity of Allocation. From Definition 2.21, the general alloca-

tion problem gives disjoint sets of items Si to each i ∈ A. In the case of single-minded

bidders whose bids are (S⋆i , ϑ
⋆
i ), an allocation to agent i is either the bundle it wants

(Si = S⋆i ) or nothing at all (Si = ∅). More formally,
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Definition 2.23: Algorithmic Allocation for the Single-minded Case [211]

Input: (S⋆i , ϑ
⋆
i ) for each agent i = 1, . . . , n

Output: A subset of winning bids W ⊆ {1, . . . , n} such that S⋆i ∩ S⋆j = ∅ for every
i ̸= j in A (i.e., the winning allocation is feasible). We also want the social welfare

to be maximized
∑

i∈W ϑ⋆i .

The algorithmic allocation is a “weighted-packing” problem. We next show that this is

NP-hard by reducing from the known NP-complete INDEPENDENT-SET problem.

Theorem 2.6 (Allocation Problem in Definition 2.23 in NP-Hard [211]). The decision

problem of whether the optimal allocation has social welfare at least k (where k is an

additional part of the input) is NP-complete.

Proof. Independent of this result, to show that any problem X is NP-hard, we must take

a known NP-complete problem and reduce it to X. The computational hardness follows

the direction of the reduction, implying that X is also NP-hard.

For the allocation problem specifically, we make the reduction from the well-known NP-

complete INDEPENDENT-SET problem [211]. In this problem, we have an undirected

graph G = (V,E) and a number k. The problem is determining whether G has an inde-

pendent set of size k. Recall that an independent set is a subset of vertices with no edge

between them.

To reduce from the INDEPENDENT-SET problem, we build an allocation problem as

follows:

• The set of items is E (i.e., the set of edges)

• Let each vertex of G denote an agent. For vertex i ∈ V , let the desired bundle of i

be the set of adjacent edges S⋆i = {e ∈ E | i ∈ e} and the value be ϑ⋆i = 1.

Now, the set W is feasible (S⋆i ∩S⋆j = ∅) if and only if the set of vertices corresponding to

W is an independent set in G. The social welfare obtained by W is exactly the size of this
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set, i.e., the size of the independent set. That is, an independent set of size at least k exists

if and only if the social welfare of the optimal allocation is at least k. This concludes the

NP-hardness proof. Furthermore, the decision problem of whether the optimal allocation

has social welfare is at least k is in NP is trivial. We can guess the optimal allocation, and

then the social welfare can be guessed routinely.

Usually, if any computational problem is shown to be NP-complete, there are three

immediate approaches: (i) approximation, special cases, and heuristics. We focus on finding

an approximately equal allocation.

Algorithm 1 ICA-SM Algorithm [169]

1. Initialization:

• Sort the agents according to the order : ϑ⋆1/
√
|S⋆1 | ≥ ϑ⋆2/

√
|S⋆2 | ≥ · · · ≥

ϑ⋆n/
√
|S⋆n|

• W ← ∅

2. For i : 1→ n, if S⋆i ∩ (∪j∈WS⋆j ) = ∅ then W ←W ∪ {i}

3. Output:

• Allocation: The set of winners is W .

• Payments: ∀i ∈ W,pi = ϑ⋆j/
√
|S⋆j |/|S⋆i | where j is the smallest index

such that S⋆i ∩ S⋆j ̸= ∅, and for all k < j, k ̸= i, S∗
k ∩ S∗

j = ∅. If no such j

exists then pi = 0.

Incentive-comptabile, Approximate Algorithm for the Single-minded Case (ICA-

SM) [169]. We say that an allocation S = (S1, . . . , Sn) is c-approximate of the optimal

allocation if for every other allocation T = (T1, . . . , Tn), including the optimal one, we have

that
∑

i ϑ(Ti)∑
i ϑ(Si)

≤ c. Algorithm 1 describes ICA-SM, which is a greedy algorithm that solves
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the allocation problem for single-minded case with n agents, m items, ϑi and Si as agent i’s

bid valuation and preferred bundle of items, with W as the set of winners approximately.

ICA-SM is computationally efficient, incentive compatible and is
√
m-approximate [169].

Computational efficiency is trivial as the algorithm is greedy and, thus, polynomial in the

number of agents n. The algorithm is also DSIC, whose proof8 is available at [211, Lemma

11.9]. Claim 2.3 proves the
√
m bound.

Claim 2.3. Let OPT be an allocation (i.e., set of winners) with maximum social

welfare,
∑

i∈OPT ϑ⋆i , and let W be the output of ICA-SM. We have
∑

i∈OPT ϑ⋆i ≤
√
m
∑

i∈W ϑ⋆i .

Proof. For each i ∈ A, let OPTi = {j ∈ OPT, j ≥ i | S⋆i ∩S⋆j = ∅} denote the set of agents
in OPT that were not able to be part of W because of i. Clearly, OPT ⊆ ∪i∈WOPTi. To

show the bound, we need to show that for every i ∈W ,
∑

i∈OPT ϑ⋆i ≤
√
mv⋆i .

Each j ∈ OPTi appears after i in the algorithm’s greedy order, thus, ϑ⋆j ≤
ϑ⋆i
√

|S⋆
j |

|
√

|S⋆
i ||

.

Summing over all j, we get,

∑
j∈OPTi

ϑ⋆j ≤
ϑ⋆i√
|S⋆i |

∑
j∈OPTi

√
|S⋆j |.

From the Cauchy-Schwartz inequality, we get,

∑
j∈OPTi

√
|S⋆j | ≤

√
|OPTi|

√ ∑
j∈OPTi

|Sj |

By construction, every S⋆j for j ∈ OPTi intersects S
⋆
i . Since OPT is an allocation, these

intersections must all be disjoint, and thus, |OPTi| ≤ |S⋆i |. Since OPT is a valid allocation,∑
j∈OPTi |Sj | ≤ m. We get

∑
j∈OPTi

√
|S⋆j | ≤

√
|S⋆i |
√
m, and substituting this into the

first inequality gives the claim
∑

i∈OPT ϑ⋆i ≤
√
m
∑

i∈W ϑ⋆i .

8For completeness, the proof follows from the famous Myerson’s lemma [201] as the allocation is mono-
tone and payments satisfy the unique payment structure defined in the lemma.
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Recall the Green-Laffont impossibility theorem (Theorem 2.3), which states that if the

space of agent types is sufficiently rich, we cannot design a mechanism that is ex-post

efficient, DSIC, and budget balanced (i.e.,
∑

i ti = 0). To this end, in Chapter 2.2.5.7, we

look at Redistribution mechanisms, which are a class of mechanisms that aim to satisfy

ex-post efficiency, DSIC, and minimizing
∑

i ti by redistributing the collected payments

back to the agents.

2.2.5.7 Redistribution Mechanisms

For our discussion on combinatorial auctions, we consider a set of itemsM := [m] being

auctioned with A := [n] as the set of interested agents. For redistribution mechanisms

(RMs), we have the same setting with a slight caveat: the social planner (instead of an

auctioneer) wishes to allocateM items to A agents. The social planner is not interested in

maximizing its revenue. Instead, it prefers to allocate the items (i) as cheaply as possible

and (ii) to agents who value them the most. Naturally, the social planner can try using

VCG mechanisms as they are allocatively efficient (AE) and DSIC. But, from Theorem 2.3,

we know that the VCG mechanisms are only weakly budget balanced, i.e., the transfer of

money in the system is non-zero. This implies that the social planner will derive revenue

from allocating the items, contrary to its desire to allocate them for free.

RMs tackle scenarios where the surplus money is not desired. E.g., allocation of public

resources such as public housing, road access, national park permits, and health care.

The Green-Laffont impossibility theorem (Theorem 2.3) necessitates collecting payments

to ensure DSIC and AE. To this end, Maskin et al. [188] proposes first to collect the

payments from the agents (similar to VCG) and then redistribute the surplus among them.

The total payment redistributed to the agents is referred to rebates to the agents. More

formally,

Redistribution Mechanism [188]. We say a Groves mechanism is a Groves redistri-

bution mechanism or simply redistribution mechanism (RM) if it allocates items to the
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agents in an AE manner and redistributes the Clarkes surplus in the system in the form

of rebates to the agents such that the net payment made by each agent still follows the

Groves payment structure.

2.2.5.7.1 Rebate Function Sticking to the notations introduced for the VCG mech-

anism (Chapter 2.2.5.5). Let the bid vector be b = (b1, b2, . . . , bn) where bi = (bi1, . . . , bim)

is the bid submitted by agent i for the m items. For a bid profile b, the rebate to an agent

i ∈ A is denoted by ri(b). Furthermore, ti(b) is the payment made by i in Clarke pivotal

mechanism, i.e., ti(b) = vi(k
⋆(b)) − (v(k∗(b)) − v(k⋆−i(b))), where k⋆(b) is an allocatively

efficient allocation and k⋆−i(b) is allocatively efficient allocation without agent i. Refer to

Eq. 2.10 for details. An RM is defined by the rebate function. Gujar et al. [130] provide

the following characterization for rebate functions for designing DSIC RMs.

Theorem 2.7 ([130]). In an RM, any deterministic, anonymous rebate function g(·) is
DSIC iff the rebate for an agent i ∈ A is defined as ri := g(b1, b2, . . . , bi−1, bi+1, . . . , bn), ∀i ∈
[n], where b1 ≥ b2 ≥ . . . ≥ bn.

The rebate function is DSIC if the rebate for an agent i is independent of its own bid. In

general, the rebate function could take any form. E.g., the linear rebate function is defined

as,

Definition 2.24: Linear Rebate Function

The rebate to an agent in a Redistribution Mechanisms (RM) is linear if it is a linear

combination of the bid vectors of all the remaining agents. Furthermore, if the RM

uses linear rebate functions for all the agents, we say that the RM is a linear RM.

In this thesis, we will focus only on linear rebate functions. We refer to the reader to

Prakash [232] for an extended discussion on RMs.
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Redistribution Index. Notice that RMs collect payments from the agents and redis-

tribute the surplus using a rebate function. An RM’s utility is quantified by the amount of

surplus it redistributes. To measure this amount, we now define the redistribution index.

For this, let ri(b) denote agent i’s rebate given the bid vector b = (b1, b2, . . . , bn) as input.

Definition 2.25: Redistribution Index [132]

We define the redistribution index as the worst-case or average-case fraction of the

Clarke surplus that gets redistributed among the agents. That is,

ewc := inf
b:t(b)̸=0

∑
i∈A ri(b)

t(b)
and eavg := Eb:t(b)̸=0

[∑
i∈A ri(b)

t(b)

]

Homogeneous vs. Heterogeneous Items. The RM literature explores both the homo-

geneous (i.e., items are identical) and heterogeneous (i.e., items are non-identical). E.g.,

Guo et al. [133] propose Worst-case Optimal (WCO), a mechanism that uniquely maxi-

mizes the worst-case RI (among all RMs that are deterministic, anonymous, and satisfy

DSIC, AE, and IR) when the items are homogeneous with unit demand [133, Theorem 1].

For the heterogeneous case, Gujar et al. [130] shows the impossibility of the existence of

a linear rebate function with a non-zero redistribution index. This thesis focuses on the

homogeneous RM setting. To this end, we first discuss the Bailey-Cavallo RM [49].

2.2.5.7.2 Bailey-Cavallo RM To reiterate, we have the set of agents A = [n] and

M = [m] as the items with unit demand. That is, each agent requires one unit among them

available. The case with m < n is non-trivial. The linear rebate function (Definition 2.24)

can be expressed as for any agent i ∈ A,

ri = c0 + c1 · b1 + . . .+ ci−1 · bi−1 + ci · bi+1 + . . .+ cn−1 · bn.

Here, cj ∈ R,∀j and w.l.o.g. we assume that b1 ≥ b2 . . . ≥ bn. We next define the

Bailey-Cavallo RM.
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Bailey-Cavallo Mechanism [49]. In this mechanism, cm+1 = m/n, ci = 0 for all

other i. The rebate ri is thus,

ri =
m

n
· bm+2 i ≤ m+ 1, ri =

m

n
bm+1 i > m+ 1

The total money redistributed is (m+1)mn bm+2+(n−m−1)mn bm+1. Since ri ≥ 0 for

all agents, i.e., it satisfies IR. Furthermore, as (m+1)mn bm+2+(n−m−1)mn bm+1 ≤
nmn bm+1 = mbm+1, hence it is also feasible.

The Bailey-Cavallo mechanism offers the best-case rebate when bm+1 = bm+2. That

is, it returns m · bm+1. Significantly, this is the total VCG payments collected, implying

that in the best case, the mechanism redistributes 100% of the revenue. However, the

worst case occurs when bm+2 = 0, with the amount being redistributed being n−m−1
n of the

total VCG payment collected. Next, we look at an RM that achieves optimal worst-case

redistribution.

2.2.5.7.3 Worst-case Optimal (WCO) [133]. Since the items are identical, each

agent i ∈ A has the same value for each item in M, i.e., θi. W.l.o.g., we assume that

θ1 ≥ θ2 . . . ≥ θn. In Clarke’s pivotal mechanism (Chapter 2.2.5.5.2), the first m agents will

receive the items, and each of these m agents will pay the highest losing bid, i.e., θm+1. So

the VCG surplus is m · θm+1.

WCO maximizes the worst-case fraction of this surplus that gets redistributed. In WCO,

(again) the first m agents receive the items and pay pi := ti − ri, where ri is their rebate.

More formally,
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rWCO
i = cm+1θm+2 + cm+2θm+3 + . . .+ cn−1θn i = 1, . . .m+ 1

rWCO
i = cm+1θm+1 + . . .+ ci−1θi−1 + ciθi+1 + . . .+ cn−1θn i = m+ 2, . . . n

(2.11)

where,

ci =
(−1)i+m−1 (n−m)

(
n−1
m−1

)
i
(
n−1
i

)∑n−1
j=m

(
n−1
j

)

n−1∑
j=i

(
n− 1

j

) ; i = m+ 1, . . . , n− 1 (2.12)

If y1 ≥ y2 ≥ . . . ≥ yn−1 were the bids of the (n − 1) agents excluding agent i, then

equivalently the rebate to agent i would be,

rWCO
i =

n−1∑
j=m+1,j ̸=i

cj · yj (2.13)

The (worst-case) redistribution index of WCO, say eWCO, is

eWCO = 1−
(
n−1
m

)∑n−1
j=m

(
n−1
j

)
WCO is optimal as there exists no other RM that can guarantee more than eWCO fraction

redistribution in the worst-case [133, Theorem 1].

Chapter 2.2.5.6 presents an interesting set of direct revelation mechanisms (DRMs) for

the general and special cases of combinatorial auctions, whereas Chapter 2.2.5.7 presents

DRMs for redistribution mechanisms. Next, we look at civic crowdfunding, which is an

interesting application for the general class of indirect revelation mechanisms.

2.3 Civic Crowdfunding

Crowdfunding is a popular method to raise funds for various projects. These projects

include for-profit start-ups or ventures and community well-being projects such as medi-

cal/academic bills, public bridges, libraries, or parks. This thesis focuses on crowdfunding
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for public projects commonly referred to as civic crowdfunding [19, 312, 52, 54]. Bagnoli

et al. [19] present the seminal work in civic crowdfunding, namely the Provision Point

Mechanism (PPM).

2.3.1 Provision Point Mechanism (PPM)

Before describing PPM, we first state the general civic crowdfunding model used through-

out this thesis.

Definition 2.26: The General Civic Crowdfunding Model

• Consider the crowdfunding of a set of projects Pm = {1, . . . ,m} with A =

{1, . . . , n} as the sets of interested agents. Denote Cm = {c1, . . . , cm} as the

target costs (also called the “provision point”) for the projects. The target costs

absorb the required funds for a project’s construction. Throughout this thesis,

we assume that each project is non-rivalrous and the crowdfunding process has a

binary outcome, i.e., each project either gets constructed or does not.

• We use θij ∈ R≥0 to denote agent i’s valuation for the project j. The valuation

quantifies an agent’s interest in funding the project. Denote ϑj =
∑

i∈A θij as

the overall valuation for the project j. Throughout this thesis, we assume that

ϑj ≥ cj , ∀j ∈ Pm. The case ϑj < cj represents a lack of interest of the community

towards funding the project and is typically not of interest.

• Each agent i contributes xij ∈ R≥0 to a project j ∈ Pm at any time tij . Denote

xj =
∑

i∈A xij as the total contribution towards a project j.

• The crowdfunding process continues until a publicly-known deadline τ . At the end

of τ , if xj ≥ cj , we say that the project j is funded (or “provisioned”). Likewise,

if xj < cj , the project j remains unfunded.
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Furthermore, unless stated otherwise, the civic crowdfunding literature [312, 52] assumes

the following:

1. Agents contribute at most once to each project j ∈ P1.

2. Agent utilities are quasi-linear.

3. Agents do not have any external information regarding any project funding except

the total contribution made at any time and the time remaining till the deadline.

That is, they are symmetric in their belief regarding the project’s funding.

4. Agents are interested in the project’s funding, i.e., their valuation towards the project’s

funding is positive.

Provision Point Mechanism (PPM) [19]. Bagnoli et al. [19] presented the first civic

crowdfunding mechanisms, namely, PPM. The mechanism is for a single project, i.e., m = 1

in Definition 2.26. In PPM, the agents contribute to the project’s funding until the deadline

τ . If the project’s total contribution crosses the target cost by τ , the agents receive a

quasi-linear utility, which is the difference between their valuation and their contribution.

Otherwise, the project remains unfunded, and the agents receive their contributions back.

More formally, in PPM, each agent’s i utility ui(·) is, ∀j ∈ P1,

ui(θij , xij ;xj , cj) := 1xj≥cj · (θij − xij)︸ ︷︷ ︸
Funded Utility

+ 1xj<cj · 0︸ ︷︷ ︸
Unfunded Utility

(2.14)

In Eq. 2.14, 1X is an indicator variable that takes the value of 1 when X is true and zero

otherwise.

2.3.1.1 PPM: Equilibrium Behavior

The solution concept used to analyze the equilibrium behavior of PPM is (pure-strategy)

Nash equilibrium (Definition 2.3). Unfortunately, the game induced in PPM comprises both
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(i) efficient equilibrium where the project is funded and (ii) inefficient equilibrium where

the project is not funded. To illustrate these, consider the following examples.

Example 2.8: PPM: Efficient Equilibrium [19]

Given A,P1, C1 (refer to Definition 2.26), an efficient (pure-strategy) Nash equilib-

rium in PPM is where ∀j ∈ P1 we have 0 ≤ xij ≤ θij ∀i ∈ A such that
∑

i∈A xij = cj .

Example 2.9: PPM: Inefficient Equilibrium [19]

Given A,P1, C1 (refer to Definition 2.26), an efficient (pure-strategy) Nash equilib-

rium in PPM is where ∀j ∈ P1 we have {xij ≥ 0}i∈A such that
∑

i∈A xij < cj and∑
k∈A,k ̸=i xkj + θij ≤ cj ,∀i ∈ A.

The inefficiency in Example 2.9 is apparent as the total contributions are short of

the target cost. Furthermore, the contributions satisfy Nash equilibrium as no agent in

Example 2.9 will prefer to change its contribution such that
∑

i∈A xij = cj since it alone

does not have a sufficient valuation for it.

2.3.1.2 PPM: Free-riding

In addition to the existence of inefficient equilibria in PPM, the civic crowdfunding

model in general also suffers from free-riding. As mentioned in Definition 2.26, we consider

public (i.e., non-excludable) and non-rivalrous projects. As such, any agent can consume

the project without contributing towards its funding. E.g., if an agent does not contribute

towards funding a public bridge, it can still avail the bridge for its commute. This results

in a lack of incentive for rational agents to contribute actively towards a project’s funding

– leading to agents “free-riding” on others to contribute and fund the project while they

only avail its benefits.

71



Figure 2.1: An overview of the civic crowdfunding process in PPR [312].

2.3.2 Provision Point Mechanism with Refunds (PPR)

Zubrickas [312] introduces a novel mechanism, namely, PPR, to address the two short-

comings of PPM: (i) the existence of inefficient equilibrium and (ii) agents free-riding. The

key idea behind PPR is the introduction of refunds to the agents. More concretely, unlike

PPM, in PPR, if the project is unfunded, the agents receive a refund – in proportion to

their contributions – in addition to their contributions being returned. Similar to PPM,

PPR is also for a single project, i.e., m = 1 in PPR. Figure 2.1 presents an overview of the

civic crowdfunding process in PPR.

More formally, in PPR, each agent’s i utility ui(·) is, ∀j ∈ P1,

ui(θij , xij ;xj , cj , B) := 1xj≥cj · (θij − xij)︸ ︷︷ ︸
Funded Utility

+1xj<cj ·
(
xij
xj
·B
)

︸ ︷︷ ︸
Unfunded Utility

(2.15)

In Eq. 2.15, B > 0 denotes the bonus budget. The social planner must set aside a publicly-

known B at the start of the crowdfunding process. In a follow-up work, Cason et al. [48]

conduct real-world experiments which suggest an ideal value of B to be around ten percent

of the project’s target cost.

Free-riding. The introduction of refunds to contributing agents overcomes the problem

of free-riding from PPM. Agents are not only incentivized to contribute due to the al-

lure of receiving refunds but also increase their contribution as the refund in Eq. 2.15 is

proportional to the contribution made.
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2.3.2.1 PPR: Project Status at Equilibrium

In PPR, the game-induced has the equilibrium wherein the project is funded. More

formally,

Theorem 2.8 ([312]). Given A,P1, C1 (refer to Definition 2.26) with 0 < B ≤ ϑj −
cj , ∀j ∈ P1 and agents utility structure as defined in Eq. 2.15, then at equilibrium (i)

xj = cj , ∀j ∈ P1 and (ii) the set of (pure-strategy) Nash equilibria are {x⋆ij | x⋆ij ≤
cj

B+cj
θij , ∀i ∈ A, ∀j ∈ P1}.

Proof. We provide the proof also available at [312]. For part (i), we have to show that

xj = cj , ∀j ∈ P1. Note that xj < cj cannot hold at equilibrium as any agent can obtain a

higher refund by marginally increasing its contribution as B > 0. Likewise, if xj > cj , then

any agent can decrease its contribution to receive a higher utility. That is, at equilibrium,

xj = cj .

For part (ii), for any agent i contributing to project j ∈ P1, x⋆ij is an equilibrium if for

each agent i its funded utility (refer to Eq. 2.15) exceeds the highest possible refund, i.e.,

x⋆ij ≤
cj

B + cj
θij . (2.16)

Summing up this inequality ∀i ∈ A also results in the upper bound on the bonus budget

0 < B ≤ ϑj − cj . This completes the proof of the theorem.

Theorem 2.8 Discussion. The condition 0 < B ≤ ϑj − cj is the condition required for

the existence of Theorem 2.8 as it ensures that the bound on x⋆ij from Eq. 2.16 is satisfied

∀i ∈ A. In case B > ϑj − cj , then xj = cj cannot hold as Eq. 2.16 will be violated for at

least an agent i.

Figure 2.2 presents the intuition behind the proof presented in Theorem 2.8. We see

that the promise of a refund incentivizes agents with insufficient contributions to increase

their contributions. The agents increase their contribution until they reach the upper limit

given in Eq. 2.16.
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Figure 2.2: Funded vs. Unfunded Utility for Agent i. This figure illustrates the proof

presented in Theorem 2.8.
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Role of Bonus. Trivially, for another budget B′ > B, we see that the set of equilibrium

contributions that satisfy Eq. 2.16 are less than than for B. Intuitively, increasing the

bonus implies an increase in refunds, and the agents must also receive a higher utility

from the project’s funding at equilibrium, reducing the set of equilibria. Furthermore, if

B = ϑj − cj , PPR funds the public project as the unique equilibrium. This equilibrium is

special: all agents contribute the same proportion to their valuations, i.e., xij =
cj
ϑj
· θij .

Sources of Bonus [312]. Assuming that the general interest in the public project’s

funding is more than the target cost, ϑ > c, the social planner only needs to provide

credibility of its capacity to raise the bonus. Since at equilibrium, the public project is

funded (Theorem 2.8), and thus, the bonus is not paid out. There may exist several ways

to raise the refund bonus. For instance, from [312], some individual donors may provide

initial seed money. Another method may be through insurance funds raised from premiums

paid by the planners.

2.3.2.2 PPR: Race Condition

So far, our discussion around PPR highlights how the mechanism overcomes the chal-

lenges in civic crowdfunding due to free-riding and the existence of inefficient equilibria.

PPR’s impressive properties are due to the introduction of refunds to contributing agents.

However, the mechanism’s analysis assumes that agents decide their contributions simulta-

neously without knowledge of contributions made by the other agents. In practice, online

crowdfunding platforms create a sequential setting where agents can observe contributions

over time9. As such, each agent’s strategy also comprises the time of contribution tij in

addition to xij .

9Throughout this thesis, we refer to online CC as crowdfunding over online platforms such as Kick-
starter [156], where the agents can observe real-time information. In contrast, offline CC is the case where
the agents cannot observe any real-time information. Thus, agent strategies do not depend on time in
offline CC.
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Claim 2.4 ([52]). Given A,P1, C1 (refer to Definition 2.26) with 0 < B ≤ ϑj −
cj , ∀j ∈ P1 and agents utility structure as defined in Eq. 2.15, then at equilibrium (i)

xj = cj , ∀j ∈ P1 and (ii) the set of (pure-strategy) Nash equilibria are {(x⋆ij , τ) | x⋆ij ≤
cj

B+cj
θij , ∀i ∈ A, ∀j ∈ P1}.

Proof. As the refund is independent of time in PPR, agents are not incentivized to con-

tribute before the deadline τ if the remaining agents follow the same strategy. Effectively,

PPR collapses to a simultaneous-move game at the deadline τ . Theorem 2.8 defines the

x⋆ijs for this, which completes the claim.

Claim 2.4 implies that the agents are incentivized to delay their contributions as close

to the deadline. Near the deadline, we may see a “race” among the agents to grab as much

refund as possible at the end. Such a race may lead to the equilibrium not being observed

in practice due to PPR not offering any advantage to early contributors. Cason et al. [47]

conduct real-world experiments to study the impact of early refunds. The authors observe

both (i) a higher success probability of projects that offer early refunds and (ii) a “race”

among the agents near the deadline to grab refunds.

2.3.3 Provision Point Mechanism with Securities (PPS)

Intuitively, an early refund bonus may provide the required advantage to early contribu-

tors, leading to the race condition being avoided. To this end, Chandra et al. [52] introduce

the Provision Point Mechanism with Securities (PPS), a mechanism with temporal refunds.

More concretely, the refunds in PPS decrease with an increase in time. PPS, similar to

PPR and PPM, is for a single project, i.e., m = 1. In PPS, each agent’s i utility ui(·) is,
∀j ∈ P1,

ui(θij , xij , tij ;xj , cj , B) := 1xj≥cj · (θij − xij)︸ ︷︷ ︸
Funded Utility

+1xj<cj ·
(
s
tij
ij − xij

)
︸ ︷︷ ︸

Unfunded Utility

(2.17)
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In Eq. 2.17, s
tij
ij

10 are the number of securities allocated to the agent i. The securities

s
tij
ij depend on xij , tij and the total number of securities issued in the market at tij , denoted

by qtij . We have, from [52, Eq. 6],

s
tij
ij = C−1

0

(
xij + C0(qtij )

)
− qtij , (2.18)

where C0 is the cost function governing the underlying prediction market in PPS obtained

from the general cost function C by fixing the number of positive outcome securities. To

be used in PPS, a cost function must satisfy [52, CONDITIONS 1-4, 6]. The properties of

the cost function, C0, relevant to our discussion are,

Property 2.1 (Condition 7, [52]). The securities allocated to an agent i ∈ A contributing

xij at time tij to a project j ∈ P1, stijij , is a monotonically increasing function of xij. In

particular, we have
∂s

tij
ij

∂xij
> 1, ∀θij < cj , ∀i ∈ A and ∀j ∈ P1.

Property 2.2 (Step-2 (Theorem 3), [52]). The refund to an agent i ∈ A contributing xij

at time tij to a project j ∈ P1, stijij − xij, is a decreasing function of tij and qtij as qtij is

non-decreasing function of tij, ∀i ∈ A and ∀j ∈ P1.

Next, we illustrate the role of the cost function C0 using the Logarithmic Market Scoring

Rule (LMSR).

10Even though s
tij
ij also depends on xij , we omit the dependency for simplicity of notation.
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Example 2.10: Logarithmic Market Scoring Rule (LMSR) [59]

or a binary outcome event like civic crowdfunding, the LMSR cost function [59] is

a popular cost function. Given the parameter b (used to control the speed at which

the price changes), we can write the LMSR cost function as,

C0(qt) := b · ln(1 + exp qt/b)

Cost(st|qt) := C0(qt + st)− C0(qt)

= b · ln

1 + exp
(
qt+st

b

)
1 + exp

( qt
b

)


Now, an agent i contributing xij at time tij to project j receives s
tij
ij securities where:

xij = C0(qtij + s
tij
ij )− C0(qtij ) (2.19)

s
tij
ij = C−1

0 (xi + C0(qtij ))− qtij (2.20)

s
tij
ij = b · ln

(
exp

(xij
b

+ ln
(
ln(1 + exp

(qtij
b

)))
− 1
)
− qtij .

By algebraic manipulations, we can see that this satisfies Property 2.1 as
∂s

tij
ij

∂xij
> 1.

2.3.3.1 PPS: Project Status at Equilibrium

So far, we have shown that PPR suffers from the race condition and introduced temporal

refunds through PPS. To show that PPS does not suffer from the race condition, we have

to show that an agent’s strategy in PPS is (x, t) for any t ∈ τ . That is, the agents prefer

to contribute at some t and do not participate in a race to contribute at the deadline τ .

Theorem 2.9 shows that this is indeed the case in PPS. Furthermore, the agents actually

prefer to contribute as soon as they arrive – instead of waiting for the deadline – due to

the refunds being a decreasing function of t. For the theorem, denote aij as the time at

which an agent i ∈ A arrives at the crowdfunding platform for project j ∈ P1.
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Theorem 2.9 ([52]). Consider the civic crowdfunding setup with A,P1, C1 (refer to

Definition 2.26) and each agent i’s utility structure defined by Eq. 2.17. Let C : R2 → R

be a cost function satisfying [52, CONDITIONS 1-4, 6] and C0 : R → R as the cost

function obtained from C by fixing the number of positive outcome securities. If C0

satisfies Property 2.1 and ϑj > C−1
0 (cj + C0(0)), ∀j ∈ P1, then we have (i) xj =

cj , ∀j ∈ P1 and (ii) the set of sub-game Perfect Nash equilibria are {(x⋆ij , aij) | x⋆ij ≤
C0(θij + qaij − C0(qaij ), ∀i ∈ A, ∀j ∈ P1}.

Proof. The proof similar ideas from Theorem 2.8. The first part, xj = cj , ∀j ∈ P1, follows
using the same argument from Theorem 2.8. For the second part, firstly, we know that

at equilibrium, an agent’s funded utility must be at least its unfunded utility. That is,

if an agent’s equilibrium strategy is (x⋆ij , t
⋆
ij), then s

t⋆ij
ij − x⋆ij ≤ θij − x⋆ij =⇒ s

t⋆ij
ij ≤ θij .

Expressing s
t⋆ij
ij in terms of x⋆ij and t⋆ij using Eq. 2.19, we get:

C−1
0 (x⋆ij + C0(qtij))− qtij ≤ θij

=⇒ x⋆ij ≤ C0(θij + qtij ))− C0(qtij)

Here, the RHS of the last inequality is a monotonically decreasing function of qtij due

to Property 2.2. That is, each agent i ∈ A minimizes the RHS at t⋆ij = aij , resulting in its

equilibrium strategy as (x⋆ij , aij).

To complete the theorem’s proof, we have to show that the strategy (x⋆ij , aij) is also

sub-game perfect. Here, we use backward induction. Essentially, the following possibilities

are there for any agent i arriving at aij ,

• If the remaining amount left to be funded is zero, then x⋆ij = 0.

• If the remaining amount is non-zero, then irrespective of the remaining amount, the

agent i’s equilibrium strategy is still defined by (x⋆ij , aij). With backward induc-

tion and similar reasoning, every agent’s best response is to follow their equilibrium

strategy irrespective of history.
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This completes the proof of the theorem.

In summary, we saw PPR and PPS, two indirect mechanisms for civic crowdfunding

that ensure the project is funded at equilibrium. Significantly, as the project gets funded,

the social planner does not have to pay the refunds.

2.4 Fairness

In this chapter, we have extensively looked at what can be clubbed as “incentive” prop-

erties, e.g., DSIC, IR, allocative efficiency, among others. For a mechanism designer, these

properties are (typically) crucial for a mechanism to satisfy. Recently, the proliferation

of AI systems has also resulted in mechanism designers looking at mechanisms from a

“fairness” perspective.

While discussing combinatorial auctions in Chapter 2.2.5.5, we said that we desired an

allocation that maximizes social welfare. One can also look at this requirement as a fairness

constraint since this implies that the items are allocated to those who value them the most!

Researchers have recently highlighted the need for fairness in algorithms [65], particularly

fair rewards in human-centered crowdsourcing [253]. Fair crowdsourcing platforms are

necessary to ensure the participation of the crowd. As a result, recent research has focused

on mechanisms with the fair provision of rewards, which will be discussed in detail next.

2.4.1 Fair Reward Mechanisms

This thesis focuses on what we refer to as “fair incentives”. That is, designing incentives

so that the mechanism satisfies certain fairness constraints. Looking at maximizing social

welfare as a fairness constraint, we can say that the VCG payments are fair as they result

in a DSIC mechanism allowing the mechanism designer to allocate the items to those who

value them the most.
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We look at recent literature on fair incentives [119, 200, 150]. This line of literature

focuses on fair rewards for crowdsourcing. Crowdsourcing is the process where a requester

publishes a set of tasks and solicits the help of a set of agents (sometimes called work-

ers) to gather data/information. For their efforts, agents receive rewards. There are two

popular approaches to deciding agent rewards in the crowdsourcing literature: (i) using

gold-standard tasks and (ii) using the consistency of an agent’s report with that of a random

peer (Peer-based Mechanisms (PBMs)).

2.4.1.1 Deep Bayesian Trust (DBT)

One of the earliest fair-reward mechanisms in crowdsourcing, Goel et al. [119] propose

DBT, which uses gold-standard tasks (i.e., tasks whose ground-trust is known)11 to deter-

mine agent rewards. More concretely, DBT assigns gold-standard tasks to a select subset

of agents and uses transitivity to derive the accuracy of the remaining agents from their

peers’ accuracy. DBT is DSIC and provides fair rewards to the agents.

Model. In DBT, each task has a discrete answer space [K] := {1, . . . ,K − 1}. For any

task, there are three random variables: (i) unknown ground truth g, (ii) each agent i ∈ A
observed signal xi which is private to it, and (iii) each agent i ∈ A reported answer yi.

Here, we have g, xi, yi ∈ [K], ∀i ∈ A. Each agent i’s exerted effort is denoted by ei ∈ {0, 1},
i.e., efforts are binary, representing either high or low effort. If ei = 1, the agent i incurs a

strictly positive finite cost. Agent utility is the quasi-linear utility comprising the difference

of the reward it receives with its effort.

2.4.1.1.1 Agent’s Strategy We now discuss the agent’s possible strategies:

Reporting Strategy. There are two possibilities based on the efforts exerted by an agent

i ∈ A.
11A popular example of such a task is that of recognizing the number of occurrences of a particular

object/entity in a photo.
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1. If ei = 1, the reporting strategy Si is a K ×K right stochastic matrix where Si[x, y],

∀x, y ∈ [K], is the probability of its reported answer on a task being y given that the

observed signal was x.

2. If e0 = 0, the reporting strategy S⃗i is a K dimensional probability vector where S⃗i[y],

∀y ∈ [K], is the probability of its reported answer being y.

Truthful Strategy. An agent i’s strategy is called truthful if ei = 1 and Si is an identity

matrix. The agent judiciously solves the task and reports the answer obtained.

Heuristic Strategy. An agent i’s strategy is called heuristic either if ei = 0 or if ei = 1

and all rows of Si are identical. That is, the agent either does not solve the task (ei = 0)

or solves the tasks (ei = 1) but reports its answer independently of the observed signal.

2.4.1.1.2 Proficiency and Trustworthiness Matrix Consider the following defini-

tions.

Definition 2.27: Proficiency Matrix [119]

For an agent i ∈ A, we denote Ai ∈ RK×K as its proficiency matrix. Here, each

Ai[g, x], ∀g, x ∈ [K], is the probability of the agent obtaining the answer x given

that the ground truth of the task is g.

The idea behind the proficiency matrix is to help model the ability of an agent to obtain

correct answers, given that it has exerted efforts. Note that each agent can have a different

proficiency matrix.

Definition 2.28: Trustworthiness Matrix [119]

For an agent i ∈ A, we denote Ti ∈ RK×K as its Trustworthiness matrix. Here, each

Ti[g, x], ∀g, y ∈ [K], is the probability of the agent’s reported answer being y given

that the ground truth of the task is g.
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While the proficiency matrix models an agent’s ability, the trustworthiness matrix is a

function of its ability and honesty.

2.4.1.1.3 Finding Trustworthiness Transitively The main ingenuity in DBT is to

derive the trustworthiness of an agent, given the trustworthiness of another agent, using

the joint distribution of their answers on shared tasks. For this, Goel et al. [119] define

a peer for an agent i as another worker j so that their assigned set of tasks (say) Qi and

Qj have a large overlap, i.e., |Qi ∩Qj | ≫ 0. Given that these agents are solving a shared

set of tasks, DBT uses their reported answers to create a joint probability distribution

of their answers. Let ω(Yi = yi|Yj |yj) denote the conditional empirical distribution and

ω(Yj = yj) to denote the empirical distribution of answers of peer j only. Also, let P (g)

denote the prior probability of a ground truth answer of any randomly selected task being

g. The following lemma provides a closed-form solution to construct agent i’s empirical

distribution, given agent j’s distribution and their joint distribution.

Lemma 2.3 ([119]). As |Qi ∩Qj | → ∞, with high probability, we have,

ω(Yi = yi|Yj = yj) =
∑
g∈[K]

Ti[g, yi] ·
(
Tj [g, yj ] · P (g)

ω(Yj = yj)

)
,

yi, yj ∈ [K] and ω(Yj = yj) ̸= 0.

83



Algorithm 2 Deep Bayesian Trust (DBT) [119]

1: Assign task set to an Oracle o and obtain its answers. Any agent o is called the

Oracle if its trustworthiness matrix T0 is known and T0 does not have identical

rows.

2: Initialize an Informative answer pool (IAP) with the answers given by the oracle.

3: Select some tasks from IAP.

4: Prepare a set of batches of tasks such that each contains tasks selected in the

previous step and some fresh tasks.

5: Publish the batches on the platform and let agents select a batch they solve.

6: For an agent i ∈ A who submits its batch, find Ti according to Lemma 2.3.

Reward agent i with an amount equal to β ·
(∑

g∈[K] Ti[g, g]
)
− 1, where β is a

scaling constant.

7: If the agent’s answers i satisfy informative criteria, add the answers to IAP and

assign trustworthiness Ti as obtained in Step 6.

8: Asynchronously repeat steps 3, 4, 5, 6, and 7 until the desired numbers of answers

are collected for all tasks.

DBT. Algorithm 2 presents the formal mechanism. The algorithm uses an information

criterion as defined next.

Definition 2.29: Informativeness Criterion [119]

If ω(Yj = yj) ̸= 0 and the coefficient matrix
Tj [g,yj ]·P (g)
ω(Yj=yj)

is full rank, the informative

criterion is said to be satisfied.

The criterion’s purpose is to check whether the answers provided by agent i can be used

to estimate the trustworthiness of another agent. The criterion merely checks whether the
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closed-form solution from Lemma 2.3 is solvable or not. As shown next, DBT is DSIC and

(ex-post) IR in expectation.

Theorem 2.10 ([119]). Given CE as the cost of effort required to solve a given batch

of tasks such that β > CE

(
∑

g∈[K] Ai[g,g])−1
and Ai[g, g] > Ai[g

′, g], ∀g′ = g, then the Deep

Bayesian Trust Mechanism (Algorithm 2)) is DSIC ∀i ∈ A and ensures strictly positive

expected reward in the truthful strategy.

We can also show that employing the heuristic strategy does not yield any reward for the

agent [119, Theorem 2]. These two results show that DBT satisfies the desirable incentive

properties. Goel et al. [119] additionally, also introduce the following notion of a fair

incentive mechanism.

Definition 2.30: Fair Incentive Mechanism [119]

An incentive mechanism is called fair if the expected reward of any agent is directly

proportional to the accuracy of the answers reported by her and independent of the

strategy and proficiency of her random peer.

Theorem 2.11. ([119]) DBT is a fair incentive mechanism.

DBT has desirable properties but assumes access to gold-standard tasks. However, such

tasks may not always be available.

2.4.1.2 FaRM: Fair Reward Mechanism for Information Aggregation in Spon-

taneous Localised Settings

Moti et al. [200] focuses on spontaneous localized settings where tasks are location-

specific and must be answered quickly. In such settings, information aggregation is chal-

lenging as nearby agents can only collect the task answers. Moreover, prior knowledge
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about the answer might not be readily available. Moti et al. [200] propose FaRM, a fair

reward mechanism curated for these settings.

Model. FaRM is similar to DBT in that it also considers tasks with a discrete space,

denoted by X . Given a task, let xi denote the observed signal of agent i ∈ A, with yi as

its submitted answer. The utility structure of the agent comprises three functions. Details

follow.

1. Report Strength (Φ(yi)). This is the count of the number of agents that reported

the same answer as agent i, i.e.,

Φ(yi) =
∑
j∈A

1yi=yj .

By definition, this quantity is always positive. Moreover, if all agents report truth-

fully, then it is agent i’s best response (the response that maximizes (Φ(yi)) to report

truthfully [200, Lemma 4.4].

2. Consistency Score (α). This score keeps track of an agent’s reputation in the

mechanism. It increases with accurate reporting. Since the ground truth answers are

unavailable, the consistency score uses the most frequent answer as a proxy. More

formally, we have

αti =


αt−1
i − αt−1

i
k × (ϕ1−Φ(yi))

|A| if Φ(yi) < ϕ1

αt−1
i +

1−αt−1
i
k × (ϕ1−ϕ2)

|A| if Φ(yi) = ϕ1

where k ≥ 1 and ϕ is defined as follows,

ϕ1 = max
s∈X

(Φ(s))

ϕ2 =


max 2s∈X (Φ(s)) if max 2s∈X > 0

ψ2
1−1
ψ1

if max 2s∈X = 0
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Here, we follow Moti et al. [200] and define max 2 to denote the second highest

value. Further, ϕ1 ≥ ϕ2 ≥ 0. By definition, consistency scores are within the range

[0, 1]. Also, if all other agents report truthfully, then the best response for agent i to

maximize its consistency score is to report truthfully [200, Lemma 4.8].

3. Reliability Score (β). The last component of an agent’s utility is its reliability

score. These aim to incentive any agent i to not collude with its set of neighboring

agents (denoted Ii). We also use Ei to define the set of agents not in i’s neighborhood

(i.e., Ei = A\Ii. Formally, it is the ratio of external agreement to internal agreement.

βi =

∑
j∈Ei

1yi=yj

|Ei|∑
j∈Ii

1yi=yj

|Ii| + 1

Reliability Scores also map to the range [0, 1]. Similar to the previous two scores, if

all other agents report truthfully, then the best response for agent i to maximize its

reliability score is to report truthfully [200, Lemma 4.13].

Fairness Notions. FaRM introduces two notions of fairness: selective and cumulative.

Definition 2.31: Selective Fairness [200]

Consider any two distinct agents i, j ∈ A who submit two identical reports yi and

yj such that yi = yj . Any reward scheme admits selective fairness if the reward is

the same for both i and j.

Definition 2.32: Cumulative Fairness [200]

Consider any two distinct agents i, j ∈ A who submit two identical reports yi and

yj such that yi = yj . Any reward scheme admits cumulative fairness if the reward

is more for the agent who is consistently reporting the truth.
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The authors show report strength (Φ) is selectively fair [200, Claim 4.6] and consistency

score (α) is cumulatively fair [200, Claim 4.10]. With this, the authors show that FaRM

admits a Nash equilibrium where reporting truthfully is the best response.

Theorem 2.12. ([200, Theorem 4.15].) FaRM is Nash incentive compatible with

guaranteed non-negative utility and is weak budget balanced.

Proposition 2.2. ([200, Proposition 4.16].) FaRM admits selective fairness and cu-

mulative fairness and, hence, is a fair mechanism.

2.4.1.3 REFORM

Goel et al. [119] propose DBT, a fair reward mechanism for crowdsourcing when the

tasks have ground truth available. Kanaparthy et al. [151] present REFORM, a Reputa-

tion Based Fair and Temporal Reward Framework for Crowdsourcing. The key novelty

in REFORM is that if an agent and its peer’s report do not match, the agent receives

additional chance(s) of pairing if its reputation exceeds that of its peer. REFORM uses

a reputation mechanism to keep track of an agent’s reputation across its historical per-

formance. The reputation mechanism ensures that only trustworthy agents receive these

additional chances to pair.

The authors argue that these additional chances are fairer for the agents since they

may receive penalties due to unfair pairings (which may occur due to malicious or random

behavior). To quantify fairness in REFORM, the authors propose the following notions of

fairness.

Definition 2.33: γ-Fairness [151]

Any peer-based crowdsourcing mechanism is γ-Fair if the expected difference in its

optimal and the expected reward taken over all possible reports equals γ.
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Definition 2.34: Qualitative Fairness [151]

Any peer-based crowdsourcing mechanism with a reputation mechanism should en-

sure that an agent with a higher reputation score has a greater expected reward

than agents with the same report but a lower reputation.

The authors show that REFORM satisfies both these fairness notions while also satis-

fying Nash IC [151].
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Chapter 3

Preliminaries: Privacy and Blockchain

This thesis chapter provides a comprehensive overview of foundational

concepts in cryptography, zero-knowledge proofs, and differential pri-

vacy. First, we discuss several popular cryptographic primitives, includ-

ing hash functions, symmetric and asymmetric encryptions, and digital

signatures. Second, we introduce zero-knowledge proofs, elucidating the

significance of cryptographic protocols that enable one party to prove

the validity of a statement to another without revealing any information

about the statement itself. Third, we look at differential privacy (DP),

a crucial paradigm in privacy-preserving data analysis. We formally de-

fine DP and explore methods for incorporating noise into computations

to safeguard individual data. Last, the chapter looks at blockchains,

specifically Bitcoin and Ethereum, explaining how these decentralized,

distributed ledger technologies leverage cryptographic techniques to en-

sure transaction security and data integrity. In essence, this chapter lays

the groundwork for the privacy-preserving applications discussed later

as part of this thesis contributions.

⋆ ⋆ ⋆ ⋆ ⋆
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3.1 Privacy

We begin by summarizing the standard cryptographic primitives in Chapter 3.1.1, fol-

lowed by covering zero-knowledge proofs in Chapter 3.1.2. Chapter 3.1.3 introduces differ-

ential privacy (DP) and summarizes its relevant literature.

More concretely, Chapter 3.1.1 first presents the primitives (e.g., hash functions, en-

cryption, and commitment) as abstract definitions. We then instantiate these to introduce

several popular schemes, e.g., RSA and ElGamal encryptions and Pedersen commitments.

With Chapter 3.1.2, we define ZKPs and their properties. Furthermore, we look at the two

popular classes of ZKPs and conclude the section with a brief overview of zk-SNARKs. In

Chapter 3.1.3, we define DP, introduce mechanisms to achieve DP and look at state-of-

the-art composability methods.

3.1.1 Cryptographic Primitives

Cryptographic primitives are broadly aimed to allow the private transfer of information

from a party (say “Alice”) to another party (say “Bob”). Different primitives exist, effec-

tively allowing the same in different settings in the presence of different adversaries. We

first look at the most common of such primitives – hash functions.

For our analysis, denote λ as the security parameter and negl(λ) as a function negligible

in λ. For completeness, a negligible function is defined as negl : N→ R such that for every

positive polynomial poly(·) there exists an integer Npoly > 0 such that ∀λ > Npoly we have:

|negl(λ)| < 1

poly(λ)
.

3.1.1.1 Cryptographic Hash Functions

Hash functions are one-way functions that can input data of arbitrary size and map it

to a fixed-size output. Formally,
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Definition 3.1: Cryptographic Hash Function [69]

Given the security parameter λ, these are functions with fixed-size output, that is,

H : {0, 1}∗ → {0, 1}λ.

The function H(·) is said to be desirable for cryptographic applications if it satisfies the

following three properties.

1. Pre-image Resistance. H satisfies pre-image resistance, if given a hash value

h the probability of finding a message m such that H(m) = h is negligible, i.e.,

Pr[H(m) = h|h] ≤ negl(λ).

2. Second Pre-image Resistance. H satisfies second-image resistance, if given an

input messagem1 the probability of finding a distinct messagem2 such thatH(m1) =

H(m2) is negligible, i.e., Pr[H(m1) = H(m2)|m1] ≤ negl(λ).

3. Collision Resistance. H satisfies collision-resistance if the probability of finding

two distinct messages m1 and m2 such that H(m1) = H(m2) is negligible, i.e.,

Pr[H(m1) = H(m2)] ≤ negl(λ).

We say that the pair m1 and m2 is a hash collision if H(m1) = H(m2). Trivially,

collision resistance implies second pre-image resistance1. However, it does not imply pre-

image resistance.

Illlustration. Intuitively, these properties mean that a malicious adversary cannot re-

place or modify the input message m without changing the digest H(m). If two messages

have the same digest, we can confidently assume that the strings are identical. E.g., let

us say that Alice poses a difficult math problem to Bob and claims that she has solved it.

Bob wishes to try the problem and also wants to ensure that Alice is not bluffing. Alice

1That is, second pre-image resistance is a weaker property, and hash functions that only satisfy it are
considered to be insecure.
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decides to write down her solution, compute its hash, and reveal only the hash value to

Bob.

A few days go by, and Bob computes the solution to the problem himself and writes it

down. Alice tells Bob that she had this solution earlier by revealing it and asking Bob to

compute the hash and check that it matches the hash given to him before.

So far, we have provided the abstract definition of H and looked at an example showing

its usefulness. Next, we look at some popular instances of hash functions.

SHA Family The Secure Hash Family (SHA) family of cryptographic hash functions

was introduced by the National Institute of Standards and Technology (NIST) as a U.S.

Federal Information Processing Standard (FIPS). The SHA family consists of the following

algorithms:

1. SHA-1. First introduced in 1995 by the National Security Agency (NSA), these have

an output size of 160 bits. The SHA-1 algorithm is secure against collision attacks

up to 63 bits. Unfortunately, SHA-1 is not used in practice anymore due to known

hash collisions.

2. SHA-2. The successor to SHA-1, SHA-2 has an output size of either 256 bits (SHA-

256) or 512 bits (SHA-512). These are also designed by the NSA. Bitcoin [203] uses

SHA-256.

3. SHA-3. Initially referred to as Keccak, the SHA-3 algorithm was chosen in 2012

after a public competition among non-NSA designers. It supports both 256 and 512

output sizes. Ethereum [42] uses the 256-bit variant.

3.1.1.2 Public-key Cryptography

Hash functions provide a useful way of “committing” to a message: an adversary ob-

serving H(m) will not be able to infer the value of m. However, a drawback is that there is
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no way for Alice to communicate the value of m to Bob privately. To enable such private

information exchange, we need a method by which Alice can ‘encrypt’ the plaintext m to a

ciphertext and communicate the ciphertext to Bob, which Bob can then ‘decrypt’ to learn

m. This encryption-decryption paradigm can be achieved in the following two popular

ways.

1. Symmetric-key Cryptography. This method requires Alice and Bob to agree on

a private (or secret) key, which will used for both encryption and decryption. That

is,

Encryptprivate key(message) = ciphertext

Decryptprivate key(ciphertext) = message

While such an approach is useful in many applications, e.g., payment interfaces and

data storage, it is also limited since generating and communicating the secret key is

often challenging.

2. Public-key Cryptography. Asymmetric or Public-key Cryptography refers to us-

ing both a public key (for encryption) and a private key (for decryption). That is,

Encryptpublic key(message) = ciphertext

Decryptprivate key(ciphertext) = message

E.g., if Bob wants to learn the message m privately held by Alice, he first commu-

nicates its public key to Alice. Alice uses the public key to encrypt m and then

communicates it to Bob. Bob can safely use its private key to decrypt and learn m.

Moreover, since the public key is safe to publish, anyone can send any private message

to Bob using it. Public-key cryptography must follow the correctness property:

Decryptprivate key(Encryptpublic key
(message)) = message.

Next, we look at several useful cryptographic primitives based on public-key cryptogra-

phy.
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3.1.1.2.1 Encryption Schemes As discussed above, encryption schemes are corner-

stones of cryptography and useful for private communication. We now formally define

them.

Definition 3.2: Public-Key Encryption (PKE) Scheme

A PKE scheme consists of the following algorithms:

1. KeyGen(λ) → (sk, pk). Given the security parameter λ, KeyGen samples a

secret key sk ←$ {0, 1}λ, computes the public key pk using sk and outputs the

pair (sk, pk).

2. Enc(pk,m; r) → E(pk,m; r). To encrypt a message m, Enc takes input ran-

domness r and outputs the ciphertext E(pk,m; r).

3. Dec(E(pk,m; r), sk)→ m. To decrypt m from E(pk,m; r), the algorithm uses

the secret key sk for decryption.

We remark that different instances of the algorithms outlined in Definition 3.2 result in

different encryption schemes. We provide popular encryption schemes in Chapter 3.1.1.3

3.1.1.2.2 Digital Signatures A digital signature is a security technique that utilizes

public key cryptography to verify the authenticity of a message. It creates a unique value

linked to the message, which can be validated to confirm two crucial aspects: first, only

the individual possessing the corresponding private/secret key could have generated a valid

signature, and second, the message has remained unaltered since the signing process. For-

mally,
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Definition 3.3: Digital Signature Scheme

The scheme consists of the following algorithms:

1. KeyGen(λ) → (sk, pk). Given the security parameter λ, KeyGen samples a

secret key sk ←$ {0, 1}λ, computes the public key pk using sk and outputs the

pair (sk, pk).

2. Sign(sk,m) → sign. The signing algorithm takes the secret key and the mes-

sage to be signed m and produces the digital signature sign.

3. SignVer(pk,m, sign). The signing verification algorithm either accepts or re-

jects the message m’s claim of authenticity based on the inputs: the public

key, m, and the signature sign.

Digital signature schemes must satisfy two main properties. Firstly, the correctness

property states that a digital signature generated using some private key should be correctly

verified using the corresponding public key. This allows anyone with the public key to verify

the authenticity of a signed message. Formally, we have

SignVer(pk,m, Sign(sk,m)) = accept.

The second property, namely unforgeability, requires that the probability with which an

adversary can generate a valid signature for a message m – that verifies with the public

key – without knowing the corresponding private key is negligible in λ. We refer the reader

to [154, Chapter 12] for the formal definitions of the two properties.

3.1.1.2.3 Commitment Schemes A commitment scheme is a cryptographic protocol

that allows a Sender (say Alice) to commit a chosen message m while keeping it hidden

from the Receiver (say Bob). The Receiver has the ability to reveal the committed value

later. Formally,
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Definition 3.4: Commitment Schemes

These schemes consist of the following two phases:

1. Commit Phase: Given a security parameter λ, Alice samples a random

value r ←$ {0, 1}λ and uses the commit function Commit and a private key

sk ←$ {0, 1}λ to generate the commitment c := Commit(m; r, sk). Next, Alice

sends the value c to Bob.

2. Reveal Phase: Here, Alice first sends the secret key sk to Bob. Bob uses the

Open algorithm to open the commitment, i.e., Open(sk, c)→ (m′, r′). To check

if m′ was the original committed message, Bob runs Check(sk,m′, r′, c) →
{0, 1} which outputs 0 if m′ was the original message and 1 otherwise.

Any commitment scheme is useful for a cryptographic application if it satisfies the

following two security properties.

• Hiding. Bob, upon receiving the commitment c, must learn no information about

the underlying committed message m.

• Binding. Alice, after selecting the private key sk in the Commit phase, cannot send

another key sk′ ̸= sk to Bob in the Reveal phase and still pass the check. Moreover,

given a secret key sk, the probability of generating another pair (m′, r′) that outputs

the same commitment c must be negligible. That is,

Pr[Commit(m; r, sk) = Commit(m′; r′, sk)|m ̸= m′] ≤ negl(λ).

So far, we have looked at the abstractions of popular cryptographic primitives. To

instantiate these, we next introduce elliptic-curve and non-elliptic curve cryptography.
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3.1.1.3 Elliptic-curve (EC) and non-EC Cryptography

Cryptography researchers rely on the known hardness of problems such as interger

factorization and the discrete-logarithm problem (DLP) to instantiate the cryptographic

primitives mentioned above.

3.1.1.3.1 The Discrete Logarithm Problem We now present the DLP for both

Elliptic-curve (EC) and non-EC cryptosystems2. These are the two most popular cryp-

tosystems. We begin by defining the non-EC variant.

Definition 3.5: Discrete Logarithm Problem (DLP)

Let G be any group with multiplication as the group operation. Let G’s identity

element be 1. Consider g ∈ G and a positive integer r such that gr denotes the

product of g with itself r times. Likewise, let g−r denote the product of g−1 with

itself r times. Now, let h ∈ G. The DLP is to find the discrete logarithm to the base

g of h, i.e., to solve gr = a or r = logg h.

For e.g., for the group Z∗
5, we have the generator g = 2. Now the discrete logarithm of

h = 1 is 4 because 24 = 1 (mod 5).

Elliptic Curves (ECs). Before defining DLP for ECs, we formally define them.

Definition 3.6: Elliptic Curves (ECs)

An elliptic curve E over a field K is the set

{(x, y) ∈ K2 : y2 = x3 + ax+ b, a, b,∈ K} ∪ {∞},

with the restriction that 4a3 + 27b2 ̸= 0.

2Sometimes also referred to as the RSA cryptosystem
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The restriction 4a3+27b2 ̸= 0 is imposed to ensure that the elliptic curve is non-singular.

A non-singular elliptic curve does not have any singular points. These are points where

the tangent line is not well-defined. Singular points can cause issues in the group law

operations on the elliptic curve.

The DLP (Definition 3.5) for ECs is defined as follows.

Definition 3.7: Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given a curve E, let p, q ∈ E be two points on the curve such that q = k · p, for
some positive integer k. Here, q = k · p represents the point p on the elliptic curve

E added to itself k times. Then ECDLP is to determine k given p and q

Hardness of DLP. Both variants of DLP are computationally intractable. That is, it is

computationally easy to calculate q given k and p, but it is computationally infeasible to

determine k given q and p for a large curve E.

Next, we present the RSA cryptosystem, which is the first PKE scheme for non-Eliptic

curves. It relies on the hardness of the discrete logarithm problem and integer factorization.

3.1.1.3.2 RSA Cryptosystem The RSA (Rivest, Shamir, and Adleman) algorithm

was proposed with the patent [241]. Notably, the authors received the ACM Turing Award

for their contribution. While most cryptosystems rely on the hardness of DLP, the security

of RSA relies on the hardness of integer factorization. Formally,
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Definition 3.8: RSA PKE Scheme [241]

The scheme consists of the following algorithms:

1. KeyGen(λ) → (e, d, n): The key generation involves several computations, as

follows.

(a) p ←$ {0, 1}λ and q ←$ {0, 1}λ such that p and q are both primes and

p ̸= q

(b) n := p× q

(c) ϕ(n) := (p− 1)(q − 1) where ϕ is the Euler phi function

(d) Select an integer e such that gcd(e, ϕ(n)) = 1 and 1 < e < ϕ(n)

(e) d := e−1 (mod ϕ(n))

(f) Denote (e, n) as the public key and (d, n) as the private key

2. Enc(e, n,m) → enc: For any m < n, compute the encryption as enc :=

me (mod n)

3. Dec(d, n, enc)→ m: Decrypt the ciphertext as m := encd (mod n)

Correctness. It is trivial to see that the decryption step returns the message m as

encd (mod n) = (me)d (mod n) = m (mod n) = m. This is because e · d ≡ 1 (mod ϕ(n))

by construction.

Security. An attacker can try to break the RSA PKE scheme through various attacks.

We discuss some of them here.

• Brute Force. The simplest attack is trying all possible private keys. However, as

the key space is exponential, RSA PKE easily thwarts this attack.

• Using Integer Factorization. Note that in RSA PKE, the integer modulus n is

public. To generate d, the attacker must follow the key generation steps. It needs
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to know the value ϕ(n). Thus, RSA is only secure if the integer factorization of

n = p×q is hard. Luckily, carefully choosing p and q (e.g., equal-sized primes) makes

this problem computationally infeasible. In modern usage, we prefer n to be greater

than 2048 bits to avoid currently known factoring algorithms.

3.1.1.3.3 Paillier Encryption We now present the Paillier PKE scheme, which is also

quite popular. Formally,

Definition 3.9: Paillier PKE Scheme [220]

The scheme consists of the following algorithms.

1. KeyGen(λ)→ (n, g, α, µ). The key generation involves the following computa-

tions.

(a) Select p ←$ {0, 1}λ and q ←$ {0, 1}λ such that p and q are primes and

gcd(pq, (p− 1)(q − 1)) = 1

(b) n := pq and α := lcm(p− 1, q − 1)

(c) g ←$ Z∗
n2

(d) Ensure that n divides the order of g by the existence of the following

modular multiplicative inverse: µ := (L(gα mod n2))−1 mod n. Here,

L(x) = x−1
n where a

b denotes the quotient of a divided by b.

(e) The public key is the pair (n, g) and the private key is the pair (α, µ)

2. Enc(n, g,m) → enc. Given the message 0 ≤ m < n, sample a random r such

that 0 < r < n and gcd(r, n) = 1. The encryption is enc := gm · rn mod n2.

3. Dec(n, α, µ, enc). To decrypt the message, perform the computation m =

L(encα mod n2) · µ mod n

101



Correctness. Similar to the RSA PKE scheme, we can see that the decryption step

returns the message m. That is,

L(encα mod n2) · µ mod n = L((gm · rn mod n2)α mod n2) · µ mod n

= L((gm · rn mod n2)α mod n2) · (L(gα mod n2))−1 mod n

Here, we use the fact that rnα ≡ 1 mod n2 (from Carmichael’s theorem [45]). Now,

L(encα mod n2) · µ mod n = L((gmα mod n2) mod n2) · (L(gα mod n2))−1 mod n

Using the binomial theorem, we can also show that (refer to [111] for the formal proof):

L((1 + n)x mod n2) ≡ x mod n

Now,

L(encα mod n2) · µ mod n = (mα) · α−1 mod n = m

Homomorphic Properties. An important feature of the Paillier PKE scheme is its

homomorphic properties. More concretely, the scheme is additively homomorphic3, as

follows.

• Homomorphic addition of plaintexts. The product of two ciphertexts will de-

crypt to the sum of their corresponding plaintexts, i.e.,

Dec(n, α, µ,Enc(n, g,m1) · Enc(n, g,m2) mod n2) = (m1 +m2) mod n

• Homomorphic multiplication of plaintexts. A ciphertext raised to the power

of a plaintext will decrypt to the product of the two plaintexts, i.e.,

Dec(n, α, µ,Enc(n, g,m1)
m2 mod n2) = (m1 ·m2) mod n

Dec(n, α, µ,Enc(n, g,m2)
m1 mod n2) = (m1 ·m2) mod n

3In the cryptography literature, such functions are also referred to as partially homomorphic.
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3.1.1.3.4 ElGamal Encryption We now present another popular partially homomor-

phic scheme, namely the ElGamal PKE scheme.

Definition 3.10: ElGamal PKE Scheme [95]

The PKE consists of the following algorithms.

1. KeyGen(λ) → (pk, sk). The key generation algorithm takes the security pa-

rameter λ and performs the following computations.

(a) Choose a prime p←$ {0, 1}λ

(b) A primitive element α mod p

(c) Randomly select the private key sk such that 2 ≤ sk ≤ p− 2

(d) Compute β := αsk mod p

(e) The public key is tuple pk := (p, α, β) while the private key is sk

2. Enc(pk,m)→ enc. To encrypt the message m < p, first select the randomness

k ←$ N. Next, compute r ≡ αk mod p and t = βk ·m mod p. The encryption

enc is the pair (r, t).

3. Dec(sk, enc)→ m. We decrypt the ciphertext as (t · r)−sk = m mod p.

To better understand the ElGamal PKE scheme, let us now look at an illustrative

example.
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Example 3.1: ElGamal PKE Illustration

Alice chooses p = 107, α = 2 and sk = 67. She computes β := 267 ≡ 94 mod 107.

That is, the public key is the tuple (p, α, β) = (107, 2, 94) and her private key is

sk = 67. She communicates her public key with Bob.

Now, Bob wishes to send the message “B” (m = 66 in ASCII) to Alice. He chooses

the randomness k = 45. He generates the encryption enc = (r, t) := (αk, βk ·m) ≡
(245, 9445 · 66) ≡ (28, 9) mod 107. He communities enc to Alice.

Alice learns about m by decrypting enc as follows: t ·r−sk = 9 ·28−67 = 9 ·28106−67 ≡
9 · 43 ≡ 66 mod 107.

We can also define the ElGamal PKE for EC as follows.

Definition 3.11: ElGamal PKE Scheme for EC [95]

The PKE consists of the following algorithms. Let E be an elliptic curve defined

over a large prime field Fp with G,H ∈ E as publicly known generators.

1. KeyGen(λ) → (sk, pk). Given the security parameter λ, KeyGen samples a

secret key sk ←$ {0, 1}λ, computes the public key pk = sk ·G. It outputs the

key-pair (sk, pk).

2. Enc(pk,m; r) → enc. To encrypt a message m, the algorithm inputs a ran-

domness r and outputs the curve point (r ·G,Pm + ·r(sk ·G)). Here, Pm is a

publicly-known mapping of a value m to a curve point in E.

3. Dec(enc, sk) → m. To decrypt m from enc, the algorithms computes m :=

Pm + ·r(sk ·G)− r · sk ·G.
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Corrrectness. The correctness of the decryption process of ElGamal PKE can be trivially

shown as follows.

(t · r)−sk ≡ βk ·m(αk)−sk mod p

≡ (αsk)k ·m · (αk)−sk mod p

≡ m mod p

Security. Unlike the RSA PKE scheme, whose security relies on the hardness of factoring

large integers, ElGamal’s security relies on the DLP’s hardness for a large prime modulus.

In addition, compared to RSA, ElGamal has the disadvantage that its ciphertext is twice

as long as its plaintext. However, it has the advantage that for the same plaintext, it can

output, with a high probability, different ciphertexts.

3.1.1.3.5 EdDSA Digital Signature. A digital signature scheme allows verifica-

tion of the authenticity of a message. Earlier, we looked at the RSA digital signature

scheme. We now present the Edwards-curve Digital Signature Algorithm (EdDSA) [30],

a signature scheme for elliptic-curve cryptography. EdDSA is a Schnorr-based signature4

scheme defined over E. In EdDSA, given G, one derives its public key pk by sampling

sk ←$ Fp. A party i signs the value H(mi) for a secret message mi denoted as its signature

certi = (Ri, Si). Here, Ri = r ·G s.t. r ←$ Fp, and Si = r +H(mi) · sk. A verifier accepts

the signature iff Si ·G = Ri +H(mi) · pk holds.

3.1.1.3.6 Pedersen Commitment We now discuss both the EC and non-EC variants

of the Pedersen Commitment scheme.

4This is a digital signature produced by the Schnorr signature algorithm and is one of the oldest and
simplest signature schemes based on prime-order groups. We refer the reader to [254] for further details.
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Definition 3.12: Pedersen Commitment Scheme [229]

This schemes consists of the following two phases:

1. Commit Phase: Given a security parameter λ, let p ←$ {0, 1}λ and q ←$

{0, 1}λ denote large primes such that q divides p−1, Gq as the unique subgroup

of Z∗
p of order q, and g as a generator of Gq. Also, let g and h = ga be elements

of Gq such that logg h is intractable, where a ∈ Zq is the secret key.

To commit a message m ∈ Zq, Alice first samples a random value r ←$∈ Zq.

Alice then uses the commit function Commit to generate the commitment

c := Commit(m; r, g, h, p) = gx · hr mod p. Next, Alice sends the value c to

Bob.

2. Reveal Phase: Here, Alice first sends the secret key a to Bob. Bob uses the

Open algorithm to open the commitment, i.e., Open(a, c)→ (m′, r′). To check

if m′ was the original committed message, Bob runs Check(a,m′, r′, c)→ {0, 1}
which outputs 0 if m′ was the original message and 1 otherwise.

Likewise, the scheme for elliptic curves is defined as follows.
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Definition 3.13: Pedersen Commitment Schemes for EC [229]

The schemes consist of the following two phases:

1. Commit Phase: Let E be an elliptic curve defined over a large prime field

Fp with G,H ∈ E as publicly known generators. Here, G = a ·H, where a is

the secret key such that a←$ Fp.

To commit a message m ∈ Fp, Alice first samples a random value r ←$∈ Fp.

Alice then uses the commit function Commit to generate the commitment

c := Commit(m; r) = m ·G+ r ·H. Next, Alice sends the value c to Bob.

2. Reveal Phase: Here, Alice first sends the secret key a to Bob. Bob uses the

Open algorithm to open the commitment, i.e., Open(a, c)→ (m′, r′). To check

if m′ was the original committed message, Bob runs Check(a,m′, r′, c)→ {0, 1}
which outputs 0 if m′ was the original message and 1 otherwise.

Security. Similar to the ElGamal PKE scheme, the Pedersen commitment scheme’s se-

curity relies on the DLP’s hardness for both EC and non-EC. Pedersen commitments are

computationally binding (it is not feasible to “change one’s mind” after committing), and

perfectly hiding (they reveal nothing about the committed data).

Homomorphic Properties. Similar to ElGamal and PKE schemes, Pedersen Com-

mitments are also additively homomorphic. That is, Commit(m1, r1) ◦ Commit(m2, r2) =

Commit(m1 +m2, r1 + r2).

3.1.2 Zero-knowledge Proofs (ZKP)

Zero-knowledge proof (ZKP) is a method by which a party, called a Prover (P), is able
to convince another party, called a Verifier (V), that it knows some information ω, without

revealing ω (or any other information related to ω). Formally, P must convince V that
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∃ω : R(l, ω) = 1 for a relation R, an input l (from V) and a witness ω from P. A ZKP

must satisfy:

• Completeness: If ∃ω : R(l, ω) = 1, then an honest P convinces V except with negligible

probability, i.e., with probability at-most ≪ 1/2.

• Soundness: If ̸ ∃ω : R(l, ω) = 1, a dishonest P ′ convinces V with negligible probability,

i.e., with probability at-most ≪ 1/2.

• Zero-knowledge. If ∃ω : R(l, ω) = 1, then V does not learn any information about ω

except with negligible probability, i.e., with probability at-most ≪ 1/2.

3.1.2.0.1 Interactive and Non-Interactive ZKPs Each ZKP is a tussle between

the Prover P and the verifier V: P wants to convince V that it knows a secret via a proof

which must not reveal any information about the secret to V. In general, these proofs can

be (i) interactive (involve multiple rounds of communication between P and V) and (ii)

non-interactive, which do not involve any communication.

Interactive ZKP. We illustrate an interactive ZKP through the following example

wherein Alice (acting as P) wishes to convince Bob (acting as V) that she knows the

discrete log of a given value, given a group (refer to Definition 3.5 for the definition of the

DLP).

More formally, Alice wants to prove to Bob that she knows a witness ω such that y = gω

mod p. Here, the values y, g, and p are public knowledge. Alice first picks a randomness r1

from the group, computes t := gr1 mod p, and sends t to Bob. In turn, Bob picks another

randomness r2 from the group and sends it to Alice. Alice computes c := (r1 − r2 · ω)
mod p and sends c to Bob. Bob accepts that Alice knows ω iff t = gc · yr2 mod p. This is

because, by trivial substitution, gr1−(r1−r2·ω) mod p · g(r1−r2·ω) mod p = gr1 = t.

While interactive ZKPs find applicability in many systems (e.g., authentication sys-

tems), they also have certain drawbacks. For instance, these have limited transferability,
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i.e., for Alice to prove that she knows ω to another party, the entire interactive process

must be repeated. These ZKPs are also unscalable since they require both P and V to be

active at the same time.

Non-interactive ZKP. Introduced by Amos Fiat and Adi Shamir in 1986, the “Fiat-

Shamir” heuristic [104] is the first mechanism that converts an interactive ZKP to a non-

interactive ZKP. The core idea is to create a digital signature of the proof. This process

allows any V to verify the existence of ω without requiring P to be active simultaneously.

We illustrate this by converting the interactive ZKP mentioned above into a non-interactive

one.

As before, Alice wants to prove to Bob that she knows a witness ω such that y = gω

mod p. She picks a randomness r from the group and computes t := gr mod p. Given

a publicly known hash function H(·), Alice computes h := H(g||y||t), where || is the

concatenation operator. Next, Alice computes d := (r − h · ω) mod p. Bob accepts the

proof iff t := gd · yh mod p.

In essence, the interactive step where Bob picks a randomness and sends it to Alice

is replaced by the use of the Hash function, whose value depends on y. In contrast to

their interactive counterpart, non-interactive ZKPs are scalable and transferrable. They

form the backbone of more succinct (smaller proofs) ZKPs such as bulletproofs [40] (range

proofs) and zk-SNARKs [249].

3.1.2.1 zk-SNARKs

A zero-knowledge succinct, non-interactive argument of knowledge (zk-SNARK) [249]

allows a prover to convince a verifier about the correctness of a computation on private

input through a protocol. The verifier-available information is referred to as statement x⃗

and the private input of the prover as witness ω⃗. The protocol execution takes place in a

non-interactive manner, with succinct communication.
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A zk-SNARK consists of: (i) a Setup algorithm which outputs the public parameters

PP for a NP-complete language LS = {x⃗ | ∃ ω⃗ s.t. S(x⃗, ω⃗) = 1}, where S : Fn × Fh → Fl

is the arithmetic circuit satisfiability problem of an F-arithmetic circuit; (ii) A Prover

algorithm that outputs a constant size proof π, attesting to the correctness of x⃗ ∈ LS with

witness ω⃗; and (iii) A Verifier algorithm which efficiently checks the proof.

As part of Chapter 3.1.1, we looked at popular cryptographic primitives, including

hashes, encryptions, commitments, and ZKPs, that are important ingredients to creating

privacy-preserving applications. While cryptography has achieved widespread acceptance

as the default privacy toolbox, certain applications in statistics or ML are more suited for

another privacy measure, namely, differential privacy (DP). We next provide a comprehen-

sive background on the DP literature.

3.1.3 Differential Privacy (DP)

Differential privacy [91, 92] is a crucial concept in the realm of data privacy and security,

aiming to balance the need for accurate data analysis with the protection of individual pri-

vacy. At its core, differential privacy provides a rigorous framework for designing algorithms

that allow the extraction of valuable insights from sensitive datasets while minimizing the

risk of identifying specific individuals within the data.

Chapter 3.1.3 summarizes the existing DP literature, which DP practitioners may find

useful. More concretely, we (i) formally define DP, (ii) introduce popular additive-noise

mechanisms for DP, (iii) summarize several important properties, and (iv) summarize state-

of-the-art composability results.

3.1.3.1 DP: Pure and Approximate

Consider a scenario with n individuals, denoted as X1 through Xn, each possessing

a distinct data point. These individuals communicate their respective data points to a

“trusted curator,” a singular entity trusted by all participants solely with their raw data
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points. The curator employs an algorithm5, denoted as M, based on the received data

and publicly discloses the computed result. The concept of differential privacy pertains to

M, asserting that the inclusion or exclusion of any individual’s data does not substantially

influence the algorithm’s output. Datasets that defer in a single record are called adjacent

databases. In essence, it ensures that the privacy of individual contributions is maintained

in the face of publicized results. More formally,

Definition 3.14: Differential Privacy (DP) [93]

For a set of databases X and the set of noisy outputs Y, a randomized algorithm

M : X → Y is said to be (ϵ, δ)-DP if ∀D,D′ ∈ X , s.t. D and D′ are adjacent

(|D −D′| ≤ 1), and ∀S ⊆ Y the following holds,

Pr[M(D) ∈ S] ≤ exp(ϵ) Pr[M(D′) ∈ S] + δ. (3.1)

Intuition. As stated, DP provides a statistical guarantee against an inference the adver-

sary can make based onM’s output. This guarantee is upper-bounded by ϵ, often referred

to as the privacy budget6. The privacy budget, ϵ, controls the trade-off between quality (or,

in the case of ML, the accuracy) of the output vis-a-vis the privacy guarantee. Researchers

observe that an ϵ ≥ 1 implies that the chance of a privacy leak is around 99.9%. As such,

ϵ < 1 are preferred, with greater ϵs providing virtually no privacy protection.

Pure and Approximate DP. The role of δ in Eq. 3.1 can be seen as an “error” proba-

bility: the probability by which the ϵ bound is violated. E.g., (1, 0.1)-DP can be seen as

the ϵ = 1 bound holding with probability 1− 0.1 = 0.9.

Given this, if δ > 0, we get an “approximate” worst-case guarantee while δ = 0 provides

a perfect bound. The DP literature often refers to (ϵ, δ)-DP where δ > 0 as approximate-

DP and (ϵ, 0)-DP as pure-DP. The pure DP version is strictly more private than the

5The DP literature often refers to algorithms as “mechanisms”. As such, we use algorithm/mechanism
interchangeably in the DP context.

6The privacy budget term is more popularly used when there is more than one query.
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approximate version for the same ϵ. DP practitioners typically set δ to be of the order

O(1/n) or O(1/n2) [93], where n is the number of data entries in the dataset D.

Privacy Loss Random Variable (PRLV). ϵ is a metric of privacy loss defined as,

LyM(x)||M(x′) = ln

(M(x) = y

M(x′) = y

)
≤ ϵ w.p. 1− δ. (3.2)

The PRLV is a useful notion for visualizing (and deriving) DP. However, it is non-trivial

to show that Eq. 3.1 and Eq. 3.2 are equivalent (i.e., Eq. 3.1 ⇐⇒ Eq. 3.2). We refer the

reader to [93, Lemma 3.17] for the proof of the same7.

3.1.3.2 Additive Noise Mechanisms: Laplace and Gaussian

So far, we have introduced the notion of DP and provided some intuitive understanding

regarding its usefulness as a metric for privacy. We now discuss methods by which one can

create differentially private mechanisms. The most popular approach is adding calibrated

noise to the output of the non-private mechanism. These class of DP mechanisms are

referred to as additive-noise mechanisms.

3.1.3.2.1 Laplace Mechanism Before presenting the Laplace additive-noise mecha-

nism [93], let us recollect the PDF of the Laplace distribution. We have,

L(µ, b) = 1

2b
· exp

(
−|x− µ|

b

)
, (3.3)

where µ is the mean and b the scaling factor. When compared to the Gaussian distri-

bution, the Laplace mechanism has a sharper peak and heavier tail. Before defining the

Laplace mechanism, we will first define sensitivity of the function f(·), which we wish to

make private as follows.

7We remark that it is relatively straightforward to show that Eq. 3.2 implies Eq. 3.1. E.g., using the
Gaussian mechanism as the argument.
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Definition 3.15: Sensitivity [93]

Let D = {D1, . . . , Dm} be the universal set of all adjacent datasets, i.e., |D−D′| ≤ 1

for D,D′ ∈ D. For f : D → Rk, we define its sensitivity ∆f as:

∆f = max
D,D′
||f(D)− f(D′)||. (3.4)

When k > 1, the maximum usually corresponds to the L1 or L2 norm. With this, we

are now ready to define the Laplace mechanism. Recall that M(f,D) is our randomized

mechanism which ensures that the input function f(·) becomes (ϵ, δ)-DP such that δ ≥ 0.

Theorem 3.1 (Laplace Mechanism [92]). A mechanismM(f,D, ϵ) is said to be ϵ-DP

if it adds noise drawn from L
(
0,

∆f

ϵ

)
to the output of f(D). Formally,

M(f,D, ϵ) = f(D) + L
(
0,

∆f

ϵ

)
. (3.5)

Proof. From Eq. 3.2 and for |D −D′| ≤ 1 for D,D′ ∈ D,

Pr(M(f,D, ϵ) = o⃗)

Pr(M(f,D′, ϵ) = o⃗)
=

Pr
(
f(D) + L

(
0,

∆f

ϵ

)
= o⃗
)

Pr
(
f(D′) + L

(
0,

∆f

ϵ

)
= o⃗
) =

∏
i∈[k] Pr

(
fi(D) + L

(
0,

∆f

ϵ

)
= oi

)
∏
i∈[k] Pr

(
fi(D′) + L

(
0,

∆f

ϵ

)
= oi

)
=

∏
i∈[k] Pr

(
L
(
0,

∆f

ϵ

)
= oi − fi(D)

)
∏
i∈[k] Pr

(
L
(
0,

∆f

ϵ

)
= oi − fi(D′)

)
=

∏
i∈[k]

1
2b · exp

(
− |oi−fi(D)|

b

)
∏
i∈[k]

1
2b · exp

(
− |oi−fi(D′)|

b

) From Eq.3.3 and µ = 0

= exp

∑
i∈[k]

|oi − fi(D
′)| − |oi − fi(D)|

b


≤ exp

∑
i∈[k]

|f(D)− f(D′)|
b

 = exp

(
∆f

b

)
= exp ϵ.
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The second last inequality follows from the triangle inequality and the last equality from

Definition 3.15. This completes the proof.

While the Laplace mechanism is used in many data science and AI applications, it can

provide negative outputs for queries that must always be positive. Researchers propose

certain workarounds in the standard Laplace mechanism to avoid discrepancies.

For a case where the output of a statistical query over database D is the sum of the

relevant entries of total count C, i.e., D.sum(), these workarounds may be the following

mechanisms. To study these, let the non-private output be in the interval [amin, amax].

• Mechanism 1.

1. Consider the value: S = D.sum() + L(0, amax−amin
b )

2. If S/C > amax or S/C < amin re-compute S := D.sum() + L(0, amax−amin
b )

3. Repeat Step 2 until S/C ∈ [amin, amax]

4. Output S/C

• Mechanism 2.

1. Consider the value: S = D.sum() + L(0, amax−amin
b )

2. If S/C > amax return amax

3. Else If S/C < amin return amin

4. Else return S/C

• Mechanism 3.

1. Consider the value: S = D.sum()− C · amax+amin
2 + L(0, amax−amin

2 )

2. Let C̄ = C + L(0, 2ϵ )

3. Return S
C̄
+ amax+amin

2
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• Discussion. While Mechanism 1 does not satisfy (ϵ)-DP, Mechanism 2 and 3 do.

Mechanism 2 is widely used among the two as it guarantees smaller ϵ values and is

also commonly referred to as “clipping” in the broad DP-ML literature.

3.1.3.2.2 Gaussian Mechanism With the Laplace mechanism, we added calibrated

noise from the Laplace mechanism and proved that the resulting additive noise mecha-

nism satisfies pure-DP. For an approximate DP guarantee, we now discuss the Gaussian

Noise mechanism. Formally, a randomized mechanismM(x) satisfies (ϵ, δ)-DP if the agent

communicatesM(x) ≜ x+N
(
0, 2∆(x)2 ln(1.25/δ)

ϵ2

)
. Here, x is the private value to be com-

municated with sensitivity ∆(x), and N (0, σ2) the Gaussian distribution with mean zero

and variance σ2.

So far, we have looked at specific mechanisms that achieve (ϵ, δ)-DP. Recall that DP

allows us to quantify the extent to which individual privacy in a statistical database is

preserved. By ensuring indistinguishability between two adjacent databases, DP neutralizes

linkage attacks. In the next section, we look at other fundamental properties of DP.

3.1.3.3 DP: Important Properties

3.1.3.3.1 Composability Our first property answers the question: when we run mul-

tiple algorithms, each of which have privacy guarantees on their own, what is the privacy

guarantee on the union of their outputs? How do the privacy parameters degrade?

The cumulative privacy guarantee, i.e., privacy guarantee over different set of queries,

is referred to as composition. The following property gives the resultant guarantee across

k such queries. For the property, consider an adversary A with a view over k queries as

V b = (R, Y1,b, . . . , Yk,b). Here, Y is the queries output and R A’s internal randomness with

b ∈ {0, 1} as a binary parameter.
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Property 3.1 (Composability). The class of ϵ-differentially private mechanisms M sat-

isfies kϵ-DP under k-fold adaptive composition for an adversary A. We assume that each

query’s randomness is independent of the other.

Proof. A view of the adversary is the tuple v = (r, y1, . . . , yk). That is,

Pr[V = v]

Pr[V ′ = v]
=

(
Pr[R = r]

Pr[R′ = r]

)
·
i=k∏
i=1

Pr[Vi = vi|V1 = v1, . . . , Vi−1 = vi−1]

Pr[V ′
i = vi|V ′

1 = v1, . . . , V ′
i−1 = vi−1]

≤
i=k∏
i=1

exp(ϵ) (since M ∈M is (ϵ, δ)-DP)

= exp(kϵ).

3.1.3.3.2 Closure under Post-processing What is more, a differentially-private mech-

anism is also immune to post-processing. This implies that irrespective of any operation

an adversary performs over the output of a DP mechanism, the privacy guarantees w.r.t.

the indistinguishability of the databases does not change.

Property 3.2 (Closure under Post-processing). Let M : ZR+ → R be a randomized

mechanism that satisfies (ϵ, δ)-DP. Let f : R → R′ be an arbitrary function. Then,

foM : ZR+ → R′ is also (ϵ, δ)-DP.

Proof. Given two adjacent databases |D −D′| ≤ 1 and the output space S ⊆ R′, consider

the following mapping: T = {r ∈ S|f(r) ∈ S}. Now, we have,

Pr(foM(D) ∈ S) = Pr(M(D) ∈ T )

≤ exp(ϵ) · Pr(M(D′) ∈ T ) (sinceM is (ϵ, δ)-DP)

exp(ϵ) · Pr(foM(D′) ∈ S).

That is, foM is also (ϵ, δ)-DP.
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This property is quite useful for designing and the adaptivity of a DP mechanism. For

e.g., consider generating a DP ML model. As these models are generally released for

public use, post-processing property implies that the underlying privacy guarantees will

not change irrespective of how one uses the ML model.

3.1.3.3.3 Group Privacy Next, we consider the case when the distance between the

adjacent databases is greater than one row. In particular, consider databases differing in

c rows. This amounts to the fact that an adversary with arbitrary auxiliary information

can know if c particular participants submitted their information. We capture the privacy

guarantee for such a case with the next property.

Property 3.3 (Group Privacy). For a set of databases X and the set of noisy outputs Y, a
randomized algorithmM : X → Y is said to be (ϵ, δ)-LDP if ∀D,D′ ∈ X , s.t. |D−D′| ≤ c,

and ∀S ⊆ Y the following holds,

Pr[M(D) ∈ S] ≤ exp(ϵ · c) Pr[M(D′) ∈ S] + δ. (3.6)

The proof for this follows directly from Definition 3.14. Crucially, the property highlights

that the strength of the privacy guarantee drops linearly with the group size.

3.1.3.4 DP: Composition

The composition result presented with Property 3.1 can also be seamlessly extended for

the approximate-DP case. That is, the class (ϵ, δ)-DP mechanisms satisfy (k · ϵ, k · δ)-DP

given a k-fold adaptive adversary.

While we cannot do better than k · ϵ for the pure-DP, notice that for the approximate-

DP case, we may be able to derive a tighter bound than k · ϵ! This is because of the error

probability δ – we can look at tighter bounds for ϵ by comprising (marginally) the error

probability. Proposed by Dwork, Rothblum, and Vadhan [94], the celebrated Advanced

Composition theorem uses this idea to reduce the overall privacy budget from k · ϵ to (very

coarsely)
√
k · ϵ.
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3.1.3.4.1 Advanced Composition We start by looking at the main advanced com-

position theorem.

Theorem 3.2 (Advanced Composition [94]). For all ϵ, δ, δ′ > 0, letM = (M1, . . . ,Mk)

be a sequence of (ϵ, δ)-DP mechanisms, where the Mi’s are potentially chosen sequen-

tially and adaptively, i.e., the adversary A is k-fold adaptive. Then M is (ϵ̃, δ̃)-DP

where ϵ̃ = ϵ
√
2k log(1/δ̃ + kϵ e

ϵ−1
eϵ+1 and δ̃ = kδ + δ′.

Proof. (SKETCH). The proof of the theorem is involved and available at [94]. Here, we

provide an overview of it. For the proof, we first show that any possible DP mechanism

can be reduced to a binary mechanism. That is, mechanisms that either output {0, 1} or
blatantly violate privacy. Next, we show that the composition of such mechanisms gives

the bounds as stated in the theorem.

To this end, we first look at the case where the privacy budget is not bounded (which

gives the error probability, kδ + δ′). To calculate the privacy budget, we condition the

complement of this event. The term kϵ e
ϵ−1
eϵ+1 gives the expected value of the k-fold privacy

budget and is derived using Chernoff bound. The second term ϵ
√
2k log(1/δ̃ shows how

far away the expected value of the privacy budget can one be and is again calculated using

the Chernoff bound.

It may be more important for DP practitioners to know the usefulness of the Advanced

composition theorem. To this end, consider the case where we require high privacy, i.e.,

small ϵ, then eϵ−1
eϵ+1 = ϵ/2. This implies that the second term in ϵ̃ is ≈ ϵ2/2. This term is

an order lower than kϵ for small ϵ

Moreover, the privacy guarantee also has a hyperparameter δ′ – increasing δ′ decreases

the multiplicative factor in ϵ̃. Combining these arguments, we get an improvement of
√
k

in the privacy budget, which is quite useful in many settings.
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3.1.3.4.2 Moments Accountant While the Advanced composition theorem is a sig-

nificant result in the DP literature, the
√
k gain in the privacy budget is often insufficient

for practical applications such as differentially-private ML. For applications that are often

stochastic (e.g., ML with Stochastic Gradient Descent (SGD)), Abadi et al. [3] introduce

the moments accountant which uses privacy amplification through subsampling to provide

tighter composition bounds than advanced composition.

Why Moments Accountant? To double down on the “loose” accounting of the standard

composition theorem, we provide the following running example (from [3]). Let us consider

that we use the Gaussian mechanism (refer to Chapter 3.1.3.2), such that σ = 4 and

δ = 10−5. That is, for each query, we have (ϵ, δ) = (1.2, 10−5). Using the (naive) Basic

Composition for k = 10, 000 queries gives us a final privacy budget of (k · ϵ, k · δ) =

(12, 000, 0.1). Certainly, this privacy guarantee provides virtually no protection. If we

were a bit savvy and used the Advanced composition (Theorem 3.2), our privacy guarantees

would evolve as follows: (ϵ̃, δ̃) = (ϵ
√
k log(1/δ), k · δ) = (360, 0.1). This is an improvement,

but it still offers virtually no protection.

While DP composes seamlessly, the increase in the privacy budget with the number of

queries seems to lead to very weak privacy guarantees. However, training an ML model

with SGD often involves several training epochs. Abadi et al. [3] introduce the moments’

accountant that provides tighter privacy bound, particularly for ML training paradigms.

Their accountant relies on privacy amplification by subsampling, as explained next.

Privacy Amplification by Subsampling. Recall the DP definition presented with

Definition 3.14. The (ϵ, δ) privacy guarantee is the worst-case guarantee for two adjacent

datasets D and D′. Consider training an ML model with SGD. At each step, we select

a random subset of samples from the dataset, say, the 0.1 fraction. Now, the probability

that the record in which D and D′ differ being part of the subset also drops from 1 to 0.1.

Thus, subsampling reduces the privacy budget by a factor of the subsampling probability

(0.1 in our SGD example).
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For instance, combining amplification by subsampling and the advanced composition [152]

in our running example, with “q” as the subsampling probability, the privacy budget be-

comes: (ϵ̃, δ̃) = (2qϵ
√

k log(1/δ), qkδ) = (10, 0.1). Here, we take q = 0.01. This is a couple

of orders of magnitude improved privacy protection from the naive approach we started

with. Unfortunately, the privacy guarantee is still higher for practical purposes.

Algorithm 3 DP-SGD [29]

Require: Training data {x1, . . . , xn}, model parameters θ, loss function L(θ) =

1
n

∑
i L(θ, xi), and hyperparameters including, learning rate ηt, noise scale σ,

group/batch size L, gradient norm bound C, number of training epochs k

1: Initialize θ0 randomly

2: for t ∈ [k] do

3: Take a random sample Lt with sampling probability L/n

4: Compute gradient: for each i ∈ Lt, compute gt(xi)← ∇θtL(θ, xi)
5: Clip gradient: ḡt(xi)← gt(xi)/max

(
1, ||gt(xi)||2

C

)
▷ bounds the

sensitivity!

6: Add noise: g̃t ← 1
L(
∑

i ḡt(xi) +N (0, σ2C2I))

7: Descent: θt+1 ← θt − ηtg̃t

8: end for

9: return θk

Moments Accountant. For tighter bound on the privacy budget, Abadi et al. [3] propose

the moments accountant along with their differentially private variant of SGD, namely DP-

SGD.

Theorem 3.3 (Moments Accountant for the Gaussian Mechanism [3]). There exist

constants c1 and c2 so that given the subsampling probability q = L/n and the number
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of training steps k, Algorithm 3 is (ϵ, δ)-DP for any δ > 0, if

σ ≥ c2
q
√
k · log(1/δ)

ϵ
. (3.7)

In particular, the moments accountant from Theorem 3.3 saves a factor of
√

log(k/δ)

compared to the Advanced composition. To illustrate the significance further, let us re-

look our running example. Using the moments account we have: (ϵ̃, δ̃) = (2qϵ
√
k, δ) =

(1.25, 10−5). Here, we again take q = 0.01. Indeed, we see that the accountant provides

significant privacy protection!

3.2 Blockchain

In Chapter 3.1.1 and Chapter 3.1.2, we presented several popular cryptographic prelimi-

naries and summarized zero-knowledge proofs. Whereas Chapter 3.1.3 provided a summary

of another popular privacy variant, namely differential privacy. Towards designing privacy-

preserving applications, blockchains have also emerged as the useful block. This is because

a blockchain (with smart contract support) acts as a medium for pseudo-anonymous com-

munication and supports pseudo-anonymous payments. As such, in Chapter 3.2, we in-

troduce blockchain technology and summarize popular protocols such as Bitcoin [203] and

Ethereum [42].

Blockchain is an interesting application of three fundamental fields in the computer

science literature, namely, cryptography (Chapter 3.1), game theory (Chapter 2.1), and

distributed systems. Since we have already discussed the former two, we begin our discus-

sion on blockchains by first discussing distributed systems.

3.2.1 Distributed Systems

Distributed systems, e.g., AmazonWeb Services (AWS), Google Drive, and many others,

are ubiquitous today. Due to parallelism, these systems can be distributed geographically
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for reliability and availability. They provide several benefits, including increased storage,

computational power, interconnection across spatial locations, and no single point of failure.

However, such a distribution also introduces the challenge of coordination.

3.2.1.1 Consensus

To understand the challenge of arriving consensus in a distributed system, let us look at

the following example [287]. Imagine that two friends, Alice and Bob, wish to coordinate

and arrange a dinner. Alice sends a text message to Bob to meet for dinner at 6 PM. Since

her text may not have reached Bob, Alice cannot be sure that Bob read the message, so

she will only go to the meeting point if she receives a confirmation from Bob. But Bob

cannot be sure that his confirmation message was received; if his text got lost, Alice could

not know if Bob received her suggestion or if Bob’s confirmation was lost. So Bob will

require Alice’s confirmation to ensure she will be there. But Alice’s confirmation can also

be lost... the message exchange will continue forever!

This coordination problem is referred to as consensus, defined next.

Definition 3.16: Consensus [287]

There are n nodes, among which, at most, f might crash. That is, n − f nodes

are correct. Let node i start with an input value of vi. We say that the system

has achieved consensus if the n nodes decide on one of the vi values and satisfy the

following properties.

1. Agreement. All correct nodes decide on the same value.

2. Termination. All correct nodes terminate in finite time.

3. Validity. The agreed value must be the input value of a node.
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Typically, we assume that all n nodes can send messages to every other node. Moreover,

we do not consider a broadcast medium. If a node wishes to send a message to multiple

nodes, it must send multiple messages individually.

3.2.1.1.1 Impossibility of Consensus Consider the following definition.

Definition 3.17: Asynchronous Model [287]

The asynchronous model is event-based, i.e., “upon receiving message ..., do ..”.

Nodes do not have access to a synchronized wall clock. A message sent from one

node to another will arrive in a finite but unbounded time.

From Definintion 3.17, we see that the Asynchronous model is a challenging scenario

to achieve consensus, compared to the synchronous model where the nodes agree on a

synchronized clock. In particular, a node’s failure can be catastrophic in the Asynchronous

model. Theorem 3.4 proves that there is no deterministic fault-tolerant consensus algorithm

in the asynchronous model, not even for binary input.

Theorem 3.4 (Fischer, Lynch, and Paterson (FLP) Impossibility Theorem [106]).

There is no deterministic algorithm that always achieves consensus in the asynchronous

model with f > 0.

Theorem 3.4’s proof is highly involved and requires setting up various properties, which

we omit. For the interested reader, the proof is available at [287, Theorem 3.14]. The FLP

impossibility is a landmark result in distributed systems. This result was awarded the 2001

PODC Influential Paper Award. From the theorem, we see that if f = 0, then each node

can send its value to all others, wait for all values, and choose the minimum. However, if

a single node crashes, there is no deterministic solution to consensus in the asynchronous

model.
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Researchers overcome the above impossibility by introducing randomness to each node.

For instance, the Randomized consensus algorithm [287, Algorithm 3.15] achieves consensus

in the asynchronous model when f < n/2 and with an expected runtime O(n2) [287,

Theorem 3.20]8.

3.2.1.2 Consensus Algorithms: BFT and its Variants

3.2.1.2.1 Byzantine Agreement. So far, we have assumed that nodes are either cor-

rect or they crash. We can make the system more complex by introducing byzatine nodes,

i.e., nodes with arbitrary behavior, including collusion9, as follows.

Definition 3.18: Byzantine [287]

A node that can have arbitrary behavior is called byzantine. This includes “anything

imaginable”, e.g., not sending any messages at all, sending different and wrong

messages to different neighbors, or lying about the input value.

We also tweak the consensus definition introduced in Definition 3.16 to incorporate

byzantine nodes.

Definition 3.19: Byzantine Agreement [287]

Achieving consensus as in Definition 3.16 in a system with byzantine nodes is called

byzantine agreement.

The validity property introduced with Definition 3.16 also needs updating since the

byzantine nodes can lie about their inputs. Thus, we need a definition of validity that

differentiates between correct and byzantine inputs. This is called the all-same validity:

if all correct nodes start with the same input v, the decision value must be v.

8We remark that no algorithm, deterministic or otherwise, can achieve consensus in the asynchronous
model with f ≥ n/2 node failures [287, Theorem 3.21].

9An important distinction is that a byzantine node cannot forge an incorrect sender address. This
ensures that a single byzantine node cannot impersonate all nodes.
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3.2.1.2.2 Synchronous Model The last piece of business before we discuss algorithms

for byzantine agreement is defining the synchronous model. Recall the FLP impossibility

(Theorem 3.4), which already states that if f > 0, the consensus is not possible in the

asynchronous model. As such, we now look at the synchronous case but with the added

complexity of nodes being byzantine.

Definition 3.20: Synchronous Model [287]

In the synchronous model, nodes operate in synchronous rounds. In each round,

each node may send a message to the other nodes, receive the messages sent by the

other nodes, and do some local computation.

3.2.1.2.3 Byzantine Fault Tolerance (BFT) BFT refers to the ability of a dis-

tributed system to achieve byzantine agreement in the presence of byzantine nodes. Pease,

Shostak, and Lamport [228] present a fundamental result which shows that there exists no

BFT algorithm for n ≤ 3f . More formally,

Theorem 3.5 (BFT Impossibility [228]). A distributed system with n nodes cannot

reach byzantine agreement with f ≥ n/3 byzantine nodes.

Proof. We present the proof when n = 3. The general case follows from similar reasoning

and is available at [287, Theorem 4.12]. Consider the distributed system with nodes u, v, w.

For the nodes to achieve the all-same validity, a correct node must decide on its own value

if another node supports that value. The third node might disagree, but that node could

be byzantine.

If correct node u has input 0 and correct node v has input 1, the byzantine node w can

lie and inform u that its input value is 0 but inform v of its values as 1. This leads to u and

v deciding on their own values, which results in violating the agreement condition. The

nodes u and v can communicate among themselves and notice that they have different w’s

values, but in this case, u cannot distinguish whether w or v is byzantine.
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Theorem 3.5 shows that when f < n/3, we can hope to create BFT algorithms. We

present one such algorithm next.

Algorithm 4 King’s Algorithm (for f < n/3) [29]

1: x = my input value

2: for phase = 1 to f + 1 do

3: Broadcast value(x) ▷ Round 1

4: if some value(y) at least n− f times then ▷ Round 2

5: Broadcast propose(y)

6: end if

7: if some propose(z) received more than f times then

8: x = z

9: end if

10: Let node vi be the predefined king of this phase i ▷ Round 3

11: The king vi broadcasts its current value w

12: if received strictly less than n− f propose(x) then

13: x = w

14: end if

15: end for

3.2.1.2.4 King’s Algorithm. Algorithm 4 presents the formal algorithm (from [29]).

The algorithm is used to reach a byzantine agreement on a single value. The algorithm

has the following characteristics: (i) Phases: There are f + 1 phases, with two rounds per

phase; (ii) Broadcasts: Each process broadcasts its preferred value to all other processes

in the first round of each phase and (iii) Faulty nodes: Faulty nodes are not required to

broadcast and can send conflicting messages to different nodes. The algorithm reaches

agreement if: (i) All correct nodes start with the same value and (ii) Correct nodes agree
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on the same value after the phase where a correct node was king (refer to [287, Theorem

4.19] for the formal proof).

Unfortunately, King’s algorithm requires f+1 predefined kings (a Byzantine agreement

task itself). The algorithm is also for the restrictive synchronous model.

3.2.2 Blockchain

So far, we have seen several interesting consensus algorithms for the asynchronous and

synchronous settings. However, they are restricted either by design (e.g., synchronous

model) or the number of byzantine/faulty nodes. Bitcoin [203] introduced the blockchain,

a groundbreaking method to create a decentralized ledger maintained asynchronously by

(potential) byzantine nodes. The original blockchain proposed in [203] used a novel Proof-

of-Work (PoW) based consensus algorithm to ensure that each node in the system main-

tains the same copy of the ledger.

Chapter 3.2.2 introduces and summarizes popular blockchains in literature. We end

our discussion on the required preliminaries with blockchains, as these are one of the most

popular applications of Game theory (Chapter 2.1), Cryptography (Chapter 3.1.1) and

Distributed Systems (Chapter 3.2.1).

3.2.2.1 Blockchain as a Data Structure

At its core, Blockchain is a distributed and decentralized data structure that serves as

a secure and transparent ledger for recording transactions across a network of computers.

It consists of a chain of blocks, where each block contains a list of transactions. Figure 3.1

provides an overview of the transaction in a typical blockchain network. The key features

that define blockchain as a data structure include:

1. Decentralization: Unlike traditional databases that are often centralized, a blockchain

operates on a decentralized network of nodes. Each node maintains a copy of the en-
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Figure 3.1: Transaction flow in a typical blockchain network (image credit: [236])

tire blockchain, and there is no single point of control. This decentralization enhances

security and resilience.

2. Immutability: Once a block is added to the blockchain, it is extremely challenging

to alter its content. Each block contains a cryptographic hash of the previous block,

creating a chain of interlinked blocks. Modifying information in one block would

necessitate changing all subsequent blocks, a task computationally infeasible due to

the distributed nature of the network.

3. Consensus Mechanism: Blockchain relies on a consensus mechanism among net-

work nodes to agree on the validity of transactions. This ensures that all nodes have

a consistent view of the blockchain. Common consensus mechanisms include Proof

of Work (used in Bitcoin, Chapter 3.2.2.2) and Proof of Stake (used in Ethereum 2.0,

Chapter 3.2.2.3), among others.

128



4. Transparency: The entire transaction history is visible to all participants in the

network. While the identities of users may be pseudonymous, the details of transac-

tions, including amounts and timestamps, are often open and accessible.

5. Security through Cryptography: Cryptographic techniques, such as digital sig-

natures and hash functions, play a pivotal role in securing transactions and main-

taining the integrity of the blockchain. Transactions are signed using private keys,

and the hash functions contribute to the immutability of the data.

3.2.2.2 Bitcoin

Introduced in 2008 by Satoshi Nakamoto [203], Bitcoin was the first successful blockchain

application. Bitcoin is a peer-to-peer cryptocurrency offering pseudo-anonymous payments

and resistance to double-spending as long as the majority of users in the system are honest.

In Bitcoin, miners add transactions from the set of outstanding transactions (referred to

as mempool). Each block is connected to the previous block using through a hash chain.

For Bitcoin to work, we must (i) find a way to select a miner for a block and (ii) find

a way to achieve consensus, i.e., all users in the system agree on a single copy of the

blockchain ledger. In Bitcoin, these two processes are achieved using the Proof-of-Work

(PoW) consensus protocol.

3.2.2.2.1 PoW-based Consensus Selecting a Miner. In a nutshell, a PoW is a

piece of data that is computationally difficult for a user to produce but easy for others to

verify that it meets certain requirements. In Bitcoin, a miner ‘mines’ a block by computing

the SHA-256 hash of the block’s header so that the hash is lower than or equal to the target

(publicly decided on the network) of the block. More concretely, Bitcoin requires that the

hash of a block must contain a certain number of zeros. To compute a hash that starts

with several zero is low, so there is a race among the miners to be the first to do so. E.g.,

computing the hash where the last p bits are zero is 1
2p , i.e., negligible in p. For their
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efforts, the miners receive a block reward (currently 6 BTC) and also earn transaction fees

from the transactions they add to their block.

Reaching Consensus. Miners append their block, which contains the set of new trans-

actions to the existing blockchain. We can expect that at a given time, multiple chains

may exist either through malicious activity (e.g., miners appending their blocks at random

heights) or through chance (e.g., multiple miners solving the hash puzzle simultaneously).

In such an event, Bitcoin is said to have a fork. To resolve this fork, i.e., to converge to a

single agreed chain of blocks, the Bitcoin protocol requires the miners to select the chain

with the most number of blocks. That is, an honest miner will append its block to the

chain with the most valid blocks over another chain with fewer.

Since its early adoption, blockchain technology has transcended its use in cryptocurrency

applications, especially with the introduction of smart contracts.

3.2.2.3 Ethereum and Smart Contracts

The first and currently most popular blockchain network with smart-contract capabili-

ties is Ethereum [42]. A smart contract is a computer program that can be run on-chain. In

Ethereum, it is essentially bytecode executed over the Ethereum Virtual Network (EVM).

Performing any smart-contract computation over the blockchain requires gas. The amount

of gas charged depends on the type of computation. More computationally extensive op-

erations require higher gas to be executed on-chain. The total charge for the computation

is referred to as gas cost. Any computation that alters the state of the contract, i.e., alters

any contract method or variables, consumes gas. On the contrary, reading data from the

contract is free. To submit state-altering transactions, users need to specify a gas price

that they are willing to pay per unit of gas. This choice affects the verification time for

each such transaction. Generally, higher gas prices result in faster verification times.
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3.2.2.4 Transaction Fee Mechanism Design

TFM design for public blockchains such as Bitcoin [203] and Ethereum [42] considers the

following model. The blockchain’s public ledger maintains the state and orders the sequence

of transactions t1, t2, . . . , tn that update the state. Let st be the size10 of a transaction t.

Each agent i broadcasts its transaction ti with a bid bi ≥ 0. The bid represents the amount

agent i is willing to pay for ti, given its valuation θi ≥ 0. For security and practical reasons,

each block has a finite size (denoted by C). Miners create blocks, maintain a mempool of

outstanding transactions (M = [tn]), and add a subset of these transactions to their blocks.

Generally, the set of outstanding transactions is larger than the block size.

3.2.2.4.1 Transaction Fee Mechanism (TFM). Consider H = B1, . . . , Bk−1 as the

sequence of blocks denoting the on-chain history, current block Bk and mempool M . De-

signing a TFM involves defining (i) an allocation rule, which decides the transactions that

get added to Bk, (ii) a payment rule describing the fraction of each transaction’s bid that

gets paid to the miner, and (iii) a burning rule, that is, the fraction of the amount that

is removed from the supply, forever. An idiosyncrasy of blockchain involves randomization

in transaction allocation. More concretely, with a “deterministic” TFM, we imply that a

miner can include transactions in its block using any deterministic function. Whereas a

“randomized” TFM implies that the miner selects the transactions to include through a

random function11.

10E.g., Ethereum transactions may be token transfers (smaller size) or sophisticated smart contract calls
(larger size).

11TFMs may also use trusted on-chain randomness for transaction inclusion [62].
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Definition 3.21: Transaction Fee Mechanism (TFM) [245]

For a given on-chain history H, the mempool M and the current block Bk with size

C, a TFM is the tuple T TFM = (x,p,q, τ) in which,

1. x is a feasible block allocation rule, i.e.,
∑

t∈M st · xt(H,M) ≤ C where xt(·) ∈
{0, 1}, ∀t ∈M .

2. p is the payment rule with the payment for each transaction t ∈ Bk denoted by

pt(H, Bk) ≥ 0.

3. q is the burning rule with the amount of burned coins for each transaction t ∈ Bk

denoted by qt(H, Bk) ≥ 0.

4. τ ∈ {τD, τR} is the mechanism’s type – either deterministic (τD) or randomized

(τR).

3.2.3 User Model and Properties

We now define the relevant incentive properties introduced in [245] for a TFM. Recall

that we assume that the miners and bidding agents are myopic [245, 103, 310, 62] – they are

only concerned with their utility from the next block. Agent i’s (per unit size) valuation

is denoted by θi and its (per unit size) bid bi. That is agent i bids si · bi. Let the vector b

comprise all bids with b−i representing all bids without agent i. Given T TFM = (x,p,q, τ)

with H,M, and Bk, an agent i’s quasi-linear utility ui is,

ui(θi, Bk) =


(θi − pi − qi) · si if xi = 1 (i.e., ti ∈ Bk),

0 otherwise.

(3.8)

Dominant-strategy Incentive Compatibility (DSIC). A strategic agent i will select

bi such that it maximizes its utility defined in Eq. 3.8. As such, we now define DSIC for a

TFM.
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Definition 3.22: DSIC [245]

We say any T TFM = (x,p,q, τ) with H, M , and Bk is dominant-strategy incentive

compatible if, assuming the miner follows the allocation rule x, bidding θi for each

agent i maximizes ui(·) (Eq. 3.8) – irrespective of the remaining bids. That is, ∀i,∀bi
and ∀b−i we have: ui(b

⋆
i = θi,b−i) ≥ ui(bi,b−i).

Informally, DSIC states that it is the best response for an agent to submit its valuation

as its transaction fee.

Myopic Miner Incentive Compatibility (MIC). In TFMs, the miner of block Bk

has complete control over the set of transactions to add to Bk (i.e., implement alternate

allocation rule over the specified one). To deviate from the intended rule x, a miner

typically adds “fake” transactions to the mempool. For the set of fake transactions F (i.e.,

F ⊂M) and for any T TFM = (x,p,q, τ) with H, M , and Bk we can write miner’s utility

um as follows [245].

um(Bk, F ) =
∑

t∈Bk∩M\F
st · pt(·)−

∑
t∈Bk∩F

st · qt(·). (3.9)

The first term represents the miner’s revenue, and the second term represents the fee

burned from the miner’s fake transactions. The miner performs the following optimization

to maximize its utility: Bk = {t ∈M | xt = 1}.


maxx′

∑
t∈Bk∩M\F xt · st · pt(·)−

∑
t∈Bk∩F xt · st · qt(·)

s.t.
∑

t∈M st · xt ≤ C and xt(H,M) ∈ {0, 1}, ∀t
(3.10)

Given the possibility of a miner’s strategic deviation, Roughgarden [245] introduces

MIC, as defined next.
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Definition 3.23: MIC [245]

We say any T TFM = (x,p,q, τ) with H, M , and Bk is MIC, if a miner maximizes

um (Eq. 3.10) by not creating any fake transactions, F = ∅ and following the rule x.

We denote OPT as the miner’s utility from Eq. 3.10 with pt = bt and qt = 0, ∀t ∈ Bk.

Note that computing the optimal feasible set, say x⋆, in Eq. 3.10 is NP-Hard since it reduces

to KNAPSACK auctions [6]. Miners may instead adopt a greedy-based approach [245].

Off-chain Agreement Proof (OCAP). Another important property in the TFM lit-

erature is OCAP, which deals with the off-chain collusion with a miner and the bidding

agents. More formally,

Definition 3.24: OCAP [245]

Consider a miner m and the set of agents A = {i | ti ∈ M}. We say that T TFM =

(x,p,q, τ) is OCAP if no collusion between m and any subset of A improves the

canonical on-chain outcome.

3.2.4 Popular TFMs and Their Properties

We now summarize some popular TFMs in literature.

First-price (FPA) and Second-price (SPA) Mechanisms. Bitcoin employs a first-

price TFM and can be expressed in the language of T 1st = (x1st,p1st,q1st, τ1st). Here,

x1st follows Eq. 3.10. For each ti ∈ Bk we have, p1sti = bi, q
1st
i = 0 and τ1st = τD. FPA

does not satisfy DSIC but satisfies MIC and OCAP [245].

Likewise, w.l.o.g., let b1 ≥ b2 ≥ b3, . . .. We denote the second-price TFM with T 2nd =

(x2nd,p2nd,q2nd, τ2nd). Here, x2nd follows Eq. 3.10. With bn′ as the lowest bid transaction
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in Bk, for each ti ∈ Bk we have, p2ndi = bn′12, q2ndi = 0 and τ2nd = τD. SPA approximately

satisfies DSIC but does not satisfy MIC and OCAP [245].

EIP-1559 [43]. Denoted with T 1559 = (x1559,p1559,q1559, τ1559), in EIP-1559, for each

ti ∈ Bk, we have p1559i (H, Bk) = bi − λ where λ is the (dynamic) base fee13, q1559i = λ and

τ1559 = τD. The miner maximizes its utility such that x1559 follows Eq. 3.10.

EIP-1559 satisfies DSIC only if λ is not “excessively low” [246, Def. 5.6]. The base fee

λ is excessively low if λ is large enough so that the number of transactions with a valuation

greater than λ does not exceed the block size. EIP-1559 also satisfies MIC and OCAP.

BitcoinF [258]. We denote BitcoinF as T B = (xB,pB,qB, τB). Each agent i creates two

transactions offering δ and δ + b̂i, b̂i > 0 as fees. If one gets added, the other is nullified.

The allocation rule xB splits the block into α ∈ (0, 1] and 1 − α fractions. The miner

must first fill the 1−α section through FIFO collecting transactions with δ, after which it

can greedily fill the α section. Let Cα and C1−α denote the capacity of the α and 1 − α

sections, i.e., Cα+C1−α = C. For each ti in the α section, we have pBi = b̂i+δ and qBi = 0.

Likewise, for each i in the 1− α section, we have pBi = δ and qBi = 0. Lastly, τB = τD.

maxxB

∑
i∈M xBi · pBi (H, Bk) · si

s.t.
∑

t∈M,bt ̸=δ st · xBt (H,M) ≤ Cα∑
t∈M,bt=δ

st · xBt (H,M) = C1−α and

xBt (H,M) ∈ {0, 1}, ∀t ∈M.


(3.11)

As a warm-up result to further understand TFMs, we show that strategic miners in T B

may deviate, i.e., miners may include fake transactions in the 1−α section of the block to

increase their utility from the α section. Remark 3.1 captures this result.

12Generally, SPAs require agents to pay the highest losing bid. As payments cannot depend on transac-
tions not part of a block, Roughgarden [245] suggests using the lowest winning bid as a proxy.

13λ is dynamic and depends on the network congestion. If the block size > C, then the congestion is
higher, and λ is incremented by 12.5%. If the block size is ≤ C, λ is decremented by 12.5% [245].
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Remark 3.1. BitcoinF (T B, Eq. 3.11) does not satisfy MIC.

Proof. Consider the following example, where each transaction is of the same size. Let

n = 5 such that the current block Bk can hold up to 8 transaction. Further, we have

α = 3/4. The miner must first add (any) 2 transactions to the 1−α section before greedily

adding transactions to the α section. Whichever transactions from M the miner adds to

the 1− α section, it can strictly increase its utility by adding 2 fake transactions instead.

That is, by adding these fake transactions, the miner can add the real transactions of M

to the α section. Thus, BitcoinF’s allocation rule does not satisfy MIC.
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PART A: Game-theoretically Sound and Fair Mechanism

Design

PART A of this thesis primarily focuses on game theory and mech-

anism design and its application in (i) Civic Crowdfunding (CC) and

(ii) Transaction Fee Mechanisms (TFMs). In particular, we extend the

CC literature by first presenting mechanisms that relax the assumptions

placed on the agent’s information with [75], resulting in inclusive CC

mechanisms. Second, in [76] we look at the efficiency of conducting CC

mechanisms over a blockchain that have the potential of eliminating the

middle-person and result in a transparent and fair CC platform for the

participating agents. Third, we introduce combinatorial CC [77] that

studies the simultaneous crowdfunding of multiple public projects un-

der budget-constrained agents. Fourth, we shift our focus on designing

game-theoretically sound TFMs that are fair to the agents. More con-

cretely, with [79], we argue that for a TFM to be fair, it must support

the inclusion of transactions with zero fees while preserving the mono-

tonicity of bid inclusion. Last, in [78], we introduce Transaction Fee

Redistribution Mechanisms (TFRMs), a new class of TFMs using Re-

distribution Mechanisms (RMs) that look at reducing agents’ transaction

fees by providing calibrated rebates. In summary, the overarching theme

of PART A is to contribute to the evolving landscape of e-commerce/e-
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governance applications with a focus on addressing the challenges faced

by the participating agents.
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Chapter 4

Civic Crowdfunding for Agents with Negative Valuation and

Agents with Asymmetric Beliefs

The existing Civic Crowdfunding (CC) literature focuses only on agents

with positive valuation and symmetric belief toward the public project’s

funding (or provision). In this chapter, we present novel mechanisms

that break these two barriers, i.e., mechanisms that independently incor-

porate negative valuation and asymmetric belief. For negative valuation,

we present a methodology for converting existing CC mechanisms into

mechanisms incorporating agents with negative valuations. Particularly,

we adapt existing PPR and PPS mechanisms to present novel PPRN and

PPSN mechanisms that incentivize strategic agents to contribute to the

project based on their true preferences. With respect to asymmetric

belief, we propose a reward scheme Belief Based Reward (BBR) based

on Robust Bayesian Truth Serum mechanism. With BBR, we propose

a general CC mechanism incorporating asymmetric agents. Again, we

leverage PPR and PPS to present PPRx and PPSx. We prove that in

PPRx and PPSx, agents with greater belief in the project’s provision

contribute more than agents with lesser belief in equilibrium. Further,
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we also show that the contributions are such that the project is provi-

sioned at equilibrium.

⋆ ⋆ ⋆ ⋆ ⋆

4.1 Introduction

In Chapter 2.3, we introduced Civic Crowdfunding as an effective method for generating

funds from agents for public projects (e.g., public parks and libraries, among others). We

also discussed PPR (Chapter 2.3.2) and PPS (Chapter 2.3.3), two mechanisms that propose

refund schemes to incentivize strategic agents to contribute to the project’s funding.

Negative Valuations. Note that in mechanisms like PPR and PPS, only those agents

with positive valuations towards the project contribute to its funding (or provision). How-

ever, several agents may prefer the project not to be provisioned, i.e., their valuations may

be negative for the project getting provisioned. For instance, consider the construction of

a garbage dump yard in a locality. While the project may be welcomed by several agents,

a certain set of agents may wish to relocate the project from its current location to an-

other. In other words, these agents may not prefer the construction of the dump yard –

in the locality proposed. In such a scenario, the construction of the dump yard (as well as

the locality in which it is constructed) must depend on the majority’s opinion of it. The

CC literature does not address such negative valuations. CC with agents with negative

valuations can provide a natural way for preference aggregation if addressed.

Asymmetric Belief. Apart from only considering agents with positive valuations, PPR

and PPS also assume that apart from knowing the history of contributions, agents do not

have any information regarding the provision of the project, i.e., every agent’s belief is

symmetric towards the project’s provision. These mechanisms assume that agent belief

regarding the project’s provision is 1
2 . This chapter relaxes this assumption to incorporate
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agents with asymmetric beliefs. That is, the agent’s belief regarding the project’s provision

can be 1
2 ± ϵ, where ϵ > 0.

Information Structure and Asymmetric Belief. We define an agent’s information

structure as consisting of its valuation and its belief towards the project’s provision. Based

on their valuation, we categorize these agents as follows: positive (negative) agents i.e.,

agents with positive (negative) valuations or positive (negative) preferences towards the

project’s provision. We also let an agent’s belief be asymmetric toward the public project’s

provision.

4.1.1 Chapter’s Contributions

Motivated to break these barriers on an agent’s information structure in existing liter-

ature for CC, in this chapter, we address these two limitations by (i) handling symmetric

agents with negative preferences and (ii) handling positive agents with asymmetric belief

towards the project’s provision, independently. Relaxing both assumptions in one mecha-

nism remains elusive.

CC for Agents with Negative Valuations. To incorporate CC for agents with negative

valuations, we require mechanisms that integrate negative agents. For this, we set up two

parallel markets, with two different targets – one for the provision, i.e., provision point and

one against the provision, i.e., rejection point, for the project. The project is provisioned

(not provisioned) if the provision (rejection) point is reached first. A strategic agent may

choose to contribute to a market against its preference. Thus, the challenge in such a

setting remains to ingeniously design a refund scheme such that the agents are incentivized

to contribute based on their preferences. For this, we propose a methodology through which

existing mechanisms for positive preferences also allow for agents with negative preferences,

such that agents contribute to the market based on their true preferences. In particular,

we adapt existing PPR and PPS mechanisms to design PPRN and PPSN mechanisms.
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We prove that in these mechanisms at equilibrium, either the provision or rejection points

hold.

CC for Agents with Asymmetric Beliefs. Further, designing mechanisms for CC for

agents with asymmetric beliefs is not trivial. For instance, a rational agent with significant

belief towards the project’s provision may choose to free-ride, as it believes that the project

will be provisioned regardless of its contribution. Such asymmetric agents need to be further

incentivized to contribute towards the project’s provision. For this, we propose a novel

reward scheme Belief Based Reward (BBR) that rewards an agent based on their belief

towards the project’s provision. We deploy a peer prediction mechanism for information

aggregation of each agent’s belief. With BBR, we propose a novel class of mechanisms for

civic crowdfunding that incentivizes agents with asymmetric beliefs to contribute towards

the provision, such that the project is provisioned at equilibrium.

4.1.2 Chapter Notation and Solution Concepts

Throughout this chapter, we use the notations introduced during the description of CC

in Chapter 2.31. We focus on the single-project case, i.e., m = 1 in Definition 2.26. Thus,

we drop the subscript “j” from this chapter. For instance, agent i contributing xij to

project j ∈ [m] is simply agent i contributing xi as there is only one project. Table 4.1

tabulates the notations used in this chapter.

We also build our mechanisms on the existing PPR (Chapter 2.3.2) and PPS (Chap-

ter 2.3.3) ones. Lastly, the solution concepts used are Nash equilibrium (Definition 2.3)

and sub-game perfect Nash equilibrium (Definition 2.4).

4.1.2.1 Additional Preliminaries

4.1.2.1.1 Notations To incorporate an agent’s negative valuation and asymmetric be-

lief, we introduce additional notations to those described in Chapter 2.3. First, based on

1We refer the reader to Chapter 2.3 for a primer on CC with refunds, PPR [312], and PPS [52], including
the role of refund schemes and the source of the refund bonus.
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their valuations, we categorize agents as follows: positive (negative) agent, i.e., Agent i

with θi ≥ 0 (θi < 0) or with a positive (negative) preference towards the public project’s

provision. Let P (N ) denote the set of all positive (negative) agents, such that A = P∪N .

Further, let ϑ1 =
∑

i θi ∀i ∈ P as the total valuation for the public project getting provi-

sioned and ϑ2 =
∑

i (−θi) ∀i ∈ N as the total valuation for the public project not getting

provisioned, i.e., ϑ = ϑ1 − ϑ2.

Second, we also consider agents with asymmetric beliefs towards the project’s provision,

i.e., agents may believe that the project may be provisioned with probability (belief) 1/2±ϵ
or may not be provisioned with probability 1/2∓ ϵ for some ϵ ≥ 0. Let k1i = (1/2+ ϵi) and

k2i = (1/2− ϵi) for some ϵi ≥ 0 such that k1i + k2i = 1, ∀i ∈ A. Let A+ (A−) be the set of

agents which believe that the project will (will not) be provisioned, i.e., every agent i ∈ A+

(i ∈ A−) has belief k1i (k2i ) that project will be provisioned, such that A = A+ ∪ A−.

4.1.2.1.2 Robust Bayesian Truth Serum We require each agent to truthfully elicit

its belief regarding the provision of the public project. Since an agent’s opinion (belief) is

its private information, we look for mechanisms that incentivize it to elicit its true opinion,

i.e., are incentive compatible. Towards this, we make use of peer prediction mechanisms.

Peer prediction mechanisms (PPM) allow for eliciting and aggregating subjective opin-

ions from a set of agents. These are generally deployed when there is no method of verifying

an agent’s honesty (of their opinion) or ability. In the literature, there are several exist-

ing peer prediction mechanisms [196, 146, 163, 82, 235]. For illustrative purposes, in this

chapter, we focus on the Robust Bayesian Truth Serum (RBTS) mechanism [296].

While RBTS’ properties hold for an arbitrary number of signals, we present the binary

version of the mechanism, as we are interested in eliciting an agent’s belief towards the

provision of the project. In RBTS, each agent is required to submit, from [296]:

1. Information Report: Let fi = {0, 1} be Agent i’s reported signal.
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2. Prediction Report: Let gi ∈ [0, 1] be Agent i’s report about the frequency of high

signals among the citizens.

Based on the information and prediction reports, RBTS assigns each agent a score. The

mechanism, for each Agent i, selects a reference agent j = i + 1 (modulo n) and a peer

agent k = i+ 2 (modulo n) and calculates,

g′i =


gj + δ if fi = 1

gj − δ if fi = 0

where δ = min(gj , 1− gj). Then, the RBTS score for Agent i is given by,

RBTSi = Gm(g
′
i, fk)︸ ︷︷ ︸

information score

+ Gm(gi, fk)︸ ︷︷ ︸
prediction score

. (4.1)

Gm(·) is the binary quadratic scoring rule [255] normalized to give scores between 0 and

1 and is a strictly proper scoring rule.

RBTS is IC and ex-post ID ([296, Theorem 10]) for the elicitation of binary information

for all n ≥ 3, without relying on knowledge of the common prior. Note that many other

peer prediction mechanisms are IC only when n→∞, so we chose RBTS.
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Notation Definition

Pm,m = 1 Set of Projects to be crowdfunded

A = {1, . . . , n} Set of Agents

θi ∈ R Agent i’s valuation for the project as m = 1

ϑ =
∑

i∈A θi Overall valuation of the project

c ∈ R≥0 Target cost of the project

τ ∈ R≥0 Deadline of the project

xi ∈ R≥0 Agent i’s contribution to the project

ti ∈ R≥0 Agent i’s time of contribution

x =
∑

i∈A xi Total contribution to the project

B > 0 Refund bonus

ui(θi, xi;x, c, B) Agent i’s utility

P Set of Agents with θ ≥ 0

N Set of Agents with θ < 0

ϑ1 =
∑

i∈P (θi) Overall positive valuation

ϑ2 =
∑

i∈N (−θi) Overall negative valuation

k1i Agent i’s belief regarding project’s funding

k2i Agent i’s belief regarding project not being funded

A+ Set of agents s.t. ∀i, k1i ≥ 1/2

A− Set of agents s.t. ∀i, k1i < 1/2

bi Belief Based Reward for Agent i

Table 4.1: Chapter Notations
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4.2 Civic Crowdfunding for Agents With Negative Valua-

tions

We now introduce our methodology through which CC mechanisms can incorporate

symmetric agents with negative preference (valuation) towards the public project’s pro-

vision. For this, the PM sets up two separate markets, i.e., one for the provision and

one against the provision of the project. Thus, agents now have a greater scope for ma-

nipulation. In such a setting, a strategic agent may choose to contribute to a market

against its preference if its expected utility for contributing in that market is more than

if it contributes to the market based on its preference. Therefore, to incorporate agents

with negative preferences, we must ingeniously construct the refund scheme to incentivize

agents to contribute to the market based on their true preferences.

To illustrate this methodology, we provide two mechanisms for the same by adopting

existing mechanisms in PPR and PPS, namely, PPRN and PPSN. The reason for introduc-

ing PPRN and PPSN is that these mechanisms work in different settings. PPRN (based on

PPR (Chapter 2.3.2)) is for the offline CC setting, whereas PPSN (based on PPS (Chap-

ter 2.3.3)) is for the online CC setting. For these mechanisms, let c1 (c2) be the target

for provision (rejection) of the public project with x1 (x2) as the total funding received

towards (against) its provision.

4.2.1 Provision Point Mechanism with Refunds with Negative Prefer-

ence (PPRN)

We now propose a mechanism for civic crowdfunding for agents with negative valuation

by leveraging PPR, namely PPRN.
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4.2.1.1 Protocol

In PPRN, Agent i not only contributes its contribution xi but also specifies its prefer-

ence, i.e., whether it wants to contribute towards the project getting provisioned or not

getting provisioned. Let βi ∈ {1, 2}, ∀i ∈ A be a private preference variable for Agent i,

such that βi = 1,∀i ∈ P and βi = 2,∀i ∈ N . Further, let Agent i’s reported preference

be β̃i. The social planner adds Agent i’s contribution towards the project’s provision or

rejection based on its reported preference β̃i. The project is provisioned or not based on

whichever target is first reached2.

4.2.1.2 Agent Utility

The utility for Agent i ∈ A with β̃i = 1 in PPRN is as follows. The utility is similar to

the PPR utility (Eq. 2.15) with the addition of the two markets.

ui(·) = 1x1≥c1 · (θi − xi)︸ ︷︷ ︸
Funded Utility

+1x1<c1 ·
(

xi
x1 + x2

)
B︸ ︷︷ ︸

Unfunded Utility

(4.2)

Similarly, the utility for Agent i ∈ A with β̃i = 2 in PPRN is as follows,

ui(·) = 1x2≥c2 · (−xi)︸ ︷︷ ︸
Funded Utility

+1x2<c2 ·
(
θi +

(
xi

x1 + x2

)
B

)
︸ ︷︷ ︸

Unfunded Utility

(4.3)

4.2.1.3 PPRN: Equilibrium Analysis

The equilibrium analysis for PPRN follows similarly to that of PPR (refer to Chap-

ter 2.3.2.1). Consider the following theorem.

2As our goal is to fund one of the two projects under crowdfunding, choosing to stop the process as soon
as either the provision or the rejection point is reached seems a natural choice. Moreover, in practice, it is
likely that the point with more aggregate valuation will reach faster, and thus, this choice will also mimic
the majority vote.
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Theorem 4.1. Given A,m = 1, c1 and c2 (refer to Definition 2.26) with 0 < B ≤
(c1+c2)(ϑ1−c1)

c1
, 0 < B ≤ (c1+c2)(ϑ2−c2)

c2
and agent utility structure as defined in Eq. 4.2

and Eq. 4.3, then at equilibrium (i) either x1 = c1 or x2 = c2 holds, (ii) β̃i = βi, ∀i ∈ A
and (iii) the set of (pure-strategy) Nash equilibria are {x⋆i | x⋆i ≤

(
c1+c2

B+c1+c2

)
|θij |, ∀i ∈

A}.

Proof. In Step 1, we show that the equilibrium contributions are such that at equilibrium,

either x1 = c1 or x2 = c2 holds. Step 2 shows that each agent delays its contribution till

the deadline τ . We prove that every agent contributes based on its true preference in Step

3. Step 4 calculates the equilibrium contribution of every agent. Finally, in Step 5, we give

the conditions for the existence of Nash Equilibrium.

Step 1 : As ϑ1 > c1 and ϑ2 > c2, at equilibrium x1 < c1 and x2 < c2 cannot hold, as

∃i ∈ P and ∃j ∈ N with xi < θi and xj < |θj |, at least, that could obtain a higher refund

bonus by marginally increasing its contribution because of B > 0. Likewise, any agent

with a positive contribution could gain in utility by marginally decreasing its contribution

if x1 > c1 and x2 > c2. Thus, at equilibrium, either x1 = c1 or x2 = c2 holds.

Step 2 : As the refund in PPRN is independent of time, no agent has any incentive to

contribute early. Thus, each agent delays its contribution till the deadline, τ .

Step 3 : Since every Agent i is symmetric in its belief towards the project’s provision, its

expected utility is given by 1
2

(
θi − xi +

xi
x1+x2

B
)
– irrespective of which of the two project

it contributes to. Thus, each Agent i has no incentive to deviate from its preference. That

is, β̃i = βi,∀i ∈ A.
Step 4 : We split this into categories depending on an agent’s valuation type.

1. For Positive agents: At equilibrium, the best response for an Agent i ∈ P is that

contribution x⋆i such that its provisioned utility is not less than not provisioned utility

since it prefers the project to be provisioned and is symmetric in its belief, i.e., ∀i ∈ P,

θi − x⋆i ≥
(

x⋆i
x1 + x2

)
B
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⇒ x⋆i ≤
(

(x1 + x2)

B + x1 + x2

)
θi <

(
c1 + c2

B + c1 + c2

)
θi,

The last inequality follows from the fact that x1 + x2 < c1 + c2.

2. For Negative agents: The best response for an Agent i ∈ N is that equilibrium

contribution x⋆i such that its not provisioned utility is not less than provisioned utility

since the agent prefers the project not to be provisioned and is symmetric in its belief,

i.e., ∀i ∈ N ,

|θi|+
(

x⋆i
x1 + x2

)
B ≤ −x∗i

⇒ x⋆i ≤
(

(x1 + x2)

B + x1 + x2

)
|θi| <

(
c1 + c2

B + c1 + c2

)
|θi|

Step 5 : Summing up x⋆i , ∀i ∈ P gives the condition for existence of Nash Equilibrium as,

0 < B <
(c1 + c2)(ϑ

1 − c1)

c1
.

Similarly, summing up x⋆i ,∀i ∈ N ,

0 < B <
(c1 + c2)(ϑ

2 − c2)

c2
.

gives the condition for the existence of Nash Equilibrium.

Next, leveraging PPS, we present Provision Point Mechanism for Securities with Neg-

ative Preference (PPSN).

4.2.2 Provision Point Mechanism for Securities with Negative Preference

(PPSN)

We now propose a mechanism for civic crowdfunding for agents with negative valuation

by leveraging PPS, namely PPSN.
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4.2.2.1 Protocol

In PPSN, we consider a mechanism with two independent PPS prediction markets -

PPS1 and PPS2. In PPS1, agents contribute for the project to be provisioned (and buy

negative securities); in PPS2, agents contribute for the project not to be provisioned (and

buy positive securities). Note that the markets are independent, and the prices in both

markets are also independent of the other. The provision point for PPS1 is reached when its

total contribution reaches c1, and the rejection point for PPS2 when the total contribution

reaches c2. Let x1 be the total contribution received by the project in PPS1 and x3 be

the total contribution received by the project in PPS2. The project is provisioned or not

based on whichever target is first reached. Let βi ∈ {1, 2}, be a private preference variable

for Agent i, such that βi = 1, ∀i ∈ P and βi = 2, ∀i ∈ N .

4.2.2.2 Common Refund Scheme

An agent may not contribute to the market based on its preference if its expected refund

is higher in case it contributes to the other market. To prevent this, we present a common

refund scheme that ensures that the agent obtains the same refund despite which market

it chooses to contribute. In this, Agent i contributes xi in any market based on a refund

that depends on the minimum of the issued securities present in both the markets3, i.e.,

Qti = min(qtiPPS1, q
ti
PPS2). Based on this, Agent i is issued securities (stii ) for a contribution

xi given by

stii = C−1
0 (xi + C0(Q

ti))−Qti ,

from [52, Eq. 6]. Thus, Agent i’s refund in this scheme is stii − xi. However, the number

of issued securities only changes for the market in which the agent contributes xi to, i.e.,

C−1
0 (xi + C0(q

t
PPS(βi)

))− qtPPS(βi),

will be the change in the total number of issued securities in the market PPS(βi).

3For more details on PPS, please refer to Chapter 2.3.3.
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Now, consider the following propositions based on this setup.

Proposition 4.1. The securities allotted to an agent with total issued securities as Qt

is always greater than or equal to those it would have received with securities qtPPS1 or

qtPPS2 for the same contribution and the same cost function C0.

Proof. The statement follows directly from the fact that the number of securities allotted

for the same contribution is a decreasing function of the total issued securities [52, Step-2

(Theorem 3)].

Proposition 4.2. The refund given by stii − xi for Agent i is a decreasing function

with respect to time ti.

Proof. The securities allotted to Agent i, stii , decreases as Q
ti increases (Proposition 4.1).

Further, since Qt = min(qtPPS1, q
t
PPS2) and qtPPS1 and qtPPS2 are non-decreasing with re-

spect to time t; Qt is a non-decreasing function of time. Thus, stii − xi for Agent i is a

decreasing function with respect to time ti.

4.2.2.3 Agent Utility

For simplicity of notations, let us call PPS1 as p1 and PPS2 as p2. Thus, pβi = p1, ∀i ∈ P
and pβi = p2,∀i ∈ N . Further, let the market in which Agent i contributes be p̃βi . The

utility for Agent i ∈ A with p̃βi = p1, in PPSN is as follows, where xi is the contribution

at time ti,

ui(·) = 1x1≥c1 · (θi − xi)︸ ︷︷ ︸
Funded Utility

+1x1<c1 ·
(
stii − xi

)︸ ︷︷ ︸
Unfunded Utility

(4.4)

The utility for Agent i ∈ A with p̃βi = p2, in PPSN is as follows, where xi is the contribution

at time ti,

ui(·) = 1x2≥c2 · (−xi)︸ ︷︷ ︸
Funded Utility

+1x2<c2 · (θi + stii − xi)︸ ︷︷ ︸
Unfunded Utility

(4.5)
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4.2.2.4 PPSN: Equilibrium Analysis

The equilibrium analysis for PPS follows similarly to that of PPS (refer to Chap-

ter 2.3.3). Consider the following theorem.

Theorem 4.2. Consider the civic crowdfunding setup with A,m = 1, c1 and c2 (refer

to Definition 2.26) and each agent i’s utility structure defined by Eq. 4.4 and Eq. 4.5.

Let C : R2 → R be a cost function satisfying [52, CONDITIONS 1-4, 6]. Let C1
0 :

R→ R be the cost function obtained from C by fixing the number of positive outcome

securities, satisfying Property 2.1, ϑ1 > (C1
0 )

−1(c1+C0(0)) and used in the market p1.

Likewise, C2
0 : R → R be the cost function obtained from C by fixing the number of

negative outcome securities, satisfying Property 2.1, ϑ2 > (C2
0 )

−1(c2+C0(0)) and used

in the market p2. Then (i) either x1 = c1 or x2 = c2 holds, (ii) β̃i = βi, ∀i ∈ A and

(iii) the set of sub-game Perfect Nash equilibria are {(x⋆i , ai) | x⋆i ≤ Cβi
0 (|θi| + qai −

Cβi
0 (qai), ∀i ∈ A}.

Proof. In Step 1, we show that the equilibrium contributions are such that at equilibrium,

either x1 = c1 or x2 = c2 holds. Step 2 shows that each agent delays its contribution till

the deadline τ . We prove that every agent contributes based on its true preference in Step

3. Step 4 calculates the equilibrium contribution of every agent. Finally, in Step 5, we give

the conditions for the existence of Nash Equilibrium.

Step 1 : As ϑ1 > c1 and ϑ2 > c2, at equilibrium x1 < c1 and x2 < c2 cannot hold, as

∃i ∈ P and ∃j ∈ N with xi < θi and xj < |θj |, at least, that could obtain a higher

refund bonus by marginally increasing its contribution since
∂s

ti
i

∂xi
> 1 [52, CONDITION

7]. Likewise, any agent with a positive contribution could gain in utility by marginally

decreasing its contribution if x1 > c1 or x2 > c2. Thus, at equilibrium, x1 = c1 or x2 = c2

holds.

Step 2 : Since every Agent i is symmetric in its belief towards the project’s provision, its

expected utility is given by 1/2(θi+ si)−xi for both the markets. Thus, every Agent i has
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no incentive to deviate from its preference. Therefore, p̃si = psi ,∀i ∈ A.
Step 3 : As the refund scheme is decreasing with respect to time t (Proposition 4.2), Agent

i contributes as soon as it arrives, i.e., at time ai.

Step 4 : Let qaip1 be the number of total issued securities at market p1 at time ai, and qaip2

be the number of total issued securities at market p2 at time ai, with Qai = min(qaip1 , q
ai
p2)

for Agent i. Now,

1. For Positive agents: At equilibrium, the best response for an Agent i ∈ P is that

contribution x⋆i in market p1 at time ai such that its provisioned utility is not less than

not provisioned utility since it prefers the project to be provisioned and is symmetric

in its belief, i.e.,

θi − x⋆i ≥ s⋆i − x⋆i

θi ≥ s⋆i

⇒ x⋆i ≤ C0(θi +Qai)− C0(Q
ai) ∀i ∈ P

The result follows from [52, Eq. 6]. Based on this x⋆i , the number of issued securities

changes by C−1
0 (x⋆i + C0(q

ai
p1)) − qaip1 in p1, since a positive agent always contributes

in p1.

2. For Negative agents: At equilibrium, the best response for an Agent i ∈ N is that

contribution x⋆i at time ai in market p2 such that its not provisioned utility is not

less than provisioned utility since it prefers the project not to be provisioned and is

symmetric in its belief i.e.,

s⋆i − x⋆i + |θi| ≤ −x⋆i

s⋆i ≤ |θi|

⇒ x⋆i ≤ C0(|θi|+Qai)− C0(Q
ai) ∀i ∈ N

The result follows from [52, Eq. 6]. Based on this x⋆i , the number of issued securities

changes by C−1
0 (x⋆i + C0(q

ai
p2))− qaip2 in p2, since a negative agent always contributes

in p2.
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Step 4 : From Proposition 4.1, θi ≥ s⋆i can be written as θi ≥ s⋆i ≥ C−1
0 (x⋆i +C0(q

ai
p1))− qaip1 .

Summing up ∀i ∈ P, we get the condition for the existence of Nash Equilibrium here as,

from [52, Eq. 7],

C−1
0 (c1 + C0(0)) < ϑ1.

Similarly for p2, ∀i ∈ N we have,

C−1
0 (c2 + C0(0)) < ϑ2.

Step 5 : For Agent j entering last, if x1 = c1 or x2 = c2, then its best response is con-

tributing 0. If x1 < c1 and x2 < c2, irrespective of the total contribution, its provision,

and the not provisioned utility is the same at x⋆j , defined in the theorem, and it is the

best response for Agent j to follow the equilibrium strategy. With backward induction, by

similar reasoning, it is the best response for every agent to follow the equilibrium strategy

irrespective of the history of the contributions.

For Agent j ∈ P(j ∈ N ) entering the market, in the first case, when the amount left to

fund the project is less than its equilibrium upper bound, then it will fund the remaining

contribution. This is because, for this contribution, its provisioned utility will be greater

than its not provisioned utility. Agent j will also contribute the upper bound if it can since

its not provisioned utility increases as its contribution increases. Therefore, contributing

an amount less than the bound will result in a lesser, not-provisioned utility for the agent.

Thus, these strategies also form a set of sub-game perfect equilibria.

Discussion: For PPSN, it can be seen that ϑ = ϑ1−ϑ2. The project is always provisioned

if ϑ1 > c1 and ϑ ≥ 0 or is never provisioned if ϑ2 > c2 and ϑ < 0. Here, it must be noted

that ϑ1 > c1 and ϑ2 > c2 can be simultaneously satisfied. In that case, if ϑ1 > ϑ2, the

project attains the provision point faster than the rejection point and vice-versa.

The significance of this result is that in PPSN (and PPRN), at equilibrium, the project

is provisioned if the majority prefers it, i.e., only when ϑ ≥ 0. Thus, this methodology
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allows for truthful aggregation of the private preferences of each agent with respect to

public projects.

4.3 Civic Crowdfunding for Agents with Asymmetric Beliefs

We now present a General Mechanism which incentivizes agents with asymmetric be-

liefs towards the public project’s provision, i.e., contributing towards it. We restrict our

attention to the case where every agent has a positive valuation towards the project’s

provision.

The General Mechanism involves two phases: a Belief Phase (BP) and a Contribution

Phase (CP). In BP, each Agent i submits its belief for the provision of the project for which

it is allocated some share (denoted by bi) of the reward calculated through the Belief Based

Reward (BBR) scheme (described shortly). In CP, each Agent i submits its contribution

(xi) to the project, which depends on the refund obtained in the BP and the provision

point mechanism deployed for civic crowdfunding.

The mechanism requires two separate bonuses for both phases, which the social planner

announces at the start of the project. Let BB(BC) be the bonus allocated for the BP

and the CP, respectively. Further, let a1i (a
2
i ) be the time at which Agent i arrives at

the mechanism for the BP (CP) with t1i (t
2
i ) as the time at which it reports its belief

(contribution). Let the BP (CP) deadline be τB(τC) announced at the start of the project.

Unlike in the case of civic crowdfunding for agents with symmetric beliefs, an asymmetric

agent with significant belief towards the project getting provisioned or not may choose

to free-ride and not contribute. Therefore, we introduce a reward scheme that further

incentivizes such agents to contribute towards the project.
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4.3.1 Belief Based Reward (BBR)

To quantitatively measure the reward share to be distributed to every contributing agent

in the BP, we use a peer-prediction mechanism, sayM. We consider PPMs that incentivize

truthful elicitation of an agent’s belief, i.e., PPMs that are IC.

Let the score of Agent i dependent on its belief (1/2± ϵi) be Mi. Further, let S
ti be the

set consisting of all the agents that have reported their belief, including the Agent i, who

reports its belief at time ti. For τ
B as the deadline, Sτ

B
consists of all the agents that have

reported their belief. Let Mi, ∀i ∈ Sτ
B
be the agent scores calculated after the deadline.

For,

wi =
Mi∑
j Mj

∀j ∈ Sti ,

Agent i’s reward in the scheme is,

bi =


wi∑
j wj
×BB ∀j ∈ A+; ∀i ∈ A+

wi∑
j wj
×BB ∀j ∈ A−; ∀i ∈ A−

(4.6)

We refer to the reward scheme given by Eq. 4.6 as Belief-Based Reward (BBR). With

this, we show the following proposition:

Proposition 4.3. BBR is a decreasing function of time.

Proof. From Eq. 4.6, BBR is inversely proportional to the order in which agents report

their beliefs. Since agents’ arrival is non-decreasing w.r.t. time, BBR is a decreasing

function of time.

In addition, BBR is also budget balanced, i.e., in BBR, the entire budget is utilized. At

the end of the mechanism, only one set of agents, either A+ or A−, are rewarded.

RBTS Reward Scheme: For illustration, we use RBTS as our peer-prediction mecha-

nism to calculate Mi for each Agent i. For this, every agent submits its prediction and

information report as described earlier. In this reward scheme, let fi = 0 denote that Agent
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i believes that the project will be provisioned and fi = 1 denote that Agent i believes that

the project will not be provisioned. Thus, through each agent’s prediction report, the PM

knows whether an agent belongs to the set A+ or the set A−.

We now present Provision Point Mechanism with Refunds for Agents with Asymmetric

Beliefs (PPRx) by plugging the PPR refund bonus scheme for the CP.

4.3.2 Provision Point Mechanism with Refunds for Agents with Asym-

metric Beliefs (PPRx)

We plugin the PPR refund bonus scheme for the Contribution Phase in this mechanism.

4.3.2.1 Agent Utility

The utility for Agent i ∈ A+, in PPRx is as follows,

ui(·) = 1x≥c · (θi − xi + bi)︸ ︷︷ ︸
Funded Utility

+1x<c ·
((xi

x

)
BC
)

︸ ︷︷ ︸
Unfunded Utility

(4.7)

Similarly, the utility for Agent i ∈ A−, in PPRx are as follows,

ui(·) = 1x≥c · (θi − xi)︸ ︷︷ ︸
Funded Utility

+1x<c ·
((xi

x

)
BC + bi

)
︸ ︷︷ ︸

Unfunded Utility

(4.8)

4.3.3 PPRx: Equilibrium Analysis

Consider the following theorem.

Theorem 4.3. Given A,m = 1 and c as the target cost (refer to Definition 2.26) with

0 < BB ≤ ϑ − c, BB, BC > 0 and agents utility structure as defined in Eq. 4.7 and

Eq. 4.8, then at equilibrium (i) x = c and (ii) the set of (pure-strategy) Nash equilib-
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ria are {(x⋆i , a1i , a2i ) | x⋆i ≤
(
k1i θi+k

1
i bi

k2iB
C+k1i c

)
c, ∀i ∈ A+} and the set {(x⋆i , a1i , a2i ) | x⋆i ≤(

k2i θi−k1i bi
k1iB

C+k2i c

)
c, ∀i ∈ A−}.

Proof. In Step 1, we show that the equilibrium contributions are such that at equilibrium

x = c holds. We prove that every agent reports its belief as soon as it arrives at the Belief

Phase in Step 2. Step 3 calculates the equilibrium contributions of every agent. Finally, in

Step 4, we give the conditions for the existence of Nash Equilibrium.

Step 1 : At equilibrium, x = c, since the social planner stops the protocol as soon as the

provision point is reached. Further, if x < c, then an agent can increase its utility by

contributing more to the project and receiving a higher utility since BC > 0. Therefore,

the contributions are such that the market is provisioned at equilibrium.

Step 2 : Since the reward scheme for the Belief Phase is a decreasing function of time

(Proposition 4.3), a rational Agent i would report its belief as soon as it arrives at the

phase, i.e., at time a1i .

Step 3 : The equilibrium strategy for each agent i ∈ A is such that its provisioned utility

is not less than its not provisioned utility. Now,

1. For agent i ∈ A+:

k1i (θi − xi + bi) ≥ k2i

(xi
x
BC
)

⇒ x⋆i ≤
(

k1i θi + k1i bi
k2iB

C + k1i c

)
c.

Since at equilibrium x = c.

2. For agent i ∈ A−:

k2i (θi − xi) ≥ k1i

(xi
x
BC + bi

)
⇒ x⋆i ≤

(
k2i θi − k1i bi
k1iB

C + k2i c

)
c.

Since at equilibrium x = c.
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Step 4 :Note that from Eq. 4.7, x⋆i ≤ θi + bi ∀i ∈ A+ and from Eq. 4.8, x⋆i ≤ θi ∀i ∈ A−.

Thus, ∑
i∈A

x∗i ≤
∑
i∈A+

(θi + bi) +
∑
i∈A−

(θi)

∑
i∈A

x∗i ≤ ϑ+BB.

At equilibrium we have
∑

i∈A x⋆i = c. Therefore,

c ≤ ϑ+BB,

is the condition for the existence of Nash Equilibrium.

4.3.4 Provision Point Mechanism with Securities for Agents with Asym-

metric Beliefs (PPSx)

We now present Provision Point Mechanism with Securities for Agents with Asymmetric

Beliefs (PPSx) by plugging the PPS refund bonus scheme for the CP.

4.3.4.1 Agent Utility

The utility for Agent i ∈ A+, in PPSx is as follows,

ui(·) = 1x≥c · (θi − xi + bi)︸ ︷︷ ︸
Funded Utility

+1x<c ·
(
s
t2i
i − xi

)
︸ ︷︷ ︸
Unfunded Utility

(4.9)

Similarly, the utility for Agent i ∈ A−, in PPSx is as follows,

ui(·) = 1x≥c · (θi − xi)︸ ︷︷ ︸
Funded Utility

+1x<c ·
(
s
t2i
i − xi + bi

)
︸ ︷︷ ︸

Unfunded Utility

(4.10)

4.3.5 PPSx: Equilibrium Analysis

Consider the following theorem.

159



Theorem 4.4. Consider the civic crowdfunding setup with A,m = 1 and c as the

target cost (refer to Definition 2.26) and each agent i’s utility structure defined by

Eq. 4.9 and Eq. 4.10. Let C : R2 → R be a cost function satisfying [52, CONDITIONS

1-4, 6]. Let C0 : R → R be the cost function obtained from C by fixing the number

of positive outcome securities, satisfying Property 2.1, ϑ > C−1
0 (c1 + C0(0)). Then (i)

x = c holds and (ii) the set of sub-game perfect Nash equilibria are {(x⋆i , a1i , a2i ) | x⋆i ≤
C0(θi+ bi+qa

2
i )−C0(q

a2i ), ∀i ∈ A+} and the set {(x⋆i , a1i , a2i ) | x⋆i ≤ C0(θi− bi+qa
2
i )−

C0(q
a2i ), ∀i ∈ A−}.

Proof. In Step 1, we show that the equilibrium contributions are such that at equilibrium

x = c holds. We prove that every agent reports its belief as soon as it arrives to the Belief

Phase as well as contributes as soon as it arrives at the Contribution Phase in Step 2. Step

3 calculates the equilibrium contributions of every agent. In Step 4, we give the conditions

for the existence of Nash Equilibrium. We show that this set of strategies is sub-game

perfect in Step 5.

Step 1 : At equilibrium x < c cannot hold, as ∃i ∈ A+ with xi < θi + bi or ∃i ∈ A−

with xi < θi, at least, that could obtain a higher refund bonus by marginally increasing

its contribution, since
∂s

ti
i

∂xi
> 1 [52, CONDITION 7]. Likewise, any agent with a positive

contribution could gain in utility by marginally decreasing its contribution if x > c. Thus,

at equilibrium x = c.

Step 2 : Since the reward scheme for the Belief Phase is a decreasing function of time

(Proposition 4.3), a rational Agent i would report its belief as soon as it arrives at the BP,

i.e., at time a1i . Also, since the CP is the PPS mechanism, the best response for any agent

is also to contribute as soon as it arrives, i.e., at time a2i .

Step 3 : From the utility of Agent i in PPSx (Eq. 4.9 and Eq. 4.10), it is clear to see that

∀i ∈ A+, xi ≤ θi + bi (as a strategic agent will not contribute greater than its valuation

and the reward it received) and ∀i ∈ A−, xi ≤ θi. Also, xi ≥ 0. Further, the equilibrium
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strategy for each Agent i ∈ A is such that its provisioned utility is not less than its not

provisioned utility. Now,

1. For Agent i ∈ A+:

k1i (θi + bi − x∗i ) ≥ k2i (s
⋆
i − x⋆i )

⇒ x⋆i ≤
k1i (θi + bi)− k2i (s

⋆
i )

k1i − k2i
.

Thus, the maximum value of x⋆i is,

x̂⋆i =
k1i (θi + bi)− k2i (s

⋆
i )

k1i − k2i

We also have xi ≤ θi + bi,∀i ∈ A+. Therefore, the maximum value should also be less

than θi + bi, i.e.,

x̂⋆i ≤ θi + bi ⇒ s⋆i ≤ θi + bi.

This follows from the value of x̂∗i defined above. To obtain s⋆i securities at equilibrium,

an Agent i’s contribution x⋆i must be

⇒ x∗i ≤ C0(θi + bi + qa
2
i )− C0(q

a2i ) ∀i ∈ A+.

The result follows from [52, Eq. 6], i.e., the securities obtained (s⋆i ) are monotonic

function of the contribution (x⋆i ).

2. For Agent i ∈ A−:

k1i (s
⋆
i − x⋆i + bi) ≤ k2i (θi − x⋆i ).

Similar to (1) of this step, the equilibrium contribution x⋆i becomes

⇒ x⋆i ≤ C0(θi − bi + qa
2
i )− C0(q

a2i ) ∀i ∈ A−.

This follows from x⋆i ≤ θi, ∀i ∈ A− and [52, Eq. 6].
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Step 4 : We have x⋆i ≤ θi + bi ∀i ∈ A+ and x⋆i ≤ θi ∀i ∈ A−. Thus,

∑
i∈A

x⋆i ≤
∑
i∈A+

(θi + bi) +
∑
i∈A−

(θi)

At equilibrium we have
∑

i∈A x⋆i = c. Therefore,

c ≤ ϑ+BB,

is the condition for the existence of Nash Equilibrium.

Step 5 : For Agent j entering last, if x = c, then its best response is contributing 0. If

x < c, irrespective of the total contribution, its provisioned and not provisioned utility is

the same at x⋆j , defined in the theorem, and it is the best response for Agent j to follow

the equilibrium strategy. With backward induction, by similar reasoning, it is the best

response for every agent to follow the equilibrium strategy irrespective of the history of the

contributions.

4.4 Discussion and Conclusion

4.4.1 PPRx and PPSx: Equilibrium Contribution Analysis

We now compare the equilibrium contribution of both sets of agents in PPRx and PPSx.

Towards this, let Agent i ∈ A+ and Agent j ∈ A− such that θi = θj , bi = bj , a
2
i = a2j and

k1i = k1j (k1i + k2i = 1). Agent i’s belief about the project getting provisioned is k1i and

Agent j’s k2j .

1. For PPRx : The difference in the equilibrium contribution of Agent i ∈ A+ and Agent

j ∈ A− as defined above in PPRx now becomes,

x⋆i − x⋆j =

(
k1i θi + k1i bi
k2iB

C + k1i c

)
c−

(
k2i θi − k1i bi
k1iB

C + k2i c

)
c
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As the denominator is always positive, we only consider the numerator in the RHS of

the above equation. Observe,

c(k1iB
C + k2i c)(k

1
i θi + k1i bi)−

c(k2iB
C + k1i c)(k

2
i θi − k1i bi) > 0

as, BCθi((k
1
i )

2 − (k2i )
2) +BCbi((k

1
i )

2 + k1i k
2
i )+

cbi((k
1
i )

2 + k1i k
2
i ) > 0,

since k1i ≥ k2i . Thus, the upper bound of each Agent i ∈ A+ is always greater than for

an Agent j ∈ A− with the same valuation and belief.

2. For PPSx : For Agent i ∈ A+ and Agent j ∈ A− as defined above, the equilibrium

contribution of Agent i will always be greater than that of Agent j since C0(θi+bi+qa
2
i ) >

C0(θi − bi + qa
2
i ) as bi > 0 and

∂s
ti
i

∂xi
> 1 [52, CONDITION 7].

Thus, for both PPRx and PPSx, the upper bound on the equilibrium contributions

∀i ∈ A+ (with k1i as the belief towards project’s provision) is greater than the upper

bound on the equilibrium contributions ∀i ∈ A− (with k2i as the belief towards project’s

provision; k1i + k2i = 1), for the same valuation and belief.

This implies that agents with greater belief in the project’s provision contribute more

than agents with lesser belief in it. Thus, BBR (Eq. 4.6 and the utility structure as given

by Eqs. 4.7, 4.8 for PPRx and Eqs. 4.9, 4.10 for PPSx, provides a natural way for civic

crowdfunding with asymmetric agents such that the project is provisioned at equilibrium.

4.4.2 Setting Up the Markets

For PPSN (PPRN), the social planner must set up two independent PPS (PPR) markets.

The provision points for these projects are determined based on the economics of their

construction. The rejection point can be similarly determined. For instance, the rejection

point for our garbage dump yard example could be the cost of constructing the dump yard
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at a different locality. Another method for determining the rejection point could be the

cost incurred by the government as a result of the public project not getting provisioned.

An instance of this could be the construction of dams. The cost of not setting up the dam,

i.e., the rejection point for the project, could be the cost incurred by the government in

providing electricity or water to the nearby areas, which they could have achieved through

the dam’s construction. Note that the amount collected if the project is rejected is at the

government’s discretion.

The social planner should allocate a reasonable budget for all these mechanisms. Allo-

cating huge budgets may not guarantee the provision/rejection of the projects. In such a

case, the agents may prefer to contribute just enough to get substantial refunds. Likewise,

allocating insignificant budgets may not incentivize agents to contribute to the market. In

PPSN, the cost function, C0, used to allocate the securities must be the same for both

markets. Additional details for setting up the prediction markets and the budget can be

found at [52, 53].

4.4.3 Designing Mechanisms for Asymmetric Agents with Negative Val-

uation

Civic crowdfunding for agents with an information structure consisting of both – their

preference and their belief towards the provision of the project is not trivial, as it provides

an extra dimension for the agents to manipulate the mechanism. For instance, combining

PPSN and PPSx (PPRN and PPRx) will not suffice. An Agent i ∈ A+ with θi ≥ 0, will

always choose to contribute towards the project not getting provisioned, as it believes that

the project will be provisioned anyways, making it eligible for the additional refund bonus.

Likewise, an Agent i ∈ A− with θi < 0 will always contribute towards the provision of the

project. However, an Agent i ∈ A+ with θi < 0 and an Agent i ∈ A− with θi ≥ 0 will

always contribute as per their true preference.
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For instance, this intuitive result can be shown as follows, from Eq. 4.4 and Eq. 4.5 in

PPSN with BBR as defined in Eq. 4.6, for an Agent i ∈ A+ with θi ≥ 0, the difference in

its expected utility in contributing in both the markets can be given as,

k1i (θi − xi + bi) + k2i (si − xi)− k1i (θi + si − xi + bi)− k2i (−xi)

⇒ (k2i − k1i ) · (si) ≤ 0,

as ∀i ∈ A+, k1i ≥ k2i and si ≥ 0. Thus, a strategic Agent i ∈ A+ with θi ≥ 0 will always

lie about its preference by contributing against the provision of the project. Likewise, an

Agent i ∈ A− with θi < 0 will always contribute towards the provision of the project.

However, an Agent i ∈ A+ with θi < 0 and an Agent i ∈ A− with θi ≥ 0 will always

contribute as per their true preference.

Thus, the general method and mechanism proposed in this chapter for civic crowdfund-

ing for agents with negative valuation and agents with asymmetric belief, respectively, are

insufficient to incentivize every asymmetric agent to contribute as per their true preference.

This can be further explored in future work.

4.4.4 Conclusion

This chapter explores the limitations of existing literature on civic crowdfunding. The

CC literature restricts the information structure of agents, as it only allows for positive

and symmetric agents. We break this barrier on the information structure of an agent

by proposing (i) a general methodology for addressing symmetric agents with negative

preferences based on which we proposed two mechanisms, PPRN and PPSN, and (ii) a

general mechanism for positive agents with asymmetric beliefs based on which we proposed

two mechanisms, PPRx and PPSx. Future work can explore the feasibility of combining

negative preferences and asymmetric beliefs into one framework for civic crowdfunding.
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Chapter 5

Civic Crowdfunding over Blockchain

With Blockchains gaining traction, in this chapter, we look at imple-

menting Civic Crowdfunding (CC) mechanisms in a reliable, transpar-

ent, and secure manner with smart contracts (SCs). As discussed,

PPR [312] resolves the free-riding problem in CC by giving a refund

bonus to the contributing agents if the project is not provisioned. How-

ever, Chandra et al. [52] shows that PPR faces a challenge wherein the

agents defer their contribution until the deadline. This chapter defines

this delaying of contributions as a race condition. To address this,

PPS [52] considers the temporal aspects of a contribution. However,

PPS is computationally complex and expensive to implement as an SC,

and it is sophisticated and difficult to explain to a layperson. This chap-

ter aims to identify all essential properties a refund bonus scheme must

satisfy to curb free-riding while avoiding the race condition. We prove

Contribution Monotonicity and Time Monotonicity are sufficient condi-

tions for this. We propose three elegant refund bonus schemes satisfying

these two conditions, leading to three novel mechanisms for CC - PPRG,

PPRE, and PPRP. We show that PPRG is the most cost-effective mech-

anism when deployed as an SC. We show that under certain modest
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assumptions on the valuations of the agents, in PPRG, the project is

funded at equilibrium.

⋆ ⋆ ⋆ ⋆ ⋆

5.1 Introduction

Typically, online Civic Crowdfunding (CC) projects are conducted using digital plat-

forms like Kickstarter [156] and GoFundMe [120]. With the advancement of the blockchain

technology, smart contracts (SC) (refer to Chapter 3.2.2.3) now allow for the deployment

of Civic Crowdfunding (CC) projects on-chain. Recall that a smart contract is a computer

protocol intended to digitally facilitate, verify, or enforce the negotiation or performance

of a contract. Since a crowdfunding project as an SC is on a trusted, publicly distributed

ledger, it is open and auditable. This property makes the agents’ contributions and the

execution of the payments transparent and anonymous. Besides, there is no need for any

centralized, trusted third party, which reduces the cost of setting up the project. WeiFund

[290] and Starbase [264] are examples of decentralized crowdfunding platforms on public

blockchains like Ethereum.

We know that the introduction of the refund bonus is vital in mechanisms such as

PPR [312] and PPS [52] as it incentivizes agents to contribute, thus avoiding free-riding.

Consequently, in this chapter, we aim to abstract out conditions that refund bonus schemes

should satisfy to avoid free-riding and the race condition. We believe such a characterization

would make it easier to explore simpler and computationally efficient CC mechanisms.

5.1.1 Chapter Contributions

Towards this, we introduce Contribution Monotonicity (CM) and Time Monotonicity

(TM). Contribution monotonicity states that an agent’s refund should increase with an

increase in its contribution. Further, time monotonicity states that an agent’s refund
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Notation Definition

Pm,m = 1 Set of Projects to be crowdfunded

A = {1, . . . , n} Set of Agents

θi ∈ R Agent i’s valuation for the project as m = 1

ϑ =
∑

i∈A θi Overall valuation of the project

c ∈ R≥0 Target cost of the project

τ ∈ R≥0 Deadline of the project

xi ∈ R≥0 Agent i’s contribution to the project

ti ∈ R≥0 Agent i’s time of contribution

x =
∑

i∈A xi Total contribution to the project

B > 0 Refund bonus

Ri(xi, ti;x, c, B) Refund bonus to Agent i

ui(θi, xi;x, c, B) Agent i’s utility

Table 5.1: Chapter Notations

should decrease if it delays its contribution. We prove these two conditions are sufficient

to provision a public project via crowdfunding in a sequential setting at equilibrium and

avoid the race condition (Theorem 5.1). We also prove that TM and weak CM are also

necessary, under certain assumptions on equilibrium behavior (Theorem 5.2).

With these theoretical results on CM and TM, we propose three elegant refund bonus

schemes that satisfy CM and TM. These schemes are straightforward to explain to a layper-

son and are computationally efficient to implement as an SC. With these three schemes, we

design novel mechanisms for CC, namely Provision Point mechanism with Refund through

Geometric Progression (PPRG); Provision Point mechanism with Refund based on Expo-

nential function (PPRE), and Provision Point mechanism with Refund based on Polyno-

mial function (PPRP). We analyze the cost-effectiveness of these mechanisms and PPS
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when deployed as SCs and show that PPRG is significantly more cost-effective, i.e., PPRG

requires the least amount of capital to set up.

5.1.2 Chapter Notations and Solution Concepts

Throughout this chapter, we use the notations introduced during the description of CC

in Chapter 2.3. We focus on the single-project case, i.e., m = 1 in Definition 2.26. Thus, we

drop the subscript “j” from this chapter. For instance, agent i contributing xij to project

j ∈ [m] is simply agent i contributing xi as there is only one project. Table 5.1 tabulates

the notations used in this chapter.

We also build our mechanisms on the existing PPR (Chapter 2.3.2) and PPS (Chap-

ter 2.3.3) ones. Lastly, the solution concepts used are Nash equilibrium (Definition 2.3)

and sub-game perfect Nash equilibrium (Definition 2.4). We begin our analysis by formally

defining the race condition.

5.2 Race Condition in Provision Point Mechanisms

Recall that the refund scheme in PPR, i.e., xix · B for an agent i ∈ A, is non-temporal.

That is, the refund is independent of the time of contribution. Chandra et al. [52] show

that this results in the agents deferring their contributions till the deadline τ (Claim 2.4).

We now formally define this “race” to contribute at the deadline.

Definition 5.1: Race Condition

A strategy profile σ⋆ = (σ⋆1, . . . , σ
⋆
n) is said to have a race condition if ∃S ⊆

A with |S| > 1, for which ∀i ∈ S the strategy σ⋆i = (x⋆i , t), with x⋆i as the equi-

librium contribution, is the pure-strategy NE (PSNE) of the induced game i.e.,

∀σi,∀i ∈ S,

ui(σ
⋆
i , σ

⋆
−i; θi) ≥ ui(σi, σ

⋆
−i; θi) where t ∈ [ȳ, τ ] s.t. ȳ = max

j∈S
aj .
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Here, σi = (xi, ti) ∀ti ∈ [ai, τ ]. One can see that Definition 5.1 gives back the race

condition identified in Claim 2.4 for PPR with S = A and t = τ . Cason et al. [47]

conduct real-world experiments and show that the race condition is observable in practice.

Moreover, this race to contribute at the deadline is an undesirable property for a refund

bonus scheme to possess.

5.3 Desirable Properties of Refund Bonus Schemes

Motivated by the theoretical guarantees of PPR [312] and PPS [52], we look for CC

mechanisms with refund bonus schemes in this chapter. In this context, a desirable refund

bonus scheme should not just restrict the set of strategies so that the project is provisioned

at equilibrium. Still, it should also incentivize greater and early contributions to avoid the

race condition from all interested agents. A refund bonus scheme without these would fail

in a sequential (web-based) setting, similar to PPR; hence, these are essential for the online

provision point mechanism’s implementation. We formalize these desirable properties as

the following two conditions for a refund bonus scheme R(σ) where σ = ((xi, ti) | ∀i ∈ A)
such that xi ∈ (0, c], ti ∈ [ai, T ] ∀i ∈ A and with budget B.

Condition 5.1 (Contribution Monotonicity). The refund must always increase with

the increase in contribution to incentivize greater contribution, i.e., ∀i ∈ A, Ri(σ) ↑
as xi ↑. Further, if Ri(·) is a differential in xi ∀i, then,

∂Ri(σ)

∂xi
> 0 ∀ti. (5.1)

Note. If the strict inequality is replaced with ≥ in Eq. 5.1, we call it “weak” CM.

Condition 5.2 (Time Monotonicity). The refund must always decrease with the in-

crease in the duration of the project to incentivize early contribution, i.e., R(σ) must
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be a monotonically decreasing function with respect to time ti ∈ (0, τ), ∀xi, ∀i ∈ A or

Ri(σ) ↓ as ti ↑ and ∃ ti < τ, and ∆ti s.t.,

Ri ((xi, ti +∆ti), σ−i)−Ri ((xi, ti), σ−i)
∆ti

< 0
(5.2)

Note that, with Condition 5.2, we impose that ̸ ∃t ∈ [0, τ ] such that there is a race

among the agents to contribute at t. We now analyze the consequence of such a refund

bonus scheme on the game’s characteristics induced by it.

5.3.1 Sufficiency of the Refund Bonus Scheme

We show that a refund bonus scheme satisfying Conditions 5.1 and 5.2 is sufficient to

implement civic crowdfunding projects in sequential settings. For this, let G be the game

induced by the refund bonus scheme R(·), for the payoff structure given by Eq. 5.3.

ui(σ; θi) = 1x≥c · (θi − xi)︸ ︷︷ ︸
Funded Utility

+1x<c · (Ri(σ))︸ ︷︷ ︸
Unfunded Utility

(5.3)

We require G to satisfy the following properties.

Property 5.1. In G, the total contribution equals the provision point at equilibrium, i.e.,

x = c.

Property 5.2. G must avoid the race condition.

Property 5.3. G is a sequential game.

With these, consider the following theorem.

Theorem 5.1 (Sufficiency Conditions). Given A,m = 1 and c (refer to Defini-

tion 2.26) with 0 < B < ϑ − c and the utility structure for each agent i ∈ A given by

Eq. 5.3. If R(·) satisfies Conditions 5.1 and 5.2, Properties 5.1, 5.2 and 5.3 hold.
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Proof. In Steps 1, 2, and 3, we show that R(·) satisfying Condition 5.1 is sufficient to

satisfy Property 5.1 and Condition 5.2 is sufficient to satisfy Properties 5.2 and 5.3.

Step 1 : As ϑ > c, from Eq. 5.3, at equilibrium x < c cannot hold, as ∃i ∈ A with xi < θi,

at least. Such an Agent i could obtain a higher refund bonus by marginally increasing its

contribution since R(·) satisfies Condition 5.1 and B > 0. For x > c, any agent with a

positive contribution could gain in utility by marginally decreasing its contribution. Thus,

at equilibrium x = c or G satisfies Property 5.1.

Step 2 : Every Agent i contributes as soon as it arrives, since R(·) satisfies Condition 5.2

i.e., ∀i ∈ A,

ui ((xi, ai), σ−i) > ui ((xi, t), σ−i) ∀t ∈ (ai, τ ].

In other words, the best response ∀i ∈ A is the strategy σi = (xi, ai). Thus, as per

Definition 5.1, G avoids the race condition or G satisfies Property 5.2.

Step 3 : Since G satisfies Property 5.2, it avoids the race condition. Hence, it can be

implemented in a sequential setting, or G is a sequential game.

5.3.2 Necessity of the Refund Bonus Schemes

Theorem 5.1 shows that Condition 5.1 is sufficient to satisfy Property 5.1 and Condition

5.2 is sufficient to satisfy Properties 5.2 and 5.3. With Theorem 5.2, we further prove that

Condition 5.2 is necessary for Properties 5.2 and 5.3; while weak Condition 5.1 is necessary

for Property 5.1. However, we remark that Theorem 5.2 does not characterizeG completely.

For the theorem to hold, unlike in the case of Theorem 5.1, we assume there exists a unique

equilibrium defined by the strategy (x⋆i , t
⋆
i ), ∀i ∈ A.

Theorem 5.2 (Necessary Conditions). Given A,m = 1 and c (refer to Definition 2.26)

with 0 < B < ϑ− c and the utility structure for each agent i ∈ A given by Eq. 5.3. If

R(·) satisfies Properties 5.1, 5.2 and 5.3 and there is unique equlibrium, then “weak”

Condition 5.1 and Condition 5.2 hold.
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Proof. Observe that,

• Property 5.1 =⇒ weak Condition 5.1. Assume weak Condition 5.1 does not hold. This

implies that ∃i ∈ A for whom Ri(xi, ·) > Ri(xi + ϵ, ·) for some ϵ > 0. Now consider a

case, w.l.o.g., that the agent i is the last agent. Further, the project will be funded if

agent i contributes xi + ϵ, i.e., where its funded utility equals its unfunded payoff [312].

Since Ri(xi, ·) > Ri(xi + ϵ, ·), agent i will prefer to contribute xi and at equilibrium,

x ̸= c. This is a contradiction as it is given that Property 5.1 holds.

• Properties 5.2 and 5.3 =⇒ Condition 5.2. Property 5.2 implies that G avoids the race

condition. That is, ̸ ∃ i ∈ A for whom ui(xi, ai) > ui(xi, ai + ϵ) for any ϵ > 0 which

in turn implies Condition 5.2. This is because, for the same xi, ui and Ri are both

decreasing with respect to ti.

These complete the proof of the theorem.

Theorem 5.1 shows that a refund bonus scheme satisfying Conditions 5.1 and 5.2 avoids

the race condition (Property 5.2) and induces a sequential game (Property 5.3). Thus, a

mechanism deploying such a refund bonus scheme can be implemented sequentially, i.e., over

web-based (or online) platforms. Refund bonus schemes should also be clear to explain to a

layperson. Moreover, when deployed as a smart contract, these should be computationally

efficient and cost-effective. We show the following proposition through this generalized

result on refund bonus schemes.

Proposition 5.1. PPS [52] satisfies Condition 5.1 and Condition 5.2.

Proof. Since every cost function used in PPS for crowdfunding must satisfy
∂(s

ti
i −xi)
∂xi

> 0,

∀i [52, CONDITION-7], PPS satisfies Condition 5.1. For Condition 5.2, observe that ∀i,
from [52, Eq. 6]

(stii − xi) = C−1
0 (xi + C0(q

ti))− qti − xi. (5.4)
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Refund Scheme Parameters Covergence of Sum Based On

PPRG RPPRG
i (·) =

(
xi+a×(1/γ)i−1

C+K1

)
B a > 0, 1/γ < 1,K1 =

aγ
γ−1

∑∞
i=1

(
xi + a(1/γ)i−1

)
= C +K1 Geometric Progression (GP)

PPRE RPPRE
i (·) =

(
xi+K2×e−ti

C+K2

)
B K2 > 0

∑∞
i=1(xi) +

∫∞
t=t1

(K2e
−tdt) ≤ C +K2 Exponential Function (EF)

PPRP RPPRP
i (·) =

(
xi+K3× 1

i(i+1)

C+K3

)
B K3 > 0

∑∞
i=1

(
xi +K3

1
i(i+1)

)
= C +K3 Polynomial Function (PF)

Table 5.2: Various Refund schemes satisfying Condition 5.1 and Condition 5.2 for an Agent

i. Note that, in RPPRG and RPPRP , the subscript i denotes the order of the contribution.

In Eq. 5.4, as ti ↑, qti ↑ as it is a monotonically non-decreasing function of t and thus

R.H.S. of Eq. 5.4 decreases since R.H.S. of Eq. 5.4 is a monotonically decreasing function

of qti [52, Theorem 3 (Step 2)]. Thus, PPS also satisfies Condition 5.2.

The following corollary immediately follows the above propositions.

Corollary 5.1. PPS avoids the race condition and thus can be implemented sequen-

tially.

We next present three novel refund schemes satisfying Conditions 5.1 and 5.2 and the

novel provision point mechanisms based on them.

5.3.3 Refund Bonus Schemes

Table 5.2 presents three novel refund schemes for an Agent i ∈ A contributing xi at time

ti and the mechanisms that deploy them. Note that we require all the refund bonus schemes

to converge to a particular sum that can be pre-computed. This convergence allows these

schemes to be budget balanced. The parameters a, γ,K1,K2,K3 and B are mechanism

parameters (for their respective mechanisms) that the social planner must announce at the

start. Additionally, the refund schemes presented deploy three mathematical functions:

geometrical, exponential, and polynomial decay. RPPRG(·) and RPPRP (·) refunds the

contributing agents based on the sequence of their arrivals (similar to PPS), while the

refund scheme RPPRE(·) refunds them based on their time of contribution.

174



Sufficiency Conditions. We now show that PPRG satisfies Conditions 5.1 and 5.2.

Claim 5.1. RPPRG(σ) satisfies Condition 5.1 ∀i ∈ A.

Proof. Observe that ∀i ∈ A,

∂RPPRG
i (σ)

∂xi
=

B

C +K1
> 0 ∀ti.

Therefore, RPPRG(·) satisfies Condition 5.1 ∀i.

Claim 5.2. RPPRG(σ) satisfies Condition 5.2.

Proof. For every Agent i ∈ A arriving at time ai, its share of the refund bonus given by

RPPRG(·) will only decrease from that point in time, since its position in the sequence of

contributing agents can only go down, making it liable for a lesser share of the bonus, for

the same contribution. Let t̃i be the position of the agent arriving at time ai, when it

contributes at time ti. While t̃i will take discrete values corresponding to the position of

the agents, for the purpose of differentiation, let t̃i ∈ R. We can argue that at every epoch

of time ti, Agent t̃i will contribute to the project. With this, RPPRG(·) can be written as,

RPPRG
i (σ) =

(
xi + a× (1/γ)t̃i−1

C +K1

)
B.

Further observe that ∀i ∈ A,

∂RPPRG
i (σ)

∂t̃i
= −

(
a× (1/γ)t̃i

C +K1

)
B < 0 ∀xi.

Therefore, RPPRG(·) satisfies Condition 5.2.

We can similarly prove that RPPRE and RPPRP satisfy Conditions 5.1 and 5.2. We

omit the proofs for their simplicity.
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5.3.4 Gas Comparisons

As aforementioned, CC is now being deployed as smart contracts (SCs) over public

blockchains such as Ethereum [42]. Thus, CC mechanisms deployed as SCs must be effi-

cient, i.e., result in less gas consumption. Gas is a unit of fees that the Ethereum protocol

charges per computational step executed in a contract or transaction. This fee prevents

deliberate attacks and abuse on the Ethereum network [42].

We show a hypothetical cost comparison between PPS, PPRG, PPRE, and PPRP based

on the Gas usage statistics from [42, 297]. For the relevant operations, the cost in Gas

units is: ADD: 3, SUB: 3, MUL: 5, DIV: 5, EXP(x): 10 + 10 ∗ log(x) and LOG(x):

365 + 8 ∗ size of x in bytes. Table 5.3 presents the comparison1. We remark that the only

difference in the induced CC game will be the computation of the refund bonus for each

contributing agent. This refund will depend on the underlying refund bonus scheme. Thus,

we focus only on the gas cost because of the said schemes.

From Table 5.3, for every agent, PPRG takes 21 gas units, PPRP takes 31 gas units,

PPRE takes at least 31 gas units, and PPS takes at least 407 gas units. When implemented

on smart contracts, PPS is expensive because of its logarithmic scoring rule for calculating

payment rewards. On the other hand, PPRG, PPRP, and PPRE use simpler operations

and therefore have minimal operational costs.

Inference from Table 5.3. Note that the average gas price per unit varies. At the time of

writing this thesis, we have a (generous) average gas price ≈ 200 GWei, i.e., 2×10−7 ETH;

and also 1 ETH ≈ 2396 USD. As a result, the cost incurred by a crowdfunding platform,

assuming when n = 100, is (approximately) (i) PPS: 20 USD (at least); (ii) PPRG: 1

USD; (iii) PPRE: 1.48 USD (at least); and (iv) PPRP: 1.48 USD. Further, in December

2019, Kickstarter had 3524 active projects [156]. The data implies the total project cost

1We do not require any exponential calculation in PPRG – by storing the last GP term in a temporary
variable.
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Operation
PPS PPRG PPRE PPRP

Operations Gas Consumed Operations Gas Consumed Operations Gas Consumed Operations Gas Consumed

ADD 2 6 2 6 2 6 2 6

SUB 2 6 0 0 0 0 0 0

MUL 2 10 2 10 2 10 3 15

DIV 2 10 1 5 1 5 2 10

EXP(x) 2 10 + 10× (log(x)) 0 0 1 10 + 10× (log(x)) 0 0

LOG(x) 2 365 + 8× (bytes logged) 0 0 0 0 0 0

Total Gas: 407 (at least) Total Gas: 21 Total Gas: 31 (at least) Total Gas: 31

Table 5.3: Gas Consumption comparison between PPS, PPRG, PPRE and PPRP for an

agent. All values are in Gas units.

for (i) PPS: 70480 USD and (ii) PPRG: 3524 USD. PPRG reduces the cost incurred by

the platform by (at least) ≈ 20 times.

5.4 PPRG

We now describe the mechanism Provision Point mechanism with Refund through Geo-

metric Progression (PPRG) for crowdfunding a public project. PPRG incentivizes an in-

terested agent to contribute as soon as it arrives at the crowdfunding platform. In PPRG,

for the exact contribution of Agent i and Agent j, i.e., xi = xj , the one who contributed

earlier obtains a higher share of the refund bonus. These share differences are allocated

using an infinite geometric progression series (GP) with a common ratio of < 1.

Refund Bonus Scheme. The sum of an infinite GP with a > 0 as the first term and

0 < 1/γ < 1 as the common ratio is: K1 = a×∑∞
i=0(1/γ)

i = aγ
γ−1 . With this, we propose

a novel refund bonus scheme,

RPPRG
i (σ) = pi =

(
xi + a× (1/γ)i−1

C +K1

)
B (5.5)

for every Agent i ∈ A, B > 0 as the total bonus budget allocated for the project by the

SP and where σ = ((xi, ti) | ∀i ∈ N). The values a and γ are mechanism parameters that

the social planner must announce at the project’s start.
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Equilibrium Analysis of PPRG. The analysis follows from Theorem 5.1.

Theorem 5.3. Given A,m = 1 and c (refer to Definition 2.26) with 0 < B < ϑ − c

and the utility structure for each agent i ∈ A given by Eq. 5.3. Let the refund scheme

be given by Eq. 5.5, ∀i ∈ A. Then at equilibrium, we have (i) x = c and (ii) the set

of strategies

{
σ⋆i = (x⋆i , ai) | x⋆i ≤ θi(c+K1)−aB×(1/γ)i−1

c+K1+B

}
∀i ∈ A are sub-game perfect

Nash equilibria.

Proof. We prove the theorem with the following steps.

Step 1 : Since RPPRG(·) satisfies Condition 5.1 (Claim 5.1) and Condition 5.2 (Claim 5.2)

and has a payoff structure as given by Eq. 5.3, from Theorem 5.1 we get the result that

PPRG induces a sequential move game and thus, can be implemented in a sequential

setting.

Step 2 : From Claim 2, the best response for any agent is to contribute as soon as it arrives

i.e., at time ai.

Step 3 : We assume that each agent is symmetric in its belief for the provision of the

project. Moreover, from Theorem 5.1, agents know that the project will be provisioned

at equilibrium. Therefore, for any agent, its equilibrium contribution becomes that x⋆i for

which its provisioned payoff is greater than or equal to its not provisioned payoff. Now,

with x = c at equilibrium,

θi − x⋆i ≥
(
x⋆i + a× (1/γ)i−1

x+K1

)
B

⇒ x⋆i ≤
θi(c+K1)− aB × (1/γ)i−1

c+K1 +B

Step 4 : Summing over x⋆i , ∀i we get,

B ≤ (c+K1)ϑ− c2 − cK1

c+K1
.

as
∑

i∈A x⋆i = c. From the above equation, we get

0 < B ≤ (c+K1)ϑ− c2 − cK1

c+K1
= ϑ− c
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as a sufficient condition for the existence of Nash Equilibrium for PPRG.

Step 5 : The following scenarios prove the strategies are sub-game perfect.

• For an Agent i entering the project such that x = c, its best response is contributing 0.

• For an Agent i entering the project such that c−x > 0 with x∗i > c−x, its best response

is contributing c − x. Observe that Agent i will contribute the maximum contribution

required, c − x, since its not provisioned payoff increases as its contribution increases

(Claim 5.1). Therefore, for a contribution less than c − x, Agent i will receive lesser

payoff in comparison for the contribution c− x.

• Lastly, for an Agent i entering the project such that c − x > 0 with x⋆i ≤ c − x, its

best response is contributing x⋆i (as defined in Theorem 5.3). This is because, for the

contribution x∗i , its provisioned payoff is equal to its not provisioned payoff. For this

scenario, with backward induction, it is the best response for every Agent i to follow

the same strategy in which their provisioned payoffs are equal to their not provisioned

payoffs, irrespective of c− x.

This proves the theorem.

Discussion. Observe that, as the refund bonus decreases with time (Claim 5.2), each agent

in PPRG is better off contributing once instead of breaking up its contribution. This result

follows as we assume that each agent’s belief for the project’s provision is symmetric and

does not vary.

With Theorem 5.3, we identify a set of pure-SPE at which the project is provisioned.

However, we do not claim that these are the only set of pure-SPE possible. We leave it

for future work to explore other possible pure-SPE at which the project gets provisioned.

Also, the equilibrium analysis of PPRE and PPRP is similar to Theorem 5.3.
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5.5 Conclusion

This chapter looked for provision point mechanisms for CC with refund bonus schemes.

Towards it, we introduced Contribution Monotonicity and Time Monotonicity for refund

bonus schemes in CC mechanisms. We proved that these two conditions are sufficient to

implement provision point mechanisms with refund bonuses to possess an equilibrium that

avoids free-riding and the race condition (Theorem 5.1). We then proposed three simple

refund bonus schemes and designed novel mechanisms that deploy them: PPRG, PPRE,

and PPRP. We showed that PPRG has much less cost when implemented as a smart

contract over the Ethereum framework. We identified a set of sub-game perfect equilibria

for PPRG in which it provisions the project at equilibrium (Theorem 5.3).
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Chapter 6

Combinatorial Civic Crowdfunding with Budgeted Agents

For single-project CC, we saw that refunds incentivize agents to con-

tribute, thereby guaranteeing the project’s funding. Unfortunately, these

funding guarantees only apply when agents have an unlimited budget.

This chapter focuses on a combinatorial setting, where multiple projects

are available for CC and agents have a limited budget. We study certain

specific conditions where funding can be guaranteed. Further, funding

the optimal social welfare subset of projects is desirable when every avail-

able project cannot be funded due to budget restrictions. We prove the

impossibility of achieving optimal welfare at equilibrium for any mono-

tone refund scheme. We study different heuristics that the agents can

use to contribute to the projects in practice. We demonstrate the heuris-

tics’ performance as the average-case trade-off between welfare obtained

and agent utility through simulations.

⋆ ⋆ ⋆ ⋆ ⋆
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Figure 6.1: Example instance of Combinatorial Civic Crowdfunding (CC) [294]. Notice

that agents may be interested in contributing to more than one project (especially if they

are similar in type).

Property Socially Efficient Equilibrium

Budget Surplus (Corollary 6.1)

Budget Surplus + Subset Feasibility (Theorem 6.2)

Budget Deficit + Subset Feasibility (Theorem 6.3)

Table 6.1: Overview of our theoretical results.

6.1 Introduction

In Chapter 4, we proposed new mechanisms that enrich the agent’s information structure

by allowing negative valuations and agents with asymmetric beliefs. Chapter 5 focused

only on agents with positive valuation and symmetric beliefs and presented necessary and

sufficient conditions for the refund bonus scheme. However, the mechanisms proposed in

Chapter 4, Chapter 5, and the seminal works introduced in Chapter 2.3 – all (i) assume

that agents have an unlimited budget (i.e., can contribute their equilibrium contributions)

and (ii) are only for the single-project case.
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Combinatorial CC. Typically, multiple projects are simultaneously available for CC;

refer to Figure 6.1 for a concrete example. We refer to the crowdfunding of multiple CC

projects simultaneously as combinatorial CC. This chapter aims to lay the theoretical

foundation for combinatorial CC with budgeted agents. Table 6.1 presents the overview of

the results presented in this chapter, described in detail next.

6.1.1 Chapter Contributions

Budget Surplus (BS). We first study the seemingly straightforward case of Budget Sur-

plus, i.e., the overall budget across the agents is more than the projects’ total cost. For this,

it is welfare optimal to fund all the projects. Despite the surplus budget, we show that the

projects’ funding cannot be guaranteed at equilibrium (Theorem 6.1 and Corollary 6.1).

Subset Feasibility (SF). We observe that the budget distribution among the agents

plays a significant role in deciding the funding status of the projects. Conditioning on

the budget distribution, we introduce Subset Feasibility of a given subset of projects. We

prove that Subset Feasibility coupled with Budget Surplus guarantees funding of every

available project at equilibrium (Theorem 6.2), thereby generating the maximum possible

social welfare.

Budget Deficit (BD). Trivially, in the case of Budget Deficit – when there is no Budget

Surplus – one can only fund a subset of projects. It may be desirable that such a subset

is welfare-maximizing within the budget. We refer to the funding of the social welfare

optimal subset at equilibrium as socially efficient equilibrium. For this case, we present the

following results.

First, we show that, in general, achieving socially efficient equilibrium is impossible for

any refund scheme (Example 6.1). Next, we prove that even with the stronger assumption

of Subset Feasibility, it is still impossible to achieve socially efficient equilibrium (Theorem

6.3). Specifically, we prove that strategic deviations may exist for agents such that the

optimal welfare subset remains unfunded. We then show that it is NP-Hard for an agent
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to find its optimal deviation, given the contributions of all the other agents (Theorem 6.5

and Corollary 6.2). Due to Theorem 6.3 and hardness of optimal deviation (Theorem 6.5),

we construct five heuristics for the agent’s contributions and empirically study their social

welfare and agent utility through simulations (Section 6.4).

6.1.2 Chapter Notations and Solution Concepts

Throughout this chapter, we use the notations introduced during the description of

CC in Chapter 2.3. We focus on the general multi-project CC model, as introduced in

Definition 2.26. Table 6.2 tabulates the notations used in this chapter.

We also build our mechanisms on the existing PPR mechanism (Chapter 2.3.2). Lastly,

the solution concepts used are Nash equilibrium (Definition 2.3) and sub-game perfect Nash

equilibrium (Definition 2.4).

6.1.2.1 Additional Preliminaries

Here, we provide additional definitions required for the results presented in this chapter.

Firstly, let γi denote an agent i ∈ A budget. That is, an agent i contributes xij ∈ R+ to

project j, s.t.,
∑

j∈Pm
xij ≤ γi. With this, consider the following definitions.

6.1.2.1.1 Welfare Optimal Ideally, when there is a limited budget, it may be desir-

able to fund the welfare optimal subset defined as follows. Note that, the welfare obtained

from project j if funded is ϑj − cj and zero otherwise [34, 51]1.

1All the results presented in this chapter also hold if P ⋆ ∈ arg max
M⊆Pm

∑
j∈M ϑj s.t.

∑
j∈M cj ≤

∑
i∈A γi.
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Definition 6.1: Welfare Optimal

A set of projects P ⋆ ⊆ Pm is welfare optimal if it maximizes social welfare under

the available budget, i.e.,

P ⋆ ∈ arg max
M⊆Pm

∑
j∈M

(ϑj − cj) s.t.
∑
j∈M

cj ≤
∑
i∈A

γi. (6.1)

We make the following observations based on Definition 6.1.

• Finding P ⋆ requires public knowledge of ϑs, cs and the value
∑

i∈A γi. Recall that ϑ is

assumed to be public knowledge in CC (Section 2.3). Similarly, we also assume that the

overall budget in the system
∑

i∈A γi is public knowledge. This may be done by deriving

the overall budget by aggregating citizen interest [8, 141].

• Computing P ⋆ is NP-Hard as it can be trivially reduced from the KNAPSACK problem.

However, note that our primary results focus on P ⋆’s funding guarantees at equilibrium

(and not actually computing it). Moreover, computing P ⋆ may also not be a deal breaker

as the number of simultaneous projects available will not be arbitrarily large. One may

also employ FPTAS [166].

6.1.2.1.2 Refund Scheme Civic crowdfunding mechanisms employ refunds to over-

come the free-riding challenge. We define the refund scheme for each project j ∈ Pm as

Rj(Bj , xij ,xj) : R3
+ → R+ s.t. rij = Rj(Bj , xij ,xj) is agent i’s refund share for contribut-

ing xij to project j. The overall budget for the refund bonus Bj > 0 is public knowledge.

Typically, if a project is unfunded, the agents receive rij , and zero refund otherwise. The

total refunds distributed for project j can be such that
∑

i∈A rij = Bj (e.g., [312]) or∑
i∈A rij < Bj (e.g., [52]). Throughout the chapter, we assume that

∑
i∈A rij = Bj ∀j.

The CC literature also assumes that R is anonymous, i.e., refund share is independent

of agent identity. Furthermore, we also assume that R satisfies Contribution Monotonicity

(CM) (Condition 5.1).
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6.1.2.1.3 Agent Utilities and Important Definitions Let

MCC = ⟨Pm,A, γ, (ϑj)j∈Pm , (Rj)j∈Pm , (Bj)j∈Pm⟩ define a general combinatorial CC game.

In this, the overall agent utility can be defined as.

Definition 6.2: Agent Utility

Given an instance of MCC , with agents having valuations [θij ] and contribu-

tions [xij ], the utility of an agent i for each project j ∈ Pm is given by

uij(θij , xij , rij ,xj , cj) : R5
+ → R

uij(·) = 1xj≥cj · (θij − xij)︸ ︷︷ ︸
Funded utility uFij

+ 1xj<cj · rij︸︷︷︸
Unfunded utility uUij

An agent i’s utility for project j is either uFij = θij − xij when j is funded, and uUij = rij

otherwise. Let Ui(·) denote the total utility an agent i derives, i.e., Ui(·) =
∑

j∈Pm
uij

2.

This incentive structure induces a game among the agents. As the agents are strategic,

each agent aims to provide contributions that maximize its utility. As such, we focus on

contributions that follow the pure strategy Nash equilibrium (Definition 2.3).

Socially Efficient Equilibrium (SEE). Given the contributions [x∗ij ], we can compute

the set of the projects that are funded and unfunded at equilibrium. Throughout the

chapter, we refer to the funding of P ⋆ at equilibrium as socially efficient equilibrium. We

next define budget surplus.

Definition 6.3: Budget Surplus (BS)

There is enough overall budget to fund each project j ∈ Pm, i.e.,
∑

i∈A γi ≥∑
j∈Pm

cj .

2This chapter assumes that the agent utilities are additive. We leave the study of other valuation
functions as future work.
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We refer to the scenario
∑

i∈A γi <
∑

j∈Pm
cj as Budget Deficit (BD). Recall that from

Definition 2.26, we also know that ϑj > cj , ∀j ∈ Pm. That is, there is sufficient interest

in each available project’s funding. Hence, when there is a surplus budget, it is optimal

to fund all the projects, i.e., P ⋆ = Pm. Further, we assume that agents do not have any

additional information about the funding of the public projects. This assumption implies

that their belief in the projects’ funding is symmetric.
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Notation Definition

Pm,m ≥ 2 Set of Projects to be crowdfunded

A = {1, . . . , n} Set of Agents

θij ∈ R Agent i’s valuation for project j ∈ Pm
ϑj =

∑
i∈A θij Overall valuation of the project j

cj ∈ R≥0 Target cost of the project j

τj ∈ R≥0 Deadline of the project j

xij ∈ R≥0 Agent i’s contribution to the project j

xj =
∑

i∈A xi Total contribution to the project

Bj > 0 Refund bonus

Rj Refund Bonus Scheme

rij = Rj(xij ;xj , cj , Bj , ·) Refund bonus to Agent i to project j

uij(θij , xij ;xj , cj , Bj) Agent i’s utility to project j

γi ∈ R≥0 Agent i individual budget

Γ ∈∑i∈A γi Total budget in the system

P ⋆ Welfare optimal subset of projects

uFij ‘Funded’ utility of Agent i from project j

uFij ‘Funded’ utility of Agent i from project j

Table 6.2: Chapter Notations
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6.2 Funding Guarantees for Combinatorial CC under Bud-

get Surplus

For CC under Budget Surplus (Definition 6.3), a sufficient overall budget exists to fund

all the projects. Theorem 6.1 shows that despite the sufficient budget, projects may not

get funded as the set of equilibrium contributions for an agent may not exist. Unlike

the analysis of PPR [312] and PPS [52], agents may not have well-defined contributions

satisfying PSNE due to limited budgets. The non-existence results due to the uneven

distribution of budget among the agents. Hence, agents with higher budgets exploit the

mechanism to obtain higher refunds while ensuring the projects remain unfunded.

Theorem 6.1. Given (Rj)j∈Pm which satisfy Condition 5.1, there are Budget Surplus

(Definition 6.3) game instances of MCC with Bj = ϑj − cj ,∀j such that there is no

equilibrium. That is, the set of equilibrium contributions may be empty.

Proof. Consider Pm projects and A agents s.t. Def. 6.3 is satisfied, i.e.,
∑

i∈A γi ≥∑
j∈Pm

cj . We can easily construct game instances where there exists non-empty N1 ⊂ A
s.t.

∑
i∈N1

γi < minj cj . To satisfy Budget Surplus (Def. 6.3), N2 = A \ N1 must have

enough budget so that the agents in N1 +N2 can fund all the projects.

Each agent i receives a funded utility uFij = θij−xij for contributing xij towards project

j. That is, as xij ↑ =⇒ uFij ↓. The agent may also receive an unfunded utility of

uUij = rij = Rj(xij , Bj , ·) for project j. Since Rj is monotonically increasing (Condition

5.1), xij ↑ =⇒ uUij ↑. Observe that uUij and uFij intersect at the upper-bound of the

equilibrium contribution, x̄ij (e.g., Theorem 2.8, Theorem 5.3), where uFij = uUij . For any

contribution xij > x̄ij , the agent receives a greater unfunded utility.

Consider a scenario where the agents in N1 do not have sufficient budget and thus

contribute less than x̄ij . Let C
′ =

∑
i∈N1

(∑
j∈Pm

xij

)
. Now, we have xr =

∑
j∈Pm

cj−C ′

as the remaining amount to fund the set P . In order to fund Pm, the remaining agents in

N2 may need to contribute x̂ij > x̄ij where i ∈ N2. The unfunded utility is more at x̂ij .
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Hence, the agents contribute xij = x̄ij − ϵ, s.t. ϵ→ 0 and ϵ > 0, i.e., the contributions are

not well-defined.

Observe that if any project j is funded at equilibrium then the equilibrium set (x∗i1, . . . , x
∗
im)i∈A

can not be empty, contradicting Theorem 6.1. Corollary 6.1 captures this observation.

Corollary 6.1. Given (Rj)j∈Pm satisfying CM (Condition 5.1), there are game in-

stances of MCC s.t. even with Budget Surplus (Def. 6.3), no project in Pm may be

funded at equilibrium.

With Corollary 6.1, we prove that Budget Surplus is not sufficient to fund every project

at equilibrium. To this end, we next identify the sufficient condition to ensure the funding

of every project, under Budget Surplus.

Subset Feasibility

With N1 and N2 in Theorem 6.1’s proof, we assume a specific distribution on agents’

budget. To resolve this, we introduce Subset Feasibility, which assumes a restriction on each

agent’s budget distribution. Informally, if each agent i has enough budget to contribute

x̄ij (see proof of Theorem 6.1) for j ∈M , M ⊆ Pm, then Subset Feasibility is satisfied for

M . Formally,

Definition 6.4: Subset Feasibility for M (SFM)

Given an instance ofMCC with (Rj)j∈Pm satisfying Condition 5.1, SFM , M ⊆ Pm,
is satisfied if, ∀i ∈ A we have γi ≥

∑
j∈M x̄ij . Here, θij − x̄ij = Rj(x̄ij , Bj , ·) (refer

proof of Theorem 6.1).

190



Claim 6.1. Given any (Rj)j∈Pm whose equilibrium contributions satisfy
∑

i x̄ij ≥ cj,

we have SFPm =⇒ BS.

Proof. From the definition of SFPm , γi ≥
∑

j∈Pm
x̄ij , ∀i ∈ A. As

∑
i x̄ij ≥ cj , we have∑

i γi ≥
∑

j∈Pm

∑
i x̄ij ≥

∑
j∈M cj , i.e., Budget Surplus is also satisfied.

Similarly, we have BS ≠⇒ SFPm . From Claim 6.1, it is welfare optimal to fund every

available project under SFPm . Theorem 6.2 indeed proves that under SFPm each project

j ∈ Pm gets funded at equilibrium, thereby generating optimal social welfare.

Theorem 6.2. Given MCC and (Rj)j∈Pm satisfying CM (Condition 5.1) such that

SFPm is satisfied, at equilibrium all the projects are funded, i.e., xj = cj , ∀j ∈ Pm if

Bj ≤ ϑj − cj , ∀j ∈ Pm. Further, the set of PSNEs are:{
(x∗ij)j∈Pm | uFij(x∗ij ; ·) ≥ uUij(x

∗
ij ; ·),∀j ∈ Pm, ∀i ∈ A

}
.

Proof. For a given refund scheme Rj and corresponding x̄ij , each agent i’s budget γi

satisfies, using SFPm , γi ≥
∑

j∈Pm
x̄ij . Let each agent i’s final contribution x∗ij ≤ x̄ij ;

where uFij(x̄ij) = uUij(x̄ij). Since
∑

i∈A x̄ij ≥ cj , the project gets funded, and each agent

obtains a utility of uij(x
∗
ij , x

∗
−ij ; ·) = θij − x∗ij .

W.l.o.g., let us assume that agent n contributes x∗nj = cj −
∑

i∈A\{n} x
∗
ij ≤ x̄nj s.t.∑

i∈A x∗ij = cj . Then ∀j ∈ Pm, we can construct the following two deviations for i:

1. x̂ij < x∗ij . For any x̂ij less than x∗ij , the project j is not funded and Rj(x̂ij) =

uij(x̂ij , x
∗
−ij ; ·) < uij(x

∗
ij , x

∗
−ij ; ·).

2. x̂ij > x∗ij . For any x̂ij > x∗ij , the project is funded but the funded utility reduces, i.e.,

uij(x̂ij , x
∗
−ij ; ·) = θij − x̂ij < uij(x

∗
ij , x

∗
−ij ; ·) = θij − x∗ij .

In both cases, we obtain the following,

uij(x
∗
ij , x

∗
−ij ; ·) ≥ uij(x̂ij , x

∗
−ij ; ·),∀x̂ij ,∀j.
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Therefore, ∑
j∈Pm

uij(x
∗
ij , x

∗
−ij ; ·) ≥

∑
j∈Pm

uij(x̂ij , x
∗
−ij ; ·), ∀x̂ij

From Definition 2.3, x∗ij are PSNE, and every project gets funded.

Theorem 6.2 implies that, under SFPm , the socially efficient equilibrium (with P ⋆ = Pm)
is achieved. Intuitively, under SFPm , combinatorial CC collapses to simultaneous single

projects, and thus, we can provide closed-form equilibrium contributions. However, SFPm

is a strong assumption and, in general, may not be satisfied. In fact, the weaker notion of

Budget Surplus itself may not always apply. Therefore, we next study combinatorial CC

with Budget Deficit.

6.3 Impossibility of Achieving Socially Efficient Equilibrium

for Combinatorial CC under Budget Deficit

We now focus on the scenario when there is Budget Deficit, i.e.,
∑

i∈A γi <
∑

j∈Pm
cj .

In this scenario, only a subset of projects can be funded. Unfortunately, identifying the

subset of projects funded at equilibrium is challenging. In CC, the agents decide which

projects to contribute to based on their private valuations and available refunds. This

circular dependence of the equilibrium contributions and the set of funded projects makes

providing analytical guarantees challenging on the funded set. To analyze agents’ equi-

librium behavior and funding guarantees, we fix our focus on the subset of projects that

maximize social welfare, i.e., P ⋆ (Definition 6.1).

Section Outline. In this section, we first show that funding P ⋆ ⊂ Pm at equilibrium is,

in general, not possible for any R(·) satisfying Condition 5.1. Second, we prove that even

with the stronger assumption of Subset Feasibility of the optimal welfare set, i.e., SFP ⋆ , we

may not achieve socially efficient equilibrium due to agents’ strategic deviations. Last, we

192



show that computing an agent i′’s optimal deviation, given the contributions of the other

agents A \ {i′}, is NP-Hard.

Algorithm 5 Instance with Pm = A = {1, 2} and fixed R(·)
1: procedure GenerateValues(R(·))
2: c1 ← R+

3: Choose θ11 s.t. x̄11 < c1 < θ11 based on R1(·)
4: Choose θ21 s.t. x̄21 := c1 − x̄11

5: Set c2 = x̄21, θ12 = 0 and choose θ22 s.t.

θ21 < θ22 < θ11 + θ21 − x∗11 ▷ P ⋆ = {1}
6: Set γ1 := x̄11 and γ2 := x̄21 ▷ Satisfying SFP ⋆

7: return θ’s, γ’s, and c’s ▷ s.t. Agent 2 deviates

8: end procedure

6.3.1 Welfare Optimality at Equilibrium

Consider the following example instance.

Example 6.1: Combinatorial CC Game Instance

Let P2 = {1, 2} and A = {1, 2}. Let γ1 = 1, γ2 = 0, θ11 = 1, θ12 = 2 and θ22 = 1

with θ21 = 10.

In Example 6.1, the maximum funded utility agent 1 can receive from project 1 is 0

and unfunded utility r11 < θ11 = 1. On the other hand, the agent obtains a utility of 1

when contributing to project 2. Hence, project 2 gets funded at equilibrium, although it

is welfare-optimal to fund project 1. Thus, socially efficient equilibrium is not achieved.

Example 6.1 is one pathological case where the agent with high valuation has zero

budget, leading to the sub-optimal outcome at equilibrium. Hence, we next strengthen
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the assumption on the budgets of the agents. Let P ⋆ be the non-trivial welfare optimal

subset, and we assume that Subset Feasibility is satisfied for P ⋆, i.e., SFP ⋆ . Recall that with

SFP ⋆ , we assume that every agent has enough budget to contribute x̄ij in P ⋆. Theorem 6.3

shows that achieving socially efficient equilibrium may not be possible despite this strong

assumption.

Theorem 6.3. Given an instance ofMCC , a unique non-trivial P ⋆ ⊂ Pm may not be

funded at equilibrium even with Subset Feasibility for P ⋆, SFP ⋆, for any set of (Rj)j∈P

satisfying Condition 5.1.

Proof. We provide a proof by construction for n = 2 and m = 2 where one agent is

incentivized to deviate when P ⋆ is funded. Procedure 5 presents the general steps to

construct the instance. Informally, we first select the target cost of the project 1, i.e., c1,

to be any positive real value. Given (Rj)j∈Pm under Condition 5.1, we can always find an

x̄11 for agent 1. At x̄11, funded utility equals unfunded utility. Trivially, x̄11 < θ11. We

now prove that the construction defined in Procedure 5 is always possible.

Line 3. We select θ11 such that x∗11 < c1 < θ11. We are required to prove that such a

θ11 will always exist. When θ11 = c1, it must be true that, x∗11 < θ11 = c1. If x∗11 = c1,

then R(x∗11) = 0 (i.e., funded utility equals unfunded utility), since R(0) = 0 by construct,

contradicting Condition 5.1. Hence x∗11 < c1, when θ11 = c1. As x∗11 is continuous w.r.t.

θ11, we can always chose θ11 > c1 s.t. x∗11 < c1.

Line 4. We choose θ21 s.t., x∗21 = c1 − x∗11. It is possible since c1 − x∗11 > 0.

Line 5. We let c2 = x∗21 and θ12 = 0. Then, select θ22 < θ11 + θ21 − x∗11. Observe that, we

can always select θ22 > θ21 since θ11 − x∗11 > 0.

Given the above, and the values c2 = c1− x∗11 and θ12 = 0; we arrive at θ11 + θ21− c1 >

θ12 + θ22 − T2. Hence, P
⋆ = {1}, i.e., the welfare optimal subset is {1} and is unique.
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Line 6. To ensure SFP ⋆ , i.e., Subset Feasibility of P ⋆, we set γ1 = x∗11 and γ2 = x∗12. Note

that, γ1 + γ2 = c1 < c1 + c2, Budget Deficit is also satisfied. Thus, Procedure 5 returns

valid instance, sayM′, ofMCC .

Next, note that, inM′, agent 1 contributes x̄11 and agent 2 must contribute x̄21 to fund

project 1 and to achieve socially efficient equilibrium. If agent 2 does not deviate, it will

receive a utility u2 = θ21 − x̄21. However, let agent 2 unilaterally deviate and contribute

x̄21 to project 2. As c2 = x̄21, project 2 gets funded, and agent 2 obtains a utility of

u′2 = θ22 − x̄21. From Line 5 in Procedure 5, we know that u′2 > u2, hence agent 2 will

deviate, implying P ⋆ = {1} is not funded at equilibrium for theM′ game.

Illustration of Procedure 5 for PPR To further clarify the impossibility presented

in Theorem 6.3, we demonstrate Procedure 5 when (Rj)j∈Pm is the PPR refund scheme

(Eq. 2.15). As required, consider a setting with Pm = {1, 2} and A = {1, 2}. Let c1 = 10

and B1 = 1. We choose θ11 = 10.9 which implies x̄11 = 9.91 using Theorem 2.8. That is,

x̄11 < c1 < θ11. Now, fix x̄21 = c1 − x̄11 = 0.99. This also implies c2 = 0.99. The upper

bound on the equilibrium contribution, x̄21 = 0.99, is possible for the value θ21 = 1.089.

Select θ22 = 1.9, to get θ22 > θ21. This also implies P ⋆ = {1}, i.e., θ11 + θ21 − c1 = 1.989

and θ12 + θ22 − c2 = 0.91. Despite this, agent 2 will deviate since θ22 − c2 > θ21 − x̄21.

6.3.2 CCC with Budget Deficit: Optimal Strategy

Theorem 6.3 implies that P ∗ may not be funded at equilibrium even when P ∗ satisfies

Subset Feasibility. In other words, w.l.o.g., an agent i′ may be incentivized to deviate

from any strategy that funds P ∗. Motivated by such a deviation, we now address the

question: Given the total contribution by N \ {i′} agents towards each project j, can the

agent i′ compute its optimal strategy? We answer this question by (i) showing that such an

optimal strategy may not exist if an agent’s contribution space is continuous, i.e., x ∈ R+,

and (ii) if contributions are discretized, then computing the optimal strategy is NP-Hard.
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max
(xi′j)j∈Pm

∑
j∈Pm

zi′j · (θi′j − xi′j) + (1− zi′j) ·R(xi′j , ·)

s.t.
∑

j∈Pm

xi′j ≤ γi′ // Budget Constraint

xi′j ≤ cj − xj−i′ ,∀j // Remaining Contribution

(xi′j − cj + xj−i′) · zi′j ≥ 0, ∀j

xi′j − cj + xj−i′ < zi′j , ∀j

zi′j ∈ {0, 1},∀j

 // Defining Indicator Variable

Figure 6.2: MIP-CC: Mixed Integer Program to calculate Agent i′’s optimal strategy given

the contributions of the remaining agents A \ {i′}.

6.3.2.1 MIP-CC: Mixed Integer Program for CC

We first describe the general optimization for an agent i′ to compute its optimal strategy

(i.e., contribution). Assume that the agents ∈ A \ {i′} have contributed denoted by xj−i′ .

For agent i′’s optimal strategy, we need to maximize its utility given xcj−xj−i′ , ∀j ∈ P and

other variables such as the refund scheme Rj and bonus budget Bj . Figure 6.2 presents the

formal MIP, namely MIP-CC, which follows directly from agent i′ utility (Definition 6.2).

6.3.2.1.1 MIP-CC: Optimal Strategy May Not Exist. We now show that MIP-

CC (Figure 6.2) may not always admit well-defined contributions.

Example 6.2: Combinatorial CC Game Instance

Let P3 = {1, 2, 3} and A = {1, 2} s.t. both agents are identical, i.e., each i ∈ A has

the same value θ for each j ∈ Pm and γ1 = γ2. Additionally ∀j ∈ Pm, cj = c and

Bj = ϑ− c,. Let the agents have budget s.t. γi = x̄i1 ∀i ∈ A, where x̄i1 is the upper

bound equilibrium contribution for the single project case (see Theorem 2.8).
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Theorem 6.4. Given an instance of MCC and for any set of (Rj)j∈Pm satisfying

Condition 5.1, an agent i′’s optimal strategy may not exist.

Proof. From Example 6.2, let agent 1 contribute its entire budget to project 1, i.e., c1−x1 =

x̄11 and x2 = 0. Now we solve MIP-CC for agent 2. Since γi = x̄i1, ∀i and cj = x̄1j+x̄2j , ∀j
(as Bj = ϑj − cj), the overall budget is enough to fund only a single project. That is, as

agent 1 has contributed to project 1, agent 2 can (at best) fund only project 1. So the set

of indicator variable zs in MIP-CC can be either z1 = {1, 0, 0} or z2 = {0, 0, 0}.

Computing Optimal Strategy. We have the following cases:

• z = {1, 0, 0}: This is possible when agent 2 contributes x21 = γ2 to project 1, resulting

in project 1’s funding. The utility agent 2 gets is θ − x̄21.

• z = {0, 0, 0}: Agent 2 may opt to contribute to all the 3 projects to grab the maximum

refund. As the refund shares from Rj(·) sum exactly to Bj , agent 2 can grab the entire

bonus from projects 2 and 3 by contributing any arbitrary positive value, ϵ > 0. However,

agent 2 must contribute ϵ less in project 1 since, γ2 = x̄21. Hence, project 1 becomes

unfunded. For optimal strategy, agent 2 must maximize the refund from project 1, i.e.,

max
x21

R1(x21, ·) s.t. x21 < c1−x1. Therefore, x21 is not well-defined as R1(x21, ·) satisfies
CM. So the overall utility by deviating for agent 2 becomes 2B +R(x21 − ϵ, ·) where an

optimal ϵ is not defined.

This proves the theorem.

MIP-CC-D. To overcome the above non-existence, we discretize the contribution space.

More concretely, an agent i can contribute κ · δ where κ ∈ N+ and δ the smallest unit of

contribution. With this restriction on an agent’s contribution, the search space in MIP-

CC (Figure 6.2) becomes discrete and finite. Consequently, agent i′’s optimal strategy

always exists. To distinguish MIP-CC with a discrete contribution space, we refer to it as

MIP-CC-D.

197



Figure 6.3: Overview of the Proof of Theorem 6.5

6.3.2.2 MIP-CC-D: Finding Optimal Strategy is NP-Hard

We now show that solving MIP-CC for discrete contributions (i.e., MIP-CC-D) is NP-

hard. Before that, we first state the decision version of the problem.

Decision Version: For MIP-CC-DD, w.l.o.g. dropping the agent subscript i′, the decision

version is as follows: given m = |Pm| decision variables (z1, . . . , zm) and contributions

(x1, . . . , xm), the agent budget γ, the social welfare value V , is there a subset Q = {j|zj =
1, ∀j ∈ Pm} such that (i)

∑
j∈Q ϑj ≥ V , (ii)

∑
j∈Q zj · xj ≥ γ, the remaining contribution

condition (iii) xj ≤ cj − xj , ∀j ∈ Pm, and the indicator variable conditions (iv) (xj − cj +

xj) · zj ≥ 0, ∀j ∈ Pm and (v) xj − cj + xj < zj , ∀j ∈ Pm.

Claim 6.2. MIP-CC-D is in NP.

Proof. From the decision version of MIP-CC-D, we can trivially see that the problem is in

NP. The proof is the set of decision variables (z1, . . . , zm) and contributions (x1, . . . , xm)
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chosen post which computing the conditions (i) to (v) outlined in the decision variable

takes polynomial time.

For the hardness proof, the main point to note is that the reduction and the compu-

tational hardness follow from a known NP-Hard problem to the problem in consideration.

That is, to show that MIP-CC-D is NP-Hard, we reduce the known KNAPSACK problem

to an instance of MIP-CC-D. Figure 6.3 depicts an overview of the proof.

Theorem 6.5. Given an instance ofMCC with discrete contributions and for any set

of (Rj)j∈Pm satisfying Condition 5.1, computing optimal strategy for agent i′, given

the contributions of A \ {i′}, is NP-Hard.

Proof. For completeness, we first re-write MIP-CC-D (see Figure 6.2) for discrete con-

tributions. Let D = {κ · δ | κ ∈ N} denote the discrete contribution set where δ is the

smallest unit of contribution. Now, the following optimization defines MIP-CC-D for agent

i′ without the sub-script “i′”. Note that Eq. 6.2 is merely the optimization presented in

Figure 6.2 with the added constraint on the contribution set.

max(xj)j∈Pm

∑
j∈P zj · (θj − xj) + (1− zj) ·R(xj , ·)

s.t.
∑

j∈Pm
xj ≤ γ

xj ≤ cj − xj−i′ , ∀j

(xj − cj + xj−i′) · zj ≥ 0, ∀j

xj − cj + xj−i′ < zj , ∀j

zj ∈ {0, 1}, xj ∈ D,∀j



(6.2)

We first construct an optimization problem MIP, which we show is equivalent to the

KNAPSACK problem in Part A. In Part B, we show that the MIP reduces to MIP-CC-D,

implying MIP-CC-D is also NP-Hard.
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Part A: Designing MIP (Eq. 6.3). For our proof, we consider a refund scheme Rj(·) =
R(·) and bonus budget Bj = B, which is the same for each project j. R(·) satisfies CM

(Condition 5.1) such that the refund share satisfies
∑

j R(xj , ·) = R(
∑

j xj , ·). 3 Now, we

define the MIP as follows.

maxz=(z1,...,zm)

∑
j∈Pm

zj(θj − rj) +R(γ −∑j∈P zjrj , ·)

s.t.:
∑

j zjrj ≤ γ and zj ∈ {0, 1}

 (6.3)

We now prove that the MIP defined in Eq. 6.3 is NP-Hard. The MIP can be re-written as,

max
z=(z1,...,zm)

∑
j∈Pm

zj(θj − rj) +R(γ −
∑
j∈Pm

zjrj , ·)

= max
z=(z1,...,zm)

∑
j∈Pm

zj(θj − rj)−
∑
j∈P

zjR(rj) +R(γ)By
∑
j

R(xj , ·) = R(
∑
j

xj , ·), zj ∈ {0, 1}.


= max

z=(z1,...,zm)

∑
j∈Pm

zj(θj − rj −R(rj)) +R(γ)

= max
z=(z1,...,zm)

∑
j∈Pm

zj(θj − rj −R(rj))

We reduce the MIP problem from the NP-complete KNAPSACK problem: given m items

with weights w1, · · · , wm and value s1, · · · , sm, capacity B and value V , does there exist a

subset Q ⊆ {1, · · · ,m} such that
∑

j∈Qwj ≤ B and
∑

j∈Q sj ≥ V ? Given an instance of

the KNAPSACK problem, we build an instance of the above MIP as follows:

• The set of projects is the set of items. The amount left for funding the project is

rj = wj . The budget of the agent i′ is γ = B.

• The value of each project to the agent is, θj−rj−R(rj) = sj , i.e., θj−R(rj) = sj+wj .

3An example of such a refund scheme can be R(·) = x·Bmin
ϑmax

where Bmin = minj(ϑj − cj) and ϑmax =

maxj ϑj .
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We can see that the utility obtained by choosing a set of projects Q = {j|zj = 1} is

exactly equal to the value of choosing set of items Q in the KNAPSACK problem i.e,∑
j∈Q θj − rj − R(rj) =

∑
j∈Q sj . Also note that the budget constraint is satisfied if and

only if the capacity constraint is satisfied. It follows that a solution with value at least V

exists in the KNAPSACK problem if and only if there exists a set of projects whose social

welfare in the above instance is at least V .

Thus, we reduce MIP from KNAPSACK, implying MIP is NP-Hard. We next show

that MIP in Eq. 6.3 also reduces to MIP-CC-D.

Part B: Reducing MIP to MIP-CC-D. Before we show the reduction, we define the

following handy notations for the objectives of MIP-CC-D and MIP.

F (z, x) =
∑
j∈Pm

zj · (θj − xj) +
∑
j∈Pm

(1− zj) ·R(xj , ·) “MIP-CC-D”

G(z) =
∑
j∈Pm

zj · (θj − rj) +R(γ −
∑
j∈Pm

zjrj , ·) “MIP in Eq. 6.3”

Further, let (ZF , XF ) denote the tuple of feasible solutions to MIP-CC-D, and ZG

denote the set of feasible solutions to MIP.

Given an instance of MIP, we construct an instance of MIP-CC-D using the following

conditions,

P1. For each project j, we have Rj(·) = R(·) s.t. ∑j R(xj , ·) = R(
∑

j xj , ·).

P2. Let the remaining contribution be Cj−i′ = cj − rj , ∀j ∈ Pm.

Using P1 and P2, we now show that any (z∗, x∗) ∈ OPTMIP−CC−D implies that z∗ ∈
OPTMIP .
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Claim 6.3. For the specific setting defined by P1-P2 and given (ZF , XF ) and ZG as

the tuple of feasible solutions to MIP-CC-D and MIP in Eq. 6.3, respectively, we have

ZG ⊆ ZF .

Proof. For the proof, we show that given any solution z ∈ ZG, we can also construct a

solution (z, x) ∈ (ZF , XF ). That is, given z, we can construct x as follows. Let xj = rj if

zj = 1 and xj = 0 if zj = 0.

We now have to show that x’s construction does not break the feasibility of a solution

in MIP-CC-D. Observe that, from Eq. 6.2,

• Trivially, we have
∑

j xj =
∑

j zjrj ≤ γ and xj ≤ rj = cj−xj−i′ . That is, the budget

constraint and the project’s funding conditions are satisfied.

• If zj = 0, then both (xj − cj + xj−i′) · zj ≥ 0 and xj − cj + xj−i′ < zj hold.

• Likewise, if zj = 1 then both (xj − cj + xj−i′) · zj ≥ 0 and xj − cj + xj−i′ < zj hold.

Hence for every z ∈ ZG we can construct (z, x) s.t., (z, x) ∈ (ZF , XF ). Hence, every

solution that is feasible for MIP is also feasible for MIP-CC-D.

With this, consider the following claim.

Claim 6.4. For the specific setting defined by P1-P2 and any fixed z ∈ ZF , let x̂zj = rj

where zj = 1 and rj = cj − xj−i′ and
∑

j x̂
z = γ. Then ∃x̂z ∈ XF , such that

F (z, x̂z) ≥ F (z, x), ∀x ∈ XF .
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Proof. Given a fixed (z, x) ∈ (ZF , XF ), observe that,

F (z, x) =
∑
j∈Pm

zj · (θj − xj) +
∑
j∈Pm

(1− zj) ·R(xj , ·)

=
∑
j∈Pm

zj(θj − xj) +R(
∑
j∈Pm

(1− zj)xj , ·)
(
As

∑
k

R(xk, ·) = R(
∑
k

xk, ·)
)

=
∑
j∈Pm

zj(θj − xj) +R(
∑
j∈Pm

xj −
∑
j∈Pm

zjxj , ·)

≤
∑
j∈Pm

zj(θj − xj) +R(γ −
∑
j∈P

zjxj , ·)

As
∑
j

xj ≤ γ and R satisfies CM


≤
∑
j∈Pm

zj(θj − rj) +R(γ −
∑
j

zjxj , ·) (From Eq. 6.2, xj < rj =⇒ zj = 0)

=
∑
j∈Pm

zj(θj − rj) +R(γ −
∑
j∈Pm

zjrj , ·) = F (z, x̂z).

Hence, F (z, x̂z) =
∑

j∈Pm
zj(θj − rj) +R(γ −∑j zjrj , ·) ≥ F (z, x) where x̂zj = rj if zj = 1

and
∑

j x̂
z
j = γ.

To conclude the proof, we now show that the contribution set is also feasible. To this

end, observe that from the claim statement, we have
∑

j x̂
z = γ. Further, since for each

zj = 1, we have by construction x̂zj = rj ≤ cj − xj−i′ and for each zj = 0 we have x̂zj < rk,

the second feasibility condition is also met.

We can trivially observe that G(z) = F (z, x̂z) where x̂zj = rj if zj = 1 and
∑

j x̂
z
j =

γ. Let (z∗, x∗) ∈ OPTMIP−CC−D, then F (z∗, x∗) ≥ F (z∗, x̂z
∗
) and from Claim 6.4,

F (z∗, x̂z
∗
) ≥ F (z∗, x∗), hence x∗ = x̂z

∗
. That is,

G(z∗) = F (z∗, x∗) = max
z∈ZF

F (z, x̂z
∗
) = max

z∈ZF
G(z).

Given that (i) the feasibility set of MIP is a subset of the feasibility set of MIP-CC-D

and (ii) z∗ is also feasible to MIP since
∑

j x
∗
j ≤ γ and x∗j ≤ rj , ∀j, we have

∑
j z

∗
j rj ≤ γ.

Hence, z∗ is also optimal for MIP.
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In summary, Part B shows that MIP in Eq. 6.3 reduces to MIP-CC-D. That is, any

solution to MIP-CC-D can be used to determine a solution to MIP in Eq. 6.3. Hence,

MIP-CC-D is also NP-Hard.

The following corollary follows from Theorem 6.5.

Corollary 6.2. Given an instance ofMCC with discrete contributions and for any set

of (Rj)j∈Pm satisfying Condition 5.1, if all agents except i′, N \ {i′}, follow a specific

strategy that funds P ⋆ ⊂ Pm, then computing the optimal deviation for agent i′ is

NP-Hard.

Proof. Let A\{i′} agents follow a specific strategy and contribute to the projects s.t. P ⋆ is

not funded. For any such strategy, given A\{i′} contributions, agent i′’s optimal deviation

is again given by MIP-CC-D. Hence, NP-Hardness follows directly from Theorem 6.5.

6.4 Experiments

Motivation. Theorem 6.3 proves that the optimal subset P ⋆ may not be funded at equilib-

rium due to agents’ strategic deviations. However, computing an agent’s optimal deviation

is also NP-Hard (Corollary 6.2). These observations highlight that computing closed-form

equilibrium strategies in Budget Deficit Combinatorial CC, similar to Theorem 2.8 and

Theorem 6.2, for agents is challenging. Given this challenge and the hardness of strategic

deviations, agents may employ heuristics to increase utility [311, 180]. Next, we propose

five heuristics for agents to employ in practice and study their impact on agent utilities

and the generated welfare.
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6.4.1 Heuristics and Performance Measures

Heuristics. Given the conflict between agent utilities and P ⋆’s funding (Theorem 6.3),

we propose the following heuristics for agent i ∈ A, for each project j ∈ Pm, to employ in

practice and observe their utility vs. welfare trade-off.

1. Symmetric: xij = min(θij , γi/m)

2. Weighted : xij =
(

θij∑
k∈Pm

θik

)
γi

3. Greedy-θ: Greedily contribute xij = x̄ij in descending order of the projects sorted by

θij ,∀j
4. Greedy-ϑ: Greedily contribute xij = x̄∗ij in descending order of the projects sorted by

ϑj
cj
,∀j

5. OptWelfare: xij = x̄ij , ∀j ∈ P ⋆ and evenly distribute the remaining budget across

Pm \ P ⋆

Agents contribute the minimum amount of what is specified by the five heuristics and the

amount left to fund the project. OptWelfare is the baseline (preferred) heuristic since it

generates optimal welfare, i.e., funds P ⋆.

Performance Measures. To study the welfare vs. agent utility trade-off, we consider

the following performance measures: (i) Normalized Social Welfare (SWN ) – Ratio of the

welfare obtained and the welfare from P ⋆ and (ii) Normalized Agent Utility (AUN ) – Ratio

of the agent utility obtained w.r.t. to the utility when each agent has enough budget to

play its PPR contribution ∀ j ∈ Pm (see Theorem 2.8).

We compare the heuristics when α ∈ (0, 1] fraction of the total agents deviate, i.e.,

choose heuristic ∈ {Symmetric, Weighted, Greedy-θ, Greedy-ϑ}. The remaining 1 − α

fraction of agents use the baseline OptWelfare.
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Figure 6.4: Empirical SWN and AUN for θij ∼ U[0, 10]

6.4.2 Simulation Setup and Results

Setup. We simulate the combinatorial CC game with n = 100, and m = 10 and PPR

refund scheme (Eq. 2.15).4 We sample θijs, for each i ∈ N and j ∈ P , using (i) Uniform

Distribution, i.e., θij ∼ U[0, 10], and (ii) Exponential Distribution, i.e., θij ∼ Exp(λ =

1.5). Here, λ is the rate parameter. When θ ∼ U[0, 10], we get agents whose per-project

valuations differ significantly. The agents have approximately similar per-project valuations

for θ ∼ Exp(λ = 1.5).

We ensure ϑj > vj and Bj ∈ (0, ϑj − vj ] for each project j and that the properties

Budget Deficit and Subset Feasibility for P ⋆ are satisfied. We run each simulation across

100k instances and observe the average SWN and AUN for each of the five heuristics. We

depict our observations with Figure 6.4, Figure 6.5 and Figure 6.6 when θij ∼ U[0, 10] and

θij ∼ Exp(λ = 1.5).

4The experimental trends presented remain same for different (n,m) pairs, such as (50, 10), (500, 10),
and (500, 20).
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Figure 6.5: Empirical SWN and AUN for θij ∼ Exp(λ = 1.5)

Average SWN and AUN . Figure 6.4 depicts the results when θij ∼ U[0, 10]. We

make three main observations. First, deviating from the baseline heuristic (OptWelfare)

is helpful only when a few agents deviate, i.e., for smaller values of α. Despite such a

deviation, we observe that the corresponding decrease in social welfare is marginal. On the

other hand, the increase in α reduces the amount of the contributions, and the projects

remain unfunded, reducing the social welfare and the agent utilities. Second, deviating

from OptWelfare always increases the average agent utility – at the cost of the overall

welfare. Third, Greedy-ϑ almost mimics OptWelfare for both SWN and AUN .

AUN for Deviating vs. Non-deviating Agents. In Figure 6.6, we compare the average

utility for the agents who deviate versus those who do not. We let α = 0.2 fraction of the

agents deviate and follow the other four heuristics. From Figure 6.6, we observe that upon

deviating to Symmetric, Weighted or Greedy-θ, the α = 0.2 fraction of agents obtains

higher AUN (red grid bars) compared to the remaining non-deviating agents who do not

deviate (green grid bars). In contrast, Greedy-ϑ shows non-deviation to be beneficial. Since

Greedy-ϑ performs close to OptWelfare, the AUN for deviation remains low compared to

OptWelfare. Crucially, the deviation is not majorly helpful when many agents deviate.
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Figure 6.6: AUN for α fraction of Agents Deviating vs. 1− α fraction Non-deviating

When α = 0.5, we see comparable average AUN for agents who deviate and those who do

not (blue-lined vs. magenta-lined bars, respectively). While deviating to Greedy-ϑ remains

non-beneficial.

6.5 Discussion and Conclusion

Discussion and Future Work. From Figures 6.4 and 6.6, we see that Greedy-ϑ performs

similar to OptWelfare (which funds P ⋆). Thus, as the number of projects p increases, to

maximize social welfare, it may be beneficial for the agents to adopt Greedy-ϑ instead of

deriving sophisticated strategies based on P ⋆ (since computing P ⋆ is NP-Hard).

Generally, it is challenging to determine PSNE contributions for combinatorial CC with

budgeted agents. We propose four heuristics and study their welfare and agent utility

trade-offs. Future work can explore other heuristics that achieve better trade-offs and

welfare guarantees. One can also study strategies that perform better on average, such as

Bayesian Nash Equilibrium. The experiments show that deviating from OptWelfare may

increase agent utility. Thus, one can explore strategies such as ϵ-Nash Equilibrium, which
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approximates a worst-case ϵ increase in utility with unilateral deviation. Approximate

strategies may also be desirable since finding optimal deviation is NP-Hard. However, the

approximation must provide a desirable trade-off between agent utility and welfare..

Conclusion. This chapter focuses on the funding guarantees of the projects in combina-

torial CC. Based on the overall budget, we categorize combinatorial CC into (i) Budget

Surplus and (ii) Budget Deficit. First, we prove that Budget Surplus cannot guarantee

projects’ funding at equilibrium. Introducing the stronger criteria of Subset Feasibility

guarantees the projects’ funding at equilibrium under Budget Surplus. However, for Bud-

get Deficit, we prove that the optimal welfare subset’s funding can not be guaranteed

at equilibrium despite Subset Feasibility. Next, we show that computing an agent’s op-

timal strategy (and consequently, its optimal deviation), given the contributions of the

other agents, is NP-Hard. Lastly, we propose specific heuristics and observe the empirical

trade-off between agent utility and social welfare.
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Chapter 7

Analyzing Crowdfunding of Public Projects Under Dynamic

Beliefs

Our discussion of Civic Crowdfunding (CC) has focused on the role of

refunds in mechanisms like PPR [312] or PPRx (Chapter 4). However,

despite their attractive incentive properties, these mechanisms assume

that the agent’s beliefs about the project getting funded do not change

over time, i.e., their beliefs are static. Unlike the known CC mechanisms

in this chapter, we model the evolution of agents’ beliefs as a random

walk. We study PPRx in this dynamic belief setting and refer to it as

PPRx-DB for readability. We prove that in PPRx-DB, the project is

funded at equilibrium. More significantly, we prove that under certain

conditions on agent’s belief evolution, agents will contribute as soon as

they arrive at the mechanism. Thus, we believe that by incorporating

dynamic belief evolution in analysis, the social planner can mitigate the

concern of race conditions in many mechanisms.

⋆ ⋆ ⋆ ⋆ ⋆
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7.1 Introduction

Generally, Civic Crowdfunding (CC) is conducted in the following two modes: (i) Of-

fline: in which the participating agents are not aware of the history of the contributions

and the net contribution at any epoch. (ii) Online: where the net and the history of

contributions are visible to each participating agent (e.g., [156, 120, 294]). We refer to

crowdfunding over online settings as sequential crowdfunding.

Particularly for sequential crowdfunding, blockchain-based online are becoming popular,

as first discussed in Chapter 5. Blockchain is an immutable, decentralized, and public

ledger [203]. These ledgers allow pseudo-anonymous, transparent, and verifiable payments

while eliminating the middle person. As we have already seen in Chapter 5, CC mechanisms

are now also being deployed as smart contracts over publicly distributed ledgers such as

the Ethereum blockchain [264, 290]. Carrying out transactions on Etheurem incurs gas (a

form of payment), and thus, there is a need to design efficient mechanisms for sequential

crowdfunding. We refer the reader to Chapter 3.2.2.3 for a brief overview of Ethereum and

gas costs.

For an offline setting, PPR is an excellent choice. However, PPR induces a simultaneous

game ([52] or Claim 2.4). In sequential crowdfunding, such a game result in the agents

deferring their contribution until the deadline, which in turn may result in the project not

getting funded [52, 47], i.e., a “race” condition (RC). Chapter 5 studies various aspects of

refund schemes to avoid the race condition and for efficient deployment in blockchain-based

online settings.

Information Structure (Chapter 4). In addition to the above, CC also depends on

the information available to the participating agents. To capture this, we define the tuple

consisting of each agent’s (i) valuation and (ii) belief as its information structure. The

existing literature majorly assumes that each agent is interested in the funding of the public

project, i.e., its valuation towards the project’s funding is non-negative. Additionally, the

literature also assumes that each agent has symmetric belief, i.e., each agent believes that
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the public project will be funded with probability 1/2 and not with 1/2. Note that in the

real world, the beliefs may be asymmetric. Chapter 4 presents PPRx (which leverages PPR)

for public projects when information structure allows positive valuation with asymmetric,

yet static, beliefs.

7.1.1 Chapter Contributions

With this background, we highlight a few observations that must be addressed in crowd-

funding mechanism design.

Observation 7.1 ([157]). Empirically, the probability of funding a project decreases

with an increase in its duration.

Observation 7.2. As the agents can observe the net contribution to the project in

sequential crowdfunding, their beliefs toward the project’s funding evolve.

Observation 7.3 ([47]). Empirically, agents prefer to contribute only once.

Belief Evolution. The above observations indicate a change in the agent’s belief regarding

funding the public project. For instance, with Observation 7.1, we see that agents become

reluctant to fund projects whose target deadlines are greater. With Observation 7.3, we

can note that agents contribution behavior changes with different refund schemes. This

behavior can be attributed to a change in their belief in the project’s funding. Moreover,

from Observation 7.2, it is natural to assume that the availability of critical information,

such as net contribution and the remaining time, will also impact the agent’s belief.

This chapter refers to evolving beliefs as dynamic beliefs. We model this belief evolution

as a random walk. We argue that each agent’s step size, at any epoch, will be a posterior

update depending on its prior belief and other auxiliary information (e.g., net contribution,

time remaining).
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PPRx-DB. This work primarily incorporates dynamic beliefs to analyze incentive-based

civic crowdfunding mechanisms. To the best of our knowledge, PPRx is the only mechanism

that incorporates asymmetric but static beliefs. We study PPRx under dynamic beliefs,

and to distinguish our setting; we refer to it as Provision Point Mechanism for agents With

Dynamic Belief (PPRx-DB). We argue that agents’ belief evolution will be a random walk.

We identify conditions on the random walk to characterize the sub-game perfect equilibria

of the sequential game induced by PPRx-DB. In particular, by utilizing the evolution of

each agent’s random walk as a martingale, super/sub-martingale, we identify conditions

wherein agents are naturally incentivized to contribute as soon as they arrive (i.e., avoid

the race condition). Thus, though theoretically sound, complex mechanisms such as PPS

may not be warranted in practice.

7.1.2 Chapter Notations and Solution Concepts

Throughout this chapter, we use the notations introduced during the description of CC

in Chapter 2.3. We focus on the single-project case, i.e., m = 1 in Definition 2.26. Thus,

we drop the subscript “j” from this chapter. For instance, agent i contributing xij to

project j ∈ [m] is simply agent i contributing xi as there is only a single project (m = 1).

Table 7.1 tabulates the notations used in this chapter.

We also build on the existing PPRx mechanism (Chapter 4). Lastly, the solution con-

cepts used are Nash equilibrium (Definition 2.3) and sub-game perfect Nash equilibrium

(Definition 2.4).

7.1.2.1 Additional Preliminaries

In this chapter, we also need the following notations.

7.1.2.1.1 Funded and Unfunded Expected Utilities in PPRx To incorporate

asymmetric beliefs, in Chapter 4 we introduce PPRx. PPRx consists of two phases, (i)
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Belief Phase (BP) with budget BB and deadline τB wherein each agent i arrives at ai,1 to

the crowdfunding platform and submits its (static) belief ki at ti,1 towards the funding of

the project, based on which it gets a reward bi (known as Belief Based Reward (Eq. 4.6));

followed by (ii) Contribution Phase (CP) with budget BC and deadline τC (τ = τC + τB)

wherein each agent i arrives at ai,2 to the crowdfunding platform and contributes xi at ti,2

to the project. Thus, σi = (bi, ti,1, xi, ti,2) is each agent i’s strategy in PPRx.

For this chapter, we create the following subsets for agents with “high” and “low” belief:

AH = {i|∀i ∈ A s.t. ki ≥ 1/2} and AL = {i|∀i ∈ A s.t. ki < 1/2}. Trivially, A = AH ⊔AL.
The utilities for agents in PPRx are given in Eq. 4.7 and Eq.4.8. Based on these, we denote

the utility for agent i ∈ A when x ≥ c as uF (i.e., funded) and when x < c as uUF (i.e.,

unfunded). That is,

• ∀i ∈ AH :

E[uFi (xi, ·)] = ki · (θi − xi + bi)

E[uUFi (xi, ·)] = (1− ki) ·
(xi
x
·BC

)
• ∀i ∈ AL:

E[uFi (xi, ·)] = ki · (θi − xi)

E[uUFi (xi, ·)] = (1− ki) ·
(xi
x
·BC + bi

)

7.1.2.1.2 Martingale Theory A martingale is a sequence of random variables such

that the next value equals the current value in expectation, conditioned over all prior values.

However, for several applications, one cannot always guarantee this equality. To analyze

such scenarios, we interest ourselves in bounding the expected values. Such a sequence

corresponds to a super-martingale or a sub-martingale. Consider a discrete sequence of

random variables X0, X1, . . . evolving over time. Such a collection of random variables is

referred to as a stochastic process, denoted by {Xt}t∈[τ ].
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Figure 7.1: Plotting ≈ x/θ for two randomly sampled agents using the dataset available

with [47]. The black vertical line in the left plots represents the end of the refund period.

We observe that the agents contribute even after the refund stage, possibly implying a

change in their beliefs.

Definition 7.1: Martingales [295]

A stochastic process {Xt}t∈[τ ] such that E[Xt] <∞, is a

• Martingale if E[Xt+1|X0, . . . , Xt] = Xt

• Sub-martingale if E[Xt+1|X0, . . . , Xt] ≥ Xt; and

• Super-martingale if E[Xt+1|X0, . . . , Xt] ≤ Xt.

In mechanism design literature, martingale theory is popularly used to model the dy-

namic evolution of an agent’s private information. For e.g., Chawla et al. [57] model agent’s

dynamic valuation for a product (such as Netflix subscription) over time as a Martingale.
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Balseiro et al. [22] model agent’s expected utility as a Martingale to design a dynamic

auction.
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Notation Definition

Pm,m = 1 Set of Projects to be crowdfunded

A = {1, . . . , n} Set of Agents

θi ∈ R≥0 Agent i’s valuation for the project

ϑ =
∑

i∈A θi Overall valuation of the project

c ∈ R≥0 Target cost of the project

τ ∈ R≥0 Deadline of the project

xi ∈ R≥0 Agent i’s contribution to the project

x =
∑

i∈A xi Total contribution to the project

B > 0 Refund bonus

R Refund Bonus Scheme

ri = R(xi;x, c, B, ·) Refund bonus to Agent i from the project

ui(θi, xi;x, c, B) Agent i’s utility from the project

ki Agent i’s belief regarding the project’s funding

BB > 0 Bonus budget of the Belief Phase

τB ∈ R≥0 Deadline of the Belief Phase

BC > 0 Bonus budget of the Contribution Phase

τC ∈ R≥0 Deadline of the Contribution Phase

uFi Funded Utility of Agent i

uUFi Unfunded Utility of Agent i

Table 7.1: Chapter Notations
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7.2 PPRx-DB: CC for Agents with Dynamic Beleifs

This section analyzes PPRx with dynamic beliefs, namely PPRx-DB. We first present

the agent’s dynamic belief model. We then introduce PPRx-DB and provide agents’ equi-

librium contribution and the equilibrium time of contribution. We next present empirical

evidence that agents’ beliefs evolve during crowdfunding.

Observing Agent’s Belief Evolution. Cason et al. [47] conduct real-world experiments

to primarily test the impact of early refund bonus on a crowdfunding project’s success. We

use their data to provide the following insight regarding an agent’s evolving belief.

Figure 7.1 plots x/θ, with varying t and x, for two random agents from the dataset.

Post t > 60 seconds; the agents do not get refunds for their contributions. Yet, we observe

that agents contribute post t > 60 (Figure 7.1(left)). Agents’ contribution pattern also

evolves with x (Figure 7.1(right)).

7.2.1 Agent Dynamic Belief Model

We model the evolution of each agent’s belief as a stochastic process over discrete

epochs. Observe that this belief evolution may on available information at an epoch (e.g.,

net contribution). After each epoch, as an agent’s belief can increase or decrease, we model

it as a random walk.

For each agent i ∈ A, let {ki,t}t∈[τ ] denote the random walk with Xi,t as the random

variable for the step size at an epoch t. More formally, let each agent i’s prior belief

regarding the project’s funding be ki,0 ∈ [0, 1]. At each epoch t, the agent’s belief evolves

per the available information, e.g., xt, i.e., the current contribution at epoch t or remaining

epochs τ − t.

Now, at each epoch t ≥ 1, we denote agent i’s posterior belief regarding the project’s

funding as: ki,t = ki,t−1 +Xi,t. The sizes of the positive (si,+()) and negative (si,−())steps
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(with “◦” as auxiliary information) are:

Xi,t =


si,+(xt, τ − t, ◦), with probability p ∈ [0, 1]

si,−(xt, τ − t, ◦), with probability 1− p

Note. Xi,t captures the agent’s belief evolution through the size of the step sizes, dependent

on the available information. We now have a model for the random walk, {ki,t}t∈[τ ].
Our goal is to analytically derive equilibrium strategies for the agents conditioned on the

behavior of {ki,t}t∈[τ ].

7.2.2 PPRx-DB: Theoretical Analysis

In this subsection, we first discuss the funding of the public project at equilibrium.

Second, we provide the upper bound of the agents’ equilibrium contribution. Last, we

present the equilibrium time of contribution for agents based on the underlying condition

of the agent’s belief evolution.

7.2.2.1 Project Status at Equilibrium

In PPRx-DB, the public project is funded at equilibrium. That is, at equilibrium,

the total contribution equals the provision point, i.e., x = c, when ϑ > c. Consider the

following lemma.

Lemma 7.1. Given A,m = 1 and c (refer to Definition 2.26) with 0 < B < ϑ − c,

BB, BC > 0 and the utility structure for each agent i ∈ A given by Eq. 4.7 and Eq.4.8.

At equilibrium, the public project is funded i.e., x = c.

Proof. From Eq. 4.7 and Eq. 4.8, at equilibrium, x < c cannot hold, since ∃i ∈ AH with

xi < θi+bi or ∃i ∈ AL with xi < θi, at least, as ϑ > c. Such an agent i can obtain a greater

refund bonus by marginally increasing its contribution xi as BC > 0. Moreover, if x > c,

any contributing agent can increase its utility by marginally decreasing its contribution.

Thus, x = c holds at equilibrium, i.e., the project is funded at equilibrium.
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7.2.2.2 Equilibrium Contribution: Upper Bound

We now analyze the equilibrium contribution of each agent i ∈ A in PPRx-DB. As each

agent i ∈ A submits its belief b̂i in the BP, PI can categorize each agent i to the sets AH
or AL. We next independently compute equilibrium contributions for the agents in AH
and AL, respectively.

7.2.2.2.1 For Agents with High Belief Lemma 7.2 presents the equilibrium contri-

bution x⋆i analysis for each agent i ∈ AH . For the proof, we solve for x⋆i such that the

(expected) funded utility is greater than equal to the (expected) unfunded utility. This is

because, from Lemma 7.1, we know that at equilibrium, the contributions are such that

x = c.

Lemma 7.2. Given A,m = 1 and c (refer to Definition 2.26) with 0 < B < ϑ − c,

BB, BC > 0 and the utility structure for each agent i ∈ AH given by Eq. 4.7. For each

i ∈ AH , its equilibrium contribution is

x⋆i ≤
cki,ti,2⋆ (θi + bi)

BC(1− ki,ti,2⋆ ) + cki,ti,2⋆
, (7.1)

where ti,2⋆ ∈ [τC ] is its time of contribution at equilibrium.

Proof. Since at equilibrium x = c, each agent i will contribute such that its funded utility

is no less than the highest possible unfunded utility. That is, we solve for x⋆i such that

E[uFi ] ≥ E[uUFi ], for each i ∈ AH . That is,

ki,ti,2⋆ · (θi − x⋆i + bi) ≥ (1− ki,ti,2⋆ ) ·
x⋆i
c
·BC

=⇒ x⋆i ≤
cki,ti,2⋆ (θi + bi)

BC(1− ki,ti,2⋆ ) + cki,ti,2⋆

This proves the lemma.
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7.2.2.2.2 For Agents with Low Belief Similar to our analysis for the set of agents

in AH , Lemma 7.3 presents the equilibrium contribution analysis of each agent i ∈ AL.

Lemma 7.3. Given A,m = 1 and c (refer to Definition 2.26) with 0 < B < ϑ − c,

BB, BC > 0 and the utility structure for each agent i ∈ AL given by Eq. 4.8. For each

i ∈ AL, its equilibrium contribution is

x⋆i ≤
cki,ti,2⋆θi + cbi(1− ki,ti,2⋆ )

BC(1− ki,ti,2⋆ ) + cki,ti,2⋆
, (7.2)

where ti,2⋆ ∈ [τC ] is its time of contribution at equilibrium.

Proof. Similar to Lemma 7.2, we again solve for x⋆i such that E[uFi ] ≥ E[uUFi ], for each

i ∈ AH . That is,

ki,ti,2⋆ · (θi − xi) ≥ (1− ki,ti,2⋆ ) ·
(
x⋆i
c
·BC + bi

)
=⇒ x⋆i ≤

cki,ti,2⋆θi + cbi(1− ki,ti,2⋆ )

BC(1− ki,ti,2⋆ ) + cki,ti,2⋆

This proves the lemma.

7.2.2.3 Time of Equilibrium Contribution

Firstly, note that the refund bonus scheme in PPR (or PPRx) is independent of time.

This induces a simultaneous-move game in PPR [52] or PPRx (Chapter 4). However, in

PPRx-DB, the dynamic evolution of agents’ belief towards the public project results in

variable expected utility for each agent – dependent on their belief at each epoch. Thus,

unlike PPR and PPRx, PPRx-DB does not induce a simultaneous-move game and can be

deployed in sequential settings.

The challenge remains to identify when an agent will contribute to the public project.

Recall that we denote the funded utility for agent i as uFi and the unfunded utility as uUFi .
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Now, the complete utility structure for agent i is,

ui(·) = 1x≥c · uFi (·) + 1x<c · uUFi (·).

At equilibrium, the expected funded payoff is equal to the expected not funded payoff

(Lemmas 7.2 and 7.3). Thus, we have E[πi] = E[πUFi ], ∀i at equilibrium. In PPRx-DB,

from Eq. 4.7 and Eq. 4.8, we also have

uUFi (xi) =
xi
x
·BB + κ,

where κ = 0,∀i ∈ AH and κ = bi,∀i ∈ AL.
Now, the equilibrium time of contribution ti,2⋆ , ∀i ∈ A, can be calculated as:

ti,2⋆ = argmax
ti,2∈[τC ]

E[uUFi (x⋆i )].

The subsequent results indeed derive ti,2⋆ for the set of agents in AH and AL. For these,
we remark that when an agent i arrives at the Contribution Phase (CP), its belief at that

epoch is the same as its prior belief, i.e., ki,ai,2 = ki,0. This stems from the fact that the

agent has yet to observe the available information for any meaningful belief update.

7.2.2.3.1 For Agents with High Belief Consider the following lemma for each agent

i ∈ AL.

Lemma 7.4. Given A,m = 1 and c (refer to Definition 2.26) with 0 < B < ϑ − c,

BB, BC > 0 and the utility structure for each agent i ∈ AH given by Eq. 4.7. With

k⋆ =

√
BC/c

1+
√
BC/c

, for each i ∈ AH , if:

1. {ki,t}t∈[τC ] is a Martingale, then ti,2⋆ = τC .

2. {bi,t}t∈[τC ] is a Super-martingale, then

ti,2⋆ =


ai,2 if ki,0 ≤ b⋆

t s.t.ki,t = k⋆ if ki,0 > k⋆
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Agent Set {ki,t}t∈[τC ] xi,ti,2⋆ ti,2⋆ Race Condition

∀i ∈ AH

Martingale

≤ cki,ti,2⋆ (θi+bi)

BC(1−ki,ti,2⋆ )+cki,ti,2⋆

τC

Super-martingale
ai,2 if ki,0 ≤ k⋆

t s.t.ki,t = k⋆ if ki,0 > k⋆

Sub-martingale
ai,2 if ki,0 ≥ k⋆

t s.t.ki,t = k⋆ if ki,0 < k⋆

∀i ∈ AL

Martingale

≤ cki,ti,2⋆ θi+cbi(1−ki,ti,2⋆ )
BC(1−ki,ti,2⋆ )+cki,ti,2⋆

τC

Super-martingale ai,2

Sub-martingale τC

Table 7.2: Summary of Our Results for PPRx-DB. Here, the cross mark denotes that the

mechanism avoids the race condition.

3. {ki,t}t∈[τC ] is a Sub-martingale, then

ti,2⋆ =


ai,2 if ki,0 ≥ k⋆

t s.t.ki,t = k⋆ if ki,0 < k⋆

Proof. We broadly divide the proof into the following two steps: (i) Firstly, we show that

E[uUFi (x⋆i )] is increasing in ki,t only if ki,t ≤ b⋆. That is, E[uUFi (x⋆i )] is maximized at k⋆.

In (ii), to decide on ti,2⋆ , we condition the underlying evolution of agent belief. Consider

the following.

(i) Deriving k⋆. We have,

E[uUFi ] = (1− ki,t) ·
BC
c
·

cki,ti,2⋆ (θi + bi)

BC(1− ki,ti,2⋆ ) + cki,ti,2⋆

Now,

∂E[uUFi ]

∂ki,t
> 0 ⇐⇒ ki,t

1− ki,t
≤
√

BC
c

.

That is, ki,t ≤
√
BC/c

1+
√
BC/c

= k⋆.
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(ii) Deriving ti,2⋆. First, if {ki,t}t∈[τC ] is a Martingale, E[ki,t] = ki,t−1. Thus, on expecta-

tion, the value E[uUFi ] does not change. As such, agent i has no incentive to contribute

early, resulting in the race condition, i.e., ti,2⋆ = τC .

Second, if {ki,t}t∈[τC ] is a Super-martingale, we have E[ki,t] ≤ ki,t−1. Since E[uUFi ]

increases till k⋆, if agents initial belief is less than k⋆, ki,t will not reach k⋆ (in expectation)

implying agent i must contribute as soon as it arrives, i.e., ti,2⋆ = ai,2. However, if agent

i’s initial belief is greater than k⋆ and since E[ki,t] ≤ ki,t−1, the agent waits till an epoch

t′ s.t. ki,t′ = k⋆.

Last, if {ki,t}t∈[τC ] is a Sub-martingale, we have E[ki,t] ≥ ki,t−1. Now, if the agent’s

initial belief is greater than k⋆, it is incentivized to contribute as soon as it arrives as its

belief increases in expectation, resulting in lesser E[uUFi ]. Likewise, if its initial belief is

less than k⋆, then in expectation, its belief will increase. That is, agent i waits till an

epoch t′ s.t. ki,t′ = k⋆.

This proves the lemma.

7.2.2.3.2 For Agents with Low Belief Like Lemma 7.4, we now analytically present

the time of equilibrium contribution for agents in AL.

Lemma 7.5. Given A,m = 1 and c (refer to Definition 2.26) with 0 < B < ϑ − c,

BB, BC > 0 and the utility structure for each agent i ∈ AL given by Eq. 4.8. With

θi > bi and θi <
bi·c
BC

for each i ∈ AL, if

1. {ki,t}t∈[τC ] is a Martingale, then ti,2⋆ = τC .

2. {ki,t}t∈[τC ] is a Super-martingale, then ti,2⋆ = ai,2.

3. {ki,t}t∈[τC ] is a Sub-martingale, then ti,2⋆ = τC .

Proof. Similar to the proof for Lemma 7.4, we broadly divide the proof into the following

two steps: (i) Firstly, we show that E[uUFi (x⋆i )] is increasing in ki,t if θi > bi and θi <
bi·c
BC

.
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In (ii), to decide on ti,2⋆ , we condition the underlying evolution of agent belief. Consider

the following.

(i) E[uUFi ] as an Increasing Function. We first derive the condition in which E[uUFi ] is

an increasing function. We have,

E[uUFi ] = (1− ki,t) ·
BC
c
·
cki,ti,2⋆θi + cbi(1− ki,ti,2⋆ )

BC(1− ki,ti,2⋆ ) + cki,ti,2⋆

Now,

∂E[uUFi ]

∂ki,t
> 0 ⇐⇒ (c−BC)(bi − θi)k

2
i,t+

2BC(bi − θi)ki,t − (c+BC)mi +BCθi > 0 (7.3)

For E[uUFi ] to be increasing, the quadratic in Eq. 7.3 must be increasing. That is, ∆ < 0,

and the first term must be positive. Through algebraic manipulations, we can show that

these conditions will hold ∀i ∈ AL iff θi > bi and θi <
bi·c
BC

.

(ii) Deriving ti,2⋆. As E[uUFi ] is increasing in ki,t under θi > bi and θi <
bi·c
BC

, we now derive

ti,2⋆ conditioned on the nature of the belief evolution. First, if {ki,t}t∈[τC ] is a Martingale,

then E[ki,t] = ki,t. Trivially, the value E[uUFi ] will not change in expectation for such a

case. Thus, in practice, agent i will defer its contribution to the deadline, i.e., ti,2⋆ = τC .

Second, if {ki,t}t∈[τC ] is a Super-martingale, then E[ki,t] ≤ ki,t. In this case, a decrease

in ki,t (in expectation) will imply a decrease in E[ki,t]. As such, agent i will contribute

as soon as it arrives, i.e., ti,2⋆ = ai,2.

Last, if {ki,t}t∈[τC ] is a Sub-martingale, then E[ki,t] ≥ ki,t. In this case, an increase

in ki,t (in expectation) will imply an increase in E[ki,t]. As such, agent i will defer its

contribution till the deadline, i.e., ti,2⋆ = τC .

This proves the lemma.
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Note. Table 7.2 summarizes the results presented in this section. We analytically provide

the equilibrium contribution and time of contribution based on the underlying property of

agents’ dynamic belief evolution. The equilibrium time of contribution also implies whether

the mechanism avoids the race condition or not. That is, when the equilibrium time of

contribution equals the deadline, the race condition persists.

7.2.3 PPRx-DB: Sub-game Perfect Equilibrium Strategy

What remains to be shown is that the strategy, for each i ∈ A, σ⋆i = (k⋆i , ti,1⋆ , x
⋆
i , ti,2⋆)

where k⋆i = ki,0, ti,1⋆ = ai,1, x
⋆
i as defined in Lemma 7.2 and Lemma 7.3 and ti,2⋆ as defined

in Lemma 7.4 and Lemma 7.5 satisfies sub-game perfect equilibrium (SPE). To this end,

consider the following theorem.

Theorem 7.1. Given A,m = 1 and c (refer to Definition 2.26) with 0 < B < ϑ− c,

BB, BC > 0 and the utility structure for each agent i ∈ A given by Eq. 4.7 and Eq.4.8.

The public project is funded at equilibrium, i.e., x = c. The set of strategies σ⋆i =

(k⋆i , ti,1⋆ , x
⋆
i , ti,2⋆) where k⋆i = ki,0, ti,1⋆ = ai,1 and (x⋆i , ti,2⋆) as defined in Lemma 7.2

and Lemma 7.4 ∀i ∈ AH and in Lemma 7.3 and Lemma 7.5 ∀i ∈ AL.

Proof. Firstly, from Lemma 7.1, we know that x = c if ϑ > c. Next, k⋆i = ki,0 and

ti,1⋆ = ai,1 follows from the properties of BBR. More concretely, since BBR is incentive

compatibility and decreasing with time, each agent i ∈ A reports its prior belief as soon

as it arrives at the Belief Phase. Further, Lemmas 7.2,7.3 derive x⋆i and Lemmas 7.4,7.5

derive ti,2⋆ ,∀i ∈ AH and ∀i ∈ AL, respectively.
The equilibrium strategy σ⋆i , depending on the aggregate contribution and current be-

lief, is also SPE. W.l.o.g., let agent j arrive at the Contribution Phase (CP) last. If the

remaining contribution is zero, its best response is xj,2⋆ = 0. If some contribution remains

to be funded, then irrespective of c and x its best strategy is x⋆i (defined in Lemmas 7.2,7.3)

and ti,2⋆ (defined in 7.4,7.5). Using backward induction, we argue that it is the best re-
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sponse for every agent i to follow its strategy σ⋆i , irrespective of history. That is, σ
⋆
i satisfy

SPE, ∀i ∈ A.

Theorem 7.1 presents the SPE strategy for an agent. Without additional informa-

tion/assumptions regarding the belief evolution or future agents’ contribution, we believe

these are a good starting point for mechanism design for crowdfunding public projects with

dynamic beliefs.

7.3 Conclusion & Future Work

To the best of our knowledge, this chapter is the first attempt at addressing the persistent

issue of static beliefs in the existing literature on crowdfunding of public projects. Toward

this, we model the dynamic belief update for each agent as a random walk. Empirical

evidence available justifies this argument. Next, we analyzed PPRx with dynamic beliefs

as PPRx-DB. We first derived the agent’s equilibrium contribution as a function of their

dynamic beliefs. To derive the time of equilibrium contribution, we condition the dynamic

belief as a (i) Martingale, (ii) Super-martingale, and (iii) Sub-martingale. Based on these

underlying conditions, we provide the time of equilibrium contribution. Consequently, we

also showed the conditions under which PPRx-DB avoids race conditions.

Discussion & Future Work. Significantly, our results highlight that simpler mechanisms

may also avoid the race condition, allowing a practitioner to save on-chain deployment

costs. Future work can build on these results by (i) exploring other conditions that provide

an analytical characterization of the agent’s equilibrium time and contribution and (ii)

empirically validating the evolution of the agent’s dynamic belief as a martingale. In

parallel, one can even attempt to learn an ML model for an agent’s belief update.
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Civic Crowdfunding with Refunds: Contribution Summary

We conclude our discussion on civic crowdfunding (CC) with refunds by summarizing

the different mechanisms in the literature in comparison with the mechanisms presented in

this thesis (refer to Table 7.3). In Table 7.4, we also summarize the mechanisms in terms

of their agent model and the properties they satisfy. Future research directions to consider

will revolve around various permutations of the properties that are yet to be studied. We

hope that the summary acts as a point of reference for readers interested in CC with

refunds, both as a starting point and to advance the state-of-the-art.

228



C
C

M
e
ch

a
n
is
m
s

P
F
u
n
d
in
g

E
q
u
il
ib
ri
u
m

V
a
lu
a
ti
o
n

R
e
fu
n
d

S
ch

e
m
e

U
ti
li
ty

S
tr
u
c
tu

re

G
u
a
ra

n
te
e
s

C
o
n
tr
ib
u
ti
o
n

P
P
R

[3
12

]
P 1

F
u
n
d
ed

C
lo
se
d
-f
o
rm

θ i
1
∈
R
+

r i
1
=

x
i1 x
1
B

1
1
c 1
≤
x
1
·(
θ i

1
−

x
i1
)
+
1
c 1
>
x
1
·r
i1

P
P
S
[5
2
]

P 1
F
u
n
d
ed

C
lo
se
d
-f
or
m

θ i
1
∈
R
+

r i
1
=

ϕ
(x
i1
,q
t i
1
)

1
c 1
≤
x
1
·(
θ i

1
−

x
i1
)
+
1
c 1
>
x
1
·r
i1

R
E
P
P
-S

[5
3]

P 1
F
u
n
d
ed

C
lo
se
d
-f
or
m

θ i
1
∈
R
+

r i
1
=

ϕ
(x
i1
,q
t i
1
)
+

s(
R
M

i1
)

1
c 1
≤
x
1
·(
θ i

1
−

x
i1
)
+
1
c 1
>
x
1
·r
i1

E
q
c-
L
ea
rn
er

[2
19

]
P m

-
N
o
t
D
efi

n
ed

θ i
j
∈
R
+

r i
j
=

x
ij x
j
B
j

1
c j
≤
x
j
·(
θ i
j
−

x
ij
)
+
1
c j
>
x
j
·r
ij

P
P
S
N

(C
h
a
p
te
r
4)

P 1
F
u
n
d
ed

C
lo
se
d
-f
o
rm

θ i
1
∈
R

r i
1
=

ϕ
(x
i1
,m

in
(q

+ t i
1
,q

− t i1
))

1
c 1
≤
x
1
·(
θ i

1
−

x
i1
)
+
1
c 1
>
x
1
·r
i1

P
P
S
x
(C

h
a
p
te
r
4)

P 1
F
u
n
d
ed

C
lo
se
d
-f
or
m

θ i
1
∈
R
+

r i
1
=

ϕ
(x
i1
,q
t i
1
)

1
c 1
≤
x
1
·(
θ i

1
−

x
i1
+

b i
1
)
+
1
c 1
>
x
1
·r
i1

r i
1
=

ϕ
(x
i1
,q
t i
1
)

1
c 1
≤
x
1
·(
θ i

1
−

x
i1
)
+
1
c 1
>
x
1
·(
r i
1
+

b i
1
)

P
P
R
G

(C
h
a
p
te
r
5)

P 1
F
u
n
d
ed

C
lo
se
d
-f
o
rm

θ i
1
∈
R
+

r i
1
=

x
i1
+
a
·(1
/
γ
)i
−
1

x
1
+
K

B
1

1
c 1
≤
x
1
·(
θ i

1
−

x
i1
)
+
1
c 1
>
x
1
·r
i1

C
C
C

(C
h
ap

te
r
6
)

P m
-

M
ay

n
ot

b
e
d
efi

n
ed

θ i
j
∈
R
+

r i
j
=

x
ij x
j
B
j

1
c j
≤
x
j
·(
θ i
j
−

x
ij
)
+
1
c j
>
x
j
·r
ij

P
P
R
x
-D

B
(C

h
a
p
te
r
7)

P 1
F
u
n
d
ed

C
lo
se
d
-f
o
rm

θ i
1
∈
R
+

r i
1
=

x
i1 x
1
B

1
1
c 1
≤
x
1
·(
θ i

1
−

x
i1
+

b i
1
)
+
1
c 1
>
x
1
·r
i1

r i
1
=

x
i1 x
1
B

1
1
c 1
≤
x
1
·(
θ i

1
−

x
i1
)
+
1
c 1
>
x
1
·(
r i
1
+

b i
1
)

Notations. (i) 1X = 1 if X is true, 1X = 0 otherwise. (ii)

ϕ(x, q) = C−1
0 (x+C0(q))− q− x, C0 : R→ R: The prediction market’s cost function with

q as the total market securities. (iii) S(RMi1): referral bonus. (iv) b(·): Belief-based
reward. (v) a > 0, γ > 1 and K = aγ

γ−1 .

Table 7.3: Summarizing Different Mechanisms for CC with Refunds for an agent i ∈ A.
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Table 7.4: Summary of Works for Civic Crowdfunding of Public Projects with Refunds

(CC). The green check mark implies that a mechanism satisfies the given property. Future

research directions to consider will revolve around various permutations of the properties

that are yet to be studied.
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Chapter 8

Achieving Fairness in Transaction Fee Mechanism Design

Popular cryptocurrencies, like Bitcoin and Ethereum, process more than

a million daily transactions. Given the demand, a strategic miner of the

block is likely to include transactions whose fees maximize its utility.

Recent research introduces a transaction fee mechanism (TFM) design

to study the optimal behavior of miners and transaction creators. The

current TFM literature focuses on satisfying standard incentive proper-

ties – which may not suffice for the widespread adoption of cryptocur-

rencies. We argue that a TFM is “fair” to the transaction creators if

it satisfies specific notions, namely Zero-fee Transaction Inclusion and

Monotonicity. First, we prove that, generally, one cannot ensure both

these properties and prevent a miner’s strategic manipulation. We then

show that existing TFMs either do not satisfy these notions or do so

at a high cost to the miners’ utility. To this end, we introduce a novel

TFM using on-chain randomness – rTFM. We prove that rTFM sat-

isfies incentive compatibility for both miner and transaction proposer

while ensuring our novel fairness constraints.

⋆ ⋆ ⋆ ⋆ ⋆
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8.1 Introduction

Decentralized cryptocurrencies, e.g., Bitcoin [203] and Ethereum [42], support pay-

ments as digital transactions. The currencies’ rise in popularity is evident as Bitcoin and

Ethereum process 1M+ transactions per day [302, 303]. These currencies maintain their

state through a distributed ledger, namely blockchain. A blockchain is a sequence of cryp-

tographically linked blocks comprising a set of transactions [203]. In Proof-of-Work (PoW)

based cryptocurrencies such as Bitcoin and (formerly) Ethereum, block proposers (aka

“miners”) generate a valid block by solving a cryptographic puzzle. Miners receive a block

reward for their efforts.

Explosion in Transaction Fees. A miner adds transactions from the pool of outstanding

transactions (aka “mempool”). Transaction creators (or agents) optionally send a transac-

tion fee as a commission to the miners to incentivize them to add their transactions. We

remark that transaction fees were envisioned as optional in Bitcoin [293]. Unfortunately,

due to surplus demand [263] and the volatile nature of cryptocurrencies, in Bitcoin (i)

transactions offering 0-2 Satoshi per bytes as fees have an unbounded waiting time [233]

and (ii) 30% of Bitcoin fees are two orders of magnitude more than recommended [193].

Given this, recent research focuses on the strategic interaction between the miner and agents

through mechanism design, referred to as Transaction Fee Mechanism (TFM) design and

introduced formally in Chapter 3.2.2.4.

TFMs: Brief Overview. The miner-agent interaction is analogous to an auction setting

(with some blockchain-induced idiosyncrasies). Indeed, Bitcoin [203] implements a “first-

price” auction with a miner maximizing its revenue by greedily adding transactions to its

block. An agent’s transaction fee indicates its willingness to pay for its transaction to

be added. Roughgardern [245] formalizes TFM design in terms of the (i) allocation rule

(adding transactions from the mempool to a block), (ii) payment rule for the payment
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to the miner, and (iii) burning rule1. Unlike classical auction settings, in blockchain-

based cryptocurrencies, the miners have complete control over the transactions they add.

Consequently, the author proposes miner incentive compatibility (MIC) in addition to the

standard dominant strategy incentive compatibility (DSIC) for the agents. MIC states

that the proposed TFM must incentivize miners to follow the intended allocation rule

truthfully. DSIC ensures that agents offer their transaction’s valuation as a transaction fee.

Next, to curb miner-agent off-chain collusion, Roughgarden [245] also introduces off-chain

collusion proofness (OCAP). The author studies popular TFMs like first-price, second-

price, and Ethereum’s new dynamic posted-price mechanism, namely EIP-1559 [43], in

terms of the properties they satisfy. Subsequent works [103, 62] enrich the TFM literature

by proposing a dynamic posted-price mechanism and providing significant foundational

results, respectively.

TFM Design: Challenge with Incentives. To satisfy DSIC, MIC, and OCAP, TFMs

introduce payment and burning rules based on transaction fees. However, we believe that

(and as originally intended in Bitcoin [293]) TFMs must also support including trans-

actions with zero fees. This inclusion will also be beneficial for the greater adoption of

cryptocurrencies. As a concrete example, commission-based digital payment networks

(e.g., VISA/MasterCard) are losing ground to commission-less networks (e.g., UPI) [1].

Commission-less payment networks admit ≈ 7.5 times higher transaction volume compared

to their commission-based counterparts (rbi.org.in). That is, zero transaction fees are

instrumental for greater market penetration. As such, we argue that it is necessary to

design TFMs with a provision for zero-fee transaction inclusion.

1Burning refers to removing tokens from the cryptocurrency’s supply forever. E.g., by transferring them
to an address with no private keys. Such addresses can only receive tokens, thus effectively making the
tokens inaccessible.
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8.1.1 Chapter Contributions

8.1.1.1 Fairness Notions

We introduce (i) Zero-fee Transaction Inclusion (ZTi) and (ii) Monotonicity. A TFM

satisfies ZTi if it ensures that zero-fee transactions have a non-zero probability of getting

accepted in a block.2 Reflecting on the success of commission-less digital payment net-

works [46] and the unbounded waiting time for transactions with marginal fees in Bitcoin,

we argue that such a notion is critical for a cryptocurrency’s greater adoption.

However, guaranteeing ZTi must still ensure that the probability of a transaction’s

inclusion increases with an increase in its fee. For example, randomly including trivial

transactions ensures ZTi but may be unfair for a company that desires swift confirmation

to meet the scheduled launch or if the transaction fixes a critical bug. To capture this,

we introduce Monotonicity, which states that a TFM must ensure that transactions with

a higher transaction fee are more likely to get included in the block. Such a notion allows

for priority-based transaction confirmation.

Given the impossibility of satisfying DSIC, MIC, and a collusion-proofness against a

single creator and the miner collusion simultaneously [62], we say a TFM is fair if it meets

the above two criteria and DSIC. That is, fairness in TFMs w.r.t. the transaction creators

(or agents). As TFM design generally focuses on maximizing the miner’s utility, it fails

to satisfy ZTi. Moreover, existing TFMs either do not satisfy our notion of fairness or do

so at a high cost to the miners’ utility. As such, we introduce (i) Softmax TFM (STFM)

and (ii) Randomized TFM (rTFM), two TFMs that satisfy our fairness notions and study

their incentive properties.

2We assume that miners/agents are myopic [245, 103, 62], i.e., they only consider their utility from
the next block. Thus, ZTi deals with a transaction’s probability of inclusion for the next block and not
“eventual” confirmation. The myopic assumption is reasonable since pending transactions are typically
never confirmed (e.g., in Ethereum).
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8.1.1.2 Softmax TFM (STFM)

With STFM, we introduce a novel allocation rule wherein a miner samples transactions

from a distribution generated by applying the softmax function [38] to the set of out-

standing transactions. We prove that STFM satisfies our notion of fairness with bounded

utility loss for the miners. Unfortunately, STFM does not satisfy MIC, as a strategic miner

can always maximize its revenue by optimally selecting transactions instead of following

STFM’s randomized allocation.

8.1.1.3 Randomized TFM (rTFM)

We next propose rTFM: a TFM that satisfies our fairness notions while guaranteeing

MIC (for an appropriate payment rule). In rTFM, we introduce another novel allocation

rule that requires the miner to create two sets of transactions. In the first set, the miner

optimally selects the transactions to add to its block (i.e., exactly like it currently does in

Bitcoin). In the second set, the miner uniformly adds transactions from the mempool to

its block, but crucially, does not receive any fees for these transactions. That is, the miner

has no incentive to deviate from the uniform allocation in this set. The miner broadcasts

both these sets, and we show that the blockchain network can randomly confirm one of

the two sets through a trusted coin-flip mechanism. Intuitively, such an allocation gives a

non-zero probability of acceptance for zero-fee transactions (due to the uniform sampling

in the second set). As the miner has no control over the confirmed set, rTFM satisfies

MIC for an appropriate payment rule (e.g., Bitcoin’s first-price auction).

8.1.1.4 Contributions

In summary, (i) we introduce the notion of fair TFMs based on two fairness criteria: ZTi

and Monotonicity (Chapter 8.2). (ii) We prove the impossibility of a TFM simultaneously

satisfying ZTi and MIC (Chapter 8.2.2). (iii) For an improved trade-off between the miner’s

utility and ZTi, we first propose STFM, a novel softmax-based allocation rule, and prove
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Notation Definition

TFM Model

H Blockchain history

M := {1, . . . ,m} Mempool (set of outstanding transactions)

Bk Current Block

C Size of the block

x Block allocation rule

p Payment rule

q Burning rule

τ ∈ {τD, τR} TFM’s type – either deterministic (τD) or randomized (τR)

T TFM = (x,p,q, τ) TFM Tuple

b := {b1, . . . , bm} Bids present in the mempool

Θ := [θi] Set of valuations with each agent i’s valuation θi

st, ∀st ∈M Size of each transaction st

bI Bids of users included in the block

bI\i Bids of users included in the block without agent i

ui(·) Utility of agent i

F Set of fake transactions added by the miner

uM(·) Utility of the miner

Table 8.1: Chapter Notations

that it satisfies our fairness notions and other incentive properties (Chapter 8.3). (iv) We

then introduce rTFM: a novel TFM based on a trusted coin-flip mechanism and prove

that it satisfies our fairness notions while simultaneously satisfying MIC (Chapter 8.4).

8.1.2 Chapter Notations and Additional Background

This chapter extends the Transaction Fee Mechanism (TFM) design literature intro-

duced formally in Chapter 3.2.2.4. As such, we follow the notations from Chapter 3.2.2.4.

The solution concepts focused on in this chapter include DSIC in the TFM context (Def-
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inition 3.22) and Miner Incentive Compatibility (MIC) (Definition 3.23). For rTFM we

require hash functions (Definition 3.1) and the following cryptographic primitives. Ta-

ble 8.1 tabulates the notations used in this chapter.

8.1.2.1 Additional Preliminaries

Merkle Tree (MT) [192]. These are complete binary trees where every parent node is

a hash of its children. In blockchains like Bitcoin, each block comprises an MT such that

the parents are hashes of transactions that are included in the block. More concretely, the

value of a parent node a is the hash of the concatenation of its two children nodes b, c, i.e.

a = Hash(b||c). The Merkle root MTroot is the hash value of the root node of MT.

Proof-of-Work (PoW) [203]. In blockchains like Bitcoin [203], PoW is a protocol to

propose new blocks. Here, miners use the blockchain’s history H (comprising previously

mined blocks, say up till Bk−1) and MTroot of the set of transactions to be included in

their block, Bk. The block header of Bk is made up of the hash of the parent block Bk−1,

MTroot, and a randomly generated nonce. The block is considered mined if the miner finds

a nonce such that the hash value of the block h = Hash(Bk) is lesser than target difficulty

(TD) as decided by the system, i.e., h < TD.

On-chain Trusted Randomness. Micali et al. [194] introduce verifiable random func-

tions, which take inputs and generate pseudorandom outputs that can be publicly verified.

In the blockchain context, this often implies functions whose randomness depends on the

information available to the blockchain (aka verifiable or trusted on-chain randomness).

E.g., Chung et al. [62] propose a randomized second-price TFM that uses such randomness

to confirm transactions added to its block by the miner.

8.1.2.2 Additional Related Work

We now place this chapter’s contribution concerning the existing literature for (i) TFM

design and (ii) fairness in the context of blockchain.
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Transaction Fee Mechanism (TFM) Design. Roughgarden [245] presents the seminal

work that describes the “inclusion of transactions in a block” in the language of mechanism

design. The author shows that EIP-1559 satisfies DSIC and MIC and is OCAP (under some

constraints on the base fee). Ferreira et al. [103] present a novel dynamic posted-price TFM

with an equilibrium characterization of the posted-price. Most recently, Chung et al. [62]

provide several foundational results for TFM design based on underlying incentives and

allocation rules. While the works [245, 103, 310, 62] are complementary, they do not focus

on transaction fairness in TFMs.

Parallely, works also exist that empirically analyze TFMs to optimize transaction fees [165,

278]. Tedeschi et al. [278] suggest a Deep Neural Network-based approach to predict min-

ers’ behavior in terms of including transactions in their blocks. The authors show that

their approach reduces transaction fees and improves the confirmation time.

Fairness in Blockchain. Fairness is studied in various contexts, including network la-

tency [144, 185], transaction ordering [116, 15, 262, 216, 155, 162] and price of transaction

consumption [25, 258].

Fairness in transaction order focuses on the latency in transaction confirmation. E.g.,

miners may discriminate among specific transaction creators or only include transactions

of the creators they know prior. This line of work [116, 15, 262, 216, 155, 162] does not

model game-theoretic interactions and focuses on verifiable methods of ensuring “fairness”

using cryptographic primitives. Moreover, there is no provision for the inclusion of zero-fee

transactions. E.g., Sokolik et al. [262] present a fair approach that prioritizes transac-

tions with significant waiting time. Orda et al. [216] provide techniques that enforce that

transactions are allocated randomly to each block.

BitcoinF ’s [258] allocation rule splits the block with dedicated sections for standard

transactions and low-fee transactions. The authors argue that this allows miners to maxi-

mize their utility (through the standard section) while also processing low-fee transactions.

With a strong assumption that transaction influx equals the cryptocurrency’s throughput,
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they empirically argue that BitcoinF provides a lower consumption price. Also, they do

not provide any theoretical guarantees for strategyproofness or fairness.

In summary, the TFM literature does not focus on the fairness of transactions w.r.t.

transaction creators. Other works on fairness do not provide theoretical guarantees for

fairness, miner’s utility, or the inclusion of zero-fee transactions.

8.2 Fairness in TFMs

This section (i) presents our novel fairness notions, (ii) discusses the impossibility of

simultaneously maximizing the miner’s utility and ZTi, (iii) studies the fairness guarantees

of BitcoinF when δ = 0 and (iv) introduces Softmax TFM (STFM).

8.2.1 Fairness Notions

We propose the following fairness notions for the general adoption of a blockchain-based

cryptocurrency.

8.2.1.1 Zero-fee Transaction Inclusion (ZTi)

Based on the market penetration of digital payments due to non-commission-based

payment platforms [46] and the unbounded waiting time for transactions with marginal

fees in Bitcoin, we introduce Zero-fee Transaction Inclusion (ZTi) as a critical fairness

notion for a TFM to satisfy. That is, our first fairness notion ensures that a transaction

with zero fees must have a non-zero probability of getting included in a block.

Definition 8.1: Zero-fee Transaction Inclusion (ZTi)

We say T TFM (refer to Definition 3.21) satisfies ZTi if the probability with which

a transaction t with transaction fee bt = 0 gets included in a block Bk is strictly

non-zero, i.e., Pr(t ∈ Bk) > 0.
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As the agents and miners are myopic, ZTi only considers a transaction’s probability of

being included in the next block.

8.2.1.2 Monotonicity

This notion focuses on the probability of including a bidding agent’s transaction be-

ing proportional to the transaction fee. Naturally, a bidding agent would expect a higher

probability of accepting its transaction if it increases the transaction’s fee. Such a scenario

is also desirable in practice, e.g., startups/applications may want faster transaction accep-

tance to meet launch dates or deployment targets. To this end, we introduce monotonicity

as defined next.

Definition 8.2: Monotonicity

We say T TFM (refer to Definition 3.21) satisfies Monotonicity if the probability

with which a transaction t gets accepted in a block Bk increases with an increase

in its transaction fee bt, given the remaining bids b−t are fixed. That is, Pr(t ∈
Bk | b−t, bt + ϵ) > Pr(t ∈ Bk | b−t, bt) for any ϵ > 0 and fixed b−t.

Note. We remark that most existing TFMs satisfy monotonicity. However, designing

TFMs that simultaneously satisfy monotonicity and ZTi is non-trivial. Trivially, a TFM

satisfying both our fairness notions ensures that each transaction has a non-zero probability

of getting accepted!

8.2.2 Impossibility of Simultaneously Maximizing Miner Utility and Sat-

isfying ZTi

Before presenting the main impossibility, we first analyze the fairness guarantees for

EIP-1559 [43].

240



Remark 8.1. EIP-1559 satisfies (i) Monotonicity but does not satisfy (ii) ZTi. As

each transaction must at least pay the base fee, no honest/strategic miner will include

zero-fee transactions to preserve the validity of their blocks, i.e., if bt = 0 =⇒ Pr(t ∈
B) = 0. EIP-1559 satisfies monotonicity since increasing the payment bt − λ will

increase the chance of the transaction being part of the optimal set in Eq. 3.10.

Theorem 8.1 adds to Remark 8.1 by showing that any TFM that allows a strategic

miner complete control over which transactions to add cannot satisfy ZTi, for any non-

trivial payment rule. A trivial payment rule is pt = 0, ∀t ∈ Bk. For the proof, we provide

a counterexample s.t. ∀t ∈M, bt = 0 =⇒ Pr(t ∈ Bk = 0).

Theorem 8.1. No T TFM (refer to Definition 3.21) with a non-trivial payment rule

which provides a strategic miner complete control over the transactions to add to its

block, satisfies Zero-fee Transaction Inclusion (ZTi).

Proof. Consider the following example. Let the transaction bid and size pair in the mem-

pool be denoted by P = [(bi, si)] = {(10, 10), (10, 10), (5, 10), (0, 10), (0, 10)}. If the block

Bk can admit a total transaction size of 30, then the miner can maximize its utility

from 3.10 by selecting the first three transactions in P. That is, xTFM = {1, 1, 1, 0, 0}
with uTFMM = 25. This implies that Pr(t4 ∈ Bk) = Pr(t5 ∈ Bk) = 0, thus, ZTi is not

satisfied.

8.2.3 BitcoinZF: BitcoinF with Zero Fees

We tweak the block allocation rule in BitcoinF [258] (Chapter 3.2.2.4) to introduce a

provision for transactions with zero fees. We set δ = 0 so that the miner randomly adds

zero-fee transactions to fill the 1−α section, followed by greedily adding transactions with

bid b to the α section. Formally, from Eq. 3.11, the change is as follows.
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maxxBZ

∑
i∈M xBZi · pBZi (H, Bk) · si

s.t.
∑

t∈M,bt ̸=0 st · xBZt (H,M) ≤ Cα∑
t∈M,bt=0 st · xBZt (H,M) = C1−α and

xBZt (H,M) ∈ {0, 1},∀t ∈M.


(8.1)

Furthermore, with base fee λ, for each i in the α section we have pBZi = bi − λ and

qBZi = λ. For each i in the 1− α section we have pBZi = qBZi = 0. In summary, BitcoinZF

is denoted by the tuple T BZ = (xBZ ,pBZ ,qBZ , τD).

8.2.3.1 Fairness Notions

Theorem 8.2 shows that BitcoinZF satisfies the two fairness notions if each zero-fee

transaction’s size is less than C1−α. In other words, BitcoinZF satisfies ZTi if none of the

zero-fee transactions are of significant size.

Theorem 8.2. BitcoinZF (T BZ , Eq. 8.1) satisfies (i) Zero-fee Transaction Inclusion

and (ii) Monotonicity only if ∀ ti ∈M with bi = 0, we have si ≤ C1−α.

Proof. Without considering the inclusion of fake bids from the miner, i.e., F = ∅, the opti-
mization in BitcoinZF is given in Eq. 8.1. To show that BitcoinZF satisfies Monotonicity,

we have to show that by increasing its bid bi, agent i’s transaction ti has a higher proba-

bility of getting accepted in Bk. Indeed, this is the case in BitcoinZF, since increasing bi

to bi+ ϵ s.t. ϵ > 0 can only increase the probability of ti’s inclusion in Bk. This is because

of the KNAPSACK definition from Eq. 8.1.

Furthermore, since the miner receives no utility from any transaction in the “1 − α”

section, it can uniformly sample zero-fee transactions in this section. There is a subtle

point here: the miner does not get any utility by adding these transactions to the 1 − α

section. It can, in effect, leave the section empty or add its own transactions. However,
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since such deviations will not yield the miner any increase in utility, we can state that

BitcoinZF satisfies ZTi.

8.2.3.2 Cost of Fairness (CoF)

Unfortunately, there is a “cost” to the fairness guarantees in BitcoinZF. Ensuring ZTi

hurts the miner’s utility. To this end, consider the following definition.

Definition 8.3: Cost of Fairness CoF

We define the cost of fairness (CoF) of T TFM = (x,p,q, τ) as CoFTFM =

maxb̸=0
OPT
uTFM
M

. Here, uTFMM is the miner’s utility from the indented allocation x

and OPT its utility from Eq. 3.10 with pt = bt and qt = 0, ∀t ∈ Bk.

Trivially, lesser the CoF, greater the miner’s utility from following T TFM . Claim 8.1

presents the CoF for BitcoinZF for the specific case when for every ti, tj ∈ M s.t. i ̸= j,

we have si = sj . That is, all transactions are of the same size. The proof follows from

algebraic manipulations.

Claim 8.1. For every ti, tj ∈M s.t. i ̸= j, if we have si = sj, then CoFBZ = OPT
uBZ
M

=

1/α where α ∈ (0, 1].

Proof. W.l.o.g., let the optimal set of bids (sorted in non-decreasing order) which maximizes

the miner’s utility in Eq. 3.10 with pt = bt and qt = 0, ∀t be {b1, . . . , bc}. Then with α = k
c

s.t. k ≤ c, we can write BitcoinZF’s bid set as {b1, . . . , bk} (since the miner will maximize

utility in the ”α” section of the block). Observe that,

OPT

uBZM

=
b1 + . . .+ bc
b1 + . . .+ bk

= 1 +
bc−k+1 + . . .+ bc
b1 + . . .+ bk

≤ 1 +
(c− k)bk
k · bk

≤ 1 +
c

k
− 1 ≤ c

k
= 1/α.

This completes the claim.

243



Challenges with BitcoinZF. Despite satisfying our fairness notions, BitcoinZF has the

following challenges. First, Claim 8.1 only holds when each transaction’s size is equal. With

different transaction sizes, OPT
uBZ
M

can be arbitrarily bad. E.g., if the size of the transaction

with the highest bid in M is greater than Cα, OPT/uBZM → ∞. Second, when 1 − α is

small, zero-fee transactions of sufficient size will deterministicly never get included in the

block. Formally, if ∃ ti ∈M s.t. bi = 0 and si > C1−α, we have Pr(ti ∈ Bk) = 0.

8.3 Softmax TFM: Fairness using Randomization

We now introduce Softmax TFM (STFM), which comprises an intuitive, randomized

allocation rule that guarantees ZTi and Monotonicity. To begin with, it’s important to

note that a straightforward allocation rule that uniformly selects transactions from M will

trivially satisfy both our fairness notions.

Remark 8.2. Consider a TFM with an allocation rule that uniformly samples trans-

actions, i.e., ∀ti ∈ M Pr(ti ∈ Bk) = 1/n. Trivially, such a TFM (i) satisfies Zero-

fee Transaction Inclusion but (ii) does not satisfy Monotonicity since as bi increases,

Pr(ti ∈ Bk) remains the same.

We next (i) introduce Softmax TFM (STFM) and (ii) discuss its fairness and incentive

guarantees.
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Algorithm 6 Softmax TFM (STFM) Allocation

Input: Block Size C, Mempool M , History H, Temperature γ

Output: Set of allocated transactions in Bk, i.e., Xk
1: procedure STFMAllocation(C,M,H)
2: S = 0,Xk = ∅
3: Γk =

[
exp(bt/γ)∑

t′∈M exp(bt′/γ)

]
∀t∈M

▷ Generate the Softmax distribution

4: while C − S > 0 do

5: t ∼ Γk ▷ Sample a transaction

6: S ← S + st ▷ Add to the current block consumption

7: Xk ← Xk + {t}
8: Γk =

[
exp(bt/γ)∑

t′∈M\Xk
exp(bt′/γ)

]
∀t∈M\Xk

▷ Re-generate the Softmax

distribution

9: end while

10: return Xk
11: end procedure

8.3.1 Softmax TFM

For a given on-chain history H, the mempool M and the current block Bk, STFM can

be expressed in the TFM language as T STFM = (xSTFM ,pSTFM ,qSTFM , τR). We begin

by defining the allocation rule xSTFM .

8.3.1.1 STFM Allocation

Unlike deterministic TFMs like FPA and EIP-1559, STFM is a randomized allocation

rule. The miner does not compute the optimal allocation set as in Eq. 3.10 but instead

samples a feasible set of transactions. These transactions are sampled through a distribu-

tion generated by applying the softmax with temperature function [38] to the set of the
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outstanding transactions in M . The softmax function with the temperature parameter

γ ∈ R+ and for any real-valued vector z = (z1, . . . , zn) is defined ∀i as follows [38].

Γ(z)i =
exp(zi/γ)∑
i′∈z exp(zi′/γ)

. (8.2)

Algorithm 6 presents the procedure with which the miner randomly samples a feasible

set of transactions in STFM. With this, we can define xSTFM as follows.

Definition 8.4: STFM Allocation Rule

Given H, M and Bk, let xSTFM denote a feasible allocation rule with Pr(t ∈
Bk), ∀t ∈ M generated from the Softmax distribution (refer Algorithm 6). For-

mally, given the set of transactions sampled, Xk ← STFMAllocation(C,M,H),
we have xSTFM = [xSTFMt ] s.t.

xSTFMt =


1 if t ∈ Xk,

0 otherwise.

(8.3)

STFM Payment and Burning Rules. The allocation rule xSTFM can be coupled with

any payment (pSTFM ) and burning (qSTFM ) rules to define T STFM . E.g., similar to FPA,

we can create T STFM such that each bidding agent i whose ti ∈ Bk pays pSTFMi = bi and

pSTFMi = 0 otherwise. Furthermore, qSTFMi = 0, ∀i.

8.3.1.2 STFM: Fairness Properties

The choice of the payment and burning rules impact the strategyproofness, w.r.t. both

the agent and the miner, of the resulting STFM mechanism. However, Theorem 8.3 proves

that the STFM allocation from Definition 8.4 is sufficient to satisfy both our fairness

notions.
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Theorem 8.3. T STFM (refer to Definition 8.4) with γ ∈ (0,∞) satisfies (i) Zero-fee

Transaction Inclusion and (ii) Monotonicity.

Proof. We first prove that STFM satisfies Monotonicity irrespective of the payment and

burning rules.

For this, we must show that ∀ti, tj ∈M s.t. ti ̸= tj if bi > bj , Pr(ti ∈ Bk) > Pr(tj ∈ Bk).

We remark that xSTFM admits transactions with a distribution generated by applying the

softmax function on the transactions in M (refer Algorithm 6).

For sampling the first transaction, the probability distribution is Pr(ti ∈ Bk) =
exp(bi/γ)∑

i′∈M exp(bi′/γ)
, ∀i ∈

M . Trivially, we have exp(bi/γ)∑
i′ exp(bi′/γ)

>
exp(bj/γ)∑
i′ exp(bi′/γ)

if bi > bj and γ > 0, implying STFM

satisfies Monotonicity in this case. Next, w.l.o.g., we assume a transaction tl was sampled.

The re-generated probability distribution becomes, Pr(ti ∈ Bk) =
exp(bi/γ)∑

i′∈M\{l} exp(bi′/γ)
, ∀i ∈

M \ {l}. Still, we have exp(bi/γ)∑
i′ exp(bi′∈M\{l}/γ)

>
exp(bj/γ)∑

i′ exp(bi′∈M\{l}/γ)
if bi > bj and γ > 0. That

is, Monotonicity still holds. Along similar lines, we can show that Monotonicity holds for

each sampling stage.

Trivially, we can also show that STFM satisfies Zero-fee Transaction Inclusion (ZTi).

For each ti ∈ M with bi = 0, we have Pr(ti ∈ Bk) =
exp(bi/γ)∑

i′∈M exp(bi′/γ)
= 1∑

i′∈M exp(bi′/γ)
> 0,

irrespective of the size of M .

8.3.1.3 Softmax TFM: Incentive Properties

As aforementioned, the incentive properties of STFM are a function of the underlying

payment and burning rules. Theorem 8.4 presents the general impossibility of MIC for

STFM with any payment rule, which increases monotonically with the transaction fees.

Theorem 8.4. Given γ ∈ (0,∞) and with any non-trivial, monotonically increasing

pSTFM , i.e., for bi > bj =⇒ pi > pj ∀i, j s.t. i ̸= j, T STFM does not satisfy MIC.
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Proof. For the proof, we have to show that for any non-trivial payment rule, the intended

allocation xSTFM in T STFM is such that the miner has the incentive to deviate.

Given the mempool M , denote Z ⊂ M as the set of all zero-fee transactions, i.e.,

Z = {ti | ti ∈M and bi = 0}. For all game instances of T STFM where the block Bk’s size

C is less than the size of the transactions in M − Z, we have Pr(ti ∈ Bk) = 0, ∀ti ∈ Z.

That is, the miner has no incentive to add transactions in Z to Bk. This is because as the

payment rule increases with the transaction fees, the miner’s utility from greedily adding

transactions from M − Z will be strictly greater than including even a single transaction

from Z.

We now discuss DSIC and MIC guarantees for STFM with FPA and EIP-1559 payment

and burning rules.

Remark 8.3. From the perspective of the bidding agent, STFM’s allocation rule

does not change its behavior as the allocation rule satisfies Monotonicity. As such, any

instance of STFM with FPA does not satisfy DSIC, as the first-price payment rule is

well-known not to be DSIC. Furthermore, STFM with EIP-1559 satisfies DSIC only

when the underlying EIP-1559 is DSIC (refer to Chapter 3.2.4).

8.3.1.4 STFM: Cost of Fairness

Similar to CoF guarantees for BitcoinZF, Theorem 8.5 provides an upper bound on CoF

for STFM. We obtain the bound by selecting the worst-case distribution of bids which

maximize E[OPT ] and minimize E[uSTFMM ].

Theorem 8.5. For STFM with FPA, average CoFSTFM = OPT
Ex∼Γk

[uSTFM
M ]

= n
c + 1.

Here, n denotes the total transactions in M and c the maximum number of transactions

included in Bk.
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Proof. Denote C and N as the block and mempool sizes, respectively. Let OPT denote

miner’s utility from Eq. 3.10 with pt = bt and qt = 0, ∀t and uSTFMm denote miner’s

utility for T STFM . Let M comprise n transactions with fees {bi}ni=1. W.l.o.g, we consider

b1 ≥ b2 ≥ . . . ≥ bn. Let c denote the maximum number of transactions in a block. The

block size is C, and for simplification, we assume that transactions are the same size.3

Miner’s optimal utility from Eq. 3.10 is: OPT =
∑c

i=1 bi. Let X denote the utility

from sampling one transaction from M using T STFM . Then, E[X] =
∑n

i=1 Pr(ti ∈ Bk) · bi.
Further, if Xi is the utility from ith sampled transaction (out of total c transactions present

in a block), then the expected utility is given by

E[uSTFMm ] = E[
c∑

x=1

Xx] = |c|
n∑
i=1

bi Pr(ti ∈ Bk).

We get the last equation using the linearity of expectations. Therefore, the ratio of utilities

is,

OPT

E[uSTFMM ]
=

∑c
i=1 bi

|c|∑n
i=1 bi Pr(ti ∈ Bk)

For maximizing OPT
E[uSTFM

M ]
, we need to maximize the numerator and minimize the denomi-

nator. This is achieved by taking b1 = b2 = . . . = bc = b and bc+1 = bc+2 = . . . = bn = 0.

That is,
OPT

E[uSTFMM ]
=

c · b

c(
∑c

i=1 b · e
b
γ

n−c+c· e
b
γ
+ 0)

OPT

E[uSTFMM ]
=

n− c+ c · e
b
γ

c · e
b
γ

=
n

c
+ 1− e

− b
γ

Upper bound on utility-loss ( OPT
E[uSTFM

M ]
) is found when b→∞ and is equal to n

C + 1.

Note. Despite STFM satisfying ZTi and Monotonicity, Theorem 8.4 states that it is not

MIC under any monotone payment rule. To this end, we next leverage the blockchain’s

3if N and C are large enough, then with very high probability, the number of transactions n (or c) in
a pool (or block) of size N (or C) will deviate from n (or c) negligibly. This observation follows from the
Chernoff bound.
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verifiable randomness to propose rTFM a TFM that satisfies our fairness notions while

simultaneously guaranteeing MIC.

8.4 rTFM: Fairness in Transaction Fees Mechanism using

Randomization

We now propose a rTFM: a TFM that uses trusted on-chain randomness to guarantee

both our fairness constraints, namely (i) ZTi (Zero-Fee Transaction inclusion) and (ii)

Monotonicity. In addition to this, the proposed rTFM is both Miner Incentive Compatible

(MIC) and Dominant Strategy Incentive Compatible (DSIC).

We next (i) introduce randomized Transaction Fees Inclusion rTFM, (ii) show that

when paired with the payment rules of FPA and EIP-1559, preserves their incentive guar-

antees while simultaneously satisfying the fairness notions (i) Monotonicity and (ii) ZTi.

8.4.1 rTFM: Randomized TFM

We denote rTFM as the tuple T rTFM
ϕ =

(
xrTFM
ϕ ,p,q, τR

)
. At its core, rTFM com-

prises a novel allocation rule, xrTFM, and can be paired with any payment and burning

rule. The allocation rule uses two sub-procedures: (i) transaction sampling and (ii) biased

coin-toss. We first introduce these procedures and subsequently use them to formally define

xrTFM
ϕ .

8.4.1.1 Transaction Sampling

An honest miner of a block adds transactions from the mempool M to its block using

the following rules.

• Rule 1: The miner uniformly adds transactions from the mempool M to its block Bk.

But, for each transaction t ∈ Bk, the miner receives zero fees. That is, ∀t ∈ Bk, pt = 0.

Denote the Merkle tree constructed using these transactions asMTrand with root rootrand.
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• Rule 2: The miner selects the transactions optimally, i.e., using Eq. 3.10. Denote the

Merkle tree constructed using these transactions as MTopt with root rootrand.

While mining a block, the miner selects transactions and constructs Merkle trees accord-

ing to Rule 1 and Rule 2. Denote the transaction selection rule, given M , be represented

as sample(M) = ((rootrand,MTrand), (rootrand,MTopt)).

Algorithm 7 Randomized TFM (rTFM) based Mining

Input: Block Size C, Mempool M , Zero-Fees probability ϕ, parent Block Bk−1,

Target difficulty TD

Output: (MTk, Bk) Merkle Tree MTk of selected transactions and Mined block

Bk

1: procedure mineBlock(C,M, p,Bk−1)

2: ((rootzf ,MTrand), (rootopt,MTopt))← sample(M)

3: n← random() ▷ Select a random nonce

4: Bk ← (Bk−1, rootzf , rootopt, n) ▷ Construct block Bk

5: while Hash(Bk) ≥ TD do

6: n← random()

7: Bk ← (Bk−1, rootzf , rootopt, n)

8: end while

9: if Hash(Bk) ≤ ϕ · TD then ▷ Outcome of biased coin toss

10: return (MTrand, Bk)

11: else

12: return (MTopt, Bk)

13: end if

14: end procedure
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8.4.1.2 Trusted Biased Coin Toss

rTFM’s allocation rule selects one out of the two sets of transactions created from Rules

1 and 2. We now introduce an on-chain-based biased coin toss method to select between

the two sets. Let ϕ ∈ [0, 1] denote the probability of heads (or 0) and 1 − ϕ denote the

probability of tails (or 1).

From Chapter 8.1.2.1, a miner mines its block Bk at height k using the hash of the

parent block Hash(Bk−1), the random nonce rand, the block height k, the two Merkle

roots rootrand and rootrand. If the block is mined, i.e., Hash(Bk) < TD for target difficulty

TD, then the toss’ outcome is considered as follows:

O(Hash(Bk), ϕ) =


0 if Hash(Bk) < ϕ · TD

1 otherwise

(8.4)

Remark 8.4. Invoking O(Hash(Bk), ϕ) (Eq. 8.4) for a mined block Bk is equivalent

to a biased coin toss with ϕ as the probability of heads.

Proof. From Eq. 8.4, we get O(Hash(Bk), ϕ) = 1 if Hash(Bk) < ϕ·TD. For any hash func-

tion Hash : {0, 1}∗ → {0, 1}λ, the pre-image guarantee [242] implies Hash(Bk) ∈R {0, 1}λ.
However, since we are considering invocation for a mined block, we have Hash(Bk) ∈R
{0, 1, . . . , TD−1}. As such, Pr (Hash(Bk) < ϕ · TD) = ϕ. The outcomeO(Hash(Bk), ϕ) =

1 is with probability ϕ. We, therefore, get the equivalence by mapping this outcome to

“Heads” in a biased coin toss.

Given this, Algorithm 7 provides the procedural outline of xrTFM
ϕ . The procedure is

summarized as follows:

Step 1. Miner samples two merkle trees MTrand and MTopt by invoking sample(M) and

include both merkle roots rootzf and rootopt in block header Bk.
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Step 2. Miner selects a random nonce for the block header Bk until the block is mined; i.e.

Hash(Bk) < TD.

Step 3. Miner invokes biased coin toss O(Hash(Bk), ϕ) (Eq. 8.4). If the outcome is 1, then

MTopt (optimally selected transactions) is considered part of the blockchain. If the

outcome is 0, then MTrand (Merkle tree with transactions sampled uniformly from

M but with pt = 0) is considered part of the blockchain.

To summarize, Definition 8.5 formally defines xrTFM.

Definition 8.5: rTFM Allocation Rule

Given H,M and Bk, let xrTFM
ϕ denote a feasible allocation rule generated using

Algorithm 7. Formally, the set of allocated transactions xrTFM(H,M,Bk, C, ϕ) = Xk
for block Bk is obtained from (Xk, Bk)←MineBlock(C,M, p,H).

rTFM Payment and Burning Rule. The allocation rule xrTFM
ϕ can be coupled

with any payment (p) and burning (q) rules to define T rTFM
ϕ . E.g., similar to FPA,

we can create T rTFM
ϕ such that each bidding agent i whose ti ∈ Xk for (Xk, Bk) ←

MineBlock(C,M, p,H) has pFPAi = bi else pFPAi = 0. In both cases, qrTFM
i = 0.

8.4.2 rTFM: Fairness Properties.

Here, we show that T rTFM
p =

(
xrTFM,pEIP−1559,qEIP−1559, τR

)
, i.e. TFM with

rTFM transaction selection mechanism and EIP-1559 payment rule satisfies both Mono-

tonicity and Zero-Fee Transaction Inclusion properties.

Theorem 8.6. rTFM with EIP-1559 satisfies (i) Monotonicity and (ii) Zero-Fee

Transaction Inclusion for any ϕ ∈ (0, 1).

Proof. We show the proof in two steps.

253



• Monotonicity. To show that rTFM satisfies Monotonicity, we have to show that

increasing the bid bt of an arbitrary transaction t increases its probability of accep-

tance in rTFM (given the remaining bids are fixed). For this, first, let us write down

the probability of any transaction t ∈ M with bid bt getting added to the block Bk.

We have,

Pr(t ∈ Bk) = ϕ · Pr(t ∈MTopt) + (1− ϕ) · Pr(t ∈MTrand) (8.5)

Now, assume that the new bid is bt+ϵ for any ϵ > 0. If Pr(t ∈ Bk) increases in Eq. 8.5

for bt+ ϵ (compared to the bid bt), rTFM satisfies Monotonicity. Note that the term

Pr(t ∈ MTrand remains the same for both bids bt and bt + ϵ as the miner does the

allocation uniformly. The term Pr(t ∈MTopt) can only increase for bt+ϵ compared to

bt, for some ϵ. This is because, in MTopt, the miner adds the transactions optimally,

i.e., using Eq. 3.10. That is, rTFM satisfies Monotonicity.

• Zero-fee Transaction Inclusion. For any ϕ ∈ (0, 1) and Eq. 8.5, the probability

of any transaction t with bt = 0 being part of the block Bk is trivially non-zero. This

is because Pr(t ∈MTrand will be non-zero even if bt = 0.

These two steps complete the proof of the theorem.

8.4.3 rTFM : Incentive Properties

From Definition 3.23, TFMs comprise a transaction selection mechanism, xrTFM
ϕ , pay-

ment prTFM and burning qrTFM rules. We now discuss the incentive properties of T rTFM
ϕ

with payment rules of (i) First Price Auction (FPA) and (ii) EIP-1559.

First, we show that rTFM satisfies MIC for both FPA and EIP-1559 payment rules.

Moreover, rTFM is DSIC when the payment rule is EIP-1559. Following this, we also

show that rTFM satisfies fairness properties, namely (1) ZTi and (2) Monotonicity.
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rTFM with FPA. The payment rule for FPA for any selected transaction ti with bid bi is

pFPAi = bi if ti ∈ Bk and pFPAi = 0 otherwise. In both cases, the burning rule is qFPAi = 0.

Trivially, rTFM with FPA is not DSIC, while Theorem 8.8 proves that it satisfies MIC.

rTFM with EIP-1559. The EIP-1559 payment rule implies that for each bidding agent i

whose ti ∈ Bk and bi ̸= 0 has pEIP−1559
i = bi−λ and qEIP−1559

i = λ. Here, λ is the posted

price determined by the network (refer to Chapter 3.2.4). With this, Theorem 8.7 shows

that rTFM with EIP-1559 is DSIC. The mechanism is also MIC, as shown in Theorem 8.8.

Theorem 8.7. T rTFM
ϕ =

(
xrTFM
ϕ ,pEIP−1559,qEIP−1559, τR

)
with EIP-1559 pay-

ment rule satisfies Dominant Strategy Incentive Compatibility (DSIC), if λ is exces-

sively low.

Proof. Theorem 8.7 follows trivially by observing that an agent’s strategy does not depend

on rTFM’s allocation but only on the payment and the burning rule. The TFM also

satisfies Monotonicity (Theorem 8.6). Thus, the DSIC guarantee of EIP-1559 carries over

for rTFM with EIP-1559.

Theorem 8.8. T rTFM
ϕ =

(
xrTFM
ϕ ,prTFM,qrTFM, τR

)
satisfies Miner Incentive Com-

patibility (MIC) when transaction allocation rule is xrTFM
ϕ and payment scheme prTFM

and burning rule qrTFM are either (1) First Price Auction or, (2) EIP-1559.

Proof. To show that the TFMs satisfy MIC, we remark that the selecting between the

optimal and zero-fee transactions (refer Algorithm 7) is carried out by the blockchain in

a trusted manner (Eq. 8.4). As the miner has no control over the random outcome of

O(Hash(Bk), ϕ) (Remark 8.4), its strategy involves (i) optimally selecting the transac-

tions and (ii) either sampling the transactions uniformly from M , or using any other way,

or keeping them empty. For (i), we know that both EIP-1559 and FPA payment rules

satisfy MIC. For (ii), any strategy results in zero utility for the miner since the transaction
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payments are set to zero. So, the miner has no incentive to deviate from the uniform

sampling. That is, rTFM is MIC for the miner.

Note. Theorem 8.1 does not apply to rTFM as the miner does not have control over which

set of transactions are selected with xrTFM. We can trivially extend these results to show

that rTFM with FPA satisfies both fairness notions and DSIC and MIC.

8.4.4 rTFM: Choosing ϕ

rTFM’s allocation rule is parameterized by the probability ϕ of mining a block where

each transaction ti has bid bi = 0. We now discuss the impact of ϕ on CoF and the variation

in the miner’s revenue.

Cost of Fairness (CoF). From Definition 8.3, CoF is the ratio of the utilities uOPT (refer

to Eq. 3.10) and urTFM (i.e., miner’s utility when the transactions are selected according

to xrTFM
ϕ ).

The miner’s utility in rTFM is dependent on the output of random variableO(Hash(Bk), ϕ).

If O(Hash(Bk), ϕ) = 0 (occurs with probability ϕ), then each selected transaction ti has

bi = 0 resulting in zero revenue for the miner. In contrast, with probability 1− ϕ, we have

O(Hash(Bk), ϕ) = 1, such that the optimal transactions are selected. Here, the miner’s

revenue equals uOPT . That is,

Eϕ[urTFM] = ϕ · 0 + (1− ϕ) · uOPT .

This implies that, CoFrTFM = uOPT
Eϕ[urTFM] =

1
1−ϕ .

Impact of ϕ on CoF. Trivially, an increase in ϕ increases ZTi. On the other hand, this also

increases CoF, reducing the miner’s revenue. However, since rTFM (with an appropriate

payment rule) is MIC, we believe that the system designers must choose an appropriate

ϕ which (i) incentivizes the miner to not abstain from the system and (ii) allows for a

desirable percentage of zero-fee transactions that increases the cryptocurrency’s market

penetration.
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Figure 8.1: Empirical CoF for the distributions: (D1) Uniform, (D2) Truncated Gaussian

and (D3) Exponential.

Coefficient of Variation (CoV). An increase in ϕ not only decreases the miner’s ex-

pected revenue but will also increase its variance. More concretely, denote σOPT as the

standard deviation and πOPT as the miner’s expected utility when it optimally selects the

transactions. Likewise, σrTFM and πrTFM are the standard deviation and expectation in

the miner’s utility from rTFM. We know that the Coefficient of Variation (CoV) is given

by σ
µ . By trivial arguments, we know the following:

CoVOPT =
σOPT
uOPT

= 1 and CoVrTFM =
σrTFM

Eϕ[urTFM]
=

(
1− ϕ

ϕ

)1/2

Ideally, we want to choose ϕ such that CoV 2
OPT /CoV 2

rTFM is maximized. Towards this, we

observe that as ϕ→ 0, the CoV ratio increases monotonically.

Choosing ϕ. The trade-off between (1) CoF, (2) CoV and (3) ZTi (probability of accepting

zero-fee transactions) is such that as ϕ increases, CoF increases, CoV-ratio decreases, and

ZTi increases. If we wish to increase the number of accepted zero-fee transactions, we

must compromise with utility and suffer higher variance. Given these three factors and a

suitable trade-off, the blockchain network must decide on an appropriate ϕ.

Discussion. Table 8.2 tabulates the results presented in this chapter. In summary, both

STFM and rTFM satisfy ZTi and Monotonicity, with rTFM also being MIC (for an

appropriate payment rule). However, STFM is relatively simpler to implement since it

only requires miners to adapt to the new allocation rule. In contrast, rTFM will require
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Table 8.2: Summary of our results. In conclusion, for appropriate payment and burning

rules, rTFM simultaneously satisfies MIC and our novel fairness notions.

TFM DSIC MIC Monotonicity ZTi

EIP-1559 [43] ⋆ (Rem. 8.1) (Rem. 8.1)

Uniform TFM [62] (Rem. 8.2) (Rem. 8.2)

BitcoinZF [258] ‡ (Clm. 8.1) (Thm. 8.2) † (Thm. 8.2)

STFM + FPA (Rem. 8.3) (Thm. 8.4) (Thm. 8.3) (Thm. 8.3)

STFM + EIP-1559 ⋆ (Rem. 8.3) (Thm. 8.4) (Thm. 8.3) (Thm. 8.3)

rTFM + FPA (Thm. 8.8)

rTFM + EIP-1559 ⋆ (Thm. 8.7) (Thm. 8.8) (Thm. 8.6) (Thm. 8.6)

†: Only if ∀ ti ∈M with bi = 0 we have si ≤ C1−α.

⋆: Only if λ is not excessively low

a fork of the blockchain. The coin-toss mechanism introduced for rTFM also requires

a PoW blockchain, which is often resource-intensive. Future work can extend rTFM’s

allocation rule for other blockchains (e.g., Proof-of-Stake blockchains).
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Figure 8.2: Zero-fee Inclusion (ZFi) for the distributions: (D1) Uniform, (D2) Truncated

Gaussian and (D3) Exponential.
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8.5 Simulations

We now empirically validate STFM’s performance with regard to the loss in the miner’s

utility and the fraction of zero-fee transactions included in the block.

8.5.1 Experimental Setup & Performance Measures

To simulate STFM, we need to configure the size of the mempool M , block size C,

temperature parameter γ, and each agent’s transaction fees and their sizes. In our experi-

ments, we vary the ratio of the sizes of the mempool and block size, say size(M)
size(C) , in the set

{1.1, 1.3, 2, 4, 10} and γ ∈ [0.1, 50]. To concretely mimic all possible real-world scenarios,

for each ti ∈ M , the agent i samples its bid bi from the following three distributions4:

(D1) Uniform, i.e., bi ∼ U [0, 5], (D2) Truncated Gaussian, i.e., bi ∼ N (5, 4), and (D3)

Exponential, i.e., bi ∼ Exp(λ = 1).

Likewise, for each ti ∈ M , the agent i samples the transaction’s size si ∼ Exp(λ = 1).

This choice is reasonable since smaller transactions (e.g., payer-payee token transfer) are

more common than larger transactions (e.g., smart contract deployment). To measure

STFM’s performance, we also define the following measures.

1. Empirical CoF. This is the ratio of the miner’s utility by greedily adding transactions

to the block with the utility from STFM’s allocation. The smaller the CoF, the better.

2. Zero-fee Inclusion (ZFi). ZFi is the ratio of the size of zero-fee transactions in the block

with the total size of all the transactions in the block.

For each size(M)
size(C) and γ, we sample the agent’s bids based on D1, D2 and D3. We simulate

the resulting game instances 100 times and report the average CoF and ZFi values.

8.5.2 Results & Discussion

Figure 8.1 and Figure 8.2 depict our results. Details follow.

4We observe similar trends for other distribution parameters.
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Empirical CoF: Miner’s Utility Ratio. We first discuss the change in CoF with varying

γs and size(M)
size(C) values for D1, D2 and D3. For all three distributions, we observe a consistent

increase in CoF as γ increases, i.e., γ ↑ =⇒ uM ↓. For γ ∈ (0, 1), CoF is < 1.5 implying

that miner’s utility drop is > 0.67 times OPT. For γ ≥ 1 CoF increases, but remains < 2.5

for D1, D2 and < 3.5 for D3. E.g., for γ = 5 and the worst-case value of size(M)
size(C) = 10, CoF

values are 1.88 (D1), 1.63 (D2) and 2.93 (D3).

Furthermore, one way to interpret decreasing size(M)
size(C) is an increase in the block size,

size(C). As size(C) → size(M), the randomized allocation adopted with STFM plays

a lesser role as the block gets large enough to accommodate most transactions. From

Figure 8.1, we see that decreasing size(M)
size(C) decreases CoF, i.e., an increase in the miner’s

utility.

Zero-fee Inclusion (ZFi). We empirically show that STFM admits zero-fee transactions

with Figure 8.2. For varying γ, we plot the ratio of the size of zero-fee transactions included

in the block with the total block size (aka ZFi). We make five major observations. First,

for γ ∈ (0, 1] and high size(M)
size(C) , ZFi values are ≈ 0. Second, ZFi consistently increases as γ

decreases. Third, for γ > 5, ZFi values almost saturates at ≈ 0.3 (D1, D2) and ≈ 0.6 (D3)

for all values of size(M)
size(C) . Fourth, as size(M)

size(C) decreases, we observe significant ZFi even for

γ ∈ (0, 1). This is because smaller size(M)
size(C) implies enough room for most of the available

transactions. Lastly, since with D3, there is a greater chance of sampling lower bis, its ZFi

values are greater than D1 and D2.

The green shaded region depicts the range of γ with a practical CoF-ZFi trade-off.

Specifically, for γ ∈ (2, 10), we observe CoF < 2 and ZFi > 0.1, for all three distributions.

8.6 Conclusion

In this chapter, we focused on the need for fairness in TFMs regarding the transaction

fees for the transaction creators. We argued that including zero-fee transactions is necessary

for the greater adoption of cryptocurrencies. We introduced two novel fairness notions:
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Zero-fee Transaction Inclusion (ZTi) and Monotonicity. We showed that existing TFMs

do not satisfy at least one of these notions or do so for smaller transaction sizes and

at a high cost to the miner’s utility. To resolve these limitations, we first introduced

STFM, which samples transactions through the distribution generated from the softmax

with temperature (γ) function. We showed that STFM is a fair TFM but not MIC. To this

end, we introduced rTFM which simultaneously satisfies MIC and our fairness notions.

Future Work. We believe these fair TFMs may further democratize cryptocurrencies

by contributing to their broader accessibility and enhancing their adoption in the market.

Future work can further study the role of ϕ in rTFM towards striking a desirable balance

between a miner’s revenue and the fraction of zero-fee transactions included. Last, as

aforementioned, one can also explore extending rTFM for Proof-of-Stake blockchains.
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Chapter 9

Designing Redistribution Mechanisms for Reducing

Transaction Fees in Blockchains

Transaction Fee Mechanisms (TFMs) allocate agent transactions to blocks

and determine their payments (i.e., transaction fees). Increasing demand

and scarce block resources have led to high agent transaction fees. As

these blockchains are a public resource, it may be preferable to reduce

these transaction fees. To this end, we introduce Transaction Fee Re-

distribution Mechanisms (TFRMs) – redistributing VCG payments col-

lected from such TFM as rebates to minimize transaction fees. Classic

redistribution mechanisms (RMs) achieve this while ensuring Allocative

Efficiency (AE) and Agent Incentive Compatibility (DSIC). Our first re-

sult shows the non-triviality of applying RM in TFMs. More concretely,

we prove that it is impossible to reduce transaction fees when (i) trans-

actions that are not confirmed do not receive rebates and (ii) the miner

can strategically manipulate the mechanism. Driven by this, we propose

Robust TFRM (R-TFRM): a mechanism that compromises on an honest

miner’s individual rationality to guarantee strictly positive rebates to the

agents. We then introduce robust and rational TFRM (R2-TFRM) that

uses trusted on-chain randomness that additionally guarantees miner’s
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individual rationality (in expectation) and strictly positive rebates. Our

results show that TFRMs provide a promising new direction for reducing

transaction fees in public blockchains.

⋆ ⋆ ⋆ ⋆ ⋆

9.1 Introduction

In Chapter 3.2.2.4 and Chapter 8 we introduce Transaction Fee Mechanisms (TFMs)

and present a fair TFRM, namely rTFM, respectively. In a nutshell, TFMs study the

strategic interaction between the miner and the transaction creators (henceforth referred to

as agents). Unfortunately, as previously discussed, an increasing demand, cryptocurrency’s

market volatility, and supply-demand economics have led to agents’ over-paying [24]. E.g.,

Messias et al. [193] show that 30% of Bitcoin fees are two orders of magnitude more than

recommended.

Considering public blockchains as a shared resource, it’s desirable not to impose charges

for transaction confirmation. However, given the infeasibility of confirming every transac-

tion due to resource constraints, one may prefer only to confirm transactions with higher

value (pertaining to their importance to agents). The absence of transaction fees could lead

agents to misrepresent the value of their transactions to secure confirmation. Therefore,

this chapter aims to design TFMs that minimize transaction fees while upholding other

incentive-related properties.

Clearly, minimizing transaction fees is at odds with the miner’s objective of maximizing

revenue. Thus, the task of designing TFMs to minimize fees is more intricate than in the

classical auction setting, primarily because, in TFMs, miners have complete control over

the transactions they include in their blocks [245].
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9.1.1 Chapter Contributions

9.1.1.1 Goal

We aim to design a TFM that satisfies certain game theoretic properties like (i) Al-

locative Efficiency (AE), confirmed transactions maximize the overall valuation, (ii) Agent

Incentive Compatibility (DSIC): agents bid their true valuation, and Individual Rationality

(IR): agents receive a non-negative utility. At the same time, the TFM must actively re-

duce transaction fees for agents, thereby enhancing the blockchain’s appeal. Unfortunately,

from the famous Green-Laffont Impossibility Theorem [188], we know that it is impossible

to design a TFM that is both AE and DSIC and which guarantees zero net transaction

fees – in mechanism design commonly referred to as strong budget balance.

Given this, our objective is to design a TFM that is both AE and DSIC while minimizing

the transaction fees (or is weakly budget balanced). Motivated from Maskin et al. [188], the

mechanism design literature proposes the use of Groves’ Redistribution Mechanism (RM)

for this purpose [49, 132, 188]. In Groves’ RM, the VCG mechanism is executed, and then

the surplus money is redistributed among the agents while preserving other game-theoretic

properties.

Along similar lines, this chapter introduces Transaction Fee Redistribution Mechanisms

(TFRMs): a general class of TFMs based on RMs where the miner offers rebates from

the transaction fees collected to the agents while retaining AE, DSIC, and IR. By offering

agents rebates, TFRMs, in effect, reduce the transaction fees they pay. Figure 9.1 provides

an overview.

9.1.1.2 TFRM: Challenges

Designing such TFRMs has the following primary challenges.

Miner IC (MIC): As miners possess complete control over the transactions included in

their blocks [245], they may deviate from the intended TFM allocation rule (i.e., select-
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Figure 9.1: Overview of the framework for Transaction Fee Redistribution Mechanisms

(TFRMs).

ing a different subset from the mempool). They may introduce “fake” transactions (i.e.,

transactions created strategically to increase their revenue) into their blocks [245]. This is

similar to shill bidding [231] in traditional auctions. Thus, it is imperative that a TFRM

maintains AE, DSIC, and low transaction fees even in the face of miner manipulation (or,

alternately, in the presence of a strategic miner).

Roughgarden [245] introduces the notion ofminer IC (MIC) to model the miner’s strate-

gic behavior. In auction theory, the Myerson-Satterthwaite impossibility theorem [202]

states that it is impossible to design a mechanism that is AE, IR, weakly budget balanced,

and IC for both sides of the market. Designing TFRMs is analogous to such a two-sided

auction, and achieving both sides’ IC (with other properties) is elusive.

Agent IC (DSIC): Typically, RMs ensure DSIC by offering rebates to everyone participating

in the auction (irrespective of the allocation). In TFRMs, the transactions that are only

part of the mempool (i.e., are not part of the block) are not available to the blockchain.

Thus, unlike RMs, in TFRMs, we cannot offer rebates for each available transaction. As

some transactions do not receive rebates, we can easily construct instances where the agents

of these transactions have an incentive to overbid to get included in the block and receive

rebates. Thus, ensuring DSIC in TFRM is non-trivial. As such, we propose restricted
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DSIC (RDSIC), which ensures that bidding truthfully is a weakly dominant strategy only

for the agents whose transactions are included in the block.

9.1.1.3 Chapter Contributions

Broadly, we (i) formally introduce TFRMs (refer to Figure 9.1 for an overview), (ii)

analyze the challenges due to miner manipulation in vanilla-TFRMs, and (iii) introduce two

novel TFRMs, namely R-TFRM and R2-TFRM that are robust to miner manipulation.

We discuss these in detail next.

1. Ideal-TFRM. As we cannot offer rebates to all transactions in the mempool, we begin

our analysis with an “Ideal-TFRM” that offers non-zero rebates only to confirmed trans-

actions. Unfortunately, we show that it is impossible for Ideal-TFRM to satisfy DSIC

while offering non-zero rebates to confirmed transactions (Theorem 9.1).

2. TFRM: Effect of A Strategic Miner. We shift our focus to TFRMs that provide

rebates to all transactions included in the block. An RM’s effectiveness is measured

using the Redistribution Index (RI) [132], which is the fraction of the VCG surplus

redistributed. To absorb the effect of strategic miners, we introduce Resilient Redis-

tribution Index (RRI). RRI measures the fraction of redistributed funds under optimal

miner manipulation. We prove that it is impossible to design a TFRM that satisfies AE,

RDSIC, and is IR for both agents (IRu) and miners (IRM), while guaranteeing strictly

positive RRI (Theorem 9.2).

3. Robust TFRM (R-TFRM). Given these impossibilities, we propose R-TFRM: a

TFRM that guarantees strictly positive RRI and satisfies all agent-specific properties.

However, R-TFRM is not individually rational for the miner1.

1We remark that miners, or block proposers in general, often have alternate revenue streams (e.g., block
rewards [203] or attestation rewards [260]). These rewards can primarily help absorb the reduction in
revenue due to reduced transaction fees. They may also alleviate the lack of IRM guarantee in R-TFRM.
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At its core, R-TFRM builds on an RM with VCG payments as transaction fees and

a linear rebate function. The rebate function maximizes the worst-case rebate while

satisfying RDSIC, IRu, and Approx-IRM. Designing such a rebate function is equivalent

to solving the linear program in Figure 9.4 for its coefficients. We finally show that the

payments are reduced by a fraction k/n, where k transactions are confirmed out of

the n included in the block (Theorem 9.4). The fraction remains the same, even with

miner manipulation, i.e., RRI is also k/n. In other words, each confirmed agent sees

a reduction by (1 − k/n) in its transaction fee compared to the equivalent VCG-based

TFM.

4. Robust and Rational TFRM (R2-TFRM). R-TFRM ensures positive RRI by

compromising IRM. Another way of ensuring positive RRI is by randomly offering

rebates to the agents. Such an approach guarantees IRM, in expectation. R2-TFRM

uses this approach wherein each agent receives the rebate given by R-TFRM with

probability α and does not receive any rebate probability 1 − α. The randomization

is carried out by the blockchain in a trusted manner [62]. Theorem 9.5 shows that for

α ∈ (0, α) & α < 1, R2-TFRM is AE, IRu, and RDSIC and IRM, in expectation.

Further, it ensures an expected RRI of α · k/n.

9.1.2 Chapter Notations and Additional Background

This chapter extends the Transaction Fee Mechanism (TFM) design literature intro-

duced formally in Chapter 3.2.2.4. As such, we follow the notations from Chapter 3.2.2.4.

The solution concepts focused on in this chapter include DSIC in the TFM context (Defini-

tion 3.22) and Miner Incentive Compatibility (MIC) (Definition 3.23). To design Transac-

tion Fee Redistribution Mechanisms (TFRM), we also rely on Redistribution Mechanisms

(RMs), formally introduced in Chapter 2.2.5.7. The notations used in this table are sum-

marized in Table 9.1.
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9.1.2.1 TFM: Model

The TFM model considered in this chapter differs (slightly) compared to the original

model from Chapter 3.2.2.4, or the ‘fairer’ TFMs presented in Chapter 9. Particularly, (i)

we assume that all transactions are of the same size2, and (ii) we extend the block space so

that it contains confirmed transactions and included (or price-setting) transactions. More

formally, our TFM definition is as follows:

Definition 9.1: Transaction Fee Mechanism (TFM) [62, 245]

Consider the TFM model from Definition 3.21 such that for any two transactions

i, j (i ̸= j) in the mempool M , are of the same size, si = sj . Given a bid profile b,

we define TFM as the tuple T := (xI ,xC ,p) where:

• xI is a feasible block inclusion rule, i.e.,
∑

i∈M xIi (b) ≤ n where xIi (·) ∈ {0, 1}.
Let the set of included transactions be I = {i|xIi = 1, i ∈M}

• xC is a feasible block confirmation rule, i.e.,
∑

i∈M xCi (b) ≤ k where xCi (·) ∈
{0, 1}. Let the set of confirmed transaction be C = {i : xCi = 1, i ∈M}

• p is the payment rule with the payment for each included transaction, i.e.,

∀i ∈ xI the payment is denoted by pi(b,x
I ,xC).

We use the example of a second-price TFM to explain Definition 9.1 better.

2From Chapter 2.2.5.7, this assumption makes our TFM setting analogous to the Redistribution Mech-
anism (RM) setting with homogeneous items with unit demand.
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Example 9.1: Second-price TFM (SPA) [62, 245]

W.l.o.g., assume that b = (b1, . . . , bm) are bids in decreasing order. Now, the in-

clusion rule is xIi = 1, ∀i ∈ {1, . . . , n} and zero otherwise, i.e., the top n trans-

actions are included in the block. With k = n − 1, the confirmation rule is

xCi = 1, ∀i ∈ {1, . . . , k} and zero otherwise. The top k (among n) transactions

are confirmed, and the last included transaction is the price-setting transaction.

Each confirmed agent i ∈ [k] pays pi = bk+1 to the miner and unconfirmed agent

(i ∈ I \ C) pays pi = 0. The miner’s net revenue is k · bk+1.

9.1.2.2 TFM: Additional Incentive Properties

For this chapter’s purposes, we will need an additional set of properties over the ones

already defined in Chapter 3.2.2.4. We begin by defining Individual Rationality.

9.1.2.2.1 Individual Rationality (IR). To incentivize participation, mechanism de-

signers also focus on IR (first introduced in Chapter 2).

Definition 9.2: (Ex-post) Individual Rationality (IR)

Given a TFM T = (xI ,xC ,p), we say that it satisfies IR for both the agent and

miners if their utility post participation in the mechanism is non-negative, i.e.,

ui(·) ≥ 0,∀i ∈M and uM(·) ≥ 0.

Note. We denote a mechanism that is IR w.r.t. miner as IRM and IR w.r.t. agent as IRu.

As we show later, ensuring DSIC while minimizing transaction fees in a TFM is chal-

lenging. Hence, we focus on the incentive compatibility of a ‘restricted’ set of agents whose

transactions are included in the block. We define restricted DSIC (RDSIC), which states

that for all the included agents, reporting truthfully is IC irrespective of what the remaining

included agents report.
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Definition 9.3: Restricted DSIC (RDSIC)

Given a TFM T = (xI ,xC ,p), we say that RDSIC is satisfied if, ∀i included in the

block i.e., ∀i ∈ I we have,

ui(θi, b
⋆
i = θi,bI\i) ≥ ui(θi, bi,bI\i),∀θi,bI\i

where bI\i is the bids of agents included in the block excluding agent i.

We will also study other game-theoretic properties such as Allocative Efficiency (Defi-

nition 2.18) and (strong) budget balance (Definition 2.19).
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Notation Definition

TFM Model

H Blockchain history

M := {1, . . . ,m} Mempool (set of outstanding transactions)

xI Block inclusion rule

xC Block confirmation rule

p Payment rule

T := (xI ,xC ,p) TFM Tuple

b := {b1, . . . , bm} Bids present in the mempool

Θ := [θi] Set of valuations with each agent i’s valuation θi

n ∈ Z≥1 Number of included transactions

k ∈ Z : k ∈ [1, n] Number of confirmed transactions

bI Bids of users included in the block

bI\i Bids of users included in the block without agent i

ui(θi,b) Utility of agent i

F Set of fake transactions added by the miner

uM(F,b) Utility of the miner

TFRM Model

g(·) Rebate Function

ri Rebate to user i

ci ∈ R, ∀i ∈ bI Rebate function constants

ewc and eavg Worst-case/Average Redistribution Index

êwc Resilient Redistribution Index (RRI)

Table 9.1: Chapter Notations
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9.2 Ideal-TFRM: Impossibility of Achieving Strictly Positive

Redistribution Index

We now present a first attempt at implementing an RM for minimizing transaction

fees using the second-price TFM from Example 9.1). In a second-price TFM, the trans-

actions/bids are sorted in decreasing order. The top k bids are confirmed with the

n = (k + 1)th transaction as the price-setting one. Each confirmed transaction pays

p = bk+1; with the net miner revenue as k · bk+1. To minimize the agent fees, we must

“redistribute” the collected surplus.

It may be preferable to only provide rebates to agents whose transactions are confirmed

(i.e., are among the top k bids) since each such agent pays bk+1. If we also provide rebates

to the remaining n − k agents, the remaining transactions in the mempool may prefer to

overbid just enough to get included in the block. By doing so, they can grab rebates for

free3. Thus, to achieve DSIC, we must not provide rebates to unconfirmed transactions.

With this motivation, we propose the following.

Ideal-TFRM. The goal is to maximize the fraction of VCG payments redistributed to

the agents, denoted by f while ensuring non-zero rebates only to confirmed transactions.

Further, in Ideal-TFRM, we would like the rebate offered to each agent to be less than the

payment it makes. Eq. 9.1 captures this optimization.

maxri,i∈x f s.t.
∑

i∈C ri ≥ f ·∑i∈C pi

and pi ≥ ri, ∀i ∈ C and ri = 0, ∀i ∈ I \ C

 (9.1)

Here, ri = g(b1, b2, . . . , bi−1, bi+1, . . . , bn) is the rebate (Definition 2.24) for each agent

i ∈ M with pi as the VCG payment. The goal is to find an optimal g(·) such that ewc is

maximized.

3Assigning future costs to transactions not confirmed, e.g., as in [62], may help overcome such manipu-
lation. We leave the analysis for future work.
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Unfortunately, we now show that for both the worst and average-case, Ideal-TFRM

admits zero rebates for the agents with confirmed transactions, i.e., ri = 0, ∀i ∈ xC while

guaranteeing DSIC.

9.2.1 Worst-case Rebate

Theorem 9.1 formally shows the impossibility of simultaneously guaranteeing DSIC and

minimizing transaction fees in Ideal-TFRM.

Theorem 9.1 (Ideal-TFRM Impossibility). If r⋆ is an anonymous rebate function that

satisfies Theorem 2.7, no Ideal-TFRM can guarantee a non-zero redistribution index

(RI) in the worst case.

Proof. Consider the bid vector, (v1, . . . , vn) and a DSIC rebate function r⋆i = g(v−i) as

given by Theorem 2.7 satisfying Equation 9.1. W.l.o.g we assume r⋆1 = g(v2, . . . , vn) > 0,

that is agent 1 receives strictly positive rebate. Further r⋆n = g(v1, . . . , vn−1) = 0 since

the last agent is not confirmed and receives strictly zero rebates as per the constraint of

Eq. 9.1. We now construct another bid vector (v′1, . . . , v
′
n) such that v′1 = vn, v

′
2 = v1, v

′
3 =

v4, . . . , v
′
n = vn−1. Under this bid profile, r⋆1 = g(v′2, . . . , v

′
n) = g(v1, . . . , vn−1) = 0, since

for agent n, r∗n = 0. Hence, the worst-case refund for the first agent will be 0, contradicting

our assumption that r⋆1 > 0. Similarly, we can construct bid vectors to show that for every

agent i ∈ C, the worst case refund r∗i = 0.

9.2.2 Average-case Rebate

Theorem 9.1 shows that ewc = 0 in Ideal-TFRM, for a linear rebate function. We now

aim to find a non-linear rebate function that maximizes eavg in Ideal-TFRM. However, it

is analytically intractable to characterize similar results to show the outcome of a rebate

function that maximizes eavg. As such, we simulate the optimization in Eq. 9.1 as a Neural

Network (NN), similar to [184, 270, 90].
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9.2.2.1 Architecture & Setup

We consider a typical 3-layer feed-forward NN with bias, ReLU activation, and with

AdamW optimizer. The input to our NN is the n-dimensional bid vector bI sampled from

a specific distribution. Each hidden layer comprises 2n neurons, with n as the output

layer’s dimension. Given bI , the NN computes the payments and rebates to the confirmed

and included transactions.

9.2.2.2 Loss Function

For optimization, our loss function is a weighted sum of the following three quantities: (i)

average rebate to the n bidders (denote as ravg), (ii) feasibility, i.e.,
∑

i ri ≤
∑

i pi (denote

as rfeas) and (iii) zero-rebate, i.e., ri = 0,∀i ∈ I \ C (denote as rzero. More concretely, for

weights β1, β2 ∈ (0, 1) the loss function takes the form: Loss = ravg + β1 · rfeas + β2 · rzero.

9.2.2.3 Training Details

We keep n = 10 with number of confirmed transactions as k = 7. For the optimizer, we

choose a fixed learning rate η = 5e − 4. The batch size is 1000, and we train for 50,000

epochs. The code is available with the supplementary.

9.2.2.4 Results

We observe that eavg ≈ 0 when transactions are sampled from U [0, 1] and N (0, 1). That

is, the average case rebate to confirmed transactions is zero, even with non-linear rebate

functions.

We conclude that it is impossible to design a TFRM with a linear rebate function that

is DSIC (Theorem 2.7) and offers a non-zero rebate to any agent. Our experiments also

highlight the same for non-linear rebate functions. Therefore, the next section introduces

the general TFRM framework, where we focus on restricted DSIC.
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1. Inclusion Rule (xI). Select highest n transactions from the mempool, M .

W.l.o.g., assume that these n transactions are ordered as b1 ≥ b2 ≥ . . . ≥ bn =⇒
xIi = 1, ∀i ∈ {1, . . . , n}.

2. Confirmation Rule (xC). Select highest k bids from the n included, xCi = 1, ∀i ∈
[k], where k ≤ n− 2.

3. Payment Rule (p). Each confirmed agent i (i.e., i ∈ C) pays pi = bk+1− ri. Each

included but not confirmed agent j (j ∈ I \ C) pays pj = −rj .

4. Miner Revenue Rule. The miner receives the net revenue of
∑n

i=1 pi.

Figure 9.2: Transaction Fees Redistribution Mechanism (TFRM): General Framework

9.3 Transaction Fee Redistribution Mechanism (TFRM)

As both eavg ≈ ewc = 0 for Ideal-TFRM, we must also provide rebates to agents whose

transactions are included but not confirmed. With this, we present the general TFRM

framework in Figure 9.2.

In a TFRM, out of the m outstanding transactions in the mempool, we include the

n highest bids in the block (denoted by the set I). Among the bids in the block, we

confirm the k highest bids (denoted by the set C) where n ≥ k + 2. The remaining bids

(denoted by the set P ) are included but not confirmed; we refer to them as included or

price-setting transactions. That is, |I| = n, |C| = k and |P | = n − k. W.lo.g., we assume

that b1 ≥ b2 ≥ . . . ≥ bn. Hence, C = {b1, . . . bk} and P = {bk+1, . . . , bn}. Each agent

i’s payment is computed based on the VCG payments and a rebate function, with ri as

the rebate to agent i. Since k bids are confirmed, the VCG payment for the confirmed

transactions is the (k + 1)th highest bid, i.e., bk+1.
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9.3.1 TFRM: RDSIC

While the rebate function satisfies Theorem 2.7, note that TFRM is not DSIC. E.g.,

agents not part of the block may report b > θ to grab the additional rebate, as only

confirmed bids pay the transaction fee. However, TFRM satisfies RDSIC, i.e., it is DSIC

for agents included in the block to bid their true valuation. All included agents, confirmed

or not, are offered rebates, implying that k slots offered to n agents is equivalent to the

allocation of k resources among n agents. Thus, by Theorem 2.7, TFRM is RDSIC.

We now show that in the presence of a strategic miner, the TFRM in Figure 9.2 results

in net zero rebates to confirmed agents.

9.3.2 TFRM: Effect of Strategic Miners

In general, strategic miners may introduce fake transactions to increase their revenue. In

the second-price TFM itself (Example 9.1), the miner may introduce a fake bid b̂k+1 = bk

to increase its revenue to k · bk from the intended k · bk+1. Similarly, fake transactions

can also affect the rebate offered by a TFRM. The miner’s deviation may result in the

following: (i) Fake bids affect the rebate of all agents, potentially reducing the rebate, and

(ii) As a fake bidder, the miner pays the rebate to itself.

Thus, designing TFRMs to minimize transaction fees may only work if made resilient to

such strategic manipulations. Unlike RMs, TFRMs must quantify the rebate redistributed

to the genuine agents. Towards this, we define the following metric:

Definition 9.4: Resilient Redistribution Index (RRI)

Given that the miner manipulates the bids b to b̂, RRI is the fraction of the received

payments that are redistributed in the worst case to the actual agents. Given C

confirmed and P unconfirmed agents, let S ⊆ I be the subset of agents that are not

impersonated by the miner. Then: êwc = inf b̂,p(:,b̂)̸=0

∑
i∈S ri

p(·;b̂) .
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9.3.3 TFRM: Impossibility of Strictly Positive RRI

It is desirable to have a TFRM that is AE, RDSIC, IRM and IRu while ensuring strictly

positive RRI in the worst-case, i.e., êwc > 0. Unfortunately, Theorem 9.2 proves that it is

impossible to design such a TFRM with strategic miners.

Theorem 9.2 (TFRM: RRI Impossibility). Given a strategic miner, it is impossible

to design a TFRM with a linear rebate function that is RDSIC, AE, both IRu and IRM,

and guarantees a strictly positive RRI, i.e., êwc > 0.

Proof. Consider selecting k transactions from the total included n with n − k as price-

setting transactions. Any deterministic linear rebate function that is RDSIC must have

the following form (from Theorem 2.7):

ri = c0 + c1b1 + . . .+ bici+1 + . . .+ cn−1bn

The above ris satisfy both IRu and IRM only when the constants ci = 0,∀i = 1, . . . , k.

The proof for this can be found in [133, Claim 1]. Hence, in the rebate function, the top

k agents have the following form:

ri = ck+1bk+2 + . . .+ cn−1bn, ∀i ≤ k

The rebate offered for the price-setting transactions is given by,

rk+1 = ck+1bk+2 + . . .+ cn−1bn

rk+2 = ck+1bk+1 + . . .+ cn−1bn

...

rn = ck+1bk+1 + . . .+ cn−1bn−1

Now, consider the following miner deviation:

b̂k+1 = bk, b̂k+2 = . . . = b̂n = 0
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The total VCG payments obtained is kb̂k+1 = kbk and ri = 0, ∀i ≤ k+1. Hence the top

k+1 transactions receive zero rebate. Now the miner has impersonated as k+2, . . . , n price

setting agents. Hence the miner receives back the rebate of rk+2 = . . . = rn = ck+1b̂k+1 =

ck+1bk. Therefore the effective redistribution to the agents is
∑k

i=1 ri = 0 =⇒ êwc = 0.

From these results, we establish that preventing agent manipulation entirely is not pos-

sible in the TFRM framework. Therefore, we focus on ensuring Restricted DSIC (RDSIC),

which ensures that agents of transactions included in the block will not misreport their

values. Further, we know from Theorem 9.2 that even with RDSIC, any known RM that

satisfies all the desirable properties can be easily manipulated by the miner. The theo-

rem also shows that the manipulation will lead to strictly zero rebate. Thus, in the next

section, we propose Robust TFRM (R-TFRM), which relaxes IRM, to ensure a positive

rebate even with miner manipulation.

9.4 R-TFRM: A TFRM Robust to Miner Manipulation

To ensure strictly positive RRI, we compromise on IRM, i.e., the utility of an honest

miner may be negative. However, we ensure that when the miner is strategic, it can always

guarantee itself a non-zero utility. We denote such a TFRM that is resilient to miner

manipulation by Robust TFRM (R-TFRM). Designing R-TFRM involves constructing

an appropriate rebate function. We focus on a linear rebate function that maximizes the

worst-case redistribution index RRI while ensuring IRu. We still want RDSIC; hence, we

use the rebate function as given in Theorem 2.7.

9.4.1 IRu Constraints

Each included agent must have a non-negative utility, i.e., ui ≥ 0,∀i ∈ I. W.l.o.g., we

assume that b1 ≥ b2 ≥ . . . bn and IR for agent n is ensured when rn ≥ 0 as un = rn. In

Claim 9.1, we show that ri ≥ 0, ∀i if rn ≥ 0; hence R-TFRM will be IRu.
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Maximize: f ▷RRI

Subject to: For every b ≥ 0,

rn ≥ 0 ▷IRu
n∑
i=1

ri ≤ k · bk ▷Approx-IRm

k∑
i=1

ri ≥ f · k · bk+1 ▷Worst-case Fraction

where ri = c0 + c1b1 + . . .+ ci−1bi−1 + cibi+1 + . . .+ cn−1bn

Figure 9.3: R-TFRM: Linear Program for Rebate Function with Approx-IRm

Claim 9.1. R-TFRM with n included transactions and rebates (r1, . . . , rn) is agent

IR (IRu) if rn ≥ 0.

Proof. Suppose there exists a bid vector b = (b1, . . . , bn) and some agent i < n such that

ri < 0. ri is computed using b−i, i.e, ri = c0+c1b1+. . .+ci−1bi−1+cibi+1+. . .+cn−1bn. Now,

consider a new bid vector b
′
s.t., b

′
1 = b2, b

′
2 = b3, . . . , b

′
n = 0. Observe that b

′
−n = b−i,

hence ri(b−i, ·) = rn(b
′
−n, ·) < 0. Thus, TFRM will be IRu if for any bid vector rn ≥ 0.

9.4.2 Approx-IRM Constraints

In any classic RM, to ensure IRM, there is an additional constraint to ensure that the

total rebate is less than the VCG payments, i.e.,
∑

i ri ≤ k ·bk+1. We modify this constraint

to ensure
∑

i ri ≤ k · bk. This change is because a strategic miner can manipulate the VCG

auction to insert a fake bid b̂k+1 = bk. Figure 9.3 describes the linear program to solve for

such a rebate while maximizing the RRI fraction f .
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Maximize: f

Subject To:
∑i

j=k cj ≥ f, ∀i ∈ {k, . . . , n− 1}

(n− k) · ck ≤ k and n

n−1∑
j=k

cj ≤ k

n

k+i−1∑
j=k

cj + (n− k − i) · ck+i ≤ k, ∀i ∈ [n− k − 1]

Figure 9.4: R-TFRM: Linear Program Independent of the bid vector b

We now aim to write the linear program in Figure 9.3 such that it is only dependent on

n, k, c′is and independent of the bid vector, b. For this purpose, we now state the following

claims.

Claim 9.2. If c0, . . . , cn−1 satisfy IRu and Approx-IRM, then ci = 0 for i = 0, . . . , k−
1.

Proof. First, we show that c0 = 0. Consider a bid vector b̂i = 0 for all i, then for IRu we

must have c0 ≥ 0 (from Claim 9.1). To satisfy Approx-IRM, we must have c0 ≤ 0 hence

c0 = 0. If ci = 0, ∀i, we are done hence consider j = min{i|ci ̸= 0}. Let j < k, then from

IRu constraint we have that rn = c0 + c1b̂1 + . . . + cn−1b̂n−1 ≥ 0. Consider a bid vector

s.t. b̂i = 1 for i ≤ j and b̂i = 0 for the rest. For this, rn = cj therefore cj ≥ 0. While the

Approx-IRM constraint states that r1+ . . .+rn ≤ kbk for the above bid vector b̂, we obtain

ri = 0 for i ≤ j as cj is multiplied with a bid that is jth highest hence 0. Whereas ri = cj

for i > j, because the jth highest bid is 1. Therefore, the constraint can be rewritten as

cj(n− j) ≤ kb̂k. Because j < k, b̂k = 0 so the right-hand side is 0. Also n− j > 0 because

j < k < n, therefore cj ≤ 0. But we already know from IRu that cj ≥ 0, hence cj = 0 for

j < k. Hence by contradiction, j ≥ k, i.e., cj = 0 for j < k.

281



Claim 9.3. The IRu constraint rn ≥ 0 and the worst-case fraction constraint (refer

Figure 9.3) is equivalent to having
∑i

j=k cj ≥ f, ∀i ∈ {k, . . . , n− 1}.

Proof. We consider the following lemma to prove the claim.

Lemma 9.1. [132, Lemma 1] Given n ∈ N and set of real constants s1, . . . , sn, (s1t1+

. . .+ sntn ≥ 0 for any t1 ≥ . . . ≥ tn ≥ 0) iff
∑j

i=0 si ≥ 0 for j = 1, 2 . . . , n.

The proof of the above lemma is given in [132]. From Claim 9.2, we know that ci = 0 for

i < k. Hence, we can re-write the worst-case constraint as follows,

k∑
i=1

ri ≥ f · kbk+1

k · (ckbk+1 + . . .+ cn−1bn) ≥ f · kbk+1

(ck − f)bk+1 + . . .+ cn−1bn ≥ 0

Given that bk+1 ≤ bk+2+ . . .+bn ≥ 0, we can invoke the above Lemma and thus, we obtain

the following condition: ck−f+ck+1+ . . .+ci ≥ 0, ∀i = k, . . . , n−1. Thus, the worst-case

fraction constraint can be written as
∑i

j=k cj ≥ f, i ∈ {k, . . . , n− 1}.

Claim 9.4. The Approx-IRM constraint can be replaced by:

(n− k)ck ≤ k and n ·
n−1∑
j=k

cj ≤ k and

n
k+i−1∑
j=k

cj + (n− k − i)ck+i ≤k, i ∈ {1, . . . , n− k − 1}

Proof. We prove this using [132, Lemma 1] on Approx-IRM constraints. The Approx-IRM

constraint requires that r1+ . . .+rn ≤ kbk where ri = c0+c1b1+ . . .+cibi+1+ . . .+cn−1bn.

Since ci = 0, i < k, the constraint is further simplified as follows,

qkbk + qk+1bk+1 + . . .+ qnbn ≥ 0
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where, qk = k − (n − k)ck and qi = −(i − 1)ci−1 − (n − i)ci, for i = {k + 1, . . . , n − 1}
and qn = −(n − 1)cn−1. By [131, Lemma 1], the Approx-IRM constraint is equivalent to

having
∑j

i=k qi ≥ 0 for all j = {k, . . . , n}. This can be simplified to obtain the following:

qk ≥ 0 ⇐⇒ (n− k)ck ≤ k

qk + . . .+ qm+i ≥ 0 ⇐⇒ n
k+i−1∑
j=k

cj + (n− k − i)ck+i ≤ k,

i ∈ {1, . . . , n− k − 1}

qk + . . .+ qn ≥ 0 ⇐⇒ n
n−1∑
j=k

cj ≤ k

This proves the claim.

Using Claims 9.3 and 9.4, we reformulate the linear program in Figure 9.3 so that it is

independent of the bid vectors. Figure 9.4 presents this reformulated LP.

9.4.3 Optimal worst-case Redistribution Fraction

We next provide the analytical solution to the linear program in Figure 9.4 and thereby

also state the optimal worst-case fraction redistributed.

Theorem 9.3. For any n and k such that n ≥ k + 2, the R-TFRM mechanism is

unique. The fraction redistributed to the top-k agents in the worst case is given by:

f∗ = k
n . In R-TFRM, the rebate function is characterized by the following: c∗k = k

n

and c∗i = 0, ∀i ̸= k.

Proof. We first show that c∗k = k
n , c

∗
i = 0, ∀i ̸= k is a feasible solution to the LP given in

Figure 9.4.

Note that,
∑i

j=k c
∗
k =

k
n ≥ f∗ = k

n , i ∈ {k, . . . , n− 1}. Further (n− k)c∗k = (n− k) kn < k

as n − k < n. Observe that the third constraint n
∑k+i−1

j=k c∗j + (n − k − i)c∗k+i = nc∗k =
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n kn ≤ k, i ∈ {1, . . . , n − k − 1} is also satisfied. Finally, nc∗k ≤ k hence, c∗ and f∗ is a

feasible solution to the LP.

Now we show that if there exists any solution ĉ, f̂ that satisfies the constraints of the LP,

then ĉ = c∗ and f̂ = f∗. First, let xj =
∑j

i=k ci for j = k, . . . , n − 1. The LP constraints

can be re-written as the following,

xj ≥ f, j = {k, . . . , n− 1}

(n− k)xk ≤ k

(k + i)xk+i−1 + (n− k − i)xk+i ≤ k i = {1, . . . , n− k − 1}

nxn−1 ≤ k

We know that x∗k = f∗, from first constraint we have x̂k ≥ f̂ ≥ f∗ = x∗k, i.e., x̂j ≥ x∗j for

j = {k, . . . , n− 1}. From second constraint we have that, x∗k ≤ From the third constraint,

we obtain, for i = 1, (k + 1)x∗k + (n − k − 1)x∗k+1 = k and for any x̂, (n − k − 1)x̂k+1 ≤
k− (k+1)x̂k ≤ k− (k+1)x∗k = (n−k− 1)x∗k+1, i.e., x̂k+1 ≤ x∗k+1. Similarly we can obtain

x̂k ≤ x∗k further using i = 2, . . . , n− k − 1 and the fourth constraint we obtain x̂j ≤ x∗j , for

j = k + 2, . . . , n − 1. From the first and fourth constraint, we can conclude that x̂j = x∗j

for j = k, . . . , n− 1. This completes the proof of the theorem.

Observe that the total redistribution to the agents, when the miner is honest for R-

TFRM, is given by
n∑
i=1

ri =
k

n
[(k · bk+1) + (n− k)bk] (9.2)

This value may exceed k · bk+1, thus violating IRM. However, it satisfies Approx-IRM

as
∑n

i=1 ri ≤ k · bk (refer Figure 9.3). R-TFRM is similar to the Bailey-Cavallo mech-

anism [49]. The primary difference is due to the Approx-IRM constraint, which makes

ck = k/n instead of ck+1 as in Bailey-Cavallo.
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9.4.4 R-TFRM: Analyzing Impact of Miner Manipulation on Rebate and

Miner Revenue

With an honest miner, R-TFRM maximizes the worst-case redistribution index such

that it is AE, RDSIC, IRu, and Approx-IRM. We now analyze the effect of miner ma-

nipulation on R-TFRM. Previously, we saw that it is impossible to ensure non-zero RRI

(Theorem 9.2), but with R-TFRM we show that RRI is strictly positive even with miner

manipulation.

9.4.4.1 Reduction in Transaction Fees

The rebate function for R-TFRM is characterized by the constants given in Theorem

9.3. With these, We now calculate RRI (Definition 9.4), i.e, êwc, forR-TFRM. Theorem 9.4

shows that irrespective of miner manipulation, c∗k =
k
n fraction of payments will be returned.

Theorem 9.4. Consider n included transactions with the set C as confirmed trans-

actions such that |C| = k with the remaining n − k as price-setting transactions.

Irrespective of any miner manipulation, R-TFRM ensures strictly positive RRI or

êwc = c∗k =
k
n .

Proof. The VCG payments to the miner and rebates both depend on the unconfirmed

transaction bk+1. Manipulating bk+1 would change both the payments and refund in a way
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that the fraction of redistribution remains constant. From Definition 9.4, we know that,

êwc = infb̂

∑
i∈S ri

p(b̂)

= infb̂
k(ck b̂k+1)

kb̂k+1(
As S = {1, . . . , k} and p(b̂) is VCG

)
(ri given by Theorem 9.3)

= ck =
k

n

This proves the theorem.

From Theorem 9.3 and Theorem 9.4, we see that in R-TFRM, the fraction of payments

redistributed to the top-k agents, i.e., k/n, is the same for honest and strategic miner. This

implies that R-TFRM is resilient to miner manipulation while being worst-case optimal.

9.4.4.2 Utility of Strategic Miner

From Theorem 9.4, we know that if a miner is strategic and impersonates the price-

setting transactions, the miner will receive positive utility. The miner will preferably set

the fake bid b̂k+1 close to bk. Hence, the maximum utility to a miner that deviates by

impersonating the price-setting bids is: uM = (1− k/n) · k · bk. As we assume n ≥ k + 2,

the miner’s maximum utility is minimized for k = n− 2.

The fraction redistributed to the genuine agents is still k
n of the payments received

even when the miner impersonates the confirmed transactions. We illustrate this with an

example next.
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Example 9.2: R-TFRM: Utility of Strategic Miner

It is possible for the miner to insert fake transactions with high enough bids such

that they are confirmed. Consider n = 5 and k = 3 where b1 = b2 = 100, b3 = 10

and b4 = b5 = 4. If the miner is only impersonating the price setting transactions,

then it puts b̂4 = b3 and arbitrary b̂5 < b3, then its overall utility is
(
1− k

n

)
kbk = 12.

Whereas if the miner is given more flexibility to insert a fake transaction within the

confirmed and unconfirmed bids, it receives more payments. For e.g., let b̂1 = 200

and b̂3 = 100 hence the ordered bids are b̂1 ≥ b1 ≥ b2 ≥ b̂3. Therefore, effectively, the

first two transactions are confirmed and pay 100 each. Further, due to R-TFRM, it

returns a rebate of k
n100 to each of the two agents, thus obtaining an overall utility

of (1− 3/5) 200 = 80.

9.5 R2-TFRM: Robust and Rational TFRM

R-TFRM compromises Miner IR to ensure positive RRI. We now introduce randomness

in R-TFRM to obtain a mechanism that ensures positive utility to an honest miner, i.e.,

satisfies IRm. Towards this, we propose Robust and Rational TFRM, R2-TFRM (Figure

9.5). In R2-TFRM, the rebate is not guaranteed for every included transaction. Instead,

an included transaction gets a rebate with probability α, α ∈ [0, 1] where the rebate value

is calculated using R-TFRM. Hence R2-TFRM reduces to R-TFRM when α = 1. On

the other extreme, when α = 0, R2-TFRM reduces to a second price auction.

9.5.1 R2-TFRM: On-chain Randomness

As stated, each transaction receives a rebate with a probability α. Similar to other

TFMs [62], we employ trusted on-chain randomness for this randomization. Researchers

have proposed such trusted randomized protocols using various cryptographic primitives [31,

81]. Significantly, the miner of the block cannot exert any influence on this randomization.
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1. Inclusion Rule (xI). Select highest n transactions from the mempool, M . W.l.o.g.,

assume that these n transactions are ordered as b1 ≥ b2 ≥ . . . ≥ bn =⇒ xI
i = 1, ∀i ∈

{1, . . . , n}.

2. Confirmation Rule (xC). Select highest k bids from the n included, xC
i = 1,∀i ∈ [k],

where k ≤ n− 2.

3. Payment Rule (p). Each confirmed agent i (i.e., i ∈ C) pays

pi =

bk+1 − ri w.p. α

bk+1 w.p. (1− α)

Each included but not confirmed agent j (i.e., j ∈ I \ C) pays

pj =

−rj w.p. α

0 w.p. (1− α)

The rebate ri is given by Theorem 9.3.

4. Miner Revenue Rule. The miner receives the net revenue of
∑n

i=1 pi.

Figure 9.5: R2-TFRM: Robust and Rational Transaction Fees Redistribution Mechanism.

9.5.2 R2-TFRM: Incentive and RRI Guarantees

Theorem 9.5 proves that R2-TFRM mimics the incentive guarantees of R-TFRM.

Moreover, for an appropriate α, R2-TFRM is also IRM in expectation.

Theorem 9.5. For any n and k such that n ≥ k + 2 and any bid profile b =

(b1, . . . , bn), and probability α ∈ (0, 1) R2-TFRM has an expected redistribution frac-

tion (expectation over α) f∗ = α · kn . Further it satisfies AE, RDSIC, IRu, and is

IRm when α ≤ α = n
k+(n−k)bk/bk+1

.
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Proof. R2-TFRM is randomized R-TFRM, where randomness is introduced due to the α

parameter.

R2-TFRM is AE as the k highest bids are allotted the slots according to the confirmation

rule (Figure 9.5).

R2-TFRM is IRu as utility is non-negative for each included transaction. For the con-

firmed transaction i ∈ {1, . . . , k}, utility is

ui =


θi −

(
n−k
n

)
bk+1 ≥ bi −

(
n−k
n

)
bk+1 ≥ 0 w.p. α

θi − bk+1 ≥ bi − bk+1 ≥ 0 w.p. (1− α)

as θi ≥ bi and bi ≥ bk+1. Similary for the included but non-confirmed transaction, j ∈
{k + 1, . . . , n}, the utility is uj =

k
nbk ≥ 0 w.p. α or uj = 0.

R2-TFRM is RDSIC-in-expectation. For any confirmed transaction i ∈ {1, . . . , k} ex-

pected utility is ui = θi −
(
n−αk
n

)
bk+1. The agent may submit a dishonest bid bi∗′ s.t., i)

b′i > θi or ii) b
′
i < θi.

i) When b′i > θi, the bid is still confirmed and the expected utility is unchanged.

ii) When b′i < θi, s.t. b
′
i > bk+1, the transaction remains confirmed and the expected utility

is unchanged. Thus, consider b′i < bk+1, then the transaction is not confirmed and now

bk = bk+1 therefore the expected utility to i is α k
nbk+1 ≤ ui. Hence no confirmed agent

gains in expected upon underbidding.

For any transaction i.e., included but not confirmed, j ∈ {k + 1, . . . , n}, the expected

utility is ui = α k
nbk and we have the same two cases as above,

i) When b′j > θj , s.t., b′j < bk the transaction remains unconfirmed, and the expected

utility is unchanged. Thus, consider b′j ≥ bk, the transaction gets confirmed and now,

bk+1 = bk ≥ θj . Thus the expected utility of j is given by θj − bk + α k
nbk ≤ uj . Hence the

agent does not gain in expectation upon overbidding.

ii) When b′j < θ, the agent remains non-confirmed, and the maximum expected utility

remains unchanged.
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R2-TFRM satisfies AE, IRu and RDSIC-in-expectation.

R2-TFRM is IRM-in-expectation. The payment obtained by an honest miner is given by

kbk+1. The expected rebate paid by the honest miner is given by, α
[
k knbk+1 + (n− k) knbk

]
.

If α = 1, the refund is equal to the refund in R-TFRM given by Equation 9.2. In order

to ensure IRM for the honest miner, the following must be true,

kbk+1 ≥ α

[
k
k

n
bk+1 + (n− k)

k

n
bk

]
bk+1 ≥ α

[
k

n
bk+1 +

(n− k)

n
bk

]
α ≤ nbk+1

kbk+1 + (n− k)bk

Therefore R2-TFRM satisfies IRM when α(b) =
nbk+1

kbk+1+(n−k)bk and total rebate is kbk+1.

We make the following observations based on Theorem 9.5.

bk+1 → bk =⇒ R-TFRM ⇐⇒ R2-TFRM. From Theorem 9.5, an honest miner

obtains non-negative utility when,

α ≤ n

k + (n− k)bf
(9.3)

where, bf = bk
bk+1

is the bid ratio. W.l.o.g as the bids are ordered (Figure 9.5) bf ≥ 1.

When bf = 1, i.e., bk = bk+1 we have α = 1 and R-TFRM⇐⇒ R2-TFRM. This implies

that every agent receives a rebate, and the miner IR is not violated.

This may seem to contradict R-TFRM not being IRM; however, we can think of bk+1 →
bk as one of the deviations of the strategic miner. And R-TFRM is IRM when the miner

is strategic. Furthermore, as bf increases, the upper bound on α becomes smaller. To still

guarantee IRM, the overall rebate (i.e., α · kn) decreases.
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9.5.2.1 R2-TFRM: Analyzing Miner Manipulation

Like R-TFRM, R2-TFRM also ensures strictly positive RRI even with miner manip-

ulation as formally stated in Theorem 9.6.

Theorem 9.6. Consider n included transactions with the set C as confirmed transac-

tions such that |C| = k with the remaining n−k as price-setting transactions. Irrespec-

tive of any miner manipulation R2-TFRM ensures: expected RRI or Eα[êwc] = α · kn .

Proof. Similar to Theorem 9.4, the fraction of redistribution remains constant. For every

true agent (not fake), the αk/n fraction of the payment is returned back as the rebate in

expectation.

We observe that irrespective of the miner manipulation; the agents receive back the

fraction α · kn of the payment made on expectation. Based on what fake transactions the

miner inserts, the payments change, but the refund fraction remains the same as for the

case when the miner is honest.

9.6 Conclusion

In this chapter, we argued the importance of minimizing agent costs in a TFM. Our key

idea is to employ a redistribution mechanism-based approach for determining the trans-

action fees, which we call the Transaction Fee Redistribution Mechanism (TFRM). Due

to strategic miner manipulation, we first show that guaranteeing a strictly positive rebate

in a TFRM and other desirable properties is impossible. Hence, we propose R-TFRM,

which ensures strictly positive rebates even in the worst case but compromises the miner’s

IR. However, we show that in R-TFRM, a strategic miner will never incur negative utility

while still guaranteeing strictly positive rebates to the agents. We also propose R2-TFRM

which uses blockchain’s inherent randomness to guarantee the agents a positive rebate

while respecting the miner’s IR.
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Future Work. Future directions can explore TFRMs with randomized rebate functions,

which may likely satisfy stronger notions of IC and IR. Another approach may be to explore

non-linear rebate functions, which may provide a better redistribution index on average.

In addition, unlike this work, the heterogeneous RM setting, i.e., transactions with varying

sizes, can also be explored.
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PART B: Security and Privacy

PART B is the privacy-focused section of this thesis. This part ex-

plores the privacy of the agents in three distinct yet interconnected

multi-agent systems (MAS): (i) privacy-preserving voting application

over blockchain, (ii) privacy-preserving combinatorial auction over blockchain,

and (iii) differentially private distributed constraint optimization (DCOP).

First, we have FASTEN [73], where we look at the design and im-

plementation of a voting application leveraging blockchain technology

while prioritizing voter’s (and their vote’s) privacy. We utilize the dis-

tributed trust provided by a blockchain with smart contract support to

present a voting mechanism that is scalable even for general elections.

Second, we introduce STOUP [70], which focuses on privacy concerns

within the realm of combinatorial auctions conducted over a blockchain

infrastructure. We present cryptographic protocols and smart contract

mechanisms to enable secure and private bidding. Emphasis is placed

on protecting bid details, participant identities, and auction outcomes.

Last, we propose P-Gibbs [80], a differentially private Distributed Con-

straint Optimization (DCOP) algorithm that preserves the privacy of the

agent’s constraints. This involves incorporating differential privacy prin-

ciples into the DCOP framework, ensuring that the optimization process

does not compromise the privacy of individual agents. In summary, the

overarching theme of PART B is to contribute to the evolving landscape
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of privacy-preserving MAS. By examining voting applications, combina-

torial auctions, and DCOPs, the goal is to advance the understanding

and implementation of privacy-enhancing mechanisms in diverse scenar-

ios, fostering a more secure and confidential digital environment.
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Chapter 10

FASTEN: Fair and Private Voting

Electing democratic representatives via voting has been common since

the 17th century. However, these mechanisms raise concerns about fair-

ness, privacy, vote concealment, fair calculations of tally, and proxies

voting on behalf of the voters. Ballot voting, and in recent times, elec-

tronic voting via electronic voting machines (EVMs), improves fairness

by relying on centralized trust. Homomorphic encryption-based voting

protocols also assure fairness but cannot scale to large-scale elections

such as presidential elections. In this chapter, we leverage the blockchain

technology of distributing trust to propose a smart contract-based pro-

tocol, namely, FASTEN. There are many existing protocols for voting

using smart contracts. We observe that these either are not scalable or

leak the vote tally during the voting stage, i.e., do not provide vote con-

cealment. In contrast, we show that FASTEN preserves voters’ privacy,

ensures vote concealment and immutability, and avoids double voting.

We prove that the probability of privacy breaches is negligibly small.

Further, our cost analysis of executing FASTEN over Ethereum is com-

parable to most of the existing costs of elections.

⋆ ⋆ ⋆ ⋆ ⋆
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10.1 Introduction

As mentioned earlier in Chapter 1.5.3.1, elections are fundamental to democratic gov-

ernance. This chapter focuses on fair elections that allow every eligible individual to

participate in the decision-making process by registering their vote. We argue that a fair

election is possible only when the voter can freely vote for its desired preference.

One must also ensure an agent’s participation in the voting process is hidden. This can

be achieved by eliminating the link between the voter and its vote, i.e., anonymous voting.

We first define the following essential properties to design a fair election with anonymous

voting, i.e., fair and secure election (FSE).

1. Voter Anonymity (VA). A vote cannot be traced back to the voter during or after

the election.

2. Vote Concealment (VC). The vote’s value should remain hidden from the system

(voters, candidate, election commission). This, in turn, ensures that the vote tally

remains a mystery to the system until the voting window has expired.

3. Vote Immutable (VI). Once a voter casts its vote, altering it to anyone else’s vote

should be impossible.

4. Double Voting Inhibition (DVI). A voter should be allowed to vote only once in

a specific election.

Fair and Secure Election (FSE) Overview. Towards FSE, the most traditional voting

method is paper ballots. It partially ensures anonymity, vote concealment, and vote im-

mutability. The major drawback of ballot-based voting is that it involves tiresome manual

work in counting the votes. Along with the risk of unintentional and intentional human

error, the non-durability of paper and the lack of a robust mechanism to avoid double

voting are some of the other challenges involved with this system.
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Election through electronic voting machines (EVM)s is a technological upgrade over

the paper ballot system. EVMs provide voter anonymity and do not take voter ID as a

parameter. But, they fail to guarantee vote immutability. This is because the voter needs

to trust the EVM software company for vote concealment and immutability. They also

entrust the company with shipping the EVMs with the correct version of the firmware,

and thus, the EVM remains a black box to the voter. Besides, the double voting inhibition

problem is still there.

Micali et al. [195] propose a protocol for secure auctions that applies to voting. However,

the body conducting the elections, election commission (EC), will know all the votes after

the voting stage. The authors propose an expensive zero-knowledge proof of the result

to overcome the “centralized trust” placed on EC. Consequently, the protocol is also not

scalable. Adida [5] proposes a most popular scheme Helios, which relies on the security of

one server and is not viable for nationwide elections. Thus, there is a need to look for a

completely different approach to conduct an FSE.

Fair and Secure Election (FSE) over Blockchain. With Ethereum1 [42], we observe

that blockchain can not only be used to solve the problem of designing a cryptocurrency

but can also be used to implement smart contracts [42]. A smart contract allows blockchain

to establish an interactive platform for n parties. Such a contract enforces the outcome

of any event through a set of rules. These rules correspond to a programming language

that is understandable to the execution system. The key concept here is distributing trust

rather than relying on a single party. Thus, we explore ways to leverage such a distributed

trust to conduct an FSE.

The important steps in the voting procedure for FSE are: (i) voter authentication, i.e.,

a person claiming to be a voter should be an eligible voter; (ii) vote registration, which

preserves the privacy of the voter as well as its vote; (iii) outcome verification that counts

the tally of votes in a verifiable manner. Zhao et al. [309] propose a voting protocol based

1While we focus on Ethereum, we remark that our solution works for any blockchain with smart contract
support.
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on Commit-Publish mechanisms that also leverages smart contract. As the authors’ main

goal is boardroom voting, it does not address step (i). It solves steps (ii) and (iii). To

the best of our knowledge, in a plethora of voting schemes over blockchain, except [307],

no protocol satisfies all the four desirable properties of a fair election. The challenge with

[307] is scalability as it is Zcash-based, which is considerably slower than Bitcoin.

10.1.1 Chapter Contributions

We propose a novel protocol for FSE, namely, FASTEN: FAir and Secure disTributEd

votiNg. We partially rely on EC for authentication, which issues a random but unique

token for each voter after authenticating the voter. The token is unique to the voter and

the particular election. If the voter tries to obtain multiple tokens for the same election – it

will receive the same token. Therefore, FASTEN resists Sybil attacks. This authentication

is similar to several secure applications over blockchain (e.g., [179, 87]). In this work, we

assume that EC does not store the link between a voter and its token2. Next, the smart

contract considers tokens as eligibility to vote, which the EC grants. After this, each voter

registers its encrypted vote3 and token to the smart contract. The smart contract4 holds

the hashes of all the tokens that EC issues. It computes the hash of the token registered

by the voter and checks if it is in the database. Once the entry is confirmed, the encrypted

votes are registered in the voter database. After the vote-casting window expires, the smart

contract decrypts all the votes and computes the tally.

Since our protocol deploys smart contracts based on blockchain, one may implement

it as a Decentralized Application (DApp). DApps comprise a friendly UI for any smart

2Such trusted third-party authentications also have a close parallel with the ZCash Parameter Genera-
tion [223]. These links thus correspond to “toxic waste” – to be destroyed.

3The encryption/decryption keys are generated by semi-trusted third parties, namely, wardens, as defined
later in Chapter 10.2.1.

4In this chapter, we present FASTEN as an Ethereum-based smart contract. The protocol can also be
easily conducted through computational logic over other distributed platforms like Hyperledger Fabric [10]
or Quorum [20].
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contract, thereby allowing laypersons to interact with said contracts. Thus, FASTEN

helps improve fairness in elections, i.e., designing FSE and improving voter participation.

With FASTEN, we show that a straightforward protocol will achieve an FSE. We

believe that the simple design of our protocol is desirable and will benefit the end-user.

This simplicity is in contrast with sophisticated protocols that deploy heavy cryptographic

and security primitives to achieve FSE. These protocols, especially how they reach the

desired privacy, are challenging to explain to a layperson. These limit their use in general

elections where participating voters are in millions. We outline some of them next.

Contributions. We propose a protocol, namely FASTEN to conduct a fair election. We

leverage blockchain technology as the foundation for our protocol. While our protocol is not

the first to leverage blockchains to develop a voting protocol, it is the first protocol using

blockchains that proposes a feasible model for a large-scale election such as nationwide

elections. The protocol enables all the voters and candidates to verify the voting process

and simultaneously preserves the votes’ privacy. In short, FASTEN satisfies all the four

desirable characteristics required for an election to be fair. We prove that the probability

of breach of any of the four characteristics is negligibly small (Claims 10.1, 10.2, 10.3,10.4).

Our cost analysis shows that the cost of running an election through FASTEN is very

competitive w.r.t. existing costs of conducting elections.

10.1.2 Additional Background

Here, we provide the related literature for FSE and chapter notations.

10.1.2.1 Related Work

There have been few attempts before to design a voting protocol based on blockchains,

but they all use Commit-Publish mechanisms to conceal the vote tally. A Commit-Publish

mechanism requires voters to submit a deposit before committing to a vote and are re-

funded the deposit when they publish their vote. Both the Open Vote Network Protocol
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Paper VA VC VI DVI Scalable

[195]
×

(No Blockchain)

[5]

(No Blockchain)

[189, 271, 309]

[27, 110, 136, 304] ×

[307]

FASTEN (Our Protocol)

Table 10.1: Comparison of Different Secure Voting Protocols

implemented by McCorry et al. [189] and the Bitcoin-based protocol by Zhao et al. [309]

use this mechanism. While this mechanism could be used for boardroom voting, it cannot

be used for mass elections like the general presidential election of nations because most vot-

ers would be reluctant to submit the deposit. This is because, in a population of millions,

voters will not consider their vote to be of much importance to begin with. In addition,

once the voters commit, they have to participate in the protocol again to reveal their com-

mitment. Note that several nations are struggling to bring voters to voting booths to cast

their vote when they just have to come once. Thus, we believe that it is unrealistic to

believe that a voter will choose to participate twice in the same election. With FASTEN,

we require the voters to come on-chain, i.e., online on the blockchain, only once to register

their votes and without any deposit.

Other works, e.g., FollowMyVote [110], use trusted authorities to ensure voter anonymity.

The voters cast their votes in plain text, therefore risking the concealment of the vote tally.
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Figure 10.1: Illustration of the protocol timeline in FASTEN. Here, C: Candidate, V:

Voter, and A: Other agent

In contrast, voters in FASTEN must submit encrypted votes, “cipher-texts”, thereby con-

cealing their votes. Our encryption-decryption mechanism ensures the concealment of the

vote tally until the vote-casting window expires. Due to space constraints, we present

several other works through Table 10.1 to place FASTEN with respect to the existing

literature in FSEs. We also refer the interested reader to [285, Table 1] for a more com-

prehensive comparison of secure voting protocols over the blockchain. We next present the

preliminaries required for the design and analysis of FASTEN.

10.1.2.2 Model and Chapter Notations

The main stakeholders of any election are the voters, the candidates, and the Election

Commission (EC). EC represents the governing body of the election. Once an election is

announced, interested candidates must register their candidature with EC before a certain

deadline, which we denote as tecr. It is the EC’s responsibility to ensure fair candidature

registration. For the time period between the beginning and end of token distribution, i.e.,

tbtd and tetd, EC issues tokens to the voters after authenticating them. Actual vote casting

begins at time tbvc and ends at tevc. In FASTEN, the voters submit their encrypted votes
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over the Ethereum-based smart contract. We show how EC (or any other interested party)

can get the vote tally using the smart contract. We refer to the procedural methods of the

overall protocol, which are on the smart contract as on-chain methods and the remaining

procedures as off-chain methods. Figure 10.1 illustrates the temporal aspect of FASTEN.

We use an Ethereum-based smart contract for on-chain methods, which relies on blockchain

technology. We refer the reader to Chapter 3.2 for an overview of blockchains and the

Ethereum network.

10.1.2.3 Threat Model

In this chapter, we assume that all parties are honest-but-curious and passive. They

follow the protocol’s steps honestly but try to infer private information from the available

data. E.g., looking at the (encrypted) votes available on the blockchain, an adversary can

try to extract total votes for a candidate. The adversary can also use the on-chain data to

link a voter to a vote.

10.2 FASTEN: Our Approach

As a smart contract resides on the blockchain, we inherit the decentralized feature of the

blockchain with it in our protocol. In designing a FSE, verifying the eligibility of a voter

before allowing it to vote is mandatory. This verification process requires examining the

voter’s real-world identity and examining the same on-chain risks to the privacy/anonymity

of the voter. This is because it links the real-world voter identity with the encrypted vote.

Therefore, there is a need for separating voter ID from encrypted vote. For the same

purpose, we take help from the respective EC to distribute tokens that separate the voter’s

real ID from the vote. The tokens are randomly distributed off-chain (off the blockchain,

which is not part of the contract) to voters after verifying their identity and eligibility.

Since time is important in an election, the voting protocol strictly follows a timeline of
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events to avoid liabilities. Every contract method has a time bound out of which the

contract reverts the call.

Role of Election Commission (EC). To ensure that only eligible candidate gets to

vote, we take help from the EC to verify voter eligibility. Every data on the smart contract

is on blockchain and thus is publicly available. This implies that the voter database cannot

be made public to preserve voter anonymity. Also, verifying voter ID on blockchain and

registering votes through that ID violates voter anonymity. To resolve these, we let EC

verify voter ID off-chain and distribute random tokens to the voters as a grant to vote.

Note that every voter must be given only one token. The smart contract assumes that EC

distributes the token truthfully, securely, and privately without keeping any trace of voter

ID with the token. The smart contract holds a pre-stored database of hashes of the token

issued by the EC. Since the token is distributed by verifying the voter eligibility, the smart

contract needs only check if the token is genuine and not fake. It does so by checking if

the hash of the token exists in the token hash database.

Also, the voters in FASTEN are not bothered with any commitments through deposits

as in previously proposed voting mechanisms based on blockchain. In contrast, they are

simply required to get the encryption key and ID, encrypt the vote, and send it through

the smart contract along with their token. The overhead of submitting the decryption keys

relies on a different set of agents. We refer to such a third party as a Warden. These agents

store the decryption key safely instead of the voters, the process of which is explained later.

Each warden holds a key that corresponds to a batch of votes. These wardens represent a

distributed trust system and are incentivized to act honestly in the system. We also assume

the candidate registration to be handled by EC and the candidate list to be provided by

them in advance.

Role of Smart Contracts. EVM(s), which are currently used for conducting election

systems, are black boxes to the voter because the software used inside EVM cannot be

inspected by them. This raises concerns regarding EVM code tempering. Unlike the code
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in EVM, a smart contract’s code resides on a public distributed ledger, i.e., blockchain.

This enables anyone to inspect the methods deployed by a smart contract. Also, since smart

contract resides on the blockchain, every data/transaction that is part of the contract also

becomes a part of the blockchain, which ensures the permanence of the history of the vote

done by the voter. Thus, it results in the verifiability of the vote counting.

After time tevc, when the decryption key is released to the public, it can be used to

decrypt the encrypted votes stored safely on the blockchain and compare with the result

achieved by the smart contract. Since the encryption and corresponding decryption keys

have to be different by the protocol’s design, we use asymmetric cryptography. Any asym-

metric cryptographic system will work for our protocol, such as ElGamal cryptography

system [95]. With these as a backdrop, we formally present our FSE protocol, FASTEN.

10.2.1 FASTEN: Protocol Design

In FASTEN, we use Ethereum-based smart contracts to enforce the protocol. As

stated in Chapter 3.2.2.3, smart contract transactions in Ethereum consume gas, a form of

commission paid to the Ethereum network. As such, we require the EC to reimburse the

cost associated with Ethereum transactions to all parties involved in FASTEN. Later in

Chapter 10.2.3, we present a rough cost analysis of FASTEN

The contract maintains strict adherence to the time constraints. Therefore, each method

in the contract is bound by a time window outside of which the contract reverts the call

made to it. Table 10.2 defines and explains these time constraints. FASTEN also uses

predefined variables and databases fed into the smart contract beforehand. We describe

them as follows.

FASTEN: Variables. Table 10.3 provides the variables in FASTEN5. From Table 10.3,

hashDatabase is a mapping from hash string to boolean such that True value means the

hash is present in the database. It is pre-populated beforehand. Further, voteBatch is a

5For older versions of Solidity, i.e., < 0.7.0, block.timestamp corresponds to msg.now.
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Notation Definition

tbcr
time-stamp for beginning the candidature registration

(Candidates can begin registration after this time)

tecr
time-stamp for ending the candidature registration

(All candidates must register before this time)

tbtd
time-stamp for beginning the token distribution

(Voters can collect their tokens after this time)

tetd
time-stamp for ending the token distribution

(All voters must collect their token before this time)

tbvc
time-stamp for beginning the vote casting

(Voters can begin casting their vote after this time)

tevc
time-stamp for ending the vote casting

(All voters must cast their vote before this time)

tbvt
time-stamp for beginning the vote tally

(Anyone can ask for a vote tally only after this time)

Table 10.2: Time Constraints in FASTEN

double array where voteBatch[i] represents the array of encryption votes with encryption id

i. The list of encrypted votes gets aggregated in the course of the election. These variables

are part of the underlying methods deployed in FASTEN. We now describe these methods

next.
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Variables Definition

block.timestamp Current time-stamp

candList List of the registered candidates

numKeys Total number of the encryption keys available

idCounter To allocate the encryption-decryption key pair

enKeys List of all encryption keys provided

deKeys List of decryption keys aggregated by the wardens

hashDatabase Database of the hashes of all the tokens

voteBatch Database to store votes

securityAmt Security amount wardens deposit before registration

refundAmt Array to store amount to be refunded to the wardens

reward Additional reward to the wardens

wardens Mapping from warden address to key id

sampleText Sample file to authenticate key pair(s)

tallyDone Flag to ensure votes are only counted once

Table 10.3: Variables in FASTEN

10.2.1.1 FASTEN: Underlying Methods

In FASTEN, we consider a hybrid model for improved scalability and efficiency, i.e.,

some of the underlying methods are on-chain while others are off-chain. We describe our

protocol by first presenting the off-chain and on-chain methods. Later, we describe the

control flow of the protocol using these methods.
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10.2.1.1.1 Off-Chain Methods These methods are not part of the smart contract,

i.e., are performed locally by the concerned party. These methods are aimed at setting

up the election process by letting the candidates register (ApplyForCandidature), allowing

a candidate to withdraw from the election (Backout), and allowing all parties (e.g., voters

and candidates) to receive a token (GetToken) used by the smart contract for identification

purposes.

1. ApplyForCandidature. This method allows eligible candidates to register themselves

as the candidate for election. For the implementation, we suggest using a biometric

scanner for ID authentication. The method generates a unique voting ID for the

candidate. It can only be used during (tbcr, tecr). For an offline, non-blockchain

election, one can think of this process as akin to candidates filing their nominations

with the Election Commission (EC).

2. Backout. Registered candidates can use this to backout from the election. The candi-

dates must first authenticate their identity using the biometric scanner. The method

can also only be used during (tbcr, tecr).

3. GetToken. This method is not part of the smart contract but a facility provided

outside the contract to get the token privately. This method will distribute a unique

token that the voter can use to cast a vote. The token will only be distributed after a

successful ID authentication through biometrics. It can be used only in the duration

(tbtd, tetd). For an offline, non-blockchain election, one can think of this process as

akin to getting a voter ID card.

10.2.1.1.2 On-Chain Methods While the off-chain methods essentially help set up

the election/voting process, the on-chain methods comprise those that occur during the

vote-casting and vote-tallying phase and are conducted using the smart contract. We clas-

sify them under two subsets: “General Public” methods and “Warder-specific” methods.
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This categorization is based on who can invoke these methods. We now formally present

each of these methods using pseudo-codes.

General Public methods. These methods are concerned with allowing the general public

access to the candidate list, querying the public key encryption keys to encrypt their vote

and casting their vote. After the vote-casting phase is over, the public can also get the

decryption keys so that anyone can compute the election result.

• GetCandidateList. This method returns the list of all the candidates participating in

the election. This is simply a getter method, i.e., it has no cost. E.g., a function

that is set to “view” in Solidity. The method requires no authentication and can be

invoked during (tecr, tbvc).

• GetEncryptionKey: This method shares the encryption key with the caller who invokes

it. It also requires no authentication. The caller is provided with an encryption

ID and the corresponding encryption key. It can be invoked only in the duration

(tbvc, tevc). We present the pseudo-code in Method 1.

Method 1 GetEncryptionKey

1: require(block.timestamp ∈ (tbvc, tevc))

2: Int i← idCounter + 1

3: idCounter = (idCounter + 1)%numKeys

4: bytes32 ek ← enKeys[i]

5: return [i, ek]

• CastVote: Presented in Method 2, it allows the eligible voters to register their vote.

Required parameters are token6, encryption ID, and encrypted vote. The token is

6This is the only time the voter is required to send a token to the smart contract.
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validated, after which the encrypted vote is stored corresponding to its encrypted ID.

This method can be used only in the duration (tbvc, tevc).

Method 2 CastVote
1: Input: Token t, Int i, bytes32 ev

2: require(block.timestamp ∈ (tbvc, tevc))

3: bytes32 h← sha3(t)

4: require(hashDatabase[h] == true)

5: hashDatabase[h] = false

6: voteBatch[i].push(ev)

• GetDecryptionKeys. Similar to Method 1, this method shares the list of decryption

keys with the caller who invokes it. The method requires no authentication but can

only be invoked after tbvt.

• TallyVote: This decrypts the votes, counts them, and returns the result (Method 3).

It requires no authentication. Once the votes have been decrypted and counted, the

pre-computed result is returned in the subsequent calls. This method can only invoke

tbvt.
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Method 3 VoteTally

1: require(block.timestamp > tbvt)

2: if tallyDone == false then

3: for Int i = 0; i < numKeys; i++ do

4: for bytes32 ev : voteBatch[i] do

5: bytes32 dk = deKeys[i]

6: bytes32 dv ← decrypt(ev)

7: bytes32 candId = extract(dv) candTally[candId]+ = 1

8: end for

9: end fortallyDone = true

10: end if

11: return candTally

Warden-specific Methods. We remark that the General-public methods essentially

mimic a classic, offline election process. These methods allow voters to vote (post au-

thentication), see the candidates nominated, and query encryption/decryption keys for

FASTEN to guarantee certain privacy and security. The Wardens perform the warden-

specific methods. The methods’ aim is to disincentivize warden no-shows (DepositSecurity),

allow them to submit their encryption and decryption keys (SubmitEncryptionKey, Submit-

DecryptionKey), and also collect rewards for their participation (WithdrawReward). We

present these methods formally next.

• DepositSecurity. The wardens invoke this method to deposit monetary value as secu-

rity against their honest behavior and to confirm their registration. The method is

presented in Method 4.
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Method 4 DepositSecurity

1: require(wardens[msg.sender] > 0)

2: require(block.timestamp < tbvc)

3: require(msg.value > securityAmt)

4: refundAmt[msg.sender] = msg.value− securityAmt

• SubmitEncryptionKey. As described in Method 5, this method allows the wardens to

submit the encryption key in the required duration.

Method 5 SubmitEncryptionKey

1: Input: bytes32 ek

2: uint id = wardens[msg.sender]

3: require(id > 0)

4: require(block.timestamp < tbvc)

5: require(refundAmt[msg.sender] > 0)

6: enKeys[id] = ek

• SubmitDecryptionKey. This method is used by the wardens to submit the correct

decryption key in a timely. We present the method in Method 6.
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Method 6 SubmitDecryptionKey

1: Input: bytes32 dk

2: uint id = wardens[msg.sender]

3: require(wardens[msg.sender] > 0)

4: require(block.timestamp ∈ (tevc, tbvt))

5: require(refundAmt[id] > 0)

6: bytes32 ek = enKeys[id]

7: require(sampleText == decrypt(encrypt(sampleText, ek), dk))

deKeys[id] = dk

8: refundAmt[msg.sender] += securityAmt + reward

• WithdrawReward: FromMethod 7, wardens can use this method to collect their reward

after the successful submission of the decryption key.

Method 7 WithdrawReward
1: require(wardens[msg.sender] > 0)

2: require(block.timestamp > tbvt)

3: uint amt = refundAmt[msg.sender]

4: refundAmt[msg.sender] = 0

5: if amt >0 then

6: msg.sender.transfer(amt)

7: end if

As aforementioned, in FASTEN, we use tokens distributed by EC to register a voter’s

vote. We now explain how we use those tokens to guarantee secure voting.
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10.2.1.2 FASTEN: Token Validation Process

The tokens are distributed through an off-chain system. Tokens get pre-generated and

stored securely and privately with EC. We assume that tokens will be distributed privately

and securely by the respective EC. The voter provides the token only once while sending

its encrypted vote. The smart contract keeps the hash7 of all the tokens in its on-chain

database. It calculates the hash of the token provided by the voter and checks if the hash

of the token exists in the database. If found, it removes the entry of the token from the

database and registers the voter’s vote.

Algorithm 15 Voting Procedure()

1: procedure Vote Casting Window Opens

2: token t← getToken()

3: Candidate List candList← GetCandidateList()

4: Let canList be the preferred candidate of Gretel from the list candList

5: Encryption ID, Encryption Key i, eki ← GetEncryptionKey()

6: Encrypted Vote v ← Decrypt(), encryption done off-chain by the voter

CastVote(t, v, i)

7: end procedure

8: procedure Vote Tallying window opens

9: Vote Count[] vc← TallyVote()

10: vci represents vote count of ith candidate in the canList

11: Decryption Key List dki ← GetDecryptionKeys(), where dki represents decryption

key associated with the encryption id i

12: The list of decryption keys can be used to get the vote count manually and check its

correctness with the tally calculated by the contract.

13: end procedure

7We suggest hash functions which are efficient over a smart contract such as sha3 [42].
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10.2.1.3 FASTEN: Voting Procedure

Now that we have provided the core protocol design, we give a sample walk-through of

the protocol. A voter who wishes to use FASTEN can use it by following Algorithm 15.

We will now describe how the decryption key is kept secret in FASTEN.

10.2.1.4 FASTEN: Warden Assistance

As a smart contract cannot store data privately, we take assistance from wardens outside

the contract to submit the decryption keys on time. In FASTEN, wardens are appointed

to keep the decryption keys off the chain. They provide the keys to the smart contract

through a special transaction when the time comes, i.e., during (tevc, tbvt).

Consider a set of wardens W . Each warden wi ∈ W has a decryption key dki and

is assigned a batch of votes which can be decrypted through that key. Trivially, |W | is
the total number of batches. Let B be the dataset of batches, i.e., where bi ∈ B is the

batch corresponding to wi. Observe that every time GetEncryptionKey() (Method 1) is

called, the contract provides the voter with the encryption id i corresponding to wi and an

encryption key eki. The voter encrypts the vote using the encryption key and then sends

the encrypted vote and “i” as parameters to CastVote() (Method 2). The contract then

assigns the encrypted vote to bi. As a result, after tevc, if we have n votes in total, every

batch bi will hold roughly n
|W | number of encrypted votes.

In FASTEN, we do not take for granted that the wardens will be honest. Towards this,

we design our protocol to minimize the loss in case any warden turns out to be dishonest.

Observe that any dishonest warden can cause trouble in two ways: aborting its duty and/or

leaking the decryption key. We now provide our solution to these two problems.

10.2.1.4.1 Abortion of Duty Each warden wi submits a deposit dki prior to its par-

ticipation in FASTEN. The warden’s address will be stored in the smart contract database.

As a result, it will get its deposit refunded only if it submits the correct decryption key
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on time. The smart contract will verify the decryption key by trying the encryption-

decryption key pair on some r random strings. Once the decryption key is verified to be

correct, the warden will get the deposit refunded. We also suggest providing an additional

bonus amount as a reward for honest behavior.

10.2.1.4.2 Leaking Decryption Key We remark that it is practically impossible to

prevent any warden wi from leaking its decryption key dki. If a warden wi leaks the

decryption key, on average, it will leak the tally of only n
|W | votes. Thus, we suggest

choosing the number of wardens |W | to minimize this loss to a very minute percentage.

For example, having less than 1
1000

th fraction of voters with each warden will ensure that

a single dishonest warden cannot leak a tally of more than 0.1% of votes. The number of

wardens is a protocol parameter and can be increased depending on the budget and risk

tolerance.

10.2.2 FASTEN: Proof of Fairness and Security

As aforementioned, an election is said to be fair if it satisfies the four properties: vote

anonymity, vote concealment, vote immutability, and double voting inhibition. That is,

every voter can vote discretely and anonymously, and the vote tally remains hidden until

the end of the election. Further, nobody can cast a vote without authentication nor cast

the vote twice. We now (i) provide the formal definitions and (ii) prove that FASTEN

satisfies all these properties.

Definition 10.1: Voter Anonymity

An election protocol is said to satisfy the Voter Anonymity property if the probability

of finding the vote v of any voter i is negligibly small as compared to the size of the

population, i.e., Pr[v|i] ≤ negl(λ), with λ as the security parameter.
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Claim 10.1. FASTEN satisfies voter anonymity with the probability of guessing any

voter’s token being at most n
2l

where n is the number of voters and tokens are l-bit

long.

Proof. The smart contract takes the token as an attribute from the voter to register their

encrypted votes. We demand that voters use a new Ethereum address to cast their en-

crypted vote since the old Ethereum address might have been compromised by the voter.

Since the token is randomly generated and privately distributed off the blockchain, it can-

not be linked back to the voter through the blockchain because Ethereum addresses are

randomly generated and have no relation with the user’s identity. The public ledger will

only show that a certain encrypted vote has been registered for a certain token. This im-

plies that even after the vote is encrypted, it is only related to the token and has no links

with the previous token holder. Thus, the vote can never be traced back to the voter except

possibly random guessing. If the token is l-bit long, and the size of the voter population is

n, the random guessing will not succeed by probability more than n
2l
. We can ensure voter

anonymity by choosing l >> log2 n.

Definition 10.2: Vote Concealment

An election protocol is said to satisfy the Vote Concealment Property if no vote’s

value is revealed before the end of the election vote casting period with probability

more than k
|W | if no more than k << |W | wardens are dishonest.

Claim 10.2. FASTEN satisfies vote concealment property.

Proof. As we have highlighted earlier, the voters will register their encrypted vote to the

contract. The contract will provide the voters with the encryption key and the corre-

sponding encryption ID. The voter encrypts the vote through the encryption key of the

blockchain on her device and sends it to the smart contract along with the encryption ID
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and the respective token. Since the vote is encrypted off the chain, the real value of the

vote remains hidden until the decryption key is out. The decryption is made public only

after the end of the casting window, thereby concealing the vote until the voting period

ends. Hence, the property of Vote Concealment is preserved.

More formally, no probabilistic polynomial-time (PPT) adversary will be able to know

a vote’s value by looking at the encryption unless it can solve the Discrete-log Problem

(DLP) (Definition 3.5), which is computationally infeasible. That is, a PPT adversary can

only solve the DLP with probability negl(λ), given λ as the security parameter. Another

way for a vote to be revealed is directly by the warden (the warden reveals its secret key).

If a warden wi ∈W is dishonest, a voter’s vote is leaked with probability 1
|W | . Similarly, if

k such wardens are dishonest, the probability of the vote leaking is k
|W | . By keeping |W |

large enough, i.e., k << |W |, this probability is negl(|W |) implying Vote Concealment is

preserved.

Definition 10.3: Vote Immutability

An election protocol is said to satisfy the Vote Immutability property if no vote’s

value can be altered once it has been cast.

Claim 10.3. FASTEN satisfies vote immutability under the assumption that the ma-

jority of the nodes in the network are honest.

Proof. Ethereum blockchain stores all the transactions permanently by default. Once a

transaction is part of the public ledger, it cannot be removed or changed unless 51%

or more nodes are corrupt. Also, once the hash of a token is matched to that of the

database on the blockchain, it is immediately removed; thereby, no overwriting of the vote

is possible.
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Definition 10.4: Double Voting Inhibition

An election protocol is said to satisfy the Double Voting Inhibition property if the

probability that any voter can cast more than one vote in the election is negligible.

Claim 10.4. FASTEN satisfies the double voting inhibition property.

Proof. The smart contract has an on-chain database containing the pre-calculated hashes of

the tokens distributed to the voters. The voters are required to send their tokens to register

their vote. The smart contract calculates the hash of the received token and compares it

with the ones stored in the database. If a match is found, the token hash is removed from

the database, and the vote is registered. Since the token is immediately removed from

the database before registering the encrypted vote, we can safely claim that every token

is used only once to register the vote, thus inhibiting double voting. The only possibility

for a voter to double vote would be to cast a vote with its valid token and guess a random

token whose hash matches that one in the database. If the hash is of length h-bits, even

by birthday-paradox, the voter needs to try 2
h
2 trials to guess a first valid token apart

from its own. Typically, hash sizes (h) are 256 bits. Hence, the probability of successful

double-voting is negligible.

Thus, we have proved theoretically that FASTEN achieves fairness in the election, i.e.,

FASTEN is a solution for FSE. Now we perform a cost analysis of FASTEN.

10.2.3 FASTEN: Protocol Analysis

10.2.3.1 Cost Analysis

We analyze the cost in terms of Ethereum gas, which is the constant cost of network

resources/utilization. We use the gas estimation given in Ethereum docs, and the Ethereum
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rate card also given in the docs to estimate cost per vote [42]. We estimate the cost per

vote in 2 stages: (i) Voter side cost and (ii) Warder side cost.

10.2.3.1.1 Voter Side Cost In FASTEN, each voter has to follow a particular se-

quence of methods to cast a vote. From Procedure 15, the voter follows the given sequence:

(i) GetCandidateList, which has its gas requirement of 26 units; (ii) GetEncryptionKey, which

consumes 667 gas units; and (iii) CastVote, which consumes 739. In total, the vote casting

consumes 1432 Gas units.

Further, TallyVote computes the vote count for each candidate when called for the first

time and returns the result. After this, it returns the pre-computed result for subsequent

calls. This optimization ensures that there are no redundant calculations. Therefore, every

vote is decrypted and counted once. This ensures that TallyVote is equivalent to counting

a single vote, which we estimate as 300000 gas units. The estimation is high as we encrypt

votes using 160-bit ElGamal encryption. Thus, the decryption cost is itself high.

Fortunately, this can be easily optimized as well. We suggest decrypting the vote on

DApp instead of the smart contract. As smart contracts are mainly used for maintaining

persistent states throughout the network, and the decryption won’t alter the state, the

decryption can be done on the DApp. By avoiding the decryption cost, we get an upper

bound of 1500 gas units per vote for the voter side.

10.2.3.1.2 Warden Side Cost In FASTEN, each warden uses the following methods

in the order given: (i) DepositSecurity, which requires 23 gas units; (ii) SubmitEncryption-

Key, which requires 629 gas units; (iii) SubmitDecryptionKey, with 600755 gas units; and

(iv) WithdrawReward, which requires 21629. That is, each warden consumes 623036 gas

units in total. The reason for such high cost is the encryption and decryption operations

done in SubmitDecryptionKey method to check the authenticity of the decryption key. How-

ever, as mentioned during the analysis of the voter side’s cost, one can avoid the cost of

encryption and decryption by computing it on the DApp instead of a smart contract. This
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also reduces the warden side cost to an upper bound of 23036 gas units. Suppose there

exists a total of n voters; then every warden holds the decryption key for n
|W | voters, on

average. Therefore, the cost per vote from the warden’s side is 23036·|W |
n gas units.

For a reasonable choice of n
|W | , such as 1000, this cost comes to be≈ 23 gas units. Adding

this to the voter side cost calculated above, we can set the upper bound for the total cost

per vote of in FASTEN in terms of Ethereum gas units as 1600 (when n
|W | = 1000).

Further note that, 1600 gas units corresponds to 0.000064 ETH as 1 gas unit (typically)

equals 4 · 108 ETH [97]. As at the time of writing of this thesis, we have 1 ETH ≈ 2396

USD, the overall cost comes out to be ≈ 1.53 USD per vote.

10.2.4 Time Analysis

As shown, the total gas consumption in FASTEN is 1600 per vote (when n
|W | = 1000).

When writing the thesis, Ethereum’s block gas limit is, on average, 8×106 [98]. Thus, each

Ethereum block can hold 5000 votes. Further, when writing this thesis, each block takes

≈ 15s to get on the Ethereum Network [16]. This corresponds to a processing capacity of

roughly 20000 votes per hour8.

Inference from Analysis. A rough estimate of the cost per vote is 1.53 USD (when n
|W | =

1000). This is lower than the amount of money spent in countries worldwide for mass

elections. For Example, the per-vote election cost for the UK European Parliament Election

2014 is 5.54 USD [280].

10.3 Conclusion and Discussion

We showed that FASTEN is a solution for FSE through blockchain and smart contracts.

It also provides a transparent, decentralized system through which the stakeholders can

8We remark that this estimate can be significantly improved by deploying a more scalable underlying
blockchain consensus protocol such as [85, 281, 12].

320



verify the result. We also argued that our protocol is cost-efficient compared to the existing

election methods. In summary,

1. FASTEN does not reveal voter identity at any stage of the process.

2. In FASTEN, votes cannot be revealed at any time before the vote-casting window

expires. Even the vote count is concealed from everyone until the window expires.

Thus, FASTEN ensures that voting is not influenced at any stage.

3. FASTEN allows anyone to check the end-to-end voting procedure independently.

This is because all the relevant information is on a public ledger. As proved, this

is achieved without compromising voters’ privacy, as every vote is cryptographically

secure and cannot be traced back to the voter.

4. As we do not assume nor use any constraints on voting population, FASTEN can

be used for a large population.

5. Our cost analysis shows that FASTEN is cost-efficient as compared to existing pro-

tocols.

6. Unlike prior works, in FASTEN voters do not have to commit and return to the

protocol to reveal their votes.

10.3.1 Discussion

Oracles: An alternative to Warden Assistance. As smart contracts cannot access and fetch

data outside the blockchain, in FASTEN, we rely on wardens to provide the decryption

keys. Another way to achieve this is through oracles. An oracle is a third-party service

designed for smart contracts and can feed data from outside the blockchain to it as and when

required. However, relying on such third-party oracles can compromise the distributed trust

model of the underlying blockchain. As a result, in FASTEN, we leverage wardens.

To use oracles, we need a way to ensure the data provided is genuine and not tempered.

Oraclize [214] is one such service provider that claims to be provably honest, i.e., which

provides unaltered data to smart contracts. They do so by accompanying the returned
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data together with a document - referred as an “authenticity proof” - which can be re-

quested using the oraclize setProof function provided by the service. The authenticity

proofs build upon different technologies such as auditable virtual machines and trusted

execution environments (refer [215]).

Liquid Democracy. The use of transferring voting rights to an informed voter has been

referred to as liquid democracy [149]. Kahng et al. [149] showed the existence of certain

delegation mechanisms that can outperform traditional voting in terms of selecting better

candidates. We believe such mechanisms can be easily implemented through FASTEN. It

must be transacted between the voter (willing to transfer voting rights) and the delegate

to transfer its token. We leave a security analysis of this for future work.
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Chapter 11

STOUP: Secure and Trustworthy Combinatorial Auction

In multi-agent systems (MAS), i.e., when multiple agents interact with

the system, we must aim to preserve the privacy of participants’ in-

formation in such applications. Towards this, Yao’s Millionaires’ prob-

lem (YMP), i.e., to determine the richer among two millionaires pri-

vately, finds relevance. This chapter presents a novel, practical, and

verifiable solution to YMP, namely, Secure Comparison Protocol (SCP).

We show that SCP achieves this comparison in a constant number of

rounds without using encryption and without requiring the participants’

continuous involvement. SCP uses semi-trusted third parties- privacy

accountants- for the comparison, who do not learn any information

about the values. That is, the probability of information leak is neg-

ligible in the problem size. We also leverage the Ethereum network in

SCP for pseudo-anonymous communication, unlike computationally ex-

pensive secure channels such as Tor. We present a Secure, Truthful

Combinatorial Auction Protocol (STOUP) for single-minded bidders to

demonstrate SCP’s significance. We show that STOUP, unlike previ-

ous works, preserves the privacies relevant to an auction, even from the
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auctioneer. We demonstrate the practicality of STOUP through simu-

lations.

⋆ ⋆ ⋆ ⋆ ⋆

11.1 Introduction

Multi-agent systems (MAS) such as distributed constraint optimization, e-commerce, and

e-voting mechanisms continue to grow in popularity. Consequently, the need for privacy of

the information exchange within these platforms has become imperative and is an area of

active research [126, 212, 274, 275, 276]. The participants (e.g., bidders), being strategic

agents, prefer the preservation of their private information (e.g., bids) as well as (often)

their public identities from other competitive agents.

With blockchain gaining momentum, MAS is now being conducted through compu-

tational logic over distributed platforms such as the Ethereum blockchain network [42].

Specifically, Ethereum allows for smart contracts, which are computer protocols intended

to digitally facilitate, verify, or enforce the negotiation or performance of a contract (re-

fer to Chapter 3.2.2.3 for details on Ethereum and smart contracts). Since these are on

a publicly distributed ledger, they are open to any interested agent while making sensi-

tive information (e.g., bids) and executing payments publicly verifiable, transparent, and

pseudo-anonymous. Consequently, an agent’s private information is publicly available for

anyone to see and use. This further necessitates securing (privacy-preserving) MAS over a

blockchain.

11.1.1 Chapter Contributions

Yao’s Millionaires’ Problem (YMP). At the heart of several MAS mentioned above is

comparing two numeric values. Therefore, to build a protocol that preserves each agent’s

private information, we require a method for comparing these values while preserving their
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privacy. In the literature, this challenge is referred to as Yao’s Millionaires’ Problem

(YMP) [300] of securely determining the richer between two different agents and has been

extensively studied.

YMP is as follows: Two agents (millionaires), Alice and Bob, are interested in deter-

mining the richer among them – without revealing their actual wealth. Motivated by this,

in this chapter, we introduce a novel method for comparing two integers x, y ∈ Z securely,

i.e., a practical solution to YMP designed for secure multi-agent applications. We refer

to our method as Secure Comparison Protocol (PPC). In PPC, we assume that there are

approved cryptographic accountants in the system, which assist the central server (CS) in

determining whether x ≥ y or not. We show that the probability that CS (or any other

party) learns any information regarding x or y, in PPC, is negligible. Further, we show

that the integer comparison in PPC is verifiable by leveraging zero-knowledge proof (ZKP)

techniques.

To securely deploy these AI applications over blockchain, we present PPC over the

Ethereum network1. To the best of our knowledge, we are the first to introduce a dedicated

and verifiable solution, in constant rounds, for YMP over the blockchain. We demonstrate

the significance of PPC by presenting a Secure, Truthful Combinatorial Auction Protocol

l (STOUP) for single-minded bidders.

STOUP. More concretely, in STOUP, we create a privacy-preserving auction atop the

greedy single-minded combinatorial auction presented in Chapter 2.2.5.6.3, Algorithm 1.

With STOUP, we show how to sort and compare the bidding information of agents without

revealing them, with the help of accountants. The accountants do not learn of any bidding

information, i.e., bid values and the items that are bid for. Towards this, we assume that

each agent’s bundle size is ≥ 2. Otherwise, the items in a bidder’s bundle may be revealed

to the auctioneer in our protocol. Note that in STOUP, the accountant’s role is only to

1PPC may also be deployed using computationally expensive secure channels like Tor [84]. We ensure
efficient pseudo-anonymous communication by coupling blockchain with an asymmetric encryption scheme.
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assist the auctioneer in determining winners and their payments when the bid values and

items are hidden.

Threat Model. This chapter assumes that CS is semi-honest or honest-but-curious. This

implies that while CS can observe and cipher any information, it will not deviate from the

defined protocol. However, unlike much of the previous works, we assume that all other

agents, i.e., Alice, Bob, accountants, bidders, etc., are strategic-but-curious. These agents

do not deviate from the protocol but may potentially submit/send incorrect information

to gain an advantage or increase their utility. Additionally, like [126, 274], we also assume

that agents do not collude.

11.1.2 Chapter Notations and Additional Background

As mentioned above, we build our privacy-preserving auction over Algorithm 1. As

such, this chapter follows the notations introduced in Chapter 2.2.5.6.3. We also em-

ploy encryptions and commitment schemes (Chapter 3.1.1.2) and zero-knowledge proofs

(ZKPs) (Chapter 3.1.2) for the verification of the auction outcome. Table 11.1 tabulates

the notations used in this chapter.

11.1.2.1 Additional Preliminaries

We leverage the following known cryptographic techniques to construct our solution for

YMP (Chapter 3.1.1.2). In particular, let p and q denote large primes such that q divides

p− 1, with Gq as the unique subgroup of Z∗
p of order q, and g as a generator of Gq.

Pedersen Commitment [229]. Let g and h = ga(mod p) be elements of Gq such that

loggh is intractable, where a ∈ Zq is the secret key. Then, a Pedersen commitment scheme

is the commitment of a message x ∈ Zq, with a random help value r ∈ Zq, as, C(x, r) =

gxhr (mod p). We denote ai as a party i’s secret key, with hi = gai(mod p).

Random Number Representation [195]. A random number representation of a num-

ber x, R(x), is a representation of x as the pair (u, v) where u, v ∈ Zq and x = (u+v)modq .̧
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Notations Definitions

Combinatorial Auction

AU Auctioneer

A := {1, . . . , n} Set of Agents

M := {1, . . . ,m} Set of Items Auctioned

p Payment Rule

K Allocation Rule

Si ⊆M Subset of items bid (item bundle) by Agent i

ϑi(S) Valuation of Agent i for bundle S

W Set of Winning Bidders

Cryptographic Model

p, q Large primes s.t. q divides p− 1

Gq Unique subgroup of Z⋆p of order q

g ∈ Gq Generator of Gq

a ∈ Zp Secret Key

h := ga (mod p) Public Key

C(x, r) Pedersen Commitment for x ∈ Zp and randomness r ∈ Zp

R(x) Random number representation of x

C(R(x)) Commitment pair for R(x)

n1, n2 Pair of Accountants assigned

H(·) Collision-resistant Hash function

Table 11.1: Chapter Notations
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Note that, to find R(x) of a number x, any party can randomly choose u and then pick

v = (x− u) mod q.

Value Comparison [195]. For two integers x, y < q/2,

x− y ≤ q/2 ⇐⇒ x ≥ y and x− y > q/2 ⇐⇒ x < y (11.1)

Therefore, to compare x and y, we only need to check whether x− y ≤ q/2.

Other Notations. We utilize the following notations for PPC as well as throughout the

chapter.

• C(R(x)) represents the Pedersen commitment of x as R(x) = (u, v), i.e., C(R(x))

denotes the pair of commitments
(
C(u, r), C(v, r′)

)
.

• A
x−→ B denotes a party A submitting a value x to a smart contract, such that x is

encrypted using B’s public key.

• H(·) denotes a collision-resistant hash function.

• EA(x) represents the ElGamal encryption [95] of x using party A’s private key.

11.1.2.2 Related Work

Yao’s Millionaires’ Problem (YMP). Yao [300] introduces YMP and its first solution.

However, the presented solution is exponential in time and space. Several protocols improve

over the seminal solution [26, 56, 124]. Ioannidis et al. [143] present a two-round protocol

which is polynomial while the authors in [32, 174] provide a single-round solution which is

linear in the order of the length of the integers to be compared. For their solutions, Ioan-

nidis et al. [143] uses complex bitwise operators while [32, 174] use Paillier homomorphic

encryption and zero-knowledge proof. The computational cost per comparison in Blake

et al. [32] is (4b + 1)(log p) + 6b and in Lin et al. [174] is 5b(log p) + 4b − 6, where b is

the bit number and p modulus of the Paillier scheme. Recently, Liu et al. [175] proposes
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Paper
Homomorphic Garbled Continuous User Dependent

Encryption Circuit Involvement on Input size

[67, 108, 121, 147, 175]

[4]

[199]

[26, 56]

[44]

[301]

PPC

Table 11.2: Comparing existing YMP protocols with PPC. The “green cross-mark” is

desirable.

a single-round solution using Paillier encryption and vectorization method. However, the

solution is of the order 2(s+ 2)log p, where s is the vector dimension.

We place PPC with some of the plethoras of protocols available for YMP using Ta-

ble 11.2. To the best of our knowledge, the existing protocols comprise one or more of

(i) garbled circuits, (ii) partial-homomorphic encryption, and (iii) continuous involvement

of the parties during execution. Note that [4] is limited as it only applies to integers in

the ≈ 260, whereas PPC works for any range. Consequently, these protocols can not be

adapted towards designing lightweight and secure AI applications. Aggravating this lim-

itation is that the number of comparisons needed for such AI applications is significant

– in the order of polynomials or more. One can not assign trusted third parties for the

operations as it may reveal the owners’ private information.

Combinatorial Auctions. A combinatorial auction, where the parties can bid for a

combination(s) of items, yields a higher revenue (lesser costs) than selling (buying) the

items individually. E.g., wireless spectrum auctions [190] or allocating airport landing take-

off slots [237]. Combinatorial auctions have an exponential number of possible valuations
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for each party and are NP-Complete [244]. Hence, we focus on a single-minded case. The

parties are interested in a specific bundle of items and obtain a particular value if they get

the whole bundle (or any super-set) and zero otherwise. Unfortunately, even single-minded

combinatorial auctions, being NP-Hard [248], are solved approximately. In particular, [169]

proposes a polynomial-time algorithm for single-minded combinatorial auction, which gives
√
m-approximate winner and payment determination payment rule, which we refer to as

ICA-SM (Incentive Compatible Approximate auctions for Single-minded bidders). Here,

m denotes the number of items being auctioned.

Secure Auctions. Micali and Rabin [195] solve single-item and multi-unit auctions while

preserving the privacy of the bids using Pedersen commitment but reveal the bid informa-

tion to the auctioneer after the end of the bidding phase. Similarly, [204, 225] present single

and multi-unit auctions that reveal the bid-topology to third parties. The authors in [36]

give a practical, multi-unit auction that does not reveal any private information to a third

party, even after the auction closes. Parkes et al. [226] use clock-proxy auction to solve a

privacy-preserving combinatorial auction, revealing private information to the auctioneer

after the end of the clock phase. The protocol is linear in the size of the original com-

putational time, from exponential. Suzuki and Yokoo [267] propose a privacy-preserving,

secure combinatorial auction without revealing any bid information to a third party. The

authors use dynamic programming, and [164] extends the work to add verifiability. The

protocol, however, is exponential in the size of the number of bids. The protocol is thus

impractical even for a small number of bids.

We leverage PPC to present a secure combinatorial auction protocol, namely STOUP.

To the best of our knowledge, this chapter is the first work to present an efficient, secure

combinatorial auction protocol that preserves the bidding information’s privacy, even from

the auctioneer.
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11.2 Secure Comparison Protocol (PPC)

We now describe PPC which securely compares two integers x and y owned by two

agents, Alice and Bob. Towards this, let ||x|| denote the number of bits required to rep-

resent the integer x. Now, in PPC, we assume that a central server (CS) coordinates the

comparison. Note that, as shown later, the CS only aids the comparison and only learns

additional information about the values of x and y with negligible probability, negl(λ),

where λ is the security parameter.

We assume that x, y < q
2·dmax

, where dmax ∈ (1, 2(||q||−1)). In PPC, we require Alice

and Bob to privately select an integer dAlice, dBob ∈ (1, dmax], respectively. Let, D =

(dAlice ⊕ dBob). Observe that, we have ||D|| < || q2 ||. For readability, we also denote ||dmax||
as d.

Before describing PPC, we present the following claim. For this, letR(x) = (u1, v1), R(y) =

(u2, v2), val1 = (u1−u2) mod q, and val2 = (v1−v2) mod q with x, y < q
2·dmax

.

Claim 11.1. (i) D · (val1 + val2) mod q ≤ q/2 ⇐⇒ x ≥ y; and (ii) D · (val1 +

val2) mod q > q/2 ⇐⇒ x < y.

Proof. The claim is a simple rearrangement of the result presented in Eq. 11.1.

11.2.1 PPC: Protocol

For PPC, we consider a smart contract SC, which allows agents to post and get relevant

information. Figure 11.1 presents the procedure for PPC, while Figure 11.2 presents the

procedure for ZKP of PPC. Note that, for the ZKP, CS acts as P. Trivially, PPC is

independent of the length of the binary representation of x or y and hence is of constant

order (O(1)) of computation rounds. We illustrate the protocol timeline of PPC with

Figure 11.3.
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PPC Procedure.

Let, (n1
Alice, n

2
Alice) and (n1

Bob, n
2
Bob) be Alice and Bob’s pair of distinct assigned accountants,

respectively.

1. Alice generates R(x) = (u1, v1) and broadcasts C(R(x)) while Bob generates R(y) = (u2, v2)

and broadcasts C(R(y)); through SC.

2.

Alice
u1,r1,dAlice−−−−−−−−→ n1

Alice and Alice
v1,r

′
1,dAlice−−−−−−−→ n2

Alice

Bob
u2,r2,dBob−−−−−−−→ n1

Bob and Bob
v2,r

′
2,dBob−−−−−−−→ n2

Bob

3.

n1
Alice

u1−→ n1
Bob and n2

Alice
v1−→ n2

Bob

n1
Bob

dBob−−−→ n1
Alice and n2

Bob
dBob−−−→ n2

Alice

4.

n1
Alice

ECS(dAlice ⊕ dBob)−−−−−−−−−−−−−→ n1
Bob

n2
Alice

ECS(dAlice ⊕ dBob)−−−−−−−−−−−−−→ n2
Bob

5.

n1
Bob

X=ECS(dAlice ⊕ dBob·(u1−u2) mod q)−−−−−−−−−−−−−−−−−−−−−−−−−−→ CS

n2
Bob

Y=ECS(dAlice ⊕ dBob·(v1−v2) mod q)−−−−−−−−−−−−−−−−−−−−−−−−−→ CS

6. CS then checks the following,

if (X + Y ) mod q = 0 return “equal”

if (X + Y ) mod q < q/2 return “ > ”

else return “ < ”

Figure 11.1: PPC Procedure
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ZKP for PPC Procedure.

1. CS acts as P. V submits β, gβ (mod p) through SC, with β ∈ Zq as the random challenge.

2. The accountants, n1
Alice and n2

Alice, send the values C(u1, r1)
D, C(u2, r2)

−D, C(v1, r
′
1)

D, and

C(v2, r
′
2)

−D, using SC. Note that the exponentiation is modular and over p. Here, D = dAlice ⊕
dBob.

3. P computes, for some private α ∈ Zq:

c1 = C(u1, ·)DC(u2, ·)−DC(v1, ·)DC(v2, ·)−D (mod p)

c2 = g(α+β) mod q (mod p)

c3 = c1 · c2 (mod p)

4. P submits the following values using SC.

c4 = H(c1, c2, c3)

c5 = (α+ β +X + Y ) mod q.

5. P, similar to X and Y , i.e., Figure 11.1, gets the values,

H1 mod q = (D · (r1 + r′1)) mod q

H2 mod q = − (D · (r2 + r′2)) mod q.

6. V verifies:

c3
?
= c1 · c2 (mod p)

c4
?
= H(c1, c2, c3)

c3
?
= gc5 · hH1 mod q

Alice · hH2 mod q
Bob (mod p)

}
(11.2)

7. V accepts that the comparison was correctly computed only if Eq. 11.2 holds.

Figure 11.2: ZKP for PPC Verification.
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Figure 11.3: Illustration of the timeline in PPC. Here, Al: Alice, Bo: Bob, and N : set of

assigned accountants.

11.2.2 PPC: Security and Privacy Analysis

PPC (Figure 11.1) preserves privacy of the values x and y from CS since CS only knows

the values2 (D · val1) mod q and (D · val2) mod q. It is trivial to see that CS cannot find

anything about the values of (u1, v1) and (u2, v2). In addition, every accountant only has

one component of the other party’s (Alice or Bob) value, which implies that it can not

either find out anything about the other party’s value. However, as d is publicly known,

the value X + Y leaks an upper bound of the value x− y. We now show that the following

results show that the probability of finding the actual value of x−y from X+Y is negligible.

2This follows as the values (D ·vali), ∀i ∈ {1, 2} are reduced over mod q. For the modular multiplication
of a · b (mod q), where q is a prime, and no information of a is known, all possible values of b are equally
likely.
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Theorem 11.1. In PPC(Figure 11.1), the probability of guessing the actual value of

x− y is 1
2d
, i.e., negl(d) in d.

Proof. Observe that, as dAlice, dBob ∈ (1, dmax], we have D ∈ [1, dmax]. Further, as the value

of D is never revealed, we have,

X + Y = D · (x− y)

=⇒ x− y =
X + Y

D

=⇒ x− y ∈
[
X + Y

dmax
, X + Y

]

Thus, the value of X + Y bounds the value of x − y. However, no other information

about the value of x− y is leaked during or after the execution of PPC. This implies that

any value in the range
[
X+Y
dmax

, X + Y
]
is equally likely for x − y. Note that, the range[

X+Y
dmax

, X + Y
]
corresponds to 2d guesses. As a result, the probability of finding the actual

value of x− y from X + Y is 1/2(d), i.e., negl(d) in d.

The following corollary also follows directly from Theorem 11.1.

Corollary 11.1. In PPC (Figure 11.1), the probability of finding the actual value of

x (y) from X + Y , with the knowledge of the other value y (x) is 1
2d
, i.e., negl(d) in

d.

Probability Threshold. Observe that the agents Alice and Bob know one of the terms in

D = dAlice⊕ dBob, but not the value itself. These agents also know one of the values, i.e., x

or y. This implies, from Corollary 11.1, that the probability with which these agents can

guess the value of x or y from X+Y is 1
2d
. Thus, in PPC, the threshold of the probability

with which a party can guess the value of x (y) is 1
2d
, which is negligible in d.
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11.2.2.1 ZKP in PPC

We now show that the ZKP described in Figure 11.2 satisfies the three properties re-

quired for a ZKP outlined in Chapter 3.1.2. That is,

• Completeness. It is trivial to see that if Eq. 11.2 holds, then the comparison was

correct. That is, an honest P will be able to convince V that the comparison was

correct.

• Soundness. If Eq. 11.2 does not hold, i.e., Alice and/or Bob misreported their

values, then there can not be a case where P can find other values except for

(X + Y ) mod q, (H1) mod q and (H2) mod q for which Eq. 11.2 holds, with high

probability. This is because Pedersen commitments are computationally binding3.

• Zero-knowledge. Observe that, similar to the argument given for PPC V does not

gain any knowledge of the committed values or the help values through the values

(X + Y ) mod q, H1 mod q, and H2 mod q. Moreover, the value C(·)z mod p does

not reveal any information about the value of z at any stage of the procedure because

of the hardness of the discrete-log problem.

We now use PPC introduced for secure comparison of two integers to present a novel,

secure combinatorial auction for the single-minded case that preserves the privacy of each

agent’s bidding information even after the bidding phase is over, namely, STOUP.

11.3 STOUP Auction Protocol

Auction Background. As mentioned above, we build our privacy-preserving auction over

Algorithm 1. As such, this chapter follows the notations introduced in Chapter 2.2.5.6.3. To

3This property also compares robust to any misreporting done by the accountants. As we assume the
accountants to be strategic-but-curious, they may strategically misreport information. However, Figure
11.2 will allow any V to detect the misreporting. Thus, PPC (Figures 11.1 and 11.2) is robust to any
misreporting done by the accountants.
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recall, we have an auctioneer AU , the seller itself, interested in sellingM = [m] indivisible

items to A = [n] agents (we assume that |A| = n ≥ 2). In this chapter, we also assume a set

of privacy accountants, N , can assist AU in determining the winners and their payments.

As already seen, Algorithm 1 is DSIC, IR, with an approximation factor
√
m. These

make it a desirable candidate to be used for combinatorial auctions where the bidders are

single-minded. Note that, as the agents are single-mined, we use ϑi(s) to denote agent i’s

valuation for the bundle s.

Security & Privacy Properties in Auctions. We now describe the required crypto-

graphic properties of a privacy-preserving auction protocol.

1. Non-repudiation. This deals with the inability of an auctioneer or an agent to retract

from their actions. These may include exclusion of correctly submitted bid(s) in case

of an auctioneer or altering of the bid(s) in case of an agent. Auction protocols must

be able to commit an agent to its bid and prove the exclusion of any bid by the

auctioneer.

2. Verifiability. The public, including the agents, must be shown conclusive proof of

the correctness of the auction protocol. The protocol must enforce correctness; an

auctioneer should not present valid proofs for invalid winners or incorrect payments.

3. Privacy. An auction protocol should hide the bidding information of an agent from

the other participating agents. Only after the auction should the information revealed

by the winning agents be known. The types of privacies relevant to an auction are

defined below. For this, let W be the set of winning agents.
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Definition 11.1: Agent Privacy

No agent should be able to discover each other’s identity, i.e., for an agent

a ∈ A during the auction and for an agent a ∈ A \W after the auction, no

other agent b ∈ A should know about a’s participation in the auctiona.

aNote that, this definition allows the auctioneer AU to know the agent identities.

Definition 11.2: Bid Privacy

No agent should be able to know any agent’s bid valuation, i.e., the probability

with which an agent a ∈ A\{i} can guess agent i’s bid valuation ϑi is≪ 1/ϑi.

Definition 11.3: Bid-Topology Privacy

No agent should be able to know any other agent’s bundle of items, i.e., the

probability with which an agent a ∈ A \ {i} can guess the item bundle Si of

an agent i ∈ A \ {a} during the auction and of an agent i ∈ A \ {{a} ∪W}
after the auction is negligible in the number of items being auctioned.

With this backdrop, consider the following definition.

Definition 11.4: Trustworthy Implementation

An auction protocol that provides non-repudiation and verifiability while preserving

agent, bid, and bid-topology privacy and being dominant strategy incentive compat-

ible (DSIC) and (ex-post) individually rational (IR) is a trustworthy implementation

of an auction.

11.3.1 STOUP: Protocol

In STOUP, A is the set of (bidding) agents, and AU is the seller itself. All arithmetic

operations (except the payments) are modulo p for the commitments and modulo q for the
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values to be committed and the help4 values. Further, AU acts as the CS (refer to PPC

protocol). As aforementioned, we assume that AU is honest-but-curious while the bidders

and the set of accountants strategic-but-curious.

Item Bundle. In STOUP, an agent i submits its item bundle Si, consisting of commitments

of its preferred items at least once as well as different commitments of some (or all) of their

preferred items randomly such that |Si| = m, ∀i ∈ A.

Definition 11.5: Item Bundle

An agent i’s item bundle is defined as Si = {C ∪D} where C = {C(R(j)) | ∀j ∈ Si}
and D = {C(R(k)) | ∀k ∈ S′

i},

where S′
i is the set of non-distinct items randomly chosen from Si such that |C|+ |D| =

m. The idea behind the “item bundle” is to hide the size of an agent’s actual bundle from

an adversary. The size may (along with other public information) be used to compromise

the agent’s bid items or bid values5.

Bid Tuple. With Definition 11.5, each bidder i ∈ A participates in STOUP, by submitting

the following bid tuple,

BTi =
〈
C(ϑi), C(|Si|), C

(
R(ϑi/

√
|Si|),Si

〉

where wi = ϑi/
√
|Si|.

4The cryptography literature sometimes refers to the randomness in encryption/commitments as help
values.

5This also does not hurt us computationally as Algorithm 1 only cares about one common item among
any two (distinct) agent bundles.
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Algorithm 16 STOUP: Protocol
1: procedure Authentication Phase

2: Each agent a ∈ {A ∪N} gives its public id ’s to AU

3: AU assigns each agent a a secret identifier ida
6

4: AU generates a random id for each item

5: AU randomly assigns
(
n1
idi

, n2
idi

)
∈ N to each idi ∈ A

6: end procedure

7: procedure Bidding Phase

8: Each bidder idi ∈ A submits BTidi
to SC

9: Each bidder idi ∈ A sends (u, r, didi) to n1
idi

and (v, r′, didi) to n2
idi

for widi and Sidi

with SC as described in Figure 11.1

10: end procedure

11: procedure Winner Determination Phase

12: AU determines – in coordination with the assigned accountants – the set of the

winning bidders W consisting of each winner’s identifier and calculates payments as

defined in Algorithm 1

13: AU submits W and the payments with SC

14: end procedure

11.3.1.1 STOUP Protocol

For STOUP, similar to PPC, we consider a smart contract SC which allows agents

to post and get relevant information. Algorithm 16 illustrates STOUP with Figure 11.4

illustrating the protocol flow. As we use PPC for winner(s) and payment(s) determination,

we require wi <
q

2·dmax
, ∀i. We next describe how AU solves steps (1), (2), and (3) of

Algorithm 1 in STOUP.

6After this assignment, we may use a and ida interchangeably.
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Figure 11.4: Overview of STOUP

11.3.1.2 Bid Initialization

AU sorts the bids based on the values widi ∀idi, using any comparison based sorting

with the comparison done through PPC (Figure 11.1). For the winner and payment

determination phase, w.l.o.g., let the highest agent’s identifier be denoted as id1, the second

highest agent as id2, and so on. Let I consist of the set of identifiers {id1, . . . , idn}, S as the

set of preferred item bundles of every agent {Sid1 , . . . ,Sidn} and W as the set of winners

initialized to ∅.

11.3.1.3 Winner Determination

AU carries out winner determination (Algorithm 1), in co-ordination with accountants.

In this, the highest agent is automatically selected, and its identifier is added to W . To

determine the other winners, AU compares every pair of item, ∀ idj ∈ I \ {id1} with every

idk currently in W , using Figure 11.1.
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If AU does not find any identical pair of items for an agent idj for every idk currently

in W i.e., Sidj ∩ (∪k∈W Sidk) = ∅, it adds idj to W . Otherwise, it discards that agent and

continues with the next highest agent.

Note. As the set of itemsM is finite, i.e., there are only
(
m
2

)
distinct combinations possible,

AU can deterministically get the items, x and y, being compared from the value x− y. By

using PPC however, the AU will get the value X+Y . With this, if x ̸= y, i.e., X+Y ̸= 0,

all possible
(
m
2

)
combinations will be equally likely.

11.3.1.4 Payment Determination

The payments for every winner idi ∈ W are as described in Algorithm 1. AU can find

out an agent idj , ∀ idi ∈ W , where j is the smallest index such that Sidi ∩ Sidj ̸= ∅, and
an agent idk for k < j, idk ̸= idi such that Sidk ∩ Sidj = ∅, similar to the procedure to the

winner determination described in Chapter 11.3.1.3. If such idj and idk exists, then AU

asks the assigned accountant n1
idj

of idj to calculate the payment pidi = ϑidj/
√
|Sidj |/|Sidi |.

The agent idj opens its commitment C(R(widj )) for n1
idj

, securely. AU asks idi to open

its commitment for C(|Sidi |), and sends the value to n1
idj

, which calculates pidi and sends

it to AU . If no such idj or idk exist, then pidbi = 0.

11.4 STOUP: Security and Privacy Analysis

STOUP preserves non-repudiation since all the relevant information is submitted on

the blockchain, an append-only ledger. We now look at verifiability and the nature of the

privacy guarantees as provided by STOUP. Here, we denote the identifier idi ∈ A as i for

simplicity of notation.

Verifiability. A prover P (i.e., the AU in STOUP) proves to a verifier V the correctness

of the order w1 ≥ · · · ≥ wn and the correctness of the comparisons for Si ∩Sj = ∅, for each
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i, j ∈ A. As all values as well as item comparisons in STOUPare done using PPC, the

ZKP for the comparisons follows the same as described in Figure 11.27.

11.4.1 Privacy Analysis

STOUP provides the following privacy guarantees.

Proposition 11.1. STOUP preserves agent privacy (Definition 11.1).

Proof. In STOUP, all agents first communicate with AU over a blockchain with smart

contract support (e.g., Ethereum). We know that communication over the blockchain is

pseudo-anonymous, i.e., these addresses can not be linked to the real-world identity of the

agents with high probability. AU assigns a random id to all the agents that are also used

throughout the execution of STOUP for communication. Thus, there is no step in the

protocol from which the agent identities will be leaked unless AU leaks the identities.

More concretely, assuming the AU does not leak the agent identities, an adversary must

break the cryptographic primitives used in STOUP and (say) the Ethereum blockchain.

STOUP relies on the Pedersen commitment and a public-key encryption scheme (e.g.,

ElGamal encryption (Definition 3.10). Breaking these will require the adversary to solve

the Discrete Log Problem (Definition 3.5), which is computationally infeasible for any

probabilistic polynomial-time (PPT) adversary.

The adversary can instead try attacking the public address used by an agent for com-

munication over Ethereum in STOUP. However, the safety of the public address relies

on the security guarantees of the ECDSA digital signature scheme and the computational

infeasibility of inverting the Keccak-256 (or SHA3-256) hash function for any PPT adver-

sary.

7As Pedersen commitments are computationally binding, V does not require multiple proofs for different
commitments of the same values. This significantly reduces the computational time, unlike [195, 225].
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Proposition 11.2. STOUP preserves each agent’s bid privacy (Definition 11.2).

Proof. Each agent is required to submit only the Pedersen commitments of their bids,

which are perfectly hiding. That is the probability with which an adversary will win the

hiding game – knowing the message x ∈ Zq given only the commitment C(x, r) – is neg-

ligible in the security parameter λ. More formally, let Uλ denote the uniform distribution

over all possible values to open the commitment. Now, the Pedersen commitments satisfy

the fact that the ∀x ̸= x′, no probabilistic polynomial-time (PPT) adversary can compu-

tationally distinguish between the probability ensembles {C(x, Uλ)} and {C(x′, Uλ)}, i.e.,
|∑r∈Uλ

Pr[x | C(x, r)]− Pr[x′ | C(x′, r)]| ≤ negl(λ).

Hence, the adversary can, at best, try a brute force other than through a brute force

attack. Typically, 64 bits are enough to represent each agent’s bid valuation, while |q| is
chosen to be 1024 bits. Thus, we have 1/2|

q
2·Dmax

| ≪ 1/ϑi ∀i ∈ A.

Proposition 11.3. STOUP preserves bid and bid-topology privacy from the accoun-

tants.

Proof. Since each individual notary will only know one value (either u or v) of its assigned

agent i’s wi or Si and assuming they do not collude among each other or with AU , STOUP

leaks no information regarding the bids or the items in the bid tuple the bid and bid-

topology privacy from the notaries. The formal proof follows from Corollary 11.1.

Lemma 11.1. In STOUP, the probability with which AU can know at least one item

in agent j’s bid-topology (Definition 11.3) is 1/si. The probability with which AU can

know the complete bid-topology of an agent j is,

Pj(si) =
1

2m − 2m−si (11.3)
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∀j ∈ A\W , such that i ∈W is that agent for which Sj∩Si ̸= ∅ in Step 2 of Algorithm 1,

si = |Si| and m are the number of items.

Proof. AU , through the bidding topology of the winners and its knowledge about which

agents have at least one item in common, can infer some information about the bid-topology

of an agent j ∈ A \W . With this, AU can know that j’s bid-topology consists of at least

one item belonging to i’s preferred bundle of items, Si. The probability with which AU

can figure that item is 1/si.

Further, with this information, AU can eliminate all possible subsets of A which do not

consist of any item in Si. Then the probability with which STOUP leaks each agent j’s

bid-topology to AU is given by Eq. 11.3, as all the remaining subsets i.e., 2m − 2m−si are

equally likely.

Interpreting Lemma 11.1. The above lemma follows by observing that AU through the

bidding topology of the winners and its knowledge about which agents have at least one item

in common, can infer some information about the bid-topology of an agent j ∈ A \W .

We then get the probability defined in Eq. 11.3 by eliminating the subsets that do not

comprise the shared item.

From Eq. 11.3, STOUP preserves bid-topology privacy with high probability when

si ≥ 2,∀i ∈W . For the analysis of the result, observe that Eq. 11.3 can be written as,

Pj(si) =
1

2m − 2m−si =
2si

2si − 1

(
1

2m

)
.

Thus, the increase in the probability with which AU can determine the complete bid-

topology of an agent with respect to randomly guessing the complete bid-topology is by a

constant factor, i.e., by 2si
2si−1 . Assuming that each agent’s bundle size is ≥ 2, the worst

case follows when si = 2. The probability that AU can know the complete bid-topology

of an agent bj in this case is, Pj(si) = 4
3

(
1
2m

)
, which is an increase by a factor 4

3 or an

increase by 33.33% of O( 1
2m ) which is negligible in m, i.e., negl(m).
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The probability result follows from the fact that at no point during the auction or post-

auction and ∀j ∈ A\W , the cardinality of the preferred bundle of items of an agent j, i.e.,

sj , is revealed to AU in STOUP. Note that Eq. 11.3 does not hold for an auction protocol

that leaks the cardinality of Sj of an agent j. For instance, if AU knew that for an agent

j, sj = m, the probability with which agent j’s bid-topology is leaked to AU would be 1.

Lastly, combining these privacy guarantees implies the following theorem.

Theorem 11.2. STOUP is a trustworthy implementation of Algorithm 1.

Proof. Propositions 11.1, 11.2, and 11.3 and Lemma 11.1 show that STOUP preserves

agent, bid and bid-topology privacy with high probability (the probability of guessing

improves only by O
(

1
2m

)
) and is non-repudiate and verifiable. Since the protocol also

solves the winner and payment determination problem through Algorithm 1, it is DSIC

and ex-post IR. Thus, the theorem follows from Definition 11.4.

11.5 STOUP: Implementation

To avoid any floating-point number, AU can announce at the start of the auction that

wi for every agent i, will have x-precision i.e., each value wi will be significant up to x

decimal places.

Simulation Setup. We generate all auction instances as a CATS file using the SATS

command-line tool [291]. We calculate the optimal social welfare by solving the winner

determination problem for the general single-minded case through FRODO 2.0 [168]. For

this calculation, the generated CATS file is parsed through the inbuilt FRODO 2.0 parser

to convert it to XCSP. The XCSP file is then solved using optimal algorithms (such as

DPOP, P-DPOP, etc.) provided in FRODO 2.0 (through GUI or command line). Further,

the primes p and q are of size 1024 bits. We use a quad-core Intel i5-4210U CPU with

a 1.70GHz processor and 8GB RAM for the simulations. We also assume no latency

in inter-party communication. Consequently, the computational bottleneck of STOUP
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n m Upper Bound (
√
m)

Optimal Welfare
Approximate Welfare Time Taken (mins)

25 9 3 1.11905993576 2.1826

25 12 3.4641 1.1313692063 5.21355

25 15 3.8729 1.05711039103 11.103467

100 9 3 - 11.59642

100 12 3.4641 - 19.72178

100 15 3.8729 - 54.084380

Table 11.3: STOUP bound for 25 random auction instances

corresponds to the verification of every value and item comparison, i.e., Figure 11.2. Table

11.3 presents the results. Note that, for large n, it is difficult to calculate the optimal

welfare8, as the problem is NP-Hard.

Simulation Analysis. As stated, the mean time taken for STOUP in Table 11.3 includes

verifying every value and item comparison done throughout the execution of STOUP.

However, the time consumed to verify the value and item comparisons is significantly less

than other secure auction protocols such as [225]. For comparison, a 100 bid single-item

auction (i.e., n = 100 and m = 1) takes approximately 2.51 hours in [225] (see [225, Table

2]), while a 100 bid single minded combinatorial auction (i.e., n = 100) even with m = 15,

only takes approximately 0.91 hours in STOUP. This decrease in the run-time shows the

practicality of PPC.

Gas Consumption. A smart contract is compiled as bytecode and executed on the

Ethereum Virtual Machine (EVM). EVM charges a fee per computational step executed in

a contract or transaction to prevent deliberate attacks and abuse on the Ethereum network.

This fee is measured in terms of gas units (refer to Chapter 3.2.2.3).

8As discussed in Chapter 2.1, for an auction, social welfare is the summation of all the winning bidders’
valuations.
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The estimate depends on the post operations described in STOUP. For example, each

bidder submits its bid tuple and other required information. Then, AU and the accountants

further exchange information on-chain. The EVM uses 256-bit as default, so changing p

does not affect the estimate. Smaller p’s will result in greater gas consumption as the

EVM “downscales” the values. Typically, the gas associated with a post-operation for the

uint256 variable in Solidity is ≈ 62664. With this in STOUP, AU will consume 313320

per comparison while each accountant consumes 501312. Each participating bidder will

at-worst consume (3 +m) · 62664 gas units.

11.6 Conclusion

This chapter observed that Yao’s Millionaires’ Problem (YMP) is fundamental to design-

ing secure AI applications. Towards this, we presented a practical and verifiable solution

to YMP, namely, PPC (Figures 11.1 and 11.2). PPC uses third-party agents to securely

compare two integers that do not learn any information (Theorem 11.1). Significantly,

PPC achieves the comparison in constant time and one execution of Figure 11.1.

To demonstrate the effectiveness of PPC, we use it to design a Secure, Truthful cOmbi-

natorial aUction Protocol (STOUP) for single-minded bidders (Algorithm 16). STOUP

preserves an agent’s bid valuation and topology at any time during the auction and post-

auction, even to the auctioneer, unlike prior works. The bid-topology is preserved with high

probability when every agent’s bundle size is ≥ 2, which is a fair assumption in practice

for combinatorial auctions (Lemma 11.1). We further believe that PPC will find an ap-

plication for other secure multi-agent systems (MAS), including different auctions, voting,

and distributed optimization.
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Chapter 12

Differentially Private Multi-agent Constraint Optimization

Distributed Constraint Optimization (DCOP) is a framework in which

multiple agents with private constraints (or preferences) cooperate to

achieve a common goal optimally. DCOPs are applicable in several

multi-agent coordination/allocation problems, such as vehicle routing,

radio frequency assignments, and distributed scheduling of meetings.

However, optimization scenarios may involve multiple agents wanting to

protect their preferences’ privacy. Researchers propose privacy-preserving

algorithms for DCOPs that provide improved privacy protection through

cryptographic primitives such as partial homomorphic encryption, secret-

sharing, and secure multiparty computation. These privacy benefits

come at the expense of high computational complexity. Moreover, such

an approach does not constitute a rigorous privacy guarantee for opti-

mization outcomes, as the result of the computation may compromise

agents’ preferences. In this work, we show how to achieve privacy, specif-

ically Differential Privacy, by randomizing the solving process. In par-

ticular, we present P-Gibbs, which adapts the current state-of-the-art

algorithm for DCOPs, namely SD-Gibbs, to obtain differential privacy

guarantees with much higher computational efficiency. Experiments
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on benchmark problems such as Ising, graph-coloring, and meeting-

scheduling show P-Gibbs’ privacy and performance trade-off for vary-

ing privacy budgets and the SD-Gibbs algorithm. More concretely, we

empirically show that P-Gibbs provides fair solutions for competitive

privacy budgets.

⋆ ⋆ ⋆ ⋆ ⋆

12.1 Introduction

The idea of distributed computation has been a trending topic among computer scien-

tists for decades. Distributing the computation has several well-known advantages over

centralized computing. These include no single-point failure, incremental growth, reliabil-

ity, open system, parallel computing, and easier management of resources. In this chapter,

we focus on the distributed analog of constrained optimization [243], namely distributed

constraint optimization problem (DCOP), first introduced in [305].

As mentioned earlier in Chapter 12.1, in DCOPs, agents compute their value assign-

ments to maximize (or minimize) the sum of resulting constraint rewards. These constraints

quantify an agent’s preference for each possible assignment. E.g., distributed scheduling

of meetings and graph-coloring-related applications such as mobile radio frequency assign-

ments are modeled using DCOPs. As stated in Chapter 12.1, using the meeting-scheduling

for several Chief Executive Officers (CEOs) scenario, DCOP algorithms may leak sensitive

information regarding the CEOs’ schedule during the computation process or through the

outcome [100].

12.1.1 Privacy in DCOPs

In general, the need to preserve the privacy of an agent’s sensitive information in AI/ML

solutions is paramount [3, 33, 138]. Despite its distributed nature, ‘solving’ a DCOP in-
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stance transfers information across agents, which may leak sensitive information to the

other participants, such as the agent’s preferences. In the above example, an information

leak may involve a CEO inferring critical information about the other participating CEOs

during the information exchange. Thus, privacy-preserving solutions to DCOPs are nec-

essary and form the basis of this work. Before discussing the existing privacy-preserving

DCOP literature, we first summarize the existing DCOP algorithms.

12.1.1.1 DCOP Algorithms

Solving a DCOP instance is NP-hard [197]. Nevertheless, the field has grown steadily

over the years, with several algorithms being introduced to solve DCOP instances, each pro-

viding some improvement over the previous. These algorithms are either: (1) search-based

algorithms like SynchBB [135], ADOPT [197] and its variants, AFB [115] and MGM [183],

where the agents enumerate through sequences of assignments in a decentralized manner;

(2) inference-based algorithms like DPOP [230] and Max-Sum [102], where the agents use

dynamic programming to propagate aggregated information to other agents; (3) sampling-

based algorithms like DUCT [217, 218], where the agents iteratively sample promising

assignments. We refer the reader to [105] for a comprehensive survey on DCOP algo-

rithms.

This chapter focuses on SD-Gibbs (and its parallel analog PD-Gibbs) [209], the current

state-of-the-art algorithms for approximately solving DCOPs. SD-Gibbs is known to run

faster (e.g., compared to DUCT [209]), find a better quality of solutions (e.g., compared

to MGM and DUCT [218]), and be applicable for larger problems (e.g., compared to

DPOP [218] and DUCT [209]).

12.1.1.2 Privacy-preserving DCOP Algorithms

In literature, several algorithms exist to preserve privacy in DCOPs. Unfortunately, we

identify that such existing privacy-preserving algorithms have two significant drawbacks.
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Firstly, these algorithms lack scalability with respect to the number of agents and con-

straints. Secondly, privacy-preserving complete algorithms for DCOPs converge at the

optimal solution. As such, the said solution may be used to infer potentially critical infor-

mation regarding the DCOP instance. We next discuss these drawbacks in detail.

12.1.1.2.1 Non-scalability of Private DCOPs As DCOPs are NP-hard, complete

DCOP algorithms such as DPOP do not scale as it is. The added complexity of the

underlying cryptographic primitives further hits the scalability of its privacy variants: P-

DPOP [100], P3/2-DPOP [167], and P2-DPOP [167]. Of these, P-DPOP scales the best,

primarily due to its weaker privacy guarantees. Even for P-DPOP, the algorithm is known

to only scale up to 12 agents for graph-coloring, and 6 agents for meeting-scheduling – two

popular benchmark problems in DCOP literature.

On the other hand, more recent algorithms like P-Max-Sum [274] and P-SyncBB [127]

scale better, either in part to the underlying approximate algorithm (P-Max-Sum) or effi-

cient secure multi-party computation protocols (P-SyncBB). However, the algorithms are

still computationally intensive. For instance, P-Max-Sum requires a computational over-

head ranging from minutes to an hour. Also, the algorithm’s run-time increases by a factor

of 1000s over its non-private variant [274].

12.1.1.2.2 Solution Privacy In addition to their lack of scalability, privacy-preserving

DCOP algorithms built atop complete algorithms output the optimal assignment (or solu-

tion). However, these final assignments cannot be private and, in turn, may leak critical

information about agents’ preferences [100]. We refer to this information leak as solu-

tion privacy. For complete DCOP algorithms such as DPOP, their privacy variants built

through cryptographic primitives such as P-DPOP [100], P 3/2-DPOP [167], and P 2-

DPOP [167] trivially do not satisfy solution privacy.
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12.1.2 Chapter Contributions

In summary, we note that while algorithms exist that realize constraint privacy, their

non-scalability hinders their practical use. The cryptographic primitives used to achieve

privacy further exaggerate this lack of scalability. Moreover, information leaked through

the algorithms’ output can be used to extract significant private information, especially

when the problem is solved repeatedly. Motivated by these, we aim to construct a scalable

DCOP algorithm while providing rigorous and provable privacy guarantees for agents’

constraints and one that satisfies solution privacy.

Note that the non-guarantee of solution privacy is an inevitable outcome of a crypto-

graphically secure algorithm. However, it is possible to make the final assignment of a

DCOP algorithm differentially private [92]. Consequently, to achieve such a private and

scalable algorithm, we focus on the strong notion of differential privacy (DP) [92, 93]. In

particular, we focus on achieving privacy in SD-Gibbs using DP techniques. Furthermore,

we consider a stronger local model of privacy [93], which ensures the indistinguishability

of any two agents.

Our Approach and Contributions. Differential privacy (DP) is usually achieved

through randomization. This makes it natural to consider randomized algorithms, such

as SD-Gibbs [209], which also, at the same time, are much more computationally efficient.

However, these algorithms by themselves do not protect privacy, and we develop additional

mechanisms to ensure DP of the entire process. More concretely, we consider the following

approach to design a scalable DCOP that preserves constraint privacy.

Identifying Privacy Leaks in SD-Gibbs. We first show that SD-Gibbs may leak information

about agent constraints during execution. More concretely, during the algorithm’s execu-

tion, agents send and receive information that directly depends on their utility functions,

i.e., functions that quantify the preferences for each constraint. What is more, SD-Gibbs’

iterative nature may further lead to a high privacy loss over the iterations.
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As such, we must construct an algorithm that not only preserves constraint privacy but

incurs minor privacy leaks across iterations.

P-Gibbs. Towards this, we develop a new differentially private variant of SD-Gibbs. We

present a novel algorithm P-Gibbs, which crucially differs from SD-Gibbs in three key

aspects with respect to preserving constraint privacy.

1. Sampling through Soft-max with Temperature. Sampling through Gibbs distribu-

tion [172] in SD-Gibbs leaks information about the underlying utilities. This leak is

because a value with greater utility is more likely to be sampled. We use soft-max

with temperature over the Gibbs distribution to overcome this. This process smooths

out sampling distributions in SD-Gibbs.

2. Adding Gaussian Noise to Relative Utilities. Each agent in SD-Gibbs sends its rela-

tive utility to its immediate parent. These relative utilities are the difference between

its previous and current assignments. As such, these values leak vital information

about the utilities. E.g., if a particular assignment has a high utility for agent j, but

low for others (and it is known), an intermediate agent will learn about agent j even

from the aggregated utility. To this end, we add Gaussian noise to the relative utility

in our algorithm. The added noise helps to perturb each agent’s relative utilities such

that information regarding the utilities is protected.

3. Subsampling. As aforementioned, the iterative nature of SD-Gibbs implies that the

privacy loss is accumulated over the iterations. We propose that each agent must

sample a new assignment with a subsampling probability q to limit this loss. This

limits the information leaked at each iteration, resulting in bounded privacy loss.

In addition, we provide a refined analysis of privacy within the framework of (ϵ, δ)-DP for

P-Gibbs. We simulate P-Gibbs on three benchmark problems in DCOP literature, namely

Ising [50], graph-coloring, and meeting-scheduling [181]. Our experiments demonstrate
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our novel algorithm’s practicality and robust performance for a reasonable privacy budget,

i.e., ϵ, with SD-Gibbs as the baseline. Specifically, we show that P-Gibbs provides only a

marginal drop in solution qualities compared to SD-Gibbs for a desirable privacy budget.

12.1.3 Chapter Overview

The chapter’s structure is as follows. In Chapter 12.1.4, we place P-Gibbs concerning

the privacy-preserving DCOP literature. We formally introduce DCOP, describe SD-Gibbs,

and define differential privacy (DP) in our context in Chapter 12.1.5. We illustrate the

nature of privacy leaks in SD-Gibbs with Chapter 12.2. Chapter 12.3 introduces our novel

privacy variant P-Gibbs, including a refined analysis of (ϵ, δ)-DP. Next, in Chapter 12.4,

we empirically validate P-Gibbs over several problem instances of benchmark problems in

DCOP literature. Our experiments highlight our privacy variant’s efficiency. Chapter 12.5

concludes the chapter and discusses future research directions.

12.1.4 Chapter Background: Related Work

This section places our work concerning the general DCOP literature, focusing on

privacy-preserving DCOPs. Table 12.1 compares the works described in this section with

our novel privacy variant, P-Gibbs, regarding their privacy guarantees and scalability.

12.1.4.1 Distributed Constraint Optimization Problem (DCOP)

As mentioned in Chapter 12.1, despite the computationally hard nature of DCOPs, re-

searchers have proposed various algorithms that aim to solve them completely or approxi-

mately. Outside of the popular algorithms like DPOP [230], ADOPT [197], Synch-BB [135],

and Max-Sum [102], the field has also seen some recent sampling-based algorithms. Details

follow.

Ottens et al. [217] propose Distributed Upper Confidence Tree (DUCT), an extension of

UCB [107] and UCT [114]. While DUCT outperforms the algorithms above, its per-agent
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memory requirement is exponential in the number of agents. It prohibits it from scaling

up to larger problems.

Nguyen et al. [209] improve upon DUCT through their sampling-based DCOP algo-

rithms: Sequential Distributed Gibbs (SD-Gibbs) and Parallel Distributed Gibbs (PD-

Gibbs). These are distributed extensions of the Gibbs algorithm [172]. SD-Gibbs and

PD-Gibbs have a linear-space memory requirement, i.e., the memory requirement per agent

is linear in the number of agents. The authors empirically show that SD-Gibbs and PD-

Gibbs find better solutions than DUCT, run faster, and solve large problems that DUCT

fails to solve due to memory limitations. Therefore, in this work, we focus on SD-Gibbs.

Our results can be trivially extended for PD-Gibbs.

SD-Gibbs [209] is a sampling-based algorithm in which the authors use the Gibbs distri-

bution [172] to solve DCOPs. The algorithm can be broadly categorized into the following

four phases. (i) Initialization: Each agent initializes its algorithm-specific variables. (ii)

Sampling: Agents sample an assignment to their variable based on the Gibbs distribution

and depending on the assignments of their neighboring agents. (iii) Backtracking: After

each agent has sampled its assignment, they calculate their relative utilities. That is the

difference between their previous assignment with their current assignment. The agents

then send the utilities to their immediate parents. The parents add their utilities to the

ones received, and the process continues till the root agent. This concludes one iteration.

(iv) Deriving Solution: The backtracking process results in the root agent holding the

global relative utility. Based on the solution observed thus far, the root throws away or

keeps the solution.

This chapter focuses on SD-Gibbs due to its improved solution quality and computa-

tional efficiency.

12.1.4.2 Privacy in DCOPs

The existing literature focuses on the following techniques to ensure privacy in DCOPs.
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Algorithm Complete
Agent Topology Constraint Decision Solution Collusion No Privacy

Privacy Privacy Privacy Privacy Privacy Resistance Overhead

P-DPOP [100, 167] ◦ ◦ ◦
P 3/2-DPOP [167] ◦ ◦
P 2-DPOP [167] ◦
P-SyncBB [127]

P-Max-Sum [274]

P-RODA [128]

PC-SyncBB [273] ◦
MD-Max-Sum [160]

P-Gibbs † † ‡

†: P-Gibbs can support agent and topology privacy through anonymous communication (e.g., using codenames [100])

‡: Differentially-private guarantee

Table 12.1: Comparing existing literature in privacy-preserving DCOPs with our novel

privacy variant, P-Gibbs. Here, the “green check” mark denotes the realization of the

property, “◦” that the property is realized partially, and the “red cross” mark if the property

is not realized. Note that the rest of the algorithms provide a cryptographic guarantee

outside of P-Gibbs.

12.1.4.2.1 Achieving Privacy through Cryptosystems Privacy in DCOPs has

focused on using cryptographic primitives, such as partial homomorphic encryption and

secret-sharing methods. To quantify the privacy guarantees, researchers propose the fol-

lowing four notions.

1. Agent privacy [100, 167]. No agent must learn the existence of its non-neighboring

agents, i.e., agents it does not share constraints with.

2. Topology privacy [100, 167]. No agent must discover the existence of topological con-

structs in the constraint graph, such as nodes (i.e., variables), edges (i.e., constraints),

or cycles, unless it owns a variable involved in the construct.
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3. Constraint privacy [100, 167]. No agent should be able to discover the nature of a

constraint that does not involve a variable it owns.

4. Decision privacy [100, 167]. No agent should be able to discover the value that an-

other agent’s variable takes in the solution chosen for the problem (modulo semipri-

vate information).

Several privacy-preserving algorithms exist, using secure multi-party computation [300]

atop existing DCOP algorithms to provide cryptographic privacy guarantees. These in-

clude P-DPOP [100], P3/2-DPOP, P2-DPOP [167], which builds on the DPOP algorithm;

P-SyncBB [127] and PC-SyncBB [273] over SynchBB; P-Max-Sum [274] over Max-Sum;

and P-RODA [128] which is privacy variant for algorithms which fit in Region Optimal

DCOP Algorithm (RODA) [128] framework. In Table 12.1, we provide the known private

algorithms and the privacy notions they satisfy; details follow.

To guarantee agent and (partial) topology privacy, the algorithms P-DPOP, P 3/2-

DPOP, and P 2-DPOP use “codenames” (randomly generated numbers) in place of the

actual variable names and domains. These codenames are used for information exchange

between agents. The agent selected as the root then “decrypts” these values to arrive at

the solution. In contrast, P-Max-Sum and PC-SyncBB support topology privacy. These

algorithms also use information-hiding public-key encryption and random shifts and per-

mutations.

P2-DPOP completely preserves constraint privacy. The algorithm uses the partial ho-

momorphic property of ElGamal encryption for the same. This technique is unlike P-DPOP

and P3/2-DPOP, which merely adds the random numbers communicated by agents, inad-

vertently leaking privacy. P-Max-Sum also preserves constraint privacy by communicating

information through encryptions or random shares.

DCOPs are also solved using region-optimal algorithms such as KOPT [153] or DALO [158].

Grinshpoun et al. present an umbrella setup, namely RODA, that generalizes these region-

optimal algorithms. The authors present P-RODA [128], which implements the privacy-
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preserving implementations of these region-optimal algorithms. P-RODA uses crypto-

graphic primitives such as secret sharing and homomorphic encryptions. As such, P-RODA

perfectly simulates RODA but with a significant computational overhead.

The algorithms mentioned above, except PC-SyncBB, assume that agents do not col-

lude. Note that any two or more colluding agents can leak sensitive information about

the other agents. Using secure multi-party computation, Tassa et al. [273] show that

PC-SyncBB is collusion resistant as long as the majority of the agents do not collude.

Most recently, Kogan et al. [160] introduced MD-Max-Sum, a privacy-preserving, collusion-

resistant DCOP algorithm built atop the Max-Sum algorithm. Crucially, MD-Max-Sum

uses third parties, namely mediators, to guarantee collusion resistance and has a reduced

run time compared to PC-SyncBB. The algorithm satisfies constraint, topology, and deci-

sion privacy.

12.1.4.2.2 Solution Privacy Research on privacy-preserving algorithms for DCOP

typically focuses on complete algorithms guaranteed to compute the optimal assignment

(solution) [100, 167]. Obviously, one cannot keep the solution secret, so the information

leaked by knowledge of the solution has generally been considered an inevitable privacy

loss. Moreover, as the optimization outcome cannot be preserved, the computation may

compromise agents’ preferences, thereby violating constraint privacy.

However, it is possible to make the solution, and therefore, any information that can be

inferred from it differentially private. We call this property solution privacy and add it as

an additional objective for privacy-preserving DCOP. We show that our differentially pri-

vate variant, P-Gibbs, satisfies solution privacy through randomization of the computation

process (Table 12.1).

Solution Privacy and Decision Privacy. In this chapter, we follow the classic security

principle – “no security through obscurity” – meaning that we cannot assume privacy would

be kept by simply hiding decisions from some agents (the server or other agents might reveal
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them; agents who get your decision can be malicious; decisions may be observed through

agents actions by outsiders; and so on). Thus, in our context, the privacy notions of

solution privacy and decision privacy are not equivalent.

12.1.4.2.3 Non-scalability of Existing Private DCOP Algorithm Unlike our pri-

vacy variant P-Gibbs (Table 12.1), cryptographic primitives and the computationally ex-

pensive nature of DCOPs results in the algorithms mentioned above not being scalable in

terms of the number of agents and constraints. More concretely, we say that a private

DCOP algorithm admits a privacy overhead if it is significantly more computationally

expensive compared to its non-private variant.

Our definition implies that private algorithms based on cryptographic primitives incur a

significant privacy overhead. E.g., P-DPOP [100] scales up to 12 agents for graph-coloring

and 6 agents for meeting-scheduling. Such a lack of scalability is also present in privacy-

preserving algorithms built atop approximate algorithms. E.g., P-Max-Sum’s run-time

increases three-fold in magnitude over its non-private variant [274].

12.1.4.2.4 Other Privacy Notions Information Entropy. In a parallel line of

work, the authors in [182] use information entropy to quantify the privacy loss incurred

by an algorithm in solving a distributed constraint problem. The result is later furthered

by [39, 125]. Grinshpoun et al. [125] present private local-search algorithms based on the

algorithms above. The authors use this quantification to show that their algorithms provide

high-quality solutions while preserving privacy. While the privacy loss metric defined in

[182] is interesting, it does not offer a worst-case guarantee. Practically, even a minor leak

may result in information being revealed completely.

Utilitarian DCOPs. Savaux et al. [252, 251] propose Utilitarian DCOPs (UDCOPs)

where privacy leakage is correlated to the quality of the final assignment. They assume

that each agent also maintains a privacy cost for each assignment’s utility, which captures
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the desire of the agent to preserve that utility’s privacy. With this modeling, they can

derive the overall privacy cost and the final solution.

The authors introduce private DCOP algorithms based on this idea (e.g., DBOU and

DSAU, which are extensions of DBO and DSA, respectively). The key privacy idea in

these algorithms is that agents randomly sample new assignments and only broadcast the

information if it positively changes their overall utility.

While such a utility-based privacy cost is another interesting way of quantifying privacy

leaks in DCOPs, we believe a (ϵ, δ)-DP approach is a more robust measure of the same.

First, the privacy budget used in UDCOPs appears to be agent-specific (i.e., agents may

define it arbitrarily). As such, it may not be applicable in practice as the agents may find

it difficult to quantify the privacy cost of revealing information about a certain resource.

Furthermore, privacy implications can change with time, even if an agent can estimate

its cost at one point. That is, the quality of the obtained solution may not be useful in

the future. In contrast, there is a clear consensus on appropriate values of ϵ and δ in DP,

implying quantifiable privacy guarantees.

Second, to the best of our knowledge, while we provide worst-case privacy guarantees for

P-Gibbs, similar to the information entropy-based privacy measure, there are no worst-case

guarantees for the algorithms in [252, 251]. So, even if we disregard each agent’s arbitrary

privacy cost assignments, it is impossible to say if the solution reveals something about

the true utilities. And if there is a correlation between privacy costs and utilities, it might

even reveal more.

12.1.5 Chapter Background: Preliminaries

We now formalize DCOPs, summarize SD-Gibbs, and define privacy definitions relevant

to our work.
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12.1.5.1 Distributed Constraint Optimization Problem (DCOP)

Distributed Constraint Optimization Problem (DCOP) is a class of problems comprising

a set of variables, a set of agents owning them, and a set of constraints defined over the

set of variables. These constraints reflect each agent’s preferences.

Definition 12.1: Distributed Constraint Optimization Problem DCOP

A Distributed Constraint Optimization Problem (DCOP) is a tuple ⟨X ,A,D,F , α⟩
wherein,

• X = {x1, . . . , xp} is a set of variables;

• A = {1, . . . ,m} is a set of agents;

• D = D1 × . . .×Dp is a set of finite domains such that Di is the domain of xi;

• F is a set of utility functions Fij : Di × Dj → R. Fij gives the utility of each

combination of values of variables in its scope. Let var(Fij) denote the variables

in the scope of Fij .

• α : X → A maps each variable to one agent.

In this work, w.l.o.g [306], we assume that p = m, i.e., the number of agents and

variables, are equal. We also assume D = Di = Dj , ∀i, j, i.e., all variables have the same

domain. Total utility in DCOP, for a complete assignment X = (x1, . . . , xp) is:

F (X) ≜
m∑
i=1

∑
j

Fij(X||D)

 , (12.1)

where X||D is the projection of X to the subspace on which Fij is defined. The objective

of a DCOP is to find an assignment X∗ that maximizes1 the total utility, i.e., F (X∗) =

maxX∈DF (X).

1We can also define a DCOP that minimizes the total utility, i.e., F (X∗) = maxX∈D − F (X).
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In DCOPs, a combination of variables (or alternately, agents) is referred to as a con-

straint. The utility functions over these constraints quantify how much each agent prefers

a particular constraint. This constraint structure is captured through a constraint graph.

Definition 12.2: Constraint Graph (CG)

Given a DCOP defined by ⟨X ,A,D,F , α⟩, its constraint graph G = ⟨X , E⟩ is such

that (xi, xj) ∈ E , ∀j ∈ var(Fij).

A pseudo-tree arrangement has the same nodes and edges as the constraint graph. The

tree satisfies (i) there is a subset of edges, called tree edges, that form a rooted tree; and (ii)

two variables in a utility function appear in the same branch of that tree. The other edges

are referred to as back edges. Nodes connected via a tree edge are referred to as parent-child

nodes. Likewise, back edges connect the pseudo-parent and its pseudo-children. Such an

arrangement can be constructed using a distributed-DFS [134].

For the algorithms presented in this chapter, let Ni refer to the set of neighbors of xi

in CG. Also, let Ci denote the set of children xi in the pseudo-tree, Pi as the parent of

variable xi, and PPi as the set of pseudo-parents of xi. Furthermore, we specifically focus

on constraint privacy, which is formally defined in our context next.

Definition 12.3: Constraint Privacy

Given a DCOP defined by ⟨X ,A,D,F , α⟩, constraint privacy implies that an agent

i learns no information regarding the utility function {Fjk}k∈Nj
of any agent j ∈

A \Ni. That is, for any agent, it does not share a constraint with.

12.1.5.1.1 Example Consider the maximization problem depicted in Figure 12.1. Here,

|X | = |A| s.t. X = {x1, x2, x3} and D1 = D2 = D3 = {0, 1}. The constraint graph and one

possible pseudo tree configuration are presented in Figures 12.1(a) and 12.1(b). In Fig-

ure 12.1(b), the solid edges represent the tree edges, while the dashed edges represent the

363



x2

x1

x3

(a) Constraint Graph

x1

x2

x3

(b) Pseudo Tree

xi xj Fij

0 0 0

0 1 -1

1 0 -1

1 1 2

(c) Utilities (where i < j)

Figure 12.1: DCOP Example

back edges. Figure 12.1(c) shows the utility function that is identical for F12 = F23 = F13.

For this example, a solution is as follows. The optimal assignment is x1 = 1, x2 = 1, and

x3 = 1, with the overall utility 6.

12.1.5.2 Sequential Distributed Gibbs (SD-Gibbs)

We now describe Sequential Distributed Gibbs (SD-Gibbs) as first introduced in [209].

In this, the authors map DCOP to a maximum a posteriori (MAP) estimation problem.

Consider MAP on a Markov Random Field (MRF). MRF consists of a set of random

variables represented by nodes, and a set of potential functions. Each potential function,

represented by θij(xi;xj), is associated with an edge. Let the graph constituting MRF,

with nodes and edges, be denoted by ⟨V,E⟩.

We now describe Sequential Distributed Gibbs (SD-Gibbs) as first introduced in [209].

In this, the authors map DCOP to a maximum a posteriori (MAP) estimation problem.

Consider MAP on a Markov Random Field (MRF). MRF consists of a set of random

variables represented by nodes, and a set of potential functions. Each potential function,
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Variables Definition

di and d̂i Values in current and previous iteration

d∗i Value in the best complete solution so far

d̄i Best response value

Ci and C̄i Context and best-response context

ti, t
∗
i , t̄

∗
i Time index, best-response and non-best response index

∆i Difference in current and previous local solution of agent i

∆̄i Difference in current best-response solution with previous

Ω Shifted utility of the current complete solution

Ω̄ Shifted utility of the best-response solution

Ω∗ Shifted utility of the best complete solution

Table 12.2: Variables maintained by each agent xi in SD-Gibbs

represented by θij(xi;xj), is associated with an edge. Let the graph constituting MRF,

with nodes and edges, be denoted by ⟨V,E⟩.

Let Pr(xi = di;xj = dj) be defined as exp(θij(xi = di;xj = dj)). Then, the most

probable assignment is:

Pr(X) =
1

Z

∏
i,j∈E

eθij(xi,xj) =
1

Z
exp

∑
i,j∈E

θij(xi, xj)

 .

Here, Z is the normalization factor. This corresponds to the maximum solution of DCOP

if,

F (X) =
∑
i,j∈E

θij(xi, xj).

12.1.5.2.1 Sampling We now describe sampling in SD-Gibbs. Let Ci denote agent i’s

context, defined as the set consisting of its neighbors and the value assigned to them. In
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each iteration, each agent i samples a value di with the following equation,

Pr(xi|xj ∈ Ni) =
1

Z
exp

 ∑
⟨xj ,dj⟩∈Ci

Fij(di, dj)

 (12.2)

Let, Pi(xi) = {Pr(xi|xj ∈ X \ {xi})|xi = di ∀di ∈ Di}. That is, Pi represents SD-Gibbs’

probability distribution of each agent i. The relevant notations required for the SD-Gibbs

algorithm are presented in Table 12.2.

Algorithm 17 Sequential Distributed Gibbs [209]

1: Create pseudo-tree

2: Each agent xi calls INITIALIZE()

Procedure 1 INITIALIZE() [209]

1: di ← d̂i ← d∗i ← d̄i ← ValInit(xi)

2: Ci ← C̄i ← {(xj ,ValInit(xj))|xj ∈ Ni}
3: ti ← t∗i ← t̄∗i ← 0

4: ∆i ← ∆̄i ← 0

5: if xi is root then

6: ti ← t∗i ← t̄∗i ← 0

7: SAMPLE()

8: end if
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Procedure 2 SAMPLE() [209]

1: ti ← ti + 1; d̂i ← di

2: di ← Sample based on (2)

3: d̄i ← argmaxd′i∈Di

∑
⟨xj ,d̄j⟩∈C̄i

Fij(d
′
i, d̄j)

4: ∆i ←
∑

⟨xj ,dj⟩∈Ci

[
Fij(di, dj)− Fij(d̂i, dj)

]
5: ∆̄i ←

∑
⟨xj ,d̄j⟩∈Ci

[
Fij(d̄i, d̄j)− Fij(d̂i, d̄j)

]
6: Send VALUE(xi, di, d̄i, t

∗
i , t̄

∗
i ) to each xj ∈ Ni

Procedure 3 VALUE(xs, ds, d̄s, t
∗
s, t̄

∗
s) [209]

1: Update ⟨xs, d′s ∈ Ci⟩ with (xs, ds)

2: if xs ∈ PPi ∪ {Pi} then
3: Update ⟨xs, d′s ∈ C̄i⟩ with (xs, d̄s)

4: else

5: Update ⟨xs, d′s ∈ Ci⟩ with (xs, d̄s)

6: end if

7: if xs = Pi then

8: if t̄∗s ≥ t∗sandt̄
∗
s > max{t∗i , t̄∗i } then

9: d∗i ← d̄i; t̄
∗
i ← t̄∗s

10: else if t∗s ≥ t̄∗sandt̄
∗
s > max{t∗i , t̄∗i } then d∗i ← d̄i; t

∗
i ← t∗s

11: end if

12: SAMPLE()

13: if xi is a leaf then

14: Send BACKTRACK(xi,∆i, ∆̄i) to Pi

15: end if

16: end if
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Procedure 4 BACKTRACK(xs,∆s, ∆̄s) [209]

1: ∆i ← ∆i +∆s; ∆̄i ← ∆̄i + ∆̄s

2: if Received BACKTRACK from all children in this iteration then

3: Send BACKTRACK(xi,∆i, ∆̄i) to Pi

4: if xi is root then

5: Ω̄← Ω+ ∆̄i; Ω← Ω+∆i

6: if Ω ≥ Ω̄ and Ω > Ω∗ then

7: Ω∗ ← Ω; d∗i ← di; t
∗
i ← ti

8: else if Ω̄ ≥ Ω and Ω̄ > Ω∗ then

9: Ω∗ ← Ω̄; d∗i ← d̄i; t̄
∗
i ← ti

10: end if

11: SAMPLE()

12: end if

13: end if

12.1.5.2.2 Algorithm Table 12.2 presents the values each agent i maintains in SD-

Gibbs. Procedure 2 describes the complete sampling function. For completeness, we

present the SD-Gibbs algorithm in Algorithm 17. The algorithm can be summarized as:

1. Initializing. The algorithm starts with constructing the pseudo-tree and each agent

initializing each of their variables, from Table 12.2, to their default values. The root

then starts the sampling, as described in Procedure 2, and sends the VALUE message

(line 6) to each neighbor.

2. Sampling. Upon receiving a VALUE message, each agent invokes Procedure 3. In

it, an agent i first updates its current contexts, Ci and C̄i, with the sender’s values.

If the message is from agent i’s parents, then the agent itself samples, i.e., executes
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Procedure 2. This sampling stage continues until all the leaf agents have executed

Procedure 2.

3. Backtracking. Each leaf agent j then sends a BACKTRACK message to its parent

comprising xj ,∆j , and ∆̄j . As described in Procedure 4, when a parent receives such

a message, it sends a BACKTRACK message to its parent. The process continues

until the root receives the message, which concludes one iteration.

4. Selecting the Solution. Each agent i uses its current (∆i) and current best-

response (∆̄i) local utility differences to reach a solution. We refer to these differences

as relative utilities. Upon receiving a BACKTRACK message, agent i adds the delta

variables of its children to its own. Consequently, these variables for the root agent

quantify the global relative utility. Based on this, at the end of an iteration, the root

decides to keep or throw away the current solution (Procedure 4, line 4).

As aforementioned, in this work, we focus on constraint privacy to ensure the privacy

of agent preferences. From Faltings et al. [100], constraint privacy states that no agent

must be able to discover the nature of constraint (i.e., the utilities) that does not involve

a variable it owns. Since absolute privacy is not an achievable goal [91], we formalise

constraint privacy in terms of (ϵ, δ)-DP [93].

12.1.5.3 Differential Privacy (DP)

As introduced in Chapter 3.1.3, Differential Privacy (DP) [92, 93] is a popular privacy

notion that aims to provide a statistical guarantee against a database that the inclusion

or exclusion of any single entry will not significantly impact the results of the statistical

analysis. DP is normally defined for adjacent databases. However, in this instance, we want

to protect privacy against external adversaries and curious fellow agents, i.e., agents looking

to decipher sensitive information. One may note that when the set of variables and agents

involved is globally known, there are more efficient techniques for distributed optimization
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using a central coordinator and stochastic gradient descent. Researchers have developed

DP techniques for this context as well [140]. While such algorithms are well-suited for

contexts such as federated learning, where the model parameters are common knowledge,

in meeting-scheduling, they would leak the information of who is meeting with whom,

which is usually the most sensitive information. Therefore, we focus on algorithms where

each participant has local information, i.e., only knows about agents it shares constraints

with and nothing about the rest of the problem. Formally, we want our algorithm for any

two utility functions (vectors in Rp) to satisfy the following definition from [93],

Definition 12.4: Local Differential Privacy

A randomized mechanismM : F → R with domain F and range R satisfies (ϵ, δ)-

DP if for any two inputs F, F ′ ∈ F and for any subset of outputs O ⊆ R we have,

Pr[M(F ) ∈ O] ≤ eϵ Pr[M(F ′) ∈ O] + δ (12.3)

We now present another way of interpreting the local-DP definition defined in Eq. 12.3.

For this, we define the privacy loss random variable (PRVL) L as follows:

LoM(F )||M(F ′) = ln

(
Pr[M(F ) = o]

Pr[M(F ′) = o]

)
(12.4)

12.2 Privacy Leakage in SD-Gibbs

In SD-Gibbs, constraint privacy is compromised in the following two ways:

By sampling. Each variable value in SD-Gibbs is sampled according to agent i’s utility

Fij . As values with more utility are more likely to be drawn, SD-Gibbs leaks sensitive

information about these utility functions. Fortunately, this stage can be secured by simply

making distributions more similar across agents (Section 12.3.2).

By relative utility ∆. Every leaf agent j in the pseudo-tree sends its ∆j and ∆̄j to its parent

i. The parent agent adds the values to its ∆i and ∆̄i, respectively, and passes them on up
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the tree. The process continues until the values reach the root. Thus, any intermediate

agents or an adversary observing ∆ can learn something about j’s utility even if sampling

is private. E.g., suppose a particular assignment has a high utility for agent j but is low

for others (and it is known). In that case, an intermediate agent will learn about agent j

even from the aggregated utility.

These privacy leaks follow by observing what critical information gets transferred by

each agent i in Algorithm 17. We ignore t∗ and t̄∗ because these are simply functions of

utility, i.e., will be private by post-processing property once the utility is private. We next

illustrate the same.

12.2.0.0.1 Illustrating Privacy Leak in SD-Gibbs on Figure 12.1 Consider the

execution of SD-Gibbs (Algorithm 17) on the example provided in Figure 12.1. Recall that

we aim to preserve constraint privacy in DCOP. The agent x1 must not learn anything

about the nature of the constraint between the agents x2 and x3.

Upon execution of Algorithm 17 with each variable initialized with 0, the initial Gibbs

distribution for x2 and x3 (from Eq. (12.2)) takes the form [0.88, 0.12] and [0.88, 0.45],

respectively. As x1 is the neighboring agent for both x2 and x3, it will be aware of their

current and best assignments. Moreover, as the number of iterations increases, x1 observes

that its Gibbs distribution converges to [0.002, 0.998]. Further, one can also see that x2’s

and x3’s Gibbs distribution changes to [0.002, 0.998]. That is, x1 can observe that x2 and

x3 prefer assignment 1 (with high probability) given its context. Based on the assignment

sampling, x1 already has a qualitative idea of the nature of the constraint x2—x3. Since

it knows it prefers assignment 1, it can estimate the constraint x2—x3 will be such that it

is less or equal in value – for any assignment other than their current x2 = x3 = 1. If not,

x2 and x3 would have changed their assignments to grab the additional utility.

To get a quantitative estimate, x1 can observe the relative utilities. In our example,

as there are only three constraints, x1 can use the information on the probable assign-

ments of x2 and x3, 1 and 1, and the final utility 6 to derive the value F23(x2 = 1, x3 =
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Symbol Definition

τ Sensitivity

c Clipping constant

Pi SD-Gibbs probability distribution for Agent i

pi Soft-max function on Pi for Agent i

γ Soft-max temperature parameter

q Sub-sampling probability

T Number of iterations in P-Gibbs

N (0, σ2) Gaussian distribution with mean zero and variance σ2

(ϵs, δ) Privacy parameters of the Sampling stage

(ϵn, δ) Privacy parameters for the Relative utilities

Table 12.3: Notations

1) = 6 − F12(x1 = 1, x2 = 1) − F13(x1 = 1, x3 = 1) = 6 − 2 − 2 = 2. Therefore, x1

can learn information regarding the constraint F23 violating constraint privacy. Applying

similar qualitative knowledge of the assignment on each iteration’s ∆s can potentially leak

information about the entire utility function.

With these as a backdrop, we now build upon SD-Gibbs to formally present our novel,

scalable algorithm for DCOPs that preserve constraint privacy, namely P-Gibbs.

12.3 P-Gibbs: Preserving Constraint Privacy in DCOP with

SD-Gibbs

In general, for DP, we need to ensure full support of the outcome distribution. If

Pr[M(D′) = o] = 0 for some output o, the privacy loss L incurred is infinite, and one

cannot bound ϵ. For the specific context of ensuring constraint privacy in SD-Gibbs, this
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implies that all agents must have the same domain for their variables and non-zero utility for

each value within the domain.2 In other words, D1 = D2 = . . . = Dp and |Fij(·, ·)| > 0, ∀i.
Without these, the probability distributions defined in Eq. (12.2) may not be bounded as

any pair of agents i and j (i ̸= j) may have Di ̸= Dj . As a result, the ϵ with respect to

constraint privacy (Definition 12.3) will not be defined. Formally, consider the following

claim.

Claim 12.1. With respect to constraint privacy, SD-Gibbs (Algorithm 17) is non-

private, i.e., the privacy loss variable L is not defined for SD-Gibbs.

Proof. Consider any two agents i, j ∈ A s.t. (i ̸= j) and Di ̸= Dj . W.l.o.g., let Di =

Dj + {d}. From Definition 12.3, the privacy loss variable L (Eq. (12.4)) can be written as,

LdPi||Pj
= ln

(
Pi(xi = d)

Pj(xj = d)

)
= ln

(v
0

)
where v > 0,

as d ∈ Di while d ̸∈ Dj . Thus, the privacy loss variable, L, is not defined for SD-Gibbs.

Claim 12.1 implies that the privacy budget, ϵ in (ϵ, 0)-DP, is also not-defined for SD-

Gibbs. Consequently, to provide meaningful privacy guarantees for constraint privacy in

DCOPs, we present P-Gibbs (Chapter 12.3). In it, we first use soft-max with temperature

to bound the SD-Gibbs distributions (Chapter 12.3.2). The resulting bound only depends

on the temperature parameter and does not leak any agent’s sensitive information. Then,

we “clip” the relative utilities to further bound the sensitivity (Chapter 12.3.3). Lastly,

to reduce the growth of ϵ, we randomly select a subset of agents to sample new values

at each iteration. We then provide a refined privacy analysis for the resulting (ϵ, δ)-DP

(Theorem 12.1). Table 12.2 and Table 12.3 provide a reference point for the notations used

in this section.

2If any agent has a zero utility for some value, then all agents must have zero utility, and w.l.o.g., we
can simply exclude such values from all domains.
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Procedure 5 P-Gibbs SAMPLE()

1: ti ← ti + 1; d̂i ← di

2: β ∼ Uniform(0, 1)

3: // subsampling

4: if β ∈ (0, q] then

5: Pi(xi)← from Eq. (12.2)

6: // Bounding SD-Gibbs distribution with Soft-max

7: pi(xi, γ)← from Eq. (12.5)

8: di ← Sample based on pi(xi, γ)

9: else

10: di ← di

11: end if

12: d̄i ← argmaxd′i∈Di

∑
⟨xj ,d̄j⟩∈C̄i

Fij(d
′
i, d̄j)

13: ∆i ←
∑

⟨xj ,dj⟩∈Ci

[
Fij(di, dj)− Fij(d̂i, dj)

]
14: ∆̄i ←

∑
⟨xj ,d̄j⟩∈C̄i

[
Fij(d̄i, d̄j)− Fij(d̂i, d̄j)

]
15: // Clipping

16: if |∆i| > c then ∆i = (∆i ≥ 0) ? c : −c
17: if

∣∣∆̄i

∣∣ > c then ∆̄i = (∆̄i ≥ 0) ? c : −c
18: // Perturbing utilities with Gaussian noise

19: ∆i ← ∆i +N (0, τ2σ2)

20: ∆̄i ← ∆̄i +N (0, τ2σ2)

21: Send VALUE(xi, di, d̄i, t
∗
i , t̄

∗
i ) to each xj ∈ Ni

12.3.1 P-Gibbs: Algorithm

Recall that privacy leak in SD-Gibbs is due to the qualitative and quantitative informa-

tion loss due to communicating the sampled value d and the relative utilities ∆, respectively
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(Section 12.2). Our privacy variant, P-Gibbs, preserves this information loss through its

novel sampling procedure. We formally provide the sampling in P-Gibbs with Procedure 5.

The differences, compared to SD-Gibbs’ sampling procedure, are summarized as follows:

1. To preserve constraint privacy loss due to sampling (Procedure 5, Lines 3-9):

• P-Gibbs uses soft-max function over SD-Gibbs distributions for sampling di’s, ∀i.
As shown later in Proposition 12.1, this bounds any two agent distributions in

SD-Gibbs, resulting in finite privacy loss.

• P-Gibbs randomly chooses subsets of agents to sample new values in each iteration.

More specifically, in every iteration, each agent i samples a new value di with

probability q, or uses previous values with probability 1− q.

2. To preserve constraint privacy loss due to relative utilities (Procedure 5, Lines 13-16):

• In P-Gibbs, we sanitize the relative utilities with calibrated Gaussian Noise.

• To bound the sensitivity (see Section 12.3.3), we “clip” the relative utilities by ±c,
where c is the clipping constant (Procedure 5, Lines 16 and 17).

We next formally show that soft-max bounds the SD-Gibbs probability distributions.

We then provide a formal analysis for privacy loss due to sampling.

12.3.2 P-Gibbs: Bounding Sampling Divergence with Soft-max

Towards achieving bounded sampling divergence without compromising on constraint

privacy itself, we propose to apply soft-max to sampling distributions. Let pi be the soft-

max distribution with temperature parameter as γ, i.e.,

pi(xi, γ) =

{
exp(Pi(xi = dk)/γ)∑
dl∈D exp(Pi(xi = dl)/γ)

;∀dk ∈ D

}
(12.5)

Firstly, observe that pi(·, γ), for a finite γ, has full support of the outcome determination.

That is, pi(xi, γ) > 0 s.t. xi = dk, ∀dk ∈ D. This observation ensures that the scenario of

375



an unbounded privacy loss due to pi(xi, γ) = 0, described earlier with Claim 12.1, will not

occur for P-Gibbs.

Secondly, to also ensure that ϵ is finite, we require that the bound pi(·)
pj(·) for any distinct

pair i and j is bounded. To this end, the following claim shows that the ratio of the

resulting soft-max probabilities, pi(·) and pj(·) for any two agents i and j, is bounded by

2/γ. The proof uses the fact that D = Di = Dj and 1/e ≤ exp(pi(x)− pj(x)) ≤ e.

Proposition 12.1. For two probability distributions using soft-max, pi and pj defined

by Eq. (12.5), we have, ∀i, j, ∀d ∈ D and ∀D, s.t. |D| > 1, γ ≥ 1

ln

[
pi(xi = d, γ)

pj(xj = d, γ)

]
≤ 2

γ

Proof. Because pi and pj are soft-max distributions, we have,

pi(xi, γ) =

{
exp(Pi(xi = dk)/γ)∑
dl∈D exp(Pi(xi = dl)/γ)

; ∀dk ∈ D

}
,

pj(xj , γ) =

{
exp(Pj(xj = dk)/γ)∑
dl∈D exp(Pj(xj = dl)/γ)

; ∀dk ∈ D

}
.

Now, recall that Pi and Pj are the probability distributions through SD-Gibbs sampling.

With this, observe the following:

ln

[
pi(xi = d, ·)
pj(xj = d, ·)

]
≤ ln

 exp(Pi(xi=d)/γ)∑
dl∈D exp(Pi(xi=dl)/γ)

exp(Pj(xj=d)/γ)∑
dl∈D exp(Pj(xj=dl)/γ)

 ≤ ln

[
exp(1/γ(Pi − Pj)))

N1/N2

]
(12.6)

Here, N1 =
∑

dl∈D exp(Pi(xi = dl)/γ) and N2 =
∑

dl∈D exp(Pj(xj = dl)/γ). Now, in

Eq. (12.6) observe that both the numerator and denominator in r.h.s of Eq. (12.6) are

positive. Further, as ln(x) is an increasing function x, this implies that r.h.s of Eq. (12.6)

is maximum when the numerator is maximum, and the denominator is minimum. Thus
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the difference, Pi(xi = d)− Pj(xj = d), can be at-most 1. Therefore, numerator in r.h.s of

Eq. (12.6) is at-most exp(1/γ) = e1/γ .

The denominator in r.h.s of Eq. (12.6) is minimum when N1 is minimum and N2 is

maximum. Note that, N1 is minimum when Pi(xi = d) = 0, ∀d, i.e., minimum N1 = |D|.
But, N2 is maximum when Pj(xj = d) = 1,∀d, i.e., maximum N2 = |D| · e1/γ . Using these

values in Eq. (12.6) completes the claim.

12.3.2.1 Effect of Soft-max

We illustrate the effect of soft-max on the SD-Gibbs sampling distribution with the

following example. Let Dj = {d1, d2, d3},∀j such that Pi = [0.8, 0.15, 0.05]. Observe

that the distribution is such that the probability of sampling d1 is significantly more than

others. Now, the corresponding soft-max distributions, from Eq. (12.5), will be: p(·, γ =

1) = [0.50, 0.26, 0.24], p(·, γ = 2) = [0.41, 0.30, 0.29], and p(·, γ = 10) = [0.35, 0.33, 0.32].

That is, the soft-max distribution is more uniform than the original distribution. This

implies that the maximum ratio of the probabilities will be smaller. That is, an adversary

will be more indifferent towards the domain values while sampling. For e.g., d1 and d2 in

p(·, γ = 10) compared to in p(·, γ = 1).

Observe that the bound provided in Proposition 12.1 does not depend on an agent’s

sensitive information. This implies that the bound does not encode (and reveal) any

sensitive information. Thus, we conclude that the bound provided in Proposition 12.1 is

desirable and hence use it to construct the sampling distribution in P-Gibbs.

12.3.2.2 Privacy Guarantees for Sampling in P-Gibbs

We first calculate the privacy parameters of the sampling stage, denoted by ϵs and δ,

in P-Gibbs. We use an extension of the moments accountant method [3] for non-Gaussian
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mechanisms. Following derivations by [283],

Pr[L ≥ ϵs] ≤ max
pi,pj

eλDλ+1[pi||pj ]−λϵs (12.7)

Here, L is the privacy loss between any two agents andDλ(pi||pj) = 1
λ−1 logEd∼pj

(
pi(d)
pj(d)

)λ
is Rényi divergence [239] of order λ ∈ N+, λ > 1. From [283], the choice of the hyperpa-

rameter λ is arbitrary since the bound holds for any feasible value of λ. Note that the

value of λ determines how tight the bound is.

Also from [283], we borrow the notion of privacy cost ct(λ). By trivial manipulation,

for each iteration t,

ct(λ) = max
i,j

λDλ+1 [pi(d)||pj(d)] ≤ λ · 2/γ, (12.8)

where Eq. (12.8) is due to monotonicity Dλ(P ||Q) ≤ Dλ+1(P ||Q) ≤ D∞(P ||Q), ∀λ ≥ 0.

12.3.2.2.1 Subsampling The privacy cost ct in Eq. (12.8) can be further reduced

by subsampling agents with probability q << 1. Balle et al. [21] show that the privacy

guarantees of a DP mechanism can be amplified by applying the mechanism to a small

random subsample of records of any database.

We formulate the following result by reproducing the steps of the sampled Gaussian

mechanism analysis by [283] for our mechanism and classical DP.

Theorem 12.1. Privacy cost ct(λ) at iteration t of a sampling stage of P-Gibbs, with

agent subsampling probability q, is

c
(s)
t (λ) = lnEk∼B(λ+1,q)

[
ek·2/γ

]
, (12.9)

where B(λ, q) is the binomial distribution with λ experiments and probability of success

as q, λ ∈ N.

Proof. The result follows by substituting 2/γ in place of the ratio of normality distributions

in [283, Theorem 3].
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Figure 12.2: Variation of ϵs and ϵn vs. λ

Unlike the analysis in [283, Theorem 3], we do not have cLt (λ) and cRt (λ), as well as

expectation over the data. This is because we compute the conventional differential privacy

bounds instead of Bayesian DP and, thus, directly use the worst-case ratio, i.e., 2/γ.

Finally, merging the results, we can compute ϵs, δ across multiple iterations as

ln δ ≤∑T
t=1 c

(s)
t (λ)− λϵs

ϵs ≤ 1
λ

(∑T
t=1 c

(s)
t (λ)− ln δ

)
 (12.10)

Figure 12.2 shows the variation of ϵs for different values of λ and γ, with the sampling

probability q = 0.1. We observe that λ clearly affects the final ϵs value, and one should

ideally minimize the bound over λ.

12.3.2.3 P-Gibbs∞: An Extreme Case

We presented P-Gibbs, which uses a soft-max with temperature function to bound the

sampling divergence, thereby bounding the privacy loss incurred by sampling. We smooth

the distribution using soft-max’s temperature parameter to reduce further the information

379



encoded in SD-Gibbs sampling. We then use Theorem 12.1 to quantify privacy parameters

ϵs and δ.

From Proposition 12.1, observe that the temperature parameter in P-Gibbs may be

tuned to decrease the overall privacy budget for sampling, i.e., ϵs. An “extreme” case

occurs when γ → ∞. For this, we have pi = pj , which implies that ϵs → 0. Thus,

increasing γ leads to P-Gibbs sampling distribution mimicking a uniform distribution, as

more information on SD-Gibbs sampling distribution is lost. To distinguish this extreme

case, we refer to P-Gibbs with γ →∞ as P-Gibbs∞.

12.3.3 P-Gibbs: Privacy of Relative Utilities (∆)

In the previous subsection, we deal with the privacy loss occurring due to sampling in

P-Gibbs. As aforementioned, the values ∆ and ∆̄ also leak information about agents’ con-

straints. In order to achieve DP for these ∆’s, we need to bound its sensitivity. Sensitivity

is defined as the maximum possible change in the output of a function we seek to make

privacy-preserving. Formally,

Definition 12.5: Sensitivity (τ)

It is the maximum absolute difference between any two relative utility values ∆ and

∆′, i.e.,

τ = max
∆,∆′

∣∣∆−∆′∣∣ (12.11)

As we clip the relative utilities with a constant c (see Procedure 5, Line 16-17), trivially

from Eq. 12.11, τ = 2 · c.
Next, we must sanitize the relative utilities to preserve privacy fully. We achieve this

through the Gaussian noise mechanism [93] defined as

MG(∆) ≜ ∆+ Yi,

where Yi ∼ N (0, τ2σ2), τ is the sensitivity and σ is the noise parameter.
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Algorithm (ϵs, δ) (ϵn, δ) (ϵ = ϵs + ϵn, δ) for T iterations

P-Gibbs (2/γ, 0) ( τσ

√
2 ln 1.25

δ , δ)
(
T
λ c

(s)
t (λ) + T

λ c
(n)
t (λ)− 1

λ ln δ, δ
)

P-Gibbs∞ (0, 0) ( τσ

√
2 ln 1.25

δ , δ)
(
T
λ c

(n)
t (λ)− 1

λ ln δ, δ
)

Table 12.4: Per-iteration and final (ϵ, δ) bounds.

Privacy parameters for the relative utility ∆, denoted by ϵn and δ, can be computed

either using the basic composition along with [93, Theorem A.1] or the moments accoun-

tant [3]. The latter can be unified with the accounting for the sampling stage by using:

c
(n)
t (λ) = lnEk∼B(λ+1,q)

[
ekDλ+1[N (0,τ2σ2)||N (τ,τ2σ2)]

]
. (12.12)

Figure 12.2 shows the variation of ϵn for different values of λ and τ , with the sampling

probability q = 0.1 and σ = 1. We observe that λ has a clear effect on the final ϵn value as

well, although the change is virtually the same for τ = 10, 25 and 50. The trend is similar

to the one observed in Figure 12.2, i.e., ϵn decreases as λ increases. However, the decrease

is not smooth when τ = 5, which sees a sharp change in ϵn as λ increases. This change is

similar to what is observed in [283, Figure 5], suggesting that one should be careful while

deciding on the value of λ.

Note. We provide the formal sampling procedure comprising the privacy techniques dis-

cussed above with Procedure 5. The rest of the procedures are the same as provided with

Algorithm 17. Table 12.4 summarises expressions for per-iteration and total ϵ values for

P-Gibbs and P-Gibbs∞.

12.3.3.0.1 Collusion Resistance Recall that in the private DCOP literature, an algo-

rithm is collusion resistant if no subset of agents can collude to gain additional information

about the remaining agents. We remark that P-Gibbs trivially satisfies collusion-resistance.

This is because each agent in P-Gibbs locally adds noise or randomness to its utility and
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assignment sampling. Due to the post-processing property of DP, no subset of the agent

can infer any additional information outside of the (ϵ, δ)-DP guarantee.

12.4 Experiments

We now empirically evaluate the performance of our novel algorithms, P-Gibbs w.r.t.

to SD-Gibbs. This section first describes our experimental setup and benchmark problems

(Section 12.4.1). Next, in Section 12.4.2, we present the results for P-Gibbs’ performance in

terms of solution w.r.t. SD-Gibbs. Section 12.4.3 presents criteria to empirically explain the

privacy protection in P-Gibbs with regard to changes in the privacy budget. Section 12.4.4

provides a general discussion of the results presented and summarizes the advantages of our

DP-based approach compared to the existing cryptographic approach for privacy-preserving

DCOP algorithms.

12.4.1 Benchmark Problems and Experimental Setup

We now describe the DCOP benchmark problems and illustrate our experimental setup.

12.4.1.1 Benchmark Problems

We construct the following problem instances to test our novel differentially private

variant, P-Gibbs. These are standard benchmarks in the DCOP literature.

Ising [50]. We generate 20 sample Ising problems. For this, the constrained graph is

a rectangular grid with each agent/variable connected to its four nearest neighbors. The

problems are such that the number of agents/variables lie between [10, 20). Each agent’s do-

main is binary, i.e., Di = {0, 1},∀i. The constraints are of two types: (i) binary constraints

whose strength is sampled from U [β, β] where β ∈ [1, 10) and (ii) unary constraints whose

strength is sampled from U [−ρ, ρ] where ρ ∈ [0.05, 0.9). Ising is a minimization problem.
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Graph-Coloring (GC). We generate 20 sample graph-coloring problems. The problems

are such that the number of agents/variables lies between [30, 100) and agents’ domain size

between [10, 20). Each constraint is a random integer taken from (0, 10). Graph-coloring

is a minimization problem.

Meeting-Scheduling (MS) [181]. We generate 20 sample meeting-scheduling problems.

The problems are such that the number of agents and variables lies between [1, 75) with

the number of slots, i.e., the domain for each agent randomly chosen from [30, 100). Each

constraint is a random integer taken from (0, 100), while each meeting may randomly

occupy [1, 5] slots. Meeting-scheduling is a maximization problem.

While meeting-scheduling is a concrete problem [181], even abstract problems like graph-

coloring can model real-world scenarios. E.g., Radio Frequency or Wireless Network As-

signment can be modeled as a graph-coloring problem [2]. The Ising model is also a widely

used benchmark in statistical physics [50].

Note. Importantly, we perform our experiments on much larger problems than earlier

complete algorithms (e.g., [100]) can handle3. Concerning the infeasibility of a DCOP

solution, note that incomplete (or random) algorithms like MGM, DUCT, and SD-Gibbs

do not aim to solve problems with hard constraints. A hard constraint will leak vital

information about the constraints, and a differentially private solution will not work in

such a setting. Like [209], we focus on soft constraints; thus, infeasible solutions will not

occur.

12.4.1.2 Experimental Setup

Our experimental setup is as follows.

Implementation. pyDCOP [247] is a Python module that provides implementations

of many DCOP algorithms (DSA, MGM, MaxSum, DPOP, etc.). It also allows easy

3For e.g., DPOP, a non-private, complete algorithm timed-out after 24 hours of computing (i) an Ising
instance with 10 variables, (ii) a graph-coloring instance with 12 variables and |D| = 8, (iii) a meeting-
scheduling instance with 25 variables and |D| = 20.
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implementation of one’s DCOP algorithm by providing all the required infrastructure:

agents, messaging system, and metrics collection, among others. We use pyDCOP’s public

implementation of the SD-Gibbs algorithm to run our experiments. In addition, we also

implement P-Gibbs.

Generating Test-cases. pyDCOP allows for generating random test-cases for various

problems through its command line’s generate option. With this, we generate instances

for our benchmark problems, i.e., Ising, graph-coloring, and meeting-scheduling. We test

the performance of our algorithms across 20 such randomly generated problems.

Method. We consider the utility given by SD-Gibbs’ solution as our baseline. Further,

these algorithms, i.e., SD-Gibbs and P-Gibbs, are random algorithms. Hence, we run each

benchmark problem instance 10 times for a fair comparison and use the subsequent average

utility for our results.

The complete codebase is available at: github.com/magnetar-iiith/PGiBBS.

12.4.1.2.1 Performance Measure We measure P-Gibbs’ performance w.r.t. SD-

Gibbs using the following performance measure.

Definition 12.6: Solution Quality (SQ)

Solution quality SQA of an algorithm A is defined as

SQA =


US
UA

for minimization

UA
US

for maximization

for utility of A as UA and SD-Gibbs as US .

With SQ, we normalize P-Gibbs’ utility in the context of SD-Gibbs. SQ ≈ 1 indicates

that utility does not deteriorate than SD-Gibbs. On the other hand, SQ ≈ 0 means little
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Figure 12.3: The average and standard deviation of P-Gibbs’ Solution Quality (SQ) for

different privacy budgets. Note that, the case with ϵ = 0.046 corresponds to P-Gibbs∞ as

γ =∞.

utility as compared to the SD-Gibbs solution. It is possible that SQ > 1 due to randomness

and privacy noise acting as simulated annealing4 [159].

4We remark that this behavior is different from the Distributed Simulated Annealing (DSAN) algorithm
for DCOPs [14, 55]. DSAN is an iterative optimization algorithm with a temperature parameter that
aims to control the likelihood of accepting worse solutions. DSAN consists of an annealing schedule that
determines the change in the temperature parameter over time. As the parameter decreases, DSAN becomes
more selective and explores the solution space more effectively. Instead of selecting the next assignment
through a specific, utility-based distribution like in SD-Gibbs (Eq. 12.2), in DSAN, an agent randomly
chooses its next assignment. E.g., by uniform sampling or by swapping values with neighboring agents.
DSAN is neither complete nor private.
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12.4.2 Results

In this subsection, we present (i) the overall trend for change in P-Gibbs’ SQ vs. ϵ, and

(ii) the effect of hyperparameters (σ, γ, q) and the problem size on P-Gibbs’ SQ.

12.4.2.1 General Trends for Solution Quality

We now provide general trends w.r.t. ϵs and SQs. More specifically, we focus on the

change in the SQ with the change in ϵ (aka privacy budget).

(ϵ, δ)-bounds. Throughout these experiments, we choose δ = 10−2, T = 50, τ = 50 and λs

as 100. As standard, our choice of δ is such that δ < 1/m [93]. We calculate ϵ using different

permutations of γ ∈ {4, 8, 20,∞}, q ∈ {0.1, 0.2}, and σ ∈ {7, 10, 25, 1000}. With these, we

obtain the following ϵ values: (i) ϵ = 0.046 where σ = 1000, γ = ∞ and q = 0.1, (ii) ϵ =

0.662 where σ = 25, γ = 20 and q = 0.1, (iii) ϵ = 1.31 where σ = 25, γ = 20 and q = 0.2,

(iv) ϵ = 4.101 where σ = 10, γ = 8 and q = 0.2, (v) ϵ = 9.55 where σ = 7, γ = 4 and q =

0.2. Note that the case with ϵ = 0.046 corresponds to P-Gibbs∞ as γ =∞.

12.4.2.1.1 Results Figure 12.3 presents the overall change in the SQ concerning an

increase in ϵ. We plot SQ scores averaged across all problems. For all three benchmarks,

the average SQ improves between ϵ ∈ [0.046, 9.55]. This behavior is expected as greater ϵs

imply an increase in the subsampling probability and a decrease in the noise added (σ).

The increase in the probability of subsampling allows an agent to explore more values in

its domain. That is an increase in the chance of encountering better assignments for itself.

We observe that the average solution quality is least for Ising and the highest for MS.

The quality for GC is slightly lower than that of MS. For all three benchmarks, the quality

increases sufficiently with increasing privacy budget, i.e., ϵ. P-Gibbs’ performance for

meeting-schedule is strong, especially for higher ϵs. Note that ϵ < 1 is typically desirable.

We consider ϵ ≥ 1 for illustrative purposes. P-Gibbs also provides good solution qualities
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for ϵ < 1. Specifically, for Ising, the average quality crosses 0.75. For GC, the average

quality remains above 0.8 and crosses 0.92 for MS.

Coefficient of Variation. The Coefficient of Variation (CoV) is a statistical measure

equal to the ratio between the standard deviation and the average. Note that lower CoVs

imply a lower extent of variability with the average solution quality. We compute the

CoV values for each ϵ based on the reported average and standard deviations (refer to

Figure 12.3).

For Ising, for varying ϵ, we observe a maximum CoV of 0.123 and a minimum of 0.050.

Likewise, for GC, we observe a minimum CoV of 0.059 and a maximum of 0.104. For

meeting-scheduling, we have 0.044 (minimum) and 0.086 (maximum). Notably, for all

three benchmarks, the maximum CoV corresponds to ϵ = 0.046. For graph-coloring, the

minimum CoV corresponds to ϵ = 9.55 and for Ising and meeting-scheduling to ϵ = 4.101.

As expected, the maximum CoV corresponds to the lowest ϵ since the amount of noise (or

the loss in SD-Gibbs’ distribution) is highest. In contrast, higher ϵ infuse lesser noise, and

consequently, the CoVs are lower.

The above observation supports the improvement in solution quality with increasing ϵ in

Figure 12.3. As ϵ increases, the decrease in CoV values denotes a lower extent of variability

concerning the average solution quality. That is, as ϵ increases, P-Gibbs is likelier to output

a solution quality closer to the average quality reported.

12.4.2.2 Effect of Specific Parameters on Solution Quality

We now study the specific effect of parameters σ, γ, and q on the quality of P-Gibbs’

solution. First, we vary σ while fixing the other parameters and observing SQ changes.

Then, we likewise vary γ followed by q and observe the change in SQ for these. We conduct

these experiments on the same 20 benchmark problem instances as earlier and report the

average values across 20 runs.
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Figure 12.4: The average and standard deviation of P-Gibbs’ Solution Quality (SQ) for

different hyperparameters (σ, γ and q) and the problem size, m.

12.4.2.2.1 Effect of the Noise Parameter (σ) Similar to our previous subsection

experiments, we let λs be 100 and δ = 10−2. Further, we fix γ = ∞, τ = 50, and

q = 0.1. We vary σ from the set {1000, 100, 50, 25, 10}. As σ decreases, the privacy budget

ϵ increases. Intuitively, we expect the SQ to improve with a decrease in noise added.

Figure 12.4 presents the change in SQ w.r.t to the change in σ. We derive the ϵ values

using Table 12.4. As expected, we observe an overall increase in the solution quality of

P-Gibbs as σ decreases. However, the increase is marginal for graph-coloring, while the

quality significantly improves for Ising and meeting-scheduling.
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Interestingly, the solution quality for meeting-scheduling for σ = 10 (ϵ = 0.32) is similar

to the earlier reported quality for ϵ = 9.55 (Figure 12.3). In contrast, from Figure 12.3,

the SQ for graph-coloring is comfortably better for ϵ = 9.55.

12.4.2.2.2 Effect of the Temperature Parameter (γ) We now turn our attention

to the effect of γ on the solution qualities of P-Gibbs. For this, we fix τ = 50, σ = 100

and q = 0.1 while varying γ = {∞, 16, 8, 4, 2}. Similar to the case of σ, as the temperature

parameter γ decreases, the privacy budget ϵ increases. As γ decreases, greater information

of the original SD-Gibbs distribution is retained.

Figure 12.4 presents the results. We observe an increase in SQs as γ decreases. This

increase is because an increase in γ implies that P-Gibbs’ sampling distribution tends to

the original SD-Gibbs’ distribution. As such, the resulting solution also tends towards that

of SD-Gibbs.

12.4.2.2.3 Effect of the subsampling Probability (q) To study the effect of sub-

sampling probability q, we vary the value from the set q ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We fix

the other parameters, i.e., γ = 16, σ = 100, and τ = 50. As the probability q increases,

the privacy budget ϵ increases.

Figure 12.4 presents our results. Similar to our previous results, we see an increase in

solution quality for graph-coloring as the probability of sampling increases. This increase

is because an increase in the subsampling probability implies an increase in each agent’s

probability of sampling a better assignment. However, for meeting-scheduling, we do not

observe any such trend.

Note. These results show that the loss in sampling information deteriorates the solution

quality in graph-coloring, while meeting-scheduling’s solution quality largely depends on

the amount of noise added. This may be due to differences between graph-coloring and

meeting-scheduling [181]. In particular, we believe that abstract problems like graph-

coloring better satisfy the SD-Gibbs assumption of statistical independence of variables,
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while concrete problems like meeting-scheduling do not. Thus, solution quality for graph-

coloring depends more on the SD-Gibbs probability distribution than meeting-scheduling.

12.4.2.2.4 Effect of Problem Size (m) We now measure the effect of the change

in the number of agents (m) on P-Gibbs’ SQ. To this end, we generate test cases for

the two benchmarks5 Graph-coloring (GC) and Meeting-scheduling (MS), by varying m ∈
{10-30, 30-50, 50-70, 70-90, 90-110}. We fix the hyperparameters in P-Gibbs to derive ϵ =

0.662. We generate 10 problem instances for each m and report the average and standard

deviation for P-Gibbs’ SQ. Figure 12.4 depicts the results.

For GC, the average SQ generally increases as the number of agents increases from 10-30

to 90-110. Further, the standard deviation is more significant when the number of agents

is small. When m is 50-70 or more, we observe greater SQ and the standard deviation

is lesser than 10-30. Contrarily, for MS, the average SQ is almost similar across different

problem sizes. This behavior may be due to the SQs being significantly large for each

problem size.

12.4.2.2.5 Privacy Leak due to Hyperparameter Tuning Researchers have shown

that hyperparameter tuning of ML models may compromise their privacy [222]. Fortu-

nately, in our case, the tuning only corresponds to DP parameters. These parameters

can be tuned via simulating privacy computation in advance, without running the actual

problem-solving algorithm, and thus without revealing any information.

12.4.3 Explaining P-Gibbs’ Privacy Protection for Varying ϵ

In this chapter, we provide a rigorous (ϵ, δ)-DP guarantee for P-Gibbs. Moreover, in the

previous subsection, we provide the empirical quality of P-Gibbs’ solution w.r.t. SD-Gibbs

5We omit Ising from this set of experiments, as Ising instances with > 20 agents ran out of memory
during execution.
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Figure 12.5: Visualizing Sampling Distributions for SD-Gibbs and P-Gibbs with a Random

Assignment.

for a given privacy budget. We now demonstrate the privacy guarantee of P-Gibbs by com-

paring the final assignments of P-Gibbs and SD-Gibbs concerning a random assignment.

Note that a random final assignment will be perfectly privacy-preserving since no infor-

mation about an agent’s utility function will get encoded in the assignment. As such, the

closer a DCOP algorithm’s final assignment is to the random assignment, the greater the

privacy protection. Figure 12.5 depicts this observation for a graph-coloring benchmark

test instance with the domain D = {d1, . . . , d10} for any variable/agent i.

We can see that SD-Gibbs’ distribution prefers the assignment d2 with ≈ 0.9 probability.

Sampling a value with the SD-Gibbs’ distribution will imply that agent i greatly prefers d2

(i.e., agent i’s utility function has a sufficiently greater value for d2 compared to D \ {d2}).
P-Gibbs’s distribution is closer to random, thus plugging the information leak. To measure

the distance of the assignments, we introduce the metric: Assignment Distance.
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12.4.3.1 Assignment Distance

As depicted in Figure 12.5, we can explain the increased privacy guarantees in P-

Gibbs by measuring the distance between the final assignment from P-Gibbs with a ran-

dom assignment. To measure the distance, we employ the Jensen–Shannon divergence

(JSD) [173]6. Now, consider a DCOP algorithm A and domain D = {d1, . . . , dp} such that

for each variable/agent i, the assignment distribution after T iterations is given by the

vector piA = {pid1 , . . . , pidp}. Now, consider the following definition.

Definition 12.7: Assignment Distance (ADA)

We define Assignment Distance (ADA) of a DCOP algorithm A as the average

Jensen–Shannon divergence (JSD) [173] between the vector of the assignment dis-

tribution for variable/agent i from algorithm A, i.e., piA, with the vector r from the

random assignment, i.e., r = 1
|D| · 1p. Formally,

ADA =

∑
i∈[p] JSD(piA||r)

p
. (12.13)

From Eq. (12.13), ADA ∈ [0, 1]. When ADA → 0, it shows that algorithm A’s final as-

signment is closer to the random assignment, i.e., A is as private as a random assignment.

For ADA → 1, the assignment is farthest, implying that A encodes the maximum informa-

tion possible. By comparing the assignment distance, i.e., ADSD-Gibbs and ADP-Gibbs,

we can explain the increased privacy of P-Gibbs.

12.4.3.2 Experimental Evaluation

To better study assignment distance, we empirically derive its values for two DCOP

benchmarks, graph coloring and meeting scheduling. We omit Ising from this set of exper-

iments as the domain there is binary.

6JSD [173] is a statistical method to measure the similarity of two probability distributions. It is based
on KL-divergence but does not require the same support for the distributions.
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Benchmark
Assignment Distance (AD)

SD-Gibbs P-Gibbs (ϵ = 0.046) P-Gibbs (ϵ = 0.662) P-Gibbs (ϵ = 9.55)

Graph-coloring 0.553 0.253 0.275 0.288

Meeting-scheduling 0.71 0.623 0.624 0.64

Table 12.5: Empirically evaluating Assignment Distance for SD-Gibbs and P-Gibbs. Note

that, AD → 0 implies greater privacy protection, while AD → 1 implies maximum infor-

mation leak.

12.4.3.2.1 Instance Setup For graph coloring, we have 30 agents/variables with do-

main size 10 and each constraint between (0, 10]. For meeting scheduling, we have 30

agents/variables with domain size 10 and each constraint between [−1000, 10] \ {0}.

12.4.3.2.2 Results We run both the benchmark instances 40 times and report the

corresponding assignment distance (AD) values in Table 12.5. For graph-coloring, AD

values for P-Gibbs are ≈ 50% less than that for SD-Gibbs. Whereas for meeting-scheduling,

it is ≈ 10%. This shows that P-Gibbs’ final assignment encodes less information compared

to SD-Gibbs’, in turn, better preserving constraint privacy. Moreover, as ϵ increases, the

decrease in the noise added and increase in subsampling probability results in an increase

in AP values for P-Gibbs as the algorithm behaves more like SD-Gibbs.

12.4.4 Discussion

Overall, P-Gibbs provides strong solution quality for a competitive privacy budget.

Concerning specific hyperparameters, we observe that the amount of noise (σ) added has

the most impact on the quality of the solution – especially for meeting-scheduling. In

practice, one needs to properly tune the parameters based on the problem at hand [181].

Since ours is the first method of its kind, to the best of our knowledge, we believe the

results presented are strong, and future work may further improve the performance.
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Advantages of our DP-based Approach We present the first differentially private

DCOP algorithm with provable guarantees for constraint privacy with P-Gibbs. Here

we emphasize the utility of a DP-based solution compared to the existing cryptographic

solutions. Notably, as also mentioned in [100], in cryptography-based solutions, the final

assignment may leak critical information about the constraints, i.e., existing algorithms

do not satisfy solution privacy. Our DP-based approach overcomes this prevalent issue

by randomizing the computation and perturbing agents’ utility values. In turn, the final

assignment may not always be optimal, i.e., with P-Gibbs, there is a drop in SQ.

Another crucial advantage of DP is the scalability of P-Gibbs. Since our privacy guar-

antees do not depend on computationally heavy cryptographic primitives, we conduct

experiments on much larger problems than existing algorithms (e.g., [100, 167]). P-Gibbs’

run time remains the same as SD-Gibbs in contrast to private DCOP algorithms based on

cryptographic primitives (e.g., [274, 127, 273]).

12.5 Conclusion

In this chapter, we addressed the problem of privacy-preserving distributed constraint

optimization. With our novel algorithm – P-Gibbs, we are the first to show a DP guar-

antee for the same. Using the local DP model, our algorithm preserves the privacy of

unrelated agents’ preferences. This guarantee also extends to the solution. We also achieve

high-quality solutions with reasonably strong privacy guarantees and efficient computation,

especially in meeting-scheduling problems.

Future Work As a first attempt at providing a differential privacy guarantee for DCOPs,

we focused on the classical DP notion in this chapter. Using the notion of Bayesian DP [283]

may further improve the (ϵ, δ) guarantees. More concretely, with Bayesian DP, we may

be able to estimate the privacy cost ct(λ) with the agent’s actual distribution (instead of

the worst-case for all agents). We remark that such an estimation is non-trivial as it may
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require certain assumptions of other agent’s distribution. We leave the analysis for future

work. Alternatively, one can further enrich our DCOP model by relaxing the assumption

of domains being the same for each agent while ensuring meaningful privacy guarantees.

Concerning P-Gibbs, we can also perform experiments on real-world datasets to further

fine-tune the algorithm’s hyperparameters.
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Chapter 13

Conclusion and Future Work

This thesis has delved into two distinct yet interconnected realms, each contributing to

the evolving landscape of multi-agent systems (MAS) with a focus on addressing challenges

faced by the participating agents.

In PART A, we primarily focused on game theory and mechanism design, with ded-

icated applications, namely, Civic Crowdfunding (CC) and Transaction Fee Mechanisms

(TFMs). In the domain of CC, our contributions have been multifaceted. We extended

the CC literature by introducing mechanisms that relax traditional assumptions about

agents’ information, resulting in more inclusive CC mechanisms (Chapter 4). Moreover,

we investigated the efficiency of CC mechanisms over a blockchain, offering the promise of

transparent and fair platforms by eliminating intermediaries (Chapter 5). The exploration

extended to combinatorial CC, shedding light on the simultaneous crowdfunding of multi-

ple public projects under budget-constrained agents (Chapter 6). We concluded our look

at CC mechanisms by focusing on the online setting where agents’ belief of the project’s

funding is dynamic (Chapter 7). In the realm of TFMs, we asserted the importance of

fairness, advocating for the inclusion of transactions with zero fees while maintaining bid

inclusion monotonicity (Chapter 8). Additionally, we introduced Transaction Fee Redistri-

bution Mechanisms (TFRMs), a novel class of TFMs that reduce transaction fees through

calibrated rebates (Chapter 9).
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PART B pivoted towards privacy concerns within multi-agent systems (MAS). We

looked at three interconnected systems: privacy-preserving voting applications over blockchain,

privacy-preserving combinatorial auctions over blockchain, and differentially private dis-

tributed constraint optimization (DCOP). FASTEN (Chapter 10) provided a scalable and

privacy-focused voting mechanism leveraging blockchain technology. STOUP (Chapter 11)

introduced cryptographic protocols and smart contract mechanisms for secure and private

bidding in combinatorial auctions. Lastly, P-Gibbs (Chapter 12) presented a differentially

private DCOP algorithm, ensuring the optimization process does not compromise the pri-

vacy of individual agents.

This thesis has made contributions to the fields of game theory and mechanism design,

and privacy-preserving mechanisms within MAS. By addressing challenges in Civic Crowd-

funding, Transaction Fee Mechanisms, privacy-preserving voting applications, combinato-

rial auctions, and DCOPs, the goal has been to design more inclusive, fair, strategyproof

multi-agent systems that preserve the privacy of an agent’s sensitive information.

Future Work

We hope that the research presented in this thesis serves as a good resource for future

explorations and advancements in these evolving domains. We remark that each (contri-

bution) chapter provides concrete (and immediate) future directions to explore. Here, we

conclude the thesis by listing a few (broader) directions for future work.

• Combinatorial Civic Crowdfunding. Our exploration of CC mechanisms sig-

nificantly extends the CC literature. However, several questions remain unexplored:

(i) designing refunds for welfare-optimal combinatorial CC under budget-constrained

agents, (ii) exact characterization of an agent’s dynamic belief, and (iii) designing

strategyproof CC mechanisms for agents with both negative valuation and asymmet-

ric belief (which currently appears to be at odds with one another). Aside from this
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theoretical analysis, it will also be important to see how well the theory aligns with

real-world observations, perhaps similar to Cason et al. [47].

• Transactions Fee Mechanism Design. The TFM literature is relatively recent,

with several directions to study. In particular, towards fairer TFMs for the transac-

tion creators, it will be important to study the role of the fair TFMs over time. In

fact, the rebates offered to creators with TFRMs may also result in complex strate-

gies when we consider non-myopic creators or miners. Making TFMs fair while being

resilient to such malicious attacks over time may be an important research direction

to explore in the future.

• Trusted Third-parties. Our privacy-preserving applications, FASTEN (Chap-

ter 10) and STOUP (Chapter 11), utilize (semi) trusted third parties for private com-

putations. This is in line with other privacy-preserving solutions [179, 178]. Future

work can look at designing privacy-preserving applications – with similar security and

privacy guarantees – without the need for such parties (e.g., using bulletproofs [41]

and zk-STARKs [28]).
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systems to help managing air traffic structure”. In: Journal of Aerospace Operations

5.1-2 (2017), pp. 119–148.

[38] John S Bridle. “Probabilistic interpretation of feedforward classification network

outputs, with relationships to statistical pattern recognition”. In: Neurocomputing.

1990, pp. 227–236.

403



[39] Ismel Brito, Amnon Meisels, Pedro Meseguer, and Roie Zivan. “Distributed con-

straint satisfaction with partially known constraints”. In: Constraints 14.2 (2009),

pp. 199–234.

[40] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell. “Bulletproofs: Short proofs for confidential transactions and more”.

In: 2018 IEEE S&P. 2018, pp. 315–334.

[41] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and

Greg Maxwell. “Bulletproofs: Short proofs for confidential transactions and more”.

In: 2018 IEEE symposium on security and privacy (S&P). IEEE. 2018, pp. 315–334.

[42] Vitalik Buterin et al. “A next-generation smart contract and decentralized applica-

tion platform”. In: White Paper 3.37 (2014), pp. 2–1.

[43] Vitalik Buterin, Eric Conner, Rick Dudley, Matthew Slipper, Ian Norden, and

Abdelhamid Bakhta. EIP-1559: Fee market change for ETH 1.0 chain. eips .

ethereum.org/EIPS/eip-1559. 2019.

[44] Christian Cachin. “Efficient private bidding and auctions with an oblivious third

party”. In: Proceedings of the 6th ACM conference on Computer and communica-

tions security. 1999, pp. 120–127.

[45] Robert D Carmichael. “On the numerical factors of the arithmetic forms α n±β n”.

In: The Annals of Mathematics 15.1/4 (1913), pp. 49–70.

[46] Yan Carriere-Swallow, Manasa Patnam, and Vikram Haksar. STACKING UP FI-

NANCIAL INCLUSION GAINS IN INDIA. imf.org/external/pubs/ft/fandd/

2021/07/india-stack-financial-access-and-digital-inclusion.htm. 2021.

[47] Timothy N Cason, Alex Tabarrok, and Robertas Zubrickas. “Early refund bonuses

increase successful crowdfunding”. In: Games and Economic Behavior 129 (2021),

pp. 78–95.

404

eips.ethereum.org/EIPS/eip-1559
eips.ethereum.org/EIPS/eip-1559
imf.org/external/pubs/ft/fandd/2021/07/india-stack-financial-access-and-digital-inclusion.htm
imf.org/external/pubs/ft/fandd/2021/07/india-stack-financial-access-and-digital-inclusion.htm


[48] Timothy N Cason and Robertas Zubrickas. “Enhancing fundraising with refund

bonuses”. In: Games and Economic Behavior 101 (2017), pp. 218–233.

[49] Ruggiero Cavallo. “Optimal decision-making with minimal waste: Strategyproof re-

distribution of VCG payments”. In: Proceedings of the fifth international joint con-

ference on Autonomous agents and multiagent systems. 2006, pp. 882–889.
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