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Abstract

Multi-agent systems (MAS) are distributed systems composed of multiple autonomous
agents interacting to achieve a common or conflicting goal. MAS tackles complex and
dynamic problems that a single agent cannot solve, resulting in better problem-solving
skills, enhanced reliability, and improved scalability. This thesis explores the challenges
facing MAS, particularly related to their game-theoretic, fairness, security, and privacy

guarantees.

A game-theoretically sound MAS is one where the agent interaction can be modeled
as a game and analyzed using game-theoretic concepts. This leads to a more stable and
efficient system, as agents are incentivized to make decisions that align with the system
goals. This thesis focuses on civic crowdfunding, a method for raising funds through
voluntary contributions for public projects (e.g., public parks). Our work enriches the
existing literature by designing more inclusive mechanisms and providing fairer rewards

and efficiency over the blockchain.

Fairness is also an essential aspect of MAS as it ensures that the actions and outcomes
of agents are equitable and just, resulting in MAS’s long-term stability and sustainability.
This thesis looks at fair incentives in Transaction Fee Mechanisms (TFM). Blockchains
employ TFMs to include transactions from the set of outstanding transactions in a block.
We argue that existing TFMs’ incentives are misaligned for a cryptocurrency’s greater
market adoption. We propose TFMs that provide fairer rewards to the transaction creators

and minimize the surplus collected to the creators.

vil



viii

Last, security and privacy are crucial aspects of MAS, as the autonomy and decentral-
ization of agents in MAS can lead to the exposure of sensitive information. In this thesis,
we specifically focus on privacy guarantees for MAS like (i) auctions, (ii) voting, and (iii)
distributed constraint optimization (DCOPs). We propose privacy-preserving applications

that preserve agents’ sensitive information while proving the computation’s verifiability.
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Chapter 1

Introduction

“Multiagent systems seem to be a natural metaphor for understanding

and building a wide range of what we might crudely call artificial social

systems.”

— Michael Wooldridge [298]

“Privacy is not an option, and it shouldn’t be the price we accept for

just getting on the Internet.”

— Gary Kovacs (CEO of Accela, former CEO of Mozilla Corporation)

* ok ok K K

Artificial Intelligence (AI) has become an integral part of our lives, influencing various
aspects and bringing about significant changes. Al impacts our daily lives in several ways,
including the smart devices we wear and the personal assistants we interact with through
recommendations, cybersecurity, e-learning, language translation, and many, many more.
Research in AT generally focuses on developing theories, techniques, and systems of one
or more cognitive entities [269]. Over the last several decades, Al systems have matured,

tackling complex and more realistic problems well beyond the scope of an individual agent.



Figure 1.1: Representative real-world Applications of Multi-agent Systems. These include
automated trading systems (image credit: [282]), distributed sensor networks (image credit:
[277]), commercial games (image credit: [11]), and air-traffic management systems (image

credit: [96]).

An AT agent’s capacity is limited by its knowledge, computational resources, and perspec-
tive [269]. Simon [259] refers to this limitation as bounded rationality; this remains one
of the key reasons for creating problem-solving organizations. Modularity and abstraction

are powerful tools by which one can tackle complex problems.

1.1 Motivation

Such complex problem-solving organizations comprise dynamic environments where sev-
eral agents interact, influencing each other actions and outcomes. These entities, whether

individuals, organizations, or Al agents, contribute to a larger system where their decisions



impact themselves and the overall dynamics. Such systems are ubiquitous in modern times,
including but not limited to traffic management, robotics, social networks, emergency re-

sponses, and financial markets.

1.1.1 Real-world Applications

Figure 1.1 provides an overview of some of these applications. We will describe some of

them in detail next.

@ Automated Trading Systems:

Automated trading systems, where each trader is an autonomous agent interacting
with other agents and the market to make trading decisions [23, 171, 238]. The agents
can include market-making, trend-following, or mean-reverting agents. These agents can
buy and sell stocks, bonds, commodities, or currencies based on market conditions, risk

preferences, and trading strategies.

@ Distributed Sensor Networks:

Distributed sensor networks are networks comprising sensors as agents that can com-
municate with other sensors and perform tasks such as data collection, processing, and
fusion [35, 170, 279]. The study of distributed sensor networks under the lens of agents
interacting with each other in a dynamic environment is particularly relevant in applica-
tions like environmental monitoring, smart cities, surveillance, and industrial automation,

where real-time data collection, analysis, and decision-making are critical.

@ Commercial Games:

Video games are applications incorporating design patterns reminiscent of virtual dy-
namic environments. Entities like game objects or actors function as autonomous agents,
engaging in interactions with one another to simulate intricate systems. These agents
can interact with fellow characters and the environment, aiming to accomplish objectives,

express emotions, and craft immersive experiences [122, 186].

@ Air-traffic Control Systems:
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Figure 1.2: The Contract Net Protocol (image credit: [64])

Air traffic control systems are services that provide guidance to aircraft in controlled
airspaces and information and support to pilots in uncontrolled airspaces. Such control
systems aim to ensure safety, order, and efficiency for air traffic. We can imagine these
as systems where each aircraft is an agent that can negotiate with other aircraft and
ground stations to coordinate flight plans, avoid collisions, and optimize route and fuel

consumption [37, 176, 210].

Next, we will examine classic case studies of such complex systems with multiple inter-

acting agents.



1.1.2 Case Study: The Contract Net Protocol

The Contract Net Protocol, introduced by Smith [261] in 1980, is probably one of
the earliest protocols to propose a distributed solution for task allocation among a group
of autonomous agents. Task allocation is a common problem in various domains, such as
distributed and/or cloud computing, manufacturing units, smart grids, and even search and
rescue operations. The Contract Net Protocol provides a communication channel between
the manager and the agents it wishes to allocate the tasks to (referred to as “contractors”).
The manager proposes tasks to the participating contractors. These contractors send
“proposals” to the manager based on which the manager chooses the allocations. Figure 1.2
depicts an illustration of the protocol.

The success of the Contract Net Protocol was instrumental in driving research in sys-
tems with multiple interacting agents. The protocol’s ability to facilitate decentralized
task allocation in multi-agent environments inspired further exploration into enhancing
cooperation and coordination among autonomous agents. Furthermore, introducing game
theory to these systems sparked interest in negotiation strategies without direct human
intervention. This found practical applications in various domains, with e-commerce being

a classic example [213].

1.1.3 Case Study: Llotja (a fish market) of Blanes

In the realm of online marketplaces, automated negotiation mechanisms, influenced by
the principles of the Contract Net Protocol and game theory, have been employed to op-
timize resource allocation, pricing strategies, and overall system efficiency, showcasing the
impact of these advancements in real-world scenarios. In one of the classic proposals in
1999, Noriega et al. [213] show how to take an instance of a traditional auction place, the
Llotja (a fish market) of Blanes, and convert it into a virtual and dynamic electronic fish
market. More concretely, the virtual market comprises autonomous agents — compromising

customers and vendors — that perform the functions essential for an auction. These func-



tions include vendor/customer and goods registration, the bidding process, good delivery,

and payment settlement.

Agents: Interacting, Coordinating, Competing. The common theme among these
applications is that the agents interact with each other, either in collaboration or competi-
tion, with their actions and decisions having repercussions on both their own trajectories
and the broader system. This “collective” behavior allows the agents to overcome com-
putational limitations due to bounded rationality, lack of resources, and perspective. The
dynamics arising from these interactions often lead to emergent behaviors and complex
system-level outcomes. To further study the nature of agents’ collective behavior, re-
searchers introduced multi-agent systems (MAS) as an area that investigates the control

and modeling of such complex systems made up of autonomous agents.

1.2 Multi-agent Systems (MAS)

The observation by Simon [259] that an individual agent is limited by its knowledge, re-
sources, and perspective (i.e., bounded rationality) hinted that to cater to complex systems,
it is essential to have modularity. Furthermore, as seen in Chapter 1.1, collaborative behav-
ior is instrumental in various practical scenarios. This motivates the study of Multi-agent
systems (MAS) that (i) offer modurality [269] and (ii) help formally study the behavior of
collaborative agents in dynamic environments. In fact, from Sycara et al. [268], an effective
way to solve a complex problem is by designing multiple functionally specific and (nearly)
modular components (aka “agents”) that specialize in solving a particular problem aspect.
The general idea of a MAS is to create a decomposition in which agents use “the most ap-
propriate paradigm for solving its particular problem” [269]. For interdependent problems,
MASSs require agents to coordinate with each other to ensure that the interdependencies

get resolved.



1.2.1 Characteristics of MAS

The general characteristics of MAS include [269]: (i) agents have incomplete information
or ability to solve the problem (i.e., their viewpoints are limited), (ii) there is no system
of global control, (iii) data are decentralized, and (iv) computation is asynchronous. The
first characteristic ensures the underlying problem is too complex for an individual agent
to solve. The second characteristic allows room for interconnection and interpretation of
existing legacy systems. The third characteristic results in scenarios naturally regarded
as a society of autonomous and interacting agents. Last, the fourth characteristic pro-
motes solutions that use information sources that may be spatially distributed. We further

illustrate these characteristics through the following example of meeting-scheduling.

Example 1.1: Meeting-scheduling [113]

Consider the meeting-scheduling problem [113]. Each agent is a scheduler that man-
ages the calendar of its user. We have independent agents for each user in the system
that manage their calendars. Here, we have no global control and decentralized data.
The agents can also be customized to reflect the constraints or preferences of their

users. Thus, no single agent can derive an optimal schedule independently.

Meeting-scheduling is a quintessential example of a MAS [113, 269]. It highlights the

importance of collaborative agents — no single agent can derive a useful schedule on its
own. However, it also illustrates the need for the collaboration to be private. If the agents
exchange information (i.e., their users’ private calendars) in the plain, they risk leaking
sensitive user information. So, while collaboration helps an MAS reach more useful out-
comes, it is imperative that these MAS also satisfy certain desirable properties pertaining
to agent behavior and information exchange (e.g., privacy of the user information). We

will discuss some of these properties later in Chapter 1.4.
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Figure 1.3: Overview of the Multi-agent System (MAS) applications studied in this thesis.

Distributed Constraint Optimization

In particular, we look at civic crowdfunding (top-left), voting (top-right), auctions (bottom-

left), and distributed constraint optimization (bottom-right).

1.2.2 MAS: Other Real-world Applications

Post the formalization of multi-agent systems as an established research area, the dis-
tributed vehicle motoring (DVMT) [88, 89] emerged as one of its most well-known appli-
cations. In DMVT, a set of geographically distributed agents monitor the vehicles that
pass through their areas. These agents attempt to interpret what vehicles pass through the
global areas and track their movements. Other earlier examples include OASIS [177], an
agent-based air-traffic control system used in Sydney, Australia, WARREN [268] which
was a financial portfolio management system, and YAMS [227] whose aim is to efficiently
manage the production process across multiple factories that also comprise independent

components among themselves.



1.3 MAS: Applications In Focus

This thesis studies several practical multi-agent systems. Looking back at the meeting-
scheduling problem from Example 1.1, one may observe that the independent agents must
communicate among others to decide on an (i) “optimal” schedule that (ii) satisfies the
individual user constraints. In the MAS literature, such problems are referred to as dis-
tributed constraint optimization (DCOP) problems. In addition, we also look at a couple
of e-governance and e-commerce applications. First, civic crowdfunding, which is an ef-
fective method of using the “power of the crowd” to raise money specifically for public
projects (e.g., public parks). Second, voting, particularly general elections. Last, we look
at auctions, in particular, (i) combinatorial auctions, which involve agents bidding for
more than one subset of items among those being auctioned, and (ii) transaction fee mech-
anisms, which involve adding transactions to the next block in a blockchain from the set
of outstanding transactions. Figure 1.3 depicts these applications in terms of the agent

interaction and the application outcome. Details follow.

1.3.1 Civic Crowdfunding

In civic crowdfunding (CC), a social planner seeks voluntary contributions from indi-
viduals specifically to crowdfund public projects. Typical examples include public parks,
libraries, bridges, and other community welfare projects. It is important to note that such
public projects are (i) non-rivalrous, i.e., an agent consuming the project (e.g., using a
bridge for commute) does not decrease the amount for others, and (ii) non-excludable, i.e.,

an agent cannot be stopped from consuming the project.

Unfortunately, because of these properties, a strategic or a rational agent may prefer
not to contribute to a project. Instead, the agent may believe that the other agents may
contribute, and it can merely consume the project once it gets crowdfunded. The CC

literature refers to this lack of incentive for an agent to contribute as “free-riding” [19].



Thus, there is a need to design incentive mechanisms for such strategic agents to contribute

to the project.

To overcome free-riding, Zubrickas [312] proposes that the social planner provide con-
tributing agents with refunds if the project does not meet its target by its deadline. The
author’s proposal induces a game among the agents such that they are incentivized to con-
tribute. In fact, the game admits an equilibrium such that the project gets crowdfunded,
and the social planner is not required to provide refunds! In this thesis, we look at several
interesting new directions to the work by Zubrickas [312]. More concretely, we (i) relax the
restricted assumptions made on agent behavior and the information they hold, (ii) look
towards the efficiency of deploying the process over blockchain [203, 297], and (iii) extend
the theory for the multi-project or combinatorial case. For further details, we refer the

reader to Chapter 1.5.2.1, Chapter 1.5.2.2, Chapter 1.5.2.3 and Chapter 1.5.2.4.

1.3.2 Voting

Elections play a vital role in democratic governance, allowing societies to select rep-
resentatives when direct democracy isn’t feasible. Modern representative democracies

have employed elections since the 17t}

century, allowing eligible citizens to participate
in decision-making by casting their votes. The key to designing a fair election is ensuring

that voters can freely express their preferences.

A natural method to design such fair elections is to ensure (i) voter anonymity, (ii)
vote concealment, (iii) vote immutability (i.e., a vote, once cast, cannot be altered), and
(iv) double voting inhibition. In literature, works exist that ensure a subset of these
properties [27, 136, 304] or do so at the cost of their scalability (i.e., the number of voters
the system can practically process) [307]. Our goal in this space is to design a fair election

protocol that is also scalable. For further details, we refer the reader to Chapter 1.5.3.1.
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1.3.3 Auctions

As seen in Chapter 1.1.3, auctions are a classic MAS application. Typically, auctions
involve agents acting as bidders who bid for their items of interest. The seller allocates the
items to the (sub) set of bidders based on their bids and certain allocation rules. Auctions
differ based on the allocation and payment rules (e.g., first-price auctions, Vickrey or
second-price auction [284]) or the number of items being auctioned (e.g., single item &
single unit, single item & multi-unit, combinatorial auctions). In this thesis, we focus
on Transaction Fee Mechanisms (TFMs), a classic application of auctions for transaction
inclusion in cryptocurrencies like Bitcoin [203] and Ethereum [297] as well as combinatorial

auctions.

1.3.3.1 Transaction Fee Mechanism Design

In cryptocurrencies like Bitcoin [203] and Ethereum [297], the miner, i.e., the agent
who proposes the next block, includes a set of transactions to its block from the set of
outstanding transactions — referred to as the mempool. Naturally, as the miner is self-
interested, it looks to maximize its revenue by adding the set of transactions that pay the
maximum transaction fees to it. Zooming out, this means that the transaction creators ‘bid’
for a slot in the miner’s block. The miner acts as the seller that allocates the transactions
to its block and receives the transaction fee as payment. Roughgarden [245] introduces
this miner-transaction creator interaction as a Transaction Fee Mechanism (TFM) design.
E.g., Bitcoin’s TFM can be considered a first-price auction where the miner optimally adds
transactions that maximize its revenue, and the transaction creators pay the transaction
fee they commit to.

While the transaction fee acts as an incentive that allows TFMs to satisfy several impor-
tant agent-specific incentive properties [62, 103, 245], recent data suggest that transaction
fees have grown considerably more than required [193]. This may limit the cryptocur-

rencies market penetration. For instance, the commission-less UPI payment network has

11



superseded the long-established commission-based debit/credit card payment network in
India [1]. Motivated by this, we look at designing TFMs that look to reduce the transaction
fees collected from the transaction creators as well as ‘fair’ TFMs that allow transactions
with zero fees to have a non-zero probability of being included in the miner’s block. For

further details, we refer the reader to Chapter 1.5.2.5 and Chapter 1.5.2.6.

1.3.3.2 Combinatorial Auctions

We next focus on combinatorial auctions. These auctions allow bidders, agents in our
language, to bid for multiple subsets of items simultaneously. Combinatorial auctions
also generate more revenue than other type of auctions [292]. Popular examples include

procurement auctions, spectrum auctions [190], and airport take-off slot auctions [237].

However, using auctions directly is a security and privacy risk for an agent’s bid and
its subset of items. Disclosure of an agent’s public identity reveals its interest in acquiring
auctioned items. The revelation of an agent’s bidding information (bid value and the
combination of preferred items) to an auctioneer or other participating agents may expose
its profits, economic situations, and preferences for specific items to its contemporaries.
An auctioneer may further exploit this information in future auctions. Consequently, we
desire an auction protocol in which only the winning agents’ combination of preferred items
is made public while preserving the privacy of the identities and the bidding information
of the other agents. Preserving the privacy of the participating agents and their private
information is integral to such mechanisms. To summarize, we look to design a privacy-
preserving combinatorial auction that preserves each agent’s bidding information from the
public and the auctioneer, even after the auction ends. For further details, we refer the

reader to Chapter 1.5.3.2.
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1.3.4 Distributed Constraint Optimization Problems (DCOPs)

At last, we take a re-look at DCOPs (see Example 1.1). DCOP is a problem where
agents collectively compute their value assignments to maximize (or minimize) the sum
of resulting constraint rewards. In DCOP, constraints quantify each agent’s preference
for each possible assignment. DCOPs help model various multi-agent coordination and
resource allocation problems like meeting-scheduling and graph-coloring-related applica-
tions such as mobile radio frequency assignments. For instance, consider the problem of
meeting-scheduling in which several Chief Executive Officers (CEQOs) aim to decide a date
and time to meet. Each CEO will have a constraint for each date and time slot assignment,
quantifying its preference for the assignment. The preferences may depend on the CEOs’
availability and favorable slots. In this scenario, the CEOs cannot directly employ a cen-
tralized coordinator to decide on an agreeable meeting slot. The coordinator will require
information regarding the CEQOs’ availability — which is often sensitive. Alternatively, the
CEOs can generate a suitable schedule by modeling the problem as a DCOP and using
any DCOP-solving algorithms. However, researchers show that despite their distributed
nature, DCOP algorithms may themselves leak sensitive information [100].

While several privacy-preserving algorithms exist [99, 100, 167, 272, 273], they rely on
computationally expensive cryptographic primitives and secure multi-party computation
protocols. This dependence results in the algorithms not being scalable, i.e., the algorithms
are only practical to deploy for a small number of agents. In this thesis, we look at designing
a private DCOP algorithm that preserves (constraint) privacy and is also scalable. For

further details, we refer the reader to Chapter 1.5.3.3.

1.4 MAS: Desirable Properties

So far, we have introduced MAS and looked at several real-world deployments of them.

Furthermore, we discussed MAS applications studied as part of this thesis. What remains
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unclear is the requirements that an MAS should satisfy so that it is desirable for real-world

deployment. In this thesis, we focus on the following desirable properties of a MAS.

Definition 1.1: What qualifies as a “good” Multi-agent System?

We say that a MAS is desirable if it satisfies all or any combination of the following

properties:
1. Game-theoretic Soundness
2. Fairness

3. Security and Privacy

Given their increasing adoption, we believe that multi-agent systems must satisfy these
properties. In fact, a large body of work pertaining to these properties can be found in
contemporary Al research [3, 7, 86, 87, 138, 161, 195, 240, 289, 312]. We discuss these

properties in detail next.

1.4.1 Game-theoretic Soundness

As alluded to briefly in Chapter 1.3, often in MAS, the participating agents may be
strategic, i.e., the agents may opt for strategies (outside of the desired strategy) such that
the “deviating” strategy increases their utility. Consequently, the rich game theory liter-
ature aims to tackle this strategic behavior through incentives or modeling agents’ utility
behavior. Mechanism design is a game-theoretic tool concerned with settings where a so-
cial planner faces the problem of aggregating the announced preferences of multiple agents
into a collective decision when the agents exhibit strategic behavior. E.g., e-governance
applications such as auctions and e-commerce applications such as civic crowdfunding.
Through mechanism design, researchers aim to promote agents’ equilibrium strategies into

those desired.
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Some popular game theory properties in mechanism design® include Dominant Strategy
Equilibrium (DSE), Nash Equilibrium (Pure and Bayesian) (NE), Individual Rationality
(IR), and Incentive Compatibility (IC) [205]. For instance, a strategy is DSE if the agent
receives maximum utility with it irrespective of the strategy employed by the remaining
agents. With a slight difference, a strategy is pure-NE if the agent receives maximum utility
with it only if the remaining agents employ the same strategy. IR states that playing a
given strategy guarantees non-negative utility to the agent. Lastly, IC states that an agent
receives maximum utility when eliciting its true preference/valuation. From a mechanism
design perspective, we examine civic crowdfunding (CC) and transaction fee mechanisms

(TFMs), delving into the desirable properties they satisfy.

1.4.2 Fairness

Typically, fairness in MAS revolves around two categories: (i) group fairness, which
involves fair classification in ML systems, and (ii) algorithmic fairness, which deals with

fair resource allocation of goods (or chores).

1.4.2.1 Group Fairness

Machine Learning (ML) systems are frequently employed in decision-making. E.g.,
criminal risk assessment, credit approvals, and online advertisements. Researchers have
observed that these ML systems inadvertently introduce societal bias [61]?. For instance,
the firm ProPublica conducted a study of a risk assessment tool that was widely used by the
judiciary system in the US [234]. ProPublica observed that the risk values for recidivism
estimated for African-American defendants were, on average, higher than for Caucasian
defendants. Since then, research on fairness in ML gained traction, especially in quantifying
and satisfying several notions of fairness. Popular group fairness notions require different

sensitive groups (e.g., age or race) to receive beneficial outcomes in similar proportions.

!Chapter 2.1 provides a comprehensive summary of the game theory and mechanism design literature.
Znytimes.com/2019/12/19/technology/facial-recognition-bias.html
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These include Demographic Parity, Disparate Impact, and Equalized odds. For details, we
refer the reader to [191].

1.4.2.2 Algorithmic Fairness

This category revolves around allocating (say) m indivisible items among (say) n agents
who report their valuations for the items. The objective is to ensure fair allocation for
a desirable notion of fairness. Such a scenario often arises in the division of inheritance
among family members, divorce settlements, and distribution of tasks among workers (e.g.,
spliddit.org).

Envy-freeness (EF) is the most common notion of fairness here. EF ensures that no
agent has higher utility for other agent’s allocation [109]. Other notions, such as Propor-
tionality, ensure that every agent receives at least 1/n of its complete bundle value [265].
There is also a relaxation of PROP, the max-min share (MMS) allocation [18]. Imagine
asking an agent to divide the items into n bundles and take the minimum-valued bundle.
The agent would divide the bundles to maximize the minimum utility, which is the agent’s
MMS share. An MMS allocation guarantees every agent its MMS share. For further details,

we refer the reader to [9, 17].

1.4.2.3 Other Categories of Fairness

Researchers have recently highlighted the need for fairness for algorithms in general [65].

Here, we look at two such applications based on fair-incentive mechanisms.

1. Crowdsourcing. Schmidt [253] introduce the idea of fair rewards in human-centered
crowdsourcing . Fair crowdsourcing platforms are necessary to ensure the participa-
tion of the crowd. As a result, recent research has focused on mechanisms with the

fair provision of rewards [118, 119, 137, 200].

2. Cryptocurrencies. In the world of decentralized cryptocurrencies like Bitcoin [203]

and Ethereum [42], a lack of fairness can also correspond to strategic miners collecting
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transactions with higher transaction fees and leaving out those with more minor (or
no) transaction fees [257]. Naturally, works such as [257] increase the fairness in
transaction order by proposing BitcoinF, which allocates a section of the block space

that must include transactions in first-in-first-out order.

Chapter 2.4 formally describes the fairness notions presented here. Particularly, we look
at fair incentives in TFMs — ensuring a reduction in the agent’s transaction fee to increase

a cryptocurrency’s market penetration.

1.4.3 Privacy

As mentioned, MAS applications are widely used in various domains. For further accep-
tance, mostly when multiple agents interact with the system, we must aim to preserve the
privacy of participants’ information in such applications. Researchers resolve the privacy

challenges in MAS either through (i) cryptosystems or (ii) differential privacy (DP).

Cryptosystems. This approach involves a fusion of various cryptographic primitives (e.g.,
encryptions, commitments, hashes, secure multi-party computation) to provide required
privacy guarantees. Researchers have successfully used such an approach for several MAS
applications including deep learning [60, 101, 198, 299, 308]|, reinforcement learning [145,
224, 266], and artificial intelligence [179, 178, 195, 225, 226, 274].

To assert the correctness of the computation over encrypted data/information, i.e.,
security of the privacy-preserving protocol, zero-knowledge proofs (ZKPs) are employed.
ZKP is a method by which a party, called a Prover (P), can convince another party,
called a Verifier (V), that it knows some information w, without revealing w (or any
other information related to w). A few standard ZKP techniques include commit-response

methods [87, 195], Fiat-Shamir heuristic [104] and zk-SNARKs [178, 179].

Differential Privacy (DP). This technique involves randomizing computation or adding
calibrated random noise to the statistics before releasing them [91]. DP has emerged as

the premier alternative to traditional cryptosystems for privacy preservation in the last
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decade. Similar to the earlier approach, DP also finds use in privacy-preserving MAS
literature for deep learning [3, 206, 221, 256], reinforcement learning [58, 112, 286], and
artificial intelligence [139, 288].

We refer the reader to Chapter 3 for a comprehensive summary of the required security
and privacy preliminaries. We construct privacy-preserving applications for MAS, such as

DCOPs, voting, and combinatorial auctions.

1.5 Our Goal and Contributions

We first define the broad goal of the thesis. Next, we zoom in a level and summarize

the concrete contributions made.

1.5.1 Our Goal

We remark that MAS is a field of artificial intelligence (AI) that studies how multi-
ple agents interact with each other and their environment to achieve specific objectives.
MAS has applications in various domains such as finance, transportation, healthcare, etc.
However, as these systems involve multiple agents with potentially conflicting goals and
interests, we believe that ensuring their security and privacy, game-theoretic soundness,
and fairness is of utmost importance.

This report focuses on these aspects, and Table 1.1 presents a taxonomy of our contri-
butions in this space. Specifically, we work on popular MAS applications such as voting,
where the goal is to determine the preference of a group of agents for a set of alternatives;
combinatorial auctions, where agents bid on combinations of items; distributed constraint
optimization, where agents work together to find solutions to a problem with constraints;
and civic crowdfunding with refunds, where agents contribute money towards a collective
goal and are refunded if the goal is not met.

Our contributions in these areas involve designing algorithms and protocols that ensure

the security and privacy of agents’ information, promote fair and efficient outcomes, and
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Security Game-theoretic

MAS Chapter Fairness
& Privacy Soundness
Civic Crowdfunding [72, 74, 75, 76, 77) Chapters 4, 5, 6, 7 X v v
Transaction Fee Mechanism [78, 79| Chapters 8, 9 X ve v
Voting [73] Chapter 10 v X X
Combinatorial Auction [70, 71] Chapter 11 v X X
Distributed Constraint Optimization [80] Chapter 12 v X X

Table 1.1: Taxonomy of this thesis’ contributions and the subset of the MAS desirable

properties they consider.

are robust to various manipulation and attacks. We analyze existing MAS applications,

identify vulnerabilities or limitations, and propose solutions to these issues.

1.5.2 PART A: Game-theoretically Sound and Fair Mechanism Design

The first part of this thesis focuses on game-theoretically sound and fair incentive-based
mechanism design. In particular, we focus on MAS, such as Civic Crowdfunding (CC) and
Transaction Fee Mechanisms (TFMs). More concretely, PART A comprises the following

contributions.

1.5.2.1 Civic Crowdfunding for Agents with Asymmetric Belief and Negative

Preferences

Agent Preferences. We also focus on aggregating citizen preferences for public projects
through civic crowdfunding. Existing civic crowdfunding mechanisms such as PPR and
PPS consider only citizens with positive valuations towards the public project. Public
projects aim to cater to the majority, so they should be provisioned only if the majority
prefers it. For this, in Chapter 4 (based on [74, 75]), we propose a methodology to convert
existing civic crowdfunding mechanisms for positive preferences to cater to markets having

both types of agents. Specifically, we adapt existing PPR and PPS mechanisms to design
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PPRN and PPSN that incentivize agents to contribute towards or against the project’s

provision based on their preference.

Agent Beliefs. Moreover, as mentioned earlier, the mechanisms assume that each agent
has a symmetric belief about the project getting provisioned. To address asymmetric
beliefs, in Chapter 4 (based on [74, 75]), we propose a novel reward scheme, Belief Based
Reward (BBR), based on the Robust Bayesian Truth Serum (RBTS) mechanism. BBR
rewards agents based on their belief in the project’s provision. Using this reward scheme,
we introduce a general framework for civic crowdfunding, allowing agents with asymmetric
beliefs about the project to get provisioned and incentivizing them to contribute towards
the project’s provision. Based on this framework, we also design two mechanisms, PPRx
and PPSx, adapting PPR and PPS, respectively, and prove that the project is provisioned

at equilibrium in both mechanisms.

1.5.2.2 Efficient Civic Crowdfunding over Blockchain

In Chapter 5 (based on [76]), we identify essential properties a refund bonus scheme
must satisfy to curb free-riding while avoiding the race condition. We prove Contribution
Monotonicity and Time Monotonicity as sufficient conditions for this. We show these
conditions are also necessary if a unique equilibrium is desirable. We propose three refund
bonus schemes satisfying these conditions, leading to three novel mechanisms for CC -
PPRG, PPRE, and PPRP. We show that PPRG is the most cost-effective when deployed
as an SC. We prove that under certain modest assumptions, in PPRG, the project is funded

at equilibrium.

1.5.2.3 Combinatorial Civic Crowdfunding with Budgeted Agents

The existing CC literature mentioned above (i.e., [52, 53, 74, 75, 76, 312]) only focuses on
the crowdfunding of a single project. To this end, in Chapter 6 (based on [77]), we present

several foundational results for CC for multiple projects. Given budget-constrained agents,
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we argue that funding the welfare optimal subset may be desirable. We show that the
optimal subset is funded at equilibrium under specific assumptions on the overall budget
and agents’ individual budgets. For any other scenario, an agent may be incentivized to
deviate from funding the optimal set. However, computing the optimal deviation in the

multi-project case is NP-Hard.

1.5.2.4 Analyzing Civic Crowdfunding under Dynamic Beliefs

As mentioned above, in Chapter 4, we relax the assumption on agents’ beliefs by incor-
porating agents with asymmetric beliefs. However, the mechanisms proposed in Chapter 4
still assume that the agent’s beliefs are static, i.e., they do not evolve with time. This as-
sumption seems restrictive — in CC, agents can observe the remaining time to the deadline
and the net contribution at any time. Thus, agent beliefs may evolve with time and be in
line with the information at hand. In Chapter 7 (based on [72]), we argue that an agent’s
dynamic belief will evolve as a random walk. Based on this assumption, we characterize the
equilibria of the CC game (i.e., the equilibrium point and agent strategies) if the dynamic

belief evolves as a (i) martingale, (ii) sub-martingale, or (iii) super-martingale.

1.5.2.5 Achieving Fairness in Transaction Fee Mechanism Design

Prominent cryptocurrencies like Bitcoin and Ethereum handle over a million transac-
tions daily, creating a scenario where strategic miners aim to maximize their utility by
selecting transactions with higher fees. The transaction fee mechanism (TFM) design lit-
erature aims to understand miners’ and transaction creators’ optimal behavior. As such,
it focuses on standard incentive properties, which may not be sufficient for a cryptocur-
rency’s increased market penetration. In Chapter 8 (based on [79]), we argue that a TFM
is deemed " fair” to transaction creators when it satisfies specific notions, including Zero-fee
Transaction Inclusion and Monotonicity. We show that existing TFMs either fail to satisfy

these notions or do so at a considerable cost to miners’ utility. In response, we present
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a new set of TFMs that satisfy the desirable incentive properties and our novel fairness

notions.

1.5.2.6 Designing Redistribution Mechanisms for Reducing Transaction Fees

in Blockchains

Recall that Transaction Fee Mechanisms (TFMs) manage agent transactions in blockchains,
determining transaction fees. However, transaction fees have become high due to rising
demand and limited block resources. To address this, in Chapter 9 (based on [78]), we intro-
duce Transaction Fee Redistribution Mechanisms (TFRMs). TFRMs redistribute the VCG
payments from TFMs as rebates to minimize fees using Redistribution mechanisms [129].
In particular, we propose two TFRMs that satisfy several desirable incentive properties
while resulting in a non-zero reduction of transaction fees, even in the presence of a strate-

gic miner.

1.5.3 PART B: Security and Privacy

PART B is the privacy-focused part of this thesis. We particularly focus on the pri-
vacy of interacting agents in MAS, such as voting, combinatorial auction, and distributed

constrained optimization.

1.5.3.1 FASTEN: Fair and Private Voting

Electing democratic representatives via voting has been common since the 17" century.
However, these mechanisms raise concerns about fairness, privacy, vote concealment, fair
calculations of tally, and proxies voting on behalf of the voters. Ballot voting, and in recent
times, electronic voting via electronic voting machines (EVMs), improves fairness by relying
on centralized trust. Homomorphic encryption-based voting protocols also assure fairness
but cannot scale to large-scale elections such as presidential elections. To resolve these

issues, Chapter 10 (based on [73]) leverages the blockchain technology of distributing trust
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to propose a smart contract-based protocol, namely, FASTEN. There are many existing
protocols for voting using smart contracts. We observe that these either are not scalable

or leak the vote tally during the voting stage, i.e., do not provide vote concealment.

In contrast, we show that FASTEN preserves voters’ privacy, ensures vote concealment
and immutability, and avoids double voting. We prove that the probability of privacy
breaches is negligibly small. Further, our cost analysis of executing FASTEN over Ethereum

is comparable to most of the existing election costs.

1.5.3.2 STOUP: Secure and Trustworthy Combinatorial Auction

As mentioned, MAS applications are widely used in a variety of domains. For further
acceptance, mostly when multiple agents interact with the system, we must aim to preserve
the privacy of participants’ information in such applications. Towards this, Yao’s Million-
aires’ problem (YMP) [300], i.e., to determine the richer among two millionaires privately,
finds relevance. To this end, Chapter 11 (based on [71]) presents a novel, practical, and
verifiable solution to YMP, namely, Secure Comparison Protocol (SCP). We show that SCP
achieves this comparison in a constant number of rounds without encryption and does not
require continuous participant involvement. SCP uses semi-trusted third parties - which
we refer to as privacy accountants - for comparison, who do not learn any information
about the values. The probability of information leaks is negligible in the problem size.
We leverage the Ethereum network in SCP for pseudo-anonymous communication, un-
like computationally expensive secure channels such as Tor. We present a Secure, Truthful
cOmbinatorial aUction Protocol (STOUP) for single-minded bidders to demonstrate SCP’s
significance. We show that STOUP, unlike previous works, preserves the privacies relevant
to an auction, even from the auctioneer. We demonstrate the practicality of STOUP

through simulations.
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1.5.3.3 Differentially Private Multi-agent Constraint Optimization

Several optimization scenarios involve multiple agents that desire to protect the pri-
vacy of their preferences. There are distributed algorithms for constraint optimization
that provide improved privacy protection through secure multiparty computation. How-
ever, it comes at the expense of high computational complexity. It does not constitute
a rigorous privacy guarantee for optimization outcomes, as the result of the computation
itself may compromise agents’ preferences. In Chapter 12 (based on [80]), we show how
to achieve privacy, specifically differential privacy, by randomizing the solving process. In
particular, we present P-Gibbs, which adapts the SD-Gibbs algorithm to obtain differential
privacy guarantees with much higher computational efficiency. Graph coloring and meet-
ing scheduling experiments show the algorithm’s privacy-performance trade-off for varying

privacy budgets and the state-of-the-art SD-Gibbs algorithm.

1.6 Thesis Outline

We divide the thesis into two parts, with PART A on game-theoretic soundness and

PART B on security, privacy, and blockchains.

e Chapter 2. With a particular focus on PART A, Chapter 2 presents the required
preliminaries for game theory and mechanism design, combinatorial auctions, civic

crowdfunding, and fair reward mechanisms.

e Chapter 3. Likewise, towards PART B, Chapter 3 provides the required crypto-
graphic background, summarizing cryptographic primitives such as hash functions,
encryptions, and commitments, as well as zero-knowledge proofs, differential privacy,

blockchains and Transaction Fee Mechanisms (TFMs).

PART A: GAME-THEORETIC SOUNDNESS
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Chapter 4. This chapter presents civic crowdfunding for agents with asymmetric

beliefs and negative valuation.

Chapter 5. Here, we present several efficient refund bonus schemes for blockchain-

based civic crowdfunding.

Chapter 6. With this chapter, we present our model of combinatorial civic crowd-

funding with budgeted agents.

Chapter 7 Here, we characterize the underlying game induced in civic crowdfunding

in the presence of agents with dynamic beliefs.

Chapter 8. Pivoting to TFMs and fair incentive mechanisms, we present TFMs that

satisfy novel fairness notions while retaining desirable game-theoretic properties.

Chapter 9. For the last chapter for PART A, we look at reducing the explosion
of transaction fees in TFMs. Particularly, we employ a Redistribution mechanism-
based approach that offers rebates to agents to reduce the fee they pay for transaction

inclusion.
PART B: SECURITY AND PRIVACY

Chapter 10. Moving forward with PART B, this chapter presents our novel fair
and private voting protocol, namely FASTEN.

Chapter 11. This chapter presents STOUP, a blockchain-based private and verifi-

able combinatorial auction.

Chapter 12. We end PART B by looking at differentially private multi-agent

constraint optimization in this chapter.

Chapter 13. We conclude this thesis with this chapter with a discussion on the
contributions presented, their potential impact, and promising directions to further

explore in the future.
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Chapter 2

Preliminaries: Game Theory

This thesis chapter provides a comprehensive overview of fundamental
concepts in game theory, mechanism design, civic crowdfunding, and
fair reward mechanisms. Game theory is a theoretical framework to an-
alyze strategic interactions among rational actors, providing insights into
decision-making processes and outcomes. Mechanism design, an exten-
sion of game theory, is crucial for designing incentive-compatible mecha-
nisms that encourage desirable behaviors. The chapter then delves into
civic crowdfunding, a method to exhibit participatory decision-making
in which communities collectively fund projects. By combining insights
from game theory and mechanism design, the chapter presents a litera-
ture survey of known civic crowdfunding mechanisms that guarantee a
project’s funding at equilibrium. Additionally, we look at fair reward
mechanisms for crowdsourcing, addressing challenges related to the eq-

uitable distribution of rewards among participants.

*x Kk Kk Kk Kk
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A
2 H T

H (-100, 100) | (100, -100)
T (100, -100) | (-100, 100)

Table 2.1: Player Utilities for Matching Pennies (Example 2.1)

2.1 Game Theory

This thesis focuses on multi-agent systems. Naturally, we desire a tool that can model
the interaction between these agents, depending on their type and environment. Game
theory helps model the interaction between these agents. In general, game theory assumes
that the agents part of the system are rational, i.e., they are interested in maximizing their
utility. An agent’s utility structure may be cooperative or conflicting.

Generally, a game is described by four properties [205]: (i) Agents: individual/group of
individuals making decisions, (ii) Rules, (iii) Outcomes, and (iv) Preferences. For illustra-

tive purposes, consider the following example.
Example 2.1: Matching Pennies
1. Agents: {A;, A}
2. Rules: Each player simultaneously flips a coin
3. Outcomes: {(H,H),(T,H),(H,T),(T,T)}

4. Preferences: Table 2.1 gives the player’s preferences. If the two coins get the

same outcome, Ay pays USD 100 to As; otherwise, As pays USD 100 to Ay

Strategic Form Game. While Example 2.1 presents the constituents of a game, it is

often useful to represent the game formally. That is,
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Definition 2.1: Strategic Form Game [205]

A strategic form game T is the tuple (A, {S;}ica, {u;}ica) wherein,
1. A={1,...,n} where n € Z> are the set of agents

2. {S;}ica where each S; is the strategy of agent 4

3. {u;}iea s.t. u; 81 x Sy x ... xS, = R is the utility function of agent 4

Every agent ‘plays’ their strategy simultaneously in the strategic form game and reports

it to a central coordinator (often referred to as the social planner). The planner then com-

putes the outcome and individual utilities. Let us look at the famous Prisoner’s Dilemma'

game to understand Definition 2.1 better.

Example 2.2: Prisoner’s Dilemma

We have two prisoners, i.e., A = {1,2}. Let the prosecutor act as the social planner without
evidence to convict the prisoners. The prosecutor develops a clever plan to obtain a confes-
sion: The prisoners are made to sit separately so they cannot mutually communicate. Each

prisoner i’s strategy is either confessing or defecting. Their utilities are defined as follows.

e If both confess, they receive 5 years of jail time each, i.e., u1(C,C) = uz(C,C) = —5.

e If prisoner 1 confesses while prisoner 2 defects, prisoner 1 gets 1 year and prisoner 2
gets 10 years of jail time, i.e., u1(C, D) = —1 and uy(C, D) = —10.

e If prisoner 2 confesses while prisoner 1 defects, prisoner 2 gets 1 year and prisoner 1
gets 10 years of jail time, i.e., uy(D,C) = —10 and uy(D,C) = —1.

o If both defect, they receive 2 years of jail time each, i.e., ui (D, D) = us(D, D) = —1.

Table 2.2 presents the prisoners’ utility in the matriz-form. The row agent is Agent 1,

and the first value corresponds to its utility, while Agent 2 is the column player, and the

Veritasium’s video is a great watch for those interested in the significance of Prisoner’s Dilemma and
game theory in general (youtube.com/watch?v=mScpHTIi-kM).
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second value corresponds to its utility. C' denotes the prisoner’s choice to confess, and D

denotes the prisoner’s choice to defect.

Agent 2
& D C

Agent 1

D (-2,-2) | (-10, -1)
C (-1,-10) | (-5,-5)

Table 2.2: Player Utilities for Prisoner’s Dilemma

Given such a setting, it is natural to wonder what strategies the prisoners should adopt
to guarantee themselves a desirable (or optimal) outcome. Such a question leads us to the

game theory concept of equilibrium.

2.1.1 Dominant Strategy Equilibrium

From Example 2.2, each agent’s strategy comprises either confessing or defecting. Each
agent wishes to choose a strategy that maximizes its utility. If there exists a strategy (e.g.,
confessing) that maximizes the utility of agent 1 irrespective of the strategy of agent 2,
then we say that the strategy is dominant. Furthermore, we refer to the agents’ dominant

strategy profile as the dominant strategy equilibrium, defined as follows.

Definition 2.2: Weakly Dominant Strategy Equilibrium [205]

Given the game T', we refer to the strategy profile s* = (s},...,s}) as dominant

strategy equilibrium if Vi € A, the strategy s} is a dominant strategy, i.e.,
wi (87, 8—i) > wi(si,8—),Vs; € Si,s; #s; and s_; € S_; (2.1)

such that 3s_; € S; for which w;(s}, s—1) > u;(si, 5-).
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Here, s_; denotes the strategy tuple of all agents except agent i. Adding to Defini-
tion 2.2, if the strict inequality exists Vs; in Eq. 2.1, Vi, we say that the profile is strongly

dominant strategy equilibrium.

Dominant Strategy in Prisoner’s Dilemma. We see from Table 2.2 that confess-
confess is the dominant strategy profile in Prisoner’s Dilemma. This is because, for Agent 1,
u1(C,C) > uy1(D,C) and ui (C, D) > ui (D, D). Likewise, for Agent 2, us(C,C) > ua(D,C)
and ua(C, D) > ua(D, D).

Pareto Optimality. The dominant strategy equilibrium utility for both the agents in the
Prisoner’s Dilemma is —5. However, Table 2.2 shows that defect-defect would have given
the agents a higher utility of —2 each. We say that equilibrium is not Pareto optimal
if (i) a change in the strategy profile (from s* to §) improves the utility of at least one
agent without affecting the utility of the remaining agents (“Pareto” improves) and (ii) §

is Pareto optimal if there are no possible Pareto improvements.

Dominant Strategy Equilibrium May Not Exist. While the dominant strategy
equilibrium is useful for the agents to play (guaranteeing maximal payoff irrespective of

the others’ strategy), unfortunately, such an equilibrium may not always exist.

For instance, recall the matching pennies game from Example 2.1. Here, consider the
agent Ay. If A; chooses H, its utility uy (H, H) = —100 if As also chooses H and ui(H,T) =
100 if Ay chooses T'. That is, ui(H,T) > ui(H,H). However, if A; chooses T, then
ui(T,H) = 100 and uy(T,T) = —100. That is, ui(T,H) > ui(T,T). So, there is no

dominant strategy for A;.

Given this non-existence, researchers look towards other equilibrium concepts that may
provide the desirable properties of dominant strategy equilibrium and may possibly be

guaranteed to exist for any instance of I'. To this end, we next look at Nash equilibrium.

30



2.1.2 Nash Equilibrium

Nash equilibrium is a weaker equilibrium concept proposed by John Nash in 1950 [208],
which states that a given strategy profile is Nash equilibrium if each agent following the
strategy maximizes its utility, given that all the remaining agents are following their strat-

egy from the same profile. More formally?,

Definition 2.3: (Pure-strategy) Nash Equilibrium [205, 208]

*

Given the game I', we refer to the strategy profile s* = (s7,...,s}) as pure-strategy

Nash equilibrium if Vi € A, the strategy s; satisfies

ui (8], 8%;) > ui(si,8%;),Vs; € S; (2.2)

In other words, it is Nash equilibrium for an agent to play the strategy specified by s*

if all the remaining agents follow s*. That is, it is the agent’s best response as it cannot

receive a higher utility by wunilaterally deviating from s*.

(Mixed-strategy) Nash Equilibrium Always Exist. Our discussion so far has re-
volved around pure-strategy equilibrium wherein each agent plays a fixed strategy as de-
fined in s*. Nash Jr [208] presents the general mixed-strategy Nash equilibrium where
agents choose a probability distribution over possible pure strategies. As we have seen so
far, agents may put 100% of the probability on one pure strategy. Thus, pure strategies
are a subset of mixed strategies.

Notably, John Nash [208, 207] also showed that mixed-strategy Nash equilibria will

always exist, unlike for the dominant strategy case.

Matching Pennies. Taking a re-look at Example 2.1, we see that the game has no pure-
strategy Nash equilibrium as there is no pair of pure strategies such that neither agent

would want to switch if told what the other would do. However, the game indeed has

2For completeness, the pure-strategy Nash equilibrium was first proposed by Cournot [66]. In his work,
Nash Jr [208] generalized the concept for mixed strategies (agents randomly choose their strategy from a
probability distribution).
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a mixed-strategy Nash equilibrium wherein each agent chooses head or tail with equal

probability, i.e., % Such a probability distribution allows each agent to make the other
agent indifferent about choosing heads or tails, implying that no agent has an incentive to

try another strategy.

2.1.2.1 PPAD-Completeness

Nash [207] showed the existence of Nash equilibrium. However, the question of “how
long does it take until economic agents converge to an equilibrium” [83] remained unclear.
Daskalakis, Goldberg, and Papadimitriou [83] addressed this question by studying the
complexity of computing the mixed Nash equilibrium in a game. Traditional computational
problems fall into (i) polynomial-time solvable or (ii) NP-Hard. However, the authors argue
that NP-hardness cannot be applied to this problem as we know that every game has a
mixed-strategy solution. As such, Daskalakis, Goldberg, and Papadimitriou [83] propose
a new class of problems called PPAD, a subclass of NP. They showed that computing the
mixed NE of a game is PPAD-complete [83, Theorem 3.1].

PPAD-Completeness. While the proof of the above result is outside the scope of this
thesis, we present an intuitive understanding of what it means for a problem to be PPAD-
complete. PPAD (Polynomial Parity Argument, Directed version) is a complexity class
dealing with decision problems related to finding fixed points of certain functions. PPAD
completeness is a concept that is used to classify the difficulty of problems within this class.
A problem is PPAD-complete if it is in PPAD and is as hard as any problem in PPAD.
In other words, if you can efficiently solve a PPAD-complete problem, you can efficiently

solve any problem in PPAD.
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Example 2.3: PPAD-complete: Example

Consider the “End-of-the-line” (EOL) problem. In EOL, we are given a polynomial-

time computable function f : {0,1}" — {0,1}". The goal is to find an x such that

f(x) = z and the function f is such that there is at least one fixed point.

2.1.3 Sub-game Perfect Nash Equilibrium

The examples of Matching pennies and the Prisoner’s Dilemma are simultaneous-move
games. In these games, the agents simultaneously play their strategies. In a sequential
game, where the agents may observe the actions of the other agents, we require a tweak
to the classic Nash equilibrium concept. Instead, we require a strategy profile that is the
best response of every agent during the game, i.e., the best response for every sub-game

induced during it. Such a strategy profile is said to be a Sub-game Perfect Equilibrium.

Definition 2.4: Sub-game Perfect Nash Equilibrium [205]

Given the game I', we refer to the strategy profile s* = (s7,...,s;) as Sub-game

Perfect Nash Equilibrium if Vi € A, the strategy s} satisfies

THER StﬂHti) > u;(si, s’:ilHti),Vsi € S;,VH;. (2.3)

Here, H; is the history of the game I' till time ¢. The history comprises the agents’

information that has arrived till time ¢. More formally, H; is the tuple that includes the

time remaining before the deadline from ¢, the target, the refund bonus, and the total

*

i, implies that agents who arrive after ¢; follow

contribution made till ¢. Furthermore, s
the strategy specified in s*;. A strategy profile is a Sub-game Perfect Nash Equilibrium if
it is Nash equilibrium for each agent to follow the strategy given by the profile irrespective

of the events till that time.
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2.2 Mechanism Design

In Chapter 2.1, we introduce the concept of game theory and discuss several concepts
with the idea of an agent maximizing its utility. However, several scenarios exist where
decisions are made considering the interests of a group of people or community (e.g., public
decision-making or resource allocation in organizations). In these scenarios, we can consider
the people involved as agents. Each scenario comprises a set of possible outcomes. We say
that each agent involved has preferences over the set of outcomes.

The social planner (e.g., the head of the organization) is tasked with designing a game
among these (conflicting) agents. The planner must construct various rules/incentives
to facilitate a desirable outcome in the presence of these rational agents. This “reverse

engineering” of game theory is called Mechanism design.

2.2.1 Overview

Consider a classic auction setting. Here, we have multiple agents (acting as bidders),
each bidding to own a single item being auctioned. Each agent has a private valuation for
the item. The valuation represents the utility the agent will receive if it acquires the item.
The auctioneer (acting as the social planner) wishes to find the optimal outcome, which in
this case corresponds to the outcome where the agent with the highest valuation receives
the item.

The auction setting described has two major challenges. Firstly, we have preference
elicitation wherein the social planner must design the auction game to elicit each agent’s
true valuation. In general, the planner either uses monetary benefits (“mechanisms with
money” ) or enforces certain constraints (“mechanisms without money”) to enable truthful
elicitation. That is, mechanisms that, at equilibrium, incentivize agents to report their
true valuations. The second challenge is that of preference aggregation, which corresponds

to computing the optimal outcome, given each agent’s valuations.
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With this backdrop, we next discuss the mechanism design environment required to

model the auction setting discussed, or in general, any setting, as a game.

2.2.2 The Mechanism Design Environment

Consider the following definition, which provides a general setting for formulating, an-

alyzing, and solving mechanism design problems.

Definition 2.5: The Mechanism Design Environment [205]

A typical mechanism design environment comprises:

1. The set of agents A = {1,...,n}. Each agent is assumed to be intelligent and
rational.

2. The set of outcomes, or alternatives, X. The agents collectively choose from
X.

3. Agents privately observe preferences over the alternatives in X. Formally, each
agent ¢ derives a preference by observing a private signal or type 6;.

4. The set ©; denotes the private values of agent i, Vi € A. The set of all
type profiles is © = ©; x ... X ©,. A typical type profile is denoted by
0= (01,...,6n).

5. The private values of the agents have a common prior distribution ® € A(O).

6. An agent’s preference over the outcomes is represented by the utility function
u; : X x ©; — R. That is, given z € X and 0; € 0;, u;(x,0;) denotes the
utility that agent ¢ having type 0; € ©; receives from its choice z € X.

7. The set of outcomes X, agents A, types ©,, Vi, the distribution ® and utility
functions w;, Vi are assumed to be common knowledge among the agents. But,

the observed valuation #; by agent ¢ is its private information.

To further understand the environment, consider the following example of an auction.
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Example 2.4: Mechanism Design Environment for an Auction

Consider a simple auction setting with an auctioneer (agent 0) and two bidders
(agents 1 and 2). We have A = {0,1,2}. Also, ©g = {0} as the auctioneer has no
value for keeping the item with itself. Likewise, ©1 = [0, 1] and ©3 = [0, 1]. The set of

outcomes are X' = {(y07y17y25t07t17t2) “Yi S {07 1} | Z’L Yi S 17tl € R: Zz tz S O}

In Example 2.4, y; = 1 implies that agent ¢ receives the item while the agent does

not if y; = 03. Example 2.4 also introduces the transfer variable t;,¥i, which for an
auction corresponds to the payment for the agent i. One can observe that if >, ¢; > 0,
the mechanism will need money from an external source not part of the mechanism. In
general, we have ) .t; < 0. For the auction-specific case, the agents 1 and 2 pay for the

item while agent 0 receives the payment as the auctioneer. In other words, tg = —(t1 +t2),
i.e., Zz t; = 0.

Given this construction, we now take an in-depth look at the two challenges in mecha-

nism design: (i) preference aggregation and (ii) preference elicitation.

2.2.3 Preference Aggregation

This is understood as the aggregation of agents’ preference rankings of two or more social
alternatives into a single, collective preference ranking (or choice) over these alternatives.
Here, 0;’s generate preferences over outcomes for player ¢. To this end, we define a social

choice function that takes the private valuations as inputs and outputs a collective decision.

3We also remark that depending on how the item is being allocated to the agents, the domain of y;, or
the value which y; takes may also change. If the item is being allocated randomly, we have y; € [0,1]. For
the deterministic, non-divisible case, y; € {0,1}.
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Definition 2.6: Social Choice Function (SCF) [205]

Given a type profile © = (01,...,0,), an outcome z € X is called a social choice

or collective choice, where f : © — X is called the SCF. That is f assigns to each

possible type profile (61,...,6,) a collective choice from the set of alternative X.

We illustrate the social choice function using a first-price auction based on the setting

described in Example 2.4.

Example 2.5: SCF for First Price Auction

For the mechanism defined in  Example 24, let  f(0) =
(yo(0),y1(0),y2(0),t0(0),t1(0),t1(0),t2(f)) denote the social choice function
for a first-price auction. We assume that in the case of a tie, agent 1 receives the

item. We have, yo(#) = 0, V6. Furthermore,

1 61>0
y1(0) =

0 otherwise

1 6y >0,
Yy2(0) =

0 otherwise

AISO, tl (9) = —y1(9) . 91, t2(9) = —y2(0) . 92 and to(e) = —(t1(9) + tg(@))

We can also write the SCF for a second-price auction, i.e., an auction where the highest
bidder receives the item but pays the second-highest bid. One can observe that only the

payments of the agents will change in this case.
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Example 2.6: SCF for Second Price Auction

For  the mechanism defined in  Example 2.4, let  f(6) =
(yo(0),y1(0),y2(0),t0(0),t1(0),t1(0),t2(#)) denote the social choice function
for a second-price auction. We assume that in the case of a tie, agent 1 receives the

item. We have, yo(#) = 0,V6. Furthermore,

1 601 >0
y1(0) =

0 otherwise

1 6y >0,
y2(0) =

0 otherwise
In this case, we now have t1(0) = —y1(0) - 02, t2(0) = —y2(0) - 61 and to(0) =
—(t1(0) + 12(0)).

The second-price auction from Example 2.6 is also called a Vickrey auction, after the
Novel prize-winning work of Vickrey [284]. Lastly, the process of computing f(#) is also
referred to as the preferrence aggregation problem. The problem usually comes in the form

of an optimization problem.’
2.2.3.1 SCF: Important Properties
We now discuss two crucial properties of a SCF, namely, Pareto Optimality and Dicta-

torship.

2.2.3.1.1 Pareto Optimality Our equilibrium discussion briefly focused on Pareto
optimal equilibrium, i.e., no agent can move away from the equilibrium strategy and receive
a strictly higher utility while the other agents receive the same utility. Pareto Optimality

for a SCF is similar, defined formally as follows.
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Definition 2.7: Pareto Optimality or Ex-post Efficiency [205]

A social choice function f: © — X is said to be ex-post efficient (or paretian) if for

every 0 € ©, f(6) is Pareto optimal. That is iz € X such that,

ui(z,0) > u;(f(6),0) Vie A

with a strict inequality for at least one agent.

Intuitively, it is an economic state where resources (items) are allocated most efficiently,

and it is obtained when a distribution strategy exists where one party’s situation cannot

be improved without worsening another party’s situation.

Example. Consider the single-item, multi-unit auction setting where the auctioneer wishes
to allocate a single item (available in multiple but fixed units) among n agents. Any
allocation for this will always be Pareto Optimal; the only way to make someone better off
than before would be to give them more units of the item, implying that at least one other

agent gets less than their previous share since the quantity is fixed.

2.2.3.1.2 Dictatorship If a mechanism’s outcome reflects a single agent’s preferences,

we say that it is a dictatorship mechanism. More formally,

Definition 2.8: Dictatorship [205]

A SCF f:© — X is dictatorial if there exists an agent d € A, such that V8 € O,

ug(f(0),0) > uq(z,0) Yz e A

If a SCF does not contain a dictator, we say it is non-dictatorial.

Non-dictatorship is a property of the SCF, which requires that the results of the vot-

ing cannot simply mirror that of any single agent’s preferences without considering other

agents.
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Example. The Dictator Game [148], is a degenerate game in Game Theory, where the
first agent, the dictator, determines how to split an endowment (such as a cash prize)
between themselves and the second agent. The second agent, the recipient, simply receives
the remainder of the endowment left by the dictator. The recipient’s role is entirely passive

and has no input into the game’s outcome.

2.2.4 Preference Elicitation

Preference Elicitation is how agents are made to state (or “elicit”) their preferences. This
is also called information revelation problem. As we will see, this is achieved either by a
direct mechanism or an indirect mechanism, and involves equilibrium in Bayesian Games,
which can be of the type (very weakly) dominant strategy equilibrium and Bayesian Nash

equilibrium.

2.2.4.1 Direct and Indirect Problems

Recall that the agent’s valuation is private to itself. To solve the preference aggregation
problem, f(#), the first step is to find a way by which to get the agent to elicit their type
information. Mechanism design literature relies on either direct or indirect mechanisms for
such a truthful elicitation.

Here, we define these mechanisms formally. From Definition 2.5, we know that the set
of outcomes X, agents A, types 0;,Vi, the distribution ® and utility functions w;, Vi are
common knowledge among the agents. Let us first define a mechanism in this context.
The set S; for each agent i € A is the set of actions available. The agent i uses its type 6;

to choose an action s; € 5;.

Definition 2.9: Mechanism [205]

A mechanism 9 = ((S;)ica,9(+)) is a collection of action sets (Si,...,S,) and an

outcome function g : §' — X.
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Given this definition, the case where the agents are asked to reveal their types becomes

its special case, referred to as the direct revelation mechanism.

Definition 2.10: Direct Revelation Mechanism (DRM) [205]

Given the SCF f: © — X, the mechanism ® = ((0;)ic4,f()) is referred to as the

DRM.

One can immediately observe that the DRM is a special case of the mechanism from
Definition 2.9, i.e., M = ((S;)ica, g(-)) with S; = ©;,Vi € Aand g = f. A mechanism that
is not a DRM is called an indirect mechanism.

Indirect mechanisms aim to provide agents with a choice of actions and specify an
outcome for each action profile. This induces a game among the agents such that the
strategies played by the agents in the game’s equilibrium will indirectly reflect their original

types. More formally, indirect mechanisms induce a Bayesian game.

Definition 2.11: Bayesian Game

We are given the set of agents A, with types (01,...,0,) having a common prior
¢ ~ A(O) and a set of outcomes X. If each agent i € A has the utility u; :
X x ©; — R, then a mechanism 9t = (S1,...,5,,¢(.)) induces the Bayesian game
I (N, (6y),(S), (p:), (U;)) among the agents with each agent i € A utility as

ui(g(sl, co00yg Sn), (91)

Examples. An example of a DRM is Borda count, wherein each agent must explicitly give

its complete preference order of all possible types. An example of an indirect mechanism is
majority voting, where private information related to the actual ordering of candidates by
an agent is not required, but the agent is required to play a strategy based on its preferred
preference type. Additionally, the sealed-bid first-price or second-price auctions seen earlier

are indirect mechanisms.
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2.2.4.2 Generalized Vickrey Auction

We wrap up our discussion on preference aggregation and preference elicitation by look-

ing at the famous generalized Vickrey auction.

Example 2.7: Generalized Vickrey Auction (GVA)

We have the set of A = {1,...,n} bidding for the items {1,...,m} with M as
the power set for [m]. We get an indirect mechanism 9 = ((S;)iea,9(+), where
S; € (RT)?"~1 is the set of bids that agent i can submit to the auctioneer. The
function g¢(-) is the outcome rule given by g(b) = ((y7(S,0))ica,scrm,t1(b), ..., tn (b))
where b = (by,...,by) is the bidding profile with b; as agent i’s bid.

The functions y/(-,-) are referred to as the winner determination rules, and the

function t;(-) are the payment rules.

The winner determination problem in Example 2.7 is the solution to the following op-

timization problem:

Maximize » > bi(S) - y:(S,b)

i=1 SCM
subject to (i) Z yi(S,0) < 1,Vie A
SCM
i > Y w(Sbh)<1VieM
ScM|jeS =1
(iil) yi(S,b) € {0,1}Vie A, SC M
Furthermore, the payment rule is as follows,
ti(b) = Y v (K (0): b)) = D v(k2(b-0). b)), (2.4)
j#i J#i
where v;(k*(D),b;) = > g s 05(S)-y75 (S, b) is the total value of the bundle which is allocated

J
to the agent j. The term v (kX (b—;),b;) = > gcpr0;(S) - y;(S,b—;) is the total value of
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the bundle that agent j # i will get if agent ¢ is not present in the system. Eq. 2.4 is a
useful payment structure (for reasons apparent in Chapter 2.2.5.1) and is often referred to
as Vickrey, Clark, Groves (VCG) payments.

The interested reader can also observe that if the set M consists of just one item, then
the winner determination rule y will be the same as the one presented for the Vickrey

auction (Example 2.6). Thus, the name Generalized Vickrey Auction.

2.2.5 Properties of a Mechanism

Our discussion on mechanism design highlights preference revelation (or elicitation)
and aggregation as the primary challenges. We saw different types of mechanisms (di-
rect /indirect) that aim to elicit the agent’s private information to aggregate them using an
SCF. However, we desire that the elicitation is truthful. As such, we must ensure that an
agent’s true revelation is its best response, consistent with our rationality and intelligence
assumptions. One popular approach towards this is to offer appropriate incentives. This
leads to the notion of incentive compatibility, first introduced by Hurwicz [142], offering

appropriate incentives so that agents prefer to elicit their private information truthfully.

2.2.5.1 Incentive Compatibility

In Chapter 2.1, we saw two types of equilibrium, namely dominant strategy and Nash.
The first states gave a strategy that is an agent’s best response irrespective of the others’
strategy, whereas the second states that the strategy is an agent’s best response only
when the others’ also choose the same strategy. Analogously, we also have two types of
incentive compatibility: firstly, when truthful elicitation is the best response for each agent
irrespective of other agents’ reports, and secondly, when truthful elicitation is the best
response for each agent when the other agents report truthfully. The first definition is

referred to as dominant strategy incentive compatibility (DSIC) and the second as Nash
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incentive compatibility (NIC). Note that, as truthful elicitation is always with respect to
types, only direct mechanisms are relevant when defining incentive compatibility.

Before formally defining DSIC and NIC, we first define the general notion of incentive
compatibility.

Definition 2.12: Incentive Compatibility [205]

ASCF f:0; x...x0, — X is incentive compatible (or truthfully implementable)

if the Bayesian game induced by the DRM © = ((0;);ec4, f(-)) has a pure strategy
equilibrium s*(-) = (s7(:),...,s5(-)) in which s}(6;) = 6;,V0; € 6;,Vi € A.

Informally, Definition 2.12 states that truth revelation by each agent comprises an equi-
librium of the game induced by ©. One can observe that if an SCF f(-) is incentive
compatible then the DRM © = ((0;)ic4, f(-)) can implement it. In other words, directly
asking the agents to report their types and using this information in f(-) to get the social
outcome will solve both our mechanism design challenges, namely, preference elicitation

and preference aggregation.

2.2.5.1.1 Dominant Strategy Incentive Compatibility (DSIC) We say that the
game induced by a DRM ® is DSIC if truth revelation by each agent constitutes a dominant
strategy equilibrium of ®. More formally,

Definition 2.13: DSIC [205]

ASCF f:0;x...x0, — X is dominant strategy incentive compatible (or truthfully
implementable in dominant strategies) if the DRM ® = ((©;)ica, f()) has a weakly
dominant strategy equilibrium s*(-) = (s7(-),...,s5(-)) in which s}(6;) = 0;,V; €
0;,Vi € A.

We said earlier that Vickrey auctions (Example 2.6) are of particular interest. This is

because these are DSIC, as shown next.

44



Claim 2.1. In a second-price auction (Example 2.6), every agent i € A has a dom-
inant strategy: set its bid b; equal to its private valuation 6;. That is, this strategy

maximaizes the utility of the agent i, no matter what the other agents bid.

Proof. Choose an arbitrary agent, say agent i € A. Agent ¢ has valuation 6;, and it knows
the other agents’ bids b_;. To prove the claim, we must show that agent ¢’s utility is
maximized if b; = 0;. Let B = max;yb; be the highest bid among all agents except 7. Since
this is a second-price auction, if b; < B, then ¢ is not the winner, and its utility is 0. If
b; > B*, then i wins and pays the value B such that its utility is 6; — B.

Consider the following two cases. In Case 1, we have 6; < B. The highest utility ¢ can
get is max{0,0; — B} = 0, and it achieves this by bidding truthfully. In Case 2, we have
0; > B. The highest utility ¢ can now get is max{0,6; — B} = 6; — B. It achieves this
utility by bidding truthfully. O

2.2.5.1.2 Nash Incentive Compatibility We say that the game induced by a DRM
® is NIC if truth revelation by each agent constitutes a Nash equilibrium of ®. More
formally,

Definition 2.14: NIC [205]

A SCF f:0; x...x0, — X is Nash incentive compatible (or truthfully im-

plementable in Nash equilibrium) if the DRM © = ((0;);en, f(:)) has a Nash
equilibrium s*(-) = (s7(+),...,s;(+)) in which s7(6;) = 6;,V6; € ©;,Vi € A.

2.2.5.2 Individual Rationality

The incentive compatibility property allows a social planner to resolve the primary

challenges while designing a mechanism. In contrast, individual rationality is a property of

4For completeness, note that the assumption is that the tie gets broken in agent i’s favor. However, the
claim is independent of how the tie gets broken.
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the participating agents, which ensures that the agents are not worse off by participating in
the mechanism. More concretely, it ensures non-negative utility for the agents. The precise
definition of individual rationality depends on the precise stage of the mechanism, either
(i) post every agent’s participation, (ii) post the agent’s participation, and (iii) before any
agent’s participation. For the definitions, let w;(0;) be the utility that agent i receives by

withdrawing from the mechanism, given 6; as its type.

Definition 2.15: Ex-Post Individual Rationality (Ex-post IR) [205]

When the agent knows the types of all the agents. Then, the SCF f satisfies ex-post

participation (or individual rationality) constraints when,

Definition 2.16: Interim Individual Rationality (Interim IR) [205]

For this, each agent i € A only knows its own type ;. Then, the SCF f satisfies

interim participation (or individual rationality) constraints when,

Bo_,[ui(f(0i,6-:),0:)[6:] > ui(6:), V (6:) € ©s.

Definition 2.17: Ex-Ante Individual Rationality (Ex-Ante IR) [205]

Each agent i € A is unaware of its own type. Then, the SCF f satisfies ex-ante

participation (or individual rationality) constraints when,

Eqlu;(f(6:,0-:),0:)] > Eo, [wi(6;)]-

The three variants of IR are related as follows.

Proposition 2.1. Given a SCF f: © — X, we have the relation:

f(-) is ex-post IR = f(-) is interim IR = f(-) is ex-ante IR
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We see from Proposition 2.1 that ex-post IR is the strongest property among the three
IR properties. That is, ensuring ex-post IR ensures interim and ex-ante IR.
The wonderful Vickrey auction (Example 2.6) is not only DSIC but also ex-post IR, as

shown next.

Claim 2.2. In a second-price auction (Example 2.6), every truthful agent is guaranteed

non-negative utility.

Proof. By construction, all losing agents receive utility 0. If an agent ¢ wins, its utility is
0; — p, where p is the second-highest bid. Since ¢ won and is truthful (that is, it bid b; = 6;)

and p is the second-highest bid, we have p < 0, = 6; —p > 0. O

2.2.5.3 Gibbard-Satterwaite Impossibility Theorem

Intuitively, DSIC is a desirable property for an SCF. After all, DSIC will ensure that it
is beneficial for an agent to report its type truthfully, irrespective of the strategy employed
by the other agents. Unfortunately, the desirability of DSIC often comes at the cost of
certain other desirable properties.

More concretely, the Gibbard-Satterwaite (G-S) Impossibility Theorem, proved inde-
pendently by Gibbard [117] and Satterthwaite [250], shows that the DSIC property will

force an SCF to be dictatorial if the utility environment is an unrestricted one’.

Preference Relations [205]. Before formally presenting the theorem, we first step the
following notations. Recall that for an agent i € A, its preference over the set X is described
by a utility function u; : & x ©; — R. That is, for every possible type 6; € ©;, we can
define a utility function ui(-, Qi) over the set X. Let this utility function induce a unique

preference relation 7; (6;) over X. For instance,

rZy = uiz,0;) > ui(y,0;).

®The GS theorem is a brilliant reinterpretation of the famous Arrow’s impossibility theorem [13].
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The above preference relation is often called a rational preference relation. More concretely,
the relation 7 is rational if it posses: (i) Reflexivity: Yo € X, x 77 x, (ii) Completeness:
Va,y € X, x 75y or y = x or both, and (iii) Transitivity: Vx,y,z € X, x 75y and y 7 z,

then = = z.

1. Strict-total Preference Relation. The relation 7 is strict-total if it possesses
Reflexivity, Completeness, and Transitivity. Moreover, it also satisfies the antisym-
metry property, i.e., for any Va,y € X such that x # y; we have either z 7~ y or y =~ x
but not both.

The curious reader may notice that strict total satisfies the property of a “greater
than or equal to” relationship on the real line. As such, it is also referred to as
the linear order relation. Denote R as all rational preference relations and B3 as the

strict-total preference relations on X'. Trivially, ¢ C R.

2. Ordinal Preference Relation. We have, for every possible type 6; € ©;,Vi € A,
defined a utility function ui(-,Gi) over the set X. Let this utility function induce
a unique preference relation 77; (0;) over X. The set R; = {: 7 =7 (6;) for
some 6; € O;} is known as the ordinal preference relations for agent i. Trivially,

Ri CR,Vie A

With all the groundwork in place, we now formally present the G-S theorem next.

Theorem 2.1 (Gibbard-Satterwaite (G-S) Impossibility Theorem [117, 250]). Given
aSCFf:0= X, if

1. (Condition 1). The outcome set X is such that 3 < |X| < oo
2. (Condition 2). R; =*B,Vi € A

3. (Condition 3). The SCF f(-) is onto, f(©) = X, that is, the image of SCF f(-)
is the set X.
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Then, the SCF f(-) is truthfully implementable in dominated strategies (DSIC)

if and only if it is dictatorial.

We refer the reader to [187, Proposition 23.C.3] for the proof of the theorem. We

summarize some immediate implications of G-S theorem next.

1. Condition (1) asserts that |X| = 3. |X| =1 corresponds to a trivial solution. When
|X| = 2, it is of more interest but still restricted. This may correspond to the
crowdfunding of public projects (e.g., a public park) where the decision is yes/no

(either construct the park or not).

2. Condition (2) asserts that :; = PB,Vi € A. That is, an agent’s preferences cover
the entire space of strict-total preference relations on X'. Suppose, if |X| = 4, then
the total number of preference ordering possible would equal 4!, i.e., the number of

distinct permutations. Then, each agent ¢ maintains |R;| = 24 preferences.

3. Condition (3) along with f being monotonic, implies that f is an onto function; that

is, for every x € X there is a preference profile [27] such that f([7]) = =.

~

To construct DSIC mechanisms, that is, avoid the G-S impossibility, we must relax at
least one of the three conditions outlined in Theorem 2.1. Here, we see that Condition (2)
enforces that each agent’s preferences span the entire space. Restricting these preferences
can violate Condition (2) but still ensure that agents’ preferences are sufficiently covered.
For this, we move to quasilinear settings, where monetary payments are added to valuation

functions, which enables us to change the order of preferences.

2.2.5.4 Quasi-linear Environment

As mentioned above, the quasi-linear setting allows us to violate the conditions for the

G-S theorem and, in turn, allows the social planner to construct useful mechanisms. In
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this environment, we overload the alternative/outcome z € X with a vector of the form
x = (k,t1,...,t,). Here, k € K where K is the set of project choices or allocations and is
assumed to be finite, in general. As before, t; € R, Vi corresponds to the monetary transfer
to agent i. If t; > 0, agent ¢ receives the money and pays the money if t; < 0. The general
setup assumes that there is no external funding source, i.e., > ;. 4 < 0. To summarize,

the alternative X is,

X = {(k‘,tl,...,tn)ikEK; t; €R, VieA, Zti SO}
€A
SCF in Quasi-linear Setting. The social choice function (SCF) in this setting takes
the form f(0) = (k(0),t1(0),...,t,(6)) where, for every § € ©, we have k(f) € K and
3, 1:(6) < 0°.
Agent’s Utility in Quasi-linear Setting. Given a direct revelation mechanism (DRM)

D = ((0;)ica, f(+)), an agent ¢’s utility function takes the following quasi-linear form:
Ui(i{], 91) = ul((kv t,. .. 7tn)7 92) = ’Ui(k’, 91) + my; + 1.

Here, m; denotes agent i’s initial endowment of the money, and the function v;(-,6;) is i’s
valuation function.

From our definition of the mechanism design environment (Definition 2.5), we know that
the utility functions are u;(-) are common knowledge. In the quasi-linear environment,
this implies that each agent j / (and the social planner) has knowledge about v;(-,6;).
Furthermore, in many scenarios, for a DRM © = ((0;);c4, f(+)), the set ©; is actually the
set of feasible v;(-,0;) for agent i. Each possible function represents the possible types of
agent ¢, implying that reporting a type is equivalent to reporting a valuation function.

While we formally introduce the quasi-linear setting here, we remark that typical exam-
ples of such mechanisms were previously discussed, including the first-price (Example 2.5),

second-price (Example 2.6), and the GVA (Example 2.7).

5To remain consistent with the literature, we use the notation k both as an element of K and as the
function k£ : © — K. The underlying context will make clear the role of k.
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In the quasi-linear environment, we also have two important properties of an SCF,

namely, allocation efficiency and strong budget balance.

2.2.5.4.1 Allocative Efficiency The allocative efficiency of an SCF implies that the
allocation k() is such that it maximizes the sum of the values of all the agents. In other

words, the items are allocated to the agents who value them the most.

Definition 2.18: Allocative Efficiency (AE) [205]

We say that an SCF f(-) = (k(:),t1(:),...,tn(:)) is allocatively efficient if for each
0 € ©, k() satisfies the following condition:

arg max
k(9) e > ik, 6:). (2.5)
ke i=1
Equivalently,
n max
> wilk(9),6:) = > ik, 6:).
i=1 ke K &

Definition 2.18 implicitly assumes that given any 6, >, v;(.,6;) : K — R attains
a maximum over the set K. Moving forward, we will use k*(-) for a function k(-) that
satisfies Eq. (2.5). As the definition shows, AE is a desirable property for any SCF.

2.2.5.4.2 Strong Budget Balance Consider the following definition.

Definition 2.19: Budget Balance [205]

We say that an SCF f(-) = (k(-),t1(-),...,tx(:)) is budget balanced, if for each
0 €0,ti1(0),...,t,(0) satisfy the following condition:

(2.6)
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Definition 2.19 is also commonly referred to as strong budget balance with weak budget
balance used for the condition )", ¢;(f) < 0. For the rest of the thesis, with budget
balance, we refer to the strong variant.

The budget balance property ensures that the total receipts equal the payments made,
implying a “closed” system with no surplus or deficit. Likewise, a weak budget balance

implies that the total payments are either greater or equal to the total receipts.

AE + BB — (ex-post) Efficient. We now show an SCF is ex-post efficient (Defini-
tion 2.7) if and only if it is AE and BB.

Lemma 2.1. An SCF f(-) = (k(-),t1(-),...,tn(*)) is ex-post efficient in the quasi-

linear environment if and only if it is allocative efficient and budget balance.

Proof. (SKETCH.) The proof consists of three parts: (i) showing that AE + BB —
(ex-post) efficiency, (ii) not AE = not (ex-post) efficient, and (iii) not BB = not
(ex-post) efficient. Each part can be individually shown with algebraic manipulations. We

refer the reader to [205] for the formal proof. O

All SCF's are non-dictatorial. This result connects nicely to the G-S theorem in that the
quasi-linear setting implies that SCF's are non-dictatorial. In light of this, the social planner
can look for SCFs that are ex-post-efficient and DSIC. Or perhaps, using Lemma 2.1, look
for SCF's that are AE, BB and DSIC.

Lemma 2.2. All social choice functions in quasi-linear environments are non-dictatorial.

Proof. 1f possible, assume that an SCF f(-) is dictatorial in the quasi-linear environment.
That is, there exists an agent called the dictator, say d € A, such that for each § € ©, we

have

uq(f(0),04) > ug(z,0q) Ve X.
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Recall the utility of an agent in the quasi-linear environment. We have, uq(f(6),0q4) =

va(k(0),04) + tq(0). We define the following alternative x € X

(k(0), (t: = t:(0))iza, ta = ta(0) — 2221 :(0)) = Doy ta(F) <O

(k(0), (t: = ti(0))iza g, ta = ta(0) + €1, = 1;(0) =€) = 3o, ti(6) =0
where € > 0 is any arbitrary number, and j is an agent such that j # d. One can verify
that for this outcome z, we have u4(z,04) > uq(f(8),04), which contradicts the fact that

d is a dictator. O

In summary, Chapter 2.2.5.4 shows that for a desirable mechanism, the social planner
must look for an SCF that satisfies AE, BB, and DSIC. Next, we investigate the existence

of such mechanisms.

2.2.5.5 Auction Theory

With Chapter 2.2.5.5, we introduce the famous VCG mechanism, which shows the
existence of a social choice function (SCF) that is both allocative efficient (AE) and DSIC

in the quasi-linear setting.

2.2.5.5.1 VCG Mechanisms VCG mechanism is a landmark result in mechanism
design and is named after its inventors, William Vickrey, Edward Clarke, and Theodore
Groves. As mentioned before, Vickrey [284] proposed the famous second-price or Vickrey
auction (Example 2.6). Clarke [63] and Groves [129] generalized the mechanism to present
a broad class of DSIC mechanisms for the quasi-linear environment (recall that we have
already seen the extension for auctions with Example 2.7). VCG mechanisms are the most
extensively studied among the set of quasi-linear mechanisms. Their popularity stems
from the strong properties they satisfy and their mathematical elegance. Let us now take

a detailed look at this class of mechanisms.

Groves’ Theorem [129]. We now discuss a sufficient condition for an allocative efficient

SCF to be DSIC in the quasi-linear environment.
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Theorem 2.2 (Groves’ Theorem [129]). Consider an SCF f(6) = (k(0),t1(0),...,t,(0))

that is allocative efficient (AE). Then f(-) is also DSIC' if it satisfies the following pay-

ment structure®

ti(0) = | > vi(k*(0),0;) | +hi(6_s) Vi=1,...,n (2.7)
J#i

Here, h; : ©_; — R is an arbitrary function that honors the feasibility condition

S :(0) <0V 0 €O,

“In mechanism design literature, Eq. 2.7 is also referred to as the Groves payment/incentive scheme

Proof. The proof uses proof by contradiction. We assume that f(-) is AE and satisfies
Eq. 2.7 but is not DSIC. That is, f(-) does not satisfy the following necessary and sufficient

condition for DSIC: Vi € A, V0 € O,
wi(f(05,0-3),6:) = ws(f(8;,0-),6:) V0; € ©;,90_; € O_,.

From the above, for agent i, we have,
wi(f(0;,0-4),0:) > ui(f(6:,0-5),0;)
for some 60; € ©;, for some 6_; € ©_;, and for some 9; € 0,. For agent i, there exists

0; € ©;,6; € ©;,0_; € ©_; such that
(K5 (05,0-5),0) 4 t:(6;,0_5) + my > vi(k*(0:,0_5),0) + t:(0;,0_) + mi.

Recall that
ti(0i,0—;) = hi(0—;) + Z(k*(0i7 0-i),0;)

J#
ti(6;,0-; i)+ (K 0;).
J#i
Substituting these, we get
vi(k*(05,0-),05) + > vi(k*(0,0-3),0;) > vi(k*(05,0-:),0;) + > vik*(0:,0_5),0)),
J#i

J#i
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which implies
n n
D ik (05,0-3),0:) > > vi(k*(60:,0-5),6).
i=1 i=1
We see that the above inequality contradicts the assumption that f(-) is AE, completing

the proof. O

We can use the Groves payment structure from Eq. 2.7 to design a direct revelation
mechanism (DRM) whose SCF is AE and satisfies Eq. 2.7. We refer to such a DRM as the

Groves mechanism.

Definition 2.20: Groves Mechanism [205]

A DRM ® = ((6;)ien, f(-)) wherein the SCF f(0) = (k(0),t1(0),...,t,(0)) satisfies

AE and Eq. 2.7 is known as the Groves mechanism.

The Groves mechanism is also popularly referred to as the Vickrey, Clarke, Groves

(VCG) mechanism.

Eq. 2.7 is also Necessary. Theorem 2.2 presents a sufficient condition under which
an AE SCF is also DSIC. Green et al. [123] provides a set of conditions under which the

Groves payment structure is also necessary for an AE SCF to be DSIC.

Theorem 2.3 (Green-Laffont’s First Characterization Theorem [123]). Let § denote
the set of all possible functions f : K — R. Assume that for each agent i € A, we have
{vi(,6;) : 0; € ©;} =5, i.e., every possible valuation function from K to R arises for

some 0; € ©;. Then, any SCF f(-) will be DSIC if and only if it satisfies Eq. 2.7.

In Theorem 2.3, every possible valuation function from K to R exists for any 6; € ©;.
However, depending upon RK’s structure, it is quite possible that for some type profile
6= (01,...,0,), the maximum of the function ) ; v;(, ;) over the set £ may not exist.
In such cases, the set of AE SCFs is empty. One way to overcome this is to assume that

the set £ is finite. Another is to restrict the allowable valuation functions to the class
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of continuous functions. Our next characterization, again from Green et al. [123], § is

replaced with §. where §. denotes the set of all possible continuous functions f : K — R.

Theorem 2.4 (Green-Laffont’s First Characterization Theorem [123]). Let §. denote
the set of all possible but continuous functions f : K — R. Assume that for each agent
i € A, we have {v;(+,0;) : 0; € ©;} = ., i.e., every possible valuation function from
K to R arises for some 0; € ©;. Then, any SCF f(-) will be DSIC if and only if it
satisfies Eq. 2.7.

2.2.5.5.2 Clarke (Pivotal) Mechanism. Clarke [63] independently proposed a spe-
cial case of Groves mechanism, referred to as Clarke, or the pivotal mechanism. It is a
special case as it uses a natural form of h;(-) (refer to Theorem 2.2). In Clarke’s mechanism,
we have,
hi(0-i) = = vi(k*3(0-3),0;) VO, €0_;,Vi=1,...,n (2.8)
JFi
Here, k*,(0—;) € K_; is the choice of an allocation (e.g., item) that is AE if there were

only the n — 1 agents j # 4. Formally, k*,(0_;) must satisfy the following condition:

D vk (0-0),0) = > vk, 0;) Yk € K- (2.9)
J# JFi
where the set K _; is the set of allocation (e.g., items distributed) choices available when

agent i is absent. Substituting the value of h;(-) from Eq. 2.8 in Eq. 2.7, we get the following

expression for agent i’s transfer in Clarke’s mechanism,

t(0) = | D0 (k*(0).05) | — [ D vi(k"5(0-).07) | - (2.10)
J#i J#i
A careful reader will observe that these transfers are identical to the payments proposed

for the Generalized Vickery Auction (GVA) in Eq. 2.4. Indeed, this payment rule is ap-
pealing. Given a type profile § = (61, ...,60,), the monetary transfer to agent 7 in Eq. 2.10
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is given by the total value of all agents other than ¢ under an efficient allocation when
agent 4 is present in the system minus the total value of all agents other than ¢ under an
efficient allocation when agent i is absent in the system.

We summarize this discussion with this: Groves mechanisms are referred to as VCG
mechanisms, as the Clarke mechanism is a special case of the Groves mechanism, and the

Vickrey mechanism is a special case of the Clarke mechanism.

2.2.5.5.3 Impossibility of an SCF Satisfying DSIC and Ex-post-Efficiency.
Recall that our original goal was to construct a DSIC and ex-post-efficient SCF (the allo-
cations are Pareto-optimal). Equivalently, from Lemma 2.1, we want an SCF that is AE,
BB, and DSIC. We were off to a good start with the Groves mechanism being AE and
DSIC. If the Groves mechanism is also budget-balanced (BB), we arrive at an ideal SCF.

To this end, we re-look at the h;(-) functions introduced with Groves’ theorem. Unfor-
tunately, Green et al. [123] show that in the quasi-linear environment, if the set of possible
agent types is sufficiently rich, then we cannot have an SCF that is AE, BB, and DSIC.

More formally,

Theorem 2.5 (Green-Laffont Impossibility Theorem [123]). Suppose for each agent
i € A we have § = {v;(+,0;) : 0; € ©;}, i.e., every possible valuation function from K
to R arises for some 0; € ©;. Then, there exists no SCF that is ex-post efficient and
DSIC.

In other words, the Green-Laffont Impossibility Theorem states that if the agent types

are sufficiently rich, then we cannot find a way to define h;(-)’s in Eq. 2.7 such that

Z?:l t,-(@) =0.

2.2.5.6 Combinatorial Auctions

The Generalized Vickrey Auction from Example 2.7 is actually the Clarke mechanism

applied to a combinatorial auction. Combinatorial auctions are simply auctions where the
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Agents {A} {B} {A,B}

Table 2.3: Agent Valuations [205]

bids correspond to bundles or combinations of different items. This thesis focuses on the
“forward” combinatorial auction”, where a seller auctions different types of goods/items
and buyers are interested in purchasing certain subsets of these items. We refer the reader

to [68] and [211, Chapter 11] for a comprehensive discussion on combinatorial auctions.

2.2.5.6.1 VCG Mechanisms: GVA Re-visited. For illustration, from [205], con-
sider a seller who auctions two items, A and B. We have three interested agents {1, 2, 3}.
The subsets (or bundles) available to buyers are {A}, {B} and {4, B}. Table 2.3 presents
the agent valuations for these bundles, with “-” denoting the fact that an agent is not
interested in that bundle.

Applying Clarke’s mechanism here, firstly, we know that agents will bid their valuation
since the mechanism is DSIC. Next, we have two allocative efficient (AE) allocations: (i)
allocate { A, B} to agent 1 and (ii) allocate bundle { A} to agent 2 and bundle { B} to agent
3. Both the allocations give a value of 10. Suppose the seller chose the second allocation.
Now, payments to agents 2 and 3 are computed using the Clarke payment rule (Eq. 2.10).

For the payments, let us see what happens when agents 2 and 3 are removed separately
from the mechanism. If agent 2 were not present, the seller would give agent 1 the bundle
{A, B}, resulting in a total value of 10. The Vickrey discount to agent 2 is 10 — 10 = 0,

resulting in agent 2’s payment of 5+ 0 = 5. Likewise, for the agent 3 also, the payment is

"A reverse combinatorial auction is one in which a buyer requires different types of goods, and several
sellers are interested in selling different subsets to it.
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5. This results in a net revenue of 10 for the seller (i.e., it has captured the entire consumer
surplus).

However, the VCG mechanism for the combinatorial auction need not always generate
the optimal revenue. Replacing the valuation of 5 to 10 in Table 2.3 for agents 2 and 3
will lead to zero revenue for the seller. That is, guaranteeing a mechanism that is AE and

DSIC came at a cost to the seller.

2.2.5.6.2 Combinatorial Auctions: Standard Model For ease of discussion, mov-
ing forward in Chapter 2.2.5.6, we use the following definition to denote a combinatorial

auction.

Definition 2.21: Combinatorial Auction [211]

Model: We have a seller/auctioneer AU interested in selling M = {1,...,m}
indivisible items. There are A = {1,...,n} interested, and rational, buyers. For
each i € A, the valuation function ¢; describes its preferences. That is, for each
possible subset 5; € oM 9, is a real-valued function such that 9;(S;) denotes agent i’s
valuation if it gets the bundle S;. Moreover, given the allocations S = (Si,...,Sy),
let p;(S) denote the payment for an agent i if it gets the bundle S;. Each agent
i € A quasi-linear utility is: w;(.S,{¥i}}ica) = 9:i(S:) — pi(S, {0i }ica).

Allocation Rule: As before, let K denote the allocation function, which takes the
valuations as inputs and outputs the list of bundles allocated to each agent.
Payment Rule: Let p = (pi(+),...,pn(-) denote the payments for the agents in A.

That is, the combinatorial auction is characterized by the tuple (K, p).

Given Definition 2.21, we can define two useful properties:

e Feasible Allocation. An allocation S = (Si,...,S,) is feasible if S; N S; = 0 for

every i # j in A.
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e Social Welfare. We define the social welfare of an allocation S as ). 4 9i(S;). A

socially efficient allocation maximizes the social welfare among all allocations.

Computational Complexity. Unfortunately, computing allocation and payments for
a combinatorial auction is computationally hard. In fact, the hardness remains for even

simple special cases. We study one such simple case next.

2.2.5.6.3 The Single-minded Case The single-minded case is a restriction of com-
binatorial auctions wherein agents are interested in a single specific bundle of items and
get a scalar value if they get this whole bundle (or any super-set) and get zero value for

any other bundle. Formally,

Definition 2.22: Single-minded Valuation Function [211]

A single-minded valuation function is a function in which there exists a bundle of

items S* and a value ¥* € RT such that 9(S) = 9*, VS 2 S* and 9(S) = 0 for all
other S. A single-minded bid is the pair (S*,9*).

As obvious, it is easy to represent single-minded valuations since agents are required only
to hold a single parameter for valuation and a single bundle of information. This is unlike
the general combinatorial auction case where the bidders must maintain their valuation
functions, which are exponential in the number of items m. Despite their simplicity in

terms of representation, the single-minded case is also computationally hard.

Computational Complexity of Allocation. From Definition 2.21, the general alloca-
tion problem gives disjoint sets of items S; to each ¢ € A. In the case of single-minded
bidders whose bids are (S}, dF), an allocation to agent 4 is either the bundle it wants

(S; = SF) or nothing at all (S; = (). More formally,
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Definition 2.23: Algorithmic Allocation for the Single-minded Case [211]

Input: (S7,v}) for each agent i =1,...,n
Output: A subset of winning bids W C {1,...,n} such that S} N Sr = () for every
i # j in A (i.e., the winning allocation is feasible). We also want the social welfare

o N
to be maximized ),y V5.

The algorithmic allocation is a “weighted-packing” problem. We next show that this is

NP-hard by reducing from the known NP-complete INDEPENDENT-SET problem.

Theorem 2.6 (Allocation Problem in Definition 2.23 in NP-Hard [211]). The decision
problem of whether the optimal allocation has social welfare at least k (where k is an

additional part of the input) is NP-complete.

Proof. Independent of this result, to show that any problem X is NP-hard, we must take
a known NP-complete problem and reduce it to X. The computational hardness follows
the direction of the reduction, implying that X is also NP-hard.

For the allocation problem specifically, we make the reduction from the well-known NP-
complete INDEPENDENT-SET problem [211]. In this problem, we have an undirected
graph G = (V, E) and a number k. The problem is determining whether G' has an inde-
pendent set of size k. Recall that an independent set is a subset of vertices with no edge
between them.

To reduce from the INDEPENDENT-SET problem, we build an allocation problem as

follows:

e The set of items is E (i.e., the set of edges)

e Let each vertex of G denote an agent. For vertex i € V, let the desired bundle of ¢

be the set of adjacent edges S} = {e € E | i € e} and the value be ¥} = 1.

Now, the set W' is feasible (S7NS7 = 0) if and only if the set of vertices corresponding to
W is an independent set in G. The social welfare obtained by W is exactly the size of this
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set, i.e., the size of the independent set. That is, an independent set of size at least k exists
if and only if the social welfare of the optimal allocation is at least k. This concludes the
NP-hardness proof. Furthermore, the decision problem of whether the optimal allocation
has social welfare is at least k is in NP is trivial. We can guess the optimal allocation, and

then the social welfare can be guessed routinely. O

Usually, if any computational problem is shown to be NP-complete, there are three
immediate approaches: (i) approximation, special cases, and heuristics. We focus on finding

an approximately equal allocation.

Algorithm 1 ICA-SM Algorithm [169]

1. Initialization:

v

e Sort the agents according to the order : 97/1/|ST| > 95//]55] > ---
I/ 1S5]

o W 10
2. Fori:1—mn,if SfN(UjewS;) =0 then W « W U {i}
3. Output:

o Allocation: The set of winners is W.

o Payments: Vi € W,p; = 95/,/155|/|57| where j is the smallest index
such that SF NSy # 0, and for all k < j, k # 4, S; NS} = 0. If no such j

exists then p; = 0.

Incentive-comptabile, Approximate Algorithm for the Single-minded Case (ICA-
SM) [169]. We say that an allocation S = (Si,...,S,) is c-approximate of the optimal

allocation if for every other allocation T' = (71, ..., T},), including the optimal one, we have

that %1 zg:; < ¢. Algorithm 1 describes ICA-SM, which is a greedy algorithm that solves
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the allocation problem for single-minded case with n agents, m items, 9J; and S; as agent i’s
bid valuation and preferred bundle of items, with W as the set of winners approximately.

ICA-SM is computationally efficient, incentive compatible and is /m-approximate [169].
Computational efficiency is trivial as the algorithm is greedy and, thus, polynomial in the
number of agents n. The algorithm is also DSIC, whose proof® is available at [211, Lemma

11.9]. Claim 2.3 proves the y/m bound.

Claim 2.3. Let OPT be an allocation (i.e., set of winners) with maximum social

welfare, Y .copr Vs, and let W be the output of ICA-SM. We have Y .coprV; <
Vm Y icw ;-

Proof. For each i € A, let OPT; = {j € OPT,j >i | Sf NSy = 0} denote the set of agents
in OPT that were not able to be part of W because of i. Clearly, OPT C U;cwwOPT;. To
show the bound, we need to show that for every i € W, >"..opp 97 < /muy.

92 /1571

Each j € OPT; appears after ¢ in the algorithm’s greedy order, thus, 193? < NEE

Summing over all j, we get,

IN

o Y /i g+

JEOPT; JEOPT;

From the Cauchy-Schwartz inequality, we get,

i< il | i
> JIsi < VIOPT | Y 18]
JEOPT; JEOPT;

By construction, every ST for j € OPT; intersects S;. Since OPT is an allocation, these
intersections must all be disjoint, and thus, |OPT;| < |S¥|. Since OPT is a valid allocation,

> jeopt; 19i1 < m. We get > . opr (/1571 < /ISf[v/m, and substituting this into the
first inequality gives the claim > ,copp 97 < V/m Yo 95 O

8For completeness, the proof follows from the famous Myerson’s lemma [201] as the allocation is mono-
tone and payments satisfy the unique payment structure defined in the lemma.
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Recall the Green-Laffont impossibility theorem (Theorem 2.3), which states that if the
space of agent types is sufficiently rich, we cannot design a mechanism that is ex-post
efficient, DSIC, and budget balanced (i.e., >, t; = 0). To this end, in Chapter 2.2.5.7, we
look at Redistribution mechanisms, which are a class of mechanisms that aim to satisfy
ex-post efficiency, DSIC, and minimizing ), ¢; by redistributing the collected payments
back to the agents.

2.2.5.7 Redistribution Mechanisms

For our discussion on combinatorial auctions, we consider a set of items M := [m] being
auctioned with A := [n] as the set of interested agents. For redistribution mechanisms
(RMs), we have the same setting with a slight caveat: the social planner (instead of an
auctioneer) wishes to allocate M items to A agents. The social planner is not interested in
maximizing its revenue. Instead, it prefers to allocate the items (i) as cheaply as possible
and (ii) to agents who value them the most. Naturally, the social planner can try using
VCG mechanisms as they are allocatively efficient (AE) and DSIC. But, from Theorem 2.3,
we know that the VCG mechanisms are only weakly budget balanced, i.e., the transfer of
money in the system is non-zero. This implies that the social planner will derive revenue
from allocating the items, contrary to its desire to allocate them for free.

RM:s tackle scenarios where the surplus money is not desired. E.g., allocation of public
resources such as public housing, road access, national park permits, and health care.
The Green-Laffont impossibility theorem (Theorem 2.3) necessitates collecting payments
to ensure DSIC and AE. To this end, Maskin et al. [188] proposes first to collect the
payments from the agents (similar to VCG) and then redistribute the surplus among them.
The total payment redistributed to the agents is referred to rebates to the agents. More

formally,

Redistribution Mechanism [188]. We say a Groves mechanism is a Groves redistri-

bution mechanism or simply redistribution mechanism (RM) if it allocates items to the
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agents in an AE manner and redistributes the Clarkes surplus in the system in the form
of rebates to the agents such that the net payment made by each agent still follows the

Groves payment structure.

2.2.5.7.1 Rebate Function Sticking to the notations introduced for the VCG mech-
anism (Chapter 2.2.5.5). Let the bid vector be b = (b1, ba, ..., by,) where b; = (b;1, ..., bim)
is the bid submitted by agent i for the m items. For a bid profile b, the rebate to an agent
i € A is denoted by r;(b). Furthermore, ¢;(b) is the payment made by i in Clarke pivotal
mechanism, i.e., t;(b) = v;(k*(b)) — (v(k*(b)) — v(k*;(b))), where k*(b) is an allocatively
efficient allocation and k*,(b) is allocatively efficient allocation without agent i. Refer to
Eq. 2.10 for details. An RM is defined by the rebate function. Gujar et al. [130] provide

the following characterization for rebate functions for designing DSIC RMs.

Theorem 2.7 ([130]). In an RM, any deterministic, anonymous rebate function g(-) is
DSIC iff the rebate for an agenti € A is defined asr; := g(b1,ba,...,bi—1,bi+1,...,bn), Vi €

[n], where by > by > ... > by,.

The rebate function is DSIC if the rebate for an agent ¢ is independent of its own bid. In
general, the rebate function could take any form. E.g., the linear rebate function is defined

as,

Definition 2.24: Linear Rebate Function

The rebate to an agent in a Redistribution Mechanisms (RM) is linear if it is a linear

combination of the bid vectors of all the remaining agents. Furthermore, if the RM

uses linear rebate functions for all the agents, we say that the RM is a linear RM.

In this thesis, we will focus only on linear rebate functions. We refer to the reader to

Prakash [232] for an extended discussion on RMs.
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Redistribution Index. Notice that RMs collect payments from the agents and redis-
tribute the surplus using a rebate function. An RM’s utility is quantified by the amount of
surplus it redistributes. To measure this amount, we now define the redistribution index.

For this, let r;(b) denote agent i’s rebate given the bid vector b = (b1, b, ..., b,) as input.

Definition 2.25: Redistribution Index [132]

We define the redistribution index as the worst-case or average-case fraction of the

Clarke surplus that gets redistributed among the agents. That is,

e 2ieari(b) . > icaTi(D)
oo e S 0 e B | S5

Homogeneous vs. Heterogeneous Items. The RM literature explores both the homo-
geneous (i.e., items are identical) and heterogeneous (i.e., items are non-identical). E.g.,
Guo et al. [133] propose Worst-case Optimal (WCO), a mechanism that uniquely maxi-
mizes the worst-case RI (among all RMs that are deterministic, anonymous, and satisfy
DSIC, AE, and IR) when the items are homogeneous with unit demand [133, Theorem 1].
For the heterogeneous case, Gujar et al. [130] shows the impossibility of the existence of
a linear rebate function with a non-zero redistribution index. This thesis focuses on the

homogeneous RM setting. To this end, we first discuss the Bailey-Cavallo RM [49].

2.2.5.7.2 Bailey-Cavallo RM To reiterate, we have the set of agents A = [n| and
M = [m)] as the items with unit demand. That is, each agent requires one unit among the m
available. The case with m < n is non-trivial. The linear rebate function (Definition 2.24)

can be expressed as for any agent ¢ € A,

ri=co+c1-b1+...4+¢ci—1-bi—1+¢c b1+ ...+ cn-1-bn.

Here, ¢; € R,Vj and w.lo.g. we assume that by > by... > b,. We next define the
Bailey-Cavallo RM.
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Bailey-Cavallo Mechanism [49]. In this mechanism, ¢;,+1 = m/n, ¢; = 0 for all

other 7. The rebate r; is thus,

m . m .
ri:E-berg 1 <m+1, ri:EbmH 1 >m+1

The total money redistributed is (m+41) " by, 12+ (n—m—1) by, 1. Since r; > 0 for

all agents, i.e., it satisfies IR. Furthermore, as (m+1) b2+ (n—m—1)"by, 41 <

N byl = mbpy, 11, hence it is also feasible.

The Bailey-Cavallo mechanism offers the best-case rebate when b,,4+1 = bp4+2. That
is, it returns m - b,,41. Significantly, this is the total VCG payments collected, implying
that in the best case, the mechanism redistributes 100% of the revenue. However, the
worst case occurs when b,,42 = 0, with the amount being redistributed being ’"“T"H of the
total VCG payment collected. Next, we look at an RM that achieves optimal worst-case

redistribution.

2.2.5.7.3 Worst-case Optimal (WCO) [133]. Since the items are identical, each
agent i € A has the same value for each item in M, i.e., ;. W.lLo.g., we assume that
01 > 0y... > 0,. In Clarke’s pivotal mechanism (Chapter 2.2.5.5.2), the first m agents will
receive the items, and each of these m agents will pay the highest losing bid, i.e., 6,,+1. So

the VCG surplus is m - 0, 11.

WCO maximizes the worst-case fraction of this surplus that gets redistributed. In WCO,
(again) the first m agents receive the items and pay p; := t; — r;, where r; is their rebate.

More formally,
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’r‘;NCO = Cm+10m+2 + cmi2Omis +... +cn—16n i=1..m+1
r;NCO — Cm—',—lem—i—l + ...+ ci—10i-1 +Ci0i+1+..-+cn—19n t=m+2,...n
(2.11)
where,

(=1 (n—m) () J&= (n—1

C;, =

NG PU

J

)

If yp > y2 > ... > yp—1 were the bids of the (n — 1) agents excluding agent i, then
equivalently the rebate to agent ¢ would be,

n—1

rVCO — Z Cj - Yj (2.13)
j=m i

The (worst-case) redistribution index of WCO, say V<O, is

WCO _ ¢ _ (nn_q,l)
Y, ()

WCO is optimal as there exists no other RM that can guarantee more than V0 fraction

e

redistribution in the worst-case [133, Theorem 1].

Chapter 2.2.5.6 presents an interesting set of direct revelation mechanisms (DRMs) for
the general and special cases of combinatorial auctions, whereas Chapter 2.2.5.7 presents
DRMs for redistribution mechanisms. Next, we look at civic crowdfunding, which is an

interesting application for the general class of indirect revelation mechanisms.

2.3 Civic Crowdfunding

Crowdfunding is a popular method to raise funds for various projects. These projects
include for-profit start-ups or ventures and community well-being projects such as medi-

cal/academic bills, public bridges, libraries, or parks. This thesis focuses on crowdfunding
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for public projects commonly referred to as civic crowdfunding [19, 312, 52, 54]. Bagnoli
et al. [19] present the seminal work in civic crowdfunding, namely the Provision Point

Mechanism (PPM).

2.3.1 Provision Point Mechanism (PPM)

Before describing PPM, we first state the general civic crowdfunding model used through-

out this thesis.

Definition 2.26: The General Civic Crowdfunding Model

e Consider the crowdfunding of a set of projects P, = {1,...,m} with A =
{1,...,n} as the sets of interested agents. Denote C,, = {ci,...,cn} as the
target costs (also called the “provision point”) for the projects. The target costs
absorb the required funds for a project’s construction. Throughout this thesis,
we assume that each project is non-rivalrous and the crowdfunding process has a

binary outcome, i.e., each project either gets constructed or does not.

o We use 0;; € R>o to denote agent i’s valuation for the project j. The valuation
quantifies an agent’s interest in funding the project. Denote ¥; = ) ;. ,0;; as
the overall valuation for the project j. Throughout this thesis, we assume that
¥; > ¢j, Vj € Pp,. The case ¥ < c; represents a lack of interest of the community

towards funding the project and is typically not of interest.

e Fach agent ¢ contributes z;; € R>g to a project j € Pp, at any time ¢;;. Denote

Xj = ) ;c4Tij as the total contribution towards a project j.

e The crowdfunding process continues until a publicly-known deadline 7. At the end
of 7, if x; > ¢;, we say that the project j is funded (or “provisioned”). Likewise,

if x; < ¢;, the project j remains unfunded.
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Furthermore, unless stated otherwise, the civic crowdfunding literature [312, 52] assumes

the following:

1. Agents contribute at most once to each project j € Py.
2. Agent utilities are quasi-linear.

3. Agents do not have any external information regarding any project funding except
the total contribution made at any time and the time remaining till the deadline.

That is, they are symmetric in their belief regarding the project’s funding.

4. Agents are interested in the project’s funding, i.e., their valuation towards the project’s

funding is positive.

Provision Point Mechanism (PPM) [19]. Bagnoli et al. [19] presented the first civic
crowdfunding mechanisms, namely, PPM. The mechanism is for a single project, i.e., m = 1
in Definition 2.26. In PPM, the agents contribute to the project’s funding until the deadline
7. If the project’s total contribution crosses the target cost by 7, the agents receive a
quasi-linear utility, which is the difference between their valuation and their contribution.
Otherwise, the project remains unfunded, and the agents receive their contributions back.

More formally, in PPM, each agent’s i utility u;(-) is, Vj € Py,

u,;(ﬁij, Tij; X4, Cj) = ]lx]-Zc]- . (HZ] — xz’j) + ]lxj<cj -0 (2.14)
. —_——
Funded Utility Unfunded Utility

In Eq. 2.14, 1x is an indicator variable that takes the value of 1 when X is true and zero

otherwise.

2.3.1.1 PPM: Equilibrium Behavior

The solution concept used to analyze the equilibrium behavior of PPM is (pure-strategy)

Nash equilibrium (Definition 2.3). Unfortunately, the game induced in PPM comprises both
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(i) efficient equilibrium where the project is funded and (ii) inefficient equilibrium where

the project is not funded. To illustrate these, consider the following examples.

Example 2.8: PPM: Efficient Equilibrium [19]

Given A, Pi,C; (refer to Definition 2.26), an efficient (pure-strategy) Nash equilib-

rium in PPM is where Vj € P we have 0 < x5 < 6;; Vi € Asuch that ), , x5 = ¢;.

Example 2.9: PPM: Inefficient Equilibrium [19]

Given A, P1,C; (refer to Definition 2.26), an efficient (pure-strategy) Nash equilib-
rium in PPM is where Vj € P; we have {z;; > 0};c4 such that >, 4 x;; < ¢; and

ZkeA,k;éi T + 05 < ¢j,Vi € A.

The inefficiency in Example 2.9 is apparent as the total contributions are short of

the target cost. Furthermore, the contributions satisfy Nash equilibrium as no agent in
Example 2.9 will prefer to change its contribution such that ), , x;; = ¢; since it alone

does not have a sufficient valuation for it.

2.3.1.2 PPM: Free-riding

In addition to the existence of inefficient equilibria in PPM, the civic crowdfunding
model in general also suffers from free-riding. As mentioned in Definition 2.26, we consider
public (i.e., non-excludable) and non-rivalrous projects. As such, any agent can consume
the project without contributing towards its funding. E.g., if an agent does not contribute
towards funding a public bridge, it can still avail the bridge for its commute. This results
in a lack of incentive for rational agents to contribute actively towards a project’s funding
— leading to agents “free-riding” on others to contribute and fund the project while they

only avail its benefits.
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Figure 2.1: An overview of the civic crowdfunding process in PPR [312].

2.3.2 Provision Point Mechanism with Refunds (PPR)

Zubrickas [312] introduces a novel mechanism, namely, PPR, to address the two short-
comings of PPM: (i) the existence of inefficient equilibrium and (ii) agents free-riding. The
key idea behind PPR is the introduction of refunds to the agents. More concretely, unlike
PPM, in PPR, if the project is unfunded, the agents receive a refund — in proportion to
their contributions — in addition to their contributions being returned. Similar to PPM,
PPR is also for a single project, i.e., m = 1 in PPR. Figure 2.1 presents an overview of the
civic crowdfunding process in PPR.

More formally, in PPR, each agent’s i utility u;(-) is, Vj € P1,

ui(0ij, 353 %5, ¢, B) = Ix;>c; - (0i — 4i5) + Ix;<c; - (ilj . B> (2.15)
Unfunded Utility

Funded Utility

In Eq. 2.15, B > 0 denotes the bonus budget. The social planner must set aside a publicly-
known B at the start of the crowdfunding process. In a follow-up work, Cason et al. [48]
conduct real-world experiments which suggest an ideal value of B to be around ten percent
of the project’s target cost.

Free-riding. The introduction of refunds to contributing agents overcomes the problem
of free-riding from PPM. Agents are not only incentivized to contribute due to the al-
lure of receiving refunds but also increase their contribution as the refund in Eq. 2.15 is

proportional to the contribution made.
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2.3.2.1 PPR: Project Status at Equilibrium

In PPR, the game-induced has the equilibrium wherein the project is funded. More

formally,

Theorem 2.8 ([312]). Given A, P1,Cy (refer to Definition 2.26) with 0 < B < 19; —
¢j, Vj € P1 and agents utility structure as defined in Eq. 2.15, then at equilibrium (i)
X; = ¢j, Vi € P1 and (i) the set of (pure-strategy) Nash equilibria are {:L‘Z*j | Ty <
#jcjaij, Vie A, Vje P}

Proof. We provide the proof also available at [312]. For part (i), we have to show that
x; = ¢j, Vj € P1. Note that x; < ¢; cannot hold at equilibrium as any agent can obtain a
higher refund by marginally increasing its contribution as B > 0. Likewise, if x; > ¢;, then
any agent can decrease its contribution to receive a higher utility. That is, at equilibrium,
X; = ¢j.

For part (ii), for any agent ¢ contributing to project j € Py, z7; is an equilibrium if for
each agent i its funded utility (refer to Eq. 2.15) exceeds the highest possible refund, i.e.,

* ¢j .
Summing up this inequality Vi € A also results in the upper bound on the bonus budget

0 < B <9 — ¢j. This completes the proof of the theorem. O

Theorem 2.8 Discussion. The condition 0 < B < 1, — ¢; is the condition required for
the existence of Theorem 2.8 as it ensures that the bound on xz*j from Eq. 2.16 is satisfied
Vi € A. In case B > 9¥; — ¢j, then x; = ¢; cannot hold as Eq. 2.16 will be violated for at
least an agent .

Figure 2.2 presents the intuition behind the proof presented in Theorem 2.8. We see
that the promise of a refund incentivizes agents with insufficient contributions to increase
their contributions. The agents increase their contribution until they reach the upper limit

given in Eq. 2.16.
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Figure 2.2: Funded vs. Unfunded Utility for Agent ¢. This figure illustrates the proof

presented in Theorem 2.8.
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Role of Bonus. Trivially, for another budget B’ > B, we see that the set of equilibrium
contributions that satisfy Eq. 2.16 are less than than for B. Intuitively, increasing the
bonus implies an increase in refunds, and the agents must also receive a higher utility
from the project’s funding at equilibrium, reducing the set of equilibria. Furthermore, if
B =1 — ¢, PPR funds the public project as the unique equilibrium. This equilibrium is

special: all agents contribute the same proportion to their valuations, i.e., z;; = ;—é 055

Sources of Bonus [312]. Assuming that the general interest in the public project’s
funding is more than the target cost, ¥ > ¢, the social planner only needs to provide
credibility of its capacity to raise the bonus. Since at equilibrium, the public project is
funded (Theorem 2.8), and thus, the bonus is not paid out. There may exist several ways
to raise the refund bonus. For instance, from [312], some individual donors may provide
initial seed money. Another method may be through insurance funds raised from premiums

paid by the planners.

2.3.2.2 PPR: Race Condition

So far, our discussion around PPR highlights how the mechanism overcomes the chal-
lenges in civic crowdfunding due to free-riding and the existence of inefficient equilibria.
PPR’s impressive properties are due to the introduction of refunds to contributing agents.
However, the mechanism’s analysis assumes that agents decide their contributions simulta-
neously without knowledge of contributions made by the other agents. In practice, online
crowdfunding platforms create a sequential setting where agents can observe contributions
over time”. As such, each agent’s strategy also comprises the time of contribution t;j in

addition to x;;.

9Throughout this thesis, we refer to online CC as crowdfunding over online platforms such as Kick-
starter [156], where the agents can observe real-time information. In contrast, offline CC' is the case where
the agents cannot observe any real-time information. Thus, agent strategies do not depend on time in
offline CC.
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Claim 2.4 ([52]). Given A,P1,Ci (refer to Definition 2.26) with 0 < B < ¥; —
¢j, Vj € P1 and agents utility structure as defined in Eq. 2.15, then at equilibrium (i)
X;j = ¢j, Vj € P1 and (ii) the set of (pure-strategy) Nash equilibria are {(z};,7) | zj; <
#jcjeij, Vie A, Vje P}

Proof. As the refund is independent of time in PPR, agents are not incentivized to con-
tribute before the deadline 7 if the remaining agents follow the same strategy. Effectively,
PPR collapses to a simultaneous-move game at the deadline 7. Theorem 2.8 defines the

xfjs for this, which completes the claim. O

Claim 2.4 implies that the agents are incentivized to delay their contributions as close
to the deadline. Near the deadline, we may see a “race” among the agents to grab as much
refund as possible at the end. Such a race may lead to the equilibrium not being observed
in practice due to PPR not offering any advantage to early contributors. Cason et al. [47]
conduct real-world experiments to study the impact of early refunds. The authors observe

3

both (i) a higher success probability of projects that offer early refunds and (ii) a “race”

among the agents near the deadline to grab refunds.

2.3.3 Provision Point Mechanism with Securities (PPS)

Intuitively, an early refund bonus may provide the required advantage to early contribu-
tors, leading to the race condition being avoided. To this end, Chandra et al. [52] introduce
the Provision Point Mechanism with Securities (PPS), a mechanism with temporal refunds.
More concretely, the refunds in PPS decrease with an increase in time. PPS,; similar to
PPR and PPM, is for a single project, i.e., m = 1. In PPS, each agent’s ¢ utility u;(-) is,
Vi € Py,

tij
ui(eij,xij,t,-j;xj,cj,B) = ]]_szcj . (92] — xij) + ﬂxj-<¢:j . (Sij] - a:ij> (217)

Funded Utility Unfunded Utility
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In Eq. 2.17, SZ-j 10" are the number of securities allocated to the agent i. The securities
S;}j depend on w;;, t;; and the total number of securities issued in the market at ¢;;, denoted

by gt,;. We have, from [52, Eq. 6],
tii _
Sij] = CO ' (xij + Co(qtij)) = G55 (2.18)

where Cy is the cost function governing the underlying prediction market in PPS obtained
from the general cost function C' by fixing the number of positive outcome securities. To
be used in PPS, a cost function must satisfy [52, CONDITIONS 1-4, 6]. The properties of

the cost function, Cy, relevant to our discussion are,

Property 2.1 (Condition 7, [52]). The securities allocated to an agent i € A contribu