

Design of Efficient VLSI Arithmetic Circuits

Thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in ELECTRONICS AND COMMUNICATION ENGINEERING

by

Sreehari Veeramachaneni

 2006 42003
srihari@research.iiit.ac.in

International Institute of Information Technology, Hyderabad

(Deemed to be University)
Hyderabad – 500 032, INDIA

June 2015

Copyright© Sreehari Veeramachaneni, 2015

All Rights Reserved

International Institute of Information Technology

Hyderabad, India

CERTIFICATE
It is certified that the work contained in the thesis, titled “Design of Efficient VLSI

Arithmetic Circuits" by Sreehari Veeramachaneni, has been carried out under my supervision

and is not submitted elsewhere for a degree.

Date Adviser: Prof. M. B. Srinivas

Acknowledgments
I am most grateful to my thesis advisor Prof. M. B. Srinivas for his thoughtful guidance

and warm encouragement without whose help it would have been impossible for me to complete
this thesis. With his enthusiasm, his inspiration, and his great efforts to explain things clearly and
simply, he helped to make subject fun for me. Throughout my thesis-writing period, he provided
encouragement, sound advice, good teaching, good company, and many good ideas. I would
have been lost without him.

I wish to thank Prof. Rajeev Sangal, Director, IIT-BHU, Prof. P. J. Narayanan, Director,
IIITH, Prof. Kamalakar Karlapalem, Dean (Academics), Prof. Vasudeva Varma, Dean (R & D),
Prof. Govindarajulu and all faculty members for their support and encouragement throughout my
research.

I am indebted to my friends and colleagues from IIIT Hyderabad and BITS-Pilani,
Hyderabad Campus for providing a stimulating and fun environment in which to learn and grow.

Lastly, and most importantly, I wish to thank my parents. They raised me, supported me,
taught me, and loved me. To them I dedicate this thesis.

iv

Abstract

Arithmetic and Logic Unit (ALU) is a critical component of any CPU. In ALU, adders play a

major role not only in addition but also in performing many other basic arithmetic operations like

subtraction, multiplication, etc. Thus realizing an efficient adder is required for better

performance of an ALU and therefore the processor. Research started in late 1950s on designing

efficient adder algorithms and their hardware implementation. Many designs based on serial and

parallel structures have been proposed to optimize different parameters from time to time.

The first contribution of this thesis is the development of an efficient adder architecture that

addresses the problems for higher bit operand lengths like fan-out, wiring complexity, etc.

Another important element in an ALU after adder is a multiplier. In multipliers, for reducing

partial products and computing final result, multi-operand adders and fast adders are required. A

special structure known as counters/compressors are typically used for designing multi-operand

adders. Counters are multi-input, multi-output combinational logic circuits, which determine the

number of logic 1’s in their input vectors, and generate a binary coded output vector that

corresponds to this number. Large parallel counters like (15, 4), (32, 5), etc. can be constructed

using this small counter and similar approach can be adopted in the case of compressors. The

second contribution of the thesis is development of efficient counters and compressors for better

performance of multiplier.

Apart from adders and multipliers in arithmetic units, elements like, incrementer/decrementer

(INC/DEC) also play a major role in an ALU and also in address generation unit. A loop

algorithm, for example, often needs a increment/decrement. These operations can be realized

using adders but with a cost in terms of power and area. Therefore, standalone designs or unified

designs for INC/DEC are required for low power applications. The third contribution of this

thesis is the design of a multi-functional INC/DEC/2's complement/Priority encoder circuit. A

design for binary INC/DECs is presented that is efficient in terms of speed without

compromising on power.

v

The need to have hardware support for decimal arithmetic is increasing in recent years because

of the growth in decimal data processing in commercial, financial and internet-based

applications. To facilitate binary computations on the same hardware, a reconfigurable approach

needs to be adopted. The fourth contribution of this thesis is the design of a new architecture for

efficient Binary Coded Decimal (BCD) addition/subtraction that can be configured to perform

binary addition/subtraction also. The architecture has been designed keeping in view the signed

magnitude format where the adder logic itself detects the larger operand and carries out

corresponding operations.

Finally, novel versions of two widely used arithmetic blocks i.e., multiplier and floating point

adder, are designed. Efficient and proven basic functional units described above are used to

implement these blocks. Simulations of these blocks have been carried out and comparisons

made with existing designs that clearly demonstrate the efficiency of proposed units. Finally, a

segment of a core of a processor is designed with incorporating all the above elements resulting

in an efficient architecture.

vi

Contents
Chapter 1 ... 1

1.1 Motivation ... 1

1.2 Objectives of the thesis .. 2

1.3 Organization of the thesis .. 3

Chapter 2 ... 4

2.1 Introduction ... 4

2.2 Review of Existing Adder Designs ... 5

2.2.1 Ripple Carry Adder ..5

2.2.2 Carry Select Adder (CSA) ..6

2.2.3 Carry Look-Ahead Adder ...7

2.2.4 Prefix Based Adders ...11

2.3 Design and Implementation of Efficient Sum Computation Block for Higher Bit
Sparse Adders .. 14

2.4 Design and Implementation of Higher Bit Sparse Adder .. 19

2.5 Simulation Results ... 21

2.6 Conclusions ... 27

Chapter 3 ... 28

3.1 Introduction ... 29

3.2 Compressors and Counters .. 30

3.3 Existing Compressor Designs ... 30

3.3.1 3-2 Compressor...30

3.3.2 4-2 Compressor...31

3.3.3 5-2 Compressor...32

3.4 Design and Implementation of Efficient Compressors ... 34

3.4.1 3-2 Compressor...34

3.4.2 4-2 Compressor...35

3.4.3 5-2 Compressor...37

3.5 Designs of Existing Counters .. 38

3.5.1 (3, 2) Counter ..39

3.5.2 (7, 3) Counter ..39

3.5.3 (15, 4) Counter ..41

vii

3.5.4 (31, 5) Counter ..42

3.6 Design and Implementation of Efficient Parallel Counters 42

3.6.1 (3, 2) Counter ..42

3.6.2 (7, 3) Counter ..43

3.6.3 (15, 4) counter...44

3.6.4 (31, 5) counter...46

3.6.5 (m, n) Parallel Counter ...47

3.7 Simulation Results and Analysis ... 47

3.7.1 Compressor ...48

3.7.2 Counter ...50

3.8 Conclusions ... 53

Chapter 4 ... 55

4.1 Introduction: .. 55

4.1.1 Incrementer/Decrementer Circuit ...56

4.1.2 2’s Complement Circuit..56

4.1.3 Priority Encoder Circuit..56

4.2 Existing Designs .. 56

4.2.1 Increment/Decrement circuits...56

4.2.2 2’s Complement and Priority Encoder Circuits ..58

4.3 Proposed Multi-functional INC/DEC/2’s complement/Priority Encoder Circuit 58

4.3.1 Motivation ..58

4.4 Implementation .. 60

4.4.1 Input Selection Block ...61

4.4.2 Decision Block ...61

4.4.3 Output Selection Block ...65

4.5 Simulation Results ... 67

4.5.1 Multi-functional INC/DEC/2’s Complement/Priority Encoder:67

4.6 Conclusion ... 73

Chapter 5 ... 74

5.1 Introduction ... 74

5.2 Review of Existing Techniques for BCD Addition/Subtraction 76

5.2.1 One-Digit BCD Full Adder ..76

viii

5.2.2 Higher Bit BCD/Binary Adders/Subtractors ..77

5.3 A Unified BCD/Binary Adder/Subtractor Architecture .. 79

5.3.1 Conventional Binary Adder /Subtractor ...80

5.3.2 A Modified Binary Adder/Subtractor ...82

5.3.3 Modified BCD Adder/Subtractor ...84

5.3.4 A Modified Unified BCD/Binary Adder/Subtractor Architecture88

5.4 Simulations and Results .. 89

5.5 Conclusions ... 92

Chapter 6 ... 93

6.1 Floating Point Adder/Subtractor ... 93

6.1.1 Introduction ..93

6.1.2 Design of Floating Point Units- General Implementation93

6.1.3 Design of Efficient Binary Adder/Substractor ...95

6.1.4 Results and Comparison ...96

6.2 Implementation of High Speed Multiplier .. 98

6.2.1 Introduction ..98

6.2.2 Design of Multipliers using Wallace and Dadda Algorithms98

6.2.3 Simulation Results ..101

6.3 Conclusions ... 102

Chapter 7 ... 103

7.1 Introduction ... 103

7.2 Arithmetic Units in a Processor Core .. 103

7.3 Efficient Arithmetic Units for a Processor Core ... 104

7.3.1 Simulation Results ..106

7.4 Power gating applied to the arithmetic units. .. 108

7.4.1 Simulation Results ..111

7.5 Conclusions ... 111

Chapter 8 ... 112

8.1 Conclusions ... 112

8.2 Future Work .. 113

Bibliography .. 114

Journals ... 119

ix

Conferences ... 119

x

List of Figures

Figure 2.1 One - Bit Full Adder .. 6
Figure 2.2 Four-Bit Ripple Carry Adder ... 6
Figure 2.3 16-bit Carry Select Adder ... 7
Figure 2.4 One-bit Full Adder with Carry Propagate and Generate ... 9
Figure 2.5 Ripple Carry Adder with Carry Propagate and Generate .. 9
Figure 2.6 4-bit Weinberger-Smith CLA .. 10
Figure 2.7 Block level diagram of a prefix adder ... 11
Figure 2.8 Example of a Kogge –Stone prefix adder .. 12
Figure 2.9 Example of a 8-bit Sparse adder with degree of sparsness as 4 13
Figure 2.10 64 bit Kogge-Stone based CGB for a sparse 4 adder .. 14
Figure 2.11 64 bit Sklansky based CGB for a sparse 4 adder ... 14
Figure 2.12 Sklansky parallel prefix adder with late Carry-in .. 15
Figure 2.13 (a) 16-Bit Han-Carlson Adder with late Carry-in. (b) Modified 16-Bit Han-
Carlson Adder with late Carry-in. ... 16
Figure 2.14 Gate level implementation of nodes in Fig. 2.13. .. 17
Figure 2.15 Modified 16-Bit Han-Carlson Adder with late Carry-in illustrating delay problem
... 18
Figure 2.16 Gate level implementation of Equation 2.21 ... 18
Figure 2.17 Proposed SCB block with reduced fan-out with reduced delay 19
Figure 2.18 Carry generation for 64-Bit (a) Sparse-8 (b) Sparse-16 and (c) Sparse-32 adders.
... 20
Figure 2.19 Modified Han-Carlson adder with late Carry-in after reusing the second stage
group Propagate and Generate terms from Carry generation stage (a) 8-bit (b) 16-bit 21
Figure 2.20 (a) Area (b) Delay (c) Power and (d) Power-Delay product analysis of various
64-bit adders with different degrees of sparsesness .. 24
Figure 2.21 Extended analysis of 128-bit adder using the proposed technique in terms of ... 27
(a) Area, (b) Delay (c) Power and Power-Delay Product ... 27
Figure 3.1 Steps involved in Multiplication ... 29
Figure 3.2 (a) Compressor (b) Counter ... 30
Figure 3.3 (a) 3-2 Compressor (b) Conventional Implementation of the 3-2 compressor 31
Figure 3.4 A 4-2 Compressor Block ... 31
Figure 3.5 A 4-2 compressor implemented with full adders .. 32
Figure 3.6 (a) A 5-2 compressor block (b) Conventional implementation of a 5-2 compressor
block .. 33
Figure 3.7 Existing architectures of a 5-2 compressor ... 34
Figure 3.8 CMOS Implementation of XOR/XNOR Gate ... 34
Figure 3.9 Proposed design of the 3-2 Compressor .. 35
Figure 3.10 Proposed 4-2 Compressor Design ... 36
Figure 3.11 Transmission Gate Implementation of a multiplexer .. 37
Figure 3.12 Proposed design of the 5-2 compressor ... 37

xi

Figure 3.13 Carry Generation Module (CGEN1) ... 38
Figure 3.14 (a) 3-2 Counter (b) Conventional Implementation of the 3-2 Counter 39
Figure 3.15 (7, 3) Counter block diagram. .. 40
Figure 3.16 Existing (7, 3) Counter designs (a) adder based counter (b) synthesized counter
... 41
Figure 3.17 Exiting design for (15,4) counter. .. 42
Figure 3.18 Proposed Implementation of the (3,2) Counter ... 43
Figure 3.19 Proposed (7, 3) counter design. ... 43
Figure 3.20 (a) Proposed design for (15, 4) counter (b) Adder* module used in the counter. 45
Figure 3.21 Proposed design for (31, 5) counter. ... 46
Figure 3.22 Proposed design for (m,n) counter. ... 47
Figure 3.23 Comparison of proposed 3:2, 4:2 and 5:2 compressors with existing compressor
in terms of (a) Power (b) Delay (c) Power-Delay Product ... 49
Figure 3.24 Comparison of proposed 7:3, 15:4 and 31:5 counters with existing counters in
terms of (a) Power (b) Delay (c) Power-Delay Product ... 52
Figure 4.1 (a) Adder based (b) MUX based .. 57
Figure 4.2 Hybrid Binary INC/DEC design (Lookahead based) [36] 57
Figure 4.3 Basic Blocks of the Proposed Multi-functional circuit ... 60
Figure 4.4 .Input Selection Block ... 61
Figure 4.5. Decision Block ... 62
Figure 4.6 Prefix-Based Decision Block Type I ... 62
Figure 4.7 Prefix-Based Decision Block Type II .. 63
Figure 4.8 Area optimised version of Prefix-based Decision Block Type I 64
Figure 4.9 Area Optimised Version of Prefix-based Decsion Block Type II 64
Figure 4.10 Prefix based decision block Type I with NOR-NAND 65
Figure 4.11 Output Selection Block.. 66
Figure 4.12 Comparisions of proposed designs with existing designs in terms of (a) Area
(b)Power (c) Delay (d) Power-Delay Product .. 69
Figure 4.13 Comparisions of multi-functional circuit with proposed decision blocks and
existing decision block in terms of (a) Area (b)Power (c) Delay (d) Power-Delay Product . 72
Figure 5.1 Block Diagram of Conventional 1-digit BCD Full Adder 76
Figure 5.2 Block Diagram of Modified Conventional 1-digit BCD FA 77
Figure 5.3 Fischer’s Architecture [51] ... 78
Figure 5.4 Haller’s Architecture [52] .. 78
Figure 5.5 Humberto’s Architecture [53] ... 79
Figure 5.6 Conventional implementation of binary subtractor ... 80
Figure 5.7 Final Sign ‘Sn’ computation logic ... 82
Figure 5.8 Conventional implementation of binary adder/subtractor with signed magnitude 82
Figure 5.9 Implementation of the Proposed Binary Adder/subtractor Design 83
Figure 5.10 Illustration of BCD addition operation .. 85
Figure 5.11 Illustration of BCD Subtraction operation when X > Y 86

xii

Figure 5.12 Illustration of BCD Subtraction operarion when X ≤ Y 87
Figure 5.13 (a) Pre-correction block (b) Post Correction block for BCD 88
Figure 5.14 Architecture of unified BCD and binary adder / subtractor 89
Figure 5.15 Comparision between proposed unified adder/subtractor with existing design in
terms of (a) Area (b)Power (c) Delay (d) Power-Delay Product .. 92
Figure 6.1 Architecture of a floating point adder/ subtractor ... 94
Figure 6.2 Implementation of Binary Adder/subtractor of Operands in signed magnitude form
... 95
Figure 6.3 A Comparision of the proposed floating point adder unitd with the exiting
design in terms of (a) Area (b)Power (c) Delay (d) Power-Delay Product 97
Figure 6.4 General Multiplier Structure .. 98
Figure 6.5 Wallace Algorithm for the design of a 16 bit Multiplier 99
Figure 6.6 Dadda Algorithm for the design of a 16 bit Multiplier 100
Figure 6.7 A Comparision of Exisitng 32-bit multipliers with the proposed design in terms of
(a) Area (b)Power (c) Delay (d) Power-Delay Product .. 102
Figure 7.1 Microarchitecture of an Arithmetic unit in an AMD Processor Core 104
Figure 7.2 Processor Core with modifided functional units ... 104
Figure 7.3 A generic architecture of an ALU ... 105
Figure 7.4 Power contribution of different arithmetic blocks in ALU 108
Figure 7.5 Power Gating Technique ... 109
Figure 7.6 Arithmetic section of an ALU with power gating technique 110

xiii

List of Tables
Table 2.1 Truth Table of a Full Adder .. 8
Table 2.2 Area, power, delay and power-delay product for 64-bit adder with various
sparseness .. 22
Table 2.3 Area, power, delay and power-delay product for 128-bit adder with sparseness of
16 and 32 ... 25
Table 3.1.Comparison of existing (7, 3) with proposed design .. 44
Table 3.2 Comparison of existing (15, 4) with proposed design .. 45
Table 3.3. Comparison of existing (31, 5) with proposed design ... 46
Table 3.4 Power consumption for 3-2 compressor (nW) .. 48
Table 3.5 Delay for 3-2 compressor (ns) .. 48
Table 3.6 Power consumption for 4-2 compressor (nW) .. 48
Table 3.7 Delay or 4-2 compressor (ns) .. 48
Table 3.8 Power consumption for 5-2 compressor (nW) .. 48
Table 3.9 Delay for 5-2 compressor (nS) .. 48
Table 3.10 Delay for 5:2 compressor with MUX* in CMOS and CMOS+ design (nS) 50
Table 3.11 Power Consumption for 5:2 compressor with MUX* in CMOS and CMOS+
design (nW) ... 50
Table 3.12 Power Delay Product for 5:2 compressor with MUX* in CMOS and CMOS+
design (aJ) ... 50
Table 3.13 Power for 7,3 counter (nW) .. 51
Table 3.14 Delay results for 7,3 counter (nS) ... 51
Table 3.15 Power for 15,4 counter (nW) .. 51
Table 3.16 Delay for 15,4 counter (nS) ... 51
Table 3.17 Power for 31,5 counter (nW) .. 51
Table 3.18 Delay for 31,5 counter (nW) ... 51
Table 3.19. Comparison of Average Power (nW) and Delay (nS) of the proposed counters
with MUX* as CMOS and Transmission Gate(TG) logic .. 53
Table 3.20. Comparison of Average Power-Delay Product (aJ) of the proposed counters with
MUX* as CMOS and Transmission Gate (TG) logic ... 53
Table 4.1 Control signals used to select different operations ... 61
Table 4.2 Delay and Number of Gates Required in Decision Blocks 63
Table 4.3 Simulation results for 32-bit INC/DEC Circuits ... 67
Table 4.4 Simulation results For 32-bit Multi-functional INC/DEC/2’s complement/Priority
Encoder Circuit ... 70
Table 5.1 Effective Operation on signed magnitude numbers .. 81
Table 5.2: Results for a 32-bit Unified BCD/Binary Adder/Subtractor 90
Table 6.1 A Comparison of Performance of Floating Point Adder Units 96
Table 6.2 Simulation Results of a 32-bit Multiplier ... 101
Table 7.1: Detailed list of operations .. 106
Table 7.2 Results of simulation results of ALU blocks ... 107

xiv

Table 7.3 Simulation Results for ALU while performing floating-point addition operation 111

xv

Chapter 1
Introduction

Contents
Chapter 1 ... 1

1.1 Motivation ... 1

1.2 Objectives of the thesis .. 2

1.3 Organization of the thesis .. 3

1.1 Motivation

In a microprocessor or a digital signal processor (DSP), data path plays a prominent role since

performance metrics like the die-area, speed of operation, power dissipation etc., depend directly

on the efficiency of data-path. As is known, core of the data path involves complex

computations like addition, subtraction, multiplication and division, etc. Thus, realizing efficient

hardware units for these computations, which directly affect the performance of data path, is of

prime importance.

The most executed operation in the data path is addition, which requires a binary adder that

adds two given numbers. Adders also play a vital role in more complex computations like

multiplication, division and decimal operations. Hence, an efficient implementation of binary

adder is crucial to an efficient data path. Relatively significant work has been done in proposing

and realizing efficient adder circuits for binary addition as described in the next chapter.

However, as the technology is scaling down new design issues like fan-out and wiring

complexity are appearing in the front-line. These issues are addressed to some extent by new

adder architectures known as sparse adders. As operand size increases, sparse adders also suffer

from above design issues that are becoming vital as they have direct impact on the performance

of an adder. Thus, there is an urgent need to develop alternative sparse adder architectures which

can address these design issues.

 The next most important block in data-path after adder is the multiplier, which is also

very crucial in ASICs and DSPs. High speed multipliers reported in literature use parallel

1.2 Objectives of the thesis

multiplier architectures that employ counters/compressors along with adders as basic building

blocks. Counters are multi-input, multi-output combinational logic circuits that determine the

number of logic ‘1s’ in their input vectors and generate a binary coded output vector that

corresponds to this number. A counter differs from a compressor in that compressors have carry

inputs and carry outputs in addition to the “normal” inputs and outputs which counters do not

have. As these blocks lie directly within the critical path of a given design, thus dictating the

overall circuit performance, there is an urgent need to design and validate new high speed/low

power counters and compressors

 Further, some of the recursive arithmetic operations that appear in processors/controllers

other than addition and multiplication are increment and decrement operations. The increment

and decrement operations count up or down by one step which can be performed by

incrementer/decrementer (INC/DEC) block. This block also finds its application in address

generation unit in processors and frequency dividers. The architectures of binary INC/DEC block

are mainly based on adder/subtractor, counter or carry look-ahead adder.

Finally, despite the widespread use of binary arithmetic, decimal computation remains

essential for many applications. Not only is it required whenever numbers are presented for

human inspection, but is also often a necessity when fractions are involved. Decimal fractions

are pervasive in human endeavors, yet most cannot be represented by binary fractions. Still, the

major consideration while implementing Binary Coded Decimal (BCD) arithmetic will be to

enhance its speed as much as possible while facilitating even binary applications on the same

hardware. There are different architectures that support BCD as well as binary operations on the

same hardware. However, when signed computations are required, the existing architectures, use

10’s or 9’s complement to implement subtraction in BCD. This introduces extra latency in the

conversion process, which requires an architecture that can reduce/eliminate the correction

latency in BCD adders.

1.2 Objectives of the thesis

With the above modifications, the following objectives are proposed to be addressed in

this thesis

• Efficient realization of higher operand bit adders (for 32-bit and above).

• Realization of efficient counters/compressors for high speed parallel multiplication.

• Design of high performance stand-alone blocks like incrementer, decrementer etc.

2

1.3 Organization of the thesis

• Implementation a unified Binary/BCD adder with improved performance.

• Demonstration of efficient arithmetic section of an ALU using the proposed basic units

1.3 Organization of the thesis

As the adder is the basic building block in designing most of the arithmetic circuits,

chapter 2 discusses in detail various types of adder architectures and their realization in

hardware. A high performance sparse adder architecture (for 32-bit and above) is proposed and

studied in detail.

Multiplication finds a wide range of usage in signal processing hardware implementations.

In Chapter 3, a special block known as counter/compressor is used in partial product reduction

tree in multipliers and analyzed. An efficient counter/compressor block is proposed which makes

use of signals and their complements available in CMOS implementation. A generalized n-bit

counter is proposed which can be customized to any operand bit size.

The branching and interrupt instructions in any microprocessor need the help of special

hardware blocks. In Chapter 4, dedicated hardware blocks like Incrementer/Decrementer, 2’s

complementer, priority encoder etc., are analyzed and a multi-functional block is proposed which

can perform all the above operations using the same hardware.

The emphasis on error free arithmetic is increasing day by day and decimal arithmetic

circuits are slowly taking the center stage. In Chapter 5, efficient decimal arithmetic hardware

implementation that can perform both signed and unsigned arithmetic is proposed. The

implementation reduces the hardware and thereby propagation delay with the proposed end

around carry method of subtraction. The same hardware that implements the decimal arithmetic

can be used for binary arithmetic without any degradation in performance.

The usage of the above-proposed arithmetic blocks in a multiplier and floating point adder

is studied in Chapter 6 and a segment of a processor core is designed with the proposed

arithmetic units in Chapter 7. Finally, the scope for further work is suggested in Chapter 8.

3

Chapter 2
Design and Implementation of Efficient Adders

Contents
Chapter 2 ... 4

2.1 Introduction ... 4

2.2 Review of Existing Adder Designs ... 5

2.2.1 Ripple Carry Adder ..5

2.2.2 Carry Select Adder (CSA) ..6

2.2.3 Carry Look-Ahead Adder ...7

2.2.4 Prefix Based Adders ...11

2.3 Design and Implementation of Efficient Sum Computation Block for Higher Bit
Sparse Adders .. 14

2.4 Design and Implementation of Higher Bit Sparse Adder .. 19

2.5 Simulation Results ... 21

2.6 Conclusions ... 27

2.1 Introduction

 Arithmetic and Logic Unit (ALU) is a critical element in any CPU. In ALU, adders play a

major role not only for addition but also in performing many other basic arithmetic operations

like subtraction, multiplication, increment / decrement etc. Thus, realizing an efficient adder is

required for better performance of a processor in general and ALU in particular [1-6]. Research

into design of efficient adder algorithms for hardware implementation of Very Large Scale

Integrated (VLSI) arithmetic circuits started in late 1950s. Many designs based on serial and

parallel structures have been proposed to optimize different parameters from time to time [5].

 Binary addition consists of four possible elementary operations, which are

 0 + 0 = 0
 0 + 1 = 1
 1 + 0 = 1
 1 + 1 = 10

2.2 Review of Existing Adder Designs

1
1
10

Augend

Addend

SumCarry
+

The first three operations produce only a ‘Sum’ whose length is one digit, but when both

augend and addend bits are equal to 1, the binary sum consists of two digits. The higher

significant bit of this result is called a ‘Carry’. A combinational circuit that performs the

addition of two bits is called a half-adder while the one that performs the addition of three bits is

known as a full-adder [5].

2.2 Review of Existing Adder Designs

Adders can be broadly classified into following four classes [5]:

• Ripple Carry Adder (RCA)

• Carry Select Adder (CSA)

• Carry Look-Ahead Adder (CLA)

• Parallel Prefix- based Adder (PPA)

2.2.1 Ripple Carry Adder

A full adder (FA) is a combinational circuit that takes two operand bits and a carry bit, say

A,B and Ci respectively, as inputs and gives Sum (S) and Carry bit (Co) as outputs. This output

Carry bit Co will serve as input Carry bit for the successive full adder. The combinational circuit

follows the Boolean equations 2.1 and 2.2 mentioned below to implement a full adder and the

gate level implementation of the same is shown in Fig 2.1. A simple implementation of higher

operand adder for two operands A and B is carried out by cascading n of these basic full adder

units and is known as a ripple carry adder.

A simple 4-bit ripple carry adder is shown in Fig 2.2. The design of this adder is simple

and implementation is easy, but it suffers from serious delay issues. This is because the next

stage full adder needs to wait for Carry bit from the previous stage FA. By inspecting the FA

shown in Fig 2.1 it can be observed that the gate delay from Cin to Co is 2 gates. Therefore, each

full adder contributes to a 2-gate delay in the process of rippling the carry [1-6].

5

2.2 Review of Existing Adder Designs

 𝐶𝐶𝑜𝑜 = (𝐴𝐴. 𝐵𝐵) + �𝐶𝐶𝑖𝑖 . (𝐴𝐴⨁𝐵𝐵)� = (𝐴𝐴. 𝐵𝐵) + (𝐵𝐵. 𝐶𝐶𝑖𝑖) + (𝐶𝐶𝑖𝑖 . 𝐴𝐴) (2.1)

 𝑆𝑆 = (𝐴𝐴⨁𝐵𝐵)⨁𝐶𝐶𝑖𝑖 (2.2)

 Figure 2.1 One - Bit Full Adder

1-bit Full
Adder
(FA)

1-bit Full
Adder
(FA)

1-bit Full
Adder
(FA)

1-bit Full
Adder
(FA)

A1B1A4 A3 A2B4 B3 B2

CiCO C3 C2 C1

S1S4 S3 S2

 Figure 2.2 Four-Bit Ripple Carry Adder

2.2.2 Carry Select Adder (CSA)

Ripple carry adder waits for the input carry (Ci) and then computes the ‘Sum’ and the

Carry out (Co) thus increasing its delay. In order to reduce the delay, carry select adder is

introduced, which pre-computes the ‘Sum’ and ‘Co’ for the two possible cases i.e. Ci = 0 and

Ci = 1. The calculated Sum is given to a multiplexer, which chooses the correct output depending

upon the Ci coming from the previous stage. This pre-computation of Sum reduces the delay of

rippling of Carry which is limited to only one multiplexer for each stage. Figure 2.3 below gives

the gate level diagram of a 16- bit carry select adder. In this, each 4- bit adder is a bit ripple carry

adder. Carry select adder uses more hardware even though it gives less delay compared to ripple

carry adder. Thus, there is a tradeoff between area, power and delay between different adders[1-

6].

6

2.2 Review of Existing Adder Designs

Ci+

A4:1 B4:1

S4:1

C4

+

+

01

A8:5 B8:5

S8:5

C8

+

+

01

A12:9 B12:9

S12:9

C12

+

+

01

A16:13
B16:1

3

S16:13

Co

0

1

0

1

0

1

Figure 2.3 16-bit Carry Select Adder

2.2.3 Carry Look-Ahead Adder

Various techniques have been proposed from time to time to decrease the overall delay in

parallel addition [5]. One such technique is to derive the ‘Sum’ and ‘Carry’ outputs by using

intermediate terms defined as ‘Generate (G)’ and ‘Propagate (P)’ terms [5-6]. Generate term

produces a carry-out independent of the carry-in, i.e. no matter what the carry-in is, the carry-out

is always ‘1’, when both of its inputs A and B are ‘1’ thus G = A.B. The Propagate term

transfers the input Carry as output Carry when only one of the inputs is high and hence

Propagate term is defined as P = A⨁B. Thus we have

 𝐺𝐺(𝐴𝐴, 𝐵𝐵) = 𝐴𝐴. 𝐵𝐵 (2.3)

 𝑃𝑃(𝐴𝐴, 𝐵𝐵) = 𝐴𝐴⨁𝐵𝐵 (2.4)

Table 2.1 and the example shown below illustrate the concept of Propagate and Generate

more clearly. In the Propagate case the ‘Carry-out’ depends on the ‘Carry-in’, i.e. when ‘Carry-

in’ is 0 ‘Carry-out’ is 0 and when ‘Carry-in’ is 1 ‘Carry-out’ is 1 and in the case of Generate, no

matter what the ‘Carry-in’ is ‘Carry-out’ is always 1.

7

2.2 Review of Existing Adder Designs

Table 2.1 Truth Table of a Full Adder

 1
 0

00

 1

0
1

11

1 0

Propagate
A B

Generate
A B 1

 1

01

1 0

 1
 1

11

1 1

+ +

++

The output ‘Sum’ and ‘Carry’ of the full adder in terms of P and G, can be observed form

Table 2.1 to be,

 𝑆𝑆𝑖𝑖 = 𝑃𝑃𝑖𝑖⨁𝐶𝐶𝑖𝑖 (2.5)

 𝐶𝐶𝑖𝑖+1 = 𝐺𝐺𝑖𝑖 + (𝑃𝑃𝑖𝑖 . 𝐶𝐶𝑖𝑖) (2.6)

8

2.2 Review of Existing Adder Designs
AB

PG

Sum

Cout

Cin

Pre
Computational

Stage

Post
Computational

Stage

Carry Propagate
Stage

Figure 2.4 One-bit Full Adder with Carry Propagate and Generate

Figure 2.4 above illustrates the implementation of above equations (2.5) and (2.6) which is

essentially same as Fig 2.1 but derived from Table 2.1. This logic is also called carry look-ahead

logic. For each bit in a binary sequence to be added, the carry look-ahead logic will determine

whether that bit pair will generate or propagate a Carry. This allows the circuit to "pre-process"

two numbers being added to determine the carry ahead of time. Thus, when the actual addition is

performed, there is no delay from waiting for the ripple carry effect (time it takes for the carry

from the first full adder to be passed on to the last Full Adder) [5-6].

S1

B1A1

P1G1

G0:0

S2

B2

P2G2

G1:0

A2

S3

B3A3

P3G3

G2:0

S4

B4

P4G4

G3:0

A4 Ci

G0 P0

C0C1C2C3

Co

C4

Figure 2.5 Ripple Carry Adder with Carry Propagate and Generate

9

2.2 Review of Existing Adder Designs

The carry look-ahead type implementation of a ripple carry adder is shown in Fig 2.5. It

can be seen from this figure that the carry propagation stage determines the critical path that

determines the delay. To increase the speed of an adder, this stage has to be redesigned for fast

carry propagation.

Keeping this in mind, Weinberger and Smith proposed a method for fast carry generation

which states that the carry need not depend explicitly on the previous carry, but can be expressed

as a function of only the relevant addend and augend digits and some lower order carry [7].

p3g3p2g2p1g1p0g0

c1 c2 c3 c4

p0 p1 p2 p3

co

cin

S3S2S1S0

A0 B0 A1 B1 A2 B2 A3 B3

SUM LOGIC

CARRY
LOOKAHE
AD LOGIC

PG
BLOCK

Figure 2.6 4-bit Weinberger-Smith CLA

The carry generation is done by first calculating Propagate (𝑝𝑝𝑖𝑖) and Generate (𝑔𝑔𝑖𝑖) terms.

 𝑔𝑔𝑖𝑖 = 𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖 (2.7)
𝑝𝑝𝑖𝑖 = 𝐴𝐴𝑖𝑖 ⊕ 𝐵𝐵𝑖𝑖 (2.8)

After the parallel generation of Propagate and Generate terms, the carries can be generated

using the equations below. In the following a 4-bit adder is considered as an example:

𝐶𝐶1 = 𝑔𝑔0 + 𝑝𝑝0𝐶𝐶0 (2.9)
𝐶𝐶2 = 𝑔𝑔1 + 𝑝𝑝1𝑔𝑔0 + 𝑝𝑝1𝑝𝑝0𝐶𝐶0 (2.10)

10

2.2 Review of Existing Adder Designs

𝐶𝐶3 = 𝑔𝑔2 + 𝑝𝑝2𝑔𝑔1 + 𝑝𝑝2𝑝𝑝1𝑔𝑔0 + 𝑝𝑝2𝑝𝑝1𝑝𝑝0𝐶𝐶0 (2.11)
𝐶𝐶4 = 𝑔𝑔3 + 𝑝𝑝3𝑔𝑔2 + 𝑝𝑝3𝑝𝑝2𝑔𝑔1 + 𝑝𝑝3𝑝𝑝2𝑝𝑝1𝑔𝑔0 + 𝑝𝑝3𝑝𝑝2𝑝𝑝1𝑝𝑝0𝐶𝐶0 (2.12)

After the carries are generated, the sum is calculated using the equation

𝑆𝑆𝑖𝑖 = 𝐴𝐴𝑖𝑖 ⊕ 𝐵𝐵𝑖𝑖 ⊕ 𝐶𝐶𝑖𝑖 (2.13)

A typical 4-bit CLA implementing the above equations is shown in Fig 2.6. For wide

adders where N > 16 (N is the input operand size), the delay of the carry look-ahead adders

becomes dominated by the delay of passing the carry through the look-ahead stages and the

implementation needs high fan-in gates [1, 5]. To overcome these problems, a new breed of

networks has been designed that pass the carry through the look ahead stage in around log(N)

stages. These networks are called Tree Networks and the adders that utilize these networks are

called tree- adders or prefix- adders [5]. There are many ways to build the tree adders which

offer tradeoffs among parameters like, the number of stages of logic, number of logic gates, the

maximum fan-out of each gate and the amount of wiring between the stages.

2.2.4 Prefix Based Adders

A prefix adder consists of 3 stages i.e, pre-computation stage, prefix network stage and

post-computation stage as shown in Fig 2.7 [5-11].

Prefix Network

Pre-Computation Block

Post Computation

Figure 2.7 Block level diagram of a prefix adder

The pre-computation stage computes the carry ‘Propagate’ and carry ‘Generate’ bits for

each input pair as given below.

Generate, 𝑔𝑔 = 𝑎𝑎𝑎𝑎 (2.14)

Propagate, 𝑝𝑝 = 𝑎𝑎 ⊕ 𝑎𝑎 (2.15)

The prefix network stage computes the final carries from the carry ‘Propagate’ and carry

‘Generate’ bits. Carry computation can be transformed to a prefix problem [5-9] using the

11

2.2 Review of Existing Adder Designs

associative operator ‘○’, which associates pairs of ‘Generate’ and ‘Propagate’ bits as given

below:

 (𝑔𝑔, 𝑝𝑝)○(𝑔𝑔′, 𝑝𝑝′) = (𝑔𝑔 + 𝑝𝑝. 𝑔𝑔′, 𝑝𝑝. 𝑝𝑝′) (2.16)

where 𝑔𝑔 and 𝑔𝑔′ represent the ‘Generate’ terms and 𝑝𝑝 and 𝑝𝑝′ represent the ‘Propagate’

terms. Using the operator ‘○’ consecutive ‘Propagate’ and ‘Generate’ pairs can be grouped to

generate carry as follows:

𝐶𝐶𝑖𝑖 = (𝑔𝑔𝑖𝑖 , 𝑝𝑝𝑖𝑖) ○(𝑔𝑔𝑖𝑖−1, 𝑝𝑝𝑖𝑖−1) ○…….(𝑔𝑔1, 𝑝𝑝1) ○(𝑔𝑔0, 𝑝𝑝0) (2.17)

Representing the operator ‘○’ as node ●, and signal pairs (𝑔𝑔, 𝑝𝑝) as edges of a graph,

parallel prefix carry computation can be represented as graphs. One of the prefix networks,

Kogge-Stone [9] represented as a graph is shown in Fig. 2.8. The white color node in the graph

represents a feed through node with no logic (generally realized with a buffer in hardware).

C 0C 1C 2C 3C 4C 5C 6C 7

(g
7,

p7
)

(g
6,

p6
)

(g
5,

p5
)

(g
4,

p4
)

(g
3,

p3
)

(g
2,

p2
)

(g
1,

p1
)

(g
0,

p0
)

Figure 2.8 Example of a Kogge –Stone prefix adder

The final post computation stage computes the final Sum from carry generated in prefix

network stage. These designs are very efficient in terms of delay and area when compared to

carry-select and carry look-ahead adders.

As operand size increases (32-bits and above) these prefix adders suffer from complexity

in prefix network due to an increase in number of logic cells and wiring [5, 9]. This problem can

be addressed with a hybrid adder (also called as a sparse adder) which is a combination of prefix

and carry-select adders [12-17]. These adders consist of two segments, one being carry

generation block (CGB) that has prefix network and the other the conditional sum computation

block (SCB) that has carry-select adders shown in Fig 2.9. As seen from the figure in CGB,

where a Kogge-Stone network structure is used, all ‘carry’s are not computed as in prefix adders

(shown in Fig. 2.8) but only a few (in this case C3 and C7) are computed depending on the degree

12

2.2 Review of Existing Adder Designs

of sparseness where the degree of sparseness is the number of sums selected conditionally. For

example, degree of sparseness 4 means that the carry will select four sum bits conditionally as

shown in Fig 2.9. Hence, all the carries are not required in CGB.

The SCB in general is implemented by using a carry select adder. As seen from the Fig.

2.9, appropriate sums in SCB are selected by the ‘carry’s generated in CGB using multiplexers

(MUX). Carry-select adders are better suited for sparse adders with low sparseness of 2-bit and

4-bit. Tyagi [18] proposed a reduced area scheme carry-select adder which can be used in a SCB.

An optimized implementation of a sparse adder with carry-select adder in SCB can be found in

[12, 17].
(g

7,
p7

)

(g
6,

p6
)

(g
5,

p5
)

(g
4,

p4
)

(g
3,

p3
)

(g
2,

p2
)

(g
1,

p1
)

(g
0,

p0
)

Cin

Prefix Network
(CGB)

4-Bit
Adder

4-Bit
Adder

4-Bit
Adder

a[3:0] b[3:0] a[7:4] b[7:4]

a[7:4] b[7:4]

C3
1

0

1

0

C7

(C3, S[3:0])
(C7, S[7:4]) Sum Computation

Block (SCB)

Figure 2.9 Example of a 8-bit Sparse adder with degree of sparsness as 4

It is clear that sparse adders have simple carry generation block. But as the operand length

increases, sparse adders also suffer from high fan-out and lateral wiring complexity in carry

generation network as in a prefix network. For instance, when the CGB of a 8-bit Kogge-Stone

Sparse adder shown in Fig. 2.9 is extended for 64-bit Kogge-Stone Sparse adder, shown in Fig.

2.10, it can be seen that the wiring complexity (i.e., congestion between wires) to generate carry

signals is increased. Similarly when a 64-bit Sklansky based prefix network is used in CGB

shown in Fig. 2.11 it can be noticed from the figure that the fan-out on carry signal ‘C31’ is high

(signal ‘C31’ is an input to compute the higher bit ‘carry’s).

13

2.3 Design and Implementation of Efficient Sum Computation Block for Higher Bit Sparse
Adders

C3C7C11C15C19C23C27C31C35C39C43C47C51C55C59C63

Figure 2.10 64 bit Kogge-Stone based CGB for a sparse 4 adder

C3C7C11C15C19C23C27C31C35C39C43C47C51C55C59C63

Figure 2.11 64 bit Sklansky based CGB for a sparse 4 adder

While these drawbacks can be overcome by increasing the degree of sparseness, the SCB

complexity however will increase. Moreover, the loading on Carry signal will increase further as

the number of Sum bits in SCB increases. For example in an 8-bit SCB, the Carry signal has to

drive eight MUXes to select the Sum which consume a large amount of area and power, thus

limiting the usage of direct higher bit carry-select adder as SCBs. In this work a modified SCB is

proposed and analyzed to address these problems.

2.3 Design and Implementation of Efficient Sum Computation Block for
Higher Bit Sparse Adders

As discussed in section 2.2.4 earlier, the power, area and fan-out overheads limit the usage

of carry-select adder in SCB as the degree of sparseness increases. The area overhead can be

reduced by using prefix structure with late Carry-in concept proposed by Sklansky [4]. This late

14

2.3 Design and Implementation of Efficient Sum Computation Block for Higher Bit Sparse
Adders
Carry-in concept or fastest input-carry processing is achieved by adding an extra row of node ●

at the end of the prefix carry network as shown in Fig 2.12. This addition of extra node ●

however increases the overall delay of the adder by one node stage. Any prefix structure can be

preferred to implement the prefix carry network depending on the design requirement. However,

the fan-out or loading on the Carry signals from the CGB is still a problem. In this work, the

structure of prefix network and the late carry-in scheme are analyzed and a new structure is

developed to address these problems.

C0C1C2C3C4C5C6C7C8C9C10C11C12C13C14C15

Late Carry
in

Prefix
Carry

Network

Figure 2.12 Sklansky parallel prefix adder with late Carry-in

The proposed approach is to reduce the fan-out or loading on the late carry-in signals it is

achieved by feeding the late Carry-in signal only for a few ‘carry’s. The remaining ‘carry’s are to

be computed with these few ‘carry’s to generate all the ‘carry’s required for sum computation.

The proposed technique is illustrated through an example by taking Han-Carlson prefix structure.

This prefix structure is chosen because of its uniformity in fan-in and fan-out requirements as

well as reduced number of nodes when compared to other prefix structures [9-11].

A 16-bit traditional Han-Carlson adder with late carry-in is shown in Figs 2.13(a). From

the figure, it can be seen that the loading on the Cin signal is 16. To reduce this loading, the

proposed technique is applied to this structure wherein the late carry-in signal (Cin) is fed only to

odd ‘carry’s i.e., G1:0, G3:0, etc… Even ‘carry’s are than computed from the odd ‘carry’s. The

modified Han-Carlson with late carry-in using the proposed technique is shown in Fig. 2.13 (b).

It can be observed that a 16-bit modified adder has a fan-out requirement of only 9 compared to

the traditional late carry-in prefix structure that has a fan-out of 16. Thus, the proposed technique

results in the reduction of fan-out on the late carry-in signal.

15

2.3 Design and Implementation of Efficient Sum Computation Block for Higher Bit Sparse
Adders

Cin

Cin

G1:0

G3:0

G5:0

G7:0

G9:0

G11:0

G13:0

 (a) (b)

Figure 2.13 (a) 16-Bit Han-Carlson Adder with late Carry-in. (b) Modified 16-Bit Han-Carlson
Adder with late Carry-in.

The gate-level realization of the nodes of the above structures is shown in Fig 2.14.

16

2.3 Design and Implementation of Efficient Sum Computation Block for Higher Bit Sparse
Adders

Ai Bi

gi pi

Gi:j

Gi:k Pi:k

Pi:j Gj:k Pi:j Pj:k

pi Ci-1/ Gi-1:0

Si

(a) (b)

(c) (d)

Gi:j

Gi:k

Pi:j Gj:k

Figure 2.14 Gate level implementation of nodes in Fig. 2.13.

The main limitation of the proposed technique is the uneven arrival of even and odd Sums.

For example, as seen from the Fig. 2.15, Sum S2 will be computed when the Generate term G’1:0

arrives. Further, Sum S3 has to wait for generate term G’2:0 which depends on G’1:0. This not only

results in extra delay but also leads to different arrival times of the digits of final Sum. This

issues is addressed in this work as described below.

From Fig. 2.15, the equation to compute the Sum digits S2 and S3 are as follows:

S2 = G′1:0 ⨁ G1 (2.18)

 S3 = G′2:0 ⨁ G2 (2.19)

The generate signal G’2:0 equation given in terms of G’1:0 is as follows

G′2:0 = G2 + G′1:0 P2 (2.20)

From equations 2.19 and 2.20, S3 can be rewrite as

S3 = (G2 + G′1:0P2) ⨁ P3 = (G2⨁ P3) (G′1:0)’ + ((G2 + P2) ⨁ P3)G′1:0 (2.21)

17

2.3 Design and Implementation of Efficient Sum Computation Block for Higher Bit Sparse
Adders

Equation 2.21 can be realized as shown in Fig. 2.16. Thus, the structure shown in Fig 2.13

can be further modified using this block as shown in Fig. 2.17. It can be seen that the overall

delay is reduced as well as the varied arrival times of different Sum digits is addressed. This

technique can also be adopted for the design of higher bit sparse tree adders [19-21] as explained

below.

Cin

G1:0

G’1:0

S2

G’2:0

S3

Figure 2.15 Modified 16-Bit Han-Carlson Adder with late Carry-in illustrating delay problem

Ci-1/ Gi-1:0Pj:k pi

1 0

Late carry-in

Si
Figure 2.16 Gate level implementation of Equation 2.21

18

2.4 Design and Implementation of Higher Bit Sparse Adder

Cin

Figure 2.17 Proposed SCB block with reduced fan-out with reduced delay

2.4 Design and Implementation of Higher Bit Sparse Adder

In Section 2.2.4, issues related to the implementations of higher bit sparse adders with

degree of sparseness more than 4 such as increasing wiring complexity and loading on the carry-

in signal have been explained. To address these problems a SCB has been proposed in Section

2.3. In this section, a 64-bit sparse adder is designed and implemented with a varying degree of

sparseness of 8, 16 and 32–bit in order to verify the advantages of the proposed SCB structure

stated earlier.

The CGB of 64-bit sparse adder with different degrees of sparseness mentioned above is

shown in Fig 2.18 (a, b, c) [19-20]. From the figure, it can be observed that the CGB complexity

has decreased as the degree of sparseness increases.

After the generation of ‘carry’s in CGB, the ‘sum’s are computed by using the SCB

proposed in the previous section. The 16-bit SCB structure explained earlier can be used for a

degree of sparseness 16. The same structure can also be extended for different bits to address

different degrees of sparseness.

The SCB area can further be reduced by using some of the group ‘Generate’ and

‘Propagate’ terms that have already been computed in the CGB. If the intermediate Propagate

and Generate terms generated at the end of the second stage of CGB, that is (G[1:0],P[1:0]) ,

19

2.4 Design and Implementation of Higher Bit Sparse Adder

(G[3:2],P[3:2])..etc., are used for Sum computation in SCB, it will result in power and area

reduction when compared to the existing sparse implementations. The proposed SCB with

reduced cells is shown in Fig 2.19(a) and Fig 2.19(b) for 8-bit and 16-bit respectively [19-20].

The same can also be extended to 32-bit SCB.

C7C15C23C31C39C47C55C63

C15C31C47

C63

(a) (b)

C31

C63

(c)

Figure 2.18 Carry generation for 64-Bit (a) Sparse-8 (b) Sparse-16 and (c) Sparse-32 adders.

20

2.5 Simulation Results

Intermediate
propagate and

generate from carry
generation network

Carry

Intermediate propagate and generate
from carry generation network

Carry

(a) (b)

Figure 2.19 Modified Han-Carlson adder with late Carry-in after reusing the second stage group
Propagate and Generate terms from Carry generation stage (a) 8-bit (b) 16-bit

From Fig 2.18 it can be seen that the SCBs have progressively lesser wiring and logic cell

complexity with increasing sparseness while the corresponding CGBs have increasing

complexity as seen from Fig 2.19. Thus, it can be generalized that for a sparse tree adder, the

complexity of SCB is inversely proportional to the complexity of the CGB. Since the sparse

adders provide the flexibility to control the Carry signal, these adders have application in the

design of multi-precision adders [22-24].

2.5 Simulation Results

All adders have been described in Verilog HDL and simulated using Cadence Incisive

Unified Simulator (IUS) v6.1 and are mapped on to the Synopsys 90nm generic Technology

library, using Cadence RTL Compiler v7.1. The derived netlist was then passed to Cadence First

Encounter XL v7.1 for floor-planning and routing.

The modified Han-Carlson Sum computation block for 64-bit Sparse-8, -16 and -32 has

been compared with 64-bit Sparse-8, -16 and -32 Han-Carlson late Carry-in adder and 64-bit

sparse-4 with conditional Sum adder [19-20]. Table 2.2 presents performance parameters such as

area, power, delay and power-delay product for all the three designs. Also, Fig. 2.20 provides a

graphical comparison of these parameters.

21

2.5 Simulation Results

Table 2.2 Area, power, delay and power-delay product for 64-bit adder with various sparseness

64-Bit adder

Sparse-
4 with
conditi

onal
sum

Sparse-
8 with
Han-

Carlson
late

carry-
in

Sparse-
8 with

Modifie
d Han-
Carlson

late
carry-in

Sparse-
16 with
Han-

Carlson
late

carry-in

Sparse-
16 with

Modified
Han-

Carlson
late

carry-in

Sparse-
32 with
Han-

Carlson
late

carry-in

Sparse-
32 with

Modified
Han-

Carlson
late

carry-in

Area (um2) 4316
(100%)

4739
(109.8%)

3998
(92.63%)

5257
(121.80%)

4383
(101.55%)

5652
(130.95%)

4911
(113.79%)

Power(mW) 0.286
(100%)

0.281
(98.25%)

0.2471
(86.36%)

0.309
(108.04%)

0.2627
(91.60%)

0.3278
(114.62%)

0.293
(102.45%)

Delay(ns) 1.101
(100%)

0.956
(86.83%)

0.969
(88.01%)

1.05
(95.37%)

1.03
(93.55)

0.89
(80.84%)

0.89
(80.84%)

Power-Delay
 product (pJ)

0.3149
(100%)

0.2686
(85.29%)

0.2394
(75.87%)

0.3245
(103.05%)

0.2706
(86.03%)

0.2917
(92.63%)

0.2608
(83.17%)

Figure 2.20 (a)

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

Sparse-4
with

conditional
sum

Sparse-8
with Han-

Carlson late
carry-in

Sparse-8
with

Modified
Han-Carlson
late carry-in

Sparse-16
with Han-

Carlson late
carry-in

Sparse-16
with

Modified
Han-Carlson
late carry-in

Sparse-32
with Han-

Carlson late
carry-in

Sparse-32
with

Modified
Han-Carlson
late carry-in

Area (um2)

22

2.5 Simulation Results

Figure 2.20 (b)

Figure 2.20 (c)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Sparse-4
with

conditional
sum

Sparse-8
with Han-

Carlson late
carry-in

Sparse-8
with

Modified
Han-Carlson
late carry-in

Sparse-16
with Han-

Carlson late
carry-in

Sparse-16
with

Modified
Han-Carlson
late carry-in

Sparse-32
with Han-

Carlson late
carry-in

Sparse-32
with

Modified
Han-Carlson
late carry-in

Power(mW)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Sparse-4
with

conditional
sum

Sparse-8
with Han-

Carlson late
carry-in

Sparse-8
with

Modified
Han-Carlson
late carry-in

Sparse-16
with Han-

Carlson late
carry-in

Sparse-16
with

Modified
Han-Carlson
late carry-in

Sparse-32
with Han-

Carlson late
carry-in

Sparse-32
with

Modified
Han-Carlson
late carry-in

Delay(ns)

23

2.5 Simulation Results

Figure 2.20 (d)

Figure 2.20 (a) Area (b) Delay (c) Power and (d) Power-Delay product analysis of various 64-
bit adders with different degrees of sparsesness

Table 2.2 and Fig. 2.20 provide a comparison of various design parameters for 64-bit adder

with different degrees of sparseness. As can be seen, the proposed 64-bit adder with a sparseness

of 8 involving the modified Han-Carlson adder performs better than other designs in terms of

power (a reduction of 14%) and delay (a reduction of 12%) resulting in a overall reduction of

25% in power-delay product. Further, there is also a reduction of 8% in area. But, if delay is the

only parameter important, then the design with a degree of sparseness 32 with modified Han-

Carlson late Carry-in adder that results in a 20% reduction in delay can be used.

It can be observed from the above table and figure that the 64-bit adder with a sparseness

of 16 and 32, while performing better than that with a sparseness of 4, do not perform as well as

that with a sparseness of 8. Also the adder with sparseness 32 performs better than that with

sparseness 16. This is because the 64-bit adder with a sparseness of 8 and 16, using either

existing compound adder or late Carry- in adder, needs 6 Carry merge stages to compute Carry

and has a fan-out of 8 and 16 respectively in the critical path. However, the same adder with a

sparseness of 32 needs 5 carry merge stages to compute carry and has a fan-out of 32 in the

critical path. Hence, there is an increase in delay for sparse-16 adder when compared to sparse-8

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Sparse-4
with

conditional
sum

Sparse-8
with Han-

Carlson late
carry-in

Sparse-8
with

Modified
Han-Carlson
late carry-in

Sparse-16
with Han-

Carlson late
carry-in

Sparse-16
with

Modified
Han-Carlson
late carry-in

Sparse-32
with Han-

Carlson late
carry-in

Sparse-32
with

Modified
Han-Carlson
late carry-in

Power-Delay
product (pJ)

24

2.5 Simulation Results

or sparse-32. This is also applicable to the sparse adders with modified sum computation block

[19-20].

An extended analysis has also been done for a 128-bit adder using the proposed technique.

Table 2.3 and Fig 2.21 present data related to area, power, delay and power-delay product for

sparse-16 and sparse-32 adders with modified Han-Carlson sum computation block.

Table 2.3 Area, power, delay and power-delay product for 128-bit adder with sparseness of 16
and 32

128-Bit adder Sparse-16 with Modified
Han-Carlson late Carry-in

Sparse-32 with Modified
Han-Carlson late Carry-in

Area(um2) 8775 9846
Power(mW) 0.5354 0.603

Delay(ns) 1.367 1.349
Power-Delay

Product(pJ)
0.7319 0.813

 Figure 2.21 (a)

8200
8400
8600
8800
9000
9200
9400
9600
9800

10000

Sparse-16 with Modified Han-Carlson
late carry-in

Sparse-32 with Modified Han-Carlson
late carry-in

Area(um2)

25

2.5 Simulation Results

Figure 2.21 (b)

Figure 2.21 (c)

0.5

0.52

0.54

0.56

0.58

0.6

0.62

Sparse-16 with Modified Han-Carlson
late carry-in

Sparse-32 with Modified Han-Carlson
late carry-in

Power(mW)

1.34

1.345

1.35

1.355

1.36

1.365

1.37

Sparse-16 with Modified Han-Carlson
late carry-in

Sparse-32 with Modified Han-Carlson
late carry-in

Delay(ns)

26

2.6 Conclusions

Figure 2.21 (d)

Figure 2.21 Extended analysis of 128-bit adder using the proposed technique in terms of

 (a) Area, (b) Delay (c) Power and Power-Delay Product

It can be seen from the above table and figure that the 128-bit adder with a sparseness of

16 performs better than the one with sparseness of 32.

2.6 Conclusions

In this chapter, novel designs for higher bit (64 & 128) sparse adders have been proposed.

The increased complexity of the sum computation block at larger bit lengths has been

compensated with alternate designs of carry generation block that results in reduced complexity.

A detailed analysis of the 64 & 128-bit sparse adders with different degree of sparseness

indicates that they perform better than the designs reported in literature.

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

Sparse-16 with Modified Han-Carlson
late carry-in

Sparse-32 with Modified Han-Carlson
late carry-in

Power-Delay Product(pJ)

27

Chapter 3
Design and Implementation of Efficient

Compressors and Counters

Contents
Chapter 3 ... 28

3.1 Introduction ... 29

3.2 Compressors and Counters .. 30

3.3 Existing Compressor Designs ... 30

3.3.1 3-2 Compressor...30

3.3.2 4-2 Compressor...31

3.3.3 5-2 Compressor...32

3.4 Design and Implementation of Efficient Compressors ... 34

3.4.1 3-2 Compressor...34

3.4.2 4-2 Compressor...35

3.4.3 5-2 Compressor...37

3.5 Designs of Existing Counters .. 38

3.5.1 (3, 2) Counter ..39

3.5.2 (7, 3) Counter ..39

3.5.3 (15, 4) Counter ..41

3.5.4 (31, 5) Counter ..42

3.6 Design and Implementation of Efficient Parallel Counters 42

3.6.1 (3, 2) Counter ..42

3.6.2 (7, 3) Counter ..43

3.6.3 (15, 4) counter...44

3.6.4 (31, 5) counter...46

3.6.5 (m, n) Parallel Counter ...47

3.7 Simulation Results and Analysis ... 47

3.7.1 Compressor ...48

3.7.2 Counter ...50

3.1 Introduction

3.8 Conclusions ... 53

3.1 Introduction

Multiplication is a basic arithmetic operation that is crucial in applications like digital

signal processing which in turn rely on efficient implementation of generic arithmetic and logic

units (ALU) and floating point units to execute dedicated operations like convolution and

filtering. In the implementation of multipliers, the main phases include generation of partial

products, reduction of partial products using CSA (Carry-Save Adder) [1-6] and Carry

propagation for the computation of the final result as shown in Fig 3.1. The second phase i.e.

reduction of the partial products contributes most to the overall delay, area and power.

In order to reduce partial products, multi-operand adders, which are different from

conventional adders, are required and hence a different design methodology is needed for multi-

operand adders [1-6]. A special structure known as counter/compressor is one strategy that can

be adopted for multi-operand addition. Wallace and Dadda were the first ones who explained the

usage of compressors and counters respectively for partial product reduction tree in multipliers

[25-26]. Later different optimized structures for compressors and counter have been reported in

literature [27-28].

Partial product
array (PPA)

Multiplicand (M)
Multiplier (N)

Double precision
product
(P = M*N)

n

2n

n

Figure 3.1 Steps involved in Multiplication

29

3.2 Compressors and Counters

3.2 Compressors and Counters

A (N, 2) compressor is a logic circuit that takes N bits of same significance and generates a

Sum bit and several Carry bits as the output. Though a compressor gives Sum and Carry, it is

different from a conventional adder. For example, compressor adds N-bits of same precision

whereas an adder adds 2 operands of N-bit numbers of different precision. Compressor operation

can be shown logically as

())..(*2...... 12121 kkN CoutoutCCarrySumCinCinCinIII ++++=+++++++
Where I1, I2… and Cin1, Cin2…are inputs for compressor.

An (M, N) parallel counter is a circuit which provides an N-bit count of the number of the

M-inputs that are logic ones. A counter differs from a compressor in that compressors have

‘Carry-inputs’ and ‘Carry-outputs’ in addition to the “normal” inputs and outputs, while counters

do not have them. An (M, N) bit counter is defined as

N
N

M SSSIII *2...*2*2... 1
1

0
0

10 +++=+++

Figure 3.2 Illustrates the difference between a compressor and a counter. Fig 3.2 (a) and

(b) explain the compressor and counter operations by taking an example of four same significant

bits [27-28].

(N,2)
Compressor

Cin1
Cin2

Cink

Cout1
Cout2

Coutk

Sum Carry

I1 I2 ... IN

.

.

.

.

.

.

.

.

.

1 + 1 + 1 + 1 + (0) = 0 + 2*(1 + 1)

(M,N) Counter

S0S1

I0 I1 IM
1

1

1

1

1 0 0

IM

S0

SN-1SN . . .

. . .

S1S2
 (a) (b)

Figure 3.2 (a) Compressor (b) Counter

3.3 Existing Compressor Designs

3.3.1 3-2 Compressor

A 3-2 compressor takes 3 inputs X1, X2, X3 and generates 2 outputs, the Sum bit S, and

the Carry bit C as shown in Fig.3.3(a).

30

3.3 Existing Compressor Designs

The compressor is governed by the basic equation
 X1 + X2 + X3 = Sum + 2*Carry (3.1)

X1 X2 X3

Carry Sum

3 – 2

X1 X2

XOR

XOR MUX

SUM Carry

Cin

(a) (b)

Figure 3.3 (a) 3-2 Compressor (b) Conventional Implementation of the 3-2 compressor

 The 3-2 compressor can also be employed as a full adder cell when the third input is

considered as the ‘Carry-in’ from the previous compressor block. Existing design shown in Fig

3.3(b) employs two XOR gates in the critical path [27-28].

3.3.2 4-2 Compressor

A 4-2 compressor has 4 inputs X1, X2, X3 and X4 and 2 outputs, Sum and Carry, along

with a Carry-in (Cin) and a Carry-out (Cout) as shown in Fig 3.4. The input Cin is the output

from the previous lower significant compressor. The Cout is the output to the compressor in the

next significant stage.

X1 X2 X3 X4

CinCout

Carry Sum

4 – 2

X1 X2 X3 X4

Cin
Cout

SumCarry

FA

FA

Figure 3.4 A 4-2 Compressor Block

Similar to the 3-2 compressor, a 4-2 compressor is governed by the basic equation

 X1+X2+X3+X4+Cin = Sum + 2*(Carry + Cout) (3.2)

31

3.3 Existing Compressor Designs

The standard implementation of the 4-2 compressor can be done using 2 full Adder cells as

shown in Fig 3.4 [1-3, 27,28].

X1 X2 X3 X4

Cin

Sum Carry

Cout

XOR XOR

XOR

XOR

MUX

MUX

Figure 3.5 A 4-2 compressor implemented with full adders

When the individual full adders are broken into their constituent XOR blocks, it can be

observed that the overall delay is equal to 4*∆-XOR gates (where ∆ refers to delay) as shown in

Fig 3.4.

The block diagram in Fig 3.5 shows the existing architecture for the implementation of the

4-2 compressor with a delay of 3*∆-XOR gates [1-3, 27-28]. But in this architecture, the fact that

both the output and its complement are available at every stage was not taken into account [28].

3.3.3 5-2 Compressor

The 5-2 Compressor block has 5 inputs X1, X2, X3, X4 and X5 and 2 outputs, Sum and

Carry, along with 2 input Carry bits (Cin1, Cin2) and 2 output Carry bits (Cout1,Cout2) as

shown in Fig.3.6(a). Input Carry bits are the outputs from the previous lesser significant

compressor block and the output Carry bits are passed on to the next higher significant

compressor block.

32

3.3 Existing Compressor Designs

X1 X2 X3 X4

Cin1

Carry Sum

5 – 2 Cin2

Cout1

Cout2

X5

FA

FA

FA

 X1 X2 X3 X4 X5

Cout1

Cout2

 Sum Carry

Cin1

Cin2

(a) (b)

Figure 3.6 (a) A 5-2 compressor block (b) Conventional implementation of a 5-2 compressor
block

The basic equation that governs the function of a 5-2 compressor block is given below

 X1+X2+X3+X4+X5+Cin1+Cin2=Sum+2*(Carry + Cout1 + Cout2) (3.3)

Conventional implementation of the compressor block is shown in Fig 3.6(b) where 3

cascaded full adder cells are used [27-28]. When these full adders are replaced with their

constituent blocks of XOR gates, then it can be observed that the overall delay is equal to (6*∆-

XOR) for the Sum or Carry output.

XOR XOR

XOR

XOR

XOR

XOR

X1 X2 X3 X4 X5

Cin1Cout1

MUX

MUX

MUX

Cin2
Cout2

SUM Carry

XOR XOR

XOR XOR

XOR

XOR

MUX

(X1+X2) (X3+X4) (X1X2 + X3X4)

MUX

Cin1Cout1

Cin2
Cout2

SUM Carry

X1 X2 X3 X4 X5

 (a) (b)

33

3.4 Design and Implementation of Efficient Compressors

XOR*

XOR^

X1 X2 X3 Cin2 X4 X5 Cin1

CGEN1

Cout1

Cout2

SUM Carry

XOR*

XOR^

XOR*

MUX

XOR MUX

(c)

Figure 3.7 Existing architectures of a 5-2 compressor

Many designs of a 5:2 compressor have been proposed where the delay has been reduced

to 5*∆-XOR gates as shown in Fig 3.7(a) which have further been reduced to 4*∆-XOR gates as

shown in Fig 3.7 (b) & (c).

3.4 Design and Implementation of Efficient Compressors

3.4.1 3-2 Compressor

In CMOS implementation, the gates like OR and AND require implementation of NOR

and NAND gates followed by an inverter. Thus, from OR and AND gates, we can obtain NOR

and NAND outputs without any extra hardware. This technique is used to design a XOR-XNOR

pair gate which is shown in Fig 3.8

B

A

B

A

A

A

B

B

A B

xor xnor

XOR-XNOR

xor

xnor

Figure 3.8 CMOS Implementation of XOR/XNOR Gate

34

3.4 Design and Implementation of Efficient Compressors

A 3-2 compressor can be implemented by the following expressions.

 Sum = X1 ⨁ X2 ⨁ X3 (3.4)

 Carry = (𝑋𝑋1 ⨁ 𝑋𝑋2) ∙ 𝑋𝑋3 + (𝑋𝑋1 ⨁ 𝑋𝑋2)�������������� ∙ 𝑋𝑋1 (3.5)

A gate-level implementation of these expressions has earlier been shown in Fig 3.3. In the

existing design, the output of the first XOR gate and X3 are given as inputs to second stage XOR

gate. This XOR gate can be replaced by a multiplexer which reduces the delay, as multiplexer

has less delay compared to XOR gate [1-6, 29].

In the proposed design shown in Fig.3.9, the fact that both the XOR and XNOR outputs are

computed, is efficiently used to reduce the delay by replacing the second XOR gate with a MUX.

This is due to the availability of the select bit i.e. X3 at the MUX block before the inputs arrive.

Thus, the time taken for the switching ON of the transistors is reduced in the critical path [30].

X1 X2

MUX

SUM Carry

X3

XOR-XNOR

MUX

Figure 3.9 Proposed design of the 3-2 Compressor

The equations governing the proposed (3, 2) compressor outputs are shown below.

 Sum = (𝑋𝑋1 ⨁ 𝑋𝑋2) ∙ 𝑋𝑋3���� + (𝑋𝑋1 ⨁ 𝑋𝑋2)�������������� ∙ 𝑋𝑋3 (3.6)

 Carry = (𝑋𝑋1 ⨁ 𝑋𝑋2) ∙ 𝑋𝑋3 + (𝑋𝑋1 ⨁ 𝑋𝑋2)�������������� ∙ 𝑋𝑋1 (3.7)

3.4.2 4-2 Compressor

In this design also, the fact that both the output and its complement are available at every

stage is neglected [28]. Thus replacing some XOR gates with multiplexers results in a significant

improvement in delay.

35

3.4 Design and Implementation of Efficient Compressors

X1 X2 X3 X4

Cin

Sum Carry

Cout

XOR-XNOR

MUX*

MUX

MUX

MUX

XOR-XNOR

Figure 3.10 Proposed 4-2 Compressor Design

Like in previous case, the MUX block at the SUM output gets the select bit before the

inputs arrive and thus the transistors are already switched ON by the time the inputs arrive. This

minimizes the delay to a considerable extent [30] as shown in Fig 3.10.

The equations governing the outputs are shown below

 CinXXXXSum ⊕⊕⊕⊕= 4321 (3.8)

 1)21(3)21(XXXXXXCout •⊕+•⊕= (3.9)

 4)4321()4321(XXXXXCinXXXXCarry •⊕⊕⊕+•⊕⊕⊕= (3.10)

The MUX* structure in Fig 3.10 is a multiplexer implemented using transmission gate

logic style shown in Fig. 3.11. This design of the multiplexer is faster and also consumes lesser

power than the CMOS design but requires buffers to enhance the driving capability. Therefore,

these types of multiplexers can be used where there are a CMOS transistors at its input and

output, because CMOS has good driving capability. Thus, transmission gate multiplexers are

used in the intermediate stage, thereby increasing the performance.

36

3.4 Design and Implementation of Efficient Compressors

A

B

S O

Figure 3.11 Transmission Gate Implementation of a multiplexer

3.4.3 5-2 Compressor

In the proposed design of the 5-2 compressor the most important change is to efficiently

use the outputs generated at every stage. This is done by replacing some XOR blocks with MUX

blocks as shown in Fig 3.12.

Also the select bits to the multiplexers in the critical path are made available much ahead

of the inputs so that the critical path delay is minimized. For example, the Cout2 output from the

previous lesser significant compressor block is utilized as the select bit after a stage it is

produced so that the MUX block is already switched ON and the output is produced as soon as

the inputs arrive. Also if the output of the multiplexer is used as select bit for another

multiplexer, then it can be used efficiently in a similar manner because the negation of select bit

is also required, as shown in Fig 3.7. Thus an extra stage to compute the negation can be saved.

Similarly replacing the XOR block in the second stage with a MUX block reduces the delay

because the select bit x3 is already available and the time taken for the transistor switching to

take place happens in parallel with the computation of the inputs of the block [30].

XOR-XNOR

MUX*

X1 X2 X3 Cin2 X4 X5 Cin1

CGEN1

Cout1

Cout2

SUM Carry

XOR-XNOR

MUX

MUX MUX

MUX*

MUX*

Figure 3.12 Proposed design of the 5-2 compressor

37

3.5 Designs of Existing Counters

As mentioned before, in all the general implementations of the XOR or MUX block, in

particular CMOS implementation, the output and its complement are generated. But in the

existing design this advantage is not being utilized fully [27-28]. In the proposed design these

outputs are utilized efficiently by using multiplexers at particular stages in the circuit. Also

additional inverter stages are eliminated. This in turn contributes to the reduction of delay, power

consumption and transistor count (area).

The equations governing the outputs are shown below:

 2154321 CinCinXXXXXSum ⊕⊕⊕⊕⊕⊕= (3.11)
 213)21(1 XXXXXCout •+•+= (3.12)

 4)54(1)54(2 XXXCinXXCout •⊕+•⊕= (3.13)

)321())154()321((

2))154()321((

XXXCinXXXXX

CinCinXXXXXCarry

⊕⊕•⊕⊕⊕⊕⊕

+•⊕⊕⊕⊕⊕=
 (3.14)

In the carry generation module (CGEN1) shown in Fig.3.12, the above equation (3.12) is

used to design the CMOS implementation of Cout1 as shown in Fig 3.13.

X3

X1

X2

X1 X2

X1

X2
X2

X3

Cout1

X1

Figure 3.13 Carry Generation Module (CGEN1)

3.5 Designs of Existing Counters

A wide variety of parallel counters exist in literature which are been listed in [55-56]. The

threshold gate counters proposed in [31-32] have been implemented with inverting threshold

gates but have not been widely used due to difficulty in realizing large threshold gates with

accurate thresholds. The switching tree counters proposed in [31-32] are implemented using

38

3.5 Designs of Existing Counters

relay switches but the complexity of this approach grows as the square of number of inputs,

making the realization of large counters prohibitively costly The quasi-digital counters [31-32]

and residue-threshold based counters are also not widely used as they do not appear to be

attractive with current technology.

The most popular and widely used existing counters are successive doubling counters [31-

32] and synthesized counters [31-32]. In successive doubling approach, full adders are used to

implement the counters. Typically, a (m, n) counter is implemented by using (n-m) full adders

with a critical path delay of (2m-3) full adders. The synthesized counters are manually optimized

[31-32] or obtained by computer aided design [31-32]. These counters have a lesser delay but a

higher hardware complexity than the full adder based counters.

3.5.1 (3, 2) Counter

A (3, 2) counter takes 3 inputs X1, X2, X3 and generates 2 outputs, the Sum bit, and the

Carry bit as shown in Fig 3.14 (a). The (3, 2) counter is governed by the basic equation,

 X1 + X2 + X3 = Sum + 2*Carry (3.15)

X1 X2 X3

Carry Sum

3 – 2

X1 X2

XOR

XOR MUX

SUM Carry

Cin

(a) (b)

Figure 3.14 (a) 3-2 Counter (b) Conventional Implementation of the 3-2 Counter

Existing designs as shown in Fig 3.14(b) employs two XOR gates in the critical path.

3.5.2 (7, 3) Counter

A (7, 3) counter takes 7 inputs X1-X7 and generates 3 outputs, the Sum bit S, and the

Carry bits C1 and C2 as shown in Fig.3.15. The outputs of the counter are represented as a

binary number {C2C1S}. The basic equation of (7, 3) counter is:

 C2*4C1*2S X7X6X5X4X3X2X1 ++=++++++ (3.16)

39

3.5 Designs of Existing Counters

X1 X4 X5 X7

S

7 – 3

X2 X3 X6

C1C2
Figure 3.15 (7, 3) Counter block diagram.

The existing implementations of (7, 3) counter are shown in Fig 3.16 [31-32]. The full

adder based counter circuit shown in Fig 3.16(a) has a delay of (6*∆-XOR gates) while the

synthesized counter circuit shown in Fig 3.16(b) has a delay of approximately (4*∆-XOR gates)

[31-32].

X0

X1

X2

X3

X5

X4

X6

S

C1

C2

FA

FA

FA

FA

s

s

C

C

C

(a)

40

3.5 Designs of Existing Counters

A

B

C

S

C2

C1

X0

X1
X2
X3
X4
X5
X6

(b)

Figure 3.16 Existing (7, 3) Counter designs (a) adder based counter (b) synthesized counter

3.5.3 (15, 4) Counter

The (15, 4) counter takes 15 inputs (X0-X14) and generates 4 outputs S0, S1, S2 and C0

with weights of one, two, four and eight respectively. Thus, the output of the counter is

represented as {S0S1S2C0}. The existing design of (15, 4) counter is shown in Fig 3.17 [31-32]

with a critical path delay of (5*∆-Full Adders) or (10*∆-XOR gates).

41

3.6 Design and Implementation of Efficient Parallel Counters

X3

X4

X5

X0

X1

X2

FA

X9

X10

X12

X6

X7

X8

X11

X13

X14

C0

S2

S1

S0

FA

FA

FA

FA

FA

FA

FA

FA

FA

FA

Figure 3.17 Exiting design for (15,4) counter.

3.5.4 (31, 5) Counter

Similarly, the (31, 5) counter has 31 inputs (X0-X30) and Generates 5 outputs S0, S1, S2,

S3 and C0 with weights of one, two, four, eight and sixteen respectively. Thus, the output is

represented as {S0S1S2S3C0}. The existing design for a (31, 5) counter can be found in [31-32]

which has a critical path delay of (7*∆-Full Adders) .

3.6 Design and Implementation of Efficient Parallel Counters

3.6.1 (3, 2) Counter

In the proposed design as shown in Fig 3.18, the fact that both XOR and XNOR outputs

values are computed is efficiently used to reduce delay by replacing the second XOR with a

MUX as explained in the previous section. Also in the implementation of the second multiplexer

which generates Carry, select bit and its complement are generated in the XOR-XNOR block in

the previous stage, thus eliminating the need for additional inverters, thereby reducing the delay,

area and power [30, 33].

42

3.6 Design and Implementation of Efficient Parallel Counters

X1 X2

MUX

SUM Carry

X3

XOR-XNOR

MUX
0 1 0 1

Figure 3.18 Proposed Implementation of the (3,2) Counter

Thus the proposed implementation shown in Fig.3.18 has a delay of (∆-XOR +∆-MUX)

which is less when compared to existing design (∆ refers to delay).

3.6.2 (7, 3) Counter

In this design, outputs generated at every stage are efficiently made use of, as explained

earlier in section 3.4. The proposed implementation of (7,3) counter is given in Fig 3.19. This

counter has a delay of (∆-XOR gate + 2*∆-MUX) for S and (∆-XOR gate + 3*∆-MUX) for C1

and C2 and a comparison of this design with the exiting designs can be seen in Table 3.1 [33].

XOR-XNOR

XOR-XNOR

XOR-XNOR

0
1

MUX*0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

X1
X2

X3
X4

X5

X6

X7

S

C2

C1

MUX*

MUX*

MUX*

MUX*

MUX*

MUX

MUX

MUX

Figure 3.19 Proposed (7, 3) counter design.

43

3.6 Design and Implementation of Efficient Parallel Counters

Table 3.1.Comparison of existing (7, 3) with proposed design

(7, 3)Counter Delay Gate Complexity

Full-Adder Based 6*∆-XOR 8 XORs + 4 MUXes

Synthesized
Counter [31] 4*∆-XOR

7 XORs
+ 18 basic gates (OR,
NAND, AND, NOR)

CAD synthesized
counter [31]

∆-MUX
+ 9 basic gates

2 MUXes
+ 32 basic gates

Proposed ∆-XOR
+ 3*∆-MUX 3 XORs + 9 MUXes

It can be seen from the above table that the proposed design results in reduced delay as

compared to the existing design.

3.6.3 (15, 4) counter

The proposed design for (15, 4) counter is given in Fig 3.20(a) and the adder* module used

in this design in given in Fig 3.20 (b). This design is based on (7, 3) counter proposed earlier.

The delay of the proposed counter is (∆-XOR gate + 4*∆-MUX) for S0, (∆-XOR gate+ 5*∆-

MUX) for S1 and (∆-XOR gate + 6*∆-MUX) for S2 and C0, thus having a critical path delay of

(∆-XOR gate + 6*∆-MUX) or (∆-(7, 3) counter + 3*∆-MUX) as the S output of the (7, 3)

counter is obtained one stage before the Carry bits as shown in Table 3.2 [33].

44

3.6 Design and Implementation of Efficient Parallel Counters

X3

X4

X5

X0

X1

X2

X9

X10

X12

X6

X7

X8

X11

X13

X14

C0

S2

S1

S0

(7,3)
Counter

Adder*

Adder*

Adder*

S

C1

C2

S

C1

C2
(7,3)

Counter

(a)

2:1

MUX*
2:1

MUX
X0

X1

Cin

X0
S

C
2:1

MUX*

K

(b)

Figure 3.20 (a) Proposed design for (15, 4) counter (b) Adder* module used in the counter.

Table 3.2 Comparison of existing (15, 4) with proposed design

(15, 4)Counter Delay Gate Complexity

Full-Adder Based 10*∆-XOR 22 XORs
+ 11 MUXes

CAD Synthesized
Counter [31]

3*∆-MUX
+ 3*∆-XOR

+ 5 basic gates

10 MUXes
+ 49 basic gates

Proposed ∆-XOR + 6*∆-MUX
6 XORs

+ 27 MUXes

It can be seen from the above table that the proposed design results in reduced delay as

compared to the existing design.

45

3.6 Design and Implementation of Efficient Parallel Counters

3.6.4 (31, 5) counter

The proposed design for the (31,5) counter is given in Fig 3.21. It has a critical path delay

of (∆-(15, 4) counter + 4*∆-MUX) which is equal to (∆-XOR gate + 8*∆-MUX), while the

critical path delay of existing design built with full adders is (7*∆-Full Adder) or (14*∆-XOR

gate) as shown in Table 3.3.

Another advantage of the proposed counter design is that the outputs of the lower order

counters ((15, 4) and (7, 3)) are obtained with a delay of one stage (one MUX) each. Hence in

Adder* blocks, the output K (in Fig 3.20(b)) and the Cin are obtained almost at the same time,

thereby reducing the speed of the circuit Also, if K=0, the Carry bit (Cout) doesn’t depend on

Cin and hence the delay of the next Adder* block is reduced considerably [33].

C0

S2

S1

S0

15-4
Counter

15-4
Counter

Adder*

Adder*

Adder*
X0-X14

15

X14-X29
15

X30

Adder*
S3

S0

S1

S2

C0

S0

S1

S2

C0

Figure 3.21 Proposed design for (31, 5) counter.

Table 3.3. Comparison of existing (31, 5) with proposed design

(31, 5)Counter Delay Gate Complexity

Full-Adder
Based 14*∆-XOR 52 XORs

+ 26 MUXes

Proposed ∆-XOR
+ 8*∆-MUX

12 XORs
+ 66 MUXes

46

3.7 Simulation Results and Analysis

It can be seen from the above table that the proposed design results in reduced delay as

compared to the existing design.

3.6.5 (m, n) Parallel Counter

A general (m, n) parallel counter can be designed using (m-n) full adder blocks [33]. The

output of a (m, n) counter is represented as {S0S1S2S3….Sn-2C0}. Based on the proposed counter

designs in section 3.6, any (m, n) parallel counter, for m>7, can be designed as shown in Fig

3.22. That is, every (m, n) counter can be designed by using [(m-1)/2, n-1] counters and Adder*

blocks. Thus they can be implemented recursively by using lower order counters as the building

blocks. Since the lower order counters are already minimized for maximum efficiency as

described earlier, the (m, n) counter can be expected to have better performance characteristics

[33]. The generalized delay of the (m, n) counter can be expressed as [∆ ((m-1)/2,n-1)counter +

(n-1) *∆-MUX)].

[(m-1)/2, n-1]
Counter

X1-X(m-1)/2

(m-1)/2

Xm

C0, S0-Sn-3
Xk-X(m-1)

K= (m-1)/2 +1

[(m-1)/2, n-1]
Counter

(m-1)/2

n-1

N-1 Adder*
Blocks

C0, S0-Sn-3

n-1

C0

S0-Sn-2

n-1

Figure 3.22 Proposed design for (m,n) counter.

3.7 Simulation Results and Analysis

All the simulations have been carried out using Cadence Tool Suite. The calculation of

power and delay are carried out using the Virtual Analog Simulation Tool. All the schematics

and layouts have been carried out using the CMOS 0.18-µm technology. The simulations are

47

3.7 Simulation Results and Analysis

performed under various voltages ranging from 0.9V to 3.3V and the inputs are toggled at a

frequency of 100 MHz.

3.7.1 Compressor

The proposed compressor designs are compared with the existing ones and the

performance parameters are detailed in Tables 3.4 to 3.9. Tables 3.4, 3.6, 3.8 and Fig. 3.23 (a)

compare power consumption of the proposed compressors with the existing designs. Tables 3.5,

3.7, 3.9 and Fig. 3.23 (b) do the same for the delay.

Table 3.4 Power consumption for 3-2 compressor (nW)

 0.9V 1.2V 1.8V 2.5V 3.3V
Existing 1.74 4.3 9.65 15.9 27.5
Proposed 1.25 3.26 7.7 13.4 24.5

Table 3.5 Delay for 3-2 compressor (ns)

 0.9V 1.2V 1.8V 2.5V 3.3V
Existing 3.1 2.1 1.35 1.15 0.9
Proposed 2.94 1.92 1.25 1.08 0.86

Table 3.6 Power consumption for 4-2 compressor (nW)

 0.9V 1.2V 1.8V 2.5V 3.3V
Existing 4.5 11.8 20.2 31.5 53.5
Proposed 3.85 10.4 17.5 28.3 46.4

Table 3.7 Delay or 4-2 compressor (ns)

 0.9V 1.2V 1.8V 2.5V 3.3V
Existing 4.8 2.88 1.8 1.44 1.21
Proposed 4.4 2.5 1.5 1.28 1.1

Table 3.8 Power consumption for 5-2 compressor (nW)

 0.9V 1.2V 1.8V 2.5V 3.3V
Existing 25.25 44.95 101.25 240.5 355
Proposed 20.32 35.59 87.15 177.5 241.5

Table 3.9 Delay for 5-2 compressor (nS)

 0.9V 1.2V 1.8V 2.5V 3.3V
Existing 6.7 4.2 2.3 1.78 1.5
Proposed 6.1 3.75 1.7 1.41 1.28

48

3.7 Simulation Results and Analysis

Figure 3.23 (a)

Figure 3.23 (b)

Figure 3.23 (c)

Figure 3.23 Comparison of proposed 3:2, 4:2 and 5:2 compressors with existing compressor in
terms of (a) Power (b) Delay (c) Power-Delay Product

0

100

200

300

400

3:2 4:2 5:2

Power (nW)

Existing

Proposed

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

3:2 4:2 5:2

Delay (nS)

Existing

Proposed

0

200

400

600

3:2 4:2 5:2

Power-Delay Product (pJ)

Existing

Proposed

49

3.7 Simulation Results and Analysis

From the Tables and the figures, it can be observed that the proposed 3:2 compressor is 7%

faster and consumes 10.2% lesser power than the existing designs. Also, the 4:2 compressor is

33.3% faster and consumes 15% lesser power than the existing ones. Further, the 5:2 compressor

consumes 13.2% less power and is 26% faster than the existing ones when operating at 1.8V.

The improvement in the power-delay product is 36.4%, 27.8% and 24% in the proposed 5-2

compressor, 4-2 compressor and 3-2 compressors respectively [30].

As mentioned in section 3.4.2, the MUX* blocks in the proposed design can be

implemented using transmission gate (CMOS+) design. This new implementation is compared

with the CMOS implementation and the results are detailed in Tables 3.10 to 3.12 below.

Table 3.10 Delay for 5:2 compressor with MUX* in CMOS and CMOS+ design (nS)

 0.9V 1.2V 1.8V 2.5V 3.3V
MUX* AS CMOS 6.1 3.75 1.7 1.41 1.28

MUX* AS CMOS+ 5.304348 3.26087 1.478261 1.226087 1.113043

Table 3.11 Power Consumption for 5:2 compressor with MUX* in CMOS and CMOS+ design
(nW)

 0.9V 1.2V 1.8V 2.5V 3.3V
MUX* AS CMOS 20.32 35.59 87.15 177.5 241.5

MUX* AS CMOS+ 19.35238 33.89524 83 169.0476 230

Table 3.12 Power Delay Product for 5:2 compressor with MUX* in CMOS and CMOS+ design

(aJ)

 0.9V 1.2V 1.8V 2.5V 3.3V
MUX* AS CMOS 123.952 133.4625 148.155 250.275 309.12

MUX* AS CMOS+ 102.6518 110.528 122.6957 207.2671 256

It is evident from the above tables that an improvement in the delay of 14.6%, power of

5.1% and power-delay product of 18.2% has been obtained when compared to the CMOS

implementation [30].

3.7.2 Counter

The proposed counter designs are compared with the existing ones and the performance

parameters are detailed in Tables 3.13 to 3.18. Tables 3.13, 3.15, 3.17 and Fig. 3.24 (a) compare

power consumption of the proposed counter designs with the existing designs. Tables 3.14, 3.16,

3.18 and Fig. 3.24 (b) do the same for the delay.

50

3.7 Simulation Results and Analysis

Table 3.13 Power for 7,3 counter (nW)

 0.9V 1.2V 1.8V 2.5V 3.3V
Existing 6.96 17.2 38.6 63.6 110
Proposed 5.725 15.29 29.05 48.4 83.15

Table 3.14 Delay results for 7,3 counter (nS)

 0.9V 1.2V 1.8V 2.5V 3.3V
Existing 9.3 6.3 4.05 3.45 2.7
Proposed 5.87 3.46 2.125 1.82 1.53

Table 3.15 Power for 15,4 counter (nW)

 0.9V 1.2V 1.8V 2.5V 3.3V
Existing 19.14 47.3 106.15 174.9 302.5
Proposed 15.2 40.36 81.2 137 240.5

Table 3.16 Delay for 15,4 counter (nS)

 0.9V 1.2V 1.8V 2.5V 3.3V
Existing 15.5 10.5 6.75 5.75 4.5
Proposed 9.25 5.74 3.675 3.1 2.69

Table 3.17 Power for 31,5 counter (nW)

 0.9V 1.2V 1.8V 2.5V 3.3V
Existing 45.24 111.8 250.9 413.4 715
Proposed 35.4 93.76 193.2 327.6 579

Table 3.18 Delay for 31,5 counter (nW)

 0.9V 1.2V 1.8V 2.5V 3.3V
Existing 21.7 14.7 9.45 8.05 6.3
Proposed 15.13 9.58 6.175 5.26 4.41

0

100

200

300

400

500

600

700

800

7:3 15:4 31:5

Power (nW)

Existing

Proposed

51

3.7 Simulation Results and Analysis

Figure 3.24 (a)

Figure 3.24 (b)

Figure 3.24 (c)

Figure 3.24 Comparison of proposed 7:3, 15:4 and 31:5 counters with existing counters in terms
of (a) Power (b) Delay (c) Power-Delay Product

From the Tables and figures, it can be observed that the delay and power consumption of

proposed counters are less when compared to existing counter designs.

0

1

2

3

4

5

6

7

7:3 15:4 31:5

Delay (nS)

Existing

Proposed

1

10

100

1000

10000

100000

1000000

7:3 15:4 31:5

Power-Delay Product (aJ)

Existing

Proposed

52

3.8 Conclusions

As mentioned in section 3.4, the MUX* blocks in the proposed design can be implemented

using Transmission gate (TG). This implementation has been compared with the CMOS

implementation and the results are detailed in Table 3.19 and 3.20.

Table 3.19. Comparison of Average Power (nW) and Delay (nS) of the proposed counters with
MUX* as CMOS and Transmission Gate(TG) logic

Counter
MUX* as CMOS MUX* as TG

Delay Power Delay Power

(3,2) 8.2 10.12 - -

(7,3) 42.75 21.42 45.32 24.41

(15,4) 45.45 24.5 48.92 27.55

(31,5) 47.28 26.15 49.88 28.64

Table 3.20. Comparison of Average Power-Delay Product (aJ) of the proposed counters with
MUX* as CMOS and Transmission Gate (TG) logic

Counter MUX* as CMOS MUX* as TG
Power-Delay Prod. Power-Delay Prod.

(3,2) 9.35 -
(7,3) 35.66 37.15
(15,4) 38.25 39.66
(31,5) 40.3 41.72

It is evident from the Table 3.19 that the proposed design for (7,3), (15,4) and (31,5)

counters consume 20-30% lesser power and are 40-50% faster than the existing ones. From

Table 3.20, it can be observed that there is an improvement of 35-40% in power-delay product.

Thus the implementation of MUX* block with transmission gate (TG) logic found to be better in

terms of power, delay and power-delay product when compared to the implementation with

CMOS logic [33].

3.8 Conclusions

In this chapter, design of efficient counters and compressors are presented. The design for

the 3-2, 4-2 and 5-2 compressor are analyzed using CMOS and CMOS+ implementations of

XOR and the MUX blocks. New 3-2, 4-2 and 5-2 compressor designs have been proposed and

compared with the existing ones. The proposed designs perform better than the existing ones in

every aspect i.e., area, power, delay and power-delay product over the complete voltage range

simulated. A set of efficient lower order counters like (3,2), (7,3), (15,4) has been proposed for

53

3.8 Conclusions

efficient higher order counter implementation. Further, a generalized (m, n) counter is proposed

which uses lower order counters as basic building blocks resulting in an efficient counter design.

54

Chapter 4
Design of Function Specific Arithmetic

Circuits

Contents
Chapter 4 ... 55

4.1 Introduction: .. 55

4.1.1 Incrementer/Decrementer Circuit ...56

4.1.2 2’s Complement Circuit..56

4.1.3 Priority Encoder Circuit..56

4.2 Existing Designs .. 56

4.2.1 Increment/Decrement circuits...56

4.2.2 2’s Complement and Priority Encoder Circuits ..58

4.3 Proposed Multi-functional INC/DEC/2’s complement/Priority Encoder Circuit 58

4.3.1 Motivation ..58

4.4 Implementation .. 60

4.4.1 Input Selection Block ...61

4.4.2 Decision Block ...61

4.4.3 Output Selection Block ...65

4.5 Simulation Results ... 67

4.5.1 Multi-functional INC/DEC/2’s Complement/Priority Encoder:67

4.6 Conclusion ... 73

4.1 Introduction:

As mentioned earlier, the main purpose of this thesis is to develop efficient functional

arithmetic circuits which when put together should result in an efficient Arithmetic and Logic

Unit (ALU). In addition to design described in earlier chapter, circuits such as

Incrementer/Decrementer circuit, 2’s complement circuit and priority encoder circuit, which are

4.2 Existing Designs

widely used in many digital systems [1-6, 34-42] are designed and analyzed in this chapter. A

brief introduction to these circuit is given below:

4.1.1 Incrementer/Decrementer Circuit

The Increment/Decrement (INC/DEC) circuit is a digital module which can count up or

down by one. It is a common building block in many digital systems like microprocessor, and

microcontroller as a part of the address generation unit, program counter, etc…

4.1.2 2’s Complement Circuit

The 2’s complement circuit forms an important part of computer systems that are based on

2’s complement number representation. An application of 2’s complement circuit is in

multipliers that need to find the 2’s complement of multiplicand for the negative encoding in

booth algorithm.

4.1.3 Priority Encoder Circuit

Priority encoder circuit is a circuit which makes input with highest priority active and all

other inputs are inactive. This circuit is used for arbitrating among N units that are all requesting

access to a shared resource and is used in interrupt controllers and conditional handlers.

4.2 Existing Designs

4.2.1 Increment/Decrement circuits

There are various designs for binary INC/DEC circuits in literature[34-36]. Many of these

designs use adder to implement the increment/decrement operation. An adder/subtractor can be

used for these operations by making one input as operand and other input as ‘1’. But usage of

entire an adder for single bit addition increases delay and power when compared to a dedicated

INC/DEC design.

The current designs of binary INC/DEC are mainly adder/subtractor-based, counter-based

or Carry look-ahead adder-based as shown in Fig 4.1 (a) [34]. Recently, a MUX-based binary

INC/DEC which is more efficient than the previous INC/DECs has been proposed in literature as

shown in Fig 4.1 (b) [35]. This circuit has data-in MUX array, a decision block and data-out

MUX array. While this design is efficient in terms of both speed and hardware complexity, when

compared to adder based approaches, a series of (n-2) OR gates and a MUX in its critical path

hampers the speed of the circuit to a certain extent.

56

4.2 Existing Designs

An improvement to this circuit was proposed in [36], shown in Fig 4.2, which uses a look-

ahead type approach resulting in reduced delay when compared to MUX-based INC/DEC. For

example, an N-bit Carry look-ahead type results in (N/8) + 9 gates delay, when an 8-bit look-

ahead block is used.

Cin CoutN-bit Adder

Inc/Dec

Z

A<n-1,0> B<n-1,1> B<0>

(a)

Z1

1
0

1
0

1
0

1
0

1
0

1
0

1
0

Z0

Z2

Zn-1

Z0

Z1

Z2

Zn-1

Y0

Y1

Y2

Yn-1

Cout

INC/DEC

(b)
Figure 4.1 (a) Adder based (b) MUX based

Z1

1
0

1
0

1
0

1
0

1
0

1
0

1
0

Z0

Z2

Z8

Z0

Z1

Z2

Z8

Y0

Y1

Y2

Y8

INC/
DEC

8-bit Look-
Ahead
Block

1
0

1
0

Z7

Z7
Y7

1
01

0
Zn-1

Zn-1
Yn-1

Cout

1
0

1
0

Z14
Y14Z15

8-bit Look-
Ahead
Block

1
01

0
Z16

Z15
Y15

Data-in MUX array Data-out MUX arrayDecision Box
Figure 4.2 Hybrid Binary INC/DEC design (Lookahead based) [36]

57

4.3 Proposed Multi-functional INC/DEC/2’s complement/Priority Encoder Circuit

4.2.2 2’s Complement and Priority Encoder Circuits

Conventionally the 2’s complement of a number is found by complementing each bit and

adding 1 to the complemented number. When a normal adder circuit is used for this operation it

results in large complexity in hardware and also large delay.

A logarithmic method has been proposed in [34]. Resulting in a (log2N) +1 gate delay for

implementing the N-bit 2’s complement circuit.

A priority encoder is realized by using a prefix tree of AND gates. A similar (log2N) +1

delay implementation of an N-bit priority encoder circuit can be found in [5].

4.3 Proposed Multi-functional INC/DEC/2’s complement/Priority Encoder
Circuit

4.3.1 Motivation

The motivation in designing a unified multi-functional circuit, which performs increment,

decrement, 2’s complement and priority encoding, comes from two main observations explained

below [37-38].

Observation 1: Similarity in implementation of 2’s complement, priority encoder and

decrementer circuits.

One of the paper and pen methods of finding a 2’s complement number is to find least

significant one bit (LSOB) and then complementing all the remaining input MSB bits while

keeping the bits before the occurrence of LSOB same. This is explained with an example below.

Example 4.1 : To find the 2’s complement of 11011100 we keep the bits same until the

occurrence of LSOB. After the occurrence of LSOB all the remaining input bits are

complemented resulting in 00100100

1 1 0 1 1 1 0 0

LSOB

Complement bits Same bits

0 0 1 0 0 1 0 0

Input

2's Complment

 The priority encoder with LSB having highest priority also needs finding of the LSOB.

Before the occurrence of LSOB the output bits remain the same as input bits. After the

occurrence of LSOB, the remaining output bits are made zero.

58

4.3 Proposed Multi-functional INC/DEC/2’s complement/Priority Encoder Circuit

Example 4.2 : To find the priority encoded output of 11011100 we keep the output bits

same as input until the occurrence of LSOB. After the occurrence of LSOB all the remaining

output bits are made zero. The result is thus 00000100.

1 1 0 1 1 1 0 0

LSOB

Zero Same bits

0 0 0 0 0 1 0 0

Input

Priority Encoded
output

Similar to 2’s complement and priority encoder circuits the decrementer also needs finding

of the LSOB. But unlike the other two circuits, the input bits are complemented till the

occurrence of LSOB in decrementer. After the occurrence of the LSOB the output bits remain

the same as input

Example 4.3 : To find the decremented output of 11011100 we complement the input bits

until the occurrence of LSOB. After the occurrence of LSOB all the remaining output bits remain

same as input bits. The result is thus 11011011.

Same bits

1 1 0 1 1 1 0 0

LSOB

Complement bits

1 1 0 1 1 0 1 1

Input

Decremented
value

Observation 2: A 2’s complement circuit can be used as incrementer by complementing

the input.

The 2’s complement of any number A is given by (A’ + 1). Complementing the input A and

taking 2’s complement of the number results in (A +1), which is the incremented value of input

A.

Example 4.4 : To find the incremented value of 11011100 we first complement the value

resulting in 00100011 and then finding the 2’s complement resulting in 11011101

59

4.4 Implementation

1 1 0 1 1 1 0 0Input

0 0 1 0 0 0 1 1Complemented
Input

2's Complment

1 1 0 1 1 1 0 1Incremented
value

As seen from above observations increment, decrement, 2’s complement and priority

encoder operations have a common operation of finding the LSOB. This forms the motivation

for designing and implementing the multi-functional INC/DEC/2’s complement/Priority encoder

circuit, which is explained in detail in the following section.

4.4 Implementation

Based on the observations made in the previous section, the proposed multi-functional

INC/DEC/2’s complement/Priority encoder circuit [37-38] can be designed using the following

blocks as shown in Fig. 4.3

1. Input Selection Block

2. Decision Block

3. Output Selection Block

Input Selection Block

Decision Block

Output selection Block

Z

I

D

O

Cnt1

Cnt0

Cnt1

Cnt0

Figure 4.3 Basic Blocks of the Proposed Multi-functional circuit

The control signals ‘Cnt1’ and ‘Cnt0’ are used to select different operations as shown in

Table 4.1.

60

4.4 Implementation

Table 4.1 Control signals used to select different operations

Cnt1 Cnt0 Operation performed
0 0 Increment
0 1 Decrement
1 0 2’s complement
1 1 Priority Encode

4.4.1 Input Selection Block

This block selects the normal input for decrement, 2’s complement and priority encoding

operations and complemented input for increment operation. Fig 4.4 shows the implementation

of this block.

Z1

01010101

Z0Z2Zn-1

Cnt1 Cnt0

I1 I0I2In-1
Figure 4.4 .Input Selection Block

In this figure Z represents input to the selection block and I represents output of the

selection block. Since input Z is to be complemented only for increment operation i.e. when

Cnt1 = 0 and Cnt0 = 0, a NAND gate is used to generate the selection signal for the array of

input multiplexers. The outputs (In-1In-2….I1I0) of the input selection block now act as inputs to

the decision block as shown in Fig 4.5.

4.4.2 Decision Block

This block finds the decision signals which have the information of least significant one bit

(LSOB). Since increment, decrement, priority encoder and 2’s complement operations need

finding of LSOB, decision block is common to all the operations.

61

4.4 Implementation

Prefix-Based Decision Block

I0I1In-2In-1

D0D1Dn-2Dn-1
Figure 4.5. Decision Block

The MUX-based binary INC/DEC circuit mentioned earlier [35] in Fig 4.1(b) has a

decision block with N-1 (OR) gate delay. An improved decision block is shown in Fig 4.2, which

has a delay of (N/8+9) gates (when 8-bit look ahead is used). This delay can be further reduced

by using prefix tree structure of OR gates resulting in log2N OR gate delay [5]. Different types of

proposed 8-bit decision blocks are shown in the Fig 4.6 and Fig 4.7.

I0I1I2I3I4I5I6I7

D0D1D2D3D4D5D6D7
Figure 4.6 Prefix-Based Decision Block Type I

62

4.4 Implementation

I0I1I2I3I4I5I6I7

D0D1D2D3D4D5D6D7
Figure 4.7 Prefix-Based Decision Block Type II

The above implementations of the decision blocks result in reduced delay, when compared

with existing designs [35-36]. The delay and complexity of the proposed and existing

implementations of the decision block are shown in Table 4.2.

Table 4.2 Delay and Number of Gates Required in Decision Blocks

Decision Block Number of Gates Required Delay
Mux-Based [41] (N -1)OR (N-1) tOR

Hybrid [42] (N-1)OR + N/8(4*NAND+2*NOR+ OR) (N/8+9) tOR
Proposed prefix-based

Type I (Fig 4.6)
(N (log2 N)- N + 1) OR (log2 N) tOR

Proposed prefix-based
Type II (Fig 4.7)

N/2 (log2 N) OR (log2 N) tOR

The structures shown in Fig 4.6 and 4.7 can be modified to result in less number of logic

gates and with a delay of ((log2N) +1) gates as shown in Fig 4.8 and 4.9.

63

4.4 Implementation

I0I1I2I3I4I5I6I7

D0D1D2D3D4D5D6D7
Figure 4.8 Area optimised version of Prefix-based Decision Block Type I

I0I1I2I3I4I5I6I7

D0D1D2D3D4D5D6D7
Figure 4.9 Area Optimised Version of Prefix-based Decsion Block Type II

64

4.4 Implementation

For CMOS implementation, the structures shown in Figs 4.6-4.9 can be further modified

by using NOR-NAND blocks in the first two stages. The modified version of the structure in Fig

4.6 is shown in Fig 4.10.

While it takes only 4 transistors to build NAND/NOR gate, 6 transistors are used for

OR/AND gate (extra 2 transistors for inverter). Also, OR gate has an extra delay of inverter (1

transistor) compared to NOR/NAND gate. Hence the above implementation results in reduced

area, power and delay. The area of the structure in Fig 4.10 is reduced by 12 inverters and the

critical path delay is reduced by 2T (delay of 2 inverters), when compared to the original design

in Fig 4.6. The structures in Figs 4.7-4.9 can also be designed using a NOR-NAND block in the

first two stages.

I0I1I2I3I4I5I6I7

D0D1D2D3D4D5D6D7
Figure 4.10 Prefix based decision block Type I with NOR-NAND

4.4.3 Output Selection Block

Output Selection Block is used to find the output, based on control signals Cnt1, Cnt0 and

inputs (Zn-1…Z1Z0). The Boolean equations for different operations can be derived from the

observations made earlier. The outputs (O) for different operations based on decision signal (D)

are given below.

Increment Operation: Cnt1 = 0, Cnt0 = 0

If Dn-1 = 0, then output On = Zn (Zn is nth input signal)

65

4.4 Implementation

If Dn-1 = 1, then output On = Zn’ (Zn’ is complement of Zn)

Decrement Operation: Cnt1 = 0, Cnt0 = 1

If Dn-1 = 0, then output On = Zn’

If Dn-1 = 1, then output On = Zn

2’s complement Operation: Cnt1= 1, Cnt0 = 0

If Dn-1 = 0, then output On= Zn

If Dn-1 = 1, then output On= Zn’

Priority Encode Operation: Cnt1 = 1, Cnt0 = 1

If Dn-1 = 0, then output On= Zn

If Dn-1 = 1, then output On= 0.

The implementation of output selection block based on the above equations is shown in Fig

4.11.

OSOSOSOS

0
Z0Z1 D0Dn-3

Zn-2Zn-1
Dn-2

O0O1On-2On-1

Zi 0

Cnt1
Cnt0 0

0

0

0

1

1

1

1

Zi

Zi

Zi

Di-1

Cnt1
Cnt0

Oi

Cnt1
Cnt0

Figure 4.11 Output Selection Block

66

4.5 Simulation Results

The output selection block is a multi-functional block which can be configured, using the

control signals Cnt1 and Cnt0, to operate as a decrementer, incrementer, 2’s complement or

priority encoding circuit [37-38].

4.5 Simulation Results

4.5.1 Multi-functional INC/DEC/2’s Complement/Priority Encoder:

All the designs have been structurally described using Verilog HDL and simulated using

Cadence Incisive Unified Simulator (IUS) v6.1 covering all functional combinations. These

adders were mapped on the TSMC 180nm Technology Typical library (operating conditions 1.8

V, 25ºC), using Cadence RTL Compiler v7.1. Inputs were set to have a toggle rate of 50% and a

frequency of 1GHz for calculating dynamic power.

Initially, a comparison is carried out for INC/DEC circuits with proposed [37-38] and

existing 32-bit decision blocks [35-36]. The prefix based Type I structures shown in Fig 4.6, Fig

4.8 and Fig 4.10 are chosen to implement the decision block of the proposed INC/DEC circuits

and are compared with existing INC/DEC circuits shown in Fig 4.1 and Fig 4.2. Table 4.3 shows

the comparison results.

Table 4.3 Simulation results for 32-bit INC/DEC Circuits

INC/DEC Delay
(nS)

Power
(mW)

Power-Delay
Product (pJ)

Area
(um2)

Mux-based [35] (Fig 4.1(b)) 5.640
(100%)

0.336
(100%)

1.895
(100%)

854
(100%)

Hybrid [36] (Fig 4.2) 2.386
(42.30%)

0.418
(124.40%)

0.997
(52.61%)

933
(109.25%)

With Proposed Decision Block
Type I (Fig 4.6)

1.436
(25.46%)

0.414
(123.21%)

0.594
(31.35%)

1200
(140.51%)

With Proposed Area Optimized
Decision Block Type I (Fig 4.8)

1.589
(28.17%)

0.375
(111.61%)

0.596
(31.45%)

1027
(120.26%)

With Proposed Delay Optimized
Decision Block Type I (Fig 4.10)

1.221
(21.65%)

0.407
(121.13%)

0.497
(26.23%)

1137
(133.14%)

67

4.5 Simulation Results

Figure 4.12 (a)

 Figure 4.12 (b)

0
200
400
600
800

1000
1200
1400

Mux-based
[35] (Figure

4.1(b))

Hybrid [36]
(Figure 4.2)

With
Proposed
Decision

Block Type I
(Figure 4.6)

With
Proposed

Area
Optimized
Decision

Block Type I
(Figure 4.8)

With
Proposed

Delay
Optimized
Decision

Block Type I
(Figure 4.10)

Area (um2)

Area (um2)

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

Mux-based
[35] (Figure

4.1(b))

Hybrid [36]
(Figure 4.2)

With
Proposed
Decision

Block Type I
(Figure 4.6)

With
Proposed

Area
Optimized
Decision

Block Type I
(Figure 4.8)

With
Proposed

Delay
Optimized
Decision

Block Type I
(Figure 4.10)

Power (mW)

Power (mW)

68

4.5 Simulation Results

Figure 4.12 (c)

Figure 4.12 (d)

Figure 4.12 Comparisions of proposed designs with existing designs in terms of (a) Area
(b)Power (c) Delay (d) Power-Delay Product

0

1

2

3

4

5

6

5.64 2.386 1.436 1.589 1.221

Mux-based
[35] (Figure

4.1(b))

Hybrid [36]
(Figure 4.2)

With Proposed
Decision Block
Type I (Figure

4.6)

With Proposed
Area

Optimized
Decision Block
Type I (Figure

4.8)

With Proposed
Delay

Optimized
Decision Block
Type I (Figure

4.10)

Delay (nS)

Delay (nS)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Mux-based
[35] (Figure

4.1(b))

Hybrid [36]
(Figure 4.2)

With
Proposed
Decision

Block Type
I (Figure

4.6)

With
Proposed

Area
Optimized
Decision

Block Type
I (Figure

4.8)

With
Proposed

Delay
Optimized
Decision

Block Type
I (Figure

4.10)

Power-Delay Product (pJ)

Power-Delay Product (pJ)

69

4.5 Simulation Results

It is clear from the Table 4.3 and Fig 4.12 that the INC/DEC circuits with proposed

decision blocks result in 33-48% reduction in delay and 30-50% reduction in power delay

product, depending on the decision block used, when compared with the existing designs [36].

It can also be seen from the Table and the figure that INC/DEC circuit with delay

optimized decision block of Type I results in 14% less delay when compared to a similar one

with a simple prefix based decision block. Also, it has a 14% improvement in area.

Table 4.4. below details the results obtained for the multi-functional circuit that can be

configured to perform increment, decrement, 2’s complement or priority encode operations. This

circuit has been implemented with both the existing and proposed decision blocks.

Table 4.4 Simulation results For 32-bit Multi-functional INC/DEC/2’s complement/Priority
Encoder Circuit

Multi-functional INC/DEC/2’s
complement/Priority Enoder Circuit

Delay
(nS)

Power
(mW)

Power-Delay
Product (pJ)

Area
(um2)

With Decision Block of Mux-based [35] 6.745
(100%)

0.556
(100%)

3.75
(100%)

1354
(100%)

With Decision Block of Hybrid [36] 3.497
(51.85%)

0.619
(111.33%)

2.16
(57.60%)

1432
(105.76%)

With Proposed Decision Block Type I
(Fig 4.6)

2.538
(37.63%)

0.630
(113.31%)

1.598
(42.51%)

1700
(125.55%)

With Proposed Area Optimized
Decision Block Type I (Fig 4.8)

2.692
(39.91%)

0.593
(106.66%)

1.596
(42.56%)

1527
(112.78%)

With Proposed Delay Optimized
Decision Block Type I (Fig 4.10)

2.333
(34.89%)

0.624
(112.23%)

1.455
(38.80%)

1637
(120.90%)

70

4.5 Simulation Results

Figure 4.13 (a)

Figure 4.13 (b)

0
200
400
600
800

1000
1200
1400
1600
1800

With Decision
Block of Mux-

based [35]

With Decision
Block of

Hybrid [36]

With
Proposed
Decision

Block Type I
(Figure 4.6)

With
Proposed

Area
Optimized
Decision

Block Type I
(Figure 4.8)

With
Proposed

Delay
Optimized
Decision

Block Type I
(Figure 4.10)

Area (um2)

Area (um2)

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

With Decision
Block of Mux-

based [35]

With Decision
Block of

Hybrid [36]

With
Proposed
Decision

Block Type I
(Figure 4.6)

With
Proposed Area

Optimized
Decision

Block Type I
(Figure 4.8)

With
Proposed

Delay
Optimized
Decision

Block Type I
(Figure 4.10)

Power (mW)

Power (mW)

71

4.5 Simulation Results

Figure 4.13 (c)

Figure 4.13 (d)

Figure 4.13 Comparisions of multi-functional circuit with proposed decision blocks and existing
decision block in terms of (a) Area (b)Power (c) Delay (d) Power-Delay Product

0
1
2
3
4
5
6
7
8

With Decision
Block of Mux-

based [35]

With Decision
Block of Hybrid

[36]

With
Proposed

Decision Block
Type I (Figure

4.6)

With
Proposed Area

Optimized
Decision Block
Type I (Figure

4.8)

With
Proposed

Delay
Optimized

Decision Block
Type I (Figure

4.10)

Delay (nS)

Delay (nS)

0
0.5

1
1.5

2
2.5

3
3.5

4

With
Decision
Block of

Mux-based
[35]

With
Decision
Block of

Hybrid [36]

With
Proposed
Decision

Block Type
I (Figure

4.6)

With
Proposed

Area
Optimized
Decision

Block Type
I (Figure

4.8)

With
Proposed

Delay
Optimized
Decision

Block Type
I (Figure

4.10)

Power-Delay Product (pJ)

Power-Delay Product (pJ)

72

4.6 Conclusion

It is clear from Table 4.4 and Fig 4.13 that the proposed multi-functional circuit with

results in a 23-33% reduction in delay and 26-32% reduction in power delay product, depending

on different prefix based decision blocks used, when compared with the similar circuit with the

existing decision blocks [36].

4.6 Conclusion

In this chapter, some function specific arithmetic blocks such as incremeter/decrementer,

priority encoder, etc.., that are frequently used in processors have been designed and analyzed.

Further, a novel multi-functional circuit which can be configured to perform increment,

decrement, 2’s complement or priority encoder operations, has been proposed and implemented.

The multi-functional circuit implementation using the novel decision blocks results in a

reduction of up to 33% in delay and 32 % in power delay product when compared with the

existing implementations. The decision block proposed in this work can also be used for the

design of stand-alone INC/DEC block leading to a reduction of 48% in delay and 50% in power

delay product.

73

Chapter 5
Design and Implementation of a Unified

BCD/Binary Adder/Subtractor

Contents
Chapter 5 ... 74

5.1 Introduction ... 74

5.2 Review of Existing Techniques for BCD Addition/Subtraction 76

5.2.1 One-Digit BCD Full Adder ..76

5.2.2 Higher Bit BCD/Binary Adders/Subtractors ..77

5.3 A Unified BCD/Binary Adder/Subtractor Architecture .. 79

5.3.1 Conventional Binary Adder /Subtractor ...80

5.3.2 A Modified Binary Adder/Subtractor ...82

5.3.3 Modified BCD Adder/Subtractor ...84

5.3.4 A Modified Unified BCD/Binary Adder/Subtractor Architecture88

5.4 Simulations and Results .. 89

5.5 Conclusions ... 92

5.1 Introduction

There is a growing importance of decimal arithmetic in commercial, financial and internet-

based applications. These applications cannot tolerate errors that result from the conversion of

binary format to decimal format. Thus, hardware support for decimal arithmetic is receiving

considerable attention. Recently, specifications for decimal floating point arithmetic have been

added to the draft revision of IEEE-754 standard for floating point arithmetic [43]. Despite the

widespread use of binary arithmetic, decimal computation remains essential for many

applications. Not only is it required whenever numbers are presented for human inspection, but is

also often a necessity when fractions are involved. Decimal fractions are pervasive in human

endeavors, yet most cannot be represented by binary fractions. The value 0.1 for example,

5.1 Introduction

requires an infinitely recurring binary number. If a binary approximation is used instead of an

exact decimal fraction, results can be incorrect even if subsequent arithmetic is correct.

As the IEEE standard for decimal floating point is approved, hardware support for decimal

floating point arithmetic will be incorporated in processors for various applications. Still, a major

consideration while implementing Binary Coded Decimal (BCD) arithmetic is to enhance its

speed as much as possible.

BCD is a decimal representation of a number directly coded in binary, digit by digit. For

example, the number (9527)10 is represented as (1001 0101 0010 0111)BCD . It can be seen that

each digit of the decimal number is coded in binary and then concatenated to form BCD

representation of the decimal number.

To use this representation all the arithmetic and logical operations need to be defined. As

the decimal number system contains 10 digits, at least 4 bits are needed to represent a BCD digit.

The BCD representation of digit A is A4A3A2A1 where all ()1,0∈kA . The only point to note is

that the maximum value that can be represented by a BCD digit is ‘9’. The representation of

(10)10 in BCD is (0001 0000).

Addition in BCD can be explained by considering two decimal digits A and B with BCD

representations as A4A3A2A1 and B4B3B2B1 respectively. In the conventional approach , these

two numbers are added using a 4-bit binary adder during which it is possible that the resultant

Sum can exceed 9 resulting in an overflow. If the Sum is greater than 9, the binary equivalent of

6 is added to the resultant Sum to obtain the exact BCD representation. This can be illustrated

with the following example

)00010001(
)11(00011

)6(0110
)11(1011

)5(0101
)6(0110

=Answer
BCDinBCD

Add
Sum
B
A

75

5.2 Review of Existing Techniques for BCD Addition/Subtraction

5.2 Review of Existing Techniques for BCD Addition/Subtraction

5.2.1 One-Digit BCD Full Adder

A BCD 1-digit adder is a circuit that adds two BCD digits in parallel and also produces the

Sum digit in BCD along with the necessary correction logic. The conventional implementation of

addition as mentioned above is shown in Fig 5.1[44]. It can be seen that a 4-bit binary adder is

used initially to add two BCD digits (each digit expressed using 4 bits) with a carry-input. An

overflow detection circuit is used (to check if the ‘Sum’ of the BCD digit has exceeded 9) which

is designed using two 2-input AND gates and a 3-input OR gate. Finally, another 4-bit binary

adder is used as a correction stage, which comes in the path of final Sum computation. Thus, the

critical path in this circuit consists of a 4-bit binary adder, overflow logic and one more 4-bit

binary adder. Assuming, in the best case, that the 4-bit binary adder is a carry look-ahead adder,

a gate level analysis would indicate that it consists of 4-gates in the critical path. It can be

observed from Fig 5.1 that the overflow detection circuit comes into picture only after the top-

most 4-bit binary adder performs its operation and it consists of 2 gates in the critical path. Thus,

a minimum of a 10-gate delay can be expected in conventional implementation [44]. The above

design can however be optimized by removing those gates that are completely redundant in their

operation. Such a modification is shown in Fig 5.2 which results in a smaller critical path. A

faster carry prediction for this implementation is proposed in [45], which uses carry look-ahead

logic to predict the carry in advance. These 1-digit full adders can be cascaded to realize higher

digit BCD adders.

Figure 5.1 Block Diagram of Conventional 1-digit BCD Full Adder

76

5.2 Review of Existing Techniques for BCD Addition/Subtraction

Figure 5.2 Block Diagram of Modified Conventional 1-digit BCD FA

5.2.2 Higher Bit BCD/Binary Adders/Subtractors

A unified BCD/Binary module is the one, which can perform both BCD as well as binary

operation. There have been many contributions on decimal arithmetic especially on

adders/subtractors [43-56]. Some of the initial contributions came from Schoomklar et al. [46]

and Adiletta et al. [47]. The first BCD sign-magnitude adder/subtractor was designed by Grupe

[48]. An area efficient sign-magnitude adder was later developed by Hwang [49]. In this

approach two additional conversions were introduced before and after the binary addition.

A BCD adder similar to the carry select adder was presented in [50]. This design

concurrently calculates two results, one assuming the presence of the input carry and the other its

absence. It then selects the appropriate result as the carry is computed. Fischer et al. [51] later

came up with an improved version of this design shown in Fig 5.3 where only a single adder was

used to reduce the area overhead.

F A F A F A F A

F A F A

Cin

A 3 A 2 A 1 A 0 B 3 B 2 B 1 B 0

Cout S 3 S 2 S 1 S 0

0

CO CI

S

CO CI

S

CO CI

S

CO CI

S

CO CI

S

CO CI

S

1 1XX A1

A2 1X1X

77

5.2 Review of Existing Techniques for BCD Addition/Subtraction

Invert the
operand when

a sign is
detected

A 6 is added
when both N2

and N1 are
positive

Binary
Adder

Subtract a 6
when

necessary

N1

N2

F2F1

X

Y

S

C

AGS

F3

SUM

Input Stage Output Stage

Figure 5.3 Fischer’s Architecture [51]

BCD adder / subtractor architectures in many IBM processors are based on the work

presented by Haller et al. in [52]. A generic architecture shown in Fig 5.4 operates in a single

cycle, though requiring corrections in some cases. In case of subtraction, there is a need for

computation of the complement to obtain correct result, thus increasing the latency.

Digitwise - 6

N1
-

N2

N1
+

N2

N1
-

N2
-
6

N1
+

N2
+
6

Digitwise - 6

N1
-

N2

N1
+

N2

N1
-

N2
-
6

N1
+

N2
+
6 Digital Carry

Network

Digitwise + 6

0 1

Operand N1

Operand N2

Dec Add Dec Sub

MUX

MUX MUX

MUX

Partial Sum 0 Partial Sum 1

SUM

CY0 CY1

Carry Out

Figure 5.4 Haller’s Architecture [52]

Humberto et al. [53] proposed a universal adder design shown in Fig 5.5 that uses effective

addition / subtraction operations on unsigned/sign-magnitude and various complement

representations. This design overcomes the limitations of previously reported approaches that

produce some of the results in complement representation when operating on sign-magnitude

numbers.

78

5.3 A Unified BCD/Binary Adder/Subtractor Architecture

EAdd XOR

Digitwise -6

DC
Logic

Correction Coder

(3/2) Counter Array

Co Carry-Propagate Adder Ci

XOR

Co
Logic

 Add N1' N2' N2 N1

 Add Bin

Binary ADD/SUB
Decimal Add

DS

Add

Decimal Correction Time

 N1 N2* N1 N2

Decimal SUB

 SUM
Figure 5.5 Humberto’s Architecture [53]

In the existing architectures like Fischer’s [51] and Haller’s [52] , if a smaller operand is

subtracted from larger operand, extra hardware for 2’s complement or 10’s complement is

required to get the final unsigned number. This adds not only an area overhead but also affects

the delay. In Humberto [53], a comparator is used in the pre-computational block to check which

operand is smaller and necessary correction is incorporated in the pre-computation block thereby

avoiding usage of extra complementary stage. However, in this architecture also usage of

comparator creates hardware overhead and gives rise to delay in the critical path. In this thesis, a

novel architecture is proposed that can perform BCD and binary addition / subtraction on both

unsigned/signed numbers without any need of a comparator stage as well as 2’s/10’s

complementary stage.

5.3 A Unified BCD/Binary Adder/Subtractor Architecture

In this architecture, the output carry signal is analyzed to determine which of the operands

is greater unlike Humberto architecture that compares two numbers at the input stage itself. This

approach eliminates the need for a comparator at the input stage which is not possible with

Humberto architecture. Further, end-around carry technique is used to correct the 2’s/10’s

complementary cases due to the which usage of 2’s/10’s complementary stage at the output can

be avoided. Thus, the proposed architecture can be said to have advantage in terms of area and

delay when compared to the existing architectures like Humberto’s. In the following sub-section,

79

5.3 A Unified BCD/Binary Adder/Subtractor Architecture

a detailed implementation of the proposed unified binary and BCD adder/subtractor is discussed.

Initially, the conventional binary adder/subtractor is discussed followed by a modified binary

adder/subtractor. This is followed by the existing design of BCD adder/subtractor leading to an

improved version of the same. Finally, the binary and BCD adder/subtractor has been combined

to realize a unified binary/BCD adder /subtractor that performs better than the exiting one.

5.3.1 Conventional Binary Adder /Subtractor

The subtraction operation between two operands say A and B is given as follows:

S = A + B’ + 1.

Where B’ represents the complement of B.

Thus, for implementing binary subtraction, one of the operands is inverted and given to an

adder circuit with an input carry as ‘1’. In binary subtraction, two cases can arise, i.e., A > B and

A ≤ B. When A > B, the result ‘S’ is in unsigned/signed magnitude form. When A ≤ B, the result

‘S’ is in 2’s complement form. In this case, ‘S’ needs to be corrected using 2’s complementary

stage to get correct result in signed magnitude form.

The conventional implementation of binary subtractor along with 2’s complement

correction is shown in Fig. 5.6. The final carry-out signal from the adder indicates whether A > B

or A ≤ B. For example, when ‘4’ is subtracted from ‘5’ the carry-out will be ‘0’. If ‘5’ is

subtracted from ‘4’, the carry-out of the binary adder is ‘1’. Thus, from final carry-out signal, the

requirement of 2’s complement correction can be decided.

 Binary AdderCarry-out

2’s complement

InvertA

B

S1Sn

1 01 0

Cin

Figure 5.6 Conventional implementation of binary subtractor

80

5.3 A Unified BCD/Binary Adder/Subtractor Architecture

In floating-point operations, where the operands are in signed magnitude form, there is an

extra bit that indicates the sign of the operand. Addition/subtraction operation on this signed

magnitude form not only depends on type of operation but also on the sign bit. For example,

assume X and Y are two (n+1)-bit signed magnitude numbers such that X = [XnXn-1Xn-2…X0] and

Y = [YnYn-1 Yn-2……Y0], where Xn and Yn are sign bits. The type of operation i.e., addition or

subtraction is represented with ‘Op’. (Where ‘Op’ is logic ‘1’ the operation is subtraction and

vice versa). The effective operation that depends on the type of operation as well as sign bits is

given in Table 5.1.

Table 5.1 Effective Operation on signed magnitude numbers

Xn Yn Op Effective Operation (EOp)

0 0 0 Addition

0 0 1 Subtraction

0 1 0 Subtraction

0 1 1 Addition

1 0 0 Subtraction

1 0 1 Addition

1 1 0 Addition

1 1 1 Subtraction

From this Table, the ‘Effective Operation’ (EOp) is given by equation (5.1). When the

‘EOp’ is logic ‘1’, the operation that needs to be performed is addition and when ‘EOp’ is logic

‘0’ the operation is subtraction.

EOp = (Xn ⊙ Yn)⊕ Op (5.1)

After the effective operation EOp is determined using equation 5.1, sign of the result is

computed using the sign of the first operand X i.e. Xn and the Carry-out from the adder circuit. If

the final effective operation is addition then the sign of the final result is equal to the sign of the

first operand i.e. X. However, if the effective operation is subtraction the final sign depends on

the sign of X and also the carry-out signal (indicates if X >Y or X≤ Y) of the adder circuit. The

sign of the final result ‘Sn’ is given by

Final Sign Sn = Xn if EOp = ‘1’ i.e. addition

Sn = Xn ⊕ (Cout)’ if EOp = ‘0’ i.e. subtraction.

81

5.3 A Unified BCD/Binary Adder/Subtractor Architecture

The sign of final result from the above equation can be obtained using the implementation

shown in the Fig 5.7

EOp

Xn (sign bit of
operand X) Carry-out

1 0

Sign bit of the final Result

Figure 5.7 Final Sign ‘Sn’ computation logic

The design of binary adder/subtractor with conventional subtractor explained earlier and

which supports the signed magnitude form is shown in Fig 5.8. From the figure, it can be

observed that the extra 2’s complementary stage increases delay and area when compared to the

same used for addition operation.

 Binary AdderCarry-out

2’s complement

Invert

A

B

1 0

S1Sn

1 01 0

EOp

EOp

Figure 5.8 Conventional implementation of binary adder/subtractor with signed magnitude

5.3.2 A Modified Binary Adder/Subtractor

In this section, a binary adder/subtractor is proposed which uses end-around carry method

to eliminate the complementary correction stage. For using end-around carry method, the adder
82

5.3 A Unified BCD/Binary Adder/Subtractor Architecture

is implemented using the prefix network. In the proposed design, the subtraction operation (that

depends on X > Y and X ≤ Y) is implemented by using the following equations.

If X > Y (EOp = 0 and Carry-out =1) then result = X + (Y)’ +1 (5.2)

If X ≤ Y (EOp = 0 and Carry-out = 0) then result = (X + (Y)’+1)’+1 = (X +(Y)’)’ (5.3)

When the effective operation is addition i.e., EOp = 1, both the operands X and Y are given

directly to the prefix adder and the final result is X+Y. When the effective operation is

subtraction i.e. EOp = 0, operand Y is inverted at the input side. The normal addition operation is

carried out to result in X + (Y)’. The resulting ‘Carry-out’ of this addition indicates whether X >

Y or X ≤ Y. Based on this and from the above equations, addition of ‘1’ or inverting operation is

decided to compute the final result. The optimized late carry-in adder proposed in section 2.3 is

used in this design. This late carry-in is used for the addition of ‘1’ when X>Y. When X ≤ Y, a

group of XOR gates carries out the inverting operation after the sum is computed. The proposed

binary adder/subtractor design is shown in Fig 5.9.

Prefix Carry Generation NetworkCarry-out
EOp

Sum computation using XOR
EOp

Invert

X

Y

Eop 1 0

S1Sn

Figure 5.9 Implementation of the Proposed Binary Adder/subtractor Design

83

5.3 A Unified BCD/Binary Adder/Subtractor Architecture

5.3.3 Modified BCD Adder/Subtractor

The existing BCD Adder/Subtractor architectures and the limitations of the same have

been explained in section 5.2. In this section, a modified BCD adder/subtractor architecture is

presented which overcomes these limitations. The proposed design is inspired from Fischer

approach but eliminates the usage of complementary stage as well as supports unsigned and

signed magnitude form.

In Fischer’s approach, the BCD addition operation is performed by pre-correction block

where digit-wise addition of ‘6’ is carried out for one of the operands. After pre-correction the

result is added to other operand by a binary adder. The post-correction block includes conditional

subtraction of ‘6’ depending up on the ‘Carry-out’ at each digit stage. This signal at each digit

stage indicates whether the digit is greater than ‘9’ or not. For example, if the ‘Carry-out’ is ‘1’

the digit is less than or equal to ‘9’ and hence no correction is required. If the ‘Carry-out’ is ‘0’

the digit is greater than ‘9’ and a correction by subtraction of ‘6’ is needed. Since 2’s

complement of ‘6’ is ‘10’, subtraction of ‘6’ i.e. (0110)2 is accomplished by addition of ‘10’ i.e.,

(1010)2. The following example 5.1 and Fig 5.10 illustrate the above decimal addition operation.

Example 5.1:

Let X = 5 5 6

 Y = 2 3 9

 In BCD format: X = 0101 0101 0110

 Y = 0010 0011 1001

Addition of digit-wise 6 i.e. (0110)2 to X results in new X,

 X = 0101 0101 0110

 +6 0110 0110 0110

Hence, new X = 1011 1011 1100

Now the ‘new X’ is added to Y and correction is applied.

84

5.3 A Unified BCD/Binary Adder/Subtractor Architecture

1 0 1 1 1 0 1 1 1 1 0 0

0 0 1 0 0 0 1 1 1 0 0 1+

New X

Y

1 1 0 1 1 1 1 1 0 1 0 1

100

No carry out, correction
needed

Carry out, no
correction needed

1 0 1 0

0 1 1 1 1 0 0 1 0 1 0 1

+

Correct Binary output

Correct BCD output

Correction 1 0 1 0

Figure 5.10 Illustration of BCD addition operation

The BCD subtraction is similar to binary subtraction with an extra post-correction stage

like in BCD addition. In Fischer’s approach, the BCD subtractor gives unsigned result when

X>Y where X and Y are minuend and subtrahend respectively. However, this approach requires a

10’s complement, like 2’s complement for binary, if X ≤ Y. The design proposed in this work is

aimed to eliminate the overhead related to this extra complementary stage. However, the post-

correction stage needs to be modified to handle both conditions X>Y and X ≤ Y. The following

examples 5.2 and 5.3, Fig 5.11 and Fig 5.12 illustrate the decimal subtraction operation for cases

X>Y and X ≤ Y respectively.

Example 5.2: Subtraction operation and X>Y

Let X = 5 5 6
 Y = 2 3 9
 In BCD format: X = 0101 0101 0110
 Y = 0010 0011 1001

As explained in binary adder/subtractor, if X > Y, the result = X+Y’+1. Thus, taking 1’s

complement of Y (as in normal binary subtraction) results in ‘New Y’. This ‘New Y’ is added to

X. If the ‘carry-out’ signal is ‘1’ that indicates X>Y, addition of ‘1’ is carried out. Then post-

correction is applied on this result to compute final BCD difference. The digit wise carry of ‘1’

85

5.3 A Unified BCD/Binary Adder/Subtractor Architecture

indicates that the digit is less than or equal to ‘9’ and hence no correction is required while the

digit wise carry of ‘0’ indicates the digit is greater than ‘9’ and a correction by subtraction of ‘6’

or addition of ‘10’ is needed [57].

Correct Binary output

0 1 0 1 0 1 0 1 0 1 1 0

1 1 0 1 1 1 0 0 0 1 1 0+

X

New Y

0 0 1 1 0 0 0 1 1 1 0 1

011 No carry out, correction needed
depending on Carry String-2 (C2x)

1 0 1 0

0 0 1 1 0 0 0 1 0 1 1 1

+

Correct BCD output

Post Correction

Carry-out =1
indicating X > Y1

Carry String -1

Carry String -2

00

Correction
Required (C1x)’(C2x)’0 10

+

C13 C12 C11

C23 C22 C21

Where ‘x’ corresponds to a particular bit

 Carry out, no correction needed

Figure 5.11 Illustration of BCD Subtraction operation when X > Y

Example 5.3: Subtraction operation and X ≤ Y
Let X = 2 3 9
 Y = 5 5 6
 In BCD format: X = 0010 0011 1001
 Y = 0101 0101 0110

As explained in binary adder/subtractor, if X ≤ Y, the result = (X+Y’)’. Thus, taking 1’s

complement of Y (as in normal binary subtraction) results in ‘New Y’. This ‘New Y’ is added to

X. If the ‘carry-out’ signal is ‘0’ that indicates X ≤ Y, the result is complemented. Then post-

correction is applied on this result to compute final BCD difference. The digit carry of ‘0’

indicates the digit is less than or equal to ‘9’ and hence no correction is required while the digit

86

5.3 A Unified BCD/Binary Adder/Subtractor Architecture

carry of ‘1’ indicates the digit is greater than ‘9’ and a correction by subtraction of ‘6’ or addition

of ‘10’ is needed [57].

0 0 1 0 0 0 1 1 1 0 0 1

1 0 1 0 1 0 1 0 1 0 0 1+

X

New Y

1 1 0 0 1 1 1 0 0 0 1 0

100

No carry out, No
correction needed

Carry out, correction
needed

1 0 1 0

0 0 1 1 0 0 0 1 0 1 1 1

+

Correct Binary output

Correct BCD output

Correction

Carry-in =0
indicating X ≤ Y

0 0 1 1 0 0 0 1 1 1 0 1
Since final Carry out =0

Invert to get correct binary
ouput

Figure 5.12 Illustration of BCD Subtraction operarion when X ≤ Y

From the examples 5.2 and 5.3, the post-correction is needed only when X >Y, and digit

wise carry-out is ‘0’ or when X ≤ Y and digit wise carry-out is ‘1’. In the proposed design, these

conditions are incorporated in the post-correction stage [57].

As seen in the examples 5.1, 5.2 and 5.3, the correction is carried out by adding (1010)2.

The optimized implementation of the pre-correction block (which implements the +6 circuit) and

the post correction block (which implements addition of (1010)2) is shown in Fig 5.13 (a) and (b)

respectively.

87

5.3 A Unified BCD/Binary Adder/Subtractor Architecture

S1

0 1 0 1

S4 S3

 S1S2S4 S3

S2

Eop Bin

Carry-out C4

X1

0 1 0 1

X4 X3

 X1X2X4 X3

X2

Eop Bin

Cnt1

Cnt2

 (a) (b)

Figure 5.13 (a) Pre-correction block (b) Post Correction block for BCD

The control signal for the pre-correction circuit is given as

Cnt1 = EOp. (Bin)’

which indicates that the addition of (0110)2 is activated only for BCD addition operation.

Similarly, the control signal for post correction block is given as

Cnt2 = ((Carry-out + EOp) ⊕ C4). (Bin)’
Where C4 = (C1x)’(C2x)’as shown in the figure 5.11

which indicates the operation as BCD subtraction. It also takes into consideration both the

cases of X >Y and X ≤ Y and also carry out at each digit stage [57].

5.3.4 A Modified Unified BCD/Binary Adder/Subtractor Architecture

The proposed unified BCD/Binary adder/subtractor architecture including pre-correction

and post-correction stage is shown in Fig. 5.14. The ‘Bin’ signal indicates whether the operation

is binary or BCD. If Bin =1 indicates binary operation and Bin = 0 indicates BCD operation [57].

88

5.4 Simulations and Results

Binary Adder/SubtractorEOp

Bin
Pre-

correction

X

Y

S4 S3 S2 S1C4

Post Correction Block

Least
significant

digit
Carry-out

Final Result

Figure 5.14 Architecture of unified BCD and binary adder / subtractor

The proposed architecture [57] eliminates the usage of complimentary stage unlike the

Fischer’s approach [51] and also the comparator stage unlike the Humberto’s approach [53].

5.4 Simulations and Results

In this section, the proposed architecture is compared with Humberto architecture[53] but

not with the architectures described in [47-52], as it is the only unified adder/subtractor

architecture which supports 2’s complement signed, unsigned, signed magnitude operands.

Since, the Humberto architecture was implemented on an FPGA, in this thesis, both the proposed

and the Humberto architectures have been implemented on an ASIC for a fair comparison.

The architectures have been structurally described using Verilog HDL and simulated using

Cadence Incisive Unified Simulator (IUS) v6.1 covering all functional combinations. These

architectures were mapped on to the TSMC 180nm technology typical library (operating

conditions of 1.8 V, 25ºC), using Cadence RTL Compiler v7.1. Inputs were set to have a toggle

rate of 50% and a frequency of 1GHz for calculating the dynamic power.

Table 5.2 and Fig. 5.15 provide a comparison of Humberto architecture with the proposed

architecture. Since, the proposed design does not require the comparator and complex pre-

computation stage, it results in a delay improvement of 13.6% and an area improvement of 14%.

89

5.4 Simulations and Results

The proposed approach can also be extended to higher operand lengths leading to efficient

designs of unified BCD/Binary adder / subtractor architectures.

Table 5.2: Results for a 32-bit Unified BCD/Binary Adder/Subtractor

 Humberto [53] Proposed
Delay (nS) 4.004

(100%)
3.460

(86.4%)
Power (mW) 14.5

(100%)
13.37

(92.2%)
Power-Delay (pJ) 58.06

(100%)
46.26

(79.7%)
Area (um2) 12068

(100%)
10498
(87%)

Figure 5.15 (a)

9500

10000

10500

11000

11500

12000

12500

Humberto [35] Proposed

Area (um2)

Area (um2)

90

5.4 Simulations and Results

Figure 5.15 (b)

Figure 5.15 (c)

0

2

4

6

8

10

12

14

16

Humberto [35] Proposed

Power (mW)

Power (mW)

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4
4.1

Humberto [35] Proposed

Delay (nS)

Delay (nS)

91

5.5 Conclusions

Figure 5.15 (d)

Figure 5.15 Comparision between proposed unified adder/subtractor with existing design in
terms of (a) Area (b)Power (c) Delay (d) Power-Delay Product

5.5 Conclusions

In this chapter, efficient blocks for Binary and BCD arithmetic operations have been

proposed. Also a unified BCD/Binary adder /subtractor which can handle both signed as well as

unsigned numbers has been proposed and analyzed in detail. The results indicate that the

proposed designs are efficient in terms of area, power and power- delay product when compared

with those reported in literature.

0

10

20

30

40

50

60

70

Humberto [35] Proposed

Power-Delay (pJ)

Power-Delay (pJ)

92

Chapter 6
Design of Efficient Floating Point Adder and

Multiplier

Contents
Chapter 6 ... 93

6.1 Floating Point Adder/Subtractor ... 93

6.1.1 Introduction ..93

6.1.2 Design of Floating Point Units- General Implementation93

6.1.3 Design of Efficient Binary Adder/Substractor ...95

6.1.4 Results and Comparison ...96

6.2 Implementation of High Speed Multiplier .. 98

6.2.1 Introduction ..98

6.2.2 Design of Multipliers using Wallace and Dadda Algorithms98

6.2.3 Simulation Results ..101

6.3 Conclusions ... 102

6.1 Floating Point Adder/Subtractor

6.1.1 Introduction

 Floating point adder/subtractor units like fused floating point adder, triple path floating

point adder, etc.., involve exponent comparison/subtraction, mantissa addition/subtraction and

incrementing values while rounding, as basic operations. To realize these operations, efficient

arithmetic units like comparators, adders, subtractors, incrementers are vital [1-6].

6.1.2 Design of Floating Point Units- General Implementation

 Efficient floating-point unit are important in the design of arithmetic circuits for

processors such as DSPs. A floating point adder/subtractor mainly consists of four different

sections in the critical path viz swapping, shifting, addition/subtraction and normalization [58-

61].

6.1 Floating Point Adder/Subtractor

The operations in a typical 32-bit floating-point adder can be explained as follows: First

the floating-point numbers are unpacked, i.e. sign bit, exponent and mantissa are isolated and the

exponents are given as an input to a 8-bit comparator/subtractor. The mantissa with the smallest

exponent is selected using a multiplexer and is right-shifted by a number of times equal to the

difference of the exponents, making the exponents equal. The new mantissas are now added/

subtracted as per the control signal resulting in a difference that may be a positive or negative

number. In case of a negative number, 2’s complement of the number is taken to get the final

result. Then, if required, the result is normalized and rounded. The architecture of the adder is

shown in Fig 6.1.

Comparator/
Subtractor Swap

Mux

Shifter

LZA Add/Sub

Sub Normalization

MX MYEX EY

EZ MZ
Figure 6.1 Architecture of a floating point adder/ subtractor

A comparator is required for exponent’s comparison and these exponents are subtracted to

initiate the operation of addition/subtraction. This can be taken care of by the

comparator/subtractor block. Since these are the initial blocks which can’t be avoided in the

critical path, an optimized design is needed which can reduce the delay and power of these

blocks.

Further, mantissas are added/subtracted according to a given operation by reusing an

efficient adder/subtractor. Moreover a 2’s complement block is required to correct the result

during the subtraction. Some designs have been developed to eliminate the need of 2’s

94

6.1 Floating Point Adder/Subtractor

complement but that lead to circuit overhead. An efficient design which reduces the overheads is

thus required.

Efficient and unified blocks have been developed as a part of this work and presented in

the following.

6.1.3 Design of Efficient Binary Adder/Substractor

As explained earlier in section 5.3, a 2’s complement block is required in adder/subtractor

circuit for correcting the 2’s complement sum when difference is negative. This correction

however increases the circuit delay by log N and dissipates energy [58-61]. A design

methodology has been proposed and discussed in Chapter 5 Section 5.3, which eliminates the

requirement of 2’s complement circuitry. In the proposed adder/subtractor this circuit is used to

find out which of the operands is greater and the correspondingly a complement operation is

carried out using the end around carry method. The binary adder/subtractor structure of the

proposed design ,discussed in Chapter 5, section 5.3, is shown in Fig 6.2.

Prefix Carry Generation NetworkCarry-out
Eop

Sum computation using XOR
Eop

Invert

X

Y

Eop 1 0

S1Sn
Figure 6.2 Implementation of Binary Adder/subtractor of Operands in signed magnitude form

95

6.1 Floating Point Adder/Subtractor

6.1.3.1 Comparator for 32-bit floating point unit

 A 32-bit single precision floating-point adder/subtractor unit requires an 8-bit comparator

to check the exponents and an 8-bit subtractor to calculate the amount by which the mantissas are

to be shifted. A subtractor can also be used as a comparator by analyzing the output Carry bit and

hence extra comparator circuit is not required. But, if the difference of the subtractor is negative,

a 2’s complement circuitry is required to correct the final result. A 2’s complement circuit

requires an adder (or incrementer) to add ‘1’ to correct the result which incurs a log N delay in

the critical path and also contributes to overall area and power [58-61]. To overcome this

problem, the design explained in section 5.3 is used to design an 8-bit subtractor cum comparator

that avoids using 2’s complement circuitry. This results in a significant improvement in critical

path delay and also overall power and area.

Other than adder and comparator, floating point adder unit has leading zero anticipator

(LZA) and a normalization unit (which includes rounding off). Many optimized designs have

been developed for realizing these units [59] and hence these optimized circuits are used in this

work along with the proposed comparator and adder designs for realizing an efficient floating

point adder/subtractor unit.

6.1.4 Results and Comparison

 All the units have been structurally described using Verilog HDL and simulated using

Cadence Incisive Unified Simulator (IUS) v6.1 covering all functional combinations. These units

were mapped on to the TSMC 180nm Technology typical library (operating conditions 1.8 V,

25ºC), using Cadence RTL Compiler v7.1. Inputs were set to have a toggle rate of 50% and a

frequency of 1GHz for calculating dynamic power.

A complete 32-bit floating-point unit has been designed by integrating the designs

presented in the previous chapters of this thesis. This proposed design [62] has been compared

with the existing floating point units [58-61] and the results are given in Table 6.1.

Table 6.1 A Comparison of Performance of Floating Point Adder Units

 Area
(um2)

Power
(mW)

Delay
(pS)

Power-Delay Product
(pJ)

Existing Design 20073.2
(100%)

95437.249
(100%)

10560
(100%)

1007.81
(100%)

Proposed
Design

17759.102
(88.47%)

86070.872
(90.19%)

9823
 (93.20%)

845.47
(83.89%)

96

6.1 Floating Point Adder/Subtractor

Figure 6.3 (a)

Figure 6.3 (b)

Figure 6.3 (c)

Figure 6.3 (d)

Figure 6.3 A Comparision of the proposed floating point adder unitd with the exiting design in
terms of (a) Area (b)Power (c) Delay (d) Power-Delay Product

16000

18000

20000

22000

Existing Design Proposed Design

Area (um2)

Area (um2)

80000
85000
90000
95000

100000

Existing units Proposed Units

Power (uW)

Power (uW)

9000

10000

11000

Existing units Proposed Units

Delay (pS)

Delay (pS)

500

1000

1500

Existing units Proposed Units

Power-Delay Product (pJ)

Power-Delay
Product (pJ)

97

6.2 Implementation of High Speed Multiplier

It is clear from Fig 6.3 that the proposed design has an improvement of 6.98% in terms of

delay and around 16.11% improvement in power-delay product when compared with the existing

floating point adder designs [58-61].

The overall delay is reduced because of the elimination of overhead related to 2’s

complement circuitry (thus the logN component of delay) in the exponent comparison block,

mantissa subtraction block and reduction of large fan-out signals in the mantissa addition block.

6.2 Implementation of High Speed Multiplier

6.2.1 Introduction

A typical binary multiplier that multiplies two binary numbers is divided into three parts as

shown in Fig 6.4. The first one is the partial product generation part . There are different methods

for partial product generation i.e. Booths encoding scheme, AND gate logic, etc… These partial

products are added in the second stage which is the partial product reduction tree. This stage can

be realized by any one of the methodologies like using array structure of adders or compressors

or counters. Finally in the third stage an adder is required to add the reduced partial products [1-

6].

Partial product
array (PPA)

Multiplicand (M)
Multiplier (N)

Double precision
product
(P = M*N)

n

2n

n

Counter/Compressor

Adder
Figure 6.4 General Multiplier Structure

6.2.2 Design of Multipliers using Wallace and Dadda Algorithms

Wallace and Dadda are the first among those who designed and explained the usage of

special structures called compressors and counters for partial product reduction tree in

multipliers [25-26, 63-64]. Figure 6.5 and 6.6 show the design of a 16x16 bit multiplier partial
98

6.2 Implementation of High Speed Multiplier

product reduction tree using compressors and counters respectively. These counters/compressors

can also be used for multi-operand addition

 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12 19 18 17 16 23 22 21 20 27 26 25 24 31 30 29 28

Figure 6.5 Wallace Algorithm for the design of a 16 bit Multiplier

99

6.2 Implementation of High Speed Multiplier
 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12 19 18 17 16 23 22 21 20 27 26 25 24 31 30 29 28

Figure 6.6 Dadda Algorithm for the design of a 16 bit Multiplier

Most of the multipliers consist of counters/compressors followed by a high speed adder.

Critical path delay of multipliers thus includes not only counter/compressor delay in the partial

product reduction tree but also adder delay in the final stage. Designing these units efficiently is

the prime requirement for a high performance multiplier and therefore an ALU. A wide variety

of parallel adders and counters/compressors exist in the literature and has been explained in

detail in chapters 2 and 3.

From the results of different compressors and counters that have been presented, it is clear

that these units are efficient. However, counter based design have proved to be more delay

100

6.2 Implementation of High Speed Multiplier

efficient when compared to compressor based designs [63-64] and hence the multiplier in this

section has been designed and implemented using counters. Further, the new adder explained in

Chapter 2, Section 2.3 is used as a fast prefix adder in the final stage of the multiplier.

6.2.3 Simulation Results

All the units were structurally described using Verilog HDL and simulated using Cadence

Incisive Unified Simulator (IUS) v6.1 covering all functional combinations. These units were

mapped on to the TSMC 180nm Technology typical library (operating conditions 1.8 V, 25ºC),

using Cadence RTL Compiler v7.1. Inputs were set to have a toggle rate of 50% and a frequency

of 1GHz for calculating dynamic power.

Table 6.2, provides a comparison of existing and newly designed 32-bit multiplier. As the

adder and counters used in this design are optimized in terms of power and delay, they result in

improved performance of overall circuit. From Fig 6.7, it can be observed that there is a

significant improvement in power-delay product (around 14.85%) when compared to the exiting

implementation.

Table 6.2 Simulation Results of a 32-bit Multiplier

 Area(um2) Power (mW) Delay(pS) Power-Delay Product
(pJ)

Existing Design 25771.33
(100%)

145.628
(100%)

11740
(100%)

1709.67
(100%)

Proposed
Design

 23461.61
(91.04%)

136.302
(93.60%)

10680
(90.97%)

1455.71
(85.15%)

Figure 6.7 (a)

22000

24000

26000

Existing Design Proposed Design

Area(um2)

Area(um2)

101

6.3 Conclusions

Figure 6.7 (b)

Figure 6.7 (c)

Figure 6.7 (d)

Figure 6.7 A Comparision of Exisitng 32-bit multipliers with the proposed design in terms of (a)
Area (b)Power (c) Delay (d) Power-Delay Product

6.3 Conclusions

In this chapter, two widely used arithmetic blocks i.e., multiplier and floating point adder

have been designed and their performance studied. Efficient basic functional units described in

previous chapters have been used to implement these blocks. From the results obtained it can be

seen that the arithmetic units explained in the previous chapter not only are efficient but also

usage of these blocks results in performance enhancement of large functional arithmetic units.

130

140

150

Existing units Proposed Units

Power (mW)

Power (mW)

10000

11000

12000

Existing units Proposed Units

Delay(pS)

Delay(pS)

1200
1400
1600
1800

Existing units Proposed Units

Power-Delay Product (pJ)

Power-Delay
Product (pJ)

102

Chapter 7
Design of Efficient Arithmetic Block in an

Arithmetic and Logic Unit (ALU)

Contents
Chapter 7 ... 103

7.1 Introduction ... 103

7.2 Arithmetic Units in a Processor Core .. 103

7.3 Efficient Arithmetic Units for a Processor Core ... 104

7.3.1 Simulation Results ..106

7.4 Power gating applied to the arithmetic units. .. 108

7.4.1 Simulation Results ..111

7.5 Conclusions ... 111

7.1 Introduction

Arithmetic and Logic Unit is of fundamental importance among all core units of any

processor. Thus, optimization of ALU has been pursued for a long time. Arithmetic section of an

ALU contains different blocks which perform different arithmetic functions like addition,

subtraction, multiplication, incrementing, decrementing, etc... Hence, efficient design of these

units is of prime importance to realize an efficient ALU.

7.2 Arithmetic Units in a Processor Core

 Figure 7.1 illustrates the block level micro-architecture of a processor core inside an

AMD microprocessor [65-68]. IBM (PowerPC), INTEL (ATOM) and ARM (Cortex) cores also

will have similar micro-architecture for the arithmetic units in their respective processors.

However, the main difference between IBM and other processor cores is that IBM supports

decimal operations along with binary operations unlike other processors [69]. It can be noticed

that the core has integer and floating point units wherein adder and multiplier play dominant

roles [65-69].

7.3 Efficient Arithmetic Units for a Processor Core

Integer
Multiplier

Floating Point
Adder/

Subtractor

Floating Point
Multiplier

Address
Generation

Unit

Integer
Adder/

Subtractor

Floating Point
Division

Floating Point
Multiply

Accumulate
(MAC)

Integer and Floating -Point Operations Queue

 Load/Store Queue

 Register File

Figure 7.1 Microarchitecture of an Arithmetic unit in an AMD Processor Core

7.3 Efficient Arithmetic Units for a Processor Core

Figure. 7.2 shows the micro-architecture of an arithmetic segment with the proposed units.
The main features of this segment are:

• Efficient adder circuit with modified sparse adder having less complexity in wiring

• Efficient tree multiplier using novel counter and compressor circuits

• A high speed INC/DEC unit

• A BCD adder/subtractor which can perform BCD operations using binary

Adder/Subtractor as its core

• Binary floating point adder/subtractor unit

Integer
Multiplier

Floating Point
Adder/

Subtractor

Muti Functional
 Block

Integer
Binary/BCD

Adder/
Subtractor

Integer and Floating -Point Operations Queue

 Load/Store Queue

 Register File

Figure 7.2 Processor Core with modifided functional units

A generic arithmetic segment of an ALU architecture is shown in Fig 7.3. This segment

generally consists of a control unit, functional units and bus selection unit. The functional units

104

7.3 Efficient Arithmetic Units for a Processor Core

are made up of different operational units like a fixed-point operation unit, a floating point

operation unit and a multiplier, etc… These units operational can be changed according to the

application requirement.

In this chapter, efficient arithmetic units from previous chapters are substituted in place

of functional units of the generic arithmetic segment to study its overall performance. The fixed-

point adder/subtractor can perform both decimal and binary operations. The instruction format

for this segment is as follows.

IN1 IN2 F1 F2 A=32-bit B=32-bit

Floating Point
Adder/Subtractor

Fixed point
Binary/BCD

Adder/
Substractor

Multi Functional
Block

Integer
Multiplier

IN1

IN2

A

B

Accum
ulator R

egister

32-bits

32-bits

F1

F2

Functional Units

Multiplexer

Control Signals

Figure 7.3 A generic architecture of an ALU

In the instruction format, the bits IN1, IN2, F1 and F2 indicate control bits and A and B are

32 bit data inputs. The control unit decodes the instruction and generates control signals that

decide the functionality of the arithmetic block. Table 7.1 shows the detailed list of operations

that can be performed. IN1 and IN2 control bits define the broad functionality of the block like

fixed point operation, floating point operation, multiplication and function specific operations

105

7.3 Efficient Arithmetic Units for a Processor Core

whereas the control bits F1 and F2 select the specific functionality like addition, subtraction,

etc… of the selected operation block. For example, if a fixed point addition needs to be executed

(i.e., IN1 = 0, IN2 = 1, F1 = 0, F2 = 0), the decoder of the control unit selects only the fixed point

operational block at the output multiplexer and F1, F2 bits select the addition operation.

Table 7.1: Detailed list of operations

IN1 IN2 F1 F2 OPERATION
0 0 0 X FLOATING POINT ADDITION
0 0 1 X FLOATING POINT SUBSTRACTION
0 1 0 0 FIXED POINT ADDITION
0 1 0 1 FIXED POINT SUBSTRACTION
0 1 1 0 FIXED POINT BCD ADDITION
0 1 1 1 FIXED POINT BCD SUBSTRACTION
1 0 0 0 INCREMENTER
1 0 0 1 DECREMENTER
1 0 1 0 PRIORITY ENCODER
1 0 1 1 2’S COMPLIMENT
1 1 X X MULTIPLICATION

7.3.1 Simulation Results

All the units were structurally described using Verilog HDL and simulated using Cadence

Incisive Unified Simulator (IUS) v6.1 covering all functional combinations. These units were

mapped on the TSMC 180nm Technology typical library (operating conditions 1.8 V, 25ºC),

using Cadence RTL Compiler v7.1 and physical implementation is done by SOC encounter.

In the architecture shown in Fig. 7.3., best existing arithmetic units and those proposed

units in this thesis were incorporated to compare the relative performance of the ALU. Table 7.2

presents a comparison of in terms of different design parameters such as area, delay, power

power-delay, etc…

106

7.3 Efficient Arithmetic Units for a Processor Core

Table 7.2 Results of simulation results of ALU blocks

Area Power Delay Power-Delay
(um2) (mW) (pS) Product (pJ)

Existing Proposed Existing Proposed Existing Proposed Existing Proposed

Control
Unit and

Bus
Selection

Unit
825

(100%)
825

(100%)
0.001

(100%)
0.001

(100%)
166

(100%)
166

(100%)
0.00017
(100%)

0.00017
(100%)

Floating
point

Adder/
Subtractor

20073.2
(100%)

17759.1
(88.47%)

95.437
(100%)

86.07
(90.12%)

10560
(100%)

9823
(93.20%)

1007.81
(100%)

845.47
(83.89%)

Fixed point
Binary/BCD

Adder/
Subtractor

12068
(100%)

10498
(86.99%)

14.5
(100%)

13.37
(92.21%)

4004
(100%)

3460
(86.41%)

58.06
(100%)

48.67
(83.83%)

Multi
Functional

Block
1432

(100%)
1637

(114.32%)
0.619

(100%)
0.624

(100.81%)
3497

(100%)
2333

(66.71%)
2.17

(100%)
1.46

(67.28%)

Fixed Point
Multiplier

25771.3
(100%)

23461.6
(91.04%)

145.628
(100%)

136.302
(93.60%)

11740
(100%)

10680
(90.97%)

1709.67
(100%)

1455.71
(85.15%)

However , the multifunctional block with proposed units occupies 14% more area and

results in a marginal increase in power consumption of about 0.8%. However, the same block

performs well both in terms of delay and power-delay product.

Thus it can be expected that the arithmetic and logic units incorporating the efficient

functional units proposed in this thesis performs better than with the existing units resulting in an

improvement of overall processor performance.

It can be observed from the table that most of the blocks such as floating point

adder/subtractor, fixed point Binary/BCD adder/subtractor and fixed point multiplier performs

better compared to the corresponding functional units existing in the literature in terms of area,

power, delay and power-delay products.

Figure 7.4 shows the pie chart of the power contributed by the individual arithmetic units

in the overall arithmetic section. From the pie chart, it can be observed that the multiplier is the

highest power consumed unit in the section followed by floating point unit. As explained earlier,

even for an addition operation, the multiplier and floating point units are active and contributes

to the overall power, which can be handled by using power-gating technique in the ALU.

107

7.4 Power gating applied to the arithmetic units.

Figure 7.4 Power contribution of different arithmetic blocks in ALU

In this architecture, irrespective of the operation, all the blocks will be active and

contribute to the total power. In order to address this issue and to reduce overall power

consumption, any of the low power techniques like power-gating technique can be incorporated

in the design. In this work, this technique has been incorporated to understand its effect on over

power consumption in the generic ALU. Power gating technique is briefly explained below.

7.4 Power gating applied to the arithmetic units.

In arithmetic and data path circuits, the performance mainly depends upon the digital

circuits. A prime requirement for a digital circuit is that it performs the function it is designed

for. However, as the technology is scaling down to nanometer, there is a scaling of Vt along with

Vdd to maintain traditional 30% delay reduction with technology. This results in different types

of leakage currents due to which the measured response of fabricated circuit may deviates from

the expected response [70]. Leakage currents can be broadly classified in to are dynamic and

static leakage currents. Dynamic leakage occurs when the circuit is switching or operating (gate

leakage) whereas static leakage occurs when the circuit is in standby or in idle state (sub-

threshold). Some of the well known leakage reduction techniques are (a) pre-determined input

vector method (b) forced stacking (c) sleep transistor technique (power gating), (d) Multi-voltage

scaling (e) dual-Vt design (g) clock gating, etc [70]. However, power gating has become one of

the most widely used circuit design techniques for reducing of leakage current.

Control Unit and Bus
Selection Unit

Floating point Adder/
Subtractor

Fixed point Binary/BCD
Adder/ Subtractor

Multi Functional Block

Multiplier

108

7.4 Power gating applied to the arithmetic units.

Power gating is a technique wherein circuit blocks that are not active are temporarily

turned off to reduce the overall leakage power [70]. These units are typically power gated by

header and footer transistors, when in one operational unit is computing these power gating

transistors switches off other computational units. Generally, even when digital circuit is in idle

state there will be a leakage current passing from the power source to ground resulting in leakage

power. To reduce this power, the circuit should have connection to the power Supply (VDD) and

ground (GND) only when they are active and cut-off when they are in idle state. This can be

achieved by having a power switch cell like header and footer transistors, as illustrated below.

Final Output
Signal

Combinational
Circuit

Input Signal

Combinational
Circuit

Input Signal
Combinational

Circuit
Input Signal

Sleep

Sleep

Sleep

Sleep

VDD

GND

VDD

Final Output
Signal

Final Output
Signal

GND

Figure 7.5 Power Gating Technique

It can be seen from the figure 7.5 the circuit incorporating power gating technique is

designed by adding a header transistor (PMOS) to the VDD and a footer transistor (NMOS) to

the GND or only a header transistor to VDD or only a footer transistor to GND depending on the

design specification. These header/footer transistors have two modes of operation ‘ON’ or ‘OFF’

depending on the “Sleep” Signal. When the ‘sleep’ signal is active, the circuit will be connect to

the VDD and/or GND and works as a normal circuit, otherwise the circuit will be disconnected

from the VDD and/or GND and thus doesn’t have a power source/ or path to ground thereby

reducing the leakage power [70].

Figure 7.6 shows the architecture of arithmetic section of an ALU with power gating

technique. The control unit, which controls the power gating transistors, is also shown in the

figure. The power gating transistors act as switches to connect the main power supply VDD and

109

7.4 Power gating applied to the arithmetic units.

ground VSS, with derived (or power switch nets) supplies like VDD1/VSS1, VDD2/VSS2, VDD3/VSS3

and VDD4/VSS4 for fixed point operation, floating point operation, function specific block and

multiplier respectively. The decoder of the control unit takes IN1 and IN2 bits as inputs and

generates four control signals (I0, I1, I2, I3) for power gating logic that enables/disables different

blocks in the segment. For example, if a fixed point addition need to be executed (i.e., IN1 = 0,

IN2 = 1, F1 = 0, F2 = 0), the decoder of the control unit selects only fixed point operational

block and helps in power gating the other blocks thus reducing the power consumption. The

proposed arithmetic units are integrated in this architecture to realize an efficient arithmetic

section of an ALU.

Control Unit

Floating Point
Adder/Subtractor

Fixed point
Binary/BCD

Adder/Substractor

Multi Functional
Block

Integer
Multiplier

2:4
Decoder

IN1

IN2

I0

I1

I2

I3

A

B

Accum
ulator R

egister

32-bits

32-bits

C
O
M
M
O
N

B
U
S

F1

F2

VDD

VDD1

VSS1

VSS
VDD

VDD2

VSS2

VSS
VDD

VDD3

VSS3

VSS
VDD

VDD4

VSS4

VSS

Figure 7.6 Arithmetic section of an ALU with power gating technique

110

7.5 Conclusions

7.4.1 Simulation Results

All the units were structurally described using Verilog HDL and simulated using Cadence

Incisive Unified Simulator (IUS) v6.1 covering all functional combinations. These units were

mapped on the TSMC 180nm Technology typical library (operating conditions 1.8 V, 25ºC),

using Cadence RTL Compiler v7.1 and physical implementation is done by SOC encounter.

Power gating technique is incorporated in the architecture to reduces the power consumed

by the overall ALU. These power gating cells are available in the design library. For the current

design, based upon delay requirements along with area optimization, different power gating cells

have been inserted in the RTL compiler input file and validated. From the synthesis report, the

(W/L) ratios of power gating header (PMOS) and footer (NMOS) transistors have been found to

be 4u/0.18um and 1.8u/0.18um respectively for optimized delay and area. Vt was 0.32V (

approx.). The control unit with the help of select lines will enable respective arithmetic operation

block and switching off other arithmetic operation blocks using power-gating transistors. Hence,

the power consumed by the entire arithmetic unit is the power dissipated by the selected

arithmetic operation block, control unit, power-gating unit and bus selection unit. From the table

7.3 it can be seen that when the power gating unit is enabled and the floating point operation is

performed, the leakage and dynamic power dissipated by other units are reduced which results in

almost 60% reduction in power consumption when compared with the segment without power

gating.

Table 7.3 Simulation Results for ALU while performing floating-point addition operation
Type Power (mW)

Without Power-Gating

Technique
236.367

With Power-Gating Technique 97.30

7.5 Conclusions

In this chapter, a segment of a processor core i.e., ALU has been designed using the

arithmetic units proposed earlier and a detailed analysis has been carried out. Results indicate

that this design results in a better performance in terms of area, delay and power when compared

with those reported in literature. Further, incorporating power-gating technique has resulted in

significant savings in power as is evident from the results.

111

Chapter 8
Conclusions and Future Work

Contents
Chapter 8 ... 112

8.1 Conclusions ... 112

8.2 Future Work .. 113

8.1 Conclusions

This thesis focused on optimizing arithmetic circuits which when used together lead to

efficient realization of Arithmetic Unit of an ALU.

The first contribution of the thesis was the development of efficient adder architectures that

address the problems of high fan-out, delay and power consumption. These architectures while

having a delay overhead have the advantage of relatively small fan-out and reduced energy

consumption overall. Further, efficient counter/compressor blocks, that help in reducing the

partial products in multipliers, have been designed resulting in efficient high speed parallel

multipliers.

The second contribution of the thesis is the design of a multi-functional INC/DEC/ 2’s

complement/ priority encoder circuit which has been shown to be efficient in terms of speed of

operation without resulting in extra power consumption. Since such a unit plays a major role in

an ALU, its incorporation results in efficient arithmetic and logic units.

The third contribution of the thesis is the design of a unified BCD/Binary adder/subtractor

that is efficient in terms of delay while consuming less energy when compared to similar existing

designs.

The fourth contribution of the thesis is the design of two widely used arithmetic blocks i.e.,

multiplier and floating point adder using the functional blocks mentioned above resulting in their

efficient implementation.

Finally, all the individual arithmetic units have been combined to realize the arithmetic part

of an ALU resulting in an efficient design compared to those existing in literature.

8.2 Future Work

8.2 Future Work

The arithmetic units designed and implemented in this work have mainly been targeted at

90nm or 180nm technologies. It is well known, however, that the dynamic power dominates the

overall power consumption at these technology nodes. With shrinking technology, where designs

are being targeted at even 18nm, new challenges are being thrown up such as leakage power

dominating the overall power consumption. Thus, it would be interesting to understand the

performance of the designs proposed in this work at lower technology nodes.

113

Bibliography
[1] B. Parhami, “Computer Arithmetic: Algorithms and Hardware Designs”, 2nd edition,

Oxford University Press, New York, 2010
[2] Milos Ercegovac, Tomas Lang, "Digital Arithmetic", Morgan Kaufman, 2004.
[3] I . Koren, Computer Arithmetic Algorithms. Englewood Cliffs, NJ, Prentice Hall, 1993.
[4] R. Zimmermann, Binary Adder Architectures for Cell-Based VLSI and their Synthesis,

PhD thesis, Swiss Federal Institute of Technology (ETH) Zurich, Hartung-Gorre Verlag,
1998.

[5] Neil Weste, David Harris, "CMOS VLSI Design: A Circuits and Systems Perspective"
Pearson Education, 2004.

[6] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic, “Digital Integrated.
Circuits: A Design Perspective” Pearson Education, 2003.

[7] Weinberger, J.L. Smith, “A Logic for High-Speed Addition,” Nat. Bur. Stand. Circ., 591:3-
12, 1958.

[8] H. Ling, “High-Speed Binary Adder,” IBM Journal of Research and Development, vol. 25,
no.3, pp. 156-166, May 1981

[9] Harris D, “A taxonomy of parallel prefix networks”, in. Proc. 37th Asilomar Conf. Signals,
Systems, and. Computers, Nov. 2003, Vol. 2, pp. 2213-2217.

[10] R.P. Brent and H.T. Kung, “A Regular Layout for Parallel Adders,” IEEE Trans.
Computers, vol. 31, no. 3, pp. 260-264, Mar. 1982.

[11] D. Harris, " Logical Effort of Higher Valency Adders," in Proc. 38th Asilomar Conf.
Signals, Systems, and Computers, vol. 2, pp. 1358 - 1362, 2004.

[12] S. Mathew, M.A. Anders, B. Bloechel, T. Nguyen, R.K. Krishnamurthy, S. Borkar, “A
4GHz 300-mW 64-bit integer execution ALU with dual supply voltages in 90nm CMOS,”
IEEE J. Solid State Circuits, vol. 40, no.1, pp. 44-51, Jan. 2005.

[13] Kumashikar et al., “Sparse Tree Adder”, US Patent 20070299902A1.
[14] T.L. Lynch, E.E. Swartzlander, “A Spanning Tree Carry Lookahead Adder”, IEEE Trans.

Comput., Vol.41, N°8, pp.931-939, 1992.
[15] V. Kantabutra, “A Recursive Carry-Lookahead/Carry-Select Hybrid Adder”, IEEE Trans.

Comput., Vol.42, N°12, pp.1495-1499, 1993.
[16] O. Kwon, E. Swartzlander, and K. Nowka, “A fast hybrid Carry-lookahead/Carry-select

adder design”, Proc. of the 11th Great Lakes symposium on VLSI, pp.149-152, March
2001.

[17] Oklobdzija, V.G.; Zeydel, B.R.; Dao, H.; Mathew, S.; Ram Krishnamurthy; , "Energy-
delay estimation technique for high-performance microprocessor VLSI adders," Computer
Arithmetic, 2003. Proceedings. 16th IEEE Symposium on , vol., no., pp. 272- 279, 15-18
June 2003.

114

[18] Tyagi, A.; , "A reduced-area scheme for Carry-select adders," Computers, IEEE
Transactions on , vol.42, no.10, pp.1163-1170, Oct 1993

[19] Chetan Vudadha, Sai Phaneendra, Syed Ershad Ahmed, Sreehari Veeramachaneni,
Moorthy Muthukrishnan and Srinivas M.B “An Improved Sum Computation Block for
adders with High Sparseness”, in 20th International Workshop on Logic & Synthesis
(IWLS 2011), June 2011, San Diego, CA, USA.

[20] Sai Phaneendra P, Sreehari Veeramachaneni, N Moorthy Muthukrishnan, M.B. Srinivas,
“Conditional Sum Block for High Sparse Adders”, The 2011 Asia Pacific Conference on
Postgraduate Research in Microelectronics & Electronics (PrimeAsia), 2011, Macau,
China, 6-8 October 2011. (GOLD LEAF Certificate)

[21] Chetan Kumar, V; Sai Phaneendra, P; Ershad Ahmed, S; Sreehari, V; Moorthy
Muthukrishnan, N; Srinivas, M.B.; , "Higher radix sparse-2 adders with improved grouping
technique," TENCON 2011 - 2011 IEEE Region 10 Conference , vol., no., pp.676-679,
Fukuoka, Japan, 21-24 Nov. 2011.

[22] A. A Farooqui, V. G. Oklobdzija, F. Chehrazi, "64-Bit Media Adder", Proceedings of the
1999 IEEE International Symposium on Circuits and Systems, (ISCAS '99), Orlando,
Florida, USA, 30 May-2 June 1999.

[23] J.-F. Li, J.-D. Yu, Y.-J. Huang, “A design methodology for hybrid Carry-lookahead/Carry-
select adders with reconfigurability”, in Proc. IEEE International Symp. on Circuits and
Systems (ISCAS), pp.77-80, May2005.

[24] Chetan Kumar V., Sai Phaneendra P., S. Ershad Ahmed, Sreehari Veeramachaneni, N.
Moorthy Muthukrishnan, M. B. Srinivas: A Prefix Based Reconfigurable Adder, IEEE
Computer Society Annual Symposium on VLSI (ISVLSI 2011), Chennai, India,July 4-6,
2011.

[25] C. S. Wallace, A suggestion for a fast multiplier, IEEE Trans. on Electronic Comp. EC-
13(1): 14-17 (1964)

[26] L.Dadda, “Some Schemes for Parallel Multipliers,” Alta Frequenza, Vol.34, pp.349-
356,1965.

[27] K. Prasad and K. K. Parhi, “Low-power 4-2 and 5-2 compressors,” in Proc. of the 35th
Asilomar Conf. on Signals, Systems and Computers, vol. 1, 2001, pp. 129–133.

[28] C. H. Chang, J. Gu, M. Zhang, “Ultra low-voltage low-power CMOS 4-2 and 5-2
compressors for fast arithmetic circuits” IEEE Transactions on Circuits and Systems I:
Regular Papers, Volume 51, Issue 10, Oct. 2004 Page(s):1985 – 1997

[29] R. Zimmermann and W.Fichtner, “Low-power logic styles: CMOS versus pass-transistor
logic,” IEEE J. Solid-State Circuits, vol. 32, pp. 1079–1090, July 1997.

[30] Sreehari Veeramachaneni , Kirthi Krishna M, Lingamneni Avinash, Sreekanth Reddy P,
M.B.Srinivas, “Novel Architectures for High-speed and Low-power 3-2, 4-2 and 5-2
Compressors” Proceedings of the 20th IEEE/ACM International Conference on VLSI

115

Design and Embedded Systems(VLSI DESIGN -2007), Bangalore, India, 6-10th January
2007.

[31] Earl E. Swartzlander, Jr., “A review of large parallel counter designs,” Proceedings. IEEE
Computer society Annual Symposium on VLSI, 2004, pp.89-98, Feb. 2004.

[32] Earl E. Swartzlander, Jr., “Parallel Counters,” IEEE Transactions on computers, Vol C-22,
pp.1021-1024, Nov. 1973.

[33] Sreehari Veeramachaneni, Lingamneni Avinash, Kirthi Krishna M, M.B.Srinivas, “Novel
Architectures for Efficient (m, n) Parallel Counters” In 17th ACM Great Lakes Symposium
on VLSI (GLSVLSI-2007), Stresa-Lago Maggiore, Italy, March 11-13, 2007.

[34] R. Hashemian and C. P. Chen. “A New Parallel Technique for Design of
Decrement/Increment and Two's Complement Circuits.” in Proceedings of the 34th
Midwest Symposium on Circuits and Systems, volume 2, pages 887-890, 1991.

[35] Shaoqiang Bi, Wei Wang, and Asim Al-Khalili, “Multiplexer-based Binary
Incrementer/decrementers,” The 3rd International IEEE-NEWCAS Conference,19-22 June
2005. pp. 219-222.

[36] Veeramachaneni, S. Avinash, L. Kirthi, K.M. Srinivas, M.B. “A Novel High-Speed
Binary and Gray Incrementer/Decrementer for an Address Generation Unit”, International
Conference on Industrial and Information Systems (ICIIS), 9-11 August 2007. pp.427-430.

[37] Kumar, V. Chetan; Phaneendra, P. Sai, Ahmed, Syed Ershad, Sreehari, V., Muthukrishnan,
N. Moorthy, Srinivas, M.B., "A Reconfigurable INC/DEC/2's Complement/Priority
Encoder Circuit with Improved Decision Block," International Symposium on Electronic
System Design (ISED), 2011, vol., no., pp.100-105, 19-21 Dec. 2011.

[38] Phaneendra, P.S.; Vudadha, C.; Ahmed, S.E.; Sreehari, V. Muthukrishnan, N,.M. Srinivas,
M.B. , "Increment/decrement/2's complement/priority encoder circuit for varying operand
lengths," 11th International Symposium on Communications and Information
Technologies (ISCIT), 2011 , vol., no., pp.472-477, 12-14 Oct. 2011

[39] D. Norris, “Comparator circuit,” U.S. Patent 5,534,844, April 3, 1995.
[40] Shun-Wen Cheng , “A high-speed magnitude comparator with small transistor count” in

Proceedings of the 2003 10th IEEE International Conference on Electronics, Circuits and
Systems (ICECS), pp. 1168-1171, 2003.

[41] Stine, J.E., Schulte, M.J., “A combined two's complement and floating-point comparator,”
IEEE International Symposium on Circuits and Systems (ISCAS), pp. 89-92, 2005.

[42] Sreehari Veeramachaneni ,Kirthi Krishna M, Lingamneni Avinash , Sreekanth Reddy P,
M. B. Srinivas, “Efficient Design of a 32-Bit Comparator Using Carry Look-Ahead
Logic" in Joint Conference on 50th IEEE Mid West Symposium on Circuits and Systems
(MWSCAS-2007) and 5th North East Symposium on Circuits and Systems (NEWCAS-
2007), August 5-8, 2007, Montreal, Canada.

[43] Michael F. Cowlishaw, “Decimal Floating-Point: Algorism for Computers”, IEEE
Symposium on Computer Arithmetic 2003: 104-111, June 2003.

116

[44] Morris Mano, “Digital Design”, Third Edition, Prentice Hall.
[45] Thapliyal, H.; Kotiyal, S.; Srinivas, M.B., “Novel BCD adders and their reversible logic

implementation for IEEE 754r format”, 19th International Conference on VLSI Design,
20063-7 Jan. 2006

[46] M.S.Schmookler and A. Weinderger. “Decimal Adder for Directly Implementing BCD
Addition Utilizing Logic Circuitry”, International Business Machines Corporation, US
patent 3629565, pages 1 – 19, Dec 1971.

[47] M. J. Adiletta and V. C. Lamere. “BCD Adder Circuit”. Digital Equipment Corporation,
US patent 4805131, pages 1 – 18, Jul 1989.

[48] U. Grupe.“Decimal Adder“, Vereinigte Flugtechnische Werke-Fokker gmbH, US patent
3935438, pages 1 – 11, Jan 1976.

[49] S. Hwang. “High-Speed Binary and Decimal Arithmetic Logic Unit”, American Telephone
and Telegraph Company, AT&T Bell Laboratories, US patent 4866656, pages 1-11, Sep
1989.

[50] Flora, Laurence P., “Fast BCD/Binary Adder”, US Patent 5007010.
[51] H. Fischer and W. Rohsaint. “Circuit Arrangement for Adding or Subtracting Operands

Coded in BCD-Code or Binary-Code”, Siemens Aktiengesellschaft, US patent 5146423,
pages 1 – 9, Sep 1992.

[52] W. Haller, U. Krauch, and H. Wetter. “Combined Binary/Decimal Adder Unit”,
International Business Machines Corporation, US patent 5928319, pages 1-9, Jul 1999.

[53] D.R.Humberto Calderón, G. N. Gaydadjiev, S. Vassiliadis, “Reconfigurable Universal
Adder”, Proceedings of the IEEE International Conference on Application-Specific
Systems, Architectures, and Processors (ASAP 07), pages 186-191, July 2007.

[54] Sreehari Veeramachaneni ,Kirthi Krishna M, Lingamneni Avinash , Sreekanth Reddy P,
"Novel, High-Speed 16-Digit BCD Adders Conforming to IEEE 754r Format",: in the
proceedings of IEEE Computer Society Annual Symposium on VLSI (ISVLSI-2007), May
9-11, 2007, Porto Alegre, Brazil.

[55] Sreehari Veeramachaneni ,Kirthi Krishna M, Subroto Sen, Prateek G V, Bharat
Sankhlecha, M.B.Srinivas, “A Novel Carry-look ahead approach to an Unified BCD and
Binary Adder/Subtractor”, In the Proceedings of the 21st IEEE/ACM International
Conference on VLSI Design and Embedded Systems(VLSI DESIGN -2008), Hyderabad ,
India, 4th -8th January 2008.

[56] Anshul Singh, Aman Gupta, Sreehari Veeramachaneni, M.B.Srinivas, “A High
Performance Unified BCD and Binary Adder/Subtractor”, In the proceedings of IEEE
Computer Society Annual Symposium on VLSI (ISVLSI-2009), May 13-15, 2009, Tampa,
Florida.

[57] Chetan Kumar, V. Sai Phaneendra, P. Ahmed, Syed Ershad, Veeramachaneni, Sreehari;
Muthukrishnan, N. Moorthy; Srinivas, M.B.; , "A Unified Architecture for BCD and

117

Binary Adder/Subtractor," Digital System Design (DSD), 2011 14th Euromicro
Conference on , vol., no., pp.426-429, Aug. 31 2011-Sept. 2 2011.

[58] H. H. Saleh and E. E. Swartzlander, Jr., “A Floating-Point Fused Add-Subtract Unit,”
Proceedings of the 51st IEEE Midwest Symposium on Circuits and Systems, 2008, pp. 519
- 522.

[59] Jongwook Sohn, Earl E. Swartzlander Jr. “Improved Architectures for a Fused Floating-
Point Add-Subtract Unit”. IEEE Trans. on Circuits and Systems 59-I(10): 2285-2291
(2012)

[60] Jongwook Sohn “Improved architectures for a fused floating-point add-subtract unit”, M.S.
Thesis , The University of Texas at Austin,2011.

[61] H.H. Saleh, "Fused Floating-Point Arithmetic for DSP", PhD dissertation, Univ. of Texas,
2009.

[62] Sreehari Veeramachaneni, M. B. Srinivas, “Design of Efficient Arithmetic Circuits for
Realization of Floating Point Adder/Subtractor Units”, 2013 IEEE/IFIP 21th International
Conference on VLSI and System-on-Chip (VLSI-SoC), 7-9 Oct. 2013.

[63] W.J. Townsend, E.E. SwartzlanderJr., and J.A. Abraham, "A Comparison of Dadda and
Wallace Multiplier Delays," Proc. SPIE, Advanced Signal Processing Algorithms,
Architectures, and Implementations XIII, pp. 552-560, 2003.

[64] Ron S. Waters, Earl E. Swartzlander, “A Reduced Complexity Wallace Multiplier
Reduction”, IEEE Transactions on Computers, vol. 59, no. 8, pp. 1134-1137, Aug. 2010.

[65] Butler, Mike. “Bulldozer: A new approach to multithreaded compute performance”, Hot
Chips XXII, August 2010.

[66] Conway, P. et al. “Blade Computing with the AMD Opteron Processor (“Magny-Cours”)”,
Hot Chips XXI, August 2009.

[67] www.realworldtech.com/barcelona
[68] D. A. Patterson, J. L. Hennessy “Computer Organization & Design: The

Hardware/Software Interface”, Revised 4th Edition, Morgan Kaufmann Publishers
(Elsevier), 2012.

[69] Kalla R, Sinharoy B “POWER7: IBM's next generation server processor”, IEEE
symposium on high performance chips (Hot chips 21), Stanford, August 2009.

[70] Narendra, Siva G. Chandrakasan, Anantha (Eds.), “Leakage in Nanometer CMOS
Technologies” Springer Publications, 2006.

118

List of Publications

Journals

[J1] Sandeep Saini ,Mahesh Kumar, Sreehari Veeramachaneni, M.B.Srinivas, “An Alternate
approach to Buffer Insertion for Delay and Power Reduction in VLSI Interconnects”, The
Journal of Low Power Electronics (JOLPE), Vol. 6, number 3, pp 429-435 October 2010.

[J2] Mahesh Kumar, Sreehari Veeramachaneni, M.B.Srinivas, “Design of a Low Power
Variable-Resolution Flash ADC”, The Journal of Low Power Electronics (JOLPE), Vol.
5, number 3, pp 279-290 October 2009.

[J3] Sreehari Veeramachaneni, M.B. Srinivas “Design of Efficient Arithmetic Circuits for
Realization of Floating Point Adder/ Subtractor Units” (Communicating to
Microelectronics Journal – Elsevier)

[J4] Sreehari Veeramachaneni, M.B. Srinivas “Efficient Hardware Accelerator For Accurate
Scientific And Numerical Computing.” (Communicating to Microelectronics Journal –
Elsevier)

Conferences

[C1] Sreehari .Veeramachaneni , Pradeep Yarlagadda, and M. B. Srinivas “A Fully
Multiplexer-based Implementation of Redundant Number System” Proceedings of the
15th IEEE/ACM SIGDA International Workshop on Logic & Synthesis (IWLS-2006),
June 7-9, 2006, Vail, Colorado ,.USA.

[C2] Sreehari Veeramachaneni , Kirthi Krishna M, Lingamneni Avinash, Sreekanth Reddy
P, M.B.Srinivas, “Design of a High Performance and Efficient Arithmetic Logic Unit
(ALU)”, In International Microelectronics & Packaging Society (IMAPS)India National
Conference (IINC-2006) on Microelectronics & VLSI, Hyderabad, India, 8-10th
December 2006. (Best paper award).

[C3] Sreehari Veeramachaneni, Lingamneni Avinash, Rajashekhar Reddy M, M.B.Srinivas
“Efficient Modulo (2k ±1) Binary to Residue Converters” Proceedings of the 6th IEEE
International Workshop on SOC Real-Time Applications (IWSOC- 2006), Cairo, Egypt,
December 26-28th 2006.

[C4] Sreehari Veeramachaneni , Kirthi Krishna M, Lingamneni Avinash, Sreekanth Reddy P,
M.B.Srinivas, “Novel Architectures for High-speed and Low-power 3-2, 4-2 and 5-2
Compressors” Proceedings of the 20th IEEE/ACM International Conference on VLSI
Design and Embedded Systems(VLSI DESIGN -2007), Bangalore, India, 6-10th January
2007

[C5] Sreehari Veeramachaneni, Lingamneni Avinash, Kirthi Krishna M, M.B.Srinivas, “Novel
Architectures for Efficient (m, n) Parallel Counters” In 17th ACM Great Lakes

119

Symposium on VLSI (GLSVLSI-2007), Stresa-Lago Maggiore, Italy, March 11-13,
2007.

[C6] Sreehari Veeramachaneni , Kirthi Krishna M, Lingamneni Avinash, Sreekanth Reddy P,
M.B.Srinivas, "Novel High-Speed Redundant Binary to Binary Converter Using Prefix
Networks" IEEE International Symposium on Circuits and Systems (ISCAS-2007) May
27-30, 2007, New Orleans, USA

[C7] Sreehari Veeramachaneni, Lingamneni Avinash, Rajashekhar Reddy M, M.B.Srinivas,
Efficient Implementations of Residue to Binary Converters for (2k-1, 2k , 2k +1) Moduli
Set, The 2007 World Congress in Computer Science, Computer Engineering, and
Applied Computing (WORLDCOMP'07), Monte Carlo Resort, Las Vegas, Nevada, USA
(June 25-28, 2007).

[C8] Sreehari Veeramachaneni , Mayank Agarwal, Siddartha K, Rajashekhar Reddy M, Sri
Harish Reddy M and M. B. Srinivas “New Full Adder Cells for Sub-threshold
Operations” Proceedings of the 16th IEEE/ACM SIGDA International Workshop on
Logic & Synthesis (IWLS-2007), May 30 - June 1, 2007,Paradise Point Resort & Spa
San Diego, CA ,USA. (Co-located with the (DAC) Design Automation Conference).

[C9] Sreehari Veeramachaneni ,Kirthi Krishna M, Lingamneni Avinash , Sreekanth Reddy P,
"Novel, High-Speed 16-Digit BCD Adders Conforming to IEEE 754r Format",: in the
proceedings of IEEE Computer Society Annual Symposium on VLSI (ISVLSI-2007),
May 9-11, 2007, Porto Alegre, Brazil.

[C10] Sreehari Veeramachaneni ,Kirthi Krishna M, Lingamneni Avinash , M B Srinivas, " A
Novel High-Speed Binary and Gray Incrementer/Decrementer for an Address Generation
Unit," In 2nd IEEE International Conference on Industrial and Information Systems
(ICIIS 2007), 8-11, August 2007, University of Peradeniya, Srilanka.

[C11] Sreehari Veeramachaneni ,Kirthi Krishna M, Lingamneni Avinash , Sreekanth Reddy P,
M. B. Srinivas, " Efficient Design of a 32-Bit Comparator Using Carry Look-Ahead
Logic" in Joint Conference on 50th IEEE Mid West Symposium on Circuits and Systems
(MWSCAS-2007) and 5th North East Symposium on Circuits and Systems (NEWCAS-
2007), August 5-8, 2007, Montreal, Canada.

[C12] Sreehari Veeramachaneni ,Kirthi Krishna M, Subroto Sen, Prateek G V, Bharat
Sankhlecha, M.B.Srinivas, “A Novel Carry-look ahead approach to an Unified BCD and
Binary Adder/Subtractor”, In the Proceedings of the 21st IEEE/ACM International
Conference on VLSI Design and Embedded Systems(VLSI DESIGN -2008), Hyderabad
, India, 4th -8th January 2008 .

[C13] Sreehari Veeramachaneni, M.B.Srinivas, “New Improved 1-Bit Full Adder Cells”, In
21st IEEE Canadian Conference on Electrical and Computer Engineering (CCECE-2008)
Symposium on Circuits, Devices and Systems, Sheraton Fallsview Niagara Falls Ontario,
Canada, May 4-7, 2008

120

[C14] Sreehari Veeramachaneni, M.B.Srinivas, 'Novel High-Speed Architecture for 32-Bit
Binary Coded Decimal (BCD) Multiplier,In International Symposium on
Communications and Information Technologies (ISCIT-2008), Don Chanh Palace Hotel,
Vientaine , Lao PDR, October 21-23,2008.

[C15] Mahesh Kumar ,Sreehari Veeramachaneni, M.B.Srinivas, “Low Voltage High
Performance Flash ADC”, In 9th of the biennial Asia Pacific Conference on Circuits and
Systems (IEEE APCCAS 2008), Venetian Macao-Resort-Hotel, Macao, China
November 30 - December 3, 2008.

[C16] Sreehari Veeramachaneni, A. Mahesh Kumar , Venkat Tummala, M.B.Srinivas,“Design
of a Low Power Variable-Resolution Flash ADC", In the Proceedings of the 22nd
IEEE/ACM International Conference on VLSI Design and Embedded Systems (VLSI
DESIGN -2009),New Delhi , India, 5th -9th January 2009.

[C17] Anshul Singh, Aman Gupta, Sreehari Veeramachaneni, M.B.Srinivas, “A High
Performance Unified BCD and Binary Adder/Subtractor”, In the proceedings of IEEE
Computer Society Annual Symposium on VLSI (ISVLSI-2009), May 13-15, 2009,
Tampa, Florida.

[C18] Sreehari Veeramachaneni , M.B.Srinivas, “Redefining CMOS Logic Style for
Subthreshold Operation” In the proceedings of the IEEE 5th International Conference on
Ph.D. Research in Microelectronics and Electronics (PRIME'09) ,University College
Cork, Ireland, 12-17 July.

[C19] Mahesh Kumar, Sreehari Veeramachaneni , M.B.Srinivas, “Design of Low Power and
High Speed Reconfigurable Resolution two step flash ADC” ,In the proceedings of the
1st Asia Symposium on Quality Electronic Design (ASQED 2009) 15-16 July 2009 in
Kuala Lumpur, Malaysia.

[C20] Mahesh Kumar, Sreehari Veeramachaneni , M.B.Srinivas, “A Novel Low Power,
Variable Resolution Pipelined Analog to Digital Converter” ,In the proceedings of the
22nd IEEE International SOC conference (IEEESOCC 2009) 9th -11th September 2009
in Belfast, Northern Ireland, UK.

[C21] Ronak Bajaj, Saransh Chhabra, Sreehari Veeramachaneni M.B.Srinivas “'A Novel, Low-
Power Array Multiplier Architecture” In the proceedings of the 9th International
Symposium on Communications and Information Technologies (ISCIT 2009) 28th-30th
September 2009 in Incheon, Korea.

[C22] Sandeep Saini, Sreehari Veeramachaneni, M.B.Srinivas, “Schmitt Trigger as an
Alternative to Buffer Insertion for Delay and Power Reduction in VLSI Interconnects”,
Tencon 2009, 23-26 Nov 2009.

[C23] Sandeep Saini, A. Mahesh Kumar, Sreehari Veeramachaneni, M.B.Srinivas, "Alternative
approach to Buffer Insertion for Delay and Power Reduction in VLSI Interconnects",
Proceedings of the 23th IEEE/ACM International Conference on VLSI Design and
Embedded Systems(VLSI DESIGN -2010), Bangalore, India, 3-7th January 2010.

121

[C24] Mahesh Kumar Adimulam, Krishna Kumar Movva, Sreehari Veeramachaneni, N.
Moorthy Muthukrishnan, M.B.Srinivas: A low power, variable resolution two-step flash
ADC. ACM Great Lakes Symposium on VLSI 2010 (GLSVLSI 2010): pp.39-44, Brown
University Campus, Providence, Rhode Island, USA ,May 16-18, 2010.

[C25] Mahesh Kumar Adimulam, Sreehari Veeramachaneni, N. Moorthy Muthukrishnan,
M.B.Srinivas , " A Novel, Variable Resolution Flash ADCwith Sub Flash Architecture ",:
in the proceedings of IEEE Computer Society Annual Symposium on VLSI (ISVLSI-
2010), July 5-6, 2010,lixouri,Kefalonia,Greece.

[C26] Mahesh Kumar Adimulam , Sreehari Veeramachaneni , M.B.Srinivas, “Towards
Realizing Variable Resolution Analog to Digital Converters” In the proceedings of the
2010 Asia Pacific Conference on Postgraduate Research in Microelectronics &
Electronics (PRIME-ASIA 2010)September 22 – 24, 2010 Shanghai Olympic Hotel,
China.

[C27] Mahesh Kumar, Sreehari Veeramachaneni , N. Moorthy Muthukrishnan, M.B.Srinivas,
“A New Low Power Flash ADC with Configurable Resolution” In TENCON-2010,
Fukuoka, Japan ,November 21-24, 2010.

[C28] Mahesh Kumar, Sreehari Veeramachaneni, N. Moorthy Muthukrishnan, M.B.Srinivas,
“A Multiple-Bandwidth 12-bit Pipelined Analog to Digital Converter with Self-Clock
Generator” In International Symposium on Communications and Information
Technologies (ISCIT-2010, October 26-29 2010,), Meiji University, Tokyo, Japan.

[C29] Mahesh Kumar, Sreehari Veeramachaneni , N. Moorthy Muthukrishnan, M.B.Srinivas,
“Low Power, Variable Resolution Pipelined Analog to Digital Converter with Sub Flash
Architecture” In the Proceedings of the 11th Biennial Asia Pacific Conference on
Circuits and Systems (APCCAS2010), December 6th -9th 2010 , Kuala Lumpur
,Malaysia.

[C30] Chetan Vudadha, Sai Phaneendra, Syed Ershad Ahmed, Sreehari Veeramachaneni,
Moorthy Muthukrishnan and Srinivas M.B “An Improved Sum Computation Block for
adders with High Sparseness ", in 20th International Workshop on Logic & Synthesis
(IWLS 2011), June 2011, San Diego, CA, USA.

[C31] Chetan Kumar V., Sai Phaneendra P., S. Ershad Ahmed, Sreehari Veeramachaneni, N.
Moorthy Muthukrishnan, M. B. Srinivas: A Prefix Based Reconfigurable Adder, IEEE
Computer Society Annual Symposium on VLSI (ISVLSI 2011), Chennai, India,July 4-6,
2011.

[C32] Chetan Kumar, V. Sai Phaneendra, P. Ahmed, Syed Ershad, Veeramachaneni, Sreehari;
Muthukrishnan, N. Moorthy; Srinivas, M.B.; , "A Unified Architecture for BCD and
Binary Adder/Subtractor," Digital System Design (DSD), 2011 14th Euromicro
Conference on , vol., no., pp.426-429, Oulu, Finland,Aug. 31 2011-Sept. 2 2011.

[C33] Ahmed, Syed Ershad, Sreehari Veeramachaneni, N Moorthy Muthukrishnan, M.B.
Srinivas, “Reconfigurable Adders for Binary/BCD addition/Subtraction”, The IEEE 2011

122

Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronics
(PrimeAsia), 2011, Macau, China,6-8 October .

[C34] Sai Phaneendra P, Sreehari Veeramachaneni, N Moorthy Muthukrishnan, M.B. Srinivas,
“Conditional Sum Block for High Sparse Adders”, The 2011 IEEE Asia Pacific
Conference on Postgraduate Research in Microelectronics & Electronics (PrimeAsia),
2011, Macau, China,6-8 October 2011. (GOLD LEAF Certificate).

[C35] Phaneendra. P, Vudadha. C, Ahmed.S, Sreehari Veeramachaneni, Muthukrishnan, N,
Srinivas, M.B., "Increment/decrement/2's complement/priority encoder circuit for varying
operand lengths," 11th International Symposium on Communications and Information
Technologies (ISCIT), 2011 , vol., no., pp.472-477, 12-14 Hangzhou, China,Oct. 2011

[C36] Chetan Kumar, Sai Phaneendra, Ershad Ahmed, Sreehari Veeramachaneni, Moorthy
Muthukrishnan, Srinivas M.B., "Higher radix sparse-2 adders with improved grouping
technique," TENCON 2011, IEEE Region 10 Conference , vol., no., pp.676-679, 21-24
Bali, Indonesia, Nov. 2011.

[C37] V. Chetan, Phaneendra, P, Syed Ershad, SreehariVeeramachaneni, Muthukrishnan
Moorthy, Srinivas, M.B, "A Reconfigurable INC/DEC/2's Complement/Priority Encoder
Circuit with Improved Decision Block," International Symposium on Electronic System
Design (ISED), 2011, vol., no., pp.100-105, 19-21 Kochi, India Dec. 2011.

[C38] Sai Phaneendra P, Chetan Vudadha, Goutham Makkena, Venkata Swamy Nayudu
Mandala, Sreehari Veeramachaneni, Ershad Ahmed S, Moorthy Muthukrishnan N and
Srinivas M.B. “Low Power Self Reconfigurable Multiplexer Based Decoder for Adaptive
Resolution Flash ADCs” ", In the Proceedings of the 25nd IEEE/ACM International
Conference on VLSI Design and Embedded Systems (VLSI DESIGN -2012), Hyderabad
, India, 7th -11th January.

[C39] Sreehari Veeramachaneni, M. B. Srinivas, “Design of Efficient Arithmetic Circuits for
Realization of Floating Point Adder/Subtractor Units”, 2013 IEEE/IFIP 20th International
Conference on VLSI and System-on-Chip (VLSI-SoC), Istanbul, Turkey, 7-9 Oct. 2013.

[C40] Sreehari Veeramachaneni, M. B. Srinivas, “Design of Optimized Arithmetic Circuits for
Multiplier Realization”, The 2013 IEEE Asia Pacific Conference on Postgraduate
Research in Microelectronics & Electronics (PrimeAsia), 2013, Visakhapatnam, India,
19-21 December 2013.

[C41] B Naveen Kumar Reddy, Chandra Sekhar Mummidi, Sreehari Veeramachaneni and M B
Srinivas. “A Novel Low Power Error Detection Logic for Inexact Leading Zero
Anticipator in Floating Point Units”, In the Proceedings of the 27th IEEE/ACM
International Conference on VLSI Design and Embedded Systems (VLSI DESIGN -
2014), Mumbai , India, 5th -9th January 2014.

[C42] Sai Phaneendra P, Chetan Vudadha, Sreehari Veeramachaneni, Srinivas M.B. “An
Optimized Design of Reversible Quantum Comparator”, In the Proceedings of the 27th
IEEE/ACM International Conference on VLSI Design and Embedded Systems (VLSI
DESIGN -2014), Mumbai , India, 5th -9th January 2014 .

123

	Chapter 1
	1.1 Motivation
	1.2 Objectives of the thesis
	1.3 Organization of the thesis

	Chapter 2
	2.1 Introduction
	2.2 Review of Existing Adder Designs
	2.2.1 Ripple Carry Adder
	2.2.2 Carry Select Adder (CSA)
	2.2.3 Carry Look-Ahead Adder
	2.2.4 Prefix Based Adders

	2.3 Design and Implementation of Efficient Sum Computation Block for Higher Bit Sparse Adders
	2.4 Design and Implementation of Higher Bit Sparse Adder
	2.5 Simulation Results
	2.6 Conclusions

	Chapter 3
	3.1 Introduction
	3.2 Compressors and Counters
	3.3 Existing Compressor Designs
	3.3.1 3-2 Compressor
	3.3.2 4-2 Compressor
	3.3.3 5-2 Compressor

	3.4 Design and Implementation of Efficient Compressors
	3.4.1 3-2 Compressor
	3.4.2 4-2 Compressor
	3.4.3 5-2 Compressor

	3.5 Designs of Existing Counters
	3.5.1 (3, 2) Counter
	3.5.2 (7, 3) Counter
	3.5.3 (15, 4) Counter
	3.5.4 (31, 5) Counter

	3.6 Design and Implementation of Efficient Parallel Counters
	3.6.1 (3, 2) Counter
	3.6.2 (7, 3) Counter
	3.6.3 (15, 4) counter
	3.6.4 (31, 5) counter
	3.6.5 (m, n) Parallel Counter

	3.7 Simulation Results and Analysis
	3.7.1 Compressor
	3.7.2 Counter

	3.8 Conclusions

	Chapter 4
	4.1 Introduction:
	4.1.1 Incrementer/Decrementer Circuit
	4.1.2 2’s Complement Circuit
	4.1.3 Priority Encoder Circuit

	4.2 Existing Designs
	4.2.1 Increment/Decrement circuits
	4.2.2 2’s Complement and Priority Encoder Circuits

	4.3 Proposed Multi-functional INC/DEC/2’s complement/Priority Encoder Circuit
	4.3.1 Motivation

	4.4 Implementation
	4.4.1 Input Selection Block
	4.4.2 Decision Block
	4.4.3 Output Selection Block

	4.5 Simulation Results
	4.5.1 Multi-functional INC/DEC/2’s Complement/Priority Encoder:

	4.6 Conclusion

	Chapter 5
	5.1 Introduction
	5.2 Review of Existing Techniques for BCD Addition/Subtraction
	5.2.1 One-Digit BCD Full Adder
	5.2.2 Higher Bit BCD/Binary Adders/Subtractors

	5.3 A Unified BCD/Binary Adder/Subtractor Architecture
	5.3.1 Conventional Binary Adder /Subtractor
	5.3.2 A Modified Binary Adder/Subtractor
	5.3.3 Modified BCD Adder/Subtractor
	5.3.4 A Modified Unified BCD/Binary Adder/Subtractor Architecture

	5.4 Simulations and Results
	5.5 Conclusions

	Chapter 6
	6.1 Floating Point Adder/Subtractor
	6.1.1 Introduction
	6.1.2 Design of Floating Point Units- General Implementation
	6.1.3 Design of Efficient Binary Adder/Substractor
	6.1.3.1 Comparator for 32-bit floating point unit

	6.1.4 Results and Comparison

	6.2 Implementation of High Speed Multiplier
	6.2.1 Introduction
	6.2.2 Design of Multipliers using Wallace and Dadda Algorithms
	6.2.3 Simulation Results

	6.3 Conclusions

	Chapter 7
	7.1 Introduction
	7.2 Arithmetic Units in a Processor Core
	7.3 Efficient Arithmetic Units for a Processor Core
	7.3.1 Simulation Results

	7.4 Power gating applied to the arithmetic units.
	7.4.1 Simulation Results

	7.5 Conclusions

	Chapter 8
	8.1 Conclusions
	8.2 Future Work
	Bibliography
	Journals
	Conferences

