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Abstract

AI systems are ubiquitous in the current times, facilitating numerous real-world even

real-time applications. Such sophistication is the consequence of advancement in algorith-

mic research and concurrent up-gradation of computational resources. The existing models

achieve near-optimal results for specific performance measures. Such perfection is often ob-

tained at the cost of Fairness. By fairness, we try to quantify the impact an application

has on an individual user (Individual Fairness) or a group of users (Group Fairness). In

this work, we shift our focus from a single performance measure and explore the fairness

of existing algorithms specifically in two settings, i) Fair resource allocation with strategic

agents and ii) Fair classification models. We divide our work and discuss it in the following

two parts.

Part A – Fair Allocations with Strategic Agents. We consider the setting of

resource allocation, where there are multiple items and multiple agents who have prefer-

ences for these items. The agents are rational and strategic and may manipulate their

preferences to obtain higher gains. The social planner must find allocations that satisfy

certain desirable fairness properties and are resistant to manipulation, i.e. ensure strategy-

proofnesss. Researchers have proposed algorithms that charge agents in order to prevent

manipulations. However, analytically designing payments which are fair and strategy-proof

is challenging. In this part, we propose data-driven approach to learn payments that are fair

and strategy-proof. We additionally consider resource allocation settings wherein charging

payments is not feasible. We analyze the existence of strategy-proof algorithms that ensure

v
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fair allocations. We consider certain well known fairness notions like envy-freeness, pro-

portionality and max-min share allocations. Such notions only ensure individual fairness

of the agents involved.

Part B – Fair Decisions for Groups. We consider machine learning-based classifi-

cation algorithms. The accuracy of such algorithms has been the primary concern and is

widely researched. More recently, researchers have uncovered the prejudiced predictions

of such models towards certain demographic groups. Due to existing bias against certain

race, gender or age, the data available is often biased. The prejudices in the data, amplified

by the algorithms trained only for achieving higher accuracy, lead to unfair decisions to

certain groups. Moreover, such algorithms made public on various online platforms poten-

tially leak private information of the individual data used in training. Ensuring fairness

and privacy in a machine learning framework gives rise to a non-convex and complex op-

timization with multiple constraints. Towards this, we rely on learning-based approaches

and exploit neural networks’ immense capacity to get closer to the goal.
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Chapter 1

Introduction

“If machine learning is our way into studying institutional decision making,

fairness is the moral lens through which we examine those decisions.” –

Barocas et al. 2019 [24]

Figure 1.1: Ubiquitous AI systems [Image Credits: [7, 8]]

Artificial Intelligence (AI) has become a core component of technological innovation. AI

is now ubiquitous in crucial sectors like automobile, health care, retail, finance, e-commerce

and even entertainment. Many of these applications directly rely on the decisions from the

AI model. As a result, AI-based decision making is having a huge impact on each of our

lives. AI helps us decide what routes to chose while traveling via Smart Navigation apps,
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Figure 1.2: Cake Cutting [Image Credits: [44]]

what products to buy via Online Advertisements and even what social media content to

follow via Recommendation Systems. AI has a role in what we write (Language Modelling),

how we look (Photo Editors) and even what opportunities we get (e.g., do we qualify for a

job, a loan or medical treatment) via Predictive Models.

The global AI market was valued at USD 328.34 Billion in 2021 and will likely expand at

a compound annual growth rate (CAGR) of 40.2% from 2021 to 2028 [7]. Such progression

is possible due to intensive research and computational resources. In general, industries

are driving the AI market towards faster and more efficient solutions to maximize revenue.

As such, research towards improving certain established performance measures (e.g., the

accuracy of a learned model), even marginally, is highly rewarded. In this “race” for

perfection, we have significantly succeeded in narrow spaces. However, we still need holistic

and continually productive solutions.

We believe that inclusion is the way to long-term solutions. Considering the interests

of the user of any application is the first step towards inclusive thinking. In other words,

a user must perceive that the solution offered is fair to it. Let us consider the classic

example of cake cutting (Figure 1.2) and understand how appropriate methods can achieve

a subjective notion like fairness. Consider a fancy cake with different layers and toppings

which we must distribute between two people. Each person has different preferences for

the different parts of the cake. In order to divide the cake fairly among the two, we ask
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one person to cut the cake and the other to choose. The person who cuts the cake ensures

that he divides it so that either of the pieces is equally valuable to it. The second person

will choose the piece which is more valuable than the other. Likewise, both persons feel

they have received their fair share.

Resource Allocation is the classic setting where fairness has been extensively studied.

The standard resource allocation model consists of agents interested in multiple yet limited

resources. The social planner is responsible for designing appropriate allocations that

satisfy specific efficiency and fairness criteria. There can be multiple aspects of fairness

tailored to a specific resource allocation application. For example, it may not be fair to

charge large payments to the agents in many auctions. Consider the auction of public

property like spectrum auctions or government land, or factories. The main motive here is

to find a suitable candidate for the said item and not profit.

On the one hand, the agents being strategic may lie about their valuations if the items

are offered for free. On the other hand, charging large payments may discourage the

participation of agents who genuinely value the property. In contrast, there are other

situations, like crowdsourcing or online advertisement, where the social planner chooses

suitable candidates to complete a specific task. It may not be fair that the planner pays an

enormous amount to select an appropriate candidate in such scenarios. There is a notion

of a fair share of allocation in other settings where there are no payments or incentives,

like in the cake-cutting example. Each individual must be offered a fair share of the

allocation, applicable in many web-based solutions for a course assignment, land allocation,

or splitting the fare. In these settings, the mechanisms must ensure truthfulness without

using payments.

The above applications warrant individual fairness of the agents or the social planner.

In practice, situations may arise where a community or a population sub-group is sub-

jected to a particular bias. Racial, gender-based, and even caste-based subjugation has

been prevalent for a long time. It is no mystery that such prejudices are reflected in our
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gathered data. In recent times, with ease in accessibility of a wide variety of data and

computational efficiency, learning algorithms have gained popularity. When trained on

biased data, such learning algorithms definitely lead to biased predictions that are biased

[25, 30, 53]. E.g., ProPublica conducted its study of the risk assessment tool, which was

widely used by the judiciary system in the USA. ProPublica observed that the risk values

for recidivism estimated for African-American defendants were, on average, higher than for

Caucasian defendants. Hence, learning algorithms that are often trained to improve spe-

cific performance measures like accuracy must also incorporate notions of group fairness.

Governments worldwide have adopted laws to enforce the same. E.g., the 80% Disparate

Impact rule introduced in the US labor laws [77].

Naturally, any approach which ensures group fairness requires the knowledge of sensitive

attributes (e.g., gender, race). These attributes often comprise the most critical informa-

tion. The law regulations at various places prohibit using such attributes to develop models.

The EU General Data Protection Regulation prevents the collection of sensitive user at-

tributes [189]. Thus, it is imperative to address discrimination while preserving the leakage

of sensitive attributes from the data samples. In other words, privacy of the data must

not be violated in order to obtain high accuracy or even fairness. To ensure holistic and

productive solutions, the evaluation of a model must depend on (i) primary performance

measures (like accuracy), (ii) the fairness notion that it satisfies, and (iii) the privacy guar-

antees it provides. We provide some real-world applications and examine them through

the lens of fairness, as discussed below.

1.1 AI Applications under Fairness Lens

Various applications use AI for decision-making. We discuss these in broadly two differ-

ent categories of mechanism design and predictive modelling. In the prior, the agents are

strategic, and hence appropriate incentives must be designed. In the latter, the agents are

not strategic, and we are concerned with performance across groups of agents. Hence, we
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Figure 1.3: Mechanism design is applied in auctions, dynamic pricing, crowdsourcing,

sharing resources and online-advertisements [Image Credits: [12]]

divide the applications in two parts based on the type of fairness studied, Part A – Fair

Allocations with Strategic Agents., we discuss certain applications of individual

fairness in resource allocation. In Part B – Fair Decisions for Groups., we discuss

group fair and private classification using neural network based classifiers.

1.1.1 Part A – Fair Allocations with Strategic Agents

We often face the problem of allocating public resources/objects among multiple agents

who desire them. These strategic agents have their private values or preferences over the

resources. The agents may manipulate their preferences to obtain favourable outcomes,

even more so with AI-based agents. The allocations must satisfy specific desirable game-

theoretic properties. Mechanism design is a field in economics and game theory that designs

economic mechanisms or incentives toward desired objectives in strategic settings where

players act rationally. It is widely applicable in a lot of complex settings (Figure 1.3), as

discussed below,
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Figure 1.4: Mechanism Design Fairness Challenges [Image Credits: [12]]

• Auctions are widely used in e-commerce and by government organizations. They

provide a natural setting for mechanism design with money. In auctions, various

agents bid for resources (like property, frequency spectrum, airport slots, etc.). The

social planner decides an appropriate allocation and payment scheme for certain

objectives. The objective could be maximizing revenue or social welfare. There is

a significant increase in web-based auctions that require designing mechanisms for

large and complex settings.

• Internet advertisement has become a million-dollar market in the current times. In

various search engines like Google or Bing, when a user enters a keyword, multiple

links related to the keyword are displayed. Alongside, various sponsored links that

correspond to the advertisements of selected advertisers are also displayed. The user

is directed to the corresponding page when such a link is clicked. The advertiser is

charged a certain amount for directing the user to its page. Generally, these search

engines employ Mutli-armed based (MAB) mechanism design [16, 116, 175]. These

mechanisms select suitable advertisements to display (based on clicks obtained) and

conduct an auction to determine the payments they should charge for the slots.

• Expertsourcing is a popular method for requesters to obtain information or collect

opinions from a large group of people. It enables a crowd with plenty of diverse

expertise to contribute to any outsourced task. Tasks include rating products online,

testing applications for a company, or collecting real-world data. Many of these
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tasks do not have answers, i.e., we do not know the ground truth and we cannot

verify the correctness of the players’ contributions. Due to this fact, strategic players

may have incentives to manipulate the system by providing arbitrary data without

actually performing the tasks. Researchers propose several incentive mechanisms to

discourage such undesirable strategies based on specific reward schemes [87, 133].

• Dynamic Pricing has become an integral part of various applications to help adjust

to market conditions. We commonly find it in ride-sharing in Uber and other taxi ser-

vices, airline and hotel bookings, and various e-commerce stores. With an increase

in online shopping, market conditions have become highly volatile. The pricing is

already adjusted based on competitive pricing, demand, supply, sales, and require-

ments. The question is whether the pricing is perceived as fair by both the supplier

and the customer [65].

• Sharing Resources is applicable in real-world settings, such as division of investments

and inheritance, vaccines, or tasks. Web-based applications such as Spliddit, The

Fair Proposals System, Coursematch, Divide Your Rent Fairly, among others, are

used for credit assignment, land allocation, division of property, course allocation,

and even task allotment. All these applications assure certain fairness and efficiency

guarantees.

Money is involved in many applications discussed above, like auctions and dynamic

pricing. Hence, mechanism design focuses on designing payment schemes to achieve the

objective. Often these objectives are aggregated statistics like overall welfare or revenue

generated. Consequently, the mechanisms’ solutions may be perceived as unfair by each

individual agent involved. E.g., surge pricing in Uber, high prices in auctions for giveaway

goods, and very high payment for sourcing quality workers (Figure 1.4). On the other

hand, there is a host of applications of resource division where money is not involved. E.g.,

division of inheritance, splitting room rent among the members, and distribution of central

revenue among the states. In these scenarios, it is impossible to introduce payments to
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Figure 1.5: Machine Learning Applications in Health Care, Reccomender Systems, Re-

cruitment, Criminal Justice, Privacy, Recognition [Image Credits: [12]]

incentivize strategic agents. Much of the existing literature focuses on the fair division of

resources but does not consider strategic agents. We believe that when agents act selfishly,

having fair algorithms would still lead to unfair solutions (Figure 1.4).

1.1.2 Part B – Fair Decisions for Groups

In recent years machine learning models have been popularized as prediction models

to supplement the process of decision-making. Decision-making in crucial sectors like

recruitment, criminal justice, and even health care (Figure 1.5). We list some use cases

below,

• Recruitment. Many companies use machine learning models in the process of hiring.

Machine learning models assist in the entire process, from predicting hiring needs to

candidate assessment. Even displaying job advertisements strategically is also decided

using previous data. Often the goal of such companies is increasing short-term profit.
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Figure 1.6: Bias in Machine Learning [Image Credits: [34, 35]]

They look for the best candidates with the highest performance based on certain features,

including sensitive information. Often these models are trained on biased data, which

reflect in the predictions and hence find their way into the decision-making.

• Criminal Justice. AI-based predictive models have found their way into criminology,

law, and forensics. Algorithms provide decisions regarding bail, sentence and parole,

and risk assessments. Such models play a crucial role in the prisoners’ lives; incorrect

decisions could also immediately affect the lives of many others.

• Healthcare. In healthcare, there is always a contest for limited and costly resources. In

healthcare, machine learning is used to develop better diagnostic tools, predict the side

effects of new drugs, schedule appointments, and even prioritize the patients for getting

certain treatments. Invariably these models are trained to produce the most effective

results for minimum costs. Although, we must ask if the predictions are biased towards

certain population subgroups, causing a further rift in society.

• Recommender Systems. Recommender systems have played a vital role in our lives with

the rise of Youtube, Amazon, and Netflix. In e-commerce, these systems suggest to

buyers articles that could interest them. In online advertising, they suggest to users the

right content which matches their preferences. These systems aim to recommend relevant
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items to the users based on the users’ profiles. The efficiency of a recommender system is

often the major focus. However, we ignore the bias it creates via unfair recommendations.

Also, sensitive data used by these algorithms may lead to privacy issues.

• Security and Privacy. Many security software depend on facial recognition and identi-

fication. While these algorithms must have good overall performance, they should also

perform equally well across different demographics of people. Unless this is ensured,

security systems unethically become biased towards certain groups of people. Likewise,

the data used for training machine learning algorithms contain sensitive information.

Hence privacy guarantees of these applications must be considered before deployment.

These machine learning models unknowingly introduce a societal bias through their

predictions [25, 30, 53] (Figure 1.6). E.g., ProPublica conducted its study of the risk

assessment tool, which was widely used by the judiciary system in the USA. ProPublica

observed that the risk values for recidivism estimated for African-American defendants

were, on average, higher than for Caucasian defendants (Figure 1.6). More recently, several

examples indicate the disparity in the hiring process, even at Amazon and Facebook. Some

examples also highlight the disparity in income levels among different genders and health

care opportunities for different races. Models trained on historically prejudiced data often

propagate and amplify the existing bias.

1.2 Contributions

It is common to consider and optimize over a single performance measure in any AI-

based solution. Here we shift our focus from a single performance measure and consider

fairness while designing algorithms. Such inclusion comes with significant challenges, call-

ing for a customized approach for each application. The process majorly involves the

following steps. (i) The first step is quantifying the notion of Fairness or identifying what

is a fair solution in the context of an application. (ii) Then, we assess the deployed system
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in terms of the fairness notion. (iii) We next identify the challenges involved in ensuring

fairness. (iv) Finally, we propose modifying the existing system to ensure a fairer solution.

We now discuss five different applications where we show that the current solutions can be

improved and made fairer to an individual or a group of individuals.

1.2.1 Part A – Fair Allocations with Strategic Agents

We summarize our contributions in three applications of mechanism design consisting

of mechanisms with and without payments.

1.2.1.1 Redistribution Mechanism

We consider a social setting where public resources are allocated among competing and

strategic agents to maximize social welfare (the objects should be allocated to those who

value them the most). This setting is called Allocative Efficiency (AE). We need the agents

to report their valuations for obtaining these resources, truthfully referred to as Dominant

Strategy Incentive Compatibility (DSIC).

Example 1: Government Auctions

The Government often acquires old abandoned buildings, factories, and lands which

do not belong to anyone. The Government then finds owners for these structures

to ensure their better utilization. The aim of the Government is not to earn money

but find optimal welfare allocation of these resources among the different interested

parties. In many cases, the interested parties may try to manipulate their valua-

tions to obtain these resources. Redistribution mechanisms help us prevent such

malpractices while charging minimum money.

Challenges. Typically, we use auction-based mechanisms to achieve AE and DSIC. How-

ever, due to Green-Laffont Impossibility Theorem [93], we cannot ensure budget balance

in the system while ensuring AE and DSIC. That is, the net transfer of money cannot be
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zero. Hence agents might end up paying large amounts of money to convince the social

planner of the value of the resources. This problem has been addressed by designing a

“redistribution” mechanism to ensure a minimum surplus of money, allocative efficiency

and incentive compatibility. The objective could be minimizing surplus in expectation (or

worst case). The objects can be homogeneous or heterogeneous. Designing such mecha-

nisms is non-trivial. More concretely, designing redistribution mechanisms that perform

well in expectation becomes analytically challenging for heterogeneous settings [136].

Contributions

• We train a neural network to determine an optimal redistribution mechanism for the

given settings with both objectives, optimal in expectation and in the worst case.

• We also propose a loss function to train a neural network to optimize the worst case.

• We design neural networks with the underlying rebate functions being linear and

nonlinear in terms of agents’ bids.

• We demonstrate that our networks’ performances mimic theoretical guarantees. We

observe that a neural network based redistribution mechanism for homogeneous set-

tings which uses nonlinear rebate functions outperforms linear rebate functions when

the objective is optimal in expectation.

• We also show that our approach yields an optimal in expectation redistribution mech-

anism for heterogeneous settings.

1.2.1.2 MAB Mechanisms

Similar to the above setting, we have multiple resources and bidders although the value

the bidders derive from the resources is stochastic. Consider expertsourcing, a popular

method for requesters to obtain information or collect opinions from a large group of agents.

The actual quality of the agent is known to neither the agent nor the auctioneer. Such

parameters are not deterministic but are subject to various environmental conditions, hence
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are stochastic or could even be adversarial. In such a setting, it becomes necessary to figure

out the average values of these parameters through exploration and at the same time ensure

that the agents do not misreport their cost. Multi-Armed-Bandit algorithms are learning

based algorithms, they aim to minimize the difference between the qualities of the best

possible agents and the agents selected, also referred to as regret. However, in the presence

of such learning algorithms, the strategic agents have more freedom to manipulate. Hence

it is required to design novel mechanisms that also learn the environmental parameters.

Such mechanisms are referred to as Multi-Armed-Bandit (MAB) Mechanisms.

Example 2: Online Advertisements

Online Advertisements have become a major source of income for various search

engines like Google, Bing etc. Interested parties bid for certain slots on the websites

to display ads. They are then charged according to their slots of choice, while they

obtain a fixed value for every click their ad receives. The goal is to select bidders

offering competitive prices while maximizing the number of clicks. Often the utilities

obtained by the advertisers vary a lot, depending on the payment scheme used.

Using multi-armed bandits based mechanisms, we could learn payments schemes

which maximize revenue, and ensure utilities with reduced variance

Challenges. Most of the MAB mechanisms focus on frequentist approaches like upper

confidence bound algorithms. Recent work shows that Bayesian approaches like Thompson

sampling ensure lower regret. The resulting mechanism satisfies a weaker game theoretic

property, namely, Within-Period Dominant Strategy Incentive Compatibility (WP-DSIC).

The existing payment rules in the Thompson sampling based mechanisms may be unfair

to the auctioneer causing a negative utility. Besides, if we wish to minimize the cost to the

auctioneer, it is challenging to design payment rules that satisfy WP-DSIC while learning

through Thompson sampling [135].
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Contributions.

• We propose to use a data-driven approach for designing MAB mechanisms.

• Specifically, we use neural networks for designing a WP-DSIC payment rule, while

the allocation rule is modelled using Thompson sampling.

• For the setting of crowd-sourcing for recruiting quality workers, our results indicate

that the learned payment rule guarantees better revenue while maximizing the social

welfare and also ensuring reduced variance in the utilities to the agents.

1.2.1.3 Fair Division of Resources.

Fairness is well studied in the context of resource allocation.

Example 3: Division of Inheritance

Division of inheritance often leads to major rifts among the family members. Di-

viding the inheritance in a way that satisfies each member often helps in reducing

ill-feeling. Moreover, every member may have different values for different items,

which are often private. Since it is not possible to charge each member to elicit their

true valuations, it is important to study mechanisms that ensure fair division while

truthful reporting of valuations.

Challenges. Researchers have proposed different fairness notions primarily envy-freeness

(EF), and its relaxations, proportionality and max-min share (MMS). There is a vast liter-

ature on the existential and computational aspects of such notions. While computing fair

allocations, any algorithm assumes agents’ truthful reporting of their valuations towards

the resources. Whereas in real-world web-based applications for fair division, the agents

involved are strategic and may manipulate for individual utility gain.
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Contributions.

• In our work [159], we study DSIC mechanisms also referred to as strategy-proof

mechanisms without monetary transfer, which satisfy the various fairness criteria.

• We know that for additive valuations, designing truthful mechanisms for EF, MMS

and proportionality is impossible. Here we show that there cannot be a truthful

mechanism for EFX and the existing algorithms for EF1 are manipulable.

• We then study the special case of single-minded agents. For this case, we provide

a Serial Dictatorship Mechanism that is DSIC and satisfies all the fairness criteria

except EF.

In two out of the three applications we discussed, we employed learning based approaches

to ensure fairness to the agents or the social planner involved in the resource allocation.

Till now, we have considered different types of individual fairness. In the next part of our

work, we further investigate other group fairness and related biases introduced by general

machine learning algorithms.

1.2.2 Part B – Fair Decisions for Groups.

We summarize our contributions towards building applications which require group

fairness and privacy guarantees.

1.2.2.1 FNNC: Fair Neural Network Classifier

Classification algorithms are used in decision making but could often suffer from unfair

predictions.

Example 4: Loan Approval

Loans are the core business of banks. The loan companies grant a loan after an

intensive process of verification and validation. However, they still are doubtful if
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the applicant is able to repay the loan with no difficulties. Machine learning is used

to predict whether an applicant is able to repay the loan. Often due to existing

biases in the data, applicants belonging to a minority race and/or gender are often

not approved for loans. Hence, a fair classifier is needed that does not discriminate

based on attributes like gender/race.

We focus on existing fairness notions widely studied in the community which comply

with various fairness laws in place. The authors in [202] propose group fairness, which

requires different sensitive groups to receive beneficial outcomes in similar proportions. We

are concerned with group fairness like: Demographic Parity (DP) [71], Disparate Impact

(DI) [77] and Equalized odds (EO) [105].

Challenges. We note that achieving a perfectly unbiased model is impossible [53]. Hence

various approaches minimize the bias while maintaining high accuracy [5, 36, 132, 158]. In

classification models, fairness can be ensured by solving a constrained optimization prob-

lem. In this work [158], we focus on fairness constraints like Disparate Impact, Demographic

Parity, and Equalized Odds, which are non-decomposable and non-convex. Researchers de-

fine convex surrogates of the constraints and then apply convex optimization frameworks

to obtain fair classifiers. Surrogates serve as an upper bound to the actual constraints, and

convexifying fairness constraints is challenging.

Contributions.

• We propose a neural network-based framework, FNNC, to achieve fairness while

maintaining high accuracy in classification. The above fairness constraints are in-

cluded in the loss using Lagrangian multipliers. The network is optimized using

two-step mini-batch stochastic gradient descent.

• We prove bounds on generalization errors for the constrained losses which asymptot-

ically go to zero.
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• Our experiments show that FNNC outperforms the state-of-the-art. The experimen-

tal evidence supplements our theoretical guarantees.

• In summary, we have an automated solution to achieve fairness in classification, which

is easily extendable to many fairness constraints.

1.2.2.2 Towards Building Ethical AI – Fair and Private Classifier

In the previous work we consider fairness in a single neural network model. In this

work, [157] we consider both privacy and fairness in a general training setting for large

datasets. For handling big datasets and pertaining computational challenges, researchers

have proposed distributed training process, referred to as Federated learning (FL) [139].

Example 5: Face Recognition in Mobile Phones

Facial recognition is used by almost everyone today to unlock their phones. To make

robust predictions, federated learning is used since sharing the images violates pri-

vacy. While the data is not shared, it is still possible to reconstruct the input image

given the trained model hence, one must provide differential privacy guarantees.

Moreover, the software should perform equally well across different genders, races

and age groups. Hence there must be both privacy and fairness guarantees.

Challenges. Invariably all approaches guaranteeing fairness require the information of

the sensitive attribute. This information comprises any individual information based on the

training data [1] and any information related to the sensitive attribute [189]. Typically,

the law regulations at various places prohibit using such attributes to develop models

such as EU General Data Protection Regulation prevents the collection of protected user

attributes. The aggregator in FL has no direct access to private data, which prima facie

preserves privacy. However, there exist several attacks that highlight the information leak

in an FL setting. To address privacy concerns existing literature either uses cryptographic

solutions based mainly on complex Partial Homomorphic Encryption (PHE) or through
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Differential Privacy (DP). While private FL solutions using PHE exist in the literature [76,

144, 200, 204], these suffer from computational inefficiency and post-processing attacks.

Contributions.

• We propose a framework that ensures predictions that are socially fair towards all

demographic groups even when trained on imbalanced data and preserves the privacy

of (often) delicate individual information present in the dataset.

• To this end, we use the rigorous privacy guarantees provided by a differentially-private

solution [154, 162, 177, 196].

• We demonstrate the trade-off between accuracy, fairness and privacy obtained while

using our approach on various real-world datasets.

1.3 Organisation of the Thesis

As discussed above, we divide the work into two parts, Part A and Part B.

1 In Part A, we establish the preliminaries for game theory, mechanism design and

automated mechanism design in Chapter 2. We discuss our work on redistribution

mechanism in Chapter 3. Next, we discuss our work on Thompson sampling based

mechanism design in Chapter 4 Finally we discuss fair resource allocation under

strategic agents in Chapter 5.

2 Next in Part B, Chapter 6, we discuss preliminaries and definitions related to fairness

in machine learning and differential privacy. In Chapter 7, we discuss our proposed

Fair Neural Network Classifier (FNNC) and Fair and Private Federated Learning

framework (FPFL) in Chapter 8.
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Chapter 2

Part A - Preliminaries and Related Work

Game Theory models strategic interactions between rational and intelligent

players. The aim is to predict the outcome of the interaction between

the players who are maximizing their individualistic payoff. There are vari-

ous real-world applications where the desired outcome is either overall effi-

ciency or revenue obtained. Along with these properties, the fairness of the

outcome is also well-studied. In game theory, various equilibrium analyses

characterize the outcome and its properties. On the other hand, we are

more concerned with Mechanism Design or reverse-engineered game theory.

In mechanism design, the social planner specifies the interactions among

self-interested players for a desirable outcome. Typically the social planner

either incentivizes them (mechanisms with money) or designs appropriate

rules (mechanisms without money) for the players to act accordingly. In this

chapter, we discuss the preliminaries of game theory and mechanism design,

especially for the setting of resource allocation.

2.1 Game Theory

Game theory models the interaction between rational players. Each player is capable

of and intends to maximize its pay-off. The players’ interests may be conflicting or coop-
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erative. Game theory provides us with appropriate tools to predict the outcome of such

interactions. A prevalent approach used to represent a game is the Strategic Form.

Definition 2.1 (Strategic Form Game). A strategic form game Γ is a tuple ⟨N, (Si)i∈N , (ui)i∈N ⟩

where,

• N = {1, 2, . . . , n} is the set of players

• S1, S2, . . . , Sn are the strategies of the players

• ui : S1 × S2 × . . .× Sn → R for i ∈ N are the utility functions

The players all select their strategies simultaneously in the strategic form game and

report this to the social planner. The planner then computes the outcome and individual

utilities. Below we provide an example of a commonly studied game between the two

prisoners, also known as the Prisoner’s Dilemma.

Example 6: Prisoner’s Dilemma

In this problem, there are two prisoners N = {1, 2}. The prosecutors have no

evidence to convict them. However, the prosecutors question each of the prisoners

separately to obtain a confession. The prisoners cannot communicate with each

other and are offered the following choices,

• If both confess they will each receive five-year imprisonment

• If prisoner 1 confesses and prisoner 2 defects then, prisoner 1 gets 1 year

imprisonment and 2 gets ten years

• If prisoner 2 confesses and prisoner 1 defects then, prisoner 2 gets 1 year

imprisonment and 1 gets ten years

• If both defect they get two years imprisonment each
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HHH
HHH

HHH
P1

P2
D C

D (-2, -2) (-10, -1)

C (-1, -10) (-5, -5)

Table 2.1: Player Utilities for Prisoner’s Dilemma

We obtain the following payoff matrix for the prisoners (P1 and P2) from the above.

The row player is P1, and the first value corresponds to its utility, while P2 is the column

player, and the second value corresponds to its utility. C denotes the prisoner’s choice to

confess, and D denotes the prisoner’s choice to defect. The representation in Table 2.1

is also called the matrix form of the game. Given the game of prisoner’s dilemma, what

would the prisoners choose and hence what would be the outcome? This question leads us

to the various equilibrium concepts present in game theory.

Given a game Γ, players may choose different strategies based on the utility. Here we

define two different equilibrium strategies for the players, Dominant Strategy Equilibrium

and Nash Equilibrium. A strategy maximizing the utility of a player irrespective of the

strategy of the other players is the dominant strategy. A dominant strategy equilibrium

is the dominant strategy profile of all players. Any rational, intelligent players choose to

play the dominant strategy if such an equilibrium exists. Such a strategy may not exist;

hence Nash proposed a weaker notion of equilibrium referred to as the Nash equilibrium.

A strategy profile is Nash equilibrium if every player following the strategy maximizes

their utility, given that every other player also follows the given strategy. In the following

definitions, we consider n players having a strategy profile (s1, . . . , sn) where s−i denotes

the strategy tuple of all the players except player i. More formally,
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Definition 2.2 (Dominant Strategy Equilibrium). Given a game Γ a strategy profile (s∗1, . . . , s
∗
n)

called a dominant strategy equilibrium if ∀i ∈ N , the strategy s∗i is a dominant strategy,

ui(s
∗
i , s−i) ≥ ui(si, s−i),∀si ∈ Si, si ̸= s∗i and s−i ∈ S−i

while it is ui(s
∗
i , s−i) > ui(si, s−i) for some s−i ∈ S−i. This is also referred to as weakly

dominant strategy equilibrium. A strict inequality for all si in the above equation would

correspond to a strongly dominant strategy equilibrium.

Definition 2.3 (Nash Equilibrium). Given a game Γ, a strategy profile (s∗1, . . . , s
∗
n) is called

a Nash equilibrium if ∀i ∈ N , the strategy s∗i satisfies,

ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i),∀si ∈ Si

In the prisoner’s dilemma game with pay-off matrix as given by Table 2.1, note that

choosing D is strongly dominated by C for P1 since,

u1(C,D) > u1(D,D) and u1(C,C) > u1(D,C)

Similarly for P2 it is,

u2(D,C) > u2(D,D) and u2(C,C) > u2(C,D)

Thus (C,C) is a strongly dominant strategy. Further, it is also the unique Nash equilibrium.

Although (C,C) is the natural prediction, (D,D) is the best outcome jointly for the players.

Hence, the dominant strategy outcome does not maximize the players’ overall welfare or the

sum of utilities. Equipped with the essential game-theoretic tools, we try to model real-

world situations similarly to obtain desirable outcomes. Generally, in many situations,

decisions are made considering the interests of a group of people, especially in public

decision-making and resources/task allocation in any organization. Here we consider all

the people involved as players and enlist the set of possible outcomes for the given situation.

The players harbour different interests in these outcomes. The social planner is tasked with
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designing a game among these self-interested players by designing specific rules/incentives.

Using game theory, we can now analyze each player’s strategies and, thus, the outcome.

The social planner must design appropriate rules to facilitate a conducive outcome. Such

reverse engineering of game theory is called Mechanism Design.

Specifically, consider the resource allocation setting, where there are multiple players

and multiple but finite items. Every player has a specific private valuation for these items.

The social planner wants to find the optimal outcome or, in this case, the optimal allo-

cation. An allocation is considered optimal only when it satisfies certain fairness and/or

efficiency criteria. There are two underlying problems; the first problem is of preference

elicitation where the social planer must design a game as discussed above such that the true

valuation of the players is revealed. Typically, the planner either provides monetary incen-

tives (mechanisms with money) or poses certain conditions (mechanisms without money)

to enable favourable interactions. In other words, at equilibrium, the players report their

true valuations. The second problem is of preference aggregation or finding the optimal

allocation given the player’s valuations. We discuss the preliminaries in two parts, Part

I - Mechanism Design with Money and Part II - Mechanism Design without Money. In

both cases, we also discuss the fairness and efficiency properties we wish the mechanism

to satisfy. We first discuss the essential mechanism design environment required to model

the resource allocation problem as a game.

2.2 The Mechanism Design Environment

The following provides a general setting for formulating, analyzing, and solving mecha-

nism design problems.

• There are n players denoted by the set N = {1, 2, . . . , n}. The players are rational

and intelligent
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• X is a set of alternatives or outcomes. The players are required to make a collective

choice from the set X

• Players have privately observed preferences over the alternatives in X. That is, the

preference player i derives is determined by the privately observed signal or type θi

• We denote by Θi the set of private values of player i, i = 1, 2, . . . , n. The set of all

type profiles is given by Θ = Θ1 × . . . × Θn. A typical type profile is represented

as θ = (θ1, . . . , θn)

• The private values of the players have a common prior distribution Φ ∈ ∆(Θ)

• A player’s preference over the outcomes is represented by a utility function ui :

X × Θi → R. Given x ∈ X and θi ∈ Θi, the value ui(x, θi) denotes the payoff that

player i having type θi ∈ Θi receives from a decision x ∈ X

• The set of outcomes X, the set of players N , the type sets Θi (i = 1, · · · , n), the

common prior distribution Φ ∈ ∆(Θ), and the payoff functions ui (i = 1, · · · , n)

are assumed to be common knowledge among all the players. The specific value θi

observed by player i is private information of player i

Social Choice Functions

The function that makes a collective decision based on the player’s private valuations

is formally defined as,

Definition 2.4 (Social Choice Function (SCF)). Given a set of players N = {1, 2, . . . , n},

their type sets Θ1,Θ2, . . . ,Θn, and a set of outcomes X, a social choice function is a

mapping

f : Θ1 × · · · ×Θn → X

that assigns to each possible type profile (θ1, θ2, . . . , θn) a collective choice from the set of

alternatives.
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Figure 2.1: Mechanism Design Environment

Preference Elicitation Problem

Given a social choice function, f : Θ1 × . . . × Θn → X, the players may chose to

misreport their true individual types θ1, · · · , θn. This is because they are rational and aim

to maximize their utilities. The problem of ensuring that it is in the player’s best interest

to reveal its true types is called the preference elicitation problem or the information

revelation problem.

Preference Aggregation Problem

Let θi be the true type and θ̂i the reported type of agent i (i = 1, . . . , n). The process

of computing f(θ̂1, . . . , θ̂n) is called the preference aggregation problem. The preference

aggregation problem is usually an optimization problem.

Figure 2.1 provides a pictorial representation of all the elements making up the mecha-

nism design environment.

26



Direct and Indirect Mechanisms

In a broad sense, mechanism design models incomplete optimization problems where the

parameters are partially known. Therefore the first step is eliciting the unknown values, i.e.,

the type information. For truthful elicitation, there are broadly two kinds of mechanisms,

indirect mechanisms and direct mechanisms. We define these below. In these definitions,

we assume that the set of players N , the set of outcomes X, the sets of types Θ1, . . . ,Θn,

a common prior Φ ∈ ∆(Θ), and the utility functions ui : X × Θi → R are given and are

common knowledge.

Definition 2.5 (Direct Mechanism). Given a social choice function f : Θ1×Θ2×. . .×Θn →

X, a direct (revelation) mechanism consists of the tuple (Θ1,Θ2, . . . ,Θn, f(.)).

The idea of a direct mechanism is to directly seek the type information from the players

by asking them to reveal their true types.

Definition 2.6 (Indirect Mechanism). An indirect (revelation) mechanism consists of a

tuple (S1, S2, . . . , Sn, g(.)) where Si is a set of possible actions for player i (i = 1, 2, . . . , n)

and g : S1 × S2 × . . .× Sn → X is a function that maps each action profile to an outcome.

The idea of an indirect mechanism is to provide a choice of actions to each player and

specify an outcome for each action profile. Thus inducing a game among the players and

the strategies played by the players in an equilibrium of this game will indirectly reflect

their original types. More formally, the mechanism induces a Bayesian game formally

defined below,

Definition 2.7 (Bayesian Game). Given a set of players N , with types (Θ1, . . . ,Θn)

having a common prior ϕ ∼ ∆(Θ) and a set of outcomes X. If each player i has an

utility ui : X × Θi → R, then a mechanism M = (S1, . . . , Sn, g(.)) induces a Bayesian

game Γb : (N, (Θi), (Si), (pi), (Ui)) among the players where, Ui(θ1, . . . , θn, s1, . . . , sn) =

ui(g(s1, . . . , sn), θi)
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Given the basic components, we discuss certain properties that the mechanism must

satisfy in the next section. Firstly we are concerned with the truthfulness of a mechanism

for preference elicitation. Secondly, we also look for certain efficiency and fairness criteria

it must satisfy while preference aggregation.

2.3 Properties of a Mechanism

We have already seen that mechanism design involves preference revelation (or elici-

tation) and aggregation problems. For truthful elicitation, there is a need to make true

revelation the best response for the players, consistent with rationality and intelligence

assumptions. Offering incentives is a way of doing this; incentive compatibility essentially

refers to offering the right amount of incentive to induce truth revelation by the players.

2.3.1 Incentive Compatibility

There are broadly two types of incentive compatibility: (1) Truth revelation is the best

response for each player irrespective of what is reported by the other players; (2) Truth

revelation is the best response for each player whenever the other players also reveal their

true types. The first one is called dominant strategy incentive compatibility (DSIC), and

the second one is called Bayesian Nash incentive compatibility (BIC). Since truth revela-

tion is always with respect to types, only direct revelation mechanisms are relevant when

formalizing the notion of incentive compatibility. The notion of incentive compatibility

was first introduced by Hurwicz 1973 [115].

Definition 2.8 (Incentive Compatibility). A social choice function f : Θ1×. . .×Θn → X is

said to be incentive compatible (or truthfully implementable) if the Bayesian game induced

by the direct revelation mechanism D = ((Θi)i∈N , f(·)) has a pure strategy equilibrium

s∗(·) = (s∗1(·), . . . , s∗n(·)) in which s∗i (θi) = θi, ∀θi ∈ Θi, ∀i ∈ N .
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That is, truth revelation by each player constitutes an equilibrium of the game induced

by D . It is easy to infer that if an SCF f(·) is incentive compatible then the direct revelation

mechanism D = ((Θi)i∈N , f(·)) can implement it. That is, directly asking the players to

report their types and using this information in f(·) to get the social outcome will solve

both the problems, namely, preference elicitation and preference aggregation.

Based on the type of equilibrium concept used, we have,

Definition 2.9 (Dominant Strategy Incentive Compatibility (DSIC)). A social choice func-

tion f : Θ1 × . . . × Θn → X is said to be dominant strategy incentive compatible (or

truthfully implementable in dominant strategies) if the direct revelation mechanism D =

((Θi)i∈N , f(·)) has a weakly dominant strategy equilibrium s∗(·) = (s∗1(·), . . . , s∗n(·)) in

which s∗i (θi) = θi, ∀θi ∈ Θi, ∀i ∈ N .

That is, truth revelation by each player constitutes a dominant strategy equilibrium of

the game induced by D .

Definition 2.10 (Bayesian Incentive Compatibility (BIC)). A social choice function f :

Θ1× . . .×Θn → X is said to be Bayesian incentive compatible (or truthfully implementable

in Bayesian Nash equilibrium) if the direct revelation mechanism D = ((Θi)i∈N , f(·)) has a

Bayesian Nash equilibrium s∗(·) = (s∗1(·), . . . , s∗n(·)) in which s∗i (θi) = θi,∀θi ∈ Θi,∀i ∈ N .

That is, truth revelation by each player constitutes a Bayesian Nash equilibrium of the

game induced by D .

With the widespread internet, large-scale resource allocations happen every second.

Especially in online auctions for internet advertisements, and resource allocation among

various software nodes. Often the players involved could be software bots; henceforth we

refer to our players as agents. Let us understand the above concepts better by taking the

example of a first price auction.
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First and Second Price Auction

Consider the problem of buying a single indivisible item or resource. We have a buying

agent (agent 0) and two selling agents (agents 1 and 2), so we have N = {0, 1, 2}. An

outcome here can be represented by x = (y0, y1, y2, t0, t1, t2). For i = 0, we have

y0 = 0 if the buyer buys the good

= 1 otherwise

t0 = monetary transfer received by the buyer.

For i = 1, 2, we have

yi = 1 if agent i supplies the goods to the buyer

= 0 if agent i does not supply the good

ti = monetary transfer received by the agent i.

The set X of all feasible outcomes is given by

X = {(y0, y1, y2, t0, t1, t2) : yi ∈ {0, 1},
2∑

i=0

yi = 1, ti ∈ R,
2∑

i=0

ti ≤ 0}.

The constraint
∑

i ti ≤ 0 implies that the total money received by all the agents are less

than or equal to zero. That is, the total money paid by all the agents are greater than or

equal to zero (that is, the buyer pays at least as much as the sellers receive. The excess

between the payment and receipts is the surplus). For x = (y0, y1, y2, t0, t1, t2), define the

utilities to be of the form:

ui(x, θi) = ui((y0, y1, y2, t0, t1, t2), θi) = −yiθi + ti ; i = 1, 2

where θi ∈ R can be viewed as seller i’s valuation of the good.

Below, we design two different indirect mechanisms for the above scenario and analyze

their properties
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Example 2.1 (First Price Procurement Auction). Here each seller submits a sealed bid,

bi ≥ 0 (i = 1, 2). The sealed bids are examined and the seller with the lower bid is declared

the winner. If there is a tie, seller 1 is declared the winner. The winning seller receives an

amount equal to his bid from the buyer. The losing seller does not receive anything.

Let us make the following assumptions:

1. θ1, θ2 are independently drawn from the uniform distribution on [0, 1].

2. The sealed bid of seller i takes the form bi(θi) = αiθi + βi, where αi ∈ [0, 1], βi ∈

[0, 1 − αi]. He has to make sure that bi ∈ [0, 1]. The term βi is like a fixed cost

whereas αiθi indicates a fraction of the true cost.

Seller 1’s problem is now to bid in a way to maximize his payoff:

max
1≥b1≥0

(b1 − θ1)P{b2(θ2) ≥ b1}

P{b2(θ2) ≥ b1} = 1− P{b2(θ2) < b1}

= 1− P{α2θ2 + β2 < b1}

= 1− b1 − β2
α2

if b1 ≥ β2 (2.1)

since θ2 is uniform over [0, 1]

(2.2)

Thus seller 1’s problem is:

max
b1≥β2

(b1 − θ1)(1−
b1 − β2

α2
).

The solution to this problem is

b1(θ1) =
α2 + β2

2
+

θ1
2
. (2.3)

We can show on similar lines that

b2(θ2) =
α1 + β1

2
+

θ2
2
. (2.4)
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As the bid of seller i takes the form bi(θi) = αiθi + βi, where αi ∈ [0, 1], βi ∈ [0, 1 − αi],

from the equations (2.3) and (2.4), we obtain α1 = α2 =
1
2 . As the goal of each seller is to

maximize the profit and βi ∈ [0, 1− αi], β1 = β2 =
1
2 . Then we get

b1(θ1) =
1 + θ1

2
∀ θ1 ∈ Θ1 = [0, 1]

b2(θ2) =
1 + θ2

2
∀ θ2 ∈ Θ2 = [0, 1].

Note that if b2(θ2) = 1+θ2
2 , the best response of seller 1 is b1(θ1) = 1+θ1

2 and vice-versa.

Hence the profile
(
1+θ1
2 , 1+θ2

2

)
is a Bayesian Nash equilibrium of an underlying Bayesian

game. In other words, there is a Bayesian Nash equilibrium of an underlying game (induced

by the indirect mechanism called the first price procurement auction) that (indirectly) yields

the outcome

f(θ) = (y0(θ), y1(θ), y2(θ), t0(θ), t1(θ), t2(θ))

such that

y0(θ) = 0 ∀ θ ∈ Θ

y1(θ) = 1 if θ1 ≤ θ2

= 0 else

y2(θ) = 1 if θ1 > θ2

= 0 else

t1(θ) =
1 + θ1

2
y1(θ)

t2(θ) =
1 + θ2

2
y2(θ)

t0(θ) = −(t1(θ) + t2(θ)).

Example 2.2 (Second Price Procurement Auction). Here, each seller is asked to submit a

sealed bid bi ≥ 0. The bids are examined, and the seller with the lower bid is declared the

winner. In case there is a tie, seller 1 is declared the winner. The winning seller receives

as payment from the buyer an amount equal to the second lowest bid. The losing bidder
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does not receive anything. In this case, we can show that bi(θi) = θi for i = 1, 2 constitutes

a weakly dominant strategy for each player.

Thus the game induced by the indirect mechanism second price procurement auction has

a weakly dominant strategy in which truthful revelation is optimal.

2.3.2 Other Properties

We have seen that a mechanism provides a solution to both the preference elicitation

problem and the preference aggregation problem. Here we study certain important and

desirable properties that a social choice function must satisfy.

Definition 2.11 (Ex-Post Efficiency). The SCF f : Θ→ X is said to be ex-post efficient

(or Paretian) if for every profile of agents’ types, θ ∈ Θ, the outcome f(θ) is a Pareto

optimal outcome. The outcome f(θ1, . . . , θn) is Pareto optimal if there does not exist any

x ∈ X such that:

ui(x, θi) ≥ ui(f(θ), θi) ∀ i ∈ N and ui(x, θi) > ui(f(θ), θi) for some i ∈ N.

Definition 2.12 (Dictatorship). A social choice function f : Θ→ X is said to be dictato-

rial if there exists an agent d (called dictator) who satisfies the following property:

∀ θ ∈ Θ, f(θ) is such that ud(f(θ), θd) ≥ ud(x, θd) ∀ x ∈ X.

A social choice function that is not dictatorial is said to be nondictatorial .

In a dictatorial SCF, every outcome that is picked by the SCF is such that it is a most

favoured outcome for the dictator.

Individual Rationality

This property ensures that each agent is not worse off by participating in the mechanism.

Hence it ensures non-negative utility to each participating agent. There are three stages at

which individual rationality constraints may be relevant in a mechanism design situation.
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• Ex-Post Individual Rationality. When the agent knows the types of all everyone,

let ui(θi) be the utility that agent i receives by withdrawing from the mechanism

when his type is θi. Then, f satisfies ex-post participation (or individual rationality)

constraints when,

ui(f(θi, θ−i), θi) ≥ ui(θi) ∀ (θi, θ−i) ∈ Θ.

• Interim Individual Rationality. When the agent is only aware of its own type, its

interim expected utility is given by Ui(θi|f) = Eθ−i
[ui(f(θi, θ−i), θi)|θi]. Thus, interim

participation (or individual rationality) constraints for agent i require that

Ui(θi|f) = Eθ−i
[ui(f(θi, θ−i), θi)|θi] ≥ ui(θi) ∀ θi ∈ Θi.

• Ex-Ante Individual Rationality. The agent is not aware of even its own type, its

ex-ante expected utility is Ui(f) = Eθ[ui(f(θi, θ−i), θi)] from social choice function

f(·). Thus, ex-ante participation (or individual rationality) constraints for agent i

require that

Ui(f) = Eθ[ui(f(θi, θ−i), θi)] ≥ Eθi [ui(θi)].

The following proposition establishes a relationship among the three different partici-

pation constraints discussed above.

Proposition 2.1. For any social choice function f(·), we have

f(·) is ex-post IR⇒ f(·) is interim IR⇒ f(·) is ex-ante IR.

2.3.3 The Gibbard-Satterthwaite Impossibility Theorem

We have seen in the last section that dominant strategy incentive compatibility is an

extremely desirable property of social choice functions. However, the DSIC property, being
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a strong one, precludes certain other desirable properties to be satisfied. The Gibbard–

Satterthwaite impossibility theorem (GS theorem, for short), shows that the DSIC property

will force an SCF to be dictatorial if the utility environment is an unrestricted one. The GS

theorem is credited independently to Gibbard 1973 [85] and Satterthwaite 1975 [172]. The

GS theorem is a brilliant reinterpretation of the famous Arrow’s impossibility theorem.

Theorem 2.1 (Gibbard–Satterthwaite Impossibility Theorem). Consider a social choice

function f : Θ → X. Suppose that

1. The outcome set X is finite and contains at least three elements,

2. Ri = P ∀ i ∈ N ,

3. f(·) is an onto mapping, that is, the image of SCF f(·) is the set X.

Then the social choice function f(·) is dominant strategy incentive compatible iff it is

dictatorial.

For proof of this theorem, the reader is referred to Proposition 23.C.3 of the book by

Mas-Colell et al. 1995 [137]. One way to get around the impossible situation described

by the GS Theorem is to hope that at least one of the conditions (1), (2), and (3) of the

theorem does not hold. With this intuition, we look at the most practical and widely

studied assumption made on the utility function.

2.3.4 The Quasilinear Environment

This is the most extensively studied special class of environments where the Gibbard–

Satterthwaite theorem does not hold. In the quasilinear environment, an alternative x ∈ X

is a vector of the form x = (k, t1, . . . , tn), where k is an element of a set K, which is called

the set of project choices or set of allocations. The set K is usually assumed to be finite.

The term ti ∈ R represents the monetary transfer to agent i. If ti > 0 then agent i will

receive the money and if ti < 0 then agent i will pay the money. We assume that we
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are dealing with a system in which the n agents have no external source of funding, i.e.,∑n
i=1 ti ≤ 0. This condition is known as the weak budget balance condition. The set of

alternatives X is therefore

X =

{
(k, t1, . . . , tn) : k ∈ K; ti ∈ R ∀ i ∈ N ;

∑
i

ti ≤ 0

}
.

An SCF in this quasilinear environment takes the form f(θ) = (k(θ), t1(θ), . . . , tn(θ)) where,

for every θ ∈ Θ, we have k(θ) ∈ K and
∑

i ti(θ) ≤ 0. Note that here we are using the

symbol k both as an element of the set K and as a function going from Θ to K. It should

be clear from the context as to which of these two we are referring. For a direct revelation

mechanism D = ((Θi)i∈N , f(·)) in this environment, the agent i’s utility function takes the

quasilinear form

ui(x, θi) = ui((k, t1, . . . , tn), θi) = vi(k, θi) +mi + ti

where mi is agent i’s initial endowment of the money and the function vi(·) is known as

agent i’s valuation function. Recall from our discussion of mechanism design environment

(Section 2.2) that the utility functions ui(·) are common knowledge. In the context of a

quasilinear environment, this implies that for any given type θi of any agent i, the social

planner and every other agent j have a way to know the function vi(., θi). In many cases,

the set Θi of the direct revelation mechanism D = ((Θi)i∈N , f(·)) is actually the set of

all feasible valuation functions vi of agent i. That is, each possible function represents

the possible types of agent i. Therefore, in such settings, reporting a type is the same as

reporting a valuation function.

Immediate examples of quasilinear environment include many of the previously discussed

examples, such as the first price and second price auctions. In the quasilinear environment,

we can define two important properties of a social choice function, namely, allocative

efficiency and budget balance.

Definition 2.13 (Allocative Efficiency (AE)). We say that a social choice function f(·) =

(k(·), t1(·), . . . , tn(·)) is allocatively efficient if for each θ ∈ Θ, k(θ) satisfies the following
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condition1 We will be using the symbol k∗(·) for a function k(·) that satisfies Equation

(2.5).

k(θ) ∈
argmax

k ∈ K

n∑
i=1

vi(k, θi). (2.5)

Equivalently,
n∑

i=1

vi(k(θ), θi) =
max

k ∈ K

n∑
i=1

vi(k, θi).

The above definition implies that for every θ ∈ Θ, the allocation k(θ) will maximize the

sum of the values of the players. In other words, every allocation is a value maximizing

allocation, or the objects are allocated to the players who value the objects most. This is an

extremely desirable property to have for any social choice function. The above definition

implicitly assumes that for any given θ, the function
∑n

i=1 vi(., θi) : K → R attains a

maximum over the set K.

Definition 2.14 (Budget Balance (BB)). We say that a social choice function f(·) =

(k(·), t1(·), . . . , tn(·)) is budget balanced, if for each θ ∈ Θ, t1(θ), . . . , tn(θ) satisfy the fol-

lowing condition:

n∑
i=1

ti(θ) = 0. (2.6)

Many authors prefer to call this property strong budget balance, and they refer to the

property of having
∑n

i=1 ti(θ) ≤ 0 as weak budget balance. In this thesis, we will use the

term budget balance to refer to a strong budget balance.

Budget balance ensures that the total receipts are equal to the total payments. This

means that the system is a closed one, with no surplus and no deficit. The weak budget

balance property means that the total payments are greater than or equal to total receipts.

The following lemma establishes an important relationship of these two properties of an

SCF with the ex-post efficiency of the SCF.

1
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Lemma 2.1. A social choice function f(·) = (k(·), t1(·), . . . , tn(·)) is ex-post efficient in a

quasilinear environment if and only if it is allocatively efficient and budget balanced.

Proof. Let us assume that f(·) = (k(·), t1(·), . . . , tn(·)) is allocatively efficient and budget

balanced. This implies that for any θ ∈ Θ, we have

n∑
i=1

ui(f(θ), θi) =

n∑
i=1

vi(k(θ), θi) +

n∑
i=1

ti(θ)

=

n∑
i=1

vi(k(θ), θi) + 0

≥
n∑

i=1

vi(k, θi) +

n∑
i=1

ti; ∀ x = (k, t1, . . . , tn)

=

n∑
i=1

ui(x, θi); ∀ (k, t1, . . . , tn) ∈ X.

That is if the SCF is allocatively efficient and budget balanced then for any type profile θ of

the agent, the outcome chosen by the social choice function will be such that it maximizes

the total utility derived by all the agents. This will automatically imply that the SCF is

ex-post efficient.

To prove the other part, we will first show that if f(·) is not allocatively efficient, then,

it cannot be ex-post efficient and next we will show that if f(·) is not budget balanced then

it cannot be ex-post efficient. These two facts together will imply that if f(·) is ex-post

efficient then it will have to be allocatively efficient and budget balanced, thus completing

the proof of the lemma.

To start with, let us assume that f(·) is not allocatively efficient. This means that

∃ θ ∈ Θ, and k ∈ K such that,

n∑
i=1

vi(k, θi) >

n∑
i=1

vi(k(θ), θi).

This implies that there exists at least one agent j for whom vj(k, θi) > vj(k(θ), θi). Now

consider the following alternative x

x =
(
k, (ti = ti(θ) + vi(k(θ), θi)− vi(k, θi))i ̸=j , tj = tj(θ)

)
.
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It is easy to verify that ui(x, θi) = ui(f(θ), θi) ∀ i ̸= j and uj(x, θi) > uj(f(θ), θi), implying

that f(·) is not ex-post efficient.

Next, we assume that f(·) is not budget balanced. This means that there exists at least

one agent j for whom tj(θ) < 0. Let us consider the following alternative x

x =
(
k, (ti = ti(θ))i ̸=j , tj = 0

)
.

It is easy to verify that for the above alternative x, we have ui(x, θi) = ui(f(θ), θi) ∀ i ̸= j

and uj(x, θi) > uj(f(θ), θi) implying that f(·) is not ex-post efficient.

The next lemma summarizes another fact about social choice functions in quasilinear

environment.

Lemma 2.2. All social choice functions in quasilinear environments are nondictatorial.

Proof. If possible, assume that a social choice function, f(·), is dictatorial in the quasilinear

environment. This means that there exists an agent called the dictator, say d ∈ N , such

that for each θ ∈ Θ, we have

ud(f(θ), θd) ≥ ud(x, θd) ∀ x ∈ X.

However, because the environment is quasilinear, we have ud(f(θ), θd) = vd(k(θ), θd)+td(θ).

Now consider the following alternative x ∈ X :

x =

 (k(θ), (ti = ti(θ))i ̸=d, td = td(θ)−
∑n

i=1 ti(θ)) :
∑n

i=1 ti(θ) < 0

(k(θ), (ti = ti(θ))i ̸=d,j , td = td(θ) + ϵ, tj = tj(θ)− ϵ) :
∑n

i=1 ti(θ) = 0

where ϵ > 0 is any arbitrary number, and j is any agent other than d. It is easy to verify,

for the above outcome x, that we have ud(x, θd) > ud(f(θ), θd), which contradicts the fact

that d is a dictator.

In view of Lemma 2.2, the social planner need not have to worry about the nondictatorial

property of the social choice function in quasilinear environments and he can simply look
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for whether there exists any SCF that is both ex-post efficient and dominant strategy

incentive compatible. Furthermore, in the light of Lemma 2.1, we can say that the social

planner can look for an SCF that is allocatively efficient, budget balanced, and dominant

strategy incentive compatible. Once again the question arises whether there could exist

social choice functions which satisfy all these three properties — AE, BB, and DSIC.

2.4 Part I - Mechanism Design with Money (Groves Mech-

anisms)

An important possibility result in mechanism design is that in the quasilinear environ-

ment, there exist social choice functions that are both allocatively efficient and dominant

strategy incentive compatible. These are in general called the VCG (Vickrey–Clarke–

Groves) mechanisms.

2.4.1 VCG Mechanisms

The VCG mechanisms are named after their famous inventors William Vickrey, Edward

Clarke, and Theodore Groves. It was Vickrey who introduced the famous Vickrey auction

(second price sealed bid auction) in 1961 [191]. To this day, the Vickrey auction continues

to enjoy a special place in the annals of mechanism design. Clarke [54] and Groves [94]

came up with a generalization of the Vickrey mechanisms and helped define a broad class of

dominant strategy incentive compatible mechanisms in the quasilinear environment. VCG

mechanisms are by far the most extensively used among quasilinear mechanisms. They are

popular due to their mathematical elegance and the strong properties they satisfy.

Groves’ Theorem

The following theorem provides a sufficient condition for an allocatively efficient social

function in quasilinear environment to be dominant strategy incentive compatible.
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Theorem 2.2 (Groves Theorem [94]). Let the SCF f(·) = (k∗(·), t1(·), . . . , tn(·)) be al-

locatively efficient. Then f(·) is dominant strategy incentive compatible if it satisfies the

following payment structure (popularly known as the Groves payment (incentive) scheme):

ti(θ) =

∑
j ̸=i

vj(k
∗(θ), θj)

+ hi(θ−i) ∀ i = 1, . . . , n (2.7)

where hi : Θ−i → R is any arbitrary function that honors the feasibility condition
∑

i ti(θ) ≤

0 ∀ θ ∈ Θ.

The proof for the above theorem can be found in [151, Theorem 18.1]. A Groves

Mechanism is a direct revelation mechanism in which the implemented SCF is allocatively

efficient and satisfies the Groves payment scheme.

Definition 2.15 (Groves Mechanisms). A direct mechanism, D = ((Θi)i∈N , f(·)) in which

f(·) = (k(·), t1(·), . . . , tn(·)) satisfies allocative efficiency (2.5) and Groves payment rule

(2.7) is known as a Groves mechanism.

In mechanism design parlance, Groves mechanisms are popularly known as Vickrey–

Clarke–Groves (VCG) mechanisms.

The Groves theorem provides a sufficiency condition under which an allocatively efficient

(AE) SCF will be DSIC. The following theorem due to Green et al. 1979 [93] provides a

set of conditions under which the condition of Groves Theorem also becomes a necessary

condition for an AE SCF to be DSIC. In this theorem, we let F denote the set of all

possible functions f : K → R.

Theorem 2.3 (First Characterization Theorem of Green–Laffont). Suppose for each agent

i ∈ N that {vi(., θi) : θi ∈ Θi} = F , that is, every possible valuation function from K to R

arises for some θi ∈ Θi. Then any allocatively efficient social choice function f(·) will be

dominant strategy incentive compatible if and only if it satisfies the Groves payment scheme

given by Equation (2.7).
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Note that in the above theorem, every possible valuation function from K to R arises for

any θi ∈ Θi. In the following characterization theorem, again due to Green et al. 1979 [93],

F is replaced with with Fc where Fc denotes the set of all possible continuous functions

f : K → R.

Theorem 2.4 (Second Characterization Theorem of Green–Laffont). Suppose for each

agent i ∈ N that {vi(., θi) : θi ∈ Θi} = Fc, that is, every possible continuous valuation

function from K to R arises for some θi ∈ Θi. Then any allocatively efficient social choice

function f(·) will be dominant strategy incentive compatible if and only if it satisfies the

Groves payment scheme given by Equation (2.7).

2.4.2 Clarke (Pivotal) Mechanisms

A special case of Groves mechanism was developed independently by Clarke in 1971

[54] and is known as the Clarke, or the pivotal mechanism. It is a special case of Groves

mechanisms in the sense of using a natural special form for the function hi(·). In the Clarke

mechanism, the function hi(·) is given by the following relation:

hi(θ−i) = −
∑
j ̸=i

vj(k
∗
−i(θ−i), θj) ∀ θ−i ∈ Θ−i,∀ i = 1, . . . , n (2.8)

where k∗−i(θ−i) ∈ K−i is the choice of a project that is allocatively efficient if there were

only the n− 1 agents j ̸= i. Formally, k∗−i(θ−i) must satisfy the following condition.

∑
j ̸=i

vj(k
∗
−i(θ−i), θj) ≥

∑
j ̸=i

vj(k, θj) ∀ k ∈ K−i (2.9)

where the set K−i is the set of project choices available when agent i is absent. Substituting

the value of hi(·) from Equation (2.8) in Equation (2.7), we get the following expression

for agent i’s transfer in the Clarke mechanism:

ti(θ) =

∑
j ̸=i

vj(k
∗(θ), θj)

−
∑

j ̸=i

vj(k
∗
−i(θ−i), θj)

 . (2.10)
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The above payment rule has an appealing interpretation: Given a type profile θ = (θ1, . . . , θn),

the monetary transfer to agent i is given by the total value of all agents other than i under

an efficient allocation when agent i is present in the system minus the total value of all

agents other than i under an efficient allocation when agent i is absent in the system.

2.4.3 Groves Mechanisms and Budget Balance

Note that a Groves mechanism always satisfies the properties of AE and DSIC. There-

fore, if a Groves mechanism is budget balanced, then it will solve the problem of the social

planner because it will then be ex-post efficient and dominant strategy incentive compat-

ible. By looking at the definition of the Groves mechanism, one can conclude that it is

the functions hi(·) that decide whether or not the Groves mechanism is budget balanced.

The natural question that arises now is whether there exists a way of defining functions

hi(·) such that the Groves mechanism is budget balanced. In what follows, we present one

possibility result and one impossibility result in this regard.

2.4.4 Green Laffont Impossibility Result for Quasilinear Environments

Green and Laffont [93] showed that in a quasilinear environment, if the set of possible

types for each agent is sufficiently rich then ex-post efficiency and DSIC cannot be achieved

together. The precise statement is given in the form of the following theorem.

Theorem 2.5 (Green–Laffont Impossibility Theorem). Suppose for each agent i ∈ N that

F = {vi(., θi) : θi ∈ Θi}, that is, every possible valuation function from K to R arises for

some θi ∈ Θi. Then there is no social choice function that is ex-post efficient and DSIC.

Thus, the above theorem says that if the set of possible types for each agent is suffi-

ciently rich then there is no hope of finding a way to define the functions hi(·) in Groves

payment scheme so that we have
∑n

i=1 ti(θ) = 0. Hence, in the next section, we discuss

Redistribution Mechanisms, which satisfy EPE, DSIC and minimizes the budget imbalance

by redistributing the money back to agents.
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2.4.5 Redistribution Mechanism

Consider that p resources are available and each of n > p agents is interested in utilizing

one of them. Naturally, we should assign these resources to those agents who value them

the most. Since Vickery, Clarke and Groves mechanisms [54, 94, 191] have attractive

game theoretic properties such as dominant strategy incentive compatibility (DSIC) and

allocative efficiency (AE), Groves mechanisms are quite appealing to use in this context.

However, in general, a Groves mechanism need not be budget balanced. That is, the total

transfer of money in the system may not be zero. So the system will be left with a surplus

or deficit. Using Clarke’s mechanism [54], we can ensure under fairly weak conditions, that

there is no deficit of money (that is the mechanism is weakly budget balanced). In such a

case, the system or the auctioneer will be left with some money.

Often, surplus money is not really needed in many social settings such as allocations by

the Government among its departments, etc. Since strict budget balance cannot coexist

with DSIC and AE (Green-Laffont theorem [93]), we would like to redistribute the surplus

to the participants as far as possible, preserving DSIC and AE. This idea was originally

proposed by Laffont ([138]). The total payment made by the mechanism as a redistribution

will be referred to as the rebate to the agents. More formally,

Definition 2.16 (Redistribution Mechanism). We call a Groves mechanism as Groves

redistribution mechanism or simply redistribution mechanism, if it allocates objects to the

agents in an allocatively efficient way and redistributes the Clarke surplus in the system in

the form of rebates to the agents such that the net payment made by each agent still follows

Groves payment structure.

Given that the agents report their bids b = (b1, b2, . . . , bn) where bi = (bi1, . . . , bip) is the

bid submitted by agent i for p items. For a bid profile b, the rebate to an agent i is denoted

by ri(b). Further ti(b) is the payment made by i in Clarke pivotal mechanism i.e., ti(b) =

vi(k
∗(b)) − (v(k∗(b)) − v(k∗−i(b))), where k∗(b) is an allocatively efficient allocation and
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k∗−i(b) is allocatively efficient allocation without agent i. The rebated offered is calculated

using a rebate function as formally defined below.

Definition 2.17 (Linear Rebate Function). We say a rebate to an agent is linear rebate

function, if it is linear combination of bid vectors of all the remaining agents. Moreover,

if a redistribution mechanism uses linear rebate functions for all the agents, we say the

mechanism is linear redistribution mechanism.

Definition 2.18 (Redistribution Index). A redistribution index of a redistribution mech-

anism is defined to a worst case fraction of Clarke’s surplus that gets redistributed among

the agents. That is,

e = inf
b:t(b)̸=0

∑
ri(b)

t(b)

Designing rebate functions have been explored both when items are Homogeneous and

Heterogneous. Homogeneous implies that the items are identical, and Worst Case Optimal

Redistribution (WCO) provides a linear rebate function which maximizes the redistribution

index. Heterogeneous implies non-identical items, for which the linear rebate function

cannot be useful. [95] prove the impossibility of the existence of a linear rebate function

with a non-zero redistribution index. Further, the authors propose HETERO a mechanism

with optimal non-zero redistribution index as proven in [99].

2.4.5.1 Optimal Worst Case Redistribution for Homogeneous Items

When the objects are identical, every agent i has the same value for each object, call

it vi. Without loss of generality, we will assume, v1 ≥ v2 ≥ . . . ≥ vn. In Clarke’s pivotal

mechanism, the first p agents will receive the objects and each of these p agents will pay

vp+1. So, the surplus in the system is p× vp+1. For this situation, Moulin [147] and [103]

have independently designed a redistribution mechanism.

Guo et al. 2009 [103] maximize the worst case fraction of the total surplus which gets

redistributed. This mechanism is called the WCO mechanism. Moulin 2009 [149] minimizes
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the ratio of budget imbalance to the value of an optimal allocation, that is the value of

an allocatively efficient allocation. The WCO mechanism coincides with Moulin’s feasible

and individually rational mechanism. Both the above mechanisms work as follows. After

receiving bids from the agents, bids are sorted in decreasing order. The first p agents

receive the objects. Each agent’s Clarke payment is calculated, say ti. Every agent i pays,

pi = ti − ri, where, ri is the rebate function for an agent i.

rWCO
i = cp+1vp+2 + cp+2vp+3 + . . .+ cn−1vn i = 1, . . . p+ 1

rWCO
i = cp+1vp+1 + . . .+ ci−1vi−1 + civi+1 + . . .+ cn−1vn i = p+ 2, . . . n

(2.11)

where,

ci =
(−1)i+p−1 (n− p)

(
n−1
p−1

)
i
(
n−1
i

)∑n−1
j=p

(
n−1
j

)


n−1∑
j=i

(
n− 1

j

) ; i = p+ 1, . . . , n− 1 (2.12)

Suppose y1 ≥ y2 ≥ . . . ≥ yn−1 are the bids of the (n− 1) agents excluding the agent i,

then equivalently the rebate to the agent i is given by,

rWCO
i =

n−1∑
j=p+1,j ̸=i

cjyj (2.13)

The redistribution index of this mechanism is e∗, where e∗ is given by,

e∗ = 1−
(
n−1
p

)∑n−1
j=p

(
n−1
j

)
This is an optimal mechanism since there is no other mechanism which can guarantee

more than e∗ fraction redistribution in the worst case. Next, we discuss the heterogeneous

setting and impossibility of having a linear rebate function.

2.4.5.2 Impossibility of Linear Rebate Function with Non-Zero Redistribution

Index for Heterogeneous Items

We have seen that the WCO mechanism is a linear function of the types of agents. We

now explore the general case. In the homogeneous case, the bids are real numbers which
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can be arranged in decreasing order. The Clarke surplus is a linear function of these ordered

bids. For the heterogeneous scenario, this would not be the case. Each bid bi belongs to

Rp
+; hence, there is no unique way of defining an order among the bids. Moreover, the

Clarke surplus is not a linear function of the received bids in the heterogeneous case. So,

there cannot be any linear/affine rebate function of types to work well at all type profiles.

The following theorems state this more formally. The symbol ≽ denotes the order over the

bids of the agents, as defined in [95].

Theorem 2.6. In Groves redistribution mechanism, any deterministic, anonymous rebate

function f is DSIC iff,

ri = f(v1, v2, . . . , vi−1, vi+1, . . . , vn) ∀i ∈ N (2.14)

where, v1 ≽ v2 ≽ . . . ≽ vn.

Theorem 2.7. If a redistribution mechanism is feasible and individually rational, then

there cannot exist a linear rebate function which is DSIC, deterministic, anonymous and

provides non-zero redistribution index.

Proof. Assume that there exists a linear function, say f , which satisfies the above proper-

ties. Let v1 ≽ v2 ≽ . . . ≽ vn. Then according to Theorem 2.6, for each agent i,

ri = f(v1, v2, . . . , vi−1, vi+1, . . . , vn)

= (c0, ep) + (c1, v1) + . . .+ (cn−1, vn)

where, ci = (ci1, ci2, . . . , cip) ∈ Rp, ep = (1, 1, . . . , 1) ∈ Rp, and (·, ·) denotes the inner

product of two vectors in Rp. Now, we will show that the worst case performance of f will

be zero. To this end, we will study the structure of f , step by step.

Observation 1: Consider type profile (v1, v2, . . . , vn) where v1 = v2 = . . . = vn = (0, 0, . . . , 0).

For this type profile, the total Clarke surplus is zero and ri = (c0, ep) ∀i ∈ N . Individual

rationality implies,

(c0, ep) ≥ 0 (2.15)
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Feasibility implies the total redistributed amount is less than the surplus, that is,

∑
i

ri = n(c0, ep) ⩽ 0 (2.16)

From, (2.15) and (2.16), it is easy to see that, (c0, ep) = 0.

Observation 2: Consider type profile (v1, v2, . . . , vn) where v1 = (1, 0, 0, . . . , 0) and v2 =

. . . , vn = (0, 0, . . . , 0). For this type profile, r1 = 0 and if i ̸= 1, ri = c11 ≥ 0 for individual

rationality. For this type profile, it can be seen through straightforward calculations that

the Clarke surplus is zero. Thus, for feasibility,
∑

i ri = (n − 1)c11 ≤ t = 0. This implies,

c11 = 0.

In the above profile, by considering v1 = (0, 1, 0, . . . , 0), we get c12 = 0. Similarly, one

can show c13 = c14 = . . . = c1p = 0.

Observation 3: Continuing like above with, v1 = v2 = . . . = vi = ep, and vi+1 = (1, 0 . . . , 0)

or (0, 1, 0 . . . , 0), . . . or (0, . . . , 0, 1), we get, ci+1 = (0, 0, . . . , 0) ∀ i ≤ p− 1. Thus,

ri =


(cp+1, vp+2) + . . .+ (cn−1, vn) : if i ≤ p+ 1

(cp+1, vp+1) + . . .+ (ci−1, vi−1)

+(ci, vi+1) + . . .+ (cn−1, vn) : otherwise

(2.17)

Thus a rebate function in any linear redistribution mechanism has to be of the form

in the Equation ( 2.17). We now claim that the redistribution index of such mechanism

is zero. For any individually rational redistribution mechanism, a trivial lower bound on

the redistribution index is zero. We prove that in a linear redistribution mechanism, there

exists a type profile, at which the fraction of the Clarke surplus that gets redistributed is
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zero. Consider the type profile:

v1 = (2p− 1, 2p− 2, . . . , p+ 1, p)

v2 = (2p− 2, 2p− 3, . . . , p, p− 1)
...

vp−1 = (p+ 1, p, . . . , 3, 2)

vp = (p, p− 1, . . . , 2, 1)

and vp+1 = vp+2 . . . = vn = (0, 0, . . . , 0).

Now it can be seen through straight forward calculations of Clarke’s payment, with this

type profile, agent 1 pays (p − 1), agent 2 pays (p − 2), . . . , agent (p − 1) pays 1 and the

remaining agents pay 0. Thus, the Clarke payment received is non-zero but it can be seen

that ri = 0 for all the agents. Hence, the redistribution index for any linear redistribution

mechanism has to be zero.

The above theorem provides disappointing news. It rules out the possibility of a linear

redistribution mechanism for the heterogeneous settings which will have non-zero redistri-

bution index. However, there are two ways to get around it.

1. The domain of types under which Theorem 2.7 holds is, Θi = Rp
+, ∀i ∈ N . One idea

is to restrict the domain of types.

2. Explore the existence of a rebate function which is not linear and yields a non-zero

performance.

In the next section, we state the results corresponding to non-linear rebate functions.

2.4.5.3 Non-linear Redistribution Mechanisms for the Heterogeneous Setting

We should note that the homogeneous objects case is a special case of the heterogeneous

objects case in which each bidder submits the same bid for all objects. Thus, we cannot

expect any redistribution mechanism to perform better than the homogeneous objects case.

For n ≤ p + 1, the worst case redistribution is zero for the homogeneous case and so will
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be for the heterogeneous case ([103, 149]). In this section, we discuss HETERO, which

provides a non-linear rebate function when n > p+ 1.

When the objects are identical, the WCO mechanism is given by the equation (2.13).

We give a novel interpretation to it. Consider the scenario in which one agent is absent

from the scene. Then Clarke’s payment received is either pvp+1 or pvp+2 depending upon

which agent is absent. If we remove two agents, the surplus is pvp+1 or pvp+2 or pvp+3,

depending upon which two agents are removed. Till (n−p−1) agents are removed, we get

non-zero surplus. If we remove (n − p) or more agents from the system, there is no need

for any mechanism for the assignment of the objects. So, we will consider the cases when

we remove k agents, where, 1 ≤ k < n− p.

Now let t−i,k be the average payment received when agent i is removed along with k

other agents that is, a total of (k + 1) agents are removed comprising of i. The average is

taken over all possible selections of k agents from the remaining (n − 1) agents. We can

rewrite the WCO mechanism in terms of t−i, t−i,k. Observe that, t−i, t−i,k can be defined

in heterogeneous settings as well. The rebate function for HETERO is defined as,

rHi = α1t
−i +

k=n−p−1∑
k=2

αkt
−i,k−1 (2.18)

where αk are the suitable weights assigned to the surplus generated when a total of k

agents are removed from the system. By using different αks, we get different mechanisms.

The HETERO mechanism satisfies individual rationality, and feasibility, as proven in, [95,

Conjecture 1]. Further, HETERO is worst case optimal and has redistribution index same

as WCO as proven in [99, Proposition 2].

In the next section, we consider the problem of resource allocation where money is not

involved. In this setting, we aim to find allocations that are fair. We discuss many fairness

notions discussed in literature and algorithms proposed to find fair allocations.
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2.5 Part II - Mechanism Design without Money (Fair Re-

source Allocation)

In many applications like inheritance division, course allocation, and division of re-

sources or tasks among the workforce, we encounter the problem of resource division. In

contrast to the auction setting considered previously, here, the goal is to divide resources

among the interested agents optimally without any monetary transactions. Furthermore,

we consider that the allocation satisfies certain fairness constraints so that each agent is

ensured its fair share. Most of the literature assumes that agent valuations are public

knowledge and thereby focuses on preference aggregation. In other words, many existing

works propose meaningful fairness notions and algorithms to achieve allocations that sat-

isfy them. Nevertheless, in reality, the agents’ valuations are often private. The agents may

manipulate the existing algorithms to maximize their utility at the cost of overall fairness.

This section discusses the possibility/impossibility of having an algorithm that cannot be

manipulated for certain fairness notions. First, we introduce some notations required.

2.5.1 Fair Resource Allocation Environment

Consider the problem of division of indivisible resources. We represent each instance by

⟨N,M, V ⟩ which are formally defined below,

• Finite set of agents N = {1, . . . , n}

• Finite set of indivisible goods M = {1, . . . ,m}

• Valuation functions V where v ∈ V , v = (v1, . . . , vn) = (vi, v−i) denotes a particular

profile and ∀i ∈ N , vi : 2M → R+ and v−i be the valuation profile of all agents

excluding i

• The valuations are normalized, i.e., vi(∅) = 0. We denote the valuation of item k ∈M

for any agent i ∈ N as vi({k}) or vik
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• We assume vi is monotonic, ∀i ∈ N, ∀S ⊆ T ⊆M, vi(S) ≤ vi(T )

• The set of all possible complete allocations, A, A ∈ A denotes a specific allocation

and Ai is allocation per agent. A−i denotes allocation of all agents except i

• We only allow complete allocation, and no two agents can receive the same item.

That is, A = (A1, A2, . . . , An), s.t., ∀i, j ∈ N , i ̸= j;Ai ∩Aj = ∅ and
⋃

iAi = M

Different Types of Valuation Functions

Most of the literature assumes that the valuation functions of agents are monotonic for

goods. The utility to an agent for a bundle increases every additional good in the bundle.

More formally,

Definition 2.19 (Monotonicity). A valuation function vi is monotonic if, ∀S ⊆ T ⊆

M,vi(S) ≤ vi(T ).

In general, the agents derive certain valuation for every possible subset of goods i.e., all

possible bundles. Representing such a rich valuation function requires exponential space

hence it is common to consider specific kinds of valuation functions. The most popular

ones are additive and identical valuations.

Definition 2.20 (Additive Valuations). Agents have additive valuations if, ∀i ∈ N values

any non-empty bundle Ai as vi(Ai) =
∑

k∈Ai
vik.

A valuation instance is said to be identical when all agents have the same valuation for

all subsets of items, formally,

Definition 2.21 (Identical Valuations). The valuations are identical if, ∀i, j ∈ N, ∀S ⊆

M,vi(S) = vj(S).

Often, agents do not have identical valuations, but they order the items likewise, i.e.,

agents have the same rank for the items. We call such valuations Identical Ordering (IDO).

52



Definition 2.22 (Identical Ordering (IDO)). Valuations are IDO when all agents agree

on the same ranking of the items, i.e., for ∀i ∈ N , vi1 ≥ vi2 . . . ≥ vim.

The cardinal cost functions of agents in an IDO instance may still differ. In approval-

based settings, agents have binary valuations, where they either approve or disapprove an

item.

Definition 2.23 (Binary Valuations). The valuations are binary, if ∀i ∈ N , ∀k ⊆ M ,

vik ∈ {1, 0}.

Given the basic components for resource allocation, we now state the common fairness

notions considered in the literature below.

2.5.2 Fairness Notions and Algorithms

Researchers have studied fair division formally since the 1940s. The problem of cake

cutting, where a heterogeneous continuous resource has to be divided among multiple

agents. Further, each agent must be guaranteed a fair share of the cake, which led to

proportional and envy-free cake cutting. There are various approaches proposed for fair

division in the case of divisible goods. Although in many real-world situations like course

allocation, division of inheritance, and divorce settlement, the goods may not be divisible.

Here we are focusing on indivisible resources and studying the fairness notions of envy-

freeness, proportionality and max-min share. Since allocations that satisfy these notions

may not exist, there are relaxations and corresponding algorithms to achieve them.

2.5.2.1 Envy Freeness and its Relaxations

The concept of envy-freeness (EF) introduced by Foley 1966 [78] is a well-established

notion of fairness. It ensures that no agent envies the bundle of any other agent. Un-

fortunately, an EF allocation of indivisible items may not exist; for example, when there

is a single good and two agents, the agent who doesn’t get the good feels envious of the
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agent that does. The researchers were interested in relaxing the concept of EF to EF1 and

EFX in order to limit the envy of every agent. For goods, an allocation is EF1 when all

agents value their bundle at least as much as they value another agent’s bundle with their

most valued item removed. EFX is stronger than EF1 and requires that all agents value

their bundle no less than the other agents’ bundle with their least valued item removed. A

standard definition is as follows,

Definition 2.24 (Envy-free (EF) and relaxations). For the items (goods or chores), an

allocation A that satisfies ∀i, j ∈ N ,

vi(Ai) ≥ vi(Aj) is EF

vi(Ai) ≥ vi(Aj \ {k});∀k ∈ Aj is EFX

vi(Ai) ≥ vi(Aj \ {k});∃k ∈ Aj is EF1

(2.19)

We now explore some existential results and algorithms for finding EFX allocations.

Then we see that relaxing EFX to EF1 guarantees existence. Further, we describe some

polynomial time algorithms for finding EF1 allocations.

Envy-Freeness up to any item (EFX)

As given by Definition 2.19, in the case of goods, EFX implies that for any pair of agents

i and j, if i envies j, the envy can be eliminated by hypothetically removing any good from

j’s bundle. EFX is a very compelling notion of fairness however, its existence is still an

open problem in fair division. It is known that EFX allocation always exists in the case of

three agents with additive valuations [50] and two agents with general monotone valuations

[164]. Despite the ongoing efforts, the question of EFX’s existence remains unanswered for

any valuation system that involves more than three agents.

Plaut et al. 2020 [164] showed that when agents have general but identical valuations, a

modification of the Leximin, i.e, leximin++ solution is EFX. The Leximin++ (Algorithm
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1) selects the allocation that maximizes the minimum individual utility; further, if multiple

allocations achieve it, it chooses the allocation that maximizes the size of the minimum util-

ity agent’s bundle. Further, if multiple allocations achieve it, it chooses the allocation that

maximizes the second minimum individual utility, followed by the cardinality maximum of

the second minimum agent’s bundle, and so forth. Even when two agents have identical

submodular valuations, Plaut et al. 2020 [164] showed that finding EFX takes exponential

time. On the other hand, the algorithm of Lipton et al. 2004 [130] finds an EF1 allocation

in polynomial time for any number of agents with monotone valuations. Thus, EFX is

indeed significantly stronger than EF1. In addition, Plaut et al. 2020 [164] proposed an

algorithm for EFX allocation in polynomial time, i.e., O(mn3) when agents have additive

valuations with identical ranking, which relies on envy-cycle elimination [130].

Algorithm 1 Leximin++

1: Set ∀i, Ai = ∅

2: A← maxA′∈
∏

n(M)mini∈N vi(A
′
i)

3: while |A| > 1 do

4: i← minj∈N vj(Aj)

5: A← maxA |Ai|

6: A← maxA′∈Amini∈N vi(A
′
i)

7: end whilereturn Allocation A

Envy-Freeness up to one item (EF1)

As defined in Definition 2.19, in the case of goods, Envy-free up to one item (EF1) implies

that for any pair of agents i and j, if agent i envies agent j, the envy can be eliminated

by virtually taking out agent i’s most valuable item from j’s bundle, i.e., vi(Ai) ≥ vi(Aj \

{g}), ∃g ∈ Aj . EF1 allocation always exists and can be obtained in polynomial time.
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Theorem 2.8 (Budish, Lipton et al. 2011, 2004 [43, 130]). EF1 allocation always exists

and can be found in polynomial time.

When agents have additive valuations, round-robin algorithm gives EF1 for goods in

polynomial time, i.e., O(mn logm) [47]. We formally describe the steps in Algorithm 2.

Algorithm 2 Round Robin

1: Set ∀i, Ai = ∅

2: Every agent sort the items in decreasing order

3: Arrange agents in an arbitrary sequence

4: while M ̸= ∅ do

5: for i← 1 to n do

6: Ai ← Ai ∪maxk∈M vik

7: M ←M \ {k}

8: end for

9: end whilereturn Allocation A

When agents have general monotone valuations, Lipton et al. 2004 [130] proposed an

envy-cycle elimination algorithm that gives EF1 allocation for goods in polynomial time

O(mn3). This algorithm bounds the envy of any agent by the maximum marginal value of

any good; it corresponds to the notion of EF1 for goods. We define the envy graph first. An

envy graph of allocation A consists of nodes for each agent and directed edges from agent

i to agent j if i envies j, i.e., vi(Ai) < vi(Aj). The algorithm selects an unenvied agent in

each iteration, i.e., an agent with no edges directed towards them, and assigns an arbitrary

good. If there are no such agents, there must be cycles of envy, and the agents can exchange

bundles until no more cycles remain. Upon receiving the good, other agents may envy this

agent; we can eliminate this envy by removing the good they just received since they were

previously unenvied. Thus, if agent i envy agent j, the envy is bounded up to one good,
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i.e., by the recently added good in agent j’s bundle. After each round of partial allocation,

this algorithm ensures that EF1 is satisfied. In contrast, Bérczi et al. 2020 [29] showed

that the envy-cycle elimination algorithm fails to find an EF1 allocation when agents have

general non-monotone valuations.

Algorithm 3 Envy-Cycle Elimination

1: Set ∀i, Ai = ∅

2: for k ← 1 to m do

3: Find an unenvied agent i

4: Ai ← Ai ∪ k

5: if Envy-Cycle exists then

6: Swap bundles to resolve

7: end if

8: end forreturn Allocation A

2.5.2.2 Proportionality and its Relaxations

In addition to EF and its relaxations, proportional allocations are also well studied in

the context of fairness. As introduced by Steihaus 1948 [180], Proportionality requires that

each agent gets at least 1/n of their share of the total value. Furthermore, even proportional

allocations may not always exist; for this reason, researchers have considered relaxations.

Similar to EF, we have proportionality up to one item, PROP1 requires that every agent

is guaranteed to receive their proportionality guarantee if they lose their least valued chore

or receive their most valuable good from any other agent’s bundle. Proportionality up to

any item, PROPX requires that every agent is guaranteed to receive their proportionality

guarantee if they lose their most valued chore or receive their least valued good allocated

to another agent.
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Definition 2.25 (Proportionality (PROP) [14, 58, 180]). For the items (chores or goods),

an allocation A that satisfies ∀i ∈ N ,

vi(Ai) ≥ 1/n · vi(M) is PROP

vik < 0, vi(Ai \ {k}) ≥ 1/n · vi(M);∀ k ∈ Ai is PROPX

vi(Ai \ {k}) ≥ 1/n · vi(M);∃ k ∈ Ai is PROP1

(2.20)

Proportionality up to one item (PROP1):

Conitzer et al. 2017 [58] introduced the notion of PROP1 in the setting of Public De-

cision Making, which is more generic than indivisible item allocations. PROP1 requires

each agent to receive a utility at least their proportional share if we add the largest good

allocated to another agent to their bundle, as stated in Definition 2.25. Each agent receives

its proportional share after hypothetically including one extra good from another agent’s

allocation into its bundle.

In the setting of Public Decision Making, Conitzer et al. 2017 [58] shows that a PROP1

allocation always exists and can be found in polynomial time. When agents have sub-

additive valuations, Envy-freeness is a stronger notion than proportionality, i.e., EF implies

PROP. Similarly, when agents have additive valuations, EF1 implies PROP1. It may

seem counter-intuitive at first glance that EFX implies PROPX when agents have additive

valuations.

2.5.2.3 Maxmin Share Allocations

We explore Maximin share (MMS) introduced by Budish 2011 [43], extending the con-

cept of Cut and Choose to indivisible goods. Let’s say we ask an agent to divide m items

into n bundles and take the bundle that they’re least interested in. This risk-averse agent

would divide the bundles to maximize the minimum utility, which is the MMS share of the
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agent. An MMS allocation guarantees every agent their MMS share. Note that MMS is

a weaker fairness property than proportionality; a proportional allocation is always MMS.

Even though MMS is weaker, MMS is still too demanding in the case of indivisible items.

Definition 2.26 (Maxmin Share MMS [43]). An allocation A is said to be MMS if ∀i ∈

N, ui(Ai) ≥ µi, where

µi = max
(A1,A2,...,An)∈

∏
n(M)

min
j∈N

ui(Aj)

An MMS allocation exists in instances with two agents with additive valuations using

the ”Cut-and-Choose” protocol but Kurokawa et al. 2018 [128] presented an intricate ex-

ample in which every allocation fails to achieve MMS guarantees for more than two agents.

Bouveret et al. 2016 [41] showed that an MMS allocation need not exist when agents have

general valuations, even in the case of two agents.

Despite its appealing formulation, MMS does have a computational disadvantage. For

one, even the computation of the maximin share for an agent with additive valuations is an

NP-Complete problem [41]. And computing an MMS allocation is strongly NP-Hard. The

problem is weakly NP-hard even for two agents [15, 41]. However, a PTAS for computing

MMS exists [198]. Originally, Woeginger 1997 [198] gave PTAS to compute a maximum

partition for a particular agent within the context of job scheduling. However, the problem

is identical to computing a maximin partition for the given agent.

2.5.3 Efficiency Notions

In the previous subsection, we discussed some popular fairness notions. Note that

not assigning any item to any agent is trivially EF. However, we also desire efficiency,

so fairness is considered in connection with efficiency criteria as well. One of the most

frequently studied efficiency criteria in fairness literature is Pareto-Optimality. A Pareto

optimal (PO) allocation ensures that there is no other allocation which Pareto dominates,

i.e., better for all agents and strictly better for at least one. It is interesting to consider

PO and fair allocations.
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Definition 2.27 (Pareto-Optimal (PO)). An allocation A′ is said to Pareto dominate

allocation A, if ∀i ∈ N , vi(A
′
i) ≥ vi(Ai) and ∃i ∈ N , vi(A

′
i) > vi(Ai). When there is no

other allocation that dominates allocation A, it is said to be Pareto-optimal.

We then consider utilitarian welfare, the sum of agents’ utilities. On the other hand,

Nash welfare corresponds to the product of agents’ utilities and egalitarian welfare, to the

minimum of individual agents’ utility.

Definition 2.28. Given an instance (N,M,V), an allocation A∗ satisfies,

Maximum Utilitarian Welfare, MUW(u), if

A∗ ∈ max
A

n∑
i=1

ui(Ai) (2.21)

Maximum Nash Welfare, MNW(u) if

A∗ ∈ max
A

n∏
i=1

ui(Ai) (2.22)

Maximum Egalitarian Welfare, MEW(u) if

A∗ = max
A

min
i

ui(Ai) (2.23)

2.5.4 Strategyproof Fair Allocations

In fair resource allocation, the majority of the algorithms proposed in the literature do

not assume strategic agents. Hence the social planner must know the valuations of the

agents upfront to ensure fair allocations using such algorithms. Although in reality, agents

may misreport their true valuations. As described in Section 2.3, to ensure truthfulness

of agents, we must look for incentive compatible mechanisms 2.8. Incentive compatible

mechanisms are also referred to as strategyproof mechanisms. In fairness literature, there

are two kinds of strategyproof mechanisms explored, i) Deterministic Strategyproof Mech-

anisms and ii) Randomized Strategyproof Mechanisms. We define them formally given a

resource allocation instance ⟨N,M, V ⟩ and A ∈ A denotes a specific allocation. We de-
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fine a direct mechanism which given the agent valuations v, determines allocation, i.e.,

hi(v1, . . . , vn) = Ai, ∀i ∈ N .

Definition 2.29 (Deterministic Strategyproof Mechanism (DSM)). A direct mechanism

(Definition 2.5) h is called strategyproof if,

∀v1, . . . , vn,∀i,∀v
′
i : vi(hi(v1, . . . , vn)) ≥ vi(hi(v1, . . . , v

′
i, . . . , vn))

Definition 2.30 (Group Strategyproof Mechanism (GSM)). A d direct mechanism h is

called strategyproof iff for each subset of agents S ⊆ N and valuation profile v
′
, where

v
′
i = vi, ∀i /∈ S,

∀v, v′
, ∃i ∈ S, : vi(hi(v)) ≥ vi(hi(v

′
))

Definition 2.31 (Randomized Strategyproof Mechanism (RSM)). A randomized direct

mechanism h is called strategyproof if,

∀v1, . . . , vn, ∀i,∀v
′
i : E [vi(hi(v1, . . . , vn))] ≥ E

[
vi(hi(v1, . . . , v

′
i, . . . , vn))

]
The expectation is over the randomness of the mechanism.

Impossibility Results

Unfortunately, in fairness literature, there are a lot of impossibility results known for

DSM for certain fairness notions. In Lipton et al. 2004 [130], the authors prove that it is

impossible to design a truthful mechanism that achieves minimum envy or EF by providing

a counterexample. We will see the example in detail in Chapter 5. Menon et al. 2017 [142]

prove that it is impossible to have any DSP which is (even approximately) proportional

and ensures complete allocation. By complete allocation, we mean non-wastefulness i.e.,

all resources are allocated. Amanatidis et al. 2016 [10] prove that for 2 agents, there is no

truthful mechanism that ensures better than 1
m/2 -MMS allocation, m is the total number of

items. On the other hand, a strategyproof mechanism for Pareto Optimal (PO) allocations

is very simple. Serial dictatorship is the DSM that ensures PO.
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Criteria DSM RSM

EF + EQ ✓ ✓

PO + EF ✓ ✓

PO + EQ ✗ ✗

PO + EF + EQ ✗ ✗

PROP + PO ✓2 ✓

PROP + EF ✗ ✓

PROP + EQ UNK ✓

PROP + PO + EF ✗ UNK

PROP + PO + EQ ✗ ✗

PROP + EF + EQ ✗ ✓

PROP + PO + EF + EQ ✗ ✗

Table 2.2: Summary for Strategyproof Fair Mechanisms (Divisible Resources)

Apart from DSM, researchers have identified Randomized SP mechanisms (RSM) to

ensure fairness and efficiency. Chen et al., Mossel et al. 2013, 2010 [52, 145] show that

there is a randomized SP mechanism that always returns an allocation which is EF and

EQ. The Table 2.2 summarizes the known results for the existence of RSM and DSM for

various fairness notions. In the table, UNK refers to unknown, i.e., the existence of such a

mechanism is not known. From the table, we see that there exist deterministic strategyproof

mechanisms for allocations that are both EF and EQ or PO and EQ or PROP and PO.

Whereas for the rest either there are randomized SP mechanisms or impossibilities. Given

these impossibilities for finding fair allocations in general valuations, researchers look for

DSMs in restricted valuation domains like binary valuations.
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Binary Valuations

Halpern et al. 2020 [104] provide a group strategy-proof mechanisms for binary additive

valuations. Their mechanism is based on maximizing the Nash social welfare (i.e., the

geometric mean of the agents’ valuations) with a lexicographic tie-breaking rule. Nash

optimal allocations are Pareto efficient. Also, under binary additive valuations, such allo-

cations are known to be MMS as well as EF1. Hence, for binary additive valuations, the

work of Halpern et al. 2020 [104] achieves all the three desired properties; their mechanism

in fact can be executed in polynomial time. For the broader class of binary submodular

valuations, Babaioff et al. 2021 [17] obtain a truthful, PO, and fair mechanism. This work

considers Lorenz domination as a fairness criterion and, hence as implications, obtains EF1

and 1/2-MMS guarantees. Further strengthening the claim, Barman et al. 2022 [23] shows

that under matroid-rank valuations it is possible to have a group strategyproof mechanism

that is PO and EF1.

In the above two sections, we have seen some examples of mechanisms with money

i.e., redistribution mechanisms and mechanisms without money for fair allocations. In all

the examples, the mechanisms are designed analytically and proven to satisfy the required

properties. Designing mechanisms analytically is very challenging for complex real-world

scenarios. To overcome this issue, researchers have proposedAutomated Mechanism Design.

In the next section, we elaborate on this and provide some applications.

2.6 Automated Mechanism Design

Typically mechanisms are designed to achieve specific objective under certain conditions.

For example,

• VCG mechanism only maximizes social welfare and cannot be extended to any other

objective

• Myerson’s expected revenue maximization is only for single item

63



• Redistribution mechanisms proposed are worst-case optimal i.e, redistribute maxi-

mum money in the worst case. It is challenging to design these mechanism that

perform well in expectation

In 2002, Conitzer and Sandholm introduced Automated Mechanism Design (AMD) ap-

proach, where the mechanism is computationally created for the specific problem instance

at hand [59]. Compared to analytically designing mechanisms, AMD has several advan-

tages: 1) it can yield better mechanisms than the ones known to date, 2) it is often appli-

cable to complex real-world setting, and 4) it inculcates learning in machine using existing

data instead of manual efforts. The problem is modelled as a optimization problem,

Definition 2.32 (Automated Mechanism Design [171]). In an automated mechanism de-

sign setting, there are a finite set of agents N , and a finite set of outcomes X. For each

agent i ∈ N , a finite set of types Θi sampled from the distribution Φi and a utility function

ui : Θ × X → R. Finally there is an objective function that the social planner aims to

maximize along with certain constraints.

The objective function can aim to maximize social welfare, revenue or any other metric

as desired. At the same time, each agent is maximizing its own utility. Here we consider

AMD for designing mechanisms with money. For this specific case, the AMD requires

appropriate outcome selection and payment selection functions that maximize the objective

while satisfying certain basic constraints of IR and DSIC. More formally,

Definition 2.33 (AMD with Money [171]). A deterministic mechanism with payments

consists of an outcome selection function f : Θ → X and for each agent i and a payment

selection function ti : Θ → R, where ti(Θ) gives the payment made to agent i when the

reported types are Θ. When the ex-post IR and DSIC constraints can be given by the

following, for any agent i

∀θ ∈ Θ, ui(θi, f(Θ)) + ti(θ)) ≥ 0 (ex-post IR)
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∀θ ∈ Θ, ∀θ′
i ∈ Θ

′
i, ui(θi, f(θi, θ−i)) + ti(θi, θ−i)) ≥ ui(θi, f(θ

′
i, θ−i)) + ti(θ

′
i, θ−i)) (DSIC)

Designing a deterministic mechanism is easy if the designer’s objective is social welfare

(the VCG mechanism suffices), but NP-complete more generally (for example, if the objec-

tive is to maximize the expected revenue collected from the bidders [59]—as is the objective

in some auctions). All of these hardness results apply even with a uniform prior over types.

Given the complexity results, we use learning-based approaches to obtain a good empirical

approximations of the optimal solutions. We first discuss the basic framework required

to apply learning based approaches before discussing existing work on the same. First we

discuss the basic components in Deep Learning Models.

2.6.1 Deep Learning Models

Neural Networks are biologically inspired paradigms which learn optimal functions from

data. The main components that customize such a network for a specific task are its ar-

chitecture and the objective function which guides its training. Neural networks have been

successful in learning complex, nonlinear functions accurately, given adequate data [110].

There is a theoretical result which states a neural network can approximate any continuous

function on compact subspace of Rn [112]. However, designing such a network has been

elusive until recent times. The latest theoretical developments ensure that stochastic gradi-

ent descent (SGD) converges to globally optimal solutions [125, 179]. In recent times, with

advent in computing technology, neural networks have become one of the most widely used

learning models. They have outperformed many of the traditional models in the tasks of

classification and generation etc [108, 92]. We now discuss the basic components of neural

networks.

2.6.1.1 Perceptron

The most fundamental unit of a deep neural network is called an artificial neuron.

McCulloch (neuroscientist) and Pitts (logician) proposed a highly simplified computational
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g(x) =
m∑
i=0

wi · xi, xi ∈ R

y = ϕ(g(x)) = 1 if g(x) ≥ θ

Figure 2.2: Simple Perceptron

model of the neuron (1943). It consists of an aggregator function g that aggregate the

boolean inputs, x = (x0, . . . , xm), xi ∈ {0, 1}. The function ϕ takes the aggregated output

and makes a binary decision y ∈ {0, 1}. More formally,

g(x) =
m∑
i=0

xi, xi ∈ {0, 1}

y = ϕ(g(x)) = 1 if g(x) ≥ θ

Frank Rosenblatt, an American psychologist, proposed the classical perceptron model

(1958) which is more general computational model than McCulloch–Pitts neurons. In this

model the inputs are not restricted to be binary and weights are introduced. More formally,

it takes x = (x0, . . . , xm), xi ∈ R as inputs and outputs y with weight wi associated with ith

input. The activation function ϕ is for thresholding the output to introduce nonlinearity

in the network. The formal definition is given beside an illustration in Figure 2.2.

Now we provide the Perceptron Learning Algorithm to learn the weights given (x, y).
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Perceptron Learning Algorithm

Algorithm 4 Perceptron Learning Algorithm

1: Input: (X,Y )

2: Let X1 set of samples with y = 1

3: Let X0 set of samples with y = 0

4: Initialize w randomly

5: while !convergence do

6: Pick a random sample x ∈ X1 ∪X0

7: if x ∈ X1 and
∑m

i=0wixi < 0 then

8: w = w + x

9: end if

10: if x ∈ X0 and
∑m

i=0wixi ≥ 0 then

11: w = w − x

12: end if

13: end while

14: The algorithm converges when all inputs are correctly classified

Using the simple model of Rosenblatt’s perceptron, we now look at the algorithm to

learn the weights wi. The wi’s are learnt such that the inputs x are correctly classified

according to the given labels y. When the two classes are linearly separable, the perceptron

algorithm (Algorithm 4) converges in finite number of steps as stated and proven in [37].

Although real-world data is complex and noisy, hence the different classes may not be

linearly separable. Towards this the Rosenblatt’s perceptron is extended to include non-

linear activations and multi-layered neuron stacked together as we discuss below.
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2.6.1.2 Multi-Layered Perceptrons

In general to mimic complex functions, a simple perceptron is not sufficient. Firstly, the

basic thresholding function ϕ is modified, which hard threshold’s the aggregator output

w.r.t., θ. Different non-linear thresholding functions or also known as activation functions

are discussed below.

Non-Linear Activations. There are numerous activation functions proposed in the lit-

eraure. The goal of these functions is to transform the output from the aggregator function

g, to the final output which takes values only within a specified range. The hard thresh-

olding function used in the Rosenblatt’s perceptron only returns either 1 or 0 based on the

threshold θ. Here we discuss some popular activation functions.

• Linear. The simplest activation function is linear activation i.e., effectively having no

activation function, it is an identity function where a =
∑

iwi, xi, ϕ
Linear(a) = a.

• Sigmoid. The sigmoid or logistic function outputs a value in the range [0, 1], given the

input x and a =
∑

iwi, xi, the function is defined as,

ϕsigmoid(a) =
1

1 + exp (−a)

The output is smoother compared to the threholding function and can be interpreted

as probability. The function is smooth continuous and differentiable. Although the

gradients vanish for very large or very small values of the input.

• Tanh The tanh function outputs a value in the range [−1, 1], given the input x and

a =
∑

iwi, xi, the function is defined as,

ϕtanh(a) =
exp (a)− exp (−a)
exp (a) + exp (−a)

The output is smoother compared to the threholding function and the mean of the

activations is centered around 0 unlike sigmoid. The function is smooth continuous and

differentiable yet shares the same issue of vanishing gradients as sigmoid.
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• ReLU The most widely used activation function currently is ReLU. It is faster to compute

and its gradients do not saturate. Although not as smooth but still works in practice,

ϕReLU (a) = max(0, a)

The only disadvantage is that the derivative is equal to zero when the input is negative.

The problem is known as the dying Relu. If the weights in the network always lead

to negative inputs into a Relu neuron, that neuron won’t be effectively contributing to

the network training. To overcome this, researchers have proposed leakyReLU which is

given by ϕLReLU (a) = max(0.01 · a, a).

• Softmax. The softmax activation function is used in neural networks when we want to

build a multi-class classifier which solves the problem of assigning an instance to one

class when the number of possible classes is larger than two(otherwise we can simply use

sigmoid if possible classes=2). When ai =
∑

j wjixj , softmax is formally given by,

ϕsoftmax
i =

exp (ai)∑
j exp((aj))

Given various non-linear activations, we now look at how to stack multiple perceptrons to

obtain feed-forward neural networks.

Feed-forward Network

Consider that the input x is an m-dimensional vector and we want an output which is

k-dimensional (k-class classification) and we stack the perceptrons in L− 1 hidden layers.

Such an organization is referred to as Multi-layered Perceptrons (MLPs) or Feed-forward

Neural Networks (NN). Each hidden layer consists of n neurons each. The input layer

can be called the 0th layer and the output layer is the Lth layer. At each neuron, there

is an aggregation step and then the non-linear activation is applied. Let hl(x) represent

the vector of neuron at any step l ∈ 0, 1, . . . , L. Therefore, h0(x) = x and hL(x) = f(x)
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Figure 2.3: Feed Forward Neural Network

assuming that the network learns the function f to map x to y. For any hidden layer

hl(x) = (hl1(x), . . . , h
l
n(x)) assuming n neurons in all the hidden layers,

hlj(x) = ϕ(
∑
i∈n

w
(l−1,j)
i hl−1

i (x) + blj), l ∈ {1, . . . , L− 1}, ∀j ∈ [n]

where ϕ is any non-linear activation function described above, bl = (bl1, . . . , b
l
n) is the bias

added at layer l and w(l,j) = (w
(l,j)
1 , . . . , w

(l,j)
n ) is the weights with which the output at

layer l− 1, i.e., hl−1(x) is multiplied to obtain the value of jth neuron at lth layer. Let W l

denote all the weights connecting layer l to l + 1, i.e., W l = [w
(l,j)
i ](i,j), where i, j ∈ [n], or

is referred to as the weight matrix. The final function learnt by the network is,

f(x;W, b) = ϕL(WL−1 · hL−1(x) + bL)

where ϕL represents the final activation typically a Softmax Function for multi-class classi-

fication or even a linear activation function for regression. The illustration for the described

feed forward network with 1 hidden layer is given in Figure 2.3, containing m = 3 input

features and n = 4 hidden neurons and k = 3 output classes. We next state a powerful

theorem that discusses the representational power of MLPs.
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Representation power of MLPs

The theorem states that, there is a guarantee that for any function f r(x) : Rn → Rm we

can always find a neural network (with 1 hidden layer containing enough neurons) whose

output f(x) satisfies |f(x)− f r(x)| < ϵ. More formally,

Theorem 2.9 (Cybenko 1989 [61]). A multi-layer network of neurons with a single hidden

layer can be used to approximate any continuous function to any desired precision.

The proof for the theorem is given in [111, 61].

Despite such strong theorem, it is crucial to note that, it is practically challenging to

design and learn the parameters of a single layered network that can approximate any

function. Hence, the neural networks consists of many hidden layers and are trained using

Gradient Descent. Below we discuss different steps involved in the learning the parameters

(W, b) i.e. the weights and biases of the NNs.

2.6.1.3 Learning of MLP Parameters

Given the input, target pairs (X, y) = {(x1, y1) . . . , (xn, yn)}, we consider the task of

classification, where yi ∈ {0, 1}. We build an MLP which learns the function parameterized

by (W, b), fW,b(xi) = ŷi such that ŷi ∈ {0, 1}. We first consider an objective function that

we need to minimize to ensure y and ŷ are close. We consider the binary cross-entropy loss

given by,

L(W,b)(f(X;W, b), y) = − 1

n

∑
i

yi log ŷi

The goal is to find optimal (W ∗, b∗) that minimizes L, hence the objective is to minW,b L(W,b).

One of the approaches to minimize a given function is the Gradient Descent Method [3]. As

its name suggests, gradient descent involves calculating the gradient of the target function.

The pseudo code for the algorithm is given in Algorithm 5.
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Algorithm 5 Gradient Descent

1: Input: (X,Y ), Learning Rate: η

2: Initialize t = 0, Wt and bt

3: while t++ < max iterations do

4: Wt+1 = Wt − η∇WtL

5: bt+1 = bt − η∇btL

6: end while

In order to compute the gradients w.r.t the weights and biases at a given layer l, i.e.,

(∇W lL,∇blL) we apply the chain rule as follows,

(
∂L
∂W l

=
∂L
∂ŷ

∂ŷ

∂hL−1

∂hL−1

∂hL−2
· · · ∂h

l+1

∂W l
,

∂L
∂b

=
∂L
∂ŷ

∂ŷ

∂hL−1

∂hL−1

∂hL−2
· · · ∂h

l+1

∂bl

)
Computing the gradients of the weights at a layer at layer l requires the gradients

of later layers w.r.t the corresponding next layer till the very end. Hence the gradients

are computed starting from the last layer, which popularly known as Back-propagation.

Notice that the gradient descent algorithm (Algorithm 5) goes over the entire data once

before updating the parameters for computing ∇W ,∇b. Imagine, a dataset of millions of

samples, the algorithm must make millions of calculations every step. Hence in practice

an approximation to this approach is used which is called Stochastic Gradient Descent

(SGD) [38]. It is a stochastic approximation of gradient descent, that reduces the high

computational burden, achieving faster iterations in trade for a lower convergence rate.

Essentially at each iteration, we sample a mini-batch of training samples and compute the

gradient w.r.t. the mini-batch. Hence the time required for each iteration significantly

reduces, although lot many iterations are required compared to gradient descent. Bottou

et al. 2008 [39] provide proven arguments to justify the practicality of SGD. Hence the

final algorithm for NN training using SGD is given by Algorithm 6.
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Algorithm 6 Stochastic Gradient Descent

1: Input: (X,Y ), Learning Rate: η

2: Initialize t = 0, Wt and bt ▷ Weight Initialization

3: while t++ < max iterations do

4: Sample a mini-batch of samples {(x1, y1), . . . , (xb, yb)} ⊂ (X,Y )

5: Compute f(xi;W, b),∀i ∈ {1, . . . , b} ▷ Forward Pass

6: Compute gradient estimates

ĝ =
1

b
∇(W,b)

b∑
i=1

L(f(xi;W, b), yi)

▷ Backward Pass

7: [Wt+1, bt+1] = [Wt, bt]− ηĝ ▷ Weight Update

8: end while

It mostly consists of the following four important steps,

• Weight Initialization. It is used to define the initial values for the parameters in

neural network models prior to training the models on a dataset. Historically, weight

initialization involved using small random numbers, although over the last decade, more

specific heuristics have been developed that use information, such as the type of activa-

tion function that is being used and the number of inputs to the node. When activation

function like Sigmoid or Tanh are used, then Xavier Weight Initialization [86] and Nor-

mal Xavier Weight initialization are used. With ReLU, He Weight Initialization is used

[107]. For the weights connecting layer l having nin number of nodes to layer l+1 having

nout number of nodes, the weights are sampled in the following way,

– Xavier: W ∼ Unif
[
− 1√

nin
, 1√

nin

]
– Normalized Xavier: W ∼ Unif

[
−

√
6√

nin+nout
,

√
6√

nin+nout

]
73



– He: W ∼ N (0,
√
2/nin)

The above initializations help the network to converge to good solutions.

• Forward Pass. It refers to calculation process, values of the output layers from the

inputs data. It’s traversing through all neurons from first to last layer to obtain the

function f(X;W, b) given the inputs, weights and biases as described before. A loss

function is calculated from the output values.

• Backward Pass. It refers to the computation of gradients which is made from the last

layer, backward to the first layer.

• Weight Update. After computing the gradients, this is the crucial step from gradi-

ent descent that updates the weights in the negative direction of the gradients. This is

to minimize the overall loss. The learning rate specifies the magnitude of the descent

step in the negative direction of the gradients. In practice, there are better optimizers

proposed in the literature to overcome training challenges in deep neural networks, de-

scribed in detail in [90][Chapter 8]. In addition to the simple step performed in SGD,

the Momentum Method ([166]) and Nestrov Accelerated Momentum [184] are designed

to accelerate learning. To further improve the optimizers, researcher proposed adaptive

learning methods, which adaptively modify the learning rate and training progresses in-

dividually for each parameter. The most popular of these are AdaGrad ([68]), RMSProp

([188]) and Adam ([127]) optimizers.

Now that we have studied some of the basic components involved in training of a neural

network, we now try to place it in the context of Automated Mechanism Design (AMD).

In the next section, we study how to model AMD using neural networks before discussing

some recently proposed approaches for deep learning based mechanism design.
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2.6.2 AMD via Deep Learning

In this subsection, we discuss the basic framework for learning any mechanism via DL.

This framework is not the absolute framework that one must follow but it is a first attempt

at formalizing a mechanism design problem in terms of machine learning framework. The

following are the major components involved,

• Input Data. In various auctions, the samples are based on the type profile of the

agents. Hence it is very common the use the valuations θ as the input to the network

and for each valuation θ , the network maps it to a particular outcome which may

correspond to (k, t) or the utility value obtained by the agent. Since, real world data is

not available for auctions, it is common to assume that the valuations θ come from a

predefined distribution. It is very common to assume the valuations are independent and

identically distributed, since most machine learning frameworks assume that the input

samples are i.i.d from a certain distribution. Although in [176], the authors explore the

case where the valuations are correlated. Such assumption of the distribution is definitely

a shortcoming and real-world data would be more reflective and useful for better results.

It is also a challenge to give combinatorial valuations as an input since the size can

become exponential.

• Model Architecture. The model architecture is a very crucial part which not only

models the complexity of the mechanism learnt. It is also possible to hard-wire certain

game theoretic constraints like DSIC into the architecture like in [69, 89, 136]. Although

such hard-wiring restricts the application of the network only to a specific domain for

a specific setting. Considering that the input is the valuation which is defined over a

specific number of agents and specific number of items, a different network is required

when the number of agents or the items change if using fully-connected network. In

[185], the authors explore Convolutional Neural Network (CNN) so that the network is
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independent of the input size. The network outputs, the allocation and payment for a

certain input valuation.

• Loss Function. The loss function is the primary part where the game-theoretic goals

are captured. If the social planner wishes to maximize welfare, or revenue, it can be

calculated based on the network output and the loss would then be defined appropriately.

In [69], the authors have also introduced constraints like DSIC into the loss by using

Lagrangian multipliers. In [143], the authors introduce fairness and efficiency constraints.

The optimization of the loss is then performed using Stochastic Gradient Descent (SGD)

or one of its suitable variants as common in general deep learning algorithms.

• Evaluation Metrics. The evaluation is very specific to the mechanism that is being

designed. The optimal revenue or social welfare finally reflects how well the network has

learnt. Along similar lines, it is also common to introduce ratio of obtained result to the

best (if known) when the mechanism is approximately optimal.

Equipped with basic framework, we describe relevant work that apply neural networks to

learn specific mechanisms which are analytically difficult to design.

2.6.3 Existing Literature

We list the following papers we see how we can leverage neural networks for analytically

challenging problems in mechanism design. We also emphasize the basic modelling of the

network and key ideas used in each of the papers to achieve the desired results.

Optimal Auctions through DL ([69])

Optimal auctions are used to ensure high revenue across industries. Typical to an

auction setting, the bidders are strategic and have private valuations which they do not

reveal. The auctioneer wants to implement an SCF that maximizes revenue and is DSIC.

We have Myerson optimal auction for single item case under the assumption of quasilinear
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utilities. The problem is still analytically challenging even for two bidders and two items.

In this paper, the authors provide DL-based models RochetNet and RegretNet for solving

the multi-item optimal auction design.

The problem set-up has n bidders and m ∈ M items. Each bidder is assumed to

have a valuation function which gives the value the bidder has for any subset of items,

vi : 2M → R≥0. The valuation profiles v ∈ V is drawn independently from the known

distributions F = (F1, . . . , Fn). The valuations of the bidders are assumed to be additive

i.e., vi(S) =
∑

j∈S vi({j}) or unit demand i.e., vi(S) = maxj∈S({j}). The bidders report

their valuations untruthfully, their bidding profile denoted by b = (b1, . . . bn) ∈ V . The

auction mechanism in the quasilinear environment is considered to have an allocation

function g(b) : V → 2M and payments made by the bidders denoted by p(b) : V → R≥0.

The utility received by each agent of type vi when bidding b is given by ui(vi, b) = vi(gi(b)−

pi(b)). In this paper, the aim is to learn (g, p) using through neural networks such that

they satisfy the following desirable properties.

• Revenue Optimal, i.e., minimize the negative expected revenue

−E
∑
i∈N

pi(v)

• DSIC to ensure the utility of each agent is maximized on truthful reporting

ui(vi; (vi, b−i)) ≥ ui(vi; (bi, b−i)), ∀vi,∀b,∀i

• Ex-post Individual Rationality (IR) to ensure that the each agent receives non-zero

utility,

ui(vi; (vi, b−i)) ≥ 0, ∀vi,∀b−i, ∀i

RochetNet. This network is designed for single-bidder multi-item setting. From [170],

it is already known that non-decreasing convex utility functions give DSIC mechanisms.

Hence the authors design a specific architecture of the network described below to ensure
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Figure 2.4: RegretNet for additive bidders [69]

the utility is non-decreasing and convex. Given b as the input the network with weights

w = (α, β) computes the utility,

uα,β = max

{
max

j
{αj .b+ βj}, 0

}
Since by the characterization from [170], the above network already ensures DSIC, it is

left to train the network such that the revenue is maximized. For that, the following

loss is used. We know that u(b) =
∑m

j=1 gj(b) − p(b), hence gw(b) = ▽uα,β(b) = αj∗(b),

pw(b) = ▽uα,β(b).b−uα,β(b) = βj∗(b) where j
∗(b) ∈ argmaxjαjb+βj . Replacing the argmax

with softmax following loss is obtained,

L(α, β) = −Ev∈F [
∑
j

βj▽̃j(v)], ▽̃j(v) = softmaxj({αj .b+ βj})

The above network is trained using stochastic gradient descent (SGD) for the above loss.

RegretNet. In the above setting DSIC was ensured due to the architectural design. In

this network, the authors learn optimal auctions for more general settings with more than

one bidder and combinatorial valuations. RegretNet has two fully connected networks, i)
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allocation network gw : Rnm → [0, 1]nm and ii) payment network pw : Rnm → Rn ≥ 0.

Proper constraints are imposed on the networks to ensure items are not over allocated

(introduce softmax in the last layer) and the payments are non-negative as given in Figure

2.4. There is no DISC constraint in architecture therefore the notion of regret is introduced

which is then used in the loss. The empirical form of regret is defined as follows,

ˆrgti(w) =
1

L

L∑
l=1

[
max
v′i∈Vi

ui(v
(l)
i ; (v′i, v

l
−i))− uwi (v

(l)
i ; v(l))

]
Hence the loss function will be constrained with DISC, i.e. expected regret for each bidder

should be 0.

max
w

Ev∼F

[
−
∑
i∈[n]

pi

]
s.t. rgti(w) = 0, ∀i ∈ [n]

So the neural network will be optimize over the following Lagrangian function,

Cp(w, λ) = Ev∼F

[
−
∑
i∈[n]

pi

]
+
∑
i∈[n]

λi
̂rgti(w) +

ρ

2

(∑
i∈[n]

̂rgti(w)
)2

where λ ∈ Rn is a vector of Lagrange multipliers, and ρ > 0 is a fixed parameter that

controls the weight on the quadratic penalty. The loss function defined is not convex

hence, the global convergence is not guaranteed but the empirical results show effective

performance.

Results. The authors reproduce known optimal results for the following two settings given

by Manelli-Vincent and Pavlov auctions [134, 163].

(A) n = 1 and m = 2 for additive valuations, the valuations are drawn independently

from U [0, 1]

(B) n = 1 with unit-demand valuations over m = 2, the items are drawn independently

from U [2, 3]
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Figure 2.5: (a) Test revenue and regret for RegretNet and revenue for RochetNet for A

and B. (b) Test revenue and regret w.r.t. training epochs for A with RegretNet [69]

From Figure 2.5, it can be seen the both the networks recover the optimal revenue with

< 1% error.

When n = 1 and arbitrary number of items, Straight Jacket Auction (SJA) is proposed

in [84]. It is shown that RochetNet gives the optimal revenue for m ≤ 6 and revenue that

matches SJA for m = 7, 8, 9 and 10. The authors then go on to find optimal revenue for

settings upto 5 additive bidders and 10 items with ease although there are no known results

for comparison.

Automated Mechanism Design via Neural Networks [176]

In the paper, as discussed in the previous section [69], the authors follow two approaches

to ensure DSIC for designing revenue optimal auctions. The first approach of hard-wiring

the DSIC constraint into the network (RochetNet) requires a lot of domain knowledge and
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the network architecture will not be generalizable. In the second approach they introduce

IC as a soft-constraint which would mean that the network can still produce mechanisms

that are not IC. In order to overcome this issue, the authors in [176], represent the mecha-

nism as a menu i.e., a list of (valuation, outcome) tuples in the single buyer case. According

to the taxation principle [192], by simply letting the buyer do the selection the mechanism

is IC. There are no known exact mechanisms for the following two scenarios with single

buyer and two items, i) Revenue optimal mechanisms when the menu size is restricted to

a constant. ii) Revenue optimal mechanisms when the valuations for the two items are

correlated.

A naive mechanism is defined by a set of actions also known as the menu items are

represented by a pair of [x, p] where x is the allocation vector x ∈ {0, 1}m and p is the

payment p ∈ R+ from the buyer to seller. The utilities are assumed to be quasi-linear

and valuations of the buyers are additive. Simply letting the buyer do a selection from

the menu-items is enough to ensure IC [192]. It is challenging to design the menu items

such that the revenue of the seller is maximized. The authors use the following network to

design optimal revenue mechanism.

Network Architecture. The architecture as given in Figure 2.6, consists of two net-

works, the mechanism network and the buyer network. The mechanism architecture is a

fully-connected network that outputs a set of menu items with a constant vector as input.

The output has two parts, first is an allocation matrix X with m rows (number of items)

and k columns (number of menu items). The second is a payment vector of length k rep-

resenting the price for each of the menu items. The second network is the buyers network

which maps a mechanism (in this case a set of menu items obtained as output from the

mechanism network) to a buyers strategy s(v), i.e., the menu item the buyer chooses based

on his valuations. The output of the buyers network is m + 1-dimensional with the first

m dimensions representing the value the buyer has for each of the m items and the last

dimension consists of the probability vector over the k menu items. In the buyers network
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Figure 2.6: Network Architecture: Mechanism and Buyer network [176]

there are no weights learnt, it is simply multiplying each Xi with the valuation vi i.e the

value obtained from the ith item for an allocation X and is represented by X . Similarly

the payments are also determined and represented by P, the final utility is obtained by∑
i∈mXi−P. Finally applying softmax over the utility values, helps decide the menu item

that is chosen based on the one that gives highest utility denoted by s(v). In order to train

the network for maximizing revenue the following loss is used, Loss = −
∑

v∈V Pr[v]pT s(v)

Given that the distributions from which the valuations are drawn is predefined, it is easy

to compute Pr[v]. The authors then proceed to find optimal deterministic mechanisms

for various settings and provide theoretical proofs for the mechanisms found using neural

networks.

DL for Multi-Facility Location Mechanism Design [89]

In certain settings, it is unethical to charge money to the agents involved. For example,

in this paper the authors consider the setting where given a space Ω ⊆ Rd, the problem

of locating the space to construct public facilities. In order to overcome the Gibbard-

Sattherwaite impossibility, the agents’ preferences over the locations are assumed to be
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single-peaked. When d = 1 and only one facility to be constructed i.e., k = 1, [148] proves

that choosing the median of the agents’ peaks is the strategy-proof (DSIC) mechanism that

also minimizes the sum of the agents’ distances to the outcomes (social cost). Yet there

are many worst-case approximation results for k > 2. In this paper, the authors use deep

learning to design a strategy-proof mechanism to predict locations that also minimizes the

social cost.

The problem more formally is set up considering N agents {1, 2, ...N} , set of location

Ω = [0, 1], K facilities. Each agent has single peaked preference over Ω. For each agent i,

utility will be the based on the facility that was placed closet to its preferred location. i.e.

ui(o) = maxk∈K ui(ok) .We assume u(x) = −|x−a| where a = τ(u) is the peak. The paper

purposes MoulinNet for single facility problem and RegretNet-nm for general mechanisms.

MoulinNet. For single facility location Moulin in [148] provides the following result. Hence,

the architecture of the MoulinNet uses the following to ensure strategy-proofness.

Theorem 2.10. A unanimous mechanism f : U → Ω is strategy-proof iff it is generalized

median rule, i.e, for each S ⊆ {1, . . . , n} there exists some aS ∈ Ω for all (u1, . . . , un) ∈ U ,

f(u) = min
S ∈{1,...,n}

max

{
max
i∈S

τ(ui), aS

}
By exploiting the above theorem, the following is the network with weights (w, b) ,

fw,b(u) = min
S ∈{1,...,n}

{
max
i∈S
{τ(ui), hw,b(v(S))}

}
In the above, aS = hw,b(v(S)), the input to the network is v(S) where S is represented

using binary vector x ∈ {−1, 1}n, with xi = 1 iff i ∈ S. The network hw,b is designed to

be a monotonic function. The parameters are optimized with the social cost as the loss

function, which is estimated from the sample S.

RegretNet-nm. In this network, the strategy-proofness is not encoded into the network

architecture but added as a loss. Hence this network can be generalized to more than one

facility location. For n agents and K facilities, the network fw(u) is fully-connected with
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input as the agents peaks τ(u1), . . . , τ(un) and the output is the K facilities. The empirical

loss for social cost that the network is trained to minimize is given as below,

L(w) = 1

Rn

R∑
j=1

n∑
i=1

uji (f
w(uj))

In order to ensure DSIC, the following notion of regret is introduced,

rgti(f) = Eu∼D

[
max
u′
i∈Ui

ui(f(u
′
i, u−i))− ui(f(ui, u−i))

]
The final objective is to introduce the empirical version of the constraint in the loss by

using Lagrangian multiplier. The loss is then minimized using SGD.

The authors compare their approach with standard mechanisms from literature. Both

the networks yield similar performance as the best percentile rule [182]. There are no

known results when the agents’ peaks are drawn from non-product distributions but the

flexibility of RegretNet allows it to perform well even in such scenarios.
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Chapter 3

Redistribution Mechanism

Consider a social setting where public resources/objects are to be allocated

among competing and strategic agents so as to maximize social welfare (the

objects should be allocated to those who value them the most). This is called

allocative efficiency (AE). We need the agents to report their valuations for

obtaining these resources, truthfully referred to as dominant strategy incen-

tive compatibility (DSIC). Typically, we use auction-based mechanisms to

achieve AE and DSIC. However, due to Green-Laffont Impossibility Theo-

rem, we cannot ensure budget balance in the system while ensuring AE and

DSIC. That is, the net transfer of money cannot be zero. This problem

has been addressed by designing a redistribution mechanism so as to ensure

minimum surplus of money as well as AE and DSIC. Designing redistribu-

tion mechanisms which perform well in expectation becomes analytically

challenging for heterogeneous settings.

We train a neural network to determine an optimal redistribution mecha-

nism. We also propose a loss function to train a neural network to optimize

the worst case. We design neural networks with the underlying rebate func-

tions being linear as well as nonlinear in terms of bids of the agents. We

observe that a neural network based redistribution mechanism for homo-
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geneous settings which uses nonlinear rebate functions outperforms linear

rebate functions when the objective is optimal in expectation. Our ap-

proach also yields a redistribution mechanism that is optimal in expectation

for heterogeneous settings.

3.1 Introduction

We address the problem of allocating public resources/objects among multiple agents

who desire them. These strategic agents have their private values for obtaining resources.

The allocation of the objects should be such that society, as a whole, gets the maximum

benefit. That is, the agents who value these resources the most should get them. This

condition is referred to as Allocative Efficient (AE). To achieve this, we need the true

valuations of the agents, which the strategic agents may misreport for personal benefit.

Thus, there is a need for an auction-based mechanism. A mechanism ensuring truthful

reporting is called Dominant Strategy Incentive Compatible (DSIC). The classical Groves

mechanisms [94] satisfy both of these properties.

Groves mechanisms achieve DSIC by charging each agent an appropriate amount of

money known as Groves’ payment rule. The most popular among Groves mechanism

is VCG mechanism [54, 94, 190]. Use of VCG mechanism results in the collection of

money from the agents. It should be noted that our primary motive in charging the

agents is to elicit their true valuations and not to make money from them as the objects

are public. Hence, we need to look for the other Groves mechanisms. Moreover, the

mechanism cannot fund the agents. Thus, we desire a mechanism that incurs neither

deficit nor surplus of funds; it must be Strictly Budget Balanced (SBB). However, due to

Green-Laffont Impossibility Theorem ([93]), no mechanism can satisfy AE, DSIC, and SBB

simultaneously. Thus, any Groves payment rule always results in either a surplus or deficit

of funds.
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To deal with such a situation, Maskin et al. 1979 [138] suggested that we first execute

VCG mechanism and then redistribute the surplus among the agents in a manner that does

not violate DSIC. This mechanism is referred to as a Groves’ redistribution mechanism or

simply redistribution mechanism (RM) [95, 99] and the money returned to an agent is

called its rebate. The rebates are determined through rebate functions. Thus, designing an

RM is the same as designing an underlying rebate function.

In the last decade, a lot of research focused on dealing with the Green-Laffont Impos-

sibility theorem and on designing an optimal redistribution mechanism (RM) that ensures

the maximum possible total rebate [48, 55, 75, 95, 96, 98, 99, 102, 100]. An optimal RM

could be optimal in expectation or optimal in the worst case. The authors of [102, 103,

149] address the problem of finding the optimal RM when all the objects are identical

(homogeneous). Guo and Conitzer [101, 103] model an optimization problem and solve

for an optimal linear rebate function which guarantees maximum rebate in the worst-case

(WCO) and optimal in expectation for a homogeneous setting. The authors of [95, 99]

extend WCO to a heterogeneous setting where the objects are different and propose a

nonlinear rebate function called as HETERO. Despite HETERO being proved to be op-

timal for unit demand in heterogeneous settings, in general, it is challenging to come up

with a nonlinear RM analytically. Analytical solutions for optimal in expectation RMs in

heterogeneous settings are elusive. Moreover, the possibility of a nonlinear rebate function

which is optimal in expectation for a homogeneous setting has not been explored yet. Thus,

there is a need for a new approach towards designing RMs. In this work, we propose to

use neural networks and validate its usefulness.

Our Contributions. To the best of our knowledge, this is the first attempt towards

learning optimal redistribution mechanisms (RM) using neural networks. This work has

been further extended by [97, 185, 195].

• To begin with, we train neural networks for the settings where researchers have designed

RMs analytically. In particular, we train networks, OE-HO-L and OW-HO-L for optimal
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in expectation for homogeneous settings with linear rebate functions and optimal in

the worst case for homogeneous settings with linear rebate functions respectively. Both

neural networks match the performance of theoretically optimal RMs for their respective

settings.

• Next, we train a network, OW-HE-NL to model the nonlinear rebate function for optimal

in worst case RM in heterogeneous settings, discarding the need to solve it analytically.

Note that, traditionally, neural networks have been mostly used for stochastic approxi-

mation of an expectation, but our model is also able to learn a worst-case optimal RM

as well.

• Motivated by the network performance above, we train OE-HO-NL, an optimal in ex-

pectation RM with nonlinear rebate function for the homogeneous setting. We find that

this model ensures a greater expected rebate than the optimal in expectation RM with

linear functions, proposed by Guo et al. 2008 [101].

• We also train OE-HE-NL, an optimal in expectation for heterogeneous settings with

nonlinear functions and we experimentally observe that its performance is reasonable.

Related Work

To obtain the required private information from strategic agents truthfully, mechanism

design theory is developed [62, 63, 160]. The key idea is to charge the agent appropriately

to make mechanisms truthful or DSIC. The most popular auction-based mechanisms are

VCG and Groves mechanisms [54, 94, 190], which satisfy the desirable properties, namely,

allocative efficiency (AE) and dominant strategy incentive compatibility (DSIC). Another

desirable property is the net transfer of the money in the system should be zero, i.e., it

should be strictly budget balanced (SBB). Green et al. 1979 [93] showed no mechanism can

satisfy AE, DSIC, and SBB simultaneously. As we cannot compromise on DSIC, we must

compromise on one of AE or SBB.
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Faltings 2005 [75] and Guo et al. 2008 [100] achieved budget balance by compromising

on AE. Hartline et al. 2008 [106] proposed a mechanism that maximizes the sum of the

agents’ utilities in expectation. Clippel et al. 2014 [55] used the idea of destroying some of

the items to maximize the agents’ utilities, leading to approximately AE and approximately

SBB. A completely orthogonal approach was proposed by Parkes et al. 2001 [161], where

the authors propose an optimization problem which is approximately AE, SBB and though

not DSIC, it is not easy to manipulate the mechanism. However, an aggressively researched

approach is to retain AE and DSIC and design a mechanism that is as close to SBB as

possible. These are called redistribution mechanisms (RM).

Maskin et al. 1979 [138] first proposed the idea of redistribution of the surplus as far as

possible after preserving DSIC and AE. Bailey 1997 [21], Cavallo 2006 [48], Moulin 2009 [149],

and Guo et al. 2007 [102] considered a setting of allocating p homogeneous objects among

n competing agents with unit demand. Guo et al. 2009 [103] generalized their work in

[102] to multi-unit demand to obtain worst-case optimal (WCO) RM. In [101], the authors

designed RM that is optimal in expectation for homogeneous settings.

Gujar et al. 2011 [95] proved that no linear RM can assure non-zero rebates in worst case

and then generalized WCO mechanism mentioned above to heterogeneous items, namely

HETERO. Their conjecture that HETERO was feasible and worst-case optimal was proved

by Guo 2012 [99] for heterogeneous settings with unit-demand.

3.2 Preliminaries

Let us consider a setting comprising p public resources/objects and n competing agents

who assign a certain valuation to these objects. Each agent desires at most one out of

these p objects. These objects could be homogeneous, in which case, agent i has valu-

ation vi = θi for obtaining any of these p resources. It could also be the case that the

objects are distinct or heterogeneous and each agent derives different valuation for obtain-

ing different objects (vi = (θi1, θi2, . . . , θip)). These objects are to be assigned to those
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who value it the most, that is, it should be allocatively efficient (AE). The true values

v = (v1, v2 . . . , vn) that the agents have for the objects are based on their private informa-

tion θ = (θ1, θ2, . . . , θn) = (θi, θ−i) and the strategic agents may report them as (θ′1, . . . , θ
′
n).

In the absence of appropriate payments, the agents may boast their valuations. Hence, we

charge agent i a payment mi(θ
′) based on the reported valuations.

We need to design a mechanismM = (A,P), an allocation rule A and a payment rule

P. A selects an allocation k(θ′) ∈ K where K is the set of all feasible allocation and P

determines the payments. With this notation, we now explain the desirable properties of

a mechanism.

3.2.1 Desirable Properties

One of our primary goals is to ensure allocative efficiency.

Definition 3.1 (Allocative efficiency (AE)). - A mechanism M is allocatively efficient

(AE) if it chooses in every given type profile, an allocation of objects among the agents

such that sum of the valuations of the allocated agents is maximized. That is, for each

θ ∈ Θ,

k∗(θ) ∈ argmax
k∈K

n∑
i=1

vi(k, θi).

The most desirable property is that the agents should report their valuations truthfully

to the mechanism. Formally, it is called dominant strategy incentive compatibility (DSIC).

Definition 3.2 (Dominant Strategy Incentive Compatibility (DSIC):). We say a mecha-

nism M to be dominant strategy incentive compatible (DSIC), if it is the best response

for each agent to report their type truthfully, irrespective of the types reported by the other

agents. That is,

vi(k(θi, θ−i), θi)−mi(θi, θ−i) ≥ vi(k(θ
′
i, θ−i), θi)−mi(θ

′
i, θ−i)

∀θ′i ∈ Θi,∀θi ∈ Θi,∀θ−i ∈ Θ−i,∀i ∈ N.
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Given an AE allocation rule, Groves proposed a class of mechanisms known as Groves’

mechanisms that ensure DSIC. Groves’ payment rule is mi(θ) = −
∑
j ̸=i

vj(k∗(θ), θj) +

hi(θ−i), where hi is an arbitrary function of reported valuations of the agents other than

i. Clarke’s payment rule is a special case of Groves’ payment rule where hi(θ−i) =∑
j ̸=i

vj(k
∗
−i(θ−i), θj) where k∗−i is an AE allocation when the agent i is not part of the

system. Thus, Clarke’s payment rule is given by,

ti(θ) =
∑
j ̸=i

vj(k
∗
−i(θ−i), θj)−

∑
j ̸=i

vj(k
∗(θ), θj) ∀i = 1, . . . , n (3.1)

And, mi = ti. This payment scheme is referred to as VCG payment. The total payment

by all the agents is, t(θ) =
∑

i∈N ti(θ)

Another property we desire is budget balance condition.

Definition 3.3 (Budget Balance or Strictly Budget balance (SBB)). We say that a mech-

anism M is strictly budget balanced (SBB) if for each θ ∈ Θ,m1(),m2(), . . . ,mn() satisfy

the condition,
∑

i∈N mi(θ) = 0. It is weakly budget balanced if
∑

i∈N mi(θ) ≥ 0.

One can implement AE allocation rule and charge the agents VCG payments. In the

case of auction settings, the seller collects the payments. In our setting, the goal is not

to make money as these objects are public resources. However, in general, due to Green-

Laffont Impossibility Theorem [93], no AE and DSIC mechanism can be strictly budget

balanced. That is, the total transfer of money in the system may not be zero. So, the

system will be either left with a surplus or incur a deficit. Using Clarke’s mechanism, we

can ensure under fairly weak conditions, that there is no deficit of money (that is, the

mechanism is weakly budget balanced) [54]. The idea proposed by [138] is to design a

payment rule to first collect VCG payments and then redistribute this surplus (rebate)

among the agents while ensuring DSIC. This leads to Groves’ Redistribution Mechanism,

in which the rebate is given by a rebate function.
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Example 7: Redistribution Mechanism Homogeneous Unit Demand

Consider n agents and p units of a resource, each agent requires one unit of the

resource. Hence consider allocation in the non-trivial case when p < n. According

to the linear rebate function, the rebate

ri = c0 + c1v1 + . . .+ ci−1vi−1 + civi+1 + . . .+ cn−1vn

where v1 ≥ v2 ≥ . . . ≥ vn. We consider the following mechanism,

Bailey-Cavallo Mechanism. In this mechanism cp+1 = p/n, ci = 0 for all other

i. The rebate is thus given by,

ri =
m

n
vm+2 i ≤ m+ 1, ri =

m

n
vm+1 i > m+ 1

The total money redistributed is (m+ 1)mn vm+2 + (n−m− 1)mn vm+1. Since ri ≥ 0

for all agents, the mechanism satisfies IR. Further since (m+ 1)mn vm+2 + (n−m−

1)mn vm+1 ≤ nm
n vm+1 = mvm+1, hence it is also Feasible.

• Best Case Rebate - When vm+1 = vm+2, the above mechanism returns mvm+1

which is the total VCG payment collected, i.e., 100% redistribution in the best

case.

• Worst Case Rebate - When vm+2 = 0, the money redistributed back is n−m−1
n

of the total VCG payment collected.

In general, the interest is to find mechanisms which maximize the worst-case refund

or the expected refund as described further in the sections below.

3.2.2 Existing Approaches

Groves’ Redistribution Mechanism: Since SBB cannot coexist with DSIC and AE, we

would like to redistribute the surplus to the participants as much as possible, preserving
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DSIC and AE. Such a mechanism is referred to as Groves redistribution mechanism or

simply redistribution mechanism. Designing a redistribution mechanism involves designing

an appropriate rebate function. We desire a rebate function which ensures maximum rebate

(which is equivalent to minimum budget imbalance). In addition to DSIC, we want the

redistribution mechanism to have the following properties:

1. Feasibility (F). The total payment to the agents should be less than or equal to the

total received payment.

2. Individual Rationality (IR). Each agent’s utility by participating in the mechanism

should be non-negative.

3. Anonymity. Rebate function is same for all the agents, ri() = rj() = r(). This may

still result is different redistribution payments as the input to the function may be

very different.

While designing redistribution mechanism for either homogeneous or heterogeneous ob-

jects, we may have linear or nonlinear rebate function of the following form,

Theorem 3.1 (Gujar et al. 2011 [95]). In the Groves redistribution mechanism, any de-

terministic, anonymous rebate function f is DSIC iff,

ri = f(v1, v2, . . . , vi−1, vi+1, . . . , vn) ∀i ∈ N

where, v1 ≥ v2 ≥ . . . ≥ vn.

Definition 3.4 (Linear Rebate Function). The rebates to an agent follow a linear rebate

function if the rebate is a linear combination of bid vectors of all the remaining agents.

Thus, ri(θ, i) = c0 + c1v−i,1 + . . .+ cn−1v−i,n−1.

There may exist a family of redistribution mechanisms which satisfy the above con-

straints, but the aim is to identify the one mechanism that redistributes the greatest frac-

tion of the total VCG payment. To measure the performance of redistribution mechanism

[103], defines redistribution index,
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Definition 3.5 (Redistribution Index). The redistribution index of a redistribution mech-

anism is defined to be the worst case fraction of VCG surplus that gets redistributed among

the agents. That is,

eow = infθ:t(θ) ̸=0

∑
ri(θ−i)

t(θ)

With the notation defined above and Green-Laffont Impossibility theorem in the back-

drop, we first explain a redistribution mechanism in Example 3.2.1

Optimal Redistribution Mechanisms

It may happen that, one mechanism might redistribute higher rebate at θ1 and another

mechanism at θ2. Hence, we use the two kinds of evaluation metrics defined to select a

mechanism. One metric compares the rebate functions based on maximum expected total

redistribution, to find the mechanism which is optimal in expectation. The other metric

finds the optimal in worst-case redistribution mechanism, based on the lowest redistribution

index it guarantees

Optimal in Expectation (OE)

If the prior distributions over agents’ valuations are available we can compare the mech-

anisms based on total expected redistribution. In [101] the authors derive the mechanism

and prove its optimality for homogeneous settings with linear rebate function. We define

a redistribution index for OE setting as follows:

eoe =
E
∑

i ri(θ−i)
E
∑

θ t(θ)

Maximizing eoe is equivalent to maximizing the expected total rebate. The authors formu-

lated the problem as given in Theorem 3.1.

The OE objective for heterogeneous objects as well as with nonlinear rebate function

has not been addressed yet.
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Table 3.1: Optimization problem formulation

OE OW

Variables : c0, c1,....,cn−1 eow, c0, c1,....,cn−1

Maximize : E
∑n

i=1 ri eow

Feasibility :
∑n

i=1 ri ¡= t
∑n

i=1 ri ≤ t

Other constraints

For worst-case :
∑n

i=1 ri ≥ eowt

IR : ri ≥ 0

Optimal in Worst-case (OW)

The redistribution mechanism is better if it ensures higher rebate to the agents on

average. In the absence of distributional information, we would evaluate a mechanism

by considering the worst redistribution index that it guarantees. In [103] the authors

gave the following model and analytically solved it for homogeneous setting with linear

rebate functions. They also claim the worst-case optimal mechanism is optimal among all

redistribution mechanisms that are deterministic, anonymous and satisfy DSIC, AE and F.

The optimization problem is formulated as given in Table 3.1. For heterogeneous settings,

Gujar et al. 2011 [95] defines a nonlinear redistribution mechanism which is called HETERO

and Guo 2012 [99] proves the optimality of HETERO. There is no optimal mechanism with

linear rebate function for heterogeneous settings as established by the following theorem,

Theorem 3.2 (Gujar et al. 2011 [95]). If a redistribution mechanism is feasible and indi-

vidually rational, then there cannot exist a linear rebate function which is simultaneously

DSIC, deterministic, anonymous and has a non-zero redistribution index.

Equipped with the knowledge of the existing approaches and the above theorem, we

describe our approach for designing the optimal rebate function using neural networks.
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Our Approach. As mentioned, for a homogeneous setting the linear rebate functions

that are OE and OW can be analytically found by formulating a redistribution mechanism

as a linear program. However, for heterogeneous settings, a linear redistribution mecha-

nism need not be a good choice (Theorem 3.2). Even though Guo 2012 [99] has solved

for redistribution mechanisms in heterogeneous by proving HETERO to be OW, an OE

mechanism for heterogeneous settings has not been formulated yet. Moreover, OW mech-

anism (HETERO) is not simple to describe. In addition, for homogeneous settings, it is

not known whether nonlinear redistribution mechanisms can do better than linear for OE

objective.

We address these issues, using a novel data-driven approach to approximate a rebate

function for a given setting, without analytically solving for it. That is, we generate a large

number of bid profiles randomly and train a neural network to determine the rebates for

the agents so as to achieve the given objective, either OE or OW. We consider both the

rebate functions, linear and nonlinear for homogeneous objects as well as heterogeneous

objects. The choice of neural networks is largely motivated by the universal approximation

theorem, which states that a feed-forward network with a single hidden layer containing a

finite number of neurons can approximate continuous functions on compact subsets.

3.3 Proposed Model

Neural Networks are biologically inspired paradigms which learn optimal functions from

data. The main components that customize such a network for a specific task are its

architecture and the objective function which guides its training. To design a rebate

function which is OE or OW, we define an appropriate neural network in Section 3.3.1.

We begin by describing an artificial neuron which is the fundamental processing unit of a

neural network.
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Basic Structure

An artificial neuron receives inputs x0 to xm. If necessary, we apply the nonlinear

activation function ϕ to obtain the output (y) from the neuron. The activation function is

for thresholding the output to introduce nonlinearity in the network. Thus the output of

a neuron is, y = ϕ(
∑m

i=0wixi), where wi is the weight for ith input.

In any general network, we connect the neurons together in a specific and useful manner.

The neurons are grouped into primarily three layers, the input layer, hidden layer, and

output layer. The weights are randomly initialized before training. Given a set of training

input and output pairs, the model compares its own output with the desired output and

tries to learn the optimal set of weights by back-propagating the error through the network.

In our case, we do not have a desired output, but we have an objective function that is to

be maximized. That is, we need to determine optimal weights such that the rebate function

is OE or OW. In addition, our mechanism should be Feasible and Individual Rational. The

total VCG payment by the agents is t, and the neural network parameters are (w, b) then,

• Feasibility : g(w, b) : t−
n∑

i=1

ri(w, b) ≥ 0

• Individual Rationality : g′(w, b) : ri(w, b) ≥ 0, ∀i ∈ N

The above inequality constraints are added to the loss function during training. Having

defined a general network and the constraints, we define the specific design of the network

that we use.

3.3.1 Neural Network Architecture

Linear rebate function

To model the linear rebate function as given by Definition 3.4, we use a network con-

sisting of neurons with n input and n output nodes without any activation function.

The input nodes represent agents’ valuations and the output nodes represent their re-
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Figure 3.1: Linear Network Figure 3.2: Nonlinear Network

bate. As required by Theorem 3.1, a rebate function for an agent i should depend only

on the valuations of the remaining agents. Hence, we connect the ith output node to

all the input nodes except ith input node as shown in Figure 3.1. We used a total of

n − 1 weights and 1 bias. Since the weights and the bias used are the same for cal-

culating the rebate of each agent (represented by each node in the output layer) we

ensure that the r() is anonymous. In addition to the weights (w) which model the

c1 to cn in r(), there is a same bias added (b), which models the c0, to each output.

ri =

n−1∑
j=1

viwj + b, ∀i = 1→ n

Nonlinear rebate function

The network consists of neurons with n input and n output nodes and one hidden layer.

The input nodes represent agent valuations and output nodes represent the rebate. The

neurons in the input and hidden layer use ReLU activation which returns 0 if the output

of that neuron is negative else returns the output itself. Gujar et al. 2011 [95] defines the

optimal nonlinear rebate function as the combination of marginal payments. We believe

that the rebate functions though nonlinear, should only contain first degree terms for bid
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values as payments do not have higher order terms, making the function piece-wise linear.

Hence, we use ReLU as our activation function.

As required by Theorem 3.1, a rebate function for an agent i should depend only on

the valuations of the remaining agents. Hence, we connect the ith output node to the ith

layer of hidden nodes which are connected to all the input nodes except the ith input node

as shown in Figure 3.2. The redistribution function being anonymous, the weights of the

connections entering each hidden layer and each output are the same. The green thick lines

in Figure 3.2 represent a unique set of weights which are connected to the second agents’

output. The same weights are used for calculating the rebate of the other agents as well.

The first set of weights (w) connect the input nodes to the hidden nodes and bias (b) is

added to the hidden nodes. The second set of weights (w′) connects the hidden nodes to

the output nodes and the same bias is added (b′) to each output node.

ri =

h∑
k=1

relu(

n−1∑
j=1

viwjk + b)w′
k + b′, ∀i = 1 to n,

h: Number of hidden neurons, relu(x) = max(0, x)

The defined network architectures can model different functions depending on the

weights. Hence, the training of the network guides the network to learn appropriate

weights. Prior to training, we must recall Theorem 3.1 which necessitates the ordering

of the input valuations. We further require the evaluation of t the VCG Payment. In the

following section, we mention the details of the same.

3.3.2 Ordering of Inputs and Payments

The ordering and calculation of VCG payment in both homogeneous and heterogeneous

cases are independent of the neural network.

Homogeneous Objects. All the given p objects are similar and each agent desires at

most one object. The bids submitted are θ where, θ ∈ Rn. We order the bids such that
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v1 ≥ v2 ≥ . . . ≥ vn. Payment by agent i,

ti =


vp+1 i ≤ p

0 i > p

Hence, t = pvp+1.

Heterogeneous Objects. All the p objects are different, each agent will submit his

valuation for each of the objects. The bids submitted are θ where θ ∈ Rp×n. We define a

particular ordering among these vectors based on the overall utility of each agent and the

marginal valuations they have for each item. The allocation of the goods is similar to a

weighted graph matching problem and is solved using the Hungarian Algorithm. Once we

get the allocation say, k∗, we proceed to calculate the payments using the VCG payment

t =
∑

i∈N ti, where each ti is given by Equation 3.1. The ordering of bids for the winning

p agents is determined based on their utilities. The utility ui of agent i is given by,

ui =
∑
j∈N

vj(k∗(θ), θj)−
∑
j ̸=i

vj(k
∗
−i(θ−i), θj) , ∀i = 1, . . . , n.

If two agents have the same utility, their ordering is determined by their marginal values

for the first item, and if it is same, then by the second item and so on. Once their

ordering is determined, we remove the p agents and then run the VCG mechanism to

get the next p winning agents and calculate the ordering using the same procedure as

above. If the remaining agents are less than p we can still find the allocation and hence

order the remaining agents till none are left or one is left. The time complexity of this

ordering is polynomial in np. With the given ordering of the inputs and payments, we

use the specified network models in both homogeneous and heterogeneous settings. For

each setting, we model either OE or OW mechanism. For both OE and OW the network

architecture remains same whereas the objective changes as defined in the following section.
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3.3.3 Objective Function

During the forward pass the input valuations are multiplied by the network weights and

the corresponding rebate for each agent is calculated. The initial weights being random,

the rebate calculated will not be optimal. In order to adjust the weights to obtain the

optimal rebate function, we add an objective at the end of the network which maximizes

the rebate in both OW and OE. The loss function essentially is the negative total rebate of

all the agents. The objective also takes care of the Feasibility and Individual Rationality

condition.

Optimal in Expectation (OE)

• Given that we need to maximize the total expected rebate, the loss is defined as:

l(w, b) :
1

T

T∑
j=1

n∑
i=1

−rji ,

T =total number of training samples

• Given Inequality constraint for Feasibility we modify it to equality as:

Gj(w, b) = max(−g(w, b), 0), ∀j = 1, 2..., T

• The overall loss function:

L(w, b) = l(w, b) +
ρ

2

T∑
j=1

Gj(w, b)2 (3.2)

Worst case Optimal (OW)

• Given that in OW we are trying to maximize the worst possible redistribution index,

as in Definition 3.5, the loss is given by:

l(k) : −k
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such that g3 :

n∑
i=1

ri − kt ≥ 0

T = total number of training samples

• Given inequality constraint for Feasibility we modify it to equality as ∀j = 1, 2..., T :

Gj
1(w, b) = max(−g(w, b), 0)

Given inequality constraint for IR we modify it to equality as:

Gj
2(w, b) = max(−g′(w, b), 0)

The inequality condition for finding the worst case optimal is modified as follows

Gj
3(w, b) = max(−g3(w, b), 0)

• The overall loss function for the worst case:

L(w, b, k) = l(k) +
ρ

2

T∑
j=1

[Gj
1(w, b)

2 +Gj
2(w, b)

2 +Gj
3(w, b)

2] (3.3)

The network and objective together can be used to model any mechanism which is

either OW or OE. We conduct a few experiments in order to learn an optimal mechanism

which was analytically solved in theory for homogeneous settings. Further, our experiments

for heterogeneous settings with objective OW, try to model HETERO [95] and also OE

nonlinear mechanisms for homogeneous settings.

3.4 Implementation Details and Experimental Analysis

The proper training of neural networks is very crucial for its convergence. Xavier ini-

tialization and Adam optimization guide us in choosing the appropriate initialization and
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optimizer which are crucial for stabilizing the network. Given that we have two different

networks and two different objectives, we experimented on various combinations of these

to validate the data-driven approach with existing results. In the following subsections, we

specify the implementation details.

Initialization and Optimizer

Xavier initialization [86]. The right way of initialization of a neural network is to

have weights that are able to produce outputs that follow a similar distribution across all

neurons. This will greatly help convergence during training and we will be able to train

faster and effectively. Xavier initialization tries to scale the random normal initialized

weights with a factor α, such that there is unit variance in the output. α = 1√
n
, where n is

the number of input connections entering that particular node. α =
√

2
n for ReLU.

Adam optimizer [127]. Adam is a first-order gradient-based optimization of stochastic

objective functions. The method computes individual adaptive learning rates for differ-

ent parameters from estimates of the first and second moments of the gradients. The

default values provided in the TensorFlow library are used for beta1 = 0.9, beta2 =

0.999 and epsilon = 1e − 08.. The learning rates are different for different cases as men-

tioned in their respective sections.

3.4.1 Different Settings for Training

Optimal in Expectation for Homogeneous Objects (OE-HO)

The inputs form a matrix of (S × n), where S is the batch size, the values are sampled

from a uniform random distribution U [0, 1]. The batch size is set to be as large as

possible, for n < 10, S = 10000 and n = 10, S = 50000. After that we apply the ordering

and calculate payments for the given input valuations as defined in Section 3.3.2. Next,

we feed it to the linear network model (Figure 3.1) whose parameters are initialized using

Xavier initialization. The objective function (Equation 3.2) is applied to the output of the
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n, p Homogeneous Heterogeneous

OE-HO OE-HO OE-HO OE-HE OE-HE

Theoretical Linear Nonlinear Linear Nonlinear

NN NN NN NN

3,1 0.667 0.668 0.835 0.667 0.835

4,1 0.833 0.836 0.916 0.834 0.920

5,1 0.899 0.901 0.961 0.900 0.969

6,1 0.933 0.933 0.973 0.934 0.970

3,2 0.667 0.665 0.839 0.458 0.774

4,2 0.625 0.626 0.862 0.637 0.855

5,2 0.800 0.802 0.897 0.727 0.930

6,2 0.875 0.875 0.935 0.756 0.954

10,1 0.995 0.996 0.995 0.995 0.995

10,3 0.943 0.945 0.976 0.779 0.923

10,5 0.880 0.880 0.947 0.791 0.897

10,7 0.943 0.944 0.976 0.781 0.857

10,9 0.995 0.997 0.996 0.681 0.720

Table 3.2: eoe for homogeneous and heterogeneous setting.

network and parameters are updated using Adam optimizer, learning rate set to 0.0001.

The nonlinear model (Figure 3.2) is also trained in a similar manner. We used 1000 nodes

in the hidden layer and the network was trained with a learning rate of 10e− 4.

Optimal in Worst-case for Homogeneous Objects (OW-HO)

As in the OE case, a linear network model is used and a similar procedure is followed.

The input is sorted as given in Section 3.3.2 and along with the calculated payments is

fed to the linear network. The objective is optimized with the learning rate set to 0.0001
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and the training is carried out till the loss decreases and saturates which happens when

the redistribution index is optimal. As discussed in Section 3.2.2 for homogeneous setting

linear rebate functions are optimal among all possible deterministic functions which are

DSIC and AE, hence we did not use a nonlinear model for this case.

Optimal in Expectation for Heterogeneous Objects (OE-HE)

The inputs are again randomly sampled from a uniform distribution U [0, 1], the input

matrix is of the form, (S × n × p). Then the inputs are ordered as defined in Section

3.3.2. Both the networks (Figures 3.1, 3.2) are used for finding the optimal in expectation

mechanism. Just like in the homogeneous case, network parameters are initialized using

Xavier initialization. For the payment calculation, we use the scipy library for linear sum

assignment. This library assigns objects such that the cost is minimized, whereas we want

the valuation to be maximized as per AE, hence we negate the bids before passing it to the

function. Besides, the Hungarian algorithm for assignment works only when the number

of objects to be assigned is the same as the agents, hence we introduce dummy agents

or dummy objects with zero valuation so that the input matrix is a square matrix. The

objective function is optimized using Adam optimizer with a learning rate 10e−4 for both

the linear and nonlinear models. In the nonlinear network, the number of nodes in the

hidden layer was set to 1000.

Optimal in Worst-case for Heterogeneous Objects (OW-HE)

For designing this particular mechanism, we use the same inputs that we used in the

OE setting for heterogeneous items. The networks used and their initialization is also

same. The only difference is the objective function which is given by Equation 3.3 and

the optimizer used is Adam. The linear network learning rate is 10e− 4. In the nonlinear

network, the number of hidden nodes used was 100 and a learning rate of 10e − 4 for all
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n, p Homogeneous Heterogeneous

OW-HO OW-HO OW-HE 1 OW-HE

theoretical Linear NN Linear NN Nonlinear NN

3,1 0.333 0.336 0.332 0.333

4,1 0.571 0.575 0.571 0.571

4,2 0.250 0.250 0.0 0.250

5,1 0.733 0.739 0.733 0.732

5,2 0.454 0.460 0.0 0.454

5,3 0.200 0.200 0.0 0.199

6,1 0.839 0.847 0.839 0.838

6,2 0.615 0.620 0.0 0.614

6,3 0.375 0.378 0.0 0.375

7,1 0.905 0.910 0.905 0.904

7,2 0.737 0.746 0.0 0.736

7,3 0.524 0.538 0.0 0.523

8,1 0.945 0.949 0.945 0.943

8,2 0.825 0.834 0.0 0.825

9,1 0.969 0.972 0.968 0.968

9,2 0.887 0.894 0.0 0.886

10,1 0.982 0.985 0.982 0.982

10,2 0.928 0.936 0.0 0.927

Table 3.3: eow for Homogeneous and Heterogeneous setting.

values of n, with p = 1. When the values of p > 1, the number of hidden nodes was

increased to 1000 and a learning rate of 10e− 5 was used.

1All values below 10e-3 are considered to be 0.0
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Figure 3.3: OE-HE-Nonlinear Vs OW-HE-Nonlinear Figure 3.4: OE-HO-Linear vs OE-HO-Nonlinear

Figure 3.5: RI values with change

in epoch for n = 5, p = 2

Specific parameters used for training

• We used TensorFlow library for all the implementations. We used GPUs: Tesla K40c

and GeForce GTX Titan X. The network training time varies from a few minutes to

a whole day, for the different n, p values.
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• The number of input samples, T for binary settings ideally should be 2np and way

more than this for the real value cases. So we use 10000 samples where np ≤ 13,

70000 for np ≤ 16 and 100000 for the rest of the cases.

• All the experiments are run for a maximum of 400000 epochs and the constant ρ as

given in the overall loss functions (Equations 3.2, 3.3) is set to 1000. The number of

nodes in the hidden layer for the network given in Figure 3.2 is 1000 ideally.

3.4.2 Results and Discussion

We now describe the results obtained from the networks trained as discussed above. in

Table 3.2, we compare the values of redistribution index (eoe) for all the experiments with

OE objective for different (n,p) values under homogeneous and heterogeneous settings.

The first column indicates theoretical bounds on OE RMs with linear rebate functions. In

the column heterogeneous, we compare the redistribution indexes obtained by our OE-HE

networks with linear and nonlinear networks. Similarly, in Table 3.3, we compare the OW

redistribution index (eow) for all the networks under consideration and theoretical values

for different (n,p) values. With these tables, the following are our observations:

Achieving the analytically solved bounds. For the OE objective in homogeneous

setting, our network OE-HO-Linear achieves the theoretical values of eoe proposed in [101].

Similarly, the theoretical eow values are achieved by the network OW-HO Linear.

OW nonlinear rebate function for heterogeneous setting. The values from OE-HE-

Linear NN illustrate the impossibility theorem stated in [95] that there cannot be a linear

rebate function with non-zero redistribution index for heterogeneous settings. For p = 1,

there being no difference in homogeneous or heterogeneous, the values remain the same but

are zero for p > 1. The network OW-HE-Nonlinear achieves the theoretical values given

in OW-HO theoretical (Table 3.3).

OE nonlinear rebate function for homogeneous setting. Guo et al. 2008 [101]

have only tried to find the OE linear rebate function. OE-HO Nonlinear NN outperforms
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the linear counterpart. Figure 3.3 illustrates the comparison. This indicates the existence

of a nonlinear rebate function which guarantees higher eoe than the linear rebate function

for a homogeneous setting.

OE nonlinear rebate function for heterogeneous setting. The values from OE-HE-

Linear NN is shows the same results as OE-HO Linear for p = 1 and different otherwise.

OE-HE-Nonlinear NN outperforms the linear network. Figure 3.4 compares between the

OW and OE performance of the nonlinear network for heterogeneous settings.

Figure 3.3 illustrates the significantly better performance of Optimal in Expectation

RM wrt Optimal in Worst Case for heterogeneous settings for different (n, p) values. For

reference, it also has OE performance for homogeneous settings. We also observe that the

performance of OE mechanisms with nonlinear rebates is significantly better as compared

to OE mechanism with linear rebates (Figure 3.4). The convergence of neural networks

for n = 5, p = 2 with the number of epochs while training can be found in Figure 3.5.

Typically, most of the networks studied here converge in less than 80000 epochs for n ≤ 10.

(Whenever the objective value of a neural network drops below zero, we skip them in the

plot).

3.5 Conclusion

To summarize, we show that neural networks can learn optimal redistribution mech-

anisms with proper initialization and a suitably defined ordering over valuation profiles.

Our analysis shows that one can design nonlinear rebate functions for homogeneous settings

that perform better than optimal in expectation linear rebate functions. We could design

optimal in expectation rebate functions for heterogeneous objects which is not solved an-

alytically. There are many challenges to be handled here. For example, can we design a

vanilla neural network that can learn linear, nonlinear rebate functions without explicitly

designing such architectures, based on the problem specific needs? Can we come up with

training strategies independent of (n, p)?
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Chapter 4

Expertsourcing

In many practical applications such as expertsourcing and online advertise-

ment, the use of mechanism design (auction based mechanisms) depends

upon inherent stochastic parameters. These parameters typically being un-

known, learning is inevitable. The inherent stochasticity in such settings has

been addressed using multi-armed bandit (MAB) algorithms. The mecha-

nisms which incorporate MAB within them are referred to as Multi-Armed-

Bandit Mechanisms. While most of the MAB mechanisms focus on frequen-

tist approaches like upper confidence bound algorithms, recent work has

shown that using Bayesian approaches like Thompson sampling results in

mechanisms with better regret bounds; although lower regret is obtained at

the cost of the mechanism ending up with a weaker game theoretic property

i.e. Within-Period Dominant Strategy Incentive Compatibility (WP-DSIC).

The existing payment rules used in the Thompson sampling based mecha-

nisms may cause negative utility to the auctioneer. In addition, if we wish

to minimize the cost (or maximize revenue) to the auctioneer, it is very

challenging to design payment rules that satisfy WP-DSIC while learning

through Thompson sampling.
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In our work, we propose to use a data-driven approach for designing MAB-

mechanisms. Specifically, we use neural networks for designing the payment

rule which is WP-DSIC, while the allocation rule is modelled using Thomp-

son sampling. Our results, in the setting of crowd-sourcing for recruiting

quality workers, indicate that the learned payment rule guarantees better

revenue while maximizing social welfare and also reduces variance in the

utilities to the agents.

4.1 Introduction

In the real world, we often encounter situations where we have to choose among compet-

ing and strategic agents to achieve a specific goal. These agents hold private information

which is crucial to the decision. Misreporting of private information may lead to a sub-

optimal outcome. Hence, we need to design a mechanism that ensures truthful reporting

of private information, [155, Chapter 9].

Designing an appropriate mechanism to ensure productive result involves designing an

allocation rule and a payment rule. Auction mechanisms dealt with are usually determin-

istic, in the sense that once all the bids are known, all the agents and the auctioneer are

sure about the course of the auction. There are many settings like crowd-sourcing, online

advertisement etc, where auction design relies on environmental parameters which neither

the agent nor the hiring agency is sure about. For example, in crowd-sourcing, the actual

quality of the agent is known to neither the agent nor the auctioneer or the probability

of clicks that an advertisement will receive in online advertising are external parameters.

Such parameters are not deterministic but are subject to various environmental conditions,

hence are stochastic or could even be adversarial. In this work, we restrict to stochastic

settings. In such a setting, it becomes necessary to figure out the average values of these

parameters (qualities in crowd-sourcing and click-through rates in online advertisement)

through exploration and at the same time ensure that the agents do not misreport their
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cost. However, in the presence of such learning algorithms, the strategic agents have more

freedom to manipulate. Hence it is required to design novel mechanisms that also learn

the environmental parameters. Such mechanisms are referred to as Multi-Armed-Bandit

(MAB) Mechanisms [19, 16, 33, 80, 82, 117, 116, 175].

In MAB, we consider each of the agents or the advertisements as an arm. The auctioneer

repeatedly selects an arm in order to observe its performance and gets an estimate of the

expected reward from that arm. The performance of a MAB algorithm is captured through

the notion of regret, which is the difference between the expected reward from the optimal

arm and the expected reward from the algorithm. There are two popular algorithms in

MAB; one algorithm is based on the frequentist approach called as Upper Confidence Bound

(UCB) algorithm [13]. The other technique follows the Bayesian approach and is called

Thompson Sampling [187]. Thompson sampling has state-of-the-art performance in solving

MAB problems. In practice, it is known to achieve lower regret than the other algorithms.

When designing a MAB based mechanism, we impose restrictions on the allocation rule to

ensure the truthfulness of the payment rule. This affects the regret of the algorithm. The

payment rule could be 1) Deterministic, which leads to high regret in social welfare [19,

66], or 2) Randomized, which achieves low regret but a higher variance in agent utilities

[18, 32]. Previously there has been work related to UCB based mechanism design [18, 19]

and Thompson sampling based mechanism design [83].

In this work our goal is to design MAB based mechanisms which ensure truthful report-

ing of the strategic values and achieve Allocative Efficiency (AE). We consider the problem

of selecting high quality service providers (agents) such that the welfare obtained by the

hiring agency (auctioneer) is maximized at a minimal cost. The welfare depends on the

Quality of Service (QoS) the agent provides and is a stochastic quantity. This is a reverse

auction setting where the auctioneer pays the selected agent for its service. The auctioneer

would want to minimize the payments to the cost optimal agents at each round (AE is

satisfied). Note that, this is different from Myerson’s optimal auction design, which in our
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setting would be the same as minimizing the payments to the agents without guaranteeing

AE. In order to evaluate the payments made by our mechanism, we introduce the notion of

Cost Index (CI). It is the expected value of the ratio of payments made by the mechanism

to the optimal payments. In our setting, we desire CI should to be as low as possible ideally

near one.

Ghalme et al. 2017 [83] propose two Thompson sampling based MAB mechanisms, TSM-

D and TSM-R for solving the above problem of crowd-sourcing. The primary aim in their

paper is to achieve low regret for the auctioneer while ensuring reduced variance in the

utilities of the agents. The lower the regret achieved by the learning algorithm, the more

likely it is for the mechanism to achieve AE. As discussed by the authors, ensuring ex-

post dominant strategy incentive compatibility (DSIC) requires the agents to have full

knowledge of future events, hence is difficult to achieve. Instead, their mechanism ensures

a weaker notion of truthfulness, called Within-Period DSIC (WP-DSIC). The payment

rules in TSM-D and TSM-R are designed just to ensure WP-DSIC, but the auctioneer’s

payments to the agents need not be the minimum possible. The mechanisms also ignore

the possibility of the payment exceeding the welfare of the auctioneer. Our analysis shows

TSM-D pays very high as compared to welfare and there is a non-zero probability of the

payments being higher than welfare in TSM-R. Analytically coming up with payment

rules in Thompson sampling based MAB settings is challenging. With these shortcomings

of TSM-D and TSM-R in sight, we propose a data-driven mechanism which learns the

optimal payment rule to minimize the payments while ensuring high social welfare. We

also ensure this mechanism is WP-DSIC and Ex-post Individual Rationality (EPIR).

Recently, researchers are exploring mechanism design using neural networks, e.g., [69]

as often, it is not known how to design mechanisms analytically. In this approach given

the appropriate data, the network learns a payment rule such that certain game theoretic

properties are satisfied and in some cases, there is a network which also learns the allocation

rule. The network acts like a function approximator and learns the complex mapping
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needed to satisfy the constraints. We propose to have a neural network and multi-armed

bandit based mechanism design. To the best of our knowledge, it is the first work to use

neural network based approach to design payments when learning is happening through

MAB techniques.

Our Contributions. i) Data-driven approach for learning the payment rule in a stochastic

setting. ii) The payment rule is learned to minimize the total payment while maximizing

welfare. iii) The payment rule enjoys the desirable properties of within-period DSIC and

ex-post IR. iv) The payment is ensured not to exceed the welfare. v) The variance in the

utility to the agents decreases with time.

Related Work

Leonid Hurwicz first introduced the notion of mechanisms with his work in 1960 [114].

Vickrey 1961 [190] introduced the celebrated Vickrey auction (second price auction). Hur-

wicz 1972 [113] introduced the key notion of incentive compatibility in 1972. This notion

allowed mechanism design to incorporate the incentives of rational players. Clarke 1971 [54]

and Groves 1973 [94] came up with a generalization of Vickrey mechanisms and helped de-

fine a broad class of DSIC mechanisms called Vickrey-Clarke-Groves or VCG mechanisms.

The field of Algorithmic Mechanism Design is for designing mechanisms in computational

settings. Designing mechanisms in deterministic setting has seen a lot of research, whereas

stochastic settings started getting attention recently. The stochastic MAB problem is a

classic problem described by Robbins 1952 [169]. In many settings like online advertise-

ment and crowd-sourcing, the role of arms is played by the strategic agents who may hold

some private information which is of interest to the learner, while the welfare obtained from

these arms is stochastic. Since the agents maximize their own profit, they may misreport

their valuations which call for MAB based mechanism design.
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Multi-arm based Mechanism Design

Babaioff et al. 2009 [19] and Devanur et al. 2009 [66] characterized truthful mechanisms

for MAB motivated by the pay-per-clicks auction for internet advertising. [175, 2] are the

other works that explore this domain. Ganesh et al., Jain et al. 2016, 2014 [80, 116] pose

the crowd-sourcing as MAB based mechanism design problem. All the existing mechanisms

are upper confidence bound (UCB) based [18, 19, 33]. Recent work [83] has shown that

the Thompson sampling algorithm has shown slightly better performance guarantees than

others [6, 49, 124]. The authors in [83] have designed a mechanism using Thompson

Sampling which motivates our work.

To the best of our knowledge, these approaches have not been used in designing MAB

mechanisms. We make efforts towards using neural networks for designing a Thompson

sampling based mechanism.

4.2 Preliminaries

We have an auctioneer in need of a certain service repeatedly. There is a pool K =

{1, 2, . . . , k} of the service providing agents. Each agent i’ QoS is stochastic and the average

QoS is represented by µi ∈ [0, 1] (higher the better). The cost ci is private information held

by the strategic agent i. Note that, µi denotes the probability with which the auctioneer is

satisfied with the service provided by the agent i. If the auctioneer is satisfied, he obtains

a welfare of W and zero otherwise. We use Bernoulli rewards as it is very common in the

literature and valid in most of real-world situations. For e.g., the service could be document

classification, image identification etc, where µi indicates the accuracy with which agent i

performs this task. ci denotes the cost incurred by the agent i for providing the service for

one round. Thus, the auctioneer obtains a welfare ri = W − ci with probability µi and −ci

with probability 1− µi if an agent i is selected. The auctioneer’s goal is to select an agent

that maximizes the expected welfare wi = Wµi − ci.
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Note that, it is also possible to consider reward to the auctioneer in round t as Rt =

WµIt − pIt,t where It denotes the agent selected in round t. However, as our first goal is to

maximize social welfare and as also it is common in literature [19, 83] to consider welfare

as a reward, we use welfare as a reward. That is Rt = WµIt − cIt,t.

The expected welfare from agent i (wi), which is also the reward to the auctioneer as has

two components, 1) Wµi which is unknown and stochastic, and 2) −ci, which is private to

the agent i and is strategic. Let the history of allocations and observations till round t− 1

be denoted by ht which is common knowledge. Let bi,t denote the bid or cost reported by

the agent i. bt is the bid vector for all the agents in round t. Let b−i,t be the bid vector in

t, of all the agents other than i. Now, we define ∆i as the difference between the expected

reward of any sub-optimal agent and the optimal agent. Given that the parameters for

optimal agent are copt, µopt, ∆i = (Wµi− ci)− (Wµopt− copt) and ∆ = maxi∆i. Typically

the performance of such MAB algorithm is captured using regret: the difference between

the performance of the algorithm and the performance of an optimal arm. We have not

provided explicit regret analysis, as we follow Thompson sampling for allocation and the

regret for the same will hold true irrespective of the payment rule. Hence we refer to [83,

Theorem] for the regret analysis.

Let It ∈ K be the service providing agent selected at round t. The auctioneer pays

pi,t(bt;ht) to the agent i if the agent is selected in round t. The utility of an agent i

in round t is given by ui,t(bt;ht; ci) = 1{It(bt;ht) = i}(pi,t(bt;ht) − ci). When we use

Thompson sampling to select the agent at each round, there is an inherent randomness

caused by it and is denoted by wt.

Given that the agents are strategic, we need to design an appropriate mechanism to

elicit the true costs i.e. ci. The mechanism denoted byM := (A,P) has two components,

first is the Allocation Rule (A) which takes a bid vector bt and history ht as inputs and

outputs the index It of the selected agent. The second component is the Payment Rule
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(P) which determines the payment at each round. A few properties which we want our

mechanism to have are as follows,

4.2.1 Desirable properties

Definition 4.1 (Allocative Efficiency (AE)). We say a mechanismM is allocatively effi-

cient if every round t it selects agent It such that,

It(bt) ∈ argmax Wµi − bi,t

If µi is known, we can focus on a single round auction. (We drop t from relevant terms

for time being). We prefer the mechanism to be DSIC, that is, reporting the truth is a

dominant strategy for all the agents. We can use Groves’ payment to achieve this if the

allocation rule is AE.

Definition 4.2 (Groves Payment). An AE mechanism is DSIC if it satisfies the following

payment structure

pi(bi, b−i) =
∑
j ̸=i

Rj(I(b)) + gi(b−i) ∀i = 1, . . . k

where gi is any arbitrary function mapping to R.

The above theorem provides the sufficient condition under which a mechanism that is AE

is also DSIC. The First Characterization Theorem of Green-Laffont proves Groves’ theorem

as also necessary. Any mechanismM that satisfies properties in Definitions 4.1 and 4.2 is

called Groves mechanism. A special case of Groves mechanism is VCG mechanism where

gi(b−i) = −
∑

j ̸=iRj(I(b−i)). Note that, VCG mechanisms may end up paying very high

amounts to the agents. Thus, we explore designing Groves’ mechanism. However, designing

such payment rules analytically in the presence of MAB algorithms is challenging. Hence,

we propose to use a neural network which learns the function gi.
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In the case of repeated auctions, one can generalize DSIC to ex-post DSIC, that is, even

when the agents have access to an oracle predicting all the future random events, reporting

truth is still a dominant strategy. Such assumption is impractical and typically agents

will be myopic1 as pointed out in [83], we use the following practical notion of Incentive

Compatibility; namely Within Period DSIC (WP-DSIC). In WP-DSIC, it is the dominant

strategy to report truthfully in that particular round if agents do not consider future gains;

albeit agents can manipulate if they consider future rounds.

Definition 4.3 (Within Period Dominant Strategy Incentive Compatible (WP-DSIC)). We

say a mechanism M = (A,P) is WP-DSIC if for all agents and for all rounds, the utility

of an agent from truthful bidding is at least as much as the utility from any non-truthful

bidding irrespective of the bids of other agents, i.e. ∀i,∀ci,∀t,∀wt, ∀ht and ∀b−i,t,

ui,t(ci, b−i,t;ht; ci|wt) ≥ ui,t(bi,t, b−i,t;ht; ci|wt) ∀bi,t

One can achieve WP-DSIC by using the Groves mechanism in each round. Another

important desirable property is individual rationality. That is, no agent should incur losses

by participating in the mechanism.

Definition 4.4 (Ex-Post Individual Rationality (EPIR)). We say a mechanism M =

(A,P) is EPIR if every agent has a non-negative utility with truthful bidding irrespective

of the bids of other agents i.e., ∀i,∀ci, ∀t,∀ht, ∀wt,

ui,t(ci, b−i,t;ht; ci|wt) ≥ 0 ∀b−i,t

Apart from the properties mentioned above, considering the setting of reverse auction

we also want the mechanism to incur minimum cost to the auctioneer. In mechanism

design the efficiency of a mechanism in terms of cost effectiveness is captured through

frugality. Frugality captures how much the mechanism overpays as compared to the optimal

1i.e the agent always maximizes the expected reward w.r.t the current round and does not take into
account any future rounds
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mechanism. However, in the presence of Thompson sampling based learning, it is not

clear how to define the cheapest Nash cost. Hence to capture how much a mechanism is

overpaying for truthful reporting, we introduce the notion of cost index (CI). We use CI to

evaluate different mechanisms for their cost efficiency.

Definition 4.5 (Cost Index (CI)). Cost Index of a mechanismM at round t is the expected

ratio of payments by the mechanism to the actual cost incurred by the selected agent,

CIMt = E
[
pIt,t
cIt,t

]
The CI as defined above always has to be higher than one.

4.2.2 Existing Approaches

The authors in [83] propose a Thompson sampling based allocation along with two

different payment rules, which form the basis for our data-driven approach. We describe

these in the following subsections.

Allocation Rule

Thompson sampling algorithm maintains a prior over expected welfare from each agent

based on the observed history. At each round, the algorithm selects an agent based on the

samples of the expected welfare from the prior distribution. Then the priors are updated

after observing the welfare corresponding to the selected agent at a particular round.

Let Xi,t be the Bernoulli welfare or reward which takes the value 1 when the agent i

provides satisfactory service else takes the value 0. The probability that Xi,t = 1 is µi. The

actual reward at round t is WXi,t− ci and the expected reward is Wµi− ci. In Thompson

sampling, we maintain Beta priors on the stochastic rewards of agent i with parameters αi,t

and βi,t. Here, αi,t denotes the number of times agent i has provided satisfactory service

till round t and βi,t denotes the number times the agent fails. Let θi,t be the sample from
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this Beta distribution. The allocation rule in round t is give by the following,

It = maxi {Wθi,t − bi,t} (4.1)

Maintaining beta priors for the Bernoulli rewards turns out to be a convenient choice as the

posterior distribution is again a Beta distribution with a simple update in its parameters

as described below. Given that the beta priors for round t are (αi,t, βi,t). If XIt,t = 1 then

αIt,t+1 = αIt,t +1 and βIt,t+1 = βIt,t else, βIt,t+1 = βIt,t +1 and αIt,t+1 = αIt,t. In the first

round, the Thompson sampling algorithm assumes to have prior Beta(1, 1) on µi which is

the uniform distribution on (0, 1). This allocation mechanism strives to maximize social

welfare given that the bids from the service providers are a true reflection of their actual

costs. In order for this to be true, the authors have proposed the following two payment

rules.

TSM-D

It is an estimate based payment rule. Given that j∗t = argmaxi ̸=It{Wθi,t − bi,t} be

the second best agent at round t based on sample values. Let µ̂i,t =
αi,t

αi,t+βi,t
and Ni,t =

αi,t + βi,t. We define ei,t(γ) =
√

4γ ln(t)
Ni,t

to be the exploration term for agent i at round t

with parameter γ ≥ 1. Then the payment at round t is given by,

pIt,t = Wµ̂It,t −Wµ̂j∗t ,t
+ bj∗t ,t + 2W (eIt,t(γ) + ej∗t ,t(γ)) (4.2)

TSM-D is deterministic given the history of past allocations. Being deterministic it achieves

low variance in utilities when the events are fixed. As mentioned in [83], the exploration

terms help ensure the game theoretic properties. Moreover, the game theoretic properties

satisfied by this rule are very weak. TSM-D is EPIR with a high probability and WP-DSIC

with a high probability.

As the payment at every round depends on the entire history and given that the game

theoretic properties satisfied are not so attractive, we explore the following formulation of

payment which overcomes these issues.
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TSM-R

The payment at round t is randomized and is given by the following equation,

pIt,t = WθIt,t −Wθj∗t ,t + bj∗t ,t (4.3)

TSM-R satisfies both EPIR and WP-DSIC, hence is more desirable than TSM-D. Given

the payment at each round depends on the random values θt, the variance in the utility

values may become worse. We get the following Lemma from [83] to bound the variance,

Lemma 4.1. Variance in utility of optimal agent i∗ satisfies,

lim
t→∞

var(ui∗,t(.)) ≤ lim
t→∞

W 2

2
max

{
1

Ni∗,t + 3
,

1

Nj∗t ,t
+ 3

}
For any other agent i ̸= i∗, variance in utility asymptotically goes to 0.

This payment rule is not dependent on the entire history and also satisfies the desirable

game theoretic properties, hence our neural network based payment rule is loosely based

on this. In the next section, we specify the details of the neural network architecture used

for designing the mechanism.

4.3 Proposed Model: TSM-NN

Our model is a Thompson sampling based Neural Network (TSM-NN). At every round,

our model uses Thompson sampling for allocation. Once the allocation is done, we get the

rewards corresponding to the allocated agent. Then we invoke the neural network model

which is designed to implement the Groves payment rule.

Allocation rule

For implementing the allocation rule, we directly conduct Thompson sampling as de-

scribed in Algorithm 7.
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Algorithm 7 Mechanism TSM-NN

1: Input: Number of rounds T, Number of agents k, bids {bi,t}ki=1 in each round

t ∈ {1, 2, . . . , T}

2: Output: Allocations A = {Ii}Tt=1 and payments P = {pIt,t}Tt=1

3: Initialize: αi,1 = 1, βi,1 = 1 ∀i ∈ {1, 2, . . . , k}

4: for t = 1, 2, . . .,T do

5: Sample: θi,t ∼ Beta(αi,t, βi,t) ∀i ∈ K

6: Allocate:

It = argmax
i
{Wθi,t − bi,t}

7: Payment: NNinput : [b−i,t, θt],

NNpayment = TSM-NN(NNinput)

8: Observe: The Bernoulli reward of an agent It for round t

i.e. XIt,t =


1, w.p µIt

0, w.p 1− µIt

9: Update:

αIt,t+1 = αIt,t + 1{XIt,t = 1}

βIt,t+1 = βIt,t + 1{XIt,t = 0}

αi,t+1 = αi,t, βi,t+1 = βi,t ∀i ̸= It

10: end for

Ideally for a mechanism to be completely data-driven, the allocation rule must also be

implemented using a neural network. That is, we must implement Thompson sampling

using neural network. On careful consideration, we figured that implementing Thompson

sampling requires the network to learn a distribution at every round. There have been

quite a few generative networks that learn data distribution like GANs [91] and VAE’s

[126]. In our case, we have new parameters of the Beta distribution i.e. αandβ at every

122



round as the priors are updated. Hence we need to train a different network for every

possible combination of α, β that can arise. This of course is one possible approach and

it indeed will significantly increase the training time. Another major challenge arises from

the fact that we deal with Bernoulli rewards which are discrete. Discrete distributions

are challenging for neural networks to handle considering that they use back-propagation

for optimization. With a view to all these issues, we have left the implementation of the

allocation rule using neural networks to future work.

Payment rule

After the allocation is done according to the above rule, we then get the rewards corre-

sponding to the selected agent. To ensure Groves’ payment rule, the payment by an agent

is dependent on bids by all the other agents except itself. Hence the input to our neural

network is a list of bids by other agents and Wθt, where θt are samples from the beta

distribution maintained by the Thompson sampling at round t (motivated by the payment

rule TSM-R). This input is passed to one hidden-layer neural network with ReLU as acti-

vation. The final output layer of the neural network has one node which gives the payment

corresponding to the agent selected It = i in round t. The payments corresponding to the

other agents are 0, hence the total payment by the auctioneer at every round is given by

the output of the network. Considering, the network follows Groves’ payment rule, it has

to be WP-DSIC. The other properties are ensured with the help of proper loss functions

as described further in the following section. To summarize and compare with the existing

approaches we provide the different properties satisfied by them in Table 4.1
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TSM-D TSM-R TSM-NN

Payment Deterministic Randomized Randomized

WP-DSIC No Yes Yes

EPIR No Yes Yes

Variance in

utility of the (highest) (medium) (lowest)

optimal agent2

Cost Index (highest) (medium) (lowest)

Table 4.1: Summarizing properties satisfied by the three mechanisms

4.4 Implementation Details and Experimental Analysis

At each round t, we receive the bids from the agents and sample the rewards from the

Beta distribution to form our input. This input is then passed on to the network described

in Section 4.3. The network gives us the payment corresponding to the agent selected

in round t. Now, we want our mechanism to have a few properties and we mention the

corresponding component required to enforce it in the network’s loss function. It is to be

noted, as discussed in Section 4.3 WP-DSIC is already established in the network as the

input for the agent i does not include its own bid.

4.4.1 Components of the Loss Function

Before moving on to the overall loss function, we break it up into components, where

each component is responsible for enforcing certain properties that we desire.

Minimum Payment. The Allocation rule defined in Section 4.3 ensures that the welfare

is maximized. Given the setting of a reverse auction, the auctioneer also wants to mini-

mize the amount of money it has to pay while recruiting the agents. Hence we want the

network to output payments such that they are minimized, which is enforced by lmp for
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t = {1, 2, . . . T} and where It is given by Equation 4.1

lmp = −pIt,t (4.4)

Cost Index is a parameter we use, to estimate the excess payment made by the mechanism.

EPIR. As given in Definition 4.4, in this component we try to minimize payments only to

the extent that the agent is able to obtain a positive utility. Hence our lepir is given by,

lepir = max{−(pIt,t − bIt,t), 0} (4.5)

In this equation, we replace the cIt,t with bIt,t from the utility definition as we assume the

bids are truthful given that the mechanism is WP-DSIC.

Rationality of the auctioneer. Both the payment rules proposed previously TSM-

R and TSM-D, do not consider the possibility where the payment at any round t, pIt,t

might exceed the welfare to the auctioneer W . To incorporate this in our loss we define

lrc = max{−(W − pIt,t), 0}.

Given the main components, we describe the overall loss function to the network as

follows,

L = lmp + ρ1 l2epir + ρ2 l2rc (4.6)

In the above, equation ρ1 and ρ2 are tunable hyper-parameters which are set to appropriate

values such that payments learned by the network are optimal.

Optimizer and training details

Optimizing the loss defined in Equation 4.6, we use Adam Optimizer and Xavier Ini-

tialization for initializing the parameters in the neural network. While training, we sample

6000 bids from the uniform distribution U [0, 50] for two agents. For each set of bids, we

train the network for 105 trials. The value of W is set to 50. Given the experiments

are for 2 agents, it is sufficient for the network to have 10 hidden neurons with ReLU as

activation, for reasonable results. Since updating the network at every trial increases the
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time for training, we collect the bids and rewards for a batch of trials which in our case

is 103 and update the network weights for this batch of samples. The value of ρ1 is set to

100 and ρ2 is set to 1 for the claimed results.

4.4.2 Experiments and Results

In this section, we discuss the different experiments conducted for comparison with

the existing approaches, TSM-R and TSM-D. The primary point of comparison is the

payments made by the mechanism. Then we consider the variance in the utilities to the

agents. It might put off agents if they face high uncertainties in payments for the exact

same quality of service that they offer. Hence it is crucial to monitor, the variance in the

utilities caused by the underlying mechanism. It is important to note that, the payment

rule given in TSM-D achieves low variance only when the Bernoulli events or rewards are

kept constant. This assumption is not practical, as the rewards may vary with different

episodes (Algorithm 7, line 8).

Average Payments. In the experiment, we fix the bid values to {30.0, 35.0} such that

∆ = 3.5. Fixing the bids, we run 105 trials, for 1000 iterations. Then we take the average

of the payments predicted by the network across the 1000 iterations and compare it with

the predictions by the existing approaches. From Figure 4.1 we can see that the average

payments by the NN are consistently low, although higher than 30 to maintain IR leaving

the first 104 trials. The average payments corresponding to NN is 30.6 which is just above

the optimal 30.0 in this particular example. The plots show that the payments by TSM-D

are way higher than W which violates the condition of rationality to the auctioneer.

Variance in utilities. Similar to the previous case, for calculating the variance, test run

the network for 1000 iterations each having 105 trials. The bids are again fixed to have

Delta = 3.5. We calculate variance in utility to the optimal agent across the 1000 iterations

and plot it for all the three mechanisms Figure 4.2.
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Figure 4.1: Average payments Vs

Trials

Figure 4.2: Variance in Utility Vs

Trials

Effect of ∆. In this experiment, we chose different values for the bids, which in turn

correspond to the different values of ∆. The main aim of this experiment is to check the

effect of increasing ∆ values on the variance of the utilities obtained by the agents. TSM-

D, as claimed in, [83] ideally should not have much change in variance w.r.t ∆ only if the

events are fixed. In this case, we have conducted experiments without fixing the events

which leads to high variance in the utilities from TSM-D primarily due to the exploration

terms ei,t in its payment rule. We can analyze from Figure 4.3, that both TSM-R and NN

have similar performance, although NN manages to maintain lower utilities as compared

to TSM-R at higher values of ∆

Cost Index. In this experiment, we compare the different mechanisms on the cost index.

It is to get an estimate on how much extra the auctioneer is paying than he ideally should

in order to ensure truthfulness. From the plot in Figure 4.4, it is clearly indicative that

NN has the least CI in all the rounds t. TSM-D has the highest CI whereas TSM-R has

considerable value although higher than NN.
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Figure 4.3: Variance in Utility Vs

Delta values
Figure 4.4: Cost Index Vs Trials

4.5 Conclusion

We explored the setting of designing mechanisms with inherent stochasticity. The un-

derlying stochastic parameters are learned using MAB algorithms. We as our primary ob-

jective have automated the process of designing the payment rule for a Thompson sampling

based mechanism. To the best of our knowledge, this is the first time, where data-driven

approach has been used to model a MAB mechanism. We used a neural network model to

design the payment rule. Our network as the payment rule, is able to ensure WP-DSIC

and EPIR mechanism while making sure that the utilities of the agents do not vary sig-

nificantly. Additionally, unlike the previous approaches, this approach also ensures that

payments are minimized and also do not exceed the welfare value, which would violate

the auctioneer’s rationality. We have confirmed the above claims, by comparing the Cost

Index between the approaches in our experiments.
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Chapter 5

Fair Division

Fairness is well studied in the context of resource allocation. Researchers

have proposed various fairness notions like envy-freeness (EF), and its relax-

ations, proportionality and max-min share (MMS). There is a vast literature

on the existential and computational aspects of such notions. While com-

puting fair allocations, any algorithm assumes agents’ truthful reporting of

their valuations towards the resources. Whereas in real-world web-based

applications for fair division, the agents involved are strategic and may ma-

nipulate for individual utility gain. In this work, we study strategy-proof

mechanisms without monetary transfer, which satisfies the various fairness

criteria.

We know that for additive valuations, designing truthful mechanisms for EF,

MMS and proportionality is impossible. Here we show that there cannot

be a truthful mechanism for EFX and the existing algorithms for EF1 are

manipulable. We then study the particular case of single-minded agents. For

this case, we provide a Serial Dictatorship Mechanism that is strategy-proof

and satisfies all the fairness criteria except EF.
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5.1 Introduction

Fair division of resources is critical in various situations like division of inheritance and

land, allocation of rooms among housemates, jobs to workers, and time slots to courses. In

a typical scenario, the agents involved report their valuations for the resources available.

The central aggregator or the underlying software aggregates these reported valuations to

output a fair allocation. Various web-based applications like Spliddit 1, Fair Proposals

System 2, Coursematch 3, Divide Your Rent Fairly 4, etc offer such solutions readily. Often

the participants are strategic and misreport their valuations to improve their utility. The

party that strictly adheres to the protocol and reveals its true valuation (while it can

misreport and achieve more utility) may find it unfair if others misreport for their benefit

even though the underlying algorithm is fair for the reported types. In auction settings, one

prevents such strategic manipulations through monetary transfers. Whereas in resource

allocation, no monetary transfers are allowed. Hence, it is essential to look for truthful

mechanisms that ensure fairness without payments.

In this work, we focus on indivisible resources and the fairness notions of envy freeness

(EF), proportionality and maxi-min share (MMS). Proportionality [180] is the first concept

of fairness ever proposed. It ensures that each agent receives a fair share of its utility.

Another popular notion is envy-freeness (EF). An allocation is EF when no pair of agents

exist such that one of the agents increases its utility by exchanging their allocated goods

[78]. For divisible goods, EF allocations always exist [181], and complete allocation may

not exist for indivisible goods. It is also NP-hard to compute an approximation to EF

[130]. When the valuations are sub-additive, EF implies proportionality [41]. Although

proportionality is a weaker notion, its existence is still not guaranteed for indivisible goods.

1www.spliddit.org
2www.fairproposals.com
3www.coursematch.io
4https://www.nytimes.com/interactive/2014/science/rent-division-calculator.html
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Property Single-Minded Identical Additive

Additive (n = 2) (n ≥ m)

EF ✗[130]

Proportionality ✓(SD)5 ✗[10] (alternative proof)

EFX ✓(SD) ✗(Theorem 5.2)

(even for m = 4 )

EF1 ✓(SD) ✓(RSD) ✗[9] ✓(RSD) (m ≥ 5)

MMS ✓(SD) ✗[10]

Table 5.1: Existence of SPF Mechanisms for various types of Valuations

Given the above results, in [43, 130], the authors relax EF and introduce EF up to

the most-valued good or EF1. An EF1 allocation is always guaranteed to exist even

for indivisible goods and can be computed in polynomial time by the cycle-elimination

algorithm [130]. It is interesting to consider a stronger property of EF1, which is EF up

to the least-valued good, known as EFX [47]. EFX always exists for upto three agents

[50]. For indivisible goods, another fairness criterion considered is MMS [43], where each

agent’s utility is at least its MMS guarantee. The MMS guarantee is the worst-case value

an agent receives when partitioning the goods and others choose before it. MMS allocation

is guaranteed to exist for up to two agents [167].

The above existential and complexity results assume that each agent’s preferences (de-

termined using their valuations for each bundle) are known. In this work, we are interested

in preference elicitation to prevent manipulations. Hence we study the existence of truthful

or SP (Strategy-Proof) mechanisms that ensure fairness or Strategy-Proof Fair (SPF). A

direct-revelation mechanism takes all the input valuation functions and returns an allo-

cation. A direct-revelation mechanism is SPF if it ensures fair allocation when no agent

can gain higher utility by misreporting. In mechanism design literature, it is standard to

introduce payments to design truthful mechanisms, especially in auction settings [56, 88,
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186]. In this work, we focus on the basic model of fair mechanism design without money.

When the goods are divisible, [28, 142] prove that no deterministic SP mechanism (without

monetary transfers) is proportional or even approximately proportional for complete allo-

cation. Since EF is a stronger property, having SP mechanism for EF is also impossible.

It is known that there exist randomized SP mechanisms which ensure EF when the goods

are divisible [145]. There are other works [42, 52, 57] which give SPF mechanisms without

money for divisible goods. Bouveret et al. 2011 [40] show that sequential allocation is

strategy proof when agents have identical rankings. This way of allocation is referred to

as Picking Sequences.

SPF Mechanism for Indivisible goods Lipton et al. 2004 [130] prove that it is im-

possible to design a truthful mechanism that achieves minimum envy or EF by providing

a counterexample. When there are two agents (n = 2) and the number of goods (m) is

greater than 5, there cannot be a deterministic SP mechanism with complete allocation for

EF1 even for additive valuations [9]. There are impossibility results for MMS in [10]; the

authors prove that for two agents, there is no truthful mechanism that ensures better than

1
m/2 -MMS allocation.

Our Contribution

1. We study the EFX property for two agents, where it is guaranteed to exist. From

Amanatidis et al. 2017 [9], having an SP mechanism for EF1 with two agents and

more than 5 goods is impossible. EFX being a stronger property, also follows the same

result for the given setting. We provide an example that proves that designing an SP

mechanism for EFX is impossible even when the number of goods is 4.

2. Aligning with the results of Amanatidis et al. 2017 [9], we provide examples to show

that the greedy round-robin algorithm and cycle-elimination algorithm for finding EF1

are manipulable. When agents have identical additive allocations, greedy round robin

provides allocations that is EF1 as well as strategy proof.

132



3. Given that the valuations can be very complex to represent in general, we restrict

ourselves to the simpler case of (SM) single-minded agents. SM bidders is very common

in the auction literature multi-item setting [140, 168]. In such a setting we provide (SD)

(Serial Dictatorship Mechanism) that again extends greedy to obtain SP mechanism for

EFX, EF1, MMS. SD also provides proportional allocations when they exist.

In Table 5.1, we summarize all the results for the existence of an SP mechanism for various

fairness criteria. When the agents are single-minded SD is a direct SP mechanism which

also ensures EF1, EFX, MMS and proportionality when it exists. When the valuations are

(additive) identical, RSD is an SP mechanism that ensures EF1. Additive valuations are

the most well-studied in literature. For EF, proportionality, and EFX, there are counterex-

amples when there are 2 agents to prove that there cannot exist an SP mechanism when

valuations are additive. Even for MMS and EF1 under additive valuations, the results are

for 2 agents.

5.2 Preliminaries

Consider the problem of division of indivisible resources. We represent each instance by

⟨N,M, V ⟩ which are formally defined below,

• Finite set of agents N = {1, . . . , n}

• Finite set of indivisible goods M = {1, . . . ,m}.

• Valuation functions V where v ∈ V denotes a particular profile and ∀i ∈ N , vi :

2M → R+. Let v−i be the valuation profile of all agents, excluding i.

• We assume vi is monotonic, ∀i ∈ N, ∀S ⊆ T ⊆M,vi(S) ≤ vi(T )

• Additive valuations imply for any S ⊆M, vi(S) =
∑

j∈S vi({j})
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• Identical valuations imply ∀i, j ∈ N, ∀S ∈ M, vi(S) = vj(S). Identical additive

valuations imply vi is both identical and additive.

• Single minded agents with desirable bundles D = (D1, . . . , Dm). The valuation of an

agent i ∈ N is given by, for a c ∈ R+

∀S ∈M, vi(S) =


c, if S ⊇ Di

0, otherwise

(5.1)

• The set of all possible complete allocations, A. Given A ∈ A denotes a specific

allocation, and Ai is allocation per agent. By complete allocation, we mean if there

are m goods then ∀A,
∑

i |Ai| = m, assuming each resource can be allocated only to

a single agent.

We define the relevant fairness notions below with examples,

Definition 5.1 (Proportionality). Given an instance ⟨N,M, V ⟩, the allocation A is pro-

portional iff ∀i ∈ N ,

vi(Ai) ≥
1

n
vi(M)

Example 8: Proportional Division

Consider two agents 1 and 2 and three goods a, b, c. vi is given below where (x, y) ∈

{(a, b), (b, c), (c, a)}.

v(a) v(b) v(c) v(x, y) v(a, b, c)

1 10 20 15 30 30

2 10 20 15 30 30

Possible proportional allocations are when 1 receives item b and 2 receives goods

{a, c} or vice versa. Also when agent 1 receives c and agent 2 receives goods {a, b}

or vice versa.
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Definition 5.2 (Envy-freeness (EF)). For ⟨N,M, V ⟩ an allocation A is envy-free iff,

∀i, j ∈ N vi(Ai) ≥ vi(Aj)

Consider 2 agents 1 and 2, two goods a, b. For agent 1, v1(a) = 20, v1(b) = 10 and for

agent 2, v2(a) = 10, v2(b) = 20. It is envy-free to allocate a to agent 1 and b to agent 2.

Both the notions of proportionality and EF are too strong in the case of indivisible goods

and are not guaranteed to exist. Consider the case when there are two agents and only one

item, it is impossible to have any allocation that is either EF or even proportional. When

the valuations are sub-additive, every EF allocation is proportional as shown in Figure 5.1.

In [130], the authors define the following notion weaker than EF.

Definition 5.3 (EF1). For ⟨N,M, V ⟩ an allocation A is EF1 iff ∀i, j ∈ N, ∃a ∈ Aj s.t.,

vi(Ai) ≥ vi(Aj\{a})

EF1 allocation always exists for general monotone valuations. Another relaxation of EF

stronger than EF1 is defined below,

Definition 5.4 (EFX). For ⟨N,M, V ⟩ an allocation A is EFX iff, ∀i, j ∈ N, ∀a ∈ Aj such

that,

vi(Ai) ≥ vi(Aj\{a})

We saw before that EF allocation is not possible when there are two agents and only

one item. But an allocation where the item is assigned to either 1 or 2 is both EF1 and

EFX.

Unlike EF1, EFX is guaranteed to exist only for three agents or when agents have

identical valuations. The relations between EF, EFX and EF1 is represented in Figure 5.1

for any general monotonic valuations. Another relaxation is defined by Budish 2011 [43],
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Figure 5.1: Relation between various fairness criteria [41]

Definition 5.5 (Maximin Share (MMS)). For ⟨N,M, V ⟩ an allocation A is MMS iff ∀i ∈

N , vi(Si) ≥ µi where µi = maxA∈Πn(M)minAj∈A vi(Aj)

Example 9: MMS Division

Consider there are two agents 1 and 2, three goods a, b, c. We consider additive

valuations for both agents. Let the valuation of each item be given as follows,

v(a) v(b) v(c)

1 10 20 40

2 10 40 20

In this example µ1 = µ2 = 30. Agent 1 gets c and 2 gets a, b would be an MMS

allocation.

There is no relation between EF1/EFX and MMS allocations; for two agents MMS im-

plies EFX. Although any allocation which is proportional is also MMS when the valuations

are sub-additive, Figure 5.1. There exists an MMS allocation for 2 agents but it may not

exist for more than two agents.

5.2.1 Strategy-Proof Mechanisms

In mechanism design, we assume the agents are self-interested and strategic. The agents

have private information (valuation over goods) that is indispensable for the desired out-

come. The agents may or may not reveal their private information based on their individual

utility. Mechanism design deals with the two-fold problem of i) Preference Elicitation and
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ii) Preference Aggregation. In the former, one explores the specific mechanism in which the

agents’ best interest lies in revealing their true valuations. The latter, nonetheless challeng-

ing, is the problem of obtaining the desired outcome, once the true valuations are known.

In our case, this would be finding the fair allocation. There are two kinds of approaches to

solving the problem of preference elicitation. 1) Direct Mechanism 2) Indirect Mechanism.

We focus on a direct mechanism which is defined as follows,

Definition 5.6 (Direct Mechanism). The direct mechanism (M) maps the true valuations

of the agents to the desired outcome. It is a mapping from the valuations of the agents to

the space of allocations M : V → A.

Definition 5.7 (Deterministic SP Mechanism). A deterministic mechanism M is strategy-

proof (SP), if ∀v, ∀i ∈ N ,

vi(M(vi, v−i)) ≥ vi(M(v′i, v−i)), ∀v′i ∀v−i

where v′i is a misreported valuation.

We also look for little weaker mechanisms, in the context of identical valuations.

Definition 5.8 (Deterministic NSP Mechanism). A deterministic mechanism M is Nash

strategy-proof (NSP), if ∀v, ∀i ∈ N when other agents report truthfully,

vi(M(vi, v−i)) ≥ vi(M(v′i, v−i)), ∀v′i

where v′i is a misreported valuation.

Note that, in NSP, it is the best response to each agent to report truthfully if others

are reporting truthfully. SP is a stronger notion of truthfulness – no matter what others

are reporting, it is the best response for each agent to report truthfully.

Definition 5.9 (Strategy Proof Fair Mechanism (SPF)). A mechanism M is SPF iff M is

SP or NSP and fair (for the given fairness condition).
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Before we discuss the existence of SPF mechanisms for various fairness criteria, we would

like to state an observation that makes our search easier. The observation is based on the

relationship between the various fairness criteria given in Figure 5.1,

Observation 5.1. For any two fairness criteria X and Y , if X =⇒ Y from Figure 5.1,

i.e., every allocation that satisfies X also satisfies Y . We can conclude that if there does

not exist an SP mechanism for Y , then there will not exist an SP mechanism for X.

With this background, we first present the impossibilities of SP and fair mechanisms

for additive valuations.

5.3 Impossibility of SP and Fair Mechanisms

As we have discussed before, fair allocations may still cause unrest among agents if some

agents choose to lie and agents adhering to the rules and revealing their true valuations forgo

the benefits they could have received. In this work, we are concerned about the existence

of truthful mechanisms that can implement the fairness definitions defined above.

EF

Lipton et al. 2004 [130] raises the question of the existence of truthful mechanisms that

implement EF.

Theorem 5.1 (Lipton et al. 2004 [130]). Any mechanism that returns an allocation with

minimum possible envy cannot be truthful. The same is true for any mechanism that returns

an envy-free allocation whenever there exists one.

As proof, the authors provide an example with two agents with additive valuation

functions, where every possible envy-free allocation can be manipulated by either of the

agents. An SP mechanism for EF, (MEF ) would select from AEF , i.e., a set of all EF

allocations. If there exists a valuation profile v, where AEF
v be all possible EF allocations

for v, ∀AEF ∈ AEF
v and with strict inequality for atleast one AEF .
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∃i, ∃v′i s.t., vi(Ã
EF
i ) ≥ vi(A

EF
i ), ∀ÃEF ∈ AEF

v′ (5.2)

We know that for any deterministic SP mechanism that ensures EF, MEF (v) ⊆ AEF
v ,

hence the Equation 5.2 holds for MEF (v) which implies that no matter the mechanism, it

is always manipulable by certain agent i under the valuation profile, v.

Proportionality

For sub-additive valuations, proportionality is a stronger property than MMS (Figure

5.1). [10] prove that for 2 agents, there is no SP mechanism that ensures better than

1
m/2 -MMS allocation. Hence, it is impossible to have SP mechanism which ensures MMS

and hence proportionality for 2 agents. We prove the same by constructing an example

guided by Equation 5.2.

Example. Consider n = 2, m = 3, agents {1, 2} and goods, {a, b, c}. The true valuations v

are given by Table 5.2a. For truthful reporting, there are 2 possible proportional allocations

Aprop
v given by Table 5.2b. For the first allocation AI , agent 1 obtains a value of 20. If 1

reports v′i as given in Table 5.2c, then the only possible proportional allocation is given in

Table 5.2d, the value for which is 30, is strictly better than what she was offered. Similarly,

for the next allocation AII , agent 2 has the incentive to misreport.

EFX

In [9], they prove that it is impossible to design SP mechanism for EF1 for n = 2 and

m ≥ 5. Since EFX (Definition 5.4) is a stronger property the same result holds when

m >= 5. We prove that it is also impossible to have an SP mechanism for EFX when

m = 4.

Theorem 5.2. Any mechanism that returns an allocation that is EFX cannot be truthful

even in the case of additive valuations.
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v(a) v(b) v(c)

1 20 10 5

2 5 10 20

(a) The true values

1 2

AI a bc

AII ab c

(b) Aprop
v

v(a) v(b) v(c)

1 10 10 10

2 5 10 20

(c) Agent 1 misreports

1 2

ÃI ab c

(d) Aprop
v′

Table 5.2: Counter example for proportionality

Proof. Consider an example where n = 2, we have agents {1, 2} and m = 4, {a, b, c, d}. For

truthful reporting v as given in Table 5.3a, there are 4 possible EFX allocations AEF
v given

by Table 5.3b. For the first two allocations AI , AII , agent 1 receives b which it values at

100 or {b, c} which it values 120. If agent 1 reports v′i as given in Table 5.3c, where the total

valuation is the same i.e., 200. Under this misreport, the only possible EFX allocations are

given in Table 5.3d in which agent 1 receives at least 140 which is at least as good as the

value it received for truthful reporting. Similarly for the next two allocations AIII , AIV

agent 2 has an incentive to misreport. Hence there are only four possible EFX allocations

and for each allocation at least one agent has an incentive to misreport.

Thus, for additive valuations, there is an instance where no SP mechanism can be EFX.

EF1

In this subsection, we explore the existing algorithms that find EF1 allocations and

prove that these are manipulable. We provide an instance with n = 2 for each case.
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v(a) v(b) v(c) v(d)

1 40 100 20 40

2 100 40 20 40

(a) The true values

1 2

AI b acd

AII bc ad

AIII bd ac

AIV bdc a

(b) AEFX
v

v(a) v(b) v(c) v(d)

1 90 70 15 25

2 100 40 20 40

(c) Agent 1 misreports

1 2

ÃI bd ac

ÃI bdc a

(d) AEFX
v′

Table 5.3: Counter example for EFX

Greedy round-robin Algorithm

In [47], the authors provide a simple algorithm for obtaining EF1 allocations when the

valuations are additive. It involves the following steps,

• Fix an arbitrary order on the agents

• Allocate the first agent its most valuable good

• The next agent is allocated it’s most valuable among the remaining goods

• The algorithm terminates when all the goods are allocated

The following example shows that the above algorithm can be manipulated by the agents.

Proposition 5.1. Greedy round-robin algorithm is manipulable for additive valuations.

Proof. Consider n = 2, {1, 2}, m = 5 , {a, b, c, d, e} where the valuations are additive and

given by Table 5.4a. When n = 2, there is only two possible orders among the agents.

When applying greedy algorithm with 1 followed by 2 or 1 → 2, agent 1 gets {a, c, d}
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v(a) v(b) v(c) v(d) v(e)

1 12 10 8 6 1

2 1 10 8 6 9

(a) The true values

1 2

1→ 2 acd be

2→ 1 ac bde

(b) EF1 alloca-

tions

v(a) v(b) v(c) v(d) v(e)

1 10 12 8 6 1

2 1 10 8 6 9

(c) Agent 1 misreports

1 2

1→ 2 abd ce

(d) EF1 alloca-

tion

v(a) v(b) v(c) v(d) v(e)

1 12 10 8 6 1

2 1 10 8 8 5

(e) Agent 2 misreports

1 2

2→ 1 ad bce

(f) EF1 alloca-

tion

Table 5.4: Greedy round-robin is manipulable

(Table 5.4b) with a value of 26. If the agent misreports its value as given in Table 5.4c,

the allocation that agent 1 gets is {a, b, d} which it values at 28 that is strictly more than

when it was truthful. Similarly, agent 2 can misreport to an advantage when the order is

2→ 1. It improves its allocation from {b, d, e} (Table 5.4b) that it values at 25 to {b, c, e}

whose value is 27.

Cycle-elimination Algorithm

The greedy method fails for general valuations, instead the cycle-elimination algorithm

[130] provides EF1 solution in polynomial time in general. The algorithm is as follows,

• Goods are allocated in arbitrary order
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• An envy graph is maintained where the agents are the vertices and a directed edge

i→ j represents that agent i envies agent j under the current allocation.

• The next item is allocated to the agent with no incoming edge. If there is a cycle, it

can be eliminated by exchanging the goods of the agents that form the cycle, with

the ones they envy.

We show that the above algorithm is manipulable by the agents.

Proposition 5.2. Cycle-elimination algorithm is manipulable even for identical valuations.

1 2 graph

d 1← 2

d a 1← 2

d ab 1→ 2

dc ab 1→ 2

(a) Cycle-elimination on v

1 2 graph

d 1← 2

d a 1 ⇌ 2

a d no envy

ab d 1← 2

ab dc 1← 2

(b) Cycle-elimination on v′

1 2 graph

d 1← 2

d a 1 ⇌ 2

a d no envy

a bd 1→ 2

ac bd 1← 2

(c) Cycle-elimination on v′

Table 5.5: Cycle-elimination is manipulable

Consider n = 2, {1, 2}, and m = 4, {a, b, c, d}. Let (x, y) ∈ {(a, b)(b, c), (a, c)} where the

valuations v of the agents are identical and given by v(a) = v(b) = v(c) = 5, v(d) = 10 and

v(x, y) = 16 for x, y ∈ {a, b, c, d}. The value of other subsets not mentioned are additive.

When we run the cycle-elimination algorithm, the steps are as given in the Table 5.5a. It

is easy to see that the agent who gets the item d (w.l.o.g we assume agent 1 gets d) always

ends up with a value 15 and can try to increase the utility by gaining the other bundle

whose value is 16. Now consider the following misreported valuation by the agent who gets

item d. v′(a) = v′(b) = v′(c) = 5, v′(d) = 4 and v′(x, y) = 16, for x, y ∈ {a, b, c, d}. With

the misreported valuation, we again run the cycle-elimination algorithm and there can be

two possible outcomes as presented in Table 5.5b, 5.5c. We see that in these cases the
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agent 1 receives {a, b} or {a, c} which it values at 16 i.e., strictly more than the previous

value for {d, c} that is 15. In this example, we prove that there is always an agent that

can manipulate to increase its utility.

In the above case, we considered an example of (general) identical valuations. In fact it

is also possible to manipulate cycle-elimination for (additive) identical valuations.

Example. Consider n = 2 and m = 3 where the agents have the following (additive)

identical valuation v and the agent that does not receive the good cmisreports the valuation

to v′ also given below. For many orderings over m that the algorithm chooses, the value

v(a) v(b) v(c) v′(a) v′(b) v′(c)

5 5 12 4 5 12

obtained for v′ is as good as v. But when the ordering is chosen to be a then b then c or

(b, a, c), the agent manipulating ensures a value of 17 as opposed to just receiving 5.

5.4 Identical Additive Valuations

When valuations are identically additive, we know that picking sequences is strategy

proof [40]. Based on picking sequences, we provide an algorithm, (RSD) (Repeated Serial

Dictatorship) to obtain truthfulness while ensuring EF1.

Repeated Serial Dictatorship is EF1 and (i) SP when m ≤ n and (ii) NSP when the

valuations are identical and additive. Given that RSD implements a greedy round-robin

algorithm under additive valuations, the output allocation A is EF1.

(i) Case m ≤ n: under this case, the while loop in Algorithm 8 runs for m-iterations,

given m ≤ n, each agent only gets one chance to participate and select the item x. The

ordering chosen by the algorithm is independent of the agent valuations and hence cannot

be manipulated. From the algorithm, we know that given the remaining goods R,

Ai = x ∈ argmax
j∈R

vi(j)
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If the agent misreports s.t. y ∈ argmax
j∈R

v′i(j) and x ̸= y. The agent receives y s.t. under

true valuations, vi(y) ≤ vi(x) and hence cannot strictly increase its utility.

Algorithm 8 Repeated Serial Dictatorship Mechanism (RSD)

1: Input: ⟨N,M, V ⟩, V is identical additive

2: Output: (A1, A2, . . . , An) ∈ AEF1

3: Set an arbitrary but fixed order on the agents, w.l.o.g, (1, 2, . . . , n)

4: Ai = ϕ, ∀i

5: R = M (goods remaining after each iteration)

6: i = 0 (agent number)

7: while R ̸= ϕ do

8: x ∈ argmax
j∈R

vi(j)

9: Ai = Ai
⋃
x

10: R = R \ x

11: i = (i+ 1) mod n

12: end while

(ii) Case v is Identical (Additive): Let v be the truthful report, we assume v1 ≥ v2 ≥

. . . ≥ vm be the value all the agents have for the m goods in decreasing order. The

Algorithm 8 will continue for m rounds and assign the goods in this order itself. The

goods remaining at round j is given by Rj = {vj , . . . , vm}. Let us assume an agent i gets

allocated k items before the algorithm terminates, then it selects from the following subsets

and receives the items it values the most in each of these,

{Ri, Ri+n, . . . , Ri+kn}

Hence Ai = {vi, vi+n, . . . , vi+kn}. If the agent i misreports and the remaining agents report

truthfully, in any of the rounds w.l.o.g, ith round s.t., the relative ordering between the

items changes, then the agent might face the two possible sets in the next round (i+ n),
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• Misreport s.t. agent i gets item p instead of i, p ≤ n+i−1, then the set it faces in the next

rounds is {Rn+i, . . . , Ri+kn}. Hence the items allocated are A′
i = {vp, vi+n, . . . , vi+kn}.

It can be clearly verified that, vi(Ai) ≥ vi(A
′
i), hence no incentive to misreport.

• Misreport s.t agent i gets item p where, k′n+ i > p ≥ (k′ − 1)n+ i, k′ ≥ 2 then the sets

i faces are

{Rn+i−1 \ {p}, . . . , Ri+(k′−1)n−1 \ {p}, Ri+k′n, . . . , Ri+kn}

Hence the items allocated are

A′′
i = {vp, vn+i−1, . . . , vi+(k′−1)n−1, vi+k′n, . . . , vi+kn}

Using the fact that p ≥ i+ (k′ − 1)n, we know that vi+(k′−1)n ≥ vp. Hence we compare

the sets Ai and A′′
i (⪰ represents element-wise comparison) as follows to obtain vi(Ai) ≥

vi(A
′′
i ),

{vi, vi+n, . . . , vi+(k′−2)n, vi+(k′−1)n, vi+k′n, . . . , vi+kn} ⪰

{vi+n−1, vi+2n−1, . . . , vi+(k′−1)n, vp, vi+k′n, . . . , vi+kn}

This completes the proof for truthfulness for RSD under additive and identical valuations.

5.5 Single-Minded Agents

In this section, we restrict to a simpler valuation profile. We assume the agents are

(SM) single minded. SM agents are only interested in a single bundle of goods D. Upon

receiving the specific bundle or any super-set they get a positive utility and zero value for

any other bundle (Formally given by Equation 5.1). The problem instance is ⟨N,M,D⟩.
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Algorithm 9 Serial Dictatorship Mechanism (SD)

1: Input: ⟨N,M,D⟩, D = (D1, D2, . . . , Dn)

2: Output: (A1, A2, . . . , An)

3: Order the agents s.t. |D1| ≤ |D2| ≤ . . . ≤ |Dn| (Ties broken arbitrarily)

4: i = 0 (agent number)

5: R = M (goods remaining after each iteration)

6: while R ̸= ϕ do

7: Let Di be the preferred set for the current agent i

8: if Di ⊆ R then

9: Ai = Di

10: R = R \Di, i = i+ 1

11: else

12: if i < n then

13: i = i+ 1

14: else

15: Ai = R

16: R = ϕ

17: end if

18: end if

19: end while

Observation 5.2. When all the agents are SM, any allocation is MMS and EF1. The µi

in Definition 5.5 is 0 in this setting when n > 1. Hence, allocating all the goods to one

agent is also MMS. Similarly, all possible allocations satisfy EF1. If an agent i receives its

desired bundle or super-set then it doesn’t envy any agent. If an agent j receives Di, then
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removing any item x ∈ Di would remove envy. If no agent receives Di as a whole, there is

no envy.

Based on the observation, we extend greedy round-robin algorithm to design a SD (Serial

Dictatorship) mechanism is SP since it is also a picking sequence. SD trivially satisfies EF1

and MMS and we prove that it also satisfies EFX.

Theorem 5.3. The Serial Dictatorship Mechanism is strategy-proof (SP) and also satisfies

EF1, MMS and EFX when the agents are single-minded.

Proof. In the Algorithm 9, the while loop can run for a maximum of n rounds. This means

each agent i has only one round in which it can be allocated the preferred bundle Di. The

ordering is according to the increasing cardinality of Di. An agent can manipulate the

ordering by reporting its desired bundle as D′
i s.t., |D′

i| < |Di|. This means the agent will

be allocated if at all a bundle that it does not desire. If |D′
i| > |Di| then the probability

that the agent gets any allocation is strictly less than when it reports truthfully. Hence

the agent does not have any incentive to manipulate the ordering.

Given that the agent cannot manipulate the ordering. At any round, it is optimal for

the agent to report truthfully the desired set Di. Now we prove that the allocation A

obtained from SD satisfy the following fairness criteria,

• (EF1 and MMS). This is trivially true due to Observation 5.2 which states that any

allocation is EF1 and MMS when we have SM agents.

• (EFX). Let us assume k agents, denoted by L (lucky), are allocated their desired sets

and hence do not have any envy. If k ̸= n, then n− k agents, denoted by U (unlucky),

did not receive their desired subset. From the algorithm, we know that for any agent

i ∈ U , Di ̸⊆ Ri where Ri is the set of goods at the beginning of ith round.

– ∀i, j ∈ U , i does not envy j, because j is allocated empty bundle unless j is the

agent appearing at the last n and receives the items remaining. In this case, since

agent i is given the chance to choose before j which clearly shows it cannot envy j.

148



– ∀i ∈ U , ∀ī ∈ L, if ī < i, then |Dī| < |Di|, hence agent i cannot envy ī. If |Dī| = |Di|

then removing any item from the bundle of ī will remove envy. Hence it still satisfies

EFX.

– ∀i ∈ U , ∀ī ∈ L, if ī > i, then Dī ⊆ Ri hence Dī ̸= Di, hence the agent i does not

envy ī

Hence the allocation is EFX. This concludes the proof for the theorem. Hence SD is SP

and provides allocations that satisfy EF1, MMS and EFX.

Note on Proportionality. When the agents are SM, proportional allocation exists if,

vi(Ai) ≥ 1
nvi(Di) > 0, ∀i ∈ N The above is true only when all the agents get their desired

bundle. If such a solution exists then it is easily found by the SD.

5.6 Conclusion

In the literature, there are many algorithms for finding a fair division of resources. Yet

such algorithms may not be really fair if one agent can manipulate it by misreporting its

value to obtain higher utility. We show that greedy round-robin and cycle-elimination

algorithms are manipulable. In general, we study the possibility of having strategy-proof,

deterministic mechanisms without money which ensure various criteria of fairness like EF,

proportionality, EFX, EF1, and MMS. It is known that such a mechanism does not exist

for EF, proportionality and MMS under additive valuations. It also does not exist for EF1

under additive valuations when the number of items is more than 5. We prove that it does

not exist for EFX even when the number of items is 4. Given these impossibility results,

we look into settings where agents have simpler valuation types like single minded bidders.

Under this assumption, we provide a strategy proof algorithm SD. SD satisfies all fairness

criteria except EF. RSD satisfies EF1.
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Part B – Fair Decisions for

Groups
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Chapter 6

Part B - Preliminaries and Related Work

AI systems are ubiquitous in the current times, facilitating numerous real-

world, even real-time, decision-making applications. The existing models

achieve near-optimal results for specific performance measures, often ob-

tained at the cost of certain ethical constraints like fairness and privacy.

More recently, researchers have uncovered the prejudiced predictions of such

models towards certain demographic groups, especially in machine learning

predictions. Due to existing bias against a certain race, gender or age, the

data available is often biased. The prejudices in the data, amplified by

the algorithms trained only for higher accuracy, lead to unfair decisions for

specific groups. Moreover, such algorithms made public on various online

platforms potentially leak private information of the individual data used in

training. Researchers have studied different notions of fairness and privacy

and ways to ensure them in the machine learning framework.

6.1 Machine Learning

Machine Learning (ML) is a subset of AI wherein we use existing data to train math-

ematical models. The trained model is then used for predictions on a novel, unseen data

points. ML models are in other words a functional mapping from the input to output learnt
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Figure 6.1: Platt scaling for probability calibration [51]

based on specific training methods. Classification is an important task within the field of

ML that involves identifying the category (or categories) to which an observed data point

belongs. For classification, the models require supervision i.e., the classes an existing data

point belong to which serves as a ground truth while training.

Mathematically, let’s say we have the observations: (x1, y1), (x2, y2), . . . , (xn, yn) where

xi ∈ Feature space X , and yi ∈ Label space Y . Our classifier is a function h that maps

the feature space to the label space, h : X −→ Y Note that Y consists of all the possible

class labels. In the case of a binary classification problem, we typically see two classes,

Y = {0, 1}. We desire to have a classifier that is calibrated. Informally, this means that

the “score” (between 0 and 1) produced by our classifier actually corresponds to the real

probability of the predicted outcome. Formally,

Definition 6.1 (Calibration). A classifier h is said to be calibrated if

Pr(Y = 1|h(X) = r) = r (6.1)
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Figure 6.2: Confusion Matrix for a binary classifier [173]

Platt’s Scaling. One way of achieving this is through Platt’s scaling. Platt’s scaling is a

technique to transform classifier model outputs into a probability distribution over classes.

This will give us a calibrated classifier. According to Barocas et al. 2019 [24], Platt’s

scaling treats a non-calibrated score as a single feature and attempts to fit a regression

model against the target variable based on this feature. We try to fit Y to a sigmoid-like

curve S, where S = 1
1+e−h(x) . And then try to minimize the log-loss given by −E[Y ·

log(S) + (1− Y ) · log(1− S)]

Confusion Matrix. In order to evaluate the classifier, the widely used metric is accuracy.

Informally it represents the total number of samples which have been correctly classified.

In general, any performance measure is based on the components of a confusion matrix.

As shown in Figure 6.2, FN is False Negative, TP is True Positive, TN is True Negative,

and FP is False Positive. We define these as:

Accuracy =
TN + TP

P +N
=

TN + TP

TN + FN + TP + FP
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Precision = PPV = P (Y = 1 | Ŷ = 1) =
TP

FP + TP

Recall = TPR = P (Ŷ = 1 | Y = 1) =
TP

FN + TP

Negative Predictive Value (NPV) =
TN

TN + FN

False Positive Rate (FPR) = P (Ŷ = 1 | Y = 0) =
FP

TN + FP

False Negative Rate (FNR) = P (Ŷ = 0 | Y = 1) =
FN

FN + TP

True Negative Rate (TNR) = P (Ŷ = 0 | Y = 0) =
TN

TN + FP

True Positive Rate (TPR) = P (Ŷ = 1 | Y = 1) =
TP

TP + FN

Precision is also called Positive Predictive Value (PPV). Recall is also referred as True

Positive Rate (TPR) or Sensitivity. Further note that, TPR + FNR = 1 and TNR +

FPR = 1.

Receiver Operating Characteristics (ROC). ROC is a property of a distribution

(X,Y ): It gives the optimal TPR for a given FPR on the distribution. It is an estimate of

how predictive the score is of the target variable. A quantitative metric derived from the

ROC is the Area Under the Curve (AUC), which is a measure of predictiveness. An area

of 1
2 corresponds to random guessing, and an area of 1 corresponds to perfect classification.

The ROC curve is shown in Figure 6.3.

Given the basic components in an ML framework, now we look at ML models through

a fairness perspective. We first identify the biases that arise in an ML pipeline. Then

we discuss the quantitative fairness measures proposed in the literature and some of their

properties. Finally, we also discuss some existing approaches for ensuring fairness in ML.
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Figure 6.3: Receiver Operating Characteristics (ROC) [source: Wikipedia]

6.2 Fairness in Machine Learning

There are two potential sources of unfairness in machine learning outcomes - (i) humans

and data, and (ii) machine - algorithms and associations. Biases exist in many forms and

shapes [141], and here, we discuss some come types of biases briefly.

1. Historical Bias. This arises even if the data is perfectly sampled and selected if there

already exists bias and socio-technical issues in the world. Although the data generation

process reflects the world accurately, the world as it is often led to a model that could

inflict harm on a population.

As an example, historical bias can be found in a 2018 image search result, while searching

for women CEOs image the search results were more biased towards male CEOs. There

were only 5% Fortune 500 women CEOs and although the search results were reflecting

the reality, it is worth pondering whether or not the search algorithms should reflect

it. Another example is word embeddings, the learned vector representations of words
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Figure 6.4: Types of Biases in ML framework [183]

popular in natural language processing, that are learned from a large corpus of text

reflecting human biases.

2. Representation Bias. It occurs when some part of the population is under-represented

in the development sample and that can subsequently fail while generalizing to the use

population. ImageNet, a widely-used image dataset consisting of 1.2 million labelled

images, lack geographical diversity and demonstrates a bias towards Western countries.

3. Measurement Bias. It happens from the way we choose, utilize, and measure a

particular feature and label to use in a prediction problem. For example, in COMPAS,

a recidivism risk prediction tool, prior arrests and close circle arrests were used as a

proxy to measure the level of riskiness. This proxy can be viewed as differentially

measured since the minority community is more highly controlled and policed.

4. Evaluation Bias. This occurs during a model evaluation when the benchmark data

used for a particular task does not represent the use population and ultimately arises
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because of a desire to quantitatively compare models against each other. As an example,

commercial facial analysis tools benchmarked on Adience and IJB-A benchmark datasets

were biased toward skin color and gender. It can also be exacerbated by the choice of

metrics that are used to report performance. For example, aggregate measures can hide

subgroups under performance.

5. Aggregation Bias. When one model is used for data in which there are underlying

groups or types of examples that should be considered differently, aggregation bias

happens. The assumption made while aggregation is that the mapping from inputs to

labels is consistent across subsets of the data. When a dataset represents groups with

different backgrounds, cultures or norms, a specific variable can mean different across

them. This can lead to a model that fits well to the majority population or one that is

not optimal for any group.

Consider the following example of analyzing Twitter posts of a youth gang in Chicago

and the shortcomings of general, non-context specific NLP tools were evident. As an

example, specific hashtags and emojis used by this gang convey different meanings that

a non-specific model trained on the general Twitter data would fail to identify. Also,

some phrases that were predicted to be aggressive were actually lyrics from a local

rapper. These findings tell us that ignoring the group-specific context in favour of a

general model for all social media might lead to misclassifications of the tweets from

this population.

6. Population Bias. When demographics, statistics, representatives, and user charac-

teristics are different in the end user population represented in the dataset or platform

from the original target population, population bias arises. As an example, consider the

different use demographics on different social media platforms. Women are more likely

to spend more time on Pinterest, Facebook, and Instagram while men are more active

in online forums like Reddit and Twitter.
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7. Simpson’s Paradox. A trend, association or characteristic observed in underlying

subgroups may be quite different from the association or characteristic observed when

these subgroups are aggregated. Simpson’s paradox can arise during the analysis of het-

erogeneous data that is composed of individuals with different behaviours or subgroups.

As an example, we can consider the gender bias lawsuit in university admissions against

UC Berkeley. Looking at the graduate school admissions data, it seemed like there was

a bias against women. Only a smaller fraction of women candidates were admitted to

different programs than their male counterparts. However, if we separate the data and

analyze the departments, women had equality and in some cases had an advantage over

men. One reason for the emergence of bias in this example is that women tended to

apply to departments that had lower admission rates for both genders. In short,

8. Longitudinal Data Fallacy. Treating cross-sectional data from observational studies

as if they were longitudinal can create biases due to Simpson’s paradox. For example,

upon analyzing bulk Reddit data, it has been observed that comment length decreased

over time on average. When we look into it carefully, the data is representative of a

cross-sectional view of the users who have joined the platform in different years. Once

we disaggregated cohorts by considering the period they joined the platform, it was

observed that the comment length increased over time within these cohorts.

9. Sampling Bias. It happens due to non-random sampling of subgroups. This leads to

either systematic over-representation or under-representation of certain subgroups and

the trends estimated for one population may not generalize well to another population.

10. Behavioral Bias. This happens due to different user behaviour across contexts, plat-

forms or different datasets. As an example, it is observed that people react and behave

differently on different platforms due to the differences in emoji representations among

platforms, and this can even lead to communication errors.

11. Temporal Bias. It arises from the differences in populations and behaviours over

time. For example, to capture attention people start using a particular hashtag about
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a particular topic start but as the discussion gets continued, hashtags may not be used

thereafter.

12. Popularity Bias. It arises as things that are more popular tend to be exposed more.

In search engines and recommendation systems, popular objects would be presented to a

wide public. It is also worth noting that popularity metrics are subject to manipulation

such as fake reviews or social bots.

13. Algorithmic Bias. When the bias is not present in the input data, and is added purely

by the algorithm, we term it as algorithmic bias. If the input data is indeed biased, the

output of the algorithm might also reflect the bias. However, even if all the possible

biases are detected, defining how an algorithm should proceed is difficult and it may

require experts’ help to detect to if the output has any bias at all.

14. User Interaction Bias. This can arise from two sources - the user interface and

through the user itself and can be influenced by other types such as:

• Presentation Bias. This arises from how information is presented. As an exam-

ple, users click only the content that they can see and cannot see all the information

on the Web.

• Ranking Bias. Top-ranked results will result in more clicks than others and get

more importance. This is common in search engines and crowd-sourcing applica-

tions.

15. Social Bias. When others’ actions or content coming from other people affects our

judgement, social bias arises. As an example, when we rate an object with a low score

but are influenced by other people’s high ratings, we may think that we are being too

harsh and change our rating.

16. Emergent Bias. Due to changes in population, cultural values or societal knowledge

in general, usually sometime after the completion of design, emergent bias arises as a

result of use and interaction with real users. As an example, consider user interfaces in

devices which tend to reflect the habits of users by design.

159



17. Self-Selection Bias. When the subjects of the research select themselves, self-selection

bias happens. It is a subtype of sampling bias. Consider a survey about smart or

successful students, some less successful students might think they are successful to be

a part of the survey and this would bias the outcomes of the analysis.

18. Omitted Variable Bias. When one or more important variables are left out of the

model, omitted variable bias occurs. As an example, let us consider a model developed to

predict the annual number of customers who will stop subscribing to a particular service.

If the company finds that a lot more people are unsubscribing from their service than

what the model estimated, it might be the case that the model did not account for a

new competitor in the market which offers the same service but at half the price of the

company.

19. Cause-Effect Bias. As a result of the fallacy correlation implies causation, cause-

effect bias arises. Let’s consider the example of a data analyst trying to find out how

successful their new program is. They observe that customers who are part of their new

program are spending more money than the ones who are not and concluded that their

new program is successful. It might be the case that only their committed customers

who might have planned to spend more money have joined the new program in the first

place.

20. Observer Bias. When a research investigator subconsciously projects their expecta-

tions into the project, observer bias could happen. Observer bias can happen when

researchers cherry-pick participants or statistics that will favour their research and re-

searchers unintentionally influence participants during surveys and interviews.

Given all possible biases that can occur in an ML pipeline, we state some group fairness

notions that quantify the bias present in the prediction of ML models.
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6.2.1 Group Fairness Notions

In Group Fairness (GF), we aim to build a classifier that is fair for protected attributes.

For instance, a classifier should not be partial/unfair on the basis of one’s sex or race or

religion, etc. An example could be college admissions, a candidate should not be rejected

just because of their gender. In GF, we aim to quantify fairness in models with respect to

such protected attributes. Let A be the set of protected attributes, Y be the labels for the

classifier, and Ŷ be the predictions made by the classifier. We consider that the sensitive

attribute is binary where a represents the samples belonging to one group and 1−a belongs

to the other group.

Independence

Definition 6.2 (Independence). We say that the random variables (A, Y , Ŷ ) satisfy In-

dependence if the sensitive attributes A are statistically independent of the prediction Ŷ ,

denoted as Ŷ |= A.

Independence is known by many names such as “Group Fairness”, “Disparity Parity”,

“Statistical Parity”, “Demographic Parity” and is mathematically defined as:

P (Ŷ = 1 | A = a) = P (Ŷ = 1 | A = 1− a) (6.2)

Let x = P (Ŷ = 1 | A = a) and y = P (Ŷ = 1 | A = 1 − a). Disparate Impact is then

given as:

min

(
x

y
,
y

x

)
≥ 1− ϵ (6.3)

Separation

Definition 6.3 (Separation). We say that the random variables (A, Y , Ŷ ) satisfy Sepa-

ration if the predictions of the model Ŷ are statistically independent of A given true labels,

Y , denoted as Ŷ |= A|Y .
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Separation is also called Equalized Odds and is satisfied when (A) True Positive Rates

(TPR) and (B) False Positive Rates (FPR) across the sensitive attributes are equal. We

mathematically state (A) as:

P (Ŷ | A = a, Y = 1) = P (Ŷ | A = 1− a, Y = 1) (6.4)

We also call this value as TPR0 = TPR1. (B) is stated as:

P (Ŷ | A = a, Y = 0) = P (Ŷ | A = 1− a, Y = 0) (6.5)

This is also called FPR0 = FPR1.

Sufficiency

Definition 6.4 (Sufficiency). We say that the random variables (A, Y , Ŷ ) satisfy Suffi-

ciency if the true labels Y are statistically independent of A given model predictions, Ŷ ,

denoted as Y |= A|Ŷ .

Sufficiency is also known as Calibration by group and is satisfied when Positive Predictive

Value (PPV) and Negative Predictive Value (NPV) across the sensitive attributes are equal.

We mathematically state PPV as:

P (Y | A = a, Ŷ = 1) = P (Y | A = 1− a, Ŷ = 1) (6.6)

This is also known as PPV0 = PPV1. NPV is stated as:

P (Y | A = a, Ŷ = 0) = P (Y | A = 1− a, Ŷ = 0) (6.7)

This is also called as NPV0 = NPV1.

Calibration by group is defined as below,

P (Y = 1 | h(x) = r) = r ∀a ∈ A (6.8)

Calibration by group =⇒ Sufficiency. Vice-versa is not true, for instance, when all labels

are 0.
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If h(x) satisfies Sufficiency, then there exists a function ℓ = [0, 1] → [0, 1] such that

ℓ(h(x)) satisfies calibration by groups. Let, h(x) = s and ℓ(s) = P (Y = 1 | h(x) = s,A =

a). Since h(x) satisfies Sufficiency, this probability is the same for all groups a and hence

this map ℓ is the same regardless of what value a we chose. We have,

s = P (Y = 1 | ℓ(h(x)) = s,A = a)

= P (Y = 1 | h(x) ∈ l−1(s), A = a)

= P (Y = 1 | h(x) ∈ l−1(s), A = 1− a)

= P (Y = 1 | ℓ(h(x)) = s,A = 1− a)

6.2.2 Properties of Group Fairness Notions

Property 6.1. Independence and Sufficiency cannot hold if A and Y are not independent.

In general, Independence and Sufficiency are mutually exclusive. The only assump-

tion, in this case, is that the A and Y are not independent. Consider, Sufficiency and

Independence hold,

Ŷ |= A, Y |= A|Ŷ

=⇒ A |= (Ŷ , Y )

=⇒ A |= Y

This proves that for both Independence and Sufficiency to hold, A and Y have to be

independent. In other words, Independence and Sufficiency cannot hold if A and Y are

not independent.

Property 6.2. If Y is binary, and A is not independent of Y , and Ŷ is not independent

of Y , then, Independence and Separation cannot both hold.

Proof. To prove the proposition, it is enough to show that the contra-positive form holds

true. I.e., the presence of both Independence and Separation indicates that either A is
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independent of Y or Ŷ is independent of Y .

Ŷ |= A and Ŷ |= A|Y =⇒ Y |= A or Y |= Ŷ

From the law of total probability

P (A) =
∑
n

P (A|Bn)× P (Bn)

P (Ŷ = ŷ | A = a) =
∑
y

P (Ŷ = Ŷ | A = a, Y = y)× P (Y = y | A = a)

Applying, Ŷ |= A and Ŷ |= A|Y ,

P (Ŷ = ŷ) =
∑
y

P (Ŷ = ŷ | Y = y)× P (Y = y | A = a)

Also,

P (Ŷ = ŷ) =
∑
y

P (Ŷ = ŷ)× P (Y = y)

=⇒
∑
y

P (Ŷ = ŷ | Y = y)× P (Y = y | A = a) =
∑
y

P (Ŷ = ŷ)× P (Y = y) (6.9)

If,

p = P (Y = 0)

pa = P (Y = 0 | A = a)

p̂y = P (Ŷ = ŷ | Y = y)

Equation 6.9, reduces to -

pa × p̂0 + (1− pa)× p̂1 = p× p̂0 + (1− p)× p̂1

=⇒ p(p̂0 − p̂1) = pa(p̂0 − p̂1)

This equation can only be satisfied, when either p̂0 = p̂1, in which case, Ŷ |= Y , or if

p = pa, in which case, Y |= A.
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Property 6.3. If Y is binary and A is not independent of Y , then Separation and Suffi-

ciency cannot both hold true.

Proof. Since Y is not independent of A, then

P (Y = 1 | A = 0) ̸= P (Y = 1 | A = 1)

Let’s suppose that Separation holds. Since the classifier is not perfect, this means that all

groups must have the same non-zero FPR (FPR > 0), and the same TPR (TPR ≥ 0).

In the binary case, Sufficiency implies that all groups have the same PPV (Equation 6.6).

PPVa =
TPR× pa

TPR× pa + FPR× (1− pa)
and PPVb =

TPR× pb
TPR× pb + FPR× (1− pb)

From the two equations, it’s clear that for PPVa = PPVb, either TPR = 0, or FPR = 0.

Since, FPR > 0, it must be the case that TPR = 0. For Sufficiency to hold, NPV must

also be the same. Consider,

NPVa =
(1− FPR)× (1− pa)

(1− TPR)× pa + (1− FPR)× (1− pa)

and,

NPVb =
(1− FPR)× (1− pb)

(1− TPR)× pa + (1− FPR)× (1− pa)

Since, TPR = 0

NPVa = NPVb

=⇒ 1− pa
pa + (1− FPR)× (1− pa)

=
1− pb

pb + (1− FPR)× (1− pb)

=⇒ NPVa ̸= NPVb

Since NPV is not equal, Sufficiency does not hold.

Theorem 6.1 (Chouldechova 2017 [53]). It is impossible to build a classifier that satisfies

Separation and Sufficiency unless (1) base rates are equal or (2) the model is a perfect

classifier.
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Figure 6.5: Violation of Demographic Parity (left) and Equalized Odds (right) [53]

For e.g., the COMPAS system satisfies calibration but FNR is not same for White and

Blacks i.e., violates equalized odds and it also violates demographic parity (Figure 6.5).

Proof. Let pa = P (Y = 1|A = a) and pb = P (Y = 1|A = 1 − a). Suppose we have h

that satisfies Sufficiency and Separation. To satisfy Separation, the two groups must have

the same TPR and FRP . TPR is the rate at which the classifier recognizes the positive

instances correctly. FPR is the rate at which the classifier mistakenly assigns positive

outcomes to actual negative outcomes.

Equalizing TPR:

TPR1 = TPR0 (6.10)

P (Ŷ = 1 | Y = 1, A = 1) = P (Ŷ = 1 | Y = 1, A = 0)

Equalizing FPR:

FPR1 = FPR0 (6.11)

P (Ŷ = 1 | Y = 0, A = 1) = P (Ŷ = 1 | Y = 0, A = 0)

PPVa =
TPRa × pa

TPRa × pa + FPRa × (1− pa)
=

TPPa

TPPa × FPPa

Similarly,

PPVb =
TPRb × pb

TPRb × pb + FPRb × (1− pb)
=

TPPb

TPPb × FPPb
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Since Separation is satisfied, let us assume the case where Sufficiency is also satisfied.

If Sufficiency were to be satisfied, the PPV for the two groups must be the same.

Equalizing PPV,

PPVa = PPVb

=⇒ pa
TPR× pa + FPR× (1− pb)

=
pb

TPR× pb + FPR× (1− pb)

=⇒ 1

y + x× 1− pa
pa

=
1

y + x× 1− pb
pb

=⇒ y + x× 1− pa
pa

= y + x× 1− pb
pb

=⇒ x× (
1− pa
pa

) = x× (
1− pb
pb

)

This indicates that either the base rate for the two groups is same or the classifier is perfect.

Since we don’t have a perfect classifier, the bast rate must be the same. This completes

the proof that if we build a classifier that satisfies Separation and Sufficiency, either of the

two conditions i) base rates are equal or ii) it is a perfect classifier, must be satisfied.

Given the impossibility results, it is common to design classifiers that satisfy approxi-

mate fairness while ensuring high accuracy. In general, the approaches to ensure fairness

can be broadly divided into three categories of i) Pre-processing, ii) In-processing and iii)

Post-processing approaches. Pre-processing approaches are applied to the input data be-

fore the ML model is applied. In-processing approaches are applied within the ML model

itself to make the predictions fair irrespective of the input. Post-processing approaches are

applied to the model predictions obtained from the ML model. We elaborate on each of

these further and discuss some existing approaches.
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6.2.3 Pre-processing Approaches

The major source of bias in predictive models is the bias in the input data itself. Many

fairness notions like Demographic Parity and Disparate Impact require that the positive

outcome is offered equally across different sensitive sub-groups. Although the ground truth

label itself may not be equally positive for both the sub-groups or in other words, the base

rates are different. In such cases, there are pre-processing approaches which try to equalize

the base rates. We discuss two of these approaches, (i) Massaging Data [119] and (ii)

Preferential Sampling [120] below,

Massaging Data. Kamiran et al. 2009 [119] propose this approach to flip the ground

truth of the data in a systematic way. For massaging, a ranker is required, a ranker is a

classifier that is trained on X (not including sensitive attributes) to predict Y . The authors

use the Naive Bayes classifier which provides the class probability i.e., the probability that

a sample x belongs to class y = 1. In the method, there are two classes of samples identifies,

1) Candidates for promotion (CP) are the samples in the minority sub-group which have

negative ground truth or y = 0, and 2) Candidates for demotion (CD) are the samples in

the majority sub-group which have positive labels. The goal is to equalize the base rates

by flipping the labels of samples in CP and CD. In other words, offer positive outcomes to

some samples in the minority (CP) and offer negative labels to some samples in CD. The

ranker is used to select the best sample whose label must be flipped. Rank the samples

of CP in decreasing order of probability of belonging to the positive class and rank the

samples of CD in the reverse way. Select the top M from both the ranked lists where M

is,

M =
(N0 ×N11)− (N1 ×N01)

N

where N is the total number of samples, N0 is the total number of samples belonging to

sensitive attribute, a = 0 and N01 is the number of samples belonging to a = 0 having

positive label y = 1. Similarly, N1 and N11 are defined for a = 1. An illustrative example

is given in Table 6.1
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X A Y

x1 M +

x2 M −

x3 M −

x4 M +

x5 M −

x6 F +

x7 F +

x8 F +

x9 F +

x10 F −

X A Y P+

x1 M + 62%

x2 M − 6%

x3 M − 49%

x4 M + 67%

x5 M − 3%

x6 F + 76%

x7 F + 89%

x8 F + 90%

x9 F + 60%

x10 F − 10%

X A Y

x1 M +

x2 M −

x3 M +

x4 M +

x5 M −

x6 F +

x7 F +

x8 F +

x9 F −

x10 F −

Table 6.1: Massaging Data (P+: probability of belonging to positive class)

Preferential Sampling. Since flipping of labels is too intrusive, Kamiran et al. 2010 [120]

propose preferential sampling. The idea is to give importance to certain samples that are

more prone to discrimination or favouritism. Such samples often lie at the borderline where

the borderline objects are identified using a ranker. We first identify four groups of samples,

i) DP is the samples belonging to the sensitive subgroup a = 1 with positive outcome y = 1,

ii) DN samples belonging to the sensitive subgroup with negative outcome y = 0. iii) FP

is the samples not belonging to the sensitive subgroup a = 0 with a positive outcome, and

iv) FN is the samples not belonging to the sensitive sub group with a negative outcome.

Use a ranker to rank the samples in DP and FP in ascending order and the samples in DN

and FN in descending order; both w.r.t the positive class probability. The illustration is

provided in Figure 6.6. Increasing the sample size is done by duplicating samples closest

to the borderline, once duplicated the sample is moved to the bottom of the ranking and

the process is repeated.
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Figure 6.6: Preferential Sampling [120]

We now move on to some advanced approaches for making the input data bias free before

applying the classifier. Since we want our classifiers to be independent of the sensitive

attributes, hence the goal is to remove the sensitive attribute information from the input.

Broadly these approaches look for transformation of the input to make it fair.

Removing Disparate Impact. A classifier is said to have a disparate impact (DI)

if P (Y=1|A=0)
P (Y=1|A=1) ≤ 0.8. Feldman et al. 2015 [77] provide a DI certificate i.e., a classifier

exhibiting DI must have a low Balanced Error Rate (BER) or more leakage of protected

attribute information into the predictions. Formally, BER is the error made a classifier that

predicts sensitive attributes A from the input features X. Higher BER is more suitable for

building a fair classifier. Given a dataset (X,A, Y ), A is said to be ϵ-predictable from X

if there exists a classifier fA : X → A such that BER(fA(X), A) ≤ ϵ. The final theorem

which provides the DI certificate is stated as,
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Figure 6.7: Adversarially Learning Fair Representations

Theorem 6.2 (Feldman et al. 2015 [77]). A dataset is (1/2−β/8)-predictable if and only if

it admits disparate impact, where β is the fraction of elements in the minority class (A=0)

that are selected (Y = 1).

The proof of the above theorem can be found in Feldman et al. 2015 [77], which serves

as a good starting point in providing fairness guarantees for a dataset irrespective of the

model used for classification. The authors also show how to remove DI from a dataset by

transforming the input X. They propose Combinatorial Repair [77, Definition 5.1] and

Geometric repair [77, Definition 5.2] algorithms which transforms the input to i) decrease

the predictability of the sensitive attribute A, and ii) preserve the information of X as

much as possible.

Adversarial Training. The above approach of removing DI is restrictive to only DI

and also assumes certain properties on input features X. Beutel et al. 2017 [31] and

Madras et al. 2018 [132] propose a more generic way of removing the predictability of

sensitive attributes from X using adversarial training. In [132] the authors assume a model

(Figure 6.7), which learns the data representation Z. Z is learnt such that it is capable of

reconstructing X, classifying target labels Y and protecting the sensitive attribute A from

an adversary. Let W1,W2,W3 denote the parameters of Model 1, 2, 3 as depicted in Figure

6.7. The adversary seeks to maximize the objective La which is the loss of predicting A
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from Z. Lr is the reconstruction loss between X and Z and Lc is the loss of predicting Y

from Z. The overall objective is given by,

min
W1,W3

max
W2

αLr(X,W1, Z) + βLa(Z,W2, A) + γLc(Z,W3, Y )

The network parameters are optimized using alternate gradient descent and ascent steps,

further details in [132].

6.2.4 In-processing Approaches

As opposed to pre-processing approaches, the in-processing approaches focus on the

training regime. The training of the classifier is such that it is fair irrespective of the bias

in the input data. Such approaches are often end-to-end training which learn fair features

and fair classification simultaneously. Primarily, these approaches design a loss function

for every fairness measure considered. The objective then consists of classification loss and

fairness loss, which is minimized during training. The main challenge here is the fairness

measures are complex and non-convex, hence difficult to directly incorporate into the ML

framework. To overcome this issue, the following approaches are proposed,

Convexification. The goal here is to design a convex surrogate for the fairness measures.

The convex surrogate is used as the loss function during training. The hypothesis is that

minimizing the convex surrogate would minimize the violation in the corresponding fairness

measure. Bilal Zafar et al., Kamishima et al. 2015, 2011 [36, 122] have proposed such

approaches. In [36], the authors design a convex surrogate loss called Decision Boundary

Covariance for disparate impact (DI).

A classifier is said to be free from DI iff,

min

{
P(ŷi = 1|ai = 0)

P(ŷi = 1|ai = 1)
,
P(ŷi = 1|ai = 1)

P(ŷi = 1|ai = 0)

}
≥ 0.8

Since the above loss is complex and non-convex, the authors propose decision boundary

covariance. Given a classifier with parameters θ and dθ(x) = θTx and µa is the mean of the
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Figure 6.8: Decision Boundary Covariance

sensitive attribute (Figure 6.8). The idea is that the dθ(x) > 0 for ŷ = 1 therefore, for a

classifier that is free from DI, P(dθ(x) > 0|ai = 0) = P(dθ(xi) > 0|ai = 1) or the covariance

between dθ(x) and a is 0. The decision boundary covariance is given by,

Cov(dθ(x), a) =
1

n

n∑
i=1

(a− µa)θ
Tx (6.12)

Using the above loss, the authors formulate the following Logistic Regression,

min
θ
− 1

n
log(p(yi = 1|xi, θ))

s.t.
1

n

n∑
i=1

(a− µa)θ
Tx ≤ c

1

n

n∑
i=1

(a− µa)θ
Tx ≥ −c

The above minimizes classification loss under surrogate fairness constraints. Similarly, the

authors also provide the formulation for minimizing violation in the surrogate constraint

for accuracy constraints. The authors show that the above formulation leads to fine-

grained control on the degree of fairness at a small cost to accuracy. Despite the results,

designing such convex surrogates is often challenging and unique to each fairness constraint.
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Moreover, minimizing the convex surrogates does not always guarantee that the actual

fairness violation is minimized. Hence there are other approaches proposed to learn with

complex loss functions and constraints which we discuss below.

Reductionist Approaches. Agarwal et al., Narasimhan 2018, 2018 [5, 152] propose

a reductionist approach to solve the constrained optimization problem, i.e., minimizing

classification loss under fairness constraints. In the reductionist approach, the problem is

reduced to a sequence of cost-sensitive learning tasks. Let us look at the approach proposed

in [5].

The main idea is to learn a randomized classifier that provides the best fairness and

accuracy trade-off. Given set of classifiers H = {h1, h2, . . .}, the probabilities over them is,

∆(H) = {p1, p2, . . .}. Let the classification loss be denoted by err(Q), Q ∈ ∆(H). They

re-write the Demographic Parity (Definition 6.2) and Equalized odds (Definition 6.3) as

linear constraints Mµ(h) ≤ c.

• Demographic Parity: E[h(X)|A = a] = E[h(X)], ∀a represented as µa(h) = µ∗(h)

µa(h)− µ∗(h) ≤ 0

−µa(h) + µ∗(h) ≤ 0

• Equalized Odds: E[h(X)|A = a, Y = y] = E[h(X)|Y = y],∀a

µ(a,y)(h)− µ(∗,y)(h) ≤ 0

−µ(a,y)(h) + µ(∗,y)(h) ≤ 0

Final constrained optimization is set up as follows,

min
Q∈∆

err(Q) s.t. Mµ(Q) ≤ c

Final Empirical Loss, where λ is the Lagrangian multiplier and the constraint could

take specific form for different fairness measures considered. Thus, can be represented as
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a cost-sensitive classification.

L(Q,λ) = ˆerr(Q) + λT (Mµ̂(Q)− ĉ)

min
Q∈∆

max
λ

L(Q,λ)

The above optimization is solved using [5, Algorithm 1], for which the authors also provide

certain convergence guarantees.

6.2.5 Post-processing Approaches

We have already looked at pre-processing and in-processing approaches, where fairness

constraints are incorporated before or during training. Although in many applications,

there are pre-trained models available. Post-processing approaches try to make the predic-

tions of such trained models fair. These approaches often manipulate the output predictions

or the probabilities returned by the models.

Kamiran et al. 2012 [121] change the output labels predicted by the classifier ŷ to other

labels ỹ. The reject option classification method considers those samples S for which

predictions are uncertain, i.e., |ŷS − 0.5| < ϵ, for some margin ϵ, (given the classification

threshold in 0.5). For samples within the reject option band defined above, ỹ = 1 for

the under-represented class a = 0 and ỹ = 0 for the other class. For samples outside the

margin, ŷ = ỹ. The margin θ is set such that the requirement on Disparate Impact is met.

In [105], the authors aim to achieve Equalized Odds through a post-processing approach.

From Definition 6.3, we know that the false negative rates and false positive rates must be

the same across different groups. Given a classifier with predictions ŷ, the authors solve an

optimization to identify certain probabilities with which to flip the output of every sample.

With these probabilities, the output is flipped to ensure equalized odds. This approach is

further refined in [46, 165].

In all the above approaches, the output predictions are modified. These output pre-

dictions are often obtained after fixing a certain threshold on the output probabilities for
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e.g., given that P(ŷ = 1) is 0.5 or more then ŷ = 1 else ŷ = 0. In [118], the authors

propose Group Specific Threshold Adaptation for faiR classification (GSTAR). Given a

trained model, GSTAR approximates the probability distribution of the model predictions

and confusion matrix to quantify accuracy and fairness trade-offs for different thresholds

for different sub-groups.

6.3 Privacy Issues

ML models heavily depend on the data they have been trained on. The models often

rely on consumer data which also includes private information. The goal is to provide

highly efficient solutions while ensuring the confidentiality of the data [178, 64]. We first

discuss some non-rigorous methods employed for preserving privacy and show how they

are vulnerable.

• Re-identification in anonymized database. Anonymization of a database is gen-

erally not safe, since they’re prone to linkage attacks as shown in Netflix challenge

[153]. Here, anonymization refers to the process of removal of personally identifiable

information. Linkage attack involves re-identifying individuals by matching records

from other auxiliary sources of data. Knowledge of sensitive data (like medical records

Ohm 2009 [156]) can have adverse consequences in the hands of an adversary

• Group Queries. Individual queries are trivially disallowed on a privacy-preserving

database with sensitive information. In the case of group queries, where the user queries

are forced to be over a large set of samples, differencing attack turns to be a problem. The

differencing attack may provide information about the presence of a certain individual

or some property about the individual. For example, consider a database containing

medical records of people. A user requests two similar queries, one requesting a number

of people with a disease except for a specific person, say A, and the other requesting the

total number of people with the same disease. The outputs of these queries cumulatively
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reveal the disease status of A, which is a blatant breach of A’s privacy. as depicted

by the example. Determining whether such an attack is possible on a database is a

computationally undecidable problem

• Summary Statistics. Differencing attack immediately implies that summary statis-

tics are not privacy-preserving. Besides this, database reconstruction attacks even on

census data which uses traditional statistics with aggregate values, one can identify data

corresponding to a set of individuals [81].

The goal is to define a quantitative privacy measure for the possible privacy loss. Privacy

should guarantee plausible deniability and no linkage attacks. It should guarantee that an

adversary does not know more about an individual in the data set before and after analyzing

the database.

6.3.1 Pure Differential Privacy

Formally, the adversary’s posterior view of an individual should be equal to the prior

view for complete privacy. More formally, given the set of datasets X and a query q, any

mechanism maps the query to a set of possible outcomes Y. The randomized mechanism

is denoted by M : X → Y. If two input datasets D,D′ are close to each other or differ

by a single entry ∥ D −D′ ∥1≤ 1, then a mechanism M preserves privacy if, ∀Y ∈ Y, the

ratio p(M(D)=Y )
p(M(D′)=Y ) tends to 1. The notion of Differential Privacy (DP) is thus defined in the

following way,

Definition 6.5 (Differentially Private Mechanism). A randomized mechanism M is said

to be ϵ differentially private if ∀S ∈ Y and ∀D,D′ s.t. ∥ D −D′ ∥1≤ 1,

p(M(D) ∈ S) ≤ exp(ϵ)p(M(D′) ∈ S)

When ϵ = 0, we achieve the highest privacy, but the mechanism returns the same output

for every input hence not useful. On the other hand, ϵ >> 1 implies a heavy loss in privacy.

Practically ϵ between 0.1 and 0.2 is considered ideal in many scenarios.
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An example of ϵ-DP mechanism is the Laplace Mechanism. A Laplace mechanism

outputs a noisy answer to any query with values in Rn. Firstly, the PDF of the Laplace

distribution is denoted by:

L(µ, b) = 1

2b
· exp

(
−|x− µ|

b

)
, (6.13)

where µ is the mean and b the scaling factor. When compared to the Gaussian distri-

bution, the Laplace mechanism has a sharper peak and heavier tail. Before defining the

Laplace mechanism, we will first define sensitivity of the function f(·), which we wish to

make private as follows.

Definition 6.6 (Sensitivity). Let X = {D1, . . . , Dm} be the universal set of all adjacent

datasets, i.e., |D −D′| ≤ 1 for D,D′ ∈ X . For f : X → Rk, we define its sensitivity ∆f

as:

∆f = max
D,D′
||f(D)− f(D′)||. (6.14)

When k > 1, the maximum usually corresponds to the l1 or l2 norm.

We are now ready to define the Laplace mechanism. Recall that M(f,D) is our ran-

domized mechanism which ensures that the input function f(·) becomes (ϵ, δ)-DP such

that δ ≥ 0.

Theorem 6.3 (Laplace Mechanism). A mechanism M(f,D, ϵ) is said to be ϵ-DP if it adds

noise drawn from L
(
0,

∆f

ϵ

)
to the output of f(D). Formally,

M(f,D, ϵ) = f(D) + L
(
0,

∆f

ϵ

)
. (6.15)

The proof of the theorem can be found in Wikipedia contributors 2021 [197].

Next, we look at the slightly weaker notion of ϵ-DP which is practical and has various

applications.
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6.3.2 Approximate Differential Privacy

Approximate differential privacy or (ϵ, δ)-differential privacy, is a relaxation of ϵ-differential

privacy where the privacy guaranteed is satisfied with a probability δ. In other words, with

ϵ-differential privacy, a mechanism gives the ϵ privacy guarantee all the time, with a prob-

ability 1. On the other hand, for (ϵ, δ)-differential privacy, with δ probability the privacy

is guaranteed. More formally,

Definition 6.7 (Differential Privacy (DP) [72]). For a set of databases X and the set of

noisy outputs Y, a randomized algorithm M : X → Y is said to be (ϵ, δ)-DP if ∀D,D′ ∈ X ,

s.t. |D −D′| ≤ 1, and ∀S ⊆ Y the following holds,

Pr[M(D) ∈ S] ≤ exp(ϵ) Pr[M(D′) ∈ S] + δ. (6.16)

Here, ϵ is called the privacy budget and δ as the privacy budget relaxation.

Properties of Differential Privacy

Our first property answers the question: when we run multiple algorithms, each of which

have privacy guarantees on their own, what is the privacy guarantee on the union of their

outputs? How do the privacy parameters degrade? The cumulative privacy guarantee,

i.e., privacy guarantee over a different set of queries, is referred to as composition. The

resultant guarantee across k such queries is given by the following property. For the

property, consider an adversary A with a view over k queries as V b = (R, Y1,b, . . . , Yk,b).

Here, Y is the queries output and R A’s internal randomness with b ∈ {0, 1} as a binary

parameter.

Property 6.4 (Composability). The class of ϵ-differentially private mechanisms M satis-

fies kϵ-DP under k-fold adaptive composition for an adversary A. We assume that each

query’s randomness is independent of the other.
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Proof. A view of the adversary is the tuple v = (r, y1, . . . , yk). That is,

Pr[V = v]

Pr[V ′ = v]
=

(
Pr[R = r]

Pr[R′ = r]

)
·
i=k∏
i=1

Pr[Vi = vi|V1 = v1, . . . , Vi−1 = vi−1]

Pr[V ′
i = vi|V ′

1 = v1, . . . , V ′
i−1 = vi−1]

≤
i=k∏
i=1

exp(ϵ) (since M ∈M is (ϵ, δ)-DP)

= exp(kϵ).

Next, we consider the case when the distance between the adjacent databases is greater

than one row. In particular, consider databases differing in c rows. This amounts to

the fact that an adversary with arbitrary auxiliary information can know if c particular

participants submitted their information. We capture the privacy guarantee for such a case

with the next property.

Property 6.5 (Group Privacy). For a set of databases X and the set of noisy outputs Y, a

randomized algorithm M : X → Y is said to be (ϵ, δ)-LDP if ∀D,D′ ∈ X , s.t. |D−D′| ≤ c,

and ∀S ⊆ Y the following holds,

Pr[M(D) ∈ S] ≤ exp(ϵ · c) Pr[M(D′) ∈ S] + δ. (6.17)

The proof for this follows directly from Definition 6.7. Crucially, the property highlights

that the strength of the privacy guarantee drops linearly with the size of the group.

What is more, a differentially-private mechanism is also immune to post-processing.

This implies that irrespective of any operation an adversary performs over the output of

a DP mechanism, the privacy guarantees w.r.t. the indistinguishability of the databases

does not change.

Property 6.6 (Closure under Post-processing). Let M : ZR
+ → R be a randomized mecha-

nism that satisfies (ϵ, δ)-DP. Let f : R→ R′ be an arbitrary function. Then, foM : ZR
+ →

R′ is also (ϵ, δ)-DP.
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Proof. Given two adjacent databases |D −D′| ≤ 1 and the output space S ⊆ R′, consider

the following mapping: T = {r ∈ S|f(r) ∈ S}. Now, we have,

Pr(foM(D) ∈ S) = Pr(M(D) ∈ T )

≤ exp(ϵ) · Pr(M(D′) ∈ T ) (since M is (ϵ, δ)-DP)

exp(ϵ) · Pr(foM(D′) ∈ S).

That is, foM is also (ϵ, δ)-DP.

These properties are crucial for designing a DP mechanism. For e.g., consider generating

a DP ML model. As these models are generally released for public use, post-processing

property implies that the underlying privacy guarantees will not change irrespective of how

one used the ML model. We saw that a Laplace mechanism satisfies, ϵ-DP, if we replace

Laplace noise with Gaussian noise, it is shown to only satisfy (ϵ, δ)-DP. For instance, the

Gaussian mechanism for a function f : X → R and sensitivity Sf

M(D) = f(D) +N
(
0, S2

f · σ2
)

where N
(
0, S2

f · σ2
)

is the Gaussian distribution with mean 0 and standard deviation,

Sfσ. The above mechanism is shown to be (ϵ, δ)-DP if δ > 4
5 exp(−σϵ)

2/2 and ϵ < 1 [72,

Theorem 3.22].
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Chapter 7

FNNC: Fair Neural Network Classifier

In classification models, fairness can be ensured by solving a constrained op-

timization problem. We focus on fairness constraints like Disparate Impact,

Demographic Parity, and Equalized Odds, which are non-decomposable and

non-convex. Researchers define convex surrogates of the constraints and

then apply convex optimization frameworks to obtain fair classifiers. Surro-

gates serve as an upper bound to the actual constraints, and convexifying

fairness constraints is challenging.

We propose a neural network-based framework, FNNC, to achieve fairness

while maintaining high accuracy in classification. The above fairness con-

straints are included in the loss using Lagrangian multipliers. We prove

bounds on generalization errors for the constrained losses which asymp-

totically go to zero. The network is optimized using two-step mini-batch

stochastic gradient descent. Our experiments show that FNNC performs as

well as the state-of-the-art, if not better. The experimental evidence sup-

plements our theoretical guarantees. In summary, we have an automated

solution to achieve fairness in classification, which is easily extendable to

many fairness constraints.
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7.1 Introduction

In recent years machine learning models have been popularized as prediction models

to supplement the process of decision-making. Such models are used for criminal risk

assessment, credit approvals, online advertisements. These machine learning models un-

knowingly introduce a societal bias through their predictions [25, 30, 53]. E.g., ProPublica

conducted its study of the risk assessment tool, which was widely used by the judiciary

system in the USA. ProPublica observed that the risk values for recidivism estimated for

African-American defendants were on average higher than for Caucasian defendants. Since

then, researchers started looking at fairness in machine learning, especially quantifying the

notion of fairness and achieving it.

Broadly fairness measures are divided into two categories. Individual fairness [71],

requires similar decision outcomes for two individuals belonging to two different groups

concerning the sensitive feature and yet sharing similar non-sensitive features. The other

notion is of group fairness [202], which requires different sensitive groups to receive benefi-

cial outcomes in similar proportions. We are concerned with group fairness and specifically:

Demographic Parity (DP) [71], Disparate Impact (DI) [77] and Equalized odds (EO) [105].

DP ensures that the fraction of the positive outcome is the same for all the groups. DI

ensures the ratio of the fractions is above a threshold. However, both constraints fail when

the base rate itself differs, hence EO is the more useful notion of fairness, which ensures

an even distribution of false-positive rates and false-negative rates among the groups. All

these definitions make sense only when the classifier is well-calibrated. That is, if a classi-

fier predicts an instance belongs to a class with a probability of 0.8, then there should be

80% of samples belonging to that class. Chouldechova 2017 [53] and Pleiss et al. 2017 [165]

show that it is impossible to achieve EO with calibration unless we have perfect classifiers.

Hence, the major challenge is to devise an algorithm that guarantees the best predictive

accuracy while satisfying the fairness constraints to a certain degree.
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Towards designing such algorithms, one approach is pre-processing the data. The meth-

ods under this approach treat the classifier as a black box and focus on learning fair rep-

resentations. The fair representations learned may not result in optimal accuracy. The

other approach models achieving fairness as constrained optimization [36, 122, 199]. Wu

et al. 2018 [199] have provided a generalized convex optimization framework with theoreti-

cal guarantees. The fairness constraints are upper-bounded by convex surrogate functions

and then directly incorporated into classification models.

There are several limitations in the existing approaches which ensure fairness in clas-

sification models. Surrogate constraints may not be a reasonable estimate of the original

fairness constraint. Besides, coming up with good surrogate losses for the different defini-

tions of fairness is challenging. In this work, we study how to achieve fairness in classifi-

cation. In doing so, we do not aim to propose a new fairness measure or new optimization

technique. As opposed to the above approaches, we propose to use neural networks for

implementing non-convex complex measures like DP, DI, or EO. The network serves as a

simple classification model that achieves fairness. One need not define surrogates or do

rigorous analysis to design the model. Mainly, it is adaptable to any definition of fairness.

Typically, one cannot evaluate fairness measures per sample as these measures make

sense only when calculated across a batch, which contains data points from all the sensitive

groups. Given that at every iteration, the network processes mini-batch of data, we can

approximate the fairness measure given an appropriate batch size. Hence, we usemini-batch

stochastic gradient descent (SGD) for optimizing the network. We empirically find that it

is possible to train a network using the Lagrangian Multiplier Method, which ensures these

constraints and achieves accuracy at par with the other complex frameworks. Likewise, it

is also possible to incorporate other complex measures like F1-score, H-mean loss, and Q-

mean loss,– not related to fairness. We have included an experiment on training a network

to minimize Q-mean loss with DP as a constraint.
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Our Contribution.

i) We propose to design a fair neural network classifier (FNNC) to achieve fairness in

classification. ii) We provide generalization bounds for the different losses and fairness

constraints DP and EO (Theorem 7.3) in FNNC. iii) We show that, in some instances, it

may be difficult to approximate DI constraint by another surrogate DI constraint (Theorem

7.4). iv) We empirically show that FNNC can achieve the state-of-the-art performance, if

not better.

7.2 Existing Approaches

Zemel et al. 2013 [202] discuss DP, EO, and DI are a few of its types. It is a major

challenge to enforce these in any general machine-learning framework. We discuss the

following approaches that deal with fair classification (elaborately discussed in Chapter 6)

Pre-Processing. The first body of work focuses on pre-processing i.e., coming up with

fair representations as opposed to fair classification e.g., [71, 77, 119]. Neural networks

have been extensively used in such pursuits. E.g., Louizos et al. 2015 [131] gives a method

for learning fair representations with a variational auto-encoder by using maximum mean

discrepancies between the two sensitive groups. In [31, 74, 132], the authors explore the

notion of adversarially learning a classifier that achieves DP, EO or DI.

Surrogate Loss. The second approach focuses on analytically designing convex surrogates

for fairness definitions. In [27, 45, 122], the authors introduce penalty functions to penalize

unfairness. In [36, 199] the authors give a generalized convex framework that incorporates

all possible surrogates and gives appropriate bounds. Zhang et al. 2018 [203] uses neural

network-based adversarial learning, which attempts to predict the sensitive attribute based

on the classifier output, to learn an equal opportunity classifier.

Reductionist Approaches. The third is the reductionist approach, in which the task

of fair classification is reduced to a sequence of cost-sensitive classification [152], and [5]
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which can then be solved by a standard classifier. Agarwal et al. 2018 [5] allows for fairness

definitions that can be characterized as linear inequalities under conditional moments like

DP and EO (DI does not qualify for the same). FNNC does not have such restrictions

and hence performs reasonably for DI as well. We are easily able to include complex and

non-decomposable loss functions like Q-mean loss, whereas Agarwal et al. 2018 [5] aims to

improve only the accuracy of the model.

7.3 Preliminaries

In this section, we introduce the notation used and state the definitions of the fairness

measures and the performance measures that we have analyzed.

We consider a binary classification problem with no assumption on the instance space.

X is our (d-dimensional) instance space s.t. X ∈ Rd and output space Y ∈ {0, 1}. We also

have a protected attribute A associated with each individual instance, which for example

could be age, sex or caste information. For each a ∈ A, a could be a particular category

of the sensitive attribute like male or female.

Definition 7.1 (Demographic Parity (DP)). A classifier h satisfies demographic parity

under a distribution over (X,A, Y ) if its predictions h(X) is independent of the protected

attribute A. That is, ∀a ∈ A and p ∈ {0, 1}

P[h(X) = p|A = a] = P[h(X) = p]

Given that p ∈ {0, 1}, we can say ∀ a

E[h(X)|A = a] = E[h(X)]

Definition 7.2 (Equalized Odds (EO)). A classifier h satisfies equalized odds under a

distribution over (X,A, Y ) if its predictions h(X) are independent of the protected attribute

A given the label Y . That is, ∀a ∈ A, p ∈ {0, 1} and y ∈ Y

P[h(X) = p|A = a, Y = y] = P[h(X) = p|Y = y]
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Given that p ∈ {0, 1}, we can say ∀ a, y

E[h(X)|A = a, Y = y] = E[h(X)|Y = y]

Definition 7.3 (Disparate Impact (DI)). The outcomes of a classifier h disproportionately

hurt people with certain sensitive attributes. The following is the definition for completely

removing DI,

min

(
P(h(x) > 0|a = 1)

P(h(x) > 0|a = 0)
,
P(h(x) > 0|a = 0)

P(h(x) > 0|a = 1)

)
= 1

Pleiss et al. 2017 [165] strongly claims that the above mentioned measures are rendered

useless if the classifier is not calibrated, in which case the probability estimate p of the

classifier could carry different meanings for the different groups.

Definition 7.4 (Calibration). A classifier h is perfectly calibrated if ∀ p ∈ [0, 1], P(y =

1|h(x) = p) = p.

Given the definition, the authors prove the following impossibility of calibration with

equalized odds.

Theorem 7.1 (Impossibility Result (Pleiss et al. 2017 [165])). Let h1, h2 be two classifiers

for groups a1 and a2 ∈ A with P(y = 1|a1 = 1) ̸= P(y = 1|a2 = 1). Then h1 and h2

satisfy the equalized odds and calibration constraints if and only if h1 and h2 are perfect

predictors.

Given the above result, we cannot guarantee to ensure the fairness constraints perfectly,

hence we relax the conditions while setting up our optimization problem as follows,

7.3.1 Problem Framework

We have used the cross-entropy loss or the Q-mean loss as our performance measures,

defined in the next section. We denote this loss by l(hθ(X), Y ) parameterized by θ, the

weights of the network. Our aim is to minimize the loss under the additional constraints of
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fairness. Below we state the ϵ-relaxed fairness constraints that we implement in our model.

∀ a, y,

DP : |E[h(X = x)|A = a]− E[h(X = x)]| ≤ ϵ (7.1)

EO : |E[h(X = x)|A = a, Y = y]− E[h(X = x)|Y = y]| ≤ ϵ (7.2)

DI: It is not possible to completely remove DI but one has to ensure least possible DI

specified by the p%− rule,

min

(
P(h(x) > 0|a = 1)

P(h(x) > 0|a = 0)
,
P(h(x) > 0|a = 0)

P(h(x) > 0|a = 1)

)
≥ p

100
(7.3)

We have the following generic optimization framework. Both the loss and the constraints

can be replaced according to the need,

min
θ

lθ

s.t. Eq 7.1 or 7.2 or 7.3

(7.4)

7.4 Proposed Framework: FNNC

In this section, we discuss how we use the neural network for solving the optimization

problem framework in Equation 7.4.

7.4.1 Network Architecture

Our network is a two-layered feed-forward neural network. We only consider binary

classification in all our experiments, although this method and the corresponding definitions

are easily extendable to multiple classes. Let hθ(.) be the function parameterized by θ that

the neural network learns. In the last layer of this network, we have a softmax function
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which gives the prediction probability pi, where pi is the predicted probability that the ith

data sample belongs to one class and 1 − pi is the probability for that it belongs to the

other. Hence p := hθ(.). We use the output probabilities to define the loss and the fairness

measure.

7.4.2 Loss Function and Optimizer

Given the constrained optimization defined by Equation 7.4, we use the Lagrangian

Multiplier method to incorporate the constraints within a single overall loss. Since the

constraints are non-convex, we can only guarantee that the optimizer converges to local

minima. Nevertheless, our experiments show that the model has at par or better perfor-

mance compared to the existing approaches. We now describe the different loss functions

that we have used in the experiments.

Fairness Constraints with Cross Entropy Loss

The fairness constraint DP as in the Def. 7.1 is given by ∀a ∈ A,

E[h(X = x)|A = a] = E[h(X = x)]

E[h(X = x)|A = 1− a] = E[h(X = x)]

∴ E[h(X = x)|A = a] = E[h(X = x)|A = 1− a]

Hence the constraint for a fixed batch size S of samples given by zS = (h(xS), aS , yS)

and pi = h(xi) ∈ [0, 1], can be defined as follows,

constDP (zS) =

∣∣∣∣∑S
i=1 piai∑S
i=1 ai

−
∑S

i=1 pi(1− ai)∑S
i=1 1− ai

∣∣∣∣
For the next constraint EO, we first define the difference in false-positive rate between

the two sensitive attributes,

fpr(zS) =

∣∣∣∣∑S
i=1 pi(1− yi)ai∑S

i=1 ai
−
∑S

i=1 pi(1− yi)(1− ai)∑S
i=1 1− ai

∣∣∣∣
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The difference in false-negative rate between the two sensitive attributes,

fnr(zS) =

∣∣∣∣∑S
i=1(1− pi)yiai∑S

i=1 ai
−
∑S

i=1(1− pi)yi(1− ai)∑S
i=1 1− ai

∣∣∣∣
Following a similar argument as before the empirical version of EO as defined by Equation

7.2 and also used by Madras et al. 2018 [132] in the experiments is,

constEO(zS) = fpr + fnr

EO as defined in [5] is,

constEO(zS) = max{fpr, fnr}

Empirical version of DI for a batch of S samples as defined in Equation 7.3 as a constraint

for binary classes is given by,

constDI(zS) = −min

( ∑S
i=1 aipi∑S
i=1 ai∑S

i=1(1−ai)pi∑S
i=1 1−ai

,

∑S
i=1(1−ai)pi∑S

i=1 1−ai∑S
i=1 aipi∑S
i=1 ai

)

The tolerance for each constraint is given by ϵ, which gives the following inequality

constraints, for constk, ∀k ∈ {DP,EO,DI} the empirical loss for B batches of samples

with each batch having S samples denoted by zS ,

lk(h(X),A, Y ) :
1

B

B∑
l=1

constk(z
(l)
S )− ϵ ≤ 0 (7.5)

Specifically, for constDI(zS), ϵ = − p
100 , where p is typically set to 80.

For maximizing the prediction accuracy, we use cross-entropy loss which is defined as

follows for each sample,

lCE(h(xi), yi) = −yi log(pi)− (1− yi) log(1− pi)

The empirical loss,

l̂CE(h(X), Y ) =
1

SB

SB∑
i=1

lCE(h(xi), yi)

Hence, the overall loss by the Lagrangian method is,

LNN (h(X),A, Y ) = l̂CE(h(X), Y ) + λ lk(h(X),A, Y ) (7.6)
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Satisfying DP with Q-mean Loss

The loss due to DP as already defined before is given by Equation 7.5, when k = DP .

The empirical version of Q-mean loss for binary classes that is for ∀i ∈ {0, 1} is defined as

follows, √√√√1

2

1∑
i=0

(
1− P(h(x) = i, y = i)

P(y = i)

)2

(7.7)

The corresponding constraint is given by,

lQ(h(xS), yS) =
1√
2

√(
1−

∑S
i=1 yipi∑S
i=1 yi

)2

+

(
1−

∑S
i=1(1− yi)(1− pi)∑S

i=1(1− yi)

)2

The empirical Q-mean loss is,

l̂Q(h(X), Y ) =
1

B

B∑
l=1

lQ(h(x
(l)
S ), y

(l)
S )

Hence, the overall loss by the Lagrangian method is,

LNN (h(X),A, Y ) = l̂Q(h(X),Y ) + λ lDP (h(X),A, Y ) (7.8)

Lagrangian Multiplier Method

The combination of losses and constraints mentioned above are not exhaustive. The

generic definition of the loss could thus be given by, ∀k ∈ {DP,EO,DI}

LNN = lθ + λlk (7.9)

In the equation above, λ is the Lagrangian multiplier. Any combination can be tried by

changing lθ and lk as defined in Equation 7.6 and Equation 7.8. The overall optimization

of Equation 7.9 is as follows,

min
θ

max
λ

LNN
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The above optimization is carried out by performing SGD twice, once for minimizing the

loss w.r.t. θ and again for maximizing the loss w.r.t. λ at every iteration [73].

7.5 Theoretical Guarantees: Generalization Bounds

In this subsection, we provide uniform convergence bounds using Rademacher complex-

ity [174] for the loss functions and the constraints discussed above. We assume the class of

classifiers learned by the neural network has a finite capacity and we use covering numbers

to get this capacity. Given the class of neural network, H, for any h, ĥ ∈ H, h : Rd → [0, 1],

we define the following l∞ distance: maxx |h(x)− ĥ(x)|. N∞(H, µ) is the minimum number

of balls of radius µ required to cover H under the above distance for any µ > 0.

Theorem 7.2. For each of k ∈ {DP,EO}, the relation between the statistical estimate of

the constraint given batches of samples, zS, EzS [const
k(zS)], and the empirical estimate for

B batches of samples is listed below. Given that constk(zS) ≤ 1, for a fixed δ ∈ (0, 1) with

a probability at least 1 − δ over a draw of B batches of samples from (h(X),A, Y ), where

h ∈ H,

E
[
constk(zs)

]
≤ 1

B

B∑
ℓ=1

constk
(
z
(ℓ)
S

)
+ 2Ωk + C

√
log( 1δ )

B

ΩDP,EO = inf
µ>0

{
µ+

√
2 log (N∞(H, µ/2S))

B

}
Similarly for cross entropy loss lCE and Q- mean loss lQ we get the following bounds.

CE loss: consider h(x) = ϕ(f(x)) where ϕ is the softmax over the neural network output

f(x) where f ∈ F , assuming f(x) ≤ L

E[lCE(f(x), y)] ≤
1

B

B∑
i=1

lCE(f(xi), yi) + 2ΩL + CL

√
log( 1δ )

B

ΩL = inf
µ>0

{
µ+ L

√
2 log (N∞(F , µ/S))

B

}
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Q-mean loss:

E [lQ(h(xS), yS)] ≤
1

B

B∑
ℓ=1

lQ

(
h(x

(ℓ)
S ), yℓS

)
+ 2ΩQ + C

√
log( 1δ )

B

ΩQ = inf
µ>0

{
µ+

√
2 log (N∞(H, µ/S))

B

}
C is the distribution independent constant.

Proof. We first state the following lemma to prove the above theorem

Lemma 7.1. [26] Let S = {z1, . . . , zB} be a sample of i.i.d. from some distribution D

over Z. Then with probability at least 1− δ over a draw of S from D, for all f ∈ F ,

Ez∈D[f(z)] ≤
1

B

B∑
i=1

f(zi) + 2R̂B(F) + 4c

√
2 log(4/δ)

B

Given R̂B(F) the Rademacher complexity of F , the class of neural network, H, for any

h, ĥ ∈ H, h : Rd → [0, 1], we define the following l∞ distance:

max
x
|h(x)− ĥ(x)| (7.10)

Bounds for DP

Given a batch of samples zS = (h(xS), aS , yS) for a fixed batch size S and h ∈ H

constDP (zS) =

∣∣∣∣∑S
i=1 h(xi)ai∑S

i=1 ai
−
∑S

i=1 h(xi)(1− ai)∑S
i=1 1− ai

∣∣∣∣
Let us consider a class of DP functions defined on the class of H as follows,

DP = {constDP : (h(X),A, Y )→ R| constDP (zS) =∣∣∣∣∑S
i=1 h(xi)ai∑S

i=1 ai
−
∑S

i=1 h(xi)(1− ai)∑S
i=1 1− ai

∣∣∣∣
for some h ∈ H}
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Similar to N (H, µ) given by Equation 7.10 we define for DP. Define the l∞ distance as

max
zS
| constDP (zS)− ĉonst

DP
(zS)|

N∞(DP, µ) is the minimum number of balls of radius µ required to cover DP under

the above distance for any µ > 0. We apply Lemma 7.1 to the class of demographic parity

functions DP. Given a fixed batch size S, we have for any zS , constDP (zs) ≤ 1. By

definition of the covering number N∞(DP, µ) for any class constDP ∈ DP, there exists a

ĉonst
DP
∈ D̂P where |D̂P| ≤ N∞(DP, µ) such that maxzS |constDP (zs) − ĉonst

DP
| ≤ µ,

for a given µ ∈ (0, 1) Given B batches of samples where batch is of fixed size S

R̂B(DP) =
1

B
Eσ

[
sup

constDP

B∑
ℓ=1

σℓ · constDP (z
(ℓ)
S )

]

=
1

B
Eσ

[
sup

constDP

B∑
ℓ=1

σℓ · ĉonst
DP
(
z
(ℓ)
S

)]

+
1

B
Eσ

[
sup

constDP

B∑
ℓ=1

σℓ · constDP
(
z
(ℓ)
S

)
− ĉonst

DP
(
z
(ℓ)
S

)]

≤ 1

B
Eσ

[
sup

ĉonst
DP

B∑
ℓ=1

σℓ · ĉonst
DP
(
z
(ℓ)
S

)]
+

1

B
Eσ ∥ σ ∥1 µ

≤
√∑

ℓ

(
ĉonst

DP (
zℓS
))2√2 log (N∞(DP, µ))

B2
+ µ (By Massart’s Lemma)

≤
√

2 log (N∞(DP, µ))
B

+ µ

(7.11)

The last inequality is because,

√∑
ℓ

(
ĉonst

DP (
zℓS
))2
≤
√∑

ℓ

(
constDP

(
zℓS
)
+ µ

)2 ≤ √B
Lemma 7.2. N∞(DP, µ) ≤ N∞(H, µ/S)
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Proof. For any h, ĥ ∈ H such that for all x we get

|h(x)− ĥ(x)| ≤ µ/S (7.12)

We know that h(x) ∈ [0, 1] ∀h ∈ H. Now let us consider for the class of DP,

|constDP − ĉonst
DP
| =

∣∣∣∣∣
∣∣∣∣∣

S∑
i=1

h(xi)

{
ai∑
i ai
− 1− ai∑

i 1− ai

}∣∣∣∣∣−
∣∣∣∣∣

S∑
i=1

ĥ(xi)

{
ai∑
i ai
− 1− ai∑

i 1− ai

}∣∣∣∣∣
∣∣∣∣∣

≤

∣∣∣∣∣
S∑

i=1

h(xi)

{
ai∑
i ai
− 1− ai∑

i 1− ai

}
−

S∑
i=1

ĥ(xi)

{
ai∑
i ai
− 1− ai∑

i 1− ai

}∣∣∣∣∣
≤

∣∣∣∣∣
S∑

i=1

(h(xi)− ĥ(xi))

{
ai∑
i ai
− 1− ai∑

i 1− ai

}∣∣∣∣∣
≤

S∑
i=1

∣∣∣∣(h(xi)− ĥ(xi))

{
ai∑
i ai
− 1− ai∑

i 1− ai

}∣∣∣∣
≤

S∑
i=1

∣∣∣(h(xi)− ĥ(xi))
∣∣∣ ∣∣∣∣ ai∑

i ai
− 1− ai∑

i 1− ai

∣∣∣∣
≤

S∑
i=1

∣∣∣(h(xi)− ĥ(xi))
∣∣∣ As

∣∣∣∣ ai∑
i ai
− 1− ai∑

i 1− ai

∣∣∣∣ ≤ 1

≤ µ By Equation 7.12

Hence the lemma holds true.

Using the above Lemma 7.2, we can say that,

R̂B(DP) ≤
√

2 log (N∞(DP, µ))
B

+ µ ≤
√

2 log (N∞(H, µ/S))
B

+ µ

Hence applying the Lemma 7.1, we get

E
[
constDP (zs)

]
≤ 1

B

B∑
ℓ=1

constDP
(
z
(ℓ)
S

)
+2· inf

µ>0

{
µ+

√
2 log (N∞(H, µ/S))

B

}
+C

√
log(1/δ)

B

Bounds for EO

Given a fixed batch size S and zS = (h(xS), aS , yS),

fpr(zS) =

∣∣∣∣∑S
i=1 h(xi)(1− yi)ai∑S

i=1 ai
−
∑S

i=1 h(xi)(1− yi)(1− ai)∑S
i=1 1− ai

∣∣∣∣
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fnr(zS) =

∣∣∣∣∑S
i=1(1− h(xi))yiai∑S

i=1 ai
−
∑S

i=1(1− h(xi))yi(1− ai)∑S
i=1 1− ai

∣∣∣∣
constEO(zS) = fpr(zS) + fnr(zS)

As defined in [5] is,

constEO(zS) = max{fpr(zS), fnr(zS)} ≤ fpr(zS) + fnr(zS)

Let us consider a class of EO functions defined on the class of H as follows,

EO = {constEO : (h(X),A, Y )→ R| constEO(zS) =∣∣∣∣∑S
i=1 h(xi)(1− yi)ai∑S

i=1 ai
−
∑S

i=1 h(xi)(1− yi)(1− ai)∑S
i=1 1− ai

∣∣∣∣
+

∣∣∣∣∑S
i=1(1− h(xi))yiai∑S

i=1 ai
−
∑S

i=1(1− h(xi))yi(1− ai)∑S
i=1 1− ai

∣∣∣∣
for some h ∈ H}

Given l∞ distance as

max
zS
| constEO(zS)− ĉonst

EO
(zS)|

N∞(EO, µ) is the minimum number of balls of radius µ required to cover EO under the

above distance. We apply Lemma 7.1 to the class of equalized odds class of functions EO.

Given a fixed batch size S, we have for any xS , const
EO(xs) ≤ 1. By definition of the

covering number N∞(EO, µ) for any class constEO ∈ EO, there exists a ĉonst
EO
∈ ˆEO

where | ˆEO| ≤ N∞(EO, µ) such that maxxS |constEO(xS) − ĉonst
EO
| ≤ µ, for a given

µ ∈ (0, 1). Given B batches of samples where batch is of fixed size S, similar to DP we

can show that,

R̂B(EO) ≤
√

2 log (N∞(EO, µ))
B

+ µ (7.13)
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Lemma 7.3. N∞(EO, µ) ≤ N∞(H, µ/2S)

Proof. For any h, ĥ ∈ H such that for all xS we get

|h(xi)− ĥ(xi)| ≤ µ/2S (7.14)

We know that h(xi) ∈ [0, 1] ∀h ∈ H. Now let us consider for the class of EO,

|constEO − ĉonst
EO
|

=

∣∣∣∣∣∣∣∣∑S
i=1 h(xi)(1− yi)ai∑S

i=1 ai
−
∑S

i=1 h(xi)(1− yi)(1− ai)∑S
i=1 1− ai

∣∣∣∣
+

∣∣∣∣∑S
i=1(1− h(xi))yiai∑S

i=1 ai
−
∑S

i=1(1− h(xi))yi(1− ai)∑S
i=1 1− ai

∣∣∣∣
−
∣∣∣∣∑S

i=1 ĥ(xi)(1− yi)ai∑S
i=1 ai

−
∑S

i=1 ĥ(xi)(1− yi)(1− ai)∑S
i=1 1− ai

∣∣∣∣
−
∣∣∣∣∑S

i=1(1− ĥ(xi))yiai∑S
i=1 ai

−
∑S

i=1(1− ĥ(xi))yi(1− ai)∑S
i=1 1− ai

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣
S∑

i=1

h(xi)

{
ai(1− yi)∑

i ai
− (1− ai)(1− yi)∑

i 1− ai

}
−

S∑
i=1

ĥ(xi)

{
ai(1− yi)∑

i ai
− (1− ai)(1− yi)∑

i 1− ai

}∣∣∣∣∣
+

∣∣∣∣∣
S∑

i=1

(1− h(xi))

{
ai(1− yi)∑

i ai
− (1− ai)(1− yi)∑

i 1− ai

}
−

S∑
i=1

(1− ĥ(xi))

{
ai(1− yi)∑

i ai
− (1− ai)(1− yi)∑

i 1− ai

}∣∣∣∣∣
≤

∣∣∣∣∣
S∑

i=1

(h(xi)− h(x̂i))

{
ai(1− yi)∑

i ai
− (1− ai)(1− yi)∑

i 1− ai

}∣∣∣∣∣
+

∣∣∣∣∣
S∑

i=1

(h(x̂i)− h(xi))

{
ai(1− yi)∑

i ai
− (1− ai)(1− yi)∑

i 1− ai

}∣∣∣∣∣
≤

S∑
i=1

2

∣∣∣∣(h(xi)− h(x̂i))

{
ai(1− yi)∑

i ai
− (1− ai)(1− yi)∑

i 1− ai

}∣∣∣∣
≤

S∑
i=1

2 |(h(xi)− h(x̂i))|
∣∣∣∣ai(1− yi)∑

i ai
− (1− ai)(1− yi)∑

i 1− ai

∣∣∣∣
≤

S∑
i=1

2 |(h(xi)− h(x̂i))| As

∣∣∣∣ai(1− yi)∑
i ai

− (1− ai)(1− yi)∑
i 1− ai

∣∣∣∣ ≤ 1

≤µ By Equation 7.14
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Using the above Lemma 7.3, we can say that,

R̂B(EO) ≤
√

2 log (N∞(EO, µ))
B

+ µ ≤
√

2 log (N∞(H, µ/2S))
B

+ µ

Hence applying the Lemma 7.1, we get

E
[
constEO(zS)

]
≤ 1

B

B∑
ℓ=1

constEO
(
z
(ℓ)
S

)
+2· inf

µ>0

{
µ+

√
2 log (N∞(H, µ/2S))

B

}
+C

√
log(1/δ)

B

Bounds for Cross Entropy

The loss for a sample i is given by,

lCE(h(xi), yi) = −yi log(h(xi))− (1− yi) log(1− h(xi))

We have h(xi) = ϕ(f(xi)) where ϕ is the softmax over the neural network output f(xi)

where f ∈ F

Lemma 7.4. [129] Let H be a bounded real-valued function space from some space Z and

z1, . . . , zn ∈ Z. Let ξ : R→ R be a Lipschitz with constant L and ξ(0) = 0. Then, we have

Eσ sup
h∈H

1

n

∑
i∈[n]

σiξ (h (zi)) ≤ LEσ sup
h∈H

1

n

∑
i∈[n]

σih (zi)

Lemma 7.5. lCE(., .) is L Lipschitz with first argument hence,

R̂L(CE ◦ F) ≤ R̂L(F)

where CE = {lCE(f(x), y)| ∀f ∈ F}

Proof. Given that

lCE(f(x), y) = yi log(y/ϕ(f(xi))) + (1− yi) log((1− yi)/(1− ϕ(f(xi))))

It is easy to find that ∂lCE(f(x), y)/∂f(x) ∈ [−1, 1]m and thus lCE is a 1-Lipschitz

function with its first argument. Given l′CE(., .) = lCE(., .)− lCE(0, .) and we can get that

R̂(lCE ◦ f) = R̂(l′CE ◦ f), then we apply Lemma 7.4 to l′CE and conclude the proof.
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From Lemma 7.1 and 7.5, we obtain the following,

Ex∈X [lCE(f(x), y)] ≤
1

B

B∑
i=1

lCE(f(xi), yi) + 2R̂B(F) + 4c

√
2 log(4/δ)

B
(7.15)

From the above Equation 7.15 we need to compute R̂L(F). Given any sample x, f(x) ≤

L. By definition of the covering number N∞(F , µ) for any class f ∈ F , there exists a f̂ ∈ F̂

where |F̂ | ≤ N∞(F , µ) such that maxx |f(x) − f̂ | ≤ µ, for a given µ ∈ (0, 1). Given B

samples,

R̂B(F) =
1

B
Eσ

[
sup
f∈F

B∑
ℓ=1

σℓ · f(x(ℓ))

]

=
1

B
Eσ

[
sup
f∈F

B∑
ℓ=1

σℓ · f̂
(
x(ℓ)
)]

+
1

B
Eσ

[
sup
f∈F

B∑
ℓ=1

σℓ · f
(
x
(ℓ)
S

)
− f̂

(
x(ℓ)
)]

≤ 1

B
Eσ

[
sup
f̂

B∑
ℓ=1

σℓ · f̂
(
x(ℓ)
)]

+
1

B
Eσ ∥ σ ∥1 µ

≤
√∑

ℓ

(
f̂
(
xℓS
))2√2 log (N∞(F , µ))

B2
+ µ (By Massart’s Lemma)

≤ L

√
2 log (N∞(F , µ))

B
+ µ

(7.16)

The last inequality is because,√∑
ℓ

(
f̂
(
xℓS
))2
≤
√∑

ℓ

(
f
(
xℓS
)
+ µ

)2 ≤ L
√
B

Hence,

R̂B(F) ≤ L

√
2 log (N∞(F , µ))

B
+ µ

Hence applying the Lemma 7.1, we get

E[lCE(f(x), y)] ≤
1

B

B∑
i=1

lCE(f(xi), yi)+2· inf
µ>0

{
µ+ L

√
2 log (N∞(F , µ/S))

B

}
+CL

√
log(1/δ)

B
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Bounds for Q-mean loss

Given batch of size S, having samples (xS , yS).

Here we prove for when the dataset has m different classes, but for us m = 2

lQ(h(xS), yS) =

√√√√ 1

m

m∑
j=1

(
1−

∑S
i=1 y

j
i h

j(xi)∑S
i=1 y

j
i

)2

Let us consider a class of Q functions defined on the class of H as follows,

Q = {lQ : (X,Y )→ R| lQ(xS) =√√√√ 1

m

m∑
j=1

(
1−

∑S
i=1 y

j
i h

j(xi)∑S
i=1 y

j
i

)2

for some h ∈ H}

Define the l∞,1 distance as

max
xS

∥ lQ(xS)− l̂Q(xS) ∥

N∞(Q, µ) is the minimum number of balls of radius µ required to cover Q under the above

distance.

Let us now apply the Lemma 7.1 to the class of functions Q. Given a fixed batch

size S, we have for any xS , yS , lQ(xS , yS) ≤ 1. By definition of the covering number

N∞(Q, µ) for any class lQ ∈ Q, there exists a l̂Q ∈ Q̂ where |Q̂| ≤ N∞(Q, µ) such that

max(xS ,yS) |lQ(xS , yS)− l̂Q(xS , yS)| ≤ µ, for a given µ ∈ (0, 1). Given B batches of samples

where batch is of fixed size S, similar to DP we can show that,

R̂B(Q) ≤
√

2 log (N∞(Q, µ))
B

+ µ (7.17)

Lemma 7.6. N∞(Q, µ) ≤ N∞(HS , µ/S)

Proof. We know that h(xi) ∈ [0, 1]m ∀h ∈ H. For any h, ĥ ∈ H such that for all xS we get,

the following l∞,1

∥ h(xi)− ĥ(xi) ∥≤ µ/S (7.18)
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Now let us consider for the class of Q,

|constQ − ĉonst
Q
| =

∣∣∣∣∣∣
√√√√ 1

m

m∑
j=1

(
1−

∑S
i=1 y

j
i h

j(xi)∑S
i=1 y

j
i

)2

−

√√√√ 1

m

m∑
j=1

(
1−

∑S
i=1 y

j
i ĥ

j(xi)∑S
i=1 y

j
i

)2
∣∣∣∣∣∣

≤ 1√
m

∣∣∣∣∣∣
√√√√ m∑

j=1

(
1−

∑S
i=1 y

j
i h

j(xi)∑S
i=1 y

j
i

)2

−

√√√√ m∑
j=1

(
1−

∑S
i=1 y

j
i ĥ

j(xi)∑S
i=1 y

j
i

)2
∣∣∣∣∣∣

≤ 1√
m

√√√√ m∑
j=1

∣∣∣∣∣
∑S

i=1 y
j
i ĥ

j(xi)∑S
i=1 y

j
i

−
∑S

i=1 y
j
i h

j(xi)∑S
i=1 y

j
i

∣∣∣∣∣
2

Triangle Inequality

≤ 1√
m

m∑
j=1

∣∣∣∣∣
∑S

i=1 y
j
i ĥ

j(xi)∑S
i=1 y

j
i

−
∑S

i=1 y
j
i h

j(xi)∑S
i=1 y

j
i

∣∣∣∣∣
≤ 1√

m

m∑
j=1

∣∣∣∣∣
S∑

i=1

yji (ĥ
j(xi)− hj(xi))

∣∣∣∣∣ As

S∑
i=1

yji ≥ 1

≤
S∑

i=1

m∑
j=1

∣∣∣yji (ĥj(xi)− hj(xi))
∣∣∣

≤
S∑

i=1

m∑
j=1

∣∣∣yji (ĥj(xi)− hj(xi))
∣∣∣

≤
S∑

i=1

∥ ĥj(xi)− hj(xi) ∥ As yji ≤ 1

≤ µ By Equation 7.18

Hence the lemma holds true.

Using the above Lemma 7.6, we can say that,

R̂B(Q) ≤
√

2 log (N∞(Q, µ))
B

+ µ ≤
√

2 log (N∞(H, µ/S))
B

+ µ

Hence applying the Lemma 7.1, we get

E [lQ(xS , yS)] ≤
1

B

B∑
ℓ=1

lQ

(
x
(ℓ)
S , y

(ℓ)
S

)
+2 · inf

µ>0

{
µ+

√
2 log (N∞(H, µ/S))

B

}
+C

√
log(1/δ)

B
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The theorem below gives the bounds for the covering numbers for the class of neural

networks that we use for our experiments

Theorem 7.3 (Dütting et al. 2017 [70]). For the network with R hidden layers, D param-

eters, and vector of all model parameters ∥ w ∥1≤W . Given that wl is bounded, the output

of the network is bounded by some constant L.

N∞(F , µ/S) = N∞(H, µ/S) ≤
⌈
DLS(2W )R+1

µ

⌉D
Hence, on choosing µ = 1√

B
we get,

ΩDP = ΩEO = ΩQ ≤ O

(√
RD

log(WBSDL)

B

)

ΩL = O

(
L

√
RD

log(WBSDL)

B

)

Proof. Using the following lemma we prove the Theorem 7.3

Lemma 7.7 (Dütting et al. 2017 [70]). Let Hk be a class of feed-forward neural networks

that maps an input vector x ∈ Rd to an output vector o ∈ R, with each layer l containing

Tl nodes and computing z 7→ ϕl(w
lz) where each wl ∈ RTl×Tl−1 and ϕl : RTl → [−L,+L]Tl.

Further let, for each network in Fk, let the parameters ∥ wl ∥1≤W and ∥ ϕl(s)−ϕl(s
′) ∥≤

Φ ∥ s− s′ ∥ for any s, s′ ∈ RTl−1

N∞(Fk, µ) ≤
⌈
2LD2W (2ΦW )k

µ

⌉D
where D is the total number of parameters

The architecture that we use are 2 layered feed-forward neural networks with at most

K hidden nodes per layer. For each layer l we assume, the ∥ wl ∥1≤ W . We know that

ReLU activation and softmax activation are 1-Lipschitz [70]. Given that the input X has
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d dimensions and wl is bounded, the output of ReLU is bounded by some constant L. By

applying Lemma 7.7 with Φ = 1,

N∞(H, µ/S) ≤
⌈
DLS(2W )R+1

µ

⌉D
Hence, on choosing µ = 1√

B
we get,

Ω ≤ 1√
B

+

√
2 log(⌈(DLS(2W )R+1B1/2⌉D)

B

≤ O

(√
RD log(WBSDL)

B

)

where Ω = {ΩDP ,ΩEO,ΩQ}, similarly proof works for ΩL

Theorem 7.4. Given h(x) : X → [0, 1], for any ĥ(x) : X → [0, 1] such that h(x) ̸= ĥ(x),

we cannot define a ĉonstDI : (ĥ(X),A, Y ) → R for a constDI : (h(X),A, Y ) → R such

that |constDI − ĉonstDI | ≤ γ is guaranteed, for any γ > 0. Thus, N∞(DI, µ) is unbounded

for any µ > 0 where DI is set of all possible constDI .

Proof. We prove the above theorem using the following lemma,

Lemma 7.8. Given a, b ≥ 0, |min(a, 1a)−min(b, 1b )| ≤ |a− b|

Proof. It trivially holds true when,

• CASE 1: min(a, 1a) = a, min(b, 1b ) = b

• CASE 2: min(a, 1a) =
1
a , min(b, 1b ) = b

Let us consider the following cases,

• CASE 3: min(a, 1a) = a, min(b, 1b ) =
1
b

We know that a ≤ 1 hence, 2a ≤ b + 1
b which gives that a − 1

b ≤ b − a. for this case

a− b ≤ a− 1
b , hence |a−

1
b | ≤ |a− b|
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• CASE 4: min(a, 1a) =
1
a , min(b, 1b ) =

1
b

In this case | 1a −
1
b | ≤ |

b−a
ab | ≤ |a− b| as a, b ≥ 1

Using the above lemma we prove the Theorem 7.4, For any h, ĥ ∈ H such that for all

xS we get,

|h(xi)− ĥ(xi)| ≤ µ (7.19)

We assume that, S = 100,
∑S

i=1 ai = 50 and
∑S

i=1 1− ai = 50, for ai = 1, ĥ(x) = 1 and

h(x) = 1. For ai = 0, ĥ(x) = µ and h(x) = δ where δ ∈ (0, 1) s.t |µ − δ| ≤ µ. Now let us

consider for the class of DI,

|constDI − ĉonst
DI
| =
∣∣∣∣min

( ∑S
i=1 aih(xi)∑S

i=1 ai∑S
i=1(1−ai)h(xi)∑S

i=1 1−ai

,

∑S
i=1(1−ai)h(xi)∑S

i=1 1−ai∑S
i=1 aih(xi)∑S

i=1 ai

)

−min

( ∑S
i=1 aiĥ(xi)∑S

i=1 ai∑S
i=1(1−ai)ĥ(xi)∑S

i=1 1−ai

,

∑S
i=1(1−ai)ĥ(xi)∑S

i=1 1−ai∑S
i=1 aiĥ(xi)∑S

i=1 ai

)∣∣∣∣
≤
∣∣∣∣

∑S
i=1 aih(xi)∑S

i=1 ai∑S
i=1(1−ai)h(xi)∑S

i=1 1−ai

−

∑S
i=1 aiĥ(xi)∑S

i=1 ai∑S
i=1(1−ai)ĥ(xi)∑S

i=1 1−ai

∣∣∣∣ By Lemma 7.8

≤
∣∣∣∣∑S

i=1(1− ai)∑S
i=1 ai

∑S
i=1 aih(xi)∑S

i=1(1− ai)h(xi)
−
∑S

i=1(1− ai)∑S
i=1 ai

∑S
i=1 aiĥ(xi)∑S

i=1(1− ai)ĥ(xi)

∣∣∣∣
≤
∣∣∣∣∑S

i=1(1− ai)∑S
i=1 ai

( ∑S
i=1 aih(xi)∑S

i=1(1− ai)h(xi)
−

∑S
i=1 aiĥ(xi)∑S

i=1(1− ai)ĥ(xi)

)∣∣∣∣
≤
∣∣∣∣ 5050δ − 50

50µ

∣∣∣∣
≤
∣∣∣∣1δ − 1

µ

∣∣∣∣

Given a fixed µ, we can have an arbitrarily small δ such that the above becomes unbounded,

hence the theorem follows.
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We emphasize that, Theorem 7.4 indicates that if we approximate DI by a surrogate

constraint, however close the learnt classifier is to a desired classifier, the actual DI con-

straint may get unbounded under specific instances. That is, even two close classifiers (i.e.,

|h(x)−ĥ(x)| < µ for any µ ∈ (0, 1)) may have arbitrarily different DI. For our problem, due

to this negative results, we cannot give generalization guarantees by using N∞(DI, µ) as

an upper bound. The few cases where, DI becomes unbounded may not occur in practice

as we observe in our experiments that DI results are also comparable.

While training the network, in the loss we use the ϵ-relaxed fairness constraints as

defined in Equation 7.5. We believe that, given the above generalization bounds for the

constraints, the trained model will be ϵ-fair with the same bounds.

7.6 Implementation Details and Experimental Analysis

In this section, we discuss the network parameters and summarize the results. The

architecture that we used is a simple two-layered feed-forward network. The number of

hidden neurons in both the layers was one of the following (100, 50), (200, 100), (500, 100).

As fairness constraint has no meaning for a single sample, SGD optimizer cannot be used.

Hence we use batch sampling. We fix the batch size to be either 1000 or 500 depending on

the dataset, to get proper estimates of the loss while training. It is to be noted that batch

processing is mandatory for this network to be trained efficiently. For training, we have

used the Adam Optimizer with a learning rate of 0.01 or 0.001 and the training typically

continues for a maximum of 5000 epochs for each experiment before convergence. The

results are averaged over 5-fold cross-validation performance on the data.
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Performance across Datasets

We have conducted experiments on the six most common datasets used in fairness

domain. In Adult, Default, and German dataset, we use gender as the sensitive attribute

while predicting income, crime rate, and quality of the customer, respectively, in each of

the datasets. In Default and Compass datasets that we used, the race was considered as

the sensitive attribute while predicting default payee and recidivism respectively. In the

Bank dataset, age is the sensitive attribute while predicting the income of the individual.

In Figure 7.1a we observe the inherent biases corresponding to each fairness measure

within the datasets considered. In order to obtain the values, we set λ = 0 in Equation

7.9 while training. We compare the baseline accuracy, that is obtained by setting λ = 0,

and accuracy using FNNC. In Figure 7.1b, we observe a drop in accuracy when the model

is trained to limit DP violations within 0.01, i.e., ϵ = 0.01. There is a significant drop

in the accuracy of the Crimes dataset, where the DP is violated the most. Similarly, in

Figure 7.1c and Figure 7.1d, we study the effect of training the models to limit EO and DI,

respectively. We observe that the drop in accuracy is more for datasets that are inherently

more biased. In the following section, we compare with other works and all the results are

mostly reported on Adult and Compass dataset.

Comparative Results

In this subsection, we compare our results with related work.

• Bilal Zafar et al. 2015 [36]: In this work, the authors propose C-SVM and C-LR

to maintain DI while maximizing accuracy. We compare our results with theirs on

Adult and bank datasets as observed in the Figure 7.2. We can see that FNNC

obtains higher accuracy for ensuring p% DI rule for upto p = 80, for p > 80, the

accuracy reduces by 2 %. For obtaining the results we train our network using the

loss given in Equation 7.5 with constDI .
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(a) Inherent Bias (b) DP

(c) EO (d) DI

Figure 7.1: Comparison across datasets

Figure 7.2: Accuracy vs p%−rule comparison of results with Zafar et al. on Adult dataset

in the left subplot and Bank dataset in the right subplot
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Figure 7.3: Accuracy vs ϵ (ϵ is tolerance for DP and EO respectively) and compare with

Madras et al. on Adult dataset

Female Male

Zhang et al. 2018 [203] FPR 0.0647 0.0701

FNR 0.4458 0.4349

FNNC FPR 0.1228 0.1132

FNR 0.0797 0.0814

Table 7.1: False-Positive Rate (FPR) and False-Negative Rate (FNR) for income prediction

for the two sex groups in Adult dataset

• Madras et al. 2018 [132]: In this work, the authors propose LAFTR to ensure DP

and EO while maximizing accuracy on Adult dataset. We have compared our results

with theirs in Figure 7.3. For this, we have used loss defined in Equation 7.5 with

constDP , constEO.

• Zhang et al. 2018 [203]: The authors have results for EO on Adult Dataset as can be

found in Table 7.1. Less violation of EO implies that the FPR and FNR values are

almost same across different attributes. We get FPR (female) 0.1228 ∼ FPR (male)

0.1132 and FNR values for female and male are 0.0797 ∼ 0.0814. The accuracy of
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Figure 7.4: Compass dataset: The FPR and FNR is comparable across race in FNNC as

observed in the bottom left and right pie charts

the classifier remains at 85%. Similarly, we have experiments on Compass dataset

and compare FNNC with the baseline (trained only for accuracy) in Figure 7.4

• Agarwal et al. 2018 [5]: We compare our results with theirs on Adult and Compass

Dataset both for DP and EO as given in Figure 7.5. On observing the plots we

find our performance is better for Compass dataset but worse for Adult dataset. The

violation of EO in Compass dataset is less compared to the Adult dataset as observed

in Figure 7.1a. Hence, the cost of maintaining fairness is higher in Adult dataset.

We can observe in Figs. 7.2 7.3, 7.5, that as the fairness constraint is too strict, i.e.,

ϵ is very small or p > 80, the accuracy reduce or error increases.

• Narasimhan 2018 [152]: The authors propose COCO and FRACO algorithm for

fractional convex losses with convex constraints. In Table 7.2, we have results for

Q-mean loss with DP as the constraint, whose loss function is given by Equation 7.8.
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Figure 7.5: We compare our results with Agarwal et al. 2018 [5] for Error rate vs (ϵ)

tolerance of DP in top row and EO in bottom row

Dataset ϵ FNNC COCO LinCon

adult 0.05 0.28 (0.027) 0.33 (0.035) 0.39 (0.027)

compass 0.20 0.32 (0.147) 0.41 (0.206) 0.57 (0.107)

crimes 0.20 0.28 (0.183) 0.32 (0.197) 0.52 (0.190)

default 0.05 0.29 (0.011) 0.37 (0.032) 0.54 (0.015)

Table 7.2: Q-mean loss s.t. DP is within ϵ (actual DP in parentheses)

In the table the values inside the parenthesis correspond to the DP obtained during

testing and the values outside the parenthesis is the Q-mean loss. We achieve lower

Q-mean loss when compared on 4 datasets while DP stays within ϵ.
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7.7 Conclusion

The results prove that neural networks perform remarkably well on complex and non-

convex measures using batch training. From the analysis on generalization bounds, in

Theorem 7.3, we see that, as B → ∞, Ω → 0. As the number of batches of samples

increase, the generalization error asymptotically reduces to zero. The batch size S that

we use during the training of the network is a crucial parameter. The generalization error

increases in
√
logS and also increasing S would reduce B (for fixed data-set). Thus, a

smaller value of S is preferable for better generalization. On the other hand, having a very

small S, would not give a good estimate of the fairness constraint itself. We may end up

with sub-optimal classifiers with high loss and less generalization error. Hence, the right

balance between S and B is needed to get optimal results.

We believe that the neural networks can learn optimal feature representation of the

data to ensure fairness while maintaining accuracy in an end-to-end manner. Hence, our

method, FNNC, combines the traditional approach which learns fair representations by pre-

processing the data and the approach for training a fair classifier using surrogate losses.

One could consider implementing other non-decomposable performance measures like F1-

score, Precision, recall, etc., using this approach, and we leave this for future work.
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Chapter 8

Towards Building Ethical AI – Fair and Private Classifier

Deep learning’s unprecedented success raises several ethical concerns rang-

ing from biased predictions to data privacy. Researchers tackle these issues

by introducing fairness metrics, or federated learning, or differential privacy.

A first, in this work we present an ethical federated learning model, incorpo-

rating all three measures simultaneously. Experiments on the Adult, Bank

and Dutch datasets highlight the resulting “empirical interplay” between

accuracy, fairness, and privacy.

8.1 Introduction

The success in DL is made possible due to the availability of big datasets. In recent

times, the data collection process is being outsourced – typically through crowdsourcing [1].

To build a DL system that uses big dataset, the system designer faces the following three

significant challenges: (C1) computational challenges of big datasets, (C2) ensuring predic-

tions that are socially fair towards all demographic groups even when trained on imbalanced

data and (C3) preserving the privacy of (often) delicate individual information present in

the dataset. This information comprises any individual information based on the training

data [1] and any information related to the sensitive attribute [189].
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For handling big datasets and towards addressing C1, researchers propose to distribute

the training process in DL. Such a proposal, referred to as Federated learning (FL) [139],

aims to increase the training efficiency by allowing ‘clients’ (or agents) to train individ-

ual models parallelly over their private dataset. The parallelization significantly reduces

the training time. A ‘central server,’ referred henceforth as an aggregator, receives the

individual models and arrives at an overall model through different heuristics [194].

Machine Learning models supplement human evaluations in applications like criminal

risk assessment, credit approvals, online advertisements. C2 relates to the fact that these

model’s decisions are known to discriminate towards certain demographic groups like gen-

der, age, or race [25, 30, 53]. Researchers have proposed notions of group-fairness that

bounds the differences in the model’s performance on different demographic groups [71,

105]. From [53], we note that achieving these perfectly unbiased model is impossible.

Hence various approaches minimize the bias while maintaining high accuracy [5, 36, 132,

158]. Invariably all these approaches require the information of the sensitive attribute.

Typically, the law regulations at various places prohibit using such attributes to develop

models such as EU General Data Protection Regulation prevents the collection of protected

user attributes. One must address the issue of discrimination while protecting the sensitive

attribute information of samples [189].

The aggregator in FL has no direct access to private data, which prima facie preserves

privacy. However, there exist several attacks that highlight the information leak in an FL

setting [146]. To concretely address C3, the existing literature either uses cryptographic

solution based mainly on complex Partial Homomorphic Encryption (PHE) or through

Differential Privacy (DP). While private FL solutions using PHE exist in the literature [76,

144, 200, 204], these suffer from computational inefficiency and post-processing attacks. To

this end, researchers focus on the rigorous privacy guarantees provided by a differentially-

private solution [154, 162, 177, 196].
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C1-C3 raise an important ethical challenge: We must design the training process such

that the predictions from the learned model are non-discriminatory and also preserve in-

formation regarding the training data and sensitive attributes. We aim to resolve this

challenge by incorporating appropriate ethical notions in an FL model. We focus on the

following notions.

Fairness.

• Demographic Parity (DemP): states that a model’s rate of prediction of the positive

outcome is equal across the demographic groups, i.e. independent of the sensitive at-

tribute [71]. Note that the base rate of the positive outcome may not be equal in the

training label itself. Therefore, DemP is a bias transforming fair metric [193]. It ensures

a fair outcome despite the bias in the existing data.

• Equalized Odds (EO): states that the false positive rates and false negative rates of a

model are equal across different groups or independent of the sensitive attribute [105].

This metric is defined under the assumption that the existing data is non-discriminatory

and hence bias preserving [193].

Privacy. As aforementioned, we quantify the privacy guarantees with the strong notion of

Differential Privacy (DP) [72]. As in the FL training process, each agent trains its model

using its data, and we focus on the stronger local-Differential Privacy (DP) model [72,

Chapter 12]. We look towards ensuring the privacy of the training data and the sensitive

attribute from an observant adversary. We consider the “black-box” model for our ad-

versary, i.e., our adversary has access to the trained model and can interact with it via

inputs and outputs. With this information, the adversary can perform model-inversion

attacks [79], among others.

In our FL setting, the aggregator acts as an adversary with access to each agent’s model.

Consequently, it suffices to provide rigorous DP guarantees for any possible information leak

to the aggregator towards designing a private FL system. The post-processing properties of
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DP will further preserve the DP guarantee for the training data and the sensitive attribute

from any other party.

Our Contributions

1. We present our novel framework FPFL: Fair and Private Federated Learning (Fig-

ure 8.2), which learns fair and accurate models while providing a strong local-DP guar-

antee.

2. We prove that FPFL provides the local-DP guarantee for both the training data and

the sensitive attribute(s) (Proposition 8.1).

3. Our experiments on the Adult, Bank and Dutch datasets show the three-way trade-off,

i.e., the simultaneous trade-off between fairness, privacy, and accuracy of an FL model

(Section 8.6).

8.2 Existing Approaches

Handful of works are present that simultaneously study fairness and privacy in ML [20,

60, 150, 189]. The authors in [20] show that privacy has a negative impact on a model’s

fairness; while Tran et al. 2020 [189] considers the notion of DemP with DP. What is more,

to the best of our knowledge, only [189] looks at the confidentiality of the sensitive attribute.

The critical difference in our work and [189] is that the authors there simultaneously train

the model to achieve accuracy and fairness while ensuring DP. They only add noise to the

gradients from the fairness loss to not comprise the resulting accuracy. The implication

is that their approach only preserves the sensitive attribute and not the training data. In

contrast, in FPFL, by decoupling the training process by first improving fairness followed

by ensuring DP, we end up not compromising on the accuracy while protecting both – the

sensitive attribute and the training data.

Concerning FL, researchers look at the trade-off between a model’s fairness and accu-

racy [67, 123] and between privacy and accuracy [154]; but not both simultaneously. In
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particular, Wei et al. 2020 [196] presents NbAFL, a differentially-private FL algorithm for

model aggregation. In NbAFL, the authors add noise to the model parameters at the

client’s side before and at the server’s side after aggregating. The authors argue that the

added noise will make the model resistant to an observing adversary who can learn sensitive

information during client-server communication(s); and present theoretical bounds for the

information leakage. However, their proposal adds noise to the trained model but not the

gradients and one can use efficient symmetric encryption schemes such as SSH [201] to en-

sure that an adversary observing the client-server communication does not gain any delicate

information. Their models also are susceptible to an information leak from gradients [11].

8.3 Preliminaries

In this work, we consider a binary classification problem with X as our (d-dimensional)

instance space, X ∈ Rd; and our output space as Y ∈ {0, 1}. We consider the input space

comprising a protected (sensitive) attribute A associated with each individual instance.

Such an attribute may represent sensitive information like age, gender or caste. Each

a ∈ A represents a particular category of the sensitive attribute like male or female.

8.3.1 Federated Learning Model

Federated Learning (FL) decentralizes the classical machine learning training process.

FL comprises two type of actors: (i) a set of agents A = {1, . . . ,m} where each agent i

owns a private dataset Xi
12; and (ii) an Aggregator. Each agent provides its model, trained

on its dataset, to the aggregator. The aggregator’s job then is to derive an overall model,

which is then communicated back to the agents. This back-and-forth process continues

until a model with sufficient accuracy is derived.

1Let |Xi| denote the cardinality of Xi with X =
∑

i |Xi|.
2We use the sub-script “i” when referring to a particular agent i and drop it when not referring to any

particular agent.
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More formally, at the start of an FL training, the aggregator communicates an initial,

often random, set of model parameters to the agents. Let us refer to the initial parameters

as θ0. At each timestep t each agent updates their individual parameters denoted by

θ(i,t), using their private datasets. These agents communicate the update parameters to

the aggregator, who derives an overall model through different heuristics [194]. We focus

on the weighted sum heuristics, i.e., the overall model parameters take the form θt =∑
j∈A

|Xj |
X · θ(j,t). We refer to the final overall model with θ∗, calculated at a time step T .

8.3.2 Fairness Metrics

Definition 8.1 (Demographic Parity (DemP)). A classifier h satisfies Demographic Parity

under a distribution over (X ,A,Y) if its predictions h(X ) is independent of the protected

attribute A. That is, ∀a ∈ A and p ∈ {0, 1},

Pr[h(X ) = p|A = a] = Pr[h(X ) = p]

Given that p ∈ {0, 1}, we have ∀a

E[h(X )|A = a] = E[h(X )].

Definition 8.2 (Equalized Odds (EO)). A classifier h satisfies Equalized Odds under a

distribution over (X ,A,Y) if its predictions h(X ) are independent of the protected attribute

A given the label Y. That is, ∀a ∈ A, p ∈ {0, 1} and y ∈ Y

Pr[h(X ) = p|A = a,Y = y] = Pr[h(X ) = p|Y = y]

Given that p ∈ {0, 1}, we can say ∀a, y

E[h(X )|A = a,Y = y] = E[h(X )|Y = y].

8.3.3 Differential Privacy

We now define local differential privacy in the context of our FL model.

217



Definition 8.3 (Local Differential Privacy (LDP) [72]). For an input set X and the set of

noisy outputs Y, a randomized algorithmM : X → Y is said to be (ϵ, δ)-LDP if ∀x, x′ ∈ X

and ∀y ∈ Y the following holds,

Pr[M(x) = y] ≤ exp(ϵ) Pr[M(x′) = y] + δ. (8.1)

Informally, LDP provides a statistical guarantee against an inference which the adver-

sary can make based on the output ofM. This guarantee is upper-bounded by ϵ, which is

often referred to as the privacy budget. ϵ is a metric of privacy loss defined as,

Ly
M(x)||M(x′) = ln

(
M(x) = y

M(x′) = y

)
. (8.2)

The privacy budget, ϵ, controls the trade-off between the quality (or, in our case, the

accuracy) of the output vis-a-vis the privacy guarantee. That is, there is no “free-dinner” –

lower the budget, better the privacy. However, at the cost of quality. The “δ” parameter in

Equation (8.1) allows for the violation of the upper-bound ϵ, but with a small probability.

DP-SGD: Moments Accountant

Differentially private ML solutions focus on preserving an individual’s privacy within a

dataset. Such privacy may be compromised during the training process or based on the

predictions of the trained model [79]. The most famous of such an approach is the DP-SGD

algorithm, introduced in [1]. In DP-SGD, the authors sanitize the gradients provided by

the Stochastic Gradient Descent (SGD) algorithm with Gaussian noise (N (0, σ2)). This

step aims at controlling the impact of the training data in the training process. The added

noise is calibrated to w.r.t. the metric sensitivity which is defined as the maximum possible

change inM’s output. More formally,M’s sensitivity ∆M is defined as:

∆M = max
x,x′
|M(x)−M(x′)|. (8.3)

The authors then present the moments accountant: a method which keeps track of

the increasing privacy budget through the algorithms training process. The specific ϵ, δ
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bounds for DP-SGD, given by the moments accountant, is provided in [1, Theorem 1]. For

completeness, we restate the bound as the following equation.

σ ≥ c2
q
√
T ln(1/δ)

ϵ
. (8.4)

(8.4) holds with constants c1 and c2 s.t. ϵ < c1q
2T and δ > 0. Here, q is the sampling

probability, i.e., q = B
|X | .

8.4 Proposed Framework: FPFL

In FPFL (Figure 8.1), we consider a classification problem. Each agent i deploys two

multi-layer neural networks (NNs) to learn the model parameters in each phase. The

training comprises of two phases: (i) In Phase 1, each agent privately trains a model on its

private dataset to learn a highly fair and accurate model; and (ii) In Phase 2: each agent

sends its trained model to the aggregator. That is, in FPFL, only the model trained in

Phase 2 is broadcasted to the aggregator. This process is akin to knowledge distillation

[109].

To enhance readability and to remain consistent with FL notations, we denote the model

parameters learned for Phase 1 with ϕ and Phase 2 with θ. Likewise, we represent the total

number of training steps in Phase 1 with T1, and for Phase 2, we use T2.

8.4.1 Phase 1: Fair-SGD

In this phase, we train the network to maximize accuracy while achieving the best

possible fairness on each agent’s private dataset. We adapt the Lagrangian Multiplier

method [158] to achieve a fair and accurate model. We denote the model for agent i as hϕi

with parameters ϕi. Briefly, the method trains a network with a unified loss that has two

components. The first component of the loss maximizes accuracy, i.e., the cross-entropy
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Figure 8.1: FPFL Model.

loss,

lCE(h
ϕi ,X ,Y) = E

(x,y)∼(X ,Y)
[− yi log(h

ϕi(x))− (1− y) log(1− hϕi(x))]

The second component of the loss is a specific fairness measure. For achieving DemP

(Definition 8.1), the loss function is given by,

lDemP (h
ϕi ,X ,A) = |E[hϕi(x)|A = a]− E[hϕi(x)]| (8.5)

For achieving EO (Definition 8.2), the corresponding loss function is,

lEO(h
ϕi ,X ,A,Y) = |E[hϕi(x)|A = a, y]− E[hϕi(x)|y]| (8.6)
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FPFL Framework

1. Initialization

2. Local Training Process. Each agent i ∈ A, invokes Algorithm 10

3. Local Training Process. Each agent i ∈ A, invokes Algorithm 11

4. Local training process ends

5. Model Aggregation. Aggregator computes and then broadcasts an overall

model

6. Agents re-initialize their local models with the overall model received

7. Repeat steps from 3 to 6 until a sufficient overall accuracy is reached

Figure 8.2: FPFL Framework

Hence, the overall loss from the Lagrangian method is,

L1(h
ϕi ,X ,A, Y ) = lCE + λlk, k ∈ {DemP,EO} (8.7)

In the equation above, λ ∈ R+ is the Lagrangian multiplier. The overall optimization is as

follows,

min
ϕ

max
λ

L1

Thus, each agent trains the Fair-SGD model hϕi to obtain the best accuracy w.r.t. a given

fairness metric. The formal algorithm for this phase is presented in Algorithm 10.

8.4.2 Phase 2: DP-SGD

In this phase, the agents train a model that is communicated with the aggregator. This

model denoted by hθi is trained by each agent i to learn the predictions of its own Fair-SGD
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model (hϕi) from Phase 1. The loss function is given by,

L2(h
θi , hϕi) = E

x∼X
[−hϕi(x) log(hθi(x))− (1− hϕi(x)) log(1− hϕi(x))] (8.8)

To preserve the privacy of training data and sensitive attributes, we use the local version

of (ϵ, δ)-DP (Definition 8.3). In particular, we deploy the known DP-SGD algorithm [1,

Algorithm 1]. In DP-SGD, the privacy of the training data is preserved by sanitizing the

gradients provided by SGD with Gaussian noise (N (0, σ2)). This step aims at controlling

the impact of the training data in the training process.

Given that the learnt model hθi , mimics hϕi , the model is reasonably fair and accurate.

For completeness, the formal algorithm for this phase is presented in Algorithm 11.

Algorithm 10 Fair-SGD for an Agent i

Input: Training dataset Xi = {x1, . . . , xn}, Loss function L1(·) as defined in (8.7).

Hyperparameters: learning rate η, batch size B, sampling probability q = B/|Xi|.

Output: ϕ(i,T1)

Initialization: ϕ(i,0) ← randomly

for t ∈ [T1] do

Take a random sample Bt with probability q

∀k ∈ Bt: gt(xk)← ∇ϕ(i,t)
L1(·)

ϕ(i,t+1) ← ϕ(i,t) − ηtgt(xk)

end for
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Algorithm 11 DP-SGD for an Agent i [1]

Input: Training dataset Xi = {x1, . . . , xn}, Loss function L2(·) as defined in (8.8).

Hyperparameters: learning rate η, standard deviation σ, batch size B, sampling

probability q = B/|Xi| and clipping norm C.

Output: θ(i,T2)

Initialization: θ(i,0) ← randomly

for t ∈ [T2] do

Take a random sample Bt with probability q

∀k ∈ Bt: gt(xk)← ∇θ(i,t)L2(·)

ḡt(xk)← gt(xk)/max
(
1, ||gt(xk)||2

C

)
g̃t(xk)← 1

B

(∑
i ḡt(xk) +N (0, σ2C2I)

)
θ(i,t+1) ← θ(i,t) − ηtg̃t(xk)

end for

FPFL: Framework

The θi’s from each agent are communicated to the aggregator for further performance

improvement. The aggregator takes a weighted sum of the individual θi’s and broadcasts

it to the agents. The agents further train on top of the aggregated model before sending

it to the aggregator. This process gets repeated and then repeated.

We now couple these processes above to present the FPFL framework with Figure 8.2.

The framework presents itself as a plug-and-play system, i.e., a user can use any other loss

function instead of L1, L2, or change the underlying algorithms for fairness and DP, or do

any other tweak it so desires.
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(a) Demographic Parity (DemP) (b) Equalized Odds (EO)

Figure 8.3: Three-way trade-off for the Adult dataset

(a) Demographic Parity (DemP) (b) Equalized Odds (EO)

Figure 8.4: Three-way trade-off for the Bank dataset

8.5 FPFL: Differential Privacy Bounds

We now present the theoretical guarantees provided by FPFL. Observe that the model

learned in Phase 1, hϕ, requires access to both the training data (X ) and the sensitive

attribute (A). Fortunately, this phase is entirely independent of the FL aggregation process.

In contrast, the model learned in Phase 2, hθ – trained to mimic the predictions of hϕ – is

communicated to the aggregator.

As a result, any information leak in FPFL may take place in the following two ways.

Firstly, training data may get compromised through hθ. Secondly, mimicking the predic-

224



tions from hϕ may, in turn, leak information about the sensitive attribute. To this end, we

observe that the DP guarantee for the training data follows from [1, Theorem 1] directly.

Further, the following proposition proves that the training process in Phase 2 does not leak

any additional information regarding A to the aggregator.

Proposition 8.1. With the differentially private FPFL framework (Figure 8.2), the aggre-

gator with access to the model hθ learns no additional information, over the DP guarantee,

regarding the sensitive attribute A.

Proof. From [189], we note that a model, i.e., hθ, can leak information of the sensitive

attribute if the training process involves any step which uses the attribute. E.g., to compute

the loss incurred at each timestep. Since hθ does not involve such a step, we can rule out

any direct leak.

However, the Fair-SGD model parameters given by ϕ are used in the loss function L2

for training hθ. In order for an adversary to gain information about A, it should be able

to derive ϕ from θ. Since we add controlled noise during the training for θ, the model is

diferentially private w.r.t. ϕ. In addition, as the predictions from ϕ, i.e., hϕ(x) are private,

the DP guarantee protects both X and A.

Corollary 8.1. For the FPFL framework (Figure 8.2), ∀i ∈ A there exists constants c1

and c2, with the sampling probability qi = Bi/Xi and the total number of timesteps T in

Phase 2, such that for any ϵi < c1q
2
i T , the framework satisfies (ϵi, δi)-LDP for δi > 0 and

for

σi ≥ c2
qi
√
T ln(1/δi)

ϵi
.

Proof. The result follows from Proposition 8.1 and [1, Theorem 1].
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(a) Demographic Parity (DemP) (b) Equalized Odds (EO)

Figure 8.5: Three-way trade-off for the Dutch dataset

8.6 Implementation Details and Experiment Analysis

Datasets. We conduct experiments on the following three datasets: Adult [4], Bank [22]

and Dutch [205]. The first two have ≈ 40k samples, while the Dutch dataset has ≈ 60k.

In the Adult dataset, the task is a binary prediction of whether an individual’s income

is above or below USD 50000. The sensitive attribute is gender and is available as either

male or female, i.e., |A| = 2. In the Bank dataset, the task is to predict if an agent

has subscribed to the term deposit or not. In this case, we consider age as the sensitive

attribute. We group the samples such that |A| = 2. People between the ages 25 to 60 form

the majority group, and those under 25 or over 60 form the minority group. In the Dutch

dataset, similar to Adult, we consider gender as the binary sensitive attribute. The task is

to predict the occupation. For training an FL model, we split the datasets such that each

agent has an equal number of samples. In order to do so, we duplicate the samples in the

existing data – especially the minority group – to get exactly 50k samples for the first two

datasets. Dutch dataset is relatively well balanced. We hold 20% of the data from each

dataset as the test set for which we provide our results.

Hyperparameters. For each agent, we train two fully connected neural networks having

the same architecture. Each network has two hidden layers with (500, 100) neurons and
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ReLU activation. For DemP, we consider 5 agents in our experiments and split datasets

accordingly. To estimate EO, we need sufficient samples for both sensitive groups such that

each group has enough samples with both the possible outcomes. In the Adult dataset, we

find only 3% female samples earning above USD 50000. Similarly, in the Bank dataset, the

minority group that has subscribed to the term deposit forms only 1% of the entire data.

Due to this, in our experiments for EO, we consider only 2 agents.

Training Fair-SGD (Phase 1). For training we use Algorithm 10, with η = 0.001 and

B = 500. The optimizer used is Adam for updating the loss using the Lagrangian multiplier

method. For the Adult dataset, we initialize with λ = 10, and for the Bank and Dutch

datasets, we initialize with λ = 5. The model is trained for 200 epochs.

Training DP-SGD (Phase 2). For training we use Algorithm 11, with η = 0.25,

B = 500, and the clipping norm C = 1.5. For the optimizer we use the Tensorflow-privacy

library’s Keras DP-SGD optimizer3. We train the model in this phase for 20 epochs.

Baselines. To compare the resultant three-way trade-off with FPFL, we create the fol-

lowing two baselines.

B1 In this, we let the agents train the model only for maximizing accuracy without any

fairness constraints in the loss.

B2 To obtain B2, each agent trains the model for both accuracy and fairness using

Algorithm 10 with DemP loss (8.5) or EO loss (8.6).

For both B1 and B2, the final aggregated model is used to report the results. These

baselines maximize accuracy and ensure fairness without any privacy guarantee. This lack

of a privacy guarantee implies that for both baselines, we skip Phase 2.

(ϵ, δ)-bounds. We calculate the bounds as defined in Corollary 8.1. That is, we plot the

three-way trade-off for an agent’s ϵ, δ bound. To remain consistent with the broad DP-ML

literature, we vary ϵ in the range (0, 10] by appropriately selecting σ (noise multiplier).

3https://github.com/tensorflow/privacy
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Observe that ϵ→∞ for our baselines B1 and B2. This is because the sensitivity in these

cases is not bounded. As standard ∀i ∈ A, we keep δ = 10−4 < 1/|Xi| for DemP and

δ = 0.5× 10−4 < 1/|Xi| for EO.

DemP and EO. When the loss for DemP (Equation 8.5) and EO (Equation 8.6) is exactly

zero, the model is perfectly fair. As perfect fairness is impossible, we try to minimize the

loss. In our results, to quantify the fairness guarantees, we plot lDemP and lEO on the test

set. Lower the values, better is the guarantee. For readability we refer lDemP and lEO as

DemP and EO in our results.

Demographic Parity: Figures 8.3(a), 8.4(a), and 8.5(a)

We consider an FL setting with 5 agents for ensuring DemP. For the Adult dataset,

Figure 8.3(a), we find that for B1, we get an accuracy of 87% and a DemP of 0.17. We

observe that a model trained with fairness constraints, i.e., for B2, has a reduced accuracy

of 85%, but DemP reduces to 0.029. We find similar trends in the baselines for the Bank

(Figure 8.4(a)) and the Dutch datasets (Figure 8.5(a)).

Introducing privacy guarantees with FPFL, we observe a further comprise in either

accuracy and fairness as compared to our baselines. In general, with increasing ϵ, i.e.,

increasing privacy loss, there is an improvement in the trade-off of accuracy and DemP.

For ϵ = 10, the accuracy and DemP are similar to that in B2. While the drop in accuracy

is consistent with decrease in ϵ, DemP values do not always follow this trend.

Equilized Odds: Figures 8.3b, 8.4b, and 8.5b

For EO, we consider FL setting with only 2 agents. From Figure 8.3(b), we find in B1

the accuracy is 87% for the Adult dataset with EO as 0.104. With B2, we obtain reduced

accuracy of 80%, but EO reduces to 0.008. We find similar trends in the baselines for the

Bank (Figure 8.4(b)) and the Dutch datasets (Figure 8.5(b)).
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When we compare the FPFL training, which also guarantees privacy, we observe a trade-

off in fairness and accuracy. We note that ensuring EO, especially in the Bank dataset,

is very challenging. Therefore, the trade-off is not as smooth. With decrease in ϵ, the

accuracy decreases, but the EO values do not follow any trend. We believe this is due to

the lack of distinct samples for each sub-group after splitting the data (despite duplication)

for FL.

Remark. In our experiments, we obtain privacy, fairness, and accuracy at a cost to each

other. With FPFL framework, a user can customize λ and σ to ensure the desired three-way

trade-off. The framework allows the use of any fairness measure of choice by appropriately

modifying the loss in Phase 1. Exploring these on other relevant datasets and exploring

other fairness and privacy techniques in the FPFL framework is left for future work.

8.7 Conclusion

We presented FPFL: a framework that learns fair and accurate models while preserving

privacy. A first, we provided a DP guarantee for the training data and sensitive attributes

in an FL setting. We then applied FPFL on the Adult, Bank, and Dutch datasets to

highlight the relation between accuracy, fairness, and privacy of an FL model.
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Chapter 9

Conclusion and Future Work

In this work, we focused on ensuring fairness in existing AI systems. We explored both

the notions of i) individual fairness in Part A – Fair Allocations with Strategic

Agents. and ii) group fairness in Part B – Fair Decisions for Groups. We believe

by shifting the focus from standard performance measures and ensuring other measures

related to fairness, we make the existing AI systems more inclusive and user friendly.

Part A – Fair Allocations with Strategic Agents. We considered the setting of

resource allocation, with multiple items and multiple strategic agents who have preferences

for these items. The agents may manipulate their preferences to obtain higher gains. We

design strategy-proof mechanisms both with payments and without payments for the fol-

lowing scenarios. We design neural-networks to learn payments rules in the setting of i)

redistribution mechanisms and ii) multi-armed bandit based mechanisms. The learnt redis-

tribution mechanism is DSIC and satisfies allocative efficiency while ensuring maximum

refund compared to the existing approaches. The learnt MAB-based mechanism for ex-

pertsourcing ensures WP-DSIC while considering the agents and the auctioneer’s individual

rationality. Further, we consider mechanisms without payments for fair resource allocation.

We analyze the existence of strategy-proof mechanisms without money to ensure alloca-

tions that satisfy fairness notions like envy-freeness, proportionality and max-min share

allocations. Such notions ensure the individual fairness of the agents involved.
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Part B – Fair Decisions for Groups. We considered machine learning-based classifi-

cation algorithms, which are shown to be biased towards certain demographic groups. We

proposed FNNC an end-to-end neural network-based framework to ensure fair classifica-

tion. We show that with FNNC, we can strike a desirable balance between accuracy and

fairness measures like demographic parity or equalized odds on existing real-world datasets.

Moving a step ahead, we present FPFL: a framework that learns fair and accurate models

while preserving privacy. A first, we provided a DP guarantee for the training data and

sensitive attributes in a federated learning setting.

Future Work

• Scalability and Explanaibility. In most of our contributions, we propose data-

driven approaches. Scalability and Explanability of such models is still unresolved

and requires rigorous research. In future, we would like to extend the existing ar-

chitectures for larger input sizes, rather make it independent of input sizes by using

convolutional network architectures. We would also like to look at the explainability

of such models, giving us better insight into the representations for fairness measures

versus the representations for other performance measures.

• Complex Settings. In the real world, the settings are typically more complex,

with agents having a variety of valuations. We aim to provide mechanisms that

are deployable in the real world with good empirical performances. Towards this,

we must conduct experiments on real-world auction data or for complex valuation

structures. Further, the proposed frameworks for group fairness, FNNC and FPFL,

have to be extended for data with multiple sensitive attributes, each having multiple

categories. It is interesting to study and, if required, extend FNNC and FPFL to

settings when the data is heavily skewed and imbalanced.
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• Theoretical Guarantees. Similar to generalization bounds we have provided for

FNNC, we aim to provide the same for other mechanisms we have proposed. Further,

it is interesting to have convergence bounds for fairness measures in federated learning

settings while also providing DP-guarantees.
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