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Abstract

Blockchain and Reinforcement Learning (RL) are two game-changing research areas that
have received a lot of attention recently. In recent years, significant advances in RL have re-
sulted in tremendous success in solving various sequential decision-making problems in machine
learning. The two most successful RL applications are discussed in this work, unmanned aerial
vehicles, and blockchain. Blockchain is a distributed ledger technology with its first application
in Bitcoin. The main challenge in blockchain-based cryptocurrencies is to provide a distributed
trust environment with high security like in a centralized financial system. The current through-
put of Bitcoin is around 4 to 7 transactions per second and confirmation latency is about one
hour. If Bitcoin has to go mainstream, the throughput has to be in the order of thousands of
transactions per second with very low latency in the order of a few seconds. Recent advances
in blockchain research proposed consensus algorithms that scale bitcoin, such as sharding and
Prism-based blockchain. However, the security of Bitcoin is very high that it can tolerate up
to 50% adversarial nodes and avoids double spending attacks. The current blockchain size is
over 260 GB and is growing at an astonishing rate imposing a huge storage requirement on the
nodes. Recent developments improving the Bitcoin consensus have shown that there is a trade-
off between decentralization, scaling, and security. In order to scale blockchain, we leverage
coding theory and RL in this thesis.

Due to the increasing storage requirement for blockchains, the computation can be afforded
by only a few miners. Sharding has been proposed to scale blockchains so that the storage
and transaction efficiency of the blockchain improves at the cost of a security guarantee. In-
corporating coding theory into existing consensus algorithms has demonstrated improvements
in terms of storage efficiency and low latency. A Secure-Repair-Blockchain (SRB) is proposed
which aims to decrease the storage cost at the miners. In addition, SRB also decreases the
bootstrapping cost, which allows for new miners to easily join a sharded blockchain. In order to
reduce storage, coding-theoretic techniques are used in SRB. In order to decrease the amount
of data that is transferred to the new node joining a shard, the concept of exact repair secure
regenerating codes is used. The proposed blockchain protocol achieves lower storage than those
that do not use coding and achieves lower bootstrapping costs as compared to the different
baselines.

Prism is a recent blockchain algorithm that achieves the physical limit on throughput and
latency without compromising security. However, like the traditional blockchain systems, Prism
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also has a trade-off between security, latency, and cost. In recent days, reinforcement learning
approaches are investigated in traditional blockchains, to improve performance. In this work,
we apply Deep Reinforcement Learning (DRL) to one of the promising blockchain protocols,
Prism, to optimize its performance. We propose a Deep Reinforcement Learning-based Prism
Blockchain (DRLPB) scheme which dynamically optimizes the parameters of Prism blockchain
and helps in achieving a better performance. In DRLPB, we apply two widely used DRL
algorithms, Dueling Deep Q Networks (DDQN) and Proximal Policy Optimization (PPO).
This work presents a novel approach to applying DDQN and PPO to a blockchain protocol
and comparing the performance. The analysis of Prism in terms of latency, and security level
considering other blockchain parameters is provided. Using the analysis, the DRLPB scheme
adapts the Prism blockchain parameters to enhance the security upto 84% more than Prism,
while still preserving the performance guarantees of Prism.

The recent advancements in the field of Internet of Things (IoT) motivate the development of
a secure infrastructure for storing and sharing vast amounts of data. Blockchain, a distributed
and immutable ledger, is best known as a potential solution to data security and privacy for IoT.
The scalability of blockchain, which should optimize the throughput and handle the dynamics of
the IoT environment, becomes a challenge due to the enormous amount of IoT data. The critical
challenge in scaling blockchain is to guarantee decentralization, latency, and security of the
system while optimizing the transaction throughput. this paper presents a deep reinforcement
learning (DRL)-based performance optimization for blockchain-enabled IoT. We consider one
of the recent promising blockchains, Prism as the underlying blockchain system because of its
good performance guarantees. We integrate the IoT data to Prism Blockchain and optimize the
performance of the system by leveraging Proximal Policy Optimization (PPO) method. The
DRL method helps to optimize the blockchain parameters like mining rate and mined blocks
to adapt to the environment dynamics of the IoT system. Our results show that the proposed
method can improve the throughput of Prism blockchain based IoT systems while preserving
Prism performance guarantees. Our scheme can achieve 1.5 times more system rewards than IoT
integrated Prism and improve the average throughput of the system by about 6,000 transactions
per sec.

Unmanned aerial vehicles (UAVs) are widely used for missions in dynamic environments.
DRL can find effective strategies for multiple agents that need to cooperate to complete the
task. The challenge of controlling the movement of a group of UAVs is addressed by Multi-
Agent Deep Reinforcement Learning (MARL). The collaborative movement of the UAV fleet
can be controlled centrally and also in a decentralized fashion, which is studied in this work.
We consider a dynamic military environment with a group of UAVs, whose task is to destroy
the targets while avoiding obstacles like mines. The UAVs inherently come with a limited
fuel capacity directing our research to focus on the minimum task completion time. GLIDE,
a continuous-time based PPO algorithm is leveraged in which the UAVs coordinate among
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themselves and communicate with the central base to choose the best possible action. The
simulator called UAV SIM is developed for our experimentation in which the mines are placed
at random locations unknown to the UAVs at the beginning of each episode. The performance
of the proposed scheme is evaluated through extensive simulations and a comparison of the
centralized action control and the decentralized action control is presented.
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Chapter 1

Introduction

1.1 Introduction

The future of various emerging technologies rely on the advancement in blockchain and
reinforcement learning research. Blockchain has various applications in IoT, health care and
privacy, in addition to cryptocurrencies [2]. The main challenge in cryptocurrencies is to provide
a distributed trust environment with high security like in a centralized financial systems. Bitcoin
is a decentralized cryptocurrency which involves a peer-to-peer (P2P) network. The current
throughput of Bitcoin is around 4-7 transactions per second and confirmation latency about one
hour [3]. In order to make the system reliable, each user has to give a cryptographic proof for a
valid transaction. This proof involves digital signature verification and the amount of bitcoins
involved in the transaction. Bitcoin also preserves the anonymity of users by identifying each
user by a public key address [4].

If Bitcoin has to go mainstream, the throughput has to be in the order of thousands of
transactions per second with very low latency in the order of a few seconds. However, the
security of Bitcoin is very high that it can tolerate upto 50% adversarial nodes and avoids
double spending attack [3]. The current blockchain size is over 260 GB and is growing at
an astonishing rate imposing a huge storage requirement on the nodes. Recent developments

Figure 1.1: An illustration of the blockchain and mining process
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improving Bitcoin consensus have shown that there is a trade-off between decentralization,
scaling and security [5]. Incorporating coding theory into existing consensus algorithms have
demonstrated improvements in terms of storage efficiency and low latency [6,7]. The consensus
protocols can be improved by leveraging Reinforcement Learning methods [8, 9].

In order to prevent double-spending by detecting it whenever it occurs, a database consisting
of the history of transactions is used, called the blockchain. Every node in the network stores
the blockchain and hence called a distributed ledger. Any node in the network can extend
the blockchain by adding a block to the existing blockchain by solving a computationally hard
problem (cryptographic puzzle). This process is called mining and the nodes solving the puzzle
are called miners. An illustration of adding a block to blockchain is shown in Fig 1.1. The hash of
the previous block is stored in the block header (hash pointer) along with the Merkle root of the
transactions. A miner finds a nonce and appends the block with a timestamp to the blockchain.
Blockchain has numerous applications such as smart contracts, e-governance, healthcare and
IoT [4]. In Bitcoin, every node runs a consensus protocol to validate a transaction. Currently,
Bitcoin processes about 4-7 transactions per second (TPS) with a block size of 1 Mb, while Visa
can manage about 1669 TPS [4]. The delay is because of the time taken to process a transaction
and the time taken to reach consensus [10]. Throughput is defined as increase in TPS with
increase in the number of nodes and scale-out is a linear increase in throughput with increasing
network nodes. Consensus is slowed with an increase in the number of nodes as every node has
to validate every transaction. Also, the computation burden to solve the proof-of-work (PoW)
puzzles gets harder with time, which drops the throughput. Proof-of-Stake (PoS) has many
advantages over PoW and could make the protocol faster.

Nakamoto consensus [4] used in bitcoin happens in a linear manner i.e. throughput decreases
or is constant with increase in the number of nodes. The current blockchain has grown to
around 260 GB as of January, 2020 and is growing at an astonishing rate [11]. This imposes
high storage capacity requirements on miners which, only few miners can afford and this could
lead to centralization [10].

1.1.1 Need for Scaling Blockchain and Role of Coding Theory

Scaling blockchain can be done in two ways namely, on-chain scaling and off-chain scaling [10,
12,13]. On-chain scaling solutions aim at increasing the capacity by handling more transactions
in a given time. Sharding and block size increase in consensus are on-chain scaling solutions [10].
On the other hand, off-chain solutions process the micro-transactions outside the blockchain
network and include only the final and important transactions on the ledger. We focus only on
on-chain scaling improvements in blockchain protocols.
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1.1.1.1 Block Size Increase

A method to improve their throughput is by increasing the block size so that more transac-
tions can be included in a block. This comes with a disadvantage of increasing the propagation
delay which has a huge impact on block chain forking [10]. But, the propagation delay can be
significantly reduced using coding techniques. In [14], the authors propose using rateless erasure
codes to reduce the propagation delay and scale the blockchain. Although we gain in terms
of propagation delay, the orphan rate increases with increasing block sizes. Another challenge
with block size increase is the amount of computations performed by a node per block becomes
very high.

1.1.1.2 Sharding

Sharding is a technique employed to scale the throughput. Sharding is similar to replication
coding which splits the overhead of processing transactions among multiple groups of nodes
(committees/shards) which operate in parallel speeding up the consensus process [8,10,15,16].
Each committee proposes a state block which has a Merkle root of the transactions and is
also verified by all the committee members [17]. This final state block is appended to the
blockchain by the leader. The leader is the node who solves the PoW puzzle and is elected for
an epoch. The Byzantine consensus protocol used can tolerate up to 1/3 of the total nodes to
be malicious in an authenticated setting (with digital signature verification) with asynchronous
communication channels [1]. The sharding protocols require a linear amount of communication.
In [1], Information Dispersal Algorithm (IDA) is used for message gossiping. They use error
correcting codes for message propagation in a sharding regime and achieve good gossiping
guarantees for large messages. The message is divided equal sized chunks by the sender and
then Reed-Solomon erasure codes are applied to create an additional parity chunk. If the
sender is honest, the original message can be reconstructed from any subset of these chunks.
The authors of [7] proposed an architecture, called Secure Fountain (SeF), which is based on
fountain codes and enables any full node to encode validated blocks into a small number of coded
blocks, thereby reducing its storage costs by orders of magnitude. The authors in [7], propose
using rateless codes for blockchain storage and for bootstrapping a new node in the network.
The work mainly focuses on making the protocol secure against adversarial nodes during the
bootstrapping phase of a new node in the network. Moreover, this approach helps in pruning
the blockchain network in such a way that even if the network consists of all pruned nodes and
light clients (no archival nodes), we can still rebuild the entire blockchain in a decentralized way.
A sub-chain of the blockchain is encoded into coded blocks and each node stores the header
chain. A new node joining the network collects coded blocks from any arbitrary node and by
using an error-resilient peeling decoder, recovers the entire blockchain. During the decoding
phase, the decoder discards the coded block which is malicious by comparing the header chain
stored with the decoded header.
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1.1.1.3 Coded Sharding

The information-theoretic upper bounds on security, throughput and storage efficiency can
be achieved by coded sharding [6]. A coded shard is an encoded linear combination of uncoded
sub-chains and the Lagrange polynomial coefficients ensure that the verification function is
oblivious. The work mainly focuses on intra-shard protocol.

1.1.1.4 Coded Merkle Tree

Light nodes are the nodes which download a small portion of the data in a blockchain, and
use indirect means to verify that a given chain is valid [4]. Light nodes also have limited storage
and computational resources. A fraud and data availability proof scheme is presented in [18]
which enables security guarantees of light clients almost at the level of a full node. They use
two dimensional Reed-Solomon code to provide the incorrect coding proofs. In [19], the authors
propose a Coded Merkle Tree (CMT) structure which leverages erasure codes. Based on the
CMT structure, the authors propose a new data availability verification system named SPAR
for light clients. Moreover, SPAR uses a hash aware peeling decoder which achieves linear
decoding complexity.

1.1.1.5 Other Methods to Scale Blockchain

In Nakamoto consensus the longest blockchain rule is followed in which, only the blocks on
the longest blockchain will eventually be adopted by honest miners, and other honest blocks are
orphaned. In order to avoid forking, the mining rate for new blocks creation is set longer than
the latency for propagating a block to most miners in the network. The Prism protocol [20] is a
structured-DAG blockchain with a proposer block and many voter chains. The proposer blocks
reference transactions to include in the ledger. The voter blocks vote on these proposer blocks.
By running many parallel voter blockchains, the network bandwidth is fully utilized. A miner
does not know if the new block will be a proposer or voter. A random sortition procedure
is followed using hash function which determines the post-mining role of each block. The
authors in Prism show that the latency lower bound (speed of light propagation delay) and the
throughput lower bound (network capacity) are achievable. Prism achieves high throughput,
low latency and maintains the security like in bitcoin protocol.

1.1.1.6 Prism Blockchain

In Prism [20], an approach to decouple the functionality of the blockchain is presented and
it achieves a much higher performance than the existing schemes. Prism has the throughput
of 70,000 transactions per sec and latency is the network communication delay, reaching the
physical limits of the system [21]. Prism follows the longest chain protocol and achieves good
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Level 1: Transaction Blocks 

Level 2: Proposer Blocks 

Level 3: Voter Blocks 

Leader Block

Figure 1.2: An illustration of Prism Blockchain

security guarantees. The performance of Prism [20], is limited by the attributes of the under-
lying network. Latency is limited by the propagation delay and by the confirmation reliability.
In Prism, the blocks are categorized into three types of blocks. For ease of understanding, we
represent them as levels of blocks, which are the proposer blocks, the transaction blocks, and
the voter blocks as shown in Fig. 5.2. A miner’s block is randomly sortitioned using crypto-
graphic sortition into one of the three types of blocks, and if it is a voter block, it will be further
sortitioned into one of the v voter trees.

Level 1: Transaction Blocks: To decouple security from throughput, separate transaction
blocks are employed in Prism. They consists of an ordered list of transactions, drawn from a
memory pool, are independent (without a parent block), and are mined at a faster rate. The
number of transactions confirmed per sec in Prism depends on transaction blocks.

Level 2: Proposer Block: Proposer blocks are the elected leader blocks. Proposer tree
is built based on the longest-chain protocol. Proposer blocks choose as their parent block and
contain a list of reference links to transaction blocks (which contains transactions), as well as
a single reference to a parent proposer block. The final confirmed sequence of proposer blocks
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is the leader sequence and is determined by the voter trees. The reliability of Prism depends
on Proposer blocks.

Level 3: Voter blocks: Voter trees are built using the longest-chain protocol. It contentsa
list of references to proposer blocks called votes. The number of voter chains, v considered in
Prism experiments is 1000 [21]. The leader voter block at each level is the one that has the
highest number of votes among all the proposer blocks at the same level. The security of Prism
depends on voter blocks and the number of votes received by them.

The analysis of [21] has an adversary hash power less than 50%,(β ≤ 0.5), and the mining
rate in each of the voter trees is kept small to minimize forking. The security of Prism depends
on the mining rate of voter blocks, the number of voter chains and their votes. There is a
tradeoff between the latency, mining rate, and the number of voter chains. This also implies
that latency is proportional to the propagation delay and independent of the reversal probability
of each voter block.

1.2 UAV Action Control

Unmanned aerial vehicles (UAVs), are employed extensively in missions involving navigat-
ing through unknown environments, such as wildfire monitoring [22], target tracking [23], and
search and rescue [24], as they can host a variety of sensors to measure the environment with
relatively low operating costs and high flexibility. Most research on UAVs depends on the tar-
get model’s accuracy or prior knowledge of the environment [25]. A DRL agent autonomously
learns an optimal policy to maximize its rewards through its interactions with the environ-
ment. The flight environment for a UAV is usually local or completely unknown during online
path planning. Hence, the agent has to react to the dynamic environment using incomplete
information, which is the key challenge in UAV path planning [26]. The agent has to react
to the dynamic environment using incomplete information, which is the key challenge in UAV
path planning [27]. In [28], DRL was used with independence on environment model, and
prior knowledge, solving the online path planning problem by trial and error interactions with
its environment. Model-free RL methods [29] and the Q learning methods [30] have gained
recent popularity. We focus on one of the most important applications of UAV, which is target
tracking and obstacle avoidance.

The application of UAVs in military or civil fields such as reconnaissance, strike, rescue, and
early warning [22] involves path planning in dynamic environments and is challenging as the
UAV has to avoid obstacles that are not known to it beforehand [31]. A single agent in such
an environment might lack the fuel capacity to accomplish the tasks efficiently. Hence multiple
UAVs are employed to coordinate and complete the task. Interestingly, the majority of successful
applications in DRL literature involve the participation of multiple agents, called multi-agent
reinforcement learning (MARL). MARL specifically addresses the sequential decision-making
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Figure 1.3: An illustration of DRL agent interaction with environment

problem of multiple autonomous agents operating in a shared environment, which together seek
to maximize their own long-term return by interacting with the environment as well as other
agents [32]. MARL algorithms can be classified into different categories based on the types
of situations they handle as fully cooperative, fully competitive, and a mix of the two. This
allows a variety of new solutions that build on concepts such as cooperation or competition [32].
However, multi-agent settings also introduce challenges, including inadequate communication,
difficulties in reward assignment to agents, and environment non-stationarity. We implement
a continuous-time based Proximal Policy Optimization (PPO) algorithm in which the UAVs
coordinate among themselves and communicate with the base to choose the best possible action.

1.3 Deep Reinforcement Learning Approaches

Reinforcement learning is learning what to do—how to map situations to actions—so as to
maximize a numerical reward signal [33]. Deep Reinforcement Learning (DRL) has made incred-
ible advances in recent years in many well-known sequential decision-making tasks , including
playing the game of Go, playing real-time strategy games, controlling robots, and autonomous
driving, especially in conjunction with the development of deep neural networks (DNNs) for
function approximation [34]. A DRL agent autonomously learns an optimal policy to maxi-
mize its rewards through its interactions with the environment. The optimization problem is
formulated as an Markov Decision Process (MDP). The MDP environment represented by the
tuple < S,A,R, λ >, where, S, is the state space, A, is the action space, R, represents the
reward function and λ is the discount factor ranging from 0 to 1. At every time step, t, the
agent receives a state representation, St of the environment as shown in Fig, 1.3. The agent
takes an action At in the environment based on a policy π(At|St). Then, a transition to the
next state, St+1 occurs with a probability P (St+1|(St, At)), and a reward, Rt is received by
the agent, which is explained in detail in the following subsections. A DRL method is then
used to solve the formulated MDP. In this thesis, we leverage two popular DRL algorithms,
Dueling Deep Q Networks (DDQN) and Proximal Policy Optimization (PPO). These methods
are discussed in depth in the sections where they are used.
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1.3.1 DDQN

DDQN is a value-iteration based method [35]. DDQN is similar to DQN, but with a mod-
ification to the target network [36]. In DQN, the evaluate and target networks use the same
maximum operator. In large scale networks, DDQN is favored. The target network in DDQN
uses the expected Q values for the next state by considering the action that gives the maxi-
mum Q-value of the next state and updates the Q values of the evaluate network based on the
estimated Q value from the target network.

Q∗(St, At) = Rt + γQθ(St+1, argmaxπQθ′(St+1, At+1)) (1.1)

where, θ are the weights of Q network and θ′ are the weights of the old Q network.

1.3.2 PPO

Unlike DDQN, PPO is a policy gradient method. PPO is an advantage-based actor-critic
algorithm that tries to be conservative with policy updates [37, 38]. Using KL divergence and
clipped surrogate function it can update multiple steps of update in one trajectory [39]. In
PPO, the primary network consists of two deep neural networks, called the actor-network and
the critic network. The actor-network is used to explore the policy, and the critic network
estimates the performance. The critic-estimate value helps the actor to learn the gradient of
the policy. The target network consists of an actor-network and a critic network.

1.4 Objectives and Scope of the thesis

In this section, the objectives of the problems addressed as a part of this thesis are discussed
and a summary of the scope of this thesis is presented. This section first discusses coding
theory based scaling blockchain, DRL based approach for blockchain, then DRL based IoT
enabled blockchain and lastly DRL based UAV action control. We use public blockchain for
our implementation.

Blockchain is a distributed ledger with wide applications. Due to the increasing storage re-
quirement for blockchains, the computation can be afforded by only a few miners. Sharding has
been proposed to scale blockchains so that storage and transaction efficiency of the blockchain
improves at the cost of security guarantee. A new protocol, Secure-Repair-Blockchain (SRB)
is presented in this thesis, which aims to decrease the storage cost at the miners. In addi-
tion, SRB also decreases the bootstrapping cost, which allows for new miners to easily join a
sharded blockchain. In order to reduce storage, coding-theoretic techniques are used in SRB.
To decrease the amount of data that is transferred to the new node joining a shard, the concept
of exact repair secure regenerating codes is used. We consider sharded blockchains and apply
coding theoretic techniques to reduce the storage cost as well as the bootstrap cost. Bootstrap
cost is the cost required to recover the coded blocks which are stored at the node. We present a
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sharding scheme based on secure regenerating codes which are not only storage efficient but also
bandwidth efficient while repairing single node failures. We draw the equivalence between the
process of bootstrapping a node and repairing a failed node. The proposed blockchain protocol
achieves lower storage than those that do not use coding, and achieves lower bootstrapping cost
as compared to the different baselines. Hence, our bootstrap cost is low as compared to two
schemes in literature, one of which is RapidChain [1] and the other is SeF [7] based sharding.

DRL is incorporated into blockchain systems to better understand the dynamics of the
blockchain system and optimize its performance. According to the blockchain trilemma, any
blockchain system can only have at most two of the three features, decentralization, security
and scalability [5]. These three features have a tradeoff relationship with each other, where
maximizing one feature can drastically degrade the other feature [40]. The practical solutions
that focus on scalability may need to consider the performance degradation in the security level
or decentralization. Therefore, it is essential to find the optimal scalability point suitable for
the current network situation without compromising other performance values like security. We
leverage two reinforcement learning approaches, DDQN and PPO are adopted to optimize the
Prism blockchain [21] performance.

An IoT enabled blockchain would require the blockchain nodes to process the high volume
of transactions from the IoT devices [5]. This will require scaling of blockchain algorithms
for high throughput and low latency without compromising on other aspects like security and
decentralization of the blockchain [13]. In Prism [20], the performance guarantees on throughput
and latency are physical limits of the network. Prism achieves higher performance than the
existing schemes by decoupling the functionality of blockchain [21]. We implement a DRL
approach for IoT enabled Prism blockchain leveraging Proximal Policy Optimization (PPO)
algorithm.

We consider a military environment application for multiple UAVs, where each UAV can act
independently of the other agents’ actions. The environment contains a set of targets that the
UAVs need to coordinate and destroy. There are several mines in the field that are capable of
destroying the UAVs. These mines are placed at any random location which is unknown to the
UAVs. We assume that the mines have a sensing radius in which they can detect the UAV and
destroy it. In this scenario, the UAV must learn to detect and avoid mines within a minimum
distance from the sensing radius of the mine. The goal here for each UAV is to destroy the
enemy target, by avoiding the mines and reaching the base safely. The challenge for a UAV is
that it has no prior knowledge of the location of the mines and has to find a suitable policy
to adapt to the dynamic environment. The UAV action control problem is formulated as a
Markov Decision Process (MDP) with the action space involving acceleration of UAV, which
has not been presented in the literature so far. We use a MARL [32] approach to control the
action of a set of UAVs. Our MARL based approach aims to find optimal strategies for agents
in settings where multiple agents interact in the same environment. We use Proximal Policy
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Optimization (PPO) to train our agents, which is a very well-known state of art continuous
control algorithm. We propose two PPO-based approaches for UAV action control namely
centralized PPO (C-PPO) and Decentralized PPO (D-PPO) with a continuous action space.
We are the first to present two PPO-based approaches for UAV action control. The performance
of the proposed algorithms is observed through extensive simulations. We build a simulator for
our experimentation called UAV SIM. The simulator is a military environment with random
locations of targets and mines. The results show that the UAVs can accomplish minimum task
completion time with the proposed PPO approach.

1.4.1 Organization of the thesis

In Chapter 2, the literature is reviewed which is relevant to this thesis work. In the next chap-
ter, the proposed research aims to develop coding techniques to improve the system throughput
and latency. Followed by Chapter 4 which explains a deep reinforcement learning based ap-
proach to Prism Blockchain. In Chapter 5, a deep reinforcement based approach for IoT enabled
Prism Blockchain is discussed. In Chapter 6, Multi agent reinforcement learning is used for
UAV Action Control. Chapter 7 summarizes the thesis and provides some key concluding
remarks and future research directions.
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Chapter 2

Review of Literature

2.1 Scaling Blockchain

Blockchain has numerous applications in e-governance, smart contracts, healthcare and
IoT. Reinforcement learning(RL) is mostly applied in IoT networks for deploying smart con-
tracts [41]. In [42], a comprehensive survey of the existing blockchain protocols for the Internet
of Things (IoT) networks is presented. They discuss the scenarios to deciding when to use a
blockchain-based solution in an IoT application. In most RL in blockchain papers, a system
model is considered and then a learning algorithm like Q learning is applied for further ac-
tions to be performed. Then, they try to optimize the performance mostly by making use of
exploration and exploitation trade-off. For Example: In computation offloading approach for
blockchain empowered mobile Edge Computing is considered, in which both mining tasks and
data processing tasks are performed. To achieve long-term offloading performance, a model-
free deep reinforcement learning to adapt to highly dynamic environments and maximize the
long-term reward. [43]

2.2 Blockchain protocols

2.2.1 PBFT Protocol

PBFT has three phases Pre-prepare, Prepare, and Commit [1]. During the pre-prepare
phase, the primary node collects transactions from the transaction pool and creates a block.
Later broadcasts the block to the other nodes. These nodes are called replicas. In the prepare
phase, all the replicas (except the primary node) compare if the blocks received from the
primary node are same. This prevents selective forwarding of blocks from the primary node. If
the replicas receive the same block from the primary, the commit phase validates the block. In
each phase of PBFT, all steps are successfully processed if more than two-thirds of the votes
from the participating nodes approve it. Therefore, the ratio of malicious nodes acceptable in a
PBFT agreement should not exceed one third of the total number of nodes participating in the
consensus process, which is the consensus bound of PBFT. PBFT exchanges a large number
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Figure 2.1: PBFT based Consensus in sharding protocols [1]

of messages to reach a consensus taking a long time. Also the time consumption increases
exponentially with the number of participating nodes increase.

2.2.2 Sharding

Sharding is a technique employed to scale the throughput. Sharding is similar to replication
coding which splits the overhead of processing transactions among multiple groups of nodes
(committees/shards) which operate in parallel speeding up the consensus process [8,10,15,16].
Each committee proposes a state block which has a Merkle root of the transactions and is
also verified by all the committee members [17]. This final state block is appended to the
blockchain by the leader. The leader is the node who solves the PoW puzzle and is elected for
an epoch. The Byzantine consensus protocol used can tolerate up to 1/3 of the total nodes to
be malicious in an authenticated setting (with digital signature verification) with asynchronous
communication channels [1]. Fig 2.1 illustrates PBFT based consensus in sharding protocols.
The sharding protocols require a linear amount of communication. The authors of [7] proposed
an architecture, called Secure Fountain (SeF), which is based on fountain codes and enables
any full node to encode validated blocks into a small number of coded blocks, thereby reducing
its storage costs by orders of magnitude.

2.2.3 Prism Blockchain

The longest chain protocol followed in Nakamoto consensus [3] has tolerance up to 50%
malicious nodes in the network. The blocks on the longest blockchain will eventually be adopted
by honest miners, and other honest blocks are orphaned. To avoid forking, the mining rate for
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new blocks creation is set longer than the latency for propagating a block to most miners in the
network. The Prism protocol [20] is a structured-DAG blockchain with a proposer block and
many voter chains. The proposer blocks reference transactions to include in the ledger. The
voter blocks vote on these proposer blocks. Many parallel voter blockchains are run which utilize
the network bandwidth fully. A miner does not know if the new mined block will be a proposer
or voter. A random sortition procedure is followed using a hash function which determines
the role of each block after mining. The authors of [20], show that the latency upper bound
(speed of light propagation delay) and the throughput lower bound (network capacity) are
achievable. The implementation of Prism protocol is discussed in [21], in which Prism achieved
achieves a throughput of 70,000 transactions per second with a confirmation latency of tens of
seconds using 1000 EC2 Virtual Machines. In [44], the bitcoin and Prism backbone protocols
are analyzed and the probabilistic guarantees are provided. Their results show that it achieves
security against up to 50% adversarial hashing power, optimal throughput up to the capacity
of the network, and fast confirmation latency for honest transactions. The analysis of Prism in
a continuous-time realistic data is presented in synchronous networks in [45]. The application
of Prism to smart contracts and its usefulness is discussed in [46].

2.2.4 Deep Reinforcement Learning based Blockchain

Reinforcement learning techniques can help optimize many parameters and improve the
performance to a great extent. The integration of DRL and Blockchain was used in serving
different fields such as vehicular Ad Hoc networks, wireless networks, and the Internet of Things
(IoT) [5,16,47,48]. In [47], the authors used Dueling Double Deep Q-Network (D3QN) to man-
age the selection of the optimal block transaction fees considering different constraints. The
authors in [5] used the Double Deep Q-Learning prioritized experience replay approach to find
the optimal number of consensus nodes. DRL was utilized in [8] to increase the throughput,
consensus algorithm and block producer, block size, and block interval. To maximize the reward
to the miners, reinforcement learning algorithms are implemented. The DRL and blockchain
models operate independently [49]. To efficiently handle significantly large amounts of data
from the IoT network, a sharded blockchain network is used to process numerous transactions
in a parallel manner. The performance optimization framework of scalable blockchains for
IoT systems can be categorized as IoT blockchains, sharding, and Deep reinforcement learning
(DRL) technology applied to blockchains [8]. The state in [8] is the number of nodes partici-
pating in the network along with the probability of a node being malicious. The action is the
number of nodes assigned to each shard and the reward is the throughput of the system. In [50],
the DRL-based blockchain is applied to health care systems. In [9], the authors use Deep De-
terministic Policy Gradient (DDPG) to traditional blockchain for demand management. The
survey in [51] provides a deeper understanding on the security and privacy risks of the key
components of a blockchain from the perspective of machine learning, which is useful in the
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design of practical blockchain solutions for IIoT. In [52], the IoT data is grouped into clusters
using K means algorithm and the initial training parameter of cluster number is trained by
using double deep Q Network.

In [49], the authors highlight that the RL techniques learn through interaction wheras in
supervised learning, knowing the correct target values for the training data can determine
exactly whether a decision is right or wrong (classification) or how far a prediction is from the
correct value (regression). The agent in RL does not usually learn whether a decision is the
best. Since the experience of the agent only grows with its interaction, the agent often only
knows for a part of the possible actions that have led to a greater or smaller reward in the past.
Based on this it estimates the future reward and tries to take an action in the present time that
maximizes the reward.

1. Q-learning: In Q-learning, an agent takes action based on the Q-values in the Q-table.
There are four major components of a Q-network, i.e., a stage set, an action set, a reward,
and transition probabilities. For each state, the agent executes some action under its
pre-defined policy. Subsequently, the agent adopts the policy such that it has maximum
Q-value. After each sequence, the agent revises the Q-table for a more accurate estimation
of the Q-values and updating the policy of the agent. Thus, in due course of time and
after many steps, the policy converges to the optimal policy of the agent.

2. Multi-armed Bandit Learning: The agent in the multi-armed bandit approach selects
the action without having the state information of the environment. Relevant to the action
performed by the action time step, the agent receives a reward that is maximized in the
next iterations. Since the agent is unaware of the environment and the associated reward,
there always exists a tradeoff between exploitation and exploration. Due to this reason,
the multi-armed bandit learning, although lower in complexity, is not efficient for highly
dynamic environments.

In large scale networks, blockchain needs to have high scalability. In applications like
IoT, millions of devices are connected. So, the rate at which transactions are recorded on
blockchain needs to be very high. In order to maximize the reward to the miners, reinforce-
ment learning algorithms are implemented. The RL and blockchain models operate indepen-
dently [49]. To efficiently handle significantly large amounts of data from the IoT network,
a shard blockchain network is used to process the numerous transactions in a parallel man-
ner. The performance optimization framework of scalable blockchains for IoT systems can be
catogorized as: IoT blockchains, sharding, and Deep reinforcement learning (DRL) technology
applied to blockchains [8]. A model based Q-learning has four major components, a state set,
an action set, reward and transition probability. A state set is a set of all the possible states,
action is a set of possible actions, reward is a scalar and transition probability is the probability
of transition to the next state from the current state by taking a particular action. In [5],
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authors used DRL for providing a methodology for evaluating the system from the aspects of
scalability, decentralization, latency and security.

2.2.5 Minimizing Forking Events

Q-learning technique is widely used to minimize forking events. Forking occurs in the
blockchain when an extending blockchain diverges into two potential chains [49] . The miners
participating in the blockchain need to use common consensus algorithm to maintain the ledger
of blockchain. Sometimes this may result in creating a fork. Forking can also be caused when
the nodes after completing the proof-of-work, do not convey the results to the other computing
nodes. To avoid the forking in blockchain, the transmission delay at the miner can be reduced
with the help of RL. The agents can be trained for an IIoT environment that develops an
optimal policy for minimizing such delays.

2.2.6 Time to Finality Minimization

Finality is inclusion of tamper proof blocks on to the final blockchain ledger. In [49], an RL
system can be used to detect selfish miners that try to consume the resources unnecessarily. For
instance, the Q-learning technique is be used to minimize the probabilistic time to the finality
of proof-of-work for blockchain-enabled IIoT networks [5]. The agents can update themselves
by learning from the received rewards and probabilistically improving the time to finality. Time
to Finality is also referred to as latency.

2.2.7 Enhancing Transaction Throughput

Transaction throughput in IIoT-blockchain networks has challenges of scalability. One simple
solution can be to increase the number of transactions per block. Another solution can be to
increase the frequency with which the blocks are added into the network. Thus, recording more
transactions may have an adverse effect on the decentralization of blockchain-enabled IIoT
networks. This could also increase the mining time since a miner needs to check the validity
of all the digital signatures on the transactions before mining a block. Moreover, the optimal
policies and the tradeoffs between the transaction throughput and decentralization can also be
identified with the help of RL techniques [49]. The agent can provide the specific set of actions
needed to increase the throughput while not compromising the decentralization of blockchain
networks.

2.2.8 Average Block Time Reduction

Block time is sometimes referred to as the block interval. It is the total amount of it takes
to mine a block. The high variability in time for mining a block causes the average block
time to be an important factor in large-scale networks. Therefore, the average block time of
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a blockchain network is directly related to the complexity of the proof-of-work algorithm. RL
techniques are used for optimizing the long-term utility of a blockchain network instead of
relying on instantaneous gains in the consensus. For example, a multi-armed bandit learning
RL network can be used to identify the complexity of the algorithms based on the characteristics
of the blockchain network. Thus, in order to develop a long-term optimal policy, if the average
block time is less than the expected block time, then the level of difficulty can be increased.
In contrast, if the expected time is less than the average block time, then the level of difficulty
can be reduced for mining. Therefore, RL techniques can help optimize the performance based
on different characteristics of the end-to-end blockchain network.

2.2.9 Security

Due to the broadcast nature of messages exchanged between blockchain devices in applica-
tions, it is crucial to secure the links through physical layer security techniques. The RL based
approaches can be extensively used for the establishing of link security for blockchain networks.
Multi-armed bandit techniques are used to identify the nearby eavesdroppers in the blockchain
network [5]. Deep Q-learning can be applied to introduce the artificial noise in the network,
without damaging the quality of the legitimate link [5].

2.2.10 DQN based Blockchain Systems

The research in [8] focuses on applying DQN to a sharded blockchain system for IoT ap-
plications. They propose a Deep Q Network Shard based Blockchain (DQNSB) scheme that
dynamically finds the optimal throughput configuration.The sharded blockchain’s latency anal-
ysis and security level characterization is provided. Using this analysis, they estimate the level
of maliciousness and adapts the blockchain parameters to enhance the security level consid-
ering the amount of malicious attacks on the consensus process. Any blockchain system can
only have at most two of the following three features: decentralization, security, and scalabil-
ity. These three features have a trade-off relationship with each other, where maximizing one
feature can drastically degrade the other feature. This is explained in detail in Omniledger [17].
The DQNSB model [8] is based on Elastico to perform decentralization of shard clustering.
Sharding results in a throughput and security trade-off based on the number of shards. The
security level can be actively changed by adjusting the number of shards. Their scheme adopts
the DRL approach to estimates the network’s malicious probability by monitoring the consen-
sus result of each epoch. Based on the network trust, the number of safe shards are computed
and adaptive control is used to maintain optimal throughput conditions.

In this work, we introduce an adaptive, secure, and intelligent DRL based Prism blockchain
system. The algorithm of DDQN is a value-based method that focuses on learning a function
approximator to predict Q-values that satisfy the recursive Bellman Equation [35]. The optimal
actions are then derived from the action which maximizes the Q-value. PPO is a policy-gradient
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Table 2.1: A table summarizing the related works

Paper Number
of UAVs

Objective Solution
Approach

Environment Performance

[26] Single Path Plan-
ning

Centralized
DDPG

3D continuous
environment with
aerial obstacles

Reward Con-
vergence

[37] Multiple Jointly con-
trol multiple
agents

Centralized
PPO

military environ-
ment

reward con-
vergence

[39] Multiple Drone racing
competition

Decentralized
PPO

environment was
created using
AirSim

task comple-
tion

[54] Multiple Path planning Centralized
D3QN com-
bined with
greedy heuris-
tic search

Military environ-
ment developed
using STAGE
Scenario

task comple-
tion

[55] Multiple Data harvest-
ing

Centralized
DQN

urban city like
structure map

Successful
landing and
collection
ratio

This
work,
GLIDE

Multiple Coordinated
action control

Centalized
and decen-
tralized PPO

Military environ-
ment created with
our simulator,
UAV SIM

task com-
pletion time
and reward
convergence

method that optimizes the expected reward by estimating the gradient of the policy from the
trajectories taken by the agent [53]. To the best of our knowledge, this is the first work leveraging
deep reinforcement learning to optimize Prism using two state-of-art DRL algorithms, DDQN,
and PPO.

2.3 UAV Action Control

UAVs have recently become popular in commercial and many other fields for target identi-
fication and detection. Many studies have been conducted concentrating on the applications
of UAVs or the use of UAVs to complete specific scientific research tasks. In this section, we
present a review of the literature related to our research.
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2.3.1 Path Planning and Action Control

There are many works in path planning using DRL with applications in drone fleets for
delivery, traffic flow control, automated driving, and particularly in UAVs [32]. The authors
of [54] used a dueling double deep Q-networks (D3QN) approach for path planning UAVs in
dynamic contexts. They assume the availability of global situational data for the UAV which
is used for its decision-making and path planning. In [55], the path planning for a cooperative,
non-communicating, and homogeneous team of UAVs is formulated as a decentralized partially
observable Markov decision process (Dec-POMDP). DDQN with combined experience replay
is used to solve the problem. In [56], a study on UAV ground target tracking under obstacle
environments using deterministic policy gradient (DDPG) algorithm. The authors attempt to
improve the DDPG algorithm for UAV target tracking. In [26], a 3D continuous environment
with static obstacles is built, and the agent is trained using the DDPG algorithm. In [57], an
approach to exploit global-local map information that allows the trajectory planning. The work
tries to scale to large and realistic scenario environments efficiently with an order of magnitude
more grid cells compared to previous works in a similar direction. In [58], the UAV executes
computational tasks offloaded from mobile terminal users (TUs) and the motion of each TU
follows a Gauss-Markov random model, and Deep Q Learning method is used. The authors
of [25] proposed an algorithm in which each UAV makes autonomous decisions to find a flight
path to a predetermined mission area. Each UAV’s target destination is not predetermined, and
the authors discuss how their algorithm can be used to deploy a team of autonomous drones to
cover an evolving forest wildfire and provide virtual reality to firefighters. In this work, GLIDE
leverages a continuous-time based algorithm for coordinated UAV control in dynamic military
environment. Here, we not only consider the global situational data but also the local situation
data of each UAV and control the actions of a group of UAVs.

2.3.2 Multi Agent Approach for UAV Control

In [59] the UAV control policy that generalizes over changing scenario parameters is learnt. In
[60], a path planning for data harvesting from distributed Internet of Things (IoT) devices using
multiple cooperative, non-communicating and homogeneous team of UAVs is discussed. In [61],
the communication limitation in UAV is discussed and addressed using DRL-based energy-
efficient control for coverage and connectivity called DRL-EC 3 which has better coverage,
fairness, and energy consumption. In [38], dynamic environments with potential threats is
considered for path planning for UAVs based on the global situation information using D3QN.
In [62], an online distributed algorithm for tracking and searching is proposed. The authors
in [63] propose Geometric Reinforcement Learning (GRL) algorithm for path planning of UAVs.
In this work, we focus on action control of a group of UAVs in a centralized and decentralized
implantation of GLIDE. Our aim is to scan the entire field in the minimum possible time and
complete the task.
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2.3.3 PPO based MARL

PPO is an advantage-based actor-critic algorithm that tries to be conservative with policy
updates [37]. Using KL divergence and clipped surrogate function it can update multiple steps
of update in one trajectory [39]. A review of MARL and its application to autonomous mobility
is discussed in [32], where the state-of-the-art methods used in MARL are presented along with
the implementation details. In [64], contemporary autopilot systems for UAVs are studied with
a DRL controller to handle the nonlinear attitude control problem. A PPO algorithm is used
and is observed to converge in unseen disturbances in the form of wind and turbulence. In [39],
a long-term planning scenario that is based on drone racing competitions held in real life is
discussed. The racing environment was created using AirSim Drone Racing Lab and the DRL
agent was trained using PPO algorithm. Their result shows that a fully trained agent could
develop a long-term planning scenario within a simulated racing track.

A summary of related works is presented in Table 2.1. In this work, we introduce a novel
formulation of the UAV action control problem. Following that, we propose GLIDE, which
leverages continuous-time PPO-based approach for the action control of a group of UAVs in
a dynamic environment. A centralized action control algorithm C-GLIDE is compared with a
decentralized action control algorithm D-GLIDE. We implement the simulation environment
called UAV SIM for our experimentation.
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Chapter 3

Codes for Sharded Blockchain

3.1 Introduction

Blockchain technology’s unique ability to provide an open ledger for recording transac-
tions while simultaneously ensuring security and verifiability lends itself to a variety of uses.
Blockchain experts envision a huge amount of possible applications, with everything from sup-
ply chain management to online personal identification. Its applications includes Bitcoin, which
is a decentralized cryptocurrency which processes online payments though a peer-to-peer (P2P)
system without traversing through a financial institution. The size of the Bitcoin blockchain has
experienced consistently high levels of growth since its creation, reaching approximately 269.82
gigabytes in size as of the end of March 2020 [65]. The increasing size of blockchain requires
high storage capacity at miners which can be afforded only by a few miners [10]. Further, in
order to allow efficient entry for new miners, the amount of data that must be sent to the
the new miner (denoted as the bootstrap cost) must be low. In this chapter, coding theoretic
techniques are considered to reduce the storage cost as well as the bootstrap cost that would
help more miners to enter the market.

In order to reduce the computation burden to solve the proof-of-work (PoW) puzzles, an
approach called sharding has been proposed [15]. This work considers sharded blockchains and
apply coding theoretic techniques to reduce the storage cost as well as the bootstrap cost. We
present a sharding protocol, called SRB, which is based on secure regenerating codes that are
not only storage efficient but also bandwidth efficient while repairing single node failures. We
draw the equivalence between the process of bootstrapping a node and repairing a failed node.
Hence, our bootstrap cost is low as compared to uncoded sharding [1] and Secure Fountain
Architecture (SeF) based sharding [66].

In the previous approaches based on codes, the bootstrapping process has two steps: (i) all
the blocks are recoverd at the new node (ii) the coded blocks to be stored are again computed
as linear combinations of the recovered blocks. In the proposed approach, we bypass the first
step by directly trying to recover the coded blocks which are to be stored in the new node.
Hence, the bootstrap cost is less as compared to previous method of SeF based sharding. In
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Parameter RapidChain SeF SRB
Storage Overhead nS (1 + δ) nSα

L

Bootstrap Cost L L+O(
√
L log2(L/δ)) α < L

Security Guarantee nS
2 nS − L+O(

√
L log2(L/δ))
ρ

nS−α
2

Table 3.1: Performance comparison of RapidChain, SeF based and SRB protocols for sharding.

the proposed approach, L blocks in the shard are encoded to obtain nSα blocks and stored
on nS nodes in the shard, with α < L blocks on each node. The code construction uses a
product matrix code construction. The bootstrapping problem has connections to the secure
repair problem in regenerating codes, and these connections are exploited to provide an effi-
cient bootstrapping transfer. In addition to the encoding and decoding mechanisms, the entire
protocol efficiently integrates the mechanisms of sharding, reference committee reconfiguration
and intra-shard consensus. The main result can be seen in Table 3.1. As compared to Rapid-
Chain, the proposed framework allows for significantly lower storage overhead (nS vs nSα

L ) and
bootstrapping cost (L vs α). As compared to SeF based sharding, the proposed framework
allows for significantly lower bootstrapping cost (L + O(

√
L log2(L/δ)) vs α) with somewhat

increase in storage overhead. Further, the performance of the proposed approach for security,
encoding complexity are obtained.

Sharding: Sharding in blockchains was discussed first in Elastico [15]. They proposed
to partition the network into shards, each of which processes a disjoint set of transactions.
The number of shards grow linearly with the total computational power of the network. Each
shard runs a classical byzantine consensus protocol to decide their agreed set of transactions in
parallel. In every epoch, a proof-of-work (PoW) puzzle is solved based on an epoch randomness
obtained from the last state of the blockchain. Elastico improved the throughput and latency
of Bitcoin. Omniledger [17] is an improvement over Elastico which preserves long term security
in blockchains. It introduced atomic cross-shard commit protocol for transactions affecting
multiple shards. It ensures security by using a bias-resistant public-randomness protocol.

Coding Techniques in Blockchains: Coding theory is applied used to gain storage effi-
ciency in blockchain systems. Recently, rateless codes have been actively applied in various as-
pects of storage and computing. The authors in [66], propose using rateless codes for blockchain
storage and for bootstrapping a new node in the network. The fountain codes approach used
in [66], has about 1000x storage savings. In [6], each node stores the coded version of the
entire blockchain. So, they achieve up to 30% storage savings compared to full replication of
the blockchain on each node. In [67], the authors propose a novel distributed storage code
for blockchains as a combination of secret key sharing, private key encryption. Interestingly,
they focus on using dynamic zone allocation, which uses a combination of cryptographic and
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information-theoretic security. The authors in [18], discuss the possibility of using erasure
codes for low storage, especially for light clients. Here, blockchain is stored as only some coded
fragments of each block. In [68], the authors focus on tackling storage bloating problem with
network coding with such a framework does not lose any information. Moreover, with their
storage scheme they can save storage room for each node. The problem of designing fault toler-
ant distributed storage based on blockchains in the context of industrial network environments
has been discussed in [69]. Here, the authors employ codes with local regeneration in order to
repair from single and multiple node failures.

3.2 Preliminaries of Sharding and Coded Blockchains

3.2.1 RapidChain

In this section, we will describe the RapidChain protocol which allows scaling of blockchain
by sharding. Our approach of using secure regenerating codes in the framework of sharding
will be based partly on the ideas discussed here.

The RapidChain protocol for sharding consists of the following elements:

• Reference Committee and Epoch Randomness: The protocol is divided into epochs.
A reference committee is elected at the start of the protocol. Reference committee is a set
of nodes which are responsible for generating epoch randomness and verifying the PoW
puzzles which the new nodes joining the network solve. During the start of each epoch,
the reference committee comes to consensus on a reference block which contains the list
of all nodes and their assigned shard (We will use the term shard instead of committee in
this chapter). The reference block is sent to all the nodes.

• Committee Reconfiguration and Cuckoo Rule: Malicious nodes could strategically
leave and rejoin the network and they can take over one of the shard to break the security
guarantees of the protocol. Moreover, we assume a byzantine adversary that can actively
corrupt a constant number of honest nodes. In order to prevent this attack, shards have
to be periodically reconfigured faster than the adversary’s ability to generate churn. The
communication overhead is very high if all the committees need to re-elected. RapidChain
follows the Cuckoo rule to shuffle only a subset of nodes during the reconfiguration at the
beginning of each epoch. RapidChain ensures that shards are balanced with respect to
their sizes as nodes join or leave the network. To map the nodes to shards, each node
is mapped to a random position in (0, 1]. Then, the range is partitioned into m regions.
In the Cuckoo rule, when a node wants to join the network, it is placed at a random
position, while all nodes in a constant-sized interval surrounding the new node’s position
are moved to new random positions in the interval (0, 1].
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• Ledger Pruning: Ideally, a new node joining the committee has to download all the
blocks in the shard. However, since the throughput of the system is high, the amount of
download is quite high. To avoid this, the nodes which join the network prune the ledger
and store. The disadvantage of pruning is that there are only a few archival nodes which
need to be contacted if the complete ledger needs to be downloaded.

• Intra-committee Consensus and Cross-shard Transactions: The intra-committee
consensus is accomplished by a byzantine consensus protocol based on fast gossip algo-
rithm with application of erasure codes. Cross-shard transactions are performed based
on a certain inter-committee routing scheme.

3.2.2 Secure Fountain Codes for Sharded Blockchains

RapidChain has high storage overhead since every node in the shard stores a full copy of
the blocks in the shard. To save on the storage costs, one of the existing solutions is based
on Secure Fountain codes (SeF). The authors of [66] proposed an architecture, called Secure
Fountain (SeF), which is based on fountain codes and enables any full node to encode validated
blocks into a small number of coded blocks, thereby reducing its storage costs by orders of
magnitude. One of the key idea in SeF is to use the header-chain as a side-information to
check whether a coded block is maliciously formed while it is getting decoded. The coded
blocks in SeF are called droplets, the nodes storing coded blocks are called droplet nodes, and
any new node joining the system is called a bucket node. During bootstrap, a bucket node
collects sufficiently many droplets and recovers the blockchain even when some droplet nodes
are adversarial, providing murky (malicious) droplets. After validating the blockchain, a bucket
node will perform encoding to turn itself into a droplet node. In this way, droplet nodes will
slowly replace archival nodes.

Encoding: The encoding is performed using a Luby Transform (LT) code [70]. LT codes
admit a computationally efficient decoding procedure known as peeling decoder (also known as
a belief propagation). SeF exploits peeling process to introduce resiliency against maliciously
formed blocks by using the header-chain as a side-information and leveraging Merkle roots
stored in block-headers, which is explained as follows.

Peeling Decoder: Consider a bucket node that is interested in recovering the blockchain
B. It contacts an arbitrary subset of n (n ≥ k) droplet nodes, and downloads the stored data.
This includes droplets Cj and vectors vj . Without loss of generality, let us (arbitrarily) label
the downloaded droplets as C1, C2, · · · , Cns. Note that, since a coded droplet does not have
any semantic meaning, the bucket node cannot differentiate between the honest and malicious
droplets within the downloaded ones. We assume that the bucket node has access to the honest
header-chain. Note that this can be done by contacting several droplet nodes, and obtaining
the longest valid header-chain as described in [66]. The decoding proceeds in iterations. In each
iteration the algorithm decodes (at most) one block until all the blocks are decoded, otherwise
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Figure 3.1: Illustration of Secure Repair Block protocol in blockchains.

the decoder declares failure. Note that Step (3) differentiates the error-resilient peeling decoder
from the classical peeling decoder for an LT code. More specifically, the classical peeling decoder
always accepts a singleton, whereas the error-resilient peeling decoder may reject a singleton if
its header and/or Merkle root does not match with the one stored in the header-chain.

SeF codes allow the network to tune the storage savings as a parameter, depending upon
how much bootstrap cost new nodes can tolerate. When SeF codes are tuned to achieve k-fold
storage savings, a new node is guaranteed to recover the blockchain with probability (1− δ) by
contacting k +O(

√
kln2(k/δ)) honest nodes.

3.3 Secure Repair Block in Sharded Blockchains

In our work, we assign nodes to shards and perform our coding scheme on individual shards.
We use the procedure followed in [1] to execute the random assignment of nodes to shards.
In the following, we describe the components of the Secure Repair Block protocol and also
algorithms corresponding to encoding, bootstrapping and reconstruction.
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3.3.1 Components of Secure Repair Block Protocol

We build the secure repair block protocol around the RapidChain protocol. We have the
following components:

• Reference committee is elected at the start of the protocol, which help in generation
of epoch randomness and creating reference block. The reference block in addition to
the epoch randomness and a list of nodes, has additional information of “Node Encoder
Coefficient”. The node encoder coefficient will be described later.

• Committee reconfiguration is performed using Cuckoo rule described before.

• Intra-shard consensus and cross-shard transactions are performed similar to RapidChain.

• The blocks are encoded in a certain way and multiple coded blocks (α of them) are stored
in a single node. If a new node joins the system, bootstrapping the node is considering
equivalent to repairing the node as shown in Fig. 3.1. The code construction which will
facilitate this process and will be described in the rest of the section.

• It has been claimed in [71] that to achieve scalability, any robust sharded ledger has
to perform compaction of state. Hence to perform verification, we propose that a node
contacts other nodes to download a certain number of coded blocks and recovers the
original blocks.

We would like to note that we do not consider ledger pruning as part of Secure Repair Block
protocol.

3.3.2 Secure MBR Regenerating Codes

In this section, we describe the framework of secure regenerating codes which guarantee
minimum bandwidth during the repair of a single node. These class of codes are known as
minimum bandwidth regeneration (MBR) codes. The code construction as well as the security
properties of the code have been derived in [72]. These are discussed in detail here for the sake
of completeness. These codes will be used in a later section to provide a storage scheme for
blockchains with sharding. Consider a file of size L over a finite field Fq with the corresponding
message symbols denoted by m1,m2, . . . ,mL. These L symbols are encoded into nα symbols
and stored at n nodes each of which can store α symbols over a finite field Fq. We need to be
able to perform two functions on this kind of a distributed storage system.

• Data Reconstruction: By connecting to any k nodes and downloading all the α symbols
present in the k nodes, we have to be able to recover all the L message symbols.

• Node Repair: By connecting to any d nodes and downloading β < α symbols from the
d nodes, we would like to recover the contents of a single node.
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Figure 3.2: Regenerating code framework in the context of blockchains.

The framework of regenerating code in the context of blockchains is shown in Fig. 3.2.
We consider the threat model wherein the contents of one or more nodes may be malicious.

A node that is malicious may send arbitrarily corrupted data during data reconstruction and
data repair.

For the case of minimum bandwidth regenerating codes α = dβ. In the current code con-
struction, we consider β = 1 and hence d = α. The code construction is given by the following
product-matrix framework:

C = ΨM, (3.1)

where Ψ is encoding matrix of size n × α and M is message matrix of size α × α. Each row
of C is a set of α symbols which is stored in a node. The message matrix M has the following
symmetric structure:

M = [mi,j ] =

[
U V

V T 0

]
, (3.2)

where U is a symmetric matrix of size k× k and V is a matrix of size k× (α− k). The number
of variables in the above matrix is thus given by L = k(k+1

2 )+ k(α− k). One possible choice of
the encoding matrix is that of Vandermonde matrix given below.

Ψ =


1 γ1 γ21 . . . γα−1

1

1 γ2 γ22 . . . γα−1
2

...
... . . . ...

1 γn γ2n . . . γα−1
n

 , (3.3)
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where all γi are distinct elements of the finite field Fq. With the encoding matrix chosen as
Vandermonde matrix, the above code construction can also be interpreted as being obtained
by evaluating polynomials at various points in the finite field Fq. Consider the following set of
α polynomials,

P (i)(x) =
α−1∑
j=0

mi,jx
j . (3.4)

It can seen that the code can be obtained by evaluating the above polynomials at distinct
elements γ1, γ2 . . . , γn of the finite field Fq, q ≥ n. We would like to note that this code
construction is very flexible in terms of addition of nodes as long as k and α are kept constant.
This is because we just need to add another evaluation point γn+1 to the existing code and the
resultant code is still an MBR code comprising n + 1 nodes. This property will be used later
in the case of blockchains to bootstrap new nodes.

Remark 1 There are also other class of codes known as minimum storage regenerating codes
(MSR codes) which can be used to reduce the bootstrap cost as well. These codes offer a different
operating point with respect to storage cost and bootstrap cost. These codes have lesser storage
cost than MBR codes with an increase in the bootstrap cost. However, the code construction for
a range of parameters is also based on product matrix framework and is similar to the MBR
code. Thus, we will not discuss this variant of regenerating codes in this work.

3.3.3 Encoding

We analyze the system based on rounds or epochs. At the beginning of each epoch, a
reference committee agrees on a reference block consisting of the list of all active nodes for
that epoch as well as their assigned shards. In addition to assigning nodes to the shards, in
our protocol, the reference committee also assigns nS distinct coefficients ({γi} termed as node
encoder coefficients) from the finite field to every node in the shard. This information is also
stored in the reference block. During the epoch, L = kα−

(
k
2

)
blocks in the shard are encoded

to obtain nSα blocks and stored on nS nodes in the shard. The encoding process is described
in Algorithm 1.

To understand the encoding process as the blocks are coming in, the first round of encoding
is done when the number of blocks in the epoch is L. Then the first L blocks are encoded
using the procedure described above and the original blocks are deleted. The second round of
encoding is performed when the number of blocks in the epoch is 2L. In the second round,
blocks from L + 1, . . . , 2L are encoded using the procedure described above and the process
continues.
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Algorithm 1 Coding the blocks in a shard
1: Input B1, . . . , BL which are L input blocks
2: Stripe the blocks into units of the finite field Fq. The stripes of block Bℓ are denoted by

Bℓ,1, . . . , Bℓ,Z . Z is number of stripes in a block, which can determined by the block size
and the field size.

3: Form α message polynomials as described in (3.4) with {Bℓ} in place of {mi,j}.
4: Evaluate the α message polynomials at the coefficient γi assigned by the reference committee

to obtain the coded stripes Ci,j,s, 1 ≤ j ≤ α, 1 ≤ s ≤ Z.
5: Merge the stripes corresponding to a single code block and form α code blocks denoted by

Ci,1, Ci,2, . . . , Ci,α.
6: The coded blocks Ci,1, Ci,2, . . . , Ci,α are stored along with coefficient γi.

3.3.4 Boostrapping new nodes to a shard

The code described in Algorithm 1 has the data reconstruction and node repair properties
which have been listed in the specifications of a regenerating code. Now, we will perform secure
node repair with the same code by contacting more number of helper nodes. Here, we describe
a procedure for repairing a single node failure in the presence of p malicious nodes. As can be
seen for the code construction, a node i can be identified by its coefficient γi. In order to repair
a node whose coefficient is γi, d+ 2p other nodes whose coefficients are say 1, 2, . . . , d+ 2p (all
different from i) send the following symbols:

[1 γi γ2i . . . γα−1
i ]M [1 γj γ2j . . . γα−1

j ]T , (3.5)

where j = 1, 2, . . . , d+ 2p. By collecting the d+ 2p symbols, the resultant vector is equivalent
to encoding the vector [1 γi γ2i . . . γα−1

i ]M with an MDS code of length d+2p and dimension
d = α. Hence, it can result of correct output of [1 γi γ2i . . . γα−1

i ]M even if p nodes are
malicious and send erroneous symbols.

When a new node joins a shard, the contents of the node are obtained by repair process. This
is accomplished by the new node contacting d+2p nodes and downloading one coded block from
each one of them. The reference committee keeps track of which nodes have which evaluation
points and assigns a unique coefficient γi to the new node. In the process of reconfiguration of
shards/bootstrapping, we are assuming that at any point there are at least d+2p nodes in any
shard. Also, this scheme is flexible in terms of the number of malicious nodes we can tolerate.
If an estimate of level of security is known at any point of time, then we can contact lesser
number of nodes (since p is less) and perform the bootstrapping operation. The data sent by
the peers corresponds to the result of one linear combination of the α coded blocks contained
in the stored data. Once the new node receives (d + 2p) coded blocks, it applies a decoding
procedure to recover its own coded blocks. The algorithm to bootstrap a new node to shard is
described in Algorithm 2.
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Algorithm 2 Bootstrapping new node to a shard
1: Input coefficient γi which corresponding to the evaluation point of the new node i.
2: The new node i queries d+ 2p other nodes in the shard with its coefficient γi.
3: jth node, 1 ≤ j ≤ d + 2p sends the following linear combination to the new node

[1 γi γ2i . . . γα−1
i ]M [1 γj γ2j . . . γα−1

j ]T after the message matrix M is replaced with the
corresponding blocks and the process of striping similar to that in the encoding algorithm.

4: After having received d+2p coded blocks from the d+2p nodes in the shard, the new node
performs a (d + 2p, d) Reed Solomon decoding to obtain the coded blocks which it has to
store.

We illustrating the process of bootstrapping a node (in the absence of adversarial nodes)
through an example. Let there be 5 nodes in the system such that k = 3 and d = α = 4. M is
a message matrix consisting of L = kα−

(
k
2

)
= 9 blocks arranged as follows:

M =


B1 B2 B3 B7

B2 B4 B5 B8

B3 B5 B6 B9

B7 B8 B9 0

 (3.6)

The ith node stores 4 coded blocks [1 γi γ2i γ3i ]M . Suppose if a 6th node joins the system, then
in order to compute [1 γ6 γ26 γ36 ]M , the new node downloads one block each from 4 nodes.

For example, in Fig. 3.3, nodes 2, 3, 4, 5 send one block each given by [1 γi γ2i γ3i ]M


1

γ6

γ26
γ36


and then the new node computes [1 γ6 γ26 γ36 ]M from these 4 blocks.

3.3.5 Reconstruction

Here, we describe a procedure for reconstructing data in the presence of p malicious nodes.
For data reconstruction, we will contact k+2p nodes and download all α symbols from each of
them. Thus, we have access to the following symbols:

ΨdrM = [∆dr Φdr]

[
U V

V T 0

]
(3.7)

= [∆drU +ΦdrV
T ΦdrV ], (3.8)

Where Ψdr refers to an arbitrary (k+2p)×α submatrix of Ψ. The reconstruction of the message
matrix involves two steps:

• In the first step, ΦdrV can be used to be recover V in the presence of p mailcious nodes.
This is because Φdrvj for every column vector vj in V forms an MDS code with parameters
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Figure 3.3: Bootstrapping a node is equivalent to repair of product-matrix MBR code.

(k + 2p, k). Hence, p errors can be tolerated. By applying similar procedure to every
column of V , we can recover V completely.

• In the second step, the contribution due to V is subtracted from the term ∆drU +ΦdrV
T

to result in ∆drU . We can recover U using the property of MDS code similar to that in
the above step.

3.4 Performance Comparison

In this section, we will compare the performance of three schemes: RapidChain, SeF based
sharding, and SRB protocol. The performance metrics include (i) storage overhead, (ii) boot-
strap cost, (iii) encoding complexity, and (iv) security guarantee.

3.4.1 Storage Overhead

In the case of RapidChain, since each block in the shard is replicated nS times where nS is
the number of nodes in the shard, the storage overhead is nS . In the case of SeF based sharding,
the storage overhead is (1 + δ) where δ is some small positive quantity. Here, we would like
to note that in SeF based sharding, we need to combine a large number of blocks (order of
thousands) in order to obtain a code which can be decoded successfully, i.e., L has to be large.
In the case of SRB protocol, the storage overhead is given by nSα

L , which is lower than that of
RapidChain and higher than that of SeF-based sharding since α < L.
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3.4.2 Bootstrap Cost

In the case of RapidChain, a new node joining the network has to download the entire
blockchain in that shard. So, the bootstrap cost will be L blocks. In the case of SeF based
sharding, a new node joining the network has to download at least L+O(

√
L log2(L/δ)) blocks.

Bootstrap cost for SeF based sharding is high because the new nodes first recovers all the
L blocks and then later computes the linear combination which it has to store. In secure
regenerating code based sharding protocol, we have to download α blocks, where α < L. We
get this advantage since we are considering the bootstrap of a new node as a single node repair
problem and we are downloading just as much content needed to recover the coded blocks to
be stored in that node.

Consider a case when the block size is 2MB. There are 16000 nodes in the system with 16
shards and hence 1000 nodes per shard. We assume that L = 1065 blocks have been processed
per shard.The storage per node for RapidChain (without ledger pruning) is 2.13GB and boot-
strap cost is also 2.13GB. The storage per node for SeF based sharding is 4MB (Assuming
number of coded blocks stored per node ρ = 2) and the bootstrap cost is > 2.13GB. The
parameters for the SRB protocol are given by k = 30, α = 50, L = kα −

(
k
2

)
= 1065. With

these parameters, the storage per node is 100MB and the bootstrap cost is also 100MB. Hence,
the SRB protocol saves both in terms of storage and bootstrap cost.

3.4.3 Epoch Security

Let tS be the maximum number of malicious nodes within a shard which can be tolerated by
the protocol. The number of malicious nodes which can be tolerated in the case of RapidChain
is tS = nS

2 where nS is the number of nodes within a shard. For the SeF based sharding and
SRB protocol, security guarantee is given by the maximum number of malicious nodes in the
presence of which a new node joining the shard is bootstrapped with correct coded blocks.
In a SeF based sharding scheme, the number of malicious nodes which can be tolerated are
tS = nS − L+O(

√
L log2(L/δ))
ρ . For the SRB protocol, the number of malicious nodes which can

tolerated are tS = nS−α
2 .

Consider a blockchain network with N nodes and m shards. Each shard has nS nodes in it.
Let T be the total number of malicious nodes in the network. A random variable X represents
the number of malicious nodes. The probability that the committee election scheme fails in the
first epoch be pbootstrap. The value of pbootstrap ≤ 2−26.36 in [1]. In [73], the security analysis
of sharding schemes is analyzed assuming a hypergeometric distribution for assigning nodes to
the shards. Cumulative hypergeometric distribution, H(N,P, nS , pS), is used in calculating the
failure probability of one shard and also for failure probability of a given sharding scheme.

H(N,T, nS , tS) =

nS∑
l=tS

(
T
l

)(
N−T
nS−l

)(
N
nS

) (3.9)
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Hoeffding bound is proved to provide a tight bound for failure probability in [73], which is given
by

H(N,T, nS , tS) ≤ G(x), (3.10)

where G(x) =

((g
r

)r (1−g
1−r

)1−r
)nS

, where r = tS
nS

. Let ps be the probability of a shard
failure, which means number of malicious nodes exceed the limit. The failure probability of
Rapidchain [73] is upper bounded by

pbootstrap +mps ≤ U(x), (3.11)

where U(x) = pbootstrap +mG(x).
The performance metrics of storage overhead, bootstrap cost and epoch security have been

summarized in Table 3.1.

3.4.4 Encoding Complexity

In RapidChain, there is minimal encoding complexity which involves only copying of blocks
from one node to the other. In SeF based sharding, the encoding in every node involves just
binary field operations, whose complexity is again very less. In the secure regenerating code
based sharding, encoding in the initialization phase involves computing one row of the ma-
trix product which involves taking α3 multiplications over the finite field. In the reconfigura-
tion/bootstrapping phase, computing the contents of a node involves decoding a (r = d+2p, d)

Reed Solomon code whose complexity is given by r2 log2r loglogr.

3.4.5 Latency and Throughput

Latency of the SRB protocol will be approximately same as that of RapidChain. The reason
is two-fold. The consensus protocol is synchronous and happens in 4 rounds for both the
protocols. The additional delay incurred by the SRB protocol is due to contacting a set of
nodes and downloading coded blocks in order to recover original blocks. This delay is small
compared to the δ set for the synchronous protocol and hence the latency for reaching consensus
would be nearly same as that of the RapidChain protocol. Thus, we have that τSRB ≈ τRC .
The throughput factor for the RapidChain in terms of the latency and the number of shards
is given in [71]. The throughput factor for the SRB protocol can be expressed in terms of its
latency exactly using the same expression and is given by

σSRB < µ τSRB

( n

lnn

)(
(aSRB − p)2

2 + aSRB − p

)(
1

v

)
, (3.12)

where

• µ is the ratio of honest blocks in the chain to the total number of blocks,
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• n is the total number of nodes and lnn is the number of nodes in a shard

• aSRB = 1
2 −

α
2 lnn is the resiliency of the SRB protocol within a shard

• p is the fraction of malicious nodes in the system

• v is the average size of transactions

We can see that the throughput factor of SRB is slightly less than that of RapidChain because
aSRB < 1

2 = aRC .

3.4.6 Other Aspects

Here, we would like to point out two differences between SeF based sharding and secure
regenerating codes based sharding. The encoding process for SeF based sharding is probabilistic
in nature and hence there is a chance (though extremely less) that the encoding is such that we
cannot recover the original blocks from the encoded blocks. On the contrary, secure regenerating
codes based sharding protocol is deterministic and hence the blockchain data is definitely present
in the system.

Secondly, SeF based sharding is completely decentralized in nature. Secure regenerating
code based sharding is not completely decentralized in the sense that a reference committee
has to keep track of the assignment of node encoder coefficients to nodes (negligible overhead
is incurred in this process) and if a new node joins the shard, it has to be assigned a coefficient
which is not previously assigned to any node in the shard.

Finally, in SeF based sharding, honest header chain is required as side information for apply-
ing the peeling based decoder. In secure regenerating code based sharding, there is no need to
have the honest header chain as side information as the decoding process is via error correction
capability of the code.

In this Chapter, we have presented a secure-repair-block protocol based on regenerating
codes to reduce both storage and bootstrap costs. The proposed protocol is based on a shard-
ing approach which uses efficient secure regenerating codes that are not only storage efficient
but also bandwidth efficient while repairing failures. Drawing connections between regenerat-
ing codes and blockchain, significant storage savings and savings in bootstrapping costs are
obtained, which makes it easier for a new miner to enter the system (since storage is one of the
key challenge that requires only larger capability miners to enter).

This work demonstrates improvements in storage that allow for easy entry of the lower-
capability miners, a detailed implementation of SRB protocol is left for the future. Such
implementation can help see the latency and throughput performance of the system.

In our work, we assign nodes to shards and perform our coding scheme on individual shards.
We use the procedure followed in [1] to execute the random assignment of nodes to shards.
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In the following, we describe the components of the Secure Repair Block protocol and also
algorithms corresponding to encoding, bootstrapping and reconstruction.
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Chapter 4

DRL based optimization framework for Prism Blockchain

In large-scale networks like IoT, blockchain needs to have high scalability as the transactions
that are recorded on a blockchain are very high. Recent work has proposed a new approach to
decouple the functionality of the blockchain and achieve a much higher performance than the
existing schemes [20]. Prism has throughput of 70,000 transactions per sec and latency is the
network communication delay, reaching the physical limits of the system [21]. Prism follows
the longest chain protocol and achieves good security. In this work, we aim to further improve
the security of Prism while maintaining the throughput and latency guarantees.

An intelligent learning-based decision-making approach can optimize the Blockchain con-
figuration adapting to the dynamic nature of incoming transactions, participating nodes while
still maintaining the blockchain performance [5]. Artificial Intelligent (AI) has shown its ability
to learn from a massive amount of data effectively [74]. Reinforcement Learning (RL) [75] is an
AI approach, which has been used in blockchain applications [5]. RL learns the environment
dynamics and chooses an action maximizing a long-term reward. Deep Learning was integrated
with the traditional RL, called Deep Reinforcement Learning (DRL) to improve the perfor-
mance of RL and overcome limitations like the curse of dimensionality [33]. Dueling Deep Q
Networks (DDQN) [35, 36] is a popular Q-learning algorithm in DRL. Proximal Policy Opti-
mization (PPO) has been shown to achieve better performance than the other policy gradient
methods in DRL [53, 76]. This motivates the choice of these two approaches to improve the
performance of Prism. DRL is incorporated into blockchain systems to better understand the
dynamics of the blockchain system and optimize its performance. According to the blockchain
trilemma, any blockchain system can only have at most two of the three features, decentraliza-
tion, security, and scalability [5]. These three features have a trade-off relationship with each
other, where maximizing one feature can drastically degrade the other feature [40].

We propose a DRL-based approach to a high-performance blockchain protocol, Prism. Re-
cent works propose DRL approach to traditional blockchains but Prism has very high perfor-
mance compared to the traditional blockchain systems. A Deep Reinforcement Learning based
Prism Blockchain (DRLPB) scheme is proposed which used to optimize the Prism blockchain
performance without compromising on the performance guarantees provided by Prism. We for-
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mulate the DRL based approach for Prism and apply DDQN and PPO algorithms to optimize
the performance of the Prism blockchain. This is the first work applying PPO to an on chain
blockchain-based system to the best of our knowledge, and we show that this approach out-
performs DDQN based optimization, which further outperforms standard Prism protocol. We
demonstrate that the approach can be improved to have better security for the same throughput
and latency. The code is available on github1. The security level of Prism is highly dependent
on the number of votes received by the leader block. We achieve 84.47% more votes in the PPO
based approach and 69.21% more votes in DDQN based approach than Prism.

4.1 System Description

The DRLPB consists of a blockchain protocol that runs on a distributed set of nodes con-
nected by a physical network. The blockchain protocol used for DRLPB is discussed in this
section along with the assumptions. The performance of Prism [20], is limited by the attributes
of the underlying network. Latency is limited by the propagation delay and by the confirmation
reliability. In a blockchain protocol, electing a leader block among all the blocks at each level
of the block tree has three distinct roles: 1) add transactions to the main chain; 2) election
of leaders; 3) vote for ancestor blocks through parent link relationships [21]. This is the main
cause of latency and throughput limitations of the longest chain protocol due to the coupling
of the roles carried by the blocks. In Prism, these limitations are overcome by factorizing the
blocks into three types of blocks. For ease of understanding, we represent them as levels of
blocks, which are the proposer blocks, the transaction blocks, and the voter blocks as shown in
Fig. 5.2. A miner’s block is randomly sortitioned using cryptographic sortition into one of the
three types of blocks, and if it is a voter block, it will be further sortitioned into one of the v

voter trees.

4.1.0.1 Level 1: Transaction Blocks

To decouple security from throughput, separate transaction blocks are employed in Prism.
Transaction blocks are independent, without a parent block, and are mined at a faster rate.
The transaction block consists of an ordered list of transactions, drawn from a memory pool.
The number of transactions confirmed per sec in Prism depends on transaction blocks.

4.1.0.2 Level 2: Proposer Block

Proposer blocks are the elected leader blocks. Proposer tree is built based on the longest-
chain protocol. Proposer blocks choose as their parent block and contain a list of reference links
to transaction blocks (which contains transactions), as well as a single reference to a parent

1https://github.com/DRLPB/DRLPB
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Figure 4.1: Consensus in Prism blockchain

proposer block. The final confirmed sequence of proposer blocks is the leader sequence and is
determined by the voter trees. The reliability of Prism depends on Proposer blocks.

4.1.0.3 Level 3: Voter blocks

Voter trees are built using the longest-chain protocol. The parent of voter block is the tip of
the longest chain in the voter tree. The content of a voter block is a list of references to proposer
blocks called votes. The voter block contains a list of one vote per non-voted level in the block’s
ancestors as shown in Fig 5.2. The number of voter chains, v considered in Prism experiments
is 1000 [21]. The leader voter block at each level is the one that has the highest number of votes
among all the proposer blocks at the same level. The voter blocks do not exactly follow the
chain structure and hence are referred to as voter trees. However, voter block mining is very
similar to the others and we use voter trees and voter chains terminology interchangeably in
this chapter. The security of Prism depends on voter blocks and the number of votes received
by them.

4.1.1 Security

The security of the Prism blockchain depends on the votes from the voter trees, which also
secure each leader proposer block. Changing an elected leader requires reversing enough votes
to refer them to another proposer block in that level and the voter tree votes are based on the
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longest chain protocol. In [21], it is shown that if the adversary has less than 50% hash power
(β ≤ 0.5), and the mining rate in each of the voter trees is kept small to minimize forking,
then the consistency and liveness of each voter tree guarantee the consistency and liveness
of the ledger maintained by the leader proposer blocks. Consistency is a guarantee that all
honest parties output the same sequence of blocks throughout the execution of the protocol
and liveliness refers to a protocol that can exchange messages among nodes, with the nodes
successfully coming to a consensus. A low mining rate would result in high latency to wait for
each voter block to get sufficiently deep in its longest chain. When there are many voter chains
in parallel, the longest chain protocol guarantee can be achieved without requiring each and
every vote to have a very low reversal probability, which is an improvement in latency. So the
security of Prism depends on the mining rate of voter blocks, the number of voter chains and
their votes.

Consider that there are n proposer blocks at level i, denoted by P = Pb1, Pb2, · · · , Pbn.
Suppose Pbi gets vi number of votes. A vote for proposer block, Pbi is given by a voter block
which is on the longest chain of its voter tree. Note that each voter block can vote only on
one proposer block. Let V p

bi = V p
1 , V

p
2 , · · · , V

p
i is the set of votes that Pbi has received. For

every vote, V p
i , let uij is the depth of voter chain. The block inter-arrivals are exponentially

distributed, the number of blocks mined after the block Pbi is a Poisson random variable, with
rate equal to its mean [21]. This can be related to the time elapsed since Pbi was released via the
block mining rate. Let the fraction of adversarial hashing power be β, and we can empirically
estimate the average depth of existing public votes as ū =

∑
ij uij∑
i vi

and a forking rate α for voter
chains. There are many voter chains so the estimates converge to their true mean. Then, the
average depth of a voter chain is,

ūA =
βū

(1− α)(1− β)
.

The voter chains follow the longest-chain rule, same as in Bitcoin, so the votes reversal proba-
bility is a function of adversary hash power and the depth of confirmation [21].

4.1.2 Latency

Let the fraction of adversary hashing power be β and v be the number of voter trees and
pα is a small value representing the reversal probability of confirmed transactions. Then upper
bound on the latency, ∆, is given as follows [21]:

∆ ≤ Dak1(β) +Da
k2(β)

v
log 1

pα
, (4.1)

where k1 and k2 are constants which depend on β [20]. k1(β) = 5400(1−β)

(1−2β)3 log 1−β
β

and k2(β) =

5400(1−β)
(1−2β)3

log 50
1−2β . Honest transactions are confirmed in max (k1(β)Da, k2(β)

1
v log( 1

pα
)) time.

For a large number of voter trees v, the first term dominates the above equation and therefore
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Prism achieves near-optimal latency. This also implies that latency is proportional to the
average propagation delay D and independent of the reversal probability. The latency bound
considered here is the worst-case latency bound that holds for all attacks described in [21].

The confirmation of a new leader proposer block at a given level, i is determined by the
voter trees growth and the votes on level i that are embedded deep into their respective voter
trees. The leader block is confirmed when a plurality of voter trees have voted for it, and
is guaranteed not to change with probability at least 1 − z, where z is a user-selected target
reversal probability in the presence of adversary that controls a fraction β of the total hash
power.

4.1.3 System Model Assumptions

In the proposed system, it is assumed that there are N nodes and V voter chains. At the be-
ginning of each epoch of the blockchain, (after consensus and adding a block to the blockchain),
a node solves a Proof of Work (POW) puzzle to participate in the mining process. After solv-
ing the PoW puzzle, each miner mined block will be assigned a proposer or a transaction, or
a voter. A mining modifier is defined for transaction block, proposer block and voter block.
Changing the mining modifier changes the Prism blockchain performance. The Prism separates
the process of confirming blocks and forming a ledger. The functionality of ledger formation is
divided into ledger manager, block structure manager and miner. The ledger manager updates
the ledger based on the latest blockchain state and the miner assembles new blocks. The block
structure manager maintains the clients’ view of the blockchain and communicates with peers
to exchange new blocks [21]. The block structure manager sanitizes the ledger and orders the
transactions periodically. After the consensus, the ledger sanitization is performed during a
predefined period, which is set to 1 epoch. The goal of the Prism client is to maintain up-to-
date information of the blockchain and the ledger. The number of nodes joining and leaving
the network is random and the security of a blockchain protocol like Prism highly depend on
the voter blocks mined at each epoch. Our proposed DRL approach can be used to decide the
security level of the blockchain by deciding the optimum value of the number of voter trees.
The DRL algorithm can be executed at the block structure manager periodically and update
the blockchain parameters. The block structure manager follows the same peer-to-peer proto-
col for updating the DRL parameters as that of updating new blocks. Since the Prism client
by default is decentralized, our implementation is also decentralized. The Prism client in our
implementation maintains the latest information of the blockchain, the ledger, and the updated
parameters of DRL. The malicious activity of block structure manager would be reducing voter
chains which would result in more votes received by the the favorable block. The voter chain
value cannot be decreased more than the default value of Prism. This would not degrade the
performance of the protocol. Another malicious activity would be increasing mining rate very
high making it difficult to mine new voter blocks. The upper limit on the mining rate is set to
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Prism default value, this helps in maintaining Prism performance even in case of any malicious
activity caused during DRL execution. An illustration of the system model is shown in Fig 4.2.

4.2 The DRLPB Approach

The objective of this work is to ensure an intelligent, and secure Prism blockchain system
by mapping the number of nodes participating in voter chains to the optimized Blockchain
configuration considering the trade-off between the three metrics in a blockchain system, secu-
rity, latency, and cost. In Prism [20], the functionality of blockchain is decoupled and hence,
the trade-off is redefined for our analysis. In our work, we try to maintain the preserve the
performance of Prism and improve the security level by mainly focusing on the voter chains.
We discovered that there is a trade-off between the confirmation latency, the number of voter
chains, and the mining rate analogous to the latency, security, and cost trade-off. Two reinforce-
ment learning approaches, DDQN and PPO are adopted to optimize blockchain performance.
At each time step, the input transaction data is analyzed to decide the blockchain configuration.
The decision is made based on predefined requirements of security level and latency.

4.2.1 Markov Decision Process Model

The Markov Decision Process (MDP) environment represents the received voter blocks in-
formation from the nodes of the blockchain, where our DRL algorithm needs to interact along
with the Blockchain network. The DRL agent is not aware of the environment beforehand. It
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uses its experience of interacting and observing the rewards for various decisions in different
states and then learning the optimal policy π∗ to map the states with their best actions.

4.2.1.1 Environment

The optimization problem is formulated as a MDP. The MDP environment is represented
by the tuple < S,A,R, γ >, where, S, is the state space, A, is the action space, R, represents
the reward function and γ is the discount factor ranging from 0 to 1. At every time step, t, the
agent receives a state representation, s of the environment. The agent takes an action a in the
environment based on a policy π(a|s). Then, a transition to the next state, s′ occurs with a
probability P (s′|(s, a)), and a reward, rt is received by the agent, which is explained in detail in
the following subsections. In Prism, each node participating in the mining process solves a PoW
puzzle, whose difficulty level is preset based on various parameters like the number of nodes
participating in the network. In Prism implementation [21], a mining modifier is used which
is used to calculate the overall blocks mined in the blockchain per sec, including transaction,
proposer, and voter blocks. In our work, we mainly consider the parameters related to voter
block and its mining since we try to focus on the security level of Prism. A DRL method is
then used to solve the formulated MDP.

4.2.1.2 State

The state in DRL reflects the environment at a given time, in this case, the consensus
information of the blockchain. The state space S consists of a set of vectors representing the
number of nodes, the number of voter chains, and the delay corresponding to each voter block
added to the chain. The state space is chosen such that we have the information of the entire
blockchain for modifying the mining rate and also we have a special focus on the voter chains
(the decoupled blockchain). The state is defined as,

st = [N,V,D]t, (4.2)

where N is the number of nodes participating, V is the number of voter chains, and D =

[d1, d2, · · · , dV ] is the delay. The delay vector corresponds to the delay values of the voter block
mined.

4.2.1.3 Action

An agent maps the space of states, S to the space of actions, A. At every time step t,
the agent selects an action at ∈ A such that the we have maximum number of voters for that
time step. The DRL agent selects the number of voter chains, V ∗ for each time step t and the
mining rate of voters be Mr. The number of voter chains in Prism implementation was 300.
We initialize the value of V as 300 and the agent can choose the number of voter chains from
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a range of 270 to 300, each time with a change of ∆V ∈ {+10, 0,−10}. The voter mining rate
in Prism is set to 0.1. We initialize Mr at 0.1 and each time the agent can change the value of
∆Mr by {+0.01, 0,−0.01}. The mining rate is a discrete set of values in the range of [0.01, 0.1].
Voter mining rate is the rate at which voters mine the blocks. The range is chosen for an
acceptable level of performance, which is preserving Prism blockchain performance guarantees.
If the mining rate is higher than 0.1, the voter blocks are mined faster, resulting in more voter
blocks than required, which is a waste of resources. If it is less than 0.01, they are mined slowly
resulting in a very low throughput of voter chain. After choosing the change in action values
of ∆Mr, and ∆V , the agent sets new value the number of voter chains and mining rate of the
blockchain as M∗

r , and V ∗. For the first iteration, if an action is chosen to decrement both the
values, then M∗

r = Mr −∆Mr and similarly V ∗ = V −∆V . Then, the action selected at can
be represented as

at = [∆Mr,∆V ]t.

The action space controls the voter chains in Prism blockchain (decoupled functionality). This
allows us to modify the mining rate of just the voter blocks and the number of voter chains
without affecting the other decoupled functions of Prism like transaction blocks and proposer
blocks. The mining rate of the proposer, transaction and miner can be controlled as discussed
in [21]. In this work we control the voter mining rate.

4.2.1.4 Reward

The reward function is the ultimate goal of optimizing the number of votes received in the
voter chain, while meeting application-level requirements like security and latency. The reward
function equation is obtained from the implantation code of Prism [21], which represents the
votes received for each blockchain iteration. Based on the current state and action, the agent
obtains a reward from the environment. The security of Prism blockchain depends on the
voter trees, in turn, the number of voter blocks confirmed. The reward function represents the
number of votes received in the voter chains, which is represented as follows:

rt =
V ∗M∗

rΛ

DaCp
if Γ < (1−2β

β ) and if ∆ < Dak1(β) +
Dak2(β)

m log 1
pα

rt = 0 otherwise,

where Λ is the throughput which is defined as the number of voter blocks confirmed per sec,
Mr is the mining rate and V ∗ is the number of voter chains, Da is the average of the elements
in D, which is a vector corresponding to the delay of each voter block. The constraints in
our implementation use Da. A throughput parameter T , is used in the calculation of overall
throughput of the network, including voter, proposer and transaction blocks. T is defined as a
network parameter and is used in the calculation of Cp in [21]. Cp is calculated as 64000

168 T , which
is given in the [21] implementation. The reward function is chosen in such a way to maximize
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the number of votes received by the leader block. The number of votes would depend on the
mining rate of voter blocks and number of voter chains. The agent learns to maximize the
reward, which corresponds to the maximum achievable security at the given time. The reward
is a function of the current state, which is delay corresponding to each voter block. The output
of Prism is a log of the propagation delays corresponding to each voter block which is used in
our experimentation. This delay depends on number of nodes as the logs are generated at each
node. The state also needs the information of current number of voter chains to increment
or decrement its action parameters. The reward is also a function of the action, which is the
mining rate and maximum number of voter chains.

4.2.1.5 DRL Agent

The main objective of the agent is to find the best mapping between the state and the action
that achieves a maximum reward. The agent uses the available state samples and calculates
the estimated reward that can be obtained by taking an action a from a state s.

The agent tries to maximize the future rewards, which are expressed as the sum of all
discounted future returns following time step t. The discounted future reward with the discount
factor, γ, is represented as

Rt = rt +
∞∑
τ=0

γτrt+τ , (4.3)

where γ ∈ [0, 1]. The behavior of the agent is described by a policy π(at|st) which is the
probability of choosing action at ∈ A condition on the observed state st ∈ S. The action-value
function under policy π describes the expected return of an action for the agent in a given state,
Qπ(s, a) = Eπ[Rt|st, at], where Eπ denotes the expected value given that the agent behaves
according to policy π. The optimal policy π∗ has the optimal action-value function Q∗(s, a) =

maxπ Qπ(s, a), and satisfies the Bellman optimality equation. Bellman equation states that the
optimal action-value function is the expected reward of action a plus the discounted expected
value of the best action in the subsequent state st+1,

Q∗(s, a) = E[Rt+1 + γ max
at+1

Q∗(st+1, at+1)|st, at]. (4.4)

The optimal action-value function Q∗(s, a) is the maximum expected return achievable under
any policy, after seeing a state st and taking an action at and π is a policy mapping states to
actions [77]. The objective is to maximize the Q function while satisfying the latency and
security constraints.
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maxπ Qπ(s, a) (4.5)
Security constraint Γ < (1−2β

β ) (4.6)

Latency constraint ∆ < Dak1(β) +
Dak2(β)

m log 1
pα

(4.7)

β is the adversary power k1, k2 are dependent constants as defined in Eq. (4.1). β is less than
0.5 in the network. At the end of each DRL algorithm iteration, the new state is updated based
on the delay vector corresponding to the voter blocks in the voter chains whilst the number of
voter chains and mining rate is chosen by the actions with a goal to maximize the reward. The
new state is formed by the number of voter blocks in the voter chains and their corresponding
delays as an output of the blockchain, based on the action taken in the previous time step. Once
the action is decided by the agent, the voter chains and mining rate values are given to the
Prism blockchain environment. After execution of the Prism blockchain consensus, the delay
values for each voter block along with the number of voter chains are given as next state input
to the DRL agent. Given a voter mining rate Mr, and the average block propagation delay ,
Da, then the maximum number of voter block chains possible is [20],

V =
0.1CDa

M̄rBv
− Bp

Bv
, (4.8)

where, Bv is the block size of the voter block, C is the network capacity and M̄r = MrDa is
the voting rate. Bp is the proposer block size.

4.2.2 DDQN based Approach

The Prism blockchain output data is given to the DDQN network which outputs the action
variables to the blockchain network for better performance. Fig 4.3 shows an illustration of
the integration of DDQN and Prism blockchain. DDQN has two DNNs. The first is the
evaluate network, which takes the current state-action pair (st, at) as input, and output is a
predicted value of them. The other is a target network, which takes input as the next state
st+1 and output is the maximum Q-value of the next state-action pair. The replay memory
stores experience tuples which include the current state, the selected action, reward, and next
state. The stored experience tuples can be randomly sampled for training the primary network
and target network. Randomly sampling experience tuples aim to reduce the effects of data
correlation. Learning the optimal action for a particular state starts by taking several random
actions for exploration purposes. All previous experiences, including the state, action taken,
reward received, and a new state, will be stored in an experience replay memory. The target
network parameters, θ, will be updated every certain number of time steps, U .

The optimal action-value function obeys the Bellman equation. The optimal value Q∗(s′, a′)

of the next state s′ at the next time-step was known for all possible actions a′, then the optimal
strategy is to select the action a′ is to maximize the expected value of r + γQ∗(s′, a′).
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Figure 4.3: Network Architecture of DDQN applied in Prism

Algorithm 3 DDQN based DRLPB
1: Initialize the network parameters Qθ, target network Q′

θ, replay buffer B, and τ << 1

2: for episodes 1,2, …, E do
3: if Eq. (4.6) and (4.7) are satisfied then
4: Choose at with an ϵ greedy policy from st
5: Get a reward rt and go to next state st+1

6: else
7: Get a reward 0 and go to next state st+1

End If
8: Store the experience {st, at, rt, st+1} in B
9: if B is full then

10: Randomly select K mini-batch samples from B
11: for k= 1 to K do
12: Compute target Q value

Q∗
k(st, at) = rt + γQθ(st+1, argmaxa′Qθ′(st+1, a

′))

13: Perform stochastic gradient descent on Eq. 4.10
End for

End if
14: Update network parameters of the DDQN

θ′ ← τθ + (1− τ)θ′

End for
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Q∗(s, a) = [rt + γQ(st+1, argmaxa′Q
′(st, at)]. (4.9)

We minimize the mean squared error between Q and Q∗, but we have Q′ that slowly copies the
parameters of Q. This is done by periodically copying the parameters:

θ′ ← τθ + (1− τ)θ′.

where θ′ is the target network parameter, θ is the evaluate network parameter, and τ is the
rate of averaging and is set to 0.01. We use a neural network as a function approximator, to
estimate the action-value function, Q(s, a; θ) ≈ Q∗(s, a), with weights and is referred to as a
Q-network. The Q-network is trained by minimising a sequence of loss functions Li(θi) that
changes at each iteration i,

Li(θ) = E[(yt −Q(s, a, θ))2]]. (4.10)

The target used by DDQN is,

yt = Rt+1 + γQ(st+1, argmaxaQ(st+1, a, θ); θ
′). (4.11)

The replay memory comprised of the agent’s last few experience tuples (st, at, rt+1, st+1). Dif-
ferentiating the loss function with respect to the weights we arrive at the following gradient,

∆θLi(θ) = E[(r + γ max
a′

Q(s′, a′, θ′)−Q(s, a, θ))∆θQ(s, a, θ)]. (4.12)

We optimise the loss function by stochastic gradient descent (SGD). The weights are updated
after every time-step, and the expectations are replaced by single samples, like in the Q-learning
algorithm [77].

DDQN has a target network which uses the expected Q values for the next state by consid-
ering the action that gives the maximum Q-value of the next state and updates the Q values
of the evaluated network based on the estimated Q value from the target network. During the
training process, the target network is periodically updated, and all the actions selected from
Q-values are bounded actions from the constraints defined in Eq. (4.5). Algorithm 3 shows the
detailed steps of the training process for E number of episodes. ϵ-greedy is used for exploration.
During exploitation, the agent chooses the best action that maximizes the Q function. We use
a feed-forward network architecture with two hidden layers. The size of the replay memory
is 106 tuples. The probability of selecting a random action, at, is 1 at the beginning of the
training, and reduced linearly in time over the first quarter of training time steps to a value of
0.01 for the remaining training.

4.2.3 PPO based Approach

The Proximal Policy Optimization (PPO) algorithm is a state-of-the-art DRL algorithm
based on the actor-critic method. In PPO, the primary network consists of two deep neural
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Figure 4.4: Network Architecture of PPO applied in Prism

networks, called the actor-network and the critic network. The actor-network is used to explore
the policy, and the critic network estimates the performance. The critic-estimate value helps
the actor to learn the gradient of the policy. The target network consists of an actor-network
and a critic network. The next state from replay memory is the input of the target network and
the output is a critic value for training critic. The replay memory stores experience tuples that
include the current state, the selected action, reward, and next state. The stored experience
tuples are randomly sampled for training the primary network and the target network.

The current state st is given as input to the actor-network and distribution of actions is
obtained. The agent gets its action by sampling from the action distribution. The environment
gives the agent a reward for the action taken indicating whether the action is beneficial and this
reward is used by the critic network. The output of the critic network is a component of the
actor’s loss function. The actor-network generates the policy and the critic network evaluates
the current policy by estimating the advantage function Ât. The policy is modified according
to the advantage function, given as

Âπ
t (s, a) = Qπ(s, a)− V π(s). (4.13)

The clipped surrogate objective:

LCLIP (θ) = Êt[min(ρt(θ)Ât, clip(rt(θ), 1− δ, 1 + δ)Ât)], (4.14)

where ρ(θ) = πθ(at|st)
πθold

(at|st) and ρ(θold) = 1 is the probability ratio, θ is the policy parameter, and
δ is a hyper parameter. ϕ is the value function parameter. The probability ratio between the
action under the current policy and the action under previous policy is represented as ρ(θ). πθ
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Algorithm 4 PPO based DRLPB
1: Initialize the policy parameters θ0, the value function parameters ϕ0 and clipping threshold

δ
2: for episodes k=1, …, E do
3: Follow a policy πθold for τ time steps
4: collect D = τi set of trajectories
5: Compute the rewards Rt

6: Compute Ât in Eq. (4.13) using Vϕ

7: for epoch t:=1, …, τ do
8: if Eq. 4.6 and 4.7 are satisfied then
9: Take at from st based on actor policy

10: Get a reward rt
11: else
12: Get a reward rt = 0

End if
13: Collect st, at, rt, st+1

14: Update st to next state st+1

15: After every K steps
16: Update policy by calculating θk+1 by stochastic gradient ascent to maximize clip

objective in Eq. (4.14)
17: Update the value function using stochastic gradient descent by calculating ϕk+1 by

mean squared error

ϕk+1 = arg min
ϕ

1

|Dk|T
∑
τ∈D

T∑
t=0

(Vϕ(st)−Rt)
2

End for
18: θold ← θ

End for
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Parameters Value
Memory pool maximum size 500,000 transactions
Proposer block mining rate 0.1 blocks/sec

Average Transaction size 20Bytes
Maximum block size 2 MB

Maximum Block Interval 100 ms
Maximum voter chains 1000

Maximum votes 1000
Data transmission rate 100 MBPS

Batch size 16
Throughput parameter 5000

Mining modifier 2.3

Table 4.1: Simulation Parameters

is a stochastic policy. θold is the vector of policy parameters before update. The second term,
clip(rt(θ), 1− δ, 1+ δ)Ât modifies the objective by clipping the probability ratio, which removes
the incentive for moving ρt outside of the interval [1− δ, 1 + δ]. Finally, we take the minimum
of the clipped and unclipped objective, so the final objective is a lower bound on the unclipped
objective. Without a constraint, maximization of L would lead to an excessively large policy
update and hence, it is modified to penalize changes to the policy that move ρθ away from 1.
The main objective is the following:

Lt(θ) = Êt[L
CLIP
t (θ)− c1L

V F
t + c2H[πθ|st]]. (4.15)

The advantage estimator Ât depends on the state-value function V π(st), which is estimated
with a second network, the critic network. As parameters are shared between the state-value
function estimator and the policy surrogate π(at|st; θ), a value-function error term LV F

t =

(Vθ(st)−V targ
t )2 is added to the objective function (scaled by a positive constant parameter c1,

where V targ
t denotes the state-value function of training target. The entropy of the policy π for

state st is H[πθ|st] which is scaled by a constant positive parameter c2 in order to encourage
exploration. The training process of the overall workflow is shown in Algorithm 4. The policy
network is a feed-forward network with two hidden layers. We sample from a single environment
and use the default trajectory length of 2048. The weighting factor of the generalized advantage
estimator is set to 0.95. The clipping rate is set to 0.2, the value-function error and entropy
terms are scaled by c1 = 0.5 and c2 = 0.01, respectively.

4.3 Results

The performance of the proposed DRLPB approach is evaluated through simulations in
terms of the reward convergence of the proposed approaches.
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4.3.1 Experimental setup

The simulation environment consists of the Prism blockchain and an initial 300 voters. The
proposed DRLPB with DDQN and PPO is implemented with PyTorch. The parameters used in
the simulation are summarized in Table 4.1. Block interval is the time taken by a node to solve
a nonce, which is the difficulty of the PoW puzzle. In [21], the Prism protocol is run on the AWS
servers for 10 minutes and conclusions are derived from the data. Similarly, we run the Prism
protocol for 10 minutes to implement our DRL algorithm. The performance is analyzed in terms
of the average reward, which represents the number of voter blocks per second of the blockchain
under the restrictions of the security constraints. In each episode, the voters are redistributed
and the consensus is carried out. A block structure manager described in Section 4.1.3 runs
the proposed DRL approach and decides the security level of the blockchain by deciding the
optimum value of the number of voter trees. We have run the Prism Blockchain on 5 nodes and
collected the data for 10 minutes. The data needed for DRL algorithm is available to all the
nodes in the network and does not require additional communication between the node. This
data is given to the block structure manager, which runs the DRL algorithm and updates the
blockchain parameters.

4.3.2 Performance Comparison

We analyze the Prism blockchain with the proposed DRL method for number of voter chains
and mining rate. The latency threshold λ and security threshold ∆ are derived from Prism
analysis in [21]. When DRL is applied, the system maintains Prism performance guarantees.
We try to maintain the performance of Prism and improve the security level by mainly focusing
on the number of voter chains. We analyze the proposed DRLPB approach with the goal to
maximize the rewards subject to the security and latency constraints as described in Eq. (4.5).
Therefore, the reward function tries to optimize the objective while considering the constraints.

4.3.2.1 Reward Convergence

In the training process of Algorithm 1, for the DDQN approach, we set the hyperparameter
values according to the parameters reported in Table 4.1. These hyperparameters are set based
on experiments and observations to maximize performance. The hyperparameter tuning is
discussed in Appendix. The reward is observed considering DDQN with a deep neural network
of four layers. The reward values shown are smoothed over a window of 20 episodes. Fig 4.5
demonstrates that the proposed DDQN approach converges empirically. The agent explores
the environment through random actions for the first 200 episodes and then improves that
random policy toward the optimal policy by exponentially decaying the value of ϵ. Prism data
is collected and given to the DDQN algorithm. The DDQN agent is trained on the blockchain
data and the DDQN algorithm converges with an average reward of 665 for a batch size of 16.
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Figure 4.5: Average Reward vs Episodes for DDQN, PPO and Prism is plotted. PPO achieves higher
average rewards compared to DDQN and Prism for all the episodes.

In the PPO approach described in Algorithm 4, the hyperparameter values are set according
to the parameters reported in Table 4.1. These values were set based on experiments and
observations in order to maximize the performance. In PPO, we use a deep neural network
with four layers. The input layer is the state and the output layer gives the actions. The hidden
layers with 200 neurons is used. Similar to DDQN performance, PPO reward converges in 2000
episodes. The PPO algorithm converges with an average reward of 725 for a batch size of 16.

In Fig. 4.5, we note that the DRL algorithms were able to find the policy that addresses
and maximizes the long-term trade-off defined by the reward function in Eq (4.3). The DRL
maximize the reward while maintaining the minimum security level and not limiting the trans-
action confirmation time onto the blockchain. This implies that when the latency is low, the
rewards are higher and as the delay increases, the reward received decreases.

Fig. 4.5 shows the overall performance of the approach considered. The average rewards
of DDQN, PPO, and Prism without applying DRL are plotted against the testing episodes.
The Prism blockchain without RL has a fixed number of voter chains at 300 and a mining
rate fixed at 0.1.The total throughput of Prism is measured in transactions per sec. These
transactions are grouped into transaction blocks, which are referenced by proposer block and
the voter blocks vote on their ancestor blocks. We compare the number of voter blocks per
second in Fig. 4.7. By applying DRL, we optimize the number of voter chains and the mining
rate. The voter chains can choose values between 270 to 300 with a step size of 10 and mining
rate can be in the range of 0.01 to 0.1. The delay varies between 10 ms to 60 ms. Fig 4.5 shows
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the average reward in all three schemes. Prism without DRL, DDQN, and PPO achieves an
average reward of 393, 670, and 730, respectively.

4.3.2.2 Performance Evaluation for varying blockchain parameters

The throughput parameter T , which is a constant is varied and the DDQN and PPO al-
gorithm are executed. The average rewards achievable by DDQN ad PPO are plotted in Fig.
4.6. Another metric we consider while evaluating the performance is number of voter blocks
mined per second. Fig. 4.7 shows the voter blocks mined per second in DDQN, PPO, and
Prism without DRL. The number of votes at T = 7000 are lower than that at T = 5000 (Fig.
4.6), while the number of voter blocks confirmed is higher for PPO (Fig. 4.7). This is true for
all algorithms comparing between T = 2000 and T = 5000. Thus, we get more throughput (in
terms of voter blocks) compromising on the security level. It is worth noting that the security
associated with the voter blockchain defines the security of the entire Prism blockchain. We
also note that PPO algorithm has better performance in all the cases.

In Fig. 4.8, the average reward of the DDQN, PPO, and Prism without DRL are plotted
for different mining modifier values, f . The mining modifier of voter chain decides how fast
the mining has to happen. Changing the mining modifier changes the Prism blockchain per-
formance. With a higher f , more voter blocks are mined for the same number of participating
nodes, resulting in a lower number of votes received at each level of the voter chain. In other
words, f is used to calculate the difficulty level of the PoW puzzle. The higher the value of f ,
the faster the blocks are mined, leading to a higher value of the average reward. For f = 1.3

Figure 4.6: Performance comparison of DDQN, PPO and Prism in terms of maximum number of votes
per sec. T = 5000 acheives better reward compared to T = 7000 and T = 2000.
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Figure 4.7: Performance comparison of DDQN, PPO and Prism in terms of maximum number of voter
blocks per sec for varying T . The greater the value of T , the higher the number of voter blocks mined
per sec in all three schemes.

Figure 4.8: Performance comparison of DDQN, PPO and Prism for different mining modifiers. Higher
average rewards are observed for f = 1.3 in all three schemes.
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Prism DDQN PPO
Total mined blocks (blkps) f =2.3 40 40 40

f =1.3 43 43 43
Transactions per sec f =2.3 17949 18115 18091

f =1.3 22543 22414 25575
Confirmation latency (s) f =2.3 71 97 85

f =1.3 49 64 105
Voter block f =2.3 1669 1622 1714

propagation delay (ms) f =1.3 1881 1635 1760
Votes Received f =2.3 393 641 723
Votes Received f =1.3 696 764 817

Table 4.2: DRLPB Performance for varying mining modifier

β = 0.2 Prism DDQN PPO
Transactions confirmed per sec 10214 10325 11290

Confirmation latency (s) 73 91 82
Voter block propagation delay (ms) 1558 1601 1543

Total Votes Received 393 673 844

Table 4.3: DRLPB Performance for β = 0.2

β = 0.3 Prism DDQN PPO
Transactions confirmed per sec 1128 1081 1118

Confirmation latency (s) 49 74 87
Voter block propagation delay (ms) 1884 1809 1673

Total Votes Received 294 566 616

Table 4.4: DRLPB Performance for β = 0.3

Prism without DRL could achieve an average reward of 393, DDQN could achieve 641 and PPO
could achieve 723. For f = 2.3, Prism without DRL could achieve an average reward of 696,
DDQN could achieve 764 and PPO could achieve 817. PPO has much less convergence time
compared to DDQN in all the simulations. PPO is also able to reach higher rewards in all the
cases compared to DDQN and Prism. Since rewards are the number of votes received by the
voter chains, the voter blocks are more secure.

The results in Table 4.2 show the performance of Prism Blockchain without application of
DRL and with DQN and PPO approaches. The outputs are taken as an average across all the
nodes. This is performed ten to fifteen times and the average values are given in the table.
We run the Prism blockchain for about fifteen times for this performance evaluation. During
the experimentation, the output log files are fed to the DRL algorithm. The DRL algorithm is
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executed at the ledger manager and all the nodes are given the outputs from DRL algorithm
like number of voter chains and mining rate as an input. The total mined blocks remain same
in all three schemes. The throughput of the entire Prism blockchain including the Transaction
blocks, Proposer blocks, and Voter blocks is measured in number of transactions confirmed per
sec. The throughput of Prism reaches the physical limit, which means that the bottleneck is in
number of transactions that could be generated not in the consensus procedure. We maintain
the same performance as in Prism blockchain with respect to number of transactions confirmed
per sec. Confirmation latency is the time taken for a final new proposer leader block to be
added into the blockchain. This includes the confirmation latency of proposer, transaction
and voter chains but these three are processed in parallel. It also includes the propagation
delay associated with proposer, transaction and voter blocks across the network. In Prism, the
bottleneck of latency was the physical limit, which means the communication bandwidth of the
network. Prism output data is considered for determining the confirmation latency and the
voter block propagation delay. We are able to maintain the performance of Prism protocol in
terms of confirmation latency and voter block propagation delay for mining modifier values 1.3
and 2.3. The number of votes received by the voter block are responsible for the security of the
Prism protocol. The number of votes received by the voter chains at each level is highest in
PPO than DDQN, which is higher than Prism without DRL. A similar observation is performed
for varying adversary power β as 0.2 and 0.3. The performance comparison is shown in Tables
4.3 and 4.4. The proposed approaches gives the same overall performance guarantees as Prism
while improving the security of Prism protocol.

Additional Details

4.3.3 Effect of Mining Rate

The mining rate of a blockchain and throughput are directly related. Let us consider only
the voter blocks. If Bv is the block size in the number of entries in the block and let Mr

be the mining rate. Then the number of voter blocks is the voter throughput, which is is at
most BvMr. Note that this is not the overall transactional throughput of the blockchain but
just the voter blocks mined per sec.Both the mining rate and the block size are constrained
by the security requirement. Increasing the mining rate increases the amount of forking of the
blockchain due to multiple blocks that are mined on the same leaf by multiple miners within
the network delay. To be secure against an adversary with β hash power, the following equation
must be satisfied.

BvMr =
1− 2β

β
(4.16)

The value of BvMr must be kept smaller than 1 and the security requirement limits bandwidth
utilization.
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Figure 4.9: Comparison of DDQN with and without advantage function.

4.3.4 Selection of DDQN Algorithm

When there is a high-dimension state and/or action space, the tabular representation of Q
learning is replaced by a neural network function approximator called Deep Q-Network (DQN).
DQN algorithms use Q-learning to learn the best action to take in the given state and a deep
neural network to estimate the Q value function. The maximization operator in Q-learning and
DQN, use the same values both to select and to evaluate an action. This makes it more likely
to select overestimated values, resulting in extremely optimistic value estimates. To prevent
this, Double Q-learning (DDQN) algorithm decouples the selection from the evaluation. Two
value functions are learned by assigning each experience randomly to update one of the two
value functions. For each update, one set of weights is used to determine the greedy policy and
the other to determine its value. The Dueling Network Architecture has an advantage function
which partly helps in its ability to learn the state-value function efficiently. With every update
of the Q values in the dueling architecture, the value function is updated.

In Figure 4.9, we compare the DQN and DDQN architectures and note that DDQN provides
higher reward, which motivates the choice of DDQN in this work. We further test DRLPB for
DDQN with advantage function and without. We note that not choosing an advantage function
gives slightly better performance and thus we do not choose advantage function in the work.
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Chapter 5

IoT enabled Prism Blockchain using DRL

Blockchain is a distributed ledger technology that enables secure and immutable transactions
[3]. It is a decentralized, distributed and public ledger that is used to record transactions across
many nodes. It is used for recording and maintaining information about transactions in a
secure and immutable manner. In addition to cryptocurrency, blockchain has numerous uses in
Internet of Things (IoT), healthcare, and privacy [10]. Blockchain technology provides a secure
and reliable way of storing data, making it ideal for IoT applications. With blockchain, data
is securely stored and managed in a distributed manner, preventing tampering and allowing
for easier data sharing between multiple IoT devices. The combination of IoT and blockchain
technology has the potential to revolutionize many industries [74]. IoT devices can collect data
from the environment and store it on the blockchain, creating an immutable record of events.
This data can be used for a variety of purposes, such as providing insights into the behavior of
connected devices, and delay constrained applications [78]. Deep reinforcement learning (DRL)
is a type of machine learning that enables an agent to learn through its interaction with the
environment by receiving feedback in the form of rewards. DRL algorithms are widely used to
solve complex problems in robotics, natural language processing, and autonomous vehicles [33].
Combined with DRL, an IoT enabled blockchain can be used to provide intelligent, automated
decision making and behavior optimization [5]. DRL methods learn from the data stored in
the blockchain and make decisions that are more accurate and reliable than that without DRL.
This can be used to optimize the performance of IoT applications, such as reducing energy
consumption or improving the accuracy of data collected [8].

IoT enabled blockchain will require the blockchain nodes to process the high volume of
transactions from the IoT devices [5]. This requires scaling of blockchain algorithms for high
throughput and low latency without compromising on security and decentralization properties
of the blockchain [13]. One recent solution to the scaling problem is Prism blockchain [20].
Prism [20] provides performance guarantees on throughput and latency reaching physical limits
of the network. Prism achieves higher performance than the existing schemes by decoupling
the functionality of blockchain [21]. In this work, we propose a DRL approach for IoT enabled
Prism blockchain. A recent advancement in DRL is Proximal Policy Optimization (PPO)
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algorithm. PPO is a policy gradient method that optimizes the policy of an agent and has
shown to achieve better performance than the other policy gradient methods in DRL, which
motivates the choice of these PPO. In the previous chapter, the performance of Prism consensus
protocol was improved using DRL in which PPO has shown to achieve better performance.
In the previous chapter, the focus was on providing better security while preserving all the
performance guarantees of Prism. In this work, we propose IoT application based intelligent
blockchain system. We optimize Prism blockchain to make it suitable for IoT based on DRL
algorithm rather than focusing on improving the consensus of Prism blockchain. In Prism
smart contracts, Prism blockchain is integrated with Etheruem Virtual Machines (EVM) to
remove the consensus bottleneck. This approach seems very useful for smart contracts. In our
work, we consider the Prism consensus protocol without Ethereum or smart contracts because
in this work, we try to optimize the Prism Blockchain parameters based on the dynamics of the
IoT network using DRL approach. The optimization of blockchain parameters is not possible
with an additional smart contract layer on the top. Therefore, we select Prism in [21] as our
underlying blockchain consensus protocol. First integrate Prism blockchain with IoT and then
optimize the performance by leveraging PPO. This is the first work demonstrating the use of
Prism blockchain in IoT and also the first work using PPO based approach in an IoT enabled
blockchain system to the best of our knowledge. We show that the throughput of IoT enabled
blockchain can be improved by using the proposed DRL approach. Our approach can achieve
upto 1.5 times higher system rewards compared to IoT integrated Prism without DRL. The
performance of the system is observed for varying delay constraints and percentage of adversary
in the network.

5.1 System Model

The longest chain protocol in Nakamoto consensus is a secure, reliable, and ensures the
safety of the network, even in the presence of malicious nodes. Prism is built based on the
longest chain protocol by decoupling its functionality. The leader block in Prism is selected
based on the number of votes that each block in the blockchain has received. The voting
procedure is designed in such a way that it allows the honest nodes to select the longest chain,
even in the presence of malicious nodes. The leader block is then added to the main chain,
and all the other blocks are orphaned. The nodes that have voted for the leader block are
rewarded. The voting procedure also includes a verification process to ensure that the votes
are from honest nodes. The main components of the Prism protocol are a proposer block, voter
blocks, and transaction blocks. The proposer block contains a set of transactions that are to
be included in the ledger. The voter blocks are generated by voters and vote on the validity
of the proposed transactions and parent voter blocks. A transaction block contains the list of
transactions from the transaction pool. The role of each of the blocks is explained below. Level
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Figure 5.1: An illustration of IoT network integrated with Prism Blockchain Environment.

1 is the transaction block. Prism uses separate transaction blocks to decouple security from
throughput. Transaction blocks determine how many confirmed transactions Prism can handle
each second. Level 2 is the proposer block which is responsible for reliability of Prism. The
elected leader blocks are the proposer blocks and based on the longest-chain protocol. Proposer
blocks have a single reference to a parent proposer block as well as a list of reference links to
transaction blocks (which contain transactions). Voter trees determine the leader sequence,
which is the last confirmed sequence of proposer blocks. Level 3 is the voter blocks which are
responsible for the security of Prism. Te parent of the voter block in the voter chains is the tip
of the longest chain protocol. The content of a voter block is a list of references to proposer
blocks called votes. A miner generates a block with a random sortition procedure that uses a
hash function to determine the role of each block. The miner then decides if the block should be
a transaction or proposer or voter. If it is a proposer block, it will contain a set of transactions
references that can be added to the ledger. If it is a voter block, it will vote on the validity
of the proposer transactions. The miner is also responsible for propagating the block to the
rest of the network. The proposer block is verified by the voter blocks that have been created.
Each voter block will check the transactions referenced in the proposer block and vote on their
validity. If the majority of the voter blocks vote in favor of the proposer block, it will be added
to the ledger.
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5.1.1 IoT Enabled Prism Consensus Protocol

An illustration of the network architecture for Prism blockchain- enabled IoT is depicted in
Fig. 1, which consists of an IoT network and a blockchain network. Let the number of IoT
devices be O and the number of blockchain nodes be N . In the oth (o = 1, 2, ..., O) nodes,
we assume that it deploys one wireless access point (AP), which is equipped with a blockchain
server node. The blockchain nodes enable computation and storage of computing tasks and can
upload data, record transactions, and share information. In addition, we consider that there
are No IoT devices that can connect the nearest AP to transmit delay-tolerant data randomly,
and each IoT device is also equipped a capacity to execute lightweight computing tasks. The
delay tolerant data used here is the status data of IoT devices. Typically, the blockchain node is
connected to all the APs through a wired link. The transactions from IoT devices are processed
by the Prism blockchain nodes. At the end of each blockchain epoch, a new block is added to
the blockchain storage by the ledger manager as shown in Fig 5.1.

In Prism, the transaction blocks decouple the security from throughput increases network
security while enabling higher transaction throughput. The transaction blocks are independent
and without a parent block. These blocks are mined at a faster rate, and consist of an ordered list
of transactions from the IoT devices, drawn from a memory pool. The number of transactions
confirmed per sec depends on transaction blocks confirmed. After receiving a new transaction
block over the network, the miner removes the transactions in the new block from its own
memory pool. An illustration of system model is demostrated in Fig 5.2. The IoT transactions
are fed to Prism consensus protocol. Prism acheives consensus in a decoupled manner using
transaction blocks, proposer blocks and voter blocks. A ledger manager, also called the block
structure manager runs the ledger sanitization and adds a new block. The parameters of IoT
enabled Prism blockchain are optimized using DRL algorithm for the next epoch in order to
maximize the throughput.

5.1.2 Throughput

Let B be the block size measured in number of transactions and M be the nimber of blocks,
then the throughput of the IoT enabled Prism is at most MB transactions per second (tps).
However, the mining rate and the block size are constrained by the security requirement. In-
creasing the mining rate increases the amount of forking of the blockchain due to multiple
blocks being mined by multiple miners within the network delay. Forking reduces throughput
as it reduces the block confirmation rate on the ledger. Forking also reduces the security of the
protocol because the adversary requires less compute power to attack. Increasing the block size
also increases the amount of forking since the network delay increases with the block size [20].
To keep IoT enabled Prism secure, the mining rate and the size of the voter blocks and proposer
blocks have to be chosen such that each voter chain and proposer tree has little forking. To de-
couple security from throughput, transactions are carried by separate transaction blocks, whose
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Figure 5.2: An illustration of system model consisting Prism blockchain environment

mining rate can be controlled independent of voter and proposer blocks. For an adversary with
β < 50% hash power and network capacity C, Prism can achieve its near optimal throughput,
Λ as follows:

Λ ≤ (1−β)C (5.1)

5.1.3 Security

The security of the IoT enabled Prism blockchain depends on the votes from the voter trees,
which also secure each leader proposer block. In Prism implementation [21], if the adversary has
less than 50% hash power (β ≤ 0.5), and the mining rate in each of the voter trees is kept small
to minimize forking, then the reliable consensus is maintained by the honest leader proposer
blocks. A low mining rate would result in high latency and a high mining rate would result in
forking. Consider that there are n proposer blocks at level i, denoted by P = Pb1, Pb2, · · · , Pbn.
Suppose Pbi gets vi number of votes. Each voter block can vote only on one proposer block.
For every vote received, V p

i , let uij be the depth of the voter chain. The block inter-arrivals
are exponentially distributed, and the number of blocks mined after the block Pbi is a Poisson
random variable, with a rate equal to its mean [21]. This can be related to the time elapsed
since Pbi was released via the block mining rate. Let the fraction of adversarial hashing power
be β, and we can empirically estimate the average depth of existing public votes as ū =

∑
ij uij∑
i vi

and a forking rate α. There are many voter chains so the estimates converge to their true mean.
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Then, the average depth of a voter chain is,

ūA =
βū

(1− α)(1− β)
. (5.2)

5.1.4 Latency

Let the fraction of adversary hashing power be β and V be the number of voter chains and
pα be a small value representing the reversal probability of confirmed transactions. Then the
upper bound on the latency, Tbc, is given as follows [21]:

Tbc ≤ Dak1(β) +Da
k2(β)

v
log 1

pα
, (5.3)

where k1 and k2 are constants which depend on β [20]. k1(β) = 5400(1−β)

(1−2β)3 log 1−β
β

and k2(β) =

5400(1−β)
(1−2β)3

log 50
1−2β . Honest transactions are confirmed in max (k1(β)Da, k2(β)

1
v log( 1

pα
)) time.

This implies that latency is proportional to the average propagation delay Da and is independent
of the reversal probability. The latency bound considered here is the worst-case latency bound
that holds for all attacks described in [21].

Latency is permissible for the delay-tolerant data but for the blockchain systems, the latency
is considered as an important metric and needs to be minimized. In Prism, the transaction
processing of data in has two phases, generates a block at first, and then reaches a consensus
on the generated block with a proposer leader selection based on votes received. Consequently,
the latency of the data processing in Prism blockchain includes latency of transaction block
generation based on IoT device delay and block confirmation, which is represented as

T = TIoT + Tbc (5.4)

where Tbc is the average time required for the blockchain to produce a new block, TIoT is the
time consumption of IoT data delivery.

In the proposed system, it is assumed that there are N blockchain nodes. At the beginning
of each epoch of the blockchain, (after consensus and adding a block to the blockchain), a node
solves a Proof of Work (POW) puzzle to participate in the mining process. After solving the
PoW puzzle, each miner mined block will be assigned a proposer or a transaction, or a voter.
The incoming IoT transactions are accumulated in a transaction pool from which they are
selected into transaction blocks. Proposer Blocks reference the transaction blocks and voter
blocks vote on their parental blocks and proposer blocks for leader selection. The functionality
of ledger formation is divided into ledger manager, block structure manager, and miner. The
ledger manager updates the ledger based on the latest blockchain state and the miner assembles
new blocks. The block structure manager maintains the clients’ view of the blockchain and
communicates with peers to exchange new blocks [21]. The block structure manager sanitizes
the ledger and orders the transactions periodically. After the consensus, the ledger sanitization

62



is performed during a predefined period, which is set to 1 epoch. The goal of the Prism client
is to maintain up-to-date information on the blockchain and the ledger. The number of nodes
joining and leaving the network is random and the security of a blockchain protocol like Prism
highly depends on the voter blocks mined at each epoch. Our proposed DRL algorithm can be
executed at the block structure manager periodically and update the blockchain parameters.
The block structure manager follows the same peer-to-peer protocol for updating the DRL
parameters as that of updating new blocks. Since the Prism client by default is decentralized,
our implementation is also decentralized. The Prism client in our implementation maintains
the latest information on the blockchain, the ledger, and the updated parameters of DRL.

5.2 DRL based optimization

The goal of this work is to ensure an intelligent, and secure IoT enabled Prism blockchain.
We try to optimize the Prism blockchain parameters based on IoT data using DRL approach. In
Prism [20], the functionality of blockchain is decoupled and transactions blocks are responsible
for throughput. Hence, we integrate IoT data as the input transactions to Prism blockchain.
In order to get the benefits of reliability and security, proposer and voter blocks need to be
preserving Prism performance guarantees. In this section, we formulate the DRL problem to
maximize the throughput by optimizing Prism blockchain parameters. A reinforcement learning
approach, PPO is leveraged to optimize blockchain performance. At each time step, the input
transaction data is analyzed to decide the blockchain configuration. The decision is made based
on predefined requirements of the application level constraints of security and latency, which
are explained in this section.

5.2.1 Markov Decision Process Model

The Markov Decision Process (MDP) environment represents the IoT transaction informa-
tion from the IoT nodes to the blockchain nodes, where our DRL algorithm needs to interact
along with the Prism blockchain. The DRL agent is not aware of the environment before-
hand and it uses its experience of interacting and observing the rewards for various decisions
in different states and then learning the optimal policy π∗ to map the states with their best
actions.

5.2.1.1 Environment

The MDP environment is represented by the tuple < s, a, r, γ >, where, s, is the state
space, a, is the action space, r, represents the reward function and γ is the discount factor
ranging from 0 to 1. At every time step, t, the agent receives a state representation, s of the
environment. The agent takes an action a in the environment based on a policy π(a|s). Then,
a transition to the next state, s′ occurs and a reward, rt is received by the agent, which is
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explained in detail in the following subsections. In IoT enabled Prism, each blockchain node
participating in the mining process solves a PoW puzzle, whose difficulty level is preset based
on various parameters like the number of nodes participating in the network, and the volume
of IoT transactions. In Prism implementation [21], a mining rate determines the overall blocks
mined in the blockchain per sec, for transaction, proposer, and voter blocks. In our work, we
mainly consider the parameters related to Prism and its mining since we try to focus on the
optimizing of Prism with respect to IoT. A DRL method is then used to solve the formulated
MDP. The initial value of all the decision variables is set to the default values of Prism [21].
After executing the IoT enabled Prism, the proposed DRL algorithm is implemented to optimize
the parameters for the next blockchain epoch. The initial IoT enabled Prism state is fed to
the DRL algorithm and the output of the DRL algorithm decides the parameters of the Prism
blockchain to achieve higher throughput.

5.2.1.2 State

Let N be the number of blockchain nodes and TIoT is the delay associated with the IoT de-
vices. Tbc is the delay of the prism blockchain consensus protocol. TIoT is the time consumption
of IoT data delivery.

s = {N,TIoT , Tbc}t (5.5)

Note that this state is different from that in the MDP formulation of Chapter 4. This is
because the problem in this chapter is to optimize the all blockchain parameters to have a better
performance with IoT application. Whereas in Chapter 4, the main focus is on the security of
Prism blockchain and the consensus algorithm itself.

5.2.1.3 Action

At every time step t, the agent selects an action at ∈ A to maximize the throughput of
the system. The DRL agent selects the number of voter chains, V ′ for each time step t.
The mining rate of transaction blocks is kept constant to preserve the performance guarantees
of Prism. The mining rate of the proposer is Mp and the mining rate of voter blocks Mv

is chosen by the DRL agent. The mining rate is the rate at which blocks are mined. The
number of voter chains in Prism implementation was 300, which is maintained at 300 in our
implementation if not controlled by DRL agent. We initialize the value of V as 300 and the
agent can choose the number of voter chains from a range of 270 to 300, each time with a
change of ∆V ∈ {+10, 0,−10}. The transaction mining rate Mt in Prism is set to achieve 350
blocks per sec. The value of Mt is mainly responsible for Prism throughput guarantee. We
initialize Mp and Mv at 0.1 and each time the agent can change the value of ∆Mp and ∆Mv

by {+0.01, 0,−0.01}. The mining rate is a discrete set of values in the range of [0.01, 0.1].
The range is chosen for an acceptable level of performance. If the mining rate is higher than
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0.1, the blocks are mined faster, resulting in more forks and a waste of resources. If it is less
than 0.01, they are mined slower resulting in a very low throughput of the blockchain. After
choosing the change in action values of ∆Mp, ∆Mv and ∆V , the agent sets a new value for the
number of voter chains and mining rate of the blockchain as M ′

p and M ′
v, and V ′. For instance

in the first iteration, if an action is chosen to decrement all the values, then M ′
p = Mp −∆Mp,

M ′
v = Mv −∆Mv and similarly V ′ = V −∆V . Then, the action selected at can be represented

as
a = {∆Mp,∆Mv,∆V }t (5.6)

5.2.1.4 Reward

The reward, rt is based on the state, st and the action, at at the current time step, t. The DRL
algorithm maximizes the discounted future reward, rt. Based on the current state and action,
the agent obtains a reward from the environment. The throughput of the Prism blockchain
depends on the voter blocks, mining rates and the number of IoT transactions successfully
added to the blockchain. Let Λ be the throughput of the entire system which is defined as
the number of blocks confirmed per sec, and K be a constant calculated based on the network
parameters of the blockchain [21]. Let Λv and Λp be the voter and proposer throughput. The
reward function represents the number of blocks.

If the security constraint in Eq. (5.2) and the latency constraint in Eq. (5.3) are satisfied
then, the reward received by the agent is defined as follows.

5.2.1.4.1 Voter block reward: The voter block reward rv is calculated based on the pa-
rameters of the voter block like the number of voter chains V ′ and the voter mining rate M ′

v.

rv = V ′M ′
vTbc (5.7)

Otherwise, if Eq. (5.2) and Eq. (5.3) are not satisfied then, the reward received by the agent
is zero.

rv = 0 (5.8)

5.2.1.4.2 Proposer block reward: The proposer block reward rp is based on the proposer
mining rate M ′

p.

rp = M ′
pTbc (5.9)

Otherwise, if Eq. (5.2) and Eq. (5.3) are not satisfied then, the reward received by the agent
is zero.

rp = 0 (5.10)
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5.2.1.4.3 IoT based Transaction block reward: This reward rt is based on the param-
eters of transaction block like transaction block mining rate Mt and the blockchain and IoT
delay TIoT + Tbc.

rt = Mt(TIoT + Tbc) (5.11)

Otherwise, reward received by the agent is zero.

rt = 0 (5.12)

Total reward is a weighted sum of the rewards.

r = x1rv + x2rp + x3rt (5.13)

r is the average number of blocks at a given time. In addition, x1, x2, and x3 are the weights
that help the differentiated system rewards. All three coefficients should add up to 1 and their
values are defined in the experimental setup.

5.2.1.5 Agent

The agent uses the available state samples and calculates the estimated reward that can be
obtained by taking an action a from a state s. Agent builds a precise estimation of the action-
value function Q∗(s, a). Due to the high dimensionality of the problem and the complexity in
calculating the Q-function, we implement deep neural networks as function approximators in
the implementation. The PPO agent is a policy gradient approach and uses neural networks as
a function approximator. The agent tries to maximize the future rewards, which are expressed
as the sum of all discounted future returns following time step t. The discounted future reward
with the discount factor, γ, is represented as

Rt = rt +

∞∑
τ=0

γτrt+τ (5.14)

where γ ∈ [0, 1]. The behavior of the agent is described by a policy π(at|st) which is the
probability of choosing action at ∈ A condition on the observed state st ∈ S. The action-value
function under policy π describes the expected return of action for the agent in a given state,
Qπ(s, a) = Eπ[Rt|st, at], where Eπ denotes the expected value given that the agent behaves
according to policy π. The optimal policy π∗ has the optimal action-value function Q∗(s, a) =

maxπ Qπ(s, a), and satisfies the Bellman optimality equation. Bellman equation states that the
optimal action-value function is the expected reward of action a plus the discounted expected
value of the best action in the subsequent state st+1,

Q∗(s, a) = E[Rt+1 + γ max
a′

Q∗(st+1, at+1)|st, at] (5.15)
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The optimal action-value function Q∗(s, a) is the maximum expected return achievable under
any policy, after seeing a state st and taking an action at and π is a policy mapping states to
actions [77]. The objective is to maximize the Q function while satisfying the latency and
security constraints. The objective function and constraint are as follows:

maxπ Qπ(s, a), (5.16)
Security constraint β < 0.5, (5.17)

Latency constraint Tbc < Dak1(β) +
Dak2(β)

m log 1
pα

(5.18)

where β is the adversary power k1, k2 are dependent constants as defined in Eq. (5.3) and pα

is a small value of the reversal probability of confirmed transactions. Da is the average delay,
which is the average propagation delay. The initial state fed to the DRL agent is from Prism
and all the parameters and control variables are set to the default values of Prism [21]. In
this case, the constraints are satisfied and hence the initial rewards received by the agent are
non-zero. During the initial state s0 the value of Mp and Mv is 0.1 and V is 300. At time t,
the state st is the number of nodes, the number of voter chains, and the delay corresponding
to each block. The action at is to increment or decrement the values of the mining rates and
the number of voter chains. At t+1, the state st +1 depends on the number of voter chains in
the previous time t and the mining rates at t. At the end of each DRL algorithm iteration, the
new state is updated based on the delay corresponding to the Prism consensus and the delay
associated with IoT transactions. The new state st+1 is formed by the output of the blockchain,
based on the action taken in the previous time step. Once the action is decided by the agent,
the parameters are given to the Prism blockchain environment. The reward is calculated with
a goal to maximize the throughput of the entire system.

5.2.2 Proximal Policy Optimization based Approach

The Proximal Policy Optimization (PPO) algorithm is a state-of-the-art DRL algorithm
based on the actor-critic method [53] . In PPO, the actor-network and the critic network
are two deep neural networks that make up the main network. The critic network gauges
performance, while the actor network is used to learn the policy. The actor can learn the
gradient of the policy by using the critic-estimate value. The actor network and the critic
network are both part of the target network. The target network can be viewed as an old
version of the primary network, which is used to generate the target value for training critic. It
includes a target actor-network and a target critic network. The next state from replay memory
is the target network’s input, and the output is a critic value for training critic. The present
state, the chosen action, the reward, and the subsequent state are all stored as experience tuples
in the replay memory. For training the main network and the target network, random samples
from the stored experience tuples are taken. Fig. 5.3 shows the PPO based algorithm used in
our approach. The current state st is given as input to the actor-network and the distribution
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Figure 5.3: An illustration of Proximal Policy Optimization based Approach using IoT Prism Blockchain

of actions is obtained. The agent gets its action by sampling from the action distribution. The
environment gives the agent a reward for the action taken indicating whether the action is
beneficial and this reward is used by the critic network. The output of the critic network is a
component of the actor’s loss function. The actor-network generates the policy and the critic
network evaluates the current policy by estimating the advantage function Ât. The policy is
modified according to the advantage function, given as

Âπ
t (s, a) = Qπ(s, a)− V π(s). (5.19)

If the advantage of the optimal action in s is equal to zero then the expected return in s is the
same as the expected return when being in state s and taking an action a. This is because the
optimal policy will always choose a in s. The advantage of all other actions is negative which
means they bring less reward than the optimal action, so they are less advantageous.

The clipped surrogate objective:

LCLIP (θ) = Êt[min(ρt(θ)Ât, clip(rt(θ), 1− δ, 1 + δ)Ât)], (5.20)

where ρ(θ) = πθ(at|st)
πθold

(at|st) and ρ(θold) = 1 is the probability ratio, θ is the policy parameter, and δ

is a hyper parameter. The probability ratio between the action under the current policy and the
action under previous policy is represented as ρ(θ). πθ is a stochastic policy. θold is the vector
of policy parameters before update. The second term, clip(rt(θ), 1 − δ, 1 + δ)Ât modifies the
objective by clipping the probability ratio, which removes the incentive for moving ρt outside of
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Algorithm 5 Proximal Policy Optimization based Approach using IoT Prism Blockchain
1: Initialize IoT Prism parameters to default values
2: Initialize agent parameters θ0, ϕ0 and clipping threshold δ
3: for Episodes e=1, 2, …, E do
4: Observe the state st
5: Follow a policy πθold for τ time steps
6: Collect D = τi set of trajectories
7: Compute the rewards r
8: Compute Ât in Eq. (5.9) using Vϕ

9: for epoch t:=1, …, τ do
10: if IoT enabled Prism constraints hold then
11: Choose at for Prism based on actor policy θ

End if
12: Compute rewards r
13: Update st to next state st+1

14: for Every K steps do
15: Update the policy using stochastic gradient ascent

θk+1 = arg max
θ

1

|Di|T
∑
D

∑
t

min(ρt(θ)Ât,

clip(rt(θ), 1− δ, 1 + δ)Ât)

16: Update value function using stochastic gradient descent by mean squared error

ϕk+1 = arg min
ϕ

1

|Dk|T
∑
τ∈D

T∑
t=0

(Vϕ(st)−Rt)
2

End for
17: θk ← θk+1

End for
End for

69



Parameters Value

Memory pool maximum size 500,000 transactions
Transaction mining rate 350 blocks/sec

Proposer block mining rate 0.1 blocks/sec
Voter block mining rate 0.1 blocks/sec
Average Transaction size 20Bytes

Maximum block size 2 MB
Maximum Block Interval 100 ms
Maximum voter chains 1000

Maximum votes 1000
Data transmission rate 100 MBPS

Batch size 16

Table 5.1: Simulation Parameters

the interval [1− δ, 1+ δ]. Finally, we take the minimum of the clipped and unclipped objective,
so the final objective is a lower bound on the unclipped objective. Without a constraint,
maximization of L would lead to an excessively large policy update and hence, it is modified to
penalize changes to the policy that move ρθ away from 1. The main objective is the following:

Lt(θ) = Êt[L
CLIP
t (θ)− c1L

V F
t + c2H[πθ|st]]. (5.21)

The advantage estimator Ât depends on the state-value function V π(st), which is estimated
with a second network, the critic network. As parameters are shared between the state-value
function estimator and the policy surrogate π(at|st; θ), a value-function error term LV F

t =

(Vθ(st) − V targ
t )2 is added to the objective function (scaled by a positive constant parameter

c1, where V targ
t denotes the state-value function of training target. The entropy of the policy π

for state st , H[πθ|st], scaled by a constant positive parameter c2, is added to the objective to
encourage exploration. The training process of the overall workflow is shown in Algorithm 5.
The policy network is a feed-forward network with two hidden layers. We sample from a single
environment and use the default trajectory length of 2048.

5.3 Results and Discussion

5.3.1 Experimental Setup

The environmental setup consists of 1000 IoT nodes sending transactions to the Prism
blockchain. Prism blockchain nodes are initialized with 300 voters and later this value is se-
lected by the DRL algorithm randomly for every epoch. The proposed scheme leveraging PPO
is implemented with PyTorch. At the beginning of the experiment, the default value of Mining
rate of proposer, voter and transaction blocks denoted by Mp, Mv and Mt respectively is 0.1.
The parameters used in the simulation are summarized in Table 5.1. In [21], the Prism protocol
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is run on the AWS servers for 10 minutes on which a detailed analysis is performed. Similar to
that we run the Prism protocol integrated with IoT data for 10 minutes and then implement
our DRL algorithm. The performance is analyzed in terms of the average reward, which tries
to maximize the number of blocks confirmed per second in the blockchain under the restrictions
of the security and latency constraints. In each episode, the voters are redistributed and the
consensus is carried out. The block structure manager runs the proposed DRL approach and
optimizes the Prism blockchain parameters. We ran our IoT integrated Prism Blockchain on
5 nodes and collected the data for 10 minutes. The data required for DRL algorithm is avail-
able to all the nodes in the network and does not require additional communication between
the node. This data is given to the block structure manager, which runs the DRL algorithm
and updates the blockchain parameters. The proposed PPO algorithm is implemented using
Pytorch. For PPO algorithm, the default trajectory length is 2048. x1, x2, and x3 are set to
0.3, 0.3 and 0.4 respectively. The weighting factor of the generalized advantage estimator is set
to 0.95. The clipping rate is set to 0.2, the value-function error and entropy terms are scaled
by c1 = 0.5 and c2 = 0.01, respectively. The entropy coefficient is set to 10−3 with a decay of
0.99.

5.3.1.1 Reward Convergence

In the training process of Algorithm 1, for the PPO based approach, we set the hyperpa-
rameter values according to the parameters reported in Table 5.1. These hyperparameters are
set based on experiments and observations to maximize performance. The reward is observed
considering DDQN with a deep neural network of four layers. The reward values shown here
are smoothed over a window of 20 episodes. Fig. 5.4 demonstrates that the proposed PPO
approach converges empirically. The agent explores with a probability of ϵ, which is initially
set to 1 to ensure random action selection. The value of ϵ is decayed per episode.The ϵ value is
decayed upto ϵ = 0.01. After running the experiment for 1000 episodes, the agent explores for
100 episodes and the epsilon decay value is set at 10−6. The PPO algorithm converges with an
average reward of 573 for a batch size of 16. In Fig. 5.5, the proposed algorithm performance
is observed for different learning rates. The proposed algorithm converges for all the learning
rates, we choose the learning rate of 10−4 for our performance comparison.

5.3.1.2 Performance Comparison

We compare our proposed approach to IoT enabled prism approach. In addition, we also
consider our DRL based IoT Prism with fixed voter chains for comparison. In this case, the
value of V is set to the default value and is not changed during the experiment. We consider a
fixed voter chains approach to highlight the importance of optimizing all the system parameters
for a better performance. By fixing the value of V , we are trying to analyze the IoT enabled
system for its effectiveness.
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Figure 5.4: Average Reward vs Episodes for the proposed scheme, proposed scheme with fixed voter
chains and IoT Prism without DRL is plotted with standard deviation. The proposed scheme achieves
higher average rewards compared to other two for all the episodes.
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Figure 5.5: Average Reward vs Episodes for the proposed scheme is shown when the learning rate is
varied for the proposed scheme.

We compare the performance when PPO algorithm is executed at 5 different blockchain
nodes. At all the nodes, the proposed scheme has higher average rewards than the proposed
scheme with fixed voter chains and IoT Prism without DRL. This shows that any node can
perform the ledger manger duties and the proposed scheme will have higher rewards.

In Fig. 5.4, we note that the DRL algorithms were able to find the policy that addresses and
maximizes the long-term reward function. The DRL maximize the reward while maintaining the
minimum security level and not limiting the transaction confirmation time onto the blockchain.
This implies that when the latency is low, the rewards are higher and as the delay increases, the
reward received decreases. The proposed scheme could achieve upto 1.5 times higher system
rewards in all the simulations.

In Fig 5.7, the performance of the proposed scheme is observed for varying values of average
transaction block size. The transaction block size is related to the amount of transactions
referenced from the transaction pool. In this work, the input transactions to Prism blockchain
are from the IoT network. With higher transaction block size, higher number of transactions
are processed per second resulting in a higher throughput. While higher transaction block size
can give higher throughput, it has a risk of increasing the delay in the consensus. Therefore, we
evaluate our scheme with block size limit varying from 500 KB to 2 MB. The proposed scheme
outperforms proposed scheme with fixed voter chains and IoT Prism without DRL.
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Figure 5.6: The maximum value of average reward for all the episodes is shown at each node. The
proposed scheme, proposed scheme with fixed voter chains and IoT Prism without DRL are compared
and it is observed that the proposed scheme achieves higher average rewards.

Figure 5.7: Performance comparison of the proposed scheme, proposed scheme with fixed voter chains
and IoT Prism without DRL in terms of throughput (transactions per sec) with varying transaction
block size limit. The proposed scheme has better throughput than others.
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Figure 5.8: Performance comparison of the proposed scheme, proposed scheme with fixed voter chains
and IoT Prism without DRL in terms of throughput (transactions per sec) with varying delay constraints
is shown. The proposed scheme has better throughput than others for all delay constraint values.
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Figure 5.9: Performance comparison of the proposed scheme, proposed scheme with fixed voter chains,
and IoT Prism without DRL in terms of throughput (transactions per sec) with varying percentage of
adversary is shown. The proposed scheme has better throughput than others.

In Fig. 5.8, the throughput of the proposed scheme, proposed scheme with fixed voter chains
and IoT Prism without DRL are plotted for different delay values. The delay here is the total
delay T which is a combination of the IoT delay and the blockchain confirmation delay. With
a higher delay, more blocks are mined for the same number of participating nodes. The higher
the value of delay constraint, the faster the blocks are mined, leading to a higher value of the
throughput. With varying delay constraints, the proposed scheme on an average could achieve
6,000 tps higher throughput. Proposed scheme has much less convergence time compared to
proposed scheme with fixed voter chains and IoT Prism without DRL in all the simulations.
PPO is also able to reach higher rewards in all the cases compared to IoT enabled Prism. The
results in Fig 5.9 show the performance of IoT enabled Prism Blockchain without application
of DRL, proposed scheme with fixed voter chains, and proposed PPO approaches. The outputs
are taken as an average across all the nodes. The DRL algorithm is executed at the ledger
manager and all the nodes are given the outputs from DRL algorithm. The throughput of the
entire IoT enabled Prism blockchain including the Transaction blocks, Proposer blocks, and
Voter blocks is measured in number of transactions confirmed per sec. We vary the percentage
of malicious nodes in the entire network and observe the performance. The security of Prism
blockchain has a constraint on the percentage of malicious nodes to be less than 50%. We
observe that the throughput decreases with an increase in the malicious nodes percentage in
the network. However, the proposed scheme can achieve higher throughput compared to IoT
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prism without DRL. The proposed approaches achieves the better overall performance than
without DRL based IoT Prism.
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Chapter 6

MARL approach for coordinated UAV action control

Unmanned aerial vehicles (UAVs) are widely used for missions in dynamic environments.
Deep Reinforcement Learning (DRL) can find effective strategies for multiple different agents
that need to cooperate to complete the task. In this work, the challenge of controlling the move-
ment of a fleet of UAVs is addressed by Multi-Agent Deep Reinforcement Learning (MARL).
The collaborative movement of the UAV fleet can be controlled centrally and also in a decen-
tralized fashion, which is studied in this work. We consider a dynamic military environment
with a fleet of UAVs, whose task is to destroy the enemy targets while avoiding obstacles like
mines. The UAVs inherently come with a limited battery capacity directing our research to focus
on the minimum task completion time. We propose a continuous-time based Proximal Policy
Optimization (PPO) algorithm for multi-aGent Learning In Dynamic Environments (GLIDE).
In GLIDE, the UAVs coordinate among themselves and communicate with the central base to
choose the best possible action. The action control in GLIDE can be controlled in centralized
and decentralized way based on which two algorithms called Centralized-GLIDE (C-GLIDE),
and Decentralized-GLIDE (D-GLIDE) are proposed. We developed a simulator called UAV
SIM, in which the mines are placed at randomly generated 2D locations unknown to the UAVs
at the beginning of each episode. The performance of both the proposed schemes is evaluated
through extensive simulations. Both C-GLIDE and D-GLIDE converge and have comparable
performance in target destruction rate for the same number of targets and mines. We observe
that D-GLIDE is up to 68% faster in task completion time compared to C-GLIDE and could
keep more UAVs alive at the end of the task.

Unmanned aerial vehicles (UAVs), are employed extensively in missions involving navigating
through unknown environments, such as wildfire monitoring [22], target tracking [23], and
search and rescue [24], as they can host a variety of sensors to measure the environment with
relatively low operating costs and high flexibility. Most research on UAVs depends on the target
model’s accuracy or prior knowledge of the environment [25]. However, this is extremely difficult
to achieve in most realistic implementations because environmental information is typically
limited. Deep Reinforcement Learning (DRL) has made incredible advances in recent years
in many well-known sequential decision-making tasks, including playing the game of Go [79],
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playing real-time strategy games [80], controlling robots [34], and autonomous driving [81],
especially in conjunction with the development of deep neural networks (DNNs) for function
approximation [82]. A Deep Reinforcement Learning (DRL) agent autonomously learns an
optimal policy to maximize its rewards through its interaction with the environment. The flight
environment for a UAV is usually local or completely unknown during online path planning.
Hence, the agent has to react to the dynamic environment using incomplete information, which
is the key challenge in UAV action control [26, 27]. In [28], DRL was used with independence
on environment model, and prior knowledge, solving the online path planning problem by trial
and error interactions with its environment. Model-free RL methods [29] and the Q learning
methods [30] have gained recent popularity. We focus on one of the most important applications
of UAV, which is target tracking and obstacle avoidance.

The application of UAVs in military or civil fields such as reconnaissance, strike, rescue, and
early warning [22] involves path planning in dynamic environments and is challenging as the
UAV has to avoid obstacles that are not known to it beforehand [31]. A single agent in such an
environment might lack the battery capacity to accomplish the tasks efficiently. Hence multiple
UAVs are employed to coordinate and complete the task. Interestingly, the majority of successful
applications in DRL literature involve the participation of multiple agents, requiring the use
of multi-agent reinforcement learning (MARL). MARL specifically addresses the sequential
decision-making problem of multiple autonomous agents operating in a shared environment,
which together seek to maximize their own long-term return by interacting with the environment
as well as other agents [32]. MARL algorithms can be classified into different categories based
on the types of situations they handle as fully cooperative, fully competitive, and a mix of
the two. This allows a variety of new solutions that build on concepts such as cooperation or
competition [32]. However, multi-agent settings also introduce challenges, including inadequate
communication, difficulties in reward assignment to agents, and environment non-stationarity.

We consider a military environment application for multiple UAVs, where each UAV can act
independently of the other agents’ actions. The environment contains a set of targets that the
UAVs need to coordinate and destroy. There are several mines in the field that are capable
of destroying the UAVs. These mines are placed at any random location which is unknown
to the UAVs. We assume that the mines have a sensing radius in which they can detect the
UAV and destroy it. In this scenario, the UAV must learn to detect and avoid mines within
a minimum distance from the sensing radius of the mine. The goal here for each UAV is to
destroy the enemy target, by avoiding the mines and reaching the base safely. The challenge for
a UAV is that it has no prior knowledge of the location of the mines and has to find a suitable
policy to adapt to the dynamic environment. We propose a multi-aGent Learning In Dynamic
Environments (GLIDE), which uses MARL to control the action of a set of UAVs. In GLIDE,
the MARL based approach aims to find optimal strategies for agents in settings where multiple
agents interact in the same environment. In GLIDE, we adopt Proximal Policy Optimization
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Figure 6.1: An illustration of the System Model

(PPO) to train our agents, which is a well-known state of art continuous control algorithm.
The aim of the UAV fleet is to explore the entire field of operation as quickly as possible so that
the task can be completed with a minimum time. We compare the performance of centralized
action control based GLIDE, called C-GLIDE with decentralized action control based GLIDE,
called D-GLIDE. The results show that the UAVs can accomplish minimum task completion
time with D-GLIDE.

The main contributions of this work are as follows:

1. The coordinated UAV action control problem is formulated as a Markov Decision Process
(MDP) with the action space involving accelerations of all the UAVs. Previous works use
fixed length strides for the movement of UAV, due to which the UAVs moves to a fixed
distance at every time step. In GLIDE, at each time step, the UAVs can choose to change
their acceleration. This gives freedom for the UAVs to move to any amount of distance
intended per time step. We observed that this approach also used lower parameters
for training the model since we just have 3 continuous values in x, y, and z directions.
The state space takes into account the global situational information and also the local
situation faced by each UAV during the time of operation.

2. We propose two MARL algorithms based on PPO for coordinated UAV action control
namely centralized GLIDE (C-GLIDE) and Decentralized GLIDE (D-GLIDE) with a
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Table 6.1: A table showing the comparison of GLIDE system model and other works in literature

Paper Single or
Multiple
UAVs

Obstacles
and
Mines

Assumptions Environment Task

[83] Multiple None All the UAVs
are connected
to a cellular
network

Ground Finding the
best path

[62] Multiple Preset
obstacle
areas in
grid map

UAVs follow
the assigned
path

Ground patrol area Target search-
ing and track-
ing

[84] Multiple None All the UAVs
are connected
to a cellular
network

Ground based dy-
namic users

QoE driven
UAVs assisted
communica-
tions

This
work,
GLIDE

Multiple Mines UAVs pe-
riodically
communicate
with the base

Military environ-
ment created with
our simulator,
UAV SIM

Target de-
struction

continuous action space. In C-GLIDE, the action control is performed based on the
combined state space information available at the base. This keeps all the UAVs updated
with global and local information. However, this slightly hampers the task completion
time. Whereas D-GLIDE is based on centralized training and decentralized execution.
The UAVs have access to their local data and once in a few time-steps get updated with
global information. This resulted in faster task completion time.

3. We build a simulator for our experimentation called UAV SIM. Our experimentation
results show that both these algorithms converge and have a comparable target destruction
rate and mine discovery rate. With low number of targets and mines, both C-GLIDE and
D-GLIDE perform equally. C-GLIDE is useful for lower number of targets, mines and
UAVs. As the number of targets and mines increases to the maximum limit, D-GLIDE
completes the task with up to 68% less time compared to C-GLIDE. We also observe that
the target destruction rate of D-GLIDE is upto 21% higher and upto 42% more UAVs are
alive with the same number of mines in the field than C-GLIDE.

A summary of related works comparison with respect to the system model is presented in
Table 6.1. Also, please refer to Table 2.1 for the comparison of the proposed algorithm with
related works. In this work, we introduce a novel formulation of the UAV action control problem.
Following that, we propose GLIDE, which leverages continuous-time PPO-based approach for
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the action control of a group of UAVs in a dynamic environment. A centralized action control
algorithm C-GLIDE is compared with a decentralized action control algorithm D-GLIDE. We
implement the simulation environment called UAV SIM for our experimentation.

6.1 System Description

This section presents the system model for the multi-UAV action control problem. Each
UAV scans a large area divided into multiple grids. The grid coordinates are used to simplify
the positioning of the UAVs and a set of K targets. A group of UAVs is assigned to accomplish
the task in this area. Consider a set of N UAVs, that intend to complete the task within a time
T . The time of operation, T consists of several time slots (1, 2, · · · , t), each of length δ. All the
UAVs start from the base, and return to the base upon task completion. We assume that all the
UAVs have sufficient battery capacity for task completion. We consider a military environment
where the UAVs need to navigate and destroy the target. The targets are immobile and are
placed in the area of operation. A single UAV would have limited battery and cannot span the
entire area especially when field of operation is large. Whereas a group of UAVs, can coordinate
and accomplish the task of destroying the targets more efficiently. The action control becomes
challenging due to the presence of mines, which have a destruction range within which they
can destroy the UAVs. Hence, the UAVs need to detect and avoid the mines with a distance
greater than the destruction range of the mine. All the UAVs communicate with the base and
get regular updates about the mines. A UAV upon detecting a mine communicates the location
of the mine to the base. The base then updates all the UAVs with the coordinates of the mines.
All the UAVs have knowledge of all the target positions at the beginning of each experiment.
We consider a square grid world of size m ×m ∈ N2 with each cell of size c and the set of all
possible positions of UAV, m. We assume the continuous movement of UAVs in the environment
and incorporate the map-based state space. Next, the details of the UAV simulator are given
in the subsection.

6.2 UAV Simulator

A set of N UAVs are considered to move in the environment which is modelled as a grid of
dimensions m×m and of height f . Each UAV’s current position in the grid is represented by
pti = [xti, yi

t, zti ] with altitude ranging from between 0 and f . The operational status bti ∈ {0, 1},
indicate whether the UAV is inactive or active. The environment contains of a bse which is the
start and end position for all the UAVs. Each UAV has a battery as its fuel and a radio antenna
for communication. The UAV can communicate to the base, and internally with other UAVs.
There is a base set up, from where the UAVs are deployed and they are supposed to complete
their task and come back to the base, from where the UAVs are monitored. In addition to
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Figure 6.2: An illustration of the outdoor environment with n UAVs and Minies and targets placed on
the ground.

this, each UAV has sensing capability with a sensing range. When the UAVs are functioning,
we consider the following parameters: the battery consumption of the UAV, the current UAV
location which is given in coordinates, the target coordinates that need to be destroyed, and the
discovered mines on the field. Other factors that affect UAV performance are distance traveled
and directional movement which are also taken into account. The proposed algorithm uses this
information to determine the UAV’s plan of action. We assume the following: (i) Each UAV
will move to the position that has been planned for the epoch. (ii) Each UAV can monitor
their battery levels and calculate how long they can fly with the remaining battery. (iii) Each
UAV communicates information on its own location, as well as the location of the mine if it
is discovered. In C-GLIDE, the UAVs communicate continuously with the base. In D-GLIDE,
the UAVs communicate whenever a mine is discovered otherwise, the communication is once in
every K time steps. The grid clearly defines the surveillance area. The simulator code will be
made available on github upon acceptance. 1

1https://github.itap.purdue.edu/Clan-labs/GLIDE.git
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Figure 6.3: Coordinate-based system for the field of operation
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6.3 GLIDE: MARL Approach

6.3.1 Markov Decision Process Model

The objective of this work is to ensure the task completion with a group of UAVs in an
adaptable and intelligent way, while taking into account various factors like mine avoidance,
target destruction, and distance traveled by each UAV. At each time step, the input data is
analyzed to understand the dynamics of the environment. The action control is performed based
on the requirement of minimum distance traveled and obstacle avoidance for task completion.
The optimization problem is formulated as an Markov Decision Process (MDP). The MDP
environment is represented by the tuple < S,A,R, λ >, where, S is the state space, A is the
action space, R represents the reward function, and λ is the discount factor ranging from 0 to
1. At every time step t, the agent receives a state representation, s, of the environment. The
agent takes an action a in the environment based on a policy π(a|s). Then, a transition to
the next state s′ occurs with a probability P (s′|s, a), and a reward, rt is received by the agent,
which is explained in detail in the following subsections.

6.3.1.1 State

The state reflects the environment at a given time, in this case, the dynamic military envi-
ronment information at each time step. The state space, S, consists of the target coordinates,
mine coordinates, and various attributes of the UAV. We consider a set of N UAVs communi-
cating with a base. Since the mines are capable of destroying the UAV, we consider a binary
vector BN with N elements with each entry indicating the live status of the UAV i.e. 1 denoting
that the UAV is alive and 0 denoting that the UAV is destroyed. The target coordinates are
represented in a two-dimensional grid, called the target map denoted by Tm×m. If the target is
present in the field and is active, then the grid coordinates corresponding to the target locations
are set to +1. If the target is down and destroyed by one of the UAVs then, those coordinates
are represented by -1. Every other situation is represented by 0 in the target map. Similarly,
the mine map indicates whether the mine is discovered or destroyed. If the mine is detected
and is active, then its corresponding coordinates in the mine map are set to +1. If the mine is
destroyed, it is marked by -1 and every other situation is represented by 0. Note that, we only
keep the non-zeros entries of target map and mine map to reduce the size of the state space.
The position of each UAV is a three-dimensional vector. Since, we have N UAVs, all the UAV
positions are considered in the state space and is represented by PN×3. The three-directional
velocity of each UAV, is also considered in the state space, denoted by V N×3. The combined
state information is used to choose the actions of each UAV.

St =
[
{x : x ̸= 0 ∧ x ∈ Tm×m}, {y : y ̸= 0 ∧ y ∈Mm×m}, PN×3, V N×3, BN ] (6.1)
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The base has the entire information of the environment, that is, the target locations, detected
mine location and state information for each UAV position, velocity and liveliness. The base
communicates the state with the UAVs and receives the UAV specific information from each
UAV during the communication. In C-GLIDE, the UAVs are in continuous communication
with the base whereas in D-GLIDE, the UAVs communicate whenever a mine is discovered or
once in every K time steps.

6.3.1.2 Action

The objective of an agent is to map the state space, S to the action space, A. A set of N
deployed UAVs move within the limits of the grid of the environment. At every time step t, an
agent i ∈ N , selects an action ait ∈ A for each UAV. The action is the decision of movement
towards the next target. The position of each UAV, i is described using pit = [xi(t), yi(t), zi(t)]

T ∈
R3 with altitude at ground level or any value up to an altitude f . The operational status of
a UAV represents its action which is either taking an action to move or staying in the current
position (no movement). The UAV can choose to move towards the next target or stay in
the current position. A set of N deployed UAVs move within the limits of the grid of the
environment. The action space is continuous acceleration in 3 directions for each UAV. The
initial speed considered for each UAV is 0 m/s. With every time step, the UAV changes its
speed, moves a certain distance and calculates the velocity for next time step. The maximum
acceleration for each UAV is 50 m/s2.

The action set is a choice of acceleration in each direction, i.e, x, y, and z. For instance, with
the current UAV position, a particular acceleration can be chosen as (ax, ay, az) as (-5, 0, 5)
then the UAV would move in the direction of the resultant of the three chosen vectors covering
a distance of 5

√
2. Here, the UAV might face an obstacle or reach the end of the grid in y

direction, hence its acceleration in y direction is 0. This helps us bound the movement of UAV
within the grid. Using this action space helps the UAV to not only move in linearly but also
take a curvature motion. Note that N UAVs are present so we predict N resultant acceleration
vectors at each time step.

All the UAVs start at the base with an initial speed 0 and depending on the current accel-
eration, direction of movement towards the target and time, choose their next acceleration. In
C-GLIDE, every agent has a different value of acceleration based on a centralized architecture
whereas in D-GLIDE, every agent chooses a different value of acceleration in a decentralized
architecture. These methods are explained in detail in the next section.

6.3.1.3 Reward function

The reward function rt, is based on the state st and the action at at the current time step t.
The DRL algorithm maximizes the discounted future reward, Rt. Based on the current state
and action, the agent obtains a reward from the environment. We consider the reward function
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a combination of (a) proximity based reward which takes into account the distance traveled by
each UAV, (b) mine detection and avoidance, (c) target destruction, and (d) liveliness reward.
Each reward is normalized between 0 and 1 and added in the total reward.

6.3.1.3.1 Proximity based reward Assuming that the UAV scans at a constant distance,
we can define a proximity-based reward that will motivate the UAV to move closer to the target
and maintain a safe distance from the mines. First we will discuss avoiding mines and then
moving closer to the target. If the UAV moves too close to the mine, it will get destroyed within
the destruction range of the mine. If the mine is destroyed by the UAV, the UAV will get zero
rewards since it does not have to avoid it anymore. Consider a binary variable indicating the
liveliness of the mine as lm which is set if the mine is alive. If the mine is alive, we calculate
the reward based on the minimum distance, dmin and least distance, dl. The value of dl is the
destruction range of the mine which needs to be avoided by the UAV to stay safe. The minimum
distance dmin in this case is calculated as the minimum distance between a particular UAV and
a detected mine. As the UAV moves closer to this range, it is negatively rewarded. Without
the proximity based reward for mine, the UAV will not be motivated to maintain distance from
the mine. Let the mine proximity reward be represented as rmp for each UAV and is is clipped
between 0 and 1.

rmp =

{
−(clip(1/dmin, 0, 1/dl) ∗ dl), if lm = 1

0, if lm = 0
(6.2)

The reward rmp is calculated at each UAV and is communicated to the base. Since we have
N UAVs communicating their reward to the base. At the base, the mine reward is normalized
and expressed as,

Rmp =

∑
rmp

N
(6.3)

Similarly, if a target is destroyed, the agent receives a positive reward, otherwise, it receives
a reward based on minimum distance dmin and the least distance dl. The minimum distance
dmin in this case is calculated as the minimum distance between a particular UAV and a target.
The value of dl is the firing range of a UAV which indicates the least distance between the
UAV and a target so that the UAV can destroy the locked target. The more closer the UAV
gets to the target, the more it is positively rewarded. A binary variable indicating the liveliness
of the target, lt is set if the target is alive. Let the target proximity reward for each UAV be
represented as rtp and clipped between 0 and 1.

rtp = (clip(1/dmin, 0, 1/dl) ∗ dl)− 1, if lt = 1. (6.4)

All the UAVs communicate the value of rtp to the base. Since we have N UAVs, at the base,
the target reward is normalized and expressed as,

Rtp =

∑
rtp
N

(6.5)
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6.3.1.3.2 Target destruction reward The target destruction reward, rtd is received by
an agent when a UAV successfully destroys a target. By doing so, the agent has completed a
part of the assigned task and gains a positive reward. Let zd be the reward received when a
UAV destroys one target from a total of Z targets. In our implementation, the value of zd is
set to 1. At each UAV, rtd is calculated as follows:

rtd =

{
zd, if lt = 1

0, if lt = 0
(6.6)

At the base, the target rewards communicated by each UAVs are summed to check if all the
targets are destroyed. Since we have Z targets, the target destruction reward at the base is
expressed as,

Rtd =

∑
rtd
Z

(6.7)

6.3.1.3.3 Mine detection reward A UAV detects a mine within its sensing radius and
communicates the location of the mine to the base in addition to avoiding it. The base can
then update the rest of the UAVs in the next time step about the location of the detected mine.
A mine detection is denoted by md and is given to each UAV when it detects a mine m from a
total set of M total mines. In our implementation, the value of md is set to 1.

rmd =

{
md, if m ∈M

0, otherwise
(6.8)

The number of mines present in the field is known but the locations of those mines is unknown.
Consider there are M mines in the field, then the mine detection reward calculated at the base
can be expressed as follows,

Rmd =

∑
rmd

M
(6.9)

6.3.1.3.4 Time based reward The time-based reward Rτ is calculated at the base to
ensure that all the UAVs are negatively rewarded with each passing time step. Our aim here
is to finish the task as quickly as possible so that we can save the battery consumption of the
UAVs. The total time for task completion for all the UAVs is T and with every time step τ ,
the combined UAVs’ time based reward is penalized.

Rτ =

{
−1, if 0 < τ < T

0, otherwise
(6.10)

A time based reward motivates the fleet of UAVs to finish the task in minimum time, this does
not essentially mean that the task aims at keeping the maximum number of UAVs alive. Hence,
we introduce a liveliness reward.
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6.3.1.3.5 Liveliness reward We try to maintain as many UAVs alive as possible upon task
completion. If the UAV is destroyed by the mine, it is rewarded 0. If it destroys the targets
and returns to the base, it is alive and is rewarded positively. The reward Rl is calculated at
the base as the ratio of number of UAVs alive, ua by maximum number of live UAVs possible,
N . This is given as follows,

Rl =
{

ua
N − 1 (6.11)

If all the UAVs are alive, then the value of Rl is 0. If none of the UAVs are alive then Rl is -1.

6.3.1.3.6 Total Reward The total reward is the reward given to each UAV but can be
calculated at the base as and when the UAvs communicate to the base. We add all the above
normalized rewards of proximity based, target destruction, mine detection, time based and
liveliness reward. Then we train the DRL agent at the base based on the total reward and is
communicated to each UAV.

R = Rtp +Rmp +Rtd +Rmd +Rτ +Rl (6.12)

The frequency of communication with the base is algorithm specific in GLIDE, and is discused in
detail in the next section. The DRL agent is unaware of the environment beforehand and needs
to interact with the dynamic environment. It uses its experience of interacting and observing
the rewards for various decisions in different states and then learn the optimal policy π∗ to map
the states with their best actions. In a military environment, all UAVs have participate in the
task completion process. The number of UAVs is chosen based on the number of targets, and
area of the field. If a UAV is destroyed by the mine during the episode, it is penalized by the
liveliness reward. The subsequent action space would not include the non alive UAVs.

6.4 DRL-Based UAV Action Control

The main objective of the DRL agent is to find the best mapping between the state and
the action that achieves a maximum discounted average reward. In this work, we leverage
PPO algorithm, which is a policy gradient algorithm. Although conventional policy-gradient
algorithms, such as advantage actor-critic (A2C) [37], have successfully produced strong control
effects in a variety of decision-making situations, they continue to encounter a number of issues,
such as the challenging choice of iteration step size and poor data usage. Hence, PPO algorithm
which is a state-of-the-art DRL algorithm based on the actor-critic method is chosen for our
approach.

The information structure of MARL, or who knows what during training and execution, is
more complex than it is in the single-agent situation. In this work, the agents do not have
explicit information exchange with each other. Instead, each agent makes decisions based on its
local observations, and information communicated from the base to UAV. The local observations
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vary across agents and may contain some global information such as the joint actions of other
agents, because of the control sharing information structure at the base. We propose two PPO-
based multi-agent algorithms called continuous centralized GLIDE (C-GLIDE) and continuous
decentralized GLIDE (D-GLIDE).

The current state sti of a UAV i is given as input to the actor-network and the distribution
of actions is obtained. Each agent chooses its action ati. The environment gives each agent a
reward rti for the action taken indicating whether the action is beneficial and this reward is used
by the critic network. The actor-network generates the policy and the critic network evaluates
the current policy by estimating the advantage function Âπ

t .

Aπ
t = Qπ(st, at)− Vπ(st) (6.13)

The policy is modified according to the advantage function. Figure 6.4 demonstrates the agent
environment interaction of single agent of the PPO algorithm with an actor network and a critic
network. During training, a batch of samples is selected from the buffer to update network
parameters. In order to improve the sampling efficiency, PPO adopts the importance sampling
method. the probability ratio between old policy πθold and new policy πθ is denoted by rt(θ)

and is expressed as,
rt(θ) =

πθ(at|st)
πθold(at|st)

(6.14)

PPO has to restrict the policy’s updating window and uses the clip method to directly limit
the update range to [1− ϵ, 1 + ϵ]. In PPO, the clip function is used to limit the update to the
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Algorithm 6 C-GLIDE
1: Initial actor network parameters θ0, critic network parameters ϕ0 and clipping threshold ϵ
2: for episodes 1, 2, · · · ,M do
3: for actor 1, 2, · · · , N do
4: Follow central actor policy πθold for T timesteps
5: Collect Dk set of trajectories
6: for epoch t := 1, · · · , T do
7: Base updates all UAVs with state st−1

8: if No obstacle in detection range then
9: Take action ait based on πθold

10: else if Mine detected then
11: Choose ait to avoid the mine
12: Update base with the mine location
13: Update sit to next state sit+1

14: Compute the rewards
15: Compute advantages Â1, · · · , ÂT in (6.13)
16: if Timesteps == K then
17: Update θ by SGD to maximize Lclip(θ) in (6.15)

θk+1 = arg max
θ
Lclip(θ)

18: Update ϕ by SGD and minimize L(ϕ) (6.24)

ϕk+1 = arg min
ϕ

1

|D|T
∑
τ∈D

T∑
t=0

(Vϕ(st)− R̂t)
2

19: θold ← θ
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policy parameters during policy optimization. To prevent large policy updates that could lead
to instability in the policy distribution, the clip function constrains the probability ratio term in
the surrogate objective function to a specified range. Applying clip function to the probability
ratio term, the objective function ensures that policy updates stay close to the original policy
while still allowing for some exploration. The loss function of PPO is:

Lclip(θ) = E(min rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât) (6.15)

where ϵ is a hyper-parameter. The objective function in Equation (6.15) only uses the policy
of the actor network. For the critic network update, another term that uses the value function
is needed. The centralized critic networks with weights ϕ is at the base. This centralized state
consists of a fully-observable environment state which is common to all the agents, and also
each agent’s partial local observation. The agents behavior optimizes the critic loss LV F (ϕ)

based on the squared difference between the actual return and the value estimation. The critic
estimation bootstraps the next state’s expected value at the end of a mini-batch of size NT .
This continues until the episode terminates.To minimize the difference between the estimated
value and the actual value, the squared loss is used.

LV F (ϕ) = (Vϕ − V Target)2 (6.16)

An entropy term is added to the objective to encourage exploration. Then, the final objective
function for critic network is:

L(ϕ) = Lclip(θ)− c1LV F (ϕ) + c2S[πθ(st)] (6.17)
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L(ϕ) is calculated at the base, which is the critic network. In multi-agent DRL, each agent
learns by interacting with the environment. The agents learn and optimize their behavior,
by observing a state sit ∈ S and each performs an action ait ∈ A at time t and receives an
instantaneous total reward. The agent goes to the next state sit+1. For each agent, the goal is
to learn a policy that maximizes their reward. The centralized and decentralized action control
of the agents is discussed in detail in the next subsection.

6.4.1 C-GLIDE

In a multi-agent system, each agent’s reward depends on both its own actions and those
of the other agents. It would be challenging to guarantee the algorithm’s convergence since
altering one agent’s policy will have an impact on how other agents choose their optimal course
of action and cause erroneous value function estimates. This research adopts a MARL approach
to address the issue, as shown in Figure 6.5. In C-GLIDE, the action control of the UAV fleet is
executed centrally. The concept of centralized training and distributed execution in D-GLIDE.

In the continuous centralized GLIDE approach all the UAVs’ action is considered as a single
agent and is controlled by the base. The state space s is a combined input of all the UAV’s
current positions and the detected mines and the locations of undestroyed targets. The core
value function is learned by the critic network. The combined agent in the actor-network simply
uses its observations to determine the policy. A multi-agent algorithm introduces a scalability
issue. Each agent needs to take into consideration the joint action space, whose dimension
grows exponentially with the number of agents, in order to address non-stationarity. So, with
increasing number of UAVs, the joint action space grows exponentially. The theoretical study of
MARL is complicated by the presence of many agents, particularly the convergence analysis [32].
An approach to addressing scalability is to employ the mean-field regime with a large number of
homogeneous agents [85, 86]. In mean-field reinforcement learning [86], the interactions within
the population of agents are approximated by those between a single agent and the average
effect from all the agents. The interplay between the two entities is mutually reinforced. Thus,
the impact of each agent on the overall multi-agent system might diminish to the point where
all agents are interchangeable or indistinguishable. However, a mean-field quantity, such as the
average state or the empirical distribution of states, can accurately describe the interaction with
other agents. This greatly simplifies the study because each agent merely needs to discover its
optimal mean-field response. Our model considers each UAV shares a common reward function
depending only on the local state and the mean-field, which encourages cooperation among the
agents.

The mean field action distribution represents the joint probability distribution of all agents’
actions in our multi-agent system.

π(at|st) =
∏
i

πi(ait|st), (6.18)
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where, π(at|st) is the mean field action distribution. πi(ait|st) is the individual policy of agent
i, which determines the probability of agent i taking action ait in state st.

The surrogate objective function for multi-agent centralized PPO with a mean field action
space is similar to the standard PPO, but it includes parameters for each agent and incorporates
the mean field action distribution.

Lclip(θ) =
∑
t

∑
i

[min(rit(θi) ∗Ai
t, clip(r

i
t(θ

i), 1− ϵ, 1 + ϵ) ∗Ai
t)], (6.19)

where, rit(θi) = πi(ait|sit, θi)/πi
old(a

i
t|sit) is the probability ratio of the new policy for agent i over

its old policy. Ai
t is the advantage estimate for agent i, which measures how much better or

worse an action is compared to the average action in a given state. The value function in the
PPO algorithm is estimated using a neural network function approximator. The value function
approximator takes the state as input and outputs an estimate of the expected cumulative
reward, also known as the state value. The centralized value function is updated by minimizing
the mean squared error between the predicted value and the target value:

LV F =
∑
t

[(Vϕ − V target)2]. (6.20)

Note that the values of Vϕ and V target are calculated for every t. The above expression does
not have the subscript t to avoid confusion. The objective function combines the surrogate
objective function, the value function loss, and an entropy regularization term, weighted by
their respective coefficients:

L(ϕ) = Lclip(θ)− c1LV F (ϕ) + c2H[πθ(st)].. (6.21)

c1 and c2 are coefficients that control the balance between the surrogate and value function
losses. H[πθ(st)] is an entropy regularization term that encourages exploration by maximizing
the policy’s entropy for agent i.

In C-GLIDE in Algorithm 6, the actor network and the critic network are initialized with
weights θ0 and ϕ0 respectively, along with a clipping thershold ϵ. The experiment is run for M

episodes. In C-GLIDE all the UAVs have aggregated state and aggregated action. There are N
UAVs, so each UAV has an actor network and all the actor networks follow the old policy for T
time-steps. The actors collect Dk set of trajectories with the central actor policy. During each
time-step, base updates the UAVs with the current state st−1 and the best action ait is taken
by each UAV towards the target while avoiding the mines. If a mine is detected, its location is
updated to the base. The rewards and advantage function is calculated and the state is updated
to the next state. Once in every K time-steps, the critic network parameters are updated based
on the experience of all the actors stored in a local buffer. The detailed steps of C-GLIDE
algorithm are presented in Algorithm 6.
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6.4.2 D-GLIDE

D-GLIDE is based on centralized training and distributed execution. A core value function
is learned by the critic network. It has access to data from the base, such as other agents’
location information and environmental information. Each agent in the actor-network simply
uses its own local observations to determine the policy. Assuming that every agent shares the
same state space S, the algorithm allows any number of agents to be used in task execution.
instead of using the agent’s own value function, this method uses the Critic network of each
agent to fit the global value function. Only the agent’s policy has to be changed in order to
optimize the global value function in this manner. The multi-agent policy gradient may also be
obtained directly using the chain rule, similar to the single-agent deterministic policy gradient.
In a dynamic environment containing several UAVs, for each UAV, i, its observation value at
time t is sit, and the actor-network outputs the mean and variance of the corresponding action
probability distribution according to sit, then constructs a normal distribution, sampling which
we obtain an action. Through the above methods, UAVs learn the cooperation policy between
agents. During the execution phase, it exclusively depends on its own local perspective to make
decisions, resulting in a collaborative policy that does not rely on communication. Additionally,
UAVs with the same purpose share the same actor network settings to lower the cost of network
training.

The surrogate objective function for centralized training and distributed execution is similar
to the single-agent PPO, but it incorporates the centralized value function. It also includes
parameters of each agent like θ. The surrogate objective function is given by:

Lclip(θ) =
∑
t

∑
i

[min(rit(θi) ∗Ai
t, clip(r

i
t(θ

i), 1− ϵ, 1 + ϵ) ∗Ai
t)] (6.22)

where, rit(θi) = πi(ait|sit, θi)/πi
old(a

i
t|sit) is the probability ratio of the new policy for agent i over

its old policy. Ai
t is the advantage estimate for agent i, which measures how much better or

worse an action is compared to the average action in a given state.
The centralized value function Vϕ is updated by minimizing the mean squared error between

the predicted value and the target value:

LV F =
∑
t

[(Vϕ − V target)2] (6.23)

The objective function combines the surrogate objective function, the value function loss, and
an entropy regularization term, weighted by their respective coefficients:

L(ϕ) = Lclip(θ)− c1LV F (ϕ) + c2H[πθ(st)]. (6.24)

c1 and c2 are coefficients that control the balance between the surrogate and value function
losses. H[πθ(st)] is an entropy regularization term that encourages exploration by maximizing
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the policy’s entropy for agent i. The multi-agent algorithm optimizes the policy parameters
θi for each agent i by sampling trajectories, computing advantages using the centralized value
function, and performing gradient updates to maximize the surrogate objective function. The
centralized value function is used to estimate the advantage values for each agent, while the
decentralized execution allows each agent to execute its policy independently during interaction
with the environment.

In D-GLIDE in Algorithm 7 the actor network and the critic network are initialized and
the experiment is run for M episodes similar to C-GLIDE. In D-GLIDE, the actor network is
decentralized and there is one critic network which is centralized. Using different critic network
for each actor network will be noisy. So, the training is centralized with one critic network.
Each UAV has an actor network follows the old policy collecting Dk set of trajectories for T

time-steps. The policy followed by each actor here is a distributed policy unlike the centralized
policy in C-GLIDE. During each time-step, base updates the UAVs with the detected mines.
The best action ait is taken by each UAV towards the target while avoiding the mines based
on the distributed policy. The rewards and advantage function is calculated and the state is
updated to the next state . Once in every K time-steps, the local mini-batch experience samples
are used to update the critic network parameters based on the experience of all the actors. The
algorithm procedure is discussed in Algorithm 7.

6.5 Results

In this section, the convergence analysis of the proposed C-GLIDE and D-GLIDE algorithms
is presented. The D-GLIDE analysed in various scenarios with respect to the C-GLIDE. Then
a summary of the analysis is provided based on the impact of several hyper-parameters on both
C-GLIDE and D-GLIDE algorithms.

6.5.1 Simulation Setting

We consider field size of 1000 m × 1000 m within which the UAVs can fly upto a maximum
altitude of 500 m. In this implentation, by default there are 4 UAVs at the base and 4 mines that
are placed at unknown locations in the ground as enemy defences to protect 4 strategic targets
from the attacks of UAVs. Unless otherwise stated, the aforementioned scenario is considered
as the default setting. The destruction range of the UAV and the mine, and detection range of
the UAV along with other environment specific parameters are mentioned in Table 6.2.

The proposed C-GLIDE and D-GLIDE algorithms are implemented on a workstation with
a 48 core Intel Xeon CPU, 32 GB DDR4 primary memory and 4×Nvidia RTX 2080 Ti with
12 GB video memory for running CUDA-accelerated Tensorflow. The GPUs are interlinked by
the NVlink interface and communicate with the CPU by the PCIe×16.0. We used software
packages based on Python3.8.12, Tensorflow v1.14.0, stable-baselines v2.10.2, and
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Algorithm 7 D-GLIDE
1: Initial actor network parameters θ0, critic network parameters ϕ0 and clipping threshold ϵ
2: for episodes 1, 2, · · · ,M do
3: for actor 1, 2, · · · , N do
4: Follow an actor policy πθold for T for each agent
5: Collect Dk set of trajectories
6: for epoch t := 1, · · · , T do
7: Base updates all UAVs the detected mines
8: if No obstacle in detection range then
9: Take action ait based on πθold from state sit

10: else if Mine detected then
11: Choose ait to avoid the mine
12: Update base with the mine location
13: Update sit to next state sit+1

14: Compute the rewards
15: Compute advantages Â1, · · · , ÂT in (6.13)
16: if Timesteps == K then
17: Update θ by SGD to maximize Lclip(θ) in (6.15)

θk+1 = argmaxθLclip(θ)

18: Update ϕ by SGD and minimize L(ϕ) (6.24)

ϕk+1 = arg min
ϕ

1

|D|T
∑
τ∈D

T∑
t=0

(Vϕ(st)− R̂t)
2

19: θold ← θ
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Table 6.2: Environmental Parameters

Parameters Value
Length l 1000 m
Breadth b 1000 m
Height f 500 m
Height of the Target fT 40 m
Radar range of the mine D1 50 m
Destruction range of the mine 50 m
Detection range of UAV d1 300 m
Destruction range of UAV d2 100 m
Maximum speed of the UAV vmax 90 m/s
Maximum acceleration of the UAV amax 50 m/s2

Table 6.3: PPO Hyper-parameters

Parameters Value
Neurons in hidden layer 1 256

Neurons in hidden layer 2 256

Relay memory size |B| 3072

Minibatch size |bm| 768

Learning rate α 2.5× 10−4

Discount factor γ 0.99

GAE parameter λ 0.95

Activation function ReLU
Clip range ϵ 0.2

Optimizer Adam
Epochs η 10

Total episodes E 5× 105

gym v0.19.0 to implement the C-GLIDE and D-GLIDE algorithms. The hyper-parameter
values are described in Table 6.3.

6.5.2 Convergence Analysis

In this subsection, a comparison between the proposed D-GLIDE and C-GLIDE are pre-
sented to highlight the benefits of decentralization. In Figure 6.6 the episode reward stabilizes
as the D-GLIDE agent interact with the environment for around 25 million time slots. However,
that is not the case for the C-GLIDE algorithm in all scenarios. Note that the in the time based
reward negatively rewards the agent to encourage lower task completion time. Other rewards
are small positive values. Hence the reward values are negative in the convergence plots. How-
ever the performance of the UAV is not effected by this. We observe that both the algorithms
perform well when there are fewer enemy defenses or strategic targets to destroy, as shown in
Figure 6.6a and 6.6c. Because the scope of collaboration among individual UAVs is limited
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Figure 6.6: Convergence of the C-GLIDE and D-GLIDE algorithm under various settings - (a) 1 target
(b) 6 target (c) 1 mine (d) 6 mine (e) 1 uav (f) 6 uav, where other objects are as per the default scenario.
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and less essential to destroy all targets. Thus the UAVs do not necessarily have personalized
strategies, enabling the C-GLIDE algorithm to comprehend a general policy.

However, as the number of mines or targets grows, the UAVs have to work together and divide
the undertaken task among themselves to achieve the objective in minimum time, which requires
personalized learning in the UAVs. Therefore, D-GLIDE learning helps in such cases as each
UAV can optimize its strategy without affecting others. We show the benefits of decentralization
in Figure 6.6b and 6.6d where the C-GLIDE implementation cannot facilitate personalized
UAV behavior due to a common set of hidden layers and underperform as compared to the
distributed implementation. Furthermore, we observe from Figure 6.6e and 6.6f that increasing
the number of UAVs in the environment reduces the complexity of the resultant strategy due to
redundant UAVs. Hence both the algorithms perform equivalently as we increase the number
of UAVs beyond the number of targets or mines. Please note that C-GLIDE learning becomes
challenging as we increase the environment’s targets, mines, and UAVs.

In summary, D-GLIDE algorithm scales well with the increasing number of objects in the
environment and encourages UAV-specific policy optimization for improved performance in
contrast to the C-GLIDE implementation.

6.5.3 Performance Analysis

In this subsection, we discuss about the effectiveness of the proposed solution in various
scenarios and analyse the scalibility of the system with increasing number of targets, mines,
and UAVs in the simulated area of operation.

6.5.3.1 Increasing Targets

Here, we analyse the effect of increasing the number of targets from 1 to 6, keeping the
mines and UAVs constant as per our default scenario. From Figure 6.7a, we observe that
both the distributed and C-GLIDE algorithm destroys all the targets in the environment with
4 deployed UAVs, thus algorithms are scalable with number of targets in the environment.
However, significantly less number of mines are triggered by the UAVs in case the of D-GLIDEas
compared to that of C-GLIDE see Figure 6.7b. The destroyed targets are integer values. The
error bars indicate the difference. As a result, UAVs are less intercepted and therefore more
UAVs are alive at the end of the episode as shown in Figure 6.7c.

With increasing targets, the UAVs need to collaborate effectively among themselves and
learn group along with individual skills to destroy all targets in minimum time. The C-GLIDE
algorithm suffers from increasing targets as it has common hidden layers to process the input
state of the environment, limiting the scope of individual skill adoption by the UAVs. Whereas,
in the distributed algorithm each UAV optimizes a separate neural network and thus the UAVs
do not interfere in each other’s learning, enabling higher degree of personalizing. We further
observe a steady increase in the time taken to destroy all targets with the increase in the number
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Figure 6.7: Correlation among increasing number of strategic targets vs - (a) destroyed targets (b)
destroyed mines (c) live UAVs (d) Wall time or time taken at the end of each episode.
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of targets as the number of UAVs is fixed. However, the distributed algorithm outperforms the
C-GLIDE and take significantly less time to destroy the targets as shown in Figure 6.7d. The
Figure 6.7d has outliers which are shows as markers (cross and triangle) in the plot.

In summary, number of targets influences the degree of collaboration among the UAVs that
is required to destroy all the targets in minimum time and also increase the chance of UAV
interception by the mines as the UAVs have to traverse more of the operational area to reach
each target.

6.5.3.2 Increasing Enemy Mines

As number of mines grows, probability of UAV interception increases, which results destruc-
tion of all 4 UAVs from time-to-time. In Figure 6.8a, we observe that some targets are missed as
the number of mines in the environment are more than 4 deployed UAVs. However, the median
destroyed targets is very close to 4 targets that shows the scalibility of both the algorithms
with increasing mines. The distributed algorithm outperforms the C-GLIDE by a slight margin
in destroying targets. Moreover, the C-GLIDE algorithm performs poorly in terms of avoiding
mines resulting in UAVs getting destroyed during the operation as compared to the D-GLIDE.
This is depicted in Figure 6.8b.

Subsequently, for the distributed algorithm, more UAVs are alive after destroying all the
targets. In Figure 6.8c, we see a downward trend in live UAVs as number of mine increases.
This is because the location of the mines are not known beforehand; thus the UAVs have to
detect and dodge the mines dynamically during their lifetime. More mines mean there is larger
probability of UAV interception, resulting less alive UAVs after destroying all targets. Moreover,
from Figure 6.8d we observe a steady increase in wall time with more mines as it reduces the
possible safe paths from a position and may force an UAV to take long alternate paths to reach
the same destination in contrast to the scenario with no mines. The distributed algorithm takes
significantly less time to destroy all the targets in the environment.

In short, increasing the mines, increases the hardness of the joint path planning of UAVs
as there will be less safe trajectories for each UAV. However, the distributed algorithm scales
effectively when 4 UAVs are deployed with mines ranging from 1 to 6.

6.5.3.3 Increasing UAVs

Similarly in this subsection, the number of UAVs are varied in the simulated area of operation
from 1 to 6, keeping mines and targets constant as per the default scenario. We observe in
Figure 6.9a that some targets may remain alive with 1 UAV where, all targets are destroyed
every time with 6 UAVs. Hence, destroying targets becomes easier as we increase the number
of UAVs in the environment. However, the probability of the task being intercepted by the
mines increases with more UAVs when traversing through the area of operation. Therefore,
more mines are destroyed as shown in Figure 6.9b.
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Figure 6.8: Correlation among increasing number of mines vs - (a) destroyed targets (b) destroyed mines
(c) live UAVs (d) Wall time or time taken at the end of each episode.
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Figure 6.9: Correlation among increasing number of UAVs vs - (a) destroyed targets (b) destroyed mines
(c) live UAVs (d) Wall time or time taken at the end of each episode.
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Figure 6.10: Exploring the operational area to find mines with increasing number of targets, mines and
UAVs - (a) D-GLIDE (b) C-GLIDE
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The C-GLIDE algorithm suffers from inadequate capacity to facilitate personalized UAV
behaviour and thus performs relatively badly than the distributed algorithm in avoiding in-
terception by the mines. As a result, less UAVs are alive after destroying the targets, see
Figure 6.9c for more details. Interestingly, from Figure 6.9d, we see a steady decrease in the
wall time or time required in destroying the targets with increase in number of UAVs. The
UAVs must learn cooperative strategy along with an independent strategy to reduce the wall
time (e.g., as a group they have to explore the operational area to discover the hidden mines
and thereafter, individual UAV must select an appropriate target and move in the shortest
safe trajectory to reach that target, resulting destruction of all targets in minimum time). The
D-GLIDE algorithm adapts more group and personalized skills over time. It outperforms the
C-GLIDE algorithm in terms of time taken to destroying the targets.

In summary, increasing UAVs, helps in destroying the strategic targets. All the UAVs col-
laborate most effectively in order to avoid mines and divide the task among themselves for
completion in minimum time.

6.5.3.4 Exploring Area of Operation

In this subsection, we analyse the behaviour of the D-GLIDE and the C-GLIDE algorithm
in exploring the operational area to find hidden mines with increasing number of UAVs, targets
and mines individually, keeping others as per the default scenario. As seen in Figure 6.10a and
6.10b, less mines are discovered by the UAVs as the number of targets decreases. Therefore, both
the algorithms can prioritize to destroy the targets in minimum time (see Figure 6.7d) when
target count is less and compromise on discovering the mines. This results in less exploration
over the area of operation. However, as the number of target increases, the UAVs take more
time and discover the hidden mines for safest path planning to destroy the targets.

We vary the number of mines in the area of operation and observe that the UAVs find most
of the mines before destroying the targets. Discovering the mines becomes crucial as the mines
are increased, otherwise the UAVs may be intercepted. Next, we increase the number of UAVs
and observe that most of the mines are discovered during the operation.

In summary, exploring the operational area is crucial in discovering the mines and therefore
helps the UAVs to plan safest paths to the targets and destroy them in minimum time.

In this chapter we discussed a DRL based approach for action control of a group of UAVs. We
use MARL for the collaborative movement of the UAV fleet in a dynamic military environment.
We propose two MARL algorithms called C-GLIDE and D-GLIDE. We developed a simulator
called UAV SIM, in which the mines are placed at random locations unknown to the UAVs at
the beginning of each episode. The performance of the proposed scheme is is presented and the
results show that the D-GLIDE approach significantly outperforms the C-GLIDE approach.
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Chapter 7

Summary

In this thesis, the importance of scaling blockchain protocols and recent techniques like
sharding which improve the throughput of the blockchain protocol are discussed. A coding the-
ory based approach for sharding with the advantage of reduced storage cost and bootstrap cost
is introduced. We discussed Prism Blockchain, one of the promising blockchain protocol with
good performance guarantees. An approach to optimize the performance of Prism Blockchain
by leveraging DRL techniques like DDQN and PPO is discussed. Next, we have presented
a multi-agent reinforcement learning based action control for UAVs. A UAV simulator called
UAV SIM is developed for our implementation and is discussed. Important results for the above
discussed techniques are presented to demonstrate the usefulness.

7.1 Conclusion

• To scale blockchains, recent advances in sharding and Prism are considered as baseline
for this thesis.

– A coding theory based approach called secure repair block protocol is presented. The
SRB protocol leverages MBR codes.

– SRB has an improvement in the storage cost and bootstrap cost comparison with
the existing schemes.

• This thesis presented a framework leveraging two popular DRL approaches for optimizing
Blockchain performance called the Deep Reinforcement Learning-based Prism Blockchain
(DRLPB). This scheme dynamically optimizes the parameters of Prism blockchain and
helps in achieving a better performance.

– DRLPB has a DDQN based algorithm is presented to achieve better performance
guarantees in Prism Blockchain

– Later in DRLPB scheme, a PPO based algorithm is compared with the proposed
DDQQN based algorithm and the baselines.
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– The analysis shows that the DRLPB scheme adapts the Prism blockchain parame-
ters to enhance the security upto 84% more than Prism, while still preserving the
performance guarantees of Prism.

• The main challenge in IoT enabled blockchain is to integrate the metadata into the blocks
and store them efficiently. Blockchain-integrated IoT has a challenge of low throughput.
In order to improve the throughput and maintain the guarantees of the blockchain-based
IoT system, DRL techniques are explored. In this work we extend the Prism based
blockchain leveraging DRL for an application use case like IoT. For this, we are imple-
mented the Prism based IoT network in Rust language and PPO based DRL algorithm
in Python.

• This thesis also presents a multi agent reinforcement learning approach for UAV action
control in a dynamic military environment.

– A novel problem formulation of the MDP is presented which takes into account the
acceleration of the UAVs.

– The UAV fleet coordinated control is achieved by using two continuous -time PPO
based approaches called C-PPO and D-PPO. The C-PPO executes the action control
centrally whereas D-PPO involves centralized training and decentralized execution.

– A UAV simulator called UAV SIM is developed for the performance analysis.

7.2 Future works

In this thesis we have compared Rapidchain, SeF and SRB on measures such as storage
overhead, encoding complexity and bootstrap cost. In the future, the run time estimates of
SRB protocol can be estimated which is based on number of encoding and decoding operations.

The application of blockchain in fields like IoT and supply chain is of particular interest
because of the security guarantees provided by the blockchain system. Each application comes
with a new set of challenges. The proposed approach of DRLPB and DRL based IoT enabled
blockchain can be used with smart contracts. This will be a useful direction to explore the
benefits of smart contracts alog with DRL based Prism blockchain.

A continuous-time PPO for UAV action control is implemented so far and we have built
our own UAV simulator. In the literature of DRL, the shared experience actor-critic approach
has gained popularity recently. In this approach, all the agent’s experiences including failed
episodes can be used to train the model. This is very advantageous for several applications.
This algorithm can be explored for UAV action control. After the completion of the current
PPO based MARL for UAV control, we plan to extend it using shared experience actor critic
method.
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Sharding has been a powerful tool in the context of blockchain. We plan to focus on the
merkle tree structure of blockchain to propose an efficient scaling solution. Recent work in
coded merkle tree and Rainblock have modified the block structure and addressed challenges
like data availability attack. We are currently analyzing the works in literature for solving the
data availability attack.
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