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Abstract

In the present era of Big Data, the demand for storing vast amounts of data is rapidly in-

creasing among companies such as Facebook, Microsoft, Google, Intel, IBM, and others, for

various applications. To address this need, Distributed Storage Systems (DSSs) have been es-

tablished, offering improved capabilities in terms of flexibility, scalability, speed, and cost. In

DSS, data is distributed and stored on different nodes and are connected through the network.

However, data loss is inevitable due to physical limitations such as hardware failures and power

shutdowns. Maximum Distance Separable (MDS) codes are very efficient in terms of storage

overhead. For practicality, Locally Recoverable codes (LRCs) are discovered to facilitate the

low reconstruction cost for single and multiple failures (Independent and correlated), with a

slight increase in storage overhead. Maximally recoverable codes are a class of codes that

recover from all potentially recoverable erasure patterns given the locality constraints of the

code. Our main objectives are to provide MRCs for independent failures, correlated failures

with low computational complexity, and encoding complexity.

In earlier works, codes have been studied in the context of codes with the locality to handle

independent failures. The notion of locality has been extended to the hierarchical locality,

which allows for the locality to gradually increase in levels with the increase in the number of

erasures. In one direction, we consider MRC for the case of codes with 2-level hierarchical

locality for the specific topology (locality constraints) called Hierarchical Local MRC (HL-

MRC). We derive a field size lower bound on HL-MRC. We also give constructions of HL-

MRC for some parameters whose field size is smaller than that of earlier known constructions.

We investigate Locally Recoverable Codes (LRCs) with availability, which refers to the

ability to have multiple repair sets. The presence of multiple repair sets in LRCs is beneficial
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as it facilitates the distribution of the repair load among various nodes. This distribution helps

prevent excessive strain on specific nodes and promotes a more balanced workload within the

system. In our research, we expand on the concept of availability in Locally Recoverable

Codes (LRCs) and apply it to codes with hierarchical locality. The minimum distance plays a

vital role in determining the codes’ capability to handle erasures effectively. Our study focuses

on investigating the upper bound of the minimum distance for the specific case of LRCs with

hierarchical locality.

To reduce the encoding complexity, Halbawi et al. introduced sparse and balanced genera-

tor matrices for MDS (Reed - Solomon) code and LRCs (Tamo-Barg code) for single erasure.

Building upon this work, we contribute by presenting sparse generator matrices for MRC with

locality for single erasure. Furthermore, we also provide sparse and balanced generator ma-

trices for MRC with locality, specifically for single erasures where the locality value is set to

2.

In order to deal with correlated failures, Gopalan et al. initiated the study of MRCs grid-

like and product topologies. In another research direction, we focus on MR codes for product

topology Tm,n(a, b). Product codes are a class of codes with generator matrices as the tensor

product of the generator matrices of component codes. The codeword can be represented as

an m × n array, where the component codes are referred to as the row and column codes. We

derive a few properties of maximally recoverable product codes. We give a sufficient condi-

tion to characterize a certain subclass of erasure patterns as correctable and another necessary

condition to characterize another subclass of erasure patterns as not correctable. We construct

a certain bipartite graph based on the erasure pattern satisfying the regularity condition (a nec-

essary condition for recoverability) for product topology and show that there exists a complete

matching in this graph. We used this condition to identify a subset of recoverable erasure

patterns for a = 2.

In earlier work, higher-order MDS codes denoted by MDS(l) have been defined in terms of

generic matrices, and these codes have been shown to be constituent row codes for maximally

recoverable product codes for the case of a = 1. We derive a certain inclusion-exclusion type

principle for characterizing the dimension of intersection spaces of generic matrices. Applying

ix



this, we formally derive a relation between MDS(3) codes and points/lines of the associated

projective space.

Keywords: Distributed storage, independent failures, correlated failures, maximally recover-

able codes, locally recoverable codes, codes with hierarchical locality, field size bound, locally

recoverable codes with availability, sparse and balanced generator matrices, product codes.
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Terminology

• C[n, k, d]q is a linear block code over the finite field Fq with length n, dimension k,
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• k(q)
opt(n, d) is largest possible dimension of the code

• C[n, k, d, r]q LRC with locality r for single parity

• C[n, k, d, r, δ, h]q LRC with (r, δ ≥ 2) locality along with h global parities

• C is a code with hierarchical locality characterized by the parameters [k, r1, r2, h1, h2, δ],

is used to define two types of topologies: the Hierarchical Data Local Code and the

Hierarchical Local Code. Here, δ represents the number of parities in the local code,

and h2 and h1 denote the number of global parities of the middle code and the code,

respectively.

• Tm,n(a, b, h) is called grid-like topologies. In which each codeword is an array of size

m × n, where a, b and h are the number of parities per column, per row, and global,

respectively.

• Tm,n(a, b, h = 0) is called product topologies and also represented as Tm,n(a, b).
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Chapter 1

Introduction

In this chapter, we will explore storage systems that are well-suited to meet the demands of

the present Big Data Era. Section 1.1 delves into the concept of Distributed Storage System

(DSS), highlighting the significance of this system and the challenges it faces. Section 1.2 fo-

cuses on the practicality of implementing Erasure Codes in DSS. Erasure Codes are introduced

as a viable solution to mitigate the risk of data loss in distributed storage environments. We ex-

plore the fundamental principles of Erasure Codes and their applicability in DSS. Preliminary

codes are also introduced and discussed, which serve as the building blocks for achieving effi-

cient data storage and recovery. In Section 1.4, we outline the specific goals and contributions

of the thesis. Lastly, in Section 1.5, we provide an overview of the organization of the thesis.

The structure and flow of the subsequent chapters are outlined.

1.1 Distributed Storage System (DSS) and Challenges

The demand for storing massive volumes of data is rapidly growing across various indus-

tries, with companies like Facebook, Microsoft, Google, Intel, IBM, and many others facing

the need to manage and store vast amounts of information. In light of this trend, there is a

pressing requirement for storage systems that can surpass the capabilities of current solutions

in terms of flexibility, scalability, speed, and cost-effectiveness.

To establish such a storage system, data is distributed and stored on multiple nodes that are

interconnected through a network. Despite the distribution of data, these nodes operate collec-
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tively as a unified storage system. Such a storage system is referred to as a Distributed Storage

System. This arrangement allows for improved efficiency and enhanced storage capabilities.

The physical model of a DSS can be visualized as depicted in Fig. 1.1.

Figure 1.1: DSS Network Physical Model

However, in a DSS, data loss becomes an inevitable challenge due to the inherent limita-

tions of hardware, such as power shutdowns and node failures resulting from device or disk

malfunctions, etc. In a DSS, node failures can occur due to temporary or permanent reasons.

Temporary failures refer to situations where a node or component of the system experiences

a temporary disruption or outage but can be restored to normal operation after the issue is

resolved. These failures can be caused by various factors, such as network connectivity issues,

power fluctuations, temporary hardware malfunctions, or software glitches. Temporary failures

are generally transient and can be recovered without permanent data loss.

On the other hand, permanent failures are more severe and result in permanent data loss or

the inability to recover the affected node or component. Permanent failures can occur due to
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catastrophic hardware failures, unrecoverable disk errors, or data center disasters. When a node

in the DSS encounters a permanent failure, the data stored on that node becomes inaccessible

or irretrievable. These failures are typically more challenging to handle as they require data

recovery mechanisms to mitigate the loss and ensure data availability. To minimize the impact

of both permanent and temporary failures, DSS integrates data protection mechanisms like

erasure coding.

1.2 Erasure Codes in DSS

In DSS, the detection of failed nodes is possible. Hence, for data recovery, erasure codes

are applicable. Forward Error Correction (FEC) techniques are utilized to enhance reliability.

In FEC, extra redundant bits are added at the transmitter, allowing for correct data decoding

even in the presence of a certain number of lost bits. Erasure codes represent a specific type of

FEC where data is transmitted over an erasure channel. In this channel model, the transmitter

sends the data, and the receiver either receives it correctly or experiences complete loss. For

instance, the Binary Erasure Channel (BEC) is illustrated in Fig. 1.2.

Figure 1.2: Binary Erasure Channel
with error probability pe.

Initially, to ensure reliability, data replication is commonly employed as a common and

easily implemented solution. Typically, a standard approach involves three-way replication.

Among the three nodes (three copies), suppose one node has failed. One of the other nodes can
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be used to create a new node by simply copying the data. At the same time, another node can

be used to access the data, which ensures the data availability. In this three-way replication,

no computations are required in data recovery. However, the three-way replication incurs a

storage overhead of 200%, leading to inefficiency. Erasure coding techniques have garnered

significant attention as an alternative to traditional replication methods. These techniques offer

more efficient data storage and improved fault tolerance capabilities.

Erasure coding involves encoding data into a set of redundant fragments that are distributed

across multiple storage nodes in the system. By leveraging mathematical algorithms, the orig-

inal data can be reconstructed from a subset of these fragments, even if some of them are lost

or inaccessible. This approach provides higher storage efficiency compared to replication, as it

reduces the storage overhead required to ensure data reliability.

In the following, we will quickly setup some basic notation of codes and define Maximum

Distance Separable (MDS) codes.

• C[n, k, d]q is a linear block code with the generator matrix Gk×n and parity check matrix

H(n−k)×n . Here, n, k, d and q are length, dimension, minimum distance and field size of

the code. Any c = (c1, c2, . . . , cn) ∈ C is called a codeword and each ci is a code symbol

for any i ∈ [n]. supp(c) ⊆ [n] denote the set of non-zero coordinates of c.

• The code can recover up to d− 1 erasures (recoverability). An upper bound for recover-

ability of the code is called Singleton bound given in (1.1).

d− 1 ≤ n− k. (1.1)

• Maximum Distance Separable (MDS) codes are the optimal codes that meet the Single-

ton bound. i.e., it can recover any (n− k) erasures.

1.3 Motivation for Maximally Recoverable Codes (MRCs)

The study of erasure coding for distributed storage systems encompasses areas such as code

construction, decoding algorithms, fault tolerance analysis, and system performance evalua-
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tion. It is essential to develop erasure coding techniques that strike a balance between storage

efficiency, reliability, and computational complexity. MDS codes are a class of erasure codes

that offer optimal data recovery capabilities in the presence of node failures with less storage

overhead than replication. However, MDS codes may not be suitable for distributed storage

systems due to several reasons.

Firstly, the repair process in MDS codes involves accessing all k number of surviving nodes,

resulting in high network bandwidth utilization during data recovery. This can introduce per-

formance bottlenecks and scalability challenges in distributed storage systems with a large

number of nodes.

Furthermore, MDS codes are designed for scenarios where node failures are independent

and occur randomly. In practice, however, failures in distributed storage systems can often

be correlated, such as failures caused by power outages, hardware malfunctions, or network

issues. MDS codes are not efficient when correlated failures occur.

Due to these limitations, alternative coding techniques such as Locally Recoverable Codes

(LRCs) and Maximally Recoverable Codes (MRCs) have gained attention in distributed stor-

age systems. LRCs and MRCs offer more flexible and efficient approaches to achieve fault

tolerance, minimize repair bandwidth, and handle correlated failures. These coding schemes

strike a better balance between storage efficiency, reliability, and computational complexity,

making them more suitable for practical distributed storage environments compared to MDS

codes.

Unlike traditional erasure codes, LRCs introduce a locality property that enables the recon-

struction of a failed node’s data by accessing a limited number of other nodes (< k) in the

system. By minimizing the amount of data transferred during repair operations, LRCs reduce

the network bandwidth usage and improve the system’s overall performance. MRCs ensure that

the maximum possible patterns of failures can be recovered by the code, subject the locality

conditions. Both LRC and MRC play significant roles in addressing data reliability challenges,

efficient repair operations, and fault tolerance in distributed storage systems.

Depending upon the type of erasures, LRCs can be categorized as shown in Fig. 1.3. To

address various types of failures within the Distributed Storage System (DSS), it is possible
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to construct codes based on specific support constraints, which we refer to as topology in the

context of these support constraints. In the subsequent chapters, we provide formal definitions

of codes for different topologies, specifically within the context of the problems we address.

Figure 1.3: Classification of Erasures.

1.4 Objectives and Contributions of the Thesis

To enhance comprehension of the objectives and contributions of the thesis, we provide

informal definitions for key concepts. The four objectives of the thesis are given as follows:

• MRCs for independent failures: To minimize the cost of data reconstruction, codes

with (r, δ) locality are introduced, which can recover δ− 1 erasures by contacting r < k

(locality) other nodes. This concept is further extended to codes with hierarchical local-

ity, characterized by (r1, δ1) and (r2, δ2), where r2 < r1 and δ2 < δ1. This hierarchical

structure provides a locality of r1 < k when erasures exceed δ2 − 1 but remain less than

or equal to δ1−1. Consequently, one of our primary objectives is to construct maximally

recoverable codes with hierarchical locality (particularly for 2-level locality). Specif-

ically, we focus on a topology Hierarchical Local MRC (HL-MRC), which we see in

detail in Chapter 3. The contributions are as follows:
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– This thesis presents the constructions of Hierarchical Local MRCs and their corre-

sponding field sizes by utilizing algebraic properties of the field. We have presented

two constructions for a few fixed parameters and two constructions for all general

parameters. For a few fixed parameters, we have provided two kinds of HL-MRC

constructions using the coset properties and Cauchy matrix. One is obtained with

the field size ofO(n1) (here, n1 < n), and the other one is ofO(n4). For all general

parameters, one construction is based on the generator matrix of Linearized Reed-

Solomon through the parity check matrix approach. It is obtained with the field

size of O((n2)c), here n2 < 1 and c is some constant. Under certain parameters of

the regimes, our constructions outperform the prior work; a detailed comparison is

described in Subsection 3.3. Also, a random construction for all general parame-

ters is obtained through the generator matrix approach, and its field size is O(nk),

which is higher than any other construction. We have also derived lower bounds on

the field size of HL-MRC for a few cases.

• MRCs for correlated failures: In order to address correlated failures, a specific type of

topology known as grid-like topologies Tm,n(a, b, h) is commonly employed. However,

our research focus is on a subclass of these topologies referred to as product topologies

Tm,n(a, b, h = 0). Product codes belong to a class of codes where the generator matrices

are obtained through the tensor product of the generator matrices of component codes.

In this context, the codeword can be represented as an array of size m × n, where the

component codes are denoted as the row and column codes. Within this topology, one of

our objectives is to investigate maximally recoverable codes for product topology known

as Maximally Recoverable Product Codes (MRPCs). In this direction our contributions

are as follows:

– This thesis presents several properties of maximally recoverable product codes.

We provide a sufficient condition to identify a specific subclass of erasure patterns

as correctable, as well as a necessary condition to determine another subclass of

erasure patterns as non-correctable.
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– Additionally, a bipartite graph construction is introduced in this thesis to estab-

lish relationships between erasures and non-erasures within an erasure pattern for

Tm,n(a, b). This construction enables the identification of matching conditions ap-

plicable to regular erasure patterns (a class of ersure patterns which satisfies the

regularity condition), leading to the detection of a subset of recoverable erasure

patterns for a = 2. The thesis also explores the relationship between projective ge-

ometries over finite fields and higher-order MDS codes, establishing a correspon-

dence between (n, 3)-MDS(3) codes and PG(2, q) to facilitate the construction of

MRPCs for a = 1.

• Sparse and Balanced (SB) generator matrix of maximally recoverable LRCs: Spar-

sity refers to the property of having a significant number of zero entries, specifically

n − d, in every row of the generator matrix, which can lead to more efficient encod-

ing and decoding algorithms. A balanced generator matrix ensures that the number of

ones and zeros in each row and column is approximately equal. The balanced property

guarantees an almost uniform load distribution on each node. One of our objectives is

to provide SB generator matrix for maximally recoverable LRCs. In this aspect, our

contributions are as follows:

– This thesis discusses the existence of sparse generator matrices and under certain

conditions, balanced generator matrices for Local MRCs with single erasures for

r = 2.

• LRCs with availability: The inclusion of multiple repair sets for LRCs offers advan-

tages by enabling the distribution of repair tasks across different nodes. This distribution

aims to prevent overburdening specific nodes and promote a balanced workload distribu-

tion within the system. This class of codes is called LRCs with availability. One of our

objectives is to find the upper bound on the minimum distance for Hierarchical LRCs

with availability.
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– This thesis provides an upper bound of the minimum distance for the specific case

of LRCs with the hierarchical locality and availability.

1.5 Organization of Thesis

Rest of the thesis is organized as follows:

• In Chapter 2, we provide a comprehensive review of LRCs and MRCs for both inde-

pendent and correlated failures. It covers the evolution of LRCs from single erasure to

multiple erasures, as well as the concept of MRCs.

• In Chapter 3 we present our constructions of maximally recoverable codes with hierar-

chical locality, specifically focusing on the Hierarchical Local Code known as Hierarchi-

cal Local MRC (HL-MRC). The chapter includes the field sizes required for these con-

structions, a comparison between the HL-MRC constructions found in previous works

and those introduced in this thesis, and a lower bound on the field size for HL-MRC.

• In Chapter 4, we explore Maximally Recoverable Product Codes (MRPCs). It delves

into our research on the properties of MRPCs, the characterization of recoverable and

non-recoverable erasure patterns, and the investigation of the relationship between pro-

jective geometries over finite fields and higher-order MDS codes.

• In Chapter 5, we focus on constructing sparse and balanced (SB) generator matrices for

Local MRCs in the case of single erasure.

• In Chapter 6, we review various upper bounds on the minimum distance of LRCs with

availability and then present a new upper bound on the minimum distance of Hierarchical

Locally Recoverable Codes (H-LRCs) with availability for specific condition.

• In Chapter 7, we summarize the main findings of the thesis and discuss the scope of

future work.
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Chapter 2

Background and Literature Review

In this chapter, an extensive review of the existing literature on LRCs and MRCs is pre-

sented. Firstly, a thorough analysis is conducted on the literature concerning independent fail-

ures, encompassing single erasures as well. This includes significant optimal code construc-

tions, field sizes, and various bounds, including alphabet-dependent bounds. Following that,

an overview of the literature on correlated failures is provided, which includes discussions on

suitable topologies, code definitions, and field size bounds.

2.1 Organization of the Chapter

The chapter is organized as follows: Section 2.2 provides a review of the existing literature

on LRCs and MRCs for independent failures, while Subsection 2.3 focuses on correlated fail-

ures. Specifically, Subsection 2.2.1 introduces the formal definition and upper bound on the

minimum distance for LRCs for single erasure, as well as for LRCs with multiple recovery sets

for single erasure. Subsection 2.2.2 examines MRCs for single erasure, and Subection 2.2.3

explores LRCs and MRCs for multiple erasures. Section 2.4 presents the conclusion of the

chapter.
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2.2 LRCs and MRCs for Independent Failures

In general, single node failures occur more frequently. Therefore, considering network

bandwidth, it is essential to minimize the repair degree. However, in MDS codes, even for a

single node recovery, the repair degree is k. As a result, MDS codes are inefficient for repair

operations.

To address this issue and reduce the repair degree for single node failures, a type of erasure

codes called ”Locally Recoverable Codes” (LRCs)were developed and deployed by companies

like Facebook [1] and Microsoft [2]. These codes have later been extended to handle multiple

erasures.

2.2.1 LRCs for Single Erasure

A code C[n, k, d] is said to have the locally recoverable property of single erasure if each

code symbol ci ∈ C can be uniquely determined by at most r(< k) other code symbols of C.

The parameter r is called the locality of the code.

A code C[n, k, d, r] LRC with locality r for single erasures are formally defined in [3] by

defining code symbol locality, information symbol locality and all symbol locality as follows:

Definition 1. Code Symbol Locality (Loc(ci)): For ci ∈ C to be the smallest integer r for which

there exists Si ⊆ [n] of cardinality r such that

ci =
∑
j∈Si

λjcj.

Further Loc(C) = max
i∈[n]
{Loc(ci)}, here Loc(C) is called locality of the code.

Definition 2. Information Locality: A code C has information locality r if there exists I ⊆ [n]

with cardinality k and G|I is full rank such that Loc(ci) ≤ r for all i ∈ I . Here G|I denotes

the restriction of G to the set of columns indexed by the set I .

If further
⋃
i∈I
Si = [n], then the code is said to have an all-symbol locality.
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An LRC code consists of global and local parities. Each local parity symbol is the function

of a few specific data symbols, while each global parity symbol is the function of all data

symbols. A local group, also known as a local code, consists of a group of data symbols

and their corresponding local parity. For instance, as illustrated in Fig. 2.1, the data symbols

X1, X2 and X3 form a local group along with local parity PX , which is a function of all the

Xi’s. Similarly, another local group is formed with data symbols Yi’s and parity symbol PY .

The global parities of the code, P1 and P2 are functions of all the data symbols Xi’s and Yi’s.

Figure 2.1: LRC Example:(n = 10, k = 6, r = 3) Source [2].

For LRC with a locality parameter r, specifically for single erasure scenarios, the Singleton-

like bound is obtained by utilizing the following Lemma, which provides the fact about the

minimum distance of the code.

Lemma 1. Let S ⊂ [n] is the largest cardinality, such that rank(G|S) = k−1 then d = n−|S|.
Here rank(G|S) is rank of the matrix G|S .

In [3], an algorithm is provided to calculate the lower bound on the cardinality of such set

S for the code C[n, k, d, r]. Using this algorithm, the upper bound on the minimum distance of

the code (Eq. (2.1)) is determined in [3].

d ≤ n− k + 1−
(⌈k

r

⌉
− 1

)
. (2.1)

The bound says that as the code’s locality parameter r decreases, the optimal minimum

distance of the code also decreases, and (2.1) becomes (1.1) for r = k. However, in practical
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applications, the reduction of reconstruction cost takes priority of importance over storage

overhead, leading to the preference for selecting a lower value of locality.

In [4], a specific type of LRCs with information locality known as Pyramid ocdes were intro-

duced and these codes were found to be optimal later in [3]. In [5], Tamo and Barg constructed

optimal codes with all-symbol locality for any value of r (1 < r < k) and n | (r + 1). Each

codeword is generated through the evaluation of specially constructed polynomials known as

good polynomials over a finite field. This particular encoding scheme enables the recovery of

lost symbol through polynomial interpolation at r points. The construction method for codes

with multiple disjoint recovery sets for each symbol is also provided, allowing for enhanced

availability of frequently accessed data, commonly referred to as hot data. Furthermore, in

[6], a construction for LRCs with locality r and τ distinct recovery sets (referred to as ”LRCs

with (r, τ) - Availability”) for each information symbol is presented using Gabidulin codes.

Additionally, the paper introduces an upper bound, as given in equation (2.2), on the minimum

distance for this specific class of codes, assuming each repair group consists of only one parity

symbol.

d ≤ n− k + 1−
(⌈τk

r

⌉
−τ
)
. (2.2)

Also, the more general bound for LRCs with (r, τ) - Availability (6.1) is given in [6].

d ≤ (n− k + 1)−
(⌈τ(k − 1) + 1

τ(r − 1) + 1

⌉
− 1

)
. (2.3)

The paper [7] presents the construction of LRCs that are optimal and almost optimal in

terms of all-symbol locality. Here, ”almost optimal” refers to codes whose minimum distance

differs by at most one from the optimal value derived from the Singleton-like bound for LRCs

(2.1). For locality r = 2 and d = 2, 6, 10, the construction of binary LRCs that are optimal in

dimension is given in [8]. Optimal ternary locally repairable codes for all possible 8 classes,

where the minimum distance can only be 2, 3, 4, 5, or 6, are constructed in [9]. In [10], for

small locality r = 2 and minimum distance 6, optimal constructions are obtained using a parity
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check matrix and the sunflower construction. Additionally, optimal cyclic LRCs are given for

distances 3 and 4 in the same paper.

2.2.2 MRCs for Single Erasures

Definition 3. Maximally Recoverable Code (MRC): A code is said to be maximally recoverable

if it can recover from all the information-theoretically recoverable erasure patterns given the

locality constraints of the code.

In [11], MRCs for data-local codes and local codes were introduced by considering the

systematic code C[n, k, d, r, h]q as follows.

Definition 4. Data Local Code: Let C be a linear systematic [n, k] code. C is a [n, k, d, r, h]q

data-local code if it satisfies the following conditions:

• r | k and n = k + k
r

+ h,

• The data symbols are divided into k
r

groups of size r. Each group has a corresponding

(local) parity symbol that stores the XOR of the respective data symbols,

• The remaining h global parity symbols can depend on all k data symbols.

A group of r data symbols and their local parity is referred to as a local group.

Definition 5. A data-local code is said to be maximally recoverable if, for any set E ⊆ [n]

obtained by selecting one coordinate from each of the k/r local groups, puncturing the code C
at the coordinates in E results in an [k + h, k] MDS code.

Definition 6. Local Code: Let C be a linear systematic [n, k] code. C is a [n, k, d, r, h]q local

code if the following conditions are satisfied:

• r | (k + h) and n = k + (k+h)
r

+ h,

• There are k data symbols and h global parity symbols, where each global parity may

depend on all data symbols.
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• These k + h symbols are divided into (k+h)
r

groups of size r. Each group has a corre-

sponding (local) parity symbol that stores the XOR of the respective data symbols.

A group of r symbols and their local parity is referred to as a local group.

Definition 7. The local code is called Maximally recoverable if, for any set E ⊆ [n] obtained

by selecting one coordinate from each of the (k + h)/r local groups, puncturing the code C at

the coordinates in E results in an [k + h, k] MDS code.

The advantages of codes with specific parameters [n, k, d, r, h]q are as follows: i) Local

parities expedite the recovery process for single node failures by utilizing corresponding local

groups. ii) Global parities enable the recovery of additional node failures. iii) MRCs can

recover the maximum number of erasures beyond the minimum distance of the code.

For instance, let’s consider the maximal erasure pattern E in the local code, which con-

sists of erasures from each local group (one per group) and an additional h erasures from any

location within the code. The size of E is
(
k+h
r

+ h
)
. It is important to note that E sat-

isfies the recovery condition as defined in Definition 7. Moreover, we observe that |E| >
d− 1 = (n− k)−

(⌈
k
r

⌉
− 1
)

=
(
k+h
r

+ h
)
−
(⌈

k
r

⌉
− 1
)

.

Table 2.1 tabulates various bounds for LRCs for single erasures, mainly the upper bound on

the minimum distance, alphabet dependent bounds, and field size for certain optimal LRC and

MRC constructions. Cadambe-Mazumdar bound [12] is an alphabet dependent bound derived

using the quantity (i.e., the largest possible minimum distance of the code [n, k] over a given

alphabet size) as a parameter under locality constraints. A similar kind of technique has been

applied using generalized hamming weights (d⊥i ) and gaps (g⊥i ) of dual code C⊥ [13] to derive

the alphabet dependent bound. A study is done on the upper bound on the maximal length of

optimal LRC for the given q [14]. In [11], the authors presented constructions of data-local

and local MRC for all values of k, r and h and also studied improved field size constructions

for h ≥ 2r + 1, h = 3 and h = 4.
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Table 2.1: Bounds and Constructions for Single Erasures

LRC
Type of bound /
construction

Bound / Size of n or q Reference

[n, k, d, r]q Upper bound on d d ≤ n− k + 1− (dk
r
e − 1) [3]

Alphabet-Dependent
bound on d

k ≤ min
t∈Z+

[tr + k
(q)
opt(n− t(r + 1), d)]

k
(q)
opt(n, d) is largest possible dimension

[12]

k ≤ min
1≤i≤g⊥k −k

[k
(q)
opt(n− d⊥i , d)− i+ d⊥i ] [13]

Upper bound on
n for the given q

n ≤ q + k + dk/re − 2,
if r ≥ 2 and r | k
n ≤ q + k + dk/re − 2,
if r ≥ 2 and k ≥ 2 mod r,
n ≤ 2q + k + dk/re − 2 ,
if r ≥ 2 and k = 1 mod r,
n ≤ 2q + k + dk/re − 2 ,
if r = 1

[14]

Length of the
optimal LRC

for d > 5, n = O(dq3+ 4
d−4 )

for d = 5, n = O(q2)
[15]

Field Size q of existing
MRC construction

for data-local & loca MRC:
q = O

(
kh−1

)
q = O

(
kd(h−1)(1− 1

2r
)e
)

, for h ≥ 2r + 1

local MRC:
q = O(k3/2), if h = 3

q = O(k7/3), if h = 4

[11]

2.2.3 LRCs and MRCs for Multiple Erasures

Multiple erasures can be distinguished as independent and correlated failures based on the

type of failures in DSS. Individual failures are always independent, and correlated failures

in distributed storage systems refer to a situation where multiple components or nodes fail

simultaneously within a short period due to a common cause. For example, it can be caused by

the outage of a power source shared by multiple nodes in the network. In general, correlated

failures occur as the length of the code increases [16].

(1) LRCs for Independent Failures:
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Independent node failures are common in DSS over different networks. For such multiple

failures, Codes with (r, δ) Locality are defined in [17] and [18] as follows:

Definition 8. (r, δ) Code Symbol Locality: The ith code symbol, ci, i ∈ [n], of C is said to have

(r, δ) locality, δ ≥ 2, if there exists a subset Si ⊆ [n] such that

• i ∈ Si, |Si| ≤ r + δ − 1 and

• minimum distance of C|Si ≥ δ, where C|Si denotes the code obtained when C is punctured

to the set of co-ordinates corresponding to Si.

Definition 9. (r, δ) Information Locality: The code C is said to have (r, δ) information locality

if C has a set of punctured codes {Ci}i∈L with supports {Si}i∈L, respectively, such that, for all

i ∈ L, we have

• |Si| ≤ r + δ − 1

• dmin(Ci) ≥ δ and

• rank(G|∪i∈LSi)= k

Here L denotes the index set for the local codes, and we denote the restriction of G to the

set of columns indexed by the set S by G|S .

If further
⋃
i∈L

Si = [n], then the code is said to have (r, δ) all-symbol locality. An example

is shown in Figure 2.2. In this example, the number of erasures less than or equal to 3 can be

recovered by contacting 6 other symbols instead of 18.

Figure 2.2: Example:[27, 16, 8]-code having (r = 6, δ = 4) locality.

In [17], the upper bound on minimum distance is derived as given in (2.4) and also provided

construction for optimal code.

d ≤ n− k + 1−
(⌈k

r

⌉
− 1

)
(δ − 1). (2.4)
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Such a code can tolerate the (δ − 2) additional failures for any given node failure. The

upper bound on d is further reduced as the code is conditioned to offer the locality for multiple

erasures and for δ = 2, (2.4) becomes (2.1). These codes consist of multiple overlapped local

parities through which multiple recovery sets are available for the set of node failures.

Some important bounds pertaining to the above discussed (r, δ) locality codes are tabulated

in Table 2.2, which includes the upper bound and alphabet-dependent upper bound on the

minimum distance and upper bound on the length of the optimal code for the given q. As

an extension of the Cadambe-Mazumdar bound for the (r, δ) code, the alphabet-dependent

bound is derived using the Griesmer bound on the length of the code by recursively taking the

residual codes, in [19]. For the linear code, C[n, k, d]q the Griesmer bound (G(k, d)) is the

lower bound on the length of the code for the given code dimension k and minimum distance

d, i.e. n ≥
k−1∑
i=0

⌈ d
qi

⌉
= G(k, d). In [20], derived the upper bound on the length of the optimal

code, which is super-linear in the field size and given a general construction.

Table 2.2: Bounds for multiple erasures

LRC
Type of bound/
construction

Bound Reference

[n, k, d, r, δ, h]q

where δ ≥ 2

Upper bound
on d

d ≤ n− k + 1− (dk
r
e − 1)(δ − 1) [17]

Alphabet-
Dependent
bound on d

replaced r with κ
κ = maximum dimension of all local groups
k ≤ min

λ∈Z+

{λ+ s}, here,

s = k
(q)
opt(n− (r + 1)G(κ, δ) + G(κ− b, δ), d)

where a, b ∈ Z such that
λ = aκ+ b, 0 ≤ b < κ

[19]

Bound on n for
the optimal code

For n = m(r + δ − 1), k = ur + v,
u ≥ 2(r − v + 1) or v = 0:
t = b (d−1)

δ
c

n ≤ O
(
t(r+δ)
r

q
(m−u)r−v
bt/2c − 1

) [20]

Optimal codes with all-symbol locality for δ = 2 has been constructed in [21] with the field

sizeO(nk) for r+1 | n. In [22], optimal codes with all-symbol locality for δ ≥ 2 is constructed
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for n - (r + δ − 1) and r - k with the field size greater than or equal to
(
n−1
k−1

)
(Algorithm 2,

Theorem 16). Additionally, in the same paper for n | (r + δ − 1) proved that the construction

(Algorithm 1) with the field size greater than or equal to
(
n−1
k−1

)
(Theorem 15), which is lower

than the construction given by [21]. However, the construction provided in [21] is easy to

implement because the codes are based on Reed-Solomon coded blocks that are re-encoded in

a way that provides low repair locality. The authors constructed the optimal codes using the

rank metric and subspace metric in [23] and using matrix product codes in [24]. Optimal cyclic

LRCs are introduced in [25], and a class of such codes is given in [26].

Algebraic curves are used in many applications of coding theory. LRCs on algebraic curves

have been extensively studied in recent years, as they offer good trade-offs between minimum

distance and rate of the code. An algebraic curve is a geometric object defined by a polynomial

equation in two variables, denoted by x and y. An algebraic curve in the Cartesian plane is

represented by the set of points (x, y) that satisfy the polynomial equation f(x, y) = 0., where

f is a polynomial with coefficients in a given field. The degree of the polynomial f determines

the degree of the algebraic curve. Reed-Solomon (RS) codes connected to algebraic curves.

RS codes use encoding and decoding mechanisms that involve the polynomial evaluation and

interpolation techniques associated with algebraic curves. The codeword is essentially the

polynomial evaluated at specific points on the curve. Several families of LRCs on algebraic

curves have been proposed in the literature, including LRCs on Hermitian curves, LRCs on

hyperelliptic curves, and LRCs on the projective line. Hermitian curve is more specific. The

Hermitian curve takes the form of xq+1 = yq + y considered over the field Fq2 , where q is any

prime power. The RS-like codes given in [5] are extended to multiple recovering sets using

Hermitian curves [27]. LRCs on elliptic curves in [28], and LRCs in Hermitian function fields

with certain type of divisors in [29] are studied.

The concept of locality has been extended to the hierarchical locality in [30]. In the case

of (r, δ) locality, the code offers no locality if there are more than δ erasures. In the case of

codes with hierarchical locality, the locality constraints are such that with the increase in the

number of erasures, the locality increases in steps. The following is the definition of code with

a 2-level hierarchical locality.
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Definition 10. 2-level Hierarchical Locality: A [n, k, d] linear code C is a code with hierar-

chical locality having locality parameters [(r1, δ1), (r2, δ2)] if for every symbol ci, 1 ≤ i ≤ n,

there exists a punctured code Ci such that ci ∈ Supp(Ci) and the following conditions hold:

1) dim(Ci) ≤ r1 , 2) dmin(Ci) ≥ δ1 , 3) Ci is a code with (r2, δ2) locality.

An example of code with 2-level hierarchical locality is shown in Fig. 2.3. In this example,

the code offers locality 3 for a single erasure and 8(< 14) for 2 erasures.

Figure 2.3: Example:[24, 14, 6]-code having 2-level hierarchical locality [30].

The upper bound on minimum distance is derived as

d ≤ n− k + 1−
(⌈ k

r2

⌉
− 1

)
(δ2 − 1)−

(⌈ k
r1

⌉
− 1

)
(δ1 − δ2) . (2.5)

Constructions of optimal codes with hierarchical locality based on optimal (r, δ) LRCs have

been done via generalized Reed-Solomon in [31], through matrix product codes in [32] and

from covering maps of curves in [33]. Cyclic codes with hierarchical locality, which are opti-

mal with respect to minimum distance bound, have been constructed in [34]. Constructions of

codes with hierarchical locality based on maps between algebraic curves have been presented

in [35]. In [36], alphabet-dependent bounds for codes with hierarchical locality have been de-

rived (equation (2.6)), and also punctured simplex codes have been shown to be optimal w.r.t.

the upper bound on the minimum distance (2.5).

k ≤ min
λ∈Z+

[λ+ k
(q)
opt(n− v, d)] (2.6)

here, v = λ+ b λ
r2
c(δ2 − 1) + b λ

r1
c(δ2 − δ1).

20



Till now, we have studied codes with locality for single erasure, codes with locality for mul-

tiple erasures, codes with 2−level hierarchical locality, and codes with locality and availability

for single erasure. The comparison between the upper bounds on the minimum distances of

all the topologies discussed above is shown in figure (Fig. 2.4). In this, we considered fixed

values for (n = 60, r1 = 9, r2 = 5, δ1 = 4, δ2 = 2, τ = 4). We took 10 samples by decreasing

the values of k from 30 to 21. Plotted the graph code rate (k/n) versus relative distance (d/n).

Figure 2.4: Comparison of upper bounds on d

(2) MRCs for Independent Failures:

In [37], data-local MRC and local code MRC are defined for data-local, and local codes for

codes with (r, δ) locality as follows:

Definition 11. Data Local MRC: Let C be a systematic [n, k, d] code. We say that C is a

[k, r, h, δ] data-local maximally recoverable code if the following conditions are satisfied:

• r | k and n = k + k
r
δ + h.

• Data symbols are partitioned into k
r

groups of sizer r. For each such group, there are δ

local parity symbols.
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• For any set E ⊆ [n] where E is obtained by picking δ coordinates from each k
r

local

groups, restricting C to coordinates in [n] \ E yields an [k + h, k] MDS code.

[k, r, h, δ] data-local MRC is optimum with respect to the minimum distance bound given in

(2.4). The minimum distance of a data-local code MRC is d = h+ δ + 1.

Definition 12. Local MRC: Let C be a systematic [n, k, d] code. We say that C is a [k, r, h, δ]

local maximally recoverable code if the following conditions are satisfied:

• r | (k + h) and n = k + k+h
r
δ + h.

• There are k data symbols and h global parity symbols, where each global parity may

depend on all data symbols.

• These k+ h symbols are partitioned into k+h
r

groups of size r. For each group, there are

δ local parity symbols.

• For any set E ⊆ [n] where E is obtained by picking δ coordinates from each k+h
r

local

groups, restricting C to coordinates in [n] \ E yields an [k + h, k] MDS code.

A group of r data symbols and their δ local parities is referred to as a local group. Local

MRC C[k, r, h, δ] is optimum with respect to the minimum distance bound given in (2.4). The

minimum distance of a [k, r, h, δ] local MRC is as given below:

d = h+ δ + 1 +
⌊h
r

⌋
δ. (2.7)

The lower bound on the field size for local MRC and the required field size of a general

construction of local MRC codes are tabulated in Table 2.3. In [38], by exploiting the MRC

property on the parity check matrix H derived the lower bound on the field size, and thus,

the lower bound shows that one needs super linear size fields to instantiate H to make all

non-trivial minors nonzero. Local MRCs are also known in the literature as Partial-MDS codes

(PMDS) codes [39]. We interchange PMDS codes and Local MRCs with the context of interest.

Let’s describe the Gabidulin code before introducing the general construction of PMDS codes

citecalis2017general.
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Gabidulin code CGC [n1, k, d1 = n1 − k + 1] over FqM is Maximum Rank Distance (MRD)

code. In this code, the codeword is obtained by evaluating the linearized polynomial f(x) =∑k−1
i=0 aix

qi with the set of n1 linearly independent elements from FqM over Fq, here the coeffi-

cients ai ∈ FqM are information symbols. Suppose {α1, α2, . . . αn1} ⊂ FqM is linear indepen-

dent set over Fq then the codeword c = (
∑k−1

i=0 aiα
qi

1 ,
∑k−1

i=0 aiα
qi

2 , . . . ,
∑k−1

i=0 aiα
qi

n1
) ∈ CGC .

MRD codes are optimal with respect to the rank distance metric, and a brief explanation of

them follows below:

Rank distance metric between two vectors X1, X2 ∈ FM×n
q is defined by dR(X1, X2) =

rank(X1 −X2) overFq. Minimum rank distance of any code C[n, k] over F n
qM (∼= FM×n

q ) with

rank distance metric is dR(C) = min{dR(c1, c2) | ∀ c1 6= c2 ∈ C}. The code is called MRD

if dR(C) = n− k + 1.

A general construction of PMDS codes ( Local MRCs) which is obtained by using the

Gabidulin code and MDS codes as described in [40]. The MRD property of Gabidulin code is

used to construct the generator matrix of a PMDS code, which has the following structure:

G = GGC



GMDS 0 · · · 0

0 GMDS · · · 0

...
... . . . ...

0 0 · · · GMDS


(2.8)

Here, GGC is the generator matrix of Gabidulin code CGC [n1 = lr, k, d1 = n1− k+ 1] over

the field FqM andGMDS is the generator matrix of MDS code CMDS[n2 = r+m, r, d2 = m+1]

over the field Fq. Field size for the construction of PMDS code is tabulated in Table 2.3.

Constructions of PMDS codes with two and three global parities have been discussed in

[41, 42]. Improved construction of PMDS codes for all parameters over small field sizes has

been presented in [43]. Construction of MRCs over small field sizes have been investigated

in [44, 45]. Recently, the construction of MRCs based on linearized Reed Solomon codes

via generator matrix approach is presented in [46]. The construction is given for nonuniform

local codes(i.e., the size of the local code and locality are unequal). The required field size
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Table 2.3: Bounds for Maximally Recoverable Codes of multiple erasures

Local MRC
Type of bound/
construction

Bound / Field size Reference

[n, k, d, r, δ, h]q

where δ ≥ 2

Lower bound
on q

q ≥ Ωh,(δ−1) (n(r + δ − 1)α), where

α =
min
{

(δ−1),

(
h−
⌈
h
t

⌉)}
dh
t
e and t = n

(r+δ−1)

[38]

Field size for
PMDS Code

n = m(r + δ − 1) & k = mr − h
q = (q′)mr, where q′ is prime power
and q′ ≥ (r + δ − 1)

[40]

is O
((

k+h
r

)r), where r is the maximum locality among all localities of local codes. In [47],

MRC is constructed through the parity check matrix approach using skew polynomials only

for uniform local codes. For this construction, the field size is O
((

k+h
r

)min(h,r)
)

. The field

size of the construction given in [47] is lower than the construction given in [46] for h ≤ r.

Both the codes exploit the sum rank property to get an MRC, which is explained in detail in

Subsection 3.3.3. In [48], linearized Reed-Solomon codes are used to construct MR codes

with field size O(max
{

n
r+δ−1

, r + δ − 1
}h

). The field size is equal to the construction in [47].

Whereas construction in [46] outperforms when h is relatively larger than r.

In [49], authors proved a new lower bound on the field size of LRCs. Additionally, Maxi-

mally Recoverable codes are constructed, which are cyclic. They have shown that these cyclic

MRCs have optimal field size in certain cases. The connection between MRCs and matroids

has been established in [50] and subsequently minors of MRCs were studied in [51].

For the 2-level hierarchical locality, data-local code, local code, and their corresponding

MRCs are defined in [37], which are aligned with our work. So we discuss these codes in

detail in Section 3.2.

2.3 LRCs and MRCs for Correlated Failures

In practice, correlated failures may take place due to rack failure, a data center failure, or

the failure of a power source shared by multiple machines. To deal with these types of failures,
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a different kind of topology called grid-like topologies Tm,n(a, b, h) are proposed in [16]. In

these topologies, each codeword is an array of size m× n, where a, b and h are the number of

parities per column, per row, and global, respectively. In this code, each codeword is like an

array with multiple rows and columns, in which each row is a codeword of a certain row code

and similarly each column is the codeword of a certain column code (see Fig. 2.5). In addition,

there are global parities anywhere in the grid.

Figure 2.5: Structure of the codeword in grid-like topologies.

Definition 1 (Code Instantiating a Topology Tm,n(a, b, h)). Consider a code C in which each

codeword is a matrix C of size m×n, with cij denoting the (i, j)th coordinate of the codeword.

The code C of length mn is said to instantiate a topology Tm,n(a, b, h) if for some b× n matrix

Hrow, a×m matrix Hcol and h× n matrix Hglob, it satisfies the following conditions:

1. C punctured to a row i satisfies a set of ‘b’ parity equations given by

Hrow [ci1, ci2, . . . , cin]t = 0, ∀ i ∈ [m].

The b parity equations given by Hrow need not be linearly independent and hence the

code whose parity-check matrix is Hrow has parameters [n,≥ n− b] code and is denoted

by Crow.
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2. C punctured to a column j satisfies a set of ‘a’ parity equations given by

Hcol [c1j, c2j, . . . , cmj]
t = 0, ∀ j ∈ [n].

Similar to the first condition, the code whose parity-check matrix is Hrow has parameters

[m,≥ m− a] code and is denoted by Ccol.

3. In addition, every codeword in C satisfies a set of ‘h’ parity equations (referred to as

global parities) given by

Hglob Vec(C) = 0,

where Vec(C) is obtained by vectorizing the codeword C (matrix of size m × n) by

reading row after row.

A topology Tm,n(a, b, h) with h = 0 will be referred to as product topology.

MRCs for Correlated failures:

Let’s begin by examining the definition of recoverable erasure patterns, which will allow us

to define MRCs for the code instantiating a topology Tm,n(a, b, h).

Definition 13. Recoverable Erasure Pattern [16]: An erasure pattern E ⊆ [m] × [n] is a set

of symbols that are erased. The pattern E is recoverable for the topology Tm,n(a, b, h) if there

exists a code instantiating the topology where the variables {xij}(i,j)∈E can be recovered from

the parity check equations.

Definition 14. [16]: A code C that instantiates the topology Tm,n(a, b, h) is Maximally Recov-

erable (MR) if it recovers every failure pattern that is recoverable for the topology.

Proposition 1. [16]: Let C be an MR instantiation of the topology Tm,n(a, b, h). We have

(a) the dimension of C is given by

dim(C) = (m− a)(n− b)− h. (2.9)
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Moreover,

dim(Ccol) = (m− a) and dim(Crow) = (n− b). (2.10)

(b) Let U ⊆ [m], |U | = m − a and V ⊆ [n], |V | = n − b be arbitrary. Then C|U×V is

an [(m − a)(n − b), (m − a)(n − b) − h, h + 1] MDS code. Any subset S ⊆ U × V ,

|S| = (m− a)(n− b)− h is an information set.

(c) Assume h ≤ (m − a)(n − b) −max(m− a), (n− b), then the code Ccol is an [m,m −
a, a+ 1] MDS code and the code Ccol is an [n, n− b, b+ 1] MDS code. Moreover, for all

j ∈ [n], C restricted to column j is the code Ccol and for all i ∈ [m], C restricted to row i

is the code Crow

In order to find such MR code for Tm,n(a, b, h), finding an MR code for product topology

Tm,n(a, b, h = 0) is itself crucial. As a result, knowing the set of recoverable erasure patterns

for the given topology Tm,n(a, b, h = 0) is an intriguing question to resolve.

Characterization of recoverable erasure patterns for the Tm,n(a, b, h = 0)

Definition 15. Irreducible Erasure Pattern (IEP): An erasure pattern is an IEP, in which the

number of erasures in any row is either 0 or greater than or equal to b + 1 and in any column

is 0 or greater than or equal to a+ 1.

An Example of IEP is given in Figure 2.6 for the topology T6,10(1, 2, 0). In which the first

5 rows have at least 3 erasures in each, and the last row has no erasure. Also, the first two

columns have zero erasure and the remaining ones have at least 2 erasures.

Note 1. Suppose some column has a or fewer erasures, or some row has b for fewer erasures.

Those erasures can be decoded by using iterative row-column decoding. This is because row

code and column code are MDS codes (see Proposition 1(c)).

The characterization of recoverable erasure patterns is to see which IEPs are recoverable.

To address this problem, the authors presented a necessary condition for a pattern to be recov-

erable. Also, conjecture (Conjecture 1) that this condition is also sufficient, and proved this

conjecture for a = 1.
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Figure 2.6: An example of IEP for (m,n) = (6, 10) and (a, b, h) = (1, 2, 0).

Definition 16 (Regular Erasure Pattern (REP) for Topology Tm,n(a, b)). An erasure pattern

E ⊆ [m]× [n] is said to be regular for topology Tm,n(a, b) if

|E ∩ (U × V )| ≤ uv −max(u− a, 0) max(v − b, 0), (2.11)

for all U ⊆ [m], V ⊆ [n] and |U | = u, |V | = v.

We can check an Example of IEP given in Figure 2.6 satisfies the regularity condition given

in (2.11) for every U ⊆ [6], V ⊆ [10] as shown in Figure 2.7. Therefore, it is REP.

Figure 2.7: An example of REP for (m,n) = (6, 10) and (a, b, h) = (1, 2, 0).

Conjecture 1. An erasure pattern E is recoverable for Tm,n(a, b, h = 0) if and only if it is

regular.

However, this conjecture is disproved by providing the counter example in [52]. So for

a > 1, the characterization of recoverable erasure patterns needs to be addressed.
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MRC for grid-like topologies have been studied in [16] and a super-polynomial lower bound

on the field size of these MRCs has been derived. MRC for grid-like topologies which can

recover from all bounded erasures (bounded by a constant) have been investigated in [53].

Constructions of MRPCs for topologies T4,n(1, 2) and T3,n(1, 3) and lower bounds on the field

size for these specific topologies have been presented in [54]. In [55], higher order MDS codes

have been introduced (denoted by MDS(l) and will be defined in a later chapter). It has been

shown that it is necessary and sufficient for the row codes to be higher order MDS codes for

MRPCs of topology Tm,n(a = 1, b). This has been in turn used to derive a lower bound on the

field size of MRPC for Tm,n(a, b), given as q ≥ Ωl(n
min{m−a+1,b,n−b}−1).

2.4 Conclusion

In this chapter, an introduction to the concepts of LRCs and MRCs in the context of inde-

pendent failures and correlated failures is provided as the foundation for the thesis. A summary

of the bounds and constructions of codes for independent failures is presented for LRCs with

single parity and (r, δ) locality. As an extension to (r, δ) locality codes, we also introduced

2-level hierarchical locality codes. Based on this, we are going to discuss our work on MRCs

for 2-level hierarchical locality codes in Chapter 3. Furthermore, literature pertaining to codes

with grid-like topologies and product topologies, which are specifically defined to handle cor-

related failures, has been discussed. Chapter 4 will discuss our work specifically related to

product topologies.
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Chapter 3

Hierarchical Local Maximally Recoverable Codes

In this chapter, we explore the concept of maximally recoverable codes with hierarchical

locality. In Section 2.2.3, we have seen that codes with hierarchical locality have been proposed

to provide multiple levels of locality as the number of erasures increases. The presence of

multiple levels of locality enables faster data recovery as the number of erasures increases.

Maximally recoverable codes (MRCs) tolerate the maximum number of erasures given the

locality constraints. The primary objective of this chapter is to investigate the design and

properties of HL-MRC, which combine the benefits of hierarchical locality and maximally

recoverable codes.

Within the scope of our thesis, we assume that hierarchical locality implies a 2-level hi-

erarchical locality. We know that the construction of the code can be obtained through the

generator matrix or the parity check matrix. We define the topology (support constraints) that

determine the structure of the parity check matrix and define as Hierarchical Local Maximally

Recoverable Codes (HL-MRCs). Using this structure, we characterize the correctable erasure

patterns set, establishing conditions the parity check matrix must satisfy to obtain HL-MRC.

We derive the lower bound on the field size of HL-MRC. We give constructions of MRC with

hierarchical locality for certain parameter values whose field size is smaller than earlier known

constructions. We also present a general construction via parity check matrix, for which we

use generator matrices of linearized Reed-Solomon (LRS) codes, and the field size is better

than the earlier known construction under certain parameter regimes. In addition, we give a

random construction of MRC with hierarchical locality through the generator matrix approach
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and characterize the field size required. For a few cases, we also provided lower bounds on the

field sizes for HL-MRC.

3.1 Organization of the Chapter

This chapter is organized as follows: Section 3.2 provides an in-depth explanation of hierar-

chical local codes, their topology, and the conditions that the parity check matrix of hierarchical

local codes must satisfy to obtain HL-MRC. Section 3.3 provides constructions of HL-MRC,

along with the corresponding required field size, for the following scenarios: i) For h1 = 1

and h2 = 1, ii) For h1 = 2 and h2 = 1, general constructions iii) Based on Linearized Reed-

Solomon Codes via parity check matrix, and iv) Random Construction via generator matrix.

Section 3.4 presents lower bounds on the field size of HL-MRC. Finally, conclusion of this

chapter are presented in Section 3.5.

3.2 Maximally Recoverable Codes with Hierarchical Local-

ity

In this section, we recall the definitions of hierarchical data-local and local MRCs and il-

lustrate the definitions through an example [37]. First, we define the topology corresponding

to hierarchical data local code by specifying the number and kind of parities the code must

satisfy. Then, we will define hierarchical data local MRC.

Definition 2 (Hierarchical Data Local Code). We define a [k, r1, r2, h1, h2, δ] hierarchical data

local (HDL) code of length

n = k + h1 +
k

r1

(h2 +
r1

r2

δ)

as follows:

• The code symbols c1, . . . , cn satisfy h1 global parities given by
∑n

j=1 u
(`)
j cj = 0, 1 ≤

` ≤ h1.
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• The first n−h1 code symbols are partitioned into t1 = k
r1

groupsAi = {(i−1)n1+j | j ∈
[n1]}, 1 ≤ i ≤ t1 such that |Ai| = r1 +h2 + r1

r2
δ = n1. The code symbols in the ith group,

1 ≤ i ≤ t1 satisfy the following h2 mid-level parities
∑n1

j=1 v
(`)
i,j c(i−1)n1+j = 0, 1 ≤ ` ≤

h2.

• The first n1 − h2 code symbols of the ith group, 1 ≤ i ≤ t1 are partitioned into t2 = r1
r2

groups Bi,s, 1 ≤ i ≤ t1, 1 ≤ s ≤ t2 such that |Bi,s| = r2 + δ = n2. The code symbols

in the (i, s)th group, 1 ≤ i ≤ t1, 1 ≤ s ≤ t2 satisfy the following δ local parities∑n2

j=1 w
(`)
i,s,jc(i−1)n1+(s−1)n2+j = 0, 1 ≤ ` ≤ δ.

Definition 3 (Hierarchical Data Local MRC). Let C be an [k, r1, r2, h1, h2, δ] HDL code. Then

C is maximally recoverable if for any set E ⊂ [n] such that |E| = k + h1 and

1. E
⋂
Bi,s ≤ r2 ∀ i, s,

2. E
⋂
Ai = r1 ∀ i,

the punctured code C|E is an [k + h1, k, h1 + 1] MDS code.

The above definition characterizes the set of all erasure patterns which are information-

theoretically correctable by any hierarchical data local code. Justification for this is similar to

one provided for Definition 5 below, and hence omitted. Replacing the information locality

with all-symbol locality, we have the following definition of the topology of hierarchical local

codes and their corresponding MRCs.

Definition 4 (Hierarchical Local Code). We define a [k, r1, r2, h1, h2, δ] hierarchical local (HL)

code of length n = k + h1 + k+h1
r1

(h2 + r1+h2
r2

δ) as follows:

• The code symbols c1, . . . , cn satisfy h1 global parities given by
∑n

j=1 u
(`)
j cj = 0, 1 ≤

` ≤ h1.

• The n code symbols are partitioned into t1 = k+h1
r1

groups Ai, 1 ≤ i ≤ t1 such that

|Ai| = r1 + h2 + r1+h2
r2

δ = n1. The code symbols in the ith group, 1 ≤ i ≤ t1 satisfy the

following h2 mid-level parities
∑n1

j=1 v
(`)
i,j c(i−1)n1+j = 0, 1 ≤ ` ≤ h2.

32



• The n1 code symbols of the ith group, 1 ≤ i ≤ t1 are partitioned into t2 = r1+h2
r2

groups

Bi,s, 1 ≤ i ≤ t1, 1 ≤ s ≤ t2 such that |Bi,s| = r2 + δ = n2. The code symbols

in the (i, s)th group, 1 ≤ i ≤ t1, 1 ≤ s ≤ t2 satisfy the following δ local parities∑n2

j=1 w
(`)
i,s,jc(i−1)n1+(s−1)n2+j = 0, 1 ≤ ` ≤ δ.

From the definition of HL code (Definition 4), supports of local parities are disjoint for any

two different groups of (i, s) (1 ≤ i ≤ t1, 1 ≤ s ≤ t2) as well as supports of h2 mid-level

parities for any two different groups of i ( 1 ≤ i ≤ t1 ) are disjoint. Therefore, the parity check

matrix of the code follows a certain type of structure, which is illustrated with the following

example (Example 1).

Example 1. We demonstrate the structure of the parity check matrix for an [k = 5, r1 = 3, r2 =

2, h1 = 1, h2 = 1, δ = 2] HL code. The length of the code is n = k+h1 + k+h1
r1

(h2 + r1+h2
r2

δ) =

16. The parity check matrix of the code is given below. In H , Mi,j’s are the parity check

constraints of δ = 2 local parities of (i, j)th group, Ni’s are the parity check constraints of

h2 = 1 mid-level parities of ith group and O is parity check constraints of global parities of

the code.

H =



M1,1

M1,2

N1

M2,1

M2,2

N2

O


where,

Mi,j =

w(1)
i,j,1 w

(1)
i,j,2 w

(1)
i,j,3 w

(1)
i,j,4

w
(2)
i,j,1 w

(2)
i,j,2 w

(2)
i,j,3 w

(2)
i,j,4


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Ni =

[
v

(1)
i,1 v

(1)
i,2 . . . v

(1)
i,8

]

O =

[
u

(1)
1 u

(1)
2 . . . u

(1)
16

]
Definition 5 (Hierarchical Local MRC). Let C be an [k, r1, r2, h1, h2, δ] HL code. Then C is

maximally recoverable if for any set E ⊂ [n] such that |E| = k + h1 and

1. E
⋂
Bi,s ≤ r2 ∀ i, s,

2. E
⋂
Ai = r1 ∀ i,

the punctured code C|E is an [k + h1, k, h1 + 1] MDS code.

We will prove in the following that the above definition gives the set of all erasure patterns

which are information-theoretically correctable. To characterize the set of all erasure patterns

which can be corrected by any hierarchical local code, it is enough to consider maximal erasure

patterns, i.e., erasure patterns of size n− k.

Lemma 3.2.1. Suppose E ⊆ [n] be the subset of any maximal erasure pattern (as mentioned

above) of size |E| = t1t2δ + t1h2 . If E violates any of the following conditions,

1) E
⋂
Bi,s ≤ r2 ∀ i, s,

2) E
⋂
Ai = r1 ∀ i,

then E is not correctable.

Proof. Since h1 parities are global, these erasures can be placed anywhere in the code, we

will look at the subset of maximal erasure patterns E (E in Definition 5 refers to non-erased

locations) of size |E| = t1t2δ + t1h2.

First, we will show that Condition 2) is necessary. Suppose for some i, E∩Ai > r1 andE is

a subset of correctable maximal erasure pattern sayE∪{eh1} (here {eh1} is the set of additional

h1 number of erasures). Since dim(C|Ai) ≤ r1, we can add extra (|E ∩ Ai| − r1) erasures in

Ai, and let the extended erasure pattern be denoted by E
′

. If E ∪ {eh1} is correctable, then so

is E
′

∪{eh1}. However, |E ′ |+ h1 is greater than the number of parities of the code (n−k) and
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hence we demonstrated a correctable erasure pattern of size greater than the number of parities

of the code. This is a contradiction and E is not correctable. Using similar steps, we can also

prove that condition 1) is necessary.

The Lemma 3.2.1 characterizes the set of erasure patterns which are not correctable. The

fact that all other maximal erasure patterns are correctable. To summarize, any correctable

maximal erasure pattern can have δ erasures anywhere in every local code Bi,s, additional h2

erasures anywhere in each middle code Ai and remaining other h1 erasures anywhere in the

code C.

In [37], derived the properties that the middle codes of an HDL/HL-MRC have to be data-

local and local MRC respectively. Also given a method to derive any HDL-MRC from an

HL-MRC. Hence, we will discuss the constructions of HL-MRC.

In an independent parallel work [46], a class of MRCs known as multi-layer MRCs have

been introduced. We would like to note that hierarchical local MRCs (given in Definition 5)

form a subclass of these multi-layer MRCs. One key difference between the codes constructed

in [46] and our work is that the authors in [46] take the generator matrix based approach, and we

take the parity-check matrix based approach. The constructions in [46] are based on maximum

sum-rank distance codes. Also, in [46], a generalized framework of hierarchical LRCs with

unequal locality parameters is considered. We believe that our framework of HL-MRC and the

subsequent constructions can be extended to the case of unequal locality parameters as well,

but we leave it for future work.

A comparison of the HL-MRC constructions known from earlier works and those in this

thesis is given in Table 3.1. In the following, we provide parameter regimes where the field

size of Construction 1 in [46] is lower than that of Construction IV.2 in [37] and vice versa.

• For r1 ≤ h1, we have ((δ + 1)(h2 + 1)h1 − 1) > r1. Since n > k+h1
r1

, Construction 1 in

[46] has a lower field size than that of Construction IV.2 in [37].

• For the fixed values of δ, h1, h2, if asymptotically k = Θ(n) and r1 =
√
n, then the field

size required for Construction 1 in [46] is q = Θ(n
√
n/2). Construction IV.2 in [37] has a
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field size given by q = Θ(nc) (here c is constant, since δ, h1 and h2 are O(1)). Hence, in

this parameter regime, Construction IV.2 in [37] has a lower field size.

Under certain parameter regimes, if r1 > h1h2 and t1 ≥ max(t2 + 1, n2), the field size of

Construction 3.3.7 is lower than the Construction 1 given in [46]. The random construction

provided in Section 3.3.4 can be constructed if the field size is ≥ 3(n − k)
(
n−1
k−1

)
. When the

field size is exactly 3(n− k)
(
n−1
k−1

)
, it is O(nk), which is higher than any other construction.

Reference Parameters of HL-MRC Field Size

Construction 1 in [46] [k, r1, r2, h1, h2, δ] O
((

k+h1
r1

)r1)
Construction IV.2 [k, r1, r2, h1, h2, δ] O(n2n

(δ+1)h2−1
1 n(δ+1)(h2+1)h1−1)

in [37]
Construction V.1 [k, r1, r2, h1 = 1, h2, δ] O(n2n

(δ+1)(h2+1)−1
1 )

in [37]
Construction 3.3.1 [k, r1, r2, h1 = 1, h2 = 1, δ] O(n1)

in the current thesis
Construction 3.3.4 [k, r1, r2, h1 = 2, h2 = 1, δ] O(n4)

in the current thesis
Construction 3.3.7 [k, r1, r2, h1, h2, δ] O((max(t2 + 1, n2))h2h1)

LRS based (parity check)
Construction [k, r1, r2, h1, h2, δ] ≥ 3(n− k)

(
n−1
k−1

)
given in Section 3.3.4

Randomized

Table 3.1: Summary of HL-MRC constructions. Recall that n2 = r2 + δ, n1 = r1 + h2 +
r1+h2
r2

δ,n = k + h1 + k+h1
r1

(h2 + r1+h2
r2

δ).

3.3 Constructions of HL-MRCs and its Field Size

In this section, we discuss the constructions of HL-MRC for h1 = 1 &h2 = 1, that are

constructed using Vandermode matrices and for h1 = 2 &h2 = 1 using Cauchy matrices.

Additionally, we present two more general constructions: one through the parity check ma-
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trix approach using the generator matrix of the Linearized Reed-Solomon code and the other

involving a Random Construction approach through the generator matrix.

3.3.1 HL-MRC for h1 = 1 and h2 = 1

Now we will describe the construction for the case when there is one mid-level parity per

mid-level code (h2 = 1) and one global parity (h1 = 1). This construction is based on the

construction of local MRC with 2 global parities in [56].

Construction 3.3.1. We give a construction of the code C, which is specified by the following

matrix H:

H =



H0

H0

. . .

H0

H1 H2 . . . Ht1


H0 =



M0

M0

. . .

M0

M1 M2 . . . Mt2



M0 =



α1 α2 . . . αn2

α2
1 α2

2 . . . α2
n2

...
... . . . ...

αδ1 αδ2 . . . αδn2


Mi =

[
λi λi . . . λi

]

Hi =

[
Hi,1 Hi,2 . . . Hi,t2

]
Hi,s =

[
αδ+1

1 αδ+1
2 . . . αδ+1

n2

]
is a parity check matrix for an [k, r1, r2, 1, 1, δ] HL-MRC if the following conditions are

satisfied:

• q is a prime power such that there exists a subgroup G of F∗q of size at least n2 and with

at least t2 cosets.
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• α1, α2, . . . αn2 ∈ G and αi 6= αj .

• λ1, λ2, . . . , λt2 ∈ F∗q be elements from distinct cosets of G.

We make use of the following determinantal identity to show that the matrix formed by the

columns of the parity check matrix corresponding to the erased positions are invertible and

hence can be recovered.

Lemma 3.3.2 ([56]). Let C1, · · · , Ch be a× (a+ 1) dimensional matrices and D1, · · · , Dh be

h× (a+ 1) dimensional matrices over a field and let D(j)
i be the jth row of Di. Then,

det



C1 0 · · · 0

0 C2 · · · 0

...
... . . . ...

0 0 · · · Ch

D1 D2 · · · Dh



= (−1)
ah(h−1)

2 det



det

 C1

D
(1)
1

 · · · det

 Ch

D
(1)
h


... . . . ...

det

 C1

D
(h)
1

 · · · det

 Ch

D
(h)
h




.

Theorem 3.3.3. The code C given by Construction 3.3.1 is a [k, r1, r2, h1 = 1, h2 = 1, δ]

HL-MRC. The field size required for the Construction 3.3.1 is O(n1).

Proof. To show that the code is a [k, r1, r2, 1, 1, δ] HL-MRC, we consider erasure patterns

where there are δ erasures per local code, one erasure per mid-level code 1 and one more erasure

anywhere in the global code. We will show that any such erasure pattern is recoverable. Since
1This terminology is somewhat non-standard but convenient for description. δ erasures per local code refers

to erasures whose coordinates fall within the support of parities corresponding to a local and similar is the case
for mid-level code.
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there is only one global erasure and it can be in one mid-level code, we consider that the mid-

level code which has additional global erasure has index l and for all j 6= l, there are no global

erasures associated with these mid-level codes. We will show that erasures in each mid-level

code can be recovered.

Case 1: Consider the jth mid-level code (j 6= l). Let the local code within the mid-level

code where the erasure occurs be j′. The submatrix Bj of the parity-check matrix which is

used to recover the erasures within the jth mid-level code is given by,

Bj =



αj′1 αj′2 . . . αj′δ αj′δ+1

α2
j′1

α2
j′2

. . . α2
j′δ

α2
j′δ+1

...
... . . . ...

...

αδj′1
αδj′2

. . . αδj′δ
αδj′δ+1

λj′ λj′ . . . λj′ λj′


where {j′1, . . . j′δ+1} denote the δ+1 erased coordinates in the local group j′. We can clearly see

that this matrix is a Vandermonde matrix after scaling and permuting rows. Hence det(Bj) 6= 0.

Case 2: After all the erasures corresponding to j 6= l mid-level codes are recovered, for the

lth mid-level code, we will also involve the global parity. This case can again be divided into

two sub cases depending on the local group where the extra erasure happens.

Case 2a: Both the mid-level erasure and the global erasure occur in the same local code, l′.

The matrix Bl which multiplies the erased symbols in the lth mid-level code is given by

Bl =



αl′1 αl′2 . . . αl′δ αl′δ+1
αl′δ+2

α2
l′1

α2
l′2

. . . α2
l′δ

α2
l′δ+1

α2
l′δ+2

...
... . . . ...

...
...

αδl′1
αδl′2

. . . αδl′δ
αδl′δ+1

αδl′δ+2

λl′ λl′ . . . λl′ λl′ λl′

αδ+1
l′1

αδ+1
l′2

. . . αδ+1
l′δ

αδ+1
l′δ+1

αδ+1
l′δ+2


.
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This is similar to above where Bl after scaling and permuting the rows is also a Vandermonde

matrix. Hence det(Bl) 6= 0.

Case 2b: The mid-level and global erasure occur in different local codes. Let those local

codes be l′ and l′′. The matrix Bl has the determinant as follows,

det(Bl) =

det



αl′1 . . . αl′δ+1

α2
l′1

. . . α2
l′δ+1

... . . . ...

αδl′1
. . . αδl′δ+1

αl′′1 . . . αl′′δ+1

α2
l′′1

. . . α2
l′′δ+1

... . . . ...

αδl′′1
. . . αδl′′δ+1

λl′ . . . λl′ λl′′ . . . λl′′

αδ+1
l′δ+1

. . . αδ+1
l′δ+1

αδ+1
l′′δ+1

. . . αδ+1
l′′δ+1



= det

detV1 detV2

detV3 detV4

 ,where

40



V1 =



αl′1 . . . αl′δ+1

α2
l′1

. . . α2
l′δ+1

... . . . ...

αδl′1
. . . αδl′δ+1

λl′ . . . λl′


, V2 =



αl′′1 . . . αl′′δ+1

α2
l′′1

. . . α2
l′′δ+1

... . . . ...

αδl′′1
. . . αδl′′δ+1

λl′′ . . . λl′′


,

V3 =

 V1(1 : δ, :)

αδ+1
l′δ+1

. . . αδ+1
l′δ+1

 , V4 =

 V2(1 : δ, :)

αδ+1
l′′δ+1

. . . αδ+1
l′′δ+1

 ,

where V1(1 : δ, :) and V2(1 : δ, :) are the first δ rows of matrices V1 and V2 respectively.

Based on the above equations, det(Bl) = 0 if and only if

det

 λl′ λl′′∏δ+1
i=1 αl′i

∏δ+1
i=1 αl′′i

 = 0,

where we factored out the non-zero Vandermonde determinants from each column. Since

αl′i , αl′′i ∈ G and λl′ , λl′′ are in different cosets of G, the last determinant cannot be zero.

Hence, we proved that the code can recover from all possible erasure patterns specified by the

definition of HL MRC and hence it is an HL MRC with the corresponding parameters.

In Construction 3.3.1, we require to consider a finite field Fq, such that there exists a sub-

group G of F∗q of size at least n2 and with at least t2 cosets. Based on Lemma 4 in [56], there

exists a finite field Fq of size O(n2t2) = O(n1).

3.3.2 HL-MRC for h1 = 2 and h2 = 1

Now, we will provide the construction of a HL-MRC with 2 global parities (h1 = 2) and 1

mid-level parity per mid-level code (h2 = 1).
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Construction 3.3.4. We give a construction of code C, which is specified by the following

parity-check matrix H:

H =



H0

H0

. . .

H0

H1 H2 . . . Ht1


H0 =



M0

M0

. . .

M0

M1 M2 . . . Mt2



M0 =



1
α1−β1

1
α2−β1 . . . 1

αn2−β1

1
α1−β2

1
α2−β2 . . . 1

αn2−β2
...

... . . . ...

1
α1−βδ

1
α2−βδ

. . . 1
αn2−βδ


Mi =

[
1

α1−βδ+1

1
α2−βδ+1

. . . 1
αn2−βδ+1

]

Hi =

[
Hi,1 Hi,2 . . . Hi,t2

]

Hi,s =

λs+(i−1)t2

α1−βδ+2

λs+(i−1)t2

α2−βδ+2
. . .

λs+(i−1)t2

αn2−βδ+2

µs+(i−1)t2

α1−βδ+3

µs+(i−1)t2

α2−βδ+3
. . .

µs+(i−1)t2

αn2−βδ+3


The parameters described in the above parity-check matrix are picked as follows:

• q0 ≥ 2(n2 + δ) + 3 is a prime power.

• There exists a subgroup G of F∗q0 of size at least n2 + 2 with atleast t1t2 cosets, where

F∗q0 is the multiplicative group of the field Fq0 .

• Fq is an extension field of Fq0 .

• µ1, . . . , µt1t2 are picked from distinct cosets of G.
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• Choose distinct βδ+1, βδ+2, βδ+3 ∈ Fq0 .

• Pick α1, . . . αn2 ∈ Fq0 such that, αi−βδ+2

αi−βδ+3
, αi−βδ+1

αi−βδ+3
∈ G.

• Pick distinct β1, . . . , βδ ∈ Fq0 \ {α1, . . . , αn2 , βδ+1, βδ+2, βδ+3}.

• λ1, λ2, . . . , λt1t2 ∈ Fq are picked 4 wise-independent over Fq0 .

Theorem 3.3.5. The code C given by Construction 3.3.4 is a [k, r1, r2, h1 = 2, h2 = 1, δ]

HL-MRC. The field size required for the Construction 3.3.4 is O(n4).

Proof. Similar to the previous proof, we consider the case when there are δ erasures per local

code, one erasure per mid-level code and two more global erasures anywhere in the code. We

again look at the erasure patterns within each mid-level code. The following distinct patterns

are possible with respect to the mid-level codes.

1. No global erasures occur in that mid-level code.

2. Either one or both of the global erasures occur in the mid-level code.

We prove that all the above erasure patterns are recoverable.

Case 1: When no global erasures occur in the mid-level code, there are δ erasures per local

code and one more erasure per mid-level code. In this scenario, we involve the mid-level

parities. Let l be the affected mid-level code and l′ be the local code within the mid-level code

where the erasure occurs. Let γi,j = 1
αj−βi . For this case based on erased coordinates, The

matrix Bl is defined as follows:

Bl =



γ1,l′1
γ1,l′2

. . . γ1,l′δ+1

γ2,l′1
γ2,l′2

. . . γ2,l′δ+1

...
... . . . ...

γδ,l′1 γδ,l′2 . . . γδ,l′δ+1

γδ+1,l′1
γδ+1,l′2

. . . γδ+1,l′δ+1


,
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where {l′1, l′2, . . . , l′δ+1} are the erased coordinates in local code l′. This is a Cauchy matrix and

hence det(Bl) 6= 0.

Case 2: For this case, we assume that all the erasures corresponding to mid-level codes

where no global parities are involved are recovered. Then, we can have either one or two mid-

level codes to be considered which can have global erasures. When there are global erasures,

there are δ erasures per local code, one erasure per mid-level code and two more erasures

anywhere in the code. We will only list the cases (6 in total) of erasure patterns here. We refer

the reader to Appendix A for details of the proof, where we derive that in each of the following

cases, the parity-check matrix restricted to the erased columns is full rank.

1. Two global erasures are in the same local code as the mid-level erasure.

2. Two global erasures are in one local code and the mid-level erasure is in a different local

code for that mid-level code.

3. Two global and the one mid-level erasure are all in three different local codes within the

same mid-level code.

4. Two global erasures are in different mid-level codes. In both the mid-level codes, the

mid-level erasure is in the same local code as the global erasure.

5. Two global erasures are in two different mid-level codes and in each mid-level code, they

are in a different local code as compared to the mid-level erasure for that mid-level code.

6. Two global erasures are in two different mid-level codes. In one of the mid-level code,

the mid-level erasure is in the same local code as the global erasure, while in the other

they are in different local codes.

In Construction 3.3.4, we require to consider a finite field Fq0 , such that there exists a sub-

group G of F∗q0 of size at least n2 and with at least t1t2 cosets. Based on Lemma 4 in [56],

there exists a finite field Fq0 of size O(n2t1t2) = O(n). Consider a field Fq which is a degree

4 extension of Fq0 and let v0, v1, v2, v3 form a basis of Fq over Fq0 . Consider λ1, λ2, . . . , λt1t2

such that λi = v0 + v1µi + v2µ
2
i + v3µ

3
i , where µi are all picked from distinct cosets of G in
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Fq0 . Then, we can easily prove that λ1, λ2, . . . , λt1t2 are all 4-wise independent over Fq0 . Thus,

the required field size is q4
0 = O(n4). For detailed proof, please refer to Appendix A.1.

3.3.3 HL-MRC based on Linearized Reed-Solomon Codes

There were two approaches considered to construct MRCs based on generator matrices of

linearized Reed-Solomon codes - the first is generator matrix based [46] and the second is

parity check matrix based [48], [47]. We give the construction of an HL-MRC based on the

generator matrices of linearized Reed-Solomon codes via parity check matrix. The field size

of this construction is better than that of previously known construction.

We will briefly describe the constructions of linearized Reed-Solomon codes and a certain

sum rank property of these codes [57], which facilitates the construction of MRCs with locality.

Consider a finite field Fqm and the following field automorphism given by σ : Fqm → Fqm ,

where σ(a) = aq, a ∈ Fqm . An Fq linear operator D : Fqm → Fqm is given by

Diα(β) = σi(β)
i−1∏
j=0

σj(α). (3.1)

Using the above linearized operator, we define Vandermonde-like matrices as follows:

Dq(α,B, k, l) =



β1 β2 . . . βl

D1
α(β1) D1

α(β2) . . . D1
α(βl)

...
...

...

Dk−1
α (β1) Dk−1

α (β2) . . . Dk−1
α (βl)


, (3.2)

where B = {β1, β2, . . . , βl} ⊂ Fmq .

Definition 6 (Linearized Reed-Solomon Code). Consider a code of lengthN , dimension k and

N = l1 + . . . + lg. Consider a finite field Fq and its extension FqM . Let B = {β1, . . . , βM}
be the basis of FqM over Fq. Also let γ denote the primitive element of FqM . Let Bj denote

the subset {β1, . . . , βlj}. Now, a linearized Reed-Solomon code has the following generator
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matrix:

GLRS =
[
Dq(γ

0,B1, k, l1)|Dq(γ
1,B2, k, l2)| . . . |

Dq(γ
g−1,Bg, k, lg)

]
.

The linearized Reed-Solomon code defined above is a maximum sum-rank distance code,

i.e., it achieves the equivalent of Singleton bound in the sum-rank metric. We will now state a

property satisfied by these linearized Reed-Solomon codes.

Theorem 3.3.6. Consider a linearized Reed-Solomon code with parameters (n, k, l1, . . . , lg)

with generator matrixGLRS as given in the above definition. Consider matricesW1,W2, . . . ,Wg

where Wi is of size li × ni, then we have that

rank(GLRS diag(W1,W2, . . . ,Wg)) (3.3)

= min

(
k,

g∑
j=1

rank(Wj)

)
. (3.4)

There were two approaches considered to construct MRCs based on generator matrices of

linearized Reed-Solomon codes - the first is generator matrix based [46] and the second is

parity check matrix based [48].

Construction 3.3.7. We give a construction of the code C, which is specified by the following

matrix H:

H =



H0

H0

. . .

H0

H1 H2 . . . Ht1


H0 =



M0

M0

. . .

M0

M1 M2 . . . Mt2


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M0 =



α1 α2 . . . αn2

α2
1 α2

2 . . . α2
n2

...
... . . . ...

αδ1 αδ2 . . . αδn2


M0 = Vandermonde(α1, α2, . . . , αn2 , 0 : δ − 1), (3.5)

where M0 is a matrix of size δ × n2. We used the terminology Vandermonde(.) to denote a

matrix whose columns are identified by α1, α2, . . . , αn2 and starting and ending powers are

indicated as the last two entries.

Λ = Vandermonde(α1, α2, . . . , αn2 , δ : δ + h2 − 1), (3.6)

where Λ is a matrix of size h2×n2. Let Γ = (γ1, γ2, . . . , γh2) denote the basis of F
q
h2
0

over Fq0 .

Define a set of vectors B as follows:

B = [β1, β2, . . . , βn2 ] = [γ1, γ2, . . . , γh2 ]Λ.

Consider γ to be a primitive element of F
q
h2
0

. For 0 ≤ j ≤ t2 − 1, let γj denote elements

belonging to distinct conjugacy classes, which requires that q0 ≥ t2 + 1. The matrices Mi are

defined as follows:

Mi = Dq0(γ
i,B, h2, n2). (3.7)

Consider another matrix of size h1 × n2 given by the following, where we assume that h1 ≤
r2 − h2

Ω = Vandermonde(α1, α2, . . . , αn2 , δ + h2 : δ + h1 + h2 − 1) (3.8)

Let Ψ = (ψ1, ψ2, . . . , ψh1) denote the basis of F
q
h1
1

over Fq1 . Define a set of vectors Φ as

follows:

Φ = [φ1, φ2, . . . , φn2 ] = [ψ1, ψ2, . . . , ψh1 ]Ω.
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Consider λ to be a primitive element of F
q
h1
1

. For 0 ≤ j ≤ t2t1, let λj denote elements

belonging to distinct conjugacy classes, which requires that q1 ≥ t1t2 + 1. The matrices Hi,j

are defined as follows:

Hi,j = Dq1(λ
(i,j),Φ, h1, n2), (3.9)

where (i, j) = (i− 1)t2 + j.

Theorem 3.3.8. Let q0 ≥ max(t2 + 1, n2) be any prime power and qh20 = q1 ≥ t1t2 + 1 where

t1 = (k+h1)
r1

is the number of middle codes and t2 = (r1+h2)
r2

is the number of local codes in

each middle code. Then there exists an explicit [n, k, r1, r2, h1, h2, δ] HL-MRC over a field of

size O((max(t2 + 1, n2))h2h1).

Proof. Let the erasure pattern E be of size |E| = t1t2δ + t1h2 + h1 composed of δ erasures in

each local code, h2 additional erasures in each middle code and h1 additional erasures in the

global code. We have to prove that H|E is full rank, in order to prove that we can recover the

erasure patternE. WLOG assume that h1 additional erasures occur in middle codes indexed by

1, 2, . . . , t∗1, where t∗1 ≤ h1. In each ith middle code, the additional erasures occur in local codes

indexed by 1, 2, . . . , ji, where ji ≤ h2. Let Ei,j be the set of erasures in the j th local code of the

ith middle code. Let ∆i,j ⊂ Ei,j be an arbitrary subset of size |∆i,j| = δ and ∆̄i,j = Ei,j \∆i,j .

Note that M0|∆i,j
,∀i ∈ [t∗1], j ∈ [ji] are all δ × δ matrices of full rank. Applying M0|−1

∆i,j
to

column reduce the rest of the columns in Ei,j , we have


M0|∆i,j

0

Mj|∆i,j
Ai,j = Mj|∆̄i,j

−Mj|∆i,j
M0|−1

∆i,j
M0|∆̄i,j

Hi,j|∆i,j
Bi,j = Hi,j|∆̄i,j

−Hi,j|∆i,j
M0|−1

∆i,j
M0|∆̄i,j


Note that all the entries in M0|−1

∆i,j
M0|∆̄i,j

are in the base field Fq0 . Hence, the column oper-

ations on the Mj and Hi,j with Fq0 coefficients results in the same structure with β’s and φ’s

replaced by their corresponding Fq0 linear combinations and are denoted by β ′ and φ′ . Consider
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the following matrix obtained by stacking Ai,j and Bi,j .

C =

 A1,1 . . . A1,j1 . . . At∗1,1 . . . At∗1,jt∗1

B1,1 . . . B1,j1 . . . Bt∗1,1
. . . Bt∗1,jt∗1



=


A1︸︷︷︸

h2×(h2+h1,1)

. . . At∗1︸︷︷︸
h2×(h2+h1,t∗1

)

B1︸︷︷︸
h2×(h2+h1,1)

. . . Bt∗1︸︷︷︸
h2×(h2+h1,t∗1

)

 ,

where
∑t∗1

i=1 h1,i = h1. In every ith middle code, pick h2 number of columns say Υi as follows

from ∪jij=1∆̄i,j such that |Υi| = h2 and Ῡi = ∪jij=1∆̄i,j \Υi. WLOG , we pick first h2 columns

from ∪jij=1∆̄i,j . Here, we just state two quick properties:

P1: We note that the matrix


M0|∆i,j

M0|Υi M0|Ῡi
B|∆i,j

B|Υi B|Ῡi
Φ|∆i,j

Φ|Υi Φ|Ῡi

 is of Vandermonde structure of size

(δ + h2 + h1)× n2 and hence full rank.

P2: Similarly, the matrix

M0|∆i,j
M0|Υi,j

B|∆i,j
B|Υi,j

 is also full rank, since it is also a Vandermonde

matrix of size (δ + h2) × (δ + Υi,j), where Υi,j are the column indices of Υi restricted to the

j th local code.

We know that in each Ai, there are h2 columns which are linearly independent. So, the column

indices of Υi can be either of the following two cases: (a) All j∗i ≤ ji columns, i.e., Υi,j =

∆̄i,j,∀j ≤ j∗i . (b) All columns upto j < j∗i and some columns of j = j∗i . In this case,

Υi,j = ∆̄i,j,∀j < j∗i , Υi,j ⊂ ∆̄i,j, j = j∗i and Ῡi,j = ∆̄i,j \ Υi,j, j = j∗i . Let the first row of
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[Ai,1|Ai,2| . . . |Ai,j∗i ] be denoted by Di. Then, Di can be written as follows:

Di =
[
B|∆̄i,j

− B|∆i,j
M0|−1

∆i,j
M0|∆̄i,j

| . . . |

= (B|∆̄i,j∗1
− B|∆i,j∗1

M0|−1
∆i,j∗1

M0|∆̄i,j
)|Υi,j∗

i

]
.

whereB = [β1, β2, . . . , βn2 ] matrix over Fq0 . So column operations on the ,Di = [Di,1|Di,2| . . . |Di,j∗i
],

since each Di,j in Di is full rank from P2. It follows that each matrix Ai,j|Υi,j is full rank

∀j ≤ j∗i . Applying Theorem 3.3.6, we have that rank(Ai|Υi) =
∑j∗i

j=1 rank(Ai,j|Υi,j) = h2.

Now, we can write C =

Ai|Υi Ai|Ῡi
Bi|Υi Bi|Ῡi

. We can use the columns of Ai|Υi to reduce the other

columns and after column reduction, we get the following matrix:

Ai|Υi 0

Bi|Υi Bi|Ῡi −Bi|ΥiAi|−1
Υi
Ai|Υi

 =

Ai 0

Bi Fi

 .
Let F = [F1|F2| . . . |Ft∗1 ]. Recall that the first row of elements in Bi|Ῡi as follows:

[(
Φ|∆̄i,j∗

i

− Φ|∆i,j∗
i
M0|−1

∆i,j∗
i

M0|∆̄i,j∗
i

)
|Ῡi,j∗

i

| . . . |

Φ|∆̄i,ji
− Φ|∆i,ji

M0|−1
∆i,j∗

i

M0|∆̄i,ji

]
= [Θi,j∗i

|Θi,j∗i +1| . . . |Θi,ji ] = Θ|Ῡi

From the above, we can calculate that the first row of elements of Fi are given by Gi =

[Θ|Ῡi − Θ|ΥiAi|−1
Υi
Ai|Υi ]. Recall that φ′’s retains its structure as φ. Let φ′′ are the elements

obtained after column operations correspond to the φ′ , which are also retains the same structure.

Therefore each Gi is full rank from P1. It follows that each matrix Fi is full rank ∀i ≤ t∗1.

Applying Theorem 3.3.6, we have that rank(F ) =
∑t∗i

j=1 rank(Fj) = h1. Hence, the erasure

pattern E can be recovered and the theorem follows.

Note 2. The field size of HL-MRC required for the above construction given by O((max(t2 +

1, n2))h2h1) is lower than the field size required for the construction in [58] (≥ nδh1h2). This is
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because the construction in [58] is based on the generator matrices of the Gabidulin codes as

opposed to those of linearized Reed-Solomon codes used.

3.3.4 Random Construction of HL-MRC

In this section, we redefine HL-MRC in terms of the generator matrix and identify the

standard form of the generator matrix. We use this notion for the random construction of

HL-MRC and subsequently we provide a lower bound on the field size.

Theorem 3.3.9 (HL-MRC standard form). Let C [n, k, r1, r2, h1, h2, δ] HL-MRC over a finite

field q. Then C has a generator matrix of the form

G = [B1|B2| . . . |Bt1 ]∈F k×n
q , (3.10)

where Bi =

[
Bi1|Bi2| . . . |Bit2

]
∈F k×n1

q , ∀i ∈ [t1]. Here Bij = [Eij|Fij] ∈ F k×n2
q , Ei =

[Ei1| . . . |Eit2 ] ∈ F k×t2r2
q and Fi = [Fi1| . . . |Fit2 ] ∈ F k×t2δ

q and Ei = [Ci|Di], Ci ∈ F k×r1
q and

Di ∈ F k×h2
q and the submatrix GC = [C1| . . . |Ct1 ] is of the form GC = [Ik|A], with Ak×h1

being superregular.

Proof. The proof technique is similar to the Theorem 15 in [59]. Let G̃ be the generator matrix

of any HL-MRC in the form of equation (3.10)

G̃ = [B̃1|B̃2| . . . |B̃t1 ]∈F k×n
q ,

where B̃i = [B̃i1|B̃i2| . . . |B̃it2 ]∈F k×n1
q , ∀i ∈ [t1], B̃ij = [Ẽij|F̃ij] ∈ F k×n2

q , Ẽi = [Ẽi1| . . . |Ẽit2 ] ∈
F k×t2r2
q and F̃i = [F̃i1| . . . |F̃it2 ] ∈ F k×t2δ

q . Here Ẽi = [C̃i|D̃i], C̃i ∈ F k×r1
q and D̃i ∈ F k×h2

q .

By puncturing the last δ columns of each B̃ij and last h2 columns of each Ẽi, we obtain

G̃C = [C̃1| . . . |C̃t1 ]. Suppose the obtained matrix G̃C is not in the systematic form. Given the

definition of HL-MRC, it is evident that G̃C is the generator matrix of [k + h1, k] MDS code.

Therefore, there exists an invertible matrix P such that PG̃C will be in systematic form. Thus,

the matrix G = PG̃C is the generator matrix in the required systematic form for the code C .
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Proposition 3.3.1. A matrixG ∈ F k×n
q generates C [n, k, r1, r2, h1, h2, δ] HL-MRC code if and

only if the determinant of matrices belongs to Tk,r1,r2 are non-zero, here

Tk,r1,r2 =


S ∈ F k×k

q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S is a submatrix of G with

at most r2 columns per Bth
ij

block and at most r1 columns

per Bth
i block,.


.

We now consider the entries av,w for v = [k], w = [h1]. We know that the column space

of Di is inside the column space of Ci by the parameters of the block MDS code and column

space of Fij is inside the column space of Eij , by the parameters of the block Local MRC.

If we denote by C(l)
i , D(l)

i , E(l)
ij and F (l)

ij the lth column of Ci, Di, Eij and Fij respectively,

then D(l)
i =

r1∑
t=1

yt,i,lC
(t)
i and F (l)

ij =
r2∑
t′=1

zt′ ,ij,lE
(t
′
)

ij , for some yt,i,l and zt′ ,ij,l which we also

consider variables. This way we can consider a k × n generator matrix in the variable form by

G(x,y, z) as a matrix in Fq[xv,w, yt,i,l, zt′ ,ij,l]
k×n.

By imposing the condition of HL-MRC using 3.3.1 on the variable form G(x,y, z), we

obtain the polynomial

p(x,y, z) = lcm{detS | S ∈ Tk,r1,r2(G(x,y, z))} (3.11)

which belongs toFq[xv,w, yt,i,l, zt′ ,ij,l], then we have thatG(x,y, z) generates C [n, k, r1, r2, h1, h2, δ]

HL-MRC over Fq if and only if p(x,y, z) is non zero. By selecting random vector α ∈ F h1k
q ,

β ∈ FR1r1
q and γ ∈ FR2r2

q , we can obtain the generator matrix G(α,β,γ) as described above,

here R1 = t1h2 and R2 = t1t2δ. If the corresponding polynomial p(α,β,γ), defined in (3.11),

is non-zero, then the row space of G(α,β,γ) is a C [n, k, r1, r2, h1, h2, δ] HL-MRC.

Note 3. Existence of such (α,β,γ) ∈ F h1k
q × FR1r1

q × FR2r2
q such that p(α,β,γ) 6= 0 can be

verified using Proposition 3.3.1 as done in [59].

Lower bound on the field size of Random HL-MRC:
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We now derive the lower bound on the field size using the Schwartz-Zippel Lemma, for

which we need to find the upper bound on the degree of p(x,y, z).

Lemma 3.3.10. The total degree of the polynomial p(x,y, z), defined as in (3.11), satisfies the

inequality

deg p(x,y, z) ≤
k∑

j0=0

(
k

j0

)
L. (3.12)

where, j
′
2 = k − j0 − j1 andj3 = k − j0 − j1 − j2 in the following equation

L =


h1∑
j1=0

j
′
2∑

j2=0

(j1 + 2j2 + 3j3)
(
h1
j1

)(
R1

j2

)(
R2

j3

)
if j3 ≤ R2

0 otherwise

Proof. Let Mk(x,y, z) is the set of all possible k × k submatrices of G(x,y, z). Hence

Tk,r1,r2(G(x,y, z)) is a subset ofMk(x,y, z), the polynomial p(x,y, z) divides the polyno-

mial

q(x,y, z) = lcm{detS | S ∈Mk(x,y, z).}

Therefore deg p(x,y, z) ≤ deg q(x,y, z). Now, consider the generator matrix G(x,y, z) as

defined in Theorem 3.3.9. Observe that the entries of the first k columns of the submatrix GC

have degree 0, h1 columns of the matrix A have degree atmost 1, h2 columns of the Ei for

every i have degree atmost 2 and δ columns of the matrix Fij for every i and j has degree at

most 3. So, we can partition n columns of the generator matrix in to four groups of degree

atmost 0,1,2 and 3. Therefore

deg q(x,y, z) ≤
∑

S∈Mk(G)

deg det S ≤
k∑

j0=0

(
k

j0

)
L

The last inequality holds depending upon the number of ways of selecting k columns from the

different partitions of n columns.
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Theorem 3.3.11. Let the entries of α,β and γ be uniformly and independently chosen at

random in Fq. Then

Pr{ row space (G(α,β,γ)) is HL-MRC} ≥ 1−
k∑

j0=0
( kj0)L

q

Proof.

LHS = 1− Pr{p(α, β, γ) = 0} ≥ 1− deg p(x, y, z)

q

≥ 1−

k∑
j0=0

(
k
j0

)
L

q

where the last two inequalities follow from Schwartz-Zippel Lemma and Lemma 3.3.10.

Corollary 1. If q >
k∑

j0=0

(
k
j0

)
L then there exists an C [n, k, r1, r2, h1, h2, δ] HL-MRC over the

finite field Fq.

This bound is quantitatively similar to the known existence result of MRC of any locality

configuration given in [60] Theorem 1, i.e. q >
(
n−1
k−1

)
, and also random construction of Local

MRC given in [59] Corollary 25, i.e. q > 2(n− k)
(
n−1
k−1

)
.

However, considering step-by-step construction as done for Local MRC in [59] can be ex-

tended to HL-MRC to obtain the better result.

Example 2. Construction of [n = 18, k = 5, r1 = 3, r2 = 2, h1 = 1, h2 = 1, δ = 1] HL-MRC

code and determine the required field size in the process of step by step construction.

We start with [6, 1] MDS code with all ones parity column, let G∗ is the corresponding

generator matrix. We divide the columns of the generator matrix G∗ in to two groups of each

r1 = 3 columns.

• By adding parity column (h2 = 1) in variable form, we get set of determinant polyno-

mials with all possible k × k submatrix of the obtained generator matrix in variable

form.
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• By imposing the condition on lcm of set of polynomials not equal to zero, we can find the

values for the variables.

We will repeat this process step by set to obtain the generator matrix G
′

for the code C ′ [n′ =

8, k = 5, h1 = 1, r1 = 3, h2 = 1]. Again we divide the columns of G
′

in to 4 groups of each

r2 = 2 columns. By repeating the same process we can obtain the local parity (δ = 1) of the

four local codes one by one.

Table 3.2: Lcm of determinant polynomials of parity columns and field size

parity
column

LCM of set of det
polynomials

Values of
variables

q

D
(1)
1

(y1,1,1)(y2, 1, 1)(y3,1,1)

(y1,1,1 − y2,1,1)

(y1,1,1 − y3,1,1)

(y2,1,1 − y3,1,1)

y1,1,1 = 1

y2,1,1 = 2

y3,1,1 = 3

5

D
(1)
2

6(y1,2,1)(y2,2,1)(y3,2,1)

(y2,2,1 − y1,2,1)

(y1,2,1 + y3,2,1)

(y1,2,1 + y3,2,1)

y1,2,1 = 2

y2,2,1 = 3

y3,2,1 = 1

5

F
(1)
11

36(z1,11,1)(z2, 11, 1)

(z2,11,1 − 2z1,11,1)

(2z2,11,1 − z1,11,1)

z1,11,1 = 1

z2,11,1 = 4
5

F
(1)
12

48(z1,12,1)(z2,12,1)

(z2,12,1 + z1,12,1)

(7z2,12,1 + 3z1,12,1)

(3z2,12,1 + z1,12,1)

z1,12,1 = 1

z2,12,1 = 1
7

F
(1)
21

(240)(7)(z1,21,1)(z2,21,1)

(z1,21,1 − z2,21,1)

(3z2,21,1 − 4z1,21,1)

(2z2,21,1 − 3z1,21,1)

z1,21,1 = 1

z2,21,1 = 2
11

F
(1)
22

(240)(7)(z1,22,1)(z2,22,1)

(z1,22,1 + z2,22,1)

(z1,22,1 + 4z2,22,1)

(z1,22,1 + 3z2,22,1)

(z1,22,1 + 2z2,22,1)

z1,22,1 = 1

z2,22,1 = 1
11
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Table 3.2 consists of set of lcm of polynomials obtained while computing the generator

matrix G = [B11|B12|B21|B22] of the code for the given example. We Obtained

B>11 =


1 0 0 0 0

0 1 0 0 0

1 4 0 0 0

 , B>12 =


0 0 1 0 0

1 2 3 0 0

1 2 4 0 0

 ,

B>21 =


0 0 0 1 0

0 0 0 0 1

0 0 0 1 2

 , B>22 =


1 1 1 1 1

1 1 1 3 4

2 2 2 3 4

 ,

which generates an [n = 18, k = 5, r1 = 3, r2 = 2, h1 = 1, h2 = 1, δ = 1] HL-MRC code over

F11.
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3.4 Lower Bound on the Field Size of HL-MRC

In this section, we will derive lower bounds on the field size of HL-MRC. The proof tech-

nique is similar to the one developed in [56], with the difference being that in this case, there

are mid-level codes as well and hence while performing shortening in the parity check ma-

trix, this has to be taken into account. The following Lemma derived in [56] will be useful in

deriving the lower bounds on field size.

Lemma 3.4.1 ([56]). Let X1, X2, . . . , Xg ∈ Pd(Fq) be mutually disjoint subsets each of size

t with g ≥ d + 1 of the projective space Pd(Fq) 2. If q <
(
g
d
− 1
)
t − 4, then there exists a

hyperplane which intersects d+ 1 distinct subsets among X1, X2, . . . , Xg.

Theorem 3.4.2. Consider an [k, r1, r2, h1, h2, δ] HL-MRC. If (δ + 2) ≤ h1 + h2, h1 ≤ n
n1

and

h2 ≤ n1

n2
− 1, then the field size q is lower bounded as follows:

q ≥
( n

n2

h1h2 + h1 − 1
− 1

)(
r2 + δ

δ + 1

)
− 4. (3.13)

Proof. Consider an arbitrary [k, r1, r2, h1, h2, δ] HL-MRC with t1 = n
n1

mid-level codes and

t2 = n1

n2
local codes per mid-level code. The code has a parity-check matrix of the form

H =



M1

. . .

Mt1

P1 . . . Pt1


, Mi =



Mi,1

. . .

Mi,t2

Ni,1 . . . Ni,t2


,

where M1, . . . ,Mt1 are δ′× (r1 + δ′) matrices over Fq, where δ′ = h2 +
(
r1+h2
r2

)
δ. P1, . . . , Pt1

are h1 × (r1 + δ′) matrices over Fq. Mi,1, . . . ,Mi,t2 are δ × (r2 + δ) matrices over Fq.

Ni,1, . . . , Ni,t2 are h2 × (r2 + δ) matrices over Fq. For every subset Si,j ⊆ [r2 + δ] of size

2Pd(Fq) is the set of all one dimensional spaces in Fd+1
q
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|Si,j| = δ+ 1, Mi,j(Si,j) is a δ× (δ+ 1) full rank matrix. Let Mi,j(Si,j)
⊥ ∈ Fδ+1

q be a nonzero

vector orthogonal to the row space of Mi,j(Si,j). We know that Mi,j(Si,j)Mi,j(Si,j)
⊥ = 0.

We denote q2
i,j(Si,j) = Ni,j(Si,j)Mi,j(Si,j)

⊥ where q2
i,j(Si,j) is a h2 × 1 vector and q1

i,j(Si,j) =

Pi,j(Si,j)Mi,j(Si,j)
⊥ where q1

i,j(Si,j) is a h1 × 1 vector.

We now consider the maximal erasure pattern, which has h1 + t1h2 + t1t2δ erasures and is

correctable. We assume that there are h1(h2 + 1) local codes in which there are δ + 1 erasures

in each. WLOG, we assume that the indices of the local codes are given by (i, j), 1 ≤ i ≤ h1,

1 ≤ j ≤ h2 + 1. For every 1 ≤ i ≤ h1, 1 ≤ j ≤ h2 + 1, consider Si,j ⊆ [r2 + δ] of size

|Si,j| = δ + 1, let Si = ∪h2+1
j=1 Si,j and S = ∪h1i=1Si. Since the code is HL-MRC, H|S is full

rank.

Mi(Si)
⊥ is defined as follows:

Mi(Si)
⊥ =



Mi,1(Si,1)⊥

Mi,2(Si,2)⊥

. . .

Mi,h3(Si,h3)
⊥


.

where h3 = h2 + 1. Let

H|S = D =



M1(S1)

M2(S2)

. . .

Mh1(Sh1)

P1(S1) P2(S2) . . . Ph1(Sh1)


.

We form the matrix

Q = D diag(M1(S1)⊥,M2(S2)⊥, . . . ,Mt1(Sh1)
⊥).
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After removing the zero rows in the Q matrix, the structure of the resulting matrix is Q′ as

mentioned in (3.14):

Q′ = [q1,1(S1,1) q1,2(S1,2) . . . qh1,h3(Sh1,h3)]

=


q2

1,1(S1,1) . . . q2
1,h3

(S1,h3)
. . .

. . . q2
h1,1

(Sh1,1) . . . q2
h1,h3

(Sh1,h3)

q1
1,1(S1,1) . . . q1

1,h3
(S1,h3) . . . q1

h1,1
(Sh1,1) . . . q1

h1,h3
(Sh1,h3)

 (3.14)

Recall that D is full rank, and also notice that diag(M1(S1)⊥,M2(S2)⊥, . . . ,Mt1(Sh1)
⊥) is

full rank (∵ Mi(Si)’s are full rank). Therefore, Q′ is full rank. From this, we can state the

following Lemma, which is used to prove the current theorem (Theorem 3.4.2).

Lemma 3.4.3. In [k, r1, r2, h1, h2, δ] HL-MRC, for any I ⊂ [t1], J ⊂ [t2] with |I| = h1,

|J | = h2 + 1 and subsets Si,j ⊆ (r2 + δ) of size δ + 1 for all i ∈ I &∀j ∈ J . Then

(h1h2 + h1)× (h1h2 + h1) the matrix Q′ is full rank.

From the Lemma 3.4.3, we can claim that qi,j(Si,j) and qi′ ,j′ (Ti′ ,j′ ) are not multiples of each

other unless either i = i
′

and j = j
′
. Now, we show that even within a local group, these

vectors are distinct.

Lemma 3.4.4. For every i, j ∈ [t1, t2], no two vectors in {qi,j(Si,j) : S ⊆
(

[r2+δ]
δ+1

)
} are multi-

ples of each other.
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Proof. Suppose qi,j(Si,j) = λqi,j(Ti,j) for some distinct Si,j, Ti,j ⊆ [r2 + δ] of size δ + 1 each

and some nonzero λ ∈ Fq.
Mi,j(Si,j)

Ni,j(Si,j)

Pi,j(Si,j)

Mi,j(Si,j)
⊥ − λ


Mi,j(Ti,j)

Ni,j(Ti,j)

Pi,j(T )

Mi,j(Ti,j)
⊥


0

q2
i,j(Si,j)

q1
i,j(Si,j)

− λ


0

q2
i,j(Ti,j)

q1
i,j(Ti,j)

 = 0.

Note that every coordinate of Mi,j(Si,j)
⊥ is nonzero. Otherwise, it implies a linear dependence

among δ columns of Mi,j(Si,j). Thus, we have a linear combination of


Mi,j(Si,j ∪ Ti,j)

Ni,j(Si,j ∪ Ti,j)

Pi,j(Si,j ∪ Ti,j)

.

However, |Si,j ∪ Ti,j| ≤ 2δ + 2 ≤ δ + h1 + h2. By the MR property, any set of columns of the

matrix


Mi,j

Ni,j

Pi,j

 of size δ+h1 +h2 has to be full rank. Thus, we arrive at a contradiction. Thus,

no two vectors in {qi,j(Si,j) : Si,j ⊆
(

[r2+δ]
δ+1

)
} are multiples of each other.

We utilize Lemma 3.4.3 and Lemma 3.4.4 to complete our proof of the current theorem

(Theorem 3.4.2). Now, define set Xi,j as follows: Xi,j = {qi,j(Si,j) : Si,j ⊆
(

[r2+δ]
δ+1

)
}. The

sets {Xi,j : i ∈ [t1], j ∈ [t2]} are all mutually disjoint (from Lemma 3.4.3) and |Xi,j| =(
[r2+δ]
δ+1

)
(from Lemma 3.4.4). we can think of {qi,j(Si,j) : Si,j ⊆

(
[r2+δ]
δ+1

)
} as distinct points in

P(h1h2+h1−1)(Fq). Since t1 ≥ h1 and t2 ≥ h2 + 1, it follows that t1t2 ≥ h1h2 + h1. Based on

Lemma 3.4.4, there is no hyperplane in P(h1h2+h1−1)(Fq) which contains h1h2 +h1 points from

distinct subsets of {Xi,j : i ∈ [t1], j ∈ [t2]}. By Lemma 3.4.1, we have a lower bound on the

field size.
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Theorem 3.4.5. Consider an [k, r1, r2, h1, h2, δ] HL-MRC.

(a) If 4 ≤ h1 +h2 ≤ (δ+2), h1 ≤ n
n1

and h2 ≤ n1

n2
−1, then the field size q is lower bounded

as follows:

q ≥
( n

n2

h1h2 + h1 − 1
− 1

)(
r2 + h1 + h2 − 2

h1 + h2 − 1

)
− 4. (3.15)

(b) If (δ+ 2) ≤ h1 + h2, h1 >
n
n1

and h2 ≤ n1

n2
−dh1

t1
e, then the field size q is lower bounded

as follows:

q ≥
(

n
n2

n
n1
h2 + h1 − 1

− 1

)(
r2 + δ

δ + 1

)
− 4. (3.16)

Proof. We will give the proof sketch by highlighting the differences between the proof of The-

orem 3.4.2 and these cases.

• For proving part (a) of the theorem, we do not take arbitrary S and T as in the case of

proof of Theorem 3.4.2 but consider subsets S that have size δ + 1 but constrained to

contain the subset {1, 2, . . . , (δ+ 2− h1− h2)}. By picking the sets in this way, we still

ensure that the pairwise unions have size at most δ + h1 + h2. The total number of such

sets is given by
(
r2+h1+h2−2
h1+h2−1

)
. Based on this counting, the field size bound in (a) follows.

• For proving part (b) of the theorem, let f1 ≥ f2 ≥ . . . ≥ ft1 be such that fi = dh1
t1
e or

bh1
t1
c and

∑t1
i=1 fi = h1. From each ith middle code, pick h2 + fi local codes and δ + 1

columns from every local code. By applying the row reduction similar to the proof of

Theorem 3.4.2 and applying appropriately modified versions of Lemmas 3.4.3 and 3.4.4,

the result follows.

Note 4. Please note that we derive the field size bounds for the cases when (i) (δ+2) ≤ h1+h2,

h1 ≤ n
n1

and h2 ≤ n1

n2
− 1 (ii) 4 ≤ h1 + h2 ≤ (δ + 2), h1 ≤ n

n1
and h2 ≤ n1

n2
− 1 (ii)
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(δ+ 2) ≤ h1 + h2, h1 >
n
n1

and h2 ≤ n1

n2
− dh1

t1
e. There are other cases of parameters δ, h1, h2

for which field-size bounds need to be derived and their proofs are similar to those discussed

above.

Comparative Analysis of Field Size Bounds of LRCs, MRCs and HL-MRCs We will com-

pare the techniques used for deriving field size bounds in the papers mentioned below with

those in the present thesis.

• In [19], dimensional locality is defined for (r, δ) locality and is the dimension of the

repair set. The dimension locality differs from the conventional notion of locality when

the repair sets are non-MDS. Alphabet-dependent bounds for codes with dimension lo-

cality have been derived in [37]. These bounds are obtained on the maximum possible

dimension of the code, given the length, field size and dimension locality. The bound it-

self is derived by puncturing an LRC based on the repair sets and applying the Singleton

bound to the shortened code which remained after few iterations of puncturing codes.

The dimensional locality is used to find the Griesmer bound in order to find length of

the shortened code. Note that the bounds is derived assuming general repair sets, which

could be potentially intersecting too. In our case of MRCs and HL-MRCs, we have dis-

joint repair sets and also local codes are MDS. Thus, the notion of dimension locality

reduces to that of conventional locality. Also the derivation of field size for an MRC has

to take into account the condition that there are many ways of puncturing the code to

result in an MDS code. For an LRC, only the puncturing patterns defined by the repair

sets can be applied. Thus, the lower bound on field size for an MRC is in general much

higher than that for an LRC.

• In [36], upper bound on the dimension of codes with hierarchical locality have been

derived (dimensional locality is not considered here). We would like to note that in hier-

archical local codes, only a limited number of repair sets are present to ensure locality of

the code. Whereas in the case of HL-MRCs, all the erasure patterns have to be corrected,

which is a much stronger condition. Thus, the lower bound on field size for a HL-MRC
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is in general much higher than that for a hierarchical local code.

• To make the field size comparison with [19] and [36] more concrete, we would like to

note that alphabet-dependent bounds in [19] and [36] are tighter than the Singleton-like

bound. The field size required to construct codes which are optimal with respect to

Singleton-like bound is Θ(n). Hence, the lower bound on the field size resulting from

the alphabet-dependent bound will be less than Θ(n). The field size lower bound on the

HL-MRC is given by q ≥ Ω( n
n2
r

min(δ+1,h1+h2−1)
2 ). This is polynomial in n, if r2 also

increases as nc for some c.

• In [51], MRCs for δ = 2 are considered and by using matroid theory, the list of all

possible minors have been derived. These minors have been in turn used to derive non-

asymptotic lower bound on the field size of MRC, better than the naive bound known

earlier. Using similar arguments, we believe that we can derive the list of all possible

minors of HL-MRCs too (since all the correctable erasure patterns are precisely charac-

terized). This can give improved non-asymptotic bounds for HL-MRCs. We leave it for

future work.

• In [15], under the assumptions of disjoint repair sets for LRCs and for dmin ≥ 5 upper

bound on the length of the code for an optimal LRCs of sufficiently large length n over

an alphabet size q is given by when 4 - d, n ≤ O(dq3). Note that this bound is also

applicable only for LRCs and loose for MRCs.

3.5 Conclusion

In this chapter, we have presented explicit constructions of HL-MRCs: i) For h1 = 1, h2 = 1

with the field size is O(n1) and ii) For h1 = 2, h2 = 1 with the field size is O(n4). We have
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also provided the construction of HL-MRCs using the parity check matrix approach, employing

Linearized Reed-Solomon Codes with the field size equal toO((max(t2+1, n2))h2h1). The ran-

dom construction approach utilizing the generator matrix is obtained with q >
k∑

j0=0

(
k
j0

)
L. Fur-

thermore, we have provided lower bounds on the field size required for HL-MRCs to achieve

the desired properties of maximum recoverability and hierarchical locality. We have also com-

pared these bounds with those derived from other papers.
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Chapter 4

Maximally Recoverable Product Codes

In this chapter, we study Maximally Recoverable Product Codes (MRPCs) that are explicitly

designed for product topologies Tm,n(a, b, 0). Product codes are a class of codes which have

generator matrices as the tensor product of the component codes and the codeword itself can

be represented as an (m × n) array, where the component codes themselves are referred to as

the row and column codes. MRPCs are a class of codes which can recover from all information

theoretically recoverable erasure patterns, given the a column and b row constraints imposed

by the code.

In this work, we derive puncturing and shortening properties of maximally recoverable prod-

uct codes. We give a sufficient condition to characterize a certain subclass of erasure patterns as

correctable and another necessary condition to characterize another subclass of erasure patterns

as not correctable.

We construct a certain bipartite graph based on the erasure pattern satisfying the regular-

ity condition for product topology (any a, b, h = 0) and show that there exists a complete

matching in this graph. We then present an alternate direct proof of the sufficient condition for

recoverability of an erasure pattern when a = 1. We later extend our technique to study the

topology for a = 2, and characterize a subset of recoverable erasure patterns in that case. For

both a = 1, 2, our method of proof is uniform, i.e., by constructing tensor product Gcol ⊗Grow

of generator matrices of column and row codes such that certain square sub-matrices retain full

rank. The full-rank condition is proved by resorting to the matching identified earlier.
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In an earlier work, higher order MDS codes denoted by MDS(l) have been defined in terms

of generic matrices and these codes have been shown to be constituent row codes for maximally

recoverable product codes for the case of a = 1. We derive a certain inclusion-exclusion type

principle for characterizing the dimension of intersection spaces of generic matrices. Applying

this, we formally derive a relation between MDS(3) codes and points/lines of the associated

projective space.

4.1 Organization of the Chapter

The rest of the chapter is organized as follows: Section 4.2 presents the derivation of several

properties related to MRPCs. Section 4.3 focuses on providing a certain class of correctable

and non-correctable erasure patterns. Additionally, it presents a subclass of recoverable erasure

patterns specifically for the case when a = 2. Section 4.4 introduces generic matrices and

higher-order MDS codes, along with discussing certain properties associated with them. Lastly,

Section 4.5 concludes the chapter

4.2 Properties of MRPCs

In this section, we show that puncturing on the rows of an MRPC results in an MRPC. We

also prove that shortening on the rows of an MRPC also results in an MRPC. Finally, we derive

that transpose of an MRPC is also an MRPC. We would like to note that though the shortening

and puncturing have been discussed in [52], the results are about incorrectable erasure patterns

and not MRPCs.

Definition 7 (Punctured code). Let J ⊂ [n] . The punctured code C|J of the code C[n, k] is the

linear code generated by the rows of the k × |J | submatrix of G, i.e. G|J .

Definition 8 (Shortened Code). The shortened code CJ of the linear code C is obtained by

puncturing the set of codewords that have zeros in the J-locations,

CJ = {c|J̄ : c ∈ C and c|J=0}.
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The generator matrix GJ of the shortened code CJ [n − |J |, k − |J |] is obtained from the

generator matrix G of the code C[n, k] as follows:

• For all j ∈ J , find a unique row in which the jth column is non zero.

• Delete those rows and all columns belong to J in the matrix G. Then such matrix ob-

tained from G generates the shortened code.

It can be easily verify that shortened code and punctured code of MDS code is MDS.

Claim 1. For any m1 < m (say l = m − m1), if E ∈ Em1,n(a, b) then E ∈ Em,n(a, b) and

E ∪ E(l) ∈ Em,n(a + l, b), where E(l) is an erasure pattern of size m × n with ln number of

erasures which are located in last l rows.

Proof. For any E ∈ Em1,n(a, b), there exist a code say C = Ccol ⊗ Crow which corrects E. Let

G = Gcol ⊗ Grow is the corresponding generator matrix, which implies G|E is full rank (i.e.,

(m1 − a)(n− b)).

Now, we can construct the code C ′ = C ′col ⊗ Crow for the topology Tm,n(a, b, 0) with the

generator matrix G′ = G
′
col ⊗Grow. Where

G
′

col =


Gcol︸︷︷︸

(m1−a)×(m1)

0︸︷︷︸
(m1−a)×(l)

0︸︷︷︸
(l)×(m1)

I︸︷︷︸
(l)×(l)

 .

Therefore,G′ = diag(Gcol⊗Grow, Il⊗Grow). Clearly, rank(G′ |E) = (m1−a)(n−b)+l(n−b) =

(m− a)(n− b). Hence, E ∈ Em,n(a, b).

Similarly, we can prove E ∪E(l) ∈ Em,n(a+ l, b) by constructing the code C ′ = C ′col ⊗ Crow

for the topology Tm,n(a + l, b, 0) with the generator matrix G′ = G
′
col ⊗ Grow. Where G′col =

[Gcol|P ], here P is the the matrix of size (m1 − a) × l in which columns are belong to the

column space of Gcol. Therefore, G′ = [Gcol ⊗ Grow|P ⊗ Grow]. Hence, rank(G
′ |
E∪E(l)) =

rank(G|E) = (m1 − a)(n− b) = (m− a− l)(n− b).
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Lemma 4.2.1. If C = Ccol⊗Crow is an MR code for the topology Tm,n(a, b, 0), then for anyM1 ⊂
[m] and |M1| = m1 < m, by removing the coordinates M̄1 = [m] \M1 of column code Ccol (

say Ccol|M1) and with the same row code Crow we get the MR code for Tm1,n(a−m+m1, b, 0).

Proof. Suppose G = Gcol ⊗ Grow is the generator matrix for the code C of particular form,

where Gcol is systematic. WLOG, assume that M1 = [m1]. The punctured code C ′ is obtained

from the code C by puncturing all the coordinates belong to last l = m − m1 rows of every

codeword. The corresponding generator matrix G′ = Gcol|M1 ⊗Grow, notice that G′ = G|[m1n]

(i.e. last ln columns are punctured).

From claim 1, for every erasure pattern E ∈ Em1,n(a − l, b) there exist an erasure pattern

E ∪ E(l) ∈ Em,n(a, b). Since C is an MR code, it can correct the E ∪ E(l). Therefore,

rank(G|
E∪E(l)) = (m − a)(n − b) and rank(G|

E∪E(l)) = rank(G
′ |E). Hence, the punctured

code C ′ is an MR code for Tm1,n(a−m+m1, b, 0).

Lemma 4.2.2. If C = Ccol ⊗ Crow is an MR code for the topology Tm,n(a, b, 0), then for any

M1 ⊂ [m] and |M1| = m1 < m, by shortening the column code at M̄1 = [m] \M1 locations

of column code Ccol (say CM̄1
col ) and with the same row code Crow we get the MR code for the

topology Tm1,n(a, b, 0).

Proof. SupposeG = Gcol⊗Grow is the generator matrix for the code C of particular form, where

Gcol is systematic. WLOG, assume thatM1 = [1 : m1−a, (m−a+1) : m]. Set of all codewords

belong to C which are having zeros in the rows M̄1 = [m1− a+ 1 : m− a] is the subcode of C
say CM̄1

sub . Let CM̄1 is the shortened code obtained by removing the coordinates belong to zeros

in CM̄1
sub . I.e., CM̄1 = CM̄1

col ⊗Crow and corresponding generator matrix GM̄1 = GM̄1
col ⊗Grow. Now,

we need to prove that CM̄1 is the MR code for the topology Tm1,n(a, b, 0). From claim 1, for

every erasure pattern belong to Em1,n(a, b) there exists exactly same kind of erasure pattern in

Em,n(a, b)|M1 .

Any correctable erasure pattern E ∈ Em1,n(a, b) is correctable for all the codewords belong

to CM̄1
sub , Since C is MR code. In fact, all the coordinates belong to M̄1 in CM̄1

sub are zeros and are

not useful to correct the erasures in E. Therefore, the shortened code CM̄1 corrects E.
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Lemma 4.2.3. For the topology Tm,n(a, b, 0) the code C = Ccol ⊗ Crow is an MR code if and

only if C∗ = Crow ⊗ Ccol is an MR code for Tn,m(b, a, 0).

Proof. Firstly, we prove that for every code C = Ccol⊗Crow for the topology Tm,n(a, b, 0) there

is an equivalent code C∗ = Crow ⊗ Ccol with Tn,m(b, a, 0).

Suppose G = Gcol ⊗ Grow is the generator matrix for the code C. Consequently, G∗ =

Grow ⊗ Gcol is the generator matrix for the code C∗. From the tensor product of two matrices,

We can see that G∗ can be obtained from G by few row and column permutations. Therefore,

the codes C and C∗ are equivalent. But in the view of topologies, codewords of two codes are

differ in its array structure and row code becomes column code and column code becomes row

code. Thus, If the code C corrects an erasure pattern say E then C∗ corrects ET . Hence, there

exist a bijective map φ : Em,n(a, b)→ En,m(b, a), such that φ(E) = ET .

Now we prove one direction of the lemma and the other direction can also be done similarly.

suppose the code C is MR code then it corrects every E ∈ Em,n(a, b). So, it’s equivalent code

C∗ can correct corresponding erasure pattern ET which is belong to En,m(b, a). Since φ is

bijective, C∗ correct all the erasure patterns belong to En,m(b, a). Hence C∗ is MR Code for the

topology Tn,m(b, a, 0).

Corollary 4.2.4. If an erasure pattern is correctable in square product topology Tn,n(a, a, 0),

then its transpose is also correctable in Tn,n(a, a, 0).

4.3 Characterization of Recoverable Erasure Patterns

In this section, we discuss the characterization of correctable and non-correctable erasure

patterns, the construction of bipartite graphs for Regular Erasure Patterns (REPs), the recover-

ability of REPs for the case when a = 1, and a subset of recoverable erasure patterns specifi-

cally when a = 2.
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4.3.1 Correctable and Incorrectable Erasure Patterns

In this section, we first prove an independent claim which shows that for the case of a = 1,

if a code can correct an erasure pattern, it can also correct a row permutation of the erasure pat-

tern. Then, we go on to show that unions of regular erasure patterns are regular and correctable

in a higher topology. Finally, we identify a class of erasure patterns based on unions of tensor

products which are not correctable. This class is a generalization of the counter example of

regular, incorrectable erasure pattern provided in [52].

Claim 2. If the code C for Tm,n(a = 1, b, 0) is constructed over the finite field of characteristic

two and can recover from an erasure pattern E, then it can also recover from another erasure

pattern E ′ which is obtained by permuting the rows of E.

Proof. SupposeG = Gcol⊗Grow is the generator matrix for the code C, whereGcol = [Im−1 | 1].

Let E be an erasure pattern in [m]× [n]. Let Ei ⊆ [n], i ∈ [m] denote the ith row of erasures of

E and let Li = [n]\Ei. Note thatEi = φ, if ith row has no erasures. An erasure pattern is recov-

erable if and only if the residual generator matrix after removing the columns corresponding to

the erasures has full row rank.

G|L =


Grow|L1 Grow|Lm

. . . ...

Grow|Lm−1 Grow|Lm

 . (4.1)

Wolog, we will consider the permutation which involves interchanging of just two coordinates.

If it is interchanging within the rows u1, u2 ∈ [m−1], the full row rank property of the residual

generator matrix is clear. Now, consider the case when u1 = 1, u2 = m rows are interchanged.

The residual generator matrix G|L′ is obtained by interchanging Grow|L1 and Grow|Lm in (4.1).

By premultiplying G|L′ with A(m−1)(n−b)×(m−1)(n−b) =


In−b

... . . .

In−b In−b

, we have a ma-
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trix equivalent (upto row and column permutations) to G|L (finite field is of characteristic 2).

Hence rank(G|L′) = rank(G|L) and the claim follows.

Though the above claim is an independent statement, we believe that it sheds some light on

the reason behind a = 1 case being easier to characterize than the general a case.

Definition 9 (l-partitioned REP (l-REP) for Tm,n(a, b, 0)). An Irreducible Regular Erasure

Pattern (IREP) say E, and supports of E is enclosed by U × V ⊆ [m] × [n] is l-REP if there

exists E1, E2, . . . , El ∈ Em,n(a, b) and supp(Ei) is enclosed by Ui × Vi ⊆ [m] × [n], ∀i ∈ [l]

such that Ui ∩ Uj = ∅, ∀i 6= j and
l⋃

i=1

Ui = U .

Lemma 4.3.1. Any l-REP for topology Tm,n(a, b, 0) is a REP with respect to the topology

Tm,n(al, b, 0).

Proof. Let E is any l-REP for Tm,n(a, b). Suppose supp(E) is enclosed by U×V ⊆ [m]× [n],

where |U | = u, |V | = v.

|E| = |E ∩ (U × V )| =
l∑

i=1

|Ei ∩ (Ui × Vi)| (∵ E is l-REP)

≤
l∑

i=1

(via+ uib− ab) (∵ Ei is IREP)

= v(al) + ub− (al)b.

In Lemma 4.2.2, we have shown that the shortening of an MR code is also an MR code.

Utilizing this property, we now prove that an l-REP for Tm,n(a, b, 0) is correctable in a different

topology with the same array size (m × n), but with the number of parities set to al (i.e.,

Tm,n(al, b, 0)).

Theorem 4.3.2. Any l-partitioned REP for the topology Tm,n(a, b, 0) is correctable with the

topology Tm,n(al, b, 0).
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Proof. Suppose E is any l-partitioned REP in which supp(E) are enclosed by U × V ⊆
[m]× [n] with |U | = u, |V | = v. Therefore, there exists E1, E2, . . . , El ∈ Em,n(a, b) such that

Ui∩Uj = ∅, ∀i 6= j and
l⋃

i=1

Ui = U . Where supp(Ei) is enclosed byUi×Vi ⊆ [m]×[n] ∀i ∈ [l]

with |Ui| = ui and |Vi| = vi. Let C = Ccol ⊗ Crow is the MR code with the generator matrix

G = Gcol ⊗ Grow. From Lemma 4.2.2, each Ei correctable by the corresponding shortened

code CŪi = CŪicol ⊗ Crow for the topology Tui,n(a, b, 0) and corresponding generator matrices are

GŪi = GŪi
col ⊗ Grow ∀i ∈ [l]. Then E is correctable by the following generator matrix (G′) for

the topology Tm,n(al, b, 0):

G
′
=



GŪ1 0 · · · 0 0

0 GŪ2 · · · 0 0

...
... . . . ...

...

0 0 · · · GŪl 0

0 0 · · · 0 G∗


, (4.2)

where G∗ = Im−u ⊗Grow.

The sufficient condition of the Conjecture 1 given in [16] (i.e., every regular erasure pattern

is correctable) is disproved by providing the following counter example in [52].

Example 3 ([52]). An example of the REP, which is not correctable. Let E be the maximal era-

sure pattern for T5,5(2, 2, 0) and let the complement of erasure pattern be E = {(1, 1), (2, 2),

(2, 3), (3, 2), (3, 3), (4, 4), (4, 5), (5, 4), (5, 5)} (see Fig. 4.1).

Alternatively, the given example of REP (Example 3) is demonstrated to be not correctable

through the following lemma in [55].
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Figure 4.1: Example for a maximal erasure pattern in T5,5(2, 2, 0)

Lemma 4.3.3 (Lemma 5.3 in [55]). If U1, U2 are subspaces of U and V1, V2 are subspaces of

V , then

dim(U1⊗V1+U2⊗V2) = dim(U1).dim(V1)+dim(U2).dim(V2)−dim(U1∩U2).dim(V1∩V2).

(4.3)

In the Example 3, we can find U1 = {2, 3}, V1 = {2, 3}, U2 = {4, 5}, V2 = {4, 5}. We get,

dim(U1 ⊗ V1 + U2 ⊗ V2) = 7 which is less than the |(U1 ⊗ V1) ∪ (U2 ⊗ V2)| = 8. Therefore,

from Eq. (4.3), the erasure pattern E is not correctable.

From Eq. (4.3), we can observe that an erasure pattern E is not correctable whenever there

exists U1, V1, U2 and V2 in E such that dim(U1 ∩ U2).dim(V1 ∩ V2) > 0. The collection

of all such erasure patterns are not correctable REPs. Building upon this condition, we have

characterized a class of erasure patterns that are not correctable, as clarified in the following

theorem.

Theorem 4.3.4. Suppose E is the maximal erasure pattern for Tm,n(a, b, 0), i.e., E = (m −
a)(n− b). For any such E, If there exist (U1 × V1) & (U2 × V2) ⊂ [m]× [n] in E such that

i) |Ui| < (m− a), |Vi| < (n− b)∀i = {1, 2} and

ii) U1, U2, V1 and V2 satisfies any of the following conditions:
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a) |U1 ∪ U2| > (m− a) and |V1 ∪ V2| > (n− b).

b) |U1 ∪ U2| > (m− a), |V1 ∪ V2| ≤ (n− b) and |V1 ∩ V2| 6= 0.

c) |U1 ∪ U2| ≤ (m− a), |V1 ∪ V2| > (n− b) and |U1 ∩ U2| 6= 0.

then E is not correctable.

Proof. We use the same notation to represent subspaces of column code U1, U2 with respect

to the column indices U1, U2 of it’s generator matrix interchangeably and also for V1, V2. Now

using Lemma 4.3.3, we get

dim(U1 ⊗ V1 + U2 ⊗ V2) = |U1||V1|+ |U2||V2|

− dim(U1 ∩ U2).dim(V1 ∩ V2)

In above, equality holds from the condition i) of the theorem. Now, for every case of condition

ii), we can verify dim(U1 ∩ U2).dim(V1 ∩ V2) > |U1 ∩ U2|.|V1 ∩ V2|. Therefore, dim(U1 ⊗
V1 + U2 ⊗ V2) < |(U1 ⊗ V1) ∪ (U2 ⊗ V2)|. Hence, E is not correctable.

Note that the erasure pattern given as Example 3 falls under the case of i)a) of the theorem

4.3.4. Another example is illustrated in the following.

Example 4. Let E is the maximal erasure pattern for T7,7(3, 3, 0) and E = {(1, 1), (1, 2),

(1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4), (5, 2), (5, 3), (5, 4)}.

In this E we can find U1 = {1, 2, 3}, V1 = {1, 2, 3}, U2 = {3, 4, 5}, V2 = {2, 3, 4} and are

satisfies the conditions i) and ii)b) of the theorem 4.3.4. We get dim(U1 ⊗ V1 + U2 ⊗ V2) = 15

which is less than the |(U1 ⊗ V1) ∪ (U2 ⊗ V2)| = 16. Therefore, E is not correctable. Without

checking the regularity condition we can find it is not correctable. We would like to note

here that these patterns are incorrectable irrespective of if these patterns are regular and not.

Hence, there is no need to check for the regularity condition.

74



4.3.2 Bipartite Graphs for Regular, Irreducible Erasure Patterns

In this section, we construct two bipartite graphs based on an erasure pattern and derive

some properties of these graphs.

Construction 4.3.5 (Bipartite Graph between erasures and non-erasures for general a ≥ 1).

Consider a row-wise irreducible erasure pattern E with enclosing grid U × V ⊆ [m] ×
[n], |U | = u, |V | = v, where enclosing grid is used to refer to the smallest grid containing

the erasure pattern E. Assuming that the elements of U are sorted, let the erasure pattern be

such that each row has b+ri, i ∈ U erasures. Let UL ⊆ U be arbitrary subset of u−a elements

and UR = U \ UL. We construct a bipartite graph as follows:

• For each i ∈ UL, we create ri vertices on the left. The ri left vertices corresponding to

i ∈ UL are denoted by e(i, 1), e(i, 2), . . . , e(i, ri). Hence, the total number of vertices on

the left are
∑

i∈UL ri.

• Each vertex on the right corresponds to one non-erasure in the rows UR. Let there be w

non-erasures in the rows UR. The vertices on the right are denoted by d1, d2, . . . , dw.

• We place an edge between a left vertex e(i, j) and a right vertex d` if there exists an

erasure in the position (s, t) ∈ [m]× [n] where s is the row number of the erasure e(i, j)

and t is the column number of the non-erasure d`.

Lemma 4.3.6. If an erasure pattern is regular and row-wise irreducible for topology Tm,n(a, b, 0),

then there exists a complete matching1 in the bipartite graph (for the erasure pattern) resulting

from Construction 4.3.5.

Proof of Lemma 4.3.6. We will prove that there exists a matching by verifying the Hall’s con-

dition. To do so, we consider all the left vertices corresponding to US ⊆ UL, where |US| = s.

The number of such vertices on the left are given by
∑

i∈US ri. Let US × VT denote the en-

closing grid of all the erasures in the rows US . Denote |VT | = t. Consider the erasures in the

1By complete matching in a bipartite graph, we refer to a matching in which all the left vertices are included.
In this paper, whenever we refer to matching in a bipartite graph, we mean complete matching.
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1 2 3 4 5 6 7 8 9 10

1 × × × ×
2 × × ×
3 × × ×
4 × × ×
5 × × ×
6

Figure 4.2: Example of a regular erasure pattern, (m,n) = (6, 10), (a, b) = (1, 2). Enclosing
grid of the erasure pattern is [1 : 5]× [3 : 10].

1 2 3 4 5 6 7 8 9 10

1 × ⊗ ⊗ ×
2 × ⊗ ×
3 × × ⊗
4 × × ⊗
5 × × × © © © © ©
6

Figure 4.3: The matching in construction II.1.

grid (US ∪ UR)× VT of s+ a rows and t columns. Let x denote the number of erasures in the

subgrid UR × VT . Since the erasure pattern is regular and irreducible, we apply the condition

in (2.11) to the grid (US ∪ UR)× VT . Then, we have

sb+
∑
i∈US

ri + x ≤ ta+ (s+ a)b− ab. (4.4)

Thus, we have an upper bound on x as x ≤ at −∑i∈US ri. Thus, the number of non-erasures

in these t columns is lower bounded by p = at − x ≥ ∑i∈US ri. This proves that the neigh-

bourhood of a set of size
∑

i∈US ri is at least
∑

i∈US ri. Hence, for any set A where we consider

all the vertices corresponding to any s rows in the bipartite graph, we have that |N(A)| ≥ |A|.
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Now, consider the case when we take sets A such that A partially intersects s rows. Since the

neighbourhoodN(A) in this case is the same as that we would have obtained when we consider

all the vertices corresponding to these s rows, it is true that |N(A)| ≥ |A| even in this case.

Construction 4.3.7 (Bipartite Graph between rows and columns for a = 1). Consider a row-

wise irreducible erasure pattern E with enclosing grid U × V ⊆ [m]× [n], |U | = u, |V | = v.

Let ` denote an arbitrary element of U and the support of b + r` erasures in the row given by

the set V`. Consider the erasures in the grid (U \ `)× (V \ V`). We construct a bipartite graph

as follows:

• The vertices on the left correspond to the elements of the set (U \ `).

• The vertices on the right correspond to the elements of the set (V \ V`)

• We place an edge between two vertices i and j if the array element (i, j) is erased in E.

Lemma 4.3.8. Consider an erasure pattern which is regular and row-wise irreducible for

topology Tm,n(a = 1, b, 0). Consider the bipartite graph (for the erasure pattern) resulting

from Construction 4.3.7. The following property holds for this bipartite graph: If A ⊆ U \ `
(left vertices), then the neighbourhood of A, N(A) satisfies |N(A)| ≥∑i∈A ri.

Proof of Lemma 4.3.8. Consider the left vertices corresponding to US ⊆ (U \`), where |US| =
s. Let (US ∪ `) × VT denote the enclosing grid of all the erasures in the rows US ∪ `. We

note that |V`| = b + r`. Also we denote |VT \ V`| = t. Since the erasure pattern is regular and

irreducible, we apply the condition in (2.11) to the grid (US ∪ `)× VT . Then, we have

(s+ 1)b+
∑

i∈(US∪`)

ri ≤ (t+ b+ r`) + (s+ 1)b− b. (4.5)

The above equation implies that t ≥∑i∈US ri ≥ s.

We would like to note that for the case of a = 1, both the above constructions result in the

same bipartite graph.
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3 4 5 9 10

1 ⇥ ⇥
3 ⇥ ⇥ ⇥
4 ⇥ ⇥
5 ⇥ ⇥ ⇥

Figure 4.4: Continuing from previous example in Fig. 4.2, we have ` = 2, V` = {6, 7, 8},
r1 = 2, r3 = 1, r4 = 1, r5 = 1. Note that the neighbourhoods of subsets of left vertices satisfy
the condition in Lemma 4.3.8.

4.3.3 Recoverability of Regular Erasure Patterns for a = 1

In this section, we give an alternate proof for the Theorem 4.3.11 which is the Conjecture 1

for a = 1 [16]. The following two lemmas would be useful in the proving the theorem.

Lemma 4.3.9. Consider a square matrix B of size n × n. The matrix consists of zeros at

some positions and distinct variables (indeterminates) in the rest of the positions. Consider a

bipartite graph constructed based on this matrix as follows:

• The left vertices correspond to rows.

• The right vertices correspond to columns.

• We place an edge between two vertices i, j, whenever there is a variable in the position

(i, j).

If there is a matching in the bipartite graph thus constructed, then det(B) is a non-zero (mul-

tivariate) polynomial and the variables can be assigned values from a large enough finite field

Fq such that the matrix is full rank.

Proof. If a variable is present in position (i, j), then we denote the variable by xi,j . Let

xi1,j1 , xi2,j2 , . . . xin,jn be the variables involved in the matching. The determinant of the ma-

trix is a multi-variate polynomial and due to the matching,
∏n

`=1 xi`j` is one of the monomials
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adding to the determinant polynomial.
∏n

`=1 xi`,j` has a nonzero coefficient as no other term

in the determinant would give the same monomial. This is due to the fact that all the variables

in the matrix are distinct. Hence, the determinant polynomial is a non-zero polynomial. It fol-

lows by Schwartz-Zippel Lemma that the indeterminates can be assigned values from a large

enough finite field such that the determinant of the matrix is nonzero and hence the matrix is

full rank.

Lemma 4.3.10 ([16]). Consider an erasure pattern E ⊆ [m]× [n]. Let E ′ ⊆ E be a row-wise

irreducible erasure pattern obtained as follows: If ith row (1 ≤ i ≤ m) of E has ≥ b + 1

erasures, then ith row of E ′ is identical to ith row of E. All the rest of the rows are non erasures

in E ′. Then E is recoverable if and only if E ′ is recoverable.

Theorem 4.3.11 ([16]). For the topology Tm,n(a = 1, b, 0), if an erasure pattern is regular,

then it is recoverable.

Proof. Based on the above lemma, in order to prove Theorem 4.3.11, it is enough to consider

row-wise irreducible, regular erasure patterns. In [16], the proof of Theorem 4.3.11 considered

the following two cases:

• Case 1: E have exactly b + 1 erasures in each row (which has nonzero erasures). This

can be considered as the base case.

• Case 2: E have b+ ri, ri ≥ 1, i ∈ U erasures in each row (where U × V is the enclosing

grid of E).

We will give an alternate proof which unifies both the cases. This proof will be generalized

later to the case of a = 2 for some erasure patterns.

Consider a row-wise irreducible, regular erasure pattern E which has an enclosing grid of

U × V and has b + ri, ri ≥ 1, i ∈ U erasures in each row. If |U | = 1, a simple parity check

code as the column code will suffice to correct the erasure pattern. So, we assume that |U | ≥ 2.

To prove that E is recoverable, we need to construct a code C which is an instantiation of

topology Tm,n(a = 1, b, 0) such that dim(C|D\E) = dim(C), where D = [m] × [n]. Since C is

an instantiation of topology Tm,n(a = 1, b, 0) and Definition 1 for h = 0 case is precisely the
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definition of product of codes [61], we have C = Ccol ⊗ Crow. To construct C, we construct the

generator matrices of Ccol and Crow [16], denoted by Gcol and Grow respectively.

For correcting any row-wise irreducible, regular erasure pattern E, the column code Ccol is

a simple parity check code, the generator matrix of which is given by

Gcol = [1 Im−1] , (4.6)

where Gcol is a (m− 1)×m matrix.

The row code Crow is constructed based on the erasure pattern E. The generator matrix of

the row code Grow is of the size (n − b) × n and the entries of the generator matrix are either

variables(indeterminates) or zeros. A variable present at position (i, j) is denoted by xi,j .

• For j ∈ [n]\V , which has no erasures, a row is added in the generator matrixGrow which

has a variable in the j th position and zeros in all the other positions.

• Consider a row of the erasure pattern E which has b + ri, i ∈ U erasures and let i × Vi
denote the enclosing grid of the row of erasures. Let VT denote a b element subset of

Vi. ri rows are added in the generator matrix corresponding to this row of the erasure

pattern. Each of the ri rows of the generator matrix is formed by placing variables in

columns VT and at one additional column in Vi \ VT . All the rest of the entries are zeros.

• Until now, the number of rows of generator matrix which have already been filled are

n− v +
∑

i∈U ri. Since the erasure pattern in regular, we have that

ub+
∑
i∈U

ri ≤ v + ub− b.

Hence, to complete the n− b rows of the generator matrix, we have to add n− b− (n−
v +

∑
i∈U ri) = v − b −∑i∈U ri = t rows. Each of these rows is formed by placing

variables in the V columns and zeros in the other [n] \ V columns.

Combining all the above, Grow (upto permutation of columns) can be written as
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Grow =



GI︸︷︷︸
(n−v)×(n−v)

0

0 GS︸︷︷︸
(
∑
i∈U ri)×v

0 GT︸︷︷︸
t×v


.



x1,1 0 0 0 0 0 0 0 0 0

0 x2,2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 x3,7 x3,8 x3,9 0

0 0 0 0 0 0 x4,7 x4,8 0 x4,10

0 0 0 0 0 x5,6 x5,7 x5,8 0 0

0 0 x6,3 0 0 0 0 0 x6,9 x6,10

0 0 0 x7,4 x7,5 x7,6 0 0 0 0

0 0 x8,3 x8,4 x8,5 0 0 0 0 0


Figure 4.5: Grow for the erasure pattern in the earlier example. Rows 1 and 2 in the above matrix
correspond to the first two non-erasure columns. Rows 3 and 4 correspond to the first row of the
erasure pattern. Note that V1 = {7, 8, 9, 10} and VT = {7, 8}. Rows 5, 6, 7 and 8 correspond
to the next four rows of the erasure pattern. In this matrix, there is no GT component.

The generator matrix G of the product code [61] in terms of the generator matrices of the

row and column codes is given by

G = Gcol ⊗Grow

=


Grow Grow

Grow
. . .

Grow Grow

 . (4.7)

Now, we have to prove that the erasure pattern E is recoverable by the code C. It is enough

to show that there exists an assignment of the variables in Grow such that rank(G|D\E) =
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(n − b)(m − 1). Without loss of generality, we assume that the parity block column (the one

which has m copies of Grow) is always included in E. Otherwise, the columns of Gcol can be

permuted so that it is included.

To examine the structure of G|D\E , we will first consider the systematic part (last m − 1

block columns in (4.7)). Grow corresponding to i ∈ U has erasures and the submatrix which

remains after deleting the columns corresponding to the erasures has the structure2

Grow|[n]\Vi =



GI︸︷︷︸
(n−v)×(n−v)

0

0 GSi︸︷︷︸
(
∑
i∈U ri×v−b−ri)

0 GTi︸︷︷︸
(t×v−b−ri)


.

It can be observed based on the construction of Grow that GSi has ri zero rows. Let GZi

denote the matrix which remains after removing the ri zero rows fromGSi . Grow corresponding

to i ∈ [m]\U remains unchanged, since there are no erasures in these rows. For consistency of

notation, we have Vi = φ, GSi = GZi = GS , GTi = GT for i ∈ [m] \ U . For ease of notation,

we denote

 GZi

GTi

 , i ∈ [m] by GYi .

By rearranging the rows of G|D\E so that all the zero rows in GSi ,∀i ∈ U are shuffled to

the top, the resulting matrix Gπ has the following structure:

2The matrices GSi
, GTi

, GZi
and GYi

are used to denote particular sub matrices of Grow. Note that
Si, Ti, Zi, Yi by themselves do not refer to anything.
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Gπ =



GP

GI

GY1

GL
. . .

GI

GYm−1


,

where GP is of size (
∑

j∈U rj)× (n− b− r1).

Claim 3. Consider the matrix GYi , i ∈ [m]. There exists a complete matching in the bipartite

graph constructed based on this matrix as in Lemma 4.3.9.

Proof. First, we will consider the case when i ∈ U . We will show that there is a matching

in GZi and since GTi contains rows completely filled with variables, the matching in GZi can

be easily extended to a matching in GYi . In order to show that there is a matching in GZi , we

will verify the Hall’s condition. Consider a subset A formed by including all the
∑

j∈US rj

vertices associated with rows US ⊆ U . The mapping between rows US and left vertices of

the bipartite graph can be done since the rows of Grow (and hence GZi) are constructed based

on the rows U . Applying Lemma 4.3.8 (since GZi is obtained by removing columns Vi from

Grow), we have that |N(A)| ≥ ∑j∈US rj . Now, we consider the case when the subset A is

formed by tj of rj vertices corresponding to rows US in U , where tj < rj, j ∈ US . Note that

|A| =
∑

j∈US tj . Based on the construction of matrix GS , we have that by removing rj − tj
vertices corresponding to j th row, the neighbourhood can reduce almost by rj − tj . Hence, it

follows that |N(A)| ≥∑j∈US rj −
∑

j∈US(rj − tj) =
∑

j∈US tj .

Now, consider the case when i ∈ [m] \ U . Since |U | ≥ 2, there is at least some i such that

bipartite graph of GYi has a matching (say M1). The ri rows and the b+ ri columns indexed by

Vi, which have been erased to obtain GYi , have a matching within themselves (say M2), since
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the neighbourhood of any one of the ri rows has exactly one column unique to itself. Then,

M1 ∪M2 is a matching in

GS

GT

.

Let GY ′i
, i ∈ [m] denote the square submatrix of GYi which is associated with the matching

in Claim 3. Applying Lemma 4.3.9, we have that det(GY ′i
) is a non-zero polynomial.

Now consider the matching which results by applying Lemma 4.3.6 to the erasure pattern

E with UR = {1}. Let VM ⊆ [n] denote the columns (right vertices) in the matching. In the

example in Fig. 4.3, VM = {6, 7, 8, 9, 10}. Let GP ′ be square submatrix of GP by restricting to

VM columns. It can seen that the all the variables in GP ′ are all distinct, and by Lemma 4.3.6,

there exists a matching between the
∑

j∈U rj rows and the columns that are retained in GP ′ .

Hence, applying Lemma 4.3.9, we have that det(GP ′) is also a non-zero polynomial.

Consider the following square submatrix of Gπ:

Gπ′ =



GP ′

GI

GY ′1

GL′
. . .

GI

GY ′m−1


,

det(Gπ′) = det(GP ′)det(GI)
m−1

m−1∏
i=1

det(GY ′i
).

It follows that det(Gπ′) is a non-zero multivariate polynomial, since each of the factors

in the product are non-zero. Hence, the variables can be assigned values from a sufficiently

large finite field Fq such that Gπ′ is a full rank matrix. Hence, rank(G|D\E) = rank(Gπ′) =

(n− b)(m− 1). Thus, we have proved that the erasure pattern E is recoverable.
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4.3.4 Partial Characterization of Recoverable Erasure Patterns for a = 2

In this section, we define an extended erasure pattern E ′ of E where E is an erasure pattern

for topology Tm,n(a = 1, b, 0), E ′ is for Tm+m′,n(a = 2, b, 0) and E ′ is obtained from E by

replicating some rows of erasures in E. If E is row-wise irreducible and regular, we prove that

E
′ is also regular and recoverable.

Definition 10 (Extended Erasure Pattern). Consider an erasure pattern E ⊆ [m] × [n] which

is row-wise irreducible and regular for the topology Tm,n(a = 1, b, 0). Let U × V denote the

enclosing grid of E in [m]× [n]. Let i×Vi denote the enclosing grid for the erasures in ith row

i ∈ U . Consider an erasure pattern E ′ for the topology Tm+m′,n(a = 2, b, 0), m′ ≤ m formed

by extending E as follows:

• Rows of the erasure pattern are replicated i.e., Vm+` = Vj , 1 ≤ ` ≤ m′, 1 ≤ j ≤ m.

• The replication factor of any row of the erasure pattern is atmost two, i.e., Vm+` 6= Vm+`′

when ` 6= `′.

The erasure pattern E ′ will be referred to as extended erasure pattern.

Lemma 4.3.12. Any extended erasure pattern resulting from Definition 10 is row-wise irre-

ducible and regular for the topology Tm+m′,n(a = 2, b, 0).

Proof. Let E ′ be an extended erasure pattern of E. It is clear that E ′ is row-wise irreducible.

Consider a sub grid U × V ⊆ [m + m′] × [n]. It is enough to consider |U | ≥ a + 1 = 3 and

|V | ≥ b+ 1 to verify the regularity condition.

Let U1 = U ∩ [m] and U2 = U ∩ {m + 1, . . . ,m + m′}. By the definition of extended

erasure pattern, corresponding to U2, there is a set U ′2 ∈ [m] such that the structure of erasures

85



in U2 × V is the same as that in U ′2 × V .

|E ′ ∩ (U × V )| = |E ′ ∩ ((U1 ∪ U2)× V )|

= |E ′ ∩ (U1 × V )|+ |E ′ ∩ (U2 × V )|

= |E ∩ (U1 × V )|+ |E ∩ (U ′2 × V )|
(a)

≤ (v + u1b− b) + (v + u2b− b)

= 2v + ub− 2b,

where (a) follows since E is regular for topology Tm,n(a = 1, b, 0).

Theorem 4.3.13. Any extended erasure pattern resulting from Definition 10 is recoverable for

the topology Tm+m′,n(a = 2, b, 0).

Proof. Let E ′ be the extended erasure pattern of E, where E is row-wise irreducible and

regular for the topology Tm,n(a = 1, b, 0). Let U × V denote the enclosing grid of E ′ in

[m + m′] × [n]. To recover E ′, we employ the same row code as the one used for recovering

E in Tm,n(a = 1, b, 0), the construction of which is described in the proof of Theorem 4.3.11.

The generator matrix of the column code Gcol is given by

Gcol =
[
Σ(m+m′−2)×2 Λ(m+m′−2)×(m+m′−2)

]
, (4.8)

where Σ = [σi,j], 1 ≤ i ≤ m + m′ − 2, 1 ≤ j ≤ 2 and all the entries in Σ are indeterminates,

Λ is a diagonal matrix with entries λi,i as indeterminates. The product code has the following

generator matrix

G = Gcol ⊗Grow = [Σ⊗Grow Λ⊗Grow]

=


σ1,1Grow σ1,2Grow λ1,1Grow

...
... . . .

σ`,1Grow σ`,2Grow λ`,`Grow

 ,
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where ` = m+m′ − 2.

Similar to the a = 1 case, after rearranging the zero rows of G|D\E′ , the resulting matrix Gπ

has the following structure.

Gπ =



GP

λ1,1GI

λ11GY1

GL
. . .

λ`,1GI

λ`,1GY`


,

where GP is of size (
∑

j∈U rj)× (2n− 2b− r1 − r2). Note that GP and GL are obtained by

combining the first two block columns in G|D\E′ . The matching in GYi , i ∈ ` follows from the

a = 1 case since the row code is the same.

Now consider the matching which results by applying Lemma 4.3.6 to the erasure patternE ′

with UR = {1, 2}. Let VM denote the right vertices in the matching. Let GP ′ be square subma-

trix of GP by restricting to VM columns. By Lemma 4.3.6, there exists a matching between the∑
j∈U rj rows and the columns that are retained in GP ′ . However, note that unlike the a = 1

case, each non-zero entry in this case is a product of variables σα,β and xj,k. Also, note that the

product of variables given by the matching is a monomial which cannot be cancelled by any

other term in det(GP ′). To show this, assume that one of the entry in the matching is σ1,βxj,k.

We would like to note that there can be atmost one more variable in GP ′ containing xj,k and

if it is present, then necessarily it must be multiplied by σ2,β . Hence, the monomial formed by

the matching is unique, following which det(GP ′) is a non-zero polynomial. Rest of the proof

is exactly same as the a = 1 case.
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4.4 Generic Matrices and Higher Order MDS Codes

In this section, we will introduce generic matrices and higher order MDS codes which have

been shown in [55], that these are constituent row codes for the case of a = 1 case. We prove

a certain inclusion-exclusion type principle relating to the dimension of intersection spaces of

generic matrices. We will use this result to derive a correspondence between (n, 3)-MDS(3)

code and its associated projective space.

Definition 11 (Generic Matrix). A matrix W ∈ Rk×n (i.e., taking values from real numbers) is

said to be a generic matrix, if the set of columns of W avoid a fixed low-dimensional algebraic

variety with probability one.

We can interpret the genericity of a matrix as follows:

• If we pick all the elements from a large finite field, the probability that the vectors are

from low dimensional algebraic variety is close to zero.

• This also means that the sum space of column spaces in general have maximum rank

possible and the intersection of column spaces have minimum rank possible with high

probability.

We will now prove an inclusion-exclusion principle type result related to the dimension of

generic matrices.

Theorem 4.4.1. Consider a generic matrixW of size k×n over F. Consider pair-wise disjoint

subsets A1 . . . , Al of [n], then we have that

dim(WA1 ∩ . . . ∩WAl) =
l∑
i

min(|Ai|, k)

−
∑

1≤i<j≤l

min(|Ai|+ |Aj|, k)

+
∑

1≤i<j<t≤l

min(|Ai|+ |Aj|+ |At|, k)

. . .+ (−1)l+1 min(|A1|+ |A2|+ . . .+ |Al|, k).
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Proof. We will prove this result by induction. For the case of l = 2, we have that

dim(WA1 ∩WA2)

= dim(WA1) + dim(WA2)− dim(WA1 +WA2)

= min(|A1|, k) + min(|A2|, k)−min(|A1|+ |A2|, k)

Assuming that the induction hypothesis is true l − 1, we will prove it for the case of l.

dim(WA1 ∩ . . . ∩WAl) =

dim(WA1 ∩ . . .WAl−1
) + dim(WAl)

−dim((WA1 ∩ . . . ∩WAl−1
) +WAl)

SinceA1, A2, . . . , Al are disjoint, we have that dim((WA1∩. . .WAl−1
)+WAl) = min(dim(WA1∩

. . .WAl−1
) + dim(WAl), k). Applying this and the induction hypothesis, the statement of the

theorem follows.

Note that such inclusion-exclusion type principle is in general not true for the dimensions

of vector spaces. However, it is interesting that for the case of generic matrices with column

subspaces picked based on disjoint matrices, such a relation holds.

Definition 12 (Higher order MDS code (MDS(l)). Let C be an (n, k) code with generator

matrix Vk×n. For l ≥ 2, we say that C is an MDS(l) code if for all A1, . . . , Al ⊂ [n],

dim(VA1 ∩ . . . ∩ VAl) = dim(WA1 ∩ . . . ∩WAl),

where W is a k × n generic matrix.

Theorem 4.4.2 (Equivalent definition of MDS(l)). Let V is the generator matrix for the (n, k)

MDS code. Then the code generated by V is MDS(l) if and only if for all A1, . . . , Al ⊆ [n]

such that |Ai| ≤ k,
l∑

i=1

|Ai| = (l − 1)k and A1 ∩ . . . ∩ Ak = ∅, we have that

dim(VA1 ∩ . . . ∩ VAl) = 0⇐⇒dim(WA1 ∩ . . . ∩WAl) = 0.
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Theorem 4.4.3 ([55]). Let C = Ccol⊗Crow be product code for the topology Tm,n(1, b, 0). Then

C is MR code if and only if Crow is an MDS(m) code. Here Ccol can be any single parity check

MDS code.

Proof. In [55] the above theorem is been proved by assuming Ccol as simple parity check code.

We can easily verify that it can be extended to any general single parity check MDS code.

Theorem 4.4.4. For the topology Tm,n(a, b, 0) if the code C = Ccol⊗Crow is MR then Crow is an

MDS(m− a+ 1) code and Ccol is MDS(n− b+ 1) code.

Proof. Suppose C = Ccol⊗Crow is MR code for Tm,n(a, b, 0). Then from lemma 4.2.1 the code

C ′ = Ccol|M1 ⊗ Crow is MR code for Tm−a+1,n(1, b, 0), here M1 ⊂ [m], |M1| = m − a + 1 and

Ccol|M1 is the punctured code of Ccol. So, from the corollary 4.4.3 it is clear that Crow should be

MDS(m− a+ 1) code.

Now by using lemma 4.2.3 we can say that C∗ = Crow ⊗ Ccol is MR code for Tn,m(b, a, 0).

Similarly, we can prove that Ccol is MDS(n− b+ 1) code.

Definition 13 (Projective Space (PG(k − 1, q)) [62]). The (k − 1)-dimensional projective

space over Fq is a set of points in which a point corresponds to a 1-dimensional subspace of

k-dimensional vector space over Fq (say V S(k, q)). It is denoted by PG(k − 1, q).

In canonical form PG(2, q) = {(1, x1, x2)|x1, x2 ∈ Fq}∪{(0, 1, x2)|x2 ∈ Fq}∪{(0, 0, 1)},
every point is the representative of a 1-dimensional subspace in V S(3, q), i.e. set of all scalar

multiples of the point. And line joining of any two points in PG(2, q), corresponds to 2-

dimensional subspace in V S(3, q). So, line contains the representatives of each 1-dimensional

subspace of 2-dimensional subspace. The projective space PG(2, q) has q2 + q + 1 points and

q2 + q + 1 lines with each line containing q + 1 points and each point lying on q + 1 lines. In

this view point we can state:

• Any three points are collinear in PG(2, q) implies linear dependency among three vec-

tors in V S(2, q).
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• Any three lines in PG(2, q) are concurrent implies three 2-dimensional subspaces meets

in V S(2, q), which gives a 1-dimensional subspace. The concurrent point is the repre-

sentative of that 1-dimensional subspace.

Theorem 4.4.5. A code C with a generator matrix V is an (n, 3)-MDS(3) code if and only if

the columns of V satisfy the following conditions in PG(2, q):

i) No three points are collinear.

ii) Take any three lines which are formed by distinct pair of points. Such three lines are non

concurrent.

Proof. Suppose the columns of V are the points in PG(2, q) and holds the properties i) and

ii). Now to prove that the code generated by V is (n, 3)-MDS(3) code, we show that V fulfills

the conditions given in the Theorem 4.4.2. Particularly for l = 3, we get three cases which we

prove one by one.

Case 1: |A1| = 3, |A2| = 3 and |A3| = 0.

Since VA3 = ∅, it is obvious that dim(VA1 ∩ VA2 ∩ VA3) = 0.

Case 2: |A1| = 3, |A2| = 2 and |A3| = 1.

From property i), it is clear that VA1 = F 3
q and VA2∪VA3 = F 3

q . Therefore, dim(VA2∩VA3) = 0

and dim(VA1 + (VA2 ∩ VA3)) = 3. Hence, dim(VA1 ∩ VA2 ∩ VA3) = dim(VA1) + dim(VA2 ∩
VA3)− dim(VA1 + (VA2 ∩ VA3)) = 0.

Case 3: |A1| = 2, |A2| = 2 and |A3| = 2.

From property ii), it is clear that VA1 ∩ VA2 ∩ VA3 = 0 for any pair-wise disjoint subsets Ai’s.

Therefore, dim(VA1 ∩ VA2 ∩ VA3) = 0.

Now we prove only if part. Assume V is the generator matrix for the (n, 3)-MDS(3) code.

For all the above three cases, we can see dim(WA1 ∩WA2 ∩WA3) = 0. For the case 1 and case

2 it is obvious. Now for the case 3, we use the formula given in the Theorem 4.4.1 to find the

dim(WA1 ∩WA2 ∩WA3), which equals to
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3∑
i

min(|Ai|, 3)−
∑

1≤i<j≤3

min(|Ai|+ |Aj|, 3)

+ min(|A1|+ |A2|+ |A3|, 3) = 3.2− 3.3 + 3 = 0.

So from the theorem 4.4.2, for every case dim(VA1 ∩ VA2 ∩ VA3) = 0.

We prove the non collinear property i) by using the specific case 2. Since V is full rank,

We can pick A1 with |A1| = 3 such that dim(VA1) = 3. Therefore, for any A2, A3 we get

dim(VA1 + (VA2 ∩ VA3)) = 3. Since dim(VA1 ∩ VA2 ∩ VA3) = 0, we get dim(VA2 ∩ VA3) = 0.

Which implies dim(VA2∪VA3) = 3. Therefore, Any three points in PG(2, q) are non collinear.

Now we use case 3 to prove non concurrent property ii). In this case all Ai’s are pair-wise

disjoint with cardinality 2. Since dim(VA1 ∩VA2 ∩VA3) = 0, We can say VA1 ∩VA2 ∩VA3 = 0.

Hence, there exist no point in PG(2, q) which lies on all these three lines formed by points

with the corresponding columns of V .

Note 5. For the construction of (5, 3)-MDS(3) code, the generator matrix which satisfies the

non-collinear property is sufficient. Since we have only 5 columns, the non-concurrent condi-

tion doesn’t arise. Therefore, for n = 5 any MDS code is MDS(3).

4.5 Conclusion

In this chapter, we have discussed shortening and puncturing properties of MRPCs. We

have expanded the class of correctable and incorrectable erasure patterns for general product

topologies. We also constructed a bipartite graph between a subset of rows of erasures and non-

erasures in a disjoint subset of rows. We proved that for a row-wise irreducible, regular erasure

pattern, there exists a complete matching in this graph. For the case of a = 1, we constructed

another bipartite graph between rows and columns of erasure sub-patterns and proved a certain

matching condition property of this graph. We gave an alternate proof of the sufficiency of

regularity for a = 1 case. We considered the generator matrixG of the product code and expand
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it as tensor product Gcol ⊗ Grow of generator matrices of column and row codes. We proved

that a certain square submatrix of this tensor product is full rank, by applying the properties of

bipartite graphs which we derived. We consider a subset of regular erasure patterns for the case

of a = 2, which are obtained by extending regular erasure patterns for a = 1. We prove that

these regular erasure patterns are also recoverable. Also, we have characterized (n, 3)-MDS(3)

codes in terms of the points/lines of the associated projective space. Its part of ongoing work

to use this characterization to construct (n, 3)-MDS(3) codes.
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Chapter 5

Sparse and Balanced Generator Matrix for the Local MRCs

In this chapter, we study sparse and balanced generator matrices of codes. A generator

matrix of a code is said to be sparse if each row of the generator matrix has minimal weight.

The advantage of sparse generator matrix is that in the event of a message symbol update,

the number of code symbols that need to be updated is minimum. A generator matrix is said

to be balanced if the weights of the columns of the generator matrix are all equal or differ

at most by one. A balanced generator matrix offers the benefit of approximately the same

computation time for all the code symbols. We present sparse generator matrices for MRC

with locality for single erasure and also sparse and balanced generator matrices for MRC with

locality parameter 2 for a large set of parameters.

Section 5.1 briefly reviews the Sparse and Balanced (SB) generator matrices of MDS codes

and LRCs. In Section 5.2, focuses on the construction of sparse matrix and balance matrix

of Local MRCs for single erasure by using the generator matrix of well-known PMDS codes.

Lastly, Section 5.3 presents the conclusion of the chapter.

5.1 Review of SB Generator Matrix for MDS Codes and LRCs

In this section, we review the results of [63]. Firstly, we will define a sparse and balanced

MDS code and state a result about the existence of these codes over a sufficiently large field

(q >
(
n−1
k−1

)
).
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Definition 17 (Sparse and Balanced (SB) MDS code:). An [n, k, d]q MDS code is called sparse

and balanced MDS code. If the generator matrix Gk×n satisfies following two conditions:

(1) Sparse: each row of G has minimum Hamming weight d = n− k + 1.

(2) Balanced: Hamming weights of any two columns of G are equal or differ by one.

Codes with this structure minimize the maximal computation time of computing any code

symbol. Because, sparsity minimizes the no. of nodes required to update with respect to a

modified data symbol in the data. Balanced property assures almost uniform load distribution

on each node.

The following Theorem 5.1.1 states the necessary conditions regarding the support con-

straints on any set of rows of a generator matrix in order to generate MDS codes. Initially,

it was conjectured in [64] by Dau et al. and subsequently verified for all k ≤ 7. Later, the

conjecture was proven in [65].

Theorem 5.1.1. If the specified supports of the generator matrices (M ) satisfy the so-called

MDS condition:

| ∪i∈I supp(Mi)| ≥ n− k + |I|. (5.1)

for all non empty subsets I ⊆ {1, 2, . . . , k}, where supp(Mi) = {j|1 ≤ j ≤ n,mij 6= 0} is the

support of ith row of M. Then for every prime power q ≥ n+k−1, there exists an [n, k]q MDS

code whose generator matrix G fits with M .

A way of Explicit construction of SB Reed-Solomon codes from the cyclic RS code is shown

in [66] with the condition k
n
(n − k + 1) is an integer and later provided the same by relaxing

the condition.

Definition 18. w− Balanced Matrix: A matrix Bk×n is called w−balanced if the following

conditions hold:

• Every row of B has the same weight w.

• Every column is of weight
⌈
kw
n

⌉
or
⌊
kw
n

⌋
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In [67], the authors presented a method that produces a w-balanced generator matrix for a

given full-length cyclic RS code. In particular, each row is a codeword of weight w, such that

d ≤ w ≤ n − 1. Also provided a way of construction for a given full-length cyclic LRC with

locality r (given in [5], generally known as Tamo-Barg codes), where ( n
r+1
− k

r
− 1)(r + 1) ≤

w ≤ ( n
r+1
− 1)(r + 1).

5.2 Sparse Matrix and Balanced Matrix of Local MRCs

In this section, we discuss the properties of a balanced generator matrix and also provide

the construction of a sparse and balanced generator matrix for local MRC with r = 2 and

δ = 2. Before that, for readability, we recall the construction of Local MRCs, which is given

in Subsection 2.2.3 (see before Table 2.3). The MRD property of Gabidulin code is used to

construct the generator matrix of Local MRCs, which has the following structure:

G = GGC



GMDS 0 · · · 0

0 GMDS · · · 0

...
... . . . ...

0 0 · · · GMDS


(5.2)

Here, GGC is the generator matrix of Gabidulin code CGC [n1 = lr, k, d1 = n1− k+ 1] over

the field FqM andGMDS is the generator matrix of MDS code CMDS[n2 = r+m, r, d2 = m+1]

over the field Fq.

5.2.1 Sparse and Balanced Local MRCs

To understand the construction of SB matrices, it needs to rewrite the necessary condition

on support constraints of the generator matrix to be MDS code given in (5.1) with respect to

zeros for G ∈ F k×n
qM

as follows:
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Support Constraints of G [68]: Support constraints of the generator matrix G ∈ F k×n
qM

described through the subsets Z1, Z2, . . . , Zk ⊂ [n] as follows:

∀i ∈ [k],∀j ∈ Zi, Gij = 0 (5.3)

A necessary condition for a code to be MDS is

| ∩i∈ΩZi | + | Ω |≤ k, ∀Ω 6= ∅ ⊂ k (5.4)

Theorem 5.2.1 ([68]). For any M ≥ max{n, k − 1 + logq k}, if (5.4) is satisfied, then there

exists a Gabidulin code in FqM of length n and dimension k such that its generator matrix

satisfies the support constrains in (5.3).

Theorem 5.2.2. Suppose CGC [n1 = k + h, k, d1 = h + 1] Gabidulin code over FqM , where

M ≥ {k + h, k − 1 + logq k} and CMDS[n2 = r + 1, r, d2 = 2] is systematic MDS code and

the corresponding generator matrices are GGC and GMDS . For any r ≥ 2 which divides k, h

and (r + 1) divides n, there exists d = h + h
r

+ 2-sparse generator matrix for the Local MRC

of length k + h+ (k+h
r

) and dimension k.

Proof. From the Theorem 5.2.1 provided there exist a Gabidulin code over FqM , if it satisfies

the MDS condition (5.4). So, it is possible to have d1-sparse generator matrix for Gabidulin

code say GSGC which can have non zero entries in every jth row with the column indices from

j − 1 to j − 1 + h. Now replace GGC with GSGC in the equation (5.2), then it is clear that

weight of each row of GGSC is distributed up to (h+1
r

) number of GMDS’s in G. Therefore,

weight of every row in G is equal to (h
r

+ 1) + h+ 1 = d.

Now we discuss the construction of w−balanced mask matrix given in [69], which is used

to identify the locations of zeros to be placed in order to construct the w−balanced generator

matrix.

Construction 5.2.3 (w-Balanced Mask Matrix of size k×n). Let both k and w be strictly less

than n. Define the quantities g := gcd(w, n), η := n
g
, φ = b k

n
c and ρ = k − ηφ. Define the
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index sets

I1 = {jw + i : 0 ≤ j ≤ η − 1, 0 ≤ i ≤ φ− 1},

I2 = {jw + φ : 0 ≤ j ≤ ρ− 1},

and I = I1 ∪ I2. The matrix A whose rows are given by {al : l ∈ I}. Here a is the vector

of the length n which has consecutive ones at first w locations and rest of them are zeros, i.e.

a = (1, . . . , 1, 0, . . . 0) and al denote the right cyclic shift of a by l positions.

Lemma 5.2.4. Let A be any w- balanced mask matrix constructed from the procedure men-

tioned in construction 5.2.3 with the index set I. For any two consecutive columns of A say

A|i and A|i+1, 0 ≤ i ≤ n1 − 2,

|supp(A|i) ∩ supp(A|i+1)| ≥ ξ − 1 (5.5)

where ξ = max{|supp(A|i)|, |supp(A|i+1)|}

Proof. WLOG, assume ξ = |supp(A|i)|. Suppose |supp(A|i)∩ supp(A|i+1)| = |supp(A|i)|−
γ, where γ ≥ 2. It indicates that there exists γ number of rows say j1, j2, . . . , jγ in A, which

has γ number of zeroes in A|i and γ number of ones in A|i+1. Therefore, from construction

of A we can say there exists l1, l2, . . . , lγ ∈ I such that l1 mod n1 = l1 mod n1 = . . . = lγ

mod n1 = i. So j1, j2, . . . , jγ rows of A are identical. This contradicts the property that the

rows of A are pairwise distinct. Similarly, we can prove for ξ = max{|supp(A|i+1)|.

Theorem 5.2.5. Suppose GBGC is the w1-balanced generator matrix of GGC = T−1GBGC ,

where T is the invertible square matrix of size k × k. Let ABGC ∈ {0, 1}k×n1 is the corre-

sponding mask matrix. For any w1 = h+ δ where δ ≥ 1 is an integer ≥ 1, g1 = gcd(w1, n1 =

k + h), η1 = n1

g1
divides k and n1, k are even integers. If GMDS is the systematic generator

matrix of size 2× 3 then

1. for any odd integer δ, the generator matrix of Local MRC G given in (5.2) can form

w = 3(h+δ)+1
2

- balanced generator matrix.
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2. for any even integer δ and φ = k
η1

= 1 the Local MRC generator matrix G given in (5.2)

is w1balanced matrix.

Proof. SupposeGBGC =

[
g

0
g

1
· · · g

n1−1

]
and with the givenGMDS =

 1 0 1

0 1 1

 ,
the generator matrixG of Local MRC obtained from equation (5.2) can be viewed as [G1|G2| . . . |Gl−1].

Hence, Gi =

[
g

2i
g

2i+1
p
i

= g
2i

+ g
2i+1

]
for all i ∈ {0, 1, . . . , l − 1}.

Proof of 1): Since, GGBC is the w1-balanced matrix with the corresponding mask matrix,

weight of any row in G is w = w1 + w1−1

2
+ 1 = 3(h+δ)+1

2
.

To show G is w-balanced matrix, we need to show that the weight of the any column of G

is either bwk
n
c or dwk

n
e. Since, η1 = gcd(w1, n1) | n1, ρ = k − η1

k
η1

= 0. i.e. weight of any

column in GGBC = w1k
n1
.

|supp(p
i
)| = |supp(g

2i
) ∪ supp(g

2i+1
)|

= 2|supp(g
2i

)| − |supp(g
2i

) ∩ supp(g
2i+1

)|

≤ |supp(g
2i

)|+ 1

Inequality in the above follows from the Lemma 5.2.4. Therefore, weight of any column in G

is either w1k
n1

or w1k
n1

+ 1.

Note 6. The difference D = wk
n
− w1k

n1
∈ (0, 1). It can be easily verified as follows:

D =

[
3(h+δ)+1

2

]
k

(k+h)3
2

− (h+ δ)k

(k + h)
=

k

3(k + h)
< 1

From the above note, it is clear that w1k
n1

= bwk
n
c and w1k

n1
+ 1 = dwk

n
e. Hence, the balanced

property of the G has been satisfied.

proof for 2: Since w1 is even integer the difference D = 0. Therefore G is balanced only if

every column of G should have the weight w1k
n1

. Note that every column of GBGC = w1k
n1

,
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because φ1 is integer. For any 0 ≤ i ≤ n1 − 1

|supp(p
i
)| = |supp(g

2i
) ∪ supp(g

2i+1
)|

= 2|supp(g
2i

)| − |supp(g
2i

) ∩ supp(g
2i+1

)|

= |supp(g
2i

)|

In the above last equality holds because |supp(g
2i

)| = |supp(g
2i+1

)|. Since any even number

modulo with even number is even.

Note 7. We observed that for any even integer δ and φ = k
η1
> 1 the Local MRC generator

matrix G given in (5.2) can’t be the balanced matrix through lot of examples and proof is left

as future work.

Now, we illustrate our construction in the proof of Theorem 5.2.5 through an example.

Example 5. Let Gabidulin code CGC [n1 = 24, k = 16, d1 = 9]. Suppose GBGC is the w1 = 9-

balanced generator matrix of GGC = T−1GBGC , where T is the invertible square matrix of

size k × k. Let ABGC ∈ {0, 1}k×n1 is the corresponding mask matrix. w1 = h + 1 = 8 + 1,

here δ = 1 is an integer, g1 = gcd(w1, n1 = k + h) = (9, 24) = 3, η1 = n1

g1
= 24

3
= 8 divides

k = 16 and n1, k are even integers. If GMDS is the systematic generator matrix of size 2 × 3

then for odd integer δ = 1, the generator matrix of Local MRC G given in (5.2) can form

w = 3(h+δ)+1
2

= 28
2

= 14 - balanced generator matrix.

5.3 Conclusion

This chapter provided a study of sparse and balanced matrices and their properties, along

with a brief review of sparse and balanced matrices for MDS codes and Gabidulin codes. By

considering generator matrices of PMDS code, we proved that the sparse (d = h + h
r

+ 2)

generator matrices always exist for any r ≥ 2, which divides k, h and (r + 1) divides n. We

100



also proved for r = 2, if η1 = n1

g1
divides k and n1, k are even integers, there exist w1 = (h+δ)-

balanced generator matrix for Local MRC specific to the cases for any odd integer δ and for

any even integer δ whenever k = η1.
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Chapter 6

H-LRC Codes with Availability

In this chapter, we explore the concept of locally recoverable codes with availability. The

concept of availability in LRCs refers to the ability to have multiple repair sets to repair a single

node. Having multiple repair sets in LRCs is advantageous because it allows for the distribution

of the repair load among different nodes. In other words, when a node in the storage system

fails or loses data, instead of burdening a subset of nodes with the repair process, the load can

be divided among several nodes. This helps in balancing the workload and avoiding excessive

download of repair data from the specific nodes that are accessed more frequently.

We begin the chapter with a brief literature review on the upper bound on the minimum

distance for both single and multiple erasures. We extend the concept of availability to LRCs

with hierarchical locality. We will refer to these codes as Hierarchical Locally Recoverable

Codes (H-LRCs) with availability. Our study investigates the upper bound on the minimum

distance for certain range of parameters of H-LRCs with availability.

Section 6.1 offers a concise review of LRCs with availability. Section 6.2 provides a defini-

tion of H-LRC code with availability and the Singleton-like bound for the code. Lastly, Section

6.3 presents the Conclusion of the chapter.
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6.1 Review of LRCs with Availability

The study by Pamies et al. [70] explores utilizing multiple repair sets to recover from a

single erasure. In this work, alternative repair options are possible by slightly increasing the

number of contacted nodes during the repair.

Additionally, the studies discussed in [71] and [72] explore the trade-offs between code

rate and minimum Hamming distance in relation to the desirable properties of locality and

availability in codes. The paper by Wang et al. [71] proposed the (r, δ)c -locality providing

δ−1 non overlapping local repair groups of size no more than r for a coordinate (by modifying

the structure of (r, δ) LRCs) and derived the upper bound on the minimum distance. Later on,

The paper [6] presented the upper bound on the minimum distance d for locally recoverable

codes (LRCs) with (r, τ)-Availability. This bound is given as follows:

d ≤ (n− k + 1)−
(⌈τ(k − 1) + 1

τ(r − 1) + 1

⌉
− 1

)
. (6.1)

Note that the upper bound on the minimum distance obtained in [71] is similar to the (6.1)

with τ = δ − 1.

LRCs with availability are also studied for non-uniform localities in [73] and the upper

bound on d is as follows:

d ≤ (n− k + 1)−


⌈
τ(k − 1) + 1
τ∑
i=1

(ri − 1) + 1

⌉
− 1

 . (6.2)

6.2 Singleton-like Bound for H-LRC Code with Availability

In the paper [35], the concept of availability has been extended to codes with (r, δ) locality

and codes with hierarchical locality. However, the authors have introduced the aforementioned

definitions for non-uniform localities and constructed codes from curves strictly when the lo-

calities are non-uniform (their constructions are not applicable for uniform locality case). Now,
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we provide the formal definition for codes with (r, δ) locality and availability and the upper

bound on the minimum distance given in [74].

Definition 14 (LRC code with (r, δ) locality and availability [74]). A linear code C is an

LRC with (r, δ) locality and availability τ , if for any i ∈ [n] there are τ punctured codes

C(i)
1 , C(i)

2 , . . . , C(i)
τ such that for all p ∈ [τ ] the following conditions hold:

i) i ∈ supp(C(i)
p ),

ii) dim(C(i)
p ) ≤ r,

iii) dmin ≥ δ and

iv) R(i)
p ∩R(i)

q = {i} for all p 6= q. Here R(i)
p = supp(C(i)

p ) is called the repair set for the ith

coordinate.

The upper bound on the minimum distance is provided as follows in equation (6.3) [74]:

d ≤ (n− k + 1)−
(⌈τ(k − 1) + 1

τ(r − 1) + 1

⌉
− 1

)
(δ − 1). (6.3)

Let N (i)
p = R

(i)
1 ∪ . . . ∪ R(i)

p , for any p ∈ [τ ]. The union of all repair sets for the index i is

denoted by R(i) then R(i) = N i
τ and let C(i) be the code C restricted to R(i), i.e., C(i) = C|R(i) .

Let I be an information set if i ∈ I , then

rank(N (i)
p ) ≤ 1 + p(r2 − 1). (6.4)

Now, we extend the concept to codes with hierarchical locality.

Definition 15 (H-LRC code with availability). Let τ1, τ2 ≥ 1, δ2 < δ1 and r2 < r1. A linear

code with hierarchical locality C[n, k, d, r1, r2, δ1, δ2] is H-LRC with availability τ1, τ2 if

• The code has locality (r1, δ1) and availability τ1. Let C(j)
1 , C(j)

2 , . . . , C(j)
τ1 be the punctured

codes for any j ∈ [n] and corresponding repairs sets are denoted by R(j)
1 , R

(j)
2 . . . R

(j)
τ1 .

From Definition 14, R(j)
p ∩R(j)

p′
= {j} for all p 6= p

′
, R(j) =

τ1⋃
p=1

R
(j)
p , and C(j) = C|R(j) .
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• For any p ∈ [τ1] the code C(j)
p is LRC code with (r2, δ2) locality and availability τ2. For

any i ∈ R(j)
p , let C(j,i)

p,1 , C(j,i)
p,2 , . . . , C(j,i)

p,τ2 be the punctured codes, and letR(j,i)
p,1 , R

(j,i)
p,2 , . . . R

(j,i)
p,τ2

be their corresponding repair sets. From the definition 14, notice thatR(j,i)
p,q ∩R(j,i)

p,q′
= {i}

for all q 6= q
′
. Let R(j,i)

p is the union of all the repair sets of ith coordinate, i.e.,

R
(j,i)
p =

τ2⋃
q=1

R
(j,i)
p,q and let C(j,i)

p be the code restricted to R(j,i)
p , i.e., C(j,i)

p = C(j)|
R

(j,i)
p

.

We can also denote for any i ∈ R(j), C(j,i) = C(j)|R(j,i) , where R(j,i) =
τ1⋃
p=1

R
(j,i)
p , which

we use in the Algorithm 1 to prove the following theorem.

Theorem 6.2.1. Let C[n, k, d, r1, r2, δ1, δ2] be an H-LRC code with availability and if τ1 =

τ2 = τ then

d ≤ (n−k+1)−
(⌈ τ(k − 1) + 1

τ(r2 − 1) + 1

⌉
− 1

)
(δ2−1)−

(⌈ τ(k − 1) + 1

τ(r1 − 1) + 1

⌉
− 1

)
(δ1−δ2). (6.5)

Proof. In order to prove the theorem, we identify a punctured code Cs of C, which has dimen-

sion k−1 with the largest support, by combining and developing the techniques used in [codes

with hierarchical locality] and [repair locality with multiple erasure tolerance]. Then we will

use the fact given in Lemma 1, i.e., d = n− |supp(Cs)|.
The algorithm referred to as Algorithm 1 is utilized for the purpose of finding Cs. During

each iteration j, the algorithm detects a Middle Code with Availability (MCA), say Mj = C(j
′
)

for some j ′ ∈ [n] in C with repair set R(j
′
), which gains additional rank to the rank of the

previous iteration j − 1. In step 3, Local Code with Availability (LCA) Li = C(j
′
,i
′
) is picked

up at each iteration indexed by i, within the specified MCA (identified in step 2) with repair

set R(j
′
,i
′
), which gains additional rank to the rank of the previous iteration i− 1. It is evident

that the algorithm’s termination becomes apparent when the overall rank is bounded by k. The

variables iend and jend correspond to the final values of i and j, respectively. The support of

Li is denoted by Si and Vi represents the column space of the matrix G|Si. If no further LCA

is added from the MCA Mj , the support of the last added LCA is removed, and an additional

support Tj of Mj is included in ψ (step 8).

The incremental rank is denoted by ai and the incremental support by si while adding an

LCA Li. For all i ∈ [iend], it holds that si ≥ ai + τ2(δ2 − 1). Since,
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Algorithm 1 For the proof of Theorem 6.2.1

1: j = 0, i = 0,W = ∅, ψ = ∅
2: while ∃ a middle code with availability Mj (with repair set R(j

′
)) in C such that

rank(G|
ψ∪R(j

′
)) > rank(G|ψ) do

3: while ∃ a local code with availability Li in Mj such that Vi ( W do
4: W = W + Vi
5: ψ = ψ ∪ Si
6: i = i+ 1
7: end while
8: ψ = (ψ \ Si−1) ∪ Tj
9: j = j + 1

10: end while

• ai is always greater than zero in each iteration (as per the condition given in step 3),

• Among all τ2 local codes in Li, any two repair sets have only one element in common,

which is the coordinate of the specified LCA Li, say i′ ∈ [n] and

• Each local code has minimum distance δ2.

Let i(j) denote the index of the last LCA added from Mj . There are τ1 number of middle

codes in MCA, and any two repair sets have only one common element for anyMj say j ′ ∈ [n].

Every rank accumulating local code brings at least one new information symbol. Thus, for all

j ∈ [jend], tj = |Tj| ≥ ai(j) + τ1(δ1 − 1) = ai(j) + τ1[(δ2 − 1) + (δ1 − δ2)].

By observing the algorithm and from (6.4), it is evident that (k− 1) ≤
iend−1∑
h=1

rank(G|sh) =

(iend − 1)(1 + τ2(r2 − 1)). Consequently, the inequality

(iend − 1) ≥
⌈ k − 1

τ2(r2 − 1) + 1

⌉
(6.6)

is established. Similarly, (k − 1) ≤
jend−1∑
h=1

rank(G|R(h)) = (jend − 1)(1 + τ1(r1 − 1)).

Therefore,

(jend − 1) ≥
⌈ k − 1

τ1(r1 − 1) + 1

⌉
(6.7)
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Since, after adding the LCA Liend−1, we would have accumulated rank that is less than or

equal to (k− 1). Hence, we can always pick se = (k− 1)−
iend−1∑
i=1

ai and note that se ≥ 0. The

resultant punctured code is identified as Cs. Let E = {i(j) | 1 ≤ j ≤ jend}. Then

|Supp(Cs)| ≥
iend−1∑
i/∈E,i=1

si + se +

jend−1∑
j=1

tj (6.8)

In (6.8) the last term
jend−1∑
j=1

tj includes a sum of only (jend − 1) terms because we could have

possibly accumulated a rank of (k − 1) after adding Liend − 1, i.e., se = 0. Thus, we have,

|Supp(Cs)| ≥
iend−1∑
i/∈E,i=1

si + (k − 1)−
iend−1∑
i=1

ai +

jend−1∑
j=1

tj

≥
iend−1∑
i/∈E,i=1

(ai + τ2(δ2 − 1)) + (k − 1)−
iend−1∑
i=1

ai +

jend−1∑
j=1

(ai(j) + τ1(δ2 − 1) + τ1(δ2 − δ1))

=

iend−1∑
i=1

τ(δ2 − 1) + (k − 1) +

jend−1∑
j=1

τ(δ1 − δ2) (∵ τ1 = τ2 = τ)

= (k − 1) + (iend − 1)τ(δ2 − 1) + (jend − 1)τ(δ1 − δ2)

≥ (k − 1) +

(⌈ k − 1

τ(r2 − 1) + 1

⌉)
τ(δ2 − 1) +

(⌈ k − 1

τ(r1 − 1) + 1

⌉)
τ(δ1 − δ2)

The last inequality is obtained by substituting the values of iend − 1 from (6.6) and jend − 1

from (6.7). We know that from Lemma 1,

d = n− |Supp(Cs)|

≤ (n− k + 1)−
(⌈ k − 1

τ(r2 − 1) + 1

⌉)
τ(δ2 − 1)−

(⌈ k − 1

τ(r1 − 1) + 1

⌉)
τ(δ1 − δ2)

≤ (n− k + 1)−
(⌈ τ(k − 1) + 1

τ(r2 − 1) + 1

⌉
− 1

)
(δ2 − 1)−

(⌈ τ(k − 1) + 1

τ(r1 − 1) + 1

⌉
− 1

)
(δ1 − δ2),

where the last inequality is obtained by using the following inequalities:
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(⌈ k − 1

τ(r2 − 1) + 1

⌉)
τ ≥

(
τ(k − 1)

τ(r2 − 1) + 1

)
≥
(⌊ τ(k − 1)

τ(r2 − 1) + 1

⌋)
=

(⌊ τ(k − 1) + 1

τ(r2 − 1) + 1

⌋)
− 1

and (we can replace r2 with r1)

(⌈ k − 1

τ(r1 − 1) + 1

⌉)
τ ≥

(⌊ τ(k − 1) + 1

τ(r1 − 1) + 1

⌋)
− 1.

The following figure (Fig. 6.1) depicts the comparison between upper bounds on all mini-

mum distances of all the topologies discussed till now in this chapter. i.e., codes with locality

and availability for single erasure, multiple erasures, and hierarchical locality. In this, we con-

sidered fixed values for (n = 60, r1 = 9, r2 = 5, δ1 = 4, δ2 = 2, τ = 4). We took 10 samples

by decreasing the values of k from 30 to 21. Plotted the graph code rate (k/n) versus relative

distance (d/n).

Figure 6.1: Comparison of upper bounds on d
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6.3 Conclusion

This chapter has focused on the definition of the H-LRC code with availability, incorporat-

ing uniform localities for both local codes and middle codes within the code structure. The

derived upper bound on the minimum distance of the H-LRC code with availability has been

determined for the case when τ1 is equal to τ2. However, obtaining a closed form expression

for the case when τ1 is not equal to τ2 appears to be a challenging task and is left for future

work.
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Chapter 7

Conclusions and Future Directions

7.1 Summary and Conclusions

In this thesis, we have studied Distributed Storage Systems (DSS) and their importance.

Specifically focusing on the challenge of data recovery, we have looked into different types

of topologies that have evolved to address this challenge by providing low repair degrees for

different types of erasures, including single, multiple, and correlated failures. In the context

of these topologies, we have examined the properties, constructions and bounds of Maximally

Recoverable Codes (MRCs).

Our research has specifically focused on the challenges and problems associated with Lo-

cally Recoverable Codes (LRCs) for multiple erasures. Within the domain of LRCs, we have

addressed four key aspects.

• The first aspect of our work involves the construction of Hierarchical Local MRCs (HL-

MRCs) with improved field sizes compared to previously known constructions. We have

also determined the lower bound on the required field size for HL-MRCs.

• The second aspect of our research is related to Maximally Recoverable Product Codes

(MRPCs). We identifying the open problem of identifying the set of all erasure patterns

which can be recovered in MRPCs. To address this challenge, we have characterized cer-

tain classes of recoverable and non-recoverable erasure patterns by deriving properties

of MRPCs. Furthermore, we have delved into higher-order Maximum Distance Separa-
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ble (MDS) codes and their interpretation in projective spaces, specifically focusing on

MRPC construction for the case where a = 1.

• The third aspect of our work was dedicated to finding sparse and balanced Local MRCs

for single erasure scenarios. The objective here is to reduce the encoding complexity

associated with these codes, thereby facilitating more efficient data storage and recovery

processes.

• Finally, we extended the concept of availability in LRCs to codes with hierarchical local-

ity. By investigating Hierarchical Locally Recoverable Codes (H-LRC) with availability,

we provided an upper bound on the minimum distance for the case τ1 = τ2.

7.2 Future Scope

• While this thesis has made progress in constructing Hierarchical Locally Repairable

MRCs (HL-MRCs) with improved field sizes, there is still room for further advance-

ments. Future research can focus on exploring alternative construction techniques and

algorithms to achieve even better field sizes, ultimately enhancing the efficiency and

performance of HL-MRCs.

• This thesis evidently states that there are no clear conditions that guarantee the recov-

erability of erasures in product topologies. Future research can focus on investigating

this area further to determine the conditions expanding the set of recoverable erasure

patterns.

• While sparse and balanced generator matrices for Local MRCs for single erasure have

been explored in this thesis, future investigations can focus on sparse and balanced gen-

erator matrices for Local MRCs for multiple erasures.

• The extension of availability concept to LRCs with hierarchical locality is presented in

this thesis. The upper bound on the minimum distance of the H-LRC code with avail-

ability has been determined for the case when τ1 is equal to τ2. Future studies can further
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explore to find the upper bound on the minimum distance for the general case and also

investigate optimal code designs.
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Appendix A

Proofs for Chapter 3

A.1 Proof of Theorem 3.3.5

The following results related to the determinants of matrices will be useful in proving The-

orem 3.3.5.

Lemma A.1.1 ([56]). Let C1 be an a× (a + 1) matrix, C2 be an a× (a + 2) matrix, D1 be a

3× (a+ 1) matrix and D2 be a 3× (a+ 2) matrix and let D(j)
i be the jth row of Di. Then,

det


C1 0

0 C2

D1 D2

 =(−1)a ·
(

det

 C1

D
(1)
1

 · det


C2

D
(2)
2

D
(3)
2

− det

 C1

D
(2)
1

 · det


C2

D
(1)
2

D
(3)
2



+ det

 C1

D
(3)
1

 · det


C2

D
(1)
2

D
(2)
2


)

Lemma A.1.2 ([56]). Given C1 and C2 to be a× (a+ 1) matrices and C3 to be an a× (a+ 2)

matrix. Also, D1 and D2 are 4× (a + 1) matrices while D3 is a 4× (a + 2) matrix. It is also
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given that D(1)
3 , D

(2)
1 , D

(2)
2 = [0]. Then,

det



C1 0 0

0 C2 0

0 0 C3

D1 D2 D3


= (−1)a ·

(
det

 C1

D
(1)
1

 · det

 C2

D
(3)
2

 · det


C3

D
(2)
3

D
(4)
3



+ det

 C1

D
(1)
1

 · det

 C2

D
(4)
2

 · det


C3

D
(2)
3

D
(3)
3



+ det

 C1

D
(3)
1

 · det

 C2

D
(1)
2

 · det


C3

D
(2)
3

D
(4)
3



− det

 C1

D
(4)
1

 · det

 C2

D
(1)
2

 · det


C3

D
(2)
3

D
(3)
3


)

Proof: Follows as a result of Lemmas B.2 in [56]. 2

Lemma A.1.3 (Cauchy Matrix [75]). Let a1, a2, . . . , an, b1, b2, . . . , bn ∈ Fq be all distinct.

Then,

det



1
a1−b1

1
a2−b1 . . . 1

an−b1

1
a1−b2

1
a2−b2 . . . 1

an−b2
...

... . . . ...

1
a1−bn

1
a2−bn . . . 1

an−bn


=

∏
i>j(ai − aj)(bi − bj)∏

i,j(ai − bj)
.

Such a matrix is called an Cauchy Matrix. Every minor of a Cauchy matrix is also an Cauchy

matrix.
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Again as in previous proof, we consider the case when there are δ erasures per local code,

one erasure per mid-level code and two more global erasures anywhere in the code. We again

look at the erasure patterns within each mid-level codes. There are three distinct patterns

possible,

1. No global erasures occur in that mid-level code.

2. Either one or both of the global erasures occur in the mid-level code.

We show that all the above erasure patterns are correctable.

Let γi,j = 1
αj−βi .

1. When no global erasures occur in the mid-level code, there are δ erasures per local code

and one more erasure per mid-level code.

In this scenario, we involve the mid-level parities. Let l be the affected mid-level code

and l′ be the local code within the mid-level code where the erasure occurs. The matrix,

Bl

Bl =



γ1,l′1
γ1,l′2

. . . γ1,l′δ+1

γ2,l′1
γ2,l′2

. . . γ2,l′δ+1

...
... . . . ...

γδ,l′1 γδ,l′2 . . . γδ,l′δ+1

γδ+1,l′1
γδ+1,l′2

. . . γδ+1,l′δ+1


.

Where {l′1, l′2, . . . , l′δ+1} are the erased coordinates in local code l′. This is a Cauchy

matrix and hence det(Bl) 6= 0.

2. When there are global erasures, there are δ erasures per local code, one erasure per

mid-level code, and two more erasures anywhere in the code. Here we have a lot more

sub-cases.

(a) Two global erasures are in the same local code as the mid-level erasure. Let l be

the affected mid-level code and l′ be the local code in the mid-level code where the
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erasure happens. The matrix Bl in that case,

Bl =



γ1,l′1
. . . γ1,l′δ+3

... . . . ...

γδ+1,l′1
. . . γδ+1,l′δ+3

λl′ · γδ+2,l′1
. . . λl′ · γδ+2,l′δ+3

µl′ · γδ+3,l′1
. . . µl′ · γδ+3,l′δ+3


.

This is also a Cauchy matrix with the last two rows scaled to λl′ and µl′ respectively.

Hence det(Bl) 6= 0 and this erasure pattern is correctible.

(b) Two global erasures are in one local code and the mid-level erasure is in a different

local code for that mid-level code.

Assume that the lth mid-level code is affected. Let l′′ be the local code with two

erasures while l′ be the other one within this mid-level code.

Bl =



γ1,l′1
. . . γ1,l′δ+1

... . . . ...

γδ,l′1 . . . γδ,l′δ+1

γ1,l′′1
. . . γ1,l′′δ+2

... . . . ...

γδ,l′′1 . . . γδ,l′′δ+2

γδ+1,l′1
. . . γδ+1,l′δ+1

γδ+1,l′′1
. . . γδ+1,l′′δ+2

λl′ · γδ+2,l′1
. . . λl′ · γδ+2,l′δ+1

λl′′ · γδ+2,l′′1
. . . λl′′ · γδ+2,l′′δ+2

µl′ · γδ+3,l′1
. . . µl′ · γδ+3,l′δ+1

µl′′ · γδ+3,l′′1
. . . µl′′ · γδ+3,l′′δ+2



.
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Expanding this via the Lemma A.1.1,

det(Bl) = det



γ1,l′1
. . . γ1,l′δ+1

... . . . ...

γδ,l′1 . . . γδ,l′δ+1

γδ+1,l′1
. . . γδ+1,l′δ+1


· det



γ1,l′′1
. . . γ1,l′′δ+2

... . . . ...

γδ,l′′1 . . . γδ,l′′δ+2

λl′′ · γδ+2,l′′1
. . . λl′′ · γδ+2,l′′δ+2

µl′′ · γδ+3,l′′1
. . . µl′′ · γδ+3,l′′δ+2



− det



γ1,l′1
. . . γ1,l′δ+1

... . . . ...

γδ,l′1 . . . γδ,l′δ+1

λl′ · γδ+2,l′1
. . . λl′ · γδ+2,l′δ+1


· det



γ1,l′′1
. . . γ1,l′′δ+2

... . . . ...

γδ,l′′1 . . . γδ,l′′δ+2

γδ+1,l′′1
. . . γδ+1,l′′δ+2

µl′′ · γδ+3,l′′1
. . . µl′′ · γδ+3,l′′δ+2



+ det



γ1,l′1
. . . γ1,l′δ+1

... . . . ...

γδ,l′1 . . . γδ,l′δ+1

µl′ · γδ+3,l′1
. . . µl′ · γδ+3,l′δ+1


· det



γ1,l′′1
. . . γ1,l′′δ+2

... . . . ...

γδ,l′′1 . . . γδ,l′′δ+2

γδ+1,l′′1
. . . γδ+1,l′′δ+2

λl′′ · γδ+2,l′′1
. . . λl′′ · γδ+2,l′′δ+2


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det(Bl) =λl′′µl′′ · det



γ1,l′1
. . . γ1,l′δ+1

... . . . ...

γδ,l′1 . . . γδ,l′δ+1

γδ+1,l′1
. . . γδ+1,l′δ+1


· det



γ1,l′′1
. . . γ1,l′′δ+2

... . . . ...

γδ,l′′1 . . . γδ,l′′δ+2

γδ+2,l′′1
. . . γδ+2,l′′δ+2

γδ+3,l′′1
. . . γδ+3,l′′δ+2



− λl′µl′′ · det



γ1,l′1
. . . γ1,l′δ+1

... . . . ...

γδ,l′1 . . . γδ,l′δ+1

γδ+2,l′1
. . . γδ+2,l′δ+1


· det



γ1,l′′1
. . . γ1,l′′δ+2

... . . . ...

γδ,l′′1 . . . γδ,l′′δ+2

γδ+1,l′′1
. . . γδ+1,l′′δ+2

γδ+3,l′′1
. . . γδ+3,l′′δ+2



+ λl′′µl′ · det



γ1,l′1
. . . γ1,l′δ+1

... . . . ...

γδ,l′1 . . . γδ,l′δ+1

γδ+3,l′1
. . . γδ+3,l′δ+1


· det



γ1,l′′1
. . . γ1,l′′δ+2

... . . . ...

γδ,l′′1 . . . γδ,l′′δ+2

γδ+1,l′′1
. . . γδ+1,l′′δ+2

γδ+2,l′′1
. . . γδ+2,l′′δ+2



Each term in this determinant is λiµj multiplied by a Cauchy matrix ∈ Fq0 . The

determinant is again a linear combination of λl′ and λl′′ . Again, this determinant

cannot be zero because λ’s are 4-wise independent.
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(c) Two global and the one mid-level erasure are all in three different local codes within

the same mid-level code. Let the affected mid-level code be l and the local codes

within, where the erasure occurs, be l(1), l(2) and l(3). The matrix Bl,

Bl =



γ
1,l

(1)
1

. . . γ
1,l

(1)
δ+1

... . . . ...

γ
δ,l

(1)
1

. . . γ
δ,l

(1)
δ+1

γ
1,l

(2)
1

. . . γ
1,l

(2)
δ+1

... . . . ...

γ
δ,l

(2)
1

. . . γ
δ,l

(2)
δ+1

γ
1,l

(3)
1

. . . γ
1,l

(3)
δ+1

... . . . ...

γ
δ,l

(3)
1

. . . γ
δ,l

(3)
δ+1

γ
δ+1,l

(1)
1

. . . γ
δ+1,l

(1)
δ+1

γ
δ+1,l

(2)
1

. . . γ
δ+1,l

(2)
δ+1

γ
δ+1,l

(3)
1

. . . γ
δ+1,l

(3)
δ+1

λl(1) · γδ+2,l
(1)
1

. . . λl(1) · γδ+2,l
(1)
δ+1

λl(2) · γδ+2,l
(2)
1

. . . λl(2) · γδ+2,l
(2)
δ+1

λl(3) · γδ+2,l
(3)
1

. . . λl(3) · γδ+2,l
(3)
δ+1

µl(1) · γδ+3,l
(1)
1

. . . µl(1) · γδ+3,l
(1)
δ+1

µl(2) · γδ+3,l
(2)
1

. . . µl(2) · γδ+3,l
(2)
δ+1

µl(3) · γδ+3,l
(3)
1

. . . µl(3) · γδ+3,l
(3)
δ+1



.

det(Bl) can be expanded via Lemma 3.3.2. After doing that and setting the deter-

minant to zero,

det(Bl) = 0,
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we get,

det



c
l(1)

d
∏
i∈[δ](βi−βδ+1)

e
l(1)

∏
i∈l(1)

S

(αi−βδ+1)

c
l(2)

d
∏
i∈[δ](βi−βδ+1)

e
l(2)

∏
i∈l(2)

S

(αi−βδ+1)

c
l(3)

d
∏
i∈[δ](βi−βδ+1)

e
l(3)

∏
i∈l(3)

S

(αi−βδ+1)

λl(1) ·
c
l(1)

d
∏
i∈[δ](βi−βδ+2)

e
l(1)

∏
i∈l(1)

S

(αi−βδ+2)
λl(2) ·

c
l(2)

d
∏
i∈[δ](βi−βδ+2)

e
l(2)

∏
i∈l(2)

S

(αi−βδ+2)
λl(3) ·

c
l(3)

d
∏
i∈[δ](βi−βδ+2)

e
l(3)

∏
i∈l(3)

S

(αi−βδ+2)

µl(1) ·
c
l(1)

d
∏
i∈[δ](βi−βδ+3)

e
l(1)

∏
i∈l(1)

S

(αi−βδ+3)
µl(2) ·

c
l(2)

d
∏
i∈[δ](βi−βδ+3)

e
l(2)

∏
i∈l(2)

S

(αi−βδ+3)
µl(3) ·

c
l(3)

d
∏
i∈[δ](βi−βδ+3)

e
l(3)

∏
i∈l(3)

S

(αi−βδ+3)


= 0

det


1 1 1

λl(1)
∏

i∈l(1)S
αi−βδ+1

αi−βδ+2
λl(2)

∏
i∈l(2)S

αi−βδ+1

αi−βδ+2
λl(3)

∏
i∈l(3)S

αi−βδ+1

αi−βδ+3

µl(1)
∏

i∈l(1)S
αi−βδ+1

αi−βδ+3
µl(2)

∏
i∈l(2)S

αi−βδ+1

αi−βδ+2
µl(3)

∏
i∈l(3)S

αi−βδ+1

αi−βδ+3

 = 0,

where,

• l(i)S = {l(i)1 , . . . , l
(i)
δ+1}.

• cl(i) =
∏

f>g,f,g∈l(i)S
(αf − αg).

• d =
∏

f>g,f,g∈[δ](βf − βg).

• el(i) =
∏

f∈l(i)S ,g∈[δ]
(αf − βg).

Now, by the choice of α’s,
∏

i∈l(k)S

αi−βδ+1

αi−βδ+3
∈ G. And because µi belong to different

cosets in G, the last row in the above matrix consists of distinct elements. This

determinant is a linear combination in the three λ’s. Hence the determinant is non-

zero because the λ’s are 4-wise independent.

(d) Two global erasures are in different mid-level codes. In both the mid-level codes,

the mid-level erasure is in the same local code as the global erasure.
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Assume kth and lth mid-level codes are affected. The local codes within them,

where the erasure occurs, are k′ and l′. The matrix Bk,l,

Bk,l =



γ1,k′1
. . . γ1,k′δ+2

... . . . ...

γδ+1,k′1
. . . γδ+1,k′δ+2

γ1,l′1
. . . γ1,l′δ+2

... . . . ...

γδ+1,l′1
. . . γδ+1,l′δ+2

λk′ · γδ+2,k′1
. . . λk′ · γδ+2,k′δ+2

λl′ · γδ+2,l′1
. . . λl′ · γδ+2,l′δ+2

µk′ · γδ+3,k′1
. . . µk′ · γδ+3,k′δ+2

µl′ · γδ+3,l′1
. . . µl′ · γδ+3,l′δ+2



.

Therefore, for det(Bk,l) = 0,

det(Bk,l) = det



γ1,k′1
. . . γ1,k′δ+2

... . . . ...

γδ+1,k′1
. . . γδ+1,k′δ+2

γ1,l′1
. . . γ1,l′δ+2

... . . . ...

γδ+1,l′1
. . . γδ+1,l′δ+2

λk′ · γδ+2,k′1
. . . λk′ · γδ+2,k′δ+2

λl′ · γδ+2,l′1
. . . λl′ · γδ+2,l′δ+2

µk′ · γδ+3,k′1
. . . µk′ · γδ+3,k′δ+2

µl′ · γδ+3,l′1
. . . µl′ · γδ+3,l′δ+2



= 0
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⇒ det



det



γ1,k′1
. . . γ1,k′δ+2

... . . . ...

γδ+1,k′1
. . . γδ+1,k′δ+2

λk′ · γδ+2,k′1
. . . λk′ · γδ+2,k′δ+2


det



γ1,l′1
. . . γ1,l′δ+2

... . . . ...

γδ+1,l′1
. . . γδ+1,l′δ+2

λl′ · γδ+2,l′1
. . . λl′ · γδ+2,l′δ+2



det



γ1,k′1
. . . γ1,k′δ+2

... . . . ...

γδ+1,k′1
. . . γδ+1,k′δ+2

µk′ · γδ+3,k′1
. . . µk′ · γδ+3,k′δ+2


det



γ1,l′1
. . . γ1,l′δ+2

... . . . ...

γδ+1,l′1
. . . γδ+1,l′δ+2

µl′ · γδ+3,l′1
. . . µl′ · γδ+3,l′δ+2





= 0

⇒ det

λk′ ·
∏
i∈[δ+1](βi−βδ+2)∏
i∈k′

S
(αi−βδ+2)

λl′ ·
∏
i∈[δ+1](βi−βδ+2)∏
i∈l′

S
(αi−βδ+2)

µk′ ·
∏
i∈[δ+1](βi−βδ+3)∏
i∈k′

S
(αi−βδ+3)

µl′ ·
∏
i∈[δ+1](βi−βδ+3)∏
i∈l′

S
(αi−βδ+3)

 = 0

⇒ det

 λk′ λl′

µk′
∏

i∈k′S
(αi−βδ+2)

(αi−βδ+3)
µl′
∏

i∈l′S
(αi−βδ+2)

(αi−βδ+3)

 = 0,

where k′S = {k′1, . . . , k′δ+2} and l′S = {l′1, . . . , l′δ+2}. The terms cl(i) , d and el(i) were

factored out from the above determinant where,

• cl(i) =
∏

f>g,f,g∈l(i)S
(αf − αg).

• d =
∏

f>g,f,g∈[δ+1](βf − βg).

• el(i) =
∏

f∈l(i)S ,g∈[δ+1]
(αf − βg).

By the choice of αi’s,
∏

i∈x
(αi−βδ+2)

(αi−βδ+3)
∈ G for x = k′S, l

′
S . This yet again is a linear

combination of two λ’s. Hence this determinant is non-zero and the erasure pattern

correctable.

(e) Two global erasures are in two different mid-level codes and in each mid-level

code, they are in a different local code as compared to the mid-level erasure for that

mid-level code.
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There are four local groups where the erasures occur, two in each mid-level code.

Let the affected mid-level codes be k and l while the local codes within, where the

erasure occurs, be k(1) and k(2) and l(1) and l(2) respectively. The matrix Bk,l is

similar to that in Lemma A.1.1.
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Bk,l =


A

B

C D

⇒ det(Bk,l) = det


det

 A

C(1)

 det

 B

D(1)


det

 A

C(2)

 det

 B

D(2)




= 0

A =



γ
1,k

(1)
1

. . . γ
1,k

(1)
δ+1

... . . . ...

γ
δ,k

(1)
1

. . . γ
δ,k

(1)
δ+1

γ
1,k

(2)
1

. . . γ
1,k

(2)
δ+1

... . . . ...

γ
δ,k

(2)
1

. . . γ
δ,k

(2)
δ+1

γ
δ+1,k

(1)
1

. . . γ
δ+1,k

(1)
δ+1

γ
δ+1,k

(2)
1

. . . γ
δ+1,k

(2)
δ+1



B =



γ
1,l

(1)
1

. . . γ
1,l

(1)
δ+1

... . . . ...

γ
δ,l

(1)
1

. . . γ
δ,l

(1)
δ+1

γ
1,l

(2)
1

. . . γ
1,l

(2)
δ+1

... . . . ...

γ
δ,l

(2)
1

. . . γ
δ,l

(2)
δ+1

γ
δ+1,l

(1)
1

. . . γ
δ+1,l

(1)
δ+1

γ
δ+1,l

(2)
1

. . . γ
δ+1,l

(2)
δ+1


C =

λk(1) · γδ+2,k
(1)
1

. . . λk(1) · γδ+2,k
(1)
δ+1

λk(2) · γδ+2,k
(2)
1

. . . λk(2) · γδ+2,k
(2)
δ+1

µk(1) · γδ+3,k
(1)
1

. . . µk(1) · γδ+3,k
(1)
δ+1

µk(2) · γδ+3,k
(2)
1

. . . µk(2) · γδ+3,k
(2)
δ+1



D =

λl(1) · γδ+2,l
(1)
1

. . . λl(1) · γδ+2,l
(1)
δ+1

λl(2) · γδ+2,l
(2)
1

. . . λl(2) · γδ+2,l
(2)
δ+1

µl(1) · γδ+3,l
(1)
1

. . . µl(1) · γδ+3,l
(1)
δ+1

µl(2) · γδ+3,l
(2)
1

. . . µl(2) · γδ+3,l
(2)
δ+1


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To calculate the whole determinant, We consider the first element,

det

 A

C(1)

 = det



γ
1,k

(1)
1

. . . γ
1,k

(1)
δ+1

... . . . ...

γ
δ,k

(1)
1

. . . γ
δ,k

(1)
δ+1

γ
1,k

(2)
1

. . . γ
1,k

(2)
δ+1

... . . . ...

γ
δ,k

(2)
1

. . . γ
δ,k

(2)
δ+1

γ
δ+1,k

(1)
1

. . . γ
δ+1,k

(1)
δ+1

γ
δ+1,k

(2)
1

. . . γ
δ+1,k

(2)
δ+1

λk(1) · γδ+2,k
(1)
1

. . . λk(1) · γδ+2,k
(1)
δ+1

λk(2) · γδ+2,k
(2)
1

. . . λk(2) · γδ+2,k
(2)
δ+1



= det



det



γ
1,k

(1)
1

. . . γ
1,k

(1)
δ+1

... . . . ...

γ
δ,k

(1)
1

. . . γ
δ,k

(1)
δ+1

γ
δ+1,k

(1)
1

. . . γ
δ+1,k

(1)
δ+1


det



γ
1,k

(2)
1

. . . γ
1,k

(2)
δ+1

... . . . ...

γ
δ,k

(2)
1

. . . γ
δ,k

(2)
δ+1

γ
δ+1,k

(2)
1

. . . γ
δ+1,k

(2)
δ+1



det



γ
1,k

(1)
1

. . . γ
1,k

(1)
δ+1

... . . . ...

γ
δ,k

(1)
1

. . . γ
δ,k

(1)
δ+1

λk(1) · γδ+2,k
(1)
1

. . . λk(1) · γδ+2,k
(1)
δ+1


det



γ
1,k

(2)
1

. . . γ
1,k

(2)
δ+1

... . . . ...

γ
δ,k

(2)
1

. . . γ
δ,k

(2)
δ+1

λk(2) · γδ+2,k
(2)
1

. . . λk(2) · γδ+2,k
(2)
δ+1





= det


c
k(1)

d
∏
i∈[δ](βi−βδ+1)

e
k(1)

∏
i∈k(1)

S

(αi−βδ+1)

c
k(2)

d
∏
i∈[δ](βi−βδ+1)

e
k(2)

∏
i∈k(2)

S

(αi−βδ+1)

λk(1) ·
c
k(1)

d
∏
i∈[δ](βi−βδ+2)

e
k(1)

∏
i∈k(1)

S

(αi−βδ+2)
λk(2) ·

c
k(2)

d
∏
i∈[δ](βi−βδ+2)

e
k(2)

∏
i∈k(2)

S

(αi−βδ+2)



=
ck(1)ck(2)d

2

ek(1)ek(2)

∏
i∈[δ]

(βi − βδ+1)(βi − βδ+2) · det

 ∏
i∈k(1)S

1
αi−βδ+1

∏
i∈k(2)S

1
αi−βδ+1

λk(1) ·
∏

i∈k(1)S
1

αi−βδ+2
λk(2) ·

∏
i∈k(2)S

1
αi−βδ+2

.
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Where,

• k(i)
S = {k(i)

1 , . . . , k
(i)
δ+2}.

• ck(i) =
∏

f>g,f,g∈k(i)S
(αf − αg).

• d =
∏

f>g,f,g∈[δ](βf − βg).

• ek(i) =
∏

f∈k(i)S ,g∈[δ]
(αf − βg).

Applying all this in the main determinant and setting,

det(Bk,l) = 0

and factoring out the common multiples, we get

det


det

 ∏
i∈k(1)S

1
αi−βδ+1

∏
i∈k(2)S

1
αi−βδ+1

λk(1) ·
∏

i∈k(1)S
1

αi−βδ+2
λk(2) ·

∏
i∈k(2)S

1
αi−βδ+2

 det

 ∏
i∈l(1)S

1
αi−βδ+1

∏
i∈l(2)S

1
αi−βδ+1

λl(1) ·
∏

i∈l(1)S
1

αi−βδ+2
λl(2) ·

∏
i∈l(2)S

1
αi−βδ+2


det

 ∏
i∈k(1)S

1
αi−βδ+1

∏
i∈k(2)S

1
αi−βδ+1

µk(1) ·
∏

i∈k(1)S
1

αi−βδ+3
µk(2) ·

∏
i∈k(2)S

1
αi−βδ+3

 det

 ∏
i∈l(1)S

1
αi−βδ+1

∏
i∈l(2)S

1
αi−βδ+1

µl(1) ·
∏

i∈l(1)S
1

αi−βδ+3
µl(2) ·

∏
i∈l(2)S

1
αi−βδ+3




= 0

det

λk(2) ·∏i∈k(2)S
αi−βδ+1

αi−βδ+2
− λk(1) ·

∏
i∈k(1)S

αi−βδ+1

αi−βδ+2
λl(2) ·

∏
i∈l(2)S

αi−βδ+1

αi−βδ+2
− λl(1) ·

∏
i∈l(1)S

αi−βδ+1

αi−βδ+2

µk(2) ·
∏

i∈k(2)S
αi−βδ+1

αi−βδ+3
− µk(1) ·

∏
i∈k(1)S

αi−βδ+1

αi−βδ+3
µl(2) ·

∏
i∈l(2)S

αi−βδ+1

αi−βδ+3
− µl(1) ·

∏
i∈l(1)S

αi−βδ+1

αi−βδ+3

 = 0

Where similarly, l(i)S = {l(i)1 , . . . , l
(i)
δ+2}.

Now, since the λi’s are 4-wise independent over Fq0 , the first row is never zero. Sim-

ilarly, all the µj’s are in different cosets ofG and by choice of α’s
∏

i∈l(j)S ,k
(j)
S

αi−βδ+1

αi−βδ+3
∈

G. Hence the last row isn’t zero either. Then this determinant resolves into a linear

combination for 4 different values of λis. Hence, by linear independence rules of

λ, this determinant is also non-zero.

(f) Two global erasures are in two different mid-level codes. In one of the mid-level

code, the mid-level erasure is in the same local code as the global erasure, while

in the other they are in different local codes. Assume that the kth and lth mid-level

codes are affected. Let the local codes within, where the erasure occurs, be k(1), k(2)

and l(1). The matrix Bk,l,
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Bk,l =



γ
1,k

(1)
1

. . . γ
1,k

(1)
δ+1

... . . . ...

γ
δ,k

(1)
1

. . . γ
δ,k

(1)
δ+1

γ
1,k

(2)
1

. . . γ
1,k

(2)
δ+1

... . . . ...

γ
δ,k

(2)
1

. . . γ
δ,k

(2)
δ+1

γ
δ+1,k

(1)
1

. . . γ
δ+1,k

(1)
δ+1

γ
δ+1,k

(2)
1

. . . γ
δ+1,k

(2)
δ+1

γ
1,l

(1)
1

. . . γ
1,l

(1)
δ+2

... . . . ...

γ
δ+1,l

(1)
1

. . . γ
δ+1,l

(1)
δ+2

λk(1) · γδ+2,k
(1)
1

. . . λk(1) · γδ+2,k
(1)
δ+1

λk(2) · γδ+2,k
(2)
1

. . . λk(2) · γδ+2,k
(2)
δ+1

λl(1) · γδ+2,l
(1)
1

. . . λl(1) · γδ+2,l
(1)
δ+2

µk(1) · γδ+3,k
(1)
1

. . . µk(1) · γδ+3,k
(1)
δ+1

µk(2) · γδ+3,k
(2)
1

. . . µk(2) · γδ+3,k
(2)
δ+1

µl(1) · γδ+3,l
(1)
1

. . . µl(1) · γδ+3,l
(1)
δ+2


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Now, after permuting one row, we can apply A.1.2 to expand the matrix for the

determinant,

det(Bk,l) =

det



γ
1,k

(1)
1

. . . γ
1,k

(1)
δ+1

... . . . ...

γ
δ,k

(1)
1

. . . γ
δ,k

(1)
δ+1

γ
δ+1,k

(1)
1

. . . γ
δ+1,k

(1)
δ+1


det



γ
1,k

(2)
1

. . . γ
1,k

(2)
δ+1

... . . . ...

γ
δ,k

(2)
1

. . . γ
δ,k

(2)
δ+1

λk(2) · γδ+2,k
(2)
1

. . . λk(2) · γδ+2,k
(2)
δ+1


det



γ
1,l

(1)
1

. . . γ
1,l

(1)
δ+2

... . . . ...

γ
δ,l

(1)
1

. . . γ
δ,l

(1)
δ+2

γ
δ+1,l

(1)
1

. . . γ
δ+1,l

(1)
δ+2

µl(1) · γδ+3,l
(1)
1

. . . µl(1) · γδ+3,l
(1)
δ+2


+

det



γ
1,k

(1)
1

. . . γ
1,k

(1)
δ+1

... . . . ...

γ
δ,k

(1)
1

. . . γ
δ,k

(1)
δ+1

γ
δ+1,k

(1)
1

. . . γ
δ+1,k

(1)
δ+1


det



γ
1,k

(2)
1

. . . γ
1,k

(2)
δ+1

... . . . ...

γ
δ,k

(2)
1

. . . γ
δ,k

(2)
δ+1

µk(2) · γδ+3,k
(2)
1

. . . µk(2) · γδ+3,k
(2)
δ+1


det



γ
1,l

(1)
1

. . . γ
1,l

(1)
δ+2

... . . . ...

γ
δ,l

(1)
1

. . . γ
δ,l

(1)
δ+2

γ
δ+1,l

(1)
1

. . . γ
δ+1,l

(1)
δ+2

λl(1) · γδ+2,l
(1)
1

. . . λl(1) · γδ+2,l
(1)
δ+2


+

det



γ
1,k

(1)
1

. . . γ
1,k

(1)
δ+1

... . . . ...

γ
δ,k

(1)
1

. . . γ
δ,k

(1)
δ+1
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Now, in this massive expansion, we can take λi and µj out of the determinants.

What we will find is that each term is λiµj multiplied by the product of the deter-

minant of three Cauchy matrices. Each of those determinant ∈ Fq0 .
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Hence the final determinant is actually the linear combination of three λi in Fq0 .

Hence det(Bk,l) 6= 0.

130



Bibliography

[1] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. Vadali,

S. Chen, and D. Borthakur, “Xoring elephants: Novel erasure codes for big data,”

Proc. VLDB Endow., vol. 6, no. 5, pp. 325–336, Mar. 2013. [Online]. Available:

http://dx.doi.org/10.14778/2535573.2488339

[2] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and S. Yekhanin,

“Erasure coding in windows azure storage,” in Presented as part of the 2012 USENIX

Annual Technical Conference (USENIX ATC 12). Boston, MA: USENIX, 2012, pp.

15–26. [Online]. Available: https://www.usenix.org/conference/atc12/technical-sessions/

presentation/huang

[3] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality of codeword sym-

bols,” IEEE Transactions on Information Theory, vol. 58, no. 11, pp. 6925–6934, Nov

2012.

[4] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to trade space for access

efficiency in reliable data storage systems,” in Sixth IEEE International Symposium on

Network Computing and Applications (NCA 2007), July 2007, pp. 79–86.

[5] I. Tamo and A. Barg, “A family of optimal locally recoverable codes,” IEEE Trans. Inf.

Theory, vol. 60, no. 8, pp. 4661–4676, Aug. 2014.

[6] A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath, “Locality and

availability in distributed storage,” IEEE Transactions on Information Theory, vol. 62,

no. 8, pp. 4481–4493, Aug 2016.

131

http://dx.doi.org/10.14778/2535573.2488339
https://www.usenix.org/conference/atc12/technical-sessions/presentation/huang
https://www.usenix.org/conference/atc12/technical-sessions/presentation/huang
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