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Abstract

Artificial intelligence (AI) has infiltrated all fields of science, from high-energy particle
physics to biology to computational chemistry. In the last couple of decades, there has been
tremendous advancement in machine learning (ML) applications in computational chemistry.
Deep learning (DL) has achieved some success in the automation of feature design, physico-
chemical property prediction, accelerated chemical space search, and the design of new drug-like
molecules. Much work is still needed in terms of property prediction of inorganic molecules,
along with the search and design of new molecules and material design with desired properties.

This research aims to develop machine learning methods for 3D structure generation and
molecular geometry optimization. Use of neural network potential (NNPs) can accelerate the
process of 3D structure generation and molecular geometry optimization. Various neural net-
work potentials (NNPs) have been reported in the literature to be as fast as force fields and
as accurate as DFT. There has been a lack of standard comparative evaluation of these NNPs,
which motivated us to do a benchmark study on NNPs. In this benchmark study, we evaluate
and compare four NNPs, i.e., ANI, PhysNet, SchNet, and BAND-NN, for their accuracy in
energy prediction, transferability to larger molecules, ability to produce accurate PES, and ap-
plicability in geometry optimization. In the context of 3D structure generation (Molecules and
material design), there are two major components: search algorithm and property predictor.
We need a fast and accurate method to predict the energy of the given system to accelerate
the search in conformational space. For this, we developed a model known as DART, which
predicts the energy of Gallium clusters using a Topological Atomistic Descriptor (TAD). TAD
is a very simple and elegant descriptor that tries to encode structural information by divid-
ing the connectivity information using distance cutoffs. We show the DART models ability to
predict the energies of Gallium clusters accurately. For the second component, i.e., the search
algorithm, we developed an RL-based model, MeGen, to generate 3D low-energy isomers of
Gallium clusters, which uses DART as a reward function. Here we showed that MeGen is sig-
nificantly more efficient than the conventional workflow for generating ground-state geometries
as well as low-lying isomers in terms of time and computational resources. Following a similar
train of thought, we developed the MolOpt model. This multi-agent RL-based search algorithm
can perform molecular geometry optimization (MGO) by searching for the low-energy structure
on the potential energy surface. We show that MolOpt trained on ethane and butane can be
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used to optimize larger alkanes up to octane. We compare our model with other optimizers
and show that MolOpt outperforms the MDMin optimizer and performs similarly to the FIRE
optimizer. We further developed an improved version of MolOpt known as MolOpt2. We have
made algorithmic changes in MolOpt2, and MolOpt2 is trained on a diverse set of molecules.
Hence, due to algorithmic changes, our new model (MolOpt2) can perform MGO on molecules
containing elements CHNO and having a size of up to nine heavy atoms. Similar to MolOpt,
we compare MolOpt2 with other optimizers and show that MolOpt2 outperforms the MolOpt,
MDMin optimizer and performs similarly to the FIRE optimizer.
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Chapter 1

Introduction

If we were to name the most powerful assumption

of all, which leads one on and on in an attempt to

understand life, it is that all things are made of

atoms, and that everything that living things do can

be understood in terms of the jigglings and

wigglings of atoms.
-Richard Phillips Feynman

In 1929, Dirac remarked that all the necessary information to depict chemical processes
and phenomena is included in the Schrödinger equation (SE).[1] However, the SE cannot be
solved for more than one electron system. Nevertheless, various computational and numerical
approximations have been devised for the simplest systems to extract significant knowledge
about a chemical process and/or a system. The meaning of ”accuracy” may change depending
on the observable interest. For all practical purposes, a system containing several thousand
atoms would be considered ”large” to be studied using DFT. It would be impractical even to
do a single-point energy calculation of such a large system. In reality, system size where the
number of atoms is less than a thousand atoms is computationally feasible when considering
high-accuracy or ground state structures or ab-Initio methods. Quantum mechanical (QM)
calculations, although very accurate, are computationally expensive and cannot be used for
larger systems with tens of thousands of atoms.[2] Hence, the molecular mechanics force field
(MM-FF) has been the method of choice when it comes to modeling biomolecular systems and
processes. In MD simulations, forces are calculated using a molecular mechanics force field
model. These FFs have a mathematical form. For example, generally, FFs combine bonded and
non-bonded terms to capture interatomic interactions. Essentially FFs are parametrized for
specific experimental measurements using QM calculations and are inherently approximate.[3,
4, 5]
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Figure 1.1: Atomistic simulation techniques can be classified into two categories: 1. Electronic structure-
based QM methods and 2. predefined functional forms-based molecular mechanics (MM) methods. QM-based
simulations are restricted to smaller systems as they are computationally more expensive. At the same time,
MM-based methods can be efficiently used for larger systems but rely on many approximations. The objective
of NNPs trained on QM data is to decrease the computational cost of QM methods while maintaining their
accuracy and transferability. (T. Morawietz et al. [6] 2021)

General empirical FFs are employed in large-scale atomistic simulations with significantly
decreased computational costs (Figure 1.1). Additionally, accurate FFs have been pursued for
decades to improve MD simulations’ accuracy and sampling efficiency. Nevertheless, as these
FFs are empirically parametrized, they work only for near-equilibrium structures. FFs are also
not as accurate as QMmethods, and they lack the ability to model the breaking and formation of
chemical bonds. Thus, such potentials are usually unsuitable for transition states and chemical
reaction studies. There has been much progress in overcoming the drawbacks mentioned above,
such as FFs parameters can be adjusted for specific systems to achieve within fractions of 1
kcal/mol accuracy. Particularly potentials developed for metals, bond-order-based (reactive)
potentials, and reactive FFs for particular systems have become well known. Nevertheless, it
still makes sense to generalize these potentials to all the above drawbacks instead of developing
different potentials for different problems.

In recent years, ML methods have been used to circumvent the problem of solving Schrödinger
equation (SE) altogether. ML methods learn the high dimensional function (HDF), f by train-
ing the computer on large amounts of precomputed data (properties like energy, force, etc).
The ability to learn the HDF (f), which can then be used to map function f(Zi, ri) → E, which
gives the energy of the system (E). Hence only based on the nuclear charges and coordinates
of the system one can predict its physicochemical properties without solving SE. The HDF is
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similar to PES such that when given a set of atomic charges and coordinates of a molecule, it
can predict the energy value.[2]

High dimensional function (HDF) f can be learned using supervised ML algorithms to predict
the output value for a given input. One such algorithm class is artificial neural networks (ANN).
Fully connected feed-forward neural networks (FFNN) are a class of ANN that are great function
approximators. FFNN can project the input onto a latent space that relates to the output. The
latent space is learned successively via several layers and is generally highly nonlinear. Hence,
FFNNs are suited for learning f : {Zi, ri} −→ E, which approximates PES. An ideal neural
network potential (NNP) should have accuracy comparable to QM methods and as fast as
FFs. Developed NNP should also be differentiable and transferable to chemical environments
other than those it is trained on. NNP should generalize well to different problems, such
as bond-breaking/bond-formation problems (“reactive PES”). There has been much progress
in developing NNPs that fulfill some of these requirements. NNPs that fulfill all the above
properties do not exist yet.

Lately, large amounts of data have been generated due to rapid advances in computational
power coupled with large-scale experiments using density functional theory (DFT) and coupled-
cluster singles and doubles (CCSD) methods.[7, 8] Currently, the major drawback is that classi-
cal methods lack the ability to use large amounts of data. It is well suited to apply ML methods
to develop potentials as they are robust, flexible, and can efficiently use a large amount of avail-
able data. The general idea is to encode the 3D geometries of the molecule into a descriptor
and feed the descriptor to a FFNN, which will predict physicochemical properties.

In the last decade, there have been a host of neural network potentials developed with the
aim to predict physicochemical properties of the molecules given their 3D geometries. Neural
networks have been used to approximate PES for small molecules with the idea of many-body
expansion. While accurate, these methods scale poorly due to many body expansions requiring
many individual NN for each term. Many-body expansion problem led to the rise of high
dimensional atomic NN (HDNN). Atomic HDNN allows one to utilize the same size NN for
different-size systems by defining molecule energy as the sum of atomic energy, Etot =

∑N
i=1Ei,

where Ei is the energy contribution of an atom i of the molecule with a total number of N
atoms. HDNNs are also known as Neural network potentials.

In this work, we have focused on developing machine learning methods for 3D structure
generation and molecular geometry optimization. Thesis is organised as follows -

chapter 2 gives a brief overview of the fundamental principles of quantum mechanics and
classical mechanics. chapter 2 also includes an introduction to machine learning methods and
algorithms, thereby setting the stage for a deeper dive into the ML techniques developed in
this thesis. The development of various NNPs and the lack of standard comparative evaluation
of these NNPs motivated us to do a benchmark study on NNPs. Hence, in Chapter 3, titled
”Benchmark study on Deep Neural Network Potentials for Small Organic Molecules” we evaluate

3



and compare four NNPs, i.e., ANI, PhysNet, SchNet, and BAND-NN, for their accuracy in
energy prediction, transferability to larger molecules, ability to produce accurate PES, and
applicability in geometry optimization. These models were originally trained and tested on
different data sets, which makes their applicability and comparison difficult. Chapter 3 provides
a standard comparative evaluation of these models by training and testing them on the same
data sets.

Now with the knowledge that NNPs can predict the physicochemical properties of the
molecules given their 3D geometries, we wanted to address the problem of 3D structure genera-
tion (molecules and materials design). Molecules and material design is an optimization problem
where one needs to search the chemical and conformation space for the molecule and materials
with desired properties. Molecules and material design have two major components: search
algorithm and property predictor. The search algorithm searches/generates new 3D structures.
The property predictor aims to predict the physicochemical properties, thereby guiding or cre-
ating a bias in the search algorithm based on the desired range of physicochemical properties.
For this effect, we developed a property predictor known as DART, which we describe in Chap-
ter 4. We developed a reinforcement learning (RL) based search algorithm, MeGen, which uses
the DART model to generate low-energy Gallium clusters described in Chapter 5.

Further, with our combined knowledge of ML methods for physicochemical property pre-
diction as well as RL-based search algorithms guided by property predictor we developed an
RL based molecular geometry optimizer (MGO) which we call MolOpt. We have described
MolOpt in chapter 6 which serves as proof of concept for the potential of multi-agent reinforce-
ment learning (MARL) in MGO of alkanes. In chapter 7 we describe MolOpt2 an extension
of MolOpt. MolOpt2 can perform MGO on molecules containing elements CHNO and has
imporved performance as compared to MolOpt. In chapter 8, we summarize and discuss the
findings from this thesis.
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Chapter 2

Methods

In computational chemistry, the molecular system is modeled using principles of quantum
mechanics and classical mechanics, which aids in understanding the energetics and dynamic
properties of the molecular system. Computing a molecular system’s energetic and dynamic
properties involves solving numerous mathematically complex equations. Recently, ML algo-
rithms have gained popularity in computational chemistry as they circumvent the problem of
solving Schrödinger equation (SE) altogether. ML methods learn the high dimensional func-
tion (HDF), f , by training the computer on large amounts of precomputed data (properties
like energy, force, etc). This chapter covers the fundamental principles of quantum mechanics
and classical mechanics. Additionally, it introduces machine learning methods and algorithms,
setting the stage for a deeper dive into the ML techniques developed in this thesis.

2.1 Quantum mechanics

We briefly discussed molecular dynamic simulations using molecular mechanics in the previ-
ous section. MM-based classical force fields (FF) offer a computationally efficient alternative to
QM-based methods, allowing for the modeling of larger systems and high-throughput exercises,
albeit with a trade-off in accuracy. Nonetheless, these MM-based methods cannot accurately
capture the electronic rearrangements in the system. In computational chemistry, QM-based
methods are used to calculate the electronic structure of molecules, which is crucial for predict-
ing their chemical properties and reactivity.[9, 10, 11, 12, 13, 14]

The central equation in QM is the time-independent Schrödinger equation, which describes
the behavior of a quantum system in terms of its wavefunction Ψ:

ĤΨ = EΨ (2.1)

Where Ĥ is the Hamiltonian Operator, and E is the energy of the system. Ĥ consists of the
kinetic energy terms and the potential energy terms[15]:
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Ĥ = TN (R) + VNN (R) + VeN (e,R) + Te(r) + Vee(r) (2.2)

In Equation 2.2, TN (R) and Te(r) are the kinetic energy components of nuclei and electron
respectively. VNN (R) and Vee(r) are the nuclear-nuclear and electron electron repulsion terms.
VeN (r,R) is the nuclei-electron attraction term.

SE can only be solved exactly for one-electron systems. Analytical solutions are impossible
in biological systems with many atoms or chemical systems having a single atom with more
than one electron due to the non-separability of variables describing the interactions between
electrons. Consequently, approximations have to be made to solve the Schrödinger equation.
Two basic approximations are the Born-Oppenheimer (BO) approximation and the Hartree-
Fock[16] approximation.

2.1.1 Born-Oppenheimer (BO) approximation

The Born-Oppenheimer (BO) approximation is a fundamental concept in QM that decouples
the motion of atomic nuclei from that of electrons in molecules. It assumes that the motion of
atomic nuclei is much slower compared to that of electrons, allowing the electron configuration
to adjust instantaneously to any change in nuclear positions. BO approximation allows the
separation of the Schrödinger equation into electronic and nuclear components. By treating
nuclei as fixed in position, one can neglect the TN (R) term in Equation 2.2 while solving for
the electronic wavefunction and energy. While BO approximation simplifies the computational
complexity of the system, additional approximations concerning electron-electron repulsions are
necessary before it can be applied to systems consisting of many atoms.

2.1.2 Hartree-Fock (HF) approximation

For a given set of nuclear coordinates, the computation of the electronic Schrödinger Equa-
tion (SE) is computationally expensive. The Hartree-Fock (HF) approximation simplifies this
process by averaging the potential exerted by all electrons around a single electron, reducing
the complexity of estimating electron-electron repulsion. The HF method seeks one-electron
wave functions that minimize the total energy of the system using the self-consistent field (SCF)
method. The overall wave function is represented as a Slater determinant of these one-electron
wave functions, ensuring that it is anti-symmetric in nature due to the Pauli exclusion principle.
The HF method serves as a foundational approach, leading to semi-empirical and more accurate
ab-initio methods. Semi-empirical methods, such as AM1[17], MNDO[18], and PM3[19], utilize
minimal basis sets and employ various approximations to electron integrals. This approach
significantly enhances computational efficiency, often by a factor of 102 to 103, compared to
typical implementations of ab-initio quantum mechanics (QM) and density functional theory
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(DFT) methods.[20] These methods also use empirical parameters obtained from experimen-
tal data to improve their accuracy. DFT[21] is an alternative method that models many-body
electron correlation using electron density rather than orbitals, offering better results compared
to HF methods at a similar computational cost.

2.1.3 Density functional theory (DFT)

Density Functional Theory (DFT)[21] is a QM-based method used to describe the electronic
structure of atoms and molecules. The idea is that the electronic density ρ(r) contains all the
information that is needed to determine the ground state (GS) energy and other properties of a
system. Unlike Hartree-Fock (HF) method, which focuses on electron orbitals, DFT considers
the electron density ρ(r) as the fundamental variable.

In DFT, the total energy E of a system is expressed as a functional of the electron density
ρ(r):

E[ρ] = Ts[ρ] + Vext[ρ] + J [ρ] + Exc[ρ] (2.3)

Here, Ts[ρ] is the kinetic energy of a non-interacting electron gas with density ρ, Vext[ρ] is
the external potential energy, J [ρ] is the classical electrostatic interaction energy, and Exc[ρ] is
the exchange-correlation energy, accounting for quantum-mechanical exchange and correlation
effects. The key to the success of DFT lies in the exchange-correlation functional Exc[ρ]. Even
the relatively simple approximation to the exchange-correlation functional can give favorable
results. Common approximations include the local density approximation (LDA), also known as
local spin density approximation (LSDA). LDA is based on the assumption that the exchange-
correlation energy at a given point in space depends only on the electron density at that point.
Mathematically, this is expressed as:

ELDA
xc [ρ] =

∫
ϵLDA
xc (ρ(r))ρ(r) dr (2.4)

Here, ϵLDA
xc (ρ(r)) is the exchange-correlation energy per particle at point r in the electron

density. Alongside the Local Density Approximation (LDA), there are several other approxima-
tions specific to DFT, including the Generalized Gradient Approximation (GGA), meta-GGA,
hybrid functionals, and semi-empirical corrections. GGA[22] improves upon the LDA by incor-
porating information about the gradient of the electron density, which helps GGA capture some
non-local effects that LDA misses, leading to more accurate predictions of molecular properties.
Popular GGA functionals include PBE,[22] BLYP,[23, 24, 25] OLYP, and BP86. Meta-GGA[26]
goes a step further by also considering the second derivative of the density or the kinetic energy
density in addition to the electron density and its gradient. Meta-GGA functionals include
M06-L,[27], TPSS,[26] revTPSS,[28] and SCAN. Hybrid functionals combine a fraction of the
exact Hartree-Fock exchange with DFT exchange-correlation functionals. By including some
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exact exchange, hybrid functionals can provide more accurate descriptions of both structural
and energetic properties of molecules and materials compared to pure DFT functionals. Semi-
empirical corrections are empirical adjustments made to DFT calculations to improve their
accuracy. These parameters are often based on fitting to experimental data. Semi-empirical
methods, such as AM1, MNDO, and PM3, can significantly improve the accuracy of DFT cal-
culations while maintaining computational efficiency. Due to its balance between accuracy and
computational efficiency, DFT has emerged as one of the most extensively employed methods
in computational chemistry.[11, 12, 13, 14]

2.1.4 Basis set

In quantum chemistry, a basis set forms the foundation for describing molecular orbitals,
which are essential for understanding the electronic structure of molecules.[29, 30, 31] These sets
consist of one-particle functions that serve as building blocks for representing molecular orbitals.
Typically, molecular orbitals are expressed as linear combinations of atomic orbitals, where the
atomic orbitals can be either Slater-type orbitals (STO) or Gaussian-type orbitals (GTO). GTO
are more commonly used in practice due to their computational efficiency. The choice of basis
set is crucial, as it directly impacts the accuracy of quantum chemical calculations.

There are several types of basis sets used in quantum chemistry, each with its own charac-
teristics and level of accuracy:

1. Minimal Basis Sets: Minimal basis sets, such as the minimal STO-3G (Slater-type
orbital) basis, are simple and computationally efficient. They consist of a minimal number
of basis functions per atom and are useful for quick calculations and preliminary studies.

2. Double- and Triple- ζ Basis Sets: Double- and triple- ζ basis sets, such as 6-31G(d)
and 6-311+G(2d,2p), respectively, include additional basis functions to better describe
the electron density around each atom. These basis sets provide more accurate results
compared to minimal basis sets but are more computationally demanding.

3. Polarization and Diffuse Basis Sets: Polarization functions, denoted as ’p’ or ’d’,
are added to basis sets to account for the electron density polarization that occurs in
molecules. Diffuse functions, denoted as ’++’, are used to describe electrons that are
further away from the nucleus than those described by standard basis functions. These
basis sets are particularly handy for describing molecules with large dipole moments or
with delocalized electrons.

4. Correlation Consistent Basis Sets: Correlation consistent basis sets, such as the
cc-pVXZ series (where X is D, T, Q, etc.), are designed to accurately describe electron
correlation effects. These basis sets include multiple levels of polarization and diffuse
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functions and are used for high-accuracy calculations, especially in post-Hartree-Fock
methods.

The choice of basis set is a critical consideration in quantum mechanical calculations, bal-
ancing computational efficiency with the need for accurate electronic structure predictions.
Advanced basis sets can provide highly accurate results but require more computational time
and memory compared to simpler basis sets. Researchers can effectively model molecular sys-
tems and gain valuable insights into their properties and behaviors by selecting an appropriate
basis set.

Quantum mechanical (QM) calculations are computationally very expensive and hence can-
not be used to study larger systems with tens of thousands of atoms for longer time scales.
Hence, molecular dynamics simulations have been the method of choice when it comes to mod-
eling biomolecular systems and processes. In the next section, we give a brief overview of
molecular dynamics simulation and its application in studying biological processes.

2.2 Molecular Dynamics simulations

Molecular dynamics (MD)[32] simulation is a computational method that predicts how atoms
move in a molecular system over time. The basic principle behind MD is to numerically solve
Newton’s equations of motion for a system of interacting particles. In MD simulations, atoms
and molecules are represented as particles, and their positions and velocities are tracked as they
evolve in time. As shown in Equation 2.5, the interactions between particles are described by a
force field[33, 34], which contains terms for bonded interactions (bonds, angles, dihedrals) and
non-bonded interactions. Bonded interactions includes bonds, angles and dihedrals whereas
non-bonded interactions includes terms for van der Waals forces and electrostatic (coulombic)
interactions[35, 36].

U(r) =
∑

bonds

kb(b− b0)2 +
∑

angles

kθ(θ − θ0)2 +
∑

dihedrals

kϕ[1 + cos(nϕ+ δ)]

+
N∑

i=1

N∑
j=i+1

qiqj

εrij
+ εij

(Rmin,ij

rij

)12

− 2
(
Rmin,ij

rij

)6
 (2.5)

In the Equation 2.5,
kb = the spring constant corresponding to the stretching of the bond,
b = the instantaneous bond length for a given bond,
b0 = the equilibrium bond length,
kθ = spring constant corresponding to the bending of the bond angle,
θ = the instantaneous angle between the bond for a given bond angle,
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θ0 = the equilibrium bond angle,
kϕ = the height of the potential energy corresponding to the dihedral,
n = the number of maxima/minima that occur as ψ varies from –π to π,
ϕ = the dihedral angle for a given dihedral,
δ = the phase shift for ϕ,
qi and qj = the charge on particles i and j, respectively,
ε = the permittivity in a vacuum,
rij = the distance between atom i and atom j,
Rmin,ij = the distance between atom i and j where the Van der Waals energy is minimum
εij = the energy at this distance.

MD simulations serve as a potent tool in computational chemistry and biology, allowing
researchers to study the dynamic behavior of molecular systems over time. Molecular dynamics
(MD) also enables researchers to gain atomic-level insights into various chemical and biological
processes, such as DNA-repair mechanism, protein folding, effects of solvents on protein folding
dynamics, lipid-protein interactions, lipid–drug interactions, and protein-ligand interactions
aiding in drug design.[37, 38, 39, 40, 41, 42]

MD simulations employ integration algorithms like the Verlet[35, 43] or Leapfrog[44] algo-
rithms to simulate molecular motion over time. These algorithms numerically solve Newton’s
equations of motion in order to update the positions and velocities of the atom at each time
step based on the forces calculated using the potential energy function (force fields). We will
discuss these integration algorithms in the next section.

2.2.1 Integration algorithms

The central idea in MD simulations is to numerically solve Newton’s equations of motion
to predict the trajectories of atoms and molecules.[44] Several integration algorithms exist that
can numerically solve these equations efficiently and accurately.[35, 36, 43]

Integration algorithms in molecular dynamics typically employ the finite difference tech-
nique, often based on Taylor series expansion, to calculate particle positions, velocities, and
accelerations at each time step. The initial coordinates can be obtained from experimental
techniques (X-ray, NMR, and cryo-crystallography) or modeling protocols, and the initial ve-
locities are randomly assigned according to a Maxwell-Boltzmann distribution, Where, f(vi) is
the probability of an atom i of mass mi to have a velocity vi at a given temperature, T ; kb is
the Boltzmann constant.

f(vi) =
(

mi

2πkbT

)1/2
e

(
miv2

i
2πkbT

)
(2.6)
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After determining the initial positions and velocities of atoms, the forces acting on each
atom are computed as the negative gradient of the potential energy function. The acceleration
of each atom is then determined by dividing the force by the atom’s mass. Subsequently,
various integration algorithms, such as Verlet, Leapfrog, and Velocity Verlet,[35, 45] are used
to numerically solve the equations of motion. Among these algorithms, the Verlet algorithm is
particularly notable for its widespread use. We start with the Taylor series expansion for the
position at time t+ δt and t− δt around the current time t.[35, 44]

r(t+ δt) = r(t) + v(t)δt+ 0.5δt2at+ ... (2.7)

r(t− δt) = r(t) − v(t)δt+ 0.5δt2at− ... (2.8)

Addition of Equation 2.7 and Equation 2.8 gives us Equation 2.9.

r(t+ δt) = 2r(t) − r(t− δt) + a(t)(δt)2 (2.9)

Similar to Equation 2.9, the subtraction of the Equation 2.7 and Equation 2.8 gives us
Equation 2.10.

v(t) = r(t+ δt) − r(t− δt)
2δt

(2.10)

These algorithms are widely used in MD simulations due to their efficiency and stability. In
molecular dynamics (MD), we do not consider the molecule’s electronic structure. Electrons
are usually not explicitly modeled in MD simulations. Instead, their effects are incorporated
indirectly through empirical force fields, which describe the interactions between atoms based
on their positions. This assumption simplifies computations but results in inherent limitations
compared to QM-based methods.

In recent years, efforts have been made to combine the strengths of quantum mechanics and
classical mechanics. The goal is to create machine learning based methods that are as accurate
as quantum mechanics based methods and as computationally fast as classical mechanics based
methods. In the next section, we introduce machine learning methods and algorithms. This
introduction lays the groundwork for a detailed exploration of the ML-based methods used and
developed in this thesis.

2.3 Machine learning

In this section, we will explore key concepts in machine learning, such as artificial neural
networks (ANNs), their various types, activation functions, reinforcement learning (RL), and
advanced machine learning techniques. Understanding the different types of ANNs and their
applications is crucial for building effective ML models. Additionally, activation functions play a

11



vital role in ANNs by introducing non-linearity, allowing the network to learn complex patterns
and improve performance. RL is another important concept in machine learning, where an agent
learns to make decisions through interaction with an environment, receiving feedback in the
form of rewards or penalties. Lastly, we will explore advanced ML techniques and innovations
that are shaping the future of machine learning, enhancing its capabilities and performance.
This section sets the foundation and will help the reader better understand the ML methods
and algorithms that are used and developed in this thesis.

2.3.1 Artificial neural network (ANN)

Artificial Neural Networks (ANNs) are ML algorithms inspired by the function and structure
of a human brain.[46, 47] Similar to the human brain, ANNs consist of interconnected neu-
rons/nodes that process the information and learn patterns from data. These interconnected
neurons/nodes are organized as layers, such as an input layer, one or more hidden layers, and an
output layer.[48] Each connection between neurons/nodes in an ANN has a weight that dictates
how much influence one neuron has on another. The basic working principle of an Artificial
Neural Network (ANN) involves passing input data through the network, which is processed
through different layers to produce an output. Below is the list of layers in ANN and their
function:

Figure 2.1: Neural network with 4 layers (1 input layer, 2 hidden layer and 1 output layer). Enlarged image
of single neuron depicts the inputs (x), weights (w), bias (b), activation function (φ) and output (y). (Source
- Nishant Kumar and Martin Raubal. Applications of deep learning in congestion detection, prediction and
alleviation: A survey. Transp. Res. Part C Emerg. Technol., 133 (November):103432, 2021.)

1. Input Layer: The input layer accepts the input data (feature vector) and passes it to
the neurons/nodes in the next layer, i.e., the Hidden layers.
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2. Hidden Layers: The hidden layers perform mathematical operations on the input data
using the weights associated with each connection. Each neuron in a hidden layer calcu-
lates a weighted sum of the inputs received from the previous layer before passing this
sum through an activation function to introduce non-linearity. After passing through the
activation function, the result is passed to the next layer of neurons/nodes, i.e., the output
layer.

3. Output Layer: The final result or prediction is given by the output layer based on
the processed input from the hidden layers. The type of problem being solved, such as
classification or regression, decides the number of neurons in the output layer.

The mathematical representation of a neuron’s output y in layer l given inputs x(l)
1 , x

(l)
2 , ..., x

(l)
n

and weights w(l)
1 , w

(l)
2 , ..., w

(l)
n is:

y(l) = f(
n∑

i=1
w

(l)
i x

(l)
i + b(l)) (2.11)

Here, f is the activation function (e.g., ReLU, Tanh), and b(l) is the bias term for layer l.
The learnable parameters are the weights and biases shown in Equation 2.11. They are adjusted
during the training process to minimize the error between the predicted output and the actual
output (ground truth, label) using optimization techniques like gradient descent.

2.3.2 Different types of ANN

In the previous section, we saw how ANNs learn from data by adjusting their weights and
biases through a process known as training, which allows them to make predictions or classify
data based on patterns learned from the training data. In this section we will discuss some of
the key variations and algorithms derived from ANNs.

1. Recurrent Neural Networks (RNNs): RNNs are designed to operate on sequential
data, where the order of inputs matters. They have connections that form directed cycles,
allowing them to exhibit dynamic temporal behavior. RNNs are frequently used in natural
language processing (NLP) and speech recognition. Their applications extend to tasks like
molecular sequence analysis, molecular design, and reaction prediction in computational
chemistry.

2. Convolutional Neural Networks (CNNs): Convolutional Neural Networks (CNNs)
are a class of ANN commonly used for analyzing images.[49] One key feature of CNNs is
their ability to learn spatial hierarchies of features through convolutional layers. These
layers apply a series of filters (kernels) to the input data, extracting important features
at different spatial scales, which makes them particularly effective for tasks like image
recognition, object detection, and image classification.
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3. Long Short-Term Memory (LSTM): LSTM is a specialized type of RNN capable
of learning long-term dependencies in sequantial data.[50] It introduces memory cells
and various gating mechanisms to selectively remember or forget information over a long
sequences, making it particularly effective for tasks requiring modeling of context over
time.

4. Generative Adversarial Networks (GANs): GANs consist of two neural networks, a
generator network and a discriminator network, which are trained simultaneously through
adversarial training.[51] The generator learns to generate new data samples, such as im-
ages, audio, or text, that are indistinguishable from real data, while the discriminator
learns to differentiate between real data and data generated by the generator. The two
networks are trained in a minimax game, where the generator aims to fool the discrim-
inator, and the discriminator aims to classify real and generated data correctly. This
adversarial training process results in the generator producing increasingly realistic data
samples. GANs are used to generate new content, such as images, music, and text.

5. Autoencoders: Autoencoders are variants of ANN used for unsupervised learning of
representation (encoding) for a set of data.[52, 53, 54] The key idea behind autoencoders
is to construct a network architecture that includes a bottleneck, forcing the model to
compress the input data into a latent-space representation. This compression is achieved
by learning the underlying structure and correlations present in the input data. By doing
so, the autoencoder can effectively capture and represent the essential features of the
data. The compressed representation can then be used for various tasks such as data de-
noising, dimensionality reduction, and even the generation of new data samples. Overall,
autoencoders are powerful tools for learning meaningful representations of complex data.

6. Graph Neural Networks (GNNs): GNNs are designed to operate on graph-structured
data. Graph Neural Networks (GNNs) are particularly relevant in computational chem-
istry as they excel in learning molecular representations. In this context, atoms are
represented as nodes and chemical bonds as edges in a graph. GNNs can aggregate in-
formation from neighboring atoms (nodes) to learn complex molecular features, enabling
tasks such as node classification (e.g., atom type prediction) and link prediction (e.g.,
chemical bond prediction) in molecular graphs.[55, 56, 57, 58]

7. Mixture Density Networks (MDNs): MDNs are a type of neural network architecture
used in machine learning for modeling complex probability distributions, particularly
when the data is multimodal (i.e., consists of multiple distinct peaks).[59, 60] MDNs
predict not just a single output value but a set of parameters that define a mixture
model, typically a Gaussian mixture model (GMM). These parameters include the means,
variances, and mixture weights of the individual Gaussian components. By using MDNs,
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one can model complex, non-linear relationships in the data and capture uncertainty in
predictions, making them useful for tasks like generating diverse outputs in generative
modeling or predicting multimodal outcomes in regression problems.

These are just a few examples of the many variations and algorithms that have been derived
from the basic ANN architecture. Each variation is designed to address specific challenges or
leverage specific characteristics of the data, making neural networks a versatile and powerful
tool in machine learning and artificial intelligence.

2.3.3 Activation functions

Activation functions are a crucial component of ANNs, which are responsible for introduc-
ing non-linearities into the network and facilitating ANNs to learn complex patterns in data.
Activation functions determine the output of a neuron/node, which is then passed on to the
neuron/node present in the next layer of the network. In Figure 2.2, we illustrate the behavior of
several activation functions with respect to the input (x) on the x-axis and their corresponding
output on the y-axis.

Below, we give examples of some of these activation functions.

1. Rectified Linear Unit (ReLU) is a popular activation function used in neural networks.
It is defined as f(x) = max(0, x), which means it outputs the input value if it is positive
and zero otherwise. ReLU is favored for its simplicity and efficiency, as it introduces non-
linearity to the network without computationally expensive operations. One of the key
advantages of ReLU is that it helps mitigate the vanishing gradient problem, which can
occur in deep networks. However, ReLU can suffer from the ”dying ReLU” problem, where
neurons can become inactive and stop learning if they consistently output zero. Despite
this limitation, ReLU remains a widely used activation function in many state-of-the-art
neural network architectures.

2. Continuously Differentiable Exponential Linear Unit (CELU) is an activation function
that offers a smooth alternative to the ReLU family of functions. It is defined as f(x) =
max(0, x) + min(0, α(exp(x/α) − 1)), where α is a hyperparameter that controls the rate
of decay for negative inputs. CELU provides a smooth gradient for all values of x, unlike
ReLU, which has a gradient of zero for negative inputs. This property can be beneficial
for training deep neural networks, as it helps prevent the ”dying ReLU” problem and can
lead to more stable convergence during training. Additionally, CELU retains the linear
behavior for positive inputs, which can be advantageous for capturing linear relationships
in the data.

3. Leaky ReLU It is an extension of the traditional ReLU. It is defined as f(x) = max(αx, x),
where α is a small constant, typically set to a small value like 0.01. Unlike the standard
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Figure 2.2: Comparison of activation functions: ReLU, Leaky ReLU, CELU, and Tanh.

ReLU, which sets all negative values to zero, Leaky ReLU allows a small, non-zero gradient
for negative inputs. This small slope for negative inputs helps address the ”dying ReLU”
problem, where neurons can become inactive and stop learning during training.

4. Hyperbolic Tangent (Tanh) is another commonly used activation function in neural net-
works and is defined as f(x) = tanh(x). Tanh squashes the input values to the range [-1,
1], producing zero-centered outputs. This makes it useful for models where one needs nor-
malized output between the ranges [-1, 1]. However, Tanh can suffer from the vanishing
gradient problem for very large or very small inputs.

In general, the selection for activation function depends on the specific necessities of the
neural network and the nature of the problem being solved. Various activation functions exhibit
distinct properties that can influence the network’s performance in terms of training speed and
prediction accuracy.

2.3.4 Reinforcement learning (RL)

Reinforcement learning is the subfield of ML, where an agent learns how to make smart
decisions by interacting with its environment.[61] It learns through the trial and error method
and receives feedback as rewards or penalties. Consider RL as training a dog, as illustrated in
Figure 2.3. In this analogy, the dog represents the RL agent, and the human represents the
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Figure 2.3: The cartoon illustrates the intuition behind reinforcement learning. The Human can be considered
as the environment, the dog as an agent and command, gestures etc are observations (state) in the RL setting.

environment. The human issues commands or gestures, which serve as observations or states.
The dog (agent) observes these states and takes actions to receive a treat (reward) from the
human (environment). The human rewards correct actions and penalizes incorrect ones. The
goal of the dog (agent) is to maximize its reward by executing the correct actions. Through
this process, the dog learns to perform the correct action based on the command or gesture to
receive a reward.

The general formalism of RL can be described as follows:

1. Agent: The entity that interacts with the environment and makes decisions based on the
feedback received from the environment.

2. Environment: The external system with which the agent interacts, providing feedback
based on the agent’s actions.

3. State (S): The representation of the environment at a specific point in time, crucial for
the agent’s decision-making process.

4. Action (A): The choices available to the agent, which affect the environment’s state.

5. Reward (R): The feedback from the environment to the agent after each action, indi-
cating the immediate benefit of that action.

6. Policy (π): The strategy or set of rules that the agent follows to select actions based on
the current state.

7. Value Function (V or Q): An estimate of the expected cumulative reward that an
agent can achieve from a given state (V) or state-action pair (Q).
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The goal of the agent is to learn an optimal policy (π∗) that maximizes the expected cumula-
tive reward over time. This process usually involves iteratively engaging with the environment,
observing states, taking actions, receiving rewards, and adjusting the policy based on these
interactions.

2.3.5 Machine Learning: Advanced techniques and innovations

Machine learning (ML) techniques have advanced significantly over the years, resulting in
the development of various sophisticated models and techniques. Below, we highlight some
prominent techniques, although the list is by no means exhaustive.

1. Residual Connections: A residual connection is a learnable mapping that runs in par-
allel with a skip connection to form a residual block.[62] Along with skip connections,
residue connections are used in architectures like ResNet[62] for image recognition tasks,
allowing the training of very deep networks with hundreds of layers. As shown in Fig-
ure 2.4, F (x) represents the residual mapping to be learned and identity x is the skip
connection.

Figure 2.4: Residual block F (x) along with identity as skip connection. (Source - Kaiming He, Xiangyu Zhang,
Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit., 770–778, 2016.

2. Skip Connections: Skip connections enable information to bypass specific layers within
a neural network, mitigating the vanishing gradient problem by creating a shortcut for
the gradient to propagate through the network.[62, 63] They are typically used in deep
neural networks, such as ResNet, for image classification and object detection tasks.

3. Attention Mechanism: Attention mechanisms empower neural networks to concentrate
on particular segments of the input sequence by assigning varying weights to different parts
of the input.[64] This helps the model to selectively concentrate on relevant information,
rendering them suitable for NLP duties like machine translation and text summarization,
where focusing on different input sequence parts is context-dependent.
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4. Batch Normalization: Batch normalization is a method employed to normalize the
input of each layer by modifying and scaling the activations. This technique helps reduce
internal covariate shift, accelerating the training process. It is used in various deep-
learning models to improve training speed, stability, and generalization.

Figure 2.5: On the left is a standard neural net with 2 hidden layers. On the right the crossed units have been
dropped. (Source - Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15:1929–1958,
2014.)

5. Dropout: Dropout is a regularization method that involves randomly dropping out or
deactivating neurons during training, as shown in Figure 2.5. This process helps reduce
overfitting and enhances the model’s generalization ability. Dropout is widely used in
deep neural networks, particularly in fully connected layers, to prevent overfitting and
improve the model’s robustness.[65, 66]

6. Data Augmentation: Data augmentation is a technique used to artificially expand the
size of a dataset by creating modified versions of data samples, improving the robustness
of models and reducing overfitting. It is widely used in computer vision tasks, such as
image classification and object detection, where generating additional training data can
improve the performance of the mode.[67]

7. Transfer Learning: Transfer learning is a method that involves using a pre-trained
model as a starting point for a new task, which can help accelerate the training process
and enhance the model’s performance, especially when the new task has limited data.
This approach is frequently employed in image recognition applications, where models
like VGG, Inception, and ResNet are fine-tuned on specific datasets to achieve improved
performance. In computational chemistry, ANI1-ccx model is one such example of transfer
learning.[68] We use ANI1-ccx model in chapter 6 and chapter 7 to predict energy and
forces.
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2.4 Molecular geometry optimization

This section introduces three optimization algorithms, i.e., FIRE, MDMin, and BFGS. These
optimizers have been used in chapter 6 and chapter 7, where we compare our RL-based optimizer
with these three optimizers.

2.4.1 Fast Inertial Relaxation Engine (FIRE)

The Fast Inertial Relaxation Engine (FIRE) algorithm is a method that is based on molecular
dynamics to efficiently relax a molecular system to a stable configuration. Any common MD
integrator can be used as the basis for the propagation. At the beginning of the algorithm, the
given atomic positions are used, and the initial velocity of the system is set to zero. It then
calculates the forces and velocities acting on each atom based on the system’s potential energy.
Next, it adjusts the velocities of the atoms to reduce these forces, preventing the atoms from
overshooting their equilibrium positions. To maintain stability, the algorithm normalizes the
velocities if they are too high. Subsequently, it updates the positions of the atoms based on their
velocities, gradually moving the system towards a more stable state. This process is repeated
iteratively until the system reaches a stable configuration, as determined by a convergence
check.[69]

2.4.2 MDMin

The MDMin algorithm is a variation of the velocity-Verlet molecular dynamics algorithm
used to simulate molecular systems. It involves solving Newton’s second law numerically but
includes an additional check after each time step. This check examines the dot product between
the forces acting on the atoms and their momenta. If this dot product is zero, it indicates that
the system has passed through a local minimum in the potential energy surface. At this point,
the algorithm sets the momentum to zero. Unlike traditional molecular dynamics, where atom
masses are considered, in MDMin, all masses are set to one.

There are two versions of the MDMin algorithm. The first version tests and stops each atom
individually. In contrast, the second version treats all coordinates as a single vector and sets all
momenta to zero if the dot product between the momentum vector and the force vector is zero.
The latter version is implemented in the ASE package used in the thesis. Although the MDMin
algorithm is simple, it performs well because it leverages the physics of the system. When
the system is close enough to a minimum that the potential energy surface is approximately
quadratic, switching to a minimization method with quadratic convergence, such as Conjugate
Gradient[70] or Quasi-Newton, becomes advantageous for further refinement.[71]
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2.4.3 Broyden–Fletcher–Goldfarb–Shanno (BFGS)

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is a popular optimization method
used to find the minimum of an objective function. It belongs to the class of quasi-Newton meth-
ods, which aim to find the minimum of a function by iteratively improving an approximation of
the inverse Hessian matrix, which represents the local curvature of the objective function. At
each iteration, the algorithm adjusts the search direction based on the gradient of the objective
function and the current estimate of the inverse Hessian matrix. By combining information
from previous iterations, the BFGS algorithm dynamically adapts its search direction to navi-
gate the optimization landscape efficiently. This adaptive nature allows it to converge rapidly
to the minimum of the objective function while avoiding unnecessary oscillations. Unlike tra-
ditional gradient descent methods, BFGS typically requires fewer iterations to converge and
is less sensitive to the choice of the initial guess. As a result, the BFGS algorithm provides a
robust and efficient approach for optimization problems, making it widely used in various fields
such as machine learning, numerical optimization, and scientific computing.[72, 73, 74, 75]

This chapter has equipped us with the following: 1. the fundamental understanding of the
principles of QM and MM, 2. a basic understanding of various ML models and techniques, and
3. a basic understanding of optimization algorithms. Equipped with this knowledge, we can
dive deep into the ML-based potentials known as neural network potential (NNPs). In the next
chapter, we will discuss four NNPs and perform a benchmark study on NNPs.
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Chapter 3

Benchmark study on Deep Neural Network Potentials for

Small Organic Molecules

3.1 Introduction

Accurate modeling of biological and chemical processes requires precise estimation of ener-
gies and physio-chemical properties of molecules. The density functional theory (DFT) method,
even though is very accurate and has a central role in computational chemistry, are compu-
tationally prohibitive in high-throughput applications. On the other hand, ML algorithms,
trained on known examples, can be used to predict the properties of new molecules at much
reduced computational cost with comparable accuracy as DFT.[76, 77] ML algorithms such
as Generative Adversarial Networks (GAN),[51] coupled with reinforced learning,[78, 79] have
succeeded in finding new molecules with the desired drug-like properties.[80, 81, 82] ML models
have been successfully trained and used as predictive models for interatomic potential en-
ergy surfaces,[83, 84, 85, 86, 87, 88] molecular force field,[89, 90] electron densities,[91] density
functionals,[92] protein structure prediction,[93, 94, 95] protein-protein interactions,[96] mate-
rial property prediction,[97, 98, 99] retrosynthesis,[100] and drug discovery.[80, 81, 101, 102]

Researchers use molecular modeling methods to understand biological and chemical pro-
cesses. Biological and chemical molecular modeling requires an accurate estimation of the
energies and physio-chemical properties of the molecules. DFT methods are popular quantum
mechanical (QM) methods of choice for calculating accurate molecular energies and physio-
chemical properties. They are computationally expensive and are impractical for much larger
systems,[103] especially at a large scale. Hence, to model larger systems and to perform high
throughput exercises, classical force fields (FF) are used with significantly reduced compu-
tational cost but with reduced accuracy compared to QM. FFs simplify the description of
inter-atomic interactions by summing components of the bonded, angular, dihedral, and non-
bonded contributions fitted to a simple analytical form. Except few, most FFs dont account
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for polarizability. Further more, FFs have to be parameterized for modeling various biological
and chemical processes. [3, 4, 5, 104, 105]

In recent years, ML methods have been successful in circumventing the need to solve
Schrödinger equation (SE). ML methods learn the high dimensional function (HDF), f , by
training on large amounts of data (eq., energy). The ability to learn the HDF (f), which
can then be used to map function f(Zi, ri) → E, which returns the energy (E). Hence, us-
ing learned HDF, one can estimate the properties of unknown compounds or structures using
nuclear charges Zi and atomic positions ri.[2]

A host of supervised ML algorithms are available to train and optimize HDF, f , to ap-
proximate the output value for a given input. One such class of algorithms are known as the
Artificial Neural Networks (ANN).[106, 107] These techniques have been used to tackle various
complex problems in natural language processing[108] and computer vision.[66] Feed-forward
neural networks (FFNN) are a class of ANN that have been proven to be general function
approximators,[109] as they have the ability to transform the input into a new feature (latent)
space, in which it becomes correlated with the output. The transformation is done sequentially
through several layers and is typically highly non-linear. Hence feed-forward NNs are suitable
for learning f(Zi, ri) → E, which approximates PES.

Previously, NNs have been used to approximate PES for small molecules with the idea of
many-body expansion.[110] While being accurate, these methods scale poorly due to a large
number of individual NN involved, typically, one for each term in many-body expansion. Vari-
ous feature vectors have been developed recently, such as the smooth overlap of atomic positions
(SOAP), which was introduced by Bartók et al.[86] Nuclear charges (Z) and a matrix of inter-
atomic distances were used as input to the model for prediction of the energy of the molecule
by Schütt et al.[111, 112] List of bonds, angles, non-bonded, and dihedrals (BAND) is used
as a feature vector in BAND-NN by Siddhartha et al.[113] Atomic environment vector (AEV)
was developed by Smith et al., [84] which is a modified version of Behler-Parrinello symmetry
function[85] (BPSF).

Etot =
N∑

i=1
Ei (3.1)

As it was later realized that energy is an extensive property and can be decomposed into
atomic contributions. As shown in Equation 3.1, where Ei is the energy contribution of an atom
i of the molecule with a total number of N atoms. Hence emerged high dimensional atomic
NN (HDNN), which allowed one to use the same size network for different size molecules.[84,
85, 111, 112] HDNN can be broadly classified into two types, one is “descriptor-based,” and the
other is the “message-passing” variant.

In the descriptor-based variant, the environment information about an atom is encoded in a
hand-crafted feature vector, e.g., BAND, AEV, and BPSF. In feature vectors such as BAND,
an atom’s local environment is encoded using a list of bonds, angles, non-bonded, and dihedral
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interactions. For feature vectors such as BPSF and AEV, the local environment of atom i is
encoded as an array of values. These values are calculated using symmetry functions which
mathematically combine distances and/or angles between an atom of interest i and all other
atoms in its neighborhood. This kind of atom-wise feature vector formulation makes these
feature vectors invariant to translation, rotational, and permutation of equivalent atoms. The
energy of the molecules is calculated as shown in Equation 3.1 where Ei is the energy contribu-
tion of the atom of interest. These invariances are desired property for feature vectors because
NNs are numerical algorithms which will produce different output values if input changes due
to such transformation, which in principle, does not change the molecule’s conformation. Ex-
amples of models which use hand-crafted feature vector are BAND-NN, ANI, and TensorMol.
ANI and TensorMol approaches are the extensions of the original approach proposed by Behler
and Parrinello[85] or the Deep Potential Molecular Dynamics (DPMD) model.[114]

The second type is the “message-passing” variant, which takes nuclear charges and cartesian
coordinates as input, and tries to learn a meaningful representation of the chemical environment
by exchanging information between individual atoms using a deep neural network, also called
as Deep learning (DL). This approach was first introduced by the DTNN and has since been
refined in other DNN architectures, for example, SchNet,[112] HIP-NN,[115] and PhysNet.[116]

It is clear that novel machine learning methods have the potential to provide efficient means
for predicting the properties of molecules. However, this potential has been limited by the lack of
standard comparative evaluations. Recently, Folmsbee et al. have compared the performance of
NNP for representing PES and geometry optimization[117] whereas Gastegger et al. compared
the accuracy of NNP on trans alkanes.[118] Algorithmic papers often benchmark proposed
methods on disjoint dataset collections and highlight a different kind of applicability, making
it a challenge to gauge whether a proposed technique does, in fact, improve performance and
applicability. Hence, in this study, we compare four NNP models viz. ANI, PhysNet, BAND-
NN, and SchNet to evaluate their performance using a common dataset across different test
cases: (i) Comparison of the goodness of fit and transferability among these NNPs. It checks
how well these models perform when trained on N atom molecules and are tested on molecules
with more than N atoms; (ii) Their performance on structural and geometric isomers; (iii)
Their ability to produce smooth, physically meaningful surface with respect to bond, angles,
and torsional angle changes; (iv) The applicability of these models for geometry optimization
and evaluates their performance using various optimization algorithms.
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3.2 Methods

3.2.1 Data selection

The ANI-1 dataset was chosen for the experiments, as they cover a large conformational
space so that the models, when trained, are not confined to equilibrium structures only. This
makes it possible to evaluate ML models for calculating energies of non-equilibrium structures
and, subsequently, geometry optimization. The ANI-1 dataset was built from an exhaustive
sampling of a subset of the GDB-11 database containing molecules upto 8 heavy atoms and
limiting the atomic species to C, N, O and H, which gives 57,947 molecules. These 57,947
molecules were DFT optimized with ωB97X density functional and 6-31G(d) basis set, which
gives 57,462 DFT optimized starting structures. Smith and coworker then generated tens of
thousands of non-equilibrium structures for each 57,462 equilibrium structure, using normal-
mode sampling. For this work, we chose a subset of the ANI-1 dataset that includes all the
equilibrium structures and non-equilibrium structures whose relative energies with respect to
the corresponding minimum energy structure is less than 30 kcal/mol.[7, 113] The justification
for choosing this subset is that software such as GaussView[119] and RDKit[120] can produce
initial geometries near the energy minima. Also, in most of the cases, the aim of drug design/bio-
molecular simulations is to model processes which are near to energy minima. Hence, the chosen
subset of the dataset is deemed sufficient.

3.2.2 Training

All four models were trained from scratch on the subset of the ANI-1 dataset described in
the previous section. A train:test:validation data split in the ratio of 80:10:10 was used. This
results in ∼ 7 million data points in the training set and ∼ 885k data points each in the test and
validation sets. All the hyper-parameters were taken as default as stated in original papers of
ANI-1,[84] PhysNet,[116] BAND-NN [113] and SchNet.[112] The training code of all the models
is obtained from the code repositories provided by respective authors.

L = |E − Eref | + Lnh (3.2)

Lnh = λnh

N

N∑
i=1

Nmodules∑
m=2

(Em
i )2

(Em
i )2 + (Em−1

i )2 (3.3)

All the models were trained on atomization energy with criteria being minimization of the
Mean Squared Error loss function. In PhysNet, a different loss function is used as shown
in equations 3.2 and 3.3 where E is predicted energy, Eref is DFT reference energy, Lnh is
“nonhierarchicality penalty”, λnh is regularization hyperparameter set to 10−2, Em

i is energy
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contribution of atom i from module m, the total number of modules used in the PhysNet model
is Nmodules and N is total number of atoms in a molecule.[116]

For ANI, SchNet, and BAND model’s ADAM, [121] optimizer is used to minimize the loss
function, whereas, for PhysNet, we used ASMGrad.[122] The batch size for ANI is 1024, and 32
for BAND-NN, SchNet, and PhysNet. The learning rate of 0.01 was used for BAND, 0.0001 for
SchNet, and 0.001 for ANI and PhysNet. Learning rate decay of 0.5, 0.1, 0.1, and exponential
decay of 0.96 was used in ANI, BAND, PhysNet, and SchNet, respectively.

These four models incorporate different type of feature vectors. ANI uses AEVs, which
are modified Behler and Parrinello symmetry functions (BPSF).[85] SchNet and PhysNet take
nuclear charges and positions as input, and BAND-NN uses feature vectors inspired from clas-
sical force field equation. While ANI and BAND-NN use simple multilayered neural network,
SchNet and PhysNet have modular architectures to allow for calculation of interactions between
atoms and learn atomic features in a hierarchical manner. These four descriptors demonstrate
the evolution of models from simple hand-engineered descriptor and multilayer NN to complex
message-passing models with embedding and cfconv[123] layers. These varied sophistications
within these models piqued our interest to see how well they perform when compared to each
other.

3.2.2.1 ANI

The feature vectors used in ANI are called atomic environment vectors (AEVs). They
represent the atomic environment around each atom. AEVs are constructed from ‘symmetry
functions’ which probe the radial and angular environment for each atom. These are modified
versions of the original Behler and Parrinello symmetry function (BPSF).[85] These AEV’s
are then fed into a multi-layered feed-forward neural network (FFNN), and the weights of the
neural network are optimized during the training process. The energy is calculated as the sum
of contributions Ei from each atom of a molecule, as shown in Equation 3.1. The architecture
of ANI-model is described in Figure 3.1.

3.2.2.2 BAND-NN

BAND-NN is inspired from the force-field equation, where the energies are calculated as sum
of the contributions from Bonds, Angles, Non-bonds and Dihedrals as described in Equation 3.4.
The feature vectors are thus created from the list of bonds, angles, non-bonds and dihedrals
(BAND) of a molecule denoting the atoms that make up these terms, distances, angles and
dihedral angles. BAND-NN uses four different neural networks for each of the bonds, angles,
non-bonds and dihedrals. The BAND-NN architecture is described in Figure 3.2.

Etotal =
∑

Ebonds +
∑

Eangles +
∑

Enon−bonds +
∑

Edihedrals (3.4)
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Figure 3.1: Overview of ANI architecture showing coordinates (orange box), atomic environment vector (AEV
in green box). Feed Forward Neural Network (FFNN) (yellow boxes) with hidden layers specified in round
brackets, Ei (grey box) is the energy contribution of atom i and ET ot (blue box) gives the total energy of the
molecule calculated as shown in Equation 3.1 (J. Smith et. al.[84] 2017)

3.2.2.3 SchNet

SchNet is a variant of Deep Tensor Neural Network (DTNNs).[111] This allows SchNet to
learn representations for molecules that are invariant to rotation, translation and atom indexing.
SchNet uses continuous-filter convolutions with filter-generating networks[123, 124] to model the
atomic interactions inside the interaction block (blue boxes). As shown in Figure 3.3, SchNet
has a modular architecture, atom embedding (green box), interaction refinements (blue boxes)
and atom-wise energy contributions Ei. At each layer, the atomic representation is refined to
better model the atomic interaction with the surrounding environment. SchNet takes nuclear
charges (Z) and positions (R) as input during training.

3.2.2.4 PhysNet

PhysNet[116] is inspired from SchNet[112] and hierarchically interacting particle neural net-
work (HIP-NN).[115] The architecture is modular and is shown in the Figure 3.4. To model the
atomic interactions, PhysNet uses learnable distance based attention masks that select differ-
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Figure 3.2: Overview of the BAND-NN architecture showing four different neural networks (trapezoids) for
bonds (grey), angles (blue), non-bonds (red) and dihedral (green) inspired from force fields. (S. Laghuvarapu et.
al.[113] 2019)

ent features based on the pairwise distance rij between atoms inside the interaction block. In
addition, to circumvent the vanishing gradients problem arising due to vanishing of gradients
in deeper neural nets, PhysNet uses pre-activation residual blocks, which skips one or several
layers while training. In the first module, the input is an atom wise embedding vector. For
other lower modules, the feature vector is obtained as output from the respective previous
module. Feature vector gets updated as it moves down the five modules. As the feature vector
passes through each module, it captures higher order interactions. Energy from each module
is added to obtain the atomic energy Ei. These energies are further summed to calculate the
total energy ET ot of a molecule with “N” atoms.

3.3 Results and discussion

In this section, we present the comparative results of all four models viz. ANI, PhysNet,
BAND-NN, and SchNet across four test cases. The first test case evaluates the goodness of
fit, transferability, and overall performance of the models. For this, we tested the models using
885k molecules test-set. We also used one more test-set called random GDB, which has 1617
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Figure 3.3: Overview of SchNet architecture with nuclear charge Z and coordinates R as input to embedding
(green box) and interaction block (blue box) respectively. There are total of six interaction blocks, represented
as dotted line. Ei is the atomic energy contribution of atom i and ET ot is the total energy of a molecule with N
atoms. (K. Schütt et. al.[112] 2018)

molecules with ten heavy atoms. The atom counts for random GDB test systems are ten heavy
atoms, and total atom count ranges from 15 to 32 atoms.[84] In the second test case, we show
the accuracy of the models in predicting the relative energies of DFT energy minimized C10H20

isomers with respect to the lowest energy isomer. The third test case is to evaluate the ability of
the models to produce a smooth potential energy surface(PES). Hence, potential energy surface
scans for bond stretch, angle bend, and two dihedral rotations on relatively large molecules are
carried out using NNPs and are compared with reference DFT results. In the fourth test case,
we perform geometry optimization on the following four molecules viz. methamphetamine (8
conformers), decane (8 conformers), fentanyl (8 conformers), and retinol (8 conformers) using
various optimization methods, 32 conformer in total and use NNPs to predict energy during
the optimization.

3.3.1 Accuracy and transferability

As mentioned in the Data selection section, all the conformers that were under 30 kcal/mol
in the ANI-1 data set from the corresponding minimum energy structure were chosen for this
study. We did 80:10:10 split; this resulted in 7 million data points in the training set and 885k
data points each in the test and validation sets. We have summarized the performance of all
four models on test-set in Table 3.1. A summary of the performances of all four models on
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Figure 3.4: Overview of the PhysNet architecture (left). Embedding block, five module blocks (yellow boxes).
The schema of module block (right). Atom-wise energy contribution Ei and their sum gives total energy ET ot

of a molecule with “N” atoms. (O. Unke et. al.[116] 2019)

a random GDB test set, which has 1617 molecules with ten heavy atoms, is given in Table
3.2. This shows the overall accuracy and transferability of these models as they are tested on
larger molecules as compared to molecules in the training set. It is also important to know the
performance of these models from their respective papers. ANI reported a mean absolute error
(MAE) of 0.83 kcal/mol, and root means squared error (RMSE) of 1.17 kcal/mol on GDB-10
test set with structures that are 30 kcal/mol away from the energy minima and RMSE of 1.91
kcal/mol on all of GDB-10 test set.[84] Unke and Meuwly, in 2019, proposed PhysNet, which
achieved an MAE of 0.19 kcal/mol on QM9 dataset.[116] SchNet model by K. Schütt et al.
achieved MAE of 0.31 kcal/mol on QM9 dataset.[112] Both PhysNet and SchNet were trained
on the QM9 dataset, which has only ∼ 134k small organic molecules, which is small as compared
to the 7 million training set which has been used in this work. BAND-NN reported an MAE
of 1.45 kcal/mol on the test-set and MAE of 2.1 kcal/mol on the GDB-10 dataset.

ANI, which uses a hand-crafted feature vector, achieves MAE of 0.39 kcal/mol and RMSE
of 0.55 kcal/mol on test set. In contrast, PhysNet, which learns the feature vector directly from
the data, achieves MAE of 0.40 kcal/mol and RMSE of 0.62 kcal/mol on the test set with the
same size molecules as in the training set, i.e., molecules with eight heavy atoms. So when
it concerns only accuracy, ANI and PhysNet have similar accuracy. But, when it concerns
accuracy and transferability to bigger molecules, ANI achieves the best performance out of all
four NNP’s with MAE of 0.83 kcal/mol and RMSE of 1.17 kcal/mol on a random GDB test
set which has larger molecules with ten heavy atoms in contrast to the training set which has
molecules up to 8 heavy atoms.
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Model MAE RMSE
ANI 0.39 0.55
PhysNet 0.40 0.62
BANDNN 1.45 1.82
SchNet 0.48 0.60

Table 3.1: Summary of performance of the models on Test Set (kcal/mol).

Model MAE RMSE
ANI 0.83 1.17
PhysNet 1.26 1.65
BANDNN 2.1 2.68
SchNet 1.51 1.89

Table 3.2: Summary of performance of the models on Test Set from GDB-10 dataset (kcal/mol).

3.3.2 Structural and geometric isomers

In this section, the models ability to accurately predict energies of geometric isomers with the
empirical formula C10H20 is evaluated. Thirteen geometric isomers spanning diverse structural
and geometric space are chosen, including linear chains, cis-trans, and ring containing isomers
viz p-menthane, n-butylcyclohexane, t-butylcyclohexane, pentycyclopentane, trans-2-decene,
trans-4-decene, trans-3-decene, trans-5-decene, cis-4-decene, cis-5-decene, cis-2-decene, cis-3-
decene, and dec-1-ene. The structures of all thirteen isomers are shown in Figure 3.5. All isomers
were optimized using the ωB97X/6-31G(d) level of theory using Gaussian 09 software.[125] The
accuracy of these models in predicting the energies of the DFT optimized C10H20 isomers with
respect to the lowest energy isomer are compared. Figure 3.5 shows that all the NNPs accurately
predict the minimum energy structure and continue to accurately order the energies across ring
containing structures, linear alkenes structures, and linear alkanes structures. ANI achieves the
best performance with an RMSE of 0.29 kcal/mol, followed by PhysNet, with an RMSE of 0.52
kcal/mol. This experiment is indicative of the ability of these models to capture higher-order
atomic interactions and differentiate between the isomers.
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(a) p-menthane (b) n-butylcyclohexane (c) t-butylcyclohexane (d) pentylcyclopentane

(e) Trans-2-Decene (f) Trans-4-Decene (g) Trans-3-Decene (h) Trans-5-Decene

(i) Cis-4-Decene (j) Cis-5-Decene (k) Cis-2-Decene (l) Cis-3-Decene

(m) Dec-1-ene

(n) Relative energies of C10H20 isomers

Figure 3.5: (a-m) Are all the structural and geometric isomers used to generate the data for the isomer case
study and (n) Plot of relative energies of structures given in (a-m).

32



3.3.3 Potential energy surface

(a) (b)

Figure 3.6: Methamphetamine structure and specific atoms used for PES are shown (left). PES scan of (a)
N1-C2 bond stretch and (b) C2-C3-C4 angle bend are shown.

(a) (b)

Figure 3.7: Fentanyl structure and specific atoms used for PES are shown (left). PES scan of (a) N1-C2 bond
stretch and (b) C3-C4-C5 angle bend are shown.

In this section, the models ability to generate smooth and accurate potential energy sur-
faces (PES) is evaluated. From the experiments reported above, it is clear that these models
can accurately predict the atomization energy of small organic molecules. However, it is im-
portant that these models not only accurately predict atomization energy but also be able to
produce meaningful PES for a given molecule. Such behavior is necessary for these models to
be applicable in energy minimization and force calculations in molecular dynamics simulations.

To examine how well these models produce PES, we performed PES scans of various molecules
that are significantly larger than those in the training set. We generated PES profiles for N1-C2
bond stretch and C2-C3-C4 angle bend in methamphetamine, shown in Figure 3.6, N1-C2 bond
stretch and C3-C4-C5 angle bend in fentanyl, shown in Figure 3.7, C1-C2-C3-C4 dihedral scan
in decane and 4-cyclohexyl butanol, shown in Figure 3.8 and 3.9 respectively. C1-C2 bond
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stretch, C2-C3-C4 angle bend, and C1-C2-C3-C4 torsion angle in pentadecane shown in Figure
3.10.

As evident from the Figures 3.6a, 3.7a and 3.10a for 3 C-N, C-N and C-C bond stretch scan
respectively, ANI and PhysNet produce smoother curves and have predicted accurate bond
equilibrium distances when compared to others. SchNet misses the bond equilibrium distance
by 0.04 Å in Figure 3.7a. For PES scan along angle bend, as seen in Figures 3.6b, 3.7b and 3.10b,
all the models have good agreement with DFT curve, and PhysNet has the best performance
in all the 3 cases. For torsion angle, as shown in Figures 3.8a, 3.9a and 3.10c, ANI does better
than the other models and is able to get an accurate estimate of dihedral rotation barrier.

(a)

Figure 3.8: Decane structure and specific atoms used for PES are shown (left). PES scan of (a) C1-C2-C3-C4
dihedral angle is shown.

(a)

Figure 3.9: 4-cyclohexylbutanol structure and specific atoms used for PES are shown (left). PES scan of (a)
C1-C2-C3-C4 dihedral angle is shown.
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(a)

(b) (c)

Figure 3.10: Pentadecane structure and specific atoms used for PES are shown (Top left). PES scan of (a)
C1-C2 bond stretch, (b) C2-C3-C4 angle bend and (c) C1-C2-C3-C4 torsion angle are shown.
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3.3.4 Geometry optimization

Along with property prediction and accurate representation of PES, it is also desirable for
these models to be used with optimization algorithms to perform geometry optimization of
non-optimized structures, circumventing the need for expensive DFT-based optimization. The
combination of NNPs with optimization algorithms will not only allow us to accelerate the
optimization process, but also give us access to optimize larger molecules which cannot be opti-
mized using DFT. Four molecules, which are larger than the molecules in the training set, were
considered for optimization, viz. decane (C10H22), fentanyl (C22H28N2O), retinol (C20H30O)
and methamphetamine (C10H15N). Eight conformers for each of the four molecules were cre-
ated using the RDKit[120] package. These were then optimized to obtain their respective DFT
energy minima. Eight different conformers were generated for each molecule so as to have a
different starting point for each optimization and hence probe more of the conformational space.

We used fourteen different optimization algorithms spanning across different paradigms of
gradient-free optimization techniques. To name a few, we have used the BFGS optimizer, a
quasi-Newton method that searches for the stationary point on the optimization landscape
using first-order gradients or gradients computed approximately. The Nelder-Mead algorithm
is based on the iterative computation of non-linear simplices. The OnePlusOne is a subclass
of evolutionary algorithms. The Covariance matrix adaptation (CMA) belongs to a class of
evolutionary strategies (ES) using Gaussian sampling. Powell is a line search method built using
iterative computation of search vectors. Cobyla works through iterative linear approximations
of the objective function. For this work, the BFGS optimizer implementation in the scipy python
package was used. Other non-gradient based methods are implemented in the Nevergrad[126]
python package. The results of optimization have been summarized in the Appendix A Tables
A.1-A.55. Each table in Appendix A represents data of one optimization method for a single
molecule out of four molecules.

We have 14 optimization methods and four molecules, which make up a total of 56 tables
(See Appendix A). One such set of optimization results are summarized in Table 3.3, where
column number “1 to 8” represent eight conformers of a single molecule, and models are present
in rows. The values in each cell represents energy ∆Eopt in kcal/mol calculated as shown in
Equation 3.5, where EModel

opt is the model optimized energy and EDF T
opt is DFT optimized energy

(ground truth). ∆Eopt indicates how far away is the model optimized conformer from the DFT
optimized conformer. Hence smaller values of ∆Eopt are better as they indicate the ability of the
models to predict optimized structures in very close agreement to that of the DFT optimized
structures (ground truth). The last column, called “Best count”, represents the number of
counts out of 8 conformers for which the model got the best ∆Eopt value (smaller is better).

Table 3.3 shows optimization results for decane molecules using CMandAS3 method. As
ANI gets the best ∆Eopt values (smaller is better) for conformers 2, 4, and 6 as compared to
other models, we put “Best count” as 3 for ANI. Similarly, PhysNet gets the best values for five
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Structures 1 2 3 4 5 6 7 8 Best count
ANI 0.43 0.56 0.62 0.64 0.44 0.56 0.96 0.58 3
PhysNet 0.42 0.57 0.59 0.66 0.44 0.57 0.95 0.57 5
SchNet 0.5 0.63 0.67 0.64 0.48 0.64 1.12 0.62 0
BAND-NN 0.57 0.68 0.79 0.83 0.57 0.65 1.14 0.73 0

Table 3.3: Optimization of 8 decane structures using CMandAS3 optimization method. Values shown are the
differences between optimized DFT and ML energies (kcal/mol).

conformers out of 8; hence we give 5 to PhysNet in the “Best count” column. Similarly, for all
the 55 tables in Appendix A.

∆Eopt = EModel
opt − EDF T

opt (3.5)

The experiments are performed on four molecules viz. methamphetamine (8 conformers),
decane (8 conformers), fentanyl (8 conformers), and retinol (8 conformers) and fourteen different
optimization methods. Altogether, there are 4*8*14 = 448 different optimization procedures.
For decane, ANI achieves 55 best-optimized conformers out of 112 as compared to all other
models, whereas PhysNet achieves 48 best-optimized conformers out of 112 (Table 3.4). For
the three molecules viz., decane, fentanyl, and retinol, the ANI model has the highest number
of best-optimized conformers count, whereas, for methamphetamine, PhysNet has a higher
number of best-optimized conformers count of 56 out of 112. ANI performs better than the
other three models as it gets the best optimization for 245 times out of 448. PhysNet gets 137
best-optimized conformers out of 448. Although results for all the conformers are not perfect,
this could be further improved using appropriate molecular representations. We have also
used gradient-based optimization BFGS, which gives the best-optimized conformer for decane,
fentanyl, retinol, and methamphetamine, which are 0.49 (ANI), 4.30(ANI), 2.93(SchNet), and
0.95(PhysNet) kcal/mol away from DFT energy minima respectively. Overall, ANI performs
better than other three models.

Molecules Decane Fentanyl Retinol Methamphetamine
ANI 55 66 85 39
PhysNet 48 15 18 56
SchNet 4 19 9 5
BAND-NN 5 12 0 12
Total 112 112 112 112

Table 3.4: Count of the best optimized conformers.
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3.4 Conclusions

In this work, we evaluate and compare four models, i.e., ANI, PhysNet, SchNet, and BAND-
NN, on their accuracy in energy prediction, transferability to larger molecules, ability to produce
accurate PES, and applicability in geometry optimization. These models were originally trained
and tested on different data sets, which makes their applicability and comparison difficult. This
work provides a standard comparative evaluation of these models by training and testing them
on the same sets. For accuracy and transferability, we report that the ANI model performs
best with RMSE of 0.55 kcal/mol and 1.17 kcal/mol on ∼ 885k molecules and on the GDB-10
test set, which has 1617 molecules with ten heavy atoms randomly selected from the GDB-11
database. We also notice that both ANI (descriptor-based) and PhysNet (message-passing)
produce smooth and meaningful surfaces and are potentially applicable in molecular dynamics
simulations. All these models were also able to accurately differentiate different isomers of the
same empirical formula C10H20. ANI and PhysNet achieve an RMSE of 0.29 kcal/mol and
0.52 kcal/mol, respectively. All these models are trained on DFT energies, but can also be
extended to higher-level ab initio QM methods and larger basis sets. These models also show
their potential for geometry optimization. ANI outperformed all models by optimizing 245
structures more accurately than others in 448 test structures. PhysNet stood next with 137
best-optimized conformers.

ANI is a variant of descriptor-based HDNNs where features are manually constructed. On
the contrary, PhysNet is an end-to-end data-driven model. It is clear that ANI outperforms
all the models in most of the experiments. The PhysNet model, which takes only distances
and atom types as input without requiring any additional hand engineering, is not far behind
ANI. ANI and PhysNet show promising results in producing smooth and accurate PES and can
perform geometry optimization. While deep neural network have demonstrated great poten-
tial in achieving accurate energies, systematic benchmarking of these are necessary for wider
applicability and transferability.

NNPs can accelerate the process of property prediction. The question arises can they also
help in accelerating material design and discovery. In the next chapter i.e. chapter 4, we
develop an energy predictor known as DART. DART is inspired by NNPs, we show how DART
can be used to predict the energy of gallium clusters and thereby accelerate the work flow of
identifying unique low energy isomer of gallium clusters. In chapter 5, we show how one can
accelerate the process of generating unique low energy isomer of gallium cluster using RL-based
model MeGen. Our MeGen model uses DART as a reward function in the RL setting.
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Chapter 4

DART: Deep Learning Enabled Topological Interaction Model

for Energy Prediction of Metal Clusters and its Application in

Identifying Unique Low Energy Isomers

4.1 Introduction

Clusters are a bridge between two very well-understood extremes, i.e., the atoms and bulk.
[127, 128] Clusters have been researched to develop a fundamental understanding of systems
at a length scale where addition or subtraction of even one atom affects their physicochemical
properties. [129, 130, 131, 132, 133] Computationally, structure generation techniques like
random sampling, [134] genetic algorithm, [135, 136] minima hopping, [137, 138, 139] etc., are
combined with geometry optimization DFT algorithms to obtain low energy/stable structures.
The hunt for such stable structures is greatly limited by the computation expense involved.
And hence, combining traditional approaches of energy prediction with machine learning is one
such recent trend. [140, 141, 142, 143, 144, 145, 146]

Machine Learning techniques are finding increasing application to problems of materials
science, right from exploring suitable materials and structures for a desired property dependent
application to digging out hidden patterns in the ML datasets.[147, 148, 149, 150, 151] The
power of ML to assist domain experts with insights from vast datasets has proven to be of
immense promise. [145, 152, 153, 154] An important factor that lies at the heart of any ML
problem is accurate “representation of the data”. And hence, design of accurate “descriptors”
or “features” for various class of materials/compounds is still an active area of research. Various
approaches have been developed for engineering features that give a fair representation of cluster
structures.[146, 149, 155, 156, 157, 158, 159, 160] The most direct and crude form of descriptor
to represent a cluster structure are the Cartesian coordinates. But their direct application for
energy prediction is severely restricted due to lack of rotational and translational invariance.

Symmetry functions that depend on interatomic distances and angles are yet another suc-
cessful class of descriptors applied to various systems like bulk, clusters, and molecules for
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Figure 4.1: Work flow to identify ground state Gallium clusters using molecular dynamics simulations and
Quantum Mechanics geometry optimization.

prediction of formation energies.[161, 162, 163, 164, 165, 166] These approaches mainly involve
accurate mapping of local atomic environment to describe the structure and hence predict their
energies. Descriptors like the Coulomb Matrix (CM), [164] Smooth Overlap of Atomic Positions
(SOAP), [165] Atom Centered Symmetry Function (ACSF), [161] Partial Radial Distribution
Function (PRDF), [167] and so on have been developed and applied to problems of finding struc-
tural similarity and also structure energy predictions. These functions, while they describe the
structure to a very reasonable extent and are accurate for energy predictions, are also com-
plex in nature, require fitting of multiple parameters and need energy minimized structures for
predicting energies.[168]

Recently, graph-based representations for molecules and materials is also finding applica-
tions in property/energy prediction. [169, 170] Interatomic bonds are represented as edges and
atoms as nodes of a graph. Jensen et al., developed graph based features for atomic clusters
for prediction of various molecular properties.[169] They showed that they could predict oc-
tanol solubility of molecules with as low as 200 training examples using appropriate molecular
representation and MAE of 0.4 log10 molar units. Further, the author also acknowledges the
lack of precise 3D positional information that usually graph based descriptors encounter and
hence limiting their prediction capacity. While, graph based representations are very simple
to understand, they come at the cost of prediction accuracy as they miss out on structural de-
tails which may be of interest during energy/property predictions. [169, 171] In another study
by Wolverton et. al., they demonstrate representation of crystalline compounds derived from
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Voronoi tessellations of the structure. [170] Their model outperformed CM and PRDF based
methods with an MAE of 2.03 kcal/mol (88 meV/atom), at a training set size of 30,000 entries.
They design descriptors in a way such that they are insensitive to the choice of unit cell or
even the volume of unit cell. Their descriptors are a step ahead in the direction of reducing
independence of descriptors on atomic coordinates of a structure. Hence, developing descriptors
that are easy to design/understand yet accurate for energy predictions is a topic that is still
under research.[172]

In this work, we propose a novel workflow for energy prediction of metallic clusters as
shown in Figure 4.1. For this purpose, we introduce, DART (Deep learning-enabled topologicAl
inteRacTion) model, which is designed based on the principle that energy is a function of atomic
interactions. To model these interactions, we developed an interaction block which is inspired
by SchNet.[112] Contrary to other models that use structural information, DART uses features
that capture topological/connectivity information to predict metallic clusters energies. As the
descriptor consists of just the atom counts in each shell, it captures topological information.
Other models such as High-Dimensional Neural Network (HDNN)[85] uses Behler-Parinello
Symmetry Function (BPSF) as a feature vector that encodes structural information. DART
with only topological information is able to reach Mean Absolute Error (MAE), which is very
close to HDNN, which requires structural information. Our model is able to learn physically
meaningful atomic interactions as well as distinguish between core and surface atoms. It is
important to realise that even though we have compared our model with a neural network
potential such as BPSF-HDNN, our model is not designed with the intention to learn PES but
with the sole purpose of accelerating the workflow of finding low energy clusters (local minima)
and increasing the possibility of finding ground state structure (global minima). If exploration
of PES is the goal, one needs much more fine-grained feature vector. Such a feature vector
should be able to encode minute structural changes in the cluster and the model should be able
to learn energy as function of atomic interactions for exploration of PES. Further the model
needs to be trained on large amount of data set which has sufficient exploration of chemical
and configurational space.

In summary, our main contributions are as follows:

1. We introduce a new dataset called Gallium Neutral Clusters, GNC_31-70 dataset. The
dataset comprises of optimized, unique low energy isomers of gallium clusters with size
ranging from 31 atoms to 70 atoms and their binding energies.

2. We introduce a novel feature vector called Topological Atomic Descriptor (TAD). TAD
is designed to capture topological information to identify low energy clusters.

3. We propose DART model, to accelerate the workflow of identifying low energy structures
and increase the probability of finding unique low energy structures.
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4.2 Methods

This section is divided into four sub-sections. In the sub-section 4.2.1 we describe the gener-
ation of the new dataset called Gallium Neutral Clusters, GNC_31-70 dataset. We introduce
a novel feature vector, namely Topological Atomic Descriptor (TAD) in sub-section 4.2.2. TAD
encodes the atomic environment information of a particular atom using the atom count informa-
tion of its neighboring atoms. In sub-section 4.2.3, the building blocks of DART and its complete
architecture which consists of five Multi-layered perceptron namely MLPf , MLPJ , MLPK ,
MLPL, and MLPint is described. DART uses TAD to predict the energy of gallium clusters.
In sub-section 4.2.4 we describe the training procedure and mention other computational details.
The code for this work, along with examples, is available at https://github.com/devalab/DART.

4.2.1 Dataset

The dataset comprises of optimized, unique low energy isomers of gallium clusters with
size ranging from 31 atoms to 70 atoms and their binding energies. All the calculations were
carried out within the Kohn-Sham formulation of DFT. Projector Augmented Wave poten-
tial [173, 174] was used, with Perdew–Burke–Ehrzenhof (PBE) approximation [175, 176]for the
exchange-correlation and generalized gradient approximation, as implemented in planewave,
pseudopotential based code, VASP.[177, 178, 179] We begin by optimizing the previously pub-
lished geometries for neutral Gan clusters (size n = 31 to 70). [180, 181]

The dataset has total of 6851 structures and are shared as a Supplementary file and is also
available at https://figshare.com/s/9808d756f107e8fd6c69. See Figure 4.2 for distribution
of number of isomers across cluster size ranging from 31 to 69 atoms. We create train, validation
and test dataset by randomly choosing structures from the cluster size from range 31 to 69.
Train:valid:test split of 80:10:10 was used which gives 5265 structures in train set, 656 structures
each in validation and test sets. We also created another data set called Ga-70 data set which
has 285 structures all having 70 Gallium atom. Ga-70 dataset was created to demonstrate our
models transferability in terms of predicting energy for Ga-70 clusters by training the model
on Ga clusters of size 31 to 69.

4.2.2 Descriptor

We use TAD as the feature vector. As the name suggests, TAD encodes topological infor-
mation of the cluster. TAD is designed to capture topological information and hence does not
require exact structural information to identify low energy clusters; we show this in the results
section. As seen in Figure 4.3, TAD encodes the atomic environment information of a particular
ith atom A by dividing the neighboring atoms into three different shells viz. J-shell, K-shell,
and L-shell. These shells around ith atom A are created using distance cutoffs. Here, we have
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Figure 4.2: Shows distribution of number of isomer w.r.t Gallium cluster size.

used distance cutoff less than 3.49 Å for J-shell, 3.49 Å to 6.3 Å for K-shell, and beyond 6.3 Å
is L-shell. The rationale behind choosing the distance cutoffs is based on the Ga-Ga pairwise
distance distribution as shown in Figure 4.4. We count the number of atoms in each of these
shells to create TAD. Hence, TAD is a very simple and elegant descriptor which in some sense
tries to encode structural information by dividing the connectivity information using distance
cutoffs.

4.2.3 DART (Deep Learning Enabled Topological Interaction)

The architecture of DART is shown in Figure 4.5, it uses TAD as the feature vector to
predict the energy of a single ith atom. It sums the energy of all the atom’s to obtain clusters
energy as shown in Eq 4.1, where Ei is ith atom energy and i = 1..N where N is the total
number of atoms in the cluster. Figure 4.5 shows TAD representation of i1 atom in twelve
atom cluster. The remaining eleven atoms belong to either of the three shells based on the
distance cutoff from the focal atom (i1 in this case) whose energy is to be predicted. DART
consists of five multilayered perceptrons (MLP), four for atomwise feature refinement, and one
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Figure 4.3: Shows topological descriptor of atom A in cluster of 51 Gallium atoms.

MLP is to model/refine atomwise interactions. As in equation 4.2 where W are the weights
and b is the bias of MLP , the feature vector xf of the focal atom i1 is passed through MLPf .

ET ot =
N∑
i

Ei (4.1)

Yf = Wfxf + bf (4.2)

The feature vector of each atom in the J th-shell is fed to MLPJ as shown in equation 4.3
and element-wise summation of all the atoms provides us with J thshell features. Similarly, we
get Kth-shell and Lth-shell features as given in equation 4.4 and 4.5.

YJ =
∑

j

WJxj + bJ (4.3)

YK =
∑

k

WKxk + bK (4.4)

YL =
∑

l

WLxl + bL (4.5)

Further, we do an element-wise summation of features of the focal atom with the rest of the
shells to get YfT otal

as in equation 4.6.
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Figure 4.4: Shows Ga-Ga pairwise distance distribution.

YfT otal
= Yf + YJ + YK + YL (4.6)

Which is then feed to MLPint, where int stands for interaction, which further refines these
features to model atomic interactions. The final output of the MLPint is the focal atom’s
energy, see equation 4.7.

Ef = WYfT otal
+ b (4.7)

4.2.4 Training the models

DART model is implemented in PyTorch.[182] Before training the model, all the learnable
parameters are initialized using Kaiming initialization.[183] We have 2-hidden layers in MLPf ,
MLPJ , MLPK , and MLPL and 4-hidden layers in the interaction block MLPint. The network
architecture plays a major role in the performance of the DART model. Too small of a net-
work has reduced flexibility which causes poor performance; on the other hand, larger networks
tend to overfit the data leading to bad generalization, especially on small datasets. Table 4.1
gives the dimensions of DART model. After initialization, we train the DART model using
a batch size of 32 to predict energy by minimizing the Mean Absolute Error (MAE) between
predicted and actual energies using Adaptive Moment Estimation (ADAM) optimizer with an
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Figure 4.5: On the left is topological descriptor of 12 atom dummy cluster. On right is DART architecture,
where energy of the ith atom of interest is predicted, with their corresponding atoms in J, K, and L shells, for i =
1..N respectively, where N is total number of atoms in the cluster. There are five different types of multilayered
perceptron one each for focal atom, J-shell, K-shell, L-shell and interaction block are MLPf , MLPJ , MLPK ,
MLPL, and MLPint respectively. It should be noted that the number of MLPJ depends on number of atoms
in J-shell.

initial learning rate of 0.001, other ADAM parameters set to β1 = 0.9, β2 = 0.999. Learning
rate is multiplied by 0.1 after reaching a plateau with the patience of 25 epochs and eps =
10−9. All the intermediate layers were activated using the Continuously Differentiable Expo-
nential Linear Units (CeLU) activation function. We stop training by setting the early stopping
learning rate to 10−8 to avoid overfitting. Training of HDNN-BPSF is similar to DART model
with a batch size of 32, L1 loss function except weights are updated using ADAMW (Adaptive
Moment Estimation algorithms wiith decoupled weight decay regularization), and bias is up-
dated using Stochastic gradient descent (SGD). All hyperparameter values are obtained after
hyperparameter optimization for both models.

4.3 Results

4.3.1 BPSF-HDNN

Behler-Parrinello Symmetry Function (BPSF) descriptor encodes the atomic environment
using 3D geometry. In contrast, we developed a topological descriptor that encodes the atomic
environments using atom counts as described in section 4.2.2. The topological descriptor cap-
tures the topological information as compared to BPSF, which captures structural informa-
tion. Hence, BPSF with the HDNN model is considered a hard limit that a model using
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Module Dimensions
MLPf 3:128:128
MLPJ 3:128:128
MLPK 3:128:128
MLPL 3:128:128
MLPint 128:256:128:32:1

Table 4.1: Number of hidden layers input size, and output size of each module is given. MLPf is multi-layered
perceptron of focal atom f , similarly MLPJ is for J-shell, MLPK is for K-shell, MLPL is for L-shell, and MLPint

is for interaction block. All these values are obtained after hyperparameter optimization.

topological descriptors cannot out perform. We compare the DART model, which uses TAD,
with the BPSF-HDNN model, which uses 3D structures. BPSF-HDNN has an architecture of
640:128:128:64:1, and we used a radial cutoff of 15 Å and angular cutoff of 6.5 Å to generate
atomic environment vector (AEV). The radial and angular cutoffs dictate the distance neigh-
boring environment should be probed. We used ηr = 16.0, ζ = 32.0 and ηa = 8.0. Sixty-four
evenly spaced radial shifting parameters were used for the radial part, and a total of twenty-four
radial and twenty-four angular shifting parameters were used for the angular part. The total
length of AEV is 64(radial)+24∗24(angular) = 640.[84, 85] We get MAE of 2.4 kcal/mol, Root
Mean Squared Error (RMSE) of 3.03 kcal/mol on the test set. As expected, BPSF performs
very well in predicting the binding energy of Gallium clusters.

4.3.2 Accuracy and Transferability of DART

Model Testset (kcal/mol)
MAE RMSE

BPSF-HDNN (structural) 2.4 3.03
DART (topological) 3.59 4.55
DART without MLPK 4.06 5.16
DART without MLPL 3.93 5.05
DART without MLPK & MLPL 4.29 5.45
DART without MLPint 12.33 16.40

Table 4.2: Behler Parinello Symmetry Functions (BPSF) - HDNN uses structural information whereas DART
uses topological information. Test set includes 655 clusters.

DART model has been applied on Gallium clusters dataset introduced in section 4.2.1 to
predict binding energies by using topological information. After training DART on 80 % of
data .i.e. 5256 clusters, we achieve MAE of 3.59 kcal/mol and RMSE of 4.55 kcal/mol on a test
set that has 656 clusters with size ranging from 31 to 69 atom clusters. The largest Gallium
clusters in the train set contain 69 atoms; hence we also test the model on the Ga-70 cluster to
check its transferability to larger clusters that the model has not seen during training. When
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trained on N = 31 to N = 69 atom clusters and tested on N + 1 = 70 atom clusters we get
MAE of 4.71 kcal/mol and RMSE of 5.96 kcal/mol.

In another experiment, we validate our model on three test cases each having different test-
set to show the robustness of our model on different cluster sizes. In first test case we train our
model on Ga-31 to Ga-70 excluding Ga-46, 57 and 60. These sizes (46, 57 and 60) of Ga clusters
will be used as test-set. In second test case our model is trained on Ga-31 to Ga-70 excluding
Ga-46, 57, 66 and excluded sizes (46, 57, 66) are considered as test-set. Similarly for third test
case we train model on Ga-31 to 70 excluding sizes (57, 60, 66) of Ga clusters. These excluded
sizes (57, 60, 66) of Ga cluster are used as test-set. Performance of DART model on each of
these test cases is summarized in Table 4.4, it can be seen that DART models performance is
consistent across all the test cases. TAD and DART can be extended to other metallic clusters.

Results for all the test cases for each Gallium cluster individually is given in Appendix B
Table B.1, B.2, and B.3. As it is evident from the results that the model is robust, the RMSE
values for Gallium-57, 60 and 66 are consistent across three experiments. There are small
structural changes in the core-shell of Ga-46 cluster which leads to large change in energy
whereas these small structural changes are not fully captured by our descriptor (TAD) hence
we observe higher values of RMSE for Ga-46 which is a magic cluster (Table B.1 and B.2).

We have also tried various flavors of our DART model, and their performance on the test set
is summarized in Table 4.3. Where MLPijlk represents four different multi-layered perceptrons
each for i, j, k, and l. MLPint represents interaction block. From the results in Table 4.3 it is
evident that interaction block is very important, and reducing the number of hidden layers in
the interaction block increases the MAE to 4.28 kcal/mol. Also, the results in Table 4.3 show
that decreasing the number of hidden layers does not have a drastic impact on the performance
of the DART model. When compared with out best model (MAE=3.59 kcal/mol), the increase
in MAE is less than 1 kcal/mol when we tried with reduced hidden layers (MLPijlk = 3 : 64 : 64
and MLPint = 64 : 128 : 128 : 32 : 1). Hence having a simple feature vector does not always
necessitate the need to have many hidden layers in the model.

4.3.3 Importance of each shell and interaction block

To further show the importance of each of the modules in the DART model, we perform a few
experiments (reported in Table 4.2) . In these experiments, we train our model by excluding or
“switching off” each of these modules individually or in combination to see how the absence of
each of these modules affects the performance of the DART model. It should be noted that all
these experiments are compared with the DART model (topological), which has all-shells and
interaction block “switched on”. In the first experiment, the MLP, which provides information
about the L-shell, i.e., MLPf , is switched off; we get MAE of 3.93 kcal/mol, RMSE of 5.05
kcal/mol on the test-set. For the second experiment, the MLP that provides information about
the K-shell is switched off, which gives MAE of 4.06 kcal/mol, RMSE of 5.16 kcal/mol on the
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DART Model Testset (kcal/mol) Time
MAE RMSE Mins

MLPijkl = 3 : 64 : 64, MLPint = 64 : 128 :
128 : 32 : 1

4.28 5.51 15

MLPijkl = 3 : 64 : 64, MLPint = 64 : 256 :
128 : 32 : 1

3.75 4.86 16

MLPijkl = 3 : 64 : 96, MLPint = 96 : 256 :
128 : 32 : 1

4.02 5.04 16

MLPijkl = 3 : 64 : 128, MLPint = 128 : 256 :
128 : 32 : 1

3.99 5.13 18

MLPijkl = 3 : 96 : 128, MLPint = 128 : 256 :
128 : 32 : 1

3.92 5.04 23

Table 4.3: DART performance with varying number of hidden layers. MLPijlk represents four different multi-
layered perceptron each for i, j, k and l. MLPint represents interaction block. Test set includes 655 clusters.
Total time required to train the model in minutes on Nvidia GeForce RTX 2080 Ti GPU.

Model DART (values in kcal/mol)
MAE RMSE # struc-

tures
Test case 1 - Test set:
(Ga-46, 57, and 60)

4.77 6.16 427

Test case 2 - Test set:
(Ga-46, 57, and 66)

4.76 6.02 436

Test case 3 - Test set
(Ga-57, 60, and 66)

4.34 5.58 570

Table 4.4: Performance of DART model on three different test cases each having different test-set to show the
robustness of our model. Last column gives the number of structures present in the test-set. All values are in
(kcal/mol).

test-set. For the third experiment, the MLPK and MLPL, which provide information about
the K-shell and L-shell, respectively, are switched off, which gives MAE of 4.29 kcal/mol and
RMSE of 5.45 kcal/mol on test-set. Finally, in the fourth experiment, the interaction module
MLPint, which learns the physically meaningful interaction between the atoms, is switched off,
which gives MAE of 12.33 kcal/mol, RMSE of 16.40 kcal/mol on test-set. It is evident that
when compared to DART (topological), which achieves MAE of 3.59 kcal/mol and RMSE of
4.55 kcal/mol on test-set that switching off MLPK gives a larger MAE value than the absence
of MLPL hence Kth-shell is more critical than Lth-shell. Switching off the interaction module
has the most significant effect on the DART model’s performance; MAE values go as high as
12.33 kcal/mol. Hence, we conclude that the interaction moduleMLPint is critical in the DART
model, which helps learn the physically meaningful atomic interactions.
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4.3.4 Model learns to distinguish between core and surface atoms

This exercise shows our model’s ability to distinguish between the Gallium clusters’ core and
surface atom. The model learns this distinction from our descriptor TAD, which encodes the
chemical environment information of each atom in the cluster. Which further proves that our
descriptor TAD encodes the chemical environment information of each atom within the cluster,
which is sufficient for the model to distinguish between core and surface atoms. It should be
noted that not all atoms contribute equally towards the binding energy of the cluster. The core
atoms will have more contribution towards binding energy as compared to the surface atoms. In
Ga-70 cluster, atoms within 3.49 Å from the center of mass (CoM) of the cluster are considered
as core atoms, and atoms beyond 6.3 Å from CoM are considered as surface atoms. We extract
the features from the third hidden layer of interaction block MLPint. The third hidden layer
of the interaction module MLPint is just before MLPint outputs the predicted atomic energy.
We perform t-Distributed Stochastic Neighbor Embedding (t-SNE) on the extracted features.
The t-SNE plot of the previously extracted feature in Figure 4.6 shows a clear distinction of
core and surface atoms.

4.3.5 Identification of stable isomers from molecular dynamics data

This section demonstrates the model’s ability to identify/filter unique low energy isomers
from unseen structures taken from molecular dynamics simulation trajectories. Three randomly
selected sizes (46, 57, 60) of Ga clusters were taken from molecular dynamics simulation. They
were used as a test set for the DART model trained on geometry optimized data from size
31 to 70, excluding size (46, 57, and 60) of Ga cluster. Molecular dynamics test set consists
of 1919, 1051, and 2596 structures of Ga-46, Ga-57, and Ga-60, respectively. The model was
able to predict energy values for all 5566 structures within seconds. Firstly, the predicted
energies were sorted and 100 lowest energy structures were picked for DFT optimisation. Upon
optimisation it was observed that the DART model had correctly identified the ground state
geometry from the vast dataset on which it was tested. And hence, greatly reducing the
load on DFT calculations. Further, the DART model was also used to identify the different low
energy isomers for each size. Conventionally, about 25-30 % structures picked for each size from
molecular dynamics would be chosen to perform further DFT optimizations, which would in turn
yield roughly 100-150 unique structures. This search, i.e., the number of DFT optimizations,
could be significantly reduced with the application of the DART model. Since the model was
trained on optimization data, energy predictions were closer to optimized geometry values
than MD. Moreover, it was possible to significantly reduce the number of DFT optimizations
while maximizing the probability of finding unique low energy structures. There were two
possible approaches to identify unique isomers out of the existing MD data; i.e. structures
could either be segregated into bins of varying descriptors in the feature space or bins of
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Figure 4.6: t-Distributed Stochastic Neighbor Embedding (t-SNE) of the feature extracted from the 3rd hidden
layer of interaction module during testing of Ga-70 dataset.

varying ML predicted energy values. Optimisation of one structure from each bin would in
turn identify the unique isomers. However, given that TAD counts the coordination of each
atom in its neighborhood within three shells, classification based on descriptors would lead to
very broad bins of structures. This is turn would lead to classifying similar structures of clusters
belonging to different local minima’s into one bin and missing out on many unique isomers.
Hence, structures were segregated into bins of varying ML predicted energy values. About 100
structures were chosen (one from each energy bin) and optimized using DFT to identify unique
low energy geometries. It was noted that out of 93 DFT optimizations performed for each of
the three cluster sizes, nearly 97 % of the structures turned out to be unique. Hence, we note
that DART not only predicts energy but also could be employed to identify unique low energy
isomers from a large number of structures generated from molecular dynamics simulations.
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4.4 Conclusion

In this study, a deep learning model, namely DART, developed using interaction block, ca-
pable of modeling atomic interactions using topological descriptor (TAD) is reported. DART is
significantly more efficient than the conventional work-flow for identifying ground state isomer
in terms of time and computational resources. A novel feature vector called Topological Atomic
Descriptor (TAD), which effectively encodes the clusters topology, is used to train the DART
model. A deep neural network DART model exhibits its ability to predict energy of Gallium
cluster, demonstrating the trained network’s robustness and TAD’s adequacy as a feature vec-
tor compared to symmetry functions. The DART model generalizes reasonably well during
extrapolation on larger gallium cluster size, but we see that the error increases as we increase
the cluster size. The interaction module is crucial to mimic atomic interactions. Examining
the features extracted from this module indicates that the model has learned the underlying
chemistry by its ability to differentiate between core and surface atoms. Furthermore, DART
model can be extended to any metal cluster and can be modified to be used on nanoalloys.[184]
Also, DART model can identify unique low energy structures from a corpus of structures ob-
tained from MD simulations, thereby reducing the number of QM calculations manifolds. This
method successfully predicts clusters energy and can identify unique low energy isomers. DART
can possibly be used with methods like CALYPSO[185] or stochastic kicking[186] to accelerate
the process of finding the low energy isomer by predicting multiple low-energy candidates by
means of a computationally cheap model (DART), and the fine refinement of the lowest energy
ones by means of an accurate but computationally expensive method (DFT).

Next objective is to develop a model which can learn and generate three-dimensional struc-
tures of the clusters rather than just identifying the low energy isomers. In the next chapter
i.e. chapter 5, we develop an RL-based model known as MeGen which can generate n + 1
atom gallium cluster given a n atom cluster. We show that MeGen, not only accelerates the
workflow of generating low energy isomers of gallium clusters but also hits the ground state
(GS) structure of this n+ 1 atom cluster.

52



Chapter 5

MeGen - Generation of Gallium Metal Clusters Using

Reinforcement Learning

5.1 Introduction

Metal clusters are aggregates of atoms, and they exhibit substantially different properties
from their corresponding bulk metals.[187, 188] They also differ from the nano-particles, and
their extreme size sensitivity reflects in almost all their properties like melting point, reactivity,
etc.[189, 190, 191] Clusters, as opposed to their bulk counterpart, have numerous local minima,
and the number of such minima increases exponentially with the size of the cluster. It has been
demonstrated that many properties of these clusters depend on their Ground State (GS) struc-
ture. Hence, there has been a constant drive to develop better algorithms for the search of GS
and energetically low-lying structures.[192] For example, random search provides an unbiased
configuration sampling[193] while genetic algorithm combines and propagates useful structural
markers.[194, 195] Basin-hopping[196, 197] represents an efficient technique for escaping from
local minima and mapping the PES and particle swarm optimization[198, 199] relies on the
population information for navigating the energy landscape. However, when these techniques
are combined with ab-initio methods for the description of inter-atomic interaction, they be-
come computationally expensive and result in an insufficient sampling of PES.[200, 201] On
the other hand, classical potentials fall short of describing the problem with enough accuracy.
Further, the search of atomic structure will be biased with the range or form of the potential
used.[202] Hence faster and more reliable models need to be developed for searching the GS
and low-lying isomers of metallic clusters.

Recent machine learning applications have accelerated the search for new molecules with
specific desired properties. Much progress has been made in developing deep generative models
for 2D molecule generation. Such as Simonovsky and Komodakis [53], Kusner et al. [54], Gómez-
Bombarelli et al. [203], Jin et al. [204], Dai et al. [205] used VAE and its variants for generation
of molecules, Guimaraes et al. [206], De Cao and Kipf [207] used GAN, Segler et al. [208]
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used RNN, Popova et al. [209] used RL-RNN and Maziarka et al. [210] developed Mol-cycle-
GAN for generation of molecules. Most of these studies use SMILES string representation
or graph representation of molecules. SMILES have various limitations, such as not captur-
ing molecular similarity; for example, two similar chemical structures may have very different
SMILES representations, hindering VAEs from learning smooth molecular embeddings. Fur-
thermore, methods that use SMILES to generate SMILES strings are prone to generate strings
that do not correspond to a valid molecule. Hence Simonovsky and Komodakis [53], Jin et al.
[204], Maziarka et al. [210] have shown that operating directly on graphs helps generate more
valid molecules.

The domain of 3D structure generation is lacking in comparison to 2D structure generation.
Moreover, most of the work in 2D structure generation is SMILES string or graph-based, where
an atom is considered as a node, and the bond between the atom is the edge. One of the
major disadvantages of string or graph-based representation is that they do not contain the
inter-atomic distance or 3D information about the molecule. In contrast, chemical properties
depend on the 3D structure of the molecule. Recently efforts have been made to develop a
model to generate 3D structures and bias the structure generation based on chemical property.
One such attempt would be to combine the method described by Mansimov et al. [55] to
sample 3D conformers given a molecule with graph-based generative models to generate 3D
structures in a two-step procedure. Gebauer et al. [211] developed an autoregressive deep
generative model based on SchNet[111] which is capable of generating a variety of C7O2H10

3D structures which are close to equilibrium. Gebauer et al. [212] made improvements in the
previous model to develop G-SchNet, which can deal with an arbitrary number of atom species.
In inorganic chemistry, the 3D structure generation model is even less common than it is in
organic chemistry. Notable mentions are iMatGen by Noh et al. [213], which learns latent space
of inorganic structures using 3D images as input to generate crystal structures. Kim et al.
[214], who is also one of the authors of iMatGen proposed a new generative model to generate
crystal structures using GAN; they used a coordinate-based inversion-free crystal representation
inspired by point clouds.[215]. Nouira et al. [216] developed CrystalGAN to produce stable
ternary structures by using GAN. Court et al. [217] introduced a deep-representation learning
autoencoder-based generative pipeline for geometrically optimized 3D crystal structures, which
also predicts the values of target properties.

In this work, we propose a 3D structure generator model named as MeGen (Metal cluster
structure Generation). MeGen generates energetically low-lying 3D structures of Ga clusters
in cartesian coordinates using Reinforcement Learning. Our model exploits the rotationally co-
variant state representation for 3D structure generation. We integrate this state representation
into an actor-critic neural network architecture with a rotationally covariant auto-regressive
policy, where the position of the atom to be placed is modeled through a flexible distribution
based on spherical harmonics. The reward function is based on a fundamental physical prop-
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erty (energy). We use the previously developed ML model DART[218] to calculate the energies
of various conformers/isomers generated during training. Contrary to other models that use
structural information, our DART model uses features that capture topological/connectivity
information to predict metallic clusters energies. As the descriptor consists of just the atom
counts in each shell, it captures topological information and is known as Topological Atomic De-
scriptor (TAD). DART model provides accuracy comparable to DFT at minimal computational
cost.

Our main contributions are as follows:

1. We introduce a new dataset called as Gallium Neutral Clusters, GNC version 2.0. The
dataset comprises of optimized, low energy isomers of gallium clusters with size ranging
from 2 atoms to 70 atoms and their corresponding energies.

2. We propose a model based on reinforcement learning for generation of structures in Carte-
sian coordinates.

3. We accelerate the workflow of generating low energy isomers of gallium clusters and in
the process we also hit the GS.

4. We demonstrate that this method generates novel structural motifs along with previously
reported ones and increases the probability of finding new unique low-lying isomers for
clusters.

5.2 Theory and Methods

This section describes various components of the proposed framework as shown in Figure
5.1 to generate 3D structures in Cartesian coordinates for gallium clusters.

5.2.1 Dataset

In our previous work, DART is trained over GNC_31–70 data-set to predict energy for a
give Ga cluster. The GNC_31–70 comprised of low energy isomers and their corresponding
energies with sizes ranging from 31 to 70 atoms.[218] In this work, we added new optimized
geometries of neutral Gan clusters (size n = 2 to 31) to data-set GNC_31–70. The new data-set
called GNC version 2.0., comprises of optimize low energy isomers of gallium clusters with size
ranging from 2 to 70 atoms. The dataset has total of 8166 structures of gallium cluster. This
new data set GNC 2.0. is used to train the DART which is integrated as a reward function in
MeGen model. All the calculations were carried out within the Kohn-Sham formulation of DFT.
Projector Augmented Wave potential [173, 174] was used, with Perdew–Burke–Ernzerhof (PBE)
approximation [175, 176] for the exchange-correlation and generalized gradient approximation,
as implemented in planewave, pseudopotential based code, VASP.[177, 178, 179]
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Figure 5.1: Our reinforcement learning setting to generate GS/low-energy gallium clusters. This actor-critic
formulation can be used iteratively to generate (N, N + 1, N + 2, ...., N + M) atom gallium clusters.

5.2.2 Reinforcement Learning formulation

Reinforcement learning (RL) formulations, in general, have an agent which interacts with
the environment to maximize its reward. In principle, the formulation can be described as a
Markov decision process (MDP).

Definition : MDP is a tuple ⟨S,A, Ta(s, s′),Ra(s, s′)⟩ where:

• State s ∈ S, S is set of all possible states.

• Action a ∈ A, A is the set of possible actions.

• T : S × A × S −→ is the (stochastic) transition function.

• R : S × A −→ R is the reward function.
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Figure 5.2: Schematic representation of Ga4 structure generation from Ga3 seed structure on canvas.

By solving the RL problem, we aim to learn a stochastic policy π : S × A −→ R, which is
a conditional probability density over actions given the current state, such that the expected
cumulative reward is maximized. In other words, we aim to find a mapping from states to
action, called a policy (denoted as π), with maximum achievable total reward. Most often, the
policy π is parameterized using a neural network.

Similar to Simm et al. [59], we begin with formulating 3D structure generation as a rein-
forcement learning problem. As shown in Figure 5.2, We generate gallium clusters by adding a
single atom from the bag B to the existing seed structure of the gallium cluster present on the
3D canvas C. In principle, we are generating N atoms cluster from N − 1 atoms seed cluster
already present on canvas C. The idea is to allow the model to learn the process of addition of
a single atom to N − 1 atom cluster to generate N atom cluster. The reward function Ra(s, s′)
is given in Equation 5.4 as the negative of the energy calculated using DART model.[218] This
allows the the model to learn the most efficient ways of adding atoms in the presence of differ-
ent structural motifs across different sizes/classes of gallium clusters to get low-energy gallium
clusters. This will also allow the model to access the structural motifs, which are hard to find
in some classes but easily found in others. As introduced by Simm et al. [59] to model action
a using policy π, we need to model sub-action such as given a state s choose focal atom f to
which new atom type e will be added at a particular distance d and orientation x̂ as given in
Equation 5.1.

π(a/s) = π(x̂, d, e, f |s) = p(x̂|d, e, f, s) p(d|e, f, s) p(e|f, s) p(f |s) (5.1)

In our case Equation 5.1 gets modified to Equation 5.2. This is because we randomly choose
focal atom f and atom type e of next atom is always gallium.
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Figure 5.3: Starting from seed structures, we choose one seed structure at random. We use CORMORANT
to obtain rotation-covariant (scov) and invariant(sinv) state representations. τ1, τ2, τ3, τ4 are four channels and
τinv is the combination of learnable transformation taken from Anderson et al. [219] to obtain invariants from
covariant features.

π(a/s) = π(x̂, d, f |s) = p(x̂|d, f, s) p(d|f, s) (5.2)

5.2.3 State representation

As shown in Figure 5.3, we concatenate a vectorized representation of the bag B with
each atom on the canvas C. This concatenated representation is fed to the state embedding
network CORMORANT[219], which then transforms bag B and canvas C to get a rotationally
covariant representation scov. We further obtain sinv from scov by applying a combination of
transformations known as τinv from Anderson et al. [219]. An invariant representation sinv is
essential as the choice of distance d between the focal atom and the new atom must be invariant
to rotation and translation. The position of the new atom w.r.t the focal atom needs to be
covariant under rotation and dependents on distance d. Therefore we condition scov on distance
d to preserve rotational covariance (see Figure 5.4). The number of channel τ is set to four
(τ1, τ2, τ3, τ4) in our work.

5.2.4 Actor-Critic Model

As shown in Figure 5.4, the choice of focal atom f is random such that there is enough
exploration and an increased number of gallium clusters generated with different structural
motifs. Since the bag B contains only gallium atoms, there is not much choice in choosing the
atom type for the next atom e to be placed on canvas C. The choice of distance d between
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Figure 5.4: Figure of the actor-critic networks. We have the actor-network which samples the different actions
based on the current policy and state. The critic-network takes the invariant representation (sf,e

cov) to compute a
value V.

the focal atom and the new atom should be invariant to rotation and translation; hence to
achieve this, we use sf,e

inv and a mixture density network (MDN). Distance distribution between
the focal atom and the next atom to be placed is modeled using Gaussian mixtures as shown in
Equation 5.3, where πm is the mixing coefficient of the mth Gaussian N (µm, σ

2
m). The mixing

coefficients πm, and means µm are predicted using a mixture density network (MDN) as shown
in Figure 5.4. The standard deviations σm are global parameters. We clip values below zero to
ensure that the sampled distances are positive.

p(d|f, s) =
M∑

m=1
πmN (µm, σ

2
m) (5.3)

As shown in Figure 5.4 the orientation x of the atom depends on the chosen distance d hence
we condition scov

f,e on distance d to obtain orientation x. The critic needs to compute a value V
for the state s that is invariant under translation and rotation.

5.2.5 Reward calculator - DART Model

We use DART model[218], which predicts the energy of gallium clusters as reward function
Ra(s, s′) = −EDART

Ra(s, s′) = −EDART (5.4)

We use PPO to learn the optimal policy. To increase the exploration, we randomly choose
a focal atom. We further have distance-based restrictions on the placement of new atom. We
calculate the three nearest neighbors (nn) of the new atom. The first nearest neighbor should
be between distance 2.3 to 3.1 Å. The second nearest neighbor should be between 2.5 to 3.1 Å,
and the third nearest neighbor should be between 2.5 to 5.5 Å. The rationale behind choosing
the distance cutoffs is based on the Ga-Ga pairwise distance and the min-max observed for each
of these nearest neighbors. For example, the first nearest neighbors min-max was 2.3 to 3.1 Å.
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The Ga-Ga pairwise distances were calculated over a range of Ga clusters. If these distance
restrictions are violated, we give a penalty of -10.

Removal of duplicate structures from MeGen generated structures in a non-trivial task. To
capture the relative positions and orientations of the atoms in a structure we calculate bond-
lengths (pairwise-distance) and angles. On the basis of these bond-lengths and angles we remove
duplicate structures. Removal of duplicate structures is performed as follows:

1. Calculate all pairwise distances. We get upd = N×(N−1)
2 , number of unique pairwise-

distance for N atom cluster.

2. Calculate bond cutoff as shown in Equation 5.5 where bi
1 and bi

2 are the ith bonds of
structure 1 and 2, respectively, if Bc <= 0 we consider the structures to be similar and
place them in same group and pick only one structure from each group thereby removing
the duplicate structure.

3. Further we remove duplicates using angles.

4. Calculate the angle (x) between the atom of interest (AOI) and its two nearest neighbors.

5. Do step 4 for all the N atoms in the cluster.

6. Sort the angles (x) and calculate cutoff angle (Ac) as shown in Equation 5.6 where xi
1 and

xi
2 are the ith angles of structure 1 and 2, respectively.

7. For an N atom cluster if Ac < N Å we consider the structures to be similar and place
them in same group and pick only one structure from each group thereby removing the
duplicate structure.

Bc =
upd∑
i=0

(bi
1 − bi

2) (5.5)

Ac =
N∑

i=0
(xi

1 − xi
2) (5.6)

5.3 Results

In our previous work, we trained a DART model to predict energy for a given structure.
In this work, we have developed a model which predicts structures of (N) atom clusters based
on information about (N − 1) atom clusters. Our MeGen model could be employed in two
ways. Isomers for an (N) atom cluster could be generated using isomers of (N − 1) atom
cluster as seed. Alternatively, isomers for N atom clusters can be generated from scratch, i.e.,
starting from two atom clusters generating three atom clusters, which would be used as the
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seed structures to generate four atom clusters and so on and so forth. In what follows, we
demonstrate both these approaches.

Ga seed ⇒ Ga target
structure

Structures from
DFT based
method

Structures from
MeGen model

Ga7 ⇒ Ga8 3 5
Ga17 ⇒ Ga18 27 90
Ga29 ⇒ Ga30 25 76
Ga56 ⇒ Ga57 127 161

Table 5.1: Comparative analysis of unique structure obtained using the MeGen model against the DFT-based
method.

To demonstrate structure generation using seed structure, MeGen is employed to predict
structures of four different sizes Ga[8,18,30,57] from seed structures of Ga[7,17,29,56] respectively.
The number of unique structures generated from DFT and MeGen are tabulated in Table 5.1.
The number of structures generated from our model is significantly more than the one generated
through DFT based search and MeGen has always hit the GS for all sizes. Further in Figure 5.5
we compare structural motifs of isomers generated through DFT vs that of MeGen model for
Ga8. As can be seen in both approaches GS is identical. Even for a small size like Ga8, MeGen
model predicts some structural motifs which are missed out by DFT based search. Further the
high energy isomers of Ga8 are observed as building blocks of larger clusters with more than
30 atoms.[180]

Ga seed ⇒ Ga target
structure

Structures from
DFT based
method

Structures from
MeGen model

Ga10 ⇒ Ga11 10 13
Ga11 ⇒ Ga12 10 20
Ga12 ⇒ Ga13 15 35
Ga13 ⇒ Ga14 13 70
Ga14 ⇒ Ga15 37 120

Table 5.2: Iterative generation of Gan cluster structures (size n = 11 to 15).

In our second experiment we generated structures of Ga11 from seed structures of Ga10.
However to generate isomers of Ga12 instead of using DFT generated structures we have used
MeGen predicted optimize structures of Ga11 as seed. This was repeated till Ga15, where
seed structures were also generated from MeGen. Table 5.2 demonstrate the number of unique
isomers generated through DFT vs MeGen model. As was the previous case number of generated
low energy isomers through MeGen is much more than that of DFT.

Further, we also investigated distinct structural families present in these unique structures.
Our analysis clearly demonstrates that our model has captured structural motifs which were
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Figure 5.5: Unique structural motifs of Ga8 obtained from DFT based search method vs MeGen generated
structure. The number at the bottom of each structure represents the energy difference between the isomer and
the GS.

not captured previously through DFT simulations. For example, DFT based search has pre-
dicted only two distinct structural motifs for Ga11 where as MeGen has predicted one more.
For the next three sizes from Ga12 to Ga14, only one structural motif was captured in DFT
based searches, whereas MeGen has predicted many more distinct structural motifs. All these
structural motifs, along with their energies with reference to their respective GS, are presented
in Figure 5.6. The second experiment is the proof of concept that we can generate isomers
along with GS from scratch. And the model is successful in capturing various structural motifs.
A finer/detailed analysis of these isomer families also brings out the growth pattern in this size
range.

5.4 Conclusion

In this study, a reinforcement learning model, namely MeGen, was developed to generate 3D
low-energy isomers of Ga clusters. MeGen is significantly more efficient than the conventional
workflow for generating ground state geometries as well as low lying isomers in terms of time
and computational resources. Integration of the DART model as a reward function to calculate
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Figure 5.6: Different structural motifs obtained from MeGen and DFT based search methods. Structures
labeled by 0 are the GS. The number at the bottom of other structures represents energy difference between
isomer and the GS.

energy allows us to efficiently learn the process of addition of a single atom to (N − 1) atom
cluster to generate (N) atom low energy cluster. Investigating the structure generated using
MeGen indicates that the model has learned the underlying cluster growth pattern by its ability
to identify valid low energy structures incorporated by the reward function of the RL model.
Furthermore, the MeGen model can be extended to any metal cluster.

Essentially MeGen is an efficient search algorithm which generates n+1 atom gallium cluster
given an n atom cluster. Similarly, molecular geometry optimization is an search algorithms
which aims to search for the nearest minima on the PES given a molecular 3D structure. Most
optimization problems require that the user selects an algorithm and, to some extent, also tunes
it for better performance. Although intuition and knowledge about the problem can speed up
these selection and fine-tuning process, users often use trial-and-error methodologies, which can
be time-consuming and inefficient. With all of that in mind and much more, the concept of
“Learned optimizers,” “learning to learn,” and “meta-learning” has been gathering attention
in recent years. In the next chapter i.e. chapter 6, we propose MolOpt that uses Multi-Agent
Reinforcement Learning (MARL) for autonomous molecular geometry optimization (MGO).
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Chapter 6

MolOpt: Autonomous Molecular Geometry Optimization using

Multi-Agent Reinforcement Learning

6.1 Introduction

Neural network potentials (NNPs) learn to approximate potential energy surface (PES) as a
high dimensional function (HDF) f by learning from existing reference data. Once trained NNPs
can successfully circumvent the need to solve the electronic Schrödinger equation explicitly as
it has learned the mapping f(Zi, ri) → E, where Zi are the nuclear charges and ri are the
atomic positions.[85, 111, 112, 113, 116, 218, 220] Machine learning (ML) methods in general
have been successful in improving computational chemistry algorithms leading to accelerated
property prediction and chemical space exploration.[221] Recently, much emphasis has been on
developing efficient ML-based search algorithms to explore chemical space,[60, 67, 209, 222] but
the same is not the case for conformational space. There are very few attempts to develop an
efficient ML-based search algorithm that can explore the conformational space, i.e., probe the
potential energy surface (PES).[223, 224, 225, 226, 227] These ML-based search algorithms have
applications in 3D structure generation[59, 228] and molecular geometry optimization (MGO).
MGO aims to find the nearest/local molecular conformation with minimum potential energy on
PES, starting from a given initial 3D conformation. MGO is an essential part of computational
chemistry because any studies related to equilibrium geometries demand searches for minima on
PES. Over the past several decades, there have been a variety of well-established optimization
methods, such as conjugate gradient (CG), steepest descent(SD), Newton-Raphson, and quasi-
Newton methods, to solve this task of MGO.[36, 69, 229, 230, 231]

These geometry optimization methods involve using the PES’s first-order and/or second-
order derivatives. The examples of first-order optimization algorithms are the steepest descent
(SD)[232, 233] and conjugate gradient (CG)[70]. These first-order optimization algorithms use
gradient information to perform optimization. The steepest descent method takes the next
step by searching for the steepest direction to minimize the function’s value, given the current
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point. This is done by taking a step in the direction of the negative gradient, and step size
is calculated using line search. Conversely, the conjugate gradient method involves the use of
gradient information to compute n-conjugate (A-orthogonal) directions and takes a gradient
direction descent step in these n-conjugate directions at each iteration, thereby reaching the
minima in n number of steps. One can see that using the n-conjugate directions, the CG method
avoids moving in the zig-zag fashion during optimization, i.e., CG takes a step along these n-
conjugate directions only once. SD and CG require gradient calculation to decide the update
direction and have very slow convergence (more number of steps) as compared to second-order
optimization methods.[229]

Second-order optimization methods make use of the Hessian of the PES for optimization.
The benefit of second-order optimization methods is that the use of hessian and gradient pro-
vides a much better update step than the step taken with only gradient information. An
example of second-order optimization algorithms is the Newton−Raphson method. At each
iteration of the Newton-Raphson method, the PES is approximated as a quadratic function
locally, and the optimization step is computed as the step towards the minima of this local
approximation. Even though these sophisticated, second-order optimization methods converge
in fewer steps, they still need to compute the Hessian and its inverse at each iteration, which
is computationally expensive. Hence each iteration of second-order optimization methods is
computationally expensive compared to first-order optimization methods but takes fewer steps
to converge. On the other hand, quasi-Newton methods like BFGS[72, 73, 74, 75] achieve
performance similar to the second-order optimization algorithms by circumventing the need to
calculate the Hessian and its inverse at each iteration explicitly. These methods instead make
a lower-rank approximation to the Hessian using the displacement vectors and gradients and
then take a Newton-type update step based on this approximation.

Developing these algorithms is a laborious process, one that needs to be formulated and
validated iteratively.[234] Lately, the focus has been on devising new methods to machine-learn
molecular features resulting in robust representations. Just as deep learning (DL) has been
successful in automating feature engineering, automating algorithm design could open new
avenues and change how we design algorithms. Automating algorithm design and learning a
“learned optimizer” may outperform current hand-designed optimizers.[234, 235, 236]

Lately, there has been some progress in developing customized optimizers using DL to han-
dle varied optimization problems. For instance, Egidio et al. introduced a “step-size policy”
that predicts the step size for the L-BFGS algorithm using the local information at the cur-
rent position.[235] Andrychowicz et al. developed learning optimization algorithms using a
supervised learning technique using long short-term memory networks (LSTMs). They showed
that their learning optimization algorithms could solve simple convex optimization problems
and were able to optimize neural networks.[237] Metz et al. have discussed the difficulties in
training the learned optimizers, and by analyzing the trained optimizer, they desire to acquire
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wisdom that may transfer back to hand-designed optimizers.[236] Using RL, Li and Malik de-
veloped learned optimizers for different classes of convex and non-convex objective functions
and showed that the autonomous optimizers converge in fewer steps and/or reach better optima
than hand-designed optimizers.[234] Ahuja et al. have designed an RL-based optimizer that
adds a corrective term to the BFGS algorithm.[238]

Motivated by the aforementioned methods, we introduce MolOpt - a novel approach for
autonomous molecular geometry optimization (MGO) that utilizes multi-agent reinforcement
learning (MARL). By defining the input as an atomic environment vector (AEV) and forces
on each atom, we are able to develop an RL-based model known as MolOpt, which outputs
displacements of each atom in the molecule. These displacements are used to update the
Cartesian coordinates of the atoms in the molecule. MolOpt is a MARL-based model where
each atom is treated as an agent. This formulation allows us to use AEVs as input; this
mitigates several problems, viz. 1. Due to MARL formulation, the policy is defined for atoms;
hence MolOpt can handle the different sizes of molecules and is permutationally invariant,
2. As we have used AEV as input, we have a fixed-size vector incorporating rotational and
translational invariance into the model. All these above properties enable us to output action
as displacement, which can be used to update the molecular structure directly in the Cartesian
coordinate. Our model MolOpt is novel because it is a de-novo learned optimizer for MGO.
MolOpt is independent of other optimizers as it does not require other optimizers for training or
testing. In the methods section, we briefly introduced MARL and described the MGO problem
as MARL formulation, followed by the dataset used for training and testing and “training and
implementation details”. In the results section, we demonstrated the effect of various input
“feature vectors” or state representation st and architectural differences on the performance of
MolOpt. We show the ability of our learned optimizer, MolOpt, to perform MGO on different
classes of alkanes, demonstrating the transferability of our model to different molecules. We
also compare MolOpt with other optimizers such as MDMin, FIRE, and BFGS. MolOpt is
the first of its kind to apply reinforcement learning to MGO without any dependence on other
hand-designed optimizers. Our work serves as a proof-of-concept for the potential of MARL
in this domain, opening up new research directions for MGO. The main contributions of the
paper are as follows:

• Formulation of molecular geometry optimization as Multi-agent RL (MARL) problem.
Where each atom is an agent, thus allowing us to have the same policy across differ-
ent molecular sizes and mitigate the problem of permutation transformation with the
molecules.

• We have developed a ”learned optimizer” which is in contrast to the hand-designed opti-
mizers available for MGO.
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Figure 6.1: The figure shows the workflow of MolOpt model. The molecule’s structure is in Cartesian coordi-
nates, which are used to compute rotational and translational invariant state representation. State representation
consists of atomic environment vector (AEV), one-hot encoding of atom type, and unit forces. The shared policy
network receives atomic state representation as an observation and predicts actions based on those observations.
These actions are modeled as displacements of each atom of the molecule in the Cartesian coordinate system.
As intended, the actions produce displacement of each atom, resulting in a new conformation. We then calculate
the new conformation’s energy and forces to check if optimization has reached convergence and calculate reward
to check the goodness and badness of the action. If convergence is not achieved, we compute the invariant state
representation of the new conformation and repeat the process.

• Our MolOpt model is an non-history based ”learned optimizer” which needs only a single
previous state to predict actions. Which is in contrast to other models which need multiple
previous states as observation to predict next action.

• MolOpt’s learned policy incorporates the principles of chemistry to optimize molecular
geometry with a gradient-based local optimization approach.

• Transferability - Our optimizer trained on small molecules i.e. Ethane and Butane (in-
cludes 2 isomers) can be used to optimize larger molecules such as heptane (includes 9
isomers) and octane (includes 18 isomers).

67



6.2 Method

6.2.1 Preliminaries

In reinforcement learning, the agent chooses actions at ∈ A at each timestep t, thus changing
the state st ∈ S of the environment in a random manner, and gets feedback based on the
outcome of the action. The feedback is commonly provided as a reward or cost rt ∈ R. The
agent’s goal is to take appropriate actions based on the observation/state st that maximizes
the cumulative reward or minimizes cumulative cost over all time steps.

To this effect, we formulate MGO as an RL problem by defining the potential energy surface
(PES) as a game-like environment for repeated exploration of conformation space. An essential
aspect of solving an RL problem is by learning a policy using a neural network that can predict
appropriate actions by observing different states/points along the surface of the objective func-
tion, PES, in this case. Finally, we train our model using a popular RL algorithm known as
proximal policy optimization (PPO) to learn the optimal policy. In the following subsections,
we will formulate geometry optimization as an RL problem.

6.2.2 Multi-agent Reinforcement learning (MARL)

A reinforcement learning problem is generally represented as a Markov decision process
(MDP). We define finite horizon MDP with continuous state and action space as a tuple
(S,A, po, p,R, γ), where a set of states S encodes the information or knowledge about the
environment at various moments of time; a set of actions or desicion A that helps to move from
one state to another; po : S −→ R+ is the probability density over initial states, a transition
probability function p : S ×A×S −→ R+ that defines the probability of moving from one state
to another on taking a particular action; and a reward function R : S × A −→ R that defines
the goodness or badness of taking a particular action at some given state and γ ∈ (0, 1] is the
discount factor.

By solving the RL problem, we aim to learn a stochastic policy π : S × A −→ R+, which is
a conditional probability density over actions given the current state, such that the expected
cumulative reward is maximized. In other words, we aim to find a mapping from states to
action, called a policy (denoted as π), with maximum achievable total reward. The policy π is
often parameterized using a neural network.

To formulate geometry optimization as an MDP, let us consider N atom molecule having
cartesian coordinates x ∈ R3N . Here we define each atom as an agent making this formulation
a Multi-agent MDP[239] (MMDP). However, MMDP’s presume all agents get same reward.
Shapley, in 1953 introduced stochastic Games (aka Markov Games), in which he allowed a
unique reward function for each agent.[240]
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Partially-Observable Stochastic Games (“POSG”) (Lowe et al., 2017)[241], defined below, is
an extension of Stochastic Games to the situation in MDP where we have only a partially ob-
servable state (similar to a partially-observable MDP)[239], and is the model we use throughout
this paper.

Definition : POSG is a tuple ⟨S,N , {Ai},P, {Ri}, {Ωi}, {Oi}⟩ where:

• S is set of all possible states.

• N is number of agents. The set of agents in [N ].

• Ai is the set of possible actions for agent i.

• P : S ×
∏

i∈[N ] Ai × S −→ [0, 1] is the (stochastic) transition function.

• Ri : S ×
∏

i∈[N ] Ai −→ R is the reward function for agent i.

• Ωi is the set of possible observations for agent i.

• Oi : Ai,×S × Ωi is the observations function

6.2.2.1 Parameter Sharing

”Nonstationarity” is a fundamental problem in cooperative MARL.[242] Each agent’s policy
evolves during learning while it is also part of the environment from the perspective of other
agents. This is known as the ringing effect, in which the information oscillates between agents
during learning, significantly slowing the convergence. Increasing centralization during learning
can mitigate the problem of slow convergence due to nonstationarity.[243] One of the centralized
cases of learning is parameter sharing. The concept of parameter sharing is quite common
throughout deep learning. In MARL, parameter sharing[244, 245] refers to a learning algorithm
that acts on behalf of every agent while using and making updates to a collectively shared
policy.[244]

6.2.3 Atomic environment vector (AEV)

The atomic environment vector (AEV) captures the atomic environment around each atom.
AEVs are constructed from ‘symmetry functions,’ which encode each atom’s radial and angular
environment. As described by Smith et al. in [84], we have used a modified version of the
original Behler and Parrinello symmetry function (BPSF).[85] AEV comprises a radial part and
an angular part that encode the radial and angular environment around the atom, respectively.
As summarized in Table 6.4, we have five variants of the MolOpt model, each employing different
state representations and architectures. A detailed discussion of these five variants can be
found in the results section. This section explicitly highlights the AEV component of the state
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representation used in these variants. For variants 1 and 2, we utilized 32 evenly spaced radial
shifting parameters for the radial part and eight radial and eight angular shifting parameters for
the angular part. Given that there are two atom types (C and H), this results in a 256-length
AEV, where radial and angular parts are of 64 and 192 lengths, respectively. In contrast, for
variants 4 and 5, we employed 16 evenly spaced radial shifting parameters for the radial part
and eight radial and four angular shifting parameters for the angular part, which results in a
128-length AEV, where radial and angular parts are of 32 and 96 lengths, respectively.

6.2.4 Formulation

Coming back to geometry optimization as an MDP. let us consider N atom molecule having
cartesian coordinates x ∈ R3N . We define each atom as an agent making this formulation
an Multi-agent MDP[239] (MMDP), number of agents N depends on the number of atoms
in the molecule. As seen in Figure 5.1 we compute rotationally and translationally invariant
state representation st at timestep t. State representation st encodes the 3D structure of the
molecule by the virtue of AEV, atom type and unit forces Fx, Fy, Fz. Each of these entities
of state st are for single atom in the molecule i.e. dimensions of AEV = N × 128, Atom-type
one-hot vector= N× number of atomic species (2 in our case) and unit forces = N × 3, hence
dimension of st = N × 133. It should be noted that the state representation st is different for
different variants, see Table 6.4.

• State, st = [AEV, Atom-type (one-hot vector), F t
x, F t

y, F t
z ] where F t

x, F t
y, F t

z are the
unit forces in x,y,z direction at time t.

• Action, at = [Dx, Dy, Dz] (Displacement of atom in x,y,z direction).

• Reward, rt = Total reward (see equation 6.3), where Fr is the resultant force (eV/Å)
on each atom.

Atomic reward =



−1 if Fr > 10

0 if Fr < 10 or Fr >= 1

1 if Fr < 1 or Fr >= 0.1

20 if Fr < 0.1 or Fr >= 0.01

500 if Fr < 0.01

2000 if Fmax
r < 0.01(converged)

(6.1)

Team reward = mean(−log(Fr)) (6.2)

Total reward = Atomic reward+ Team reward (6.3)
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The atomic agents take in the state representations as observations and uses policy (π) to
predict atomic actions (at). The next conformation in the optimization trajectory is obtained
by using the actions (atomic displacements) and previous conformation as follows xt+1 = xt+at.
As we can compute state representation st from xt (Cartesian coordinates) we can write st+1 =
st + at. Now that we have a new molecular conformation in the optimization trajectory, we
check for optimization convergence, if convergence is reached, we stop the optimization, if
convergence is not reached, we again compute the state representation of new conformation
from Cartesian coordinates, pass it to the agent and this loop continues as shown in Figure 5.1.
We use the proximal policy optimization (PPO) algorithm to train our policy network. PPO
can be categorized as the policy-based RL method that aims to learn the optimal policy (π∗).
A policy is a mapping function that predicts appropriate action given a state that results in
the maximum possible cumulative reward.

We have designed a custom reward function (see equation 6.3), which is a combination of
the atomic reward and team reward (molecular reward). Now, why is this custom reward
function important? One must realize that in our multi-agent RL (MARL) formulation, we
predict atomwise actions, which leads to the “non-stationarity” problem. There are various
ways to mitigate the “non-stationarity” problem; in our work, we use the reward function as an
in-direct communication method to overcome the “non-stationarity” problem. Using the team
reward function component, we provide the agent with information about what is happening
with other agents (atoms). As shown in equation 6.3, the total reward is the summation of
atomic and team rewards. The atomic reward is given to each atom based on the resultant force
(Fr) on that particular atom (see equation 6.1). Atomic reward aims to reduce the forces on an
individual atom. In molecular geometry optimization, the displacement of a single atom leads
to changes in the forces of multiple other atoms. Hence, we introduce team reward to prevent
actions that will cause the Fr on other atoms to increase dramatically. Team reward, equation
6.2 aims to reduce forces on all atoms without drastically increasing forces on other atoms.
In equation 6.1, Fmax

r is the maximum resultant force on a particular atom in a molecule. If
Fmax

r , which represents the largest resultant atomic force in the molecule, is below 0.01 eV/Å,
we conclude that the optimization has converged and terminate the episode.

6.2.5 Dataset

We generated a dataset containing initial conformers of alkanes known as ALINCO. ALINCO
dataset contains geometries of Ethane, n-Butane, and Isobutane. Below are the steps followed
to generate the ALINCO dataset.

1. From SMILES generate “10 X n atoms” structures for each isomer using RDKit.[120]
Therefore, we get a total of 360 structures consisting of 80, 140, and 140 of Ethane,
Butane, and Isobutane, respectively.
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Parameters Value
Entropy coefficient 0.0001

KL coefficient 1.0
KL target 0.01
gamma 1.0

Clip parameter 0.3
vf clip parameter 10.0

Horizon 20
lr 5e-05

train batch size 2048

Table 6.1: Hyperparameter used during training and evaluation of MolOpt

2. We then add random noise with mean = 0 and std = 0.1 to the geometries generated in
step 1. We repeat this step 5 times, generating 5X gives 1800 structures.

3. Combine the initial 360 and perturbed 1800 structures to get a total of 2160 structures.

4. Optimize these 2160 structures using the BFGS algorithm provided in Atomic Simulation
Environment (ASE)[71] package. We use ANI1ccx[68] for energy and force calculation.

5. From optimization trajectory sample 0, 1, 2, 4, 6, 8 initial frames and also sample every
ith frame from 10th till 10th last frame at the interval of 5.

In total, ALINCO has 42,262 structures of Ethane, n-Butane, and Isobutane.

6.2.6 Training and Implementation Details

We implemented MolOpt using RLLIB and PPO implemented in RLLIB to train the pol-
icy network. The objective function in equation 6.4 is optimized using PPO. In equation 6.4
the parameterized policy is given as πθ(at|st) which predicts action at given the state st and
πθold

(at|st) represents the older iteration of policy network. The clipping parameter ϵ guaran-
tees that while updating the policy, we do not make excessively large updates, and we have
set its value to 0.3. The advantage function A(st, at) is defined as the advantage function
that determines how good, or bad the action at is on an average for a given state st. Other
hyperparameters used during training are given in Table 6.1.

L(θ) = Et

[
min

(
πθ(at|st)
πθold(at|st)

A(st, at), clip
(
πθ(at|st)
πθold

(at|st)
, 1 − ϵ, 1 + ϵ

)
A(st, at)

)]
(6.4)

To train our model, we sample initial conformation from the ALINCO dataset. We then
compute rotationally and translationally invariant state representation (st). Agent takes (st) as
an input and predicts actions (at). We get new conformation at time (t+1) in the optimization
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Molecule name # Isomers × # structures # Atoms
Propane 1 × 10 11
Pentane 3 × 10 17
Hexane 5 × 10 20
Heptane 9 × 10 23
Octane 18 × 10 26
Total 360

Table 6.2: Test set that contains 360 structures of alkanes (CnH2n+2) where n=3,5,6,7 and 8.

trajectory. We then calculate the energy and forces of the new conformation using ANI1ccx.[68]
For the agent to understand if the action at taken was good or bad, we calculate the reward as
given in equation 6.3.

Once trained, we evaluate the model using a test set that contains alkanes (CnH2n+2)
where n=3,5,6,7 and 8. We generate 10 structures each of 36 isomers across different alka-
nes (CnH2n+2) where n=3,5,6,7 and 8 using RDKit.[120] In total, we have 360 structures in
our test set.

6.3 Results

In this section, we show the ability of our learned optimizer, MolOpt, to perform geometry
optimization on different classes of alkanes. We compare five different variants of MolOpt
based on their state representation and architectural differences. The performance evaluation
metric for MolOpt is based on energy and all-atom RMSD. The all-atom RMSD is calculated
by aligning the molecules to remove any translational and rotational transformations prior to
computation. All model were trained on ALINCO dataset and evaluated on a test set containing
360 structures of alkanes, details about the number of isomers and structures in the test set is
summarized in Table 6.2. The performance of these five variants has been summarised in Table
6.3. We can see that Variant 5, which has state representation st = [AEV, Atom-type, Fx, Fy,
Fz, ∆Fx, ∆Fy, ∆Fz] achieves the best performance on the test set containing 360 structures
with mean ∆E = −0.57 kcal/mol and standard deviation ∆E = 0.67kcal/mol. In terms of
RMSD, Variant 5 achieves an overall mean RMSD of 0.107±0.078 Å. We have further discussed
each of these variants in the following subsections.

6.3.1 Flavours of MolOpt/Ablation study

6.3.1.1 Variant 1

We consider Variant 1 as the baseline. As seen in Table 6.4, the state representation (st) of
variant 1 consists of atomic environment vectors (AEV) of length 256, atom-type as the one-hot
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Variant # Structures Mean ∆E
(kcal/mol)

STD ∆E
(kcal/mol)

Mean
RMSD (Å)

STD
RMSD (Å)

variant 1 360 −3.51 2.12 0.18 0.08
variant 2 360 −1.64 1.25 0.15 0.09
variant 3 360 −1.34 1.14 0.14 0.07
variant 4 360 −0.99 0.94 0.13 0.08
variant 5 360 −0.57 0.67 0.11 0.08

Table 6.3: Geometry optimization performance of different flavors of MolOpt on test set containing 360 struc-
tures. Mean ∆E = 1

N

∑N

i=0 Ei
BF GS − Ei

MolOpt both Ei
BF GS and Ei

MolOpt are optimized energies and i runs over
the structures in the test set i.e., N = 360. Similarly, STD ∆E represents the standard deviations within the
∆E. We calculate the all-atom root mean squared deviation (RMSD) between the optimized BFGS structure
and the optimized MolOpt structure. The mean RMSD= 1

N

∑N

i=0 RMSDi where i runs over the structures in
the test set. The STD RMSD represents the standard deviations with the RMSD

vector of length 2, unit forces of length 3, and resultant force of length 1, hence the length of
st is 262.

The idea is to provide the model with the local atomic environment of each atom using AEV.
Unit forces and resultant force on each atom provide the model with the gradient information.
The unit forces are defined as Fx = dE

dx , Fy = dE
dy , Fz = dE

dz and resultant force is Fr = dE
dr , where

E is the energy and r is the position. The policy network has four multi-layered perceptrons
(MLP) known as MLPaev, MLPf , MLPint, and MLPv. MLPaev and MLPf produces refined
aev and force features respectively. We add these features and pass them through Interaction
MLP,MLPint, which predicts actions. We use a separateMLPv, which acts as a value function.
The architecture of these MLPs is shown in Table 6.4. We use LeakyReLU in MLPaev and
tanh for all other MLPs as the activation function.

Performance of Variant 1 is summarized in Appendix C Table C.1 and C.2. We can see that
the mean ∆E and mean RMSD values increase with the size of the alkanes. Variant 1 achieves
the overall mean ∆E of -3.51±2.12 kcal/mol and RMSD of 0.18±0.08 Å. In Appendix C
Table C.2, the overall Mean RMSD before optimization is 0.25±0.07 Å and after optimization
mean RMSD is 0.18±0.08 Å. Considering that it is a baseline model, these results are very
encouraging.

6.3.1.2 Variant 2

Variant 2 is similar to variant 1, except the st does not have resultant force Fr hence the
length of st is 261. We have excluded the resultant force as its information is already present
in unit forces, and the resultant force in itself does not add much to improve the accuracy of
the MolOpt model. Performance of Variant 2 is summarized in Appendix C Table C.3 and C.4.
Variant 2 achieves the overall mean ∆E of -1.63±1.24 kcal/mol and RMSD of 0.15±0.09 Å. In
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Variants State Architecture

Variant 1 [Atom-type, AEV, Fx, Fy,
Fz, Fr]

MLPaev = 262 × [128]3
MLPf = 4 × [128]4
MLPint = 128 × 3
MLPv = 262 × 1

Variant 2 [Atom-type, AEV, Fx, Fy,
Fz]

MLPaev = 261 × [128]3
MLPf = 5 × [128]4
MLPint = [128]3 × 3
MLPv = 261 × [128]2 × 1

Variant 3 [Atom-type, Fx, Fy, Fz]
MLPf = 5 × [128]5 × 3
MLPv = 5 × [128]3 × 1

Variant 4 [Atom-type, AEV, Fx, Fy,
Fz]

MLPaev = 133 × [128]3
MLPf = 5 × [128]4
MLPint = [128]3 × 3
MLPv = 133 × [128]2 × 1

Variant 5 [Atom-type,AEV, Fx, Fy,
Fz, ∆Fx, ∆Fy, ∆Fz]

MLPaev = 136 × [128]4
MLPf = 8 × [128]3
MLPint = [128]3 × 3
MLPv = 136 × [128]2 × 1

Table 6.4: We compare five different variants of MolOpt based on their state representation and architectural
differences. We represent 128×128×128 as [128]3 and so forth in the architecture column. MLP stands for multi-
layered perceptron. Subscripts aev stands for the atomic environment vector, f for forces, int for interaction, and
v for the value function. Fx, Fy, Fz, ∆Fx, ∆Fy, ∆Fz are unit and delta unit forces in x,y,z direction respectively.
Fr is the resultant force.

Appendix C Table C.4, the overall Mean RMSD before optimization is 0.25±0.07 Å and after
optimization mean RMSD is 0.15±0.09 Å.

6.3.1.3 Variant 3

The idea is to evaluate the performance of the MolOpt model in the absence of local chemical
environment information, hence variant 3 receives only information about the type of atoms
and the forces on each atom; AEV is excluded from the state representation as shown in Table
6.4 therefore the length of st is 5. The architecture of the policy network is shown in Table 6.4.
We use tanh as the activation function for all MLPs.

Performance of Variant 3 is summarized in Appendix C Table C.5 and C.6. Variant 3 achieves
the overall mean ∆E of -1.33±1.14 kcal/mol and RMSD of 0.14±0.07 Å. In Appendix C Table
C.6, the overall Mean RMSD before optimization is 0.25±0.07 Å and after optimization mean
RMSD is 0.14±0.07 Å.
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6.3.1.4 Variant 4

From variant 3, we see that there is a slight improvement in the performance after the
removal of AEV from state representation. This necessitates changes in the AEV; therefore,
variant 4 has an AEV of length 128, contrary to the 256 used in previous variants. The length
of st is 133 due to reduction in length of AEV. Variant 4 is similar to variant 2, except AEV
has been changed.

Performance of Variant 4 is summarized in Appendix C Table C.7 and C.8, Variant 4 outper-
forms all previous variants to achieve the overall mean ∆E of -0.98±0.95 kcal/mol and RMSD
of 0.13±0.08 Å. In Appendix C Table C.8, the overall Mean RMSD after optimization mean
RMSD is 0.13±0.08 Å.

6.3.1.5 Variant 5

Variant 5 is our best-performing variant. In variant 5, the state representation (st) consists
of atomic environment vectors (AEV), atom-type as one-hot vector, unit forces and unit delta
forces as shown in Table 6.4, the length of st is 136.

Here variant 5 not only receives information about the atomic environment, type of atoms,
and unit forces but also information about changes in forces on each atom. Unit force F = dE

dr

and change in force ∆F = dF
dr , where E is the energy and r is the position.

Performance of variant 5 is summarized in Appendix C Table C.9 and C.10. Extra added
information about the change in forces in the state representation improves the performance
of variant 5. Variant 5 achieves the overall mean ∆E of -0.57±0.67 kcal/mol and RMSD of
0.10±0.08 Å. In Appendix C Table C.10, the overall Mean RMSD after optimization mean
RMSD is 0.10±0.08 Å. In Figure 6.2 we have shown how the RMSD values decrease after
optimization using MolOpt model and how the RMSD values increase as the size of the alkanes
increases. The RMSD values are calculated by using BFGS optimized structures as reference
hence zero in Figure 6.2 indicates BFGS optimized structures.

As can be seen RMSD values about are very close to BFGS optimized structures. In next
section we benchmark Variant 5 with few other optimizers viz. FIRE and MDMin.

6.3.2 MolOpt (Variant 5) Benchmark

Over the past several decades, extensive work has delivered many popular optimization
methods, like steepest descent, conjugate gradient, Newton-Raphson, and BFGS, to name a
few. These methods share one commonality: they are all hand-designed, i.e., human experts
carefully ideate, design, and validate these algorithms hence developing these algorithms is a
laborious process. Taking inspiration from DL, which was able to automate feature design, we
have tried to automate algorithm design and learn a “learned optimizer” that may outperform
current hand-designed optimizers. This section shows how our MolOpt model, an “learned
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Figure 6.2: Geometry optimization of 360 structures using variant 5. The plot shows the difference in the
RMSD values of the different classes of alkanes before and after optimization.

optimizer” compares with other optimizers. We have compared our model MolOpt with three
other optimizers, viz. MDMin, FIRE[69], and BFGS.[72, 73, 74, 75] All three optimizers are
provided in the ASE package.[71]

The MDMin is a modified version of the typical velocity-Verlet MD method, which numer-
ically solves Newton’s second law. However, the dot product between the momenta and the
forces is evaluated at each timestep. If the dot product is zero, then it means that the system
has just departed through a (local) minima on the PES; the kinetic energy is large and about
to decrease again. At this juncture, the momentum is set to zero. Contrary to MD, all atomic
masses are set to one. Fast inertial relaxation engine (FIRE)[69] is based on conventional MD
with further velocity modifications and adaptive time steps. The Broyden, Fletcher, Goldfarb,
and Shanno, or BFGS Algorithm, is a second-order optimization algorithm. BFGS is an exam-
ple of Quasi-Newton methods in which an approximate Hessian is computed for optimization
problems where the second derivative is very expensive to calculate and cannot be computed
for all practical purposes. The BFGS is one of the most widely used second-order algorithms
for numerical optimization.

As seen from the Appendix C Table C.11, we perform better than the MDMin optimizer by
achieving an overall mean ∆E of 0.97±1.06 kcal/mol. The positive mean indicates that MolOpt,
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Figure 6.3: The plot shows geometry optimization trajectory of isopentane (empirical formula C5H12) using
four different optimizers viz. MDMin, FIRE, BFGS and RL.

on an average, reached energy levels that were lower than MDMin optimized energy by 0.97
kcal/mol. We have summarized MolOpt comparison with FIRE and BFGS in Appendix C Table
C.12 and C.13 respectively. Our model achieves an overall mean ∆E of -0.18±0.25 kcal/mol,
an RMSD of 0.04±0.04 Å and ∆E of -0.53±0.64 kcal/mol, an RMSD of 0.10±0.08 Å compared
to FIRE and BFGS, respectively. In Figure 6.3, 6.4, 6.5, and 6.6, we have compared geometry
optimization trajectory of four different structures with empirical formulas C5H12, C7H16 and
C8H18 with different optimizers. MolOpt performance is better than MDMin and similar to
FIRE.

Unlike BFGS, which iteratively approximates the Hessian matrix using information from all
previous time steps, MolOpt receives state information only at the current time step t, resulting
in less accurate inverse Hessian estimation. As a result, MolOpt may struggle to predict step
sizes as precisely as BFGS, leading to more steps being required to reach the minimum.

For the sake of completeness we also compare the performance of MolOpt in terms of speed
or computational time required to do 72 optimizations. Out of 360 structures in the test set
we pick every 5th structures for optimization hence the number 72 this was done to reduce the
computational time and cost. In Appendix C Table C.14 we show time taken by each method to
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Figure 6.4: The plot shows geometry optimization trajectory of neopentane (empirical formula C5H12) using
four different optimizers viz. MDMin, FIRE, BFGS and RL.

complete these 72 optimization. It is important to acknowledge that other established methods,
available as packages, have been in existence for a long time with optimized code for enhanced
performance. In contrast, our code was primarily developed to introduce a novel algorithms
and has yet to undergo optimization for performance.

6.4 Conclusion and Discussion

In conclusion, we have introduced MolOpt, a robust MARL-based algorithm for MGO. This
work serves as a proof-of-concept for the potential of MARL in MGO. The formulation of
MGO as a MARL problem where each agent corresponds to a single atom in the molecule
allows us to use the same model architecture across different molecular sizes. MolOpt is a
“learned optimizer,” which is in contrast to the hand-designed optimizer available for MGO.
We were able to incorporate chemistry into the learned optimizer. We trained our optimizer
on a few alkane molecules, i.e., Ethane and Butane (which include two isomers of butane).
We tested MolOpt on different and comparatively larger alkane molecules not present in the
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Figure 6.5: The plot shows geometry optimization trajectory of 2,4-dimethyl pentane (empirical formula C7H16)
using four different optimizers viz. MDMin, FIRE, BFGS and RL.

training set, such as Propane, Pentane, Hexane, Heptane (which consists of 5 isomers), and
Octane (which consists of 9 isomers). The performance of MolOpt on the test set, which also
contains larger alkane molecules such as Heptane and Octane, demonstrates its transferability
to other molecules.

Currently, MolOpt uses AEVs, atom type (one-hot-encoding), and forces as the state rep-
resentation of each atom. Moreover, each agent can only see its own state. In the future, we
aim to extend MolOpt to include information sharing and communication between the agents
during optimization. In addition, we plan to explore the use of more advanced optimization
methods, such as iteratively approximating the Hessian similar to BFGS, to improve MolOpt’s
performance. It should be noted that our focus in this paper was on demonstrating the feasibil-
ity of using MARL for autonomous molecular geometry optimization without any dependency
on other hand-designed optimizers. We believe there is still scope for improvement and ex-
ploration to develop better MGO algorithms using RL. We hope our work will inspire and
motivate further research in MGO using RL. As an afterthought, MolOpt has shown promise
in predicting atom displacement using gradients and can potentially be used for molecular dy-
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Figure 6.6: The plot shows geometry optimization trajectory of 3-ethyl-2-methyl pentane (empirical formula
C8H18) using four different optimizers viz. MDMin, FIRE, BFGS and RL.

namics (MD) simulations. Training MolOpt to generate an MD simulation trajectory can offer
a new perspective toward Molecular dynamics simulations.

This chapter serves as a proof-of-concept for the potential of MARL in MGO. Further
enhancements in algorithm and data are necessary to extend MolOpt’s optimization capabilities
to molecules containing elements such as C, H, N, and O. These changes has been described in
next chapter i.e. chapter 7.
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Chapter 7

MolOpt2: Autonomous Molecular Geometry Optimization

using Multi-Agent Reinforcement Learning

7.1 Introduction

Deep learning has demonstrated that learned functions or features dramatically outperform
hand-designed functions or features in terms of accuracy and generalizability. This is due to
the ability of DL methods to learn these functions and features from the structure in the data.
Similarly, this implies that learned optimizers/algorithms may similarly outperform current
hand-designed optimizers/algorithms and may learn task-specific structures, enabling dramatic
performance improvements over more general hand-designed optimizers/algorithms. From a
broader perspective, most optimization problems require that the user selects an algorithm
and, to some extent, also tunes it for better performance. Although intuition and knowledge
about the problem can speed up these selection and fine-tuning process, users often use trial-
and-error methodologies, which can be time-consuming and inefficient. With all of that in mind
and much more, the concept of “Learned optimizers,” “learning to learn,” and “meta-learning”
has been gathering attention in recent years.[234, 235, 236, 237, 246, 247, 248, 249]

In computational chemistry, molecular geometry optimization (MGO) is a costly and crucial
task. Local MGO can be considered a search algorithm that aims to find the nearest/local
molecular conformation with minimum potential energy on the potential energy surface (PES),
starting from a given initial 3D conformation. Over the past several decades, there have been
a variety of well-established hand-designed optimization methods, such as conjugate gradient
(CG), steepest descent(SD), Newton-Raphson, and quasi-Newton methods.[36, 69, 229, 230,
231] MGO depends on the efficiency of the search algorithm and the accuracy of the interatomic
interaction potential.[60] Much work has been done on improving the accuracy, reducing the
computational cost, and developing a generalizable neural network potential (NNP). These
NNPs, to some extent, have addressed the second part, i.e., they can accurately capture the
interatomic interactions with reduced computational cost to predict the chemical properties
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of a molecule given its 3D structure. This work focuses on improving the search algorithm
(optimizer) by formulating it as a Multi-agent RL (MARL) problem in a meta-learning setting.

Lately, there has been some progress in developing learned optimizers using DL to han-
dle varied optimization problems. For instance, Egidio et al. introduced a “step-size policy”
that predicts the step size for the L-BFGS algorithm using the local information at the cur-
rent position.[235] Andrychowicz et al. developed learning optimization algorithms using a
supervised learning technique using long short-term memory networks (LSTMs). They showed
that their learning optimization algorithms could solve simple convex optimization problems
and were able to optimize neural networks.[237] Metz et al. have discussed the two major
difficulties in training the learned optimizers viz 1. bias introduced by truncated backprop-
agation through time (TBPTT) and 2. exploding gradients. To combat this, the authors
constructed a variational bound of the outer objective and minimized this via a combination
of reparameterization and ES-style gradient estimators.[236] Their other work includes gener-
alizing the learned optimizers on various tasks, learning hyperparameter search strategies, and
better training strategies for learned optimizers.[247, 248, 249] Using RL, Li, and Malik devel-
oped learned optimizers for different classes of convex and non-convex objective functions and
showed that the autonomous optimizers converge in fewer steps and/or reach better optima
than hand-designed optimizers.[234] Ahuja et al. have designed an RL-based optimizer that
adds a corrective term to the BFGS algorithm.[238]

In our previous work, we developed MolOpt, a learned optimizer for MGO that utilizes
multi-agent reinforcement learning (MARL). Previously we defined the input as an atomic
environment vector (AEV) and forces on each atom and outputs displacements of each atom in
the molecule. These displacements were used to update the Cartesian coordinates of the atoms
in the molecule. MolOpt is a MARL-based model where each atom is treated as an agent. This
formulation allows us to use AEVs as input; this mitigates several problems, viz. 1. Due to
MARL formulation, the policy is defined for atoms; hence MolOpt can handle the different sizes
of molecules and is permutationally invariant, 2. As we have used AEV as input, we have a
fixed-size vector incorporating rotational and translational invariance into the model. All these
above properties enable us to output action as displacement, which can be used to update the
molecular structure directly in the Cartesian coordinate.

In this work, we have made improvements over our previous MolOpt model. In contrast
to MolOpt, which was limited to alkanes, MolOpt2 can perform MGO on a wide variety of
molecules (containing CHNO). We have tested MolOpt2 on the OptQM9 test set, which con-
tains diverse molecules randomly sampled from QM9. MolOpt10 and OptQM9 are the training
and testing dataset generated during this work. We compare MolOpt2 with our previous model
by evaluating it on the alkanes test set, showing performance improvement. This improvement
is attributed to two major changes we have made, the first being the change in the state rep-
resentation and the second being the change in the architecture of the policy network. Minor
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changes include preprocessing the state representation described in [237]. These improvements
were made with the aim to mimic the BFGS algorithm. BFGS algorithm can get an excellent
approximation of the inverse of Hessian just by predicting the initial inverse of Hessian and
updating it iteratively during the optimization process just by using the gradient vectors and
displacement vectors. The BFGS algorithm motivated us to use gradient and displacement
vectors in our state representation along with one-hot representation for atom type. Regarding
the policy network, we noted that we see improved performance when the critic-network archi-
tecture is similar to the actor-network, along with the use of skip connections. In the methods
section, we briefly introduced MARL and described the MGO problem as MARL formulation,
followed by the dataset used for training and testing and “training and implementation details”.
In the results section, we compare MolOpt2 with our previous model. Further, we evaluate our
MolOpt2 model on the OptQM9 test set and demonstrate its performance and generalizability
on a diverse set of molecules containing CHNO elements and various bond types. We also
compare MolOpt2 with other optimizers such as MDMin, FIRE, and BFGS.

7.2 Method

This section explains the methodology/algorithms used in this work. We begin by estab-
lishing the preliminaries and terminologies in reinforcement learning in subsection 6.2.1. Fol-
lowing that, we delve into Multi-Agent Reinforcement Learning (MARL), which serves as the
core framework of our MolOpt2 model in subsection 6.2.2. Within the MARL subsection, we
elaborate on parameter sharing in subsubsection 6.2.2.1, a mechanism that facilitates efficient
information exchange among the agents to enhance their collaborative decision-making pro-
cess. Next, we present the formulation of our MGO problem, outlining the specifics such as
state representation, actions, and reward function that guide our MolOpt2 model. Moving
forward, we discuss dataset generation for training and evaluating the MolOpt2 model and
provide insights into its composition. Finally, we provide details regarding the training process
and implementation aspects, including the network architecture, hyperparameters, and training
protocols.

7.2.1 Formulation

For an N atom molecule we have N agents, each agent receives partial observations of the
molecular system, i.e., at time step t each ith atom agent receives information about its own state
Si

t , it takes action ai
t and gets reward ri

t. For the sake of brevity we will drop the atom superscript
in the rest of the chapter. The state representation consists of gradient gt = [F t

x, F
t
y, F

t
z ], where

F t
x, F t

y, F t
z are the unit forces in x,y,z direction and displacement Dt = [Dt

x, D
t
y, D

t
z] where

Dt
x, D

t
y, D

t
z are displacement to move the ith atom in Cartesian coordinates at time t.
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• State, st = [gt, gt−1, gt−2, gt−3, Atom-type (one-hot vector), Dt, Dt−1, Dt−2, Dt−3]
where gt is the gradient and Dt is atom displacement at time t.

• Action, at = [Dt
x, D

t
y, D

t
z]

• Reward, rt = Total reward (see equation 6.3), where Fr is the resultant force (eV/Å)
on each atom.

st =


(

log(|st|)
p , sgn(st)

)
if |st| ≥ e−p

(−1, epst) otherwise
(7.1)

The atomic agents take in the state representations as observations and uses policy (π) to
predict atomic actions (at). The next conformation in the optimization trajectory is obtained
by using the actions (atomic displacements) and previous conformation as follows xt+1 = xt+at.
As we can compute state representation st from xt (Cartesian coordinates) we can write st+1 =
st + at. Now that we have a new molecular conformation in the optimization trajectory, we
check for optimization convergence, if convergence is reached, we stop the optimization, if
convergence is not reached, we again compute the state representation of new conformation
from Cartesian coordinates, pass it to the agent and this loop continues as shown in Figure 5.1.
We use the proximal policy optimization (PPO) algorithm to train our policy network. PPO
can be categorized as the policy-based RL method that aims to learn the optimal policy (π∗).
A policy is a mapping function that predicts appropriate action given a state that results in
the maximum possible cumulative reward.

We have designed a custom reward function (see Equation 6.3), which is a combination
of the atomic reward and team reward (molecular reward). Now, why is this custom reward
function important? One must realize that in our multi-agent RL (MARL) formulation, we
predict atomwise actions, which leads to the “non-stationarity” problem. There are various
ways to mitigate the “non-stationarity” problem; in our work, we use the reward function as an
in-direct communication method to overcome the “non-stationarity” problem. Using the team
reward function component, we provide the agent with information about what is happening
with other agents (atoms). As shown in Equation 6.3, the total reward is the summation of
atomic and team rewards. The atomic reward is given to each atom based on the resultant
force (Fr) on that particular atom (see Equation 6.1). Atomic reward aims to reduce the forces
on an individual atom. In molecular geometry optimization, the displacement of a single atom
leads to changes in the forces of multiple other atoms. Hence, we introduce team reward to
prevent actions that will cause the Fr on other atoms to increase dramatically. Team reward,
Equation 6.2 aims to reduce forces on all atoms without drastically increasing forces on other
atoms. In Equation 6.1, Fmax

r is the maximum resultant force on a particular atom in a
molecule. If Fmax

r , which represents the largest resultant atomic force in the molecule, is below
0.01 eV/Å, we conclude that the optimization has converged and terminate the episode.
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7.2.2 Dataset

We generated a dataset containing geometries of molecules listed in Table 7.1 known as
OptMol10. Below are the steps followed to generate the OptMol10 dataset.

1. From SMILES generate “10 X n atoms” structures for each molecule using RDKit.[120]
Therefore, in total we get 630 structures.

2. We then add random noise with mean = 0 and std = 0.1 to the geometries generated in
step 1. We repeat this step 5 times, generating 5X gives 3150 structures.

3. Combine the initial 630 and perturbed 3150 structures to get a total of 3780 structures.

4. Optimize these 3780 structures using the BFGS algorithm provided in Atomic Simulation
Environment (ASE)[71] package. We use ANI1ccx[68] for energy and force calculation.

5. From optimization trajectory sample frames with index = [0, 1, 2, 4, 6] as initial frames
and also sample every ith frame from 10th till 10th last frame at the interval of 5.

OptMol10 dataset consists of 41,027 molecular structures of ten small organic molecules
with varying bond types and numbers of atoms, as summarized in Table 7.1. The dataset
was constructed by sampling from the optimization trajectory as described above. OptMol10
was used to train the MolOpt2 model. The availability of this dataset may offer opportunities
for the development and evaluation of new algorithms and models in the field of molecular
optimization.

Molecule Formula Bond type # atoms(heavy atoms)
Hydroxylamine NH2OH 1 5(2)
Ethylene oxide C2H4O cyclic ether, 1 7(3)

Methoxymethane C2H6O 1 9(3)
Nitromethane CH3NO2 dipole, 1, 2 7(4)
Methyl formate C2H4O2 1, 2 8(4)

Methyl isocyanate C2H3NO 1, 2 7(4)
Formaldehyde CH2O 1, 2 4(2)
Acetonitrile C2H3N 1, 3 6(3)

Methyl isocyanide C2H3N 1, 3 6(3)
Cyanogen C2N2 1, 3 4(4)

Table 7.1: Summary of the molecules used in the training set of MolOpt2, including the molecule name,
chemical formula, bond type for which the molecule was included in the dataset, and number of atoms (with the
number of heavy atoms in parentheses). The training set consists of approximately 41k structures in total of
these molecules.

For testing our model we create OptQM9 testset. OptQM9 contains 306 molecules (con-
taining CHNO) which are randomly sampled from QM9. We have summarized OptQM9 in
Table 7.2. To show the diversity of our OptQM9 test set we perform t-Distributed Stochastic
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(a) (b)

(c) (d)

Figure 7.1: (a) Shows the bar plot of individual atom count and their distribution in OptQM9 test set. (b)
Shows the bar plot of bond types and their frequency in OptQM9 test set. (c) Shows the distribution of molecules
w.r.t size and (d) Shows the tSNE plot of QM9 and the subset a.k.a OptQM9. We have used features obtained
from Mol2vec model to generate this tSNE. This shows the diversity of our test set OptQM9 w.r.t QM9

Neighbor Embedding (tSNE) on the feature vectors obtained from Mol2Vec[250] model, the
tSNE plot is shown in Figure 7.1d. We have also shown the distribution of individual atom
type, bond type and number of molecules w.r.t molecule size in Figure 7.1a, 7.1b, and 7.1c
respectively.

7.2.3 Training and Implementation Details

We implemented MolOpt2 using RLLIB and PPO implemented in RLLIB to train the pol-
icy network. The objective function in equation 7.2 is optimized using PPO. In equation 7.2
the parameterized policy is given as πθ(at|st) which predicts action at given the state st and
πθold

(at|st) represents the older iteration of policy network. The clipping parameter ϵ guaran-
tees that while updating the policy, we do not make excessively large updates, and we have
set its value to 0.3. The advantage function A(st, at) is defined as the advantage function
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# atoms # molecules bond type
7 3 1, 2, 3, Ring
9 3 1, 2, 3
10 3 1, 2, 3
11 2 1, 2, Ring
12 6 1, 2, 3, Ring
13 8 1, 2, 3, Ring
14 12 1, 2, 3, Ring
15 27 1, 2, 3, Ring
16 26 1, 2, 3, Ring
17 31 1, 2, 3, Ring
18 52 1, 2, 3, Ring
19 35 1, 2, 3, Ring
20 37 1, 2, 3, Ring
21 30 1, 2, 3
22 11 1, 2, 3
23 14 1, 2, 3
24 2 1
25 4 1, 2

Table 7.2: The OptQM9 test set used to evaluate the performance of MolOpt2 has a total of 306 molecules
given in the table.

Molecule name # Isomers × # structures # Atoms
Propane 1 × 10 11
Pentane 3 × 10 17
Hexane 5 × 10 20
Heptane 9 × 10 23
Octane 18 × 10 26
Total 360

Table 7.3: Test set that contains 360 structures of alkanes (CnH2n+2) where n=3,5,6,7 and 8.

that determines how good, or bad the action at is on an average for a given state st. Other
hyperparameters used during training are given in Appendix D Table D.1.

L(θ) = Et

[
min

(
πθ(at|st)
πθold(at|st)

A(st, at), clip
(
πθ(at|st)
πθold

(at|st)
, 1 − ϵ, 1 + ϵ

)
A(st, at)

)]
(7.2)

To train our model, we sample initial conformation from the OptMol10 dataset. We then
compute the state representation (st). We preprocess the state representation (st) before feeding
it to the network similar to Andrychowicz et al.[237] as st = (ln(|st|), sign(st)). We observe
that using this preprocess, our model learns much better as gradients and displacement vectors
in our state representation can have a large range of magnitude. The agent takes (st) as an
input and predicts actions (at). We get new conformation at the time (t+1) in the optimization
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Variant # Structures Mean ∆E
(kcal/mol)

STD ∆E
(kcal/mol)

Mean
RMSD (Å)

STD
RMSD (Å)

MolOpt 360 −0.57 0.67 0.11 0.08
MolOpt2 360 −0.35 0.55 0.09 0.08

Table 7.4: Geometry optimization performance of different flavors of MolOpt on test set containing 360 struc-
tures. Mean ∆E = 1

N

∑N

i=0 Ei
BF GS − Ei

MolOpt both Ei
BF GS and Ei

MolOpt are optimized energies and i runs over
the structures in the test set i.e., N = 360. Similarly, STD ∆E represents the standard deviations within the
∆E. We calculate the all-atom root mean squared deviation (RMSD) between the optimized BFGS structure
and the optimized MolOpt structure. The mean RMSD= 1

N

∑N

i=0 RMSDi where i runs over the structures in
the test set. The STD RMSD represents the standard deviations with the RMSD

trajectory. We then calculate the energy and forces of the new conformation using ANI1ccx.[68]
For the agent to understand if the action at taken was good or bad, we calculate the reward as
given in Equation 6.3. Once trained, we evaluate the model using OptQM9 test set.

7.3 Results

In this section, we show the ability of our learned optimizer, MolOpt2, to perform geometry
optimization on OptQM9 test set. The performance evaluation metric for MolOpt2 is based
on energy and all-atom RMSD. The all-atom RMSD is calculated by aligning the molecules
to remove translational and rotational transformations before computation. All models were
trained on the OptMol10 dataset and evaluated on a OptQM9 test set containing 306 molecules
containing elements Carbon, Hydrogen, Nitrogen and Oxygen (CHNO).

7.3.1 Comparsion with previous model

In this section, we compare our MolOpt2 with our previous work. ALINCO dataset contains
geometries of Ethane, n-Butane, and Isobutane. The ALINCO dataset was created similarly
to OptMol10. We have also described the steps followed to generate the ALINCO dataset
in our previous work. We train MolOpt2 using ALINCO dataset and evaluate using the test
set as summarized in Table 7.3 so as to make a comparison between our previous model and
MolOpt2. As shown in Table 7.4, MolOpt2 outperforms our previous model. MolOpt2 achieves
mean ∆E = −0.35 kcal/mol and standard deviation ∆E = 0.55 kcal/mol. In terms of RMSD,
MolOpt2 achieves an overall mean RMSD of 0.09±0.08 Å. Detailed performance of MolOpt2
in comparison with BFGS is given in Appendix D Table D.3. We have also compared MolOpt2
with other optimization methods, such as FIRE and MDMin, in which MolOpt2 achieves mean
∆E = 0.00 ± 0.14 kcal/mol and ∆E = 1.15 ± 1.08 kcal/mol, respectively. Detailed results of
the performance of MolOpt2 in comparison with FIRE and MDMin are given in Table D.5 and
Table D.4. Thus, our MolOpt2 model outperforms MDMin, performs similarly to FIRE, and
is very close to the BFGS algorithm. This improvement is attributed to two major changes
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we have made, the first being the change in the state representation and the second being the
change in the architecture of the policy network. State representation st can have large range of
magnitude which causes difficulty while training, hence we preprocess the state representation
using Equation 7.1 as described in [237]. These improvements were made with the aim to
mimic the BFGS algorithm. BFGS algorithm can get an excellent approximation of the inverse
of Hessian just by predicting the initial inverse of Hessian and updating it iteratively during the
optimization process just by using the gradient vectors and displacement vectors. The BFGS
algorithm motivated us to use gradient and displacement vectors in our state representation
along with one-hot representation for atom type. Regarding the policy network, we noted
that we see improved performance when the critic-network architecture is similar to the actor-
network, along with the use of skip connections.

Figure 7.2: Geometry optimization of one of the structures with empirical formula C8H18. The plot shows
that our RL model was able to reach E = −2293.30 kcal/mol in 294 steps whereas it took MDMin, FIRE and
BFGS 301, 301 and 221 steps to reach E = −2291.83, E = −2293.29 and E = −2293.40 kcal/mol, respectively.
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Figure 7.3: Geometry optimization of one of the structures with empirical formula C7ONH15. The plot shows
that our RL model was able to reach E = −2087.54 kcal/mol in 145 steps whereas it took MDMin, FIRE and
BFGS 301, 301 and 194 steps to reach E = −2071.89, E = −2087.55 and E = −2087.57 kcal/mol, respectively.

7.3.2 Performance on OptQM9 testset

In this section, we evaluate our model MolOpt2 on a new test set known as OptQM9. We
have trained MolOpt2 using ALINCO + OptMol10 dataset. The aim is to show the robustness
of our model to perform MGO on a wide variety of molecules that are well distributed in
chemical space (containing CHNO). Test set OptQM9 was created by random sampling from
QM9 with the goal to include a wide variety of molecules with sizes of up to nine heavy atoms
containing CHNO elements. To ascertain the molecular diversity within the OptQM9 test
set, we perform t-Distributed Stochastic Neighbor Embedding (tSNE) on the feature vectors
obtained from Mol2Vec[250] model. The tSNE plot is shown in Figure 7.1d. MolOpt2 achieves
mean ∆E = −0.09 kcal/mol and standard deviation ∆E = 0.19 kcal/mol. In terms of RMSD,
MolOpt2 achieves an overall mean RMSD of 0.03±0.05 Å. The performance of the MolOpt2
model on the OptQM9 test set in comparison with BFGS, FIRE, and MDmin is summarized
in Table 7.5, Appendix D Table D.6 and Table D.7, respectively.
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# Atoms Mean ∆E
(kcal/mol)

STD ∆E
(kcal/mol)

Mean
RMSD (Å)

STD
RMSD (Å)

7 0.00 0.00 0.00 0.00
9 0.00 0.00 0.00 0.00
10 −0.01 0.00 0.01 0.01
11 0.00 0.00 0.00 0.00
12 −0.01 0.01 0.01 0.00
13 −0.08 0.20 0.02 0.05
14 −0.04 0.08 0.02 0.02
15 −0.08 0.14 0.03 0.04
16 −0.05 0.05 0.02 0.02
17 −0.19 0.38 0.06 0.10
18 −0.07 0.08 0.03 0.04
19 −0.07 0.09 0.03 0.03
20 −0.11 0.17 0.04 0.04
21 −0.12 0.22 0.04 0.06
22 −0.30 0.37 0.07 0.08
23 −0.10 0.18 0.02 0.03
24 −0.03 0.00 0.02 0.02
25 −0.07 0.05 0.02 0.01

overall −0.09 0.19 0.03 0.05

Table 7.5: Trained on all molecules(OptMol10 and alkanes)
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7.4 Conclusion

Most of the work done in learned optimizers and meta-learning is to develop learned op-
timizers to accelerate the training process of machine learning algorithms and models. There
are very few attempts to develop learned optimizers in computational chemistry for MGO.
Ahuja et al.[238] this and our previous work on learned optimizers for MGO are some of the
initial attempts to explore this field. In this work, we developed a learned optimizer called
MolOpt2 for MGO. We have created OptMol10 and OptQM9 datasets to train and evaluate
MolOpt2. We show the diversity of the molecules in the OptQM9 test set by comparing it
with the QM9 dataset using a tSNE plot. We compare the performance of MolOpt2 with our
previous model MolOpt. We have also compared MolOpt2 with hand-made optimizers such as
BFGS, FIRE, and MDMin. Our MolOpt2 model, when trained on just three molecules (Ethane
and Butane (includes two isomers)), can optimize much larger molecules such as heptane (in-
cludes nine isomers) and octane (includes 18 isomers). Moreover, when trained on 13 molecules
containing CHNO elements MolOpt2 can optimize randomly chosen molecules from the QM9
dataset. We observe that BFGS outperforms MolOpt2 w.r.t number of optimization steps for
small molecules. However, this is different with larger molecules where MolOpt2 and BFGS
performance are similar in the context of the number of steps. We would like to explore learned
optimizers for small peptides in the future.
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Chapter 8

Conclusion

While deep NNPs have demonstrated great potential in achieving accurate energies, system-
atic benchmarking of these NNPs was necessary for broader applicability and transferability.
We did the standard comparative evaluation study of four NNPs, i.e., ANI, PhysNet, SchNet,
and BAND-NN. These models were originally trained and tested on different data sets, which
makes their applicability and comparison difficult. The benchmark study discusses the de-
scriptors used in these NNPs and their architectures. The critical factor is that NNPs must
exploit/incorporate the molecular invariances. Transformations such as rotation, translation,
and shuffling of atom index do not change the properties of the molecule; hence descriptors used
in NNPs need to be invariant to such transformations. We show that ANI, which uses manually
constructed BPSF as a descriptor, outperforms all the models in most of the experiments. On
the contrary, PhysNet, an end-to-end data-driven model that takes only distances and atom
types as input without requiring additional hand engineering, is just a little behind ANI. The
major disadvantage of ANI is that with the increase in the type of elements, the complexity of
the descriptor increases exponentially. The message-passing NNPs complexity does not change
with the increase in the type of elements by design.

Further, we apply the knowledge of atomic descriptors and NNP’s architecture to develop
ML and RL-based techniques for 3D structure generation of Gallium metal clusters and geom-
etry optimization of small organic molecules. In this thesis, we introduce a novel descriptor
called Topological Atomic Descriptor (TAD), which effectively encodes the Gallium clusters
topology and is used to train the DART model, which predicts the energy of Gallium clusters.
We show our DART model’s ability to predict the energy of the Gallium cluster, demonstrat-
ing the trained network’s robustness and TAD’s adequacy as a feature vector compared to
symmetry functions. We also demonstrate the ability of the DART model to accelerate the
workflow of identifying low-energy structures and increase the probability of finding unique
low-energy structures. Further, we develop a 3D structure generator model named as MeGen
(Metal cluster structure Generation). MeGen generates energetically low-lying 3D structures
of Ga clusters in cartesian coordinates using Reinforcement Learning and DART as a reward
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function. We show that MeGen is significantly more efficient than the conventional workflow
for generating ground state geometries as well as low-lying isomers in terms of time and com-
putational resources. Analysis of the Gallium clusters 3D structures generated using MeGen
indicates that MeGen has learned the underlying cluster growth pattern. From 3D structure
generation, we realized that the generator model does not always generate equilibrium struc-
tures, and we need to further optimize few of these structures to be sure. There are many
algorithms available for MGO, but all these algorithms share one commonality: they are all
hand-engineered – that is, human experts carefully design the steps of these algorithms. Just as
deep learning has achieved tremendous success by automating feature engineering, automating
algorithm design could open the way to similar performance gains. Hence using the Multi-agent
reinforcement learning (MARL) approach, we developed MolOpt. We show the ability of our
learned optimizer, MolOpt, to perform MGO on different classes of alkanes, demonstrating
the transferability of our model to different molecules. We also compare MolOpt with other
optimizers such as MDMin, FIRE, and BFGS. Further we developed MolOpt2 which is an im-
proved version of MolOpt. In MolOpt2 we do improvements in the state representation and
policy network. MolOpt2 is also trained on new training data set known as OptMol10 which
has ten molecules containing elements CHNO. We evaluate MolOpt2 on OptQM9 test set which
has molecules containing elements CHNO and upto nine heavy atoms.
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Appendix A

Benchmark study on Deep Neural Network Potentials for

Small Organic Molecules

Structures 1 2 3 4 5 6 7 8 Best count
ANI 0.48 0.59 0.67 0.72 0.5 0.59 1.01 0.65 5
PhysNet 0.45 0.59 0.7 0.72 0.42 0.61 1.03 0.66 3
Schnet 0.48 0.64 0.71 0.74 0.5 0.64 1.07 0.68 0
BAND-NN 0.55 0.66 0.76 0.74 0.58 0.64 1.13 0.71 0

Table A.1: Optimization of 8 decane structures using CauchyOnePlusOne optimization method. Values shown
are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 0.46 0.62 0.68 0.72 0.48 0.62 1.0 0.66 4
PhysNet 0.47 0.63 0.67 0.71 0.45 0.6 1.01 0.68 4
Schnet 0.57 0.65 0.74 0.73 0.48 0.72 1.08 0.7 0
BAND-NN 0.59 0.69 0.79 0.77 0.6 0.73 1.21 0.73 0

Table A.2: Optimization of 8 decane structures using Cobyla optimization method. Values shown are the
differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 0.48 0.63 0.69 0.68 0.5 0.62 1.02 0.66 3
PhysNet 0.48 0.63 0.7 0.69 0.49 0.63 1.0 0.64 5
Schnet 0.5 0.73 0.9 0.78 0.55 0.68 1.22 0.73 0
BAND-NN 0.58 0.8 0.93 0.84 0.57 0.69 1.25 0.75 0

Table A.3: Optimization of 8 decane structures using DiscreteOnePlusOne optimization method. Values shown
are the differences between optimized DFT and ML energies (kcal/mol)

96



Structures 1 2 3 4 5 6 7 8 Best count
ANI 0.48 0.63 0.71 0.7 0.5 0.6 1.03 0.66 5
PhysNet 0.48 0.63 0.69 0.69 0.5 0.63 1.04 0.65 3
Schnet 0.57 0.66 0.77 0.93 0.54 0.63 1.04 0.8 0
BAND-NN 0.66 0.75 0.81 0.95 0.69 0.69 1.24 0.84 0

Table A.4: Optimization of 8 decane structures using DoubleFastGADiscreteOnePlusOne optimization method.
Values shown are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 0.49 0.61 0.71 0.73 0.51 0.63 0.98 0.69 4
PhysNet 0.49 0.62 0.69 0.73 0.49 0.63 0.99 0.69 4
Schnet 0.56 0.69 0.77 0.75 0.62 0.72 1.04 0.78 0
BAND-NN 0.61 0.69 0.84 0.79 0.65 0.73 1.2 0.82 0

Table A.5: Optimization of 8 decane structures using MultiScaleCMA optimization method. Values shown are
the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 0.49 0.63 0.69 0.73 0.51 0.63 1.04 0.69 5
PhysNet 0.49 0.54 0.71 0.73 0.48 0.63 1.04 0.69 3
Schnet 0.53 0.69 0.71 0.73 0.52 0.71 1.13 0.7 0
BAND-NN 0.62 0.72 0.84 0.73 0.57 0.71 1.22 0.7 0

Table A.6: Optimization of 8 decane structures using NelderMead optimization method. Values shown are the
differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 0.49 0.64 0.71 0.73 0.51 0.63 1.04 0.69 2
PhysNet 0.49 0.64 0.71 0.73 0.51 0.63 1.04 0.69 2
Schnet 0.5 0.64 0.61 0.73 0.5 0.63 1.04 0.65 3
BAND-NN 0.51 0.64 0.71 0.73 0.51 0.63 1.04 0.69 1

Table A.7: Optimization of 8 decane structures using NoisyOnePlusOne optimization method. Values shown
are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 0.47 0.62 0.69 0.73 0.49 0.62 1.04 0.68 7
PhysNet 0.49 0.63 0.7 0.73 0.49 0.62 1.02 0.69 1
Schnet 0.51 0.65 0.76 0.73 0.56 0.68 1.07 0.69 0
BAND-NN 0.53 0.7 0.77 0.74 0.57 0.7 1.09 0.73 0

Table A.8: Optimization of 8 decane structures using OnePlusOne optimization method. Values shown are the
differences between optimized DFT and ML energies (kcal/mol)
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Structures 1 2 3 4 5 6 7 8 Best count
ANI 0.41 0.57 0.64 0.64 0.44 0.56 0.93 0.58 4
PhysNet 0.42 0.57 0.61 0.65 0.43 0.56 0.93 0.59 4
Schnet 0.53 0.65 0.66 0.72 0.47 0.64 1.1 0.69 0
BAND-NN 0.58 0.67 0.8 0.83 0.58 0.65 1.13 0.72 0

Table A.9: Optimization of 8 decane structures using Powell optimization method. Values shown are the
differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 0.54 0.64 1.23 0.77 0.54 0.68 1.09 0.71 2
PhysNet 0.5 0.66 0.91 0.74 0.52 0.72 1.14 0.69 1
Schnet 0.51 0.65 1.21 0.72 0.53 0.62 1.21 0.72 2
BAND-NN 0.49 0.65 0.76 0.76 0.51 0.63 1.25 0.72 3

Table A.10: Optimization of 8 decane structures using QORandomSearch optimization method. Values shown
are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 0.5 0.64 0.72 0.73 0.51 0.65 1.07 0.74 4
PhysNet 0.5 0.64 0.72 0.75 0.52 0.64 1.43 0.69 4
Schnet 0.51 0.64 0.73 0.84 0.53 0.66 1.25 0.74 0
BAND-NN 0.76 0.65 0.73 0.88 0.55 1.03 1.4 0.74 0

Table A.11: Optimization of 8 decane structures using QOScrHammersleySearch optimization method. Values
shown are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 0.45 0.58 0.67 0.66 0.47 0.59 0.99 0.63 3
PhysNet 0.46 0.59 0.65 0.68 0.47 0.59 0.99 0.63 5
Schnet 0.56 0.62 0.71 0.7 0.53 0.65 1.1 0.69 0
BAND-NN 0.59 0.7 0.78 0.86 0.54 0.65 1.12 0.72 0

Table A.12: Optimization of 8 decane structures using chainCMAPowell optimization method. Values shown
are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 0.49 0.63 0.71 0.73 0.51 0.62 1.04 0.69 4
PhysNet 0.49 0.63 0.7 0.73 0.48 0.63 1.04 0.63 4
Schnet 0.52 0.65 0.77 0.73 0.53 0.69 1.07 0.72 0
BAND-NN 0.6 0.69 0.78 0.74 0.6 0.7 1.14 0.73 0

Table A.13: Optimization of 8 decane structures using BFGS optimization method. Values shown are the
differences between optimized DFT and ML energies (kcal/mol)
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Structures 1 2 3 4 5 6 7 8 Best count
ANI 5.23 5.18 4.42 4.4 5.56 6.54 6.8 5.08 4
PhysNet 5.47 5.5 4.31 4.92 6.85 6.37 7.42 5.61 2
Schnet 5.17 5.25 4.49 4.36 6.01 6.57 6.85 5.23 1
BAND-NN 4.99 5.42 4.49 4.37 6.09 6.64 7.0 5.26 1

Table A.14: Optimization of 8 fentanyl structures using CMandAS3 optimization method. Values shown are
the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 5.02 5.13 4.29 4.37 5.32 6.31 6.91 5.1 5
PhysNet 5.04 7.66 4.3 4.38 5.47 7.14 6.91 5.41 0
Schnet 5.02 5.16 4.31 4.33 5.48 6.33 6.81 5.1 2
BAND-NN 5.01 5.31 4.32 4.34 6.02 6.33 6.91 5.24 1

Table A.15: Optimization of 8 fentanyl structures using CauchyOnePlusOne optimization method. Values
shown are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 5.18 5.11 4.34 4.33 5.51 6.44 6.92 5.1 6
PhysNet 5.61 7.55 4.31 6.01 6.46 6.45 9.83 5.83 1
Schnet 5.15 5.12 4.4 4.34 5.61 6.61 6.92 5.23 0
BAND-NN 5.1 5.51 4.54 4.42 5.93 6.61 6.92 5.24 1

Table A.16: Optimization of 8 fentanyl structures using Cobyla optimization method. Values shown are the
differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 5.35 5.21 4.44 4.38 5.55 6.56 6.79 5.15 7
PhysNet 5.78 7.01 5.15 5.78 6.63 9.44 8.21 5.6 0
Schnet 5.28 5.41 4.47 4.39 5.57 6.72 6.86 5.19 0
BAND-NN 5.04 5.42 4.79 4.44 5.7 7.0 6.95 5.26 1

Table A.17: Optimization of 8 fentanyl structures using DiscreteOnePlusOne optimization method. Values
shown are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 5.33 5.25 4.52 4.39 5.61 6.55 6.94 5.2 5
PhysNet 5.9 7.42 5.26 4.89 6.66 10.09 7.75 5.8 0
Schnet 5.31 5.48 4.43 4.47 5.82 6.63 6.94 5.21 0
BAND-NN 5.08 5.74 4.37 4.5 5.85 6.67 6.93 5.21 3

Table A.18: Optimization of 8 fentanyl structures using DoubleFastGADiscreteOnePlusOne optimization
method. Values shown are the differences between optimized DFT and ML energies (kcal/mol)

99



Structures 1 2 3 4 5 6 7 8 Best count
ANI 5.03 5.11 4.3 4.36 5.45 6.26 6.89 5.1 8
PhysNet 5.35 7.1 4.51 4.6 5.48 7.07 7.29 5.33 0
Schnet 5.04 5.28 4.32 4.39 5.91 6.29 6.9 5.18 0
BAND-NN 5.04 5.29 4.34 4.39 6.17 6.37 6.92 5.2 0

Table A.19: Optimization of 8 fentanyl structures using MultiScaleCMA optimization method. Values shown
are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 5.11 5.19 4.29 4.33 5.34 6.48 6.91 5.06 6
PhysNet 5.5 6.76 5.0 5.43 5.9 7.92 7.63 5.48 0
Schnet 5.06 5.2 4.32 4.35 5.37 6.4 6.96 5.14 0
BAND-NN 5.04 5.26 4.32 4.35 5.79 6.35 6.97 5.23 2

Table A.20: Optimization of 8 fentanyl structures using NelderMead optimization method. Values shown are
the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 5.02 5.24 4.31 4.34 5.66 6.34 6.93 5.19 1
PhysNet 5.02 5.24 4.31 4.34 5.64 6.4 6.93 5.27 3
Schnet 4.92 5.17 4.31 4.34 5.67 6.34 6.92 5.19 3
BAND-NN 5.02 5.24 4.31 4.34 5.69 6.34 6.93 5.19 1

Table A.21: Optimization of 8 fentanyl structures using NoisyOnePlusOne optimization method. Values shown
are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 5.01 5.08 4.3 4.33 5.58 6.31 6.9 5.11 6
PhysNet 5.05 6.93 4.31 4.35 5.43 6.52 6.9 5.15 2
Schnet 5.02 5.25 4.31 4.33 5.67 6.39 6.92 5.19 0
BAND-NN 5.03 5.27 4.34 4.36 6.0 6.4 6.92 5.21 0

Table A.22: Optimization of 8 fentanyl structures using OnePlusOne optimization method. Values shown are
the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 5.24 5.15 4.4 4.4 5.41 6.51 6.8 5.07 4
PhysNet 5.45 5.5 4.31 4.8 6.79 6.37 7.38 5.59 2
Schnet 5.17 5.15 4.45 4.4 6.04 6.56 6.96 5.15 0
BAND-NN 4.99 5.39 4.5 4.37 6.09 6.63 7.0 5.26 2

Table A.23: Optimization of 8 fentanyl structures using Powell optimization method. Values shown are the
differences between optimized DFT and ML energies (kcal/mol)
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Structures 1 2 3 4 5 6 7 8 Best count
ANI 7.23 5.24 4.86 5.74 5.77 8.51 49.42 43.41 3
PhysNet 5.58 6.02 10.72 6.53 7.85 6.6 71.79 22.4 1
Schnet 7.26 5.24 5.4 4.51 6.52 6.33 30.76 36.25 2
BAND-NN 7.28 5.55 8.29 4.9 6.97 6.34 10.27 12.97 2

Table A.24: Optimization of 8 fentanyl structures using QORandomSearch optimization method. Values shown
are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 12.09 5.41 21.32 4.64 5.67 7.7 57.16 22.45 1
PhysNet 55.27 5.5 11.94 5.65 5.68 6.47 16.87 5.29 3
Schnet 9.26 5.2 16.49 4.53 5.68 6.45 64.29 20.46 2
BAND-NN 5.88 5.23 12.61 4.5 5.69 9.06 72.82 14.17 2

Table A.25: Optimization of 8 fentanyl structures using QOScrHammersleySearch optimization method. Values
shown are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 5.27 5.21 4.48 4.45 5.52 6.59 6.86 5.13 4
PhysNet 5.61 5.49 4.31 4.51 5.63 6.36 7.45 5.55 1
Schnet 4.98 5.22 4.36 4.21 5.88 6.35 6.87 5.16 2
BAND-NN 5.01 5.25 4.35 4.35 6.13 6.33 6.94 5.18 1

Table A.26: Optimization of 8 fentanyl structures using chainCMAPowell optimization method. Values shown
are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 5.03 5.22 4.3 4.34 5.62 6.36 6.9 5.15 6
PhysNet 5.12 7.98 4.31 8.3 8.12 8.93 7.32 5.53 0
Schnet 5.02 5.25 4.31 4.34 6.0 6.36 6.91 5.16 0
BAND-NN 5.02 5.27 4.31 4.35 6.17 6.36 6.92 5.23 2

Table A.27: Optimization of 8 fentanyl structures using BFGS optimization method. Values shown are the
differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 4.12 2.7 3.48 4.05 3.9 3.05 3.14 133.21 8
PhysNet 4.16 2.81 3.67 4.14 4.02 3.09 3.33 135.76 0
Schnet 4.24 2.99 3.9 4.16 4.08 3.31 3.38 134.48 0
BAND-NN 4.52 3.01 3.9 4.42 4.09 3.4 3.42 134.86 0

Table A.28: Optimization of 8 retinol structures using CMandAS3 optimization method. Values shown are the
differences between optimized DFT and ML energies (kcal/mol)
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Structures 1 2 3 4 5 6 7 8 Best count
ANI 4.16 2.72 3.34 3.92 3.94 3.24 3.26 138.79 6
PhysNet 4.25 2.84 3.71 4.06 4.02 3.21 3.32 138.79 1
Schnet 4.28 2.84 3.82 3.99 4.03 3.32 3.31 138.77 0
BAND-NN 4.44 3.02 3.86 4.56 4.13 3.34 3.36 138.77 1

Table A.29: Optimization of 8 retinol structures using CauchyOnePlusOne optimization method. Values shown
are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 4.14 2.77 3.45 3.91 3.89 3.22 3.26 138.47 7
PhysNet 4.14 2.84 3.63 4.09 3.93 3.28 3.33 138.79 1
Schnet 4.27 2.96 3.49 4.01 3.91 3.29 3.39 138.61 0
BAND-NN 4.69 2.98 3.93 4.61 4.06 3.41 3.53 139.22 0

Table A.30: Optimization of 8 retinol structures using Cobyla optimization method. Values shown are the
differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 4.18 2.83 3.76 4.17 3.96 3.23 3.27 134.61 8
PhysNet 4.18 2.9 3.93 4.22 4.02 3.23 3.39 138.15 0
Schnet 4.26 2.91 3.81 4.36 4.04 3.36 3.47 135.9 0
BAND-NN 4.57 3.12 3.83 4.51 4.23 3.43 3.5 136.06 0

Table A.31: Optimization of 8 retinol structures using DiscreteOnePlusOne optimization method. Values
shown are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 4.21 2.8 3.81 4.24 4.0 3.4 3.28 134.09 6
PhysNet 4.26 2.9 3.78 4.37 4.05 3.32 3.39 138.66 2
Schnet 4.34 2.98 3.85 4.39 4.11 3.49 3.41 135.13 0
BAND-NN 4.46 3.09 3.85 4.45 4.2 3.68 3.5 135.92 0

Table A.32: Optimization of 8 retinol structures using DoubleFastGADiscreteOnePlusOne optimization
method. Values shown are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 4.2 2.76 3.59 4.05 3.94 3.18 3.29 138.79 6
PhysNet 4.15 2.85 3.78 4.05 3.95 3.22 3.31 138.8 1
Schnet 4.41 2.88 3.66 4.12 3.95 3.33 3.29 138.79 0
BAND-NN 4.47 2.96 3.85 4.51 4.05 3.36 3.33 138.79 1

Table A.33: Optimization of 8 retinol structures using MultiScaleCMA optimization method. Values shown
are the differences between optimized DFT and ML energies (kcal/mol)
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Structures 1 2 3 4 5 6 7 8 Best count
ANI 3.99 2.77 3.44 3.96 3.96 3.04 3.18 136.69 8
PhysNet 4.01 2.84 3.79 3.99 3.98 3.18 3.3 138.78 0
Schnet 4.36 2.85 3.53 4.02 4.07 3.29 3.26 136.78 0
BAND-NN 4.45 2.95 3.86 4.49 4.1 3.37 3.35 136.79 0

Table A.34: Optimization of 8 retinol structures using NelderMead optimization method. Values shown are
the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 4.38 2.94 3.85 4.37 4.03 3.36 3.33 138.79 6
PhysNet 4.39 2.95 3.9 4.37 4.03 3.34 3.33 138.8 2
Schnet 4.38 2.94 3.85 4.37 4.03 3.37 3.38 138.79 0
BAND-NN 4.39 2.95 3.85 4.37 4.03 3.37 3.39 138.79 0

Table A.35: Optimization of 8 retinol structures using NoisyOnePlusOne optimization method. Values shown
are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 4.18 2.81 3.66 4.16 3.96 3.31 3.3 138.79 6
PhysNet 4.29 2.87 3.87 4.25 3.98 3.3 3.31 138.79 2
Schnet 4.19 2.88 3.79 4.26 4.03 3.32 3.32 138.79 0
BAND-NN 4.4 2.97 3.85 4.47 4.04 3.34 3.32 138.79 0

Table A.36: Optimization of 8 retinol structures using OnePlusOne optimization method. Values shown are
the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 4.12 2.69 3.48 4.04 3.91 3.05 3.14 133.24 8
PhysNet 4.15 2.82 3.68 4.15 4.02 3.07 3.33 136.34 0
Schnet 4.46 2.8 3.82 4.2 4.01 3.09 3.23 133.57 0
BAND-NN 4.51 3.04 3.9 4.42 4.09 3.38 3.42 134.84 0

Table A.37: Optimization of 8 retinol structures using Powell optimization method. Values shown are the
differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 4.38 3.06 3.95 7.15 6.26 3.68 5.87 1892.83 3
PhysNet 4.72 2.98 4.19 4.37 13.03 4.93 9.34 2682.14 1
Schnet 4.42 3.0 4.01 6.25 4.3 3.67 5.94 1800.69 0
BAND-NN 4.47 2.98 4.03 4.5 4.25 3.62 6.05 1688.33 4

Table A.38: Optimization of 8 retinol structures using QORandomSearch optimization method. Values shown
are the differences between optimized DFT and ML energies (kcal/mol)
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Structures 1 2 3 4 5 6 7 8 Best count
ANI 7.61 4.18 3.84 4.37 4.03 6.86 6.59 2033.73 4
PhysNet 4.46 4.87 3.89 4.37 4.22 3.38 3.88 2155.18 2
Schnet 6.67 4.58 3.84 4.4 5.08 5.85 4.74 1531.5 0
BAND-NN 5.38 4.61 3.84 4.4 7.28 3.9 3.52 135.78 2

Table A.39: Optimization of 8 retinol structures using QOScrHammersleySearch optimization method. Values
shown are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 4.19 2.72 3.61 4.11 3.95 3.12 3.17 134.53 8
PhysNet 4.19 2.86 3.74 4.2 4.02 3.12 3.33 136.66 0
Schnet 4.29 2.95 3.74 4.41 4.03 3.27 3.41 135.56 0
BAND-NN 4.52 3.05 3.81 4.45 4.07 3.34 3.42 135.64 0

Table A.40: Optimization of 8 retinol structures using chainCMAPowell optimization method. Values shown
are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 4.3 2.94 3.84 4.23 4.01 3.36 3.33 138.79 1
PhysNet 4.3 2.94 3.8 4.29 4.01 3.35 3.32 138.79 6
Schnet 4.38 2.93 3.89 4.4 4.02 3.37 3.34 138.8 0
BAND-NN 4.42 2.93 3.9 4.52 4.04 3.37 3.36 138.8 1

Table A.41: Optimization of 8 retinol structures using BFGS optimization method. Values shown are the
differences between optimized DFT and ML energies (kcal/mol)
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Structures 1 2 3 4 5 6 7 8 Best count
ANI 1.12 1.12 1.56 1.05 0.81 1.38 0.87 1.47 5
PhysNet 1.16 1.16 1.48 1.26 0.88 1.36 0.92 1.43 3
Schnet 1.12 1.38 1.63 1.18 0.84 1.76 0.95 1.52 0
BAND-NN 1.21 1.4 1.64 1.35 1.08 1.83 0.97 1.72 0

Table A.42: Optimization of 8 methamphetamine structures using CMandAS3 optimization method. Values
shown are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 1.01 1.13 1.49 1.0 0.83 1.5 1.05 1.23 5
PhysNet 1.07 1.06 1.62 1.16 0.84 1.27 0.97 1.36 3
Schnet 1.27 1.24 1.65 1.08 1.12 1.77 1.07 1.88 0
BAND-NN 1.36 1.39 1.95 1.39 1.13 1.78 1.11 2.03 0

Table A.43: Optimization of 8 methamphetamine structures using CauchyOnePlusOne optimization method.
Values shown are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 1.19 1.21 1.78 1.32 0.93 1.43 1.19 1.54 2
PhysNet 1.23 1.17 1.67 1.25 0.88 1.44 1.06 1.5 6
Schnet 1.45 1.26 1.78 1.46 1.08 1.65 1.16 1.89 0
BAND-NN 1.47 1.45 1.8 1.47 1.14 1.69 1.13 1.99 0

Table A.44: Optimization of 8 methamphetamine structures using Cobyla optimization method. Values shown
are the differences between optimized DFT and ML energies (kcal/mol)
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Structures 1 2 3 4 5 6 7 8 Best count
ANI 1.33 1.17 1.58 1.38 0.92 1.47 0.97 1.51 3
PhysNet 1.24 1.28 1.56 1.29 0.94 1.52 0.95 1.48 5
Schnet 1.34 1.17 1.62 1.48 0.94 1.83 0.97 1.58 0
BAND-NN 1.35 1.32 1.62 1.52 0.94 1.84 0.97 1.69 0

Table A.45: Optimization of 8 methamphetamine structures using DiscreteOnePlusOne optimization method.
Values shown are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 1.27 1.19 1.52 1.26 0.96 1.53 1.03 1.59 4
PhysNet 1.37 1.32 1.53 1.39 0.99 1.49 0.98 1.62 2
Schnet 1.34 1.37 1.51 1.32 0.94 1.73 1.03 1.75 2
BAND-NN 1.37 1.43 1.81 1.5 1.1 1.76 1.03 1.8 0

Table A.46: Optimization of 8 methamphetamine structures using DoubleFastGADiscreteOnePlusOne opti-
mization method. Values shown are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 1.08 1.46 1.65 1.24 0.89 1.79 1.3 1.51 3
PhysNet 1.19 1.24 1.64 1.22 0.95 1.52 1.03 1.51 5
Schnet 1.2 1.45 1.77 1.27 1.09 1.79 1.14 1.68 0
BAND-NN 1.35 1.39 1.96 1.41 1.1 1.76 1.14 1.84 0

Table A.47: Optimization of 8 methamphetamine structures using MultiScaleCMA optimization method.
Values shown are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 1.08 1.37 1.68 1.08 0.97 1.9 1.27 1.46 2
PhysNet 1.06 1.13 1.62 1.11 0.93 1.61 1.02 1.5 6
Schnet 1.22 1.4 1.89 1.25 1.03 1.84 1.19 1.76 0
BAND-NN 1.34 1.43 1.96 1.46 1.12 1.79 1.16 1.91 0

Table A.48: Optimization of 8 methamphetamine structures using NelderMead optimization method. Values
shown are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 1.37 1.51 1.94 1.47 1.13 1.75 1.15 1.94 2
PhysNet 1.35 1.51 1.93 1.46 1.16 1.75 1.16 1.95 3
Schnet 1.37 1.5 1.95 1.47 1.14 1.74 1.16 1.94 2
BAND-NN 1.39 1.51 1.96 1.47 1.17 1.75 1.17 1.94 1

Table A.49: Optimization of 8 methamphetamine structures using NoisyOnePlusOne optimization method.
Values shown are the differences between optimized DFT and ML energies (kcal/mol)
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Structures 1 2 3 4 5 6 7 8 Best count
ANI 1.1 1.44 1.63 1.25 0.96 1.8 1.19 1.53 4
PhysNet 1.21 1.35 1.78 1.23 1.09 1.55 1.07 1.59 4
Schnet 1.13 1.45 1.87 1.34 0.97 1.79 1.19 1.55 0
BAND-NN 1.31 1.48 2.08 1.49 1.16 1.73 1.18 1.96 0

Table A.50: Optimization of 8 methamphetamine structures using OnePlusOne optimization method. Values
shown are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 1.12 1.1 1.58 1.03 0.87 1.34 0.91 1.42 4
PhysNet 1.15 1.16 1.43 1.28 0.91 1.35 0.89 1.43 2
Schnet 1.11 1.2 1.64 1.02 1.03 1.66 0.95 1.59 2
BAND-NN 1.22 1.4 1.64 1.35 1.06 1.87 0.96 1.71 0

Table A.51: Optimization of 8 methamphetamine structures using Powell optimization method. Values shown
are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 1.36 1.51 1.95 1.52 1.14 2.02 1.17 1.97 0
PhysNet 1.36 1.51 1.94 1.46 1.16 1.75 1.33 1.97 5
Schnet 1.37 1.51 1.95 1.49 1.13 1.95 1.16 1.93 3
BAND-NN 1.39 1.53 1.95 1.47 1.16 1.78 1.18 1.94 0

Table A.52: Optimization of 8 methamphetamine structures using QORandomSearch optimization method.
Values shown are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 1.35 1.75 2.22 1.47 1.16 1.79 1.18 1.91 0
PhysNet 1.38 1.53 2.01 1.54 1.15 1.75 1.2 1.96 1
Schnet 1.33 1.57 1.94 1.46 1.17 1.76 1.16 1.87 3
BAND-NN 1.35 1.52 1.98 1.46 1.24 1.75 1.16 1.9 4

Table A.53: Optimization of 8 methamphetamine structures using QOScrHammersleySearch optimization
method. Values shown are the differences between optimized DFT and ML energies (kcal/mol)

Structures 1 2 3 4 5 6 7 8 Best count
ANI 1.19 1.17 1.62 1.12 0.83 1.52 0.9 1.57 4
PhysNet 1.17 1.23 1.58 1.24 0.89 1.44 0.96 1.51 4
Schnet 1.21 1.23 1.67 1.22 0.98 1.78 0.91 1.58 0
BAND-NN 1.21 1.39 1.69 1.29 1.03 1.8 0.99 1.64 0

Table A.54: Optimization of 8 methamphetamine structures using chainCMAPowell optimization method.
Values shown are the differences between optimized DFT and ML energies (kcal/mol)
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Structures 1 2 3 4 5 6 7 8 Best count
ANI 1.23 1.44 1.81 1.41 1.15 1.74 1.08 1.43 1
PhysNet 1.2 1.42 1.36 1.34 0.96 1.61 0.95 1.5 7
Schnet 1.32 1.52 1.94 1.42 1.15 1.74 1.09 1.43 0
BAND-NN 1.33 1.53 1.97 1.47 1.14 1.75 1.16 1.81 0

Table A.55: Optimization of 8 methamphetamine structures using BFGS optimization method. Values shown
are the differences between optimized DFT and ML energies (kcal/mol)
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Appendix B

DART: Deep Learning Enabled Topological Interaction Model

for Energy Prediction of Metal Clusters and its Application in

Identifying Unique Low Energy Isomers

Model DART (values in kcal/mol)
MAE RMSE # struc-

tures
Test case 1 (overall) 4.77 6.16 427
Test set Ga-46 10.13 10.81 48
Test set Ga-57 3.59 4.82 197
Test set Ga-60 4.63 5.77 182

Table B.1: Performance of DART model on first test case which has total of 427 structures in the test set
consisting of Ga - 46, 57, and 60 size clusters.

Model DART (values in kcal/mol)
MAE RMSE # struc-

tures
Test case 2 (overall) 4.76 6.02 436
Test set Ga-46 7.45 8.07 48
Test set Ga-57 4.15 5.59 197
Test set Ga-66 4.72 5.84 191

Table B.2: Performance of DART model on second test case which has total of 436 structures in the test set
consisting of Ga - 46, 57, and 66 size clusters.
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Model DART (values in kcal/mol)
MAE RMSE # struc-

tures
Test case 3 (overall) 4.34 5.58 570
Test set Ga-57 3.69 4.78 197
Test set Ga-60 4.93 6.15 182
Test set Ga-66 4.45 5.77 191

Table B.3: Performance of DART model on third test case which has total of 570 structures in the test set
consisting of Ga - 57, 60, and 66 size clusters.
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Appendix C

MolOpt: Autonomous Molecular Geometry Optimization using

Multi-Agent Reinforcement Learning

C.1 Variants of MolOpt

Molecule
name # Structures Mean ∆E

(kcal/mol)
STD ∆E
(kcal/mol)

Mean
RMSD (Å)

STD
RMSD (Å)

Propane 10 −1.53 1.87 0.13 0.12
Pentane 30 −2.19 2.53 0.13 0.08
Hexane 50 −2.52 1.86 0.15 0.07
Heptane 90 −3.52 2.19 0.18 0.07
Octane 180 −4.11 1.84 0.20 0.07
Overall 360 −3.51 2.12 0.18 0.08

Table C.1: Variant 1 geometry optimization performance on test set containing 360 structures. ∆E = EBF GS −
EMolOpt both EBF GS and EMolOpt are optimized energies. We calculate the all-atom root mean squared deviation
(RMSD) between optimized BFGS structure and optimized MolOpt structure.
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Before optimization After optimization
Molecule
name # Structures Mean RMSD

(Å)
STD RMSD

(Å)
Mean RMSD

(Å)
STD RMSD

(Å)
Propane 10 0.26 0.05 0.13 0.12
Pentane 30 0.25 0.08 0.13 0.08
Hexane 50 0.23 0.07 0.15 0.07
Heptane 90 0.24 0.07 0.18 0.07
Octane 180 0.25 0.06 0.20 0.07
Overall 360 0.25 0.07 0.18 0.08

Table C.2: Variant 1 geometry optimization performance on test set containing 360 structures. We calculate
all-atom root mean squared deviation (RMSD) between initial structures vs optimized BFGS structures shown
under ”Before optimization” and optimized BFGS structure vs optimized MolOpt structure shown under ”After
optimization”.

Molecule
name # Structures Mean ∆E

(kcal/mol)
STD ∆E
(kcal/mol)

Mean
RMSD (Å)

STD
RMSD (Å)

Propane 10 −0.14 0.11 0.04 0.02
Pentane 30 −0.67 0.75 0.08 0.07
Hexane 50 −1.22 0.89 0.14 0.08
Heptane 90 −1.40 0.96 0.15 0.08
Octane 180 −2.12 1.33 0.18 0.08
Overall 360 −1.64 1.25 0.15 0.09

Table C.3: Variant 2 geometry optimization performance on the test set containing 360 structures. ∆E =
EBF GS − EMolOpt both EBF GS and EMolOpt are optimized energies. We calculate the all-atom root mean
squared deviation (RMSD) between the optimized BFGS structure and the optimized MolOpt structure.

Before optimization After optimization
Molecule
name # Structures Mean RMSD

(Å)
STD RMSD

(Å)
Mean RMSD

(Å)
STD RMSD

(Å)
Propane 10 0.26 0.05 0.04 0.02
Pentane 30 0.25 0.08 0.08 0.07
Hexane 50 0.23 0.07 0.14 0.08
Heptane 90 0.24 0.07 0.15 0.08
Octane 180 0.25 0.06 0.18 0.08
Overall 360 0.25 0.07 0.15 0.09

Table C.4: Variant 2 geometry optimization performance on test set containing 360 structures. We calculate
all-atom root mean squared deviation (RMSD) between Initial structures vs optimized BFGS structures shown
under ”Before optimization” and optimized BFGS structure vs optimized MolOpt structure shown under ”After
optimization”.
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Molecule
name # Structures Mean ∆E

(kcal/mol)
STD ∆E
(kcal/mol)

Mean
RMSD (Å)

STD
RMSD (Å)

Propane 10 −0.74 0.71 0.08 0.04
Pentane 30 −0.85 0.99 0.08 0.06
Hexane 50 −1.25 1.29 0.12 0.08
Heptane 90 −1.24 1.00 0.14 0.07
Octane 180 −1.52 1.17 0.16 0.07
Overall 360 −1.34 1.14 0.14 0.07

Table C.5: Variant 3 geometry optimization performance on test set containing 360 structures. ∆E = EBF GS −
EMolOpt both EBF GS and EMolOpt are optimized energies. We calculate the all-atom root mean squared deviation
(RMSD) between optimized BFGS structure and optimized MolOpt structure.

Before optimization After optimization
Molecule
name # Structures Mean RMSD

(Å)
STD RMSD

(Å)
Mean RMSD

(Å)
STD RMSD

(Å)
Propane 10 0.26 0.05 0.08 0.04
Pentane 30 0.25 0.08 0.08 0.06
Hexane 50 0.23 0.07 0.12 0.08
Heptane 90 0.24 0.07 0.14 0.07
Octane 180 0.25 0.06 0.16 0.07
Overall 360 0.25 0.07 0.14 0.07

Table C.6: Variant 3 geometry optimization performance on test set containing 360 structures. We calculate
all-atom root mean squared deviation (RMSD) between Initial structures vs optimized BFGS structures shown
under ”Before optimization” and optimized BFGS structure vs optimized MolOpt structure shown under ”After
optimization”.

Molecule
name # Structures Mean ∆E

(kcal/mol)
STD ∆E
(kcal/mol)

Mean
RMSD (Å)

STD
RMSD (Å)

Propane 10 −0.29 0.61 0.04 0.04
Pentane 30 −0.31 0.57 0.07 0.08
Hexane 50 −0.51 0.46 0.11 0.08
Heptane 90 −0.85 0.73 0.12 0.07
Octane 180 −1.34 1.05 0.15 0.07
Overall 360 −0.99 0.94 0.13 0.08

Table C.7: Variant 4 geometry optimization performance on the test set containing 360 structures. ∆E =
EBF GS − EMolOpt both EBF GS and EMolOpt are optimized energies. We calculate the all-atom root mean
squared deviation (RMSD) between the optimized BFGS structure and the optimized MolOpt structure.
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Before optimization After optimization
Molecule
name # Structures Mean RMSD

(Å)
STD RMSD

(Å)
Mean RMSD

(Å)
STD RMSD

(Å)
Propane 10 0.26 0.05 0.04 0.04
Pentane 30 0.25 0.08 0.07 0.08
Hexane 50 0.23 0.07 0.11 0.08
Heptane 90 0.24 0.07 0.12 0.07
Octane 180 0.25 0.06 0.15 0.07
Overall 360 0.25 0.07 0.13 0.08

Table C.8: Variant 4 geometry optimization performance on the test set containing 360 structures. We calculate
all-atom root mean squared deviation (RMSD) between Initial structures vs optimized BFGS structures shown
under ”Before optimization” and optimized BFGS structure vs optimized MolOpt structure shown under ”After
optimization”.

Molecule
name # Structures Mean ∆E

(kcal/mol)
STD ∆E
(kcal/mol)

Mean
RMSD (Å)

STD
RMSD (Å)

Propane 10 −0.01 0.01 0.01 0.00
Pentane 30 −0.06 0.06 0.04 0.07
Hexane 50 −0.24 0.32 0.08 0.07
Heptane 90 −0.43 0.41 0.10 0.07
Octane 180 −0.84 0.78 0.14 0.07
Overall 360 −0.57 0.67 0.11 0.08

Table C.9: Variant 5 geometry optimization performance on the test set containing 360 structures. ∆E =
EBF GS − EMolOpt both EBF GS and EMolOpt are optimized energies. We calculate the all-atom root mean
squared deviation (RMSD) between the optimized BFGS structure and the optimized MolOpt structure.

Before optimization After optimization
Molecule
name # Structures Mean RMSD

(Å)
STD RMSD

(Å)
Mean RMSD

(Å)
STD RMSD

(Å)
Propane 10 0.26 0.05 0.01 0.00
Pentane 30 0.25 0.08 0.04 0.07
Hexane 50 0.23 0.07 0.08 0.07
Heptane 90 0.24 0.07 0.10 0.07
Octane 180 0.25 0.06 0.14 0.07
Overall 360 0.25 0.07 0.11 0.08

Table C.10: Variant 5 geometry optimization performance on the test set containing 360 structures. We
calculate all-atom root mean squared deviation (RMSD) between Initial structures vs optimized BFGS structures
shown under ”Before optimization” and optimized BFGS structure vs optimized MolOpt structure shown under
”After optimization”.
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C.2 Benchmark of MolOpt

Molecule
name

# Structures Mean
∆E
(kcal/mol)

STD ∆E
(kcal/mol)

Mean
RMSD
(Å)

STD
RMSD
(Å)

Propane 10 1.20 1.12 0.10 0.05
Pentane 30 1.14 1.13 0.08 0.06
Hexane 50 1.09 1.12 0.08 0.05
Heptane 90 1.05 1.18 0.08 0.05
Octane 180 0.85 0.96 0.07 0.04
Overall 360 0.97 1.06 0.08 0.04

Table C.11: Bench-marked variant 5 against MDMin (max number of steps = 300). ∆E = EMDMin −EMolOpt

both EMDMin and EMolOpt are optimized energies. We calculate the all-atom root mean squared deviation
(RMSD) between the optimized MDMin structure and the optimized MolOpt structure.

Molecule
name

# Structures Mean
∆E
(kcal/mol)

STD ∆E
(kcal/mol)

Mean
RMSD
(Å)

STD
RMSD
(Å)

Propane 10 -0.01 0.00 0.01 0.00
Pentane 30 -0.03 0.03 0.03 0.07
Hexane 50 -0.09 0.11 0.03 0.05
Heptane 90 -0.12 0.18 0.03 0.02
Octane 180 -0.27 0.30 0.05 0.04
Overall 360 -0.18 0.25 0.04 0.04

Table C.12: Bench-marked variant 5 against FIRE (max number of steps = 300). ∆E = EF IRE −EMolOpt both
EF IRE and EMolOpt are optimized energies. We calculate the all-atom root mean squared deviation (RMSD)
between the optimized FIRE structure and the optimized MolOpt structure.
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Molecule
name

# Structures Mean
∆E
(kcal/mol)

STD ∆E
(kcal/mol)

Mean
RMSD
(Å)

STD
RMSD
(Å)

Propane 10 -0.01 0.00 0.01 0.00
Pentane 30 -0.05 0.04 0.04 0.07
Hexane 50 -0.21 0.30 0.07 0.07
Heptane 90 -0.40 0.39 0.10 0.07
Octane 180 -0.79 0.75 0.13 0.08
Overall 360 -0.53 0.64 0.10 0.08

Table C.13: Bench-marked variant 5 against BFGS (max number of steps = 300). ∆E = EBF GS −EMolOpt both
EBF GS and EMolOpt are optimized energies. We calculate the all-atom root mean squared deviation (RMSD)
between the optimized BFGS structure and the optimized MolOpt structure.

Optimizer Time (s)
MDMin 425.88
FIRE 407.38
BFGS 256.20
MolOpt 605.05

Table C.14: Time taken in seconds by each optimizer to optimize 72 structures sampled at equal intervals from
360 structures test set.
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Appendix D

MolOpt2: Autonomous Molecular Geometry Optimization

using Multi-Agent Reinforcement Learning

Parameters Value
Entropy coefficient 0.0001

KL coefficient 1.0
KL target 0.01
gamma 1.0

Clip parameter 0.3
vf clip parameter 10.0

Horizon 20
lr 5e-05

train batch size 2048

Table D.1: Hyperparameter used during training and evaluation of MolOpt

Molecule name # Isomers × # structures # Atoms
Propane 1 × 10 11
Pentane 3 × 10 17
Hexane 5 × 10 20
Heptane 9 × 10 23
Octane 18 × 10 26
Total 360

Table D.2: Test set that contains 360 structures of alkanes (CnH2n+2) where n=3,5,6,7 and 8.
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Molecule
name # Structures Mean ∆E

(kcal/mol)
STD ∆E
(kcal/mol)

Mean
RMSD (Å)

STD
RMSD (Å)

Propane 10 0.00 0.00 0.00 0.00
Pentane 30 −0.02 0.02 0.03 0.07
Hexane 50 −0.11 0.22 0.06 0.07
Heptane 90 −0.27 0.35 0.08 0.07
Octane 180 −0.53 0.68 0.11 0.08
overall 360 −0.35 0.55 0.09 0.08

Table D.3: Log transformed features trained on alkanes. MolOpt 2 geometry optimization performance on the
test set containing 360 structures of alkanes. ∆E = EBF GS − EMolOpt both EBF GS and EMolOpt are optimized
energies. We calculate the all-atom root mean squared deviation (RMSD) between the optimized BFGS structure
and the optimized MolOpt structure.

Molecule
name # Structures Mean ∆E

(kcal/mol)
STD ∆E
(kcal/mol)

Mean
RMSD (Å)

STD
RMSD (Å)

Propane 10 1.21 1.12 0.10 0.05
Pentane 30 1.18 1.14 0.09 0.06
Hexane 50 1.19 1.12 0.09 0.05
Heptane 90 1.18 1.18 0.09 0.04
Octane 180 1.12 1.02 0.09 0.04
overall 360 1.15 1.08 0.09 0.05

Table D.4: Log transformed features trained on alkanes. MolOpt 2 geometry optimization performance on
the test set containing 360 structures of alkanes. ∆E = EMDmin − EMolOpt both EMDmin and EMolOpt are
optimized energies. We calculate the all-atom root mean squared deviation (RMSD) between the optimized
MDmin structure and the optimized MolOpt structure.

Molecule
name # Structures Mean ∆E

(kcal/mol)
STD ∆E
(kcal/mol)

Mean
RMSD (Å)

STD
RMSD (Å)

Propane 10 0.00 0.00 0.00 0.00
Pentane 30 0.01 0.01 0.02 0.07
Hexane 50 0.01 0.04 0.02 0.05
Heptane 90 0.01 0.10 0.02 0.01
Octane 180 −0.01 0.18 0.02 0.03
overall 360 0.00 0.14 0.02 0.04

Table D.5: Log transformed features trained on alkanes. MolOpt 2 geometry optimization performance on the
test set containing 360 structures of alkanes. ∆E = EF IRE − EMolOpt both EF IRE and EMolOpt are optimized
energies. We calculate the all-atom root mean squared deviation (RMSD) between the optimized FIRE structure
and the optimized MolOpt structure.
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# Atoms Mean ∆E
(kcal/mol)

STD ∆E
(kcal/mol)

Mean
RMSD (Å)

STD
RMSD (Å)

7 0.00 0.00 0.00 0.00
9 0.00 0.01 0.01 0.01
10 −0.01 0.00 0.01 0.01
11 0.00 0.00 0.00 0.00
12 −0.01 0.01 0.01 0.00
13 0.03 0.08 0.01 0.02
14 −0.03 0.06 0.01 0.01
15 −0.01 0.09 0.02 0.02
16 −0.02 0.05 0.01 0.01
17 −0.01 0.07 0.02 0.01
18 −0.03 0.03 0.01 0.01
19 −0.03 0.05 0.01 0.01
20 −0.04 0.06 0.02 0.01
21 −0.04 0.04 0.01 0.01
22 −0.08 0.10 0.02 0.01
23 −0.07 0.12 0.02 0.02
24 −0.02 0.01 0.01 0.01
25 −0.06 0.04 0.02 0.00

overall −0.03 0.06 0.01 0.01

Table D.6: Trained on all molecules(OptMol10 and alkanes), FIRE
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# Atoms Mean ∆E
(kcal/mol)

STD ∆E
(kcal/mol)

Mean
RMSD (Å)

STD
RMSD (Å)

7 −12.70 28.60 0.75 0.29
9 2.56 3.15 0.38 0.65
10 27.74 20.25 0.70 0.05
11 11.35 39.16 1.30 0.04
12 23.64 73.75 1.16 0.33
13 22.28 27.02 1.29 0.66
14 42.40 43.74 1.04 0.22
15 41.83 41.60 1.06 0.30
16 44.68 54.31 0.95 0.46
17 55.11 46.13 0.98 0.34
18 54.40 49.42 0.74 0.43
19 43.23 41.42 0.80 0.80
20 39.53 42.45 0.48 0.38
21 29.32 40.62 0.46 0.44
22 24.44 22.19 0.40 0.36
23 19.75 34.41 0.25 0.40
24 7.81 11.07 0.02 0.01
25 6.09 4.25 0.02 0.01

overall 39.69 44.76 0.74 0.53

Table D.7: Trained on all molecules(OptMol10 and alkanes), MDmin
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Appendix E

List of Abbreviations

ACSF . . . . . . . . . . Atom Centered Symmetry Function

ADAM . . . . . . . . Adaptive Moment Estimation

AEV . . . . . . . . . . . atomic environment vector

AI . . . . . . . . . . . . . Artificial intelligence

ANN . . . . . . . . . . artificial neural networks

AOI . . . . . . . . . . . . atom of interest

ASE . . . . . . . . . . . Atomic Simulation Environment

BAND . . . . . . . . . bonds, angles, non-bonds and dihedrals

BFGS . . . . . . . . . . Broyden-Fletcher-Goldfarb-Shanno

BO . . . . . . . . . . . . . Born-Oppenheimer

BPSF . . . . . . . . . . Behler and Parrinello symmetry function

CCSD . . . . . . . . . coupled-cluster singles and doubles

CELU . . . . . . . . . Continuously Differentiable Exponential Linear Unit

CG . . . . . . . . . . . . . conjugate gradient

CM . . . . . . . . . . . . Coulomb Matrix

CMA . . . . . . . . . . Covariance matrix adaptation

CoM . . . . . . . . . . . center of mass

DFT . . . . . . . . . . . density functional theory
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DL . . . . . . . . . . . . . deep learning

DPMD . . . . . . . . Deep Potential Molecular Dynamics

ES . . . . . . . . . . . . . evolutionary strategies

FF . . . . . . . . . . . . . force fields

FFNN . . . . . . . . . feed-forward neural networks

FIRE . . . . . . . . . . Fast inertial relaxation engine

GAN . . . . . . . . . . Generative Adversarial Networks

GGA . . . . . . . . . . generalized gradient approximation

GMM . . . . . . . . . Gaussian mixture model

GNN . . . . . . . . . . Graph Neural Network

GS . . . . . . . . . . . . . Ground State

HDF . . . . . . . . . . . High dimensional function

HDNN . . . . . . . . high dimensional atomic NN

HF . . . . . . . . . . . . . Hartree-Fock

HIP-NN . . . . . . . Hierarchically interacting particle neural network

LDA . . . . . . . . . . . local density approximation

LSTM . . . . . . . . . long short-term memory network

MAE . . . . . . . . . . Mean Absolute Error

MARL . . . . . . . . multi-agent reinforcement learning

MD . . . . . . . . . . . . molecular dynamics

MDN . . . . . . . . . . mixture density network

MDP . . . . . . . . . . Markov decision process

MGO . . . . . . . . . . molecular geometry optimizer

ML . . . . . . . . . . . . Machine learning

MLP . . . . . . . . . . . multi-layered perceptrons
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MM . . . . . . . . . . . molecular mechanics

MMDP . . . . . . . . Multi-agent MDP

NLP . . . . . . . . . . . natural language processing

NNP . . . . . . . . . . . neural network potential

NMR . . . . . . . . . . nuclear magnetic resonance

PBE . . . . . . . . . . . Perdew-Burke-Ernzerhof

PES . . . . . . . . . . . . potential energy surface

POSG . . . . . . . . . Partially-Observable Stochastic Games

PPO . . . . . . . . . . . policy optimization

PRDF . . . . . . . . . Partial Radial Distribution Function

QM . . . . . . . . . . . . Quantum mechanical

RL . . . . . . . . . . . . . reinforcement learning

RMSD . . . . . . . . . root mean squared deviation

RMSE . . . . . . . . . Root Mean Squared Error

ReLU . . . . . . . . . . Rectified Linear Unit

SCF . . . . . . . . . . . self-consistent field

SD . . . . . . . . . . . . . steepest descent

SE . . . . . . . . . . . . . ”Schr”̈odinger equation”

SGD . . . . . . . . . . . Stochastic gradient descent

SOAP . . . . . . . . . Smooth Overlap of Atomic Positions

TAD . . . . . . . . . . . Topological Atomic Descriptor

TBPTT . . . . . . . truncated backpropagation through time

t-SNE . . . . . . . . . t-Distributed Stochastic Neighbor Embedding
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