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I express my gratitude to Dr. Kishore Prahallad for being my adviser during the initial years

of my PhD, and helping me improve critical thinking and research methodologies. I would like to

thank former Dean R&D Prof. Vasudeva Varma for supporting the collaboration between IIIT-

H and BUT. I am deeply grateful to Tata Consultancy Services (TCS) for providing a 4-year

scholarship for my PhD studies. I would like express my thanks to MediaEval organizers/chairs

Martha Larson, Mohammad Soleymani and Xavier Anguera.

I would also like to thank my friends from IIIT-H, with whom I’ve spent many memorable

moments and had several intellectual discussions: Sreedhar, Bhargav, Nivedita, Siva, Baji,

Vishala, Anand, Sudarsana, Mohan, Naresh, Buchi Babu, Chaitanya, and Gautam. I would

like to thank my friends and colleagues from BUT, where we constantly collaborate and learn

from each other: Karthick, Olda, Ondra N, Martin K, Mirko, Ondra G, Lucas, Mireia, Pavel,

Vlada, Fede, Katka, Kate, Karel V, Karel B, Hari, Franta, Martin F, and Petr. A special
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Abstract

Majority of speech and natural language processing applications rely on word and docu-

ment representations (or embeddings). The document embeddings encode semantic informa-

tion which makes them suitable for tasks such as topic identification (document classification),

topic discovery (document clustering), language model adaptation, and query-based document

retrieval. These embeddings are usually learned from widely available un-labelled data; hence

generative or probabilistic topic models which aim to capture the distribution of data are suit-

able.

Although there exist several probabilistic and neural network-based topic models to learn

these embeddings, they often ignore to capture the uncertainty in the estimated embeddings.

Thus, any error in the estimation of these embeddings affects the performance in downstream

tasks. The uncertainty in the embeddings is usually due to shorter, ambiguous or noisy sen-

tences/documents.

This thesis presents model(s) for learning to represent document embeddings in the form of

Gaussian distributions, thereby encoding the uncertainty in their covariances. Further, these

learned uncertainties in embeddings are exploited by the proposed generative Gaussian linear

classifier for topic identification.

This thesis proposes to use subspace multinomial model (SMM), a simple log-linear model

for learning document embeddings. Experiments on 20Newsgroups text corpus show that the

embeddings extracted from SMM are superior when compared to popular topic models such as

latent Dirichlet allocation, sparse topical coding in topic identification and document clustering

tasks. Using the variational Bayes framework on SMM, the model is able to infer the uncer-

tainty in document embeddings, represented by (posterior) Gaussian distributions. Addition-

ally, the common problem of intractability which appears while performing variational inference

in mixed-logit models is addressed using Monte Carlo sampling via the re-parametrization trick.

The resulting Bayesian SMM achieves state-of-the-art perplexity results on 20Newsgroups text

and Fisher speech corpora. The proposed generative classifier exploits the learned uncertainty

in the document embeddings; and achieves state-of-the-art classification results on the afore-

mentioned corpora as compared to other unsupervised topic and document models.

Furthermore, this thesis presents a multilingual extension of the Bayesian SMM for zero-shot

cross-lingual topic identification. The proposed model achieves superior classification results
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when compared to the systems based on multilingual word embeddings and neural machine

translation inspired sequence-to-sequence bidirectional long-short term memory models.

Keywords: Variational inference, unsupervised methods, generative models, document mod-

elling, topic modelling, embeddings, i-vectors, uncertainties, topic identification, multilingual-

ism, zero-shot learning.
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Chapter 1

Introduction

This thesis presents new methods for modelling text and spoken documents. It involves

obtaining low-dimensional (compact) representations (or embeddings) of documents. These

representations elicit the latent semantic relations present among co-occurring words in a sen-

tence or “bag-of-words” from a document. Learning these representations have a wide range of

applications in information retrieval, speech and language processing applications such as topic

identification/discovery, language model adaptation, sentiment analysis, query-based document

retrieval and many more. Majority of the techniques for learning these representations are based

on two complementary ideologies: (i) topic modelling, and (ii) word prediction. The former

methods are primarily based on bag-of-words assumption and tend to capture higher-level se-

mantics such as topics. The latter techniques capture lower-level semantics by exploiting the

contextual information from words in a sequence (Mikolov et al., 2013; Pennington et al., 2014;

Le and Mikolov, 2014). The nature of data and end application plays a role in the choice of

these approaches.

On the other hand, there is a growing interest towards developing pre-trained language

models, that are then fine-tuned for specific tasks such as document classification, question

answering, named entity recognition, etc (Howard and Ruder, 2018; Peters et al., 2018; Devlin

et al., 2019). Although these models achieve state-of-the-art results in several NLP tasks; they

require enormous computational resources to train (Devlin et al., 2019).

The models and methods presented in this thesis mostly rely on the “bag-of-words” repre-

sentation of document, and thus are more suitable for capturing higher-level semantics such as

topics. These models are also seen as generative models for documents or unsupervised topic

models that can be trained on largely available unlabelled data1. With the help of simple linear

classifiers, the learned representations from these models are used for topic identification (ID).

Note that these topic models are not same as the fancied neural network-based discriminative

text classifiers (Zhang et al., 2015; Yang et al., 2016b). The latter are also able to learn inter-

nal representations of documents, but are constrained by relatively lower amounts of labelled

1Data without topic label annotations.
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data. Moreover, adapting large-scale discriminative classifiers to newer data and classes requires

re-training on the entire data, which might be computationally expensive.

Although topic models have existed for many years (Deerwester et al., 1990), the research

in this domain is continuously evolving (Miao et al., 2016; Srivastava and Sutton, 2017).

Of these, probabilistic topic models (PTM) are popular and tend to be preferred because

of their interpretability (Blei, 2012) and structure which enables them to be integrated into

other probabilistic models (Wallach, 2006). In probabilistic topic models (PTMs) the latent

variables are attributed to topics, and the generative process assumes that every document

is a distribution over topics and every topic is modelled as a distribution over words in the

vocabulary. For example, classical models such as latent Dirichlet allocation (LDA) (Blei et al.,

2003) learns to represent documents and words in the form of discrete probability distributions,

where as the models proposed in this thesis represent them in the form of Gaussian distributions.

The advantages of the latter over former are discussed in Chapters 3, 4 and 5.

Recent works showed that auto-encoders can also be seen as generative models for images,

text and speech (Kingma and Welling, 2014; Chung et al., 2015; Miao et al., 2016). Generative

models allows us to incorporate prior information about the latent variables, and with the help

of (stochastic) variational Bayes (VB) techniques (Bishop, 2006; Hoffman et al., 2013; Rezende

et al., 2014), one can infer posterior distribution over the latent variables, instead of just point

estimates. The posterior distribution captures uncertainty of the latent variable estimates while

trying to explain (fit) the observed data and our prior belief. In the context of text modelling,

these latent variables are seen as embeddings.

This thesis work builds on top of the works of Kockmann (2011) and Soufifar (2014), which

were primarily based on subspace multinomial model (SMM) and its variants for various speech

processing applications. SMM was originally proposed for modelling discrete prosodic features

for the task of speaker verification (Kockmann et al., 2010) and latter, SMM and its extension

subspace n-gram model (SnGM) were used for phonotactic language recognition (Soufifar et al.,

2011, 2013).

Firstly, this thesis proposes to use SMM for learning document representations. By using

`1 regularization over the model parameters in SMM and employing orthant-wise learning, we

introduce sparsity into the model; which is one of the desired properties in text modelling.

The document classification and clustering experiments on 20Newsgroups corpus show that the

document representations obtained from the proposed `1 SMM are superior to ones obtained

from classical topic models such as latent Dirichlet allocation (Blei et al., 2003), non-negative

matrix factorization (NMF) (Xu et al., 2003), and sparse topical coding (Zhu and Xing, 2011).

However, the experimental analysis showed that the document embeddings extracted using

SMM are prone to over-fitting, especially when the target documents are relatively short.

The shortcomings of SMM are addressed by employing a Bayesian framework and modelling

the uncertainties. The proposed Bayesian SMM can learn to represent the documents in the
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form of (posterior) Gaussian distributions, thereby encoding the uncertainty about the estimates

in its covariance. This uncertainty gives a notion of how well the embeddings represent the

original document. Moreover, this uncertainty is exploited during training the classifiers for

downstream tasks such as topic identification.

The experiments on Fisher speech and 20Newsgroups text corpora show that the proposed

Bayesian SMM fits the unseen test data better and achieves state-of-the-art perplexity re-

sults (Kesiraju et al., 2020a). Further, a generative Gaussian linear classifier is proposed, which

can exploit the learned uncertainty in the document embeddings. The classification experiments

on both the aforementioned datasets show that the proposed model together with the classifier

is robust to over-fitting and achieves superior classification results when compared to other

unsupervised topic models (Miao et al., 2016), and comparable results to the state-of-the-art

discriminative models (Howard and Ruder, 2018; Pappagari et al., 2018).

Next, the Bayesian SMM is extended to the multilingual scenario, which aims to learn

language-agnostic document embeddings (Kesiraju et al., 2020b), that are helpful in zero-shot

cross-lingual topic identification. The experiments on Europarl (Koehn, 2005) and Reuters

multilingual news (MLDoc) corpora show that the proposed model is superior to multilingual

word embedding based systems and sequence-to-sequence bi-directional long short-term mem-

ory (BiLSTM) network based systems (Schwenk and Douze, 2017) in majority of the transfer

directions.

The proposed extensions and variants of SMM are used for learning document embeddings

that are used in downstream tasks such as (cross-lingual) topic identification (Kesiraju et al.,

2020a), and language model adaptation (Beneš et al., 2018). However, their performance in

phonotactic language recognition and in other applications do not come under the scope of

this thesis. Towards the end, this thesis presents models that can (i) exploit both the labelled

and unlabelled data; thus making the best use of generative and discriminative the approaches,

(ii) learn document embeddings by exploiting contextual information from words with-in a

sentence, thus capturing lower-level semantics.

1.1 Applications of document representations

This section briefly outlines some of the applications and tasks relying on document embed-

dings. The experiments in this thesis focus on topic identification and document clustering.

1. Topic identification (ID) requires to classify a given set of documents into one of the pre-

selected topics or categories. The analogous task in the unsupervised scenario is document

clustering; which requires to cluster the documents so that each cluster (ideally) represents

a single topic. This clustering can also be seen as topic discovery; where a large corpus of
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documents (e.g. scientific articles from JSTOR2 or e-books from Project Gutenberg3) can

be analysed (Blei and Lafferty, 2005) based on the discovered topics; where each topic is

represented by a mixture of words from the vocabulary. The key element in approaching

either of the tasks is by learning a (low dimensional) semantic-rich representation for

every document. Having such a compact representation further allows us to train and

adapt simple (linear) classifiers for topic ID. For example, if the document embeddings

are Gaussian distributed, one can use simple Gaussian linear classifier (GLC) for topic

ID. Moreover, GLC can be easily adapted to newer data and classes (topics) without

requiring to re-train on the entire data.

2. Zero-shot cross-lingual topic ID requires to training a classifier in source (src) lan-

guage which is then used to classify documents (samples) from target (tar) language.

Model selection and hyper-parameter tuning is done based on the evidence from source

language only. This problem is approached by learning a common embedding space for

multiple (say, L number of) languages (Ammar et al., 2016; Schwenk and Li, 2018; Ruder

et al., 2019). This common embedding space is learnt by exploiting parallel dictionary or

parallel sentences among the L languages. Such a parallel data is not required to have

topic labels. A classifier is then trained on the embeddings from a source (src) language

(one from the L languages) that has topic labels. The same classifier is then and used to

classify the embeddings extracted for test data, which can be from any of the L target

(tar) languages. The underlying assumption here is that the embeddings carry semantic

concept(s), independent of language, enabling cross-lingual transferability (src → tar).

Hence, the reliability of this scheme solely depends on quality of the embedding space.

Note that the amount of available data for training the classifier could be limited and

different from the parallel data, which is also the case for the experiments presented in

this thesis (Chapter 7).

3. Language model (LM) adaptation: LM is one the major components in automatic

speech recognition (ASR), machine translation, parts-of-speech tagging, hand writing

and optical character recognition systems. For example, in the case of ASR, adapting a

language model to a specific domain or context helps disambiguating homophones4 and

similar sounding phrases.

There is a wide range of context specific information such as topics, geographic loca-

tion (Chelba et al., 2015), personal profile (in case of ASR on smart phones and devices)

that are used for adapting language models. Topic information can be easily incorporated

into LMs. For example, Wallach (2006) used a hierarchical Bayesian model that incor-

2https://www.jstor.org/
3https://www.gutenberg.org/
4Words that sound same but spell different.
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porates n-gram statistics and latent topic variables. This structured integration requires

the use of probabilistic models and provides an elegant interpretation.

Alternatively, one can use document of word embeddings obtained from a topic model as

additional feature vectors while training a language model. Mikolov and Zweig (2012);

Chen et al. (2015) have used latent Dirichlet allocation (Blei et al., 2003) to fit a topic

model and then used the inferred word representations as additional feature vectors while

training a recurrent neural network based LM. Jin et al. (2015) clustered document em-

beddings extracted from paragraph vector (Le and Mikolov, 2014), and trained a cluster

(topic) specific LM. This cluster-specific LM was then interpolated with a global LM that

was trained on entire data. This requires multi-pass decoding of speech signal to figure

out which topic-specific LM should be used for interpolation. The models discussed in

this thesis were used in an effective way5 for adapting feed-forward neural network-based

language models. More details are given in (Beneš et al., 2018).

4. Query based document retrieval is another application, where similarity among words

and documents play a pivotal role (Wintrode and Khudanpur, 2014). When using discrete

probabilistic representations of documents and words (such as from LDA), one can com-

pute symmetric Kullback Leibler divergence between words and document embeddings

to find relevant documents (Wei and Croft, 2006). For other kinds of non probabilistic

representations, euclidean or cosine distance is preferred.

1.2 Challenges

In the growing era of smart phones, IoT devices and other gadgets in the human computer

interaction (HCI) scope (for example, Google’s voice assistant, Apple Siri, Amazon Alexa,

Microsoft Cortana), there is a large amount of speech and text (multi-modal and multilingual)

data being gathered and processed. New kinds of data and newer ways of HCI, creates new

challenges and hence a need for newer models and algorithms. The following section briefly

outlines the nature of data in terms of content, labelling, and assumptions (or simplifications);

thereby highlighting some of the major challenges.

1.2.1 Spoken vs. text documents

Spoken audio comes from a variety of sources covering a wide range of content involving

conversation telephone speech (data from call centres), recordings of meetings, broadcast news,

video lectures, talks, audio-video from social media, and, pod casts. In this thesis, spoken text is

referred as the text that is transcribed from spoken audio either using ASR system or by humans

(referred as manual transcription). The word statistics in the spoken text vary, depending

5Work done in collaboration (Beneš et al., 2018).
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on the nature of the spoken audio. For example, a conversational speech or speech from a

meeting recording contains many dis-fluencies and irregularities as compared to broadcast news

or recorded lectures. The latter are more structured and is mostly read-speech.

There are other challenges involved in processing spoken audio that are caused by speaker,

channel and environmental variabilities. These are usually addressed by the ASR community

and is not in the scope of this thesis.

Text documents origin from various sources such as news, blogs, tweets, product reviews or

social news aggregation platforms. For example, text from news or blogs is mostly structured

and grammatically correct, where as text from “tweets” or “product reviews” is more likely to

contain un-conventional word usages, internet slangs, emoticons and other symbols.

The desired property of topic models is to achieve robust (word and) document representa-

tions irrespective of the nature of content and the kind of tokenisation.

1.2.2 Unlabelled and labelled data

It is evident that the amount of data being created and stored is increasing at an astronomical

rate6 (including the data on Wikipedia7). The amount of labelled (topic, sentiment, category

labels, etc.) data, however remains relatively very small, as it requires human effort that is time

consuming and expensive. These labelled data could be used to train discriminative classifier

models which could be used to categorize the unlabelled data. However, adapting large-scale

discriminative classifiers to newer classes (or topics) requires re-training which could be com-

putationally expensive. Alternatively, semi-supervised approaches or hybrid models (Lasserre,

2008) can use both the labelled and unlabelled data. The proposed models is this thesis could

be easily translated into hybrid models (Chapter 8) thus exploiting both the labelled and un-

labelled data.

1.2.3 Bag-of-words

Bag-of-words is a simplified view of a document, where the word order is ignored and a

document is represented by a vector of word occurrences; thereby significantly reducing the

size of the document. Majority of the topic models are built on top of this bag-of-words sim-

plification, and are capable of capturing higher level semantics such as topics. However, topic

models trained with such simplification on a very short documents (few sentences) can lead to

inefficient estimates of document and word representations (embeddings). In such scenarios,

Bayesian topic models are useful as the uncertainty in the document representations is captured

by the posterior distribution. Bag-of-words is not an optimal choice for tasks like sentiment

analysis, where the word order plays a significant role. The semantic meaning of the word in

6https://www.internetlivestats.com/
7https://en.wikipedia.org/wiki/Wikipedia:Statistics
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its shorter context is lost in “bag-of-words” model. In such scenarios, approaches based on

language modelling or word prediction can be very useful.

The models and methods presented in this thesis mostly rely on the “bag-of-words” simpli-

fication of document, and thus are more suitable for capturing higher-level semantics such as

topics. It is possible to extend these models for obtaining sentence representations by exploiting

information from the n-gram contexts (Chapter 8).

1.3 Overview and original contributions

An overview of rest of the thesis along with the original contributions are as follows:

1. Chapter 4 presents subspace multinomial model (SMM) for learning document representa-

tions. A variant of SMM based on `1 regularization of its parameters was proposed, which

is superior to other unsupervised models such as latent Dirichlet allocation and sparse

topical coding, on topic identification (ID) and document clustering tasks. These details

are presented in . The analyses of learned document representations, and its nature to

over-fitting motivated the need for Bayesian modelling.

2. Chapter 5 presents Bayesian subspace multinomial model (Bayesian SMM), which aims

to capture the uncertainty of document representations. The Bayesian framework intro-

duces an additional problem of intractability, which commonly appears while performing

Bayesian inference in mixed-logit models. This problem of intractability is resolved with

the Monte Carlo approximation via re-parametrization trick. Towards the end, the exper-

iments show that the proposed Bayesian SMM can indeed learn document representations

along with their uncertainties. The model achieves state-of-the-art perplexity results on

20Newsgroups text and Fisher speech corpora under limited and full vocabulary settings,

when compared to other document models.

3. Motivated by the encoded information about the uncertainty of document representa-

tions (posterior distributions), a generative classifier is proposed that can exploit the

uncertainty. The proposed classifier is called Gaussian linear classifier with uncertainty

(GLCU) and is presented in Chapter 6. The experiments show that the proposed systems

are robust to over-fitting on unseen text data and achieves state-of-the-art classification

accuracy on topic identification tasks on Fisher speech and 20Newsgroups text corpora.

4. Chapter 7 presents an extension of Bayesian SMM which can learn language-agnostic

document embeddings with the help of L-way parallel data. The experiments on Europarl

and Reuters multilingual news corpora show that the proposed multilingual Bayesian

model is superior to multilingual word embedding based systems and sequence-to-sequence

bi-directional long short-term memory based systems. Moreover, our system which is
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trained with less than a million sentences on a single NVIDIA Tesla P-100 GPU under 24

hours, performs competitively against state-of-art BiLSTM system trained on 223 million

sentences, that takes about 5 days on 16 NVIDIA V100 GPUs (Artetxe and Schwenk,

2019).

5. Chapter 8 presents two variants of Bayesian SMM that can (i) use both labelled and

un-labelled data, and (ii) learn document/sentence embeddings by exploiting contextual

n-grams from sentences.

6. The conclusions of the thesis and directions for future research are discussed in Chapter 9.

7. The list of accepted publications and current articles in review is given in § Publications.

8. The source code for the proposed models is available for public8.

8https://github.com/skesiraju
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Chapter 2

Evaluation methods

This chapter outlines the methods or tasks that are used in this thesis to evaluate document

representations and topic models.

1. Topic identification is a classification task, where the evaluation is based on classifica-

tion accuracy and cross-entropy loss on the test set. Cross-entropy gives a notion of how

confident the classifier is about its prediction. A well-calibrated classifier tends to have

lower a cross-entropy.

Consider a dataset with N number of samples and M number of classes. Let yn be the

one-hot encoding vector representing the true class k, for a sample n, i.e.

yni =





1 if i = k,

0 otherwise (i = 1 . . .M, i 6= k).
(2.1)

Let ŷn be the vector of predicted posterior probabilities of M class labels for a sample

n, such that
∑M

i=1 ŷni = 1. Then, the cross-entropy between true classes Y and predicted

class probabilities Ŷ for the entire dataset is

H(Y, Ŷ) = −
N∑

n=1

M∑

i=1

yni ln ŷni (2.2)

2. Document clustering is an unsupervised task which is commonly evaluated by com-

puting normalized mutual information (NMI) (Manning et al., 2008) between the true

classes Y and the obtained clusters C:

NMI(Y, C) =
2× I(Y; C)
H[Y] +H[C] , (2.3)

where H[Y] represents entropy of class labels which can be calculated prior to the cluster-

ing. H[C] represents entropy of clusters, and I(Y; C) is the mutual information between

Y and C.
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Consider a dataset of N samples comprising of M number of (true) class labels. Let K

denote the number of clusters obtained from a clustering algorithm. Then, entropy of

class labels:

H[Y] = −
M∑

m=1

p(Yi) ln p(Yi), (2.4)

where p(Yi) represents prior of class i, which is estimated using maximum likelihood

approach, i.e.

p(Yi) =
|Yi|
N

, (2.5)

where |Yi| is the number of samples in class i.

Similarly, entropy of cluster labels

H[C] = −
K∑

i=k

p(Ck) ln p(Ck). (2.6)

The mutual information

I(Y; C) =
K∑

k=1

M∑

i=1

p(Ck ∩ Yi) ln
p(Ck ∩ Yi)
p(Ck)p(Yi)

, (2.7)

where p(Ck ∩ Yi) is estimated using maximum likelihood

p(Ck ∩ Yi) =
|Ck ∩ Yi|

N
, (2.8)

|Ck ∩ Yi| represents number of samples in the intersection of cluster k and class i.

3. Perplexity is inversely proportional to the log-probability of the data. When computed

on the test data, it gives a notion of how well the model explains (fits) the test (un-

seen) data. Perplexity computed on test data is a standard way of evaluating language

models (Bengio et al., 2003; Jurafsky and Martin, 2009). Since topic models built on bag-

of-words are equivalent to uni-gram language models, perplexity is seen as an intrinsic

measure for topic models (Blei et al., 2003; Srivastava et al., 2013a; Miao et al., 2016).

To evaluate probabilistic topic models, perplexity is computed on an unseen test data. It

is computed in two ways:

(a) As an average for a document xd in a corpus of D documents according to:

PPLdoc = exp
{
− 1

D

D∑

d=1

ln p(xd)

Nd

}
, (2.9)

(b) Across the entire corpus of D documents as:

PPLcorpus = exp
{
−
∑D

d=1 ln p(xd)∑D
d=1Nd

}
(2.10)

where Nd is the number of words in document d.
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Chapter 3

Generative models for documents

This chapter presents an overview of generative models, Bayesian and approximate inference

techniques. The variational Bayes (inference) framework is derived and explained, as it forms

the basis for majority of the existing and proposed models discussed in this thesis.

Next, some of the popular probabilistic topic models (generative models for “bag-of-words” rep-

resentation of documents) are discussed. These include latent Dirichlet allocation (LDA), corre-

lated topic model (CTM), paragraph vector (PV-DBOW), neural variational document model

(NVDM). The modelling assumptions, inference techniques along with their limitations are

also discussed. This thesis proposes novel probabilistic topic models that aim to overcome

these limitations.

3.1 Introduction to generative models

Probabilities play a central role in pattern recognition and machine learning. Generative

models are probabilistic models that aim to capture (model) the distribution of data (and la-

bels). Two broad kinds of generative models are discussed here: The first one aims to model

distribution of data p(x), the second is generative classifier that aims to model the joint distri-

bution of data and corresponding class labels p(x,y). The discussion in this chapter primarily

focuses on unsupervised models which aim to model p(x), and the theoretical concepts de-

rived can be extended in a straightforward way to the generative classifiers. Modelling the

distribution of data has several advantages:

1. Reducing the dimensionality of data.

2. Generating synthetic data.

3. Interpolating missing data points.

4. Handling mismatched data conditions between training and test sets.

11



It is often convenient to represent probabilistic models in a graphical representation. A

simple generative model is graphically depicted in Fig. 3.1. “The graphical model captures the

causal process by which the observed data was generated (Bishop, 2006)”. The graphical model

does not provide any information regarding the probability distributions/densities of observed

or latent variables. The following steps explain the generative process of graphical model from

Fig. 3.1:

For every data point n = 1 . . . N :

A latent variable zn is sampled from a probability distribution parametrized by α:

zn ∼ p(zn | α). (3.1)

p(zn | α) can be seen as prior distribution over latent variables.

Given the model parameters θ, every data point xn is generated from a conditional

distribution:

xn ∼ p(xn | zn,θ). (3.2)

p(xn | zn,θ) is also called likelihood of the data.

The above generative process fully describes the probabilistic model depicted in Fig. 3.1,

where, every data point xn conditioned on latent variable zn is assumed to be generated inde-

pendent of other data points according to a stochastic process.

Two examples for the latent variable z are presented below:

1. zn can be a K dimensional discrete variable in one-hot encoding1 format, that represents

a topic.

2. zn can be a K dimensional continuous variable which encodes the topic information in

terms of semantic correlations among the words.

In both cases, the generated xn ∈ RV (V � K) will be a topic-specific document. In the first

case zn can be seen as topic-label, whereas in the second case zn can be seen an embedding for

the document xn.

Given training data X comprising of N examples, where every row xn n = 1 . . . N cor-

responds to a single example; the model can be trained to obtain (estimate) the parameters

θ. For any given unseen (test) data point, the posterior distribution over the latent variables

p(zn | xn) can be inferred. The obtained latent representations can be useful in classification

and clustering tasks.

1A vector where only one element is 1, and the rest are zeros.
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xnzn
α θ

N

Figure 3.1: Graphical representation of a simple generative model. The rectangular plate

with N represents the number of data points generated. xn is a observed data sample (hence,

shaded), where as zn is a hidden (latent) variable. θ represents model parameters, and α is a

hyper-parameter.

We begin with joint distribution of data X and latent variables Z:

p(X,Z | θ,α) =
N∏

n=1

p(xn, zn | θ,α) (3.3)

=
N∏

n=1

p(xn | zn,θ) p(zn | α). (3.4)

The joint distribution factorizes2, and applying Bayes’ rule to (3.4), the posterior distribution

of a latent variable z can be written as3:

p(z |x,θ) =
p(x | z,θ)p(z |α)

p(x |θ)
(3.5)

=
p(x | z,θ)p(z |α)∫
p(x | z,θ)p(z |α)dz

. (3.6)

To obtain the posterior distribution, the integral in denominator of (3.6) needs to be computed.

Depending on the functional forms of the probability distributions (assumptions of the gener-

ative model), this denominator can be intractable, i.e., if the likelihood function and prior are

not conjugate to each other (Bishop, 2006). Notable examples with such intractability include

Bayesian Gaussian mixture model, Bayesian logistic regression, latent Dirichlet allocation. In

such cases where the true posterior is intractable, one can resort to variational inference.

3.1.1 Variational inference

The idea of variational inference (VI) or variational Bayes (VB) is to find a parametric

probability distribution q(z) that approximates the true posterior p(z | x) by minimizing

the Kullback-Leibler (KL) divergence DKL(q || p) from the approximate to the true posterior.

Computing this KL divergence still requires a functional form of the true posterior distribution.

2Since we assumed every data point is i.i.d
3Omitting the suffix n for brevity.
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There exists an alternative approach that avoids the computation of the true posterior. We

proceed as follows:

First, the KL divergence term is expanded:

DKL(q || p) = −
∫
q(z) ln

(
p(z | x,α)

q(z)

)
dz (3.7)

= −
∫
q(z) ln p(z | x,α) dz −

(
−
∫
q(z) ln q(z) dz

)

︸ ︷︷ ︸
H[q]

(3.8)

= −
∫
q(z) ln p(z | x,α) dz −H[q], (3.9)

where H[q] is the differential entropy of q(z).

Next, the log marginal is expressed as:

ln p(x | θ) = ln p(x, z | θ,α)− ln p(z | x,α) (3.10)

= ln p(x, z | θ,α)

∫
q(z) dz

︸ ︷︷ ︸
1

− ln p(z | x,α)

∫
q(z) dz

︸ ︷︷ ︸
1

(3.11)

adding and subtracting H[q] term; re-arranging, we get:

ln p(x | θ) =

∫
q(z) ln p(x, z | θ,α) dz + H[q] −

∫
q(z) ln p(z | x,α) dz −H[q]

︸ ︷︷ ︸
DKL(q || p)

. (3.12)

Now, making use of (3.9),

ln p(x | θ) = Eq[ln p(x, z | θ,α)] + H[q]︸ ︷︷ ︸
L(q)

+DKL(q || p). (3.13)

Finally, log marginal is expressed as:

ln p(x | θ) = L(q) + DKL(q || p) (3.14)

(3.14) is the standard variational Bayes formulation (Bishop, 2006), where log marginal of

the data is expressed as the sum of L(q) and the KL divergence term DKL(q || p). Given the

observed data x and model parameters θ, log marginal is a constant and DKL(q || p) can be

minimized by maximizing L(q). The KL divergence is always non-negative and is equal to zero

only when q(z) = p(z | x,α). As noted earlier, the advantage of this formulation is that the

KL divergence term need not be evaluated. The term L(q) is a functional4 of q(z) and acts

4Function of a function.
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Algorithm 1: Variational Bayes EM algorithm

1 initialize prior belief p(z | α)

2 initialize model parameters θ

3 initialize variational distribution q(z | β)

4 repeat

5 // VB E-step

6 compute gradients of L(q) w.r.t β

7 update variational distribution q(z | β)

8 // VB M-step

9 compute gradients of L(q) w.r.t θ

10 update model parameters θ

11 until convergence or max iterations

a lower bound on log marginal of the data. Hence it is referred to as evidence lower bound

(ELBO) or variational lower bound and q(z) is referred to as variational distribution.

Given this formulation, the goal of finding an approximate posterior q(z) and the model

parameters θ is now converted into an optimization problem, where we need find such a q(z | β)

(where β are the parameters of q(z)) and θ that maximizes ELBO. This is achieved by the

following VB expectation-maximization (EM) algorithm. An example is given in Algorithm 1.

In the VB E-step, the variational distribution q(z | β) is updated by keeping the model

parameters θ fixed. This moves q(z | β) closer to the true posterior, thus reducing the KL

divergence DKL(q || p). In the successive VB M-step, the model parameters (θ) are updated to

better explain the observed data x; this makes the DKL(q || p) larger. This process of alternating

between E and M steps is repeated until convergence, i.e., until finding the model parameters

that best fit the observed data and our prior belief.

During the test time, for any given unseen data point xt, the approximate posterior dis-

tribution over latent variables q(zt | βt) is obtained by following only the VB E-step (model

parameters are kept constant). As described earlier, if the latent variable represents a discrete

topic or class label, then q(zt | βt) is the posterior probability of class labels. If the latent vari-

able is a low dimensional continuous vector, then parameters (βt) of this posterior distribution

can be seen as compact representation (embedding) of the test data xt.

The following sections present some of the popular generative models for documents; most

of them use the above described VB technique.
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3.2 Classical topic models

Majority of the topic models (Deerwester et al., 1990; Blei et al., 2003; Blei and Lafferty,

2005; Blei, 2012; Zhu and Xing, 2011; Srivastava et al., 2013b; Miao et al., 2016) for learning

document representations are built on “bag-of-words” simplification of documents. It is defined

as follows:

From a collection of documents, a matrix X of dimension D×V is constructed, where every

row index d = 1 . . . D represents a document, every column index i = 1 . . . V denotes a word

from the vocabulary. The value xdi in each cell corresponds to the number of occurrences of

word i in document d.

Since every word does not appear in every document, the matrix X is very sparse (> 90%).

Moreover, not all the documents are of equal length, hence the variance in word counts is

very high. Additionally, function (stop) words appear more frequently as compared to content

words. All these characteristics of “bag-of-words” model make it difficult to extract semantic

information from the documents.

A common way to address this problem is to remove stop words5 from the documents and/or

apply term frequency-inverse document frequency (TF-IDF) weighting: The word counts in

each document are normalized between [0, 1] and words that appear in every document are

de-weighted, whereas words that appear in fewer documents are given higher weights. The

TF-IDF weighting is computed as follows:

tf(i, d) =
cdi

max
j

cdj
, (3.15)

idf(i,D) = ln
( D

Ndi + 1

)
, (3.16)

tfidf(i, d,D) = tf(i, d)× idf(i,D), (3.17)

where cdi in (3.15) refers to the number of occurrences of word i in document d. Ndi in (3.16)

refers to the number of documents in which word i appears. The +1 in denominator of (3.16)

avoids division by zero and is interpreted as: “each word from the vocabulary appears in at

least one document”. Often, in practice the following smoothed version of idf is used:

idf(i,D) = 1 + ln
( D + 1

Ndi + 1

)
. (3.18)

TF-IDF weighting does not necessarily bring out the semantic relations of words present

in the documents, and moreover, the documents represented using TF-IDF are of very high-

dimension i.e., equal to the size of the vocabulary.

5The list of stop words have to be constructed manually.
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Figure 3.2: Graphical representation of latent Dirichlet allocation

3.2.1 Latent semantic analysis

Latent semantic analysis (LSA) (Deerwester et al., 1990) is arguably the origin for topic

models. It is based on singular value decomposition of TF-IDF weighted counts matrix X̂

(every element x̂ij is computed according to (3.17)):

X̂ = UΣV
T
, (3.19)

where U and V
T

are orthogonal matrices and the diagonal matrix Σ contains singular values

of X̂. The document and word representations are obtained by dimensionality reduction. This

is done by considering only K largest singular values from Σ, (where K � V,K � D) and

setting the remaining values to zeros. If the resulting singular matrix is denoted by Σ̃, then

the rows of UΣ̃
1
2 could be seen as document representations (co-ordinates for documents in

latent space) and columns of Σ̃
1
2V

T
as word representations (co-ordinates for words) in the

same latent space.

The original high-dimensional document vectors in X are sparse but the corresponding

low dimensional vectors are not. This suggests that it is possible to associate documents

meaningfully even if they do not share common words. Further, it also allows documents and

words to be projected on to the same latent space. Document similarity can be computed using

cosine or Euclidean distance among vectors in the latent space.

LSA inspired many other models, such as probabilistic latent semantic analysis (Hofmann,

1999) and latent Dirichlet allocation (Blei et al., 2003).

3.2.2 Latent Dirichlet allocation

Latent Dirichlet allocation (LDA) (Blei et al., 2003) is one of the most popular probabilistic

topic models. LDA is seen as a generative model for bag-of-words representation of documents,

with assumptions about a document as a mixture of latent topics and each topic as a mixture

of words in the vocabulary. The generative process assumed by LDA is described as follows:

Let Φ be a low-rank matrix of size K × V (where K � V ), denote parameters of the

model that represent a topic-word mixture. Every row ϕk ∈ Φ is a topic-specific discrete
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probability distribution over the vocabulary of size V , i.e.,
∑V

i=1 ϕki = 1. This also means that

ϕk lives on V −1 simplex (4V−1). Any point on simplex represents a proper discrete probability

distribution, i.e., the co-ordinates sum up to one.

Given the model parameters Φ, every document is assumed to be generated according to

the following stochastic process:

First, a K dimensional document specific latent variable θd is drawn from a Dirichlet distribu-

tion:

θd ∼ Dir(θd |α), (3.20)

where α is the concentration parameter of Dirichlet distribution.

This can also be seen as having a prior distribution over latent variables:

p(θd) = Dir(θd |α), (3.21)

=
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

θα1−1
1 · · · θαK−1

K , (3.22)

where Γ(α) = (α− 1)! represents Gamma function.

The document vectors θd live on 4K−1. A few examples are shown in Fig. 3.3, where each sub

figure shows samples drawn from Dirichlet distribution with a different concentration parameter

α. All the samples live in 2-simplex (42).

For each word position n ∀n = 1 . . . Nd in document d, a topic indicator variable is sampled:

zdn ∼ Multi(θd, 1), (3.23)

which is then used to sample a word token xdn from the corresponding topic specific distribution:

xdn ∼ Multi(ϕzdn , 1). (3.24)

The multinomial distribution with one trial is also known as Categorical distribution.

In LDA, the topic (ϕk) and document (θd) vectors live in (V − 1) and (K − 1) simplexes

respectively. Every word xdn in a document d is associated with a discrete latent variable zdn

that tells which topic was responsible for generating the word. This can be seen from the

corresponding graphical model in Fig. 3.2. From the graphical model, we can also see that the
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Figure 3.3: Samples from Dirichlet distribution (points in 2-simplex 42).

joint distribution of all documents (matrix of word counts X) and the corresponding latent

variables Θ,Z factorizes:

p(X,Z,Θ |Φ,α) =
D∏

d=1

p(xd, zd,θd |Φ,α) (3.25)

=

D∏

d=1

p(θd |α) p(xd, zd |θd,Φ) (3.26)

=
D∏

d=1

p(θd |α)

Nd∏

n=1

p(zdn | θd) p(xdn | zdn,Φ) (3.27)

3.2.2.1 Inference in LDA

During inference, the generative process is inverted to obtain posterior distribution over

latent variables, p(θd, zd |xd,α,Φ), given the observed data and the prior belief. This can be

written using Bayes’ rule6:

p(θ, z |x,α,Φ) =
p(θ, z,x | α,Φ)

p(x | α,Φ)
(3.28)

The denominator in the above equation is marginal of observed data and is obtained by inte-

grating over θ and summing over z:

p(x | α,Φ) =

∫
p(θ | α)

(∏

n

∑

zn

p(zn | θ)p(xn | zn,Φ)

)
dθ (3.29)

=
Γ(
∑

k αk)∏
k Γ(αk)

∫ ( K∏

k=1

θαk−1
k

)(∏

n

K∑

k=1

V∏

j=1

(θkΦkj)
xnj

)
dθ (3.30)

6Omitting the document suffix d for clarity of presentation.
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The integral in the above equation is intractable because of the coupling between θ and Φ. To

resolve it, (Blei et al., 2003) resorted to variational inference that finds an approximation to the

true posterior with a variational distribution q(θd, zd). Further the following approximation

was made, to make the inference tractable:

q(θ, z | γ,φ) = q(θ | γ)
∏

n

q(zn | φn), (3.31)

where γ and φ represent Dirichlet and multinomial parameters of variational distribution

respectively. Using the VB formulation (3.14) the log marginal for LDA is given by:

ln p(x | α,Φ) = L(q(θ, z | γ,φ)) +DKL(q(θ, z | γ,φ) || p(θ, z,x | α,Φ)) (3.32)

Expanding L(q) using (3.13), (3.27) and (3.31):

L(q) = Eq[ln p(θ | α)] + Eq[ln p(z | θ)] + Eq[ln p(x | z,Φ)]

− Eq[ln q(θ)]− Eq[ln q(z)] (3.33)

The complete expansion of ELBO from (3.33), can be found in (Blei et al., 2003) Next,

following the VB training procedure (Algorithm 1), one can obtain the model parameters and

variational distribution. The complete derivation of update formulae are given in (Blei et al.,

2003). The parameters Φ were obtained using maximum-likelihood approach.

3.2.2.2 Limitations

There are two problems with the assumptions made by LDA:

1. The first one is the choice of Dirichlet-multinomial over document-topic mixture. Al-

though it simplifies the inference process because of the conjugacy; the assumption of

Dirichlet distribution causes limitations to the model, and q(θd) cannot capture the cor-

relations (Blei and Lafferty, 2005) between topics in each document, i.e., every document

contributes to every latent topic with a non-zero probability. For example, consider a

huge collection of documents (archive of news articles) with topics such as health, dis-

eases, automotive, sports, space, pc-hardware and so on. In such a collection, it is

reasonable to assume that a subset of latent topics are highly correlated (e.g.health and

diseases). Similarly there exists topics that are completely unrelated (e.g. diseases, and

pc-hardware). If a document belongs to a topic of health, then according to LDA, it

also belongs to a latent topics corresponding to diseases, pc-hardware, sports, space,

and automotive with a non-zero probability. This is because of the Dirichlet assumption

of topic proportions over documents (Fig: 3.3). In reality, it is highly unlikely (or impos-

sible) for a document to belong all the topics. The Dirichlet distribution cannot capture

any negative correlations.

20



xdizdiηd

µ

λ

Φ

Nd

D

Figure 3.4: Graphical representation of correlated topic model.

2. The second assumption LDA makes is that every (latent) topic vector ϕk is a discrete

probability distribution over all the words in the vocabulary, i.e., every word contributes

to every topic with a non-zero probability. This may not be a reasonable assumption. For

example consider a set of words (names of viruses) like plasmodium, falciparum, malariae,

ovale, vivax 7, which are high correlated with topics such as health and diseases. Next,

consider another set of words such as microarchitecture, cache, pentium which are highly

correlated with topics such as pc-hardware and technology. These two sets of words

are highly un-correlated, i.e., the presence of one set of words in a document implies that

the other set of words cannot appear (a strong negative correlation). Moreover, the names

of viruses do not contribute to the topics related to pc-hardware and technology. But

according to LDA, every word belongs to every topic with a non-zero probability.

To overcome the first limitation Blei and Lafferty (2005) proposed to model document vectors

(θ) with Gaussian distribution, and the resulting model is called correlated topic model (CTM).

3.2.3 Correlated topic model

The generative process of CTM is the same as in LDA except for document vectors are

drawn from Gaussian instead of Multinomial ((3.21) is replaced by the following):

p(ηd) = N (ηd | µ, (λI)
−1

), (3.34)

θd = softmax(ηd). (3.35)

In this formulation, the document vectors ηd are no longer in the (K − 1) simplex, rather

they are dependent through the logistic Normal. Fig. 3.5 shows samples from logistic Normal.

The advantage is that the documents vectors can model the correlations in topics. The topic

distributions over vocabulary Φ, however still remained discrete.
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Figure 3.5: Samples from Logistic Normal.

3.2.3.1 Inference in CTM

The true posterior in CTM is intractable, which can be seen by examining the following

equation:

p(η, z | x,µ, λ,Φ) =
p(η | µ, λ)

∏
i p(zi | η)p(xi | zi,Φ)∫

p(η | µ,Σ)
∏
i

∑K
zi=1 p(zi | η)p(xi | zi,Φ) dη

(3.36)

The denominator in above equation is intractable for two reasons: (i) the sum over K values of

zi occurs inside the product which results in combinatorial number of terms, (ii) the distribution

of topic proportions p(η | µ, λ) is not conjugate to p(zi | η) and integral cannot be computed

analytically.

Blei and Lafferty (2005) resorted to variational inference to find an approximation to the true

posterior with a variational distribution q(η, z | ν,γ,φ). Further mean-field approximation was

used to make the inference tractable (same as in LDA (3.31)):

q(η, z | ν,γ,φ) = q(η | ν,γ)
∏

i

q(zi | φi), (3.37)

where ν,γ are mean and precision of Gaussian distribution and φ are the multinomial param-

eters. Following the standard VB approach, we can write log marginal as:

ln p(x | µ, λ,Φ) = L(q(η, z | ν,γ,φ)) +DKL(q(η, z | ν,γ,φ) || p(η, z,x | µ, λ,Φ)) (3.38)

Expanding L(q) by using the factorization:

L(q) = Eq[ln p(η | µ, λ)] +
∑

i

Eq[ln p(zi | η)]︸ ︷︷ ︸
A

+
∑

i

Eq[ln p(xi | zi,Φ)] + H[q], (3.39)

where H[q] is the entropy of variational distribution. The term A in the (3.39) is intractable as

it involves solving the expectation over log-sum-exp function:

Eq[ln p(zi | η)] = Eq[η
T

zi ]− Eq

[
ln

(
K∑

k=1

exp{ηk}
)]

(3.40)

7https://www.who.int/ith/diseases/malaria/en/
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Figure 3.6: First-order Taylor series approximation of ln(x) at ζ ∈ [0.2, 2.0]. The approxima-

tion provides a tighter bound for 0 < x < 1 and loose bounds for x > 1.

This intractability (expectation over log-sum-exp or log normalizer) is a generic problem that

arises while performing variational inference in mixed-logit models (Depraetere and Vandebroek,

2017). In CTM, the authors used first-order Taylor series expansion8 to form an upper bound

on the negative log normalizer:

Eq

[
ln

(
K∑

k=1

exp{ηk}
)]
≥ Eq

[
ln(ζ) +

1

ζ

( K∑

k=1

exp{ηk} − 1
)]

(3.41)

= ln(ζ) + ζ
−1

(
K∑

k=1

Eq[exp{ηk}]− 1

)
, (3.42)

where ζ is an additional variational parameter. The remaining terms in (3.39) have analytical

form. See Appendix of (Blei and Lafferty, 2007) for the step-by-step derivation of each term.

Finally, the objective to optimize is a lower bound on ELBO (because of the upper bound used

in (3.42)). CTM is trained by using the standard VB EM algorithm.

The example given in Fig. 3.6 illustrates the problems of using first-order Taylor series

approximation of ln(x). Notice that for 0 < x < 1, the approximations provide a tighter bound

to the true function (left sub-plot), but for x >> 1, the approximation results in a loose bound

to the true function (right sub-plot), which can cause instabilities during training.

In this thesis, the same problem of intractability is encountered while performing variational

8Taylor series expansion of an infinitely differentiable function f(x) at a point ζ is f(ζ) + f ′(ζ)
1!

(x − ζ) +
f ′′(ζ)

2!
(x− ζ)2 . . .
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inference in the proposed Bayesian SMM; which is resolved using Monte Carlo approximation

via re-parametrization trick (Kingma and Welling, 2014). The variational inference for the

proposed Bayesian SMM is derived and explained in Chapter 5.

CTM was applied to the archives of Science present in JSTOR9, and was shown to give a

better fit to the data as compared to LDA. Although the correlations among topic-document

mixture are captured by Gaussian distribution, CTM still constraints the topic-word distribu-

tions to be discrete. It means that every word belongs to every latent topic with a non-zero

probability (limitation 2 from § 3.2.2.2). To address this, one can introduce Laplace priors

or apply `1 regularization over topic-word mixture (Shashanka et al., 2007); which can intro-

duce explicit zeros into the topic-word mixture. The proposed model in this thesis, `1 SMM

makes use of `1 regularization over model parameters (topic-word mixture) and thus avoids

the shortcomings of LDA and CTM. More details with experimental evidence is presented in

Chapter 4.

3.3 Sparse topic models

Sparsity is often one of the desired properties (Eisenstein et al., 2011; Shashanka et al., 2007)

in topic models. It is difficult to introduce sparsity into Dirichlet-multinomial mixture based

topic models such as LDA or CTM (Ganchev et al., 2009). Sparse coding inspired topic model,

sparse topical coding (STC) was proposed by (Zhu and Xing, 2011), where the authors have

obtained sparse representations for both documents and words.

3.3.1 Sparse topical coding

Sparse coding aims to learn a set of basis (or atoms in dictionary) and sparse codes (repre-

sentations) of input data in a way that their linear combination reconstructs the original input

data (eg. word counts in a document). Thus sparse coding can be viewed as a constrained

optimization problem.

A graphical representation of sparse topical coding model is presented in Fig. 3.7, where the

vector ϕk represents a topic basis i.e., a uni-gram distribution over vocabulary of size V . Let

ΦK×V represent the dictionary of K such topic bases. θd represents a document specific code

(representation). Each observed word count xdi in document d is assumed to be generated by

the following two steps:

1. sampling a word code sdi from conditional distribution p(sdi | θd):

p(sdi | θd) ∝ exp{−γ||sdi − θd||2−ρ||sdi||1} (3.43)

2. sampling word count xdi from a Poisson distribution with mean parameter νdi = s
T

diϕ.i:

9https://www.jstor.org/
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Figure 3.7: Representation of sparse topical coding (STC) model.

p(xdi | νdi) = Poisson(xdi; νdi) (3.44)

=
νxdidi exp{−νdi}

xdi!
, (3.45)

where ϕ.i represents a column in dictionary Φ.

Given the observed data XD×V i.e, bag-of-words, STC aims to find the point estimates of

codes Θ = {θd, sd}Dd=1 and the dictionary Φ, by minimizing the following constrained objective:

f(Θ,Φ) = minimize
Θ,Φ

D∑

d=1

Nd∑

i=1

[
ln Poisson(xdi; νdi) + (γ||sdi − θd||2−ρ||sdi||1)

]
+ λ||θd||1 (3.46)

subject to: θd ≥ 0 ∀d ; (3.47)

sdi ≥ 0 ∀d, i ; (3.48)

V∑

i=1

ϕki = 1 ∀k = 1 . . .K , (3.49)

where `1 regularization is applied over document codes θd and word codes sdi.

3.3.1.1 Optimization

The objective function f(Θ,Φ) from (3.46) is minimized by following co-ordinate descent

algorithm. More specifically, the procedure alternately performs descent w.r.t Θ = {sd,θd}Dd=1,

with a fixed Φ; and then w.r.t Φ with fixed Θ. Detailed steps are given in (Zhu and Xing,

2011).

Zhu and Xing (2011) has shown that STC learns sparse representation of document codes

and also performs better than LDA at document classification task on 20Newsgroups corpus.

Further, it was shown that STC can be trained in a discriminative fashion by jointly optimizing

a convex combination of original objective in (3.46) and hinge loss (objective of support vector

machines).

Although STC achieves sparsity and performs better than LDA, it still cannot model the

correlations present between latent topics-words and document-topics. This can be seen by

examining the constraints used in optimizing the STC objective. The dictionary Φ, which is
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Figure 3.8: Paragraph vector: distributed bag-of-words (PV-DBOW) model. The document

or paragraph-specific embedding zd is stochastically trained to maximize the probabilities (φd)

of a subset of words (Xd) present in document d.

equivalent to topic-word mixture in LDA and CTM is forced to live in a simplex i.e., every basis

contributes to every latent topic with non-zero probability (limitation 2 from § 3.2.2.2). Next,

the document and word codes are constrained to be non-negative. Although non-contributing

latent topics can be set to zeros, it cannot model strong negative correlations.

3.4 Neural network based topic models

The advances in neural networks and deep learning have lead to the development of sev-

eral models in the NLP community and also advanced state-of-the-art in several tasks. Two

important topic models are worth mentioning as they are related to the models proposed in

this thesis. The first one is “bag-of-words” variant of paragraph vector (PV-DBOW) (Le and

Mikolov, 2014) and the second one is neural variational document model (NVDM) (Miao et al.,

2016), an adaptation of variational auto encoders (Kingma and Welling, 2014) for document

modelling.

3.4.1 Paragraph vector

Inspired by the popular word2vec (Mikolov et al., 2013) model, paragraph vector aims to

learn compact embeddings of sentences or paragraphs (or documents). Le and Mikolov (2014)

proposed two models, and one of them is closely related to modelling bag-of-words. This model

termed as PV-DBOW is shown in Fig. 3.8, where zd is a compact representation of a document

that aims to predict a set of words (Xd) from a document. In every step of training, the

set of words Xd are randomly sampled from a document d, and the parameters of the model

are updated via stochastic gradient descent, where the gradient is computed for the negative
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log-likelihood of the data:

L = −
∑

∀d

∑

∀xi∈Xd
ln p(xi | φdi), (3.50)

φdi =
exp{wT

i zd + bi}∑
∀xj∈Sd exp{wT

jzd + bj}
, (3.51)

where Sd are set of words that are not present in document d; also called as negative samples.

During inference, only the document embedding zd is updated by keeping the rest of the param-

eters fixed. This model bears similarities with subspace multinomial model (SMM) (Kockmann

et al., 2010) as we will see in Chapter 4.

3.4.2 Neural variational document model

Neural variational document model (NVDM) (Miao et al., 2016) is an adaptation of vari-

ational autoencoder (VAE) (Kingma and Welling, 2014) for modelling bag-of-words represen-

tation of documents. A standard autoencoder has two parts; the first one called the encoder

(multi-layered neural network) learns compact (latent) representation z of input data x; the

later part called decoder (multi-layered neural network) aims to reconstruct the input data x̂

from the latent representation. Usually, the autoencoders are trained to minimize mean-squared

error between the input x and the reconstructed output x̂, by updating the weights of neural

network via back-propagation.

In VAE, the encoder attempts to learn the (posterior) distribution of latent variables p(z | x)

given the input data x; the decoder aims to model the data, given the latent variable p(x | z).

VAE learns to approximate the true posterior by variational distribution q(z | x). Moreover,

if the functional forms of posterior and data (likelihood) are not conjugate to each other, the

posterior becomes intractable. This problem is similar to what we have seen so far in LDA and

CTM. In the original VAE, the authors (Kingma and Welling, 2014) proposed to approximate

the intractable functions using Monte Carlo samples via the re-parametrization trick. We will

revisit this problem in detail when we present our Bayesian model in Chapter 5.

In NVDM, the encoder parts takes every document (vector of word counts) xd as input and

predicts posterior distribution of latent variables p(zd | xd). The decoder takes a latent variable

and predicts the parameters θd of multinomial distribution that can model the distribution of

data p(xd | θd, zd). The model is trained by stochastic gradient descent that learns weights of

the neural network (encoder and decoder) and also the parameters of the posterior distribution.

During test time, given a document, the posterior distribution is obtained just by forward prop-

agating through the encoder part. However, this process of obtaining the posterior distribution

from the encoder is sub-optimal, as we will show in Chapter 5.

The authors have shown that NVDM achieves state-of-the-art perplexity results on 20News-

groups text corpus (Miao et al., 2016). Chapter 5 presents Bayesian SMM that shares similari-
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Figure 3.9: Neural variational document model. Left part is the encoder predicting the pa-

rameters of the posterior distribution of latent variables p(zd |xd,Θenc). The right part is the

decoder that generates parameters (θd) of the document-specific uni-gram distribution over

vocabulary p(xd | zd,Θdec).

ties with NVDM, as both of them maximize expected log-likelihood of data (bag-of-words rep-

resentation of documents), assuming multinomial distribution. The experiments show that

Bayesian SMM achieves superior perplexity scores on 20Newsgroups data and outperforms

NVDM with a significant margin.

3.4.3 Sparse composite document vector

Mekala et al. (2017) proposed an algorithm to obtain sparse document embeddings called

sparse composite document vector (SCDV) from pre-trained word embeddings. It was shown

to achieve superior classification results on 20Newsgroups corpus as compared to paragraph

vector, neural tensor skip-gram model (Liu et al., 2015). The experiments in Chapter 6 shows

that the proposed model achieves comparable (slightly superior) classification results to SCDV.

3.4.4 Discriminative text classifiers

The other category of neural network based models are text classifiers. Unlike topic models,

they are not generative models for documents, but are discriminative models for document /

text classification. Recent works include character level convolutional neural networks (Zhang

et al., 2015), and hierarchical attention based networks (Yang et al., 2016b) for document

classification. The major limitations of discriminative models is their dependency on labelled

data and the difficulty in adapting to newer classes or domains.
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3.4.5 Pre-trained language models

These models are trained on largely available unlabelled data using self-supervised objec-

tives (Howard and Ruder, 2018; Peters et al., 2018; Devlin et al., 2019), such as next-word

prediction or masked word-prediction. Once the model is trained on the word-prediction task,

it then fine-tuned on a particular dataset for a specific task such as document classification

or natural language inference. Hence the name ‘pre-training‘. The models primarily employ

several layers of BiLSTMs or transformer blocks (Vaswani et al., 2017), and comprise of millions

of parameters. The ‘pre-training’ step is computationally intensive and usually takes few days

on several GPUs (Radford, 2018; Devlin et al., 2019) or TPUs (Yang et al., 2019). Although,

the fine-tuning step is faster as compared to the original pre-training, it requires to load the

entire model into the memory to optimize its parameters.

3.5 Summary and relation to the work in this thesis

This chapter reviewed the concept of generative models, and variational inference approach,

followed by a detailed overview of most popular and recent topic models with their assumptions

and consequent limitations. Given this background on topic models, the relation to work in

this thesis is outlined below:

This thesis proposes (Kesiraju et al., 2016) the use of subspace multinomial model for learning

document representations10. The relation between SMM and paragraph vector (PV-DBOW)

will be shown. Further, a novel variant of SMM that is based on sparse (`1) regularization

of parameters of SMM will be presented. We have seen that sparsity helps in text modelling,

especially parameters corresponding to topic-word mixtures can benefit from having sparse

priors (Zhu and Xing, 2011). Consequently, `1 regularization makes the learning difficult as

the objective function becomes non-differentiable. This problem is addressed by employing

orthant-wise11 learning (Andrew and Gao, 2007). The experiments on 20Newsgroups corpus

show that the proposed `1 SMM is superior to other unsupervised topic models such as LDA

and STC on topic identification and document clustering tasks. Details of proposed `1 SMM

are given in Chapter 4.

Next, a Bayesian modelling for SMM is presented; that results in a complete generative model

for “bag-of-words” representation of documents. Using this Bayesian SMM, we are able to learn

document representations along with their uncertainties. However, the Bayesian inference in

SMM comes with the problem of intractability (solving expectation over log-sum-exp function);

similar to the one seen in CTM. This problem is addressed by approximating the intractable

function with Monte Carlo samples via re-parametrization trick. The experimental details show

10May et al. (2015) also worked on the same idea independently.
11Orthant is a generalization of quadrant to n-dimensional space.

29



that Bayesian SMM achieve state-of-the-art perplexity results on 20Newsgroups text and Fisher

speech corpus. Details are given in Chapter 5. Next, a generative classifier for the task of topic

identification is presented, that exploits the uncertainty in posterior distribution of document

representations.

Chapter 7 presents a multilingual extension of Bayesian SMM. The idea is to capture only

semantics (topic-like) from document and suppress the language information. Such a model is

especially useful in cross-lingual transfer applications where training data is scarce. The experi-

ments on Europarl and Reuters multi-lingual news corpora show that the proposed multilingual

Bayesian SMM is superior to multilingual word embeddings and neural machine translation in-

spired sequence-to-sequence BiLSTM models in zero-shot cross-lingual topic identification.

Finally, the thesis discusses (i) discriminative and hybrid variants of SMM that can exploit

both the labelled and unlabelled data, thus making the best use of generative and discriminative

approaches, and (ii) variants of SMM that exploit contextual n-gram information for learning

sentence representations.
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Chapter 4

Learning document representations using

subspace multinomial model

This chapter presents the application of subspace multinomial model (SMM) to learn docu-

ment embeddings1. These document embeddings have Gaussian-like distribution, which makes

them compatible with simple generative classifiers such as Gaussian linear classifier. Addition-

ally, the Gaussian nature of document embeddings enables us to use simple clustering algorithms

such as k-means.

A novel variant of SMM called `1 SMM, that is based on `1 regularization of its parameters

is also presented. The `1 regularization introduces sparsity into the model, which is one of

the desired properties while modelling text documents (Zhu and Xing, 2011; Shashanka et al.,

2007; Eisenstein et al., 2011; Mekala et al., 2017). Using the proposed `1 SMM, I show that the

extracted document embeddings together with simple Gaussian linear classifier (GLC) achieve

superior classification accuracy on topic identification from 20 Newsgroups text corpora, when

compared to systems based unsupervised topic models such as latent Dirichlet allocation and

sparse topical coding.

SMM was originally proposed for modelling discrete prosodic features for the task of speaker

verification (Kockmann et al., 2010). Later, SMM and its variant, subspace n-gram model

(SnGM) were used for phonotactic language recognition (Soufifar et al., 2011, 2013). Similar

model was proposed by (Maas et al., 2011), that was used for learning word vectors for sentiment

analysis.

4.1 Subspace multinomial model

Like majority of the probabilistic topic models (Blei, 2012), SMM also models bag-of-

words representation of a document (vector of word counts xd) by a multinomial distribution.

Let V represent the vocabulary size, and θd ∈ 4V−1 represents the document specific parame-

ters of multinomial distribution i.e., unigram probabilities of individual words in a document,

1The embeddings extracted from SMM are also referred to as document i-vectors.
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Figure 4.1: Graphical representation of SMM on the left, and alternative representation on

the right. wd is the document embedding, {m,T } are the bias and weights of the linear layer.

then:

xd ∼ Multi(θd, Nd), (4.1)

where Nd denotes the number of tokens in document d.

SMM assumes that the document specific multinomial parameters θd live in much smaller

subspace defined as:

θd = softmax(m + T wd), (4.2)

where {m,T } are parameters of SMM andwd is a document-specific latent variable. T ∈ RV×K

is a low-rank (total variability or bases) matrix that spans a K-dimensional subspace (K � V ),

and the vector m ∈ RV is bias or offset (also known as universal background model). The K

dimensional latent variable wd is seen as a low-dimensional representation for document xd and

is referred document embedding.

The graphical representation of SMM is depicted in Fig. 4.1; it bears some similarities with

LDA and CTM. The major difference to note is the absence of discrete latent variable z in

SMM. The alternative representation of SMM can be compared with paragraph vector-bag-of-

words (PV-DBOW) from Fig. 3.8.

Given training documentsX ∈ Z∗D×V , SMM is trained by estimating its parameters {m,T }
that maximize the log-likelihood of the data, and for any given (unseen) test document xt, the

corresponding latent representation (document embedding) wt can be extracted.

The complete log-likelihood of the data X is the summation of log-likelihoods of individual

documents xd. This can be seen from the graphical model in Fig. 4.1. According to the

model, every document is a sample from multinomial distribution (4.1), hence the complete
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Figure 4.2: Illustration of one-dimensional subspace in 2-simplex. Every dot represents a

sample (document).

log-likelihood is computed according to:

ln p(X |Θ) =

D∑

d=1

ln p(xd |θd), (4.3)

=
D∑

d=1

V∑

i=1

xdi ln(θdi), (4.4)

=

D∑

d=1

V∑

i=1

xdi ln

(
exp{mi + tiwd}∑V

j=1 exp{mj + tjwd}

)
(4.5)

where ti corresponds to a row in the matrix T .

SMM with one-dimensional subspace is illustrated in Fig. 4.2.

4.1.1 Training

Following the similar training procedure from (Kockmann et al., 2010), the universal back-

ground model m is initialized with document-independent log uni-gram probabilities estimated

from the training data X as:

mi = ln

( ∑
d xdi∑

i

∑
d xdi

)
∀ i = 1 . . . V (4.6)

The model is trained by alternating between the iterative updates of T and all the docu-

ment embeddings W . These updates are performed by following Newton-Raphson like update

steps (Kockmann et al., 2010):

wd ← wd +H
−1

d ∇wdL , (4.7)

ti ← ti +H
−1

i ∇tiL . (4.8)

Here ∇wdL and ∇tiL are gradients of the log-likelihood (4.5) with respect to wd and ti. The

corresponding H matrices (Hd and Hi) can be seen as approximations to conventional full
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Hessian matrix in Newton-Raphson optimization (Bishop, 2006). These approximations are

much smaller and faster to compute; and are proposed in (Povey et al., 2011a). See Appendix A

for step-by-step derivation.

4.1.2 Limitations of the model

In a document collection, the most frequently occurring words are stop words which do

not have the ability to semantically discriminate the documents. Moreover when using a large

vocabulary of words (including the stop words), the number of parameters in the model increases

and leads to over-fitting. To over come this, the model can be regularized.

A variant of SMM called subspace n-gram model (SnGM) was proposed for phonotactic

language recognition (Soufifar et al., 2013), where the authors used `2 regularized model. This

can be interpreted as obtaining maximum a posteriori (MAP) point estimates of the parameters

with Gaussian prior. Further, it was observed in (Soufifar et al., 2013), that the embeddings

(wd ∀ d) exhibit Gaussian-like distribution across various dimensions, and the rows in T exhibit

Laplace-like distribution (which does not comply with Gaussian prior assumption). Motivated

by these observations and the desired property of sparsity in topic models, I propose to use `1

regularization for the rows in matrix T , which can be seen as obtaining point MAP estimates

with Laplace prior. `2 regularization is used for embeddings wd ∀ d. The resulting model is

called `1 SMM.

4.2 `1 SMM

By adding the respective `1 and `2 regularization terms to (4.5), the complete objective

function becomes:

L =

D∑

d=1

[ V∑

i=1

xdi log(θdi)−
λ

2
‖wd‖2

]

︸ ︷︷ ︸
Ld

−ω
V∑

i=1

‖ti‖1, (4.9)

where ω and λ are the regularization weights for rows in T and wd ∀ d respectively; Ld de-

notes the log-likelihood per document with the regularization term for the document specific

embedding. It is essential to regularize both T and w. Otherwise, restricting the magnitude of

one parameter will be compensated by dynamic range increase in the other during the iterative

update steps (4.7) and (4.8).

Estimating the parameters of any `1 regularized function is not trivial, as it introduces dis-

continuities at points where the function crosses any axis. To address this, several optimization

techniques were proposed (Andrew and Gao, 2007; Schmidt, 2010). One such technique, called

as orthant-wise learning is explored in this work, as it could be translated in a straightforward

way to the existing second order optimization scheme (4.8).
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Orthant is a region in the n-dimensional space where the sign of the variables does not

change. It is equivalent to quadrant in 2D and octant in 3D. An important property of any `1

regularized function is its differentiable nature over any given orthant. In general, for any `1

regularized convex objective function, if the initial point is in the same orthant as the minimum,

then the simple Newton-Raphson updates will lead to the minimum2. In cases where the update

steps need to cross the orthant to find the minimum, orthant-wise learning can be employed.

Illustration of orthant-wise learning is presented in Appendix E.

4.2.1 Parameter estimation using orthant-wise learning

The gradient of the objective function in (4.9) with respect to ti is given by:

∇tiL =

D∑

d=1

(
xdi − θdi

V∑

i=1

xdi

)
w

T

d − ω sign(ti) . (4.10)

Here sign is the element-wise sign operation on the vector ti. At co-ordinates where the objective

function is not differentiable (i.e., when any of the co-ordinates k in ti equals to 0), its sub-

gradient ∇̃ti is used:

∇̃tikL ,





∇tikL+ ω, tik = 0, ∇tikL < −ω
∇tikL − ω, tik = 0, ∇tikL > ω

0, tik = 0, |∇tikL|≤ ω
∇tikL, |tik|> 0 .

(4.11)

Otherwise, ∇̃tikL = ∇tikL. The updates following Newton-Raphson like method require two

things: (i) the search direction d that agrees with the direction of steepest ascent and, (ii) a

step in the ascent direction that does not cross the point of non-differentiability. The search

direction di is given by:

di ,H
−1

i ∇̃tiL (4.12)

To ensure that the new estimates (tnew
i ) are along an ascent direction (di∇tiL > 0), the co-

ordinates in search direction di are set to zero, if the sign does not match with the co-ordinates

in the steepest ascent ∇tiL. This is called sign projection PS , which is defined as:

PS(d)i ,

{
dik, if dik(∇̃tikL) > 0 ,

0 otherwise .
(4.13)

Next, to ensure that the step does not cross the point of non-differentiability, the following

orthant projection PO is applied:

PO(t+ d)i ,

{
0 if tik(tik + dik) < 0 ,

tik + dik otherwise .
(4.14)

2In case of quadratic function, a single Newton-Raphson update will lead to minimum.
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This orthant projection will set the co-ordinates in tnew
i to zero, if they differ in sign with ti.

Finally, the update for ti is given as follows:

ti ← PO[ti + PS [H
−1

i ∇̃tiL] ] , (4.15)

where Hi is computed as follows:

Hi = −
(

D∑

d=1

max
(
xdi, θdi

V∑

i=1

xdi

))
wdw

T

d . (4.16)

Note that the Hi is not the exact second derivative3 of ∇̃tiL but rather an intuitive approxi-

mation conceived by Povey (2009). This allows much faster convergence without the need for

backtracking. The updates for every document embedding wd are according to (4.7), with the

following gradient:

∇wdL =
V∑

i=1

t
T

i (xdi − θdi

V∑

i=1

xdi)− λwd , (4.17)

where Hd is computed as follows:

Hd = −
V∑

i=1

t
T

i ti max
(
xdi, θdi

V∑

i=1

xdi

)
− λI . (4.18)

If the updates of T or w fail to increase the objective function in (4.9), the update step is

halved by backtracking4. Typically the model converges after 15 to 20 iterations. The complete

training procedure for SMM is given in Algorithm 2.

Although the existing Newton-Raphson like optimization scheme helps the model converge

in few iterations, it requires to make matrix inversions that has a time complexity of O(n3).

Further, the number of matrix inversion operations increase linearly with number of documents

and also the size of vocabulary. The complexity in the existing optimization can be reduced by

replacing the Newton-Raphson scheme with adagrad (Duchi et al., 2011) or adam (Kingma

and Ba, 2015). It was observed that adam converges to global optimum in convex optimization

problems involving sparse data such as discrete word counts. The objective function of SMM

is conditionally convex (or bi-convex); which means that given one set of parameters (T ), the

objective is a convex function over other set of parameters (wd) and vice-versa. This makes

adam optimization scheme suitable for SMM.

3The exact second derivative is given in (A.27) from Appendix A.
4In practice, the backtracking happens very rarely.
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Algorithm 2: Training algorithm for SMM

1 initialize m to log uni-gram probabilities using (4.6)

2 initialize values in T from N (0, 0.001)

3 initialize embeddings wd ∀ d to 0

4 repeat

5 for d = 1 . . . D do

6 compute Ld from (4.9)

7 compute gradients of Ld w.r.t wd using (4.17)

8 compute Hd according to (4.18)

9 update wd using (4.7)

10 while Ld doesn’t improve do

11 backtrack by halving the update step

12 end

13 end

14 compute L using (4.9)

15 for i = 1 . . . V do

16 compute sub-gradients of L w.r.t ti using (4.11)

17 compute Hi according to (4.16)

18 update ti using orthant-wise learning according to (4.15)

19 end

20 while L doesn’t improve do

21 backtrack by halving the update step

22 end

23 until convergence or max iterations

4.3 ADAM optimization scheme for SMM

The Newton-Raphson like update steps from Eqs. (4.8) and Eqs. (4.7) are now replaced by

the following:

wd ← wd + η (
f̂wd√
ŝwd + ε

)∇wdL , (4.19)

ti ← PO(ti + di) , (4.20)
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where,

di = η (
f̂td√
ŝtd + ε

), (4.21)

PO(t+ d)i ,

{
0 if tik(tik + dik) < 0,

tik + dik otherwise .
(4.22)

Here η is learning rate, f̂ and ŝ represent bias corrected first and second order moment estimate5

of gradients (as required by adam), and PO represents orthant projection, assuring that the

update step does not cross the point of non-differentiability. Unlike in (4.13), it is not required

to apply the sign projection, because both gradient ∇̃tiL and step di point in the same direction

(due to properties of adam). Later in § 4.4.2, we will compare the second order optimization

(Newton-Raphson) with adam .

4.3.1 Extracting document embeddings

Once the model is trained, the embedding wt for any (unseen) document xt is extracted

by keeping the model parameters {m,T } fixed and using updates in (4.7) that maximize the

regularized log-likelihood (objective) function. This procedure is identical to that of in training,

except that the model parameters are not updated. In practice, the document embeddings are

extracted6 for both the training and test documents.

These embeddings are then used as input vectors for training classifier for the task of topic

identification; or as an input for k-means clustering algorithm.

4.4 Experiments and results

4.4.1 Dataset

The experiments were conducted on the 20 Newsgroups7 dataset as it is well-studied with sev-

eral benchmark baseline systems. I have used the preprocessed version (20news-bydate-matlab)

as used in (Zhu and Xing, 2011; Lacoste-Julien et al., 2008). It contains 18775 documents in

20 categories. The training set consists of 11269 documents with a vocabulary of 53975 words

and the test set consists of 7505 documents.

4.4.2 Comparison of Newton-Raphson with ADAM optimization

Fig. 4.3 shows the improvement of log-likelihood of the 20Newsgroups training data over

the iterations with both the optimization schemes. We can see that adam takes many more

5See appendix D
6It can be interpreted as feature extraction.
7http://qwone.com/~jason/20Newsgroups/
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Figure 4.4: Histogram of embeddings extracted from `1 SMM.

iterations to converge as compared to Newton-Raphson, but it is computationally cheaper as

it does not involve any matrix inversions. On a single CPU, adam is approximately 10 times

slower than Newton-Raphson, but consumes one-third memory. The advantage of adam can be

seen on a GPU while performing batch-wise stochastic training on a large dataset. Since adam

consumes less memory, large batches can be loaded onto GPU which helps in faster training.

39



4.4.3 Analysis of model parameters

This section presents the analysis of model parameters of `1 and `2 SMM. All the experiments

were done using Newton-Raphson optimization scheme with the hyper-parameters: λ = 1e−04,

and embedding dimension K = 100.

The Fig. 4.4, shows that the document embeddings exhibit Gaussian like distribution. This

influenced the choice of classifier for document classification task (§ 4.4.4.2) and clustering

algorithm for clustering task (§ 4.4.5).

Fig. 4.5 shows various histograms of values from T for various regularization weights ω. The

distribution of values from T matrix in Fig. 4.5 suggests that Laplace prior was an appropriate

choice. The `1 regularization with orthant-wise learning enforces sparsity in the matrix (T ),

and we can see that sparsity is directly proportional to the `1 regularization weight. In case of

`2 SMM, even higher values of ω does not introduce any sparsity, however all the parameters

and densely packed around zero.

4.4.4 Document classification task

In this task, the document representations are evaluated by using them as input features

for a classifier during training and testing phases. I have used only linear classifiers, as they

are faster to train and do not learn any additional non-linear transformations of the input

representations.

4.4.4.1 Baseline systems for classification

I have used two baseline systems: latent Dirichlet allocation (LDA) (Blei et al., 2003), and

sparse topical coding (STC) (Zhu and Xing, 2011), which are unsupervised topic models. LDA

was chosen because it is the most popular and well understood topic model. STC is a superior

to LDA and also has sparse model parameters, hence it acts a baseline comparison with the

proposed sparse `1 SMM. They are trained only on documents from the training set; then

the document representations are extracted for both training and test sets. Following earlier

research (Zhu and Xing, 2011), I have chosen support vector machines (SVM) as the choice

of classifier for these representations. LDA8, and STC9 were trained using publicly available

source code.

4.4.4.2 Proposed systems for classification

The proposed systems for classification use document embeddings extracted from SMM. I

used two variants of SMM; the first one is the proposed `1 SMM and the second one is `2 SMM

8https://github.com/blei-lab
9http://ml.cs.tsinghua.edu.cn/~jun
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Figure 4.5: Histograms showing the distribution of values from the matrix T for various

regularization weights ω. The other hyper-parameters, embedding dimension K = 100 and

λ = 1e− 04.

i.e., `2 regularization over bases matrix T . Since the document embeddings exhibit Gaussian-

like distribution (Fig. 4.5), I have used simple generative Gaussian linear classifier (GLC),
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Figure 4.6: Classification accuracy on 20Newsgroups data for `1 and `2 SMM with various

regularization weights ω. The other hyper-parameters, embedding dimension K = 100 and

λ = 1e− 04.

where every class is Gaussian distributed with a specific mean and shares a common covariance

matrix (Bishop, 2006).

First, I give the comparison between `1 and `2 SMM based classification systems. Fig. 4.6

shows the classification accuracy on the test set, for various values of ω (regularization coefficient

of T ) with embedding dimension K = 100. For the purpose of illustration, the regularization

coefficient of embeddings λ is fixed to 10−4. We can observe two things from the Fig. 4.6

1. The absolute difference in accuracy between cross-validation and test sets for `1 SMM is

lower as compared to `2 SMM. This suggests that `1 SMM generalizes better as compared

to `2 SMM.

2. As we increase the `2 regularization weight (ω) the performance of `2 SMM increases.

Note that higher regularization forces the parameters to be close to zero (Fig. 4.5), which

suggests the suitability of `1 regularization as it explicitly introduces zeros.

Next, the proposed systems are compared against rest of the baseline systems. The correspond-

ing classification scores are presented in Table 4.1 along with the latent variable dimension K.

Additionally, the results are also compared with Discriminative LDA (DiscLDA) (Lacoste-Julien

et al., 2008) and max margin supervised STC (MedSTC) (Zhu and Xing, 2011). Detailed com-

parison of STC and its variants along with various other models is given in (Zhu and Xing,

2011). All the classification results presented are the best values that are obtained by tuning

on the development (cross-validation) set. It is important to note that DiscLDA and MedSTC

which achieve better classification results are supervised models i.e., topic label information is
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Table 4.1: Comparison of classification accuracy (in %) across various systems based on su-

pervised and unsupervised topic models.

Model Classifier
Embedding

dimension K
Accuracy (%)

LDA SVM 110 75.0

STC SVM 90 74.0

`2 SMM GLC 100 75.1

`2 SMM GLC 200 77.1

`2 SMM GLC 300 67.5

`1 SMM GLC 100 74.3

`1 SMM GLC 200 76.1

`1 SMM GLC 300 76.7

DiscLDA (Lacoste-Julien et al., 2008) SVM 100 80.0

MedSTC (Zhu and Xing, 2011) SVM 100 81.0

incorporated while obtaining the latent vector representation; whereas their counterparts, LDA

and STC are completely unsupervised models like SMM. From these results in Table 4.1, it can

be observed that document representations (embeddings) obtained from `1 SMM together with

simple generative linear classifier are superior when compared to the baseline systems that use

discriminative classifier. Note that, although `2 SMM is slightly better than `1 SMM, it tends

to over-fit as the embedding dimension is increases. The over-fitting nature of `2 SMM can

also be seen in Fig. 4.6. Further, the classification accuracy of `1 SMM based system increases

with the increase in dimensionality of the latent variable (embedding); which can be seen from

Table. 4.1. However, this trend was seen neither for STC nor LDA (Zhu and Xing, 2011).

4.4.5 Document clustering task

In this task, the document embeddings are clustered and then evaluated using normalized

mutual information (NMI). Since the 20 Newsgroups dataset has 20 topics, the number of

clusters are set to 20. This allows a simpler interpretation of NMI scores, i.e., “how much

information about the true classes is inferred from the given clusters?”.

Since, the document embeddings exhibit Gaussian-like distribution, I used k-means clus-

tering algorithm with a fixed set of 20 clusters. Document embeddings extracted from entire

dataset (training + test sets) were clustered, while keeping the model parameters {m,T }
trained only on the training set. This is to maintain consistency with the classification experi-
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Table 4.2: Comparison of average NMI scores of other systems with `1 SMM ω = 1e+ 02 and

`2 SMM with ω = 1e+ 06. λ = 1e− 04, embedding dimension K = 100.

Model `2 SMM `1 SMM LDA+k-means LDA (naive) STC+k-means

NMI 0.61 0.58 0.38 0.57 0.35

ments. The clustering was performed with 5 random initializations of k-means and the average

of NMI scores are reported.

First, the NMI scores of `1 and `2 SMM based clustering systems are compared. Table 4.7

gives these scores along with various regularization weights ω. It can be concluded from these

NMI scores that, the clusters obtained using document embeddings from `1 SMM are consis-

tently stable as compared the ones from `2 SMM. This trend is observed across various values

of ω, reinforcing the suitability of Laplace prior over the rows in matrix T .

In Table 4.2, the comparison of NMI scores from proposed SMM based k-means clustering

with other techniques are presented. In LDA (naive), the model is trained with 20 latent topics,

i.e., the document representations are of 20 dimensions and live in 19 dimensional simplex. The

cluster assignment was based on the largest value in each document vector. It can be seen that

the proposed SMM performs better at clustering and classification at the same time with the

same model (i.e., with the exact same model parameters including embedding dimension).
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4.4.6 Topic discovery using SMM

In an unsupervised scenario, it is possible to obtain a set of words for each cluster that

represent or discriminate it from other clusters. These set of words can describe the hidden

(latent) topics in corpus. SMM can be used for topic discovery, i.e., the document embeddings

extracted from SMM together with clusters obtained from k-means can bring out the hidden

topics. One simple way is to subtract the global mean from the cluster mean of embeddings

(wd) and project the resulting vector on to the bases matrix T and find the indices of large

positive values. These indices corresponds to the words for which the probabilities significantly

increase as compared to the average distribution over words for the given cluster. Table 4.3

shows an example of words from all the 20 clusters obtained using k-means for `1 SMM with

λ = 1e− 04, ω = 1e+ 01 and embedding dimension K = 100.

The true classes in 20Newsgroups corpus is given in the Table 4.4. We can observe that

the clusters obtained using k-means with `1 SMM corresponds to most of the true topics /

categories.

4.4.7 Discussion

SMM is an unsupervised model trained iteratively by optimizing the log-likelihood of the

data; it does not necessarily correlate with the performance of topic ID. It is valid for LDA,

STC or any other generative model trained without supervision. A typical way to overcome this

problem is to have an early stopping mechanism (ESM), which requires to evaluate the topic

ID accuracy on a held-out (or cross-validation) set at regular intervals during the training. It

can then be used to stop the training earlier if needed, because a fully converged model may

not yield embeddings optimal for downstream classification task.

In case of large-scale pre-trained models such as ULMFiT (Howard and Ruder, 2018) or

BERT (Devlin et al., 2019), it is required to fine-tune the model for a particular dataset and

classification task.

Fig. 4.8 illustrates the importance of early stopping mechanism. The grey line indicate the

log-likelihood of the data, which we aim to maximize during training. The blue and orange

curves represent the classification accuracy on cross-validation and test sets obtained at regular

checkpoints during the training. Note that as the model is close to convergence, the embeddings

results in poor classification performance. The ESM is computationally expensive because one

needs to extract embeddings and train a classifier several times (for every checkpoint) during

training. In an ideal scenario, one can let the model converge and use the embeddings directly

for classification without any ESM or fine-tuning. In the next chapters, we will show that this

is possible with the help of Bayesian modelling.

The document embeddings estimated from SMM are only point estimates. Given the bases

matrix, each embedding captures the uni-gram probability distribution of words in the docu-
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Table 4.3: Top 5 significant words representing 20 clusters.

acceleration preferably scotia autoexec xlib

suspension architecture sluggo windows widget

wagon databases compuserv exe parameter

tires publisher nursery icons openwindows

chevy blvd pruden ini xview

sale waco sacred physicians income

packaging atf worship patients socialism

obo fbi christianity therapy abortion

shipping convicted atheist infection welfare

cod koresh prophet diagnosed cramer

murders privacy resistor hockey nubus

criminals encryption amplifier potvin quadra

firearm denning resistors leafs meg

handguns clipper volt nhl slots

criminal crypto voltage playoff adapter

rbi israeli compute spacecraft zx

dodgers lebanon algorithms lunar bikes

hitters occupied polygon moon motorcycle

pitcher palestinians shareware exploration riding

pitching palestinian surfaces orbit bike

Table 4.4: Topics in 20Newsgroups dataset

comp.graphics rec.autos sci.crypt

comp.os.ms-windows.misc rec.motorcycles sci.electronics

comp.sys.ibm.pc.hardware rec.sport.baseball sci.med

comp.sys.mac.hardware rec.sport.hockey sci.space

comp.windows.x

misc.forsale

talk.politics.misc talk.religion.misc

talk.politics.guns alt.atheism

talk.politics.mideast soc.religion.christian
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Figure 4.8: Illustrating the importance of early stopping.

ment. The embedding extraction is a iterative process, and after each iteration, the embedding

is estimated to better explain the observed data (maximizes the log-likelihood). For longer doc-

uments, the extracted embeddings are robust (the embedding posterior distribution is peaky)

as the uni-gram probabilities can be estimated from large number of observed words. The

problem arises when embeddings are estimated on shorter and ambiguous documents. There

exists many solutions (embeddings) that can explain the observed data. The embedding pos-

terior distribution in this case is relatively flat, it means there exists many embeddings that

can explain the same document. When training a classifier, the uncertain embeddings are out-

liers. For example, in case of generative Gaussian linear classifier, the uncertain embeddings

will move the class mean away from the true mean. The uncertainty in embeddings can be

estimate with the help of Bayesian learning. This is discussed in detail in Chapter 5, where

Bayesian SMM is proposed for learning document embeddings along with their uncertainties,

that are represented using Gaussian distribution. Chapter 6 shows how these uncertainties can

be exploited in a classifier for the task of topic identification.

4.5 Summary and conclusions

This chapter presented the application of SMM to learn document embeddings (representa-

tions). Further, a novel variant of SMM was proposed, that based on `1 regularization of its
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model parameters. The resulting `1 regularized objective function is optimized with the help

of orthant-wise learning; which also introduced sparsity into the model parameters. With the

help of linear classifiers, the obtained document representations from `1 SMM achieved better

results in topic identification task when compared to popular topic models such as LDA and

STC. A faster optimization scheme based on adam was proposed and also its adaptation to

orthant-wise learning.

The analysis on the uncertainty of embeddings motivated the need for Bayesian modelling,

which will be discussed in the following chapter.
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Chapter 5

Learning document representations along with their

uncertainties

This chapter presents a new model called Bayesian subspace multinomial model (Bayesian

SMM). This model aims to overcome the major limitation of subspace multinomial model,

that we have seen in the last chapter - by “representing document embeddings in the form of

Gaussian distributions, thereby capturing the uncertainty in the estimates”. The benefits of

modelling uncertainty is reflected in the analysis and results. Additionally, this chapter will

also address the problem of intractability that appears while performing variational inference

in mixed-logit models (Bishop, 2006; Depraetere and Vandebroek, 2017).

5.1 Bayesian subspace multinomial model

Bayesian SMM is a generative model for the bag-of-words representation of documents, and

the corresponding graphical model is depicted in Fig. 5.1. This generative probabilistic model

assumes that the training data (i.e,. the vector of word counts xd) were generated as follows:

For each document d = 1 . . . D, a K-dimensional latent vector (document embedding) wd is

generated from Gaussian prior with mean µ = 0 and precision λ:

p0 = p(wd) = N (wd |0 , (λI)
−1

), (5.1)

The latent vector wd is a low dimensional representation (K � V ) of document specific distri-

bution of words, where V is the size of the vocabulary. More precisely, for each document, the

V -dimensional vector of word probabilities θd ∈ 4V−1 is calculated as:

ηd = m+ T wd (5.2)

θd = softmax(ηd), (5.3)

where m ∈ RV×1 and T ∈ RV×K are the parameters of the model. The vector m known as

universal background model represents (or bias) log uni-gram probabilities of words. T known
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Figure 5.2: Alternative representation of

Bayesian SMM, where m ,T represent the
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distribution of the document-specific latent

variable and xd is the observed document

(word counts).

as total variability (or weight) matrix (Kockmann et al., 2010; Dehak et al., 2011) is a low-rank

matrix defining subspace of document specific distributions.

Finally, for each document, a vector of word counts xd is sampled from multinomial distri-

bution:

xd ∼ Multi(θd, Nd), (5.4)

where Nd is the number of words in document d.

η from (5.3) represents the natural parameters of the Multinomial distribution. Further,

we can see that our model is linear in the space of natural parameters (5.2). Note that the

parameters of any probability distribution under the exponential family can be expressed in

terms of its natural parameters (Bishop, 2006).

The above described generative process fully defines the Bayesian model, which is now use

to address the following problems: given training data X, model parameters {m,T } can be

estimated and, for any given (unseen) document xt, posterior distribution over corresponding

document embedding p(wt |xt) can be inferred. Parameters of such posterior distributions can

be then used as an low dimensional representation of the document. Note that such distribution

also encodes the inferred uncertainty about such representation.

The posterior distribution for a document embedding wd is obtained by using Bayes’ rule.

For clarity, explicit conditioning on T and m is omitted in the subsequent equations.

p(wd|xd) =
p(xd|wd)p(wd)∫
p(xd|wd)p(wd) dwd

. (5.5)
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In numerator of (5.5), p(wd) represents prior distribution of document embeddings, which

is given by (5.1) and p(xd|wd) represents the likelihood of observed data. According to the

generative process, every document xd is assumed to be a sample from multinomial distribution

(5.4), hence the log-likelihood is computed as:

ln p(xd|wd) =

V∑

i=1

xdi ln θdi, (5.6)

=
V∑

i=1

xdi log

(
exp{mi + tiwd}∑

j exp{mj + tjwd}

)
, (5.7)

=

V∑

i=1

xdi

[
(mi + tiwd)− log


∑

j

exp{mj + tjwd}



]
, (5.8)

where ti represents a row in matrix T . The problem arises while computing the denominator

in (5.5). It involves solving integral over product of likelihood containing softmax function and

Gaussian distribution:

∫
p(xd|wd)p(wd) dwd =

∫ ( V∑

i=1

[ exp{mi + tiwd}∑
j exp{mj + tjwd}

]xdi)(N (wd | 0, diag(λ)
−1

)
)

dwd

(5.9)

There exists no analytical form for this integral. This is a generic problem that arises while per-

forming Bayesian inference for mixed-logit models, multi-class logistic regression or any other

model where likelihood function and prior are not conjugate to each other (Bishop, 2006). In

such cases, one can resort to variational inference and find an approximation to the posterior

distribution p(w|x). This approximation to the true posterior is referred as variational distri-

bution q(w) and is obtained by minimizing the Kullback-Leibler (KL) divergence DKL(q || p)
from the approximate to the true posterior. But, computing the DKL(q || p) also requires the

functional form of true posterior p(w |x), which is intractable. Hence, we take an alternative

approach (see § 3.1.1) to minimize the KL divergence. We express the log marginal (evidence)

of the data as:

ln p(xd) = Eq[ln p(xd,wd)] + H[q] +DKL(q || p), (5.10)

= L(qd) +DKL(q || p). (5.11)

Here H[q] represents the entropy of q(wd). Given the data xd and model parameters, ln p(xd) is

a constant, and DKL(q || p) can be minimized by maximizing L(qd), which is known as Evidence

Lower BOund (ELBO) for a document. See Chapter 3.1.1 for the derivation of VB formulation

in general.
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5.2 Variational Bayes

Using the VB framework, this section explains and derives the procedure for estimating

model parameters {m,T } and inferring the variational distribution, q(wd). Before proceeding,

note that the model assumes that all documents and the corresponding document embeddings

(latent variables) are independent. This can be seen from the graphical model in Fig. 5.1.

Hence, the inference is derived only for one document embedding w, given observed vector of

word counts x. For brevity, the document suffix d is omitted in further.

The variational distribution q(w) is chosen to be Gaussian, with mean ν and precision Γ,

i.e., q(w) = N (w | ν,Γ−1). An analytical form of L(q) is required for the optimization. We

proceed as follows:

L(q) = Eq[ln p(x,w)] + H[q], (5.12)

= Eq[ln p(x | w)] + Eq[ln p(w)] +H[q], (5.13)

= Eq[ln p(x | w)]︸ ︷︷ ︸
A

− DKL(q || p0)︸ ︷︷ ︸
B

(5.14)

The term B in (5.14) is the KL divergence from the variational distribution q(w) to the

document-independent prior (5.1), which can be computed analytically (Petersen and Pedersen,

2012) as:

DKL(q || p0) =
1

2

[
λ tr
(
Γ

−1
)

+ ln|Γ|−K lnλ+ λν
T
ν −K

]
, (5.15)

where K denotes the dimension of document embedding. See Appendix B.1 for step-by-step

derivation. The term B from (5.14) is the expectation over log-likelihood of a document (5.8):

Eq[ln p(x |w)] =

V∑

i=1

xi

[
(mi + tiν)− Eq

[
ln




V∑

j=1

exp{mj + tjw}



]

︸ ︷︷ ︸
F

]
(5.16)

where

F = Eq[ ln




V∑

j=1

exp{mj + tjw}


] (5.17)

F (5.17) involves solving the expectation over log-sum-exp function which is intractable. This

kind of expectation appears when dealing with variational inference in mixed-logit models such

as logistic regression (Blei and Lafferty, 2005; Depraetere and Vandebroek, 2017). We will

present two ways of addressing this intractability. The first approach uses Jensen’s inequality

to form an upper bound on F , whereas the second approach approximates F using Monte-Carlo

samples via re-parametrization.
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5.2.1 Jensen’s inequality

Since logarithm is a concave function, we can use Jensen’s inequality on (5.17) and obtain

the following:

Eq[ ln




V∑

j=1

exp{mj + tjw}


] ≤ ln

(
Eq[

V∑

j=1

exp{mj + tjw}]
)

(5.18)

= ln




V∑

j=1

exp{mj}Eq[exp(tjw)]


 (5.19)

= ln




V∑

j=1

exp{mj + tjν +
1

2
tjΓ

−1
t
T

j}


 (5.20)

Note that (5.20) forms an upper bound on F . Now combining (5.20), (5.16), and (5.14), we

have a lower-bound on L(q):

L(qd) ≥ −DKL(qd || p0) +
V∑

i=1

xi

[
(mi + tiν)− ln




V∑

j=1

exp{mj + tjν +
1

2
tjΓ

−1
t
T

j}



]
. (5.21)

See appendix B.1.1 for the step-by-step derivation of (5.21).

5.2.2 Approximation using Monte-Carlo samples via re-parametrization trick

We can approximate F (5.17) with empirical expectation using samples from q(w), but F
is a function of q(w), whose parameters we are seeking by optimizing L(q). The corresponding

gradients of L(q) with respect to q(w) will exhibit high variance if we directly take samples

from q(w) for the empirical expectation (Paisley et al., 2012). To overcome this, we will re-

parametrize the random variable w by introducing a differentiable function g over another

random variable ε (Kingma and Welling, 2014). If p(ε) = N (0, I), then:

w = g(ε) = ν +L ε, (5.22)

where L is the Cholesky factor of Γ
−1

. Using this re-parametrization of w, we obtain the

following empirical approximation1:

F ≈ 1

R

R∑

r=1

ln




V∑

j=1

exp{mj + tj g(ε̃r)}


, (5.23)

where R denotes the total number of samples (ε̃r) from p(ε).

Blei and Lafferty (2005) encountered the same problem while performing variational infer-

ence for correlated topic model (CTM), and used first-order Taylor series approximation for

1See Appendix B.1.2 for more details.
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F . This in-turn became a lower bound on L(q). The problem with first-order Taylor series

approximation is illustrated in Chapter 3.2.3.1.

The re-parametrization trick for approximating F was also used in neural variational doc-

ument model (Miao et al., 2016). There are similar approximation techniques based on Quasi

Monte Carlo sampling (Depraetere and Vandebroek, 2017).

Combining (5.15), (5.16) and (5.23), we get the approximation to L(q). We will introduce

back the document suffix d, to make the notation explicit:

L
RP

(qd) ≈ −DKL(qd || p0)+
V∑

i=1

xdi

[
(mi+tiνd)−

1

R

R∑

r=1

ln




V∑

j=1

exp{mj + tj g( ε̃dr )}



]
. (5.24)

For the entire dataX, the complete ELBO will be simply the summation over all the documents,

i.e.,
∑

d L(qd). Now that the analytical form approximating ELBO is obtained, we will explain

the training procedure in the next section.

The following sections continue the discussion with the objective function (5.24) derived

using the re-parametrization trick. However, in the § 5.5.4 we provide the empirical comparison

with the model that uses Jensen’s inequality.

5.3 Training

The variational Bayes (VB) training procedure for Bayesian SMM is stochastic because

of the sampling involved in the re-parametrization trick (5.22). Like the standard VB ap-

proach (Bishop, 2006), we optimize ELBO alternately with respect to q(w) and {m,T }. Since

we do not have closed form update equations, we perform gradient-based updates. Additionally,

we regularize rows in matrix T while optimizing. Thus, the final objective function becomes:

L
RP

=
D∑

d=1

L
RP

(qd)− ω
V∑

i=1

||ti||1 , (5.25)

where we have added the term for `1 regularization of rows in matrix T , with corresponding

weight ω. The same regularization was previously used for non Bayesian SMM in (Kesiraju

et al., 2016). This can also be seen as obtaining a maximum a posteriori estimate of T with

Laplace priors.

5.3.1 Parameter initialization

The vector m is initialized to log uni-gram probabilities estimated from training data. The

values in matrix T are randomly initialized from N (0, 0.001). The prior over latent variables

p(w) is set to isotropic Gaussian distribution with mean 0 and λ = {1, 10}. The variational

distribution q(w) is initialized to N (0, diag(0.1)). Later in § 5.5.2, we will show that initializing

the posterior to a sharper Gaussian distribution helps to speed up the convergence.
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5.3.2 Optimization

The gradient-based updates are done by adam optimization scheme (Kingma and Ba, 2015);

in addition to the following tricks. We simplified the variational distribution q(w) by making

its precision matrix Γ diagonal. Note that this is not a theoretical limitation but only a

simplification. Further, while updating it, we used log standard deviation parametrization,

which ensures that the variance is always positive:

Γ
−1

= diag(exp{2 ς}). (5.26)

The gradients of the objective (5.24) w.r.t. the mean ν is given as follows:

∇νLRP
(qd) =

[ V∑

i=1

t
T

i (xi −
1

R

R∑

r=1

θir

V∑

k=1

xk)
]
− λν (5.27)

where

θir =
exp{mi + tjg(εr)}∑

j exp{mj + tjg(εr)}
(5.28)

The gradient w.r.t log standard deviation ς is given as:

∇ςLRP
= 1− λ exp{2ς} −

V∑

k=1

xk
1

R

R∑

r=1

V∑

i=1

θirt
T

i � exp{ς} � εr, (5.29)

where 1 represents a column vector of ones, � denotes element-wise product, and exp is element-

wise exponential operation.

The `1 regularization term makes the objective function (5.25) discontinuous i.e., non-

differentiable at points where it crosses the orthant. Hence, we used sub-gradients and employed

orthant-wise learning (Andrew and Gao, 2007). The gradient of the objective (5.25) w.r.t. a

row ti in matrix T is computed as follows:

∇tiLRP
= −ω sign(ti) +

D∑

d=1

[
xdiν

T

d −
[( V∑

k=1

xki

) 1

R

R∑

r=1

θdir(ν
T

d + ε
T

dr � exp{ςT})
]]
. (5.30)

Here, sign and exp operate element-wise. The sub-gradient ∇̃ti is defined as:

∇̃tikL ,





∇tikL+ ω, tik = 0, ∇tik < −ω
∇tikL − ω, tik = 0, ∇tik > ω

0, tik = 0, |∇tik| ≤ ω
∇tikL, |tik| > 0 .

(5.31)

Finally, the rows in matrix T are updated according to:

ti ← PO(ti + di) (5.32)
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Algorithm 3: Stochastic VB training for Bayesian SMM

1 initialize the model and the variational parameters

2 repeat

3 for d = 1 . . . D do

4 sample ε̃dr ∼ N (0, I) r = 1 . . . R

5 compute L(qd) using (5.24)

6 compute gradient ∇νd using (5.27)

7 compute gradient ∇ςd using (5.29)

8 update νd and ςd using adam

9 end

10 compute L using (5.25)

11 compute sub-gradients ∇̃ti using (5.30) and (5.31)

12 update rows in T using (5.32)

13 until convergence or max iterations

where di is the step in ascent direction:

di = η diag(
√
ŝi + ε)

−1
f̂i . (5.33)

Here, η is the learning rate, f̂i and ŝi represents bias corrected first and second moments (as

required by adam) of sub-gradient ∇̃ti respectively. See appendix D for more details on adam.

PO represents orthant projection, which ensures that the update step does not cross the point

of non-differentiability. It is defined as:

PO(ti + di) ,

{
0 if tik(tik + dik) < 0,

tik + dik otherwise .
(5.34)

The orthant projection introduces explicit zeros in the estimated T matrix and, results in sparse

solution. The stochastic VB training is outlined in Algorithm 3.

5.4 Inferring embeddings for new documents

After obtaining the model parameters from VB training, we can infer (extract) the posterior

distribution of document embedding q(w) for any given document x. This is done by iteratively

updating the parameters of q(w) that maximize L(q) from (5.24). These updates are performed

by following the same adam optimization scheme as in training.

Note that the embeddings are extracted by maximizing the ELBO, that does not involve any

supervision (topic labels). These embeddings which are in the form of posterior distributions

will be used as input features for training topic ID classifiers. Alternatively, one can use only

the mean of the posterior distributions as point estimates of document embeddings

56



Table 5.1: Data splits from Fisher phase 1 corpus, where each document represents one side

of the conversation.

Set # docs. Duration (hrs.)

ASR training 6208 553

Topic ID training 2748 244

Topic ID test 2744 226

5.5 Experimental details

5.5.1 Datasets

The experiments were conducted on both speech and text corpora. The speech data used is

Fisher phase 1 corpus2, which is a collection of 5850 conversational telephone speech recordings

with a closed set of 40 topics. Each conversation is approximately 10 minutes long with two sides

of the call and is supposedly about one topic. We considered each side of the call (recording) as

an independent document, which resulted in a total of 11700 documents. Table 5.1 presents the

details of data splits; they are the same as used in earlier research (Hazen et al., 2007; Hazen,

2011; May et al., 2015). See Appendix F for more insights into the dataset.

Our preprocessing involved removing punctuation and special characters, but we did not

remove any stop words. Using Kaldi open-source toolkit (Povey et al., 2011b), we trained a

sequence discriminative DNN-HMM automatic speech recognizer (ASR) system (Veselý et al.,

2013a) to obtain automatic transcriptions. The ASR system resulted in 18% word-error-rate

on a held-out test set. We report experimental results on both manual and automatic tran-

scriptions. The vocabulary size while using manual transcriptions was 24854, for automatic, it

was 18292, and the average document length is 830, and 856 words respectively.

The text corpus used is 20Newsgroups3, which contains 11314 training and 7532 test docu-

ments over 20 topics. Our preprocessing involved removing punctuation and words that do not

occur in at least two documents, which resulted in a vocabulary of 56433 words. The average

document length is 290 words. Additionally, the perplexity results are also reported with a

limited vocabulary of 2000 words as used in (Srivastava et al., 2013b; Miao et al., 2016). This

version of the corpus is not the pre-processed version as used in earlier chapter (§ 4.4.1).

2https://catalog.ldc.upenn.edu/LDC2004S13
3http://qwone.com/~jason/20Newsgroups/
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Figure 5.3: Convergence of Bayesian SMM for various initializations of variational distribution.

The model was trained on 20Newsgroups corpus with K = 100, and ω = 1.

5.5.2 Convergence rate of Bayesian SMM

We observed that the posterior distributions extracted using Bayesian SMM are always much

sharper than standard Normal distribution. Hence we initialized the variational distribution to

N (0, diag(0.1)) to speed up the convergence. Fig. 5.3 shows objective (ELBO) plotted for two

different initializations of variational distribution. Here, the model was trained on 20Newsgroups

corpus, with the embedding dimension K = 100, regularization weight ω = 1.0 and prior set

to standard normal. We can observe that the model initialized to N (0, diag(0.1)) converges

faster as compared to the one initialized to standard normal. In all the further experiments, we

initialized both the prior and variational distributions to N (0, diag(0.1)). One can introduce

hyper-priors and learn the parameters of prior distribution.

5.5.3 Evaluation using perplexity

These experiments show the comparison of the perplexities of proposed Bayesian SMM and

neural variational document model (NVDM) (Miao et al., 2016). NVDM was reported to

achieve state-of-the-art perplexity results on 20Newsgroups dataset under limited vocabulary

condition of 2000 words. Additionally, the comparison of perplexity results on Fisher corpora

is also presented.

The publicly available source code for NVDM4 was used and custom implementation5 of

Bayesian SMM using PyTorch (Paszke et al., 2017) library.

4https://github.com/ysmiao/nvdm
5https://github.com/skesiraju/BaySMM
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Table 5.2: Comparison of perplexity (PPL) results on 20Newsgroups. The values in the brackets

indicate results with a limited vocabulary of 2000 words.

Model Embedding dimension (K) PPLCORPUS PPLDOC

NVDM 50 1287 (769) 1421 (820)

NVDM 200 1387 (852) 1519 (870)

Bayesian SMM 50 1043 (629) 1064 (639)

Bayesian SMM 200 882 (519) 851 (515)

ML estimate - 153 (90) 93 (42)

All the models were evaluated by measuring perplexity of the test documents. It is computed

as an average document perplexity according to (2.9) and also computed across the entire test

corpus according to (2.10). Perplexity gives a notion of how well the model explains (fits) the

data or how uncertain the model is about the data. Lower perplexity values indicate that the

model is less uncertain about the data. Perplexity is inversely proportional to log-likelihood of

the data. This can be seen from (2.9) and (2.10).

In our case, ln p(x) from (5.11) cannot be evaluated, because the KL divergence from vari-

ational distribution q to the true posterior p cannot be computed; as the true posterior is

intractable (5.5). We can only compute L(q), which is a lower bound on ln p(x); thus the re-

sulting perplexity values act as upper bounds. This is true for NVDM (Miao et al., 2016) or any

other model in the VB framework where the true posterior is intractable (Bishop, 2006). We

estimated L(q) from (5.24) using 32 samples, i.e., R = 32, in order to compute perplexity. We

used the same number of samples for the baseline NVDM. Fig. 5.4 shows the perplexity values of

both the datasets evaluated using Bayesian SMM with various number of Monte Carlo samples

R. We can observe that higher number of samples (R ≥ 16) results in consistent perplexities.

Next, Table 5.2 presents the comparison of 20Newsgroups test data perplexities obtained

using Bayesian SMM and NVDM in. It also shows the perplexities of 20Newsgroups corpus

under full and a limited vocabulary of 2000 words, similar to the ones reported in (Miao et al.,

2016). The Table 5.2 also shows the perplexities computed using the maximum likelihood

probabilities estimated on the test data. It acts as the lower bound on the test perplexities.

NVDM was shown (Miao et al., 2016) to achieve superior perplexity scores when compared

to LDA, docNADE (Larochelle and Lauly, 2012), Deep Auto Regressive Neural Network mod-

els (Mnih and Gregor, 2014). To the best of our knowledge, our model achieves state-of-the-art

perplexity scores on 20Newsgroups corpus under limited and full vocabulary conditions.
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Figure 5.4: Perplexity values of both the datasets evaluated using Bayesian SMM with various

number of Monte Carlo samples R.
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Figure 5.5: Comparison of training and test data perplexities obtained using Bayesian SMM

and NVDM for both Fisher and 20Newsgroups datasets. The horizontal solid green line shows

the test data perplexity computed using the maximum likelihood (ML) probabilities estimated

on the test data. The latent (embedding) dimension was set to 200 for both the models.

In further investigation, we trained both Bayesian SMM and NVDM until convergence. At

regular checkpoints during the training, we froze the model, extracted the embeddings for both

training and test data, and computed the perplexities; shown in Figures 5.5a and 5.5b. We

can observe that both the Bayesian SMM and NVDM fit the training data equally well (low

perplexities). However, in the case of NVDM, the perplexity of test data increases after certain

60



0

200

400

P
P

L
D

O
C

Fisher Training set

Jensen’s Inequality Monte-Carlo re-parametrization

Fisher Test set

0.01 0.1 0.5 1.0 5.0
ω

0

200

400

P
P

L
C

O
R

P
U

S

0.01 0.1 0.5 1.0 5.0
ω

0

500

1000

P
P

L
D

O
C

20Newsgroups Training set 20Newsgroups Test set

0.01 0.1 0.5 1.0 5.0
ω

0

500

1000

P
P

L
C

O
R

P
U

S

0.01 0.1 0.5 1.0 5.0
ω

Figure 5.6: Comparison of perplexities for Bayesian SMM on two different datasets with two

different bounds (Jensen’s inequality and Monte Carlo re-parametrization). ω represents `1

regularization weight on the rows of matrix T .
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number of iterations; suggesting that NVDM fails to generalize and over-fits on the training

data. In the case of Bayesian SMM, the perplexity of the test data decreases and remains

stable, illustrating the robustness of our model.

5.5.4 Jensen’s inequality vs re-parametrization trick

This section presents the comparison of bounds used in obtaining the ELBO for Bayesian

SMM, i.e., we compare the Jensen’s inequality with the Monte Carlo approximation via the re-

parametrization trick (§ 5.2.1 and 5.2.2). In both cases, ELBO was optimized to learn the model

parameters and also the posterior distribution over latent variables (document embeddings).

We compare the perplexity scores of both the models on both the datasets under various hyper-

parameter settings. Lower perplexities indicate a better fit to the data.

Recall from § 5.2.1 that by using Jensen’s inequality in the formulation of ELBO, we only

have a lower bound during the optimization. However, for the computation of perplexity, we use

the same Monte-Carlo approximation for the expectation over log-sum-exp (5.23). This is fair

because we are not estimating the parameters and only evaluating the perplexity. Moreover,

we have also shown in Fig. 5.4 that higher number of Monte Carlo samples yields in robust

estimates of perplexities.

The Fig. 5.6 present the perplexities on both training and test sets of both Fisher and

20Newsgroups datasets. The models are compared for various choices of ω, the `1 regularization

weight for the rows in matrix T . The embedding dimension was set to 100 and all the other

configurations were identical for both the models.

5.5.5 Uncertainty in document embeddings

The uncertainty captured in the posterior distribution of document embeddings correlates

strongly with size of the document. The trace of the covariance matrix of the inferred posterior

distributions gives us the notion of such a correlation. Fig. 5.7 shows an example of uncertainty

captured in the embeddings. Here, the Bayesian SMM was trained on 20Newsgroups with an

embedding dimension of 100.

5.6 Summary and conclusions

In this chapter, we have presented Bayesian subspace multinomial model for learning doc-

ument representations along with their uncertainties. We have also addressed the problem of

intractability that appears when performing variational inference in mixed-logit models. We

also presented the comparison of bounds for approximating the intractable expectation over log-

sum-exp. The experiments revealed that Monte Carlo approximation via the re-parametrization
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Figure 5.7: Uncertainty (trace of covariance of posterior distribution) captured in the docu-

ment embeddings of 20Newsgroups dataset.

trick is better than Jensen’s inequality. The re-parametrization trick can be used in Bayesian

modelling of word embedding algorithms, thereby capturing the uncertainties.

The experimental results have shown that the proposed model achieves state-of-the-art per-

plexities on 20Newsgroups and Fisher test sets. Further, we have also illustrated the robustness

of Bayesian SMM as compared to the variational auto encoder inspired document models.

The next chapter will present a classifier that can exploit the learned uncertainties for topic

identification.
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Chapter 6

Exploiting uncertainties in document embeddings for

topic identification

This chapter will present a generative Gaussian classifier that exploits the uncertainty in

the posterior distributions of document embeddings. Moreover, it also exploits the same un-

certainty while predicting the class labels. More specifically, it will be used for the task of

topic identification from spoken and text documents. The proposed classifier is called Gaussian

classifier with uncertainty (GLCU) and is inspired by (Kenny et al., 2013; Cumani et al., 2015).

It can be seen as a extension to the simple Gaussian linear classifier (GLC) (Bishop, 2006).

6.1 Gaussian linear classifier with uncertainty

Let ` = 1 · · ·L denote class labels, d = 1 · · ·D represent document indices with hd repre-

senting class label of document d in one-hot encoding.

The GLC assumes that every class is Gaussian distributed with a specific mean µ` and a

shared precision matrix D. Let M denote a matrix of class means, with µ` ∈ RK representing

a column. GLC is described by the following linear model:

wd = µd + εd, (6.1)

where µd = Mhd, and p(ε) = N (ε |0,D−1
).

GLC can be trained by estimating the parameters Θ = {M ,D} that maximize the class

conditional likelihood of the training data. For a single training example, the likelihood is

computed as:

p(wd |hd, Θ) = N (wd |µd,D
−1

). (6.2)

In the standard scenario, GLC is trained using the observed document embeddings wd. In

our case, however, the training examples come in the form of posterior distributions q(wd) =

N (wd |νd,Γ
−1

d ) as extracted using our Bayesian SMM. In such case, the proper ML training

procedure would aim to maximize the expected class-conditional likelihood, where the expec-
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tation over wd would be calculated for each training example with respect to the posterior

distribution q(wd):

Eq[p(wd |hd, Θ)] = Eq[N (wd |µd,D
−1

)]. (6.3)

However, it is more convenient to introduce an equivalent model, where the observations are

the means νd of the posteriors q(wd) and the uncertainty encoded in Γ
−1

d is introduced into the

model through latent variable yd as:

νd = µd + yd + εd, (6.4)

where p(yd) = N (yd |0,Γ
−1

d ). The resulting model is called Gaussian linear classifier with un-

certainty (GLCU).Since the random variables yd and εd are Gaussian-distributed, the resulting

class conditional likelihood is obtained using the convolution of two Gaussians (Bishop, 2006):

p(νd |hd, Θ) = N (νd |µd, Γ
−1

d +D
−1

). (6.5)

The model parameters for both GLC and GLCU have the same interpretation, i.e., each class

is Gaussian distributed with specific mean and a common precision matrix. The difference lies

in the evaluation of the likelihood function (6.2) vs (6.5).

GLCU can be trained by estimating its parameters Θ that maximize the class conditional

likelihood Eq. (6.5) of training data. This can be done efficiently by using the EM algorithm;

described in the following section.

6.1.1 EM algorithm

To estimate the model parameters, we iterate between E-step and M-step. In the E-step,

we calculate the posterior distribution of latent variables1:

p(yd |νd, Θ) ∝ p(νd |yd, Θ) p(yd) (6.6)

∝ N (yd |ud,V
−1

d ), (6.7)

where

mean ud = [I +D
−1

Γd]
−1

(νd − µd), (6.8)

and precision matrix Vd = D + Γd. (6.9)

1See Appendix C for complete derivation.
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In the M-step, we maximize the auxiliary function Q with respect to model parameters Θ. It

is the expectation of log joint-probability with respect to p(yd |νd), i.e.,

Q = Ep[
D∑

d=1

log p(νd,yd | Θ)] (6.10)

= −1

2

[
D∑

d=1

(
tr(DV

−1

d ) + a
T

dDad

)
−N log|D|

]
+ const, (6.11)

where

ad = [ud − (νd − µd)]. (6.12)

Maximizing the auxiliary function Q w.r.t. Θ, we have the following closed form update equa-

tions:

µ` ←
1

|I`|
∑

d∈I`
(νd − ud) ∀ ` = 1 . . . L (6.13)

D
−1 ← 1

N

[ D∑

d=1

(ad a
T

d) + V
−1

d

]
, (6.14)

where I` is the set of documents from class `. To train the GLCU model, we alternate between

e-step and m-step until convergence. For faster convergence, the model parameters {M ,D}
are initialized with maximum likelihood estimates obtained from GLC.

6.1.2 Classification

Given a posterior distribution of a test document embedding q(wt) = N (wt |νt,Γ−1

t ), we

compute the class conditional likelihood according to Eq. (6.5), and the posterior probability

of a class Ck is obtained by applying the Bayes’ rule:

p(Ck |νt,Γt, Θ) =
p(νt | µk,D,Γt) p(Ck)∑
` p(νt | µ`,D,Γt) p(C`)

(6.15)

6.2 Illustration using synthetic data

This section illustrates the significance of the proposed GLCU on synthetic data. To begin

with, the procedure for generating data points along with their uncertainties is explained. Each

data point is in the form a Gaussian distribution with a specific mean and covariance.

First, 4 Gaussian distributed classes with specific mean (?) and a shared co-variance matrix

are initialized. Then 100 data points are sampled for each class. A few of the samples are

depicted in subplot (i.a) of Fig. 6.1. The next subplot (i.b) shows the estimated parameters of

GLC, using the generated 100 points. The estimated class means are represented by � and the
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Figure 6.1: The illustration of GLC vs GLCU on two-dimensional synthetic data. The image

should be read row-wise first and then compared column-wise. Refer to the text for details.

shared co-variance by an shaded ellipse. The corresponding linear decision boundaries are in

subplot (i.c). Given that the data points are directly generated from true classes the estimated

parameters and decision boundaries reflect the distribution of true classes.

Next, each data point xi is corrupted by a random noise; sampled from Gaussian distribution

having mean xi and a specific precision λi (inverse of variance); which in turn is sampled from

Gamma distribution. If xi is the original data point, then the noisy data point x̂i is generated

as:

λi ∼ Gamma(k, θ), (6.16)

x̂i ∼ N (xi, λ
−1

i ) (6.17)

where k, θ are shape and scale parameters of Gamma distribution respectively.

Few noisy data points (x̂i) are illustrated in subplot (ii.a) in Fig. 6.1. The next subplot
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(ii.b) shows the estimated parameters of GLC using the 100 noisy points. The corresponding

decision boundaries are shown in subplot (ii.c). Note that estimated parameters and the decision

boundaries are different from the true ones (i.b) and (i.c).

If we do not observe the true data points, the uncertainty associated with every noisy data

point x̂i is fully described by its precision λi. The subplot (iii.a) from Fig. 6.1 shows few noisy

data points along with their uncertainties. The next subplot (iii.b) estimated class means and

shared covariance using GLCU. We can observe that by estimated parameters (class means

and shared-covariance) in (iii.b) are much closer to the true ones (i.b). Similarly the decision

boundaries in (iii.c) resemble the true ones in (i.c).

The analogy to the posterior distribution of document embeddings (extracted using Bayesian

SMM) is straightforward - p(xi) = N (xi | x̂i, λ−1

i ), i.e., x̂i and λi represent the estimated mean

and precision of the Gaussian distribution. The inherent assumption in Bayesian SMM is that

the inferred uncertainty is same as the true uncertainty. In reality, this may not be entirely

true. Nevertheless, our results show the benefits of modelling and exploiting uncertainties.

6.3 Related works: modelling uncertainties via Gaussian em-

beddings

Recent works in NLP (Vilnis and McCallum, 2015; Sun et al., 2018) represent word em-

beddings in the form of Gaussian distributions. Using the asymmetric KL divergence or the

symmetric Wasserstein Distance, the uncertainty is exploited for word similarity, entailment

and document classification tasks. Similar to the presented classifier, (Xiao and Wang, 2019)

quantifies the uncertainties in the data and exploits it for sentiment analysis, named entity

recognition, etc.

Gaussian embeddings extracted from spoken utterance, popularly known as embeddings (De-

hak et al., 2011) were used for speaker identification, and verification tasks; and have been the

state-of-the-art for several years (Kenny et al., 2013). Ondel et al. (2019) proposed a fully

Bayesian subspace hidden Markov model for acoustic unit discovery from speech; where phone-

like (acoustic) units from an unseen language are represented by Gaussian embeddings living

in a subspace that was learnt using labelled data from other languages. Brümmer et al. (2018)

developed2 a more theoretical framework around Gaussian embeddings for various classification

and verification scenarios.

Kendall and Gal (2017) argued the importance of modelling uncertainty of safety critical

applications in computer vision, and applied it for semantic segmentation and depth regression

tasks.

2https://github.com/bsxfan/meta-embeddings
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6.4 Experiments

In these experiments, the learned document representations are evaluated on topic identifi-

cation task. The experiments are conducted on the same datasets as described earlier in 5.5.1.

6.4.1 Proposed topic ID systems

Our Bayesian SMM is an unsupervised model trained iteratively by optimizing the ELBO; it

does not necessarily correlate with the performance of topic ID. It is valid for SMM, neural vari-

ational document model (NVDM) or any other generative model trained without supervision.

A typical way to overcome this problem is to have an early stopping mechanism (ESM), which

requires to evaluate the topic ID accuracy on a held-out (or cross-validation) set at regular

intervals during the training. It can then be used to stop the training earlier if needed.

Using the above described scheme, we trained three different classifiers: (i) Gaussian linear

classifier (GLC), (ii) multi-class logistic regression (LR), and, (iii) Gaussian linear classifier with

uncertainty (GLCU). Note that GLC and LR cannot exploit the uncertainty in the document

embeddings; and are trained using only the mean parameter ν of the posterior distributions;

whereas GLCU is trained using the full posterior distribution q(w), i.e., along with the un-

certainties of document embeddings as described in Section 6.1. GLC and GLCU does not

have any hyper-parameters to tune, while the `2 regularization weight of LR was tuned using

cross-validation experiments.

6.4.2 Baseline topic ID systems

6.4.2.1 NVDM

Since NVDM and our proposed Bayesian SMM share similarities, we chose to extract the

embeddings from NVDM and use them for training linear classifiers. Given a trained NVDM

model, embeddings for any test document can be extracted just by forward propagating through

the encoder. Although this is computationally cheaper, one needs to decide when to stop

training, as a fully converged NVDM may not yield optimal embeddings for discriminative tasks

such as topic ID. Hence, we used the same early stopping mechanism as described in earlier

section. We used the same three classifier pipelines (LR, GLC, GLCU) as we used for Bayesian

SMM. Our architecture and training scheme are similar to ones proposed in (Miao et al., 2016),

i.e., two feed forward layers with either 500 or 1000 hidden units and {sigmoid,ReLU, tanh}
activation functions. The latent dimension was chosen from K = {100, . . . , 800}. The hyper-

parameters were tuned based on cross-validation experiments.
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6.4.2.2 SMM

Our second baseline system is non-Bayesian SMM with `1 regularization over the rows in

T matrix, i.e., `1 SMM. It was trained with hyper-parameters such as embedding dimension

K = {100, . . . , 800}, and regularization weight ω = {1e − 04, . . . , 1e + 01}. The embeddings

obtained from SMM were then used to train GLC and LR classifiers. Note that we cannot use

GLCU here, because SMM yields only point-estimates of embeddings. We used the same early

stopping mechanism to train the classifiers. The experimental analysis in Section 6.5.1 shows

that Bayesian SMM is more robust to over-fitting when compared to SMM and NVDM, and

does not require an early stopping mechanism.

6.4.2.3 ULMFiT

The third baseline system is the universal language model fine-tuned for classification (ULM-

FiT) (Howard and Ruder, 2018). The pre-trained3 model consists of 3 BiLSTM layers. Fine-

tuning the model involves two steps: (a) fine-tuning LM on the target dataset and (b) training

classifier (MLP layer) on the target dataset. We trained several models with various drop-

out rates. More specifically, the LM was fine-tuned for 15 epochs, with drop-out rates from:

{0.2, . . . , 0.6}. Fine-tuning LM for higher number of epochs degraded the classification perfor-

mance. The classifier was fine-tuned for 50 epochs with drop-out rates from: {0.2, . . . , 0.6}.
A held-out development set was used to tune the hyper-parameters (drop-out rates, and fine-

tuning epochs).

6.4.2.4 TF-IDF

The fourth baseline system is a standard term frequency-inverse document frequency (TF-

IDF) based document representation, followed by multi-class logistic regression (LR). Although

TF-IDF is not a topic model, the classification performance of TF-IDF based systems are often

close to state-of-the-art systems (May et al., 2015). The hyper-parameter (`2 regularization

weight) of LR was selected based on 5-fold cross-validation experiments on training set.

6.5 Results and discussion

6.5.1 Early stopping mechanism for topic ID systems

The embeddings extracted from a model trained purely in an unsupervised fashion does

not necessarily yield optimum results when used in a supervised scenario. As discussed ear-

lier in Sections 6.4.1, and 6.4.2, an early stopping mechanism (ESM) during the training of

an unsupervised model (e.g.: NVDM, SMM, and Bayesian SMM) is required to get optimal

3https://github.com/fastai/fastai
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Figure 6.2: Performance of topic ID systems on Fisher data at various checkpoints during

model training. The circular dot (•) represents the best cross-validation score and the cor-

responding test score obtained using the early stopping mechanism (ESM). The embedding

dimension was set to 100 for all the models.

performance from the subsequent topic ID system. The following experiment illustrates the

idea of ESM:

We trained SMM, Bayesian SMM and NVDM on Fisher data until convergence. At regular

checkpoints during the training, we froze the model, extracted the embeddings for both train-

ing and test data. We chose GLC for SMM, GLCU for NVDM, and Bayesian SMM as topic

ID classifiers. We then evaluated the topic ID accuracy on the cross-validation4 and test sets.

Fig. 6.2 shows the topic ID accuracy on cross-validation and test sets obtained at regular check-

points for all the three models. The circular dot (•) represents the best cross-validation score

and the corresponding test score that is obtained by employing ESM. In case of (non-Bayesian)

SMM, the test accuracy drops significantly after certain number of iterations; suggesting the

strong need of ESM. The cross-validation accuracies of NVDM and Bayesian SMM are simi-

lar and remain consistent over the iterations. However, the test accuracy of NVDM is much

lower than that of Bayesian SMM and also decreases over the iterations. On the other hand,

the test accuracy of Bayesian SMM increases and stays consistent. It shows the robustness of

our proposed model, which in addition, does not require any ESM. In all the further topic ID

experiments, we report classification results for Bayesian SMM without ESM; while the results

for SMM, and NVDM are with ESM.

6.5.2 Topic ID results

This section presents the topic ID results in terms of classification accuracy (in %) and

cross-entropy (CE) on the test sets. Cross-entropy gives a notion of how confident the classifier

45-fold cross-validation on training set.
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Table 6.1: Comparison of results on Fisher test sets, from earlier published works, our baselines

and proposed systems. ? indicates a pure discriminative model.

Transcriptions

Manual Automatic

Systems Model Classifier Acc. (%) CE Acc. (%) CE

Prior works BoW (Hazen et al., 2007) NB 87.61 - - -

(Baselines) TF-IDF (May et al., 2015) LR 86.41 - - -

Baselines

TF-IDF LR 86.59 0.93 86.77 0.94

ULMFiT ? MLP 86.41 0.50 86.08 0.50

`1 SMM LR 86.81 0.91 87.02 1.09

`1 SMM GLC 85.17 1.64 85.53 1.54

NVDM LR 81.16 0.94 83.67 1.15

NVDM GLC 84.47 1.25 84.15 1.22

NVDM GLCU 83.96 0.93 83.01 0.97

Proposed

Bayesian SMM LR 89.91 0.89 88.23 0.95

Bayesian SMM GLC 89.47 1.05 87.23 1.46

Bayesian SMM GLCU 89.54 0.68 87.54 0.77

is about its prediction. A well calibrated classifier tends to have lower cross-entropy.

Table 6.1 presents the classification results on Fisher speech corpora with manual and au-

tomatic transcriptions, where the first two rows are the results from earlier published works.

(Hazen et al., 2007), used discriminative vocabulary selection followed by a näıve Bayes (NB)

classifier. Having a limited (small) vocabulary is the major drawback of this approach. Al-

though we have used the same training and test splits, (May et al., 2015) had slightly larger

vocabulary than ours, and their best system is similar to our baseline TF-IDF based system.

The remaining rows in Table 6.1 show our baselines and proposed systems. We can see that

our proposed systems achieve consistently better accuracies; notably, GLCU which exploits the

uncertainty in document embeddings has much lower cross-entropy than its counter part, GLC.

To the best of our knowledge, the proposed systems achieve the best classification results on

Fisher corpora with the current set-up, i.e., treating each side of the conversation as an inde-

pendent document. It can be observed ULMFiT has the lowest cross-entropy among all the

systems.

Table 6.2 presents classification results on 20Newsgroups dataset. The first three rows give

the results as reported in earlier works. (Pappagari et al., 2018), proposed a CNN-based

discriminative model trained to jointly optimize categorical cross-entropy loss for classification
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Table 6.2: Comparison of results on 20Newsgroups from earlier published works, our baselines

and proposed systems. ? indicates a pure discriminative model.

Systems Model Classifier Accuracy (%) CE

Prior works

CNN (Pappagari et al., 2018) ? - 86.12 -

SCDV (Mekala et al., 2017) SVM 84.60 -

NTSG-1 (Liu et al., 2015) SVM 82.60 -

Our Baselines

TF-IDF LR 84.47 0.73

ULMFiT ? MLP 83.06 0.89

`1 SMM LR 82.01 0.75

`1 SMM GLC 82.02 1.33

NVDM LR 79.57 0.86

NVDM GLC 77.60 1.65

NVDM GLCU 76.86 0.88

Proposed

Bayesian SMM LR 84.65 0.53

Bayesian SMM GLC 83.22 1.28

Bayesian SMM GLCU 82.81 0.79

task along with binary cross-entropy for verification task. Sparse composite document vector

(SCDV) (Mekala et al., 2017) exploits pre-trained word embeddings to obtain sparse document

embeddings, whereas neural tensor skip-gram model (NTSG) (Liu et al., 2015) extends the idea

of a skip-gram model for obtaining document embeddings. The authors in (SCDV) (Mekala

et al., 2017) have shown superior classification results as compared to paragraph vector, LDA,

NTSG, and other systems. The next rows in Table 6.2 present our baselines and proposed

systems. We see that the topic ID systems based on Bayesian SMM and logistic regression is

better than all the other models, except for the purely discriminative CNN model. We can

also see that all the topic ID systems based on Bayesian SMM are consistently better than

variational auto encoder inspired NVDM, and (non-Bayesian) SMM.

The advantages of the proposed Bayesian SMM are summarized as follows: (a) the document

embeddings are Gaussian distributed which enables to train simple generative classifiers like

GLC, or GLCU; that can extended to newer classes easily, (b) although the Bayesian SMM is

trained in an unsupervised fashion, it does not require any early stopping mechanism to yield

optimal topic ID results; document embeddings extracted from a fully converged or model can

be directly used for classification tasks without any fine-tuning.
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6.6 Summary and conclusions

This chapter presented a generative Gaussian linear classifier (GLCU) that exploits the dis-

tribution of data points i.e., uncertainty in embeddings or embeddings. On synthetic data, the

problem (inaccurate estimates of class means) caused by uncertain features (embeddings) is

illustrated. Further, a proper way of estimating the class means by using the proposed GLCU

was discussed. Applying the proposed GLCU on the document embedding posterior distri-

butions extracted from Bayesian SMM, achieved state-of-the-art classification results on both

Fisher speech and 20Newsgroups text corpora while considering unsupervised topic models.
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Chapter 7

Multilingual document embeddings

A closed-set monolingual topic identification (ID) or document classification in resource-rich

languages is usually done with the help of discriminative models such as end-to-end neural

network classifiers (Yang et al., 2016a; Pappagari et al., 2018) or pre-trained language models

fine-tuned for classification (Howard and Ruder, 2018). In case of cross-lingual topic ID, where

target data has little or no labels, learning a common embedding space for multiple (say, L

number of) languages is beneficial (Ammar et al., 2016; Schwenk and Li, 2018; Ruder et al.,

2019). This common embedding space is learnt by exploiting parallel dictionary or parallel

sentences among the L languages. Such a parallel data is not required to have topic labels.

A classifier is then trained on the embeddings from a source (src) language (one from the L

languages) that has topic labels. The same classifier is then and used to classify the embeddings

extracted for test data, which can be from any of the L target (tar) languages. The underlying

assumption here is that the embeddings carry semantic concept(s), independent of language,

enabling cross-lingual transferability (src → tar). Hence, the reliability of this scheme solely

depends on quality of the embedding space. Note that the amount of available training data

could be limited and different from the parallel data, which is also the case for the experiments

presented in this chapter.

This chapter presents an extension of Bayesian SMM to learn language-agnostic document

embeddings by exploiting multilingual parallel data. The proposed model aims to learn a

common low-dimensional subspace for document-specific unigram distributions from multiple

languages. Moreover, the proposed model represents the document embeddings in the form

of Gaussian distributions, thereby encoding the uncertainty in its covariance. The learned

uncertainties are further propagated into a generative Gaussian linear classifier for zero-shot

cross-lingual topic identification.

The experiments on 5-language subset of Reuters multi-lingual corpora (MLDoc) show that

the proposed system outperforms (a) multilingual word embedding based (Multi-CCA), and

(b) state-of-the-art neural machine translation inspired sequence-to-sequence bi-directional long

short-term memory network (BiLSTM) based systems (Schwenk and Li, 2018), with significant
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Figure 7.1: (Left) Graphical representation of the proposed multilingual model, where L rep-

resents number of languages and D denotes number of L-way parallel documents (transla-

tions). {m(`),T (`)} are document-independent, language-specific model parameters, whereas

wd is document-specific but language-independent random variable (embedding). N
(`)
d repre-

sents number of word tokens in document d from language `. (Right) Alternative representation,

where document embedding wd is a passed through language-specific linear layers whose pa-

rameters are Θ(`) = {m(`), T (`)}. The outputs are sent through softmax function to obtain

unigram distribution of words in document d for each language ` = 1 . . . L .

margins in most of the transfer directions.

The experimental analysis also shows that increasing the amount of parallel data improves

the overall performance of the cross-lingual topic ID systems. Nonetheless, exploiting the

uncertainties during classification is always beneficial.

7.1 Model

The graphical representation of multilingual Bayesian subspace multinomial model is de-

picted in Fig. 7.1. Like majority of the probabilistic topic models (Blei, 2012; Miao et al.,

2016), our model also relies on bag-of-words representation of documents. Let V (`) represent

the vocabulary size in language ` = 1 . . . L. Let {m(`),T (`)} ∀ ` represent the language-specific

model parameters, where T (`) is a low-rank matrix of size V (`) × K (K � V (`)) defines the

subspace of document specific unigram distributions. Our multilingual model assumes that

the L-way parallel data (translations of bag-of-words) are generated according to the following

process:

First, sample a K-dimensional (K � V (`)) language-independent, document-specific embed-

ding from isotropic Gaussian prior distribution with precision λ:

wd ∼ N (w | 0, (λI)
−1

). (7.1)
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wd can be interpreted as vector representing higher-level semantic concepts (topic alike) of a

document, independent of any language. For each language ` = 1 . . . L, a vector of word counts

x
(`)
d is generated by the following two steps:

(i) Compute the document-specific unigram distribution θ
(`)
d using the language-specific pa-

rameters:

θ
(`)
d = softmax(m(`) + T (`)wd), (7.2)

(ii) Sample a vector of word counts x
(`)
d :

x
(`)
d ∼ Multinomial(θ

(`)
d , N

(`)
d ), (7.3)

where N
(`)
d are the number of trials (word tokens in document d), i.e.,

∑
n x

(`)
dn = N

(`)
d .

x(1) . . .x(L) represent L-way parallel bag-of-words statistics.

The above steps describe the generative process of the proposed multilingual topic model.

However, in reality, we do not generate any data, instead we invert the generative process: given

the training (observed) data x
(`)
d ∀ ` = 1 . . . L, ∀ d = 1 . . . D, we estimate the language-specific

model parameters {m(`),T (`)} and also the posterior distributions of language-independent

document embeddings p(wd|x(1)
d . . .x

(L)
d ) ∀ d. Moreover, given an unseen document x

(`)
t from

any of the L languages, we infer the corresponding posterior distribution of the document

embedding p(wt | x(`)
t ). Note that such a posterior distribution also carries the uncertainty

about the estimate.

Although we describe the model assuming L-way parallel data, in practice the model can be

trained with parallel text (translations) between language pairs covering all the L languages.

7.1.1 Variational Bayes training

The proposed model is trained using the variational Bayes framework, i.e., we approximate

the intractable true posterior with the variational distribution:

q(wd) = N (wd | νd, diag(γd)
−1), (7.4)

and, optimize the evidence lower-bound. Further, we use Monte Carlo samples via the re-

parametrization trick to approximate the expectation over log-sum-exp term which appears in

the lower-bound (see Chapter 5 § 5.2.2 for details). The resulting lower-bound for a single set

of L-parallel documents in given by:

L(qd) ≈
L∑

`=1

V (`)∑

i=1

x
(`)
di

[
(m

(`)
i + t

(`)
i νd)−

1

R

R∑

r=1

log
( V∑

j=1

exp{m(`)
j + t

(`)
j g(εdr)}

)]
−DKL(qd || p),

(7.5)
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where DKL(qd || p) is the Kullback-Leibler divergence from variational distribution (7.4) to the

prior (7.1) and, g(εdr) = ν +γ � ε̃dr, with ε̃dr ∼ N (ε | 0, I). R are the number of Monte Carlo

samples used for empirically approximating the expectation over log-sum-exp. The derivation

of the lower-bound for a monolingual case is given in § 5.2.

The complete lower-bound is just the summation over all the documents. Additionally,

we use `2 regularization term with weight ω for language-specific model parameters {T (`)} ∀ `.
Thus, the final objective is

L =
D∑

d=1

L(qd) − ω
L∑

`=1

V (`)∑

i=1

|| t(`)i ||2 . (7.6)

In practice, we follow batch-wise stochastic optimization of (7.6) using adam (Kingma and

Ba, 2015). In each iteration, we update the all model parameters {m(`),T (`)} ∀ ` and the

corresponding posterior distributions of document embeddings q(wd)∀ d.

Unlike in earlier chapters, we use `2 regularization here, because the optimization is easier

when performing batch-wise training on a large dataset. `1 regularization with orthant-wise

learning leads poor minima while performing batch-wise updates, since the objective function

is estimated on a batch of data rather than on the entire dataset. Further more, the orthant

projection introduces explicit zeros, which makes the batch-wise training even more difficult.

7.1.2 Extracting embeddings for unseen documents

Given a bag-of-word statistics from an unseen document from any of the L languages, we

can infer (extract) the corresponding document embedding along with its uncertainty. This

is done by keeping the language-specific model parameters {m(`),T (`)} fixed, and iteratively

optimizing the objective in (7.5) with respect to the parameters of the variational distribution.

In the resulting q(w) = N (w | ν, diag(γ)−1), the mean ν represents the (most likely) document

embedding, and variance diag(γ)−1 encodes the uncertainty around the mean ν.

7.2 Classification exploiting uncertainties

In a traditional scenario, where we have only point estimates of embeddings, all the embed-

dings are considered equally important by a classifier. This may not be true all the time. For

example, shorter and ambiguous documents can result in poor estimates of the embeddings,

which can affect the classifier during training and the performance during prediction. Since

our proposed model yields document embeddings represented by Gaussian distributions, with

the uncertainty about the embedding encoded in the covariance, we use two linear classifiers

that can exploit this uncertainty. The first one is the generative Gaussian linear classifier with

uncertainty (GLCU) 6 The second one is the discriminative multi-class logistic regression with

uncertainty (MCLRU).

80



7.2.1 Generative classifier

In general, for any classification task, we estimate the posterior probability of class label

(Ck) given a feature vector (embedding) w

p(Ck | w) =
pθ(w | Ck) p(Ck)∑
j pθ(w | Cj) p(Cj)

(7.7)

where, pθ(w | Ck) is the likelihood function parametrized by θ, and p(Ck) is the class prior. In

case of generative classifiers, the likelihood function is assumed to have a known parametric

form (e.g. Gaussian, Multinomial).

For Gaussian linear classifier (GLC), the likelihood function is pθ(w | Ck) = N (w | µk,S−1),
where w is the input feature (point estimate of the embedding), µk is the mean of class Ck, and

S is the precision matrix shared across all the classes.

Given that the our input features (embeddings) come in the form of Gaussian distributions,

i.e., q(w) = N (w | ν, diag(γ)−1), we can integrate out (exploit) the uncertainty in the input

while evaluating the likelihood function. In case of generative Gaussian classifier, where the

likelihood function is also Gaussian, the expected likelihood has an analytical form

pθ(ν | Ck) = Eq[pθ(w | Ck)] = N (ν | µk,S−1 + diag(γ)−1). (7.8)

GLC with likelihood function replaced by (7.8) is called GLCU. Both are essentially the same

classifiers, i.e., they have the same assumptions about the underlying data and hence the same

model parameters. The only difference lies in the evaluation of likelihood function.

7.2.2 Discriminative classifier

For discriminative classifier such as multi-class logistic regression (MCLR), the posterior

probability of class label (Ck) given an input feature vector w is

p(Ck | w) =
exp{hTkw + bk}∑
j exp{hTjw + bj}

, (7.9)

where {bk, hk} ∀ k are the parameters of the classifier. Unlike in GLC, we cannot analytically

compute the expectation over (7.9) with-respect-to the input features (Gaussian distributions).

Instead we approximate the expectation using Monte Carlo samples (Kendall and Gal, 2017;

Xiao and Wang, 2019):

p(Ck | w) = Eq
[ exp{hTkw + bk}∑

j exp{hTjw + bj}
]
≈ 1

M

M∑

m=1

exp{hTkεm + bk}∑
j exp{hTj εm + bj}

, εm ∼ q(w) ∀m. (7.10)

Eq. (7.10) represents the posterior probability computation for MCLRU.
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Theoretically, given the true uncertainties in the training examples, GLCU and MCLRU can

better estimate the model parameters of the classifier. Similarly, it can also exploit the uncer-

tainties in the test examples during classification.

However, in our case, the uncertainties are estimated using our Bayesian multilingual topic

model as described in § 7.1.2. The underlying assumption here is that uncertainties extracted

using our model are close enough to the true uncertainties as expected by the classifiers. This

assumption is empirically supported through our experimental results presented in § 7.5.

7.3 Related works

7.3.1 Multilingual embeddings in NLP

Multilingualism in machine learning models can be achieved using word embeddings, or joint

sentence (document) embeddings or pre-trained language models sharing a common vocabulary

and/or parameters.

Ammar et al. (2016) used canonical correlation analysis (CCA) to map word embeddings

from several languages to a common space. These mapped embeddings are used in a convolu-

tional neural network for cross-lingual topic ID Schwenk and Li (2018).

Using parallel data from Europarl, Schwenk and Li (2018) trained a sequence-to-sequence

(seq2seq) model comprising of BiLSTM layers to learn a common embedding space for sentences

from multiple languages. In their model, each language has a separate encoder and decoder.

A similar seq2seq model was used by Artetxe and Schwenk (2019), with a shared byte-pair-

encoded vocabulary over 93 languages. The encoder is BiLSTM with 5 layers, where as the

decoder is a single LSTM layer, which additionally takes language ID (embedding) as input.

Embeddings for new test data are obtained by forward propagating through the encoder. This

is followed by a two hidden layered feed-forward neural network classifier for cross-lingual topic

ID.

Almost all of the recent models relating to multilingual learning with cross-lingual transfer

applications rely on massive amounts of data for pre-training, followed by fine-tuning all the

parameters or only the embedding layer (Artetxe et al., 2020). BERT (Devlin et al., 2019)

is a transformer based pre-trained language model. Multi-lingual BERT (mBERT) (Wu and

Dredze, 2019) uses shared word piece vocabulary from 104 languages and aims to learn cross-

lingual representations without any parallel data. On the other hand multilingual translation

encoder (MMTE) (Siddhant et al., 2019) uses the transformer architecture for neural machine

translation, whose encoder is fine tuned for classification tasks.
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Min. sentence length constraint

30 35 40∗ 45 50

Language Vocabulary size (V (`) × 1000)

English (EN) 36 33 30 27 23

German (DE) 84 72 61 51 42

French (FR) 46 42 37 33 28

Italian (IT) 56 50 44 39 33

Spanish (ES) 56 51 45 39 34

# sentences 1.6M 1.1M 0.73M∗ 0.48M 0.31M

Table 7.1: Data statistics under various sentence length constraints. ∗ indicates the data on

which hyper-parameters are tuned.

7.4 Experimental setup

7.4.1 Datasets

Europarl (v7) contains numerous parallel sentences between several European language

pairs (Koehn, 2005). We considered 5 languages namely, English (EN), German (DE), French

(FR), Italian (IT) and Spanish (ES) and constructed 5-way parallel sentences. Using English as

reference, we retained sentences that are at least 40 words in length; which resulted in 146K 5-

way parallel sentences. The maximum number of sentences are 146k×5 = 0.73M. In reality, not

every sentence has a translation in all 5 languages. Later in § 7.5.2, we present the comparison

of our systems with various amounts of parallel data, that are obtained by varying the sentence

length constraint in the set {30, 35, 40, 45, 50}.
MLDoc (Reuters multilingual corpus vols 1, and 2) (Lewis et al., 2004) is a collection of

more than 800k news stories in 14 languages1, written by local news reporters. The news

stories were manually classified into 4 topics, namely CCAT (Corporate/ Industrial), ECAT

(Economics), GCAT (Government/Social) and MCAT (Markets). Using the standardized data

preparation framework (Schwenk and Li, 2018), we created 5 class-balanced splits, where each

split has 1000 training, 1000 development and 4000 test documents. We report the average

classification accuracy of the 5 splits.

1English, Dutch, French, German, Chinese, Japanese, Russian, Portuguese, Spanish, Latin American Spanish,

Italian, Danish, Norwegian, and Swedish.
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Hyper-parameters

Multilingual K {50, 100, 200, 256}
model ω {1e− 4, 5e− 3, . . . , 1e− 1}

MCLR α {1e− 4, 5e− 3, . . . , 1e+ 2}

Table 7.2: Model hyper-parameters, where K is the embedding dimension, ω and α are the `2

regularization weights for the multilingual model and MLCR respectively.

7.4.2 Pre-processing

The vocabulary was built using only the multi-aligned Europarl corpus. Table 7.1 presents

the vocabulary statistics. All the words were lower-cased and punctuation was stripped. Fur-

ther, words that do not occur in at least two sentences were removed.

7.4.3 Hyper-parameters and model configurations

The proposed Bayesian multilingual topic model has 2 important hyper-parameters, i.e.,

latent (embedding) dimension K and `2 regularization weight ω corresponding to the model

parameters {T (`)} ∀ `. Table 7.2 presents the list of hyper-parameters we explored in our ex-

periments. The prior distribution (7.1) was set to N (w | 0, (0.1I)) and the variational distri-

bution (7.4) was initialized to be the same as prior. This enabled us to same learning rate for

both mean and variance parameters. A batch size of 4096 was used during training. A constant

learning rate of 0.05 was used both during training and inference. The model is trained for

2000 epochs and inference is done for 2000 iterations to obtain the posterior distributions.

The Gaussian linear classifier with uncertainty (GLCU) has no hyper-parameters to tune.

We added `2 regularization term with weight α (Table 7.2) for the parameters of multi-class

logistic regression (MCLR). The classifier was trained for a maximum 100 epochs using adam

with a constant learning rate of 5e − 2. For multi-class logistic regression with uncertainty

(MCLRU), we used M = 32 for the empirical approximation (7.10). M > 32 did not affect the

classification performance significantly but, lower values degraded the performance for about

5%. Our models are implemented using PyTorch Paszke et al. (2017).

7.4.4 Proposed topic ID systems

The two linear classifiers GLC and MCLR use only the point estimates of the embeddings,

i.e., they cannot exploit uncertainty during training and test. In the experiments we used

only the mean parameter (ν) as the point estimate of document embedding. Contrastingly,

GLCU and MCLRU are trained with the full posterior distribution q(w) = N (w | ν, diag(γ)−1).
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Transfer type Model training Model selection Evaluation

Zero-shot Train L1 Dev L1 Test Li

Targeted Train L1 Dev L2 Test L2

Joint Train Li Dev Li Test Li

Table 7.3: Different schemes of cross and multilingual document classification (Schwenk and

Li, 2018). Zero-shot transfer experiments are reported in this thesis.

7.4.5 Baseline systems

Our baseline systems for comparison are based on multilingual word embeddings + CNN

classifier (Multi-CCA) and BiLSTM based seq2seq models (Schwenk and Li, 2018). We denote

BiLSTM-EU (Schwenk and Li, 2018) as the system trained on 5 European languages similar

to our systems.

Further, we also compare with the seq2seq BiLSTM trained on 93 languages sharing a

common encoder (Artetxe and Schwenk, 2019). We represent this as BiLSTM-93. Since the

published work (Artetxe and Schwenk, 2019) only reports results from EN → XX, we took the

full matrix of results from the corresponding github repository maintained by the authors2.

These are the improved results since the publication. BiLSTM-93 was trained on 16 NVIDIA

V100 GPUs which took about 5 days (Artetxe and Schwenk, 2019).

Although all of these models use the same MLDoc corpus for cross-lingual topic ID, the

multi-lingual embedding models are trained on different amounts of data comprising of var-

ious languages, hence we cannot directly compare all the models. However, we can compare

BiLSTM-EU with our primary system, since both models use the same 5 European languages

from Europarl.

7.5 Results and discussion

We present full matrix of results, i.e., all possible training-test combinations among the 5

languages. It shows the cross-lingual performance in all transfer directions, enabling a detailed

understanding. Fig. 7.2 shows accuracy on the development for various regularization weights

ω. We split the results into two parts: in language represents same source and target language

pair, where as zero-shot transfer implies different source and target language pairs. Note that

MCLR performs best on in language setting, whereas GLCU and MCLRU perform the best in

zero-shot transfer setting. However, model selection was based only on the in language perfor-

mance. For MCLRU, K = 256, ω = 5e − 3 was found to give best results on the development

set (in language average = 88.12). Similarly, for GLCU, K = 256, ω = 1e − 3 was found to

2https://github.com/facebookresearch/LASER/tree/master/tasks/mldoc
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Figure 7.2: Comparison of average classification accuracies on dev set for various hyper-

parameters (ω), and classifiers. The embedding dimension K = 256.

give best results on the development set (in language average = 87.91). These two are our

primary systems; each of which has about 56 million parameters and took about 22 hours to

train on a single NVIDIA Tesla P-100 GPU. Since the language-specific model parameters are

independent inferring the embeddings can be easily parallelized.

7.5.1 Zero-shot cross-lingual transfer

Table 7.4 presents the zero-shot classification results of our primary system with GLCU and

MCLRU respectively. These are the average accuracies from 5 test splits (§ 7.4.1). All the

further comparisons are made with-respect-to these primary systems.

Table 7.5 shows the absolute differences in classification accuracy between our primary

systems and each of the baseline systems. The positive bold value indicate the absolute

improvement of our system as compared the respective baseline system. Note that the first two

baseline systems are slightly better when training and test language are same, but significantly

worse in transfer directions. This suggests that these models over-fit on the source language

and generalizes poorly to the target languages.

As a specific example, by examining the results of Multi-CCA (Table 4 from (Schwenk and

Li, 2018), alternatively, we can infer the same in Table 7.5 in this Chapter), it can be observed

that the system performs better when training and testing on the same language. Moreover

Multi-CCA is slightly better when transferring from EN → XX, but relatively worse is other

cases such as IT → XX, and XX → DE, suggesting a language bias in the embedding space.
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GLCU MCLRU

Test language Test language

EN DE FR IT ES EN DE FR IT ES

EN 86.99 83.90 80.23 65.14 72.60 87.04 83.04 78.39 64.40 73.51

DE 74.04 91.25 81.75 63.50 76.79 74.61 91.67 82.45 66.67 76.97

FR 77.00 85.60 90.34 69.00 78.74 76.21 86.11 89.81 70.69 79.05

IT 71.89 79.36 80.22 80.89 79.69 71.63 80.56 80.37 80.93 79.23

ES 73.14 81.75 81.17 72.32 89.45 72.43 77.93 79.79 71.68 90.12

Table 7.4: Average test accuracies of the primary systems with GLCU (Left) and

MCLRU (Right).

Note that our primary systems out performs Multi-CCA and BiLSTM-EU in majority of

the transfer directions with significant margins, and more over performs competitively with the

state-of-the-art BiLSTM-93 system. On an average, our primary systems (GLCU, MCLRU)

are 9.2% and 5.6% better than Multi-CCA and BiLSTM-EU respectively; and only 1.6% worse

than BiLSTM-93 in the zero-shot cross-lingual transfer (off-diagonal). Note that BiLSTM-BIG

is trained with 223M parallel sentences across 93 languages whereas our primary system is

trained on just 730k parallel sentences across 5 languages.

7.5.2 Significance of uncertainties in low-resource scenario

In this section, we compare the zero-shot topic ID performance of various classifiers with the

embeddings extracted using our multilingual model. Given that we have only 1000 examples

for training the classifiers, we can see the importance of modelling and utilizing uncertainties

under such low-resource setting.

To better illustrate the importance of uncertainties, we trained GLC and MCLR with only

the mean parameters, but during the test (prediction) time, we used the full posterior dis-

tributions (along with uncertainties) of the test document embeddings. This is valid because

both GLC and GLCU have exactly the same model parameters (§ 7.2.1). Similarly MCLR and

MCLRU are have exactly the same model parameters (§ 7.2.2). We represent these two classi-

fiers as GLCU-P and MCLRUP, where -P denotes uncertainty exploited only during prediction.

The comparisons with GLCU-P and MCLRUP is presented in conjunction with the amount

of parallel data that was used for training our multilingual embedding model. For simplicity,

we present results in two parts, in language and zero-shot transfer. Figure 7.3 shows the

average score on development set of all the 6 classifiers for varying amounts of parallel data.

The overall performance of the systems increase slightly with the amount of parallel data.

Nonetheless, exploiting the uncertainties, only even during the test time (GLCUP, MCLRUP)

is always beneficial.
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GLCU MCLRU

Test language Test language

EN DE FR IT ES EN DE FR IT ES

Multi-CCA (Schwenk and Li, 2018)

EN -5.10 1.42 6.17 -5.62 0.89 -5.16 1.84 6.01 -4.98 1.01

DE 17.30 -2.24 10.78 2.26 3.84 18.66 -2.03 10.90 2.69 3.74

FR 11.52 31.73 -2.50 8.74 13.25 11.41 32.41 -2.69 9.54 13.65

IT 17.34 28.76 16.99 -4.28 20.33 17.93 31.36 18.12 -4.62 20.55

ES -1.67 23.00 13.66 12.88 -4.53 -1.57 22.13 14.16 13.33 -4.32

BiLSTM-EU (Schwenk and Li, 2018)

EN -1.30 10.80 5.75 3.03 6.74 -1.36 11.21 5.59 3.67 6.86

DE 1.73 -0.57 6.88 9.79 1.57 3.09 -0.36 7.00 10.22 1.47

FR 0.32 7.01 0.25 6.19 7.95 0.21 7.69 0.06 6.99 8.35

IT 3.89 11.74 14.17 -1.61 11.94 4.48 14.34 15.30 -1.95 12.16

ES 9.63 7.75 16.62 13.30 1.64 9.73 6.88 17.12 13.75 1.85

BiLSTM-93 (Artetxe and Schwenk, 2019)

EN -3.74 -2.35 2.20 -5.06 -6.70 -3.69 -3.21 0.36 -5.80 -5.79

DE -6.71 -1.45 -1.08 -9.75 -2.81 -6.14 -1.03 -0.38 -6.58 -2.63

FR -3.08 -1.43 -0.46 -2.08 0.34 -3.87 -0.92 -0.99 -0.39 0.65

IT -2.26 -1.37 1.87 -5.04 -2.91 -2.52 -0.17 2.02 -5.00 -3.37

ES 3.56 2.02 5.87 1.22 0.70 2.85 -1.80 4.49 0.58 1.38

Table 7.5: Comparison of our primary systems (GLCU (Left) and MCLRU (Right)) with the

baseline systems. Bold value indicates absolute improvement of our system over the respective

baseline.

7.5.3 Results for reference

In Table 7.6, we present the cross-lingual topic ID results from the recently published works

for reference. Note that all the systems were evaluated on MLDoc corpus, but the multilin-

gual representation (embedding) model was trained on different amounts of data from various

languages. Only BiLSTM-EU and our primary system are trained on the Europarl corpus

with the same 5 languages. Moreover mBERT and BiLSTM-93 are models with relatively

huge number of parameters which take enormous computational resources to train; whereas

our model can be trained under a day on a single GPU.
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Figure 7.3: Comparison of average classification accuracies for various classifiers and vary-

ing amounts of parallel data. Model trained with 0.73M parallel sentences was the primary

system. The horizontal black line indicates the performance of BiLSTM-93.

Number of Test language

System languages in

training data EN DE FR IT ES

mBERT (Wu and Dredze, 2019) 104 94.20 80.20 72.60 68.90 72.60

MMTE (Siddhant et al., 2019) 103 94.70 77.40 77.20 64.20 73.00

BiLSTM-93 (Artetxe and Schwenk, 2019) 93 90.73 86.25 78.03 70.20 79.30

Multi-CCA (Schwenk and Li, 2018) 5 92.20 81.20 72.38 69.38 72.50

BiLSTM-EU (Schwenk and Douze, 2017) 5 88.40 71.83 72.80 60.73 66.65

Primary system (GLCU) 5 86.99 83.90 80.23 65.14 72.60

Primary system (MCLRU) 5 87.04 83.04 78.39 64.40 73.51

Table 7.6: Results of multi-lingual zero-shot topic ID systems from EN → XX. Bold and

underline indicates the first and second best scores respectively.

7.5.4 Topic discovery

To further understand our multilingual model, we took the point estimates (mean parameter,

ν) of document embeddings of all the 5 languages from test set of MLDoc corpus, and clustered

using k-means with 10 clusters. We took cluster centroids (c̄k) of the 4 most dense clusters and

projected these vectors on to the individual language specific subspaces {T (`)} ∀` = 1 . . . 5

θ
(`)
k = T (`)c̄k , ∀` = 1 . . . 5, ∀k = 1 . . . 4 (7.11)

The magnitude of values in θ
(`)
k ∈ RV (`)

indicates the significance (representativeness) of the

words from language ` to the cluster k. Table 7.7 presents top 4 words from each language for
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each of the 4 clusters. Note that we did not use any parallel dictionary in our model, yet we

can discover semantically related words across multiple languages.

EN tyrant, gorostiaga, authoritarianism, tribal

DE friedlicher (more peaceful), friedliebenden (peace-loving), kriegsverbrecher (war criminal),

anfuhrern (lead)

FR colonel (colonel), pacifiquement (peacefully), gorostiaga (proper n.), tyran (tyrant)

IT pacifiste (pacifist), sradicato (uprooted), miloseviæ (proper n.), tribali (tribal)

ES tirano (tyrant), vil (vile), magrebi (n. North-west Africa), tribales (tribal)

EN inflation, inflationary, predictions, slowdown

DE wirtschaftsindikatoren (econimic indicators), haushaltsdefiziten (budget deficts),

inflationsrate (inflation rate), wirtschaftsdaten (economic data)

FR inflationniste (inflationary), inflation, inflationnistes (inflationary), pronostics (prediction)

IT inflazione (inflation), inflazionistici (inflationary), inflazionistiche (inflationary), ciclica (cyclical)

ES inflacion (inflation), inflacionistas (inflationists), predicciones (predictions),

coyuntural (conjunctural)

EN overvaluation, yen, lira, dollar

DE dollars ($), yuan (¥), wechselkurses (exchange rate), chinesischem (chinese)

FR surevaluation (over valuation), croissent (grow), dollar ($), degonflement (deflating)

IT sopravvalutazione (over estimation), valutari (currency), yen (¥), dollaro($)

ES dolar ($), fly, yen (¥), redondeo (rounding)

EN shareholding, artemis, aerospace, shareholder

DE sesar (-), verwaltungsgesellschaften (management companies), double,

verwaltungsgesellschaftspasses (management company passport)

FR sesar (-), participations, guichet (counter), exportatrice (exporter)

IT sesar (-), azionario (equity), neutralizzata (neutralized), double

ES sesar (seize), financiara (will finance), accionarial (share holder),

ccctb (Common Consolidated Corporate Tax Base)

Table 7.7: Top 4 representative words from each language for top 4 dense clusters obtained

via k-means. English translations are given in parenthesis.

7.6 Conclusions

In this chapter, we presented a Bayesian multilingual topic model, which learns language-

independent document embeddings along with their uncertainties. We propagated the uncer-

tainties into a generative and discriminative linear classifier for zero-shot cross-lingual topic ID.

Our systems out performed former state-of-the-art BiLSTM, and multilingual word embedding

based system in majority of the transfer directions with significant margins. Moreover our

systems perform competitively to the state-of-the-art universal sentence encoder, while only
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requiring fraction of training data and computational resources. Our detailed experiment anal-

ysis emphasizes the importance of modelling and exploiting uncertainties for cross-lingual topic

ID.
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Chapter 8

Novel variants of Bayesian SMM

This chapter discusses novel variants of Bayesian SMM. We combine supervised and unsuper-

vised objectives with-in a probabilistic framework that gives rise to newer models. Developing

such models using a probabilistic framework gives an elegant interpretation to the model param-

eters and latent variables. Next, we discuss model to learn sentence embeddings by exploiting

the contextual n-grams. This chapter only presents the theoretical details of the models. The

experimental comparisons are left for future research.

8.1 Hybrid model

So far we have presented Bayesian SMM as a generative model for bag-of-words represen-

tation of documents. The model can be trained on largely available un-labelled data. The

embeddings extracted from such unsupervised models may not be as competitive as pure dis-

criminative model, when used for a supervised task such as document classification. On the

other hand, discriminative models can only be trained on labelled data. Moreover, they require

re-training (adaptation) to newer data and classes, which is computationally expensive.

However, it is possible to design (hybrid) models that can take advantage of both the la-

belled and unlabelled data (Lasserre, 2008), thus bridging the gap between generative and

discriminative models. Given the background in Bayesian SMM, we present a hybrid variant

below:

Let XU and XL represent bag-of-words statistics of un-labelled and labelled documents,

comprising a vocabulary of size V . Let YL represent the class labels corresponding to the

labelled documents from XL. Every row x ∈ XU ∪ XL is a 1 × V vector of word counts

representing a single document, whereas every row y ∈ YL is a one-hot encoded vector of

dimension 1× L representing the true class label for documents in XL.

Let ΘG = {m,T } and ΘD = {b,H} represent the parameters of the hybrid model, where

ΘG and ΘD are the parameters of the generative and discriminative parts respectively. The

following steps describe the generative process of the training data, according to our hybrid
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Figure 8.1: Graphical representation of the proposed hybrid model. DU and DL are the

number of un-labelled and labelled documents respectively. wd is the document-specific latent

variable, xd and yd are the observed variables. {m,T } and {b,H} are the model parameters

specific to the generative and discriminative parts of the model respectively.

model:

For each document d in XU ∪XL, sample a document-specific latent variable:

wd ∼ N (wd | 0,diag(λ)
−1

). (8.1)

Generate vector of word counts for each document:

φd = softmax(m+ T wd), (8.2)

xd ∼ Multi(φd;Nd). (8.3)

Generate class labels only for documents in YL:

ϕd = softmax(b+Hwd), (8.4)

yd ∼ Multi(ϕd; 1). (8.5)

The above generative process fully describes the hybrid model. Now, given the training

data {XU ,XL,YL}, we would like to estimate the model parameters {ΘG ,ΘD} in addition to

finding the posterior distribution of latent variables (document embeddings) p(wd | xd,ΘG)

and posterior distribution of class labels given a document embedding p(yd | wd,ΘD).

The graphical model for the above generative process is illustrated in Fig. 8.1. From the

graphical model, we can write the conditional independence as x⊥⊥y | w. The variables x and
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y are conditionally independent given w:

p(x,y,w) = p(x,y | w) p(w) (8.6)

= p(x | w) p(y | w) p(w) (8.7)

The conditional independence property is used in the further equations. We can write the

posterior distribution of the latent variables as (explicit conditioning on model parameters is

omitted for brevity):

p(w | x,y) =
p(x | w)p(y | w)p(w)

p(x)p(y)
(8.8)

=

[
p(x | w)p(w)∫
p(x | w)p(w)dw

]

︸ ︷︷ ︸
A

[
p(y | w)∫

p(y | w)p(w)dw

]

︸ ︷︷ ︸
B

. (8.9)

The numerator terms in (8.9) are given by:

p(x | w) =
V∏

i=1

φxii (8.10)

=
[ exp{mi + tiw}∑V

j=1 exp{mj + tj w}

]xi
(8.11)

p(y | w) =

L∏

l=1

ϕyll (8.12)

=
[ exp{bl + hlw}∑L

j=1 exp{bj + hj w}

]yl
, (8.13)

and p(w) is given by (8.1).

In (8.9), term A is valid for the observed documents (both labelled and un-labelled), whereas

term B is valid only for the observed class labels. Moreover, the denominator in both the terms

cannot be evaluated because of the non-conjugacy. We can resort to variational inference as

discussed in Chapter 5.2 to find the approximate to the true posterior by optimizing the evidence

lower bound (ELBO).

During the VB training, in the E-step, the posterior distribution of latent variables is depen-

dent on both the data and class labels. This enforces certain amount of discriminating nature

in embedding space, which in turn influences estimation the generative model parameters ΘG
(M-step). During the inference (extraction), the model consists only the generative part.

8.2 Sentence embeddings exploiting contextual n-grams

All the models presented so far assume bag-of-words representation of documents, where the

word-order is ignored. This simplified representation may not be optimal for every downstream
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task. It is possible to design variants of Bayesian SMM that can exploit the contextual n-gram

information. Subspace n-gram model (SnGM) is one such variant (Soufifar et al., 2013). In

this section, we present a more generic version, where SnGM can be seen as a special case. We

define the following terminology:

1. Let x
(s)
a represent a word n-gram in a sentence s. We refer to this as an anchor n-gram

or simply anchor. It can be a uni-gram or a bi-gram. In SnGM (Soufifar et al., 2013),

the anchor is a bi-gram.

2. Let c
(s)
a represent the set of words in the context of the anchor x

(s)
a in the sentence s.

The context here can refer to the words succeeding, preceding or surrounding x
(s)
a within

a window of length L. Different choices can result in different models. SnGM models

uni-gram distribution, succeeding the anchor bi-gram x
(s)
a . If the anchor is a uni-gram

and the contextual window includes 2 words in each left and right contexts, we will have

a model analogous to the skip-gram model (Mikolov et al., 2013).

Given a vocabulary of size V and the definitions of anchor and context (window) length

L, we can have model parameters specific to each anchor, i.e., Θa = {ma,Ta} ∀ a = 1 . . . V .

Every sentence s is assumed to be generated by the following process:

Sample a K-dimensional (K � V ) sentence-specific embedding w(s):

w(s) ∼ N (w(s) | 0,diag(λ)
−1

). (8.14)

The following steps are repeated until the desired sentence length is reached:

Sample an anchor:

x(s)
a ∼ Multi(α, 1). (8.15)

The probability of the contextual words given the anchor is obtained as:

φ(s)
a = softmax(ma + Ta,w

(s)). (8.16)

Sample L number of contextual words:

c(s)
a ∼ Multi(φ(s)

a , L). (8.17)

α in (8.15) refers to the uni-gram distribution of words in the vocabulary or the prior

distribution over all the anchors. Note that anchor need not always be sampled from the uni-

gram distribution (8.15). One can sample an anchor from the set of contextual words c
(s)
a ,

enforcing autoregression.
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If we constrain the anchor to be uni-gram and the window to be one word to the right, we

will obtain a bi-gram language model:

p(s)(x1x2 . . . xn) =
n∏

i=2

p(s)(xi | xi−1) (8.18)

where the distribution of next word, given previous (anchor) word is according to:

p(s)(xi | xi−1 = xa) = softmax(ma + Taw
(s)) (8.19)

In the above, note that model parameters are shared across sentences, whereas latent vari-

ables are specific to sentences. The number of parameters for such a model will grow quadrat-

ically with respect the size of the vocabulary (or the number of anchors):

# model parameters = V × ((V + 1)×K) (8.20)

We can factorize of the parameter space to reduce the total number of parameters (Novotný

et al., 2019).

Further, we can use the same variational inference framework with the approximation tech-

niques on any of the above models.

8.3 Summary

This chapter presented few novel variants of Bayesian SMM. We have seen a hybrid model

that can combine both the generative and discriminative modelling taking advantage of un-

labelled and labelled data. Next we have also seen variants of Bayesian SMM that can learn

sentence embeddings by exploiting the contextual n-grams. These are only few possible models,

however one can combine the ideas from deep learning and variational autoencoders to devise

many Bayesian models.

97



98



Chapter 9

Conclusions and directions for future research

This thesis presented novel methods for modelling text documents. Using a simple log-

linear model called subspace multinomial model (SMM) for learning document embeddings,

the experiments reported have shown that the obtained embeddings are superior as compared

to classical topic models such as latent Dirichlet allocation, and sparse topical coding. The

document embeddings extracted from SMM exhibit Gaussian-like distribution, which enabled

us to simple Gaussian linear classifier and k-means clustering algorithms. With the help of `1

regularization over the parameters of SMM, and employing orthant-wise learning, sparsity is

induced into the model, improving the generalization capabilities as compared to the `2 regu-

larized model. A further analysis showed that the unsupervised topic models like SMM require

an additional early stopping mechanism in order to yield embeddings optimal for downstream

supervised tasks such as topic identification.

Next, using the variational Bayes framework, a novel extension to SMM called Bayesian

SMM was proposed; which can represent document embeddings in the form of Gaussian dis-

tributions; thereby encoding the uncertainty in its covariance. Empirically, it was shown that

the uncertainty captured in the covariance of the posterior Gaussian distributions is inversely

proportional to document length, i.e., embeddings obtained from shorted document tend to

me more uncertain as compared to the ones obtained from longer documents. The proposed

Bayesian SMM achieved state-of-the-art perplexity results on 20Newsgroups text and Fisher

speech corpora, outperforming the variational autoencoder inspired document model, with a

significant margin. Additionally, the thesis also addressed the problem of intractability (ex-

pectation over log-sum-exp) that commonly appears while performing variational inference in

mixed-logit models. The experiments have shown that the approximation using the Monte

Carlo samples via the re-parametrization trick is superior to the bounds obtained via Jensen’s

inequality. This scheme can be applied while performing Bayesian inference in language models,

or word embedding methods or any mixed-logit model.

The learned embedding uncertainties from Bayesian SMM are further propagated into the

proposed generative Gaussian linear classifier for topic identification. The topic ID experiments
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have shown that the proposed system is robust to over-fitting and does not require any early

stopping mechanism. The proposed system achieved state-of-the-art results on Fisher speech

and 20Newsgroups corpora as compared to other unsupervised topic and document models; and

achieves comparable results to the supervised discriminative models (classifiers).

Further, the Bayesian SMM is extended to multilingual scenario for obtaining semantic-

rich language independent document embeddings. Using the Gaussian linear classifier with

uncertainty, the proposed system was used for zero-shot cross-lingual topic ID on Europarl

and Reuters multilingual news corpora. On an average, our systems achieve 9.2% and 5.6%

better zero-shot classification results as compared ton Multi-CCA (multilingual word embedding

based) and BiLSTM based systems respectively. Our system is only 1.6% worse than BiLSTM-

93 (trained on 93 languages) in the zero-shot cross-lingual transfer (off-diagonal). Note that

BiLSTM-93 is trained with 223M parallel sentences across 93 languages, which takes about

5 days on 16 NVIDIA V-100 GPUS; whereas our Bayesian system was trained on just 730k

parallel sentences across 5 languages one a single NVIDIA Tesla P-100 GPU, under a day.

Further, experiment analysis has demonstrated that in a low-resource cross-lingual transfer

scenario, learning and exploiting the uncertainties is beneficial irrespective of the amount data

available for learning the common embedding space.

Towards the end, a few variants of Bayesian SMM are discussed theoretically (i) a hybrid

variant that bridges the gap between generative and discriminative models, and (ii) a model

that for learning sentence embeddings by exploiting the contextual n-grams.

Our future work involves exploring (deep) Bayesian models for language representation with

applications to cross-lingual natural language inference, named-entity-recognition. We aim

to train hybrid models, by exploiting both labelled and unlabelled data for natural language

understanding tasks. Since the amounts of data collected and stored from various (including

low-resource) languages of the world is increasing at an astronomical rate, we hope the models

presented in this thesis foster research using Bayesian approaches.
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Appendix A

Parameter estimation for SMM

A.1 Objective function

The regularized log-likelihood (objective) function is given by,

L =

D∑

d=1

V∑

i=1

xdi log θdi −
λ

2
||wd||2

︸ ︷︷ ︸
Ld

−ω
V∑

i=1

||ti||1 (A.1)

=
D∑

d=1

V∑

i=1

xdi log

(
exp{mi + tiwd}∑

j exp{mj + tjwd}

)
− λ

2
|||wd||2−ω

V∑

i=1

||ti||1, (A.2)

where wd is a column vector and ti is a row vector.

It is conveniet to have derivatives of θdi with respect to wd and ti.

First, taking the derivative of θdi with respect to wd:

∂θdi
∂wd

=
t
T

i exp{mi + tiwd}
∑

j exp{mj + tjwd} − exp{mi + tiwd}
∑

j t
T

j exp{mj + tjwd}
(∑

j exp{mj + tjwd}
)2

(A.3)

=
exp{mi + tiwd}

(
t
T

i

∑
j exp{mj + tjwd} −

∑
j t

T

j exp{mj + tjwd}
)

(∑
j exp{mj + tjwd}

)(∑
j exp{mj + tjwd}

) (A.4)

=
exp{mi + tiwd}∑

j

exp{mj + tjwd}
︸ ︷︷ ︸

θdi

(
t
T

i

∑
j exp{mj + tjwd}∑

j

exp{mj + tjwd}
︸ ︷︷ ︸

1

−
∑

j

t
T

j

exp{mj + tjwd}∑

j

exp{mj + tjwd}
︸ ︷︷ ︸

θdj

)
(A.5)

= θdi

(
t
T

i −
V∑

j=1

t
T

jθdj

)
(A.6)
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∂θdi
∂wd

= θdi

(
t
T

i −
V∑

j=1

t
T

jθdj

)
. (A.7)

Next, taking the derivative of θdi with respect to tk (row in T ):

∂θdi
∂tk

=
(δikw

T

d exp{mi + tiwd})
∑

j exp{mj + tjwd} − exp{mi + tiwd}w
T

d exp{mk + tkwd}
(∑

j exp{mj + tjwd}
)2

(A.8)

where δik is the Kronecker-Delta δik ,





1 if i = k

0 otherwise.

=
w

T

d exp{mi + tiwd}
(
δik
∑

j exp{mj + tjwd} − exp{mk + tkwd}
)

(∑
j exp{mj + tjwd}

)(∑
j exp{mj + tjwd}

) (A.9)

= w
T

d

exp{mi + tiwd}∑

j

exp{mj + tjwd}
︸ ︷︷ ︸

θdi

(
δik

∑
j exp{mj + tjwd}∑

j

exp{mj + tjwd}
︸ ︷︷ ︸

1

− exp{mk + tkwd}∑

j

exp{mj + tjwd}
︸ ︷︷ ︸

θdk

)
(A.10)

= θdi

(
δik − θdk

)
w

T

d (A.11)

∂θdi
∂tk

= θdi

(
δik − θdk

)
w

T

d. (A.12)

A.1.1 Derivatives of objective

Taking the derivative of Ld from Eq. (A.1) with respect to wd and using the formula from

Eq. (A.7):

∂Ld
∂wd

=
V∑

i=1

xdi

[
1

θdi
θdi

(
t
T

i −
∑

j

t
T

jθdj

)]
− λwd (A.13)

=

V∑

i=1

t
T

i xdi −
V∑

i=1

xdi

V∑

j=1

t
T

jθdj − λwd, (A.14)
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interchanging indices i, j and re-arranging

=
V∑

i=1

t
T

i xdi −
V∑

i=1

t
T

i θdi

V∑

j=1

xdj − λwd (A.15)

=

V∑

i=1

t
T

i

[
xdi − θdi

V∑

k=1

xdj

]
− λwd. (A.16)

∇wdL =

V∑

i=1

t
T

i

[
xdi − θdi

V∑

j=1

xdj

]
− λwd. (A.17)

Taking the derivative of Eq. (A.17) with respect to wd and making use of Eq. (A.7):

∂2Ld
∂wd∂w

T

d

=
∂

∂w
T

d

[
V∑

i=1

t
T

i

[
xdi − θdi

V∑

k=1

xdk

]
− λwd

]
(A.18)

=

V∑

i=1

t
T

i

[
0− θdi(ti −

∑

j

tjθdj)

V∑

k=1

xdk

]
− λI (A.19)

∇2
wd
L
d

= Hwd(Ld) = −
V∑

i=1

t
T

i θdi

(
ti −

V∑

j=1

tjθdj

) V∑

k=1

xdk (A.20)

Derivatives of objective with respect to tk

Taking the derivative of L from Eq. (A.1) with respect to tk and using the formula from

Eq. (A.12):

∂L
∂tk

=

[
D∑

d=1

( V∑

i=1

xdi
1

θdi
θdi(δik − θdk)

)
w

T

d

]
− ω sign(tk) (A.21)

=

[
D∑

d=1

( V∑

i=1

xdiδik −
V∑

i=1

xdiθdk

)
w

T

d

]
− ω sign(tk) (A.22)

=

[
D∑

d=1

(
xdk − θdk

V∑

i=1

xdi

)
w

T

d

]
− ω sign(tk) (A.23)

∇tkL =

[
D∑

d=1

(
xdk − θdk

V∑

i=1

xdi

)
w

T

d

]
− ω sign(tk) (A.24)

Here sign operates element-wise.
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Taking the derivative of Eq. (A.24) with respect to tl and making use of Eq. (A.12):

∂2L
∂tk∂t

T

l

=
∂

∂t
T

l

[( D∑

d=1

xdk

)
−
( D∑

d=1

θdk

V∑

i=1

xdiw
T

d

)
− ω sign(tk)

]
(A.25)

= −
D∑

d=1

(
θdk(δkl − θdl)

V∑

i=1

xdi

)
wdw

T

d (A.26)

∇tl(∇tkL) = Htktl(L) = −
D∑

d=1

(
θdk(δkl − θdl)

V∑

i=1

xdi

)
wdw

T

d. (A.27)
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Appendix B

Variational Bayes for Bayesian SMM

Let q(w) = N (w |ν,Γ−1
) denote the variational distribution, and p(w) = N (w |µ,Λ−1

) denote

prior over w. The following derivations are made assuming full precision matrices for the

Gaussian distributions. However, the results will be provided for the isotropic and diagonal

covariances as described in Chapter 5.

B.1 Variational lower-bound (ELBO)

The variational lower bound (or evidence lower bound, ELBO) for a document1 is given as

follows:

L(q) = − DKL(q || p0)︸ ︷︷ ︸
A

+Eq[log p(x |w)]︸ ︷︷ ︸
B

. (B.1)

Term A in the above equation is the KL divergence from variational distribution to the prior:

DKL(q || p0) = −
∫
q(w) log

(
p(w)

q(w)

)
dw (B.2)

= −
[ ∫

q(w) log p(w)dw

︸ ︷︷ ︸
Eq [log p(w)]

−
∫
q(w) log q(w)dw

︸ ︷︷ ︸
H[q]

]
. (B.3)

Solving H[q] (entropy of variational distribution):

H[q] = −
∫
q(w) log q(w) dw

= −
∫
q(w)

[
log

(
|Γ|1/2

(2π)K/2

)
− 1

2
(w − ν)

T
Γ(w − ν)

]
dw (B.4)

=
K

2
log(2π)− 1

2
log|Γ|+1

2

∫
q(w)[(w − ν)

T
Γ(w − ν)] dw (B.5)

=
K

2
log(2π)− 1

2
log|Γ|+1

2
Eq[(w − ν)

T
Γ(w − ν)]︸ ︷︷ ︸

A1

(B.6)

1Document suffix d is ignored for brevity.
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Solving A1:

Eq[(w − ν)
T
Γ(w − ν)] = Eq

[
Tr((w − ν)

T
Γ(w − ν))

]
(B.7)

= Eq
[
Tr(Γ(w − ν))(w − ν)

T
]

(B.8)

= Tr
(
Eq[Γ(w − ν)(w − ν)

T
]
)

(B.9)

= Tr
(
ΓEq[(w − ν)(w − ν)

T
]
)

(B.10)

= Tr(Γ Γ
−1

) (B.11)

= K. (B.12)

From Eqs. (B.6) and (B.12), we have:

H[q] =
K

2
log(2π)− 1

2
log|Γ|+K

2
. (B.13)

Solving Eq[log p(w)] from Eq. (B.3) (expectation of log-Gaussian with respect to the Gaussian):

Eq[log p(w)] = Eq
[

log

(
|Λ|1/2

(2π)K/2

)
− 1

2
(w − µ)

T
Λ(w − µ)

]

= −K
2

log(2π) +
1

2
log|Λ|−1

2
Eq[(w − µ)

T
Λ(w − µ)]︸ ︷︷ ︸

A2

. (B.14)

Solving A2:

Eq[(w − µ)
T
Λ(w − µ)] = Eq

[
Tr((w − µ)

T
Λ(w − µ))

]
(B.15)

= Tr
(
ΛEq[(w − µ)(w − µ)

T
]
)

(B.16)

= Tr
(
Λ (Eq[ww

T
]− Eq[w]µ

T − µEq[w
T
] + Eq[µµ

T
] )
)

(B.17)

= Tr
(
Λ ( Γ

−1
+ νν

T − νµT − µνT
+ µµ

T
)
)

(B.18)

= Tr
(
Λ ( Γ

−1
+ (ν − µ)(ν − µ)

T
)
)

(B.19)

= Tr(ΛΓ
−1

) + Tr(Λ(ν − µ)(ν − µ)
T
) (B.20)

= Tr(ΛΓ
−1

) + (ν − µ)
T
Λ(ν − µ). (B.21)

From Eqs. (B.14) and (B.21), we have:

Eq[log p(w)] = −K
2

log(2π) +
1

2
log|Λ|−1

2
Tr(ΛΓ

−1
)− 1

2
(ν − µ)

T
Λ(ν − µ). (B.22)

Combining Eqs. (B.13) and (B.22), we get the KL divergence from variational distribution

(multivariate Gaussian) to the prior (multivariate Gaussian):

DKL(q||p) =
1

2

[
Tr(ΛΓ

−1
) + log|Γ|− log|Λ|+(ν − µ)

T
Λ(ν − µ)−K

]
. (B.23)
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Term B from Eq. (B.1) is the expectation of log-likelihood of the data with respect to the

variational distribution q(w):

Eq[log p(x | w)] = Eq
[ V∑

i=1

xi log
( exp{mi + tiw}∑V

j=1 exp{mj + tjw}

)]
(B.24)

=
V∑

i=1

xi

[
Eq[mi + tiw]− Eq[ log




V∑

j=1

exp{mj + tjw}


]

]
(B.25)

=
V∑

i=1

xi

[
(mi + tiν)− Eq[ log




V∑

j=1

exp{mj + tjw}


]

︸ ︷︷ ︸
F(w)

]
. (B.26)

F(w) is the expectation over log-sum-exp, which is intractable. The following two ap-

proaches are used to approximate F(w):

1. Jensen’s inequality

2. Monte-Carlo approximation via re-parametrization trick.

B.1.1 ELBO with Jensen’s inequality (ELBOJI)

Applying Jensen’s inequality on F(w):

Eq[ log




V∑

j=1

exp(mj + tjw)


] ≤ log




V∑

j=1

Eq[exp(mj + tjw)]




= log




V∑

j=1

exp(mj)Eq[exp(tjw)]


. (B.27)

Because of this inequality, we can only have a lower bound on the expectation from Eq. (B.26),

Eq[log p(x | w)] ≥
V∑

i=1

xi

[
(mi + tiν)− log




V∑

j=1

exp(mj) Eq[exp(tjw)]︸ ︷︷ ︸
A2



]

(B.28)
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Solving A2:

Eq[exp(tjw)] =

∫
q(w) exp(tjw) dw

=

∫ |Γ|1/2
(2π)K/2︸ ︷︷ ︸

k1

exp{−1

2
(w − ν)

T
Γ(w − ν) + tjw}dw

=

∫
k1 exp

{
− 1

2

(
w

T
Γw − 2ν

T
Γw − 2tjw + ν

T
Γν
)}

dw

=

∫
k1 exp

{
− 1

2

(
w

T
Γw − 2 (ν

T
Γ + tj)︸ ︷︷ ︸
cT

w
)}

exp
{
− 1

2
ν

T
Γν
}

︸ ︷︷ ︸
k2

dw

= k2

∫
k1 exp

{
− 1

2

(
w

T
Γw − 2c

T
w
)}

dw

= k2

∫
k1 exp

{
− 1

2

(
w

T
Γw − 2c

T
Γ

−1
Γw + c

T
Γ

−1
ΓΓ

−1
c︸ ︷︷ ︸

completion of square

−cTΓ
−1

ΓΓ
−1
c
)}

dw

= k2

∫
k1 exp

{
− 1

2
((w − Γ

−1
c)

T
Γ(w − Γ

−1
c))
}

exp
{1

2
c
T
Γ

−1
c
}

dw

= k2 exp
{1

2
c
T
Γ

−1
c
}∫ 1

(2π)K/2|Γ−1 |1/2 exp
{
− 1

2
((w − Γ

−1
c)

T
Γ(w − Γ

−1
c))
}

dw

︸ ︷︷ ︸
1

= exp
{
− 1

2
(ν

T
Γν − cTΓ

−1
c)
}

= exp
{
− 1

2
(ν

T
Γν − (ν

T
Γ + tj)Γ

−1
(ν

T
Γ + tj)

T
)
}

= exp
{
− 1

2
(ν

T
Γν − νT

Γν − νT
t
T

j − tjν − tjΓ
−1
t
T

j )
}

= exp {tjν +
1

2
tjΓ

−1
t
T

j}. (B.29)

From Eqs.(B.28), and (B.29), we have:

Eq[log p(x | w)] ≥
V∑

i=1

xi

[
(mi + tiν)− log




V∑

j=1

exp

(
mj + tjν +

1

2
tjΓ

−1
t
T

j

)

]
. (B.30)

Combining Eqs.(B.23) and (B.30), gives the lower-bound on complete evidence lower-bound

(ELBO), L
JI
(qd) per each document d:

L
JI
(qd) ≥

V∑

i=1

xi

[
(mi + tiνd)− log




V∑

j=1

exp

(
mj + tjνd +

1

2
tjΓ

−1

d t
T

j

)

]

− 1

2

[
K + log|Λ|− log|Γd|−Tr(ΛΓ

−1

d )− (νd − µ)
T
Λ(νd − µ)

]
. (B.31)
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If the prior distribution is p(w) = N (w | 0, (λI)
−1

), and the variational posterior is diagonal

Gaussian with the following parametrization:

q(wd) = N (wd | νd,diag(exp{2ςd})), (B.32)

then ELBO from Eq. (B.31) becomes:

L
JI
(qd) ≥

V∑

i=1

xi

[
(mi + tiνd)− log




V∑

j=1

exp

(
mj + tjνd +

1

2
tj diag(exp{2ςd}) t

T

j

)

]

−1

2

[
λTr(diag(exp{2ςd}))− log|diag(exp{2ςd})|−K log λ+ λν

T

dνd −K
]
. (B.33)

The complete objective is the summation of L
JI
(qd) for all the documents along with the regu-

larization term for the rows in matrix T :

ELBO
JI

= L
JI
≥

D∑

d=1

L
JI
(qd)− ω

V∑

i=1

||ti||1. (B.34)

B.1.2 ELBO with Re-parametrization trick (ELBORP)

The empirical approximation of F(w) from Eq. (B.26) is given by:

Eq(w)[F(w)] ≈ 1

R

R∑

r=1

F(w̃r) (B.35)

where w̃r ∀ r = 1 . . . R, represents samples drawn from q(w), and F(w̃r) implies the function

evaluated at w̃r. We will re-parametrize the random variable w using a differentiable transfor-

mation function g(ε) over another random (auxiliary) variable ε. This will allows us to express

the random variable w as deterministic, i.e., w = g(ε). Using this re-parametrization trick, the

empirical approximation of F is given as follows:

Eq(w)[F(w)] = Ep(ε)[F (g(ε) )] (B.36)

≈ 1

R

R∑

r=1

F ( g( ε̃r ) ), (B.37)

where ε̃r ∀ r = 1 . . . R represents samples drawn from p(ε), and g(ε̃r) implies the function

evaluated at ε̃r. If p(ε) = N (ε | 0, I), then w = g(ε) = ν + Lε, where, LL
T

= Γ
−1

(Cholesky

decomposition).

The empirical approximation to F(w) is given by:

F(w) ≈ 1

R

R∑

r=1

log




V∑

j

exp{mj + tj g( εr )}


. (B.38)
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From Eqs. (B.26) and (B.38), we have:

Eq[log p(x | w)] ≈
V∑

i=1

xi

[
(mi + tiν)− 1

R

R∑

r=1

log




V∑

j

exp(mj + tj g( εr ))



]
. (B.39)

Combining Eqs. (B.23) and (B.39), gives the approximation on evidence lower-bound (ELBO),

L
RP

(qd) for each document d:

L
RP

(qd) ≈
V∑

i=1

xi

[
(mi + tiνd)−

1

R

R∑

r=1

log




V∑

j=1

exp{mj + tj g(εdr)}



]

− 1

2

[
K + log|Λ|− log|Γd|−Tr(ΛΓ

−1

d )− (νd − µ)
T
Λ(νd − µ)

]
(B.40)

If the prior distribution is p(w) = N (w | 0, (λI)
−1

), and the variational posterior is diagonal

Gaussian with the following parametrization:

q(wd) = N (wd | νd,diag(exp{2ςd})), (B.41)

then ELBO from Eq. (B.40) becomes:

L
RP

(qd) ≈
V∑

i=1

xi

[
(mi + tiνd)−

1

R

R∑

r=1

log




V∑

j=1

exp{mj + tj g(εdr)}



]

− 1

2

[
λTr(diag(exp{2ςd}))− log|diag(exp{2ςd})|−K log λ+ λν

T

dνd −K
]
. (B.42)

The complete objective is the summation of L
RP

(qd) for all the documents along with the

regularization term for the rows in matrix T :

ELBO
RP

= L
RP
≈

D∑

d=1

L
RP

(qd)− ω
V∑

i=1

||ti||1. (B.43)
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B.2 Inference in Bayesian SMM

During inference, we restricted the variational distribution to be diagonal Gaussian with the

following parametrization:

q(wd) = N (wd | νd,diag(exp{2ςd})). (B.44)

It is convenient to have the derivative of the KL divergence term with respect to the variational

parameters.

DKL(q||p) =
1

2

[
λTr(diag(exp{2ςd}))− log|diag(exp{2ςd})|−K log λ+ λν

T

dνd −K
]

(B.45)

∂DKL(q||p)
∂νd

= λνd (B.46)

∂DKL(q||p)
∂ςd

= λ exp{2ςd} − 1 (B.47)

B.2.1 Gradients of ELBOJI

VB E-step: Updating the parameters of variational distribution:

Taking derivative of the objective function Eq. (B.33) with respect to mean parameter νd of

variational distribution q(wd) specific to a single document d, and using Eq. (B.46):

∂L
JI
(qd)

∂νd
=

V∑

i=1

xdi

[
t
T

i −
∑

k

t
T

k

exp
(
mk + tkνd + 1

2tk diag(exp{2ςd}) t
T

k

)

∑
j exp

(
mj + tjνd + 1

2tj diag(exp{2ςd}) tTj
)

︸ ︷︷ ︸
ϕdk

]
− λνd (B.48)

=
∑

i

xdi

[
t
T

i −
∑

k

t
T

kϕdk

]
− λνd

=
[∑

i

xdit
T

i −
∑

i

xdi
∑

k

t
T

kϕdk

]
− λνd

=
[∑

i

xdit
T

i −
∑

i

t
T

iϕdi
∑

k

xdk

]
− λνd

∇νdLJI
(qd) =

[ V∑

i=1

t
T

i (xdi − ϕdi
V∑

k=1

xdk)
]
− λνd. (B.49)
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Taking derivative of the objective function Eq. (B.33) with respect to log standard-deviation pa-

rameter ς of variational distribution q(wd) specific to a single document d, and using Eq. (B.47):

∂L
JI
(qd)

∂ςd
=

V∑

i=1

xdi

[
−
∑

k

1

2
t
T

k � 2 exp{2ς} � tTk
exp{mk + tkν + 1

2tk diag(exp{2ςd}) t
T

k}∑
j exp{mj + tjν + 1

2tj diag(exp{2ςd}) tTj}︸ ︷︷ ︸
ϕdk

]

− λ exp{2ςd}+ 1

= −
V∑

i=1

xdi

V∑

k=1

t
T

k � exp{2ς} � tTk ϕdk − λ exp{2ςd}+ 1

∇ςdLJI
(qd) = 1− λ exp{2ςd} −

V∑

i=1

xdi

V∑

k=1

t
T

k � exp{2ς} � tTk ϕdk. (B.50)

VB M-step: Updating model parameters:

Taking derivative of the objective function Eq. (B.34) with respect to a row tk in matrix T :

∂L
JI

∂tk
=

∂

∂tk

D∑

d=1

V∑

i=1

xdi

[
(mi + t

T

i νd)

− log




V∑

j=1

exp{mi + tjνd +
1

2
tj diag(exp{2ςd}) t

T

j}



]
− λ

V∑

i=1

||ti||1

=
D∑

d=1

[
xdkν

T

d −
V∑

i=1

xdi
exp{mk + tkν + 1

2tk diag(exp{2ςd}) t
T

k}∑
j exp{mj + tjν + 1

2tj diag(exp{2ςd}) tTj}︸ ︷︷ ︸
ϕdk

(
ν

T

d + tk � exp{2ςd}
)]

− λ sign(tk)

=

D∑

d=1

[
xdkν

T

d − ϕdk
(
ν

T

d + tk � exp{2ςd}
) V∑

i=1

xdi

]
− λ sign(tk)

∇tkLJI
=

D∑

d=1

[(
xdk − ϕdk

V∑

i=1

xdi

)
ν

T

d −
(
ϕdktk � exp{2ςd}

) V∑

i=1

xdi

]
− λ sign(tk). (B.51)

Here, sign operates element-wise and � indicates element wise product.
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B.2.2 Gradients of ELBORP

g(ε) = ν + exp{ς} � ε̃, (B.52)

where ε̃ represents a sample drawn from N (ε | 0, I).

It is convenient to have the following derivatives:

∂(ν + exp{ς} � ε̃)
∂ν

= I (B.53)

∂(ν + exp{ς} � ε̃)
∂ς

= diag(exp{ς} � ε̃) (B.54)

VB E-step: Updating the parameters of variational distribution:

Taking derivative of the objective function Eq. (B.42) with respect to mean parameter ν and

using Eqs. (B.46), (B.53):

∂L
RP

(qd)

∂νd
=

V∑

i=1

xdi

[
t
T

i −
1

R

R∑

r=1

V∑

k=1

t
T

kI
exp{mk + tk g(εdr)}∑
j exp{mj + tj g(εdr)}︸ ︷︷ ︸

θdkr

]
− λνd (B.55)

=
[ V∑

i=1

xdit
T

i −
V∑

i=1

t
T

i

1

R

R∑

r=1

θdir

V∑

k=1

xdk

]
− λνd (B.56)

=
[ V∑

i=1

t
T

i (xdi −
1

R

R∑

r=1

θdir

V∑

k=1

xdk)
]
− λνd (B.57)

∇νdLRP
(qd) =

[ V∑

i=1

t
T

i (xi −
1

R

R∑

r=1

θir

V∑

k=1

xk)
]
− λνd (B.58)

Taking the derivative of objective function Eq. (B.42) with respect to ς and using Eqs. (B.47), (B.54):

∂L
RP

(qd)

∂ςd
=

V∑

i=1

xdi

[
− 1

R

R∑

r=1

V∑

k=1

t
T

kdiag(exp{ςd} � ε̃dr)
exp{mk + tkg(εdr)}∑
j exp{mj + tjg(εr)}︸ ︷︷ ︸

θdkr

]

− λ exp{2ςd}+ 1 (B.59)

= −
[ V∑

i=1

xdi
1

R

R∑

r=1

V∑

k=1

t
T

k � exp{ςd} � ε̃drθdkr
]
− λ exp{2ςd}+ 1 (B.60)

∇ςdLRP
(qd) = 1− λ exp{2ςd} −

[( V∑

i=1

xdi

)( 1

R

R∑

r=1

V∑

k=1

θdkrt
T

k � exp{ςd} � ε̃dr
)]

. (B.61)
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VB M-step: Updating model parameters:

Taking the derivative of complete objective Eq. (B.43) with respect to a row tk from matrix T .

∂L
RP

∂tk
=

∂

∂tk

D∑

d=1

V∑

i=1

xdi

[
(mi + tiνd)−

1

R

R∑

r=1

log




V∑

j=1

exp{mj + tj g( εdr )}



]
− ω

V∑

i=1

||ti||1

(B.62)

=

D∑

d=1

[
xdkν

T

d −
V∑

i=1

xdi
1

R

R∑

r=1

g(εdr)
T exp{mk + tk g(εdr)}∑

j exp{mj + tj g(εdr)}︸ ︷︷ ︸
θdkr

]
− ω sign(tk) (B.63)

=

D∑

d=1

[
xdkν

T

d −
V∑

i=1

xdi
1

R

R∑

r=1

(νd + exp{ςd} � ε̃dr)
T
θdkr

]
− ω sign(tk) (B.64)

=
D∑

d=1

[
xdkν

T

d − (
V∑

i=1

xdi)
1

R

R∑

r=1

θdkr(ν
T

d + exp{ςd} � ε̃
T

dr)

]
− ω sign(tk) (B.65)

∇tk =
D∑

d=1

[
xdkν

T

d −
[( V∑

i=1

xdi

) 1

R

R∑

r=1

θdkr

(
ν

T

d + ε̃
T

drL
T

d

)]]
− ω sign(tk). (B.66)

Here, sign operates element-wise.
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Appendix C

EM algorithm for Gaussian linear classifier with uncertainty

E-step: Obtaining the posterior distribution of latent variable p(yd |νd,Θ)

.

Using the results from Petersen and Pedersen (2012) (Pg. 41, Eq. (358)):

log p(yd | νd) = log p(νd,yd)− log p(νd) (C.1)

= log p(νd | yd) + log p(yd)− log p(νd) (C.2)

= logN (νd | µd + yd,D
−1

) + logN (yd | 0,Γ
−1

d ) + const (C.3)

= −1

2
(νd − (µd + yd))

T
D(νd − (µd + yd))−

1

2
y

T

dΓdyd + const (C.4)

= −1

2
(yd − (νd − µd))

T
D(yd − (νd − µd))−

1

2
y

T

dΓdyd + const (C.5)

= N (yd | ud,V
−1

d ) (C.6)

where ud is simplfied as:

ud = (D + Γd)
−1

(D(νd − µd) + Γd0) (C.7)

= [D
−1

(D + Γd)]
−1

(νd − µd), (C.8)

resulting in:

ud = [I +D
−1

Γd]
−1

(νd − µd).
Vd = D + Γd.

(C.9)

(C.10)

M-step: Maximizing the auxiliary function.

Θnew = arg max
Θ

Q(Θ,Θold) (C.11)

q(y) = p(y | w,Θold) (C.12)
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Using the results from Petersen and Pedersen (2012) (Pg. 43, Eq. (378)), the auxiliary function

Q(Θ,Θold) is computed as:

Q(Θ,Θold) = Eq[
N∑

d

log p(νd,yd)] (C.13)

=
N∑

d

Eq[log p(νd | yd)] + Eq[log p(yd)] (C.14)

=

N∑

d

Eq[logN (νd | µd + yd,D
−1

)] + const (C.15)

=
N

2
log |D | −1

2

N∑

d

[
Eq[(νd − (µd + yd))

T
D(νd − (µd + yd))]

]
+ const (C.16)

=
N

2
log |D | −1

2

N∑

d

[
Eq[(yd − (νd − µd))

T
D(yd − (νd − µd))]

]
+ const (C.17)

=
N

2
log |D | −1

2

N∑

d

[
Tr(DV

−1

d ) + (ud − (νd − µd))
T
D(ud − (νd − µd))

]
.

(C.18)

Maximizing the auxiliary function Q w.r.t parameters Θ = {M ,D}:

Taking derivative with respect to each column µ` in M and equating it to zero:

∂Q
∂µ`

= −1

2

∂

∂µ`

∑

d∈I`

[
(ud − (νd − µ`))

T
D(ud − (νd − µl))

]
(C.19)

= −1

2

∑

d∈I`
2D (µ` − (νd − ud)) (C.20)

= −D
(∑

d∈I`
µ` −

∑

d∈I`
(νd − ud)

)
(C.21)

µ` =
1

|I`|
∑

n∈I`
(νd − ud). (C.22)

Taking derivative with respect to shared precision matrix D and equating it to zero:

∂Q
∂D

=
N

2
D

−1 − 1

2

( D∑

d=1

V
−1

d

)T

− 1

2

( D∑

d=1

(ud − (νd − µd))(ud − (νd − µd))
T
)T

(C.23)

D
−1

=
1

D

( D∑

d=1

V
−1

d +
D∑

d=1

(ud − (νd − µd))(ud − (νd − µd))
T
)
. (C.24)
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Appendix D

Estimation of bias-corrected moments for adam optimization

scheme

The equations for computing bias-corrected first and second order moment estimates of gra-

dients is given here. For more details about adam optimization scheme, see Kingma and Ba

(2015).

Let gt denote a gradient of an objective function with-respect-to the desired parameter(s) at

tth step.

Let ft and st denote first and second order moment estimates of gradient gt; where f0 and s0

are zero vectors.

The following formulae show the estimation of bias-corrected moments, as required by adam :

ft+1 ← β1ft + (1− β1)gt (D.1)

st+1 ← β2st + (1− β2)g2
t (D.2)

f̂t+1 ←
ft+1

(1− βt+1
1 )

(D.3)

ŝt+1 ←
st+1

(1− βt+1
2 )

(D.4)

where β1 = 0.9, β2 = 0.999, are the default exponential decay rates for the moment estimates,

and, g2
t denotes element-wise square, i.e., gt � gt.
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Appendix E

Illustration of orthant-wise learning

Illustration of Orthant-wise learning using an `1 regularized quadratic function:

f(x) = (x− 1)2 + 2 + |x| (E.1)

The positive and negative variants are

f+(x) = (x− 1)2 + 2 + x (E.2)

f−(x) = (x− 1)2 + 2− x, (E.3)

respectively. The sub-gradients are computed on these variants. They are in fact identical to

the original f(x) in one or the other quadrant. The illustrations are in Fig. E.1.
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Mimimum at x = 0.5, f(x) = 2.3

f(x) = (x− 1)2 + 2 + |x|

(a) `1 regularized quadratic function.
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(b) The positive and negative variants of the ob-

jective function, that are used to compute sub-

gradients.

−6 −4 −2 0 2 4 6
x

0

10

20

30

40

50

60

f
(x

)

f(x) = (x− 1)2 + 2 + |x|
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(c) When the initial point is in the same quadrant

as the minimum, single step using second order

method leads to minimum.
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Initial point

(d) When the initial point is in different quadrant

than the minima: Orthant-wise learning is em-

ployed and the updates do not cross the point of

non-differentiability. Here two steps are needed to

reach the minimum.

Figure E.1: Illustration of Orthant-wise learning using an `1 regularized quadratic function

involving single variable.

The following example illustrate (Fig. E.2) Orthant-wise learning for an an `1 regularized

quadratic function involving two variables

L = (x− 3)2 + (y − 4)2 + 5(|x|+|y|). (E.4)
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The initial point is chosen to be in Quadrant 3, whereas the minimum is in Quadrant 1. The

update steps following orthant-wise learning will stop at the points of non-differentiability. Once

when crossing the line y = 0 and next when crossing the line x = 0.

−6 −4 −2 0 2 4 6
x

−6

−4

−2

0

2

4

6

y

L = (x− 3)2 + (y − 4)2+5(|x|+ |y|)
Initial point

Figure E.2: Illustration orthant-wise learning for an `1 quadratic function involving two vari-

ables.
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Appendix F

Datasets

F.1 20Newsgroups

This is a freely available1 standard text corpus, mainly used for topic identification and

document clustering tasks. A standard preprocessed version (20 Newsgroups) is available that

is usually preferred. It contains a total of 18774 documents with 61188 unique words comprising

a closed set of 20 topics (see Table F.1). The training set consists of 11269 documents with a

vocabulary of 53975 words and the test set consists of 7505 documents. The test set has 7213

words that are not present in training set and are ignored in our experiments.

Table F.1: Topics in 20 Newsgroups dataset

comp.graphics rec.autos sci.crypt

comp.os.ms-windows.misc rec.motorcycles sci.electronics

comp.sys.ibm.pc.hardware rec.sport.baseball sci.med

comp.sys.mac.hardware rec.sport.hockey sci.space

comp.windows.x

misc.forsale

talk.politics.misc talk.religion.misc

talk.politics.guns alt.atheism

talk.politics.mideast soc.religion.christian

The Fig. F.1a shows the histogram of document lengths in training and test set and Fig. F.1b

shows the training and test proportions per topic.

1http://qwone.com/~jason/20Newsgroups/
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(a) Histogram of document lengths from training and test sets of 20Newsgroups dataset.
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Figure F.1: 20 Newsgroups dataset
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F.2 Fisher phase 1 speech corpus

This is a collection of 5850 conversational telephone speech recordings with a closed set

of 40 topics, and is distributed by Linguistic data consortium (LDC)2. Each conversation is

approximately 10 minutes long with two sides of the call and is supposedly about one topic.

While collecting the data, the callers were asked to talk about single topic, but sometimes they

deviated. The details of data splits are presented in Table F.2; they are the same as used

in earlier research Hazen et al. (2007); Hazen (2011); May et al. (2015). Our preprocessing

involved removing punctuation and special characters, and we did not remove any stop words.

The manual transcriptions are distributed by LDC3, and the automatic ones are obtained from

a DNN-HMM based automatic speech recognizer (ASR) system built using Kaldi toolkit Povey

et al. (2011b) following the training algorithm (recipe) described in Veselý et al. (2013b). The

ASR system resulted in 18% word-error-rate on a held-out test set. The vocabulary size while

using manual transcriptions was 24854, for automatic, it was 18292, and the average document

length (in number of words) is 830, and 856 respectively.

Table F.2: Data splits from Fisher phase 1 corpus, where each document represents one side

of the conversation.

Set # docs. Duration (hrs.)

ASR training 6208 553

Topic ID training 2748 244

Topic ID test 2744 226

The histogram of document lengths (number of word tokens) is shown in Fig. F.2. The 40

topics along with their proportions in training and test sets is illustrated in Fig. F.3.

2https://catalog.ldc.upenn.edu/LDC2004S13
3https://catalog.ldc.upenn.edu/LDC2004T19
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Figure F.2: Histogram of document lengths from training and test sets of Fisher dataset.
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Figure F.3: Number of training and test documents per topic from Fisher dataset.
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