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Abstract

Automatic Speech Recognition (ASR) systems are increasingly prevalent in our daily lives, with

commercial applications such as Siri, Alexa, and Google Assistant. However, the focus of these

systems has been largely angled towards English, leaving a considerable portion of non-English

speakers underserved. This is particularly evident in India, a linguistically diverse country with

many languages classified as low-resource in the context of ASR due to the scarcity of annotated

speech data. This thesis aims to bridge this gap, focusing on enhancing ASR systems for Indian

languages using deep learning methodologies. India is a land of language diversity. There are

approximately 2000 languages spoken around, and among those officially registered are 23. Of

those, very few have ASR capability. This is because building an ASR system requires thou-

sands of hours of annotated speech data, a vast amount of text, and a lexicon that can span all

the words in the languages. The necessity for a comprehensive presence in the diverse Indian

markets demands the development of multilingual Automatic Speech Recognition (ASR) sys-

tems. It’s a common scenario where ASR systems for Indian languages have to be implemented

in low-resourced contexts. Furthermore, the complexity of the linguistic landscape is ampli-

fied due to the high prevalence of bilingualism in the Indian population, leading to frequent

instances of code-switching and linguistic borrowing between languages. Operating concurrent

ASR systems that can handle code-switching in the Indian context presents a considerable chal-

lenge. This predicament has spurred our research endeavors, driving us to focus on constructing

a large corpus for one language and leveraging its phonetic space on other language families in

monolingual and multilingual ASR scenarios.

This thesis incorporates a crowd-sourcing strategy to collect an extensive speech corpus, par-

ticularly for Telugu. Using this approach, around 2000 hours of Telugu speech data, capturing

regional variations through three modes: spontaneous, conversational, and read, under various



background conditions, has been collected. This data served as a foundation for developing and

evaluating neural network architectures tailored to the characteristics of Indian languages.

We also explored the potential of self-supervised learning to understand and enhance learned

representations, fine-tuning them to suit different language families and data sizes. This ap-

proach led to insights into the shared phonetic space among Indian languages, allowing for the

development of a multilingual ASR system utilizing a joint acoustic model approach. These

studies mark a significant stride towards overcoming the challenges of multilingualism in the

Indian context, setting a path for creating more inclusive and effective ASR systems.

The research findings presented in this thesis not only contribute towards building efficient and

accurate ASR systems for low-resource Indian languages but also underscore the power of deep

learning approaches in linguistic technology. It is our hope that this work will motivate and

aid further research in this direction, promoting linguistic diversity and broadening access to

information and communication technologies for speakers of low-resource languages.

Keywords: Automatic Speech Recognition, Indian Languages, Crowd-Sourced, Low-Resource,

Spontaneous Speech, Conversational Speech, Read Speech, Word Error Rate, Self-Supervised

Learning, Common Phone Set, Common Label Set, Joint Acoustic Model, Time-Delay Neural

Network, Transformer, Conformer, Wav2Vec.
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Chapter 1

Introduction

Speech serves as a distinctive and natural means of communication among humans. It is one of

the most potent tools possessed by human beings. It is multifaceted, encompassing information

about the message, language, and speaker-specific attributes such as gender, age, and emotion.

All these attributes are interwoven into a single signal, which characterizes a typical speech

signal, making the field of building speech systems a fascinating area of study. However, the

complexity of speech signal analysis is compounded by the quasi-periodic or non-stationary

nature of speech signals, coupled with their high temporal variations.

Over the past decade, research in speech signal processing has seen significant progress. The

focal point of most of this research has been the development of effective speech recognition

systems. The primary function of an automatic speech recognition system (ASR) is to process

the input speech signal and convert it into the corresponding text, bridging the gap between

human speech and machine understanding.

The importance of these systems cannot be overstated, particularly as we continue to push the

boundaries of human-machine interaction (HMI). Speech scientists predict an era of substantial

growth in the speech recognition industry in the years to come. The global market potential is

staggering, with projections reaching into the realm of several billion dollars.

In an increasingly digitized world, voice-based interfaces are rapidly integrating into our ev-

eryday lives. From mobile assistants to home automation systems, these interfaces transform

how we interact with technology, making it more intuitive and personalized. The promise of

HMI is not just about enhancing technology but also about enriching human lives by facilitating

seamless interaction with our digital environment. The narrative of speech recognition is not
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just about the evolution of machines but a testament to the adaptability and inventiveness of

human communication.

The performance of an ASR system may be impacted if there are excessive acoustic variations

in speech signals [1]. The variations in acoustic characteristics in speech signals can stem from

a variety of factors, which are as follows:

Figure 1.1: Acoustic variations in speech signal

• Environmental conditions:

- Background noise is a critical factor in ASR as it effectively diminishes the Signal-

to-Noise Ratio (SNR). Various sources, such as a fan’s whirring, the car’s hum, or

chatter in a “babble” setup, can contribute to this noise. This unwanted acoustic

input mingles with targeted speech sounds, complicating clear and accurate speech

recognition.

- During the recording of speech samples, it’s essential to mitigate the presence of

echo paths, which can introduce further distortions. Echoes, essentially repeated

reflections of sound that reach the microphone with a delay, can add another layer

of complexity, particularly in environments not acoustically designed for recording.

- Therefore, the careful management and consideration of recording environments, in-

cluding minimizing background noise and controlling for echo paths, is paramount

in capturing high-quality speech data, leading to improved performance in subse-

quent speech recognition tasks.
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• Impact of Transducer/channel:

- This particular effect is predominantly attributed to the idiosyncrasies of the record-

ing microphone. In its traditional role, a microphone’s core function involves the

transformation of an acoustic waveform, a vibrational representation of sound, into

an analogous electrical signal. This process, however, is not always characterized by

consistent linearity and instead exhibits a degree of variation that is often contingent

on the particular microphone in use.

- This non-linear transformation can cause spectral distortion, changing the inherent

properties of the recorded speech. Such inconsistencies can impact the performance

of speech recognition systems which often assume a linear relationship between the

original and recorded signal.

- In practical applications, we have observed variations in microphone response that

span a considerable range, extending up to 20 dB. This considerable deviation can

have a profound effect, significantly modifying the spectral attributes inherent to the

speech signal.

- These alterations, while potentially subtle to human listeners, can significantly af-

fect automated processes relying on spectral features. As such, understanding and

accounting for the influence of the transducer/channel is of paramount importance

in improving the performance and robustness of speech recognition systems.

• Physiological:

- Each human possesses a unique vocal tract length, which inherently influences the

resonance frequencies of their speech. It is observed that the resonance frequencies

typically decrease with the increase in the size of the vocal tract. As such, male

adults generally exhibit lower resonance frequencies compared to females, who, in

turn, typically display lower resonance frequencies than children.

- This interesting phenomenon implies that even if two individuals possess the same

pitch, the spectra of their speech can exhibit discernible differences due to vari-

ances in their head sizes, which influence the length and shape of their vocal tracts.
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These physical disparities are among the many factors that contribute to the rich

complexity and individuality of human speech and pose unique challenges and con-

siderations in the field of speech recognition.

• Behavioral:

- The pace of speech notably varies among individuals, with influences stemming

from a multitude of factors. It has been observed that the speaker’s regional and

social background significantly impacts their accent and lexical choices.

- For example, people from different geographical areas or social communities may

speak at different rates and utilize unique accents, idioms, or phrasing. These vari-

ations in speaking rate, accent, and language use can create additional challenges

in speech recognition, as systems must be capable of understanding a broad range

of speech patterns and rates. This highlights the importance of designing and train-

ing speech recognition systems that are adaptable and flexible in handling diverse

speaking styles and accents, ensuring their applicability across a wider range of

real-world scenarios.

• Phonetic context:

- The fundamental building block of speech is the “phoneme,” with a combination

of phonemes forming words and, subsequently, sentences. The articulation of any

given phoneme depends on its surrounding phonetic context, that is, the phonemes

that precede and follow it.

- Take, for instance, the words “bat” and “pat.” The phonetic difference resides solely

in the initial phonemes, /b/ and /p/ . This demonstrates how a minor change in the

phonetic composition of a word can lead to an entirely different word, emphasizing

the importance of accurately recognizing phonetic variabilities.

- If an ASR system struggles to distinguish such nuances accurately, it could result in

significant errors in transcription and understanding. Therefore, a nuanced grasp of

the contextual dependencies of phonemes is essential for the development of robust

and reliable ASR systems.
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1.1 Scope of the thesis

The primary objective of this thesis is to develop ASR systems tailored for Indic languages. An

essential component in constructing these systems is the availability of a well-curated database

accompanied by comprehensive transcripts. Recent research [2, 3] has indicated that English

ASR systems have achieved human-level performance in public domains. The quantity of an-

notated data accessible for English ASR tasks is approximately 30,000 hours [4, 5]. Conversely,

the situation for Indic languages is quite different, with available corpora rarely exceeding 200

hours. As a result, it is imperative to establish a method or framework for curating large-scale

databases for ASR tasks specifically designed for Indic languages. Additionally, it is impor-

tant to investigate the acoustic sharing properties between resource-rich and resource-poor lan-

guages within the Indian context.

The scope of the thesis is summarized as follows:

• This thesis provides a platform/tool for collecting speech corpora for the speech recogni-

tion task. Furthermore, strategies for collecting the database in a crowdsourced approach

are discussed.

• This thesis investigated the importance of dialect-based information for speech recogni-

tion tasks.

• Exploration of self-supervised approach for improving the performance of ASR system.

• In this thesis, the importance of acoustic sharing among the resource-rich and resource-

poor languages is investigated.

• Building an ASR system in the Indian context for low-resource settings by investigating

different neural network architectures.

1.2 Organization of the thesis

The remainder of this dissertation will be structured in the following manner:

• Chapter 2, presents relevant background information associated with this thesis. This

chapter aims to equip readers with the full comprehensive content of the thesis.
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• Chapter 3, unveils the International Institute of Information Technology Hyderabad-

Crowd Sourced Telugu Database (IIITH-CSTD), which is a compilation of Telugu speech

samples gathered via crowd-sourcing. The primary purpose of this chapter is to demon-

strate how crowd-sourcing strategies can be applied to alleviate the scarcity of resources

for the Telugu language. In this context, we’ve established a crowd-sourcing pipeline and

discussed the protocols implemented for collecting this corpus.

• Chapter 4, delves into various hybrid and end-to-end frameworks employed on the IIITH-

CSTD corpus. The chapter aims to establish definitive baseline measures for the Telugu

ASR task, paving the way for future work and developments in this field.

• Chapter 5, provides an introduction to the self-supervised representation learning method-

ology. This chapter focuses on training a wav2vec2.0 model, leveraging an extensive

5000-hour of unlabeled Telugu audio. Firstly, the intricacies of the pretraining process

involved are discussed. The latter portion of this chapter shifts focus to a comprehensive

layer-by-layer analysis of the Telugu pretrained model. (The Telugu pretrained model in

this thesis is referred to as CTSD-5k).

• Chapter 6, presents a detailed analysis of CSTD-5k, Cross Lingual Speech Representa-

tions for Indic Languages (CLSRIL-23), XLSR-53 by performing fine-tuning on different

dataset sizes varying from 10 minutes, 1 hour, 10 hours and 100 hours respectively using

IIITH-CSTD corpus. Later part of the chapter, CSTD-5k performance across Language

Families is investigated. Lastly, an impact of Multilingual Fine-tuning on the CSTD-5k

is explored.

• Chapter 7, investigates the development of multilingual Automatic Speech Recognition

(ASR) systems. This chapter guides the training of a joint acoustic model using a common

phone set (CPS) and a common label set (CLS). Initially, it begins by evaluating the ef-

fectiveness of different lexicon units, which includes CPS and CLS, such as monophones,

aksharas, and syllable-based systems, for constructing monolingual ASR systems. Later,

the investigation is performed on various acoustic models designed to develop monolin-

gual and multilingual ASR systems employing a CLS.
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• Chapter 8, delivers a comprehensive overview and conclusion of the dissertation. Addi-

tionally, it discusses potential pathways for subsequent research directions.
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Chapter 2

Background and Related Work

In this chapter, we lay down a comprehensive groundwork touching upon several topics integral

to this dissertation. Our discussion begins with an overview of automatic speech recognition

(ASR) in Section 2.1, a pivotal application in speech processing and the main evaluative cri-

terion for the systems discussed in this thesis. Following this, we turn to three predominant

neural network architectures used in speech processing in Section 2.2. These include Long

Short-Term Memory (LSTM), Transformer, and Conformer models, each offering distinct ca-

pabilities and advantages in processing speech data. Section 2.3 offers a succinct review of the

evolution of neural network pre-training, subsequently delving deeper into the contemporary

advancements in representation learning within speech domains, facilitated by self-supervised

techniques. Section 2.4 encapsulates a survey of the pertinent studies in the area of multilingual

speech recognition, shedding light on the strides made in this domain and the challenges yet to

be overcome. In Section 2.5, we discuss the challenges associated with building ASR systems

specifically for Indian languages, which present unique linguistic and socio-cultural characteris-

tics that pose interesting problems and opportunities for ASR research. Section 2.6 outlines the

databases employed in this thesis for constructing speech recognition models and conducting

various studies. These databases form the backbone of our empirical work and provide a rich

source of speech data to train and evaluate our models. Finally, we conclude this chapter with a

summary and some concluding remarks, synthesizing the key points discussed and setting the

stage for the detailed exploration in the subsequent chapters are presented in Section 2.7.

It is important to emphasize that the review presented in this chapter does not aim to be ex-

haustive, encompassing all existing research (indeed, not even all cutting-edge papers will be
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referenced) or delve into the intricate mathematical aspects of the topics discussed. Instead,

the objective is to furnish readers with adequate background knowledge to facilitate a thorough

understanding of the contents of this thesis.

2.1 Automatic Speech Recognition

Automatic Speech Recognition (ASR) represents a crucial technology enabling the transforma-

tion of spoken language into written text through computational means. ASR systems process

speech signals as input and generate corresponding textual output, effectively handling diverse

accents, dialects, speaking styles, and ambient noise. The primary objective of ASR tasks is to

enhance human-computer interactions by enabling seamless communication. ASR has found

widespread use across various domains, including call centers, voice dialing, data entry, dicta-

tion, command and control, and computer-assisted language learning. In contemporary appli-

cations, ASR is combined with text-to-speech synthesis (TTS) to develop intelligent personal

assistants (e.g., Apple Siri, Google Home, Amazon Echo) in chatbots and mobile phones and

accessibility tools for individuals with hearing or speech impairments. Continuous progress in

machine learning and natural language processing has notably boosted the accuracy and effec-

tiveness of ASR systems, making them indispensable in modern human-computer interactions.

In recent times, ASR has evolved into a critical component of information processing systems.

Initially, speech recognition systems were limited to recognizing simple, isolated words and

relied on acoustic models trained to minimize acoustic distance. To create large vocabulary

ASR systems capable of operating in unconstrained environments, it is crucial to incorporate

information from various knowledge sources (KS) into the ASR system [6, 7, 8]. Developing

an ASR system involves drawing from multiple knowledge sources, including acoustics, pho-

netics, phonology, prosodics, lexical, syntax, semantics, and pragmatics. These sources provide

valuable insights into speech variability, speech sound properties, stress and intonation pat-

terns, language patterns, grammatical structures, word meanings, and conversational context.

Integrating these knowledge sources into the ASR system enhances its accuracy and effective-
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ness in speech signal recognition. This comprehensive understanding of speech aspects enables

the development of more robust ASR systems.

2.1.1 Problem Formulation

A representative block schematic of an ASR system is depicted in Figure 2.1. The block

Figure 2.1: A typical block diagram of an ASR system.

schematic demonstrates that the speech recognition system seeks to identify or predict the cor-

responding text based on a given input speech signal. Mathematically, the speech recognition

problem can be formulated as:

recognzed tet =H(speech sgn) (2.1)

Here from the Equation 2.1, the role of H(•) is to properly/correctly estimate the function

(H(•)) in the training procedure. Cutting-edge statistical frameworks facilitate the conversion

of speech signals into corresponding textual sequences. The transformation function H(•) pos-

sesses a probabilistic characteristic in these frameworks. Consequently, the speech recognition

problem can be more explicitly expressed using the statistical formulation, as highlighted in

prior studies [7, 9, 10, 11]. The statistical formulation involves estimating the probabilities of

the word sequence given the acoustic features, which can be represented as P(W|X). The ob-

jective is to find the most probable word sequence that maximizes this probability, which can

be expressed as:

ŵ= rgmx
w

P(W|X) (2.2)

here ŵ, is the predicted word sequence and P(W|X) is the posterior probability distribution.

The Equation 2.2 can be further decomposed by applying the Bayes rule, which can be written
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as:

ŵ= rgmx
w

P(W|X) = rgmx
w

P(W)P(X|W)

P(X)
(2.3)

In Equation 2.3, X represents the sequence of observation feature vectors extracted from the

input speech signal, where 1,2,3, ....,T correspond to the T frames of the signal, and W

represents the sequence of words, where 1,2,3, ....,T correspond to the words in the

sequence. The denominator of Bayes rule, (from Equation 2.3) P(X), is ignored as it has no

bearing on the maximum posterior probability. The product of the prior probability of the word

sequence P(W) and the likelihood of the observation feature vectors given the word sequence

P(X|W) is maximized to obtain the hypothesized word sequence. So the Equation 2.3, can be

simplified as:

ŵ= rgmx
w

P(W|X) = rgmx
w

P(W)P(X|W)

P(X)
= rgmx

w
P(W)P(X|W) (2.4)

In speech research, Equation 2.4 is frequently denoted as the “fundamental equation of speech

recognition.” The statistical models employed for estimating P(X|W) and P(W) are generally

referred to as the acoustic model (AM) and language model (LM), respectively. Consequently,

the ASR problem has evolved into identifying the optimal parameterizations for acoustic and

language models.

Acoustic Model evaluates P(X|W) for a given text sequence W, which represents the likeli-

hood of a speech utterance X, given W. For instance, consider a speech sample of someone

uttering the phrase “my name is ganesh.” An ideal acoustic model would assign a higher like-

lihood score to P(X|my nme s gnesh) compared to a phrase that sounds significantly

different, such as “increase the tv volume.”

The likelihood P(X|W) is determined by the acoustic model (AM), which is responsible for im-

proving the recognition accuracy by learning high-level statistics and adjusting for differences

in speakers, dialects, environments, and noise. To acquire such a statistical model of this na-

ture generally necessitates a dataset containing audio recordings and their corresponding textual

transcripts {(X(),W())}N
=1, with N representing the total number of audio-transcript pairs in

the dataset. Consider the exemplification of speech utterance denoted as X. Conventionally, X
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is characterized as a continuum of spectral attributes, symbolized as a series of spectral fea-

ture vectors X = (1,2, . . . ,T), including the logarithmic Mel-filterbank features and Mel-

frequency cepstral coefficients (MFCCs) [12]. The sequence length, denoted by T , possesses

variability and is contingent upon the length of the individual utterance. The textual transcript,

symbolized as W, comprises a series of textual elements that vary in their levels, depending

upon the final application of the ASR system during the training phase of acoustic models. A

prevalent method of representing W involves employing a meticulously designed pronunciation

model. This model facilitates the mapping of each word within W to its respective pronunci-

ation, concomitant with its associated probability. Each spoken word W can be decomposed

into a sequence of N basic speech sound units, known as base phones, denoted by q =

q1,q2,q3, ....,qT . This sequence corresponds to the pronunciation of that particular word.

In practice, the pronunciation sequence is provided by a lexicon (pronunciation dictionary) that

ideally contains the phonetic decomposition of the words. Multiple pronunciations for a given

word can be accommodated in the dictionary by computing the different pronunciations, and

mathematically it can be expressed as:

P(W|X) =
∑

Q

P(X|Q)P(Q|W) (2.5)

In conventional practice, a Hidden Markov Model (HMM) [6] is utilized to model P(X|Q).

Each phonetic unit, or phone, possesses an individual HMM assigned for its representation.

Typically, this model comprises three hidden states designed to encapsulate the transitory acous-

tic dynamics within a phone. This can be conceptualized as an attempt to model the phonetic

unit’s beginning, middle, and end. In HMM-based modeling, each base phone q is repre-

sented by a continuous density HMM, and the sequence of base phones Q is obtained by con-

catenating all the base phones for a given the word (as discussed in Equation 2.5), such that

Q= q1,q2,q3, ....,qL. The acoustic model can be expressed mathematically as a sum-

mation of all valid pronunciation sequences for a given the word W, where Q represents a

particular pronunciation sequence. This is expressed as follows:

P(W|Q) =
∑

s

P(X,s|Q) (2.6)

The state sequence through the composite hidden Markov model (HMM) has been represented

by s. The speech features have been effectively modeled and represented by concatenating a
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sequence of HMM phone models. It is important to note that context-dependent variations in

speech have not been considered in the current formulation. This is particularly evident in the

case of vowels, such as the phoneme /a/, where variations between the words ”bat” and ”cat”

are observed. It is worth mentioning that context-independent phone models are referred to as

monophones. To address this issue, a simple approach of incorporating context information in

the phone models has been proposed in the past. Specifically, a unique HMM phone model

has been employed for every possible pair of left and right neighbors of the phones. This ap-

proach creates triphones, which are HMM models that incorporate context-dependent variations

in speech.

Within the realm of acoustic feature vectors denoted as X, these are perceived as state emissions.

The densities of these vectors are typically represented by either a cluster of Gaussian Mixture

Models (GMM) [13], or a Deep Neural Network (DNN) [14], with the DNN often demonstrat-

ing superior capabilities. In the case of GMM-HMM acoustic models, parameter determination

can be achieved by implementing maximum likelihood estimation via the forward-backward al-

gorithm, further discussed in [15]. The parameter estimation for DNN-based acoustic models

usually begins with a pre-trained foundational GMM-HMM speech recognition system. This

system calculates the target state label for each frame in the audio sequence, resulting in what

is commonly termed as forced alignment. Once the target state sequence is acquired, the DNN-

based acoustic model can be trained to employ backpropagation alongside traditional gradient

descent techniques. The exploration and application of varied neural architectures, including

feed-forward neural networks [16, 17], recurrent neural networks [18, 19], and convolutional

neural networks [20], have been thoroughly examined in the field.

Language Model The statistical model employed to estimate P(W) in Equation 2.4 is com-

monly referred to as the language model within the field. It provides an a priori probability,

indicating the likelihood of a textual sequence W appearing initially in human language (i.e.,

being spoken or written). To illustrate the function of a language model in speech recognition,

let’s consider an example featuring a recording of the phrase “how to recognize speech” and

another recording of the phrase “how to wreck a nice beach.” A robust acoustic model might
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struggle to attribute distinct likelihood scores P(X|W) to the two recordings. This challenge

arises due to the strikingly similar pronunciations of the two phrases. Consequently, their Q (the

phone sequence converted from the original text sequence W using the pronunciation model)

would also exhibit substantial similarity, resulting in strikingly similar X. At this juncture, a

language model intervenes and settles the impasse. It would simply assign a higher likelihood

score to P(”ho to recognze speech”) than to P(”ho toreck  nce bech”)

because the former is empirically more likely to be spoken or written by an individual.

The primary function of the language model in ASR is to provide the value of P(W) for the basic

ASR equation. The probabilistic relationship between a sequence of words can be established

and effectively modeled through the utilization of a text corpus containing a large number of

words. Mathematically, a language model can be expressed as a probability distribution over a

sequence of words. Specifically, for a sequence of words W consisting of N words, the language

model can be expressed as:

P(W) = P(1,2,3, ....,N)

= P(1)P(2|1)P(3|1,2) . . .P(N|1,2, . . .N−1)

=
N
∏

=1

P(|1,2, .....,−1)

(2.7)

The factorization outlined in Equation 2.7 suggests a combinatorial expanse of possible word

histories. This magnitude frequently results in language models demonstrating suboptimal gen-

eralization capabilities when encountering novel combinations of words. To circumvent this

issue, it is common practice to formulate n-gram models with a modest n, generally between

two to five. This approach guarantees that the models only account for the immediate n - 1 word

when forecasting the upcoming word. For instance, a bi-gram model, where n = 2, would offer

an approximation to Equation 2.7 as follows:

P(W) = P(1,2,3, ....,N)

= P(1)P(2|1)P(3|1,2) . . .P(N|1,2, . . .M−1)

≈ P(1)P(2|1)P(3|2) . . .P(N|N−1)

(2.8)

14



Depending on the number of words used to predict the likelihood of the current word, the n-

gram model can be extended to bi-gram and tri-gram models, where the current word depends

on the previous word P(|−1) or two previous words P(|−2,−1), respectively.

The estimation of bi-gram probabilities, which involves determining the likelihood of one word

 preceding another word j, is executed by merely enumerating the occurrences of the sub-

sequence (, j) within the text corpus.

P(j|) =
Cont(,j)

Cont()
(2.9)

Lately, Recurrent Neural Networks (RNNs) have emerged as an alternative to n-gram models in

the parameterization of language models [21]. Due to the intricate workings of an RNN, while

processing each word in a text sequenceW = (1,2,. . .N), the network retains a hidden

state h at every time step, which naturally encodes the information of all prior words from 1

to −1. It is mathematically expressed as:

P(W) =
N
∏

=1

P(|1,2, .....,−1)

=
N
∏

=1

P(|h),

h = RNN(,h−1).

(2.10)

This attribute empowers RNN-based language models to more adeptly capture the long-term

context dependencies present in text sequences compared to n-gram models. Thus, when uti-

lized, they often contribute to enhancing ASR system performance. In contrast to the process

of training acoustic models, training a language model relies exclusively on text data W()
N

=1.

Typically, the maximum likelihood estimation method is utilized, which instructs the language

model to optimize the probabilities of producing the text sequences found within the text corpus.

θ∗ = rgmx
θ

N
∏

=1

P(W();θ) = rgmx
θ

N
∑

=1

og(P(W();θ) (2.11)

In the Equation 2.11, the symbol θ signifies the parameters of the language model.

Decoding The speech recognition procedure can be conceptualized as a search challenge, wherein

the objective is to identify the sequence of words that optimizes Equation 2.4. Two primary tech-

niques are employed to discover the optimal path: breadth-first search and depth-first search. In
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a depth-first search, the most likely hypothesis is pursued until the speech utterance concludes,

while in a breadth-first search, all potential hypotheses are explored concurrently. Viterbi de-

coding, a specific form of breadth-first search, is the prevalent method in speech recognition

systems. A decoding graph is generated to conduct decoding, consisting of branches leading to

every possible initial word, branches connecting the starting word to every potential subsequent

word, and so forth. When fully populated, this graph encompasses all feasible word sequences.

Pronunciation sequences are substituted for each word within the graph, with multiple pronun-

ciations combined in parallel. Common phone models with similar contexts are merged and

share the same entry points. Ultimately, the decoding graph is comprised of nodes (phones,

characters, HMM-states) linked by node transitions and word end nodes connected by word

transitions. It is possible to reach any path from the starting node, and the score is assessed

by summing all log state transition probabilities along the path. These paths can be obtained

through a movable token positioned at the conclusion of each node and each word. This token

carries both the score and the history of traversed words. The graph can navigate any path by

shifting the node from its current location to an adjacent node. Consequently, the search chal-

lenges can be viewed as a token-passing algorithm.

Initially, a singular token is placed at the tree’s starting node and then duplicated to all connect-

ing nodes. Only the best token is preserved if multiple tokens arrive at a node. Once all the

acoustic vectors have been processed, the end words are considered, and the word token with

the highest score signifies the optimal path. The history within the token discloses the best pos-

sible word sequence. Nevertheless, the token-passing algorithm necessitates considerable space

and time for computation. To render it feasible, the token with the highest score is selected at

every frame, and tokens with scores falling below the beam width from the top score are dis-

carded. Calculating the paths within the beam width from the optimal path becomes efficient

and manageable.

Evaluation The efficacy of an Automatic Speech Recognition (ASR) system is assessed uti-

lizing the Word Error Rate (WER) as the primary metric. The significance of this measure

becomes particularly crucial in cases where the reference and hypothesized speech segments
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differ in length. To calculate the WER, an initial alignment of the hypothesized and reference

speech samples is performed. WER is mathematically expressed as follows:

WER(%) =
S+ +D

N
100 (2.12)

Where S, , and D represent the quantities of substitutions, insertions, and deletions, respec-

tively. The total number of words in the reference utterance is denoted by N.

2.1.2 End-to-End ASR

Drawing upon the fundamental speech recognition equation, referred in Equation 2.4. ASR

systems have been traditionally constructed in a “hybrid” manner for several decades. This tra-

ditional method involves the independent development of distinct components, such as acous-

tic, pronunciation, and language models, which are subsequently amalgamated to compose the

complete ASR systems. In contrast, recent trends show a gradual transition from this hybrid

modeling approach toward end-to-end modeling. This innovative method aspires to convert

speech utterances directly into textual tokens employing a singular, integrated model.

Within the framework of end-to-end Automatic Speech Recognition (ASR), the conditional

probability function, represented as P(W|X), is typically conceptualized via a single model,

predominantly in the form of a neural network. This end-to-end approach affords numerous

advantages when compared to conventional hybrid methodologies:

1. The primary advantage of end-to-end ASR models lies in their use of a unified objec-

tive function. This function aligns with the ASR objective and is crucial for optimizing

the entire network. Conversely, hybrid models develop each component independently,

increasing the likelihood of compounded errors across the components.

2. Moreover, end-to-end models are engineered to directly convert spoken language into

textual tokens. Unlike conventional hybrid systems, this streamlined process significantly

simplifies the speech recognition pipeline. The latter are often intricate in design and

necessitate extensive expertise and years of experience in ASR.
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3. The compact nature of end-to-end systems, facilitated by using a single neural network

for modeling, sets them apart from traditional hybrid systems. This compactness enables

these systems to be deployed on devices with high accuracy and low latency.

The inherent benefits of end-to-end ASR have sparked considerable attention in recent times [22,

23, 24, 25, 26, 27, 28, 29, 30]. Indeed, some end-to-end systems have already outperformed hy-

brid systems, even though the latter have undergone optimization at the production level over

several decades [31, 32, 33].

The following sections briefly introduce three prevalent techniques in modeling end-to-end

ASR: Connectionist Temporal Classification, Attention-Based Encoder-Decoder, and Recur-

rent Neural Network Transducer.

Connectionist Temporal Classification is an innovative approach utilized in end-to-end ASR

models. It was devised to overcome the alignment problem, a prevalent challenge in sequence

prediction tasks, particularly speech recognition. In traditional methods, explicit alignment

is required between the input and output sequences. This necessitates a detailed mapping,

which can be highly complex for speech data due to the variable nature of speech speed and

style across individuals. The CTC algorithm elegantly circumvents this issue by integrating all

possible alignments, automatically allowing the model to learn the optimal alignment. CTC

introduces a “blank” symbol to the output alphabet, denoted as “ε”. This symbol represents

the possibility of no output at a particular timestep. Mathematically, CTC defines a probability

distribution over all possible alignments by summing them. If “X” is the input sequence and

“Y” is the output sequence, CTC models the conditional probability P(Y |X). This probability

is computed by summing over all possible alignments “A” of “Y” onto “X” :

P(Y |X) =
∑

A

P(A|X) (2.13)

where A represents all possible alignments of output Y on input X.

CTC uses a recurrent neural network (RNN) to model P(A|X). The RNN takes the input se-

quence X and outputs a probability distribution over the extended alphabet (original alphabet

plus the blank symbol) at each timestep. The probabilities of all possible alignments are then
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computed by a forward-backward algorithm, a dynamic programming method similar to the one

used in the Hidden Markov Model. The objective of CTC is to maximize the log probability of

the correct output sequence given the input sequence, i.e., maximize log P(A|X). This is usu-

ally done using gradient-based methods like stochastic gradient descent (SGD). Mathematically

CTC loss is defined as follows:

LCTC = − log
∑

Ã

P(Ã|X)

= − log
∑

Ã

T
∏

t=1

P(̃t |X)
(2.14)

here in Equation 2.14, Ã = (̃1, ̃2, ̃3, . . . , ̃T) represents the valid CTC path.

Attention-Based Encoder-Decoder is another effective technique utilized in end-to-end ASR

models. This approach, in essence, is a sequence-to-sequence model with the addition of an

attention mechanism, allowing the model to focus on different parts of the input sequence at

each step of the output sequence generation. The model is structured into two primary com-

ponents: the encoder and the decoder. The encoder processes the input sequence (such as an

audio waveform in ASR) and maps it into a higher-dimensional, fixed-length context vector.

The decoder then uses this context vector to generate the output sequence (like a transcript in

ASR) one token at a time.

The attention mechanism plays a crucial role in this model. As the decoder generates each

token, the attention mechanism determines which parts of the encoded input sequence are most

relevant. This relevance is computed as a weighted sum of the encoder’s outputs. The weights,

often referred to as attention scores, indicate the importance of each input element for the current

output token. Mathematically, if we denote the encoder’s outputs as h1,h2, . . . ,hT and the

attention scores at time step t as t1,
t
2, . . . ,

t
T

the context vector ct for output token at time

t can be computed as:

ct =
∑



t

h (2.15)
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The attention scores t are usually computed using a softmax function over some measure of

relevance (such as a dot product) between the decoder’s previous hidden state and each of the

encoder’s outputs:

t

= soƒ tm(score(st−1,h)) (2.16)

where st−1 is the decoder’s previous hidden state. One key advantage of the attention-based

approach is that it allows the model to handle inputs and outputs of different lengths and vary-

ing length ratios. This is particularly useful in tasks like ASR, where the input sequence (audio

waveform) and output sequence (transcript) length can vary greatly. However, it also introduces

challenges like handling long input sequences, leading to further research and development of

various attention mechanisms.

Recurrent Neural Network Transducer (RNN-T) is prominent approach in end-to-end ASR

systems. This model was designed to provide a natural and flexible way to perform sequence-

to-sequence tasks without needing pre-specified alignment between the input and output se-

quences. The RNN-T model comprises three main components: the encoder, the prediction

network, and the joint network. The encoder processes the input sequence (such as a sequence

of acoustic features in ASR) and converts it into a higher-level representation. The prediction

network generates the output sequence (like a sequence of phonemes or words in ASR). The

joint network combines the outputs of the encoder and the prediction network to compute a

distribution over the output labels at each timestep. Mathematically, the RNN-T model defines

a probability distribution over the output sequence Y given the input sequence X as follows:

P(Y |X) =
∏

t

P(yt |y1:t−1,1:t) (2.17)

where yt is the output at timestep t, y1:t−1 are the previous outputs, and 1:t are the inputs

up to timestep t. The probability P(yt |y1:t−1,1:t) is computed by the joint network as a

softmax over the output labels. The RNN-T model can be trained end-to-end using the maxi-

mum likelihood principle, i.e., by maximizing the log probability of the correct output sequence

given the input sequence. This is typically done using backpropagation through time (BPTT)

and stochastic gradient descent (SGD).
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One of the key advantages of the RNN-T model is its ability to output symbols as soon as it’s

confident about its prediction. This makes it suitable for streaming ASR applications, where

low latency is crucial. However, training RNN-T models can be computationally demanding

due to the need to sum over all possible output sequences, which has been addressed in recent

research using various approximation methods.

2.1.3 Semi-Supervised ASR

So far, ASR has been treated as an exclusively supervised learning matter: whether applying hy-

brid or end-to-end methodologies, it invariably demands audio-transcript pairs to train systems

in acquiring proficient speech representations. Meanwhile, using extensive and effortlessly ac-

cessible unlabeled speech data to augment supervised ASR performance constitutes an ongoing

research concern. Two principal avenues exist for harnessing unlabeled speech data to address

semi-supervised ASR tasks.

The initial investigation approach involves self-training [34, 35, 36], commonly referred to as

pseudo-labeling. This process initiates with training a teacher model utilizing available labeled

data. Following this, the teacher model annotates the unlabeled data. Consequently, a stu-

dent model is trained using both labeled data and the newly pseudo-labeled data. The pseudo-

labeling method can be reapplied iteratively to augment the quality of the teacher model. His-

torically, self-training has been confirmed to be a highly effective approach, garnering extensive

research in the field of ASR [37, 38, 39, 40, 41, 42].

An additional strategy to leverage unlabeled speech data involves unsupervised pre-training,

also referred to as self-supervised pre-training. This method initially guides the model to han-

dle a proxy task, specifically designed to interact exclusively with unlabeled data. Empirical

evidence from such a proxy task indicates its potential to set the model’s parameters at a ben-

eficial starting point prior to the initiation of supervised data training. A significant amount of

current research has focused on creating proxy tasks that promote optimal model performance

when fine-tuned for ASR tasks [43, 44, 45, 46, 47, 48, 49]. Furthermore, studies suggest that
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the improvements resulting from self-training and unsupervised pre-training have a synergistic

effect on downstream ASR applications [50, 51].

2.2 Overview of Neural Networks for Speech Processing

In this section, we examine two prominent neural network architectures utilized in speech pro-

cessing: recurrent neural networks and self-attention networks. We assume that readers possess

a foundational understanding of their basic mechanisms and variations (e.g., long short-term

memory) and concentrate on reviewing their applications in speech processing, emphasizing

end-to-end ASR modeling.

2.2.1 Recurrent Neural Networks

Recurrent Neural Networks (RNN) have been widely adopted in speech processing tasks due to

their ability to model sequential data effectively. In the context of end-to-end ASR, RNNs have

demonstrated remarkable performance by directly converting speech signals into text without

requiring intermediate representations. In end-to-end models like CTC (Connectionist Tem-

poral Classification), AED (Attention-based Encoder-Decoder), and RNN-T (Recurrent Neural

Network Transducer), the encoder network plays a critical role. The primary objective of the

encoder network is to convert the input audio sequence X= (1,2, . . . ,T) into a high-level

feature representation H= (h1,h2, . . . ,hT).

The encoder network processes the input audio sequence and extracts relevant features, enabling

the model to make accurate predictions. Various neural network architectures can be employed

as encoder networks, such as Recurrent Neural Networks (RNNs), Convolutional Neural Net-

works (CNNs), and Self-Attention Networks (Transformers). When end-to-end models first

emerged [52, 53, 27], Long Short-Term Memory (LSTM) networks [54], a type of Recurrent

Neural Network (RNN), were predominantly utilized to construct encoder networks. There are

two primary configurations for assembling encoder networks using LSTMs:

1. Multi-Layer Unidirectional LSTM: The encoder comprises multiple layers of unidirec-

tional LSTM cells in this arrangement. Each layer processes the input audio sequence or
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the output from the previous layer sequentially, from the beginning to the end of the se-

quence. Unidirectional LSTMs are proficient at capturing temporal dependencies within

the input audio sequence.

h
t
= LSTM(

t
,h

t−1), (2.18)

2. Multi-Layer Bidirectional LSTM: As an alternative, the encoder can be assembled us-

ing multi-layer bidirectional LSTM cells. In this setup, each layer consists of two distinct

LSTM networks: one processes the input sequence from the beginning to the end, while

the other processes it in reverse order, from the end to the beginning. The outputs from

both networks are combined at each timestep. Bidirectional LSTMs enable the encoder

to capture past and future context within the input audio sequence, yielding a more robust

feature representation.

h
t
= [LSTM(

t
,h

t−1),LSTM(

t
,h

t+1)], (2.19)

Here LSTM(•) denotes the standard LSTM unit, h
t

denotes the hidden output of the th layer

at time t, and 
t

as the input vector for the th layer. The input vector 
t

is equal to t when

 = 1 (i.e., the first layer input). Otherwise, it equals h−1
t

. The output of the final layer in the

LSTM network serves as the encoder output.

2.2.2 Self-Attention Networks

In the early stages of end-to-end model development, LSTMs were the preferred choice for en-

coder networks due to their capacity to model short-range dependencies effectively in sequential

data. However, with the introduction of newer architectures such as Self-Attention Networks

or Transformers, the variety of encoder networks in end-to-end models has expanded, offering

researchers a range of options tailored to the specific demands of their ASR tasks. In the litera-

ture, many of these networks have proven to be more adept at capturing long-term dependencies

within sequences. This can be attributed to the self-attention mechanism employed by Trans-

formers, which permits access to the entire sequence when deriving ht for each t in X. As

a result of the impressive modeling capabilities offered by Transformers, there is an emerging

tendency to substitute LSTM encoder networks with Transformer-based architectures in end-
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to-end ASR models [55, 56, 57, 58, 59]).

The encoding architecture of a Transformer-centric end-to-end model encompasses an array of

Transformer units. Each unit houses a multi-head self-attention layer alongside a feed-forward

network (FFN). In order to establish connections between distinct layers and units, residual

connections and layer normalization are integrated. Within every Transformer unit, the input

vector t is subjected to linear transformation, resulting in a query vector q, a key vector k,

and a value vector  through the use of matrices Wq, Wk , and W respectively. The same is

portrayed in Figure 2.2.

Figure 2.2: High-level architecture of transformer encoder

The self-attention mechanism leverages the dot-product similarity function to compute the at-

tention distribution over the input sequence. It is mathematically expressed as follows:

αt,τ =
ep(β(Wqt)T(Wkτ))
∑

τ‘ ep(β(Wqt)T(Wkτ‘))
(2.20)
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here β =
1
p
d

which is scaling factor, τ represents the input sequence, and αt,τ gives us the

attention weight for τ. Later, all the attention weights are used to combine the value vectors

to generate the layer output at the current time step. It is mathematically expressed as :

zt =
∑

τ

αt,τWτ =
∑

τ

αt,ττ (2.21)

The input vector zt at time step t is utilized for the subsequent Transformer block. To bolster

the model’s capabilities, multi-head self-attention is implemented by incorporating multiple

concurrent self-attention mechanisms that act upon the input sequence. The resulting outputs

of each attention component are then amalgamated.

Figure 2.3: High-level architecture of conformer encoder

2.2.3 Convolution-Augmented Self-Attention Networks

Convolution-Augmented Self-Attention Networks is an advanced development in the field of

neural networks, combining the strengths of Convolutional Neural Networks (CNNs) and Self-

Attention mechanisms. This hybrid approach has been designed to leverage the benefits of
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local and global feature extraction inherent in CNNs and Self-Attention mechanisms. A Con-

volutional Neural Network processes data with a grid-like topology (such as an image or a

sequence) by applying a series of filters (or “kernels”) that detect local patterns. This operation

is handy for tasks where the spatial or temporal relationships between nearby data points are

important, such as image or speech recognition.

On the other hand, the Self-Attention mechanism, popularized by the Transformer model, calcu-

lates the relevance (or “attention”) of each data point in the sequence to every other data point.

This mechanism excels in tasks where long-range dependencies between data points need to

be captured, such as in natural language processing or time-series analysis. The Convolution-

Augmented Self-Attention Network works on these two concepts, integrating the convolution

operation into the self-attention mechanism. The same is shown in Figure 2.3. In this model, a

convolutional layer is applied before the self-attention layer. The convolutional layer operates

on local windows of the input sequence, capturing local patterns and dependencies. The pro-

cessed sequence is then fed to the self-attention layer, which models the global dependencies

between the different parts of the sequence. Mathematically, the output of the convolutional

layer can be expressed as:

H
′
= Con(H), (2.22)

where H is the input sequence, and Con(•) represents the convolution operation. The output

H
′

is then fed to the self-attention layer:

O= SeƒAttenton(H
′
), (2.23)

where O is the final output, and SeƒAttenton(•) represents the self-attention operation.

This architecture allows the network to capture the local patterns and the global dependencies

in the input data, making it a versatile tool for many sequence processing tasks. It has been suc-

cessfully used in various domains, including ASR, where capturing both local (e.g., phonetic)

and global (e.g., syntactic or semantic) information is crucial.
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2.3 Neural Network Pre-Training: A Pathway to Self-Supervised

Learning

As previously outlined in Section 2.1.3, it delineates on semi-supervised methodologies. Neural

Network Pre-training and Self-Supervised Learning are powerful strategies employed in the

field of deep learning, which has proven to significantly enhance the performance of various

models, especially in scenarios where labeled data is scarce. The self-supervised Learning

involves two principal paths, (1) pre-training, (2) fine-tuning. The focal point of this thesis is

to address the self-supervised approach to solving low-resource problems. In this section, we

initially present a succinct overview of neural network pre-training. We then review some of

the most emblematic self-supervised pre-training architectures used in speech processing.

2.3.1 Background

Neural network pre-training is a foundational process that typically involves exposing the net-

work to an extensive, often labeled dataset before transitioning into a fine-tuning phase on a

smaller, task-specific dataset. This methodology is rooted in the idea that the broad patterns and

features uncovered during this initial phase can be leveraged advantageously for the specific

task. A crucial distinction between supervised and self-supervised pre-training concerning the

nature and quantity of information encapsulated within the learned representation is observed.

In a supervised context, the ensuing representations preserve only the information relevant to

the task while disregarding nonessential data. Hence, representations sculpted via supervised

pre-training are predominantly compatible with tasks akin to the initial supervised tasks. It

explains why, for instance, representations trained on image classification prove beneficial for

tasks such as object detection and semantic segmentation, reflecting the similarity of these tasks.

Conversely, representations derived from self-supervised tasks typically encompass various

facets of the input data. They are not confined by the specific demands of a single task, par-

ticularly when the self-supervised task revolves around reconstructing input segments. This

feature underscores the broad utility of representations derived from self-supervised learning,

which typically exhibit greater adaptability and superior generalization across diverse tasks,

27



underscoring the broad applicability and versatility of self-supervised learning methodologies.

The “pre-training followed by fine-tuning” paradigm has gained widespread adoption in semi-

supervised learning, largely spurred by advances in computer vision. A notable illustration of

this paradigm is supervised pre-training, wherein representations are gleaned through a super-

vised task. These representations, learned from tasks like image classification, have demon-

strated their efficacy in object detection and semantic segmentation fields.

This methodology has been extended to other supervised tasks that eschew manual annotations,

a concept known as self-supervised learning. Various tasks in the vision domain, including

colorization, solving jigsaw puzzles, and inpainting, have been proposed to facilitate the self-

supervised learning of visual representations. The approach has also marked significant success

in natural language processing, where models like BERT and GPT are pre-trained on compre-

hensive text corpora before fine-tuning for specific tasks.

2.3.2 Self-Supervised Learning Approaches for Speech Representation

Methods for learning speech representations through self-supervised tasks can broadly be bifur-

cated into two categories: those grounded in contrastive learning principles and reconstructive

(generative) learning.

Contrastive learning is a self-supervised learning strategy that revolves around distinguishing

between similar and dissimilar instances in a dataset. The fundamental idea is to learn repre-

sentations that are similar for instances from the same class (positive pairs) and different for

instances from different classes (negative pairs). This strategy aims to derive representations of

speech data that bring similar instances closer together in the representation space while push-

ing dissimilar instances further apart.

In a typical speech processing context, contrastive learning involves presenting a model with

pairs of speech segments. Positive pairs consist of segments that are considered similar in some

way, such as two segments from the same speaker or two segments sharing the same phonetic
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content. Negative pairs, in contrast, are composed of segments that are considered dissimi-

lar or unrelated, such as segments from different speakers or segments with different phonetic

content. The objective of the model is to generate representations that minimize the distance

between positive pairs and maximize the distance between negative pairs in the representa-

tion space. This is commonly achieved using a contrastive loss function, which encourages

the model to reduce the similarity between representations of negative pairs and increase the

similarity between representations of positive pairs. Through this method, the model learns to

extract meaningful features from speech data that are useful for distinguishing between different

speakers, different phonetic content, or other relevant factors. This makes contrastive learning a

powerful tool for tasks such as speaker verification, speech recognition, and other downstream

tasks that require robust and discriminative speech representations.

The effectiveness of contrastive learning in speech representation has been demonstrated in

various applications, leading to improvements in the performance of many downstream tasks.

It represents a significant step forward in leveraging large amounts of unlabeled speech data

to learn meaningful representations, thereby contributing to speech processing technology ad-

vances.

Reconstructive learning, referred to as generative learning, is a type of self-supervised learn-

ing approach applied in speech representation learning. This methodology is centered around

predicting or recreating parts of the input speech data. In a typical reconstructive learning sce-

nario, a model is trained to predict missing or obscured parts of a speech signal or, in some

cases, reconstruct the entire signal. This is often achieved by creating a task where parts of

the input data are deliberately masked or removed, and the model is tasked with predicting the

missing parts based on the remaining unmasked data. Techniques such as denoising autoen-

coders or masked language models in natural language processing are typical examples of this

approach.

The objective of this strategy is to encourage the model to learn a representation that captures

as much information as possible about the structure and content of the speech data. By doing
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so, the model is expected to develop a comprehensive understanding of the various aspects of

the speech signal, such as phonetic, prosodic, and speaker-specific characteristics. By learning

to reconstruct the input data, models can extract meaningful features and patterns that can be

used for various downstream tasks.

2.4 Past works in Multilingual speech recognition

Multilingual speech recognition aims to build ASR systems that can recognize speech from

multiple languages within a single system or by sharing resources across languages. There has

been considerable research and development in this area, with several notable works contribut-

ing to the advancement of multilingual ASR systems. Some key efforts include:

1. Shared acoustic models: Early approaches to multilingual ASR focused on sharing

acoustic models across languages. In these methods, researchers trained a single acoustic

model on data from multiple languages, leveraging similarities in phonetic and phono-

logical structures. These shared models led to improvements in ASR performance for

low-resource languages by borrowing knowledge from high-resource languages [60, 61].

2. Multilingual bottleneck features: Another approach involves training a deep neural

network (DNN) on multiple languages to extract bottleneck features. These features, rep-

resenting language-independent speech characteristics, can be used to train ASR systems

for individual languages. This technique has shown significant improvements in perfor-

mance for low-resource languages [62, 63].

3. Transfer learning: Transfer learning has emerged as a popular technique for leveraging

pre-trained models from related tasks or languages. Researchers have used pre-trained

models, such as multilingual BERT (mBERT) or XLSR (Cross-lingual Speech Repre-

sentations), to improve ASR performance in low-resource languages by fine-tuning them

with limited target language data [64, 65].

4. Multilingual end-to-end ASR: Recent developments in end-to-end ASR have been ex-

tended to multilingual scenarios. Researchers have experimented with training end-to-

end ASR models on multiple languages simultaneously, using techniques such as joint
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CTC/attention mechanisms and multi-task learning. These approaches have shown promis-

ing results in improving ASR performance across various languages [66, 67, 68].

5. Cross-lingual adaptation: Cross-lingual adaptation involves using knowledge from one

language to improve recognition in another. Researchers have explored techniques such

as cross-lingual transfer learning, language-adaptive training, and unsupervised adapta-

tion to improve ASR performance in low-resource languages using data from related

high-resource languages [69, 70].

6. Code-switching: Given the prevalence of code-switching in multilingual environments,

researchers have also explored methods to handle code-switching in ASR systems. These

approaches include language identification, language modeling, and deep learning tech-

niques to improve recognition performance in code-switched speech [71, 72].

2.5 Challenges in building ASR systems for Indian Languages

Automatic Speech Recognition (ASR) systems play a vital role in processing speech signals

by converting them into text format. With over 7000 languages spoken globally, 90% of them

are considered low-resource languages, representing the speech of over 3 billion people. Most

of these low-resource languages are not English. A language is deemed low-resource when

there is limited web presence or a lack of availability of speech, text, transcribed data, linguis-

tic expertise, or a pronunciation dictionary [73]. In India, approximately 2000 languages are

spoken, including dialects, sociolects, pidgins, accents, etc., of which only 22 are officially reg-

istered, and 13 have different orthographies. Additionally, approximately 74% of the country’s

population is literate, and most only read and write in their native language. As a result, most

Indians are excluded from the mainstream, as only 12.16% of the population can read and write

in English. In such scenarios, speech interfaces that use vernacular languages are advantageous.

In the context of Indian scenarios, developing an Automatic Speech Recognition (ASR) system

presents unique challenges and opportunities. Among the 22 majorly spoken Indian languages,

only a few of them have Automatic Speech Recognition (ASR) capability. A substantial amount

of annotated speech data is required to build an ASR system that performs well. However,
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most Indian languages are considered low-resource, and annotating data is challenging, time-

consuming, and expensive. Despite a large volume of speech content in Indian languages being

available online for public use, developing ASR systems for Indian languages has been complex.

It has received little attention over the last several decades. However, since the launch of the

Digital India Mission in 2015, efforts have been made to build speech recognition technologies

capable of handling low-resource languages.

The primary challenges in implementing ASR for Indian scenarios include:

1. Orthography

- India’s linguistic diversity also extends to its writing systems. Several scripts are

used to represent the numerous languages spoken across the country. Understanding

these writing systems is essential for tasks of building speech systems. Some of the

prominent writing systems in India include:

Devanagari: Used for languages such as Hindi, Marathi, Nepali, and Sanskrit.

Devanagari is one of the most widespread writing systems in India. It is an

abugida 1 script, where consonants have an inherent vowel sound that can be

altered using diacritical 2 marks.

Bengali-Assamese: This script is employed for Bengali, Assamese, and several

other languages which are spoken in eastern India and Bangladesh. Like De-

vanagari, it is also an abugida script featuring distinct consonant symbols and

diacritical marks for vowels.

Gurmukhi: Primarily used for the Punjabi language, the Gurmukhi script is

another abugida writing system, with characters representing consonants and

vowel signs modifying the inherent vowel sound.

Gujarati: Utilized for the Gujarati language, the Gujarati script is closely re-

lated to Devanagari but has some unique characters and diacritical marks.

1An abugida, also known as an alphasyllabary, is a type of writing system in which consonant symbols (or base
characters) carry an inherent vowel sound. This inherent vowel can be modified or suppressed using additional
diacritical marks or symbols.

2Diacritical marks, also known as diacritics or accents, are supplementary symbols or glyphs added to a base
letter in a writing system to indicate a modification or variation in the pronunciation, meaning, or function of the
letter.
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Tamil: The Tamil script is employed for the Tamil language and is charac-

terized by its rounded letter shapes. As a syllabic alphabet or abugida, each

consonant symbol carries an inherent vowel sound that can be modified using

vowel signs.

Telugu: Used for the Telugu language, the Telugu script is another example

of an abugida writing system, with unique symbols for consonants and vowel

signs for modifying the inherent vowel sound.

Malayalam: The Malayalam script is employed for the Malayalam language

spoken in the southern Indian state of Kerala. It is an abugida script with distinct

consonant symbols and diacritical marks for vowels.

Kannada: The Kannada script is used for the Kannada language, primarily

spoken in the southern Indian state of Karnataka. This abugida writing system

features unique symbols for consonants and diacritical marks for vowels.

Oriya: Utilized for the Odia language, the Oriya script is another abugida sys-

tem with distinct symbols for consonants and diacritical marks for vowels.

Perso-Arabic (Urdu): The Perso-Arabic script, adapted for the Urdu language,

is an alphabet with consonant and vowel symbols. Unlike the other scripts men-

tioned, which are written from left to right, the Perso-Arabic script is written

from right to left.

2. Multilingual society

- India is a multilingual country with rich linguistic diversity. As a result, an Auto-

matic Speech Recognition (ASR) system must be equipped to support all official

Indian languages to ensure effective communication and accessibility for everyone.

3. Limited Resources

- Many Indian languages suffer from a scarcity of annotated speech data, which is

essential for training ASR models. Developing or expanding existing datasets is

necessary to ensure the models are well-equipped to handle the nuances of each

language.
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4. Code-switching

- Indian speakers often switch between languages during conversations, which adds

complexity to ASR system development. Handling code-switching in speech recog-

nition requires advanced modeling techniques and a thorough understanding of the

languages involved.

5. Accents and dialects

- There are significant variations in accents and dialects within each Indian language.

ASR systems must be designed to handle these variations and recognize speech from

speakers with different regional accents and dialects.

6. Socio-cultural factors

- Indian languages are heavily influenced by socio-cultural factors, such as caste, re-

ligion, and geography. These factors can impact language use and introduce varia-

tions that are difficult for ASR systems to handle.

ASR systems for Indian languages: researchers faced challenges due to the lack of resources

and smaller datasets. Table 2.1, reveals a noticeable scarcity of freely available data for building

speech recognition systems in Indian languages, particularly when compared to the availability

of such data in English. The table shows the language, duration in hours, and mode of speech

in each corpus. The analysis reveals that most of the available speech corpora for English ASR

systems in the literature are read speech, with the exception of Gigaspeech and People’s Speech

which consist of read and spontaneous speech collected from public forums like YouTube. It

is worth noting that Gigaspeech [5] and People’s Speech [4] are built using data extracted from

sources such as YouTube and other public forums. Building high-quality ASR systems for

languages with limited resources poses a significant challenge. The table highlights the lack of

freely available data for building speech recognition systems in Indian languages, particularly

compared to the availability of such data in English.
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Table 2.1: Contrastive comparison of existing speech database reported in the literature

Dataset Language Hours Mode

WSJ [74] English 80 Read

Librispeech [75] English 1,000 Read

Gigaspeech [5] English 10,000 Read & Spontaneous

People’s Speech [4] English 30,000 Conversational

TIMIT [76] English 5.4 Read

Common voice [77] English 2953 Read

Switch board [78] English 260 Conversational

MSR Telugu [79] Telugu 50 Conversational & Read

MSR Tamil [79] Tamil 50 Conversational & Read

MSR Gujarati [79] Gujarati 50 Conversational & Read

Bengali Open SLR [80] Bengali 120 Read

Gramvani [81] Hindi 100 Spontaneous

MUCS Hindi [82] Hindi 100 Read

MUCS Odia [82] Odia 100 Read

MSR Marathi [82] Marathi 109.3 Read

MILE Kannada [83, 84] Kannada 350 Read

MILE Tamil [83, 84] Tamil 350 Read
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2.6 Databases

This section delineates in-depth specifics of the different databases employed for the experi-

ments conducted in this thesis. A summary of the specifics related to each dataset is presented

in Table 2.2 for a more structured and accessible understanding.

Table 2.2: Summary of databases used in thesis (where R, C, S indicates Read, Conversational,
and Spontaneous mode speeches (speaking styles))

Database Attributes
Languages

Te Ta Kn Hi Ma Gu Od

MUCS [82]

Duration (hours) 50 50 - 100 100 50 100

Sampling Rate (kHz) 16 16 - 8 8 16 8

Speaking Style R&C R&C - R R R&C R

MILE Kannada [83, 84]

Duration (hours) - - 350 - - - -

Sampling Rate (kHz) - - 16 - - - -

Speaking Style - - R - - - -

MILE Tamil [83, 84]

Duration (hours) - 150 - - - - -

Sampling Rate (kHz) - 16 - - - - -

Speaking Style - R - - - - -

2.6.1 Multilingual and code-switching ASR challenges for low-resource

Indian languages (MUCS) Corpus

The MUCS Speech corpus [82] provides approximately 450 hours of data across six languages:

Hindi, Marathi, Odia, Telugu, Tamil, and Gujarati. The duration varies among these languages,

with 50 hours for Telugu, Tamil, and Gujarati and 100 hours for Hindi, Marathi, and Odia. The

sampling rates also differ, with 16 kHz for Telugu, Tamil, and Gujarati and 8 kHz for Hindi,

Marathi, and Odia. In terms of speaking styles, the MUCS database contains Read (R) and

Conversational (C) speech data for Telugu, Tamil, and Gujarati. In contrast, only Read (R) style

is available for Hindi, Marathi, and Odia. The Hindi, Marathi, and Odia data were collected

from native speakers performing a reading task. The choice of speakers and text aimed to cover
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different language variations to ensure better generalizability of the ASR systems developed

using this data.

2.6.2 MILE Corpus (Kannada,Tamil)

The MILE (Medical Intelligence and Language Engineering Lab) Speech corpus [83, 84] is a

valuable resource for developing ASR systems for Tamil and Kannada languages. This publicly

available transcribed speech data provides significant data for both languages. The corpus con-

sists of 150 hours of data for Tamil and 347 hours for Kannada. The Tamil data was recorded

from 531 native Tamil speakers, while the Kannada data was recorded from 915 native speak-

ers of Kannada. This wide range of speakers ensures diverse accents and speaking styles are

captured, contributing to a more robust ASR system. All the MILE Speech corpus data was

recorded in a clean, noise-free environment using USB microphones. This high-quality record-

ing setup ensures clear and consistent audio data for training and testing ASR models. The data

is divided into (i) training data - 152 hours for Tamil and 275 hours for Kannada, and (ii) test

data - 65 hours for Tamil and 72 hours for Kannada.

2.7 Summary and Conclusion

This thesis comprehensively explores various themes central to the Automatic Speech Recog-

nition (ASR) field. The study focuses on three primary aspects: (i) the gathering of a speech

corpus through a crowd-sourced approach, (ii) the investigation of self-supervised representa-

tion learning for model training, and (iii) the exploitation of different acoustic models within a

multilingual speech recognition framework.

A review of the existing literature reveals a noteworthy void in the construction of speech recog-

nition tools specifically designed for Indian languages. Recognizing this gap, the research aims

to address it by establishing a user-friendly platform. This unique platform encourages the col-

lection of a large-scale corpus for speech recognition tasks using a crowd-sourced approach.

This approach facilitates a broad and diverse database from various speakers, thus ensuring a
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more representative and accurate speech recognition system.

This thesis embarks on an in-depth investigation of a pre-trained model built entirely from

scratch utilizing a self-supervised learning approach. This method enables the model to learn

directly from raw data, eliminating the need for extensive labeled data and fostering a more ef-

ficient learning process. In addition, the study probes into the captivating realm of language

adaptation in speech recognition systems. It investigates the effects of using a pre-trained

model, originally trained in one language, on its subsequent performance when fine-tuned to

other languages. This exploration might unlock the key to creating more efficient and adaptable

multilingual speech recognition systems.

The study also explores the intriguing concept of the Joint Acoustic Model (JAM). It capitalizes

on a common phone set (CPS) and a common label set (CLS), aiming to standardize the speech

recognition process across various languages. This could lead to more accurate recognition and

interpretation of spoken language, irrespective of its linguistic origin. The thesis then turns its

attention to an array of diverse acoustic models. These models are designed to advance mono-

lingual and multilingual ASR systems, emphasizing enhancing accuracy and reducing language

biases. This approach has the potential to increase the accuracy of recognition and interpreta-

tion of spoken language, regardless of its linguistic origin. Following this, the thesis focuses on

a spectrum of diverse acoustic models. These models are meticulously crafted with the purpose

of advancing both monolingual and multilingual ASR systems, placing a strong emphasis on

improving accuracy while simultaneously minimizing language biases.

The subsequent chapter in this thesis will provide a detailed explanation of the strategies adopted

for the collection of a large-scale speech corpus. It presents the novel idea of using a crowd-

sourced approach, an effective method for obtaining a vast and diverse dataset crucial for de-

veloping a robust and accurate ASR system.
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Chapter 3

Crowd-sourced strategies for the collection of a large-scale

speech corpus

3.1 Introduction

The tremendous advancements in deep learning have allowed us to build speech recognition

systems robust to language, speaker, and environmental variations. However, building high-

quality automatic speech recognition (ASR) systems is still challenging. To achieve state-of-

the-art performance, it is crucial to have a database that covers diverse speakers from different

environments. Over the past decade [75, 74], academia and industry have made many efforts

to create corpora for English speech recognition tasks. The performance of speech recogni-

tion systems depends mainly on the quality and size of training corpora. A corpus is considered

low-resource if it has a limited web presence and lacks linguistic expertise and digital resources,

such as acoustic and text. Building ASR systems for Indian languages is a challenge because

most of these languages are low-resourced. To achieve human parity [85] in Indian language

ASR systems, a significant amount of training data is required. Despite the availability of many

resources for Indian languages, collecting annotated speech data from them is still challenging

and expensive.

In [86, 87, 88, 89, 90, 91], an attempt to build annotated speech datasets using traditional data

acquisition techniques, researchers have made smaller-scale efforts in various studies. Re-

searchers from Microsoft released 45 hours each of speech data for Telugu, Tamil, and Gu-

jarati languages as part of the Interspeech 2018 multilingual challenge [79]. With the growing
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interest to collect data at a larger scale, the Speech Lab at the Indian Institute of Technol-

ogy, Madras (IIT-Madras) has conducted ASR challenges in three Indian languages: Hindi,

Tamil, and Indian-English1. As part of the challenge, 490 hours of transcribed speech data

were made available for all three languages under the national language translation mission

(NLTM) by MeitY, Government of India. All these corpora listed above have been collected

using traditional data acquisition techniques. The Microsoft Research team has also utilized

crowd-sourced strategies [92] for Marathi language ASR at a smaller scale. These efforts are

aimed at encouraging the advancement of ASR in Indian Languages.

Collecting quality speech data is challenging for several reasons. First, speech data is com-

plex and requires significant expertise and resources to annotate. It involves transcribing audio

data and aligning it with the corresponding text, which is time-consuming and labor-intensive.

Second, speech data is highly variable, and differences in speakers, dialects, accents, and en-

vironmental conditions can cause variations in speech. This variability makes building models

that can generalize well to new speakers or environments difficult. Third, for many languages,

especially low-resource ones, speech data is scarce, which limits the training data available to

build ASR systems. Finally, collecting speech data at scale involves a lot of complexity and is

expensive, especially when working with diverse languages and dialects. These factors collec-

tively make collecting quality speech data a challenging task.

This thesis presents an innovative method for collecting speech data using crowdsourcing tech-

niques. Crowdsourcing is a process that involves outsourcing tasks to a vast group of individuals

known as the “crowd.” The term “crowdsource” is derived from the combination of two words:

“crowd” and “outsourcing,” which implies the outsourcing of tasks to online-based workers.

Therefore, the primary goal of this study was to harness the potential of crowdsourcing by uti-

lizing the collective intelligence of diverse individuals to collect speech data. Crowdsourced

methods can address the challenges of obtaining high-quality speech data by facilitating the

collection of a large amount of data from a diverse population in a relatively short period and

at a lower cost than traditional methods. This approach involves recruiting a large group of

1https://sites.google.com/view/indian-language-asrchallenge/home
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non-expert individuals compensated for their contributions to recording speech samples in their

native language or dialect. The crowdsourcing approach also allows data collection from speak-

ers who may not be easily accessible or available through traditional means. However, one of

the challenges of using a crowdsourced approach is ensuring the quality of the collected data.

Several techniques can address this challenge, such as providing clear instructions to contribu-

tors, validating data through quality control measures, and using machine learning techniques

to filter out low-quality data. Despite its limitations, the crowdsourced approach has proven

effective in gathering data for low-resource languages and dialects, contributing to the develop-

ment of robust speech recognition systems.

Technology plays a crucial role in creating a clean, annotated, crowdsourced corpus, as it en-

ables engagement with a vast number of people to perform complex and creative tasks at a

significantly lower cost. This process involves collecting information or opinions from a large

group, typically through the Internet and smartphones. It offers cost savings, speed, and the

ability to work with people possessing skill sets that an in-house team within a company may

not have. Researchers have made significant efforts to use crowdsourcing methods to collect

data for global English and European languages, as evidenced by previous studies [87, 93].

Recently, Google has partnered with local universities and communities in Southeast Asia,

Africa, Europe, and South America to release 38 data sets for building text-to-speech (TTS)

and automatic speech recognition (ASR) applications [88]. This crowdsourcing approach has

contributed to high-quality data. Moreover, the recent release of People’s Speech Corpus, a

large-scale diversified English speech recognition dataset, for commercial usage [4], is the most

extensive open dataset to date that can be used for both research and commercial purposes under

the Commons Attributions Share-Alike (CC-BY-SA) licenses.

3.2 Overview of Telugu Language

In previous studies, speech corpora for several Indian languages, such as English, Hindi, and

Tamil, have been made available online [79, 94, 95, 96, 97]. The size of these datasets is

approximately 200 hours for each language, providing valuable resources for researchers and
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developers of automatic speech recognition (ASR) systems. This thesis presents various strate-

gies which could be incorporated while collecting speech corpus using the crowd-sourcing ap-

proach. So here we have opted for one of the low-resource Indic languages, which is Telugu.

Telugu is India’s fourth most widely spoken language, with 80 million speakers worldwide.

However, to the best of our knowledge, the largest publicly available Telugu speech corpus is

50 hours, as collected by [79], which is inadequate for state-of-the-art ASR architectures that

require larger amounts of training data. Telugu, a Dravidian language, is predominantly spoken

in two South Indian states, namely Telangana and Andhra Pradesh. The language has also

extended its influence in neighboring regions and is spoken by individuals in regions of Tamil

Nadu, Karnataka, Orissa, and Chattisgarh, which share their borders with the Telugu-speaking

states. A visual representation of the geography of Indian states and the languages spoken in

each state is provided in Figure 3.1.

Figure 3.1: Languages spoken across Indian Subcontinent

It has been observed that there exist notable distinctions among Telugu dialects spoken by dif-

ferent groups of individuals. In light of this observation, our research initiative endeavors to

capture the diversity of Telugu dialects by sourcing speech samples from individuals hailing
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from three distinct geographical regions, namely Coastal Andhra (CA), Rayalaseema (RY),

and Telangana (TG). As highlighted earlier, the dearth of annotated Telugu speech corpora has

stimulated our endeavor to develop a framework that enables recording a substantial and well-

balanced corpus comprising spontaneous and natural interactions sourced from a diverse group

of speakers.

Figure 3.2: Three different dialects among the Telugu-speaking regions

3.3 Proposed data acquisition workflow for speech corpus

collection

In this subsection, we delineate the methodology employed for collecting the Telugu corpus 2,

including the pre-processing steps and the verification procedures implemented to ensure the

quality of the collected data. The same is depicted in Figure 3.3.

1. Sampling: We use FFmpeg library 3 to make sure that all the collected audio is sampled

at 16kHz and is mono-channel.

2. Fragmentation: In this step, the speech/audio signal is truncated based on the short, long,

and extended pauses. For performing the fragmentation, we use WebRTC (Real-Time

Communication for the web) - Voice Activity Detector (VAD) 4 library. WebRTC-VAD
2For replication of the CSTD methodology, kindly refer to the link https://github.com/

mirishkarganesh/tallip/tree/main/CSTD_pipeline
3https://ffmpeg.org/
4https://github.com/wiseman/py-webrtcvad
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Figure 3.3: The working pipeline developed for corpus collection task

is a module that is part of WebRTC 5 developed and maintained by Google. Previously,

[98] has shown that this open-source module can be effectively used to quickly fragment

the raw speech in order to collect speech corpus. Therefore, we opt to use WebRTC-VAD

to collect this corpus. A snippet of fragmentation is depicted in Figure 3.4.

3. Duration Filter: A duration filter is commonly used in building annotated speech cor-

pora, where audio samples are divided into smaller segments, called chunks or utter-

ances, for easier annotation. After the audio is segmented, it is common practice to filter

out chunks that are too long to be useful for annotation purposes. In practice, the audio

chunk greater than 15 seconds are filtered out. So that the resulting corpus will consist

of more homogeneous audio segments, which human annotators or machine learning al-

gorithms can more easily annotate. This can lead to higher-quality annotations and better

performance in speech recognition and other related tasks. This is a standard practice [77]

for building an annotated speech corpus.

4. SNR Filter: Since it is a crowd-sourced database, it is possible for audio files to be

corrupted due to the injection of noise from external sources, which can affect the quality

of the audio samples. The chunked audio files are passed through the SNR filter to avoid

high noise content in the database we collect. The threshold of a filter is 15 dB. The

5https://webrtc.org
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Figure 3.4: Illustration of the Speech fragmentation algorithm

role of this filter is to filter out the audio samples less than 15 dB. We use Waveform

Amplitude Distribution Analysis - Signal-to-Noise-Ratio (WADA-SNR) to perform this

operation [99].

5. Rough Transcripts: In this step, we use a Speech to Text engine to get rough transcripts

of the accepted audio samples. We showed the pipeline used in Figure 3.3. The modules

present in the blue dashed box work in batch mode.

6. Verification: The rough transcripts are sent for four level verification process by human

intervention. Finally, the verified transcripts are stored in the database.

The above-mentioned data acquisition workflow for speech collection is referred to as the CSTD

pipeline.
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3.4 Guidelines followed throughout the data collection pro-

cess

Maintaining consistency in the data collection process is essential to ensure the quality and

reliability of the resulting speech corpus. One key aspect of consistency is ensuring that both the

audio contributors and transcribers are given the same guidelines and instructions. In this case,

the guidelines include the requirement that the audio contributors should have native speaker-

level fluency in Telugu, which is the language being recorded. This ensures that the audio

samples are of high quality and represent natural speech patterns and accents. Additionally, by

providing consistent guidelines to both the audio contributors and transcribers, it helps to ensure

that the transcriptions accurately reflect the speech in the audio samples, which is essential for

building a high-quality speech corpus.

3.4.1 Audio Guidelines

The audio guidelines are designed to ensure that the audio samples collected are of high quality

and accurately represent the spoken language. Some of the key guidelines include:

1. Ensuring that the recording device is free from any external glitches, such as faults in the

microphone or background noise, which could impact the audio quality.

2. Speaking clearly, distinctly, loudly, and avoiding whispering, to ensure the speech is eas-

ily understandable and can be transcribed accurately.

3.4.2 Transcription Guidelines (see Figure 3.5)

The instructions passed to the crowd while transcribing are as follows:

1. Carefully listening to the audio file to ensure that all words and phrases are transcribed

accurately.

2. Editing and correcting the transcript, including adding punctuation marks to match the

speech.
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Figure 3.5: Instructions to be followed while performing the transcription task to achieve golden
standards.
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3. Transcribing the audio verbatim in Telugu, including any numbers and words in other

languages.

4. Not translating any words and keeping the transcriptions as they are in the audio verbatim.

5. Keeping informal words and any false starts or repairs as they are in the audio verbatim.

6. Using only the punctuation marks provided in the list and adding them where necessary.

Overall, these guidelines are designed to help ensure that the resulting speech corpus is high

quality and accurately represents the spoken language. By providing clear and consistent in-

structions to audio contributors and transcribers, the project can create a useful and reliable

speech corpus for research and development purposes.

3.5 Approaches in IIITH-Crowdsourced Telugu Data corpus

This section will discuss the various approaches employed during the collection of the CSTD

speech corpus. The corpus comprises a diverse range of speaking styles, including read, spon-

taneous, and naturalistic. Given that the corpus was obtained through crowd-sourcing, the first

step in its collection was identifying and selecting an appropriate crowd. This crowd was re-

cruited from various sources, such as agencies, educational institutions, companies, Telugu

Kootami6 (a non-profit organization promoting Telugu language and culture), as well as non-

resident Indians (NRIs) living abroad.

Figure 3.6: The workflow of crowd procurement

6https://telugukootami.org/
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The procured crowd is not associated with any commercial forum or a tech-based company.

Once the crowd is procured, they have been asked to register with their credentials, i.e., age,

gender, dialect, and demographic information, to a registration portal. We train our crowd-

workers accordingly. Upon completion of the training, the contributors are assigned a simple

task as an evaluation. Based on the evaluation, the contributor is certified with a score for

audio contribution and transcription verification tasks. If the contributor fails to clear the train-

ing module, he/she will be sent back for training. The flow of crowd scrutiny is depicted in

Figure 3.6.

The IIITH-CSTD Corpus has been collected using three distinct approaches, each with a spe-

cific purpose and methodology.

1. Approach 1 involves the collection of spontaneous speech through web and mobile ap-

plications from the crowd. This approach is useful for capturing natural speech patterns

and variability in different types of speech, including regional and dialectal variations.

This approach is often used in large-scale data collection efforts, such as those aimed at

building speech recognition.

2. Approach 2 involves the collection of conversational speech from open resources such

as YouTube and podcast channels. This approach is useful for capturing informal and

unscripted speech patterns, such as those used in everyday conversations between friends

and family members.

3. Approach 3 involves the collection of read speech through WhatsApp campaigns. This

approach is useful for capturing speech patterns that are more controlled and predictable,

such as those used in scripted presentations or announcements. This approach may also be

useful for capturing speech from speakers who may not be comfortable with spontaneous

or conversational speech, such as those with speech impairments or non-native speakers.

3.5.1 Approach 1: Spontaneous mode speech (Collection through web

and mobile applications from the crowd)

The first approach involves collecting spontaneous speech data from crowd-workers on specific

topics (approximately 2000). The crowd-workers can use either their mobile phone or laptop
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to contribute their audio recordings. To ensure audio quality, guidelines are provided to the

participants. In this approach, participants have the freedom to choose the topics they want to

talk about and what to say. This makes the data more natural and diverse because it reflects the

participants’ personal interests, experiences, and perspectives. However, it is important to pro-

vide clear guidelines and instructions to ensure the quality and consistency of the data collected.

This can include guidance on the recordings’ format and the topics that should be avoided. In

this method, topics related to caste, religion, and similar sensitive issues are avoided.

A platform has been developed wherein a participant has to register by providing a phone num-

ber, age, gender, and demographic information before the start of their Just a Minute (JAM) or

debate campaign session. For the JAM sessions, the user count is restricted to 1, but for debate

sessions, a minimum of 2 users are assigned to a room for conversations. The mobile number

is entered on the home page when the participants open it, as shown in Figure 3.7(a). Once

the mobile number is submitted, the participants are redirected to the demographic information

page as shown in Figure 3.7(b). The user is asked to enter his or her credentials, i.e., age, native

accent (like Coastal Andhra (CA), Rayalaseema (RY), Telangana (TG)), and gender. The age

groups of options from junior level (0-18 years), young (18-30 years), adults (31-59 years), and

seniors (60 years and above) are provided in the entries. Several students and faculties from

different universities and colleges have been approached across the Telugu-speaking Andhra

Pradesh and Telangana states. Later, based on the campaign, i.e., Debate / JAM, the URL links

(see Figure 3.7(c)) are created and shared with the participants. URLs shared with the partici-

pants are supported by mobile and web-based applications based on their campaign (see Figure

3.7(d)). The same is depicted in Figure 3.7.

In this approach, once the participant completes the registration process, they are presented

with a list of topics to choose from. The campaign is designed in such a way that each topic is

only assigned to one participant/debate room to ensure that there is no repetition or duplication.

By preventing topic repetition, the approach can ensure that the data collected is diverse and

representative of a range of perspectives and experiences. It can also mitigate potential biases

that may arise if certain topics are repeatedly chosen or avoided by participants. Crowd-sourced
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(a) Campaign links shared to the participants
in the crowd.

(b) Demographic information entries of the
crowd from his/her mobile or laptop.

(c) Selecting the campaign (d) link for the selected campaign

Figure 3.7: Illustration of the workflow for Approach 1
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data collected from the contributors is stored on the Google Cloud at the back end. The record-

ing interface supports both the mobile and web versions of the application with a VOIP-based

framework. The VOIP-based technology has been obtained from Ozonetel Communication Pvt.

Ltd. It captures the users’ recordings at 16 kHz sampling frequency using the audio codecs of

16-bit Pulse code modulation (PCM).

An admin console has been designed to monitor the data collection process. Here admin console

serves as a ”human in the loop” mechanism, providing a way for the administrator to review

and approve the data collected before it is sent to the CSTD pipeline (see section 3.3). The role

of the human (administrator) is to review, create, delete, or modify the list of campaigns at any

point of time if it doesn’t meet the guidelines provided. The snippet of the admin console is

shown in Figure 3.8.

Figure 3.8: Administrator console for monitoring the campaigns
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As mentioned earlier, in this approach, the final raw data that humans validate is passed through

the CSTD pipeline for automatic validation of duration, SNR parameters, and raw transcripts

for the obtained speech segments. This suggests that the data is subjected to a rigorous quality

check before it is considered for further analysis.

Figure 3.9: The workflow of Approach 1 (Spontaneous speech)

It is interesting to note that this approach has considered more than 1500 speakers across dif-

ferent age groups (20-50) because the audio recordings from the age groups 50+ (which is ≥

50) have some type of creakiness and shivering nature in their sample so we had to discard

such samples. And for the age group below 20, most of the data was non-verbal (laughter,

stutter), so we were forced to discard such samples by human intervention by using the admin

console. So in this way, we ensured that high-quality speech is only picked and considered

for the data collection process. The low-quality data is discarded by following the guidelines

discussed in Section 3.4. Later, all the accepted speech samples from both the campaign (JAM

and debate) having the dialect-specific information (Telangana (TG), Rayalaseema (RY), and

Coastal Andhra (CA) dialects) are stored accordingly.

3.5.2 Approach 2: Conversational mode Speech (Data pooling through

freely available resources)

There is a lot of abundant audio content with transcripts available on the internet, but it is limited

to English. The majority of this audio is Creative Commons (CCS) licensed by the author, who

wants to give other people the right to use it. It is unclear how much non-English Creative

Commons licensed content exists in total. To pool the data at a larger scale, it is always difficult

to engage the crowd for a longer duration, irrespective of the language they speak. In those

scenarios, these CCS audios can be used in the pooling of data as they have very high-quality

audio content from YouTube and podcasts.
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In order to collect larger volumes of conversational speech, high-quality speech data from freely

available resources of YouTube platforms and podcasts are selected for pooling. These plat-

forms contain a lot of high-quality audio and videos from different domains. To maintain

the diversity, high-quality speech data from different domains are downloaded by using the

youtube-dl library 7. Once the raw data is downloaded, it is passed through the CSTD pipeline

(see Figure 3.3 ). The same is depicted in Figure 3.10.

Figure 3.10: The workflow of Approach 2 (Conversational speech)

The advantage of employing this approach is that it is not as tedious as Approach 1, as there is

no requirement to put in extra effort to collect speech data. High-quality speech data is pooled

through the open forums as the raw audio data is readily available. This approach focuses on

fragmenting and transcribing the pooled audio content. The collected speech data is filtered

from the pooled audio through Approaches 1 and 2, fragmented, and finally shared with the

transcribers for correcting the textual part. The transcriber’s role is to listen to and transcribe

the speech fragments. Hence, we designed and built an application where the participants can

transcribe the audio seamlessly. We provide both mobile and web versions for user conve-

nience. Additionally, we utilize freely available Google cloud speech API. The rough transcript

generated from the Google API is displayed on the user console, where the transcriber can edit

and submit the corrected text. The fragments from both Approach 1 and 2 are loaded into this

interface. The screenshot of the developed transcription interface for mobile phones is shown

in Figure 3.11.

7https://github.com/tpikonen/youtube-dl
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Figure 3.11: Transcription interface designed to correct the transcriptions provided to the crowd.

3.5.2.1 Mobile-based support for Transcription correction

Each fragmented audio file is displayed on the transcriber’s mobile screen. A play button is

provided for the transcribers to listen to the audio files. An editable text window is provided

to edit the rough transcription provided by Google Could API, after which the transcriber is

prompted to submit the transcription. The next fragment is only displayed after the approval of

the previous fragment. If there is any unwanted audio content in the fragment, then that audio

fragment is discarded and not counted as a successful job. Only the approved fragments are

counted toward the successful jobs. The transcribers are paid according to the count of their

successful jobs. The transcribers are selected based on their expertise in the Telugu language.

We have specifically assigned some sample transcription tasks to the transcribers and selected

them based on the accuracy of the submitted transcripts. Most of these transcribers have a good

command of the Telugu language (written and spoken). To increase the speed of transcription

tasks, more transcribers are recruited to meet the monthly targets.

3.5.2.2 Web-based support for Transcription correction:

Transcribers are provided with similar web-based support, which we described in Section 3.5.2.1.

Instructions were passed to the transcribers to use this web-based support to the maximum ex-
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tent possible to reduce the stress on the transcribers’ eyes. This web-based application was able

to extract the maximum output from the transcribers. The major obstacle in the design of a

Figure 3.12: status of the completed jobs displayed on the transcriber’s web-based screen.

web-based interface is the process of incorporating a Telugu keyboard. In mobiles, a Telugu

keyboard can be selected easily as support for typing in multiple languages in Android versions.

It is challenging to bring those options to this web-based interface. The option of equivalent

Telugu prompts is displayed on the screen when the transcriber types the English keyboard

option. The layout of the web-based transcription support is shown in Figure 3.12.

3.5.3 Approach 3: Data pooling through WhatsApp campaigns

In Approaches 1 and 2, the campaigns to pool the data are run so that the contributors can select

their topics of interest. In all these topics, there is no control over the text to be spoken by the

contributors. There are more chances for the crowd to opt for topics from a particular domain

leading to un-diversified domain content. To counter this, a separate WhatsApp campaign is

designed so that we have control over the domain text. This Section describes the process we

followed to collect Telugu text.
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3.5.3.1 Telugu text corpus

Firstly, the Telugu text has been crawled from various blogs on the internet, newspapers (like

Eenadu 8, Andhra Jyothi 9 and Namasthe Telangana 10), and repository of Telugu Wikipedia 11.

The collected text is normalized and then converted to meaningful phrases, and the steps in-

volved in text normalization are explained below:

1. Firstly, all the extra spaces, punctuation marks, special symbols, emoticons, etc., are

removed.

2. All numbers, mathematical expressions (+,-, etc.,) and currency symbols ($,|, etc.) are

replaced with their respective spellings in Telugu as per requirement.

3. Finally, all the meaningful phrases are structured and stored in the database.

In Figure 3.13, we show a snippet of a sample from our database for the text normalization

task. To access the Telugu normalized text used in approach 3 (read mode speech) can be found

here 12.

8https://www.eenadu.net/
9https://www.andhrajyothy.com/

10https://www.ntnews.com/
11https://te.wikipedia.org
12telugu normalized text used in read mode speech collection can be accessed here https://drive.

google.com/file/d/1jqnnwjwp2EKRiusSUUIq8s3slv2jVw-S/view?usp=share_link
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Figure 3.13: Illustration of text normalization
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Figure 3.14: The flow chart for WhatsApp campaign (Approach3)

The students from IIIT-H, various other universities, and volunteers (of different age groups)

were considered for this campaign. Each contributor is allowed to speak 4000 sentences. To

contribute to this campaign, the crowd has to save the contact number (campaign contact num-

ber is +1(510)681-0104) on his/her mobile. Later he/she has to send a test message saying

”hi/hello” to the campaign contact number to initiate the process. If the user is new to the

campaign, the bot asks for specific basic questions like age, gender, and nativity (Telangana,

Rayalaseema, and Coastal Andhra). The flow of the WhatsApp campaign is shown in Fig-

ure 3.14. The sentences stored in the database are assigned randomly to the contributor. Once it

is assigned, the sentences are displayed on the contributor’s WhatsApp screen, and instructions

are passed to them to read out the sentences. Before giving their voice samples, all demographic
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information is collected from the users. They are given clear instructions before participating in

this campaign. Many speakers have volunteered for this campaign. Flexibility has been given to

them to contribute during their free time. Only one sentence is displayed on their mobile screen

at a time. The moment the user uploads his/her voice sample of that corresponding sentence,

he/she is prompted to check his sample before confirming the submission. Once the confirma-

tion is given from the user’s end, the voice samples are stored in Google Cloud at the back end,

and the following sentence is displayed on his/her screen. The campaign is designed so that

the minimum number of words in each sentence displayed is 6, and the maximum is 22. The

average duration of audio content collected from the sentences is 15 seconds.

3.5.3.2 Audio Verification process

A web-based interface is built to verify the audio data collected in this campaign. The liberty is

given to the reviewer to accept or reject the recorded audio file. Here, the reviewer has to check

(listen) the content of the recorded audio file with the corresponding transcription provided.

The snippet of the audio verification web interface is shown in Figure 3.15.

Figure 3.15: Audio verification web interface designed for WhatsApp campaigns.

3.5.3.3 Payments for Verification

As the crowd has volunteered to provide audio data, the payments have only been made for

transcription verification tasks. As mentioned earlier, the crowd is from different communities

(college students, homemakers, graduate students, etc.) The payment is made only for those

transcribers who have contributed and submitted the task successfully. The total number of cer-

tified transcribers involved throughout this corpus verification task is 253. Once the transcribers
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are onboard, they have been given training and specific golden standards for verification tasks

(refer to Section 3.4). The payment is made based on the number of hours of successful tran-

scriptions verified and corrected. Approximately 1200 to 1300 (Indian Rupees) (USD 16.17 to

17.52) for an hour of successful transcription verification for each reviewer.

3.6 Implementation Considerations and Quality Analysis

A major bottleneck to crowdsourcing the collection of annotated speech corpus is maintaining

the quality of incoming data sets and manually verified transcripts. Monitoring the speech

quality regularly is done to handle the speech quality collected from the crowds. There is no

separate algorithm designed to sort the collected data. Once the raw data is uploaded on the

user’s screen feedback from the crowd is taken on a regular basis on the audio quality before

approval from their side. The confidence levels of the participating crowd are also considered

before the final approval. When the participant speaks on his or her relevant topics and approves

them with higher confidence, only those audio files are passed and stored in the database. The

other files are discarded. The first 10% of the duration of each collected audio content is sent

for manual verification for the crowd. After receiving feedback from the audio annotators,

the process of this data collection continued to meet the expectations for better audio quality

control.

There have been several issues addressed to maintain the quality of the collected annotated

speech corpus.

1. Managing Cognitive Overload: There has been a maximum cap put on the user contribut-

ing towards their speech samples. The duration each speaker can contribute is between

60 to 90 minutes.

2. Recruiting Highly-Rated Crowd-Workers: Users willing to contribute to the transcription

work are made to take the transcription tests to ensure speed and quality on laptops and

mobile.

3. Reviews: The transcripts displayed on the screens of the users are generated from the

Google Cloud speech API, where the mistakes in the transcripts are corrected by the
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transcribers with less effort. In this way, we could remove the duplicate transcriptions

with the human-based cross-checks on the final submitted transcriptions.

4. Reward & Recognition: All the transcribers are paid based on the count of successfully

approved transcripts.

5. The data collection platform designed by us helps in capturing the speech data through

VOIP-based calling in a 16 kHz, 16-bit, wav format, and higher.

We found that we can overly depend on manual verification when collecting the data on a large

scale. Hence, the support of the free version of ASR has opted to filter out noisy and unwanted

content. An error message appears on the transcriber’s screen whenever noisy or unwanted

speech data is inputted. These audio fragments are discarded, and only the text output of high-

quality audio files is considered for manual correction. This process helps in providing the gold

standard transcripts by reducing the burden on the participating crowd.

3.7 CSTD corpus statistics

The table 3.1 provides database statistics for a corpus of speech collected using three differ-

ent approaches: Approach 1 (spontaneous mode speech), Approach 2 (conversational mode

speech), and Approach 3 (read mode speech). As mentioned earlier, approach 1 is the dialect-

specific corpus ( Telangana (TA), Coastal Andhra (CA), and Rayalaseema(RY)). The table pro-

vides information on the number of utterances, the number of male and female utterances, the

number of utterances by age group, the minimum, maximum, and average duration of an utter-

ance, the total number of words, and the number of unique words.
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Table 3.1: Database statistics for collected CSTD corpus

Parameters
Approach 1

(Spontaneous Mode Speech)
Approach 2

(Conversational Mode Speech)

Approach 3

(Read Mode Speech)
CA RY TG

# utterances 72864 68172 89271 298100 102110

# males utterances 38617 36131 47313 157993 54118

# females utterances 34246 32040 41957 140107 47991

# Utterances age group wise

20-30 36432 34086 44636 149050 51055

30-40 29146 27269 35708 119240 40844

40-50 7286 6817 8927 29810 10211

minimum duration of an utterance 3 seconds 3 seconds 3 seconds 3 seconds 3 seconds

maximum duration of an utterance 15 seconds 15 seconds 15 seconds 15 seconds 15 seconds

average duration of an utterance ∼12.1 seconds ∼11.5 seconds ∼12.1 seconds ∼7 seconds ∼5.5 seconds

# words 1826893 1791630 2305724 247985 107985

# Unique words 90416 88854 114958 42151 10291

# Total audio collected (hrs) 668.44 489.34 696.27 840.58 60

# Rejected audio duration (hrs) 260.32 109.28 210.15 167.88 6.2

# Accepted audio collected (hrs) 408.12 380.06 486.12 672.7 53.8
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The number of male and female utterances is roughly equal for all three speakers, with slightly

more male utterances overall. The number of utterances by age group shows that the corpus

has a greater number of utterances from speakers aged 20-30, followed by speakers aged 30-40

and speakers aged 40-50. The minimum, maximum, and average duration of an utterance are

consistent across all three approaches, with a minimum duration of 3 seconds and a maximum

duration of 15 seconds. The average duration of an utterance ranges from approximately 5.5

seconds for approach 3, approximately 12.1 seconds for approach 2, and 7 seconds for approach

2. The percentage distribution of the corpora is as follows, Approach-1 (i.e., Spontaneous mode

speech) (viz. 63.1% of data), Approach-2 (i.e., Conversational mode speech) (viz. 34.9% of

data) and Approach-3 (i.e., Read mode speech) (viz. 2% of data).

3.8 Summary & Conclusion

Due to a scarcity of large, annotated speech corpora, numerous under-resourced Indian lan-

guages have been unable to leverage the recent advancements in deep neural network architec-

tures for Automatic Speech Recognition (ASR) tasks. The creation of expansive databases often

proves to be expensive and time-consuming. Traditional methods that lean heavily on extensive

expert-based data acquisition guidelines are perceived as convoluted and burdensome. In re-

sponse, this study introduces the International Institute of Information Technology Hyderabad-

Crowd Sourced Telugu Database (IIITH-CSTD). This Telugu corpus has been collected through

a crowd-sourcing methodology, primarily devised to address the resource constraints affecting

the Telugu language. The study provides insights into the sources, crowd-sourcing pipeline,

and protocols used to assemble the corpus. Spanning approximately 2000 hours of transcribed

audio, the corpus encompasses three major regional dialects of Telugu. It presents content in

three distinct speaking styles, namely read, conversational, and spontaneous, covering a wide

array of topics, including politics, sports, arts, and science.

The study underscores the resource paucity commonly associated with most Indic languages,

contrasting this with the resource-rich English language. Utilizing a crowd-sourcing strat-

egy, this chapter demonstrates the collection of an extensive and annotated Telugu speech cor-
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pus. Notably, the corpus was gathered virtually amidst the pandemic, capitalizing on specially

crafted platforms. This research showcases the efficacy of crowd-sourcing in collating high-

quality annotated datasets, offering a cost-effective alternative to traditional data procurement

and curation methods.

In essence, the primary benefits of crowd-sourcing include substantial cost reduction and easier

data collection compared to conventional methodologies. The subsequent chapter will delve

into the experimental setups and the experiments conducted on the collected CSTD corpus.
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Chapter 4

Investigation of Hybrid & End-to-End Speech Recognition

systems on CSTD database

4.1 Introduction

The IIITH-CSTD corpus was meticulously crafted with a specific aim: to investigate the practi-

cality of using a crowd-sourced data collection platform to facilitate Automatic Speech Recog-

nition (ASR) tasks associated with Indic languages, all while maintaining cost-effectiveness.

The current chapter is devoted to conducting a comprehensive evaluation of the IIITH-CSTD

corpus, particularly its applicability to the Telugu Speech Recognition Task. A critical part

of our evaluation revolves around analyzing the corpus’s quality across various speech modes.

This includes spontaneous speech, which is data collected through the first approach. Con-

versational speech, obtained via the second approach, and read speech, gathered through the

third approach, are also considered. To achieve a detailed evaluation, we have utilized a set of

well-established toolkits, such as ESPnet [100] and Kaldi [101]. These toolkits provide a robust

framework for testing and analysis. The underlying objective driving this extensive evaluation

process is twofold: Firstly, to establish a reliable performance benchmark for the IIITH-CSTD

corpus that future efforts can compare against. Secondly, to verify its adaptability and efficiency

for deployment in various Telugu speech recognition scenarios. This comprehensive analysis

aims to ascertain the full extent of the corpus’s utility and effectiveness.
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4.2 Hybrid ASR baseline

4.2.1 Front-end features:

In this study, front-end feature parameterization was carried out using conventional Mel-frequency

cepstral coefficients (MFCCs) [102, 103, 7] and high-resolution features (i-vector) [104]. The

process of feature extraction is explicated in the following paragraph. The MFCC feature ex-

traction was performed with a Hamming window of 25 milliseconds (ms), maintaining an over-

lap of 10 ms frame-shift. Each frame was represented as a 13-dimensional MFCC feature

vector. To encapsulate the dynamic features of the vocal tract system, velocity, and accel-

eration components were appended to the original 13-dimensional features, thereby forming

a comprehensive 39-dimensional feature vector employed for acoustic modeling. Previous

studies [105, 106, 107] have considered GMM-UBM-based i-vectors for speech recognition

tasks. The extraction process for i-vectors began with splicing the 13-dimensional MFCC fea-

tures with respect to time, capturing dynamic variations across frames. Consequently, a 117-

dimensional feature (13 x 9) was derived, considering four frames to the left and four to the right

of the central frame, totaling nine frames. The 117-dimensional features were subsequently

projected onto a 40-dimensional space using Linear Discriminant Analysis (LDA) [108]. A

GMM-UBM was trained on these features to extract i-vectors. The total variability matrix was

initially randomized and trained via the expectation-maximization (EM) algorithm [109], cre-

ating 150-dimensional i-vectors. These i-vectors were instrumental in building acoustic models.

4.2.2 Acoustic model training

4.2.2.1 GMM modeling

Initially, a simple, straightforward Gaussian Mixture Model (GMM) aimed at the training

of context-independent monophone models. Individual phonetic units were represented here

through a three-state left-to-right Hidden Markov Model (HMM). The ensuing stage of this

process concentrated on developing context-dependent phonetic modeling based on speaker-

adaptive training. This was accomplished by considering the alignments established during the
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preceding phase. Subsequently, the forty-dimensional LDA features previously obtained were

subjected to a de-correlation process facilitated by the Maximum Likelihood Linear Transform

(MLLT). After this step, these features underwent normalization using the Feature-based Maxi-

mum Likelihood Linear Regression (fMLLR) technique, setting the stage for executing Speaker

Adaptive Training (SAT). When estimating the GMM-HMM, the necessity arises to determine

numerous unique model parameters. To streamline this complex task, we ventured to investigate

the application of a Subspace Gaussian Mixture Model (SGMM)-based acoustic model, as cited

in [110]. This model conveniently encapsulates a multifaceted distribution in a compressed for-

mat. The SGMM model parameters, adept at adjusting for variations in phonetics and speakers,

are derived from a low-dimensional model in combination with a speaker subspace, thus con-

structing the model. The resultant effect of this methodology is a significant reduction in the

number of model parameters, which leads to an enhancement in the model’s performance. This

enhancement is particularly beneficial when the availability of training data is restricted. Lastly,

the unit distribution is determined using the UBM model learned during the process.

4.2.2.2 DNN modeling

In addition, a DNN-based acoustic model that has a number of hidden layers has been inves-

tigated for this work. To train the DNN, the features are spliced together with their respective

times using LDA+MLLT+fMLLR. The result of the computation is the posterior probability es-

timated across the HMM states. In this particular investigation, the following tuning parameters

were taken into consideration:

1. the number of hidden layers is 3,

2. the number of epochs is 20,

3. the dimension of the hidden layer is 1024,

4. the batch size is 64, and

5. the initial learning rate is 0.01, and the final learning rate is 0.0015.

During training, the standard DNN architecture aims to learn an affine transformation depen-

dent on the current time environment. The need for a significant quantity of training data to
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learn the proper transformation is one of the primary limitations here. This issue was addressed

in this [105].

4.2.2.3 TDNN models

In the realm of speech recognition systems, Time-Delay Neural Network (TDNN) frequently

finds their application in acoustic modeling. This specialized network system transforms acous-

tic data into a corresponding phonetic equivalent. The initial development and conceptual

groundwork of the TDNN framework can be traced back to the research presented by [111],

while its practical application in constructing acoustic models was pioneered by [112].

At its operational core, the TDNN processes input in the form of frame-level acoustic features.

The system’s output is a statistical distribution over individual phonemes, as per the defined

parameters of the target language. A unique trait of this network lies in its methodical, se-

quential processing of the acoustic frames, which it strives to categorize into the corresponding

phonemes that are most likely to match. Each input frame to the TDNN is conceptualized as a

column vector, with each vector representing a unique time step within the audio signal. The

individual rows of the vector denote the corresponding feature values. The TDNN employs a

streamlined weight matrix, often referred to as a kernel or filter. This matrix performs the cru-

cial task of traversing the audio signal and transfiguring the signal into output through convolu-

tion. Progressive strides in this field led to the inception of the low-rank TDNN. This advanced

model features a bottleneck linear layer post each affine transformation of batch-normalized

ReLU, supplemented with skip connections for enhanced performance. This design is dubbed

’low-rank TDNN’ due to the application of factorization at every linear layer pair of each ReLU

unit, thereby giving it a defining characteristic.

As discussed above, the following are tuning parameters for the TDNN architecture that have

been considered in this work:

1. Linear bottleneck dimensions in low-rank TDNN is 256

2. The skip connection chooses further preceding layers to be added to the previous ones

based on the previous layer’s inputs and outputs.
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3. Three non-sequential layers are taken as a single skip connection.

4.2.3 Language model training

The Language Model (LM) can make estimations and predictions about the word sequence by

using a variety of statistical and probabilistic methods. One of the LM’s responsibilities is ana-

lyzing the text data based on their word assumption. While performing the ASR job of decoding

a series of words, the LM is beneficial so that it helps to reduce the search area. In addition,

it helps determine the word sequence’s joint probability, denoted by the notation P(W). Both

N-gram and Recurrent Neural Networks (RNN) have been investigated here. The following is

a list of the parameters whose specifications were utilized in the training of RNNLM:

1. It consists of a single hidden layer composed of 150 nodes, and

2. The activation function is considered sigmoid.

4.3 End-to-End ASR baseline

In this subsection, the Conformer (Convolution-Augmented Transformer) based architecture

has been utilized as the ESPnet baseline. This architecture combines the long-range interac-

tions of transformers with the local sensitivities of convolutional neural networks to create a

conformer architecture (i.e., convolution + transformer) (The overview of conformer can be

found in Chapter 2 ). Specific parameters have been selected during the training process to

optimize the model’s performance. Specifically, the encoder block count has been set to 12, the

output dimension to 512, and the kernel size to 31. Moreover, the decoder block count has been

set to 6, and each encoder and decoder has eight attention heads. The feed-forward dimension

has been set to 2048, and the model has been trained for 20 epochs with a learning rate of

0.0015. In addition, a time mask of 5 and a frequency mask of 2 have been considered. The last

checkpoint has been replaced with an older one, and the best checkpoint has been stored.
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4.3.1 Evaluation Results & Discussion

This subsection presents the evaluation results of hybrid Automatic Speech Recognition (ASR)

models, including the Gaussian Mixture Model-Hidden Markov Model (GMM-HMM), Sub-

space Gaussian Mixture Model (SGMM), Deep Neural Network-Hidden Markov Model (DNN-

HMM), and Time-Delay Neural Network (TDNN), as well as End-to-End models, such as

Transformer and Conformer, trained on the IIITH-CSTD corpus.

The Hybrid models, including GMM-HMM, DNN, and TDNN, are reported in Table 4.1. In

parallel, the outcomes from our evaluation of the End-to-End baseline models, which include

the advanced Transformer and Conformer architectures, are detailed with precision in Table 4.2.

The tables include three approaches, A1, A2, and A3, for spontaneous, conversational, and read

speech. The evaluation metrics are word error rate (WER) in percentages.

In Table 4.1 and Table 4.2, the first column represents the toolkits used for the evaluation,

which includes KALDI and ESPnet. The second column shows the model used for the eval-

uation, which includes GMM (tri), SGMM, DNN, TDNN, and TDNN-RNN for KALDI and

Transformer and Conformer for ESPnet. The third column represents the front-end features:

MFCC + LDA + SAT and MFCC + i-vector for KALDI, and Mel-filter bank and Raw for ES-

Pnet. The fourth column represents the language model, which is 5-gram for KALDI and no

language model for ESPnet. The remaining columns show the WER results for each approach,

i.e., A1, A2, A3, and A1+A2+A3, respectively.
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Table 4.1: Evaluation of IIITH-CSTD Corpus on hybrid ASR systems

Toolkit Model Front-End Features LM
Approach 1 (A1)

(Spontaneous)
Approach 2 (A2)

(Conversational)

Approach 3 (A3)

(Read)
A1+A2+A3

TG CA RY TG+CA+RY

Kaldi

GMM MFCC + LDA + SAT 5-gram 23.05 27.16 30.89 26.93 45.98 44.63 33.12

SGMM MFCC + LDA + SAT 5-gram 17.75 20.07 21.39 20.03 37.68 36.59 28.89

DNN MFCC + LDA + SAT 5-gram 14.24 15.98 19.21 17.47 34.25 33.64 24.04

TDNN MFCC + i-vector 5-gram 13.04 14.64 17.56 15.48 31.98 31.14 22.69

TDNN MFCC + i-vector RNN 12.41 13.58 15.85 14.94 30.12 30.71 21.98

Table 4.2: Evaluation of IIITH-CSTD Corpus on End-to-End ASR systems

Toolkit Model Front-End Features LM
Approach 1 (A1)

(Spontaneous)
Approach 2 (A2)

(Conversational)

Approach 3 (A3)

(Read)
A1+A2+A3

TG CA RY TG+CA+RY

ESPnet
Transformer Mel-filter bank - 11.94 13.08 14.24 13.89 26.70 25.89 18.09

Conformer MFCC + LDA + SAT - 11.68 12.79 13.97 13.11 23.45 22.27 15.72
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4.3.1.1 Hybrid ASR baseline results

The ASR system has been developed using the collected database, individually and in combi-

nation. Preliminary experiments have been conducted on the Approach 1 database, which is

diverse and consists of different dialects. A GMM-HMM model has been built using the Ap-

proach 1 data, and its alignments are considered for building SGMM, DNN, and TDNN models.

Among all the hybrid models, TDNN with RNNLM has performed better for all the cases, i.e.,

for each dialect (TG, CA, RY) and combining all dialects (TG+CA+RY) in a single model. The

statistics of Approach 1 are reported in Table 3.1. The WERs for the best model (TDNN with

RNNLM) on TG, CA, RY, and TG+CA+RY are 12.41%, 13.58%, 15.85%, and 14.94%, respec-

tively. The same experiments have been carried out on corpus collected using other approaches.

It is observed that TDNN with RNNLM outperforms all the hybrid systems on all the databases

(i.e., Approach 1, Approach 2, Approach 3, and A1+A2+A3).

4.3.1.2 End-to-End models baseline results

This subsection presents an End-to-End model baseline trained on the database collected using

the ESPnet toolkit. Table 4.2 tabulates the Word Error Rates (WERs) (%) of the models trained

on the database collected using three approaches. The study observes that among Transformers

and Conformers, the Conformers outperformed the Transformers for all the approaches in the

End-to-End baselines. Specifically, for Approach 1, the overall WERs (%) on Transformer

and Conformer are 13.89 and 13.11, respectively, for the TG+CA+RY task. The Transformer-

based and Conformer-based ASRs trained on data collected using Approach 2 achieved a WER

of 26.70 and 23.45 (WER), respectively. For the read mode speech (i.e., A3), the WERs of

Transformer-based and Conformer-based models trained on read mode speech are 25.89 and

22.27, respectively. Finally, the WERs of Transformer architecture and Conformer trained on

pooled data (i.e., A1 + A2 + A3) are 18.09% and 15.72%, respectively.
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4.4 Ablation studies on IIITH-CSTD corpus

4.4.1 Different Speaking Styles

In this subsection, we provide a detailed overview of the ablation studies performed on an as-

sortment of architectures, taking into account the distinct speaking styles present in the training

data. These comprehensive evaluations aid in discerning the individual contributions of each

component within these architectures.

Figure 4.1: WER evaluation on different architectures (like TDNN, Transformer, & Conformer)
of different speaking styles sizes (Spontaneous, Conversational, and Read) on IIITH-CSTD
corpus

The Figure 4.1, compares the performance of three different models, namely Time Delay Neu-

ral Network (TDNN), Transformer, and Conformer, across various dialects (Telangana - TG,

Coastal Andhra - CA, Rayalaseema - RY) and different speaking styles (Conversational, Read,

Spontaneous, and a combined set of all three). The metric used is Word Error Rates (WER),

which are commonly used in the evaluation of ASR models, with lower values indicating better

performance.

Starting with the dialect-based comparison, across all dialects, the Conformer model appears to

perform the best, with the lowest error rates ranging from 11.68% for TG to 13.97% for RY.

The Transformer model follows closely, and the TDNN model has the highest error rates among

the three models for each dialect. Interestingly, all models seem to struggle more with the RY

dialect, suggesting it might have unique characteristics making it more challenging to model.
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As for the speaking styles, again, the Conformer model consistently outperforms the other two

models. However, it’s worth noting that the error rates significantly increase when the models

are tested with Conversational and Read speech styles compared to the Spontaneous style. This

could be due to factors like increased speed, varied tone, or less clear articulation often found

in read and conversational speech compared to spontaneous speech.

In the combined set of all speaking styles (Conv+Spont+Read), the Conformer model again

leads with a WER of 15.72%, followed by the Transformer model at 18.09%, and TDNN at

21.98%. This suggests that the Conformer model best handles the diversity of speaking styles

among the three.

Overall, this analysis suggests that the Conformer model tends to have superior performance

across different dialects and speaking styles compared to the TDNN and Transformer models.

However, it also underscores the challenges ASR models face when handling various dialects

and speaking styles, with clear variations in performance across these factors. Further research

might be needed to improve the models’ ability to deal with dialectical and speaking style

variations effectively.

4.4.2 Different dataset sizes

In this subsection, we present the results of ablation studies conducted on various architectures

with different dataset sizes ranging from 10 to 2000 hours of training data.

Figure 4.2 provides a comparative analysis of the Word Error Rate (WER) for three different

speech recognition models (TDNN, Transformer, and Conformer) trained on varying amounts

of data. The results show a consistent trend of decreasing WER as the number of training hours

increases for all models, which is a well-understood pattern in machine learning. More data

tends to provide the model with more examples to learn from, leading to a better generalization

of unseen data and, thus, lower error rates.

Looking at the 10-hour training data mark, TDNN has the lowest WER at 60.69%, while the

Conformer model has the highest error rate at 68.1%. However, as the amount of training data
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Figure 4.2: WER evaluation on different architectures (like TDNN, Transformer, & Conformer)
of different dataset sizes (10 hrs, 50 hrs, 100 hrs, 1000 hrs, & 2000 hrs) on IIITH-CSTD corpus

increases, the trend changes. The Conformer model steadily outperforms the other two mod-

els, starting from the 500-hour mark and maintaining this lead through the 2000-hour mark.

At 2000 hours, the Conformer model achieves the lowest WER at 15.72%. The Transformer

model also demonstrates a similar but more pronounced pattern. It starts with the highest WER

at the 10-hour and 50-hour marks. Still, it significantly improves as training data increases,

surpassing the TDNN model at the 100-hour mark and maintaining its lead for the remaining

data points. At the 2000-hour mark, the Transformer model achieves a WER of 18.09%. On the

other hand, the TDNN model, while starting with the best performance at lower data volumes,

seems to benefit less from additional data compared to the other two models. Its performance

improvement rate slows as the training data increases, and it consistently ranks third in perfor-

mance from the 100-hour mark onwards.

Our study reveals that both the Conformer and Transformer models perform admirably, partic-

ularly when presented with an increasing volume of training data. Among them, the Conformer

model outshines, skillfully using additional data to fine-tune its accuracy. The Conformers have

a winning edge over TDNNs, primarily due to their ability to model long-term dependencies

and unravel complex patterns hidden in the data.
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The TDNN model, though showing an initial upper hand with smaller datasets, falls short as the

amount of training data multiplies. This indicates that the TDNN model may not be as adept as

its Conformer and Transformer peers in learning from extensive datasets. Both Transformers

and Conformers harness the power of self-attention mechanisms, which aids them in tracking

long-term dependencies in the input sequence. Yet, the Conformers set themselves apart by

weaving in convolutional layers that grasp local sequence patterns, making them better for

sequential modeling tasks like speech recognition. Users can evaluate the ASR system based

on the Conformer architecture through the following link: https://asr.iiit.ac.in/

ganesh. This study underlines the crucial role of model selection, taking into account the

available training data. After all, different models possess different learning abilities depending

on the volume and characteristics of the data.

4.4.3 Cross-dataset benchmarking of speech recognition task

In this subsection, we present a benchmarked comparison of the IIITH-CSTD corpus with the

MSR Telugu dataset. Table 3.1 shows that the MSR telugu dataset is only 50 hours (45 hours

of training + 5 hours of testing). But in this case, the IIITH-CSTD corpus is of 2000.8 hours,

so to have a fair comparison across the datasets, a subset of the IIITH-CSTD corpus with a

duration of 50 hours was selected with each speech mode being 15 hours (spontaneous speech,

conversational speech, and read mode speech) which in turn, constituted 45 hours. Five hours

were randomly selected for testing. Further, a 5-hour test set from YouTube was included to

ensure uniformity in the testing data. The YouTube data were randomly selected and not biased

towards any particular domain or speaker. Including this real-world data allowed the evaluation

of how well the models trained on IIITH-CSTD and MSR Telugu performed on a more diverse

and challenging test set. The table 4.3 reports the word error rate (WER) results obtained for two

training (MSR Telugu, IIITH-CSTD (subset)) and three testing scenarios (MSR Telugu, IIITH-

CSTD, and Youtube data). The ASR systems are trained on TDNN-based acoustic models.

Table 4.3 infer that the IIITH-CSTD corpus outperforms when compared to MSR Telugu in all

three testing scenarios (IIITH-CSTD, MSR Telugu, and Youtube). Additionally, the WER for

the YouTube dataset on MSR Telugu is higher than the IIITH-CSTD corpus, indicating that the

IIITH-CSTD corpus contains a diverse range of speech representative of real-world scenarios.
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Table 4.3: Benchmarked comparison of IIITH-CSTD corpus with MSR Telugu, Youtube

Test

IIITH-CSTD

(5 hours)

MSR Telugu

(5 hours)

Youtube

(5 hours)

Train
IIITH-CSTD 17.98 11.81 21.03

MSR Telugu 25.68 19.78 43.98

The findings of this study suggest that even the subset of the IIITH-CSTD corpus presents a

more challenging task for speech recognition due to its greater diversity of speech styles and

vocabulary. This highlights the importance of evaluating speech recognition models across

various datasets to assess their generalization ability. Additionally, the study underscores the

potential benefits of training speech recognition models on different datasets that capture var-

ious recording conditions, speaker characteristics, and linguistic content. Training on diverse

datasets can enhance the robustness and performance of models when faced with new datasets.

This study’s results also emphasize the critical role of training on diverse datasets in improv-

ing the generalization performance of speech recognition models. Such training enables the

model to adapt to variations in recording conditions, speaker characteristics, and other sources

of variability commonly encountered in real-world scenarios. Furthermore, it can enhance the

model’s ability to handle various vocabularies and linguistic structures that may significantly

differ across different regions and dialects.

4.5 Summary & Conclusion

This study evaluates an Automatic Speech Recognition (ASR) system using various models,

including GMM-HMM, SGMM, DNN, TDNN, Transformers, and Conformers. Among them,

the TDNN model coupled with RNNLM performs the best, while the Conformer model consis-

tently outperforms the others in all test scenarios. The Conformer model exhibits remarkable

improvement as the training data increases, highlighting the advantages of utilizing diverse

datasets. To further emphasize the importance of dataset diversity, we compare the perfor-

mance of the IIITH-CSTD corpus and the MSR Telugu dataset. Our findings reveal that the
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TDNN model excels when working with smaller datasets but reaches a plateau as the training

data grows. On the contrary, the Transformer and Conformer models demonstrate significant

performance enhancements with larger datasets. Notably, the Conformer model stands out for

its superior performance across different dialects and speaking styles, benefiting greatly from

larger and more diverse training datasets. This model effectively handles complex data patterns

and long-term dependencies.

Furthermore, this study underscores the essential role of diverse datasets in training ASR mod-

els. The superior performance of the IIITH-CSTD corpus compared to the MSR Telugu dataset

proves the advantages of training ASR models on diverse data. Such diverse training data en-

hances the robustness and generalization capabilities of ASR models, enabling them to adapt to

a wide range of vocabularies, dialects, and linguistic structures. The next chapter will delve into

a self-supervised approach for speech recognition tasks in the Indian context, building upon the

insights gained from this research.
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Chapter 5

Exploration of self-supervised based approach for improving

the performance of speech recognition system on CSTD

corpus

5.1 Introduction

In the realm of speech recognition research, the procurement of extensive and diverse datasets

plays a crucial role in model development and performance. Chapter 3 elucidates the strate-

gies and methodologies employed to collect a sizable speech corpus for the Automatic Speech

Recognition (ASR) task using a crowd-sourced approach. Through this method, a comprehen-

sive platform was developed and consequently collected an expansive corpus of Telugu speech

data. Following this, Chapter 4 presents a series of experiments conducted to establish base-

line results for the collected corpus. Overall, while there are still challenges to be addressed,

the recent advancements in deep learning have shown promising results in improving ASR for

low-resource Indian languages. A potential solution to mitigate the gap between high and low-

resource languages is the acquisition of labeled datasets for the latter. However, creating such

datasets can be challenging due to the logistical issues in collecting data across various lan-

guages and dialects, rendering this approach expensive. An alternative approach to narrow this

gap involves self-supervised learning. Models such as Wav2Vec can be trained on larger, unla-

belled datasets that are relatively easier to obtain and fine-tuned with smaller labeled datasets.

Another approach is a cross-lingual transfer of knowledge from high to low-resource languages.

Moreover, transfer learning relies on non-native speakers and content, which may lead to issues
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with robustness when deployed on various benchmarks. Thus, although self-supervised and

transfer learning can serve as practical techniques to narrow the WER gap, a more extensive

dataset remains crucial to reduce the considerable disparity between low and high-resource lan-

guages.

This chapter explores the possibility of building effective ASR systems for low-resource lan-

guages of the Indian subcontinent using wav2vec2.0. Numerous existing wav2vec models owe

their performance to substantial training efforts conducted on considerable volumes of metic-

ulously gathered raw audio data, predominantly in languages such as English. Past research

efforts have led to the online availability of speech corpora for various Indian languages, includ-

ing English, Hindi, and Tamil. These speech corpora, each encompassing roughly 200 hours

of language data, serve as an invaluable repository for researchers and developers vested in the

progression of Automatic Speech Recognition (ASR) systems [79, 94, 95, 96, 97]. Despite

these resources, the Telugu language still witnesses a significant deficit in data representation.

The most extensive publicly available Telugu speech corpus, currently standing at 50 hours of

data collected by [79], is insufficient to meet the needs of modern ASR architectures. These

contemporary ASR systems are known for their necessity for significantly larger volumes of

training data.

5.1.1 Data pre-processing

Initially, to build a comprehensive speech corpus for Telugu, we employed a data collection

methodology that involved various keywords across different domains. We utilized these key-

words to search for suitable channels, playlists, and individual videos on YouTube. Our primary

consideration for selection was the quality of the audio, which had to be free of any background

music and predominantly in Telugu. Nonetheless, we acknowledged that some degree of code-

mixing with English is unavoidable in Telugu speech content. Once we had identified relevant

videos, we conducted a manual inspection to verify that the audio was predominantly in Telugu.

We also ensured that the videos were available under a Creative Commons License. It is worth

noting that our approach, while ensuring high-quality data, reduced the amount of available

data, particularly for the Telugu language. Nonetheless, we believe that the data we collected
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provides a solid foundation for building a comprehensive Telugu speech corpus that can aid in

developing ASR systems. The filtered URLs are sent to the CSTD pipeline for obtaining the

raw speech data (unlabeled)(The functionality of the CSTD pipeline is discussed in Chapter 3).

The total amount of raw audio data utilized for pretraining is 5000 hours. To ensure the model’s

reliability, 4% of the data was assigned as validation data to monitor the validation loss during

the pretraining phase. The remaining 96% of the data was employed to pre-train the model to

learn robust and powerful representations from the speech audio.

The raw audio data utilized in this study encompassed various speech domains such as news,

debates, movies, interviews, speeches, etc., so it covers all three modes: read, conversational,

and spontaneous. This approach was adopted to incorporate diverse linguistic contexts, styles,

and accents to the pretraining data, which helps in enhancing the model’s ability to generalize

across multiple domains and improve recognition accuracy.

5.2 Telugu Wav2Vec pretrained model

Initially, raw speech audio is fed into a multi-layered convolutional network called the en-

coder. This sophisticated network is designed to extract meaningful, high-level features from

the speech audio, converting these complex acoustic signals into a series of latent speech repre-

sentations. Each latent representation encapsulates the essential acoustic-phonetic properties of

the corresponding speech fragment. Following the extraction of latent representations, a mask-

ing strategy is employed. Herein, we draw inspiration from the “masked language modeling”

concept in Natural Language Processing (NLP). Certain portions of the latent representations

are concealed in this step, thus setting up a prediction task for the model to restore these masked

portions. The masked latent representations then serve as the input to a Transformer network.

The Transformer, renowned for its capacity to generate contextually rich representations, pro-

cesses these inputs. It uses its self-attention mechanism to weigh the influence of different

contextual elements within the sequence, thereby generating context-aware representations that

reflect the content of each speech fragment and its relation to the surrounding context. The

82



training regimen of our model utilizes a contrastive task. The model is tasked to distinguish the

actual (masked) latent representation from a set of distractor representations. This task encour-

ages the model to produce accurate and distinctive representations, which is essential for its

performance on downstream tasks. The latent representations are processed through a Gumbel

softmax function during the contrastive task. This allows us to model the latent representations

as discrete speech units, thereby simulating speech categorization into phonemes, words, and

phrases humans naturally perform.

5.2.1 Model Architecture for Pre-training

The present study investigates an architecture that closely mirrors the principles of the wav2vec

2.0 framework [113], incorporating three essential components that collaboratively contribute

to the system’s overall performance. The same is depicted in Figure 5.1 These components are

detailed as follows:

1. Feature Encoder: Serving as the initial stage of the process, the feature encoder is a

sophisticated multi-layered convolutional neural network (CNN) designed to process raw

audio signals. This CNN ingests the input audio and generates a sequence of frames,

denoted as Z= z1,z2, ...,zT , where T represents the total number of timesteps. Each z

corresponds to a vector in the d-dimensional space. The feature encoder effectively trans-

lates the raw audio data into structured, latent representations that can be more readily

analyzed and manipulated.

2. Context Network: Building upon the latent representations produced by the feature en-

coder, the context network, based on a Transformer architecture, plays a pivotal role in

learning context-aware representations for each T unit. This is achieved by implementing

a self-attention mechanism, which captures the inherent dependencies and relationships

between various elements of the sequence. Consequently, the context network enriches

the initial latent representations with contextual information, yielding a more expressive

and comprehensive representation of the input audio. The output of the context network
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is a sequence of contextualized representations C= c1,c2, ...,cT , where c denotes the

contextual representation for the th input (i.e., z).

3. Quantizer: The final component in the architecture, the quantizer, is responsible for dis-

cretizing the continuous representations generated by the feature encoder. This is accom-

plished by employing product quantization, which maps each continuous representation

to the nearest element in a predefined codebook, resulting in a discrete set of indices. The

quantizer effectively compresses the data while retaining crucial information, thus pro-

viding a suitable set of targets for self-supervised learning. The output of the quantizer

is a sequence of representations Q = q1,q2, ...,qT , where each q corresponds to the

quantized representation for the th input (i.e., z).

Figure 5.1: Illustration of Wav2Vec 2.0 architecture.

The steps followed in pretraining are listed in Algorithm 1. Masking a certain proportion of

time steps in latent space is much similar to the BERT-based Language model.

84



Algorithm 1 Steps followed to have a learned representation
Input: Input Speech Waveform (X)
[1] speech signal (X) is passed through a multi-layer convolutional neural network (CNN) to
encode into a latent representation which is denoted as “Z”. It is mathematically represented as,
[2]

Z = CNN(X) (5.1)

[3] The latent space representations are then quantized and denoted as “Q”.
[4]

Q= qntzton(Z) (5.2)

[5] Later the output of quantization is randomly masked (M)
[6]

M=mskng(Z) (5.3)

[7] Lastly, the masked output is passed onto the multi-head self-attention layers of the Trans-
former encoder backbone.
[8]

H= Trnsƒormer(M) (5.4)

Output: Learned representations

5.2.2 Contrastive Objective and Codebook Diversity During Model Pre-

training

During the pre-training phase of our model, we aim to construct robust representations of speech

audio by addressing a contrastive objective, denoted as Lm. This objective compels the model

to correctly discern the genuine quantized latent speech representation for a concealed time step

amidst various distractors. The model navigates this challenge by drawing upon its cultivated

contextual understanding. The representations of speech audio that the model learns through

this process are remarkably potent, providing a foundation upon which numerous downstream

tasks can effectively build. Parallel to this contrastive objective, we also incorporate a codebook

diversity loss, represented as Ld, into our loss function. This auxiliary loss is instrumental in

consistently utilizing all entries within the codebook. One of the prevalent challenges when

learning discrete representations is ensuring fair usage of all the learned symbols. Absent this

auxiliary loss, the model risks a disproportionate usage of certain symbols, favoring them ex-

cessively while neglecting others. The introduction of the Ld loss effectively counteracts this

tendency, prompting a more balanced utilization of the codebook entries. This, in turn, allows

the model to canvass the representational space more effectively, facilitating the learning of a
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diverse and rich array of speech representations. The ultimate objective is to bolster the model’s

robustness and adaptability, enabling it to manage a broad spectrum of acoustic environments

and speaker characteristics. The amalgamation of these two losses, the contrastive objective

Lm and the diversity loss Ld, ensures that the model not only learns high-quality speech rep-

resentations but also maximizes the full potential of the learned codebook. This comprehensive

approach leads to a model capable of performing sophisticated recognition tasks across various

conditions and contexts. Mathematically loss is expressed as follows:

L= Lm+αLd (5.5)

Here α is a tunable hyperparameter. A significant dimension of our model’s training archi-

tecture revolves around contrastive loss. Conceptually, this is rooted in identifying the actual

quantized latent speech representation, referred to as qt, from many alternatives. Within this

multitude, denoted by q̃ ε Qt are K + 1 quantized candidate representations. This set encom-

passes qt and K distractors. We uniformly sample these distractors from other masked time

steps within the same utterance. The mathematical formulation of the contrastive loss, denoted

as Lm, is as follows:

Lm = −
ogep(sm(ct,qt)/κ)
∑

q̃ Qt
ep(sm(ct, q̃)/κ)

(5.6)

The variable ct in this equation represents the output from the context network centered over

the masked timestep, t. The sim function computes the cosine similarity between the con-

text representations and quantized latent speech representations. This operation takes the form

sm(,b) = Tb/‖‖‖b‖, as detailed in prior studies. In this context,  and b denote dis-

tinct feature vectors, and their similarity measure aids in differentiating between the vectors,

contributing significantly to the model’s performance. In tandem with contrastive loss, the

model also incorporates a codebook diversity loss Ld to promote uniform usage of the code-

book entries. This ensures that each entry contributes equitably to the speech data’s overall

representation, enhancing the robustness and comprehensiveness of the trained model. Bal-

ancing contrastive loss and codebook diversity loss during training is critical to the model’s

successful operation and ability to deliver accurate speech recognition performance.
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By employing the diversity loss function, we encourage the model to generate a broad range

of quantized speech representations that maximally exploit the available codebook entries. We

argue that the richness and diversity of these representations are directly correlated with the

model’s overall performance and capacity to generalize across varied speech inputs. The di-

versity loss function focuses on ensuring the balanced use of each codebook’s entries, which

is integral to a well-performing model. In essence, the diversity loss function operates as a

regulatory mechanism that promotes uniformity across the codebook usage. This function in-

tegrates an entropy maximization strategy applied to the averaged softmax distribution across

each codebook’s entries, calculated over a batch of utterances. The softmax distribution, devoid

of Gumbel noise or a temperature component, is averaged over the entries of each codebook.

Expressed mathematically, the diversity loss function can be written as:

Ld =
1

GV

G
∑

g=1

−H(p̃g) =
1

GV

G
∑

g=1

V
∑



p̃g, (5.7)

Where:

- G represents the total number of codebooks,

- V symbolizes the total number of entries in each codebook,

- p̃g denotes the averaged softmax distribution over the codebook entries for each code-

book,

- H represents the entropy function.

The entropy H(p̃g) measures the uncertainty or randomness in the usage of the codebook en-

tries. Maximizing entropy in the context of our model implies that we aim to enhance the

diversity or richness of the learned speech representations. In effect, it encourages the model

to utilize all parts of the learned representation space. Implementing this diversity loss func-

tion, ensures an efficient spread across the feature space, thus encouraging the model to learn a

comprehensive, diversified range of speech characteristics. As a result, we effectively optimize

the model’s performance, contributing to its improved efficiency in handling automatic speech

recognition tasks. This innovative approach to the loss function sets a promising avenue for

future research and applications in the realm of speech recognition technology.
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5.3 Pretraining Experimental Setup

The architecture for the pretraining phase of our experiments, specifically a BASE variant model,

draws inspiration from the model described in the paper by [113]. The structure of our BASE

model encompasses:

• Seven convolutional layers: Each layer has 512 channels and employs strides of (5, 2, 2,

2, 2, 2, 2) and kernel widths of (10, 3, 3, 3, 3, 2, 2) respectively. This arrangement ensures

that the network can effectively extract high-level features from the input audio.

• Twelve transformer blocks: Each block consists of a model dimension of 768, a feed-

forward network (FFN) dimension of 3072, and 8 attention heads. This configuration

allows the model to capture the contextual information within the data with high accuracy.

In the quantization module, we use G= 2 codebooks, each comprising V = 320 entries. This

setup aids in discretizing the continuous latent representations, enabling our model to learn

discrete speech units. The curated Telugu language dataset serves as the pretraining material

for the model. We employ temperature-based sampling to account for data skew, a strategy that

helps us create balanced training batches. Based on experiments involving five distinct values

of α ∈ 0.6,0.7,0.8,0.9,1, we discerned that α = 0.7 yields the optimal model accuracy

for identifying the correct masked unit amid distractor units. For the BASE model, we limit

the audio segments to 250k samples, corresponding to approximately 15 seconds of audio. To

manage memory effectively, we cap the maximum tokens per GPU at 3M and train the model

using four A100 GPUs, with a gradient accumulation of 2 steps. In the optimization phase,

we utilize the Adam optimizer with a learning rate 0.0005, which undergoes polynomial decay

after a 32k step warm-up period. We maintain a consistent random seed setting of 1 across

all our experiments and adhere to the default hyperparameter values from the original wav2vec

2.0 codebase. Our BASE model consists of 95 million parameters. For implementation, we

rely on [114], which enables us to use mixed-precision training with fp16 operations, thereby

speeding up the training process and minimizing memory usage. Additional insights regarding

the training process of the ASR system, such as learning rate, batch size, and the number of

training epochs, are available in our training logs 1. These logs also provide crucial information
1https://wandb.ai/mirishkarganesh/5000h_Telugu_pretrained_model
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on the validation loss and accuracy, integral for tracking the performance of the ASR system

during the training phase.

5.3.1 Layer-Wise Analysis of CSTD-5k Pretrained Model

In this subsection, we delve into the intricate task of analyzing the layers of the pre-trained

model (CSTD-5k) which was built. Our approach relies on canonical correlation analysis

(CCA), a robust methodology that enables us to extract profound insights from the CSTD-5k

model. The main purpose of CCA is to derive the linear combination of the variables from each

set that maximizes the correlation between the two. That means, for two multivariate datasets,

X and Y, CCA aims to find the directions (i.e., canonical vectors or canonical variates) in which

both datasets express maximum correlation.

Formally, given two random vectors X ∈ Rp and Y ∈ Rq, CCA seeks vectors a ∈ Rp and b

∈ Rq such that the correlation between the linear combinations aTX and bTY is maximized,

subject to the constraint that these combinations have unit variance. This leads to simultaneous

generalized eigenvalue problems, typically solved using Singular Value Decomposition (SVD)

or similar matrix factorization techniques. The canonical correlation (CC) is the correlation

between the two optimally weighted sets of variables. Its value ranges between -1 and +1,

where +1 indicates a perfect positive correlation, -1 indicates a perfect negative correlation, and

0 indicates no correlation. The number of CCs equals the minimum number of variables in

the two sets. Canonical loadings are the correlation coefficients between the variables and the

canonical variates. These loadings provide information about the contribution of each variable

to the canonical correlation. The squares of the canonical loadings are known as communality

estimates, indicating the proportion of the variance in a variable that the canonical variates can

explain.

In the illustration provided in Figure 5.2, the similarity between the transformer layer represen-

tations and features extracted from Convolutional Neural Network (CNN) module is assessed

via Canonical Correlation Analysis (CCA). An interesting pattern in the pre-trained model ap-

pears to emulate the behavior of an autoencoder. As we traverse deeper into the model, the
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Figure 5.2: Illustration of CCA similarity with the features extracted from the CNN module

representation progressively diverges from the characteristics of the input features. However,

this trend reverses itself as we probe further into the network. The deeper layers start displaying

increased similarity to the input features as if they are endeavoring to reconstruct the input. This

observation aligns well with the training objective of the model, which aims to differentiate the

masked input segment from potential distractors.

Therefore, it is expected that the final layers of the model would exhibit properties akin to the

input, as these layers play an integral role in determining the output. This autoencoder-like

behavior can be seen as encoding the context followed by its reconstruction, capturing the most

significant features from the input and using them to generate the output.

This pattern of divergence and subsequent convergence resembles observations made for the

BERT text model. In the case of BERT, the objective is also centered around the reconstruction

of masked inputs. However, it differs because the task is grounded in masked reconstruction

rather than a contrastive prediction. These comparisons provide intriguing insights into the

operational dynamics of deep learning models and their potential similarities, regardless of the

differences in their specific tasks or applications.
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5.4 Summary & Conclusion

This study presents a comprehensive approach to improve Automatic Speech Recognition (ASR)

performance for low-resource Indian languages, particularly Telugu. It explores strategies of a

self-supervised approach to overcome challenges associated with data scarcity in respective

languages. The study applies the wav2vec2.0 model, incorporating a novel blend of contrastive

objective and diversity loss, to generate robust and enriched speech representations and builds

a pretrained model trained on 5000 hours of unlabeled Telugu data. Later Canonical Correla-

tion Analysis (CCA) of the model layers discloses a characteristic autoencoder-like behavior

contributing significantly. These findings obtained in this chapter provide essential insights into

enhancing ASR systems for low-resource languages. The forthcoming chapter will utilize the

pre-trained CSTD-5k model for executing downstream Automatic Speech Recognition (ASR)

tasks. This exercise is not confined to a single language but rather extends to an array of diverse

languages. We intend to evaluate the versatility and efficiency of the CSTD-5k model, partic-

ularly its capability to adapt and learn from different linguistic structures and phonetics. We

will consider how the model processes these languages, its accuracy levels, and the overall effi-

cacy of transcribing speech to text. The investigation aims to provide insights into the practical

challenges and benefits of deploying such a model in a multilingual environment.
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Chapter 6

Building ASR Systems for Low-Resource Languages of the

Indian Subcontinent Using Telugu Pretrained Model

6.1 Introduction

The previous chapter, as delineated in Chapter 6, concentrated on building a Telugu pretrained

model using the wav2vec2.0 framework. In the broader deep-learning context, pretraining is an

effective strategy for model initialization, which can significantly expedite the learning process

and improve model performance. The concept of transfer learning, wherein a model trained on

one task is repurposed on a related task, underlies this strategy. The idea behind transfer learn-

ing is that if a model learns certain patterns on one task, it can expedite learning-related patterns

on another task. This approach is particularly beneficial when dealing with tasks involving lan-

guages with low resource availability, such as Telugu. Given the pretrained model’s success

in understanding the nuances of the Telugu language, it is intuitive to repurpose this model for

ASR tasks. By applying transfer learning, we aim to harness the rich linguistic representations

ingrained in the pretrained model to recognize and transcribe Telugu speech accurately.

This chapter provides a detailed exploration of the methodologies and techniques employed to

adapt the Telugu pretrained model (CSTD-5K) for ASR. This will include an examination of the

fine-tuning process, an analysis of various hyperparameters, and a comprehensive evaluation of

the performance of our ASR system in a range of settings and scenarios. This study serves

as a roadmap for further research in the field, contributing to the ongoing endeavor to address

the challenges posed by low-resource languages in ASR. The exploration in this chapter high-
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lights the potential of pretrained models in the realm of ASR and underscores the importance

of linguistic diversity in our increasingly interconnected global community.

6.2 Model Architecture for Fine-tuning

Once the pretraining phase is completed, the model is subjected to a fine-tuning process tailored

for Automatic Speech Recognition (ASR) using task-specific supervised datasets. This tailored

adaptation incorporates a randomly initialized projection layer into the context network. The

role of this layer is to transform each d-dimensional output generated by the context network

into a C-dimensional output, where C corresponds to the vocabulary size. In this study, the

vocabulary comprises all distinct characters present in the Telugu language.

Following the transformation, a softmax function is employed to derive a probability distribu-

tion spanning the entire vocabulary. The function assists the model in making more precise

character predictions during the ASR task. The fine-tuning process can be conducted in one

of two ways: jointly, by utilizing data from various languages, or individually, focusing on a

single language. The Connectionist Temporal Classification (CTC) loss function, a commonly

recognized method, optimizes the model’s performance throughout the fine-tuning phase. Inte-

grating a modified variant of the SpecAugment data augmentation technique enriches the data

set, enhancing the model’s robustness against a wide range of audio inputs and improving its

ability to generalize.

Fine-tuning the pretrained model using the aforementioned strategy effectively modifies its un-

derlying architecture to meet the specific challenges and nuances associated with the ASR task.

This tailored adaptation allows the model to better handle accents, pronunciations, and back-

ground noise variances. Consequently, the fine-tuned model showcases an improved perfor-

mance in ASR applications, which attests to the effectiveness of this methodology for extracting

context-aware representations usable across numerous downstream tasks.
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6.2.1 Decoding

The decoding of emissions generated by the softmax layer necessitates the integration of a lex-

icon alongside a separately trained word-level n-gram language model. A candidate sequence,

denoted by y = y1,y2, . . . ,yM, are assigned probabilities pAM(y) and pLM(y) by the fine-

tuned network and the language model, correspondingly. The formula utilized to discern the

optimal word sequence, y∗, is as follows:

y∗ = rgmy [ logpAM(y)+α logpLM(y)+ β|y|] (6.1)

Within Equation 6.1, the representation |y| refers to the length of the sequence, while the vari-

ables α and β function as hyperparameters that adjust the influence of the language model and

the sequence length, respectively. The process incorporates an efficient beam search decoder

to investigate potential sequences, amalgamating network scores, language model scores, and

word insertion bonuses.

The incorporation of this decoding method assures the identification of the most likely word

sequence, taking into account both the predictions arising from the fine-tuned network and the

contextual information supplied by the language model. The incorporation of the language

model amplifies the ability of the model to generate transcriptions that are not only more coher-

ent but also grammatically precise. Furthermore, the beam search decoder introduces a highly

efficient methodology for scrutinizing potential sequences. Consequently, this integrative ap-

proach culminates enhanced ASR performance and more accurate transcription outcomes.

6.2.2 Rescoring

Notably, the aforementioned decoding procedure adopts an n-gram KenLM language model.

However, the recent strides in language modeling have unveiled the superior performance ex-

hibited by transformer-based language models. To exploit these cutting-edge advancements, an

optional amalgamation of an external transformer-based language model is proposed to rescore

the n-best hypotheses generated by the initial process. Specifically, for each contender in the n-
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best list, a new score is calculated, which merges the decoder log-probability with the weighted

log-probability of the external language model, symbolized as pELM(y). The ideal sequence is

then determined using the subsequent equation:

y∗et = rgmy [ logpAM(y)+α1 logpLM(y)+α2 logpELM(y)+ β|y|] (6.2)

In this context, |y| represents the sequence length, whereas α1, α2, and β function as hy-

perparameters modulating the impact of the primary language model, the external language

model, and the sequence length, correspondingly. This enhanced decoding approach effica-

ciously merges the benefits of n-gram and transformer-based language models, resulting in

more precise and contextually relevant transcriptions. Incorporating the latest language model-

ing techniques within this collaborative approach further bolsters ASR performance, leading to

refined transcription results that more accurately encapsulate the intricacies of human speech.

6.3 Methodology and Experimentation

This section provides an exhaustive overview of the following: (i) the datasets engaged for our

experimentation, (ii) the chosen hyperparameters for both the pretraining and fine-tuning phases

and (iii) the text corpora and corresponding hyperparameters selected for language model train-

ing. The dataset enlisted for the fine-tuning process has been elaborated upon in Chapter 2.

6.3.1 Procedure for Fine-tuning

Throughout the fine-tuning stage, all network parameters are subjected to updating, except the

convolutional feature encoder. For the BASE model, the employment of the Adam optimizer is

opted for, with a learning rate set at 1× 10−4, coupled with a tri-stage learning rate schedule

as follows:

1. A warm-up phase encompassing the initial 10% of the steps,

2. A phase with a constant learning rate for the ensuing 40% of the steps, and

3. A phase with the learning rate undergoing exponential decay for the remaining steps.
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The maximum limit of frames per GPU is fixed at 1 Million, with the models being fine-tuned

on 4 A100 GPUs devoid of gradient accumulation. This results in an effective batch size com-

prising 8 Million samples. The BASE model undergoes training spanning 80k steps. In the

first 200 steps, only the parameters within the final layer experience updates. After this, all

model parameters are updated except those tied to the feature encoder. For data augmentation,

the feature encoder’s outputs are subjected to masking, consistent with the principles of the

SpecAugment methodology. A masking probability of 0.05 and a LayerDrop rate of 0.1 are de-

fined for both models. Early stopping is implemented, featuring a patience setting of 30 epochs.

The fine-tuning experiments are conducted employing the Fairseq framework.

6.3.2 Language Model Setup

The present study employs a lexicon-based beam search decoder to generate predictions, as op-

erationalized in the Flashlight library 1. To enhance the precision of our predictions, the study

integrates a 5-gram KenLM language model with pruning applicable to singletons of the fifth

order and doubletons of the sixth order. The system’s performance is appraised in three distinct

modes: (i) in the absence of a language model (WOLM), (ii) with the training text functioning

as a text corpus for the language model’s development (WLM), and (iii) with an external text

corpus, sourced from the internet and complemented by text from ai4bharath, for the language

model’s creation (WLME).

The hyperparameters α and β in Equation 6.1 are fine-tuned on the validation set through grid

search, employing a value range from -4 to +4 for α and from 0 to 5 for β. During this grid

search, a beam size of 64 is used. It is crucial to highlight that α and β are fine-tuned on a

per-language basis. After identifying the optimal values for α and β, these hyperparameters are

applied to the test data, and the beam size is expanded to 1024. This methodology maximizes

our system’s performance while accommodating the variability inherent in different languages.

1https://github.com/flashlight/flashlight
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6.3.3 Rescoring Setup

In the rescoring process, the employment of an external Transformer language model (LM) is

explored to rescale the top-k hypotheses propagated by the decoder. To facilitate this, a BPE-

tokenized Transformer LM is trained to utilize the Fairseq toolkit 2. The model’s architecture

encompasses 12 decoder layers, 16 attention heads, an embedding dimension size of 1024, and

an FFN dimension of 4096. The training dataset for the Transformer LM is a mirror image of

that used for the KenLM model, inclusive of an external corpus. However, the vocabulary size

is confined to the top 50k sub-words. The model undergoes training for 160k steps with the

Adam optimizer and a tri-stage learning rate scheduler. This scheduler comprises 16k steps of

linearly increasing warm-up, followed by a hold-up until 40k steps at a learning rate of 0.0001,

succeeding which, the learning rate undergoes exponential decay over the final 40k steps.

Leveraging the trained language model, the beams propagated by the decoder are rescaled ac-

cording to Equation 6.2. To pinpoint the ideal values for α and β, a grid search is conducted

over a range from 0 to 5 and -4 to +4, respectively. This methodology permits the identifi-

cation of the optimal hyperparameters for our rescaling process, significantly enhancing our

predictions’ accuracy.

6.4 Results and Analysis

This section initially elaborates on the results derived from the CSTD-5k model for four distinct

fine-tuning datasets, namely MUCS, OpenSLR-126, OpenSLR-127, and IIITH-CSTD.

6.4.1 Performance of Telugu Pretrained Model Across different language

Families

Table 6.1 presents a comparison of the word error rates (WER) for various languages fine-tuned

on a Telugu pretrained model across several databases (MUCS, OpenSLR-126, OpenSLR-127,

and IIITH-CSTD). The languages have been categorized into two linguistic families: Dravid-

2https://github.com/pytorch/fairseq
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ian and Indo-Aryan. The assessment metric is the word error rate (WER), and three diverse

language model setups have been contemplated: WOLM (absence of language model), WLM

(presence of language model), and WLME (presence of language model supplemented with

extra text).

Table 6.1: Comparison of the word error rates (WER) on CSTD-5k for different databases
(MUCS, OpenSLR-126, OpenSLR-127, and IIITH-CSTD).(where WOLM, WLM, and WLME
indicate without language model, with a language model, and with language model using extra
text, respectively.)

WER(%)
Database Finetuning

WOLM WLM WLME

Telugu 20.3 14.9 9.89

Tamil 23.65 18.89 13.18

Hindi 37.98 30.49 29.03

Marathi 35.49 28.1 27.19

Gujarati 35.86 27.89 26.32

MUCS

Odia 30.61 25.78 22.68

OpenSLR-126 Kannada 22.32 16.89 11.26

OpenSLR-127 Tamil 26.10 23.95 17.82

IIITH-CSTD Telugu 18.54 13.24 9.86

The key findings from this study can be summarized as follows:

1. Across all four databases, incorporating a language model (WLM) consistently leads to a

reduction in WER compared to not using a language model (WOLM). This highlights the

effectiveness of integrating language models in improving the performance of the speech

recognition system using the CSTD-5k model as a foundation model.

2. Further improvements in WER are observed when using a language model with extra

text (WLME) compared to using a language model without extra text (WLM). This

demonstrates the importance of leveraging additional textual data to enhance the language

model’s performance.
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3. The differences in WER across the various languages and databases suggest that the per-

formance of the CSTD-5k model can be influenced by multiple factors, such as the com-

plexity of the languages, quality of the training data, and the effectiveness of the language

models used.

4. The results also indicate that the most significant gains in performance are achieved when

transitioning from WOLM to WLM, with additional improvements observed when mov-

ing from WLM to WLME.

From the finetuning dataset, we have two language families, ie. Dravidian Language (Telugu,

Tamil, and Kannada) and Indo-Aryan Language (Hindi, Marathi, Gujarati, and Odia) Family.

The average relative improvements within each language families as follows:

1. Dravidian Language Family

• Telugu

– WOLM to WLM: 26.6%

– WLM to WLME: 33.6%

• Tamil

– WOLM to WLM: 20.1%

– WLM to WLME: 30.2%

• Kannada

– WOLM to WLM: 24.3%

– WLM to WLME: 33.3%

Average WOLM to WLM improvement: (26.6+ 20.1+ 24.3)/3≈ 23.7%

Average WLM to WLME improvement: (33.6+ 30.2+ 33.3)/3≈ 32.4%

2. Indo-Aryan Language Family

• Hindi

– WOLM to WLM: 19.7%
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– WLM to WLME: 3.2%

• Marathi

– WOLM to WLM: 20.8%

– WLM to WLME: 3.2%

• Gujarati

– WOLM to WLM: 22.2%

– WLM to WLME: 5.6%

• Odia

– WOLM to WLM: 15.8%

– WLM to WLME: 12.0%

Average WOLM to WLM improvement: (19.7+ 20.8+ 22.2+ 15.8)/4≈ 19.6%

Average WLM to WLME improvement: (4.8+ 3.2+ 5.6+ 12.0)/4≈ 6.4%

The results suggest that the Dravidian language family benefits more from the CSTD-5k model,

as the average relative improvement for WOLM to WLM (23.7%) and WLM to WLME (32.4%)

is higher compared to the Indo-Aryan language family, which has an average relative improve-

ment of 19.6% for WOLM to WLM and 6.4% for WLM to WLME. These findings indicate that

using a pretrained model from a language within the same language family may improve per-

formance. However, various factors such as language complexity, quality of the training data,

and effectiveness of the language models may influence these results. Further investigation and

analysis would be required to understand the underlying reasons for the differences in relative

improvements between the language families.

Additionally, it’s important to note that some languages within the same family may exhibit

better improvements than others. For instance, within the Dravidian language family, Telugu

and Kannada show higher relative improvements between WLM to WLME compared to Tamil.

Similarly, within the Indo-Aryan language family, Odia has a higher relative improvement be-

tween WLM to WLME compared to Hindi, Marathi, and Gujarati. This suggests that pretrained
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models and transfer learning techniques can effectively improve the performance of automatic

speech recognition systems for low-resource languages, particularly those that share linguistic

similarities with the pretrained model’s language.

6.4.2 Impact of Multilingual Fine-tuning on the CSTD-5k Telugu Pre-

trained Model

In this study, we conducted an in-depth evaluation of the MUCS corpus, which encompasses

six languages and has an aggregate duration of approximately 450 hours (refer to Table 2.2).

Our approach involved jointly fine-tuning the pretrained model by amalgamating the training

data from all six languages. This strategy draws inspiration from [115, 96, 94], who demon-

strated that the joint fine-tuning of a multilingual model with task-specific data across multiple

languages results in enhanced performance.

In our experimental setup, we incorporated a multi-softmax layer at the final stage of the model,

wherein each language was assigned a separate softmax layer. The output vocabulary contained

unique tokens from each respective language. During the training process, each minibatch

consists of data randomly sampled from one of the languages.

Table 6.2: Comparison of multilingual fine-tuning on CSTD-5k (Telugu pretrained model)

Model
MUCS

Te Ta Hi Ma Od Gu

Monolingual Finetune

on CSTD5k
14.9 18.89 30.49 28.1 25.78 27.89

Multilingual Finetune

on CSTD5k
13.04 19.10 31.04 29.68 26.84 26.98

The table compares the performance of two fine-tuning approaches: Monolingual Fine-tuning

and Multilingual Fine-tuning, both applied to the CSTD-5k model. It is important to note that

the monolingual fine-tuning is focused solely on the Telugu language. In contrast, the multilin-
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gual fine-tuning approach includes all six languages in the MUCS dataset. Upon analyzing the

results, it is evident that the multilingual fine-tuning approach yields slightly better performance

for most languages than monolingual fine-tuning. The improvements are particularly notable

in Telugu, with a decrease in the error rate from 14.9 to 13.04. However, the improvement is

marginal for some languages, such as Tamil. In a few cases, such as Hindi and Marathi, the

multilingual fine-tuning results in a slightly higher error rate. The table suggests that multi-

lingual fine-tuning can lead to competitive performance compared to monolingual fine-tuning.

This finding supports the idea that jointly fine-tuning a model with task-specific data across

multiple languages can improve its adaptability and generalization capabilities, making it more

suitable for practical applications in multilingual speech recognition tasks.

The outcomes obtained from our approach are promising, as they reveal that a single joint

model can deliver performance levels on par with those of individual models tailored for specific

languages. Owing to their ease of maintenance and deployment, joint models of this nature are

preferred for practical applications in multilingual speech recognition tasks.

6.4.3 Impact of Dataset Size on Pretrained Model Performance in Speech

Recognition Tasks

This investigation entails an evaluation of the IIITH-CSTD corpus, which comprises approxi-

mately 2000.8 hours of Telugu speech. For this specific endeavor, we have randomly selected

diverse subsets of various durations (10 minutes, 1 hour, 10 hours, and 100 hours). By delv-

ing deeper into the analysis of Table 6.3, further insights and implications concerning the per-

formance of the pretrained models, specifically XLSR-53, CLSRIL-23, and CSTD-5k, on the

IIITH-CSTD database can be extracted. An in-depth review of performance trends and relative

enhancements will foster a comprehensive understanding of these models’ proficiency in man-

aging speech recognition tasks across various dataset sizes.

Upon examination of the results, it is evident that the CSTD-5k model consistently achieves

lower WERs than the XLSR-53 and CLSRIL-23 models for all dataset sizes. This observation

is particularly noticeable for the 100-hour dataset, where the CSTD-5k model attains a WER of
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Table 6.3: WER evaluation of different pretrained models of different dataset sizes on the II-
ITHCSTD database

Pretraining model
Duration

10mins 1 hour 10 hours 100 hours

XLSR-53 96.2 68.23 57.98 33.68

CLSRIL-23 85.26 60.48 51.24 27.6

CSTD-5k (our) 67.29 44.68 27.86 10.2

10.2%, far superior to the 27.6% and 33.68% WERs exhibited by the CLSRIL-23 and XLSR-53

models, respectively.

All three models show substantial reductions in WER as the dataset size increases. The relative

improvement from the 10-minute dataset to the 100-hour dataset is as follows:

1. XLSR-53: WER decreases from 96.2% to 33.68%, representing a relative reduction of

65.02%.

2. CLSRIL-23: WER decreases from 85.26% to 27.6%, corresponding to a relative reduc-

tion of 67.66%.

3. CSTD-5k: WER decreases from 67.29% to 10.2%, resulting in a remarkable relative

reduction of 84.85%.

Notably, the improvement rate is not consistent across models. The performance gap between

the CSTD-5k model and the other two models widens as the dataset size increases, suggesting

that the CSTD-5k model exhibits enhanced capability in leveraging larger datasets for superior

performance.

6.5 Summary & Conclusion

In this chapter, we presented a comprehensive evaluation of various aspects of speech recogni-

tion, including fine-tuning, language models, and dataset sizes. We discussed the performance
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of different models across diverse datasets and language families, analyzing the impact of in-

corporating language models and pretrained models. The evaluation encompassed multiple

metrics, such as word error rate (WER), to assess the effectiveness of the models. Furthermore,

we explored the implications of dataset sizes on model performance and investigated the rela-

tive improvements achieved through different approaches.

The key findings of this chapter are as follows: (i) Language models play a crucial role in en-

hancing the performance of speech recognition systems. The integration of language models

consistently led to reduced WERs across different languages and databases, highlighting their

effectiveness in improving accuracy and precision. (ii) Pretrained models, particularly those

within the same language family, exhibited superior performance compared to models trained

solely on specific languages. Transfer learning techniques utilizing pretrained models show-

cased improved adaptability and generalization capabilities across diverse linguistic contexts.

(iii) Dataset size significantly impacted model performance, with larger datasets resulting in

lower WERs. The relative improvements in WER were more pronounced when transitioning

from smaller to larger datasets, indicating the importance of data volume in training robust

speech recognition models. (iv) The analysis of different language families demonstrated vari-

ations in relative improvements. Some languages within the same family showcased greater

enhancements than others, suggesting the influence of language complexity and dataset quality

on model performance.

This chapter provides valuable insights into the performance and adaptability of speech recog-

nition models across various scenarios. Evaluating different fine-tuning approaches, language

models, and dataset sizes offers guidance for optimizing the performance of automatic speech

recognition systems. The findings emphasize the significance of incorporating language models

and leveraging pretrained models for improved accuracy and precision. The outcomes highlight

the potential of transfer learning techniques and the benefits of utilizing larger datasets in train-

ing robust speech recognition models. Furthermore, the evaluation across diverse languages and

language families demonstrates the versatility and effectiveness of the proposed approaches.
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Overall, this study contributes to the advancement of speech recognition technology, provid-

ing a foundation for developing more accurate and efficient systems in real-world applications.

The findings pave the way for future research in optimizing model architectures, refining lan-

guage models, and further exploring additional techniques to enhance speech recognition per-

formance.
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Chapter 7

Exploring the Shared Phonetic Space of Indian Languages for

Multilingual Speech Recognition Systems

7.1 Introduction

Developing ASR systems for low-resource languages presents a unique challenge due to the

dearth of annotated speech data and text. India, with its diverse linguistic landscape, poses an

intriguing yet formidable task for ASR researchers. To address this challenge, we present a mul-

tilingual ASR system that exploits the shared phonetic space of several Indian languages. Our

system employs deep neural architectures during acoustic model training and integrates mul-

tiple languages into a single group. In addition, we introduce an attention-based multi-stream

convolutional neural network for ASR. We use a time-restricted self-attention mechanism to en-

hance feature robustness while concatenating the output from multiple streams. We assess the

performance of the proposed system using state-of-the-art tests and demonstrate superior results

over baseline models for databases and low-resource languages. Our ASR system caters to six

Indian languages: Gujarati, Hindi, Marathi, Odia, Tamil, and Telugu. We conduct various tests

using different audio and language modeling approaches to evaluate the system’s performance.

The proposed multilingual ASR system for low-resource languages holds significant promise

for bridging the digital divide and enabling technology access for under represented commu-

nities. Integrating several Indian languages into a single system marks a crucial step towards

providing a comprehensive solution for speech recognition in India. Furthermore, our system’s

architecture and methodology can extend to other low-resource language environments, provid-

ing ASR researchers with a robust tool for addressing challenges in linguistically challenging
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settings.

This study aims to develop speech-to-text (STT) systems for Indian languages with limited

resources. In the past, various methods have been proposed to build speech recognition sys-

tems for low-resource settings. For instance, in [116], acoustic data from multiple languages

were used to establish deep neural network (DNN) based acoustic models via unsupervised

restricted Boltzmann machine (RBM). The study found that unsupervised pretraining is nec-

essary for hybrid setups, especially when dealing with limited transcribed training data. Ad-

ditionally, other studies have leveraged transfer learning and data augmentation approaches to

address low-resource scenarios, such as [117, 118, 119, 120, 121, 122]. In previous stud-

ies [123, 124, 122, 121, 115], multilingual features were extracted to improve the performance

of low-resource ASR systems. To handle multiple languages in a single acoustic model, a pho-

netic sharing approach was proposed in [94]. Recently, the authors in [125] used phonetic sound

principles and transliterated all pooled languages of training into one language, mapping each

sound to the Latin space. These approaches aim to improve the accuracy and robustness of LID

and ASR systems for low-resource languages.

In this study, a rule-based parser was employed to generate the pronunciation dictionary for

Indian languages, given that most of them are syllabic. Prior research has shown that In-

dian languages share a common phonetic space but have distinct phonotactic structures. This

unique characteristic of Indian languages can be leveraged to develop more effective ASR sys-

tems [126, 127, 128, 129]. By taking advantage of the shared phonetic space, ASR systems

can be better optimized to recognize speech accurately and efficiently. The distinct phonotactic

structures of each language can also be incorporated into the system to improve its performance

on a per-language basis.

Language is a continuum phenomenon across the demography. But the written form of a lan-

guage is termed orthography. Indian language character set is distinctly coined as aksharas.

Aksharas are the smallest unit in the writing system of a language in the Indian context. For

building a speech recognition system, one of the primitive blocks is the lexicon (also known
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as the dictionary). The lexicon has valid entries for a given word and corresponding phoneme

sequence. In the literature, many works have been proposed to build a parser for a lexicon. This

work will exploit the Common Label set (CLS) and Common Phone set (CPS) approaches.

Many studies have shown that the Indian languages share a common phonetic space. In [128],

the authors have proposed the common phone set approach for Indian languages and adopted

it in building HMM-DNN-based text-to-speech synthesis (TTS). The phone set mapping for

13 Indian languages can be found in the below footnote 1. To leverage its advantage, a parser

Figure 7.1: Working pipeline of a unified parser.

has been developed wherein a UTF8 sequence is converted to IT3 [128] format. The invariant

features of Indian languages are identified and defined as the interim step to a unified parser. In

this parser, all the similar sounds among all languages are mapped to a single label. The labels

are designed so that most of them are transliterated forms of the native script. The working

pipeline of a unified parser is illustrated in Figure 7.1. Here we have two approaches to extract

the phoneme sequence, and they are as follows:

• Common Phone Set (CPS)

• Common Label Set (CLS)

Initially, in either of the approaches, the raw text is taken and passed for normalization, wherein

it filters out the unwanted characters (like special symbols, emoticons, etc.). So, let’s try to

understand the working flow of the common phone set and common label set by the pseudo-

codes mentioned in Algorithm 2.

7.1.1 Comparison of Common Phone Set vs. Common Label Set

Initially, let us consider a sentence which is illustrated in Figure 7.2, ( meaning “the Delhi

Capitals team has bought Indian hitting batsman Verma.” in Telugu. Telugu is one of the

1Phone set Mapping Click here
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Algorithm 2 Working flow for Common Phone set
1: procedure CPS(r tet) . This raw text can be a sentence
2: System Initialization
3: Read the input (sentence/word)
4: IF sentence= Tre
5: Convert the text into IT3 format
6: split IT3 format text into unique words
7: The unique words in IT3 are used to generate the phoneme mapping
8: Else
9: Convert the text into IT3 format

10: The text in IT3 is used to generate the phoneme mapping
11: EndIf

Dravidian languages, which is spoken majorly in the southern part of India). Let’s understand

how the Common Phone Set approach applies to the sentence mentioned in Figure 7.2. (The

working flow of the Common Phone Set has been mentioned in Algorithm 2).

Figure 7.2: An example of a Telugu utterance

1. Initially, we will be converting the given input text into the nearest Latin format with

respect to the input language, which is popularly called IT3.

Input (UTF8) Refer Figure 7.2

Output (IT3) bhaarata hitxtxiqg byaatxar warmanu dillii kyaapitxals jatxtxu konugoolu

ceesiqdi.

2. The unique words from the IT3 output is taken for phoneme mapping.

Unique words [bhaarata, byaatxar, ceesiqdi, dillii, hitxtxiqg, jatxtxu, konugoolu, kyaapitx-

als, warmanu].

3. Later, these unique words list is passed through the indic language parser ( [126, 127]) to

obtain the phoneme sequence

Output IT3 word and corresponding phoneme sequence:
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bhaarata→ /bh/ // /r/ // / t/ //

byaatxar→ /b/ /y/ // /t/ // /r/

ceesiqdi→ /c/ /e/ /e/ /s/ / / /q/ /d/ / /

dillii→ /d/ / / / / / / / /

hitxtxiqg→ /h/ / / / t/ / t/ / / /q/ /g/

jatxtxu → / j/ // / t/ / t/ //

konugoolu→ /k/ /o/ /n/ // /g/ /oo/ / / //

kyaapitxals→ /k/ /y/ // /p/ / / / t/ // / / /s/

warmanu→ // // /r/ /m/ // /n/ //

The main drawback of the CPS approach is while converting the input text to IT3 format,

language-level information of the input text has to be incorporated.

Now let’s try to understand the working flow for Common Label set(CLS), even here we will

consider the same example which was considered above (refer Figure 7.2). There is a standard-

ized Common Label Set (CLS) [127, 96] for all the different sounds found in Indian languages.

This common label set uses a conventional set of labels for speech sounds found in various

Indian languages. It works on the principle of letter-to-sound mapping. The Common label set

mapping for 13 Indian languages can be found in the below footnote 2. (The working flow of

the Common Label Set is mentioned below in Algorithm 2 ). This study uses a global parser

for all languages, which takes advantage of the syllable structure. In this approach, we found

that there are three possible ways where a given word can obtain the phoneme(sound) sequence,

which are as follows:

1. Syllable based

2. Aksharas based

3. Monophone based

Initially, let us understand the working of syllable-based-common label set (SB-CLS). The out-

put of the SB-CLS parser gives us all the syllable tokens present in the given word. In this case,

it is as follows:
2Common Label Set Click here
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Algorithm 3 Working flow for Common Label set
1: procedure CLS(r tet) . This raw text can be a sentence
2: System Initialization
3: User input for phoneme mapping (monophone/akshara/syllable based)
4: Split the input text into unique words
5: If monophone= Tre
6: Each word is split into its letter to sound mapping (Latin space)
7: EndIf
8: If kshr= Tre
9: Each word is split into its corresponding character unit

10: EndIf
11: If sybe= Tre
12: The input word is passed through the syllable-based parser
13: EndIf

1. Firstly, let us exploit the artifacts of syllable based-common label set (SB-CLS). The out-

put of the SB-CLS parser gives us all the syllable tokens present in the given word. For

example, consider the Telugu word refer Figure 7.3 ( meaning “Sanskrit”).

Figure 7.3: An example of a Telugu word (English translation of it is “Sanskrit”).

- Let’s pass the word through the SB-CLS parser. The output achieved is illustrated

in Figure 7.4.

Figure 7.4: An example of a Telugu word after passing through SB-CLS parser.

- It is observed that each output token from SB-CLS is the smallest spoken unit by

the human being.

2. Secondly, the same word is passed through the akshara based-common label set (AB-

CLS) parser. The output of the AB-CLS parser gives us characters as separate units.
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- The Output of AB-CLS is illustrated in Figure 7.5

Figure 7.5: An example of a Telugu word after passing through AB-CLS parser.

2.1. In the monophone based-common label set (MB-CLS), the output of the MB-CLS

parser gives us phoneme mapping, which is the common label across all the lan-

guages.

- The Output of MB-CLS is /s/ /a/ /q/ /s/ /k/ /rq/ /t/ /a/ /q/.

So, in this work, we have exploited SB-CLS, AB-CLS, MB-CLS, and CPS for building low-

resource speech recognition tasks in the Indian context.

7.2 Proposed Work

In this work, we extend the idea of time-restricted self-attention layers in TDNN and TDNN-

LSTM (which is nothing but the interleaving TDNN and its projection on Long Short-Term

Memory layers) across multiple streams. The proposed architecture is shown as a block dia-

gram in Figure 7.6. We used the SpecAugment technique provided in the reference [130] to

prevent the network from over-fitting during the pre-processing stage. At a given time step t,

the input speech frame is passed through a series of CNN layers to obtain a latent representation

denoted as ht. At this point, ht is passed through different independent streams, wherein each

stream is a stack of TDNN-LSTM layers with varying dilation rates dm. This is mathematically

expressed as,

zm
t
= Stacked-TDNN-LSTMm(ht |[−dm,dm]), (7.1)

From the above Equation, m denotes the number of streams, and zm
t

indicates the outputs of all

the streams. [−dm,dm] is 3× 1 kernel given the dilation rate of dm.
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Figure 7.6: Proposed Multistream CNN TDNN-LSTM architecture with time-restricted self-attention
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After that, the output of each of the distinct m streams will be concatenated and sent via a

dropout layer, ReLU, and batch normalization (BN), respectively. It is represented as:

et =Dropout(BN(ReLU(Concat(z1
t
,z2

t
, ...,zm

t
)))). (7.2)

Afterwards, the multi-head attention layer is used to refine this learned feature embedding (et)

before it is sent to the output layer. Let’s assume that at time step t, the input to the attention

layer is the three-part sequence query (qt), key(kt), and value(t), denoted by et. The model’s

inability to foresee the temporal order of values and keys necessitates using a positional en-

coding scheme. Therefore, every random vector  at time step t may be extended with one hot

encoding for the relative position of τ versus t, which can be expressed as extend(,τ, t). This

extension can be performed on any random vector  at any time step t. At every given time

step t, the attention output yt is a weighted sum of the values t received throughout time for

the left (L) and right (R) contexts, as presented in [112]:

yt =
t+R
∑

τ=t−L
t(τ)etend(t,τ, t), (7.3)

where the weight matrix is found by taking the dot product of the queries and the keys, which

is then normalized using softmax and can be obtained as [112]:

t(τ) =
ep(qt,etend(kt,τ, t))

St
, (7.4)

where St makes the
∑

τt(τ) = 1 condition hold. In a manner analogous to this, the attention

process may be extended to several heads even though each head functions in isolation. In

contrast to prior time-restricted attention, both input and output will be of equal duration in our

situation. As a result, it is reasonable to consider the present moment to be the focal point of

attention. In addition, the attention mechanism is flexible in that it may simultaneously attend

to a variety of moments in time, each of which has a unique amount of importance.

7.3 Results & Analysis

7.3.1 Comparison of CPS Vs. CLS

This subsection initially used several lexicons (CPS, CLS (Syllable, Aksharas, Monophone)),

and certain ablation studies were carried out on Telugu, Tamil, and Gujarati languages. Thus
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we could conclude which lexicon is the most effective when constructing ASR systems using

Low resource settings. Identical setups have been considered while feature extraction, building

acoustic models, and language modeling.

Figure 7.7: Comparison of CPS and different variants of CLS on Telugu, Tamil, and Gujarati
languages

The bar chart 7.7 illustrates the comparison of CPS and different variants of CLS on three

different language monolingual systems (Telugu, Tamil, and Gujarati). Among all the four

lexicons, MB-CLS (monophone based-common label set) performs better when compared to

all others, and SB-CLS (syllable based-common label set) performs worse.

In this study, going forward, all the experiments conducted will utilize the MB-CLS (Mono-

phone Based-Common Label Set) lexicon for our evaluation.
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7.3.2 Experimental results on different variants of TDNN architecture for

both monolingual and multilingual ASR systems

7.3.2.1 Monolingual Experimental Results

The experiments were performed on six Indian languages, and the database statistics are re-

ported in Chapter 2. In this work, we built GMM-HMM, SGMM, 7-layer TDNN, 8-layer

TDNN, 13-layer TDNN, low-rank TDNN (also known as TDNNF), TDNNF-LSTM, and TDNN-

BLSTM for both monolingual and multilingual systems. The experimental results for six mono-

lingual languages are reported in Table 7.1.

Table 7.1: Results of monolingual models in terms of WER (%) over a variety of acoustic
models

Model
Language

Hindi Marathi Odia Tamil Telugu Gujarati

GMM-HMM 69.03 33.22 55.78 48.81 47.27 28.33

SGMM 61.01 26.41 51.36 39.68 38.08 28.61

7-Layer TDNN 48.02 24.46 33.07 34.58 33.29 25.01

8-Layer TDNN 43.67 22.31 29.44 30.28 31.78 23.12

13-Layer TDNN 30.16 19.65 35.58 21.89 21.67 21.05

TDNNF 18.26 16.23 18.34 16.53 15.87 16.09

TDNNF-LSTM 17.07 15.98 16.08 14.89 13.65 15.10

TDNNF-BLSTM 18.73 17.26 18.02 16.23 15.18 17.97

The Table 7.1 compares the performance of different monolingual models over a variety of

acoustic models. The metric used for evaluation is Word Error Rate (WER), which is a common

metric in speech recognition systems. Lower WER values indicate better performance. The

table provides WER results for seven different monolingual models: GMM-HMM, SGMM,

7-Layer TDNN, 8-Layer TDNN, 13-Layer TDNN, TDNNF, TDNNF-LSTM, and TDNNF-

BLSTM. These are evaluated in six different languages: Hindi, Marathi, Odia, Tamil, Telugu,

and Gujarati.
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From the results, we observe that the TDNNF-LSTM model outperforms all other models across

all languages, yielding the lowest WER in each case. The WER ranges from a low of 13.65%

in Telugu to a high of 17.07% in Hindi. This suggests that the integration of LSTM (Long

Short-Term Memory) layers into the Time Delay Neural Network Feature (TDNNF) model has

enhanced its ability to capture complex patterns and dependencies in speech data, leading to

better transcription accuracy. Contrastingly, the GMM-HMM model shows the highest WER

across most languages, indicating its relative inferiority in transcription accuracy. The poor per-

formance could be due to the fact that this model may not capture the non-linear patterns in the

speech data as effectively as deep learning-based models like TDNNF and its variants.

It is also worth noting that models with more layers (such as 13-Layer TDNN) tend to perform

better than those with fewer layers (such as 7-Layer TDNN), indicating that model complexity

can play a role in transcription accuracy. In terms of language-wise comparison, Telugu con-

sistently shows the lowest WER across different models, indicating that these models may be

particularly well-suited for this language or that the Telugu data used was of high quality. On

the other hand, Hindi consistently has the highest WER, which could mean these models strug-

gle more with this language, or there could be issues with the data quality or representativeness

of Hindi.

7.3.2.2 Multilingual Experimental Results

To train a multilingual ASR system, we combined all six languages into one and used it as

a common acoustic model. It is known as Joint Acoustic Model (JAM). The performance of

models trained using SGMM has been lower than that of models trained with TDNN. GMM-

HMM-modeled triphones are not evenly distributed throughout the six languages. As a result,

when the JAM is trained with SGMM, it performs poorly. Better results have been achieved by

JAM trained with TDNNF compared to TDNN and SGMM-based systems. TDNNF and other

TDNNF acoustic models, in contrast to SGMMs, are taught to predict changes over a relatively

long period. Because of features like skip connection, bottleneck linear transformation layer,

and batch normalization, TDNNF has successfully dealt with the variations introduced by six

languages.
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Table 7.2: Results of multilingual models in terms of WER (%) over a variety of acoustic
models

Model
Language

Hindi Marathi Odia Tamil Telugu Gujarati

SGMM 38.69 30.6 39.68 36.96 35.68 33.65

7-Layer TDNN 36.28 22.08 30.50 33.84 31.07 23.27

8-Layer TDNN 35.16 21.98 29.86 35.98 34.89 21.62

13-Layer TDNN 21.48 19.32 20.03 18.06 19.01 18.21

TDNNF 17.07 12.90 17.25 15.35 14.07 16.02

TDNNF-LSTM 15.97 11.08 16.92 13.59 12.86 14.32

TDNNF-BLSTM 17.62 14.18 18.58 17.38 15.48 16.61

Even in the case of multilingual systems, the TDNNF-LSTM architecture has performed bet-

ter across all the languages. The results of it have been Tabulated in Table 7.2. For example,

in the Hindi language, TDNNF-LSTM achieves a WER of 15.97% while the next best model,

TDNNF, has a higher WER of 17.07%. This pattern of TDNNF-LSTM superiority is consistent

across all the languages considered. This indicates that the incorporation of Long Short-Term

Memory (LSTM) layers into the Time Delay Neural Network Feature (TDNNF) model results

in superior performance due to LSTM’s ability to capture long-term dependencies in speech

data.

On the other end of the spectrum, the SGMM model tends to have higher WER values, indicat-

ing less accurate performance relative to the other models. This could be due to the inability

of SGMM to capture non-linear patterns in the data, a capability at which deep learning-based

models excel. Looking at the results across different layers of TDNN, the performance gener-

ally improves with an increase in layers. For example, a 13-Layer TDNN performs significantly

better than a 7-Layer and 8-Layer TDNN across all languages. This may suggest that increas-

ing the model’s complexity and capacity can enhance its ability to capture intricate patterns in

speech data, thereby improving transcription accuracy.
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Considering the language-wise comparison, Marathi has the lowest WER across all the models,

implying that these models are well-optimized or perform better with this language. However,

Hindi consistently has the highest WER, indicating that these models might have difficulties

handling this language or the quality of the data set for Hindi might be lower.

Table 7.3: Benchmarked comparison of MSCNN over MSCNNLSTM (where MSCNN cor-
responds to Multistream CNN architecture and MSCNNLSTM represents Multistream CNN-
LSTM architecture (The evaluation metric considered here is word error rate (WER(%)))).

Lang
Monolingual Multilingual

MSCNN MSCNNLSTM MSCNN MSCNNLSTM

Hindi 17.26 16.98 17.42 16.06

Marathi 15.32 14.89 13.25 12.51

Odia 17.03 15.89 14.68 13.08

Tamil 16.4 13.67 13.59 13.01

Telugu 15.01 13.07 13.23 13.21

Gujarati 17.09 14.86 12.62 11.06

7.3.3 Experimental Results on proposed architecture

Based on our observations in Section 7.3.2.1 and Section 7.3.2.2, we concluded that the TDNNF-

LSTM architecture achieves superior results in monolingual and multilingual speech recogni-

tion systems that operate with limited resources. Previous research has demonstrated that the

multistream CNN architecture can enhance the robustness of recognition tasks. This provides

the impetus for us to include the TDNNF-LSTM architecture in a multistream approach to cap-

italize on its architectural advantages.

Our study involved conducting experiments on both monolingual and multilingual ASR sys-

tems for six Indian languages. The conventional multistream CNN is denoted as MSCNN in

Table 7.3 and Table 7.4, while the proposed architecture discussed in section 4 is denoted as

MSCNNLSTM. In Table 7.4, the abbreviation WA refers to ”with attention.” A multi-head

attention layer is applied in all of the architectures after concatenating all the streams and be-
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fore the output layer. This enhances the architecture’s robustness by more effectively capturing

learned representations.

Table 7.4: Benchmarked comparison of MSCNN WA over MSCNNLSTM WA (where
MSCNN corresponds to Multistream CNN + attention architecture and MSCNNLSTM WA
represents Multistream CNN-LSTM + attention architecture (The evaluation metric consid-
ered here is word error rate (WER(%)))).

Lang
Monolingual Multilingual

MSCNN WA MSCNNLSTM WA MSCNN WA MSCNNLSTM WA

Hindi 17.03 16.07 16.85 15.71

Marathi 14.85 12.85 11.59 10.78

Odia 16.78 15.07 14.1 12.81

Tamil 15.48 12.06 11.61 10.98

Telugu 14.06 12.65 12.51 11.15

Gujarati 15.54 13.69 11.25 10.96

To evaluate the effectiveness of our proposed system, we trained it and the baselines using

the same MUCS database as in our previous experiments. We quantified the systems’ perfor-

mance by measuring their word error rates (WER), and the results are presented in Table 7.3

and Table 7.4, as a percentage. Our proposed system outperforms the baseline multi-stream

CNN database with relative WER improvements of 1.02% and 2.05% across all languages, as

shown in Table 7.3. This indicates the effectiveness of our proposed system in improving ASR

accuracy.

Furthermore, our analysis revealed that the multilingual system consistently outperforms the

monolingual system in most cases, even after incorporating attention, underscoring the signif-

icance of the proposed system in enhancing speech recognition performance, particularly in

multilingual contexts. These findings hold important implications for advancing the field of

speech recognition, particularly in applications requiring multilingual support, where the pro-

posed system’s superior performance may offer benefits in terms of efficiency and accuracy.
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7.4 Summary & Conclusion

The present study examines a TDNN-based multilingual automatic speech recognition (ASR)

system for six Indian languages, specifically Hindi, Marathi, Odia, Tamil, Telugu, and Gujarati.

The objective of the study is to investigate the effectiveness of the Joint Acoustic Model (JAM)

for building a multilingual ASR system and to analyze the impact of different lexicon variants,

like CPS and SB-CLS, AB-CLS, MB-CLS, on the system’s performance.

The experimental results indicate that the multilingual models can produce results comparable

to those of the monolingual models. The study further finds that the low-rank TDNN (TDNNF)

architecture outperforms conventional TDNNs in most cases. Given that most Indian languages

share a common phonetic space and are syllabic, the CLS approach can be extended to include

more Indian languages in future research. The study also explores the TDNNF architecture by

stacking more TDNNF and LSTM layers after a sequence of TDNNF layers. The TDNNF-

LSTM architecture is shown to perform better in most cases. Moreover, the study proposes

the use of a multi-stream CNN architecture followed by a LSTM layer and a multi-head time-

restricted self-attention layer, which outperforms the baseline TDNN and multi-stream CNN

architecture by 3-5% on the MUCS dataset.

The study finds that the six-language multilingual model can handle inter-sentential cases, but

recognizing intra-sentential code-switching utterances requires exploring different architectures

and utilizing monolingual data. In conclusion, the experimental findings from this study are

valuable for researchers interested in building multilingual ASR systems for syllabic languages.
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Chapter 8

Summary and Conclusions

8.1 Summary

This thesis delves into the pressing issue of resource paucity in the context of Automatic Speech

Recognition (ASR) for low-resource Indian languages, with a specific focus on Telugu. It intro-

duces the International Institute of Information Technology Hyderabad-Crowd Sourced Telugu

Database (IIITH-CSTD), a large annotated speech corpus collected through a novel crowd-

sourcing methodology. This methodology represents a cost-effective and efficient alternative to

traditional, often cumbersome, data acquisition methods.

The work extensively evaluates the effectiveness of various ASR models such as GMM-HMM,

SGMM, DNN, TDNN, Transformers, and Conformers on the gathered corpus. The empirical

results underscore the superior performance of the Conformer model as the training dataset size

expands, illustrating the significance of large and diverse datasets. The study demonstrates that

models trained on diverse datasets exhibit improved generalization capabilities, enabling them

to adapt to different vocabularies, dialects, and linguistic structures.

Furthermore, the thesis explores a self-supervised approach for speech recognition tasks using

the wav2vec2.0 model. This model, trained on 5000 hours of unlabeled Telugu data, provides a

powerful tool to generate robust speech representations beneficial for languages with limited re-

sources. The effectiveness of language models, dataset sizes, fine-tuning methods, and transfer

learning techniques is critically examined to provide insights into enhancing the performance
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of ASR models.

The study further extends its scope by examining the effectiveness of a TDNN-based multilin-

gual ASR system for six Indian languages (Hindi, Marathi, Odia, Tamil, Telugu, and Gujarati),

testing the viability of the Joint Acoustic Model (JAM) and evaluating different lexicon variants.

8.2 Contributions in the thesis

- Crowd-sourcing Approach for Data Collection: It introduces a novel data collection

method that can address the issue of resource scarcity prevalent in under-resourced lan-

guages. The crowd-sourcing approach aids in efficiently collecting large and diverse

datasets, offering a significant leap from traditional data procurement and curation meth-

ods.

- Highlighting the Importance of Dataset Diversity: The thesis underscores the critical

role of diverse datasets in training ASR models. It demonstrates how models trained on

diverse data can generalize better and adapt to a wide variety of dialects, vocabularies,

and linguistic structures.

- Ablation of different ASR Models: A comprehensive assessment of various ASR mod-

els is conducted. When exposed to larger and diverse training datasets, the Conformer

model performs remarkably well, handling complex data patterns and long-term depen-

dencies efficiently.

- Implementation of a Self-Supervised Approach: The study explores and applies the

wav2vec2.0 model in a self-supervised context, providing a potential strategy for over-

coming challenges associated with data scarcity in low-resource languages.

- In-depth Examination of ASR system on various scenarios: The thesis presents a thor-

ough evaluation of different aspects critical to the performance of ASR systems, including

the influence of fine-tuning, language models, dataset sizes, and the impact of pretrained

models on accuracy and precision.
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- Insight into Multilingual ASR Systems: It investigates the Joint Acoustic Model (JAM)

within a TDNN-based multilingual ASR system, offering valuable insights for researchers

interested in developing ASR systems for multiple syllabic languages.

8.3 Directions for Future work

- Application of Crowdsourcing Methodology to Other Languages: The proven effec-

tiveness of the crowdsourcing approach for Telugu can be extended to other low-resource

languages, thereby creating an opportunity for the development of large, annotated speech

corpora for a variety of languages.

- Further Improvement of ASR Models: With the advancements in deep learning and

AI, the opportunity for the continued enhancement of ASR models is significant. Explor-

ing models capable of handling complex data patterns and long-term dependencies more

efficiently can lead to more accurate ASR systems.

- Focus on Multilingual Models: The study provides insights into constructing a mul-

tilingual ASR system for six Indian languages. Further research should explore code-

switching at the inter-sentential and intra-sentential levels and the effectiveness of multi-

lingual models in these contexts.

- Enhancement of Self-Supervised Approaches: The encouraging results using the wav2vec2.0

model signify the potential of self-supervised approaches. Further research should ex-

plore novel methodologies for self-supervised learning in ASR systems, particularly for

low-resource languages.

- Examination of Lexicon Variants in Multilingual ASR Systems: Future work should

focus on exploring the effectiveness of different lexicon variants such as CPS and SB-

CLS, AB-CLS, and MB-CLS in the context of a multilingual ASR system. Such an

investigation can provide insights into building more robust and adaptable ASR systems.
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[63] F. Grézl, M. Karafiát, and K. Veselỳ, “Adaptation of multilingual stacked bottle-neck

neural network structure for new language,” in 2014 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014, pp. 7654–7658.

[64] A. Baevski, W.-N. Hsu, A. Conneau, and M. Auli, “Unsupervised speech recognition,”

Advances in Neural Information Processing Systems, vol. 34, pp. 27 826–27 839, 2021.

[65] A. Baevski, S. Schneider, and M. Auli, “vq-wav2vec: Self-supervised learning of discrete

speech representations,” arXiv preprint arXiv:1910.05453, 2019.

[66] R. J. Weiss, J. Chorowski, N. Jaitly, Y. Wu, and Z. Chen, “Sequence-to-sequence models

can directly translate foreign speech,” arXiv preprint arXiv:1703.08581, 2017.

[67] Z.-Q. Zhang, Y. Song, M.-H. Wu, X. Fang, and L.-R. Dai, “Xlst: Cross-lingual self-

training to learn multilingual representation for low resource speech recognition,” arXiv

preprint arXiv:2103.08207, 2021.

[68] B. Li, Y. Zhang, T. Sainath, Y. Wu, and W. Chan, “Bytes are all you need: End-to-end

multilingual speech recognition and synthesis with bytes,” in ICASSP 2019-2019 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,

2019, pp. 5621–5625.

[69] P. Swietojanski, A. Ghoshal, and S. Renals, “Hybrid acoustic models for distant and

multichannel large vocabulary speech recognition,” in 2013 IEEE workshop on automatic

speech recognition and understanding. IEEE, 2013, pp. 285–290.

[70] S. Dalmia, R. Sanabria, F. Metze, and A. W. Black, “Sequence-based multi-lingual

low resource speech recognition,” in 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 4909–4913.

135



[71] E. Yılmaz, H. van den Heuvel, and D. Van Leeuwen, “Code-switching detection using

multilingual dnns,” in 2016 IEEE Spoken Language Technology Workshop (SLT). IEEE,

2016, pp. 610–616.

[72] S. Liang and W. Yan, “Multilingual speech recognition based on the end-to-end frame-

work,” Multimedia Tools and Applications, 2022.

[73] L. Lu, A. Ghoshal, and S. Renals, “Acoustic data-driven pronunciation lexicon for large

vocabulary speech recognition,” in 2013 IEEE Workshop on Automatic Speech Recogni-

tion and Understanding. IEEE, 2013, pp. 374–379.

[74] D. B. Paul and J. Baker, “The design for the wall street journal-based csr corpus,” in

Speech and Natural Language: Proceedings of a Workshop Held at Harriman, New

York, February 23-26, 1992, 1992.

[75] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an asr corpus based

on public domain audio books,” in 2015 IEEE international conference on acoustics,

speech and signal processing (ICASSP). IEEE, 2015, pp. 5206–5210.

[76] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S. Pallett, “Darpa

timit acoustic-phonetic continous speech corpus cd-rom. nist speech disc 1-1.1,” NASA

STI/Recon technical report n, vol. 93, p. 27403, 1993.

[77] R. Ardila, M. Branson, K. Davis, M. Henretty, M. Kohler, J. Meyer, R. Morais, L. Saun-

ders, F. M. Tyers, and G. Weber, “Common voice: A massively-multilingual speech

corpus,” arXiv preprint arXiv:1912.06670, 2019.

[78] J. J. Godfrey, E. C. Holliman, and J. McDaniel, “Switchboard: Telephone speech cor-

pus for research and development,” in Acoustics, Speech, and Signal Processing, IEEE

International Conference on, vol. 1. IEEE Computer Society, 1992, pp. 517–520.

[79] B. M. L. Srivastava, S. Sitaram, R. K. Mehta, K. D. Mohan, P. Matani, S. Satpal, K. Bali,

R. Srikanth, and N. Nayak, “Interspeech 2018 low resource automatic speech recognition

challenge for indian languages.” in SLTU, 2018, pp. 11–14.

136



[80] O. Kjartansson, S. Sarin, K. Pipatsrisawat, M. Jansche, and L. Ha, “Crowd-sourced

speech corpora for javanese, sundanese, sinhala, nepali, and bangladeshi bengali,” 2018.

[81] A. Bhanushali, G. Bridgman, G. Deekshitha, P. Ghosh, P. Kumar, S. Kumar, A.-R. Kol-

ladath, N. Ravi, A. Seth, A. Singh, et al., “Gram vaani asr challenge on spontaneous tele-

phone speech recordings in regional variations of hindi,” in Proceedings of the Annual

Conference of the International Speech Communication Association, INTERSPEECH,

vol. 2022. International Speech Communication Association, 2022, pp. 3548–3552.

[82] A. Diwan, R. Vaideeswaran, S. Shah, A. Singh, S. Raghavan, S. Khare, V. Unni,

S. Vyas, A. Rajpuria, C. Yarra, A. Mittal, P. K. Ghosh, P. Jyothi, K. Bali, V. Seshadri,

S. Sitaram, S. Bharadwaj, J. Nanavati, R. Nanavati, K. Sankaranarayanan, T. Seeram,

and B. Abraham, “Multilingual and code-switching asr challenges for low resource in-

dian languages,” Proceedings of Interspeech, 2021.

[83] M. A, B. Pilar, and R. A. G, “Subword dictionary learning and segmentation techniques

for automatic speech recognition in tamil and kannada,” 2022. [Online]. Available:

https://arxiv.org/abs/2207.13331

[84] ——, “Knowledge-driven subword grammar modeling for automatic speech recognition

in tamil and kannada,” 2022. [Online]. Available: https://arxiv.org/abs/2207.13333

[85] W. Xiong, J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu, and

G. Zweig, “Achieving human parity in conversational speech recognition,” arXiv preprint

arXiv:1610.05256, 2016.

[86] J. C. Félix-Brasdefer, “Data collection methods in speech act performance,” Speech act

performance: Theoretical, empirical and methodological issues, vol. 26, no. 41, pp. 69–

82, 2010.

[87] J. Freitas, A. Calado, D. Braga, P. Silva, and M. Dias, “Crowdsourcing platform for

large-scale speech data collection,” Proc. Fala, 2010.

[88] A. Butryna, S.-H. C. Chu, I. Demirsahin, A. Gutkin, L. Ha, F. He, M. Jansche, C. Johny,

A. Katanova, O. Kjartansson, et al., “Google crowdsourced speech corpora and related

137

https://arxiv.org/abs/2207.13331
https://arxiv.org/abs/2207.13333


open-source resources for low-resource languages and dialects: an overview,” arXiv

preprint arXiv:2010.06778, 2020.

[89] K. Prasad, S. Virk, M. Nishioka, and C. Kaushik, “Crowd-sourced technical texts can

help revitalise indian languages,” in Proceedings Of LREC, 2018, pp. 11–16.

[90] P. Jonell, C. Oertel, D. Kontogiorgos, J. Beskow, and J. Gustafson, “Crowdsourced multi-

modal corpora collection tool,” in Proceedings of the Eleventh International Conference

on Language Resources and Evaluation (LREC 2018), 2018.

[91] S. Arora, K. K. Arora, M. K. Roy, S. S. Agrawal, and B. Murthy, “Collaborative speech

data acquisition for under resourced languages through crowdsourcing,” Procedia Com-

puter Science, vol. 81, pp. 37–44, 2016.

[92] B. Abraham, D. Goel, D. Siddarth, K. Bali, M. Chopra, M. Choudhury, P. Joshi, P. Jy-

oti, S. Sitaram, and V. Seshadri, “Crowdsourcing speech data for low-resource languages

from low-income workers,” in Proceedings of the 12th Language Resources and Evalu-

ation Conference, 2020, pp. 2819–2826.

[93] P. Jyothi and M. Hasegawa-Johnson, “Acquiring speech transcriptions using mismatched

crowdsourcing,” in Proceedings of the AAAI Conference On Artificial Intelligence,

vol. 29, no. 1, 2015.

[94] H. K. Vydana, K. Gurugubelli, V. V. R. Vegesna, and A. K. Vuppala, “An exploration

towards joint acoustic modeling for indian languages: Iiit-h submission for low re-

source speech recognition challenge for indian languages, interspeech 2018.” in INTER-

SPEECH, 2018, pp. 3192–3196.

[95] J. Billa, “Isi asr system for the low resource speech recognition challenge for indian

languages.” in INTERSPEECH, 2018, pp. 3207–3211.

[96] V. M. Shetty and S. Umesh, “Exploring the use of common label set to improve speech

recognition of low resource indian languages,” in ICASSP 2021-2021 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp.

7228–7232.

138



[97] M. G. Kumar, J. Kuriakose, A. Thyagachandran, A. Seth, L. D. Prasad, S. Jaiswal,

A. Prakash, H. Murthy, et al., “Dual script e2e framework for multilingual and code-

switching asr,” arXiv preprint arXiv:2106.01400, 2021.

[98] T. Javed, S. Doddapaneni, A. Raman, K. Bhogale, G. Ramesh, A. Kunchukuttan, P. Ku-

mar, and M. M. Khapra, “Towards building asr systems for the next billion users,” ArXiv,

vol. abs/2111.03945, 2021.

[99] C. Kim and R. M. Stern, “Robust signal-to-noise ratio estimation based on waveform

amplitude distribution analysis,” in Ninth Annual Conference of the International Speech

Communication Association, 2008.

[100] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno, N. E. Y. Soplin, J. Hey-

mann, M. Wiesner, N. Chen, et al., “Espnet: End-to-end speech processing toolkit,” arXiv

preprint arXiv:1804.00015, 2018.

[101] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hannemann,

P. Motlicek, Y. Qian, P. Schwarz, et al., “The kaldi speech recognition toolkit,” in IEEE

2011 workshop on automatic speech recognition and understanding, no. CONF. IEEE

Signal Processing Society, 2011.

[102] T. Holter, J. Epps, A. Gopalakrishnan, E. Choi, O. Kenny, D. Grayden, A. Burkitt,

B. Kraal, M. Wagner, P. Collings, et al., “Automatic speech recognition,” 1965.

[103] X. Huang, J. Baker, and R. Reddy, “A historical perspective of speech recognition,” Com-

munications of the ACM, vol. 57, no. 1, pp. 94–103, 2014.
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