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Abstract

Voice disorders are caused due to abnormality in the laryngeal system. The signs and symptoms
of voice disorder may include: abnormal pitch (too high pitch, too low pitch, pitch breaks), reduction
in loudness, degradation of individual’s voice quality (breathy, rough, and strained voice quality), loss
of voice and so on. Instrumental assessment, auditory-perceptual assessment and objective assessment
are most widely used methods for diagnosing the voice disorders. Instrumental assessment methods
often involve the use of laryngoscopes and stroboscopes, but these procedures can be expensive and
painful. Auditory-perceptual methods used by Speech-Language Pathologists (SLPs) is considered as
a gold standard for detecting voice disorder. The decisions taken in the subjective intelligibility test
vary with experience of SLPs, type of scale used, and also depend on the examiner’s experience. To
address these limitations, objective or automatic assessment methods have been extensively explored in
the literature. These approaches extract acoustic features from speech signals, offering reliable, cost-
effective, and repeatable assessments. Objective assessment methods have potential to be used as a
pre-diagnostic measure for voice disorder assessment by SLPs. This thesis primarily focuses on the
objective or automatic assessment methods of voice disorders.

Various objective assessment methods for the automatic detection of voice disorders have been ex-
plored in the literature. These methods aim to detect the presence or absence of voice disorders, as well
as assess their severity ratings. However, clinical assessment of voice disorders relies on considering
the underlying etiological diagnosis. Therefore, this study proposes a clinical approach to assess voice
disorders. Along with the detection which was explored in the literature, this thesis explored an ob-
jective assessment method which can automatically identify the cause of voice disorders based on the
acoustic features extracted from the speech signal. The resulting speech samples are categorized into
four distinct categories: structural, neurogenic, functional, and psychogenic. To conduct a comprehen-
sive clinical analysis, a multi-level classification approach is employed. This approach involves training
four binary classifiers on acoustic features to achieve a thorough assessment from a clinical perspective.

Voice disorders are characterised by irregularities in the vocal fold vibration, incomplete glottal clo-
sure and opening, variation in the amplitude of consecutive opening and closing of the vocal folds.
Hence the parameters, which can capture these disturbances in a better way will be able to discrimi-
nate the voice disorders from healthy samples. From the source-filter model of speech production these
features can be captured in a better way from excitation source signals. Glottal flow waveform, zero
frequency filtered (ZFF) signal and linear prediction (LP) residual signals are some evidence of exci-
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tation source signal. Features derived from these evidences were used to capture the characteristics of
voice disorders. First study explores perturbation (jitter, shimmer, noise to harmonic ratios etc.) and
cepstral features derived from the excitation source evidence for detection and identification of voice
disorders. In this regard state-of-art speech signal processing techniques, such as quasi-closed-phase
(QCP) analysis, LP analysis and ZFF techniques, have been explored in this thesis in order to capture
the excitation source information. From this study, it was concluded that perturbation parameters can
capture voice disorder information in a better way. In addition it was also found that excitation source
based features can discriminate between the organic voice disorder from non-organic voice disorder, as
well as structural voice disorders from the neurogenic voice disorder category. However, distinguishing
functional voice disorders from psychogenic voice disorders proved to be challenging in the study.

From the first study, it was found that excitation source based features are able to differentiate the
various categories of voice disorders. Computation of these features involves the detection of epoch
locations from speech. Therefore, accurate estimation of epoch locations is important for computing
these features for the automatic detection and identification of voice disorders. Second study aimed to
compare the various algorithms for detecting epoch locations from the speech associated with voice dis-
orders. In this regard, nine state-of-the-art epoch extraction algorithms were considered, and their per-
formance for different categories of voice disorders was evaluated. From the results it can be concluded
that most of the epoch extraction methods showed better performance for healthy speech; however, their
performance was degraded for speech associated with voice disorders. Furthermore, the performance of
epoch extraction methods was degraded for the speech of structural and neurogenic disorders compared
to the speech of psychogenic and functional disorders. This degradation in performance might be due
to rapid change in fundamental frequency (F0) associated with subjects suffering with voice disorders
as compared to healthy subjects. Some of the state-of-the-art epoch extraction methods depend on the
average value of F0 for computation of epochs, hence if for these methods F0 is derived for each region
for calculation of epoch locations then identified epoch locations might be more accurate. With this
motivation to improve the performance, application of region-based processing as a pre-processing step
on the state-of-the-art epoch extraction method was proposed for voice disorder scenarios. Results of
this study showed that performance was improved for voice disorder scenarios with the application of
region-based processing to state-of-the-art epoch extraction techniques which might be due to local F0
being used to estimate the epoch locations as compared to average F0 used in the state-of-the art epoch
extraction algorithms. Moreover, to improve the performance of the voice disorder detection and identi-
fication system, the system was built using the features extracted by applying the region-wise processing
to the state-of-the-art epoch extraction algorithm. From this study it was found that performance is im-
proved as compared to the baseline features leading to the conclusion that the accurate identification of
epoch locations plays an important role in case of voice disorder detection and identification.

Previous studies have revealed that features obtained from the excitation source signal can effec-
tively distinguish between various categories of voice disorders. However, their effectiveness relies on
the precise estimation of fundamental frequency and accurate epoch location. Detecting the pitch con-
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tour is more straightforward in mild dysphonic voices compared to severely affected ones. Additionally,
it has been observed that careful consideration should be given to the type of signal, gender, and funda-
mental frequency when calculating these features. Hence the following study in this thesis focused on
the supra-segmental analysis (speech analysis with a frame size greater than 100 ms) of speech signal
instead of short-term analysis (frame size of 20 ms) used in the previous study. Voice disorders affect
the pitch, loudness, and voice quality, which are perceived at the supra-segmental level in the speech
signal. To capture the voice quality feature, we explored the effectiveness of long term average spec-
trum (LTAS) features. For the detection and identification of voice disorders, this study explores the
effectiveness of LTAS features using auditory filter banks like gammatone and Constant-Q. The perfor-
mance of the system is also compared with LTAS features derived from critical band filter bank and
single frequency filter (SFF) based filter bank. From the results it was observed that performance of
the detection and identification system is improved using the gammatone and constant-Q based LTAS
features as compared to the baseline features. The reason for improvement might be due to auditory
filter banks which were designed to mimic the human auditory system. Compared to our previous study,
significant improvement of performance for all the experiments was observed which might be due to the
reason that long term features can capture the voice disorders information in a better way as compared
to the features extracted using short-term analysis methods.

The previous study concluded the importance of spectral-temporal domain analysis for the voice
disorder detection and identification system. Stockwell-Transform (S-Transform) is a time-frequency
analysis method which provides better time-frequency localization as compared to other representations
like short-time Fourier transform (STFT), wavelet-transform, etc. Therefore, S-Transform was explored
for the classification of voice disorders from a clinical perspective. We proposed cepstral features de-
rived from S-Transform for building the detection and identification system for assessing voice disor-
ders. Additionally, we demonstrated the effectiveness of using the S-Transform method for capturing the
acoustic characteristics of various voice qualities. As compared to baseline features, proposed features
performed best in terms of classification accuracy for voice disorder detection task. Also, the proposed
features performed better in case of identification tasks. Further, the experimental results reveal that
the combination of cepstral coefficients derived from S-Transform with baseline features improved the
performance of proposed systems by 8% and 4% for detection and identification task, respectively.

Keywords: Clinical perspective, Voice disorders, Detection and identification of voice disorders,
Excitation source features, Region-wise processing, Supra-segmental analysis, Long term average spec-
trum, Time-frequency analysis, Stockwell-Transform.
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Chapter 1

Introduction

Speech is a natural way of communication used by human beings. It contains linguistic information

like message and paralinguistic information like feelings, speaker's health, and speaker traits like gender,

age, and personality. Speech production is a complex process. It requires coordination and control of

�ve sub-systems: respiratory, laryngeal, articulatory, resonatory, and nervous systems [1, 2, 3, 4, 5].

Proper functioning of these sub-systems results in healthy speech. Abnormality in any of the sub-

systems, results in disordered speech. Different categories of speech disorders include articulation,

phonological, resonance, �uency, and voice disorders. Voice disorders are relevant to the interests of

this thesis. Some professions, such as teachers, class instructors, factory workers, singers, have an

excessive demand to use their voice, which can lead to degradation in voice quality. These professions

are at high risk of developing voice disorders [6]. According to the National Institute on Deafness and

Other Communication Disorders (NIDCD), approximately 7.5 million people in the United State (US)

are suffering from voice disorder problems [7].

Voice disorders are caused due to abnormality in the laryngeal sub-system impacting the individual's

ability to speak normally [8, 9]. The most common voice disorders include laryngitis, cyst, polyp, vocal

cord paralysis, and recurrent laryngeal nerve palsy. The signs and symptoms of voice disorder may

include: abnormal pitch (too high pitch, too low pitch, pitch breaks), reduction in loudness, degradation

of individual's voice quality (breathy, rough, and strained voice quality), loss of voice [1, 10, 11] and

so on. These problems arise when the vocal folds do not vibrate normally due to structural or func-

tional abnormalities. Speech language pathologists (SLPs) diagnose voice disorders by conducting a

comprehensive evaluation of an individual's voice, which includes assessing various aspects such as

the pronunciation of constant and varying pitch vowels, sentences, breathing, vocal cord movement,

and overall vocal quality. Voice disorder assessment methods can be broadly categorized as invasive or

non-invasive. Invasive methods involve using a laryngoscope to examine the movements of the vocal

cords for detecting the underlying cause of voice disorder but they are painful and costly. On the other

hand, non-invasive methods that utilize acoustic information have gained signi�cant attention. These

approaches employ perceptual and objective assessment approaches to identify voice disorders. Al-

though perceptual assessment ( which relies on listening the subject) is considered a reliable measure
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for the assessment of voice disorder, it is subjective. Objective assessment methods ( which rely on

analysing acoustic features) are effective, and require less time. Moreover, the acoustic features used in

these methods are highly correlated to perceptual measures, so these methods are most widely explored

for voice disorder detection [12, 13, 14]. These methods are used as viable techniques, as they have po-

tential to provide relevant and perceptually correlated information about pathological speech [15]. From

a clinical perspective, they can be used as an early diagnosis tool to detect the presence of pathology.

In literature, objective assessment methods have explored different machine learning algorithms and

various signal processing techniques for voice disorder detection from speech. Due to advancements

in deep learning, researchers have explored different architectures such as convolution neural networks

(CNNs) [16, 17, 18], multi-layer perceptron (MLP) [19], long short-term memory (LSTM) [20, 21] for

automatic voice disorder detection. In [22], combination of CNN with LSTM and MLP was explored

for the detection of voice disorders. From various studies it can be understood that deep learning ar-

chitectures require a huge amount of data for training the network. Hence, deep learning methods may

not be suitable for developing pathological speech processing applications where the amount of data is

small [23]. Therefore, various objective assessment methods use classical machine learning algorithms

and they have been exploring different signal processing techniques to get the best feature representation

for detecting voice disorders.

From an auditory-perceptual perspective, jitter and shimmer contribute to a rough perceptual effect

(namely harshness); hence these perturbation measures were used in the literature to detect voice disor-

ders [24, 25]. Jitter and shimmer model variation in the period and amplitude between the consecutive

glottal cycle, respectively. Uncontrolled or irregular movement of vocal folds leads to a higher value

of jitter and shimmer. Perceptual correlated information associated with jitter is roughness [26] while

with shimmer it is breathiness. Different variations of jitter [27, 28, 29] and shimmer [26, 30, 31, 32]

were used in the literature for automatic detection of voice disorders. Other popular measures to detect

the presence of voice disorders are harmonic to noise ratio (HNR) [33, 34, 35, 36], signal to noise ra-

tio (SNR) [37, 38], and glottal to noise excitation (GNE) [12, 39]. The physiological process of vocal

fold vibration is represented by the glottal volume velocity (GVV) signal. Irregular vocal fold vibra-

tions cause variation in the shape of the GVV signal. This time domain change in the GVV signal

is also re�ected in the frequency domain. Features like open quotient (OQ), closing quotient (ClQ),

speed quotient (SQ), and Quasi-open quotient (QoQ) were the most widely used time duration ratios

explored in the literature to detect the presence of voice disorders [40, 41]. Frequency-domain fea-

tures like the difference between �rst and second harmonics (H1-H2) and harmonic richness factor

(HRF) and parabolic spectral parameter (PSP) derived from GVV signal, were also used in the literature

to discriminate voice disorders [40, 41]. In [42], different glottal signal parameters were explored to

detect the vocal fold pathologies, namely nodules and unilateral paralysis. Cepstral peak prominence

(CPP) [43, 44, 45, 46, 47, 48] was also used as a reliable measure for differentiating the disordered voice

from the healthy voice. Even though most voice disorders affect the functioning and structure of the lar-

ynx, vocal tract features were also explored in the literature for discrimination of voice pathologies. Fea-
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tures that capture vocal tract characteristics like mel frequency cepstral coef�cients (MFCC) [49, 50],

linear prediction cepstral coef�cients (LPCC) [49], perceptual linear prediction coef�cient (PLP) [51],

and constant-Q cepstral coef�cient (CQCC) [52] were also used in voice disorder detection.

In all the above mentioned approaches used in the literature, voice disorder detection was seen as

two class problem which discriminates pathological voice from healthy voice. On the other hand, clini-

cians examine voice disorder in a different way. First, they detect the presence of voice disorder; later,

they perform differential diagnosis to identify the type of voice disorder such as structural, neurogenic,

functional or psychogenic [53]. This thesis focuses on automatic detection and identi�cation method

of voice disorders from a clinical perspective. To achieve this, we employed a multi-level classi�ca-

tion approach that involved four binary classi�ers for assessing voice disorders. The �rst classi�cation

step involved differentiating between healthy voices and voices with disorders. Subsequently, the voice

disorder category was further classi�ed into two classes: organic and non-organic. Organic disorders

were further categorized as either structural or neurogenic, while non-organic disorders were classi�ed

as functional or psychogenic. This multi-level classi�cation approach allowed us to comprehensively

classify voice disorders based on their underlying causes, providing a more in-depth understanding of

the types of disorders.

Voice disorders are often characterized by noticeable �uctuations in both amplitude and frequency

during consecutive opening and closing of the vocal folds. Hence, the features derived from excitation

source evidence like linear prediction (LP) residual [40, 54, 55], zero frequency �lter (ZFF) signal [40,

56, 57, 58, 59], and glottal volume velocity (GVV) [60, 61, 62, 63, 64] are used in the thesis to study

the importance of excitation source signal for different categories of the voice disorders. The accuracy

of features derived from excitation source depends on the glottal closure instants (GCIs), also known

as epoch. Therefore, the performance of the state-of-art epoch extraction methods is compared for

different categories of the voice disorders. Region-based processing was applied to state-of-the-art

epoch extraction methods to improve their performance in voice disorder scenario. Voice disorders

affect the pitch, loudness, and voice quality, which are perceived at the suprasegmental level in the

speech signal [1]. In this regard, to capture the feature related to voice disorders, long-term average

spectrum (LTAS)-based features were also explored in this thesis for the detection and identi�cation of

voice disorders.

The presence of voice disorders can lead to a degradation in the acoustic characteristics of affected

individuals, which can be observed as variations in the spectro-temporal domain. In the literature,

various time-frequency representation methods were investigated for automatic detection of voice dis-

orders. Stockwell-Transform (S-Transform) is a time-frequency analysis method which can localize

information in both the time and frequency domains effectively. With this motivation, we investigated

S-Transform for the automatic detection of voice disorders.
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1.1 Objective and scope of the thesis

The primary objective of this thesis is to analyse the importance of acoustic features for the automatic

detection and identi�cation of voice disorder from a clinical perspective. Clinical perspective analysis

may help SLPs to use this acoustic analysis as a pre-diagnosis tool in identifying voice disorders. To

accomplish this analysis, a multi-level classi�cation approach is used in which four binary classi�ers

were trained on the acoustic features. Pitch, loudness [10, 15, 65], and voice quality [11, 15] are some

of the main acoustic characteristics affecting subjects suffering from voice disorders. Hence, the feature

which captures these dimensions are explored in this thesis. The scope of the thesis is summarized as

follows:

� Voice disorders tend to change the phonation (vocal fold vibration) characteristic, which in turn

can be effectively captured by excitation source signal. Hence, thesis explores features derived

from the excitation source evidences like ZFF, GVV derived from quasi closed phase (QCP)

analysis method, and LP residual signal derived from LP analysis method for detection and iden-

ti�cation of voice disorders.

� Features derived from the excitation source depends on accurate detection of epoch location,

hence, the performance of state-of-the-art epoch extraction methods was compared for voice dis-

orders scenario. Moreover to improve the performance, region-wise processing was applied to

the state-of-the-art epoch extraction for voice disorder scenario.

� The perceptual methods were considered as golden standard in identifying the voice pathology.

The voice quality like breathiness, roughness, loudness, and intonation from the speech signal are

perceived in the long term [66]. Hence these features can be captured by LTAS. To capture the

voice quality feature, we explored the effectiveness of LTAS features using four state-of-the-art

�lter banks designed with critical-band [67, 68], constant-Q, gammatone, and single-frequency

�ltering (SFF) [69] approaches for detection and identi�cation of voice disorder.

� Individuals with voice disorders experience degradation in their acoustic characteristics, such as

pitch, voice quality, and loudness, in comparison to those with healthy voices. These alterations in

acoustic features manifest as variations in the spectro-temporal domain. In order to capture these

characteristic S-Transform based cepstral features were also explored for detection and identi�-

cation of voice disorder.

In nutshell, the main contribution of this thesis is analysis and detection of voice disorders from clin-

ical perspective which in turn helps in knowing the category of voice disorders. Hierarchical approach

was used in order to build the voice disorder system for detection and identi�cation. Various acoustic

features like excitation source, and long term average spectrum features from the speech signals are

explored to perform the experiments. We also proposed extraction of cepstral features derived from

S-Transform for performing the voice disorder detection and identi�cation task.
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1.2 Organisation of the thesis

The thesis is organised as follows:

� Chapter 2 presents the overview of voice disorder, and its different assessment methods. It also

gives an overview of the speech signal processing methods used in the literature used for automatic

detection of voice disorder.

� Chapter 3 explored the different features derived from excitation source signals for developing

the automatic system for detecting voice disorders. Additionally, the chapter also investigated the

identi�cation of voice disorder in clinical way using the various excitation source based features.

� Chapter 4 explored the application of region-based processing for state-of-the-art epoch extraction

method for performing the detection and identi�cation of voice disorders.

� Chapter 5 presents the LTAS features derived from the auditory �lter banks like gammatone and

constant-Q for automatic detection of voice disorders in clinical way.

� Chapter 6 proposed the features derived from the S-Transform for building the system for au-

tomatic detection and identi�cation of voice disorders. Different variants of S-Transform are

explored for analysing voice qualities (such as breathiness, harshness, creakiness etc.) associated

with voice disorders.
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Chapter 2

Background and literature review

Speech production requires air�ow from the lungs to be phonated through vocal folds of the larynx

and resonated in the vocal cavities shaped by the tongue, jaw, soft palate, lips, and other articulators.

Phonation is a process by which the vocal folds produce sounds through quasi-periodic vibration, also

known as voicing. Any abnormality in the larynx that affects voicing in speech production is referred to

as voice disorder. From an auditory-perceptual point of view, voice disorders affect voice quality, pitch,

and loudness [11]. This chapter covers the review of speech production mechanisms and an overview

of existing literature related to automatic detection of voice disorders.

The rest of the chapter is organized as follows. Section 2.1 brie�y discusses the speech production

mechanism. Section 2.2 describes the phonation process and various types of phonation. Section 2.3

gives the basic de�nition of speech disorder. Voice disorders and their classi�cation based on etiology

are described in section 2.4. Various methods used to assess voice disorder are explained in section 2.5.

Section 2.6 discusses the signi�cant gaps identi�ed from the literature. Section 2.7 brie�y discusses the

existing database for performing voice disorder detection. The conclusion and summary of the chapter

are presented in section 2.8.

2.1 Anatomy and physiology of speech production

Speech production is a complex process and involves the control and coordination of many sub-

systems. From the physiological point of view, the speech production system is subdivided into three

main systems: subglottal, glottal (larynx), and supralaryngeal system [70, 71] as illustrated in Figure 2.1.

Speech is produced when air is exhaled out from the lungs via the trachea. The subglottal system

provides air�ow to the glottal system. The larynx modulates air�ow from the lungs and provides either

quasi-periodic or noisy pulses to the supra-laryngeal system. The supralaryngeal system consists of the

pharynx, oral and nasal cavities, and further shapes (or �lters) the spectrum of the air�ow. The resulting

signal is radiated by the lips.
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Figure 2.1: Speech production system. (After Lieberman 1992, [134].)

2.1.1 Subglottal system

Subglottal systemconsists of lungs, ribcage, chest muscles, diaphragm, and trachea. Lungs act as

a power supply and its main function is to facilitate the respiration process [70]. Respiration cycle

includes one inspiration and one expiration. Adults typically complete 12 to 18 respiration cycles per

minute during normal breathing. During these cycles, inspiration takes up about 40%, while expiration

takes up 60% of the respiration cycle. However, during speaking, the proportions are different, with

inspiration taking up only 10% and expiration taking up 90% of the respiratory cycle. When speaking,

the lungs are �lled to approximately 48% of their vital capacity (VC) and a breath is taken when they

reach a level just below the resting lung volume, at around 35% of VC. The loudness and pitch of sound

can be varied by changing the glottal air�ow and lung pressure (subglottal pressure).

2.1.2 Larynx

The larynx, commonly known as the voice box situated at the top of the trachea and below the

pharynx. It is made up of cartilage, ligaments, and muscles. The vocal folds are located at the top of the

larynx and have a V-shape appearance when viewed from the top. The front and side part of the vocal

folds is attached to the stationary thyroid cartilage. Hence front part of the vocal folds can not move.

Vocal folds are free to move at the the back and sides of the larynx, connected to arytenoid and cricoid

cartilages. The area between the two vocal folds is called the glottis [70, 72]. The recurrent laryngeal

nerve and the superior laryngeal nerve perform the muscle control of the larynx. The larynx has three

main functions: protection, respiration, and speech production. Epiglottis is located at the root of the

tongue and provides the protection to the trachea against unwanted substances.

Proper laryngeal adjustments, such as longitudinal tension, adduction/abduction tension, and medial

compression [73] (as shown in Figure 2.2 (b)), can control the movement of the vocal folds which in turn
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impact the pitch of our voice. These tensions also determine the state of the vocal folds (phonation type).

In speech production, vocal folds can be either in two states: voiced and unvoiced. In the voiced state,

vocal folds are tensed, which causes self-sustained oscillation of vocal folds [70]. In unvoiced state,

vocal folds are relaxed, which allows the air�ow to continue through the vocal tract until it is blocked

by articulators of the vocal tract. Fig 2.2 (a) and (b) shows the top view of the larynx and laryngeal

adjustments for producing the different phonation, respectively. Adductive tension is responsible for

bringing the arytenoid cartilages together. For certain sounds, such as the glottal stop, a high degree

of adductive tension is necessary to fully close the vocal folds and create a complete obstruction of

air�ow. On the other hand, for voiced sounds, a lower value of adductive tension is required to allow the

vocal folds to vibrate freely and produce sound. Medial compression controls the closing and opening

of the glottis. Longitudinal tension is important in regulating the tension along the length of the vocal

folds. By adjusting this tension, the pitch of speech sounds can be varied. A larger value of this tension

lengthened the vocal folds, which in turn resulted in a higher frequency of vibration.

(a) Top view of the Larynx [70]. (b) Laryngeal adjustments for phonation [70].

Figure 2.2: Larynx.

2.1.3 Supralarangeal system

The supralarangeal system is comprised of the pharynx, oral, and nasal cavities.The air�ow that

comes from the larynx is further modi�ed by the vocal tract system to produce different speech sounds.

Different sounds can be produced by altering the vocal tract's length and shape through articulators'

movement. Articulators such as the tongue, lips, jaw, and soft palate are movable, while the alveolar

ridge, hard palate, and teeth are �xed. The average length of the vocal tract for adult males and females

is 17 cm and 15 cm, respectively.

2.2 Phonation

Phonation refers to the state of the vocal folds [74]. In general, two states of vocal folds are possible:

relaxed and tensed vocal folds. In the relaxed state, vocal folds are far apart to vibrate but close enough to
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cause turbulence of air�ow, resulting in an unvoiced phonation. In the tensed state, arytenoid cartilages

move towards one another, partially closing the vocal folds. This partial closing of the glottis and

increased vocal fold tensions result in the oscillation of vocal folds. The oscillatory vocal folds convert

the expiratory air�ow into intermittent air�ow pulses which result in a buzzing sound or voice phonation.

The complete process of vocal fold vibration can be described as follows. At the starting phase of the

phonation cycle, vocal folds are closed (Figure 2.3A). During exhalation, air comes out of the lungs,

increasing pressure in the sub-glottal system (system below the glottis). When this pressure is stronger

than the muscle tension of vocal folds, it causes the lower part to open, followed by the upper part

(Figure 2.3 B-D). Once the vocal folds are opened completely (Figure 2.3 E), the air will pass from the

sub-glottal system to the glottal system [71]. From Bernoulli's principle, it can be inferred that as the

speed of the air increases, the pressure in the glottis decreases. This decrease in pressure causes the

vocal folds to come together again (Figure 2.3 F-G), which occurs in a single glottal cycle. The rate

of vibration of the vocal folds is referred to as the fundamental frequency (F0). When the vocal folds

come together, it is called adduction, whereas if they are apart from each other, this is called abduction.

Phonations such as modal, creaky, breathy, harsh, and falsetto are voiced phonations, while whisper is

an unvoiced or voiceless phonation [75].

2.2.1 Modal phonation

Modal phonation is a neutral mode of phonation in which vocal folds vibrate normally with the

vocal folds fully adducted such that there is no air leakage through the glottis during the closed phase

of the glottal cycle. Vocal folds have moderate longitudinal tension, medial compression, and adductive

tension, producing quasi-periodic vibrations [76]. It is used as reference phonation to compare all other

phonations.

2.2.2 Creaky phonation

In creaky phonation, vocal folds are adducted with weak longitudinal tension which causes the thick-

ening of the vocal fold. Additionally, the inferior surfaces of the false folds may sometimes come in

contact with the superior surfaces of the true vocal folds creating an unusually thick and slack structure

before the initiation of phonation. These laryngeal settings result in heavy vibrating mass which in turn

causes vocal folds to vibrate at very low frequency with low air�ow rate [74, 77]. Creaky phonation is

characterized by low and irregular F0, weak or damped pulses, and alternating longer and shorter pulses

(period-doubled vibration).

2.2.3 Breathy phonation

Breathy phonation is produced due to incomplete closure of vocal folds, which causes constant

leakage of air through the glottis. Vocal folds will vibrate, but will not be able to make good contact
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Figure 2.3: One complete cycle of vocal fold vibrations. A: Air�ow moves toward the adducted vocal
folds. B and C: Once subglottal pressure exceeds the tension between the vocal folds, maintaining them
in adduction, the lower part of the vibrating vocal folds starts opening. D and E: The air pressure moves
towards the upper part of the vocal folds. F and G: The increased velocity of air�ow results in decreased
air pressure due to Bernoulli's effect, causing vocal folds to come back to its original place. Source:
From Seikel/Drumright/King. Anatomy & Physiology for Speech, Language, and Hearing, 5th Ed [71].
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which results in turbulence noise or friction noise. Air will be leaked throughout the glottal cycle [78].

The breathy phonation is described by low muscle tension, medium longitudinal tension, and weak

medial compression, which results in minimum adduction of vocal folds [65, 74]. It is characterized by

increased spectral noise, especially at high frequency, which is due to constant leakage of air through

the glottis.

2.2.4 Harsh phonation

Harsh phonation is also known as pressed or tense voice. It is described as a rasp or unpleasant

sound associated with excessive approximation of the vocal folds. High medial compression and strong

adductive tension along with increased tension in laryngeal and pharyngeal parts of vocal tract results in

excessive approximation (over adduction) of vocal folds [78]. Acoustic characteristics associated with

harsh phonation are low pitch and an increase in the overall intensity of sound.

2.2.5 Falsetto phonation

Falsetto phonation is described as having high longitudinal tension, along with strong adductive

tension and medial compression. The vertical cross-section of the edges of the vocal folds is relatively

thin due to the longitudinal stretch of vocal folds, resulting in a small vibrating mass. Hence, the

frequency of vibration of vocal folds is very high, and the intensity of sound is low [74]. Compared to

modal phonation, sub-glottal air pressure is small, due to which glottis remains slightly apart. Frictional

noises sometimes accompany falsetto phonation.

2.2.6 Whisper phonation

Whisper phonation is produced due to low adductive tension, moderately high longitudinal tension

with moderate compression of vocal folds [79]. This is unvoiced phonation in which vocal folds do not

vibrate due to insuf�cient vocal fold adduction. Rigid vocal folds prevent the vibration.

2.3 Speech disorders

Speech disorders affect the the individual's ability to talk [80]. A subject suffering from speech dis-

orders will not be able to articulate the words properly, which in turn affects their ability to communicate

effectively [81]. Some speech disorders are due to physical abnormality, while others might be due to

neurological problems. The most common categories of speech disorders are articulation, �uency, and

voice disorders.

� An articulation disorder is a type of speech disorder where an individual has dif�culty in artic-

ulating some speech sounds. Sounds may be distorted, omitted or substituted by another sound.
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These dif�culties can be caused by a variety of factors, such as learning dif�culties, neurological

issues (like dysarthria or apraxia), or structural abnormalities (like cleft lip and palate).

� Fluency disorders refers to a type of speech disorder characterized by disruptions in the smooth

�ow of speech. An individual suffering from �uency disorder may hesitate, repeat, or prolong

sounds, words or phrases. Stuttering and cluttering are two common �uency disorders.

� Voice disorders occur due to anatomic or functional abnormality of the larynx which in turn affects

the vocal fold vibrations. As a consequence, the sound produced by the larynx can vary in pitch,

quality, or intensity.

Voice disorders are relevant to the interests of this thesis and will be discussed in more detail in the

next section.

2.4 Voice disorders

Any abnormality in the larynx that affects voicing in speech production is referred to as a voice

disorder. It may occur due to a poor respiratory system, incomplete glottal closure, growth of an extra

lesion on the vocal fold, irregularity in the vibration of the vocal fold, or muscle weakness. These factors

change regular quasi-periodic vibration into irregular and aperiodic vibration. The typical symptoms of

a voice disorder include degradation of an individual's voice quality, reduction in loudness, loss of

voice, and more effort in speaking or singing. From an auditory-perceptual point of view, the following

acoustic dimensions are altered for subjects suffering from voice disorder:

Fundamental frequency: Fundamental frequency is a function of mass, elasticity, length of vocal

folds, and sub-glottal pressure [1]. Voice disorders are due to extra growth on the vocal folds, insuf-

�cient tension, and improper coordination of laryngeal muscles, which results in irregular vocal fold

vibrations and hence changes the fundamental frequency (F0) of vocal fold vibrations. If F0 increase is

inappropriate to age and gender, it might cause the voice to sound shrilly, whereas a decrease in the F0

value might cause the voice to sound harsh or rough [15].

Voice quality: Voice disorders result in degradation of voice quality. The speech associated with

voice disorders is identi�ed as hoarse. For one of the categories of voice disorder (spasmodic dyspho-

nia), the voice may sound strained as spasms cause the movement of the vocal folds to be a little dif�cult.

For another category, vocal cord paralysis, the voice sounds breathy as the paralyzed vocal fold will not

be able to move, which results in constant leakage of air during speech production.

Loudness: Loudness was found to have a high correlation with sound pressure level and sub-glottal

pressure level; higher values of these parameters are associated with a loud voice. A subject suffering

from voice disorder may not be able to produce a loud voice due to insuf�cient value of this pressure.

Some of the voice disorders like vocal cord polyps, cysts, and nodules are characterized by a higher

degree of loudness when compared to others like vocal fold bowing, presbyopia, and vocal fold atro-

phy [82].
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2.4.1 Classi�cation of voice disorders based on the etiology

Based on the etiology [53], voice disorders can be broadly classi�ed into organic and non-organic

voice disorders. Figure 2.4 shows the classi�cation of voice disorders.

Figure 2.4: Classi�cation of Voice disorders [53].

1. Organic Voice Disorders (OVD) are physiological voice disorders due to anatomic abnormalities

in the larynx or muscle strain, which result in incomplete glottal closure. Patients suffering from

OVD will not be able to produce normal phonation, which might be due to the presence of extra

mass on the vocal folds or insuf�cient tension in the muscles controlling the larynx [83]. The

onset of this pathology may be sudden or gradual. OVD, in a broad sense, can be categorized into

two sub-types: structural and neurogenic.

(a) Structural voice disorder (SD) is due to abnormal or extra growth on vocal folds, which

cause irregular glottal open and close phases. Vocal cord polyps, nodules, leukoplakia,

and laryngitis, are some of the structural voice disorders. Excessive use of voice, singing,

yelling, and shouting may lead to swelling on the vocal cords. With time, swelling becomes

hard, like callous at the middle part of the vocal folds, which results in a vocal cord nodule.

Vocal cord polyps look like blisters or long growths or bumps on either vocal folds. Polyps

are usually bigger than nodules as they have more blood vessels. Like nodules vocal card

polyps are also due to loud singing, shouting, or smoking. Overuse of the larynx, infection

or allergies in the larynx, or too much alcohol drinking results in in�amed vocal folds. The

in�ammation of vocal folds leads to laryngitis. Leukoplakia of the larynx is a voice disorder

due to the presence of plaque-like cells on mucous membranes of the larynx which is mainly

due to excess smoking. Leukoplakia is a Greek word which means white plaque. Figure 2.5

shows healthy vocal folds along with vocal folds suffering from structural voice disorders.

(b) Neurogenic voice disorder (NVD) is caused by a problem in the central or peripheral nervous

system that can weaken the muscle of the larynx . It affects the functioning of the phonation.

Spasmodic dysphonia and recurrent laryngeal nerve palsy (RLNP) are the main common

disorders that fall into the category of neurogenic voice disorders. Spasmodic dysphonia is
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Figure 2.5: Top view of healthy vocal folds and vocal folds suffering with structural voice disorders
[53].

also known as laryngeal dystonia [8]. Dystonia is a neurological disorder in which sudden,

involuntary movements (spasms) occur in body parts. Dystonia can affect many parts of

the body. If dystonia affects the voice box, it is called spasmodic dysphonia. One of the

important characteristics of spasmodic dysphonia is voice break during speech [84]. The

recurrent laryngeal nerves (RLNs) are responsible for the adduction and abduction of the

vocal folds, as well as adjustment of the tension of the vocal fold. RLNP is a paralysis of

the RLN on either one side or on both sides of the vocal folds. If there is no movement,

it is known as paralysis, and if movement slows down, it is called paresis. The resulting

effect of RLNP is that the vocal folds do not move close to each other, and the voice may

sound breathy and rough. Figure 2.6 shows the top view of the vocal cord with and without

paralysis during respiration and phonation.

2. Non-organic voice disorders are caused by ineffective use of the vocal mechanism or poor muscle

control in subjects with normal physical structure. The phonation, in this case, is characterised

by excessive laryngeal activity, excessive tension, and reduced vocal capacity [8]. It is broadly

categorised into functional voice disorder and psychogenic voice disorder.

(a) Functional voice disorders (FVD) are also known by another name as muscle tension voice

disorders (MTVD). FVD is due to improper coordination of the laryngeal muscle and breath-

ing pattern [85]. It is characterized by excessive force, tension or laryngeal muscle activity

which is due to high vocal demand [86]. It is more common at the age of 40 to 50 years,

and women have more chances of getting FVD than men [86].

(b) Psychogenic voice disorder (PVD) occurs due to emotional stress or psychogenic trauma

in the absence of organic pathology [86]. Subjects suffering from PVD will lose control
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Figure 2.6: Top view of vocal folds during the respiration and phonation without paralysis, with unilat-
eral and bilateral paralysis [70].

over the initiation and maintenance of phonation during speech production due to disturbed

psychological processes like anxiety, depression, conversion reaction, or personality disor-

der. These are more common in women than men, with approximately in the ratio of 8:1.

Psychogenic aphonia, puberphonia, and psychogenic spasmodic dysphonia are some of the

disorders that fall into the PVD category [87].

2.5 Assessment of voice disorders

The assessment of voice disorders involves an examination of the patient to detect the presence

of voice disorders, identify their underlying cause, and determine their severity. Assessment of voice

disorders is crucial to avoid any further repercussions and to provide the subject with an opportunity to

live a life of better quality. Voice disorders can be diagnosed by an SLP or an otolaryngologist (ear, nose,

and throat doctor) through various methods. The methods used to assess voice disorders can be grouped

into four categories: aerodynamic measurement, perceptual, visual imaging, and acoustic methods.

2.5.1 Aerodynamic measurement

The most widely used theory that describes the phonation or vocal fold vibration process is myoelastic-

aerodynamic theory [11, 88]. In terms myoelastic-aerodynamic the word myo means muscles, which

are used to denote that vocal folds are made up of muscles; elastic means vocal folds are associated

with elasticity property, and aerodynamic refers to air �ow and air pressure. According to this theory,

the aerodynamic and muscular in�uences set the vocal folds into the vibration. Aerodynamic measure-

ment helps the SLPs to evaluate the respiration function, laryngeal function, and coordination between

them. To differentiate voice disorder from healthy voice, aerodynamics measurements like sub-glottal
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air pressure, air �ow rate, and laryngeal airway resistance were used, which involves measurement of

air �ows and air pressure [89]. Table 2.1 shows the aerodynamic measure and corresponding perceptual

correlate used for the assessment of voice disorder.

Table 2.1: Perceptual correlates of aerodynamic measures [89].

Measures Perceptual correlate
Sub-glottal air pressure Phonetory effort

Phonation threshold pressure Effort to initiate phonation
Air�ow Breathiness

Laryngeal airway resistance Phonatory effort, vocal strength, strain
Velopharyngeal measures Nasal emission, strength of pressure consonants

� Subglottal air pressure is de�ned as the pressure created below the glottis or pressure generated

by lungs [8]. It is a very important parameter in phonation. To produce speech, when vocal folds

are brought together, enough pressure must be built up below the glottis to initiate the phonation.

Subglottal pressure will be different for different pathologies. For example, a person having

polyp, laryngeal cancer or nodule will have large subglottal pressure as compared to a person

having vocal fold ulcer. Phonation threshold pressure (PTP) is de�ned as the minimum value of

subglottal air pressure required for vocal fold vibration. Organic voice disorders and adductor

spasmodic dysphonia will have larger value of PTP when compared to the healthy speaker [90].

� Mean �ow rate (MFR) is de�ned as the average volume of air passing through the glottis over a

speci�ed time. It is measured in mL per second. An increase in the value of MFR is observed in

organic voice disorder due to incomplete glottal closure [91].

� Laryngeal airway resistance (LR) is a ratio of subglottal pressure to the glottal air�ow. It indicates

laryngeal constriction [9]. It is also used to differentiate voice quality. Depending on the type of

phonation, the laryngeal resistance (LR) may be high or low. For breathy phonation, LR is small,

but for pressed phonation, it is large compared to normal phonation. [92]. As voice disorders

affect voice quality, LR was used as a reliable measure [93] for assessing voice disorder.

2.5.2 Perceptual methods

Perceptual methods are considered as “gold standard” for the assessment of voice disorder. SLPs use

some perceptual scales to evaluate voice quality, while the patient uses others for rating their own voice

quality [9]. This method depends on the auditory perceptual attribute of the speech and is used as the

main part of routine clinical assessment for assessing the voice quality [94, 95]. These methods were

widely used as an early diagnosis tool to judge the severity. It is generally in�uenced by personal and

professional experience, cultural differences, relationships with patients, and the type of scale used for
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assessing voice disorders. Due to subjectivity in nature, these scales have some limitations, but they are

still the most widely used methods as they are designed based on perceptual phenomenon [96].

1. Clinical-based scales: These scales are used by SLPs to assess the voice by listening to the pa-

tients. These are used because voice has greater intuitive meaning than the instrumental meth-

ods [96]. The main voice quality associated with voice disorder is “roughness”, “breathiness” and

“strained voice”. Hence, the scales used by SLPs are designed to assess these voice quality. The

most frequently used and accepted scales for perceptual evaluation are GRBAS and CAPE-V.

� GRBAS scale is the most common scale used by SLPs to rate the severity of voice disorder

developed by Japan Society of Speech Therapy for perceptual measurement of voice [9]. It

is a 4-point scale, in which G indicates a grade of hoarseness or overall severity, other 4

represents overall voice quality. R indicates roughness, B for breathiness, A for asthenia,

and S indicates strain (as shown in Table 2.2). 0 indicates the absence of disorder, 1 indicates

mild de�cit, 2 indicates moderate de�cit, and 3 indicates a severe de�cit [97]. Roughness

indicates irregularity in vocal fold vibrations and is present mainly in disorders such as

vocal cord polyps, polypoid vocal cords, and laryngeal cancer. Breathiness is perceived as

air leakage through the glottis and is present mainly in voice disorders such as recurrent

laryngeal nerve paralysis, nodules, and laryngeal cancer [98]. Asthenic indicates the degree

of weakness and can be heard mainly in psychosomatic aphonia. A strained voice indicates

an effortful voice and is present mainly in spasmodic dysphonia and laryngeal cancer.

Table 2.2: Auditory-Perceptual Evaluation [9].

Parameter Description
G-Grade Degree of hoarseness of the voice

R-Roughness Impression of regularity of the vibration of the vocal folds
B-Breathiness Degree to which air escaping from the vocal folds
A-Asthenia Degree of weakness heard in the voice

S-Strain Degree to which strain or hyperfunction use of phonation is heard

� Consensus Auditory-Perceptual Evaluation-Voice (CAPE-V) is an analog scale used by

SLPs to rate the patient's voice quality [99]. It was developed by the American Speech-

Language-Hearing Association's (ASHA's) Special Interest Division 3 for voice and voice

disorders after 2002. SLPs use a CAPE-V form to rate a voice disorder patient using six

parameters, including overall severity, roughness, breathiness, strain, pitch, and loudness.

Additional parameters are used using a 100-mm visual analogue. scale [9].

2. Patient's scale: Depending on the profession and daily requirements of voice, individuals have

different satisfaction levels with their voice quality. Hence, to evaluate the voice from an individ-

ual's perspective, a patient's scale was designed. Patient scales are very important in measuring
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patients' general health and quality of life, knowing the onset of problems and their profession so

that SLPs can plan their treatment accordingly. These scales provide novel information and are

used as an initial step for diagnosing voice disorders. Based on these scales, SLPs can discuss the

problem in more detail. Different scales were designed to assess the voice in different aspects.

The most widely used scales are Voice Handicap Index (VHI) and Voice-Related Quality of Life

(VRQOL).

� Voice Handicap Index (VHI), developed by Jacobson [100], is most widely used for provid-

ing details about subject's voice quality. It is used by SLPs to understand the social, function

or environmental disturbances caused due to voice impairment. This self-questionnaire form

to be �lled by the patient or sometimes by care taker. It has three parts: functional, physi-

cal and emotional, each with 10 questions. The functional part has questions based on the

disorder's effect on daily activity, the questions in the physical part are related to the sub-

ject's perception of voice quality, emotional part explores the patient's response to the the

disorder [101]. Each question should be given a numeric value between 0 to 4 based on

the frequency of occurrence. In this scale 0 indicates frequency as never, 1 rarely, 2 some-

times, 3 almost always and 4 indicates always. This index is applicable for all types of voice

disorder [102].

� Voice-Related Quality of Life (VRQOL) is a 10-item self-administered instrument or scale

designed to help SLPs. It measures the social-emotional and physical-functional aspects of

voice. It comprises 10 questions to be �lled by patient [103]. These questions are divided

into two parts: physical and social-emotional domains. It is a 5-point rating questionnaire;

a score of “1” indicates normal health, and a score of “5” indicates voice disorder is very

severe.

2.5.3 Visual Imaging methods

The visual imaging method of diagnosing voice disorders utilizes special instrument to understand

the functioning of vocal cord [8, 99]. These methods are used to analyse the structure of vocal folds

the complete functioning of the larynx, and measure vocal fold vibrations. There are many methods

available to examine the larynx visually; the most commonly used methods by SLPs are laryngoscopy,

stroboscopy and their variations [9].

� Mirror laryngoscope: In this method voice box is examined by inserting a mirror into the mouth [104].

The image of the vocal fold can be seen by the tilted mirror. It is the oldest method for examining

the larynx. The examiner will ask to protrude the tongue and then will place a mirror at the poste-

rior oropharynx with gentle pressure at the soft palate. This process of examining the larynx may

require anaesthesia. It is the most accurate method but painful for the patients.
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� Direct laryngoscopy: This method can be used to examine the voice box or larynx by rigid or

�exible endoscope. 70-degree or 90-degree scopes are used to examine voice box [9].

� Flexible endoscope: The most popular method of examining the larynx. The �exible endoscope

examines the larynx during natural functions like singing and speech. An endoscope (thin, �exible

tube) is inserted from one of the nostrils to the throat. The endoscope has an eyepiece and a �bre

optic light inside the tube for examining the voice box and throat. It is important to analyse

organic and neurological voice disorder [8, 99].

� Rigid endoscope: In this method, a rigid endoscope (usually 70 degrees or 90 degrees) is inserted

into the patient's mouth while an Otolaryngologist or SLP holds the tongue. It gives a magni�ed

and clear image of the voice box [9]. It is only suitable for the vowel `ee'. Images are taken using

the camera for analysis purposes. It is not suitable for muscle tension dysphonia and spasmodic

dysphonia.

� Video Stroboscope: The rate of vibration of the vocal folds is very high in general, 100 to 400

vibrations per second; it is dif�cult to capture this vibration by the human eye. Hence, a special

light known as strobe light is used. It �ashes the light synchronising with the fundamental fre-

quency of vocal fold vibrations. It provides an optical illusion of image [105]. Video stroboscope

consists of a stroboscope with a �exible or rigid laryngoscope to analyse vocal fold vibrations. A

stroboscope is an instrument that uses a pulse of light with frequency such that moving objects

appear to be slow. Hence, by using the light at regular intervals, the shape, vibration, and move-

ment of the vocal cords can be observed. As the shape of vocal folds can be easily observed, this

method is useful for examining the stiffness of vocal folds and voice disorders related to structure

abnormalities [99].

2.5.4 Objective assessment methods

Objective assessment methods rely on the features extracted from the speech signal for the automatic

detection of voice disorders. Voice disorders are due to the asymmetrical distribution of mass, tension,

uncoordinated movement of vocal folds, and insuf�cient sub-glottal pressure, which in turn changes the

aerodynamic and acoustic characteristics of the voice. These methods can analyse the speech signal

and also measure the different characteristics of the speech signal that were found to be perceptually

correlated to voice disorders. Subjective methods (as discussed in the previous section) are in�uenced

by personal and professional experience, cultural differences, and relationships with patients, and they

are also laborious and time-consuming. On the other hand, objective assessment methods are repeat-

able, more effective in time, are economical [106]. Hence, these objective assessment methods are

gaining popularity in the automatic detection of voice disorders from speech. This thesis focuses on the

automatic detection of voice disorders from the speech signal using different acoustic features. In the lit-

erature, various acoustic features extracted from speech signals were explored to detect voice disorders
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automatically. The following section discusses the different acoustic methods and features explored in

the literature for assessing voice disorders.

2.5.4.1 Studies based on the acoustic features

Studies related to perturbation parameters: In the source-�lter theory of speech production, the

source provides the energy for vocal fold vibration, which is then modi�ed by the vocal tract system to

produce speech [3]. The quasi-periodic vibration of the vocal folds results in phonation, which is due

to the adduction and abduction of vocal folds [2]. Voice disorders are characterized by irregularities in

vocal fold vibration, incomplete glottal closure and opening, and variation in the amplitude of consec-

utive opening and closing of the vocal folds. Hence, parameters that capture disturbances in vocal fold

vibrations were used in the literature to distinguish voice disorders from healthy speech [107]. These

parameters were divided into three categories: frequency perturbations, amplitude perturbations, and

spectral noise parameters. The cycle-to-cycle perturbation of the glottal cycle is de�ned as jitter, which

indicates the dysperiodicity of the glottal cycle [26, 30, 108, 109, 110] and disturbances in the amplitude

of the successive laryngeal cycle is called the shimmer [111]. Jitter and shimmer were derived in the

literature on steady vowel [111, 112], and on the running speech as well [108]. For a healthy speaker,

these values are very small due to the acoustic stability of the excitation source signal. In contrast, a

large value of these parameters indicates the presence of vocal fold pathology. Studies have revealed that

jitter models aperiodicity in voice, and the voice quality associated with jitter is roughness [26]. How-

ever, the estimation of jitter requires the exact calculation of the fundamental frequency contour or pitch

period contour. Spectral based method for the calculation of jitter was also explored [108]. Moreover,

variations like absolute jitter(in ms), percentile jitter, pitch perturbation quotient, and jitter based on the

autoregressive model were used in the literature [107]. The shimmer indicates the presence of noise and

breathiness due to lesions on the vocal folds [26]. Similar variations like shimmer in dB, percent shim-

mer, and amplitude perturbation quotients were also used for the calculation of shimmer [30, 31, 32].

In [113] effect of parameters like gender, vowel, SPL, and F0 was studied using ANOVA analysis on

jitter and shimmer. The results of this study concluded that voice intensity has a larger effect on calcu-

lation jitter and shimmer. It was also concluded that the importance of vowel /a/in pathological study

and setting the threshold based on gender would help clinicians in the detection of pathology. In [25]

perturbation parameters (jitter, shimmer, HNR etc) were derived from the zero frequency �ltered (ZFF)

signal for discrimination of pathological voice from healthy voice. Epoch locations were derived from

positive to negative crossings of ZFF signal; from these locations, pitch contour was obtained, which in

turn was used to derive jitter and its variations. The strength of excitation (SoE), indicates the strength of

the glottal signal. It is used to compute the amplitude perturbation parameters. The results of this study

showed that perturbation parameters measured from ZFF signals are better than PRAAT-based pertur-

bation features for both clean and noisy conditions. The increased value of perturbation parameters is

observed for pathological voice compared to healthy voice.
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Studies based on excitation source information: An important feature in the identi�cation of

pathological voice is the degree of vocal fold adduction towards the glottis. Hence, glottal signal param-

eters like open quotient (OQ), speed quotient (SQ), and close quotient (CQ), along with the difference

between �rst and second harmonics (H1-H2) and harmonic richness factor (HRF) were used for detec-

tion of the voice quality. In [42], different glottal signal parameters were explored to detect the vocal

fold pathologies, namely nodules and unilateral paralysis; this study found that glottal signal parameters

discriminate pathologies better than MFCC feature. Glottal source time and frequency domain features

derived from the quasi-closed phase (QCP) method in [40] were used to detect voice disorder. Along

with this, glottal source feature derived from speech signals and features were also derived from ZFF

method (like SoE, energy of excitation (EoE), loudness, and ZFF signal energy) were used to extract

the excitation source information of speech signals. In [114] explored power spectral density (PSD)

derived from the glottal source waveform was used as a bio-metrical signature for pathological voice.

In the study [115] pitch strength were investigated as a good measure for classifying the dysphonic

voices before and after surgical/behavioral treatment. The author in the study [116] explored the fea-

ture derived from the interlaced derivative pattern of glottal source waveform as a promising indicator

for pathology detection. In [117] residual signal obtained from inverse �ltering analysis is used as an

appropriate measure for identi�cation of the laryngeal pathology. This study is based on the knowledge

that residual signal is obtained by removing the supra-glottal signal from the speech, which might cap-

ture better information about laryngeal pathology than the original speech signal. The study found that

a healthy or homophonic signal has sharp peaks at the start of each pitch period with a relatively low

noise level between the periods in the residual signal, whereas this is not the same for the pathological

voice. Pathological voices have aperiodicity and noisy-like characteristics in the residual signal [117].

Studies on noise measures: The incomplete vocal fold closure causes turbulent air�ow from the

vibratory vocal folds, this constant leakage of air results in noisy components in the speech signal.

As regularity in vibration is not present in most of the pathologies, the features that can capture the

information about the source of excitation (whether it is noisy or voiced excitation) will be better in

understanding pathologies. Hence the parameters like signal to noise ratio (SNR) [38, 118, 119], nor-

malized noise energy (NNE) [39, 120], harmonic to noise ratio (HNR) [14, 26, 39], noise to harmonic

ratio (NHR) [121], glottal to noise excitation (GNE) [39, 122, 123] were used in the literature to indicate

the noise parameter for discrimination of voice pathology. In [118] SNR was measured in both time and

frequency domains and was calculated for different laryngeal pathologies like functional voice disorders,

RLNP, laryngitis, and papillomatosis. In this study, SNR was found to be correlated with hoarseness.

SNR [38] in this study was derived on the running speech signal as the ratio of the energy of correlated

signal to uncorrelated signal. For the calculation of uncorrelated signal, �rst, long-term and short-term

correlated components were calculated from inverse �ltering and residue signal was considered as noise

components. The GNE indicates that speech signal originates from the quasi-periodic vibration of vo-

cal fold or by turbulent noise and is used in many studies as an indicator of breathiness [122]. The

motivation for using GNE as an indicator of pathology is that vocal folds, when excited by a voiced
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signal, are found to have a highly correlated Hilbert envelope (HE) across all frequency bands, while

when excited by noise, HEs are uncorrelated [122].NNE is the ratio of noise energy to the total energy

of the signal, which is inversely related to the cepstral-based Harmonic-to-Noise Ratio (HNR), and it

indicates the amount of turbulent noise due to incomplete glottal closure during phonation.”[39, 122].

HNR was calculated in the time domain [34], frequency domain [34] and cepstral domain as well [33].

In [120], NNE was used to detect voice pathologies like glottal cancer, recurrent nerve palsy and vocal

cord nodules. According to the study NNE performed better than two noise parameters like relative

harmonic intensity and HNR. For pathological voice, a large value of these noise parameters was found

to be due to noisy excitation source characteristics associated with the voice.

Studies based on spectral and cepstral features: Some studies in the literature investigated the

features obtained from the different frequency bands for dysphonic voice detection. Spectral energy and

band power correlation time [124], normalized autocorrelation function [125], of the �lter banks were

used as good indicator to identify the voice pathology. Importance of frequency bands with features

like peak and lag of autocorrelation function along with entropy feature were also explored for voice

pathology detection [7]. According to study [126], it was also found that spectrum coef�cients obtained

from lower frequency ranges between 0 Hz to 3000 Hz are more signi�cant than other frequency ranges

for diagnosing the voice disorder. Harshness, roughness, breathiness, and strained voice are the main

symptoms associated with voice disorder [10]. These voice quality, loudness, and intonation from the

speech signal are perceived in the long term [66]. Hence, the features that are present in the long term

will be better captured by the Long Term Average Spectrum (LTAS) instead of the short time variation

present in the speech. Many researchers used LTAS in clinical applications to detect the presence of

different voice pathology before and after surgery and in the quanti�cation of voice quality. Some

studies claim that LTAS can be used for voice classi�cation [127]. In [67] LTAS was used as a good

acoustic measure to differentiate the male and female. In [128], features derived from long-term spectra

were used to study voice quality changes before and after surgery. Other works in this direction were

�nding differences related to age [68], professional singers, different styles of singing [129], speaking

and singing [130] and quantifying the quality of voice [131].

Even though most voice disorders affect the functioning and structure of the larynx, vocal tract fea-

tures were also explored in the literature. Features like mel frequency cepstral coef�cients (MFCC) [49],

linear prediction cepstral coef�cients (LPCC) [49], perceptually linear prediction coef�cient (PLP) [51],

which were used to capture the vocal tract characteristics were also used in voice pathology detection.

In the [132], the vocal tract area was explored for detection of voice pathology based on the assump-

tion that for healthy subjects vocal tract area does not change signi�cantly across the frames while this

area shows irregularity for pathological voice due to irregular vocal fold vibration. In [133] mean and

standard deviation of the �rst three formant frequencies and its dynamic features were used to discrim-

inate vocal fold pathologies. Cepstral peak prominence (CPP) [43, 44, 45, 47, 48, 134] was also used

as reliable measure for differentiating the dysphonic voice from healthy voice. CPP measure is based

on the concept that periodic signals have a higher amplitude at the fundamental frequency and its har-
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monic frequency. Hence, periodic signals have a prominent peak in their cepstral, which is present at

the fundamental period. As it was found that the cepstral peak depends on window size, overall energy

and periodicity were used instead of the amplitude prominence of the peak. CPP was measured as a

difference between the linear regression line and the cepstral peak. Another variant of CPP was also

explored, known as smoothed CPP (CPPS) [65], which was measured by �rst averaging the cepstra over

all the frames and then calculating peak prominence. Both of these parameters were found to be better

measures for pathological voice detection (small value of parameters), with CPPS being better.

2.5.4.2 Studies on voice quality analysis

Voice quality is a perceptual attribute de�ned by phonation type. Based on the different tension

present on laryngeal muscles and respiratory effort, human is capable of producing various types of

phonation. The literature used different features derived from the epoch and GVV waveform to analyse

the phonation types. Modal phonation is considered as a reference phonation for analysing the different

type of phonation [3]. In the study [135], phonations like breathy, modal, and pressed phonation were

analysed using the features derived from ZFF method, zero time windowing (ZTW) method, and single

frequency �ltering (SFF) method for normal and singing speech. To discriminate different phonation

types, time domain and frequency domain parameters derived from GVV waveform were used [76, 136].

Breathy phonation has more in�uence of the sub-glottal system. In contrast, the pressed phonation

has less in�uence of the sub-glottal system than modal phonation; hence study in this [78] used low-

frequency spectral density (LFSD) for classifying the different phonation. In the study [137], different

acoustic parameters like jitter, shimmer, SNR, and peaks derived from LP residual signal [138] were

used to identify creaky phonation. In the study [139] performance of different state-of-the-art epoch

extraction algorithms was compared for different modal and non-modal phonations. It was found that

non-modal phonation in which there is variation in the glottal source characteristics, is more challenging

than modal phonation. Voice disorders affect the structure and functioning of the larynx, subjects with

voice disorders require more vocal effort. The loudness of speech signal is associated with the vocal

effort [140]. Hence study of loudness will help to understand voice disorders better. In the study [141]

strength of excitation (SOE) derived from the Hilbert envelope of LP residual signal is used as a parame-

ter to relate of loudness. The result of the paper concludes that impulses like excitation are more sharper

for loud sounds than soft and normal sounds as greater SoE is present when an amount of energy is

present for a short duration than the same energy is present for a longer duration of time. Another work

related to this study explored the feature from excitation source signal like discrete cosine transform

of integrated linear prediction residual (DCT-ILPR), mel-power difference of spectrum in sub-bands

(MPDSS), and residual mel-frequency cepstral coef�cient (RMFCC), for classi�cation of shouted and

normal speech [142]. The author used DCT-ILPR, MPDSS and RMFCC to capture information of glot-

tal shape, periodicity and spectral information respectively, from the excitation source signal, which

provide more relevant information to discriminate shout speech from normal speech. The maximum

air�ow declination rate (MFDR) was found to be highly correlated to sound pressure level (SPL), which
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is found to be lower for soft voice than normal and loud voice [143]. The study in this [144] observed

different parameters like fundamental frequency, the difference between the �rst and second harmon-

ics (H1-H2), normalized amplitude quotient (NAQ) and SPL. This study found that smaller spectral tilt,

high F0 and vocal energy, and increased duration are some of the characteristics associated with shouted

speech.

One very important perceptual attribute for analysing voice disorders is breathiness. The incomplete

closure of vocal folds during the closed phase of the phonation cycle and sub-glottal coupling cause

constant air leakage through the glottis, giving rise to turbulence, which results in breathy voice [145].

The sub-glottal coupling increases the width and decreases the amplitude of the �rst formant frequency.

The incomplete glottal closure results in a symmetrical open and closed phase, which is responsible for

the relatively increased amplitude of the �rst harmonic in the spectrum. Moreover, it is also responsible

for the decrease in the amplitude at high frequencies. Noise parameters were also used to correlate with

breathiness, as constant air leakage is associated throughout the breathy sound, which in turn results

in noise. The spectrum associated with breathy voice was found to have high spectral noise at high

and medium frequency [145]. All perceptual characteristics of breathiness are found to be associated

with noise, aperiodicity, spectral tilt and perturbation. Hence acoustic features like the difference be-

tween the amplitude of �rst and second harmonic (H1-H2) [65, 146], GNE [12], HNR [33], NNR [45],

CHNR [45] and amplitude of �rst harmonic [65, 145], NNE [12, 120] were used as an acoustic cor-

relate for breathiness. CPP was found as a correlate of breathiness and roughness (perceptual attribute

of voice pathology) in some studies [45, 65]. For normal speech, which has a comparatively good har-

monic structure, which indicates the large value of CPP, whereas the breathy voice has a relatively �at

spectrum, CPP is found to have a small value. The spectral differences like H1-H2, H1-A1, H1-A2, and

H1-A3 were used to indicate the presence of spectral noise and breathy voice associated with hyperfunc-

tion voice disorder and vocal nodules [147, 148]. A1, A2, and A3 were used to de�ne as amplitude of

the most robust harmonic in the region of �rst, second and third formant frequency, respectively. These

spectral tilt were used as they indicate the degree of vocal fold closure, as incomplete glottal closure is a

strong characteristic associated with voice disorders. Insuf�cient vocal fold adduction might lower the

amplitudes of higher frequency harmonics, resulting in higher spectral noise.

2.6 Signi�cant gaps

� In most of the literature, voice disorders detection was considered as two-class problem, where

voice disorders were discriminated from healthy samples using the acoustic features. In literature,

assessment of voice disorders was not explored. There is a need for detailed identi�cation of voice

disorders. Hence, there is a need for a detailed analysis of voice disorders from the clinical point.

� The epoch locations estimated from the speech signals were used to obtain the perturbation pa-

rameters like jitter, shimmer, and fundamental frequency contour, which are very important for

detecting voice pathology. Methods used for the calculation of epoch location work ef�ciently
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for clean speech. Some voice disorders affect the structure of vocal folds, whereas disorders like

functional voice disorders are due to excessive or inappropriate muscle force. Should it be studied

whether state-of-the-art methods perform accurately for different voice disorders in a similar way

or not?

� The perceptual methods were considered as the golden standard in identifying voice pathology.

By incorporating the knowledge of the human auditory system performance of voice disorder

detection and assessment system may work better. Many auditory �lter banks were explored

for speech analysis in the literature to improve speech systems' performance. In the literature,

critical band �lter bank-based features were explored, but different perceptually motivated �lter

banks were not explored. The open problem here we found is that considering the perceptually

motivated �lter for different feature extraction might help to understand the voice disorders in a

better way. Moreover, importance of different frequency bands for different types of disorders

can be explored.

� Loudness is one of the important perceptual characteristics used by SLPs for voice disorder de-

tection as a subject with a voice disorder will not be able to produce loud sounds compared to a

healthy subject. The open issue here is whether the loudness and voice quality affect the different

organic and non-organic voice disorders in the same way.

� Voice disorders affect one of the dimensions of speech which is voice quality. From the litera-

ture, it was found that the phase spectrum of speech signal captures the information about voice

quality. Incorporating the information about the phase spectrum along with the magnitude spec-

trum which provides complete information about the speech, might improve automatic detection

and assessment of voice pathology. In the literature, phase spectrum features derived from group

delay function were used, while the analytic phase was not explored for voice pathology.

2.7 Voice disorder databases

Automatic detection of voice disorders relies on the availability of databases that contain record-

ings of both healthy individuals and those with voice disorders. There are many public and private

databases that have been collected for the purposes of automatic detection, identi�cation, or assess-

ment of voice pathologies. Massachusetts Eye and Ear In�rmary Database (MEEI) [149], Saarbruecken

Voice Database (SVD) [150], Hospital Universitario Pr�ncipe de Asturias (HUPA) [151], Arabic Voice

Pathology Database (AVPD) [152], Hospital Gregorio Maranon (GMar) [153] are most commonly used

publicly available databases. SVD corpus contains more than 2000 voice recordings out of which 687

are collected from healthy subjects (428 females and 259 males) and 1356 are collected from subjects

(629 males and 727 females) with voice disorders. HUPA database contains recordings of the vowel /a/

for a total of 440 subjects. Out of total of 366 recordings, 201 recordings are from pathological subjects,

and 239 recordings are from normal subjects. AVPD database contains a total of 366 samples of normal
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and pathological subjects. 188 samples are from healthy subjects, and 178 are from pathological sub-

jects. Recordings are available for vowels (a,i,u), isolated word (like Arabic numbers and words) and

running speech. All samples are recorded at the sampling frequency of 48 KHz with 16 bits of resolu-

tion. The GMAR database contains recordings of Spanish speakers of the vowels/a/, /i/, and /u/. All the

samples are recorded at a sampling frequency of 22050 Hz. For the vowel /a/ 202 (107 disorder samples

and 95 healthy samples), for vowel /i/ 190 (96 disorder samples and 94 healthy samples) , and for vowel

/u/ 176 (90 voice disorder samples and 86 healthy samples), samples are available. MEEI database is

commercially available and the most widely used database in the �eld of voice disorder detection. It

contains a recording of vowel /a/ and rainbow passages for 684 subjects. Out of 684 subjects, 53 sam-

ples belong to healthy subjects, whereas 631 samples belong to subjects suffering from voice disorders.

Table 2.3 shows the list of voice disorder databases along with a number of samples and speech stimuli

available in the literature.

Table 2.3: Details of voice disorder database available in literature, its corresponding number of samples
and speech stimuli.

Database Number of samples Speech stimuli
Healthy samples Disorder samples

Saarbruecken Voice disorder database
(SVD)

687 1356 Vowel (a,i,u) and Sentence

Hospital Universitario Pr�ncipe de Asturias database
(HUPA)

239 201 Vowel (a)

Arabic Voice Pathology database
(AVPD)

188 178 Vowel, words, Sentences

Hospital Gregorio Maranon database
(GMar)

95 107 Vowel (a)
94 96 Vowel (i)
86 90 Vowel (u)

Massachusetts Eye and Ear In�rmary database
(MEEI)

53 631 Vowel (a) and sentences

2.7.1 Database used in this thesis

Databases used in this thesis are Saarbruecken voice disorder (SVD) dataset [150], and Hospital

Universitario Pr�ncipe de Asturias (HUPA) database [151].

1. SVD database is the most widely explored database due its availability on1. It contains more

than 2000 (from 71 different voice disorder categories) voice recordings sampled at 50 kHz. The

recording session consists of a German sentence and vowels of /a/, /i/, and /u/ in normal, high,

low and rising-falling pitch. 625 samples were considered from the healthy class, and total of 950

voice samples were considered from different voice disorders categories for vowel /a/, /i/, and /u/

in normal, high, low and rising-falling pitch. In our study, all recordings were down-sampled to

8000 Hz.
1http://www.stimmdatenbank.coli.uni-saarland.de/
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2. HUPA database is considered to perform detection tasks. It contains recordings of the vowel /a/ for

a total of 440 subjects. Auditory-perceptual ratings according to GRBAS [99] scale is available for

HUPA database. It contains the �ve different components: Grade of hoarseness (G), Roughness

(R), Breathiness (B), Asthenia (A), and Strain (S). Each component is rated as 0, 1, 2, or 3, where

0 indicates normal, 1 mild, 2 moderate, and 3 indicates a more severe voice disorder. Table 2.4

shows the database details and the the number of samples used in this thesis for performing the

voice disorder detection task. A total of 659 and 950 samples are considered from the SVD dataset

for healthy and voice disorder classes, respectively. 239 samples and 201 samples are considered

from healthy and voice disorder classes from the HUPA database to perform experiments.

Table 2.4: Details of the number of samples used for the detection task in our study from SVD and
HUPA database.

SVD database HUPA database
Healthy Voice Disorder Healthy Voice Disorder

625 950 239 201

2.8 Summary and conclusions

This chapter overviews the speech production process, phonation, and voice disorders. It also ex-

plores various methods used for assessing voice disorders. Additionally, it conducts a literature survey

of different acoustic methods utilized for automatically detecting voice disorders. This analysis iden-

ti�es gaps in the existing literature, and some of these issues are addressed in the present thesis. This

chapter also discussed the standard database commonly used in previous studies for the automatic detec-

tion of voice disorders. Furthermore, it details the speci�c databases used in this study for the automatic

detection of voice disorders.
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Chapter 3

Exploring the excitation source based information for detection and

identi�cation of voice disorders

Voice disorders may alter the phonation (vocal fold vibration) characteristics of speech by affecting

muscle tension and sub-glottal pressure. The fundamental frequency, voice quality, and loudness of

speech are the main features that can be impacted by voice disorders, as reported in studies [10, 15,

65]. These dimensions of speech were found to be effectively captured from the excitation source

information. From the literature, it can be concluded that most of the studies used these features to

discriminate healthy speech from voice-disordered speech. However, the clinical way of assessing the

voice disorder requires a more detailed analysis of the voice disorder. Hence, this chapter explored the

excitation source-based features for the detection and identi�cation of voice disorders in a clinical way.

A more detailed analysis of voice disorders was performed to know whether the disorder is structural,

neurogenic, functional or psychogenic. The excitation source features used in this chapter are intonation

features, glottal features, and cepstral coef�cients derived from the excitation source signal. These

excitation source features were compared with state-of-the-art MFCC, LPCC, and openSMILE features.

The rest of the chapter is organised as follows. Section 3.1 describes the clinical perspective of iden-

ti�cation of voice disorder, section 3.2 discusses the different evidence of excitation source. Section 3.3

presents the experimental setup with details of the database, extraction of excitation source evidence,

feature extraction and classi�er. Results and discussion of the voice disorder detection and identi�cation

system are presented in Section 3.4. Finally, the summary and conclusion of this work are discussed in

Section 3.5.

3.1 Clinical way of identi�cation of voice disorder

The aim of this thesis is to investigate an objective method for detecting and identifying voice dis-

orders from a clinical perspective. Such a method can be used by SLPs as pre-diagnostic tool for the

assessment of voice disorder. The detection task is the discrimination of healthy subjects from the voice

disorder subjects (as shown in Figure 3.1), whereas identi�cation requires a more in-depth analysis to
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determine the underlying cause of the voice disorder. ASHA classi�es voice disorders, based on their

etiology, into organic voice disorders (OVD) and non-organic voice disorders (NOVD) (as discussed in

the previous chapter). Organic voice disorders can be further categorized as either structural or neu-

rogenic, while NOVD can be classi�ed as functional or psychogenic. Therefore, identi�cation refers

to the process of determining the speci�c category or type of voice disorder. In order to perform the

clinical way of identi�cation, SVD database from voice disorder subjects was grouped into four classes.

Out of the 71 different disorder categories present in the SVD database, our work focused only on the

categories that had more than 30 subject recordings. Further details about the database are discussed in

the experiment set-up section.

Figure 3.1: Voice disorder detection task.

This thesis explored a multi-level classi�cation approach employing four binary classi�ers to assess

voice disorders (as shown in Figure 3.2). The �rst classi�er distinguished healthy samples from voice

disorder samples, referred to as voice disorder detection. The other classi�ers are trained to identify the

cause of the voice disorder. The second classi�er is trained to distinguish organic voice disorder from

the non-organic voice disorder category. The organic voice disorder class was further subdivided into

structural or neurogenic classes, while the non-organic class was classi�ed as functional or psychogenic.

This detailed analysis of voice disorders can assist SLPs in planning appropriate surgical interventions

or speech therapy. The binary classi�ers were trained using a machine learning classi�er algorithm.

Throughout the thesis, the same approach is followed to perform the experiments.

3.2 Excitation source evidences

According to the source-�lter theory of speech production, the source provides the energy for vocal

fold vibration, which is then modi�ed by the vocal tract system to produce the speech [3]. In order to

capture the excitation source signal, the source signal should be separated from the vocal tract signal.

This can be achieved through various methods, such as using specialized devices or employing speech

signal processing methods. These methods help to differentiate the in�uence of the excitation source at

the glottis from the resonances produced by the vocal tract system.
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Figure 3.2: Voice disorder identi�cation task.

3.2.1 EGG signal

Electroglottograph (EGG) signal represents the vocal fold vibration during the production of the

voiced speech sound. It is the output of the EGG system. EGG system is a noninvasive measurement

of the excitation source. It consists of two electrodes, whose one end is given the input from a high-

frequency generator, and the other end is connected to the neck for measuring the impedance [154, 155].

By analyzing the impedance values, the EGG signal provides information about the opening and closing

phases of the vocal folds. The high impedance value in the EGG signal indicates the opening phase of

the vocal fold, while the low impedance value signi�es the closing phase of vocal folds. In this way, the

resultant signal from the EGG system represents the glottal �ow waveform of voiced sound. Importantly,

the EGG signal is not affected by vocal tract resonances. Its limitation is that it is only available with a

few databases and is primarily utilized for clinical purposes. Figure 3.3 shows a schematic of the EGG

during vocal fold opening and closing phase [154]. Figure 3.4 depicts the EGG signal and its �rst order

difference signal refers to as differenced EGG (DEGG) signal.

3.2.2 LP residual

LP residual is one of the most widely used signals that models the excitation source information

from the speech signal. LP residual signal is derived from LP analysis. LP analysis is based on the

source-�lter model of speech production [4, 156]. According to this, the speech signal is produced

when the excitation source signal is passed through the vocal tract system. The excitation source signal
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Figure 3.3: Principle of the electroglottograph device. A transverse section of the neck is shown with
an open glottis (on the left) and a closed glottis (on the right). The electric �eld passing through the
neck is represented by lines. When the vocal folds are apart, the opening distorts the electric �eld and
impedance increases. When the vocal folds come closer, current passes through the electrodes, reducing
impedance [154].

Figure 3.4: Illustration of EGG signal and its corresponding dEGG signal.
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is modelled as a train of impulse signals for voiced sound and random noise for unvoiced sound. The

vocal tract system is modelled as an all-pole �lter system. Therefore, the excitation source signal is

extracted from the speech signal by passing it through the inverse �lter (the inverse of an all-pole �lter).

Figure 3.5 represents a block diagram for the LP model of speech production.

Figure 3.5: Linear prediction model of speech production [54].

3.2.3 Glottal inverse �ltering

GVV signal is the evidence of excitation source derived from glottal inverse �ltering (GIF) method [63,

157]. Figure 3.6 shows the block diagram of GIF method. In the inverse �ltering method, to derive the

excitation source representation, vocal tract resonances are cancelled by passing speech signal through

an anti-resonance (zero) �lter. The GIF method is based on the linear source-�lter model of the speech

production method. According to this model vocal tract system is modelled as an all-pole �lter. First,

the �lter's response is obtained then the speech signal is passed through the inverse vocal tract �lter to

obtain the excitation source response. Then this signal is passed through the integrator to cancel the lip

radiation effect, and the resultant signal is termed as GVV signal or glottal �ow signal [158].

Figure 3.6: Glottal inverse �ltering [63].

3.2.4 ZFF signal

ZFF signal is evidence of the excitation source signal obtained from the ZFF method [56]. This

method is based on the assumption that for the voiced sound, the vocal tract system is excited by a

sequence of impulse trains of varying strength. The effect of impulse-like excitation is present at all

frequencies, including at zero frequency. In contrast, the effect due to the resonance of the vocal tract
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�lter is present at a much higher frequency than zero frequency. Hence, to extract the excitation source

information, the speech signal is passed twice through a zero-frequency resonator (as shown in Fig-

ure 3.7). This process attenuates the higher-order harmonics corresponding to the vocal tract system

and emphasises the excitation source characteristics. The output of the ZFF �lter shows the polynomial

growth/decay, which is due to the fact that time domain equivalent of the ZFF �lter is an integrator. In

order to compensate for the trend introduced in the signal, the �ltered signal is passed through a moving

average �lter with a window size of 5 to 10 ms.

Figure 3.7: Block diagram of ZFF method [56].

3.3 Experimental setup

This section discusses the excitation source features explored in this chapter for automatic detection

and identi�cation of voice disorders. It also discussed the details about baseline features, database and

classi�er used for performing the experiments.

3.3.1 Features derived from the excitation source evidences

This subsection discusses the features derived from the excitation source evidences like GVV signal,

ZFF signal, and LP residual signal, which are explored in this chapter for automatic detection and

identi�cation of voice disorder in a clinical way.

3.3.1.1 Glottal features

The glottal �ow waveform which is estimated from the inverse �ltering method is used to compute

glottal parameters as in [62]. The method we used to derive the GVV waveform is quasi-closed-phase

(QCP) analysis method. QCP analysis is a state-of-the-art technique to estimate the glottal �ow wave-

form [63]. Figure 3.8 depicts the block diagram of QCP method. It is based on closed-phase analysis

in which the vocal tract model was estimated from speech samples in the closed phase of the glottal

cycle [158] due to the decoupling of the oral cavity, lung, and trachea during this phase. QCP estimates

vocal tract resonance from speech samples by using a weighted linear prediction (WLP) analysis. The
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Figure 3.8: QCP method [63].

attenuated main excitation (AME) waveform was used as a weighting function, attenuating the samples

of open phase region compared to the close phase samples of glottal cycles, which results in a better

estimate of the vocal tract model. Finally, the glottal �ow waveform was estimated by inverse �ltering

the speech signal with the vocal tract model. The glottal parameters include time-domain features and

frequency-domain features.

1. Time-domain features derived from glottal �ow waveform: Two sets of features are ob-

tained directly from the time-domain representation of the glottal �ow, namely time-domain and

amplitude-based features. Time domain glottal �ow waveform is characterised by three phases,

namely closed phase (Tc), opening phase (To), and closing phase (Tcl) as can be seen in the Fig-

ure 3.9. During the closed phase of the glottal cycle, the vocal folds are fully in contact along their

entire length, leading to the obstruction of air�ow through them. The opening phase refers to the

time duration in which vocal folds begin to separate, resulting in a gradual increase in air�ow

passing through them. During the closing phase, vocal folds start closing, which in turn results

in a decrease in the air�ow through them. The opening and closing phase together is referred to

as the open phase (To). In general, the closed phase of glottal �ow is relatively shorter than the

open phase. During the opening phase the glottal �ow starts increasing gently and then rapidly.

Due to this, two instants are considered as opening instants, namely primary opening,To1 (end of

the horizontal phase) and secondary opening,To2 (instant of abrupt increase of �ow derivative).

Time-domain features comprise open quotients, closing quotients, and speed quotients.
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Figure 3.9: Glottal �ow waveform with primary and secondary opening. The length of the glottal cycle
is denoted by T. The time duration from the primary opening to the instant of maximum �ow is denoted
by To1 and the time duration from the secondary opening to the instant of maximum �ow byTo2. The
closing phase length is denoted byTcl [62].

� Open quotient calculated from the primary glottal opening (OQ1): It is de�ned as the

ratio of the time duration of the primary open phase (sum of the primary opening and closing

phase) to the total time duration of one glottal cycle.

OQ1 =
To1 + Tcl

T
(3.1)

� Open quotient calculated from the secondary glottal opening (OQ2): Ratio of time du-

ration of the secondary open phase (sum of the secondary opening and closing phase) to the

total time duration is termed as OQ2. It is given by

OQ2 =
To2 + Tcl

T
(3.2)

� Closing quotient (ClQ): It is de�ned as the ratio of the time duration of the closing phase

duration to the duration of the glottal cycle.

ClQ =
Tcl

T
(3.3)

whereT = To + Tc + Tcl represents one glottal cycle.

� Speed quotient, calculated from the primary glottal opening (SQ1): It is de�ned as the

ratio of time duration of the primary opening phase to the closing phase.

SQ1 =
T01

Tcl
(3.4)
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� Speed quotient, calculated from the secondary glottal opening (SQ2): It is de�ned as the

ratio of time duration of the primary opening phase to the closing phase.

SQ2 =
T02

Tcl
(3.5)

� Quasi open quotient (QoQ): It is de�ned as ratio of the the quasi open phase of the glottis

to quasi closed phase.

QoQ =
QoT

Qclt
(3.6)

� Amplitude-based open quotient (OQa): It is Variation of open quotient derived from

Liljencrants-Fant (LF-model).

OQa = f ac(
�

2dmax
+

1
dmin

)F 0 (3.7)

wheredmax is de�ned as maximum positive amplitude of differentiated glottal pulse derived

from LF-model.F 0 is fundamental frequency of vocal fold vibration. Figure 3.10 show the

glottal �ow and its derivative waveform used for the calculation of amplitude quotients. .

Figure 3.10: Glottal �ow (at the top) and its derivative waveform (bottom).f AC is the AC amplitude of
the glottal �ow waveform, anddmin is the negative peak amplitude of the glottal �ow derivative [62].

� Amplitude quotient (AQ) : It is de�ned as the ratio between the AC-amplitude of the glottal

�ow signal and the amplitude of the minimum of the derivative of the glottal �ow signal.

AQ =
f AC

dmin
(3.8)

� Normalized amplitude quotient (NAQ): Amplitude quotient when normalized with respect

to the length of the fundamental period of the glottal cycle termed as NAQ. It is given by

NAQ =
f AC

dmin :T
(3.9)
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Table 3.1: Time-domain glottal features derived from GVV waveform.

Feature Description
OQ1 Open quotient, derived from the primary glottal opening
OQ2 Open quotient, derived from the secondary glottal opening
OQa Open quotient, calculated from the LF model
QoQ Quasi-open quotient
AQ Amplitude quotient

NAQ Normalized amplitude quotient
ClQ Closing quotient
SQ1 Speed quotient, calculated from the primary glottal opening
SQ2 Speed quotient, calculated from the secondary glottal opening

Table 3.1 shows the nine dimension features derived from the time-domain glottal waveform. If

the glottal �ow waveform does not show two different opening instants, then in that case OQ1 =

OQ2 and SQ1 = SQ2.

2. Frequency-domain features derived from glottal �ow waveform: Frequency domain parame-

ters are derived by calculating the magnitude spectrum (in decibels) of the GVV signal. Spectrum

is calculated by taking the fast Fourier transform (FFT) of the glottal signal. Figure 3.11 shows

the frequency response (frequency versus amplitude in dB plot) of GVV signal. The most widely

used features derived from the frequency response of GVV signal are harmonic richness factor

(HRF), the difference in �rst and second harmonic (H1-H2), and parabolic spectral parameter

(PSP).

� Harmonic richness factor (HRF): It is the ratio of the sum of the amplitudes of the har-

monics above the fundamental frequency to the amplitude of the fundamental frequency.

� Difference in �rst and second harmonic H1-H2: It indicates the slope of the glottal �ow

spectrum. It is the difference between the amplitude of the fundamental frequency and the

second harmonic.

Figure 3.11: Frequency-domain representation of glottal �ow waveform [62].
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� Parabolic spectral parameter(PSP): It is derived by matching the parabola function (second-

order polynomial) to the spectrum of the GVV signal. PSP provides a single numerical value

that characterizes the behaviour of the glottal �ow's spectral decay compared to the maxi-

mum spectral decay theoretically achievable [159]. PSP is computed by �tting the parabola

function to spectrum of the glottal �ow waveform. This �tting is done by minimizing the

mean square error between the discrete spectrum of glottal �ow waveform denoted byX (k)

and the parabola function (Y (k)) should be minimized. The mean square error is given by:

E =
N � 1X

k=1

(X (k) � Y (k))2 (3.10)

Parabolic function is described as

Y(K ) = ak2 + b (3.11)

Where `a' and `b' are constants that de�ne the parabola. The constant `a' determines the

direction of parabola: if a is positive, the parabola opens upwards; if `a' is negative, the

parabola opens downwards. The constant `b' shifts the parabola vertically.

E =
N � 1X

k=1

(X (k) � ak2 � b)2 (3.12)

Parabolic spectral parameter is given by

PSP =
a

amax
(3.13)

Figure 3.12 shows examples of PSP computation derived from the glottal source spectrum:

one from a male speaker with breathy phonation and the other from a female speaker with

pressed phonation. It can be observed from the Figure 3.12(a), that spectral decay is large for

male speaker which is matched by a parabolic function that decrease rapidly. Figure 3.12(b))

depicts slow spectral decay for female speaker which is modelled by a parabolic function

with small steepness as compare to Figure 3.12(a). Table 3.2 shows the three dimension

frequency-domain features derived from GVV waveform.

Table 3.2: Frequency-domain glottal features derived from GVV waveform [40].

Feature Description
H1-H2 Amplitude difference between the �rst and second glottal harmonic
PSP Parabolic spectral parameter
HRF Harmonic richness factor
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Figure 3.12: Pitch-synchronous spectrum of a glottal waveform (thin line) and the optimal parabolic
match (thick line) [159].
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3.3.1.2 Intonation feature

Knowledge of epoch locations is important to obtain the perturbation measures corresponding to

the vocal fold vibration. In this work, epoch locations are obtained from speech using zero frequency

�ltering (ZFF) technique [160]. This study used the epoch locations to �nd the fundamental frequency

(F0) contour, strength of excitation (SoE) contour, and energy of excitation (EoE) contour of the ZFF

signal. The F0, SoE, and EoE contours have been used to obtain 76-dimensional feature vector, which

is referred to as an intonation feature vector (as in [161]) in this work.

� Fundamental frequency (F0): F0 is determined by calculating the epoch location derived from the

ZFF method. The difference between the consecutive epoch location gives the measure of pitch

period (T0) and the inverse of pitch period is fundamental frequency denoted by F0 [162, 141]. If

E= f e1; e2; e3::::::eM g is the number of GCI locations derived from the ZFF method, thenF0 is

given by

F0[n] =
1

T0(n)
=

f s

en � en� 1
; n = 2 ; 3; :::::::::M (3.14)

whereT0[n] is the fundamental period of vocal fold vibration,fs is sampling frequency andM

is number of epoch locations derived from ZFF method.

� Strength of excitation (SoE): The slope of ZFF signal around each epoch location is referred to as

the strength of excitation which indicates the strength or intensity of GCI location. It is directly

proportional to the rate at which the vocal folds close during phonation [141].

SoE = y[en + 1] � y[en � 1]; n = 1 ; 2; 3; :::::::::M (3.15)

wherey[n] is the output signal of the ZFF method.

� Energy of excitation (EoE) of ZFF signal: The mean square energy of the samples at GCI locations

is de�ned as the energy of excitation, which gives the measure of vocal effort.

EoE =
L=2X

i = � L=2

y2[n + i ]; n = 1 ; 2; 3; :::::::::M (3.16)

where y[n] is the ZFF signal, and L is the length of the window over which the energy is computed.

L is taken as 10 ms for the calculation of energy.

Jitter is a cycle-to-cycle perturbation of the glottal cycle and is derived from the pitch period. Shimmer

is the amplitude perturbation of the glottal cycle and is calculated from SoE and EoE. Table A.1 shows

the intonation features and their corresponding feature dimension.
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Table 3.3: Intonation feature and corresponding feature dimension [69].

Feature Dimension
Statistical measures of F0 5

Jitter quotients of F0 22
Shimmer quotients of strength of excitation (SOE) 22
Shimmer quotients of Energy of excitation (EOE) 22

Harmonic to noise ratio and noise to harmonic ratio 4
Pitch perturbation entropy (PPE) 1

3.3.1.3 Mel frequency cepstral coef�cients of LP-residual, and ZFF signal

The studies in [163], revealed that Mel frequency cepstral coef�cients (MFCC) of excitation source

components are useful to identify the phonation type. Hence, this study explored the MFCC of LP-

residual (MFCC-Residual) and ZFF signal (MFCC-ZFF) for the detection and identi�cation of voice

disorders. The MFCC-Residual and MFCC-ZFF features were obtained from segments of LP-residual

and ZFF signal, respectively, with a frame-length of 20 ms and a frame shift of 5 ms. They are 39-

dimensional cepstral coef�cients consisting in 13 static coef�cients and their �rst and second-order

derivatives. Finally, 4 statistics, namely mean, standard deviation, kurtosis, and skewness, were calcu-

lated, resulting in 156-dimensional MFCC-Residual and MFCC-ZFF feature vectors.

3.3.2 Baseline features

1. openSMILE feature set: The open-source Speech and Music Interpretation by Large-space Ex-

traction (OpenSMILE) is a publicly available toolkit for audio and music application designed for

extracting acoustic features [164]. In our experiment, two feature sets of this toolkit are used as

baseline features, namely ComParE feature set [165] and eGeMAPS feature set [166].

� The 2013 Interspeech Computational Paralinguistics Challenge (ComParE) features set is a

large-scale acoustic feature set with 6373 static paralinguistic features. These features are

obtained by computing various statistical functions over low-level descriptor (LLD) con-

tours. The ComParE feature set includes four energy-related parameters (such as zero cross-

ing rate, RMS energy, and loudness), 55 spectral features (such as MfCC, spectral energy,

spectral variance, skewness, and kurtosis), and six voicing-related features (such as jitter,

shimmer, and HNR). The statistical functionals applied to the LLDs include mean, stan-

dard deviation, percentiles, quartiles, linear regression functionals, quadratic regression, and

minima/maxima-related functionals.

� extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS) are small-scale (low

dimension) knowledge-based acoustic feature set contains 88 parameters. Functionals are

applied to 45 LLD. Frequency-related parameters are a total of (12) pitch, jitter, �rst three
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formant frequencies and bandwidth of the �rst formant, their mean and standard deviations.

Energy related parameters are 6, which includes loudness, shimmer, and Harmonic to noise

ratios (HNR) mean and standard deviation. In total, it consists of 42 LLD on which two

statistical functionals (arithmetic mean and coef�cient of variations) are applied.

2. Cepstral features: Features extracted from speech signals that model the vocal tract information

are considered as another baseline feature set in this study. MFCC [50], and PLP features are

computed using speech segments of 20 ms frame size with a 5 ms frame shift. First 13 dimensional

static features and corresponding delta, and delta-delta features were computed, resulting in 39-

dimensional features. Statistical averages such as mean, standard deviation, kurtosis and skewness

were derived from these frame-level features.

3.3.3 Database

SVD database contains the speech recording of healthy subjects as well as subjects suffering from

voice disorders. It contains almost 71 different disorder categories. Categories that contain recordings

of more than 30 subjects were grouped into four classes as shown in Table 3.4. In this study, all speech

samples sampling frequency was down-sampled to 8000 Hz. Structural voice disorders are mainly due

to anatomic abnormalities (like growth of the lesion, swelling of vocal cords) in the larynx. There-

fore, laryngitis, leukoplakia, polyp, reinke's edema, contact granuloma, vocal cord polyp, cordectomy,

and frontolateral partial resection are grouped to make structural class. Neurogenic voice disorders are

caused due to damage or malfunction in the central or peripheral nervous system [167]. As the ner-

vous system interacts with the larynx, it affects the functioning of the vocal mechanism. Spasmodic

dysphonia and recurrent laryngeal nerve palsy are the two disorders that are considered in this cate-

gory. Functional voice disorders (commonly known as muscle tension dysphonia) are characterized by

excessive laryngeal activity, tension, reduced vocal capacity, and impaired voice without any organic

abnormality [86]. Functional dysphonia, and hyperfunctional dysphonia are grouped into this class.

In psychogenic voice disorders, the subject will lose control over the initiation and maintenance of

phonation during speech production due to disturbed psychological processes like anxiety, depression,

conversion reaction, or personality disorder [168, 169]. Psychogenic dysphonia is considered in the

psychogenic voice disorder category.

3.3.4 Classi�er

Support vector machine (SVM) classi�er is the most widely used classi�er in pathological voice

detection as it gives consistence performance even on small dataset [170]. The present study used the

SVM classi�er for the detection and identi�cation of voice disorders. This study performed classi�ca-

tion by using other classi�ers like decision tree, logistic regression, k-nearest neighbour, and ensemble

classi�er. Among all these classi�ers, the SVM classi�er outperforms for most of the tasks. Moreover,

different kernel functions, such as linear, polynomial and radial basis functions, were also explored. The
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Table 3.4: Details of the voice disorders considered from SVD database for performing voice disorder
identi�cation task.

Voice disorder type Disorder name #Speakers Total speakers

Structural

Laryngitis 37

353

Leukoplakia 109
Polyp 30

Reinke's edema 37
Contact granuloma 64

Cordectomy 42
Frontolateral partial resection 32

Neurogenic
Spasmodic Dysphonia 192

253
Recurrent laryngeal nerve palsy 61

Functional
Functional dysphonia 98

254
Hyperfunctional dysphonia 154

Psychogenic Psychogenic Dysphonia 91 91

best performance was observed with a polynomial kernel of order 2. Further, the grid search approach is

explored to select the best parameters for the quadratic kernel. In this regard, the kernel parameter (box

constraint level) is changed from 0.1 to 1000 with multiples of 10 and the kernel parameters for which

the classi�er has the best classi�cation accuracy are considered for further analysis. The experiments

were conducted with �ve-fold cross-validation and the average classi�cation accuracy of all folds is

referred to as the performance of the system.

3.4 Results and discussion

The main objective of this work is to assess voice disorders in a clinical approach. This study

explored the excitation source features (MFCC-Residual, MFCC-ZFF, Glottal, and Intonation features)

for the identi�cation of voice disorders and compared their performance with baseline features, namely

vocal-tract system features (MFCC and PLP) and OpenSMILE features (ComParE and eGeMAPS)

discussed in Subsection 3.3. In this regard, classi�cation systems for the detection and identi�cation

of voice disorders are developed by using SVM classi�er (discussed in Subsection 3.3) with individual

excitation source feature sets and baseline feature sets. In this study, �ve-fold cross-validation is used so

that the recordings correspond to 80% and 20% of total speakers were used as training and testing data,

respectively. A total of four experiments were conducted in speaker independent approach using SVD

database (discussed in Subsection 3.1). In all the experiments, binary classi�cation systems are trained

with different feature sets and corresponding results are tabulated in Table 3.5.

� Experiment 1 (Voice disorder detection) was performed to discriminate healthy voice samples

from the voice disorder sample of all the classes.
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� In experiment 2, Organic voice disorder samples were classi�ed from non-organic voice disorder

samples.

� In experiment 3, Organic voice disorder samples were further classi�ed into structural and neuro-

genic voice disorders.

� Experiment 4 was conducted to classify functional voice disorders from the psychogenic voice

disorder category.

Table 3.5: Performance of voice disorder detection and identi�cation systems in terms of classi�cation
accuracy (in %) for individual feature set on SVD database. Here, Exp. 1: classi�cation of healthy and
voice disorders, Exp. 2: classi�cation of organic and non-organic voice disorders, Exp. 3: classi�cation
of structural and neurogenic voice disorders, and Exp. 4: classi�cation of functional and psychogenic
voice disorders.

Feature type Exp. 1 Exp. 2 Exp. 3 Exp. 4
ComParE 82.8 71.7 74.3 65.3
eGeMAPS 76.0 70.1 67.3 57.5
MFCC 74.4 72.4 67.8 63.4
PLP 74.2 72.7 70.5 64.1
Glottal 67.4 64.8 59.9 58.3
Intonation 69.3 66.0 60.2 52.8
MFCC-Residual 67.4 70.8 64.3 61.0
MFCC-ZFF 68.5 69.2 66.4 64.2

From Table 3.5, it is observed that among all individual excitation source feature sets, intonation

features show the best performance for experiment 1 with a classi�cation accuracy of 69.3%. From this,

it is anticipated that perturbation parameters capture voice disorder information in a better way. On the

other hand, cepstral features extracted from excitation source evidence performed best for experiments 2,

3, and 4. with the classi�cation accuracy of 70.8%, 66.4%, and 64.2%, respectively. From this, it can

be concluded that features extracted from the excitation source can capture the information that can

discriminate pathological speech from healthy speech. It is observed that among all baseline feature

sets ComParE feature set shows the best performance in experiments 1, 3, and 4, while PLP feature

produced a better performance in experiment 2 than all other individual features. However, in all the

experiments the performance of excitation source features was shown to be lower than the baseline

features. Among the individual features, ComParE feature set showed the best performance in most of

the experiments. However, it is a brute-forced acoustic feature set that has a very high dimension (6373)

compared to the other feature sets.

From Figure 3.13, it can be seen that perturbation parameters effectively discriminate between

healthy subjects and those with voice disorders due to differences in acoustic characteristics. Parameters

such as jitter, shimmer, NHR, and F0 dispersion exhibit higher values in subjects with voice disorders
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(a) Healthy Vs VD. (b) OVD Vs NOVD.

Figure 3.13: Distribution of intonation features for healthy and voice disorder subjects. The horizontal
line within the box denotes the median, and the box covers one-quarter of the data on either side of the
median. The whiskers on either side cover all points within 1.5 times the interquartile range (width of
the box), and points beyond these whiskers are plotted as outliers.

(a) OVD. (b) NOVD.

Figure 3.14: Distribution of intonation features for different categories of voice disorder. The horizontal
line within the box denotes the median, and the box covers one-quarter of the data on either side of the
median. The whiskers on either side cover all points within 1.5 times the interquartile range (width of
the box), and points beyond these whiskers are plotted as outliers.
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compared to healthy subjects, likely due to the instability of vocal fold vibrations. Conversely, HNR is

higher in healthy subjects, re�ecting the regular vibration of their vocal folds.

The box plot depicted in Figure 3.14 illustrates the distribution of intonation features for different

categories of voice disorders. It can be observed from the Figure 3.14 value of jitter, shimmer, and F0

dispersion is high for structural voice disorder and low for neurological voice disorder. This is because

vocal fold vibrations are more irregular for SD than NVD. Furthermore, the box plot indicates that most

of these features effectively differentiate between SD and NVD, unlike FVD and PVD. These �nd-

ings suggest that distinguishing PVD requires considering both acoustic information and the subject's

medical history to determine if the voice disorder is associated with psychogenic trauma.

Figure 3.15: Distribution of time-domain glottal features for healthy and voice disorder subjects. The
horizontal line within the box denotes the median, and the box covers one-quarter of the data on either
side of the median. The whiskers on either side cover all points within 1.5 times the interquartile range
(width of the box), and points beyond these whiskers are plotted as outliers.

Figure 3.15 shows the time domain glottal features derived from the QCP method for healthy and

voice disorder subjects. Vocal folds do not close completely for subjects suffering from voice disorders,

which results in a comparatively large OQ [78, 171] than healthy subjects. GVV signal of the healthy

subject is described by a right-skewed glottal pulse, indicating that the decrease of the air�ow (vocal

folds close faster) is faster than the increase of air�ow ( opening of vocal folds). Hence, CQ of the

healthy subject is indicated by a large value and a small value of OQ, as seen in Figure 3.15. Compared to

modal and pressed phonation, a comparatively large amount of glottal �ow (AC amplitude) is observed

for breathy phonation [172]. Time domain parameters indicate the amount of glottal �ow is AQ and
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NAQ. NAQ has a larger range, while AQ shows a smaller range for voice disorder as compared to

healthy subjects. SQ is the ratio of the glottal opening phase to the duration of the glottal closing phase

and indicates the skewness of the glottal pulse. Breathy phonation is described by symmetric glottal

pulse [159]. SQ is higher for healthy subjects, as the glottal pulse is more asymmetrical compared to

subjects with voice disorder.

Figure 3.16: Distribution of frequency-domain glottal features for healthy and voice disorder subjects.
The horizontal line within the box denotes the median, and the box covers one-quarter of the data on
either side of the median. The whiskers on either side cover all points within 1.5 times the interquartile
range (width of the box), and points beyond these whiskers are plotted as outliers.

For the GVV signal with a small value of OQ in the time domain, its frequency domain signal is

said to have a strong second harmonic [1]. It was also shown that more skewness in the GVV signal

would have a strong third harmonic in the spectrum [1]. For subjects suffering from voice disorders

(due to incomplete closure), there is a large value of OQ compared to healthy subjects, resulting in a

comparatively small second harmonic. Hence H1-H2 is higher for individuals with voice disorders (as

shown in Figure 3.16). The presence of regular vocal fold vibration results in a large value of HRF for

healthy subjects as compared voice disorder subjects. PSP indicates larger value for healthy subjects as

compared to those with voice disorder. More importantly, it can be observed from all these box plots

that intonation features are more effective in distinguishing between healthy subjects and individuals

with voice disorders compared to glottal features. The same observation can be noticed from the results

in Table 3.5 in terms of classi�cation accuracy.

Figure 3.17, represents the speech signal, ZFF signal, F0 contour, and SoE contour derived from ZFF

method for three different groups: health, OVD and NOVD, respectively, for neutral vowel /a/. It can

be observed from Figure 3.17 that for the subject suffering from voice disorder, the variation in the F0

contour and SoE is more compared to a healthy subject. Moreover, these parameters show signi�cant

differences between the different categories of voice disorders.
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Figure 3.17: Illustration of the output signal received from the ZFF method for healthy subjects and
subjects suffering from organic and non-organic voice disorders, respectively, for neutral vowel /a/.

Table 3.6: Performance of voice disorder detection and identi�cation systems in terms of classi�cation
accuracy (in %) for combination of feature sets on SVD database. Here, Exp. 1: classi�cation of
healthy and voice disorders, Exp. 2: classi�cation of organic and non-organic voice disorders, Exp. 3:
classi�cation of structural and neurogenic voice disorders, and Exp. 4: classi�cation of functional and
psychogenic voice disorders.

Feature type Exp. 1 Exp. 2 Exp. 3 Exp. 4
Glottal + ComParE 85.2 72.7 73.1 59.2
Glottal + eGeMAPS 79.0 70.8 65.5 60.1
Glottal + MFCC 74.4 71.2 66.7 64.1
Glottal + PLP 78.0 71.5 67.8 63.0
Intonation + ComParE 84.9 72.8 74.9 60.3
Intonation + eGeMAPS 81.5 68.5 68.1 60.1
Intonation + MFCC 77.5 75.0 65.2 64.4
Intonation + PLP 77.6 72.7 69.3 62.4
MFCC-Residual + ComParE 84.1 73.0 76.0 65.0
MFCC-Residual + eGeMAPS 84.3 70.9 62.6 63.3
MFCC-Residual + MFCC 73.1 74.6 69.6 66.2
MFCC-residual + PLP 74.2 73.0 68.4 65.3
MFCC-ZFF + ComParE 84.5 72.3 74.0 67.3
MFCC-ZFF + eGeMAPS 84.3 71.8 67.5 62.1
MFCC-ZFF + MFCC 71.7 72.3 68.7 63.6
MFCC-ZFF + PLP 74.4 70.1 70.5 65.9
Glottal + Intonation + MFCC-Residual + MFCC-ZFF 75.6 72.4 67.0 70.0
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Further, experiments have been performed using combinations of feature sets to investigate the com-

plementary nature of excitation source features and baseline feature sets. In voice disorder detection,

ComParE with glottal feature combination produced the best classi�cation accuracy of 85.2%. Intona-

tion features with MFCC, MFCC-Residual with ComParE, and a combination of all excitation source

feature sets produced the best classi�cation accuracies 75%, 76% and 70% in experiments 2, 3 and 4,

respectively. In most of the experiments, a combination of baseline features (ComParE, eGeMAPS,

PLP and MFCC feature sets) with excitation source feature sets showed signi�cant improvement in the

performance of identi�cation systems trained with individual baseline feature sets. It indicates that ex-

citation source features capture complementary information about voice disorders compared to baseline

features. Results of the present study reveal that the detection of voice disorders has a higher classi-

�cation accuracy than the identi�cation of voice disorders. Moreover, the classi�cation of functional

and psychogenic voice disorders is more challenging compared to the classi�cation of structural and

neurogenic voice disorders.

3.5 Conclusions

This chapter proposed a hierarchical approach using excitation source features for the automatic

detection and identi�cation of voice disorders from a clinical perspective. A more detailed analysis

of voice disorders was performed to know whether the disorder is structural, neurogenic, functional

or psychogenic. Excitation source features used in these experiments are intonation features, glottal

features, MFCC-Residual and MFCC-ZFF. Excitation source features were compared with state-of-

art MFCC, PLP, ComParE and eGeMAPs features. Among the individual features, ComParE feature

set shows the best performance in most of the experiments. However, it is a brute-forced acoustic

feature set that has a very high dimension (6373) compared to the other feature sets. In most of the

experiments, a combination of baseline features (ComParE, eGeMAPS, PLP and MFCC feature sets)

with excitation source feature sets showed signi�cant improvement in the performance of identi�cation

systems trained with individual baseline feature sets. It indicates that excitation source features capture

complementary information about voice disorders compared to baseline features. For experiment 4,

when all source features were combined, the functional and psychogenic voice disorder classi�cation

system outperformed with a classi�cation accuracy of 70%

Results of the present study reveal that the detection of voice disorders has a higher classi�cation

accuracy than the identi�cation of voice disorders. Moreover, the classi�cation of functional and psy-

chogenic voice disorders is more challenging than the classi�cation of structural and neurogenic voice

disorders. From this chapter, it can be understood that features derived from the excitation source signal

can discriminate different categories of voice disorder.
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Chapter 4

Analysis of epoch extraction methods for different categories of voice

disorders

Based on the results of the studies done in Chapter 3, it can be concluded that information related

to voice disorders is captured in excitation source [173]. Computation of various excitation source

features such as jitter, shimmer, glottal parameters etc. involve the detection of epoch locations from

speech signal. Therefore, precise determination of epoch locations plays a signi�cant role in calculating

these features for the automated detection and identi�cation of voice disorders. This chapter analyses

the different epoch extraction methods for different categories of voice disorder.

The studies in [174, 175], show that the performance of state-of-the-art epoch extraction methods

is ef�cient in clean speech conditions. Ef�cacy of epoch extraction methods has been studied for tele-

phonic quality speech [176, 177, 178], emotional speech [179, 180], and the degraded speech obtained

by corrupting the clean speech with additive noise and reverberations [181, 182]. In general, the perfor-

mance of these methods has been evaluated using speech utterances produced by healthy (controlled)

speakers. On the other hand, the subjects suffering from voice disorders will not be able to produce

normal or modal phonation [85]. Hence, the performance of the existing epoch extraction methods

may vary in processing of speech associated with voice disorders due to the variations in the glottal

source characteristics such as roughness, breathiness, hoarseness, abnormality in pitch and strained

quality [11, 173]. In literature, the performance of epoch extraction methods was not studied for the

speech associated with voice disorders. Hence, this chapter aims to compare the performance of various

state-of-the-art algorithms for extracting epoch locations from speech associated with voice disorders.

Moreover, the performance of a GCI detection method may vary depending on the type of voice disorder

because each voice disorder can affect the phonation process in a different way. Hence, this study is also

intended to investigate the performance of the epoch extraction methods for different categories of voice

disorders by using SVD database [150]. It was observed from the �rst study that performance of the

state-of-the-art epoch extraction methods degrades for different categories of voice disorders. Then the

performance was also observed by applying the region-based pre-processing to the existing methods.

Finally, the performance of voice disorder detection and identi�cation system was observed with the

application of region-based processing.
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Rest of the chapter is organised as follows. Section 4.1 compares the performance of state-of-the-art

epoch extraction methods for healthy and voice disorders subjects. Section 4.2 presents the application

of the region-based processing on the state-of-the-art epoch extraction methods. Section 4.3 discusses

the performance of voice disorder detection and identi�cation system using the features extracted from

the excitation source evidence after applying the region-base processing on them. Finally, the summary

and conclusions of the study are described in Section 4.4.

4.1 Comparison of the state-of-the-art epoch extraction algorithm for

different categories of voice disorders

4.1.1 State-of-the-art epoch extraction algorithms

In this study state-of-the-art methods of epoch extraction like Zero frequency �ltering (ZFF) [56],

Zero phase-zero frequency �ltering (ZP-ZFF) [57], Speech event detection using the residual exci-

tation and a mean-based signal (SEDREAMS) [174], Dynamic programming phase slope algorithm

(DYPSA) [183], Yet another GCI algorithm (YAGA) [184], SEDREAMS-voice quality, Glottal clo-

sure/opening instant estimation using forward-backward algorithm (GEFBA) method, and Continuous

wavelet transform-glottal closure instant (CWT-GCI) method are considered for evaluating the perfor-

mance of different categories of voice disorders.

� ZFF method is based on the fact that vocal tract resonances are predominantly present at high

frequency [184], while the discontinuity due to impulse-like nature of glottal excitation is present

at all the frequencies including zero frequency. Hence, speech signal is passed through a zero

frequency resonator which is low pass �lter with poles located inside the unit circle. The re-

sultant �ltered signal will preserve the excitation source characteristics, at the same time high

frequency resonances of vocal tract system are attenuated [58]. Output of the �lter shows poly-

nomial growth/decay, which can be removed by passing this �ltered signal through trend removal

(moving average) �lter of length one to two pitch period. Trend removal �lter effectively removes

the growing/decaying trend present in the �ltered signal, which in turn highlights the �uctuations

caused due to impulse-like excitation. The output signal of the trend removal �lter is referred

to as zero frequency �ltered signal. Positive to negative zero crossing of zero frequency �ltered

signal is marked as epoch.

� ZP-ZFF method is stable implementation of ZFF. ZFR used in this method, has it's poles located

inside the unit circle, which make the �lter stable and anti-causal in�nite impulse response (IIR)

�lter.

� SEDREAMS method relies on mean based signal and residual signal for epoch extraction. First

the short intervals at which epochs are expected to occur are determined from the mean-based
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signal. Then LP residual signal is derived from the speech signal to capture the excitation source

characteristics. And as �nal step, intervals extracted from the mean-based signal are combined

with a peak detected from LP residual to accurately detect the GCI locations.

� DYPSA algorithm uses three steps to perform the epoch detection. First the candidate GCIs are

detected from zero crossing of phase-slope function. Then missed GCIs are recovered from the

phase-slope projection technique. In this projection technique, �rst it is detected that if a local

minimum is followed by a local maximum without zero-crossing. Then the midpoint between

these two point is projected with unit slope on the time axis to identify the GCIs which were

missed out from the previous step. Then as a �nal step, true GCIs are detected using dynamic

programming.

� YAGA methods is performed in two phases, candidate detection and candidate selection. In it's

�rst phase GCIs are detected from the speech signal, and then dynamic programming is per-

formed to select true GCIs from the candidate set. To calculate the candidate GCIs, �rst voice

source signal is derived using iterative adaptive inverse �ltering (IAIF) method. Now from this

signal multi-scale product of the stationary wavelet transform (SWT) is derived to highlight the

discontinuity presents in the signal followed by estimation of group delay function. Negative-

going zero crossings of group delay function are marked as GCIs candidate. As last step dynamic

programming algorithm is applied to detect true GCIs.

� SE-VQ Method algorithm was proposed to handle the different phonation type,, which is a mod-

i�ed form of SEDREAMS algorithm [139]. In this method, two extra steps are introduced as

compare to basic SEDREAMS algorithm they are: dynamic programming and post-processing.

Dynamic programming is applied to select the optimal GCI locations based on the strength of

peaks in LP residual and transition cost (i.e. transition from one GCI to another GCI). Further,

post-processing is applied to minimize the false positive GCIs location and to preserves the true

positive GCIs. In the SEDREAMS only one peak which is the highest peak from LP residual is

chosen, while in the SE-VQ, several LP residual peaks are selected in order to handle the voice

quality like breathy and harsh where there are no prominent peaks.

� GEFBA Method is based on source signal obtained by linear prediction based inverse �lter-

ing [181]. This algorithm is performed in two phases. In the �rst phase, the glottal �ow derivative

is derived from inverse �ltering based on LP analysis. Finally, in the second phase of GEFBA al-

gorithm, a forward and move backward algorithm is performed on each voiced frame to estimate

GCIs.

� CWT-GCI Method is based on the principle that CWT is a suitable method for determining the

sharp transition from the signal [177]. In this method, to compute GCIs CWT coef�cients are

calculated from the analytic signal instead of speech signal. From these coef�cients, the average

absolute signal is obtained, and this signal is convoluted with a Gaussian �lter to highlights the
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peaks. The convoluted output is referred to as evidence to estimate the epoch locations. Spurious

peaks are removed from the evidence signal by considering that time difference between the

two consecutive peaks is not less than 2 ms. After removing the spurious peaks, positive peaks

obtained from epoch evidence signal are referred to as epoch locations.

� SPF Method of epoch extraction is based on the estimation of time-frequency representation

obtained from single pole �lter (SPF) [176]. Single pole �lter is a narrow band IIR �lter, with

pole located inside the unit circle. In this approach, �rst, the speech signal is passed through the

bank of single-pole �lters, which gives better time-frequency representation of the speech signal.

From this time-frequency representation, time marginal is derived. Further, the time marginal

is smoothed using a Gaussian window of 8 ms. Finally, positive crossings obtained from the

smoothed time marginal, which are referred to as epoch locations.

4.1.2 Database

In SVD database [150], for each of the speech recordings, simultaneous EGG signals are available

to obtain the ground truth epoch locations. Therefore, this study used the SVD database to evaluate the

performance of epoch extraction algorithms. This is a publicly available database, can be downloaded

from the sitehttp://www.stimmdatenbank.coli.uni-saarland.de/ . The present study

considered the speech recordings from 687 healthy subjects and 679 subjects with different voice dis-

orders from the SVD database. Each recording includes vowels /a/, /i/ and /u/ produced at a normal,

low, and high pitch and also with rising-falling pitch. Also, each recording consists of a German sen-

tence “Guten Morgen, wie geht es Ihnen?” (“Good morning, how are you?”). The SVD database

was recorded at a sampling frequency of 50 kHz. In this study, all recordings were down-sampled to

8000 Hz. Additionally, the speech recordings correspond to 679 subjects with different voice disorders

were categorized into four sub-classes, namely, structural, neurogenic, functional, and psychogenic (as

discussed in Chapter 3). Further details, about each of the sub-classes are provided in Table 4.1.

4.1.3 Evaluation Metrics

Reference GCI locations are obtained from EGG signal. First difference EGG (dEGG) signal is

obtained from EGG signal by calculating the successive sample difference and then peaks detected from

this signal are marked as reference GCI locations. GCI locations obtained from speech signal (by any

of the method) is termed as estimated GCI. To evaluate the performance of epoch extraction methods

both GCIs (reference and estimated) are compared using the different parameters (as was done in) [184]

in one larynx cycle. Identi�cation rate(IR), miss rate (MR), false alarm rate (FAR), and identi�cation

accuracy (IA) are the popular metrics that are used for evaluating the performance of epoch extraction

methods [184]. Hence, in this study, we considered these metrics for evaluating the performance of

epoch extraction methods. Figure 4.1 shows the three larynx cycles of reference and estimated GCIs.
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Table 4.1: Details of the voice disorders considered from SVD database for evaluating the epoch ex-
traction algorithms. Here, FD: Functional dysphonia, PD: Psychogenic dysphonia, RLNP: Recurrent
laryngeal nerve palsy, and SD: Spasmodic dysphonia,

Voice disorder type Disorder name #Speakers

Structural
Laryngitis 30

Leukoplakia 41
Polyp 45

Neurogenic
SD 30

RLNP 188
Functional FD 254

Psychogenic PD 91

Figure 4.1: Comparison of larynx cycles of reference and estimated GCIs with possible outcomes [184].
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� Larynx cycle: Larynx cycle (n) is de�ned (in terms of sample) as a range of samples,(1=2)(nr � 1+

nr ) < n < (1=2)(nr +1 + nr ), wherenr represents the reference GCI locations whilenr � 1 and

nr +1 represents the preceding and following GCI location.

� Identi�cation rate: It is de�ned as percentage of larynx cycle in which exactly one GCI location

is identi�ed.

� Miss rate: It is de�ned as percentage of larynx cycle for which GCI is not detected (or missed).

� False alarm rate: It is de�ned as percentage of larynx cycle in which multiple GCI locations are

identi�ed.

� Identi�cation accuracy: It is de�ned as time difference between reference GCI location and

estimated GCI location for the cycle in which exact one GCI location was identi�ed.

4.1.4 Results and Discussion

In this section, we compared the performance of nine state-of-the-art epoch extraction methods for

the speech of healthy subjects and the speech of subjects with various voice disorders, using the SVD

database, which provides simultaneous EGG recordings. The performance of each method is evaluated

in terms of IDR, MR, FAR and IDA. The performance evaluation measures of different epoch extraction

algorithms from healthy speech and speech associated with voice disorders on SVD dataset is reported

in Table 4.2. In addition, the performance of the epoch extraction algorithms was studied for each of the

four broad categories of voice disorders (structural, neurogenic, functional, and psychogenic), and the

evaluation measures were reported in Table 4.3.

From the results presented in Table 4.2, it is evident that most of the epoch extraction methods

(except SE-VQ, CWT-GCI, SPF, and GEFBA) work well for the healthy scenario, in which speech is

produced under modal phonation. However, all epoch extraction methods show signi�cant degradation

in their performance for speech associated with voice disorders compared to healthy speech. Compared

to the healthy scenario, in the voice disorder scenario, all the epoch extraction algorithms shown ap-

proximately 5 to 8% absolute reduction in IDR and (0.05 to 0.15) ms absolute increase in IDA. Among

all epoch extraction methods, SEDREAMS and ZP-ZFF methods performed better in both healthy and

voice disorder scenarios, in terms of IDR, FAR, and IDA. In the healthy scenario, SEDREAMS method

shows the best performance in terms of IDR of 97.69%, whereas, ZP-ZFF method shown to be second

best with an IDR of 97.63%. In the voice disorder scenario, the ZP-ZFF method showed the best per-

formance in terms of IDR of 90.37% and IDA of 0.34 ms, while the ZFF and SEDREAMS methods

showed IDR of 89.96% each one, which is almost equivalent to the IDR of ZP-ZFF. On the other hand,

the DYPSA and YAGA methods showed comparable results in terms of IDR.

From the results reported in Table 4.3, it can be understood that among all the categories of voice dis-

orders for the structural and neurogenic categories, the performance of all epoch extraction algorithms
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Table 4.2: Performance evaluation of different epoch extraction methods for speech of healthy speakers
and speech of speakers with voice disorder on SVD dataset. IDR–Identi�cation rate, MR–Miss rate,
FAR–False Alarm Rate, IDA–Identi�cation Accuracy.

Class Method IDR (%) MR (%) FAR (%) IDA (ms)

H
ea

lth
y

ZP-ZFF 97.63 1.16 1.21 0.26
ZFF 96.94 0.75 2.31 0.42
DYPSA 95.45 1.42 3.13 0.23
YAGA 96.22 1.03 2.75 0.66
SEDREAMS 97.69 0.87 1.44 0.28
SE-VQ 78.36 16.12 5.52 0.85
CWT-GCI 92.01 6.35 1.65 0.45
SPF 87.19 10.47 2.34 0.43
GEFBA 72.77 22.09 5.14 0.54

Vo
ic

e
di

so
rd

er
s

ZP-ZFF 90.37 4.03 5.6 0.34
ZFF 89.96 3.79 6.25 0.46
DYPSA 88.06 4.57 7.37 0.36
YAGA 88.1 3.62 8.28 0.68
SEDREAMS 89.96 4.44 5.59 0.39
SE-VQ 74.01 19.05 6.93 0.91
CWT-GCI 85.77 9.64 4.59 0.56
SPF 81.27 13.79 4.93 0.59
GEFBA 64.96 27.02 8.01 0.58
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Table 4.3: Performance evaluation of different epoch extraction methods for speech associated with
different types of voice disorders on SVD dataset. IDR–Identi�cation rate, MR–Miss rate, FAR–False
Alarm Rate, IDA–Identi�cation Accuracy.

Class Method IDR (%) MR (%) FAR (%) IDA (ms)

S
tr

uc
tu

ra
lD

is
or

de
rs

ZP-ZFF 87.84 5.72 6.44 0.42
ZFF 87.79 5.37 6.84 0.52
DYPSA 84.53 5.86 9.61 0.41
YAGA 85.48 4.91 9.61 0.84
SEDREAMS 87.51 6.24 6.25 0.47
SE-VQ 74.63 17.97 7.40 1.02
CWT-GCI 86.10 8.30 5.59 0.62
SPF 83.57 10.9 5.54 0.66
GEFBA 70.77 20.47 8.76 0.64

N
eu

ro
ge

ni
c

D
is

or
de

rs ZP-ZFF 84.04 7.04 8.92 0.42
ZFF 83.33 6.90 9.77 0.55
DYPSA 81.40 7.32 11.28 0.47
YAGA 81.76 6.22 12.03 0.71
SEDREAMS 83.32 8.24 8.44 0.49
SE-VQ 71.02 20.88 8.10 1.00
CWT-GCI 80.83 11.90 7.27 0.65
SPF 77.35 15.60 7.04 0.69
GEFBA 61.06 30.89 8.05 0.62

F
un

ct
io

na
lD

is
or

de
rs ZP-ZFF 95.54 1.40 3.07 0.27

ZFF 95.28 1.17 3.56 0.40
DYPSA 93.80 2.16 4.03 0.28
YAGA 93.10 1.40 5.50 0.62
SEDREAMS 95.41 1.23 3.36 0.30
SE-VQ 76.18 17.72 6.10 0.84
CWT-GCI 88.97 8.59 2.44 0.49
SPF 82.99 13.54 3.47 0.50
GEFBA 65.92 26.16 7.92 0.55

P
sy

ch
og

en
ic

D
is

or
de

rs ZP-ZFF 94.34 2.00 3.66 0.27
ZFF 93.77 1.67 4.56 0.37
DYPSA 92.49 3.06 4.44 0.29
YAGA 92.70 1.92 5.38 0.56
SEDREAMS 93.81 2.00 4.18 0.28
SE-VQ 74.36 19.76 5.88 0.77
CWT-GCI 88.28 8.86 2.86 0.46
SPF 82.93 13.85 3.21 0.51
GEFBA 64.23 28.53 7.24 0.50
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was very poor in terms of identi�cation rate. Compared to the healthy scenario, for the structural, neu-

rogenic, functional, and psychogenic voice disorder scenarios the epoch extraction algorithms showed

an absolute reduction in IDR of approximately 10%, 15%, 3%, and 5%, respectively. The IDA refers to

standard deviation of error, and therefore it should be lower for better performance of an epoch extrac-

tion method [56]. The IDA of the epoch extraction methods in neurogenic and structural voice disorder

scenarios was increased approximately by 20 ms. More interestingly, the performance of epoch extrac-

tion methods degraded more for organic voice disorders (structural and neurogenic) than for non-organic

voice disorders (functional and psychogenic). The results of this study indicate that existing epoch ex-

traction methods need to be improved for accurate detection of epoch locations from the speech in the

context of voice disorders.

4.2 Application of Region-wise approach for state-of-the-art epoch ex-

traction algorithm

From the previous study, it was found that performance of the state-of-the-art epoch extraction meth-

ods, degrades for the voice disorder scenario. Some of the state-of-the-art epoch extraction methods

depend on average value of pitch period for accurate estimation of GCI locations. These methods per-

form well for conditions in which variation of F0 is not very signi�cant. For a healthy speaker, variation

of F0 will not be signi�cant in one single utterance. Hence, state-of-the-art epoch extraction algorithm

perform well in these conditions. Voice disorders are associated with aperiodic and irregular vibration

of vocal folds [11, 30], which in turn results in large variation of F0 compared to healthy speaker [24].

We have applied region-wise processing on the state-of-the-art epoch extraction methods, for extraction

of GCI locations. According to this approach, GCI locations are computed for each region. Figure 4.2

shows the block diagram of region-wise epoch extraction approach. In this case F0 is extracted for each

region, so that large variation of F0 will not affect performance of the overall method, specially in case

of voice disorders.

Block diagram of region-wise approach used fo detection of GCI is shown in Figure 4.2. First speech

activity regions are detected from speech signal. Then parameters like pitch period, fundamental fre-

quency, maximum energy value, minimum energy value, or any other parameters, required for extracting

the epochs from speech signal are computed from each region. Finally, this region, and parameters es-

timated in the region together are used for epoch extraction. All the regions are processed in the above

mentioned approach to compute the epoch locations from the complete speech signal. The application

of region-based approach is studied for the state-of-the-art epoch extraction methods.

4.2.1 Speech activity detection

For the speech activity or voiced activity detection, summation of residual harmonics (SRH) method [185]

is used. For this, �rst residual signal (e(t)) is calculated using inverse �ltering method. Then for each

58



Figure 4.2: Region-wise approach for extraction of GCI location.

hanning windowed frame, the amplitude spectrum of residual signalE (f ) is obtained. For the voiced

frame,E(f ) shows the peaks at the harmonics of the fundamental frequency (F0). From the spectrum

of E(f ), for eachf the sum of residual harmonics is calculated.

SRH (f ) = E(f ) +
NharmX

k=2

[E (k:f ) � E ((k �
1
2

):f )] (4.1)

SRH (f ) shows the maximum value atF 0 for a frame. Using this method, a frame is marked as voiced

if SRH (f ) is greater than the threshold value. In this way the voiced activity regions are determined for

a given speech signal and parameters like pitch period, fundamental frequency, maximum energy value,

and minimum energy value are calculated for each region.

4.2.2 Experimental results and discussion

Five state-of-the-art methods ZFF, ZP-ZFF, SEDREAMS, YAGA, and DYPSA are considered in

our study to evaluate the performance. Moreover, the performance was also compared by applying

the region-wise approach on the state-of-the-art epoch extraction methods in voice disorder scenario.

The performance of each epoch extraction method is evaluated in terms of IR, MR, FAR, and IA is

shown in Table 4.4. Figure 4.3 illustrates the epoch locations derived from the state-of-the-art epoch

extraction methods on voice disorder scenario. Figure (a)-(g) shows speech signal, its corresponding

ground truth signal (dEGG signal), epoch locations derived from ZFF, ZP-ZFF, SEDREAMS, DYPSA

and YAGA methods before applying the region-wise approach. Figure (h)-(n) shows speech signal,

its corresponding ground truth signal (dEGG signal), epoch locations derived from ZFF, ZP-ZFF, SE-

DREAMS, DYPSA, and YAGA methods after applying the region-wise approach. It can be observed

from the Figure 4.3 that performance of ZFF, ZP-ZFF, and SEDREAMS methods improved in terms of

FAR (FAR is reduced) after applying the region-wise approach, while the performance remains same

for dynamic-based programming based methods.

Table 4.4 shows the performance of state-of-the-art methods without and with applying the region

based process for different categories of voice disorders. Column 1 in the Table 4.4 indicates different
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Figure 4.3: Epoch extraction from Voice disorder scenario using the state-of-the-art epoch extraction
methods before and after applying the region-wise approach (a),(h) Speech segment for speech utter-
ance associated with voice disorder. (b),(i) Differenced EGG signal. (d),(j) ZFF signal with identi�ed
GCI locations without and with region-wise approach, respectively. (e),(k) ZP-ZFF signal with identi-
�ed GCI locations without and with region-wise approach, respectively. (f),(l) LP residual signal from
SEDREAMS Method with identi�ed GCI locations without and with region-wise approach, respec-
tively. (g),(m) LP residual signal with Identi�ed GCI location using DYPSA method without and with
region-wise approach, respectively. (h),(n) LP residual signal with Identi�ed GCI location from YAGA
method without and with region-wise approach, respectively.
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categories of the voice disorder. Epoch extraction methods are indicated in column 2. Column 3 to

6 indicate the performance of state-of-the-art epoch extraction methods and column 7 to 10 indicate

the performance of epoch extraction methods after applying the region-wise approach. The general

observation from the results is that performance of state-of-the epoch extraction methods like ZFF, ZP-

ZFF, and SEDREAMS methods is degraded for all the categories pf voice disorder. It may be due to

degradation in voice quality for voice disorder (presence of breathiness, creakiness, and harshness).

Degradation in the performance may be due to the reason that these methods depend on average value

of pitch period for extraction of epoch locations. The performance is improved in terms of FAR, for

ZFF, ZP-ZFF, and SEDREAMS methods by processing the methods in region-wise approach. As in

the region-wise approach, parameters used for identi�cation of epoch locations are extracted for each

region, hence variation in pitch period does not affect the performance in the for these methods. On

the other hand dynamic programming based methods like DYPSA and YAGA, are robust for different

categories of voice disorder. The performance of both the methods, after applying the region-wise

approach is similar. It may be due to dynamic programming algorithm used for extraction of epoch

locations.

Table 4.4: Performance evaluation of different epoch extraction methods for the different cate-
gories of voice disorder scenario. IR–Identi�cation rate, MR–Miss rate, FAR–False Alarm Rate,
IA–Identi�cation Accuracy.

Category
Epoch extraction method

Without region With region

Structural VD

IR(%) MR(%) FAR(%) IA(ms) IR(%) MR(%) FAR(%) IA(ms)
ZFF 92.99 2.16 4.85 0.46 94.14 2.64 3.21 0.51

ZP-ZFF 91.45 2.38 6.17 0.34 93.10 2.55 4.35 0.36
SEDREAM 88.89 4.04 7.07 0.39 91.18 3.10 5.72 0.41

YAGA 91.84 2.23 5.93 0.83 91.32 2.30 6.37 0.86
DYPSA 89.25 4.30 6.45 0.40 89.32 4.33 6.36 0.40

Neurological VD

ZFF 90.39 1.71 7.90 0.36 91.32 3.25 5.42 0.42
ZP-ZFF 91.24 1.65 7.10 0.27 92.26 2.88 4.86 0.28

SEDREAM 91.42 1.91 6.68 0.34 90.13 3.19 6.68 0.30
YAGA 90.65 2.34 7.01 0.54 88.71 2.82 8.47 0.60
DYPSA 89.03 4.26 6.71 0.33 87.98 4.71 7.32 0.35

Functional VD

ZFF 91.20 3.13 5.67 0.47 92.09 3.31 4.60 0.48
ZP-ZFF 92.67 2.21 5.13 0.31 92.88 2.70 4.42 0.32

SEDREAM 92.38 1.92 5.70 0.33 92.44 2.16 5.40 0.42
YAGA 91.07 1.83 7.10 0.59 90.47 1.75 7.78 0.59
DYPSA 91.43 3.75 4.82 0.34 91.08 3.78 5.14 0.34

Psychogenic VD

ZFF 88.98 1.02 10.00 0.32 90.28 1.94 7.78 0.37
ZP-ZFF 90.13 0.98 8.89 0.27 92.05 1.39 6.56 0.28

SEDREAM 94.14 1.41 4.45 0.33 92.16 2.28 5.56 0.37
YAGA 91.33 2.07 6.60 0.52 91.43 1.90 6.67 0.54
DYPSA 92.01 3.37 4.62 0.33 91.74 3.54 4.72 0.31

From the results, it can be observed that performance is improved in terms of IR (approximately 2%),

for ZFF and ZP-ZFF methods after applying the region-wise approach, for all the categories of voice

disorders. For structural voice disorder, region-wise ZFF method showed the best performance in terms

of IR of 94.14% and FAR of 3.32%. For neurogenic and functional voice disorder, ZP-ZFF showed the
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best performance in terms of IR of approximately 92% compared to all other epoch extraction methods.

SEDREAMS method showed the best performance in terms of IR of 94.14%, MR of 1.41%, and FAR

of 4.45%.

4.3 Extraction of excitation source based features from the region-based

approach for voice disorder detection and identi�cation

From the previous studies, it can be concluded that if GCI locations are detected with the application

of region-based processing on state-of-the-art epoch extraction algorithm then performance is improved

for voice disorder scenario. Hence, if the excitation source features are extracted from this method,

it might improve the performance of voice disorder detection and identi�cation system. This section

compares the performance of excitation source based features with and without applying the region-

wise process on the state-of-the-art methods.

4.3.1 Experiment setup

The experiments have been performed on SVD database for both detection and identi�cation task.

Six features are used in this regard to carry out experiments as in line with our previous study.

� MFCC-Residual-WR, and MFCC-ZFF-WR: To derive these features �rst residual signal and

epoch locations are derived from each region for complete speech signal. MFCC features are

derived from a frame-length of 20 ms and a frame-shift of 5 ms. These features consist of 39

dimensions, comprising 13 static coef�cients, as well as their �rst and second-order derivatives.

Additionally, four statistical measures—mean, standard deviation, kurtosis, and skewness—are

calculated from the MFCC coef�cients. This results in 156 dimension feature vector referred as

MFCC-Residual-WR and MFCC-ZFF-WR, respectively.

� Intonation-WR: Intonation features are derived by applying the region-based processing to ZFF

method. 76 dimension feature vector is derived which consist of perturbation parameters as dis-

cussed in Chapter 3.

� MFCC-Residual, MFCC-ZFF, and intonation: These features are considered as baseline feature

for this experiment. MFCC features are derived from LP residual signal and ZFF signal as dis-

cussed in the previous chapter.

SVM classi�er shows the consistent performance for small database used in the pathological application.

Therefore SVM classi�er with polynomial kernel of order 2 is used to train and test the voice disorder

detection and identi�cation system in this chapter.
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4.3.2 Results and discussion

The primary aim of this study is to improve the performance of detection and identi�cation systems

by utilizing features obtained from epoch locations resulting from region-based processing. The state-

of-the-art epoch extraction algorithms, namely LP residual and ZFF, are employed for this purpose.

The voice disorder detection and identi�cation system is developed using MFCC features extracted

from these algorithms and classi�ed using an SVM classi�er. MFCC-Residual and MFCC-ZFF features

are considered as baseline features to compare the performance. Hierarchical approach was followed in

order to perform the detection and identi�cation experiments in a clinical way. Total of four experiments

were performed to know category of voice disorder and results are shown in the Table 4.5.

Table 4.5: Performance of voice disorder detection and identi�cation systems in terms of classi�cation
accuracy (in %) for individual feature set on SVD database. Here, Exp. 1: classi�cation of healthy and
voice disorder, Exp. 2: classi�cation of organic and non-organic voice disorders, Exp. 3: classi�cation
of structural and neurogenic voice disorders, and Exp. 4: classi�cation of functional and psychogenic
voice disorders.

Features Exp. 1 Exp. 2 Exp. 3 Exp. 4
MFCC-Residual 71.7 69.3 61.7 64.5

MFCC-Residual-WR 72.7 69 63.6 69.4
MFCC-ZFF 69.9 69.4 63.6 65.3

MFCC-ZFF-WR 74.4 72.7 67.1 65
Intonation 64.8 63.8 60.4 55.9

Intonation-WR 67.8 61.5 67 56.5

Table 4.5 indicate that the performance of features extracted with region-based processing is im-

proved as compared to the baseline features. It can be observed from the Table 4.5 that for the fea-

tures extracted after applying the region-based processing, the performance of voice disorder detection

and identi�cation task is improved in almost all cases. MFCC-Residual-WR feature exhibits improved

performance compared to the MFCC-Residual feature in experiments 1, 3, and 4 upto 1%, 2% and

5% respectively. In experiment 2, the MFCC-Residual-WR feature achieves a comparable classi�ca-

tion accuracy of 69.3%. The performance for the voice disorder detection task is improved by 5% for

MFCC-ZFF-WR feature as compared to MFCC-ZFF. Classi�cation accuracy increases from 63.6% to

72.7% for experiment 2 by using the MFCC-ZFF-WR feature. Similar improvements are observed for

intonation features obtained by applying region-based pre-processing to the ZFF method.

4.4 Conclusion

In this chapter, we conducted a comparative analysis of epoch extraction methods to evaluate their

performance in both healthy and voice disorder scenarios. Our study revealed that most of these methods

exhibited better performance in healthy scenarios compared to voice disorder scenarios. The reason for
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this performance degradation could be attributed to the higher variation in fundamental frequency (F 0)

observed in subjects with voice disorders.

To address this issue, we explored the approach of calculating epoch locations region-wise, which

resulted in an improvement in the performance of the state-of-the-art epoch extraction algorithm. Sub-

sequently, we utilized the excitation source features derived from this algorithm, both with and without

the region-based processing, for voice disorder detection and identi�cation.

The results showed that incorporating the region-based processing approach led to enhanced perfor-

mance across all experiments when compared to the baseline features. Therefore, we can conclude that

accurately identifying epoch locations can signi�cantly improve the performance of automatic voice

disorder detection and identi�cation systems utilizing features derived from the excitation source sig-

nal.
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Chapter 5

Detection and identi�cation of voice disorders using the features derived

from long-term average spectrum

Voice disorders are characterized by abnormal voice production, change in voice quality, pitch, and

loudness inappropriate to age and gender [11]. Perceptually, these voice disorders are often associated

with symptoms such as roughness, breathiness, strain, and harshness in the voice. These voice qualities

from the speech signal are perceived in the long term [66]. Hence these features can be captured by Long

Term Average Spectrum (LTAS). LTAS captures the static characteristic of the speaker's voice instead

of the short time variation present in the speech. Many researchers used LTAS in clinical application,

as well as in quanti�cation of voice quality. Some studies claim that LTAS can be used for voice

classi�cation [127]. Some researchers used LTAS as a good acoustic measure to differentiate the male

and female speakers [67]. In [128], LTAS is also used to study voice quality changes before and after

surgery. Other works related to LTAS were �nding differences related to age [68], professional singers,

different styles of singing [129], speaking and singing [130], and quantifying the quality of voice [131].

For extraction of the LTAS features, speech signal should be decomposed into multiple frequency

components using �lter banks. In the literature, LTAS features were extracted using the critical band

�lter bank [67, 68]. Recently, the author in [69] explored the single frequency �lter bank for hyper-

nasality detection. SLPs make decisions regarding the presence of voice disorders by carefully listening

to the subject's entire utterance. To replicate the human basilar membrane, auditory �lter banks are

commonly used in the literature. The bandwidth of the auditory �lter is designed such that it is narrow

for lower frequencies and wider for higher frequencies. We hypothesized that auditory �lters might

better capture perceptual characteristics related to voice disorders compared to other �lter banks. This

motivated us to explore various auditory �lter banks, such as constant-Q and gammatone �lter banks,

for automatic detection and identi�cation of voice disorders. The performance of the voice disorder

detection and identi�cation system is then compared with other �lter banks that have been previously

used in the literature.

Rest of the chapter is organised as follows. In Section 5.1, �lter banks used for LTAS feature extrac-

tions are discussed. The experimental setup which describes feature extraction, database and classi�er is
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discussed in the Section 5.2. Results obtained are presented in the Section 5.3. Conclusion and summary

of this study are described in Section 5.4.

5.1 Filter banks for LTAS feature extraction

For the extraction of LTAS features the speech signal should be decomposed into multiple frequency

bands using the �lter bank. Filter bank is set of band pass �lters which passes the selected range of

frequencies of the signal, while attenuates the other frequencies. Auditory �lter banks like gammatone

and constant-Q are used in this study in order to effectively capture voice quality-related information in

individuals with voice disorders. This section describes state of the art �lter banks used in this study

for voice disorder detection and identi�cation in a clinical way, along with the extraction of the LTAS

features.

5.1.1 State of the art �lter banks

The �lter banks considered in this study, namely critical band, gammatone, Constant-Q, and single

frequency �lter banks, are described as follows.

5.1.1.1 Critical band �lter bank

Critical band �lter bank (CBFB), also referred to as octave band �lter bank, is used to mimic human

perception. Octave band �lters are set of bandpass �lters in which highest frequency is twice of the

lowest frequency [67]. Octave band is mainly used in music, in which one octave is difference between

same notes with double its frequency. Critical band �lter is Butterworth band pass �lter with center

frequency of 30, 60, 120, 240, 480, 960, 1920, 3840, and 7680 Hz designed for the signal with sampling

frequencyf s of 8 kHz. Frequency-domain response of critical band �lter is shown in Figure 5.1.

5.1.1.2 Gammatone �lter bank

The gammatone �lters are the most widely used auditory �lters to model the human auditory system.

In the term gammatone, gamma is referred to function mostly used in probability, and tone refers to

the cosine term. Gammatone �lter bank (GFB) models the cochlea by overlapping bandpass �lter with

impulse response given by the product of a rising polynomial, a decaying exponential function, and a

cosine wave [186]. Figure 5.2 and 5.3 shows the time and frequency domain response of gammatone

�lter. The impulse response of a gammatone �lterg(t) is given by,

g(t) = at(N � 1)e� 2�bt cos(2�f ct + � ) for t � 0: (5.1)

Here,N is the order of the �lter which determines the slope of the �lter's skirts,bis the bandwidth of the

�lter, f c is center frequency,a and� are the scaling factor and phase of the cosine wave, respectively.
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Figure 5.1: Frequency response of Critical band �lter bank[67].

In general, the order of the gammatone �lter is chosen in-between 3 to 5, to model the human auditory

system [187]. The bandwidthb correspond to eachf c, is obtained using the Equivalent Rectangular

Bandwidth (ERB) scale which is given by [188],

b = ERB (f c) = 24 :7(4:37f c + 1) (5.2)

where,b is in Hz andf c is in kHz.

Figure 5.2: Time domain response of Gammatone function [188].
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Figure 5.3: Frequency domain response of Gammatone function[188].

5.1.1.3 Constant-Q �lter bank

The Constant-Q �lter bank (CQFB) is based on the Constant-Q transform (CQT) and utilizes a �lter

bank with geometrically spaced �lters. These �lters maintain a constant-Q factor, meaning that the ratio

of the center frequency to the resolution remains constant. This unique design allows the resolution of

the �lters to approximate musical notes. [189]. CQT provides variable time and frequency resolution.

For the discrete time signalx[n] the CQT is given by

X [k; n] =
n+ bN k =2cX

j = n�b N k =2c

x[j ]a�
k (j � n + Nk=2) (5.3)

wherek is frequency bin index,Nk is the window length, andak is the complex time frequency atoms

which is de�ned as

ak (n) =
1
C

n
Nk

exp[i (2�
f k

f s
+ � k )] (5.4)

f k is the center frequency of thekth bin, f s is the sampling frequency and� k is the phase offset and C

is the scaling factor which is given by

C =
bN k =2cX

l= �b N k =2c

w
�

l + Nk=2
Nk

�
(5.5)

In order to maintain constant-Q factor, length of the window is de�ned as

Nk =
f s

f k
Q (5.6)
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Thekth center frequency of constant-Q transform is given by

f k = f 0 2k=B (5.7)

where,f 0 is minimum frequency, andB is number of bins per octave that determines trade-off of time-

frequency resolution provided by the �lter. The bandwidth of the �lterb is given by

b = f k+1 � f k = f k (21=B � 1): (5.8)

Quality factor (Q-factor) is given by

Q =
f k

b
= (2 1=B � 1)� 1 (5.9)

This constant-Q factor leads to high temporal resolution at high frequency and high frequency reso-

lution at low frequency.

5.1.1.4 Single frequency �lter bank

The single frequency �lter bank (SFFB) (as discussed in [190]), is based on single frequency �ltering

(SFF) which is time-frequency analysis method [191]. SFF provides amplitude envelope of the speech

signal at each selected frequency as a function of time.

1. Speech signals[n] is passed through pre-emphasis �lter

x[n] = s[n] � s[n � 1] (5.10)

2. The signalx[n] is frequency shifted by multiplying it with complex exponential

~xk [n] = x[n]e
� j

2� ~f kn
fs (5.11)

~f k is normalized frequency and is given by

~f k =
fs
2

� f k (5.12)

wheref k is thekth desired frequency andf s is the sampling frequency

3. The frequency shifted signal is passed through a single pole �lter, whose pole is located on to the

negative real axis (atz = � r ).

H (z) =
1

1 + rz � 1 (5.13)

4. The output of the �lter is given by

yk [n] = � ryk [n � 1] + xk [n] (5.14)
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5. The amplitude envelope of signalyk [n] is given by

ek [n] =
q

(y2
kr [n] + y2

ki [n]) (5.15)

whereykr [n] andykr [n] are the real and imaginary components ofyk [n], respectively.

The value ofr which can be selected in between 0 to 1, determines the bandwidth of the �lter. The

narrow �lters are designed to provide high spectral resolution by choosing the value ofr between 0.95

to 0.995. Figure 5.4 represents the frequency-domain response of SFF.

Figure 5.4: Frequency domain response of single frequency �lter bank [190].

5.1.2 Extraction of Long term average spectral features

The long term average spectrum features capture the static information like voice quality, gender

information and age-related features from the speech signal [67]. To extract these features, �rst, the

speech signals[n] is passed through the bank of �lter to decompose it into multiple time-frequency

components (as shown in Figure 5.5). Ifhi [n] is �lter's impulse response then the output of the �lter is

given by

si [n] = hi [n] � s[n] i = 1 ; 2:::::N (5.16)

whereN is the number of �lters. All theN band signals along with original full-band signal in total

N + 1 components are framed using a non-overlapping rectangular window of 20 ms. Then root mean

square energy is calculated for each frame denoted bysRMSi [k] correspond to thekth frame ofi th band.

Finally, 10 statistical averages like normalized mean, standard deviation, range, skewness and kurtosis

are calculated, the resulting((N + 1) � 10� 1) dimension feature vector is denoted as LTAS feature.

5.2 Experimental setup

This section describes the method to extract the various features used for studying voice disorder

detection and identi�cation. Further details of the database, baseline features, and classi�er used for this

study are presented in the following section.
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Figure 5.5: LTAS feature extraction [67].

5.2.1 Feature Extraction

The features explored in this study include the LTAS features obtained by using the state of the art

�lter banks, statistical averages of the short time features (LPCC, MFCC, PLP, etc.) and state of the art

openSMILE features such as eGEMAPS and ComParE. The extraction of these features is presented as

follows.

5.2.1.1 LTAS based features

The parameters of each �lter bank considered for extracting the LTAS features are described in the

following subsection.

� CBFB-LTAS feature is calculated using 9-octave band signals and one full band speech signal.

To get the time-frequency decomposition of the speech signal, �rst, the signal is passed through

9-octave band �lters with the minimum centre frequency of 30 Hz and a maximum frequency of

7680 Hz. Finally, 99 (10*10-1) dimension CBFB-LTAS vector is obtained.

� For extraction of CQFB-LTAS feature vector, the speech signal is passed through the CQFB with

106 constant-Q spaced �lters. The CQFB is realized usingf min of 10Hz, f max of 4000Hz, and

number of bins per octaveb of 12 [192]. In total, 107 components are used, resulting in 1069

(107*10-1) dimension LTAS feature vector.

� In case of GFB-LTAS feature extraction, the speech signal is decomposed by passing it through

the 32 gammatone-tone �lters [193]. The minimum and maximum frequency are selected as 0 Hz

and 4000 Hz, respectively, which results in 329 (33*10-1) dimension feature vector.

� To extract the SFFB-LTAS feature vector, the speech signal is passed through 201 SFF. The

pole locationr of 0.98 and frequency resolution of 20 Hz were used to realize the SFFB (as

in [69]). Total of 202 components (201 �lter responses and speech signal) are used, results in

2019 (202*10-1) dimension LTAS feature vector.
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5.2.1.2 Statistical averages of the state of the art features

To compute the statistical averages, �rst, frame-level features were computed using a Hamming

window of size 25 ms with 10 ms frame shift. Firstm static cepstral coef�cients and their delta, and

delta-delta features were computed yielding ind = 3 � m dimension feature vector. Finally, statistical

averages such as mean, standard deviation, kurtosis and skewness were derived from these frame-level

features resulting inD = ( d � 4) dimension feature vector named as STAT features as in [69]. Con-

ventional MFCC, LPCC, PLP, and CQCC features, which captures the vocal tract information are used

to compute corresponding STAT features, namely MFCC-STAT, LPCC-STAT, PLP-STAT, and CQCC-

STAT. CQCC features were calculated from the CQT-transform withf min of 100 Hz,f max of 4000 Hz

and bins per octave of 192 [189].

Along with the system features, we also explored the excitation source evidence such as LP-residual

and zero frequency �ltered (ZFF) signal to compute the STAT features. In this regard, MFCC features

were computed from LP-residual and ZFF-signal as in [40]. Then corresponding STAT features were

computed and are named as MFCC-Residual-STAT and MFCC-ZFF-STAT, respectively. MATLAB

implementation of the features used along with supporting material is provided inhttps://github.

com/Purva-Barche/LTASfilterbankcodes .

5.2.1.3 OpenSMILE features

This work explored two state of the art feature sets obtained from openSMILE tool kit [164] as base-

line features. The �rst feature set is extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS)

which is low dimension knowledge-based acoustic feature [166]. It is 88 dimension feature set mainly

used for extraction of emotion. The second set used is Computational Paralinguistic Challenge (Com-

ParE) feature set which is brute-forced set [194]. It has a dimension of 6373 feature which are usually

designed to extract paralinguistic information from the acoustic signal.

5.2.2 Database

Databases used in this chapter are Saarbruecken voice disorder (SVD) dataset [150], and Hospital

Universitario Pr�ncipe de Asturias (HUPA) database [151].

� The SVD dataset is used for performing the experiments. In this study, the speech samples cor-

responding to voice disorders from SVD database were grouped into four classes as used in our

previous chapter [41], namely,Structural, Neurogenic, Functional and Psychogenic. In this re-

gard 625 samples were considered from healthy class and total of 950 voice samples were con-

sidered from different voice disorders category for vowel /a/, /i/, and /u/ in normal, high, low and

rising-falling pitch.

� The HUPA database contains recordings of the vowel /a/ for a total of 440 subjects. Out of total

366 recordings, 239 recordings are from pathological subjects, and 201 recordings are from nor-
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mal subjects. It contains organic pathologies like Bilateral Reinke's edema, Polyp, Cyst, Bilateral

nodule, Recurrent nerve paralysis etc. Auditory-perceptual ratings according to GRBAS scale is

available for HUPA database. It contains the �ve different components, Grade of hoarseness (G),

Roughness (R), Breathiness (B), Asthenia (A), and Strain (S). Each component is rated as 0, 1, 2,

or 3, where 0 indicates normal, 1 mild, 2 moderate and 3 indicates more severe degree of voice

disorder.

5.2.3 Classi�er

The classi�er used in our study for detection and identi�cation of voice disorders is the support vec-

tor machine (SVM) which is a supervised binary classi�er. The detection and identi�cation of voice

disorders were also done by using several other classi�ers like decision tree, k-nearest neighbour, en-

semble classi�er and logistic regression. SVM is selected among all other classi�ers due to its best

classi�cation accuracy. Among all different kernels like linear, radial basis functions, and polynomial,

polynomial kernel with a polynomial degree of 2 outperformed in this study. Moreover, the grid search

algorithm was performed to select the optimum value of kernel parameters. Further, �ve-fold cross-

validation was performed to �nd the classi�cation accuracy.

5.3 Results and discussion

In the previous study [41], we have performed identi�cation of voice disorder in clinical way by us-

ing excitation source evidences. Among the individual excitation source features the intonation features

derived from ZFF signal and MFCC-Residual provided best classi�cation accuracy of 69.3% and 70.8%

for detection and identi�cation task, respectively. In continuation to our previous studies, the present

work explored the signi�cance of long term average spectral features (supra-segmental features) using

state of the art �lter banks for voice disorder detection and identi�cation tasks in the similar way to im-

prove the performance of both the tasks. Also, the performance of the detection and identi�cation system

is compared with state of the art openSMILE features and statistical averages of frame-level features.

The detection system performs a binary classi�cation to discriminate the speech samples corresponding

to healthy and voice disorders. On the other hand, identi�cation is a multi-level classi�cation problem in

which three binary classi�ers were used to identify the type of voice disorder. Total of four experiments

were carried out in our thesis. Further, the relation between the LTAS features and perceptual scale was

evaluated using N-way analysis of variances (ANOVA).

5.3.1 Performance analysis of voice disorder detection and identi�cation system

Voice disorder detection and identi�cation experiments were performed on the SVD dataset, whereas

only detection task was performed on HUPA dataset as samples of different categories of voice disorders

are not available for HUPA database. All the experiments were performed using the SVM classi�er.
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Performance of the detection and identi�cation systems with individual baseline features and LTAS

features obtained from various �lter banks is reported in Table 5.1 for SVD database. Table 5.2 shows

the voice disorder detection (Exp. 1) result for HUPA database. In addition, the performance of detection

and identi�cation systems was evaluated using the combination of �lter bank features with the state of

the art openSMILE features, and the results are presented on SVD and HUPA database in Table 5.3.

Table 5.1: Performance of voice disorder detection and identi�cation systems in terms of classi�cation
accuracy (in %) for individual feature set on SVD database. Here, Exp. 1: classi�cation of healthy and
voice disorder, Exp. 2: classi�cation of organic and non-organic voice disorders, Exp. 3: classi�cation
of structural and neurogenic voice disorders, Exp. 4: classi�cation of functional and psychogenic voice
disorders, S1 Statistical average feature set, S2 openSMILE feature set, S3 LTAS features.

Feature Exp.1 Exp.2 Exp.3 Exp.4

S1

MFCC-STAT 76.1 71.6 69.9 68.2
PLP-STAT 78.4 71.2 74.7 66.2

LPCC-STAT 75.6 68.6 70.4 65.3
CQCC-STAT 74.4 70.3 71.2 70.8

MFCC-Residual-STAT 72 70.1 66.3 65.9
MFCC-ZFF-STAT 71.3 69.3 70.6 69.1

S2
eGeMAPS 80.7 71 70.6 64.5
ComParE 85.9 75.7 76.5 69.4

S3

CBFB-LTAS 74.3 69.9 68.6 66.2
GFB-LTAS 76.9 71.4 69.9 67.9

CQFB-LTAS 78 70.8 71.2 65.9
SFFB-LTAS 76.8 69 69.1 65.9

From Table 5.1, it is evident that, among all STAT features PLP-STAT features shows better clas-

si�cation accuracy of 78.4% and 74.7% for Exp. 1 and 3 respectively . Further, ComParE feature set

outperformed for all the experiments. Among all LTAS features, CQFB-LTAS performed better for

Exp. 1 and 3, while GFB-LTAS performed better for Exp. 2 and 4. Moreover, the performance of

the CQFB-LTAS features (78%, 70.8% and 71.2%) is comparable to the baseline eGeMAPS features

(80.7%, 71% and 70.6%) for three experiments.

Table 5.2 shows the voice disorder detection (only Exp. 1) results on HUPA dataset using the dif-

ferent baseline features and LTAS based features. From the table it is evident among all the STAT

features PLP-STAT features shows better classi�cation accuracy of 73.7% for HUPA datset. Further,

the best performance is obtained in term of classi�cation accuracy of 82.1% for ComParE feature sets.

Among the �lter bank based LTAS features, CQFB-LTAS performed best with a classi�cation accuracy

of 81.4%.

Among baseline feature sets, the openSMILE features showed better classi�cation accuracy com-

pared to statistical feature sets; hence, the performance was also observed by combining the LTAS fea-

ture sets with openSMILE feature sets as reported in Table 5.3 for SVD (all the experiments) and HUPA

(only Exp. 1) database. It can be observed from the Table 5.3 for the detection task best classi�cation
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Table 5.2: Performance of voice disorder detection systems in terms of classi�cation accuracy ( in %) for
HUPA database. Here, S1 Statistical average feature set, S2 openSMILE feature set, S3 LTAS features.

Features Accuracy (%)

S1

MFCC-STAT 69.2
LPCC-STAT 69.2
PLP-STAT 73.7

CQCC-STAT 62.3
MFCC-Residual-STAT 70.2

MFCC-ZFF-STAT 69.9

S2
eGeMAPS 76.1
ComParE 82.1

S3

CBFB-LTAS 75.9
CQFB-LTAS 81.4
GFB-LTAS 79.2
SFFB-LTAS 74.9

accuracy of 89.6% is obtained when CBFB-LTAS features combined with eGeMAPS features for SVD

database. For HUPA database the best classi�cation accuracy of 86.6% is observed when constant-Q

based LTAS features were combined with ComParE feature sets. SFFB-LTAS features when combined

with ComParE performed best among all other (for SVD samples) combinations for Exp. 2 and 3. It can

also be observed that even by combining the different features, classi�cation accuracy for the Exp. 4

is not increased signi�cantly, as psychogenic voice disorder samples mostly confused with functional

voice disorder.

Table 5.3: Performance of voice disorder detection and identi�cation systems in terms of classi�cation
accuracy (in %) for combination of feature sets on SVD and HUPA database. Here, Exp. 1: classi�cation
of healthy and voice disorder, Exp. 2: classi�cation of organic and non-organic voice disorders, Exp. 3:
classi�cation of structural and neurogenic voice disorders, and Exp. 4: classi�cation of functional and
psychogenic voice disorders.

Features SVD HUPA
Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 1

CBFB-LTAS+eGeMAPS 89.6 71.9 72.9 69.1 80
CBFB-LTAS+ComParE 86 76.1 77.2 67.1 85.4
GFB-LTAS+eGeMAPS 87.5 73 70.2 64.5 82.1
GFB-LTAS+ComParE 85.8 77.2 77 69.7 81.1

CQFB-LTAS+eGeMAPS 84.2 72.9 69.9 67.6 83
CQFB-LTAS+ComParE 87.2 78.3 75 67.9 86.6
SFFB-LTAS+eGeMAPS 84.1 68.7 69.9 64.5 78.2
SFFB-LTAS+ComParE 86.9 78.9 77.4 68.5 81.3
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5.3.2 ANOVA analysis

To assess the relationship with the perceptual scale used by SLPs, statistical analyses were computed

with N-way analysis of variance (N-way ANOVA). The ANOVA test determines whether or not any

statistically signi�cant difference exist between means of two or more groups by measuring the proba-

bility value (p-value). The p-value in the ANOVA test used to decide whether null hypothesis should be

accepted or rejected. If p-value is very smaller than 0.05, it signi�es that there is a signi�cant difference

among the means of the groups.

This analysis was performed by considering the LTAS feature as a dependent variable and perceptual

ratings of Grade of hoarseness, roughness, breathiness, asthenia and strain as independent variables.

ANOVA was computed on the HUPA dataset which has a perceptual rating according to the GRBAS

scale. Out of 99 LTAS features, 35 features show signi�cant interaction with the perceptual scale of

roughness, while 31 features indicate signi�cant interaction with asthenia (p ¡ 0.05). Remaining 14

features out of 99 LTAS features indicate the least value of p (much smaller than 0.05) for overall

degree of hoarseness, while 11 LTAS features and 8 LTAS features shows the minimum value of p for

perceptual scale of breathiness and strain, respectively. Moreover, N-way ANOVA was also obtained

for different frequency ranges. Two frequency ranges were considered, one from 0 to 1 KHz and other

above 1 KHz. It was observed that for the frequency range below 1 KHz, 31 and 27 LTAS features

out of 69 features indicate the minimum value of p for perceptual scale R (Roughness) and Asthenia

respectively. For the frequency range above 1 KHz perceptual rating, G(Overall severity) and S (Strain)

indicate the minimum value of p for most of the LTAS features. Thus from this ANOVA analysis we

can conclude that LTAS features indicate the stronger correlation with roughness (which might be due

to degradation in the voice quality) and asthenia (indicates the degree of vocal weakness) compared to

other perceptual characteristics.

5.4 Summary and conclusion

This study explored the state of the art �lter bank-based LTAS features for the detection and identi�-

cation of voice disorder. From the experimental results, it can be veri�ed that classi�cation accuracy for

an identi�cation system is less compared to detection system, as different disorders may share a com-

mon acoustic space. More interestingly, it was observed that the choice of �lter bank in the extraction

of LTAS features play an important role in the classi�cation of voice disorders. In [69], SFFB based

LTAS features showed the best performance for hyper-nasality detection, whereas, in this study, the

SFFB-LTAS features showed better performance than CBFB-LTAS for the detection task. The CQFB-

LTAS and GFB-LATS features showed better classi�cation accuracy for the detection and identi�cation

of voice disorders, perhaps due to the underlying auditory �lter banks (constant-Q �lters and Gamma-

tone �lters). In addition, an improvement in the performance of detection and identi�cation systems was

observed with the combination of feature sets, which highlights the complementary nature of �lter bank-

based LTAS features. Further, we evaluated the relation between LTAS features and perceptual measure
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(GRBAS scale available for HUPA database) using ANOVA analysis. The results from this experiment

suggested that, most of the LTAS features have least value of the p (less than 0.5) for roughness and

asthenia compared to grade, breathiness and strain. Compared to our previous study [41], signi�cant

improvement of performance for all the experiments was observed which might be due to the reason

that, long term features can capture the voice disorders information in a better way as compared to the

short term variations.
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Chapter 6

Detection and identi�cation of voice disorders using features derived

from Stockwell-Transform

From the chapter 5 it was concluded that voice quality related information associated with voice

disorder is more prominently captured by in spectro-temporal domain. Hence, time-frequency methods,

which can capture the glottal variations and formant variations from the speech signal, were explored

for detection and analysis of voice disorders [195, 196]. This chapter explores S-Transform based

time-frequency representation for voice disorder detection and identi�cation system. In this regard, we

explored different variants of S-Transform. We proposed cepstral features derived from S-Transform

for the detection and identi�cation of voice disorders. Also, by varying window-size, we studied how

well the vocal tract system and excitation source information can be captured by S-Transform method.

Additionally, we presented the effectiveness of S-Transform based spectral representation in capturing

the acoustic correlates of different voice qualities. Performance of the proposed feature was compared

with other baseline features. The complementary nature of the proposed features was explored by

combining them with baseline features.

The chapter is organised as follows. Section 6.1 discusses the overview of literature studies done for

analysis of voice disorders using various time-frequency methods. Section 6.2 describes the formulation

of S-Transform and the method for extraction of proposed features. Section 6.3 presents a comparison

of S-Transform based representation with other time-frequency representations. A detailed description

of the experimental setup is given in Section 6.4.1. The experimental results of this work are presented

in Section 6.5. Summary and conclusions are discussed in Section 6.6.

6.1 Studies in the analysis of voice disorders by time-frequency methods

Changes in acoustic characteristics due to voice disorders are re�ected as variations in spectro-

temporal domain [197]. In literature various time-frequency analysis methods were explored for patho-

logical speech processing. In [198], features derived from Hilbert-Huang Transform (HHT) were used

to detect voice disorders. Constant air leakage due to incomplete vocal fold closure results in noisy

78



components in the disordered speech signal. Therefore, average energy distribution over time in the

time-frequency plane was observed to be smaller for pathological speech signals than healthy speech

signals [199]. Features such as the octave max, octave mean, energy ratio, length ratio, and frequency

ratio were extracted from the adaptive time-frequency transform (ATFT) algorithm for the automatic

detection of voice disorders. Modulation spectral features were also investigated to detect voice disor-

ders [200]. In [201], spectral features derived from empirical mode decomposition (EMD) were used

to analyse and classify voice disorders. Different time-frequency methods like wavelet-transform [202],

zero-time windowing (ZTW) [203], and single frequency �ltering (SFF) [204] were also explored for

the discrimination of different voice qualities. From these studies it can be concluded that better time-

frequency representation is essential for classi�cation of voice disorders and voice qualities.

S-Transform is another time-frequency analysis method, provides good spectro-temporal resolu-

tion [205, 206, 207, 208, 209]. In the literature S-Transform based time-frequency representation was

explored in acoustic echo cancellation [210], automatic speech recognition systems [211], speech en-

hancement [212, 213] and hearing-impaired speech recognition [214]. From the above studies, it was

observed that S-Transform methods provide better time-frequency localization as compared to other

representations like short-time Fourier transform (STFT), wavelet-transform, etc. This study explores

S-Transform method for classi�cation of voice disorders.

The primary objective of this study is to validate the effectiveness of S-Transform in differentiating

the acoustic characteristics for subjects suffering with voice disorders from healthy subjects. The cur-

rent study explores S-Transform method in identifying different types of voice disorders. Moreover,

we also analysed the time-frequency representations derived from the S-Transform method for different

voice qualities associated with voice disorders such as breathiness, harshness, and creakiness. We also

proposed use of cepstral features derived from S-Transform for the automatic detection and assessment

of voice disorders. The performance of proposed system is compared with other baseline cepstral fea-

tures derived from excitation source, vocal tract system, and time-frequency methods such as wavelet

transform, ZTW and SFF.

6.2 Stockwell-Transform and cepstral feature extraction

This section describes about formulation of S-Transform, and its variants. In addition, it also explains

the effect of segment length and scaling parameter on S-Transform of speech signal. Sub-section 6.2.4

discusses extraction of proposed features from S-Transform.

6.2.1 S-Transform

S-Transform is a time-frequency analysis method proposed by Stockwell [205, 215]. It has been used

in many signal processing applications for the analysis of non-stationary signals [216, 217, 218, 219,

220]. It preserves the phase information of signal like STFT, and also provides frequency dependent
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time-resolution property like wavelet-transform [205]. For a time varying signalx(t) the continuous

time S-TransformSx (�; f ) is formulated as,

Sx (�; f ) =
Z 1

�1
x(t)g(� � t; f )e� 2�jf t dt (6.1)

whereg(t; f ) represents Gaussian window and is given by,

g(t; f ) =
1

� (f )
p

2�
e

� t2

2� (f )2
(6.2)

where,� (f )2 =
1

jf j2
represents variance of the Gaussian window. From Equation 6.1 and Equation 6.2,

the S-TransformSx (�; f ) of x(t) can be denoted as,

Sx (�; f ) =
Z 1

�1
x(t)

jf j
p

2�
e

� (� � t)2f 2

2 e� 2�jf t dt (6.3)

The Gaussian window used in S-Transform is a function of both time and frequency. The standard

deviation of the Gaussian window is reciprocal of frequency. For the low frequency, the window is

wider in time domain to get better frequency resolution, while narrow window for high frequency, gives

better time resolution (as shown in the Figure 6.1. Alternatively, the S-Transform can be formulated as

Figure 6.1: Illustration of Gaussian window by varying the variance.

in [221, 209], and it is given by,

Sx (�; f ) =
Z 1

�1
X (� + f )e

� 2� 2� 2

f 2
e2j��� d� (6.4)

where,X (� + f ) ande

� 2� 2� 2

f 2
are frequency responses ofx(t)e� 2�jf t andg(t; f ), respectively. From

the above equation, for a discrete time signalx[n], � = n� T, f = m� f and� = p� f the discrete
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S-Transform (DST) [205]S[n� T; m� f ] is given by,

S[n� T; m� f ] =

8
><

>:

P N � 1
p=0 X [(p + m)� f ]e

� 2� 2p2

m2 ej 2�pn n 6= 0
1
N

P N � 1
p=0 X [p� f ] n = 0

(6.5)

where,X [(p + m); � f ] is DFT of a sequencex[n] of lengthN . Advantage of fast Fourier transform

(FFT) algorithm can be used in computing the discrete S-Transform [209]. Steps for computation of

S-Transform of a discrete sequence are summarized as,

1. Select one frequency point and compute the DFT of input signal x(n) i.e.X jp� f j.

2. Calculate DFT of N-point Gaussian function to select the frequency range i.e.e

� 2� 2p2

m2 .

3. Shift spectrumX jp� f j to X j(p + m)� f j, such that frequency of the spectrum to be selected

matches with the zero-frequency of the frequency selecting Gaussian function.

4. Compute the IDFT of the resulted signal from the previous step for all the frequencies.

6.2.2 Effect of segment size on S-Transform of speech signal

S-Transform is computationally complex for longer sequences like speech, hence, it needs to be

computed over smaller segments of a speech signal [211]. In this regard, we studied the effect of

segment size on S-Transform of speech signal to understand what segment size should be chosen so it

effectively captures speech signal information like excitation source and vocal tract system information,

at lower computational cost.

We studied the S-Transform representation of speech signal for three different segment sizes 5 ms,

20 ms, and 100 ms, as shown in Figure 6.2. As it can be understood from the Figure 6.2 that for seg-

ment size of 5 ms, S-Transform provides good time resolution (vertical striations) but poor frequency

resolution (horizontal striations). Whereas, for segment sizes 20 ms and 100 ms, S-Transform provides

better time and frequency resolution. However, for longer size of segments (for example 100 ms), spec-

tral components of speech regions with low energy are masked due to adjacent higher energy regions

(region shown in rectangular box in Figure 6.2(d)). Also, for segments of longer size, computational

complexity will become more. Hence, in order to get good time-frequency resolution along with mini-

mal computation cost, in this study the segment size is chosen as 20 ms for calculation of S-Transform.

6.2.3 Variants of S-Transform

S-Transform proposed by Stockwell uses a Gaussian window (as discussed in the sub-section 6.2.1),

whose standard deviation is inversely proportional to frequency. As frequency increases, width of the

Gaussian window decreases, irrespective of analysed signal. This version of S-Transform is referred to
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Figure 6.2: Illustration of spectrograms obtained with S-Transform for speech signal by varying the
segment size. (a) Speech Signal. (b)-(d) S-Transform based spectrogram for segment length of 5 ms, 20
ms and 100 ms, respectively.
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as standard S-Transform in this study. In literature many other variants of S-Transform were proposed

to maximize the energy localization. Different parameters were introduced in the Gaussian window

to provide better time-frequency localization. This subsection discusses the three different variants

of S-Transform, namely, Sejdic's S-Transform [222], Assous's S-Transform [223], and optimized S-

Transform [209] used in our study.

To improve the frequency resolution provided by S-Transform Sejdic et al. [222] introduced a new

parameterp which controls the shape of Gaussian window. Modi�ed standard deviation of Gaussian

window is given by,

� (f ) =
1

jf jp
(6.6)

The modi�ed S-Transform is referred to as Sejdic's S-Transfrom in this study. From the experiments

done in [222] it was found that the value ofp, between 0 and 1, provides better time-frequency resolu-

tion. In our study value ofp is considered as 0.8, as used by [209].

Another way to control the shape of Gaussian window in S-Transform is provided in [223]. This

modi�cation of S-Transform is referred to as Assous's S-Transform and the new standard deviation of

Gaussian window according to Assous et al. [223] is given by,

� (f ) =
mf + k

f
(6.7)

wherem andk represent constant parameters introduced to control the width of Gaussian window to

provide better time and frequency resolution. Based on the experiments by Assous et al. [63], these

parameters are chosen asm = 0 :05andk = 0 :1 in this current study.

Recently, authors in the study [209] introduced four parameters to control the width of Gaussian

window and also proposed an algorithm to select the optimal value of these parameters. In this case, the

modi�ed standard deviation used in Gaussian window is given by,

� (f ) =
mf p + k

f r (6.8)

The equation of Gaussian window can be rewritten as

g(� � t; f ) =
jf jr

(mf p + k)
p

2�
e

� (� � t)2f 2r

2(mf p + k)2
(6.9)

Optimum values for these parametersm; p; k, andr to get better time-frequency resolution were chosen

by Moukadem et al. [209] as 0.3, 0.0386, 0.4276 and 0.6035, respectively. In our study, we refer this

modi�ed S-Transform as optimized S-Transform. Different variants of S-Transform and corresponding

parameters are summarized in the following Table 6.1.

In order to understand which variant of the S-Transform offers better time-frequency resolution such

that it can capture the excitation source and vocal tract system information effectively, we compare

the spectrograms obtained from various S-Transform variants. Figure 6.3 shows the comparison of

spectrograms obtained from different variants of S-Transform. From Figure 6.3 (b), we can observe
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Figure 6.3: Illustration of spectrograms obtained for speech signal from different variants of S-
Transform. (a) Speech signal, (b) Standard S-Transform spectrogram, (c) Assous's S-Transform spec-
trogram, (d) Sejdic's S-Transform spectrogram, (e) Optimized S-Transform spectrogram.

84



Table 6.1: Standard deviation of Gaussian window and its parameters for different variants of S-
transform.

Variants of S-Transform
Standard deviation of

Gaussian window� (f ) Parameters

Standard S-Transform
1
f

-

Sejdic's S-Transform
1
f r r=0.8

Assous's S-Transform
mf + k

f
m=0.05, k=0.1

Optimized S-Transform
mf p + k

f r

m=0.3, p=0.0386,
k=0.4276, r=0.6035

standard S-Transform provides good time resolution (at both low and high frequency bands). On the

other hand, it provides good frequency resolution in low frequency bands compared to high frequency

bands. From Figure 6.3 (c) and (e), we can observe Assous's and optimized S-Transform provides

good frequency resolution (at both low and high frequency bands). On the other hand, it provides poor

time resolution. From Figure 6.3 (d), we can observe Sejdic's S-Transform provides good frequency

resolution (at both low and high frequency bands). On the other hand, it provides good time resolution

in high frequency bands compared to low frequency bands.

From this graphical representation it can be observed that, formant transitions are captured ef�ciently

by standard, Sejdic's and optimized S-Transform, as shown in Figure 6.3(b, d, & e). On the other

hand, excitation source information is effectively represented by standard and Sejdic's S-Transform, as

shown in Figure 6.3(b & d). It can be concluded from the above �gures that, standard S-Transform

can effectively capture both excitation source and vocal tract information simultaneously from speech

signal.

Figure 6.4: Block diagram of S-Transform cepstral coef�cients (STCCs) extraction.
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6.2.4 Extraction of cepstral coef�cients from S-Transform

This subsection explains the procedure for extraction of cepstral coef�cients from S-Transform. The

block diagram representation of the feature extraction from S-Transform based time-frequency repre-

sentation is shown in the Figure 6.4. For a discrete time speech signaly[n], then pre-emphasised signal

x[n] is given by

x[n] = y[n] � 0:9y[n � 1] (6.10)

Then, S-Transform is computed for each segment of size 20 ms. To obtain the cepstral representa-

tion from S-Transform, logarithm and discrete cosine transform (DCT) operations are applied and it is

formulated as,

c(k; n) = IFFT f log f Sx (n� T; m� f )gg (6.11)

Finally, �rst 13 dimensional static features and corresponding delta, and delta-delta features were com-

puted resulting in 39-dimensional feature vector, which is referred to as S-Transform Cepstral Coef�-

cients (STCC) in this study.

6.3 Importance of S-Transform in analysing the voice disorders

S-Transform uses Gaussian window whose standard deviation is inversely proportional to frequency

which provides better time resolution at high frequencies along with better frequency resolution at low

frequencies. Hence it is hypothesised that S-Transform method can represent the speech information

in a better way. To understand, how well the S-Transform captures the phonation related information

from speech signal, we have analysed the time-frequency representation obtained from S-Transform for

different phonation types. Further, we compared S-Transform based representation with spectrograms

obtained from STFT, SFF [191, 190], and ZTW [224] methods. In this regard modal and four non-modal

phonation types, namely, breathy, creaky, harsh, and falsetto phonation are considered for analysis as

illustrated in Figure 6.5-6.7.

From Figure 6.5 we can observe that formant transitions are captured in a better way by all the time-

frequency representation methods. However, compared to STFT, all other methods capture phonation

related information (epoch locations, energy variations with in glottal cycles, etc) in a better way. It

can also observed as compared to SFF and ZTW method, S-Transform effectively captures the energy

variations within the glottal cycle. Moreover, speech regions with low energy (region shown in rect-

angular box) are represented effectively by the S-Transform compared to other methods, as shown in

Figure 6.5(e).

Figure 6.6 illustrate comparison of STFT, SFF, ZTW, and S-Transform Spectrogram for breathy and

creaky phonation. In case of breathy phonation, the low muscle tension, medium longitudinal tension,

and weak medical compression, results in minimum adduction of vocal folds [65]. Hence, the air is

leaked through vibrating vocal folds resulting in turbulence or aspiration noise. As a result of aspiration

noise, high frequency harmonics in breathy speech are signi�cant compared to normal phonation. From
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Figure 6.5: Illustration of spectrograms obtained from STFT, SFF, ZTW, and S-Transform methods for
modal phonation. (a) Speech signal, (b) STFT spectrogram, (c) SFF Spectrogram, (d) ZTW spectro-
gram, (e) S-Transform spectrogram.
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Figure 6.6: Illustration of spectrograms obtained from STFT, SFF, ZTW, and S-Transform methods for
breathy and creaky phonation. (a) and (f) Speech signal, (b) and (g) STFT spectrogram, (c) and (h) SFF
spectrogram, (d) and (i) ZTW spectrogram, (e) and (j) S-Transform spectrogram for breathy and creaky
phonation, respectively.
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