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Abstract

Keywords: dialect classification; zero-time windowing; single frequency filtering; frequency domain
linear prediction; convolution neural network; ECAPA-TDNN; deepspeech,; multi-dialect automatic speech

recognition; Indian English ASR

Major goal of this thesis is to study the dialectal variations and improve the performance of speech
recognition with an embeddings derived from improved dialect classification system. Initial studies focused
on improvement of dialect classification system with three major dialects (AU:Australian, UK:Britain, and
US:American) of English.

In order to improve the performance of dialect classification system and based on the analysis of dialectal
variations, advanced signal processing approaches were proposed to investigate for dialect classification
with traditional i-vector system. The features that provide high spectral resolution will help to capture
subtle differences between dialects. So, this thesis proposed to use single frequency filtering (SFF) and
zero-time windowing (ZTW) based features that provide high spectral resolution without compromising
temporal resolution. Along with frame level spectral resolution, longer temporal context will constitute
for dialect classification. So, approaches that enhance the temporal context of proposed features (SFF and
ZTW) approaches such as delta and double delta coefficients (A+AA), shifted delta coefficients (SDCs)
are experimented. It is observed that dialect classification system has given promising performance with
the proposed features with temporal context provided by A+AA and SDCs. Further, signal processing
approaches that can provide long temporal summarization such as frequency domain linear prediction
(FDLP) are proposed for dialect classification. From experiments, with FDLP based features, it is observed
that long temporal summarization provided by FDLP based features is advantageous for discriminating
dialects. So, both the signal processing approaches that provide high spectral resolution (SFF and ZTW) and
long temporal summarization (FDLP) have shown to give promising performance in dialect classification
when compared to commonly used STFT based features.

Further, due to promising performance by deep neural networks in classification tasks and its ability
to provide longer temporal context, simpler (CNN) to advanced deep neural network (TCN, TDNN, and
ECAPA-TDNN) architectures that provide different temporal contexts are investigated, it is observed that
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advanced neural network architectures improved the performance of dialect classification. Further, on
evaluation of the best of both stages, it is observed that ECAPA-TDNN performed better with proposed
features (SFF).

The dialectal variations in speech degrade the performance of multi-dialectal automatic speech
recognition (ASR) system. The embeddings derived from the best dialect classification system are applied
to multi-dialect (with AU, UK, and US dialects) ASR and found to improve the performance of the ASR
system.

In most studies, Indian English is considered as a single dialect even though it has different native
speakers. So, the inclusion of foreign dialectal embeddings improved the performance of the ASR system.
The observations made in dialect classification systems with major dialects of English are extended to
foreign dialect classification (i.e., native language (or L1) identification). The embeddings extracted from the
improved dialect classification system are included along with the Indian English ASR system to improve

the performance.

vii



Contents

Chapter Page
[__Introductionl . . . . . . . . . . e e e 1
|1.1  Daialectal challenges 1n speech recognition system| . . . . . . . ... ... ... ....... 3
1.2 Objective and scopeof thesis| . . . . . . . ... ... . o 5
[1.3° Organization|. . . . . . . . . . . . . e e e e e e e e e 6

[2 Survey of existing dialect classification systems| . . . . . . . . .. ..o Lo 8
[2.1  Feature analysis for dialect discrimination| . . . . . .. . ... ... .. L oL oL 8
[2.1.1  Acoustic analysis for pronunciation variants between dialects| . . . . ... ... .. 9

2.12 Textbasedfeatures| . . . . . . . . .. .. .. .. 12

[2.2  Machine learning approaches for learning representations| . . . . . . . . . ... ... .. .. 14
[2.2.1  Generative models for learning latent representation of acoustic features|. . . . . . . 14

[2.2.2  Autoencoders for representation learning| . . . . .. ... ... L. 16

[2.3  Machine learning approaches for the classification of dialects| . . . . . . ... ... ... .. 17
2.3.1 Gaussian mixture modelasclassified. . . . . ... ... ... ... ... ... .. 17

[2.3.2  Support vector machine as classifier] . . . . . . ... .. ... ... ... ... 17

2.3.3  Neural network models as classifiers|. . . . . . ... .. ... ... ... ...... 17

2.4 Significant gaps in dialect classification| . . . . . . . ... ... .. ... . L. 18

[3  English speech corpus for dialect classification| . . . . . . . ... ... ..o 0oL 20
{4 Dialect classification system: state-of-the-art| . . . . . . . . ... ... ... oL, 24
M1 Feature extractionmethods . . . . . . . .. ... ... . 25
4.1.1  Mel-frequency cepstral coefficients| . . . . ... ... ... ... .......... 25

{4.1.2 Linear prediction cepstral coefficients| . . . . . .. ... ... ... ... . ... 25

4.2 Contextual processing approaches| . . . . . . . .. .. ... ... L L o . 26
4.2.1 Delta and double delta coefficients| . . . . . . ... ... ... ... ... ... 26

|4.2.2  Shifted delta cepstral coefficients| . . . . ... ... ... ... ... ........ 26

4.3 Back end preprocessing (1-vector extraction) approach| . . . . . .. ... ... 0 0oL 27
B4 Classificaionmethodsl . . . . . . . .. .. . 27
4.5  Experimental Setup| . . . . . . ... 27
[4.5.1 Configuration of baseline feature extraction| . . . . . . . .. ... ... ... .... 27

[4.5.2  Configuration of 1-vector system| . . . . . . . . . . . ... ... 28

453 Evaluationmetricl. . . . . . . ..o 28

Results and di 100 . . o e e e e 29



|4.6.1  Hyperparameters tuning for i-vector system| . . . . . . . . . ... ... ... ... 29

[4.6.2  Comparison of baseline methods|. . . . . . .. ... ... ... ........... 30
[4.6.3  Analysis using confusion matrices| . . . . . . . ... ..o 30
[4.6.4  Comparison to previous studies| . . . . . . . . .. Lo 30

4.7 Summary and conclusions| . . . . .. ... L 32
[  SFF-based and ZTW-based approaches for dialect classification| . . . . . . . . ... ... .. .. 33
5.1 Motivation for ZTW and SEFF methods| . . . . . . .. ... ... o000 33
B2 ZTWbasedfeatures|. . . . . . . . . . . L 36
D21 ZIWmethod . . . . . . .. . 36
[5.2.2  Extraction of feature representations from ZTW method| . . . . . .. ... ... .. 37
523 Resultsand discussionl . . . . . . .. Lo 38

5.3 SFEFbased featuresl . . . . . .. . . .. . 42
531 SFEmethod . . . . .. . . e 43
15.3.2  Extraction of feature representations from SFF method| . . . . . . . . ... ... .. 44
533 Resultsanddiscussion] . . . . . . .. .. ... 45

[5.4  Summary and conclusions| . . . . . ... L 48

[6 Exploration of temporal dynamics of frequency domain linear prediction cepstral coefficients for |

[_dialect classificationl . . . . . . . . .. 49
6.1 FDILPCCs feature eXtraction| . . . . . . . . . . o v vt v vt i vt e e 51
61.1 FEDIPmethod. . . ... ... ... .. 51
6.1.2 Extraction of EDILPCCsl . . . . . . . ... oo oo 53
[6.1.3  Parameters used for FDL.PCCs extraction| . . . . . . . . ... ... ... ... ... 53

6.2 Results and discussion] . . . . . . . . ... 54
|6.2.1  Effect of cepstral order and temporal context| . . . . ... ... ... ........ 54
[6.2.2  Comparison to other proposed features| . . . . . . ... ... ... ... ...... 55
|6.2.3  Existence of complementary information| . . . . . ... ... ... ... .. .... 57
[6.2.4  Comparison of current studies with previous studies| . . . . . ... ... ... ... 57

[6.3  Summary and conclusions| . . . . ... ... L 60
[/ Deep neural architectures for dialect classification| . . . . . . . . . ... ... ..., 61
[Z1 Convolutionneuralnetworksl . . . . . . . . . . ... L 63
(1.1  Architecturel. . . . . . . . . . .. 63
(7/.1.2 Experimental Protocoll . . . . . .. ... ... 64
(/1.3 Resultsanddiscussionl . . . . . . ... ... L oL 64
(/14 Classimbalancel . . .. ... ... ... .. o oo 65
[7.1.5  Comparison of baseline and proposed features with CNN|. . . . . . .. .. ... .. 71

[7.2  Time-delay neural network| . . . . . . . . ... ... 72
[[2.1 Architecturel. . . . . . . . . . o e 73
722 Resultsand discussion] . . . . . . ... ... .. 74

[7.3  Temporal convolution neural network] . . . . . .. ... ... .. oo 75
[/3.1  Architecturel. . . . . . . . . . . e 77
(/32 Resultsanddiscussion| . . . . . . .. ... oo 77

|7.4  Emphasized channel attention, propagation and aggregation in TDNN| . . . . . . . . .. .. 78

ix



(742 Resultsand discussionl . . . . . . . .. oL oL Lo 80

[/S5 Results and discussionl . . . . . . . . . L e e 82
[7.5.1  Comparison to i-vector based dialect classification system| . . . . . ... ... ... 83

[7.5.2 Comparison with previous studies| . . . . . . . .. ... ... ... ... ..., 84

7.6 Summary and conclusions| . . . . . .. ... L L 86

[8  Leveraging dialect embeddings in multi-dialect ASR system|. . . . . . . ... ... ... .... 88
[8.1 ~ Multi-dialect speech recognition architectures| . . . . . . . ... .. ... ... ... ... 88
[8.2  Leveraging dialect embeddings in speech recognition system| . . . . . . . .. ... ... .. 90

2.1 Results and di on ... e 91

[8.3 L1 identification and leveraging I.1 embeddings in Indian English ASR system| . . . . . .. 92
[8.3.1  Multi-lingual multi-accentcorpus| . . . . . .. ... .. ... ... ... ... 94

[8.3.2 LT identification from L2 speech|. . . . . . .. ... .. ... ... ... ... . 97

[8.3.3  Leveraging L1 embeddings in Indian English ASR system| . . . . .. ... ... .. 100

[8.4  Summary and conclusions| . . . . . ... Lo 104

[9 Summary and Conclusions| . . . . . . . . . . Lo 105
Bibliography| . . . . . . . e 108



List of Figures

Figure Page
|1.1  Illustration of variations in duration across UK and US dialects using STFT spectrograms |
[ fortheword™meed™ . . . . . . . . . .. 2
|1.2  Illustration of intonational variations across UK and US dialects using STFT spectrograms |
| for the sentence "I don’t really know what to do about1t.".| . . . ... . ... ... ... .. 3
[1.3  Block schematic showing overall flow/scope of the thesis. Stepl: Proposal of signal |
| processing approaches for feature extraction for dialect classification, Step2: Proposal of |
| advanced deep neural network approaches for dialect classification, and Step3: Application |
| to multi-dialect speech recognition| . . . . . . . . ... oL oL 6
[2.1  Illustration of intonational variations for sentence, "Soll ich mitgehen (Should I come with |
| you?)" (spoken in German) by German and Chinese speaker [[1]. |. . . . . ... .. ... .. 11
[2.2  Illustration of the change of stop closure durations for the word "would" due to Mandarin |
| accent a) 4 native (German) speakers b) 4 non-native (Mandarin) speakers. |]2 ........ 12
[3.1 Tllustration of phonetic replacement for the word "meeting” by British (UK) and American |
| (US) speakers using STFT spectrograms.| . . . . . .. ... ... ... ... ........ 22
[3.2  Illustration of rhotic variations using word "better" using STFT spectrogram. Each |
| sub-figure represents a dialect, sub-figure (a) represents the Australian (AU) dialect, |
| sub-figure (b) represents the British (UK) dialect, and sub-figure (c) represents the American |
| (US)dialect.|. . . . . . . . e 22
[3.3  Illustration of durational variations using STFT spectrogram for word "need” spoken by |
| British speaker and American speaker.| . . . . . . ... o o oL oL 22
.1 Block diagram showing 1-vector based baseline dialect classification system.|. . . . . . . . . 25
4.2 Confusion matrices for 1-vector based dialect classification system with static |
[ MFCC-STFT+SDCs and static LPCC+A+AA | 31
[5.1 Illustrations of rhotic variations using STEFT spectrogram for the word "better". Each |
| sub-figure represents a dialect, sub-figure (a) represents the AU dialect, sub-figure (b) |
| represents the UK dialect, and sub-figure (c) represents the US dialect.| . . . . . . ... ... 34
5.2 Ilustration of ZTW spectrum for the sound /r/ atevery IO0msec.| . . . . .. ... ... ... 34
[5.3  Ilustration of SFF spectrum for the sound /r/ atevery 1I0msec.| . . . . . . . ... ... ... 35
[5.4  Ilustration of ZTW spectrum for the sound /1/ 1n the word "better” taken from US dialect of |
| UT-Podcastcorpus.| . . . . . . . . . . . e 35

xi



[5.5 Ilustration of spectrograms obtained with (a) STFT and (b) ZTW methods.| . . . .. .. .. 36
[5.6  Schematic block diagram describing the steps involved in the computation of ZTW spectrum.| 37
5.7 Schematic block diagram describing the steps involved in the computation of ZTWCC |

| features from ZTW spectrum.|. . . . . . . . . . .. L L Lo 38
5.8 Schematic block diagram describing the steps imvolved n the computation of MECC-ZTW |

| features from ZTW spectrum.|. . . . . . . . . . . L L L 39
5.9 Confusion matrices for 1-vector based dialect classification system with baseline |

| MFECC-STFT (static+SDCs) features and proposed ZTW based features (static+A+AA of |
[ ZTWCC,MFCC-ZTW)] . . o o o e e e e e e e 42
[5.10 Ilustration of spectrograms obtained with (a) STFT and (b) SFF methods.| . . . . . . . . .. 42
[5.11 Schematic block diagram describing the steps involved in the computation of SFF spectrum. 43
[5.12° Schematic block diagram describing the steps involved in the computation of SFFCCs from |

| SEFE spectrum.|. . . . . . . . . e e e 44
[5.13 Schematic block diagram describing the steps involved in the computation of MFCC-SFF |

| from SFF spectrum.| . . . . . . . . . ... 45
[5.14 Confusion matrices for 1-vector based dialect classification system with baseline |

| MFECC-STFT (static+SDCs) features and proposed SEFF based features (static+ SDCs of |
FFCC, MFCC-SFE)]. . . . . . e e e e e e 47

|6.1 Illustration of sub-band temporal envelopes estimated using FDLP for the word “adult’ |

| spoken (1) by an American speaker and (11) by a British speaker. | . . . . . . ... ... ... 51
|6.2  Block diagram describing the steps involved 1n extraction of FDLPCCs.| . . . . . .. .. .. 52
6.3 Confusion matrices for 1-vector based dialect classification system with baseline |

- and propose , - , , -SFF, an

[ features. . . . . . ... e e 56
/.1 A schematic block diagram of the proposed deep neural network approach for dialect |

[ classification] . . . . . . . .. 62
[7.2 A schematic block diagram showing architecture of convolution neural network.|. . . . . . . 64
|7.3  Plots showing t-SNE projections of the latent representations from fully connected layer of |

| CNN for MFCC-STFT (a) without and (b) with resampling. Projections are color coded by |
| their dialect class (UK:Green(+4), US:Blue(A), and AU:Red(x)). | . . . . . . ... ... ... 70
[7.4  Plots showing t-SNE projections of the latent representations from second fully connected |

| layer (FC2, see Section [/.1)) of CNN for (a) MFCC-STFT, (b) MFCC-ZTW, and (c) |
| MFCC-SFFE. Projections are color coded by their dialect class (AU:Red(x), UK:Green(+), |
| and US:Blue(A)). | . . . . . . o o 72
[7.5 Illustration of temporal context in convolution neural network at each layer. Here K 1s filter |

| size and S 1s size of shidingwindow.| . . . . . . . . ... ... oL oL 73
[7.6  Illustration of temporal context in time delay neural network for each layer. Here K is filter |

| size, S 1s size of shiding window, and Dis dilationf. . . . . . . ... ... o000 73
(7.7 Illustration of temporal context in convolution neural network for each layer. Here K 1s filter |

| size and S 1s size of shidingwindow.| . . . . . . . . ... o oo 76
[7.8 Illustration of temporal context in temporal convolution neural network (CNN) for each |

| layer. Here K 1s filter size, S 1s size of sliding window, and D 1s dilation.| . . . . . . . . . .. 76

Xii



7o

A schematic block diagram showing architecture of ECAPA-TDNN. ASP: Attentive statistic

pooling, Conv1D:1 dimensional convolution layer, FC: fully connected feed forward layer.| . 80
[7.10 Plots showing t-SNE projections of the latent representations from second fully connected |
layer of CNN (a), TCNN(b), TDNN (c), and ECAPA-TDNN (d) for SFFCC {features. |
Projections are color coded by their dialect class (AU:Red(x), UK:Green(+), and |
US:Blue(A)). | . - . o o o e 82
[7.11 Confusion Matrices for dialect classification system with i-vector and ECAPA-TDNN |
systems for both baseline (MFCC-STFT) and proposed (MFCC-ZTW, MFCC-SFF, and |
FDLPCC) features.| . . . . . . . . . . . e 84
[8.1  Block diagram of end-to-end DeepSpeech? architecture with proposed utterance-level |
dialect embeddings.| . . . . . . ... 89
[8.2  Phonetic confusion matrices (obtained from pre-trained DeepSpeech? model) of non-native |
English belonging to five different L1 accents, such as Hindi, Kannada, Malayalam, Tamil, |
and Telugu| . . . . . . . . 93
[B:3 Regional distribution of NISPcorpus [3[]] . . . . . . . . . ... ... .. ... .. ... .. 95
[8.4  Distribution of speakers (Female on left and Male on right) across train, dev, and test sets |
with respect to L1 classes for NISPcorpus .| . . . . ... ... ... ... ... ....... 95
[8.5  Distribution of speech across train, dev, and test sets with respect to L1 classes in duration |
for NISPcorpus.| . . . . . . . . . . e 96
[8.6  Confusion Matrices for L1 identification system with i-vector system for both baseline |
(MFCC-STFT) and proposed (MFCC-SFF) features.| . . . . . ... ... ... ....... 99
[8.7  Confusion Matrices for L1 1identification system with ECAPA-TDNN model for both |
baseline (MFCC-STFT) and proposed (MFCC-SFF) features.|. . . . . .. ... ... .... 100

xiii



List of Tables

Table

Page

[3.1 Dastribution of number of utterances (#utterances), the duration of utteraces (#duration

| (in hrs)), vocab. size, and average sentence length (in words) for each dialect class of

| UT-Podcast (AU: Australian English, UK: Britain English, and US: American English).

I 21
4.1 Performance (in UAR%) for dialect classification with different number of GMM |
| components (256, 512, 640, and 1024) used 1n 1-vector extraction.| . . . . . . . .. . .. .. 29
4.2 Performance (in UAR%) for 1-vector based dialect classification system with all different |
| temporal contexts such as static, static+A, static+A+AA, and static+SDC coefficients with |
[ baseline features MECC-STFT and LPCCs.] . . . . .. ... ................. 30
.3 Comparison of current baseline i-vector system with previous dialect classification models |
| over U'T-Podcast corpus (in UAR% and class-wise accuracies).| . . . . . .. ... ... ... 31
[5.1 Performance (in UAR%) for 1-vector based dialect classification system with static+A+AA |
| coefficients for ZTW features with different segmenting approaches. The time complexity |
| for each approach 1s expressed with | as the number of samples 1n an utterance, s as the |
| number of window frames (I > s), and n as the number of utterances. | . . . ... ... .. 40
5.2 Performance (in UAR%) for 1-vector dialect classification system with ZTW-based features |
| (ZTWCC and MFCC-ZTW) with static cepstral coefficients for different cepstral orders.| . . 40
5.3  Performance (in UAR%) for i-vector based dialect classification system with baseline |
| (MECC-STFT) and ZTW based features (ZTWCC and MFCC-ZTW) for all different |
| temporal contexts such as static, static+A, static+A+AA, and static+SD coefficients.| . . . . . 41
5.4 Performance (in UAR%) for 1-vector based dialect classification system with SFF-based |
| static cepstral coefficients varying the cepstral orders (from 13t060).| . . .. .. ... ... 46
5.5 Performance (in UAR%) for 1-vector based dialect classification system with baseline |
| (MFCC-STFT) and SFF based features (SFFCC and MFCC-SFF) for all different temporal |
[ contexts such as static, static+A, static+A+AA, and static+SD coefficients,| . . . . . . . . .. 46
5.6  Performance (in UAR%) of dialect classification with fusion of 1-vectors derived from SFF |
L with the i-vectors derived from ZTW based features . . . .. .. ... .... ... .... 48
|6.1  Performances (in UAR%) for 1-vector based dialect classification for FDLPCC features with |
| static cepstral coetficients, by varying cepstral coefficients dimension from 13 to 60 (13, 20, |
| 30,40,50,and 60).] . . . . ..o 54

X1V



62

Performance (in UAR%) for 1-vector based dialect classification system with baseline

(MFCC-STFT) and proposed (FDLPCC) features for all different temporal contexts such

as static, static+A, static+A+AA, and static+SD coetficients.| . . . . . . . . ... ...

63

Performances (in UAR% and class-wise accuracies) for the baseline and proposed (ZTWCC,

MFCC-ZTW, SFFCC, MFCC-SFF, and FDLPCC) features with the best configurations

(1-vector approach).| . . . . . . L

6.4

Performance (in UAR%) of dialect classification with fusion of 1-vectors derived from

FDLPCC features with the 1-vectors derived from MFCC-STFT, SEF/ZTW based features.| .

6.5

Comparison of current i-vector based dialect classification (with baseline and proposed

features) with previous dialect classification models over UT-Podcast corpus (in UAR% and

class-wise accuracies).| . . . . . . . .. e

A

End-to-end CNN architecture for dialect classification. Conv represents the convolution

layer, and FC represents a fully connected layer,| . . . . . ... ... ... ... ... ....

[7.2

Performance (mean and standard deviation of UAR% from six trials and class-wise

accuracies) of CNN classifier for baseline and proposed features. . . . . . . . ... ... ..

[7.3

Performance (mean and standard deviation of UAR% from six trials and class-wise

accuracies) of CNN classifier trained with class balanced loss (CBL) function for baseline

and proposed features. RI is relative improvement with class balanced loss function when

compared to Table[/.2[. . . . . . . .. .

74

Distribution of number of utterances (#utterances) in each dialect class of UT-Podcast

(AU: Australian English, UK: Britain English, and US: American English) before data

augmentation and after data augmentation for train and test datasets. |. . . . . . .. .. ...

[7.5

Performance (mean and standard deviation of UAR% from six trials) of CNN classifier with

speed perturbation (SP), with volume perturbation (VP), and with combination of both speed

and volume perturbations (SVP).| . . . . . . .. Lo

[7.6

Performance (mean and standard deviation of UAR% from six trials and class-wise

accuracies) of CNN classifier for baseline and proposed features.| . . . . . . ... ... ...

[7.7

Daistribution of number of utterances (#utterances) in each dialect class of UT-Podcast

(AU: Australian English, UK: Britain English, and US: American English) before and after

resampling for training and testdatasets. | . . . . . . . ... .. ... ..

[7.8

Performance (mean and standard deviation of UAR% from six trials) of CNN classifier for

dialect classification with re-sampled corpus. (RI: relative improvement (in %) of re-sample

data wr.toriginal data (Table[7.2)] . . . . . . . . . . . . . . . ...

79

End-to-end TDNN architecture for dialect classification. ’'t’ represents current frame and

“I” represents entire utterance. TD represents time-delay layer and FC represents fully

connected layer. | . . . . . .. L

[7.10

Performance (mean and standard deviation of UAR % from six trials) of TDNN classifier for

dialect classification with re-sampled corpus.| . . . . . ... ... ..o 0o 0oL

711

End-to-end TCNN architecture for dialect classification. TConv represents the temporal

convolution layer, and FC represents the fully connected layer.| . . . . . . ... .. ... ..

712

Performance (mean and standard deviation of UAR% from six trials) of TCNN classifier for

dialect classification with re-sampled corpus. Performances of CNN and TDNN classifiers

are alsoreported.| . . . . ... L L

XV



[7.13

Performance (mean and standard deviation of UAR% from six trials) of ECAPA-TDNN

classifier for dialect classification with re-sampled corpus. Performances of CNN, TDNN,

and TCNN classifiers are alsoreported.| . . . . . . ... .. ... ... ... ........

714

Performance (in UAR%) of 1-vector system (with original UT-Podcast) and performance (in

mean and standard deviation of UAR% from six trials) for best neural network architecture

(ECAPA-TDNN) with baseline (STFT-based) and proposed (SFF, ZTW, and FDLP-based)

features (with resampled UT-Podcast).| . . . . . ... ... ... ... ... ...

715

Performance in UAR% (mean and standard deviation from six trials) and class-wise

accuracies (of classes AU, UK, and US) for different deep neural architectures from previous

studies and current studies with all the features (STFT, ZTW, SFE, and FDLP based) using

best DNN architecture (ECAPA-TDNN) (with resampled UT-Podcast)|. . . . . . . ... ..

B

Performance (in WER%) of ASR systems (pre-trained, fine-tuned, 1-vector based dialect

embeddings, ECAPA-TDNN based dialect embeddings, and combined dialect embeddings)

for major dialects of English. Rel. imp. refers to relative improvement.|. . . . . . . . .. ..

B2

Number of utterances in training, validation, and test sets of NISP corpus with respect to all

five L1 accents (Hindi, Kannada, Malayalam, Tamuil, and Telugu).| . . . ... ... ... ..

B3

Performance (in accuracy (ACC.) and unweighted average recall (UAR)) of 1-vector system

for L1 1dentification from L2 speech. Class-wise accuracies are also reported.| . . . . . . . .

B4

Performance (1in accuracy (ACC.) and unweighted average recall (UAR)) of ECAPA-TDNN

system for L1 identification from L2 speech. Class-wise accuracies are also reported.| . . . .

B3

Performance (in WER%) of ASR systems (pre-trained, fine-tuned, 1-vector based L1

embeddings, ECAPA-TDNN based L1 embeddings, and combined L1 embeddings) for five

ditferent L1 accents of Indian English. Rel. imp. refers to relative improvement.|. . . . . . . 101

XVvi



XVvii



A Coefficients

AA Coefficients

ASR
CNN
ConvlD
CTC
DCT
DNN

ECAPA-TDNN

EM
FDLP
FDLPCC
FFT
GMM
GRU
HMM
JFA

KL divergence
L1

L2

LPC
LPCC
LST™M
MAP
MFBE
MEFCC

Abbreviations

- Delta Coefficients

- Double Delta Coefficients

- Automatic Speech Recognition

- Convolution Neural Network

- One-dimensional convolution neural network

- Connectionist Temporal Classification

- Discrete Cosine Transform

- Deep Neural Network

- Emphasized Channel Attention, Propagation and
Aggregation in Time Delay Neural Network

- Expectation Maximization

- Frequency Domain Linear Prediction

- Frequency Domain Linear Prediction Cepstral Coefficients

- Fast Fourier Transform

- Gaussian Mixture Model

- Gated Recurrent Unit

- Hidden Markov Model

- Joint Factor Analysis

- Kullback-Leibler divergence

- Native language of speaker

- Second/Acquired language of speaker

- Linear Prediction Coefficients

- Linear Prediction Cepstral Coefficients

- Long Short Term Memory

- Maximum Aposteriori Adaptation

- Mel Filter Bank Energies

- Mel Frequency Cepstral Coefficients



MFCC-SFF

MFCC-STFT

MFCC-ZTW

ML
MLLR
MSE
010)Y
PCA
PPRLM
PP
ReLU
RNN
SDC
SFF
SFFCC
SGD
SP
STFT
SVM
SVP
TCNN
TDNN
t-SNE
UAR
UBM
VP
WER
ZTW
ZTWCC

- Mel Frequency Cepstral Coefficients derived from
Single Frequency Filtering spectrum

- Mel Frequency Cepstral Coefficients derived from
Short Time Fourier Transform spectrum

- Mel Frequency Cepstral Coefficients derived from
Zero Time Windowing spectrum

- Maximum Likelihood

- Maximum Likelihood Linear Regression

- Mean Square Error

- Out of Vocabulary

- Principal Component Analysis

- Parallel Phone Recognition followed by Language Modeling

- Perplexity

- Rectified Linear Unit

- Recurrent Neural Network

- Shifted Delta Coefficients

- Single Frequency Filtering

- Single Frequency Filtering Cepstral Coefficients

- Stochastic Gradient Descent

- Speed Perturbation

- Short Time Fourier Transform

- Support Vector Machine

- Speed and Volume Perturbation

- Temporal Convolution Neural Network

- Time Delay Neural Network

- t-distributed Stochastic Neighbor Embedding

- Unweighted Average Recall

- Universal Background Model

- Volume Perturbation

- Word Error Rate

- Zero Time Windowing

- Zero Time Windowed Cepstral Coefficients



Chapter 1

Introduction

Speech signals not only convey linguistic information (the message) but also carry information related
to other extrinsic and intrinsic characteristics. Extrinsic characteristics include environmental conditions
during recording, such as noise and other speaker interference. Intrinsic characteristics include internal
factors related to speaker variability, and it can occur in speech due to emotional state, physiology, speaking
style or rate of speaking of the speaker, age, and dialect.

Speaker acquires common patterns from people around him/her that result in language dialects. Over
time, he/she habituates these patterns, resulting in constrained articulatory movements that, in turn, lead
to pronunciation variations. Dialects are of three types: social, regional, and foreign. The patterns in
speech acquired by a speaker due to his/her social conditions are social dialects, and the patterns in a
speaker’s speech acquired based on geographic location are regional dialects. Speakers also exhibit linguistic
constraints posed by the first language in the second language resulting in foreign dialects.

Out of all these variabilities, it is observed in [4]] that gender and accent are the first two principal
components of variability. So, this thesis focuses on one of the most variable components, dialect. The
dialectal variations can be observed at three levels, and they are at pronunciation, vocabulary, and grammar.
Pronunciation variations can be observed due to differences in phonetic realization, phonotactic distribution,
phonemic system, and prosodic characteristics [S]]. Phonetic realization differs between dialects, leading to
phonemes’ addition, deletion, and insertion.

Phonotactic distribution is the pattern in the phonological structure corresponding to a language or
dialect. It varies between dialects due to their rules constraining the occurrence of two phonemes together.
Due to the rule defined in Southern US English, the /i/ and / ¢/ are neutralized before nasals, which will
result in the pronunciation of [pin] for both the words pin and pen. The difference in the phonemic alphabetic
system between British English (uses Cambridge University’s BEEP dictionary) and American English (uses
CMU’s dictionary) leads to confusion about phoneme pronunciation.

The phonemic system changes between regional and foreign accents because of the differences in their

phonemic inventory (number of phonemes or identity of phonemes). We can illustrate this by looking at a



Chinese speaker whose phoneme inventory does not include the phoneme [@]. Therefore, Chinese speakers

tend to replace the phone with a similar-sounding phone.

Prosodic characteristics exist at different levels: stress, duration, and intonation [6]. For illustrations to
observe prosodic variations, American (US) and British (UK) English are considered. For stress variations,
the French loan word "Garage" is considered. "Adult" is one of the loan words from French. Such words
were adapted differently between US and UK dialects. Americans emphasize on second syllable while the
British emphasize on first syllable [7]]. The stress assignment for the word "adult" is [ada’lt] for American

speaker and [a’dalt] for British speaker.

For the durational variations, the short-time Fourier transform (STFT) spectrograms of the word "need"
is plotted in Figure[I.T]for UK and US dialects. It can be observed from the spectrograms of the UK dialect
(Figure ﬂ;fl (a)) and US dialect (Figure ﬂ;fl (a)) that the US dialect took longer duration to pronounce /i/
compared to the UK dialect.
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Figure 1.1: Illustration of variations in duration across UK and US dialects using STFT spectrograms for

the word "need".

The intonation or melody of American and British speakers vary. Figure [I.2] shows the spectrogram for
the sentence "I don’t really know what to do about it". In principle, UK speakers lower the intonation after
the main stress while US speakers tend to upspeak after the main stress. The fundamental frequency (F1)
contour is shown as a blue line in the figures. It can be observed that the F1 drops after the main stress in

the case of the UK but in the US the F1 is raised after the main stressed word.

Variations in vocabulary, spelling and grammar across dialects will result in variations in the lexical
distribution of characters and words. People in Spanish use mobile while Latin Americans use cellular for
the word phone. Spelling variations such as "colour" in British English vs "color" in American English can
also be observed between dialects. One of the grammatical variations is that Newcastle has a plural form

non

for the second person pronoun "you", "yous". Semantic variations across dialects have different mappings
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Figure 1.2: Illustration of intonational variations across UK and US dialects using STFT spectrograms for

the sentence "I don’t really know what to do about it.".

between a word to its meaning. These differences either map more than one meaning to a word or more than

one word to meaning.

1.1 Dialectal challenges in speech recognition system

A listener not only tries to understand the underlying linguistic content but also extracts various aspects
of a speaker by perceiving the speaker’s speech. One such aspect of the speaker is the regional origin
and native language of the speaker. Even though these factors modulate the speech signal, a listener can
easily extract linguistic information. However, these variations lead to misrecognition in speech recognition
systems.

Usually, language-specific speech applications are developed, and these dialectal variations within a
language degrade the performance of speech applications. Dialectal variations in speech can influence the

performance of automatic speech recognition (ASR) systems [8-10]. In [8], cross-dialect models were found



to increase the error rate by 40-50% (relative) compared to dialect-specific models. With the advancement
of speech recognition systems in day-to-day life, avoiding these disparities has become the need of the hour.
In a study [11]], five popular commercial ASR systems were tested with people from different races. The
performance gaps suggest it is harder for a group of people to benefit from the increasingly widespread
use of speech recognition technology. So, research to improve the performance of speech systems despite
social/regional/foreign dialectal variations is required.

The current speech recognition system mainly has three modules-acoustic model, pronunciation model,
and language model. The differences in phonetic variations can lead to errors in the speech recognition
system’s acoustic or pronunciation model. In tonal languages, the meaning of word changes with pitch
and these tones vary across dialects leading to misinterpretation of the word. Variations in vocabulary and
grammar can lead to the absence of words in the language model, which could lead to out-of-vocabulary
(O0V).

Three solutions were presented in the literature to deal with such situations in the acoustic model
(maps sequence of feature representations to phonetic transcription) of an ASR system. They are, unified
acoustic model [8,|9], dialect dependent acoustic model 8], and dialect adaptation methods [9,|12]. In
a unified acoustic model, ASR models were trained with data from all dialects of data and learned the
traits of all dialects collectively [13]. The challenging part of developing efficient multi-dialectal acoustic
models is to have an enormous amount of dialect-specific data. In [8}/9], it is shown that other solutions
performed better than the multi-dialectal acoustic model. In dialect-dependent acoustic models [_8}|14]], a
separate acoustic model is trained for every class of dialect. In [{8], it is shown that dialect dependent
model with a good dialect identification system prior is better than dialect adaptation techniques provided
with the required amount of speech corpus. In acoustic model adaptation approaches, various techniques
such as maximum aposteriori adaptation/maximum likelihood linear regression (MAP/MLLR) adaptation
of traditional HMM-GMM acoustic model [[15}[16]], fine-tuning acoustic models to specific accents [|13]14],
continuous accentedness score [[15]], the inclusion of accent embeddings [9L104{12,/15}/17]], and joint training
of dialect and speech recognition systems [9}/12] were carried out to improve the performance. Experiments
have revealed that the inclusion of dialect information either through embeddings or joint modelling of both
the systems has been shown to give promising results with ASR system [9,/10,/12,/15]].

Dialectal variations also influence the performance of other modules (prosody) of the ASR system. So,
in tonal or pitch-accented languages (such as Chinese), dialect-specific prosodic models [[18]] are developed.
Huge mismatch in vocabulary and grammar can be observed in Arabic dialects [19], dialect-specific
language models have shown promising results. In Indian languages, different sandhi rules were established
across dialects forming different words.

Considering the acoustic model of the ASR system, the inclusion of dialectal information seems to

be promising [9}(10,[12,/15,|17]. Therefore, dialect embeddings from improved dialect classification can



be included in the training of the acoustic model of an ASR system. Dialectal information from improved
dialect classifications can also be used in forensic departments or call centres to collect complete information
about the speaker or validate the information appropriately. Further, dialect-specific voice assistants can
be developed for ease of usage of ASR systems. Custom voice assistants with automatic switching to
dialect-specific speech will sound more natural to the listener. This requires automatic identification of

dialect from speech.

1.2 Objective and scope of thesis

The article [20] pointed out six existing challenges in speech recognition systems as of 2014. In [11]), five
current popular commercial speech recognition systems were evaluated, and it was found that the systems
are biased towards a group of people compared to others. With the current widespread usage of these
devices, this bias or unfair behaviour of these devices for a group of people is unacceptable. So, this thesis
proposes approaches that can improve the performance of multi-dialect speech recognition systems.

From the literature, it can be observed that providing dialect information improved the performance. The
embeddings which provide dialect information should be efficient to improve automatic speech recognition.
So, this thesis aims to improve the performance of a dialect classification system that provides efficient
dialect embeddings and discrete dialect classes. Further, the improved dialect embeddings are applied in
speech recognition to improve recognition performance.

Figure[I.3|shows the block diagram of a dialect classification system which includes mainly three stages:
feature extraction, embedding extraction, and classification. Initial investigations were done with major
regional English dialects (AU-Australian, UK-Britain, and US-American). Traditionally, a sequence of
feature vectors obtained from blocks of speech signal using the mel frequency cepstral coefficients derived
from STFT spectrum (MFCC-STFT) approach is used to represent speech signals for dialect classification.
However, the linguistic variations across dialects are present in intricate details of phonetics (aspirations,
trills, fricative, etc.) and longer temporal segments (such as phonotactics and prosodic variations). So,
advanced signal processing approaches that provide a high degree of spectral resolution (such as single
frequency filtering (SFF) and zero-time windowing (ZTW) based features) and signal processing approaches
that provide long temporal summarization (such as frequency domain linear prediction (FDLP) based
features) are investigated for dialect classification with unsupervised i-vector based approach. Based on the
advances and promising performance of deep neural networks in all the applications and also the fact that
they can provide long temporal context, different network architectures such as convolution neural network
(CNN), temporal convolution neural network (TCN), time-delay neural network (TDNN), and Emphasized
channel attention, propagation and aggregation in TDNN (ECAPA-TDNN) that provide different temporal

contexts are explored.
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Figure 1.3: Block schematic showing overall flow/scope of the thesis. Step1: Proposal of signal processing
approaches for feature extraction for dialect classification, Step2: Proposal of advanced deep neural network

approaches for dialect classification, and Step3: Application to multi-dialect speech recognition

Further, these improved dialect embeddings derived from the proposed dialect classification system are
applied in the speech recognition system to improve its performance.

The observations from the major dialects of English for dialect classification are extended to Indian
English dialects for L1 identification (native language [L1: Hindi, Kannada, Malayalam, Tamil, and Telugu]
identification from non-native [L2: English] speech). Finally, the improved dialect embeddings extracted

from L1 identification are applied to dialectal speech recognizer to improve the performance in transcription.

1.3 Organization

The thesis is organized as follows: Chapter [2] gives a literature review of studies related to dialect
classification and mentions the gaps in the dialect classification system. Chapter [3|describes the UT-Podcast
corpus used in the evaluation of dialect classification. Chapters [4}{6] uses the traditional i-vector-based
dialect classification. Chapter [4| gives the details of the baseline system and evaluates it for dialect
classification. Chapter [5] proposes to use features that provide higher spectral and temporal resolution.
Chapter [6] proposes to use features that provide higher temporal summarization. Chapter [7]investigates deep

neural network-based approaches for dialect classification with proposed features. The embeddings derived



from improved dialect classification are applied in Chapters|[§] for automatic speech recognizer (ASR). First,
the ASR system with major dialects of English investigates the dialectal embeddings. Then, the proposed
better classification approach is used for L1 identification and the L1 embeddings are leveraged in Indian

English ASR system. Finally, Chapter [0 summarizes and concludes the thesis. a



Chapter 2

Survey of existing dialect classification systems

Previous studies on the automatic classification of accent/dialect are broadly focused on three areas:
first, to find the best frame-level features. Second, to find an approach that appropriately represents
the frame-level features, and third, to find the best classifier. Dialect can be varied in speech either in
acoustics (distribution of sounds, stress, rhythm, and intonation patterns) [21-24]] or phonotactics (sequence
of sounds) [25H28| of the speech. Representing the spectral features in unsupervised and compact form
is the most popular area of research, where interesting approaches such as i-vectors [21} 22,29, 30],
unsupervised bottleneck features (uUBNF) [31}32], autoencoders with recurrent neural networks [33]] and
factorized hierarchical variational autoencoder (FHVAE) were explored. The most widely used classifiers
are support vector machine (SVM), linear discriminant analysis (LDA) and its variants, such as quadratic
discriminative analysis (QDA), probabilistic linear discriminant analysis (PLDA), and heteroscedastic linear
discriminant analysis (HLDA) [30,/34-36].

With the introduction of convolution neural networks (CNN) for dialect classification [|37,/38[] that can
extract a compact representation of features along with classification, three stages of classification are
reduced to two. In [37], CNNs are evaluated over the Arabic database (MGB-3) with various acoustic
features such as mel-frequency cepstral coefficients (MFCC), log mel-scale filterbank energies (FBANK),

and spectrogram for dialect classification.

2.1 Feature analysis for dialect discrimination

The factors contributing to discriminating dialects can be categorized into low-level acoustic and
high-level linguistic features. Low-level acoustic features are derived directly from the signal without the
knowledge of linguistic content. They contribute to the pronunciation or accent variations across dialect
classes. High-level linguistic features are dependent on the underlying text of the corresponding speech

signal. These features capture linguistic differences such as vocabulary, spelling, and grammar across



dialects. High-level linguistic factors cannot be learned directly from the speech signals, rather need a

speech recognition system to extract the linguistic content from the speech signals.

2.1.1 Acoustic analysis for pronunciation variants between dialects

Any sound produced by a human being can be characterized by the pressure built up in the lungs, the
vocal fold’s vibration, the vocal tract system’s shape, the articulator’s position and the rate of movement of
articulators. Patterns in these characteristics of acoustics discriminate speech against other dialects. From a
signal processing point of view, these acoustic variants can be studied in two categories such as spectral and

prosodic features.

2.1.1.1 Spectral features

Spectral features can be extracted from speech signals using appropriate parametric representations.
These parametric representations should be such that they represent the speech signal compactly, retaining
useful information. In 1980, MFCCs were first proposed by Davis, and Mermelstein [39] for speech
recognition applications that should replicate the human ear. Later on, any speech application that derives
spectral features from speech signals used these parametric representations as state-of-the-art spectral
representations.

In the early stages of literature for dialect classification, an accent/dialect-sensitive frequency scale is
introduced that contradicts mel-scale representations [2,40[]. This frequency scale worked better than the
mel-scale for corpus containing American, Chinese, Turkish, and German accents of English. This study
stated that the frequency band between 1.5 kHz - 2.5 kHz is more sensitive to accent discrimination. In
[41]], linear prediction analysis is used to derive various formant information and concluded that the second
formant is the most accent-sensitive format between major dialects of English such as British, American, and
Australian. A contradicting study [42]] stated that Cantonese non-native English accent can be distinguished
by emphasizing more on formant F3. In [43]], F1 and F2 show more distinguishable properties, again
contradicting the above two studies. The study in [44] looked at different overlapping sub-bands (A: O -
0.77 kHz, B: 0.34 - 3.44 kHz, C: 2.23 - 5.25 kHz, and D: 3.40 - 11.02 kHz) to find the appropriate sub-bands
for accent identification in contrast to speaker identification. Safavi et al., observed that narrow sub-band
region B contains more information with respect to accents in contrast to speaker information over the
accents of the British Isles. In one of the recent studies for accent classification with dynamic scale [45], it
is observed that the learnt scale is close to non-linear mel-scale.

The speech signal is quasi-periodic, so MFCC features are extracted from the windowed signal. To have

a reliable spectral estimate, a window size of 20 — 40 msec is considered based on various studies in the



literature. Then each frame is windowed with an overlap of 30-50% using a Hamming window which is
proven to reduce leakage.

The dynamic sounds, such as trills and aspirations, which contribute to differentiating dialects, are
transient and show the dynamics within a window of 20 msec. Using a 20 - 30 msec window, averages
the dynamics of these sounds. Shorter windows could lead to compromise in spectral resolution, while

longer window lengths could lose information on some transient sounds.

2.1.1.2 Prosodic features

Prosodic variations between dialects can be observed as rhythm, intonation, duration, and intensity

changes. Features related to prosodic variations at these levels are discussed below:

1. Rhythm: Rhythm is the periodic pattern in speech signals with an isochrony. Rhythmic patterns can
be categorized into three major classes as per Pike [46] and Abercrombie [47]: stress-timed (English
and German), syllable-timed (French and Spanish), and mora-timed (Japanese) based on isochrony
of unit. Stress-timed languages are characterized to have regular intervals between stressed syllables,
syllable-timed languages are periodic with syllables, and successive moras are periodic in mora-timed

languages.

Based on these categories, Ramus et al., [48] investigated various measures such as %V: proportion
of vocalic intervals, AV: standard deviation of vocalic intervals, and AC: standard deviation of
consonantal intervals to correlate speech signal to strict categorization. However, languages with
intermediate rhythmic patterns exist, too [49]]. Despite the discrete categorization of languages,
dialects/accents in a language vary continuously in the periodicity of vowels and consonants
[S0L51]. For example, native speakers of syllable-timed language exhibit rhythmic characteristics of
syllable-timed language when speaking the stress-timed language. Some perception studies observed
that listeners distinguished dialects based on their rhythm, hypothesized by these various research
methods analyzed rhythm as a discriminative factor for dialects and found cross-dialectal differences
using rhythm. Despite English being stated as a stress-timed language, Singapore English is proven
to be a syllable-timed dialect of English in [52], and a new measure of rthythm, pairwise variability
index (PVI) is introduced in [52]] which shows that dialects too vary in rhythm. The metric PVI is

widely used and is given by:
2 S di—dia
m—1 /= di+dis

PVI = 2.1

where d and m are the duration of a vowel and the number of vowels, respectively. By using PVI,
in [53]], Taiwan English is proven to be a syllable-timed language. [54] shows that PVI between

vowels gives distinguishing property than PVI between consonants. In [50], based on the perceptional

10



studies on Western and Eastern dialects of Arabic, compared vocalic and inter-vocalic distances
between dialects. Salem et al. stated in [S0] that Western dialects of Arabic are characterized by
complex syllables with compressed vowels and Eastern dialects with long vowels. In [24]], inclusion

of rthythmic features (%V, AV, and AC) improved the performance of discriminating Arabic dialects.

2. Intonation: Intonation is one of the perceptual features which discriminate dialects which can be
influenced by a speaker’s anatomy, emotion, and type of utterance. It is proved that intonation is one
of the discriminating factors for dialect classification in [55]] using declarative sentences. Grabe et
al., in [56], investigated intonational patterns in accents of British isles (IVIE corpus) with different
sentence types and found that dialects differ with intonational topologies defined by ToBI (Tones and

Break Indices) labelling.

A contour of fundamental frequency FO measures intonation. Methods such as the robust algorithm for
pitch extraction (RAPT) and the linear prediction coefficients (LPC) are used to extract pitch. In [|57],
the pitch of an utterance is computed using RAPT and modelled pitch patterns using pitch codebook
and used KL (Kullback-Leibler) divergence to compute the distance between discrete dialect
distributions. Using this method on Arabic dialects, the United Arab Emirates dialect is distinguished
from Egyptian and Syrian dialects, but Egyptian and Syrian dialects are not distinguishable from each

other.

Figure [2.1] shows the pitch contours of German and Chinese speakers where both speakers utter a
question in German. We observe that the pitch rises at the end of the sentence for German, while
Chinese speakers exhibited syllable level pitch changes. Peng in [58]] used Fy slope and height to

discriminate Mandarin and Cantonese dialects of Chinese, which majorly differ in intones.

v EEEFEEE

s EEHEEER

(a) The pitch contour of a question from a German speaker (b) The pitch contour of a question from a Chinese speaker

Figure 2.1: Illustration of intonational variations for sentence, "Soll ich mitgehen (Should I come with

you?)" (spoken in German) by German and Chinese speaker [ 1.

In [59]], investigated the importance of glottal signal for dialect identification by performing glottal
waveform transformation over a Peruvian speaker with Cuban dialect and found that the speech
sounded more like Cuban dialect. This shows that intonation is one of the features of discriminating

dialects.

11



3. Duration

Arslan and Hansen in [2] analyzed word-final stop closure duration, voice onset time, average voicing
duration, and average word duration for native English speakers and non-native English speakers with
Mandarin, German, and Turkish as a native language. Figure[2.2]illustrates the word-final stop closure
of the word "would". The duration of stop closure is significantly longer for Mandarin speakers. From
the experiments, they concluded that word-final stop closure duration, average voicing, and word

durations as accent sensitive features.

2000 -1

Figure 2.2: Illustration of the change of stop closure durations for the word "would" due to Mandarin accent

a) 4 native (German) speakers b) 4 non-native (Mandarin) speakers. [2]]

4. Intensity:

Intensity is the loudness of the speech produced by the speaker, and high amplitudes in the signal
characterize it. Both intrinsic and extrinsic factors modulate intensity. Intrinsic factors include
emotion, dialect, and speaker characteristics, and extrinsic factors include environmental changes
such as noise, interrupting speaker, and recording device properties. In [S5]], recordings are from
the same speaker and same environments, which ensures that the only factor which modulates the
intensity of speech is accent and proves that intensity is the best feature for discriminating accents of

England. But the challenging task is getting the intensity variations that distinguish dialects.

Even though prosody is one of the main factors for identifying dialects from perceptual studies, prosodic

features improve the performance but are not the main factor in identifying dialects.

2.1.2 Text-based features

High-level text-based features can capture the phonotactics, lexical choice, and semantic differences

in the speech signal across dialects. These text-based features are extracted using a speech recognizer

12



that decodes the text in the speech signal. These features are widely explored in the literature for dialect

classification inherited from language classification.

2.1.2.1 Phonotactics

Dialects in a language tend to add, replace, and substitute new phones. Based on these observations, we
can say that the utterances belonging to different dialects have different phone sequences. To capture these
phonotactics in speech, phone sequence is used as a clue to identify dialect in previous studies. To model
the phonotactics from an utterance, a signal should be processed in two stages. In the first stage, a phone
recognizer is deployed to recognize the phones in the utterance, and then in the second stage, these phones
are modelled using language models.

Language models can be either the traditional count-based n-gram model or the neural language model.
Initial studies on language modelling used n-grams. The posterior probability of a phone is computed from

the train data using the following equation:

count(phy, pha, ..., ph;)
(phi/phy; pha...) count(phy,pha, ..., phi_1) &2

A phone language model is built corresponding to each dialect and uses perplexity to score the test

utterance. The perplexity (PP) is computed as below:

PP(ph/A;) = 2H (/%) (2.3)

where H(ph/2,;) is the entropy of the phone sequence in utterance concerning model A;. The lower the
perplexity, the closer the utterance to a dialect.

Some of the challenges concerning phonotactic features are: First, it needs a phone recognizer to capture
the phonotactic variants in the dialects. Second, the phone labels obtained from these approaches are broad
transcriptions, which don’t include intricate differences in phone sequences which are highly required for

dialect discrimination.

2.1.2.2 Lexical choice and semantics

Word tactics were considered as they are complimentary to acoustic features. Character n-gram and word
n-gram are the most popularly used lexical features for dialect identification [60L/61]]. For each dialect an
N-gram model is trained and represented by D = {D1,D2,...}. P(W/D;) gives the probability of a word
sequence belonging to a dialect class and the class with maximum probability is chosen as its predicted
dialect. In [61]], latent semantic analysis-based features are explored for dialect classification. The dialect is

classified based on the minimum cosine distance between the query semantics and dialect semantics.
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However, dialectal variations are less exhibited by word tactics when compared between languages.
The amount of change in word tactics between dialects depends on the language considered for dialect
variations. Word-tactical variations within dialects of English are worse than dialects of Arabic [[19]]. Among
dialects, especially in the English language, change in vocabulary is very low between dialects. It is observed
in [61]], a very low performance of 35.6% un-weighted recall (UAR) is observed with word-tactics. It can
be concluded that information from higher linguistic representations may not be as beneficial for dialect

classification, especially for dialects in English.

2.2 Machine learning approaches for learning representations

The overview of all the machine learning approaches for representational learning in the literature applied

to dialect classification tasks is discussed in this section.

2.2.1 Generative models for learning latent representation of acoustic features

Generative models are the probabilistic models that play a significant role in machine learning. These
models represent the data by their uncertainties using their distribution. Modelling the data using generative
models will reduce the data dimensions and generate new data points using the distributions, which can
train a generalized model. This generalized model can handle mismatch conditions between train data and
real-time data.

Acoustic features are derived from speech signals with respect to each frame of an utterance. A number
of acoustic features derived from each utterance are dependent on the duration of an utterance which changes
from utterance to utterance. Any statistical classification model which works on an utterance requires fixed
dimensional utterance-level features. Therefore, these variable-length acoustic features derived along the
temporal axis should be converted to fixed and compact representations and these compact representations
should be constrained to contain all the dependencies in the speech signal along the temporal axis. In this
section, we discuss the generative models for modelling latent representations used in literature for dialect

identification.

2.2.1.1 Gaussian mixture models

The distribution of correlated continuous acoustic features can be modelled by a linear combination of
Gaussian components. This is one of the unsupervised approaches to represent the acoustic features based
on estimated component distributions. It is hypothesized and shown that these distributions characterize the
phoneme distributions. The likelihood of acoustic features is estimated using a linear weighted combination

of K Gaussian components.
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The modelled distribution of sounds using Gaussian mixture model (GMM) for dialect classification in
four variants. They are as Gaussian means, posterior probabilities [62], weights [63]], and unsupervised

phonetic labelling [31]].

2.2.1.2 Factor analysis

Factor analysis is a mathematical model used to decompose correlated attributes into compact and
uncorrelated representations. In the dialect identification task, factor analysis is used to decompose both
Gaussian mean vectors and Gaussian mixture weights. For decomposing the Gaussian mean vector, the
i-vector modelling strategy is used to model and this has been the state-of-the-art until the usage of
end-to-end CNNs. Gaussian mixture weights are decomposed and adapted using non-negative matrix

analysis.

1. Factor analysis on Gaussian mean vectors: The i-vector model is widely used in all speech
applications to represent an utterance in shared unobserved uncorrelated factors. Initial studies on
other speech applications used joint factor analysis (JFA) for decomposing the Gaussian super vectors.
In JFA, two stages of independent factoring are done to extract channel and speaker-related latent
features. However, in [64]], Dehek et. al., show that the independent latent features share speaker and
channel factors. Therefore, i-vectors with a single decomposition are proposed in [65]]. Any feature
vector can be decomposed into a mean vector (m), offset (Tv) and a unique component which is not

a shared factor with other variables (€).

M=m+Tv+e (2.4)

where m, M are the universal background model (UBM) Gaussian super vectors and maximum a
posteriori adaptation (MAP) adapted Gaussian super vectors. The dimension of these supervectors is 1
X ¢ f, where c represents a number of Gaussian components and f represents the feature dimension.
T is the total variability matrix and v is the unobserved factor which is the i-vector representation with

a distribution .4#(0,1). € represents the unique component corresponding to each feature variable.

2. Factor analysis on Gaussian mixture weights : Gaussian mixture weights are decomposed using

factor analysis and it is represented below [63]]:
We =b.+ L1 (2.5

where w, is the weight of each component. Using factor analysis with a constrained objective function
over Gaussian mixture weights the adaptation of weights is done. Below is the optimization problem

based on which the weights are adapted.
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T C
max Z Z Yeilog(be+Ler)

t=1c=1
. . : (2.6)
subject to 1(b + Lr) = 1 Equality constraint

b+ Lr > 0 Inequality constraint
Unconstrained optimization is faster to converge than constrained optimization. Therefore, the above
equation is reformulated with the equality constraint by relaxing the inequality constraint then a simple

gradient ascent and projected gradient algorithms are applied to obtain subspace vector r and subspace

matrix L,.

2.2.2 Autoencoders for representation learning

Autoencoder is a neural network architecture that learns to represent latent features while trying to
reconstruct the input. It is similar to principal component analysis (PCA), except that they include non-linear
activation functions and the weight matrix of the encoder and decoder are not orthogonal to each other.
Autoencoder usually has two parts, one trying to find the latent representations (encoder) and the other
trying to reconstruct the input features (decoder). The equation of the encoder with one layer in function

representation is given below:

Z=f(X) (2.7)

where the function f takes the form Wx + b with a non-linear activation over it. The decoder in the network

tries to generate input features from latent features and its equation is given below:
X =4(2) (2.8)

where g is the transposed representations of f. Both networks are trained to minimize the distance between

X and X. The objective of the neural network is given below:
minL
0
where 2.9)
L=||X-X]|| and

where 0 represents parameters of network. In [33]], sequence-to-sequence recurrent neural networks such
as (LSTM) and Gated Recurrent Unit (GRU) are used as network architectures in the encoder and decoder

framework of autoencoder to learn dialect embeddings.
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2.3 Machine learning approaches for the classification of dialects

Both generative and discriminative classification approaches are discussed in this section. GMM is
the generative unsupervised approach for classification tasks. SVM and neural models are discriminative

supervised approaches for dialect classification.

2.3.1 Gaussian mixture model as classifier

In [[66], the Gaussian mixture model (GMM) is used as a classifier for dialect classification. GMM is
used to model the distribution of the training data. A class-specific GMM should be trained to model the
dialect-specific distributions. But in the case of deficient dialect-specific data, the dialect with deficient
data is modelled poorly and won’t be a generalized model. Therefore, to overcome this problem, a
UBM is trained with complete data comprising all dialects. Next, the MAP estimation [67] of each class
distribution is done from UBM. Now, such models are generalized and this approach is faster than training
dialect-specific GMM models. Given a test utterance, it is classified based on their inclination towards
class-specific GMMs.

2.3.2 Support vector machine as classifier

Support vector machine (SVM) is a very commonly used statistical model for any classification problem.
SVM was first introduced by Cortes and Vapnik in 1995 [|68]]. The main objective of SVM is to learn the
hyperplane which optimally classifies the samples in N-dimensional space. Generally, SVM is a two-class
classifier. However, to use SVM for multiple class problems either one-vs-all or one-to-one methods have
been used. Classifying optimally is to find the best hyperplane out of all the possible hyperplanes i.e., a
hyperplane that maintains maximum margin (minimum distance of the hyperplane from the classes). Let us
define the hyperplane by a line equation: ng + e = 0, where wy, defines the perpendicular component of the

hyperplane. The margin between the hyperplane and the plane passing through the nearest point is given by

[Iwall*

2.3.3 Neural network models as classifiers

Artificial neural network is a framework that attempts to mimic the human brain. Artificial neural
network tries to implement a simplified model of neuron simulations in the brain. A very simplified neural
network is a perceptron that takes inputs and a single output which is either O or 1. Linear or non-linear

activation functions are used to model the complexity of data at each node.
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2.3.3.1 Feed forward neural network

Feed-forward neural networks are artificial neural networks similar to perceptron. These networks have
an input layer, an output layer, and hidden layers. Each layer has multiple nodes that act like neurons in the
brain connected to nodes in the other layers. In a feed-forward neural network, all the nodes in one layer are

connected to all the nodes in the other. The output of each node is modelled as below:
y(x;W,b) = F(W'x +b) (2.10)

where F' is the activation function from each node, the most commonly used activation functions in the
literature are sigmoid, tanh, and rectified linear unit (ReLU).

The output layer of the neural network should use an activation function based on classification or
regression tasks. The error computed at the output layer is backpropagated along with the derivative of

the activation function. The weights at each connection are updated based on the error backpropagated.

2.3.3.2 Convolution neural network

Convolutional neural networks (CNN) are widely used deep network architecture [69,[70]], due to their
automatic detection of essential features. Its architecture is mainly motivated by the observations in [71]],
based on the experiments on the visual cortex of a cat. The primary motivation behind this architecture is, it
explores the spatial structure in the image and temporal structure in the speech signal. The main advantage
of CNN networks over other networks is, it automatically selects the essential features along the temporal

axis. In this network, a filter F' is convolved with a speech signal by striding along the temporal axis.

2.4 Significant gaps in dialect classification

1. The identification of dialects is a challenging task when compared to language identification due
to their highly overlapping phonemic inventory. Most of the models in the literature for dialect
identification are borrowed from the language identification problem. There is a need to separately

work on dialect identifications.

2. MFCC features derived from STFT were used commonly, these features are derived for every 20-30
msec window. However, the dynamic nature of sounds contributing to dialect discrimination is lost

due to windowing over speech signals.

3. Unsupervised i-vector approach was commonly used for dialect classification. However, the
factor analysis-based i-vector approach computes all the utterance variations that include speaker
characteristics and environmental conditions. Disentangling speaker characteristics from accent

features for dialect classification should be explored and applied in automatic dialect classification.
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4. Dialects are better classified with higher temporal context. The computational complexity increases

by increasing temporal context in CNN.

5. Dialects in each language have different characteristics. In [40l 42|, different frequency scales
were proposed for dialects in different languages. Therefore, there is a need for language invariant

frequency scale which is learned dynamically to identify dialect.
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Chapter 3

English speech corpus for dialect classification

Humans communicate using different languages such as English, Spanish, French, etc. These languages
are subdivided based on regional, cultural, and social differences into dialects. This thesis considered
dialects of English. English has major dialects such as American, British, Australian, and so on. Further,
they are divided into many subcategories, such as American into Boston, New Jersey, Texas, etc. and British
into Belfast, Bradford, Cardiff and so on. But this thesis considered the classification of speech into major
dialects of English such as American, British, and Australian. For the investigation of dialect classification,
openly available UT-Podcast [[72] corpus is considered across the thesis. The corpus consists of three broad
dialects of English: AU (Australian), UK (Britain), and US (American). Within a region (either US, UK, or
AU), sub-variants can exist, but as per this corpus, only the primary dialect of the speaker is provided.

UT-Podcast corpus is collected by crawling web-based podcasts that mainly contain interviews. The
speech produced is spontaneous and not structured as taken from the interview. Since it is spontaneous,
variations can be observed at different levels, such as pronunciation, vocabulary, and grammar. These
variations are mainly due to regional differences. These interviews covered news, science, religion, society
and life. For a better representation of data, it is collected from a wide range of websites (AU from 12,
UK from 5, and US from 8 websites). The speech collected has a sampling frequency of 8 kHz. The
duration of each conversation in UT-Podcast ranges from 30 to 60 minutes. These conversations undergo
segmentation into smaller utterances through voice activity detection (VAD) to prevent abrupt truncations,
as mentioned in [23[]. Upon manual inspection of a randomly selected set of audio files, it was observed that
very few files exhibited cross-talks. To address this, we performed additional cleaning using pyannote VAD.
Subsequently, approximately 10 to 15 samples were selected from each class for further manual verification.
The pre-processed speech segments have an average length of about 17 sec and 46 words.

After pre-processing and segmentations, there are 1762 utterances in total. Train and test from entirely
different websites to have generalized test conditions. After train and test division, there are 1101 utterances
in the training set and 661 utterances in the test set. Number of utterances available for training in each of

the dialect are, AU:449, UK:246, and US:406. Number of utterances available for test set in each of the
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dialect are, AU:332, UK:89, and US:240. In both training and test sets, number of utterance in UK class is
low.

Total duration of speech in UT-Podcast is 8.4 hrs. Duration of speech used in train set is 5.2 hrs with
2.1 hrs of AU, 1.2 hrs of UK, and 1.9 hrs of US. Duration of speech used in the test set is 3.2 hrs with
1.6 hrs of AU, 0.4 hrs of UK, and 1.2 hrs of US. Table shows the distribution of number of utterances
and duration of UT-Podcast corpus across train and test sets of each class. Data was collected from adults,

with 127 male and 104 female speakers.

Table 3.1: Distribution of number of utterances (#utterances), the duration of utteraces (#duration (in hrs)),
vocab. size, and average sentence length (in words) for each dialect class of UT-Podcast (AU: Australian
English, UK: Britain English, and US: American English).

UT-Podcast | #Utterances #Duration in hrs | Vocab size Average sentence len.

Data type AU | UK | US || AU | UK | US AU | UK | US AU | UK US

Train 449 | 246 | 406 || 2.1 | 1.2 | 1.9 || 3923 | 2025 | 3224 || 49.5 | 48.2 45.4

Test 3321 89 | 240 | 1.6 | 0.4 | 1.2 || 3178 | 917 | 2337 || 50.5 | 38.0 45.2

After carefully listening to the audio in UT-Podcast, it is observed that the speech across dialects
varies in pronunciation and vocabulary. Pronunciation variations can also be called accent variations.
Accent/pronunciation variations can be observed as phonetic replacements or deletions and prosodic
variations. One example for phonetic replacements is usage of /d/ by US dialect in words like better, meeting
while /t/ is being used by UK dialect. Figure shows speech signal and STFT spectrograms for the word
"meeting" in UK and US dialects. It can be observed that UK’s unvoiced alveolar plosive (/t/) is replaced by
voiced alveolar plosive (/d/).

One example of phonetic deletion is due to rhotic vs non-rhotic accents. Figure [3.2] shows the
spectrogram for word "better" for three dialects. AU and UK dialects are non-rhotic, while US dialect
is rhotic. However, it can be observed that the presence of alveolar flap /r/ cannot be seen clearly in the
spectrogram due to its transient/dynamic characteristics. This required better spectrograms that provide
better temporal resolution.

Prosodic variations across dialects result in a change in stress, duration, and intonations. Changes in
stress results in energy variations in speech across dialects; for example, consider the French loan words
such as adult and weekend, where first-syllable stress is observed in the UK dialect while second-syllable
stress in the US dialect. The sound length produced changes across dialects; for example, the word "need"
has a longer /i/ in the UK than in the US dialect. Figure[3.3|shows the durational variations between US and
UK dialects. It can be observed that the UK dialect (0.44 sec) has a longer /i/ sound compared to the US
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ency (Hz)

(a) STFT Spectrogram of "meeting" by UK dialect (b) STFT Spectrogram of "meeting" by US dialect

Figure 3.1: Illustration of phonetic replacement for the word "meeting" by British (UK) and American (US)

speakers using STFT spectrograms.

(a) AU (b) UK (c) US

Figure 3.2: Illustration of rhotic variations using word "better" using STFT spectrogram. Each sub-figure
represents a dialect, sub-figure (a) represents the Australian (AU) dialect, sub-figure (b) represents the British
(UK) dialect, and sub-figure (c) represents the American (US) dialect.

dialect (0.22 secs). The energy and pitch vary across sentences in between dialects. These variations were

also observed in the corpus.
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(a) STFT Spectrogram of "need" by UK dialect (b) STFT Spectrogram of "need" by US dialect

Figure 3.3: Illustration of durational variations using STFT spectrogram for word "need" spoken by British

speaker and American speaker.
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Also, differences in the usage of vocabulary are observed across dialects. For example, words like "truck"
and "apartment" were used in the US, while "lorry" and "flat" were used in the UK. Grammatical variations
can also be observed, it is observed that for the past tense of get, the US dialect still used "gotten" while the
UK dialect only used "got".

Speech is clear in most of the cases. Very few utterances of podcasts have multiple speakers, with a
question from one speaker usually at the beginning of the sentence. So, when considering truncating the

speech, it was truncated to the latter part of the speech rather than the initial.
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Chapter 4

Dialect classification system: state-of-the-art

Speech in a language can vary in pronunciation, vocabulary, and grammar based on the geographical
spread. These systematic variations in speech due to regional diffusion are termed as dialect. Determining
the dialect of the speaker from the speech signal is the dialect classification problem. The applications of
automatic dialect classification include personalized computer assistant which adapts to user’s dialect. Also,
the dialect information can be used to improve the performance of automatic speech recognition (ASR) and
speaker recognition systems [73}[74]]. The origin of the speaker can be determined by dialect classification

and this information is useful for profiling and forensics [75]].

Dialect classification is similar to language identification, however, the distribution of phones and
allophones across dialects is relatively smaller than across languages. This makes dialect classification
rather more challenging. Majority of the methods for dialect classification are borrowed from language
identification [22}25,/26,/76]. Previous studies on dialect classification can be categorized into two areas:
Studies in first category focused on dialect discriminant feature extraction from speech signal. For
example, studies such as [77-H79] were focused on exploring the temporal and spectral characteristics
across dialects. The features can be further categorized into two; i.e., acoustic or phonotactic based
features. Acoustic features usually represent characteristics of speech signal in time or spectral domain,
while phonotactic-based [25H28]| features are discrete and capture the distribution of phoneme sequences.
In [35], the characteristics of sound sequence are captured from the spectral features using stochastic
trajectory model. For acoustic-based features, static Mel frequency cepstral coefficients (MFCC) along with
shifted delta cepstral (SDC) features of MFCC are widely used [22,/80]. Figure [.1]shows block schematic
diagram of dialect classification system. Based on the acoustic characteristics, the dialect of speech signal
is identified. It involves four stages, first extraction of features from speech signal, second contextual
processing of frame-level features, third back-end pre-processing to obtain utterance level features, and

in final step classifier classifies the dialects.
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Figure 4.1: Block diagram showing i-vector based baseline dialect classification system.

4.1 Feature extraction methods

This section discusses two different baseline feature extraction methods (MFCC-STFT and LPCC) as

baseline features. MFCCs derived from STFT are commonly used acoustic features for dialect classification.

4.1.1 Mel-frequency cepstral coefficients

Conventional mel-frequency cepstral coefficients (MFCC-STFTs) are widely used in all speech
applications and considered as baseline for dialect classification [29,/81-84]. Extraction of MFCC-STFTs
is motivated by the physiology of human ear [85]], where the mel-spaced filters are used, mimicking
the physiology of the human ear. The one-dimensional pre-emphasized speech signal is segmented into
shorter sliding windows and transformed to spectro-temporal representation (spectrogram) using Fourier
transformation. Mel-spaced triangular filter-banks are integrated with the STFT power spectrum along the
frequency axis to obtain STFT-based mel filter bank energies. This process integrates higher dimensional
time-frequency representation to lower dimensional representations by averaging in spectral sub-bands.

Discrete cosine transformation (DCT) is applied over the log of STFT-based mel filter bank energies and
the resultant cepstrum value in each time-channel bin. The cepstral analysis separates the vocal-tract system
characteristics into lower order coefficients and excitation source characteristics into higher order cepstral
coefficients. Cepstral coefficients are truncated to different cepstral orders for investigating the effect of

cepstral order on dialect classification.

4.1.2 Linear prediction cepstral coefficients

Linear prediction analysis is an all-pole based approach approximating the smoothed power spectrum
[86]. The spectrum estimated using linear prediction analysis is called linear prediction (LP) spectrum. LP
spectrum is a smoothened version of STFT-based power spectrum as it highlights high energy components
such as formants and degrading low energy harmonics in the spectrum. The cepstral coefficients derived
from the LP spectrum are called linear prediction cepstral coefficients (LPCCs). LPCCs were investigated
in speech recognition as they better represent the vocal-tract information [87]], language identification [88]],
and speaker recognition [[89].

LP analysis states that any sample point in a signal can be estimated as the linear weighted sum of

past samples of the signal. Linear prediction coefficients (LPCs) are estimated by minimizing the mean
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square error between the estimated and actual signal. Auto-correlation coefficients are computed from the

segmented speech. Finally, LPCs are converted to the cepstral domain to yield LPCCs.

4.2 Contextual processing approaches

Speech signal is assumed to be stationary in 20 - 30 msec window, so features are computed for every
20 - 30 msec frame. Every frame contains information only within 20-30ms. For dialect classification,
even the articulatory information is also essential. To capture co-articulatory information between frames,
different contextual approaches were explored in this chapter. These approaches include context at frame
level by adding delta coefficients. Two main contextual processing approaches, such as delta and double

delta coefficients and shifted delta cepstral coefficients, are discussed in this chapter.

4.2.1 Delta and double delta coefficients

The co-articulatory effects in speech results in intra-dependencies across the frames. The co-articulation
effects differ from one dialect to other. This co-articulation cannot be captured in static cepstral coefficients
therefore delta and double delta (A+AA) cepstral coefficients can be used to capture this effect. A+AA

coefficients [90] are computed as follows:
d[t] = c[t+m] —c[t—m], 4.1)

where ¢ defines the current frame index and m defines the context length which is set to 3 in this study. The

delta and double delta (A+AA) coefficients compute the delta operation over the delta coefficients.

4.2.2 Shifted delta cepstral coefficients

In [80], it was shown that cepstral features vary temporally across dialects. There was a significant
improvement in language identification after using SDC features rather than delta and double delta
coefficients [80]. SDC features are computed over the ZTWCCs for each frame. N —d — p — K defines
the configuration for the SDC computations. At every time instant ¢, delta computations between cepstral
coefficients at (¢ +ip —d)™ and (¢t +ip +d)" are done. These delta coefficients computed with i varying
from 1 to K, and are stacked to get delta coefficients at each instant in time 7. SDC vector Ac(t, i) for cepstral

coefficients at time ¢ for i

shift is given by:
Ac(t,i) =c(t+ip+d)—c(t+ip—d), 4.2)

where N denotes dimension of static cepstral coefficients, d denotes delay or advance from the current frame,
p is the shift between consecutive delta computations, and K such delta computations are concatenated to

form N x K dimensional SDC coefficients.
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4.3 Back end preprocessing (i-vector extraction) approach

Factor analysis is a method of expressing the variability of the observed variables (data) in terms of
low-dimensional (latent) vectors. I-vector modeling is one of the factor analysis methods to represent
low-dimensional total variability factors for each utterance in a single vector [|64]. Stacked means of GMM
are termed as supervectors. supervectors of a GMM-UBM are represented by m and supervectors of an
utterance adapted GMM are represented by M. The supervectors of each utterance M can be expressed by

mean components and offset which is given by:

where T represents low-rank total variability matrix, w is utterance specific latent factor vector known as
i-vector with a prior distribution of .4"(0,I).

Means and variances of GMM-UBM were initialized using k-means clustering, then UBM is trained
using expectation-maximization (EM) algorithm with train data from all dialects. To obtain i-vectors, a
process similar to estimation of Eigen voice in [91,92] is followed. In this approach, first Baum-Welch
statistics per utterance are accumulated then total variability matrix T is iteratively trained. Finally, i-vector
w is estimated for each utterance which can be used for classifying dialects. Both the GMM-UBM and the

total variability matrix T are trained for five iterations.

4.4 Classification methods

Classifier is trained with utterance level i-vectors to classify dialects. The SVM was trained with a linear

kernel in one-vs-rest fashion. The standard publicly available implementation of SVM [93]] is leveraged.

4.5 Experimental Setup

This section gives the details of evaluation metrics and configurations of baseline features and baseline

dialect classification system.

4.5.1 Configuration of baseline feature extraction

The most popular and conventional Mel-frequency cepstral coefficients (MFCCs) and linear prediction
cepstral coefficients (LPCCs) are considered baseline features for dialect classification in this thesis. For all
the feature extraction, a window size of 25 msec and half of the window length are considered window shifts.
Autocorrelation formulation is used in the extraction of LPCC features. The baseline feature representations

are investigated by varying the number of static cepstral coefficients (from 13 to 60).
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From static coefficients, A, AA, and SDC coefficients [[80] are also derived, which are also investigated
to see their effectiveness on dialect classification. For A and AA computation, a delta of one, leading to a
context of three is considered. For SDCs, a standard configuration of N-d-p-K = N — 1 —3 —7 is considered,
where N denotes the dimension of the static cepstral coefficients, d denotes the delay/advance from the
present frame; p is the shift between consecutive delta computations; and K such delta computations are

concatenated to form N x K-dimensional SDC coefficients.

4.5.2 Configuration of i-vector system

Extraction of i-vectors is motivated by the factor analysis modelling, where features are represented in
terms of uncorrelated components [64]]. In this, GMM-UBM (trained on all utterances) model is adapted to
represent a variable length utterance in terms of fixed representation called super-vectors. Later by the factor
analysis, super-vectors are further compressed to retain only an uncorrelated low-dimensional components
of super-vectors, which are called i-vectors. Adapted super-vector m can be represented as m = M + Tv;
where M represent mean super-vector obtained by training GMM-UBM with features from all dialects, T
represents total-variability matrix and v represents i-vectors. The means and variances of GMM-UBM are
initialized using k-means clustering. Initial experiments were conducted by varying number of Gaussian
components (256, 512, 640, and 1024) with i-vector system trained with MFCC features. From the
experiments, it was observed that 640 Gaussian components performed better than all others and hence the
number of Gaussian components is set to 640 across all the experiments. GMM is trained with all the dialects
to obtain means of GMM-UBM model (represented by M) from the pre-initialized means and variances
using k-means clustering. Then the means of GMM-UBM are adapted to each dialect class (represented
by m). Factor analysis model is trained for 5 epochs to learn the total variability matrix (represented by 7')
using Baum welch statistics. From means (m and M) and learnt total variability matrix (7"), 100-dimensional
i-vectors are computed for each utterance. More details about i-vector extraction can be found in [91}92].
Matlab toolbox EI is used for implementing i-vector framework [94]]. Similar configuration is being used in

a future chapters with proposed features for a fair comparison.

4.5.3 Evaluation metric

The corpus UT-Podcast has imbalanced classes in test set. For classification tasks usually accuracy is
evaluation metric, and accuracy is defined as (#correct predictions)/(#total samples). With the imbalanced
classed in corpus, the overall accuracy depends on the accuracy of the majority class. While UAR is
unweighted average recall which tries to give equal weight to each class irrespective of their strength [935].

So, UAR is considered as primary metric across this thesis.

Thttps://github.com/wangwei2009/MSR-Identity-Toolkit-v1.0
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In 2 class classification problem, UAR is expressed as (SE"””V”};S” ccificity) \where sensitivity = ( P

TP+FN)

and specificity = 0 . Sensitivity is same as recall/accuracy of positive class and specificity is same as

TN
TN+FP)
recall/accuracy of negative class.

In case of multi-class classification problem with more than 2 classes, recall (REC) can be expressed as:

TP
REC; = —+— 4.4)
' TP +FN,
or
REC: — #correct predictions of class; 4.5)
" #total samples in class; '
c

REC;

UAR = ZIT (4.6)

where TP is true positives, FN is false negatives, and REC is Recall.

Along with UAR, class-wise accuracies and confusion matrices are also reported for discussions.

4.6 Results and discussion

This section reports the results and discusses them with baseline approaches (MFCC-STFT with i-vectors
and LPCC with i-vectors). In the i-vectors computation, number of GMM components were analyzed with
MFCC-STFT static+A+AA. Then, to understand the importance of temporal context and to find the best
configurations, different contextual processing approaches (static, static+A, static+A+AA, and static+SD

coefficients) were investigated.

4.6.1 Hyperparameters tuning for i-vector system

Table [{.1] shows the performances of i-vector-based dialect classification with different GMM
components (256, 512, 640, 1024). It is observed that with 640 GMM components, the performance of

dialect classification is better. Therefore, 640 is considered in further experiments.

Table 4.1: Performance (in UAR%) for dialect classification with different number of GMM components
(256, 512, 640, and 1024) used in i-vector extraction.

No. of GMM components | 256 | 512 | 640 | 1024

MFCC+A+AA 729 | 72.6 | 74.5 | 73.4
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4.6.2 Comparison of baseline methods

Table [.2] shows the performance (in UAR%) for i-vector based dialect classification system with
all different temporal contexts such as static, static+A, static+A+AA, and static+SD coefficients. With
MFCC-STFT features (row 3 of the table), it can be observed that increasing the temporal context
consistently improved the performance of MFCC-STFT. However, with LPCC features (row 5 of the
table), it can be observed that it improved context only with static+A+AA coefficients. Comparing both
MFCC-STFT and LPCC, it can be observed that MFCC-STFT outperformed with a UAR of 77.98%.

Table 4.2: Performance (in UAR%) for i-vector based dialect classification system with all different
temporal contexts such as static, static+A, static+A+AA, and static+SDC coefficients with baseline features
MFCC-STFT and LPCCs.

Feat. type static | static+A | static+A+AA | static+SDCs
MFCC-STFT | 75.67 | 76.38 77.21 77.98
Rel. Imp. - 0.94 2.04 3.05
LPCC 69.68 | 69.57 74.42 71.21
Rel. Imp. - -0.16 6.80 2.20

4.6.3 Analysis using confusion matrices

Further to understand the class-wise accuracies with confusion of classes, confusion matrices are reported
in Figure[d.2] It can be observed from both the figures that the samples of UK class are confused with AU and
US. Comparing class-wise performances of STFT-MFCC and LPCC, it can be observed that STFT-MFCC

performed better for all the classes, especially the most confused UK class.

4.6.4 Comparison to previous studies

This section compares the results obtained in the current study (i-vectors derived baseline features with
SVM) with the previous studies [[72] with i-vector based approach. In [72], both text based and audio based
approaches were investigated.

In text based approach, term-frequency and inverse document frequency (TF-IDF) was exploited.
TF-IDF measures the originality of word in a document. In audio based approach, GMM super-vectors
and i-vectors were used with SVM classifier. A fusion of both text and audio approach is also investigated.

Among all the approaches in previous studies, i-vector based approach performed better with a UAR of
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Figure 4.2:  Confusion matrices for i-vector based dialect -classification system with static

MFCC-STFT+SDCs and static LPCC+A+AA .

74.5%. It is also observed that acoustic information is more helpful in identifying dialects when compared
to text information.

Table[d.3|shows the performances in UAR% and class-wise accuracies of previous (rows 3-6) and current
studies (rows 8-9). Comparing current studies to previous studies, it can be observed that MFCC-STFT with

a better configuration of i-vectors performed better than the previous study’s i-vector system.

Table 4.3: Comparison of current baseline i-vector system with previous dialect classification models over

UT-Podcast corpus (in UAR% and class-wise accuracies).

Arch. type UAR | AU UK uUS

Text and audio based approaches from previous studies [72]

Audio System (GMM) 60.3 | 855 | 32.6 | 629
Audio System (i-vector) 745 | 78.0 | 61.8 | 83.8
Text System (TF-IDF logistic regression) | 58.7 | 83.1 | 32.6 | 604
Audio-Text system (Fusion) 76.3 86.1 | 60.7 | 82.1

i-vector system (current study)

MFCC-STFT (baseline) 77.98 | 87.35 | 56.18 | 90.42
LPCC (baseline) 74.42 | 88.33 | 46.07 | 88.86
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4.7 Summary and conclusions

Among the baseline features, MFCC-STFTs performed better. On investigation of features with different
cepstral order, the impact of cepstral order on the performance of dialect classification differed for each
feature representation. Similarly, an investigation of features with different temporal contexts is done,
and the impact of temporal context on the performance of dialect classification differed for each feature
representation. From this, we can conclude that features behave differently in different temporal contexts.

The short-time windowing of MFCC-STFT will have only a context of 25 msec. The windowing averages
the information in each window of 25 ms. The dynamic sounds, such as trills and aspirations, differentiate
dialects, are transient. To capture these dynamics, shorter windows are required. However, shorter windows
could compromise spectral resolution, while longer window lengths could lose information about some
transient sounds. It is also observed that to discriminate dialects, we need a longer temporal context. So,
we hypothesize that features that provide higher temporal resolution and temporal context perform well for

dialect classification.
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Chapter 5

SFF-based and ZTW-based approaches for dialect classification

Dialectal variations can be observed at sub-segmental, segmental, supra-segmental, and sentence levels.
The short-time Fourier transform (STFT) features are extracted from the spectrum estimated from every
25 msec framed signal. This averaging within a frame of 25 msec leads to a loss of information related to
transient or dynamic sounds. The characteristics of these transient or dynamic sounds vary between dialects.
So, this chapter proposes the features derived from advanced signal processing approaches, namely, single
frequency filtering (SFF) and zero-time windowing (ZTW) approaches. The spectrum is extracted at every
sample for SFF and ZTW methods. This captures the intrinsic variations between dialects.

Further, from the previous studies, it is observed that the spectrum computed by SFF has been shown to
give good spectral resolution to indicate harmonics and resonances [96]. It has also been observed to give
good temporal resolution to model speech excitation features such as impulse-like events [97]. The SFF
spectrum has shown promising performance in determining burst-onset points (related to voice-onset time
(VOT)) and glottal closure instances compared to the STFT spectrum [97-99]. Previous studies in dialect
identification have shown the significance of VOT for the identification of accent [[100]. Inspired by this, we
propose to use the SFF-based features for dialect identification.

Zero-time windowing method that can effectively differentiate different speech sound characteristics
compared to the DFT spectrum [[101H103]]. In [21]], spectral features in the i-vector approach were replaced
by speech attributes such as manner and place of articulation. This approach has reduced the relative
error rate significantly as compared to MFCC i-vector-based approach. From this, we hypothesize that

ZTW-based features might provide better dialect discrimination.

5.1 Motivation for ZTW and SFF methods

Both SFF and ZTW methods compute the spectrum at every sample avoiding the windowing. For
illustrations, the word “better” is taken from the UT-Podcast corpus for major English dialects (AU, UK,
and US). Due to linguistic phonetic variations between dialects (AU, UK, and US) [7]], the word better
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is pronounced as /'bedar/, /'beta/, and /'bedar/ in US, UK, and AU dialects respectively. AU and UK are
non-rhotic pronunciations while US is rhotic. US and AU uses voiced alveolar plosive (/d/), while UK
uses unvoiced alveolar plosive (/t/). Figure [5.1] shows the STFT plots for the word "better" spoken in AU,
UK, and US dialects. It can be observed that the presence of alveolar flap /r/ cannot be seen clearly in the

spectrogram due to its transient/dynamic characteristics.

(a) AU (b) UK (c) US

Figure 5.1: Illustrations of rhotic variations using STFT spectrogram for the word "better". Each sub-figure
represents a dialect, sub-figure (a) represents the AU dialect, sub-figure (b) represents the UK dialect, and
sub-figure (c) represents the US dialect.

To articulate /r/, the tip of the tongue flutters at the alveolar ridge. This flutter causes trill cycles. The
sound /r/ can be either produced as a trill or as just a tap. Figure[5.2] shows the pronunciation of trill /t/ in
isolation. From the figure, it can be noticed that there are ripples in the amplitude of the ZTW spectrogram
due to the presence of secondary excitation introduced by the tongue tip at the alveolar ridge (during the
pronunciation of /r/). Trill has atmost around five trill cycles over 200 msec of duration [[103]]. For 100ms,
three cycles of amplitude variations can be seen in the figure (i.e., at a rate of 30Hz ). Similar observations

can also be seen from the SFF spectrum in Figure[5.3]
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Figure 5.2: Illustration of ZTW spectrum for the sound /1/ at every 10 msec.
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Amplitude

Figure 5.3: Illustration of SFF spectrum for the sound /1/ at every 10 msec.

Figure [5.4] shows the ZTW spectrum for last 40 msec of the word "better" for that has the pronunciation
of /t/ by US speaker. From the Figure, it can be noticed that there are ripples in the ZTW spectrum due to the
presence of secondary excitation introduced by tongue tip at the alveolar ridge (during pronunciation of /r/).
Since the speech is spontaneous and the /r/ occurred as a alveolar tap, only one period is visible in spectrum.
Similar observations are also made from SFF spectrum. The temporal resolution of these approaches may
help in representation of transient features of speech. With these evidences, we hypothesized that the features

derived from SFF and ZTW are better for classification of dialects.

R -
— w0
T
_— =
7 s //// K 30
£
1

Amplitude

£ 5E

Figure 5.4: Illustration of ZTW spectrum for the sound /r/ in the word "better" taken from US dialect of
UT-Podcast corpus.
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5.2 ZTW based features

The high resolution spectrum provided by the zero-time windowing method can differentiate different
speech sound characteristics effectively compared to the DFT spectrum [I0IHI03]. Previous studies in
dialect classification [21]] has shown the significance of manner of articulation and place of articulation for
dialect classification. This approach reduced the relative error rate significantly as compared to MFCC
i-vector based approach showing the importance of formant locations. ZTW method was proposed in
[101]] to derive the instantaneous spectral characteristics, so that the time-varying characteristics of speech
production mechanism can be captured.

Ilustrations of spectrograms obtained with STFT and ZTW methods are shown in Figures[5.5]a) and (b)

respectively. From the figures, it can be clearly seen that ZTW spectrogram (Figure [5.5(b)) highlights the
formant structure compared to STFT spectrogram (Figure [5.5(a)).
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(a) STFT Spectrogram (b) ZTW Spectrogram

Figure 5.5: Illustration of spectrograms obtained with (a) STFT and (b) ZTW methods.

This section first describes the ZTW method used for deriving high—resolution spectrum [104]], and then

gives a procedure to extract the proposed features from ZTW spectrum.

5.2.1 ZTW method

The instantaneous spectral characteristics of the ZTW spectrum lead to a better representation of
time-varying spectral characteristics of speech production mechanism [104]. First, the speech signal is
windowed by a heavily decaying window that emphasizes the samples near the start of the window.

Spectrum is estimated using group delay at every time instant. ZTW spectrum estimated provides high
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temporal resolution (as estimated at every instant) and spectral resolution (due to group delay function).

The steps involved in extracting the ZTW spectrum are shown in Figure[5.6]and described as follows:

* Atevery instant of the speech signal, the segment of L msec (i.e., M samples of s[n|, where M = 1%{5‘0)
2

is multiplied by a heavily decaying window w1[n]. where

wi [l’l] = 0, n=20,
1

S

4sin*(zn/2N)

=1,2,...,N—1. 5.1)

where N is the number of points used in the computation of DFT (N >> M). Multiplying the signal with W% [n]
is approximately equivalent to integration in the frequency domain [[104]. L=25 msec and N=1024 are chosen

for this thesis.

* To reduce the ripple effect in the frequency domain due to segmentation, the signal is multiplied by another

window wy[n], for n = 0,1,...,M — 1, defined as:

waln] = 2(14cos(m n/M)) = 4 cos*(nn/2M), (5.2)

* The spectrum (X[k]) is estimated from the windowed signal by computing the numerator group delay (NGD).
The NGD function is given by:
gnlk] = Xg[k]Yr[k] + X;[K|Y1[], k=0,1,2,...,.N—1. (5.3)

where Xg[k] is the real and X;[k] is imaginary parts of the X[k] (DFT of x[n]). Likewise, Yg[k] is the real and
Y;[k] is the imaginary part of the Y [k] (N-point DFT of y[n] = nx[n]).

* NGD spectrum is double-differentiated to highlight the hidden spectral characteristics. The Hilbert envelope of
the double-differentiated NGD spectrum is referred to as the ZTW spectrum, denoted by S|n, k].

ZTW method
s[n] x[n] Spectral Double e S, ryln.Kl
> w,[njw,?[n] > estimation » differenced > iloe .
1 ? envelope
(NGD) NGD

Figure 5.6: Schematic block diagram describing the steps involved in the computation of ZTW spectrum.

5.2.2 Extraction of feature representations from ZTW method

This thesis proposes to derive two types of features from the ZTW spectrum. They are: (1) zero—time

windowed cepstral coefficients (referred to as ZTWCCs), (2) mel frequency cepstral coefficients derived
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from ZTW spectrum (referred to as MECC—ZTW). Out of these two, only ZTWCC was investigated for

dialect classification in [[105]].

5.2.2.1 Extraction of zero—time windowed cepstral coefficients (ZTWCCs)
ZTWCCs are computed from the cepstrum of the ZTW spectrum (S[n,k]), as follows:
Czrw|n, k] = IFFT (log,,(S[n,k])). 54

From cepstrum, Czrw|[n, k|, the first 80 coefficients are considered in this study. The schematic block

diagram describing the steps involved in the extraction of ZTWCCs is shown in Figure

ZTWCC extraction

S[n] S[n,k] CZT\N[n’k]
- 2 > Log(.) — IFFT >

Figure 5.7: Schematic block diagram describing the steps involved in the computation of ZTWCC features
from ZTW spectrum.

5.2.2.2 Extraction of MFCCs using the ZTW spectrum (MFCC—-ZTWs)

Mel-filter bank energies of the ZTW spectrum are obtained by applying mel filter-bank analysis on the
ZTW spectrum. Then, DCT is applied over the log mel-filter bank energies of the ZTW spectrum to obtain
MFCC-ZTW features, as follows:

MFCCyzrw[n,k] = DCT (log(Mel(] Sn,k] [*))), (5.5)

where MFCCyzrw [n,k| denotes the mel-cepstrum. From the mel-cepstrum, all 80 cepstral coefficients
(including the zeroth coefficient) are considered. Figure [5.8]is the block diagram showing the extraction
process of MFCC-ZTW features from the ZTW spectrum.

5.2.3 Results and discussion

First, this section investigates the different configurations for windowing of the ZTW spectrum. Then,
this section provides experimentation results and discusses different cepstral orders for ZTWCC and

MFCC-ZTW with i-vector-based dialect classification. Then, it investigates different temporal contexts
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Figure 5.8: Schematic block diagram describing the steps involved in the computation of MFCC-ZTW

features from ZTW spectrum.

for ZTW-based features. Finally, we compare the performances of ZTWCC and MFCC-ZTW to baseline

MFCC-STFT using confusion matrices for dialect classification.

5.2.3.1 Different segmenting approaches

Instead of considering the ZTW spectrum at each time instant, computational load is reduced by
considering the spectrum in a segment of T msec. One of the following four approaches can be used in

defining the spectrum using the segment of T msec.

* (a) Average ZTW spectrum (ZTW,,): In this approach, the ZTW spectrum is computed by

averaging the amplitude envelope S[n] for every frequency k over the entire segment.

* (b) Minimum ZTW spectrum (ZTW,,;,): In this approach, the ZTW spectrum is selected as the
instantaneous spectrum of S[n], which shows the minimum spectral energy (sum of the squared

amplitude envelope values) over the entire segment.

* (¢) Maximum ZTW spectrum (ZTW,,,,): In this approach, the ZTW spectrum is selected as the

instantaneous spectrum of S[n], which shows the maximum spectral energy over the entire segment.

* (d) Uniform SFF spectrum (ZTW ,;;for,): In this approach, the SFF spectrum is computed by

sampling S|n| at regular intervals defined by the segment duration.

Table shows the performance (in UAR%) for i-vector based dialect classification system with
static+A+AA for ZTWCC and MFCC-ZTW based methods with different strategies (such as average,
minimum, maximum, and uniform ZTW spectra). Considering ’1’ as the length of utterance in terms of
samples, ’s’ as the number of window frames, and 'n’ as the total number of utterances, the performances
and the time complexities of extraction of ZTW features were compared.

From table, it can be observed that the time complexities of ZTW 4, ZTW i, and ZTW,,4, is O(n*1) and

the time complexity of ZTW y,;rorm is O(n*s). Here, the number of samples in utterance (1) is much greater

39



Table 5.1: Performance (in UAR%) for i-vector based dialect classification system with static+A+AA
coefficients for ZTW features with different segmenting approaches. The time complexity for each approach
is expressed with 1 as the number of samples in an utterance, s as the number of window frames (I >> ),

and n as the number of utterances.

Feat. Type ZTWayg | ZTWhin | ZTWmax | ZTWayniform
ZTWCC (static+A+AA) 76.39 72.67 72.55 78.23
MFCC-ZTW (static+A+AA) 77.02 74.02 75.84 78.73
Time complexity O(n*1) O(n*1) O(n*1) O(n*s)

than the number of frames (s), with a window slide of 10 msec and 8000 Hz sampling frequency, 1 is 80
times greater than s. So, the computation complexity is very high for ZTW o, ZTW i, and ZTW,,4, when
compared t0 ZTW i form. The performance shows that ZTW i ¢0rm performed equally well with ZTW .

S0, ZTW yniform 1s considered for future experiments.

5.2.3.2 Effect of different cepstral orders

Table[5.2] shows the performance in UAR% for i-vector based dialect classification system with ZTWCC
and MFCC-ZTW features. The table shows that both ZTWCC and MFCC-ZTW performed well with lower
cepstral orders (13 and 20). Based on this observation, the cepstral order is fixed to 20 for both ZTWCC and
MFCC-ZTW.

Table 5.2: Performance (in UAR%) for i-vector dialect classification system with ZTW-based features
(ZTWCC and MFCC-ZTW) with static cepstral coefficients for different cepstral orders.

static cepstral coefficients

Features/
13 20 30 40 50 60
#static coeff.

ZTWCC 7275 | 74.06 | 73.68 | 72.84 | 69.17 | 66.14

MFCC-ZTW || 72.93 | 71.06 | 68.71 | 66.75 | 67.86 | 64.33
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5.2.3.3 Effect of different temporal contexts

Table [5.3] shows the performances in UAR% for i-vector based dialect classification system with
different temporal contexts (static, static+A, static+A+AA, and static+SD coefficients) for both baseline
(MFCC-STFT) and proposed (ZTWCC and MFCC-ZTW) features. From the table, overall, it can be
observed that both proposed (ZTWCC and MFCC-ZTW) performed better than baseline (STFT-MFCC)
features (weakly significant with p < 0.1 with p=0.07). Among ZTW based features, MFCC-ZTWs
have shown better performance. Inclusion of delta coefficients in static+A, static+A+AA improved the
performance of dialect classification system with ZTWCC and MFCC-ZTW. Static+SDCs of ZTWCC and
MFCC-ZTW have improved over the static features. However, they didn’t improve over static+A+AA despite

their improvement in temporal context.

Table 5.3: Performance (in UAR%) for i-vector based dialect classification system with baseline
(MFCC-STFT) and ZTW based features (ZTWCC and MFCC-ZTW) for all different temporal contexts

such as static, static+A, static+A+AA, and static+SD coefficients.

Feat. type static | static+A | static+A+AA | static+SDCs
MFCC-STFT || 75.67 | 76.38 77.21 77.98
Rel. Imp. - 0.94 2.04 3.05
ZTWCC 73.60 | 77.61 78.23 74.36
Rel. Imp. - 545 6.29 1.03
MFCC-ZTW || 71.73 | 178.32 78.73 75.85
Rel. Imp. - 9.19 9.76 5.74

5.2.3.4 Comparison with confusion matrices

Figure [5.9] shows the confusion matrices for i-vector based dialect classification with baseline
(MFCC-STFT) and proposed (ZTWCC and MFCC-ZTW) features. It can be observed that with ZTWCC
and MFCC-ZTWCC, the performance of the UK class is improved. With ZTWCCs, the confusion for UK
class with US is reduced, while with MFCC-ZTWCC, the confusion of AU class with US is reduced. This

shows that for the differentiation of the UK class from the US class, non-linear mel scale analysis is better.
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Predicted (MFCC-STFT) Predicted (ZTWCC)
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Figure 5.9: Confusion matrices for i-vector based dialect classification system with baseline MFCC-STFT

(static+SDCs) features and proposed ZTW based features (static+A+AA of ZTWCC, MFCC-ZTW).

5.3 SFF based features

The spectrum computed by single frequency filtering (SFF) has been shown to give good spectral
resolution to indicate harmonics and resonances [96] and good spectral resolution to model speech excitation
features such as impulse-like events [97)]. The SFF spectrum has also shown promising performance in
determining burst-onset points related to voice-onset time (VOT) and glottal closure instances compared to
the short-time Fourier transform (STFT) spectrum [97H99]. Previous studies in dialect classification have
shown the significance of VOT for identification of accent [[I00].

Ilustrations of spectrograms obtained with STFT and SFF methods are shown in Figures[5.10(a) and (b)
respectively. From the figures, it can be clearly seen that SFF spectrogram (Figure [5.10(b)) highlights the

harmonic structure (with sharper harmonics) compared to STFT spectrogram (Figure[5.10{(a)), even though
both of them show similar formant structure.
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Figure 5.10: Illustration of spectrograms obtained with (a) STFT and (b) SFF methods.
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This section first describes the SFF method used for deriving high—resolution spectrum [[106], and then

gives a procedure to extract the proposed features from SFF spectrum.

5.3.1 SFF method

SFF [106] is a time-frequency analysis method that is used to compute an amplitude envelope of speech
signal as a function of time at each of the selected frequency. In this method, the amplitude envelope at
particular frequency is obtained by first frequency—shifting (i.e., modulating) the speech signal (s[n]), and
then multiplying the s[n] with an exponential function: §[n,k] = s[n]e/®", where @y = 7 — %, fi is the

desired frequency and f; is the sampling frequency. The frequency-shifted signal is filtered using a single

1

pole filter, whose transfer function is given by: H(z) = f—

The pole of the filter is located on the negative

real axis (at z = —r). In this study » = 0.99 is used, which is closer to the unit circle. The output of the filter
is given by
y[n,k] = —ry[n—1,k] + §[n, k. (5.6)

The amplitude envelope (v[n,k|) of y[n, k| at frequency f; is given by

Vi K] = 4/ ()2 + (il ). (5.7)

where y,[n,k| is the real part and y;[n, k] is the imaginary part of y[n,k]. The amplitude envelopes can be

computed for several frequencies at intervals of Af by defining f; as follows:

fi=kAf,  k=1,2,....K, (5.8)

where K = % In this study, the value of Af is chosen such that 1024 frequency samples exist in between

0 to fs. From v[n, k], the SFF magnitude spectrum (or SFF spectrum) can be obtained at each instant of time
(’n’) by considering all the amplitude envelope values at particular time instant. A schematic block diagram

describing the steps involved in the computation of SFF spectrum is shown in Figure [5.11]

SFF method
s[n] 8Ink] | single-pole fiter | YIN:KI - SsrelN K]
1 > nvelope >
Hz) = computation
1+rz

Figure 5.11: Schematic block diagram describing the steps involved in the computation of SFF spectrum.
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SFFCC extraction

S[n] v[n,k] CSFF[n’k]
= SFR > Log(.) IFFT >

1 4

Figure 5.12: Schematic block diagram describing the steps involved in the computation of SFFCCs from

SFF spectrum.

5.3.2 Extraction of feature representations from SFF method

This study proposes to derive two types of features from SFF spectrum. They are: (1) single frequency
filtered cepstral coefficients (referred to as SFFCCs) and (2) mel frequency cepstral coefficients derived
from SFF spectrum (referred to as MFCC—SFF). As per our knowledge, this is the first attempt to propose
to use these feature representations for dialect classification. In principle, SFF spectrum can be obtained
at each instant. Despite ZTW, approach the time complexity of uniform is same as average and based on
the observations from [107], averaged SFF spectrum (v[n,k]) performed better [107]]. So, the features are

extracted from averaged spectrum at regular intervals of 12.5 msec.

5.3.2.1 Extraction of single frequency filtered cepstral coefficients (SFFCCs)

SFFCCs are computed from the cepstrum of SFF spectrum (v|n, k), as follows [108]:
Csrr[n, k| = IFFT(log,(v[n,k])). 5.9

From cepstrum Cspr[n, k|, the first 80 coefficients are considered in this study. A schematic block diagram

describing the steps involved in the extraction of SFFCCs is shown in Figure

5.3.2.2 Extraction of MFCCs from the SFF spectrum (MFCC—SFFs)

A schematic block diagram describing the steps involved in the extraction of MFCC using the SFF
spectrum is shown in Figure [5.13] The MFCC extraction consists of the mel filter—bank analysis on the
SFF spectrum, followed by logarithm and discrete cosine transform (DCT) operations, and which can be

expressed as follows:

MFCCsrrn,k] = DCT (log(Mel(| vn,k] [*))), (5.10)
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where MFCCspr(n,k] denotes the mel-cepstrum. The resulting cepstral coefficients are referred to as
MFCC-SFF, and they represent compactly the spectral characteristics. From the mel-cepstrum, all 80

cepstral coefficients (including the zeroth coefficient) are considered.

MFCC-SFF extraction

MFCCy_.[n,k]

|()|2 | | Melfilter | _| Log(.) »| DcT >

s[n] v[n,K]
> bank

> SFF

Figure 5.13: Schematic block diagram describing the steps involved in the computation of MFCC-SFF from
SFF spectrum.

5.3.3 Results and discussion

First, this section provides experimentation results and discusses different cepstral orders for SFFCC
and MFCC-SFF with i-vector based dialect classification. Then, it investigates different temporal contexts
for SFF-based features. Finally, it compares the performances of SFFCC and MFCC-SFF to baseline

MFCC-STFT using confusion matrices for dialect classification.

5.3.3.1 Different cepstral orders

This section investigated different cepstral orders ranging from 13 to 60. Table [5.4] shows the
performances in UAR for i-vector based dialect classification system with different cepstral orders. Row 3
shows the performance of static SFFCCs, and Row 4 shows the performance of static MFCC-SFF features.
From the table, it can be observed that both SFFCC and MFCC-SFF have shown better performance with

cepstral order 20. So, future experiments were conducted with cepstral order 20.

5.3.3.2 Different temporal contexts

This subsection investigated different temporal contexts such as static+A, static+A+AA, and static+SD
coefficients for dialect classification with SFF-based features. Table [5.5] shows the performances in UAR
for the i-vector based dialect classification system for SFFCC (row 4) and MFCC-SFF (row 6) for different
temporal contexts. The performance of the dialect classification system with baseline MFCC-STFT (row

2) was also included in the table for comparison. Relative Improvements (Rel. Imp.) with respect to static
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Table 5.4: Performance (in UAR%) for i-vector based dialect classification system with SFF-based static

cepstral coefficients varying the cepstral orders (from 13 to 60).

static cepstral coefficients

Features/

13 20 30 40 50 60
#static coeff.

SFFCC 70.46 | 71.50 | 68.89 | 71.96 | 70.76 | 68.39

MFCC-SFF 7270 | 73.26 | 71.32 | 70.24 | 65.95 | 68.35

for different temporal contexts were also provided in the table (Rel. Imp. of STFT-MFCC, SFFCC, and
MFCC-SFF in rows 3,5 and 7, respectively.).

From the table, it can be observed that both proposed SFFCC and MFCC-SFF performed better than
MFCC-STFT (statistically strongly significant with p < 0.005). Among SFF-based features, MFCC-SFF

performed better, showing the importance of mel-scale for dialect classification.

Table 5.5: Performance (in UAR%) for i-vector based dialect classification system with baseline
(MFCC-STFT) and SFF based features (SFFCC and MFCC-SFF) for all different temporal contexts such as
static, static+A, static+A+AA, and static+SD coefficients.

Feat. type static | static+A | static+A+AA | static+SDCs
MFCC-STFET | 75.67 | 76.38 77.21 77.98
Rel. Imp. - 0.94 2.04 3.05
SFFCC 71.96 | 74.72 78.94 79.10
Rel. Imp. - 3.84 9.70 9.92
MFCC-SFF | 73.26 | 75.08 79.97 81.25
Rel. Imp. - 2.48 9.16 10.91

With the inclusion of A coefficients with static (static+A), SFFCCs improved by 3.84% and MFCC-SFF
improved by 2.48% UAR in relative. With the inclusion of A+AA with static coefficients, SFFCCs improved
by 9.70% and MFCC-SFF improved by 9.16% UAR in relative. Including shifted delta coefficients with
static (static+SD coefficients) improved the performance of SFFCC by 9.92% and MFCC-SFF by 10.91%.
Overall, the performance has been enhanced with increased contextual information. Finally, with 160

coefficient of static+SDCs, MFCC-STFT gave a UAR of 77.98%, SFFCC gave a UAR of 79.10% for dialect
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classification, and MFCC-SFF gave a UAR of 81.25% for dialect classification. SFF-based features SFFCCs
and MFCC-SFFs have shown an improvement of 1.44% UAR and 4.19% UAR compared to baseline
MFCC-STFT features for dialect classification.

5.3.3.3 Comparison to baseline and proposed with confusion matrices

This section reports the confusion matrices for i-vector based dialect classification system with baseline
(MFCC-STFT) and proposed (SFFCC and MFCC-SFF) features. Figure@ shows the confusion matrices.
It can be observed that the performance of AU and US classes is above 80% for both baseline and proposed
features. However, the performance of UK is low (below 60%). With SFF-based features, the performance
of UK class has improved. With SFFCCs, the confusion for UK class with US is reduced, while with
MFCC-SFFCC, the confusion of AU class with US is reduced. This observation is similar to ZTW and
MFCC-ZTW features.

Predicted IMFCC-STFT) Predicted (SFFCC) Predicted (MFCC-SFF)

AU 3.61 9.04 AU 1.51 7.53 1.51 4.22
= = =

g vk| 19.1 56.18 24.72 g uk| 21.35 | 5843 | 20.22 g uk| 13.48 | 58.43 28.09
< < <

vs| 4.17 5.42 - us| 7.5 4.58 - us| 7.5 1.67 -

AU UK uUs AU UK us AU UK Us

Figure 5.14: Confusion matrices for i-vector based dialect classification system with baseline MFCC-STFT
(static+SDCs) features and proposed SFF based features (static+ SDCs of SFFCC, MFCC-SFF).

5.3.3.4 Fusion of SFF and ZTW features

To comprehend the complementary features between SFF and ZTW features, an experiment was
conducted involving the fusion of SFFCC with ZTWCC, as well as MFCC-SFF and MFCC-ZTW. Table
[5.6) presents the performance of the fusion of i-vectors derived from SFF and ZTW features.

Conducting an error analysis on the samples that were incorrectly predicted has led to the realization
that there are numerous commonly misidentified samples between the SFF and ZTW-based features. Even
though there is a slight improvement with fusion as shown in the table, the i-vectors extracted from SFF and

ZTW-based features seem to not have any complimentary information that helps in dialect classification.
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Table 5.6: Performance (in UAR%) of dialect classification with fusion of i-vectors derived from SFF with

the 1-vectors derived from ZTW based features.

Fusion Featl | Feat2 | UAR

ZTWCC+SFFCC 78.23 | 79.10 | 80.27

MFCC-ZTW+MFCC-SFF | 78.73 | 81.20 | 81.87

5.4 Summary and conclusions

The features (ZTW and SFF) that provide high temporal resolution without compromising spectral
resolution are proposed in this chapter for dialect classification. From ZTW/SFF spectrum, along with
cepstral coefficients, mel-frequency cepstral coefficients (MFCCs) were also extracted.

On comparison of ZTW-based features (ZTWCCs and MFCC-ZTWs) to best baseline features
(MFCC-STFT), the proposed ZTW-based features performed better than baseline features for dialect
classification. Among ZTW based features, MFCC-ZTW performed better with a UAR of 78.73%. This
shows that the better temporal and spectral resolution of ZTW features is helpful in dialect classification.

On comparison of SFF-based features (SFFCCs and MFCC-SFFs) to baseline and proposed ZTW-based
features, SFF based features outperformed. Among the SFF based features, MFCC-SFF performed
better showing the importance of mel-scale for dialect classification with a UAR of 81.25%. The better
performance of SFF based features shows that the better spectral features such as harmonics, resonances
and time—domain features such as glottal closure instances and voice—onset time (VOT) are advantageous

for dialect classification.
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Chapter 6

Exploration of temporal dynamics of frequency domain linear prediction

cepstral coefficients for dialect classification

Dialectal variations can be observed at the phonemic level, syllabic level, or sentence level. Phonemic
level variations include the variations in the distribution of sounds and variations in articulatory trajectories
within the same sound across dialects [[109]. Syllabic level variations across dialects occur due to variations
in stress patterns, intonation contour, duration, and articulatory trajectories based on the rules defined
for respective dialect [109,|110]. Sentence level variations across dialects occur due to variations in
sentence-level intonation and higher-level linguistic factors such as usage of words, i.e., vocabulary [[I11]].
From the above discussion, it is evident that the dialect discriminant information can be found not only by

observing a single sound unit (phonemic/syllabic), but also temporal dynamics across the sound units.

Conventional short-term spectral features such as mel frequency cepstral coefficients (MFCCs) are
derived by windowing the signal with a window of length 10-30 msec and incorporate weak temporal
context using delta coefficients (A, and AA), and shifted delta coefficients (SDCs) [22}[80]. These windowed
representations may fail to represent the instantaneous burst representations of stops and fricatives and also

may fail to represent temporal dynamics across windows [[112,/113]].

Representation for temporal dynamics of the speech signal can be obtained at the acoustic level or at the
phonetic level. Acoustic-level temporal dynamics can be represented by segmenting the speech signal into
syllables either manually or automatically. In [24]], the speech signal is segmented into pseudo-syllables, and
the acoustic variations such as pitch, rhythm, and duration are investigated for dialect classification. In [[114]],
supra-segmental prosodic variations obtained from pseudo-syllables are modeled using n-gram language
model. To take the advantage of temporal context, two models (stochastic trajectory model (STM) and
parametric trajectory model (PTM)) are investigated on segmental cepstral coefficients in [|35)]. Temporal
dynamics can also be modelled using higher linguistic features such as phones [25-28],[115-H117]. The
methods in this approach involves a phone recognizer and modelling techniques such as phone recognition
followed by language model (PRLM) and parallel-PRLM (PPRLM) [25-28]]. These approaches require an
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external phone recognizer and often the dialect identification accuracy depends on the performance of phone
recognizer. To overcome this, we investigate the effectiveness of acoustic features that captures the longer
temporal context.

In the present study, the effectiveness of frequency domain linear prediction cepstral coefficients
(FDLPCCs) which has the ability to capture the longer temporal context are investigated for dialect
classification. Traditional linear prediction, i.e., time-domain linear prediction (TDLP) analysis estimates
the spectral peaks by computing auto-correlation of a signal. By duality principle, frequency domain linear
prediction (FDLP) estimates temporal peaks by computing auto-correlation of discrete cosine transform
(DCT) sequence [[112,/1184121]]. Unlike conventional short-term spectral feature extraction methods, the
sub-band FDLP envelope captures extended temporal context as the estimated temporal peaks are the
resultant of long-timescale summarization [112]]. We hypothesize that the long temporal nature of FDLP
spectrum may be advantageous in discriminating dialects.

Figure [6.1]illustrates the temporal variations in terms of amplitude envelopes across five sub-bands (i.e.,
Figure [6.1] (b)-(f)) for the word *adult’ spoken by an American speaker (shown in Figure [6.1] (i)) and by
a British speaker (shown in Figure (i1)). The speech signals are shown in subplots (a) in Figure
"Adult" is one of the loan words from French. Such words were adapted differently between US and UK
dialects. Americans (US) emphasize on second syllable, while British (UK) emphasize on first syllable [7]].
The stress assignment for the word "adult" is [adA’lt] for American speaker and [A’dalt] for British speaker.
The phones are segmented and stress is represented by °. From the figure, it can be clearly observed that
the temporal variations in stress patterns between American and British speakers are different. American
speaker stressed on the second syllable (see Figure (1) in time interval of 250 to 500 msec) while the
British speaker stressed on the first syllable (see Figure [6.1] (ii) in time interval of 100 to 200 msec) of a
bi-syllabic word. Inspired by this observation, FDLP based cepstral coefficients are investigated for dialect
classification in this study.

The deep neural network (DNN) architectures with convolution neural network (CNN) and time delay
neural network (TDNN) models were investigated in the previous studies [9,[32}45}84,/122H126] which
could capture long temporal context. They are also compared to previous studies that used UT-Podcast

using DNN architectures [|84]].

The contributions of this study are as follows:

* Application of FDLPCCs for dialect classification based on the hypothesis that FDLP captures the

longer temporal dynamics.

* Analysis of different temporal context representations such as delta and double delta (A + AA), and

shifted delta cepstra (SDC) coefficients for baseline and proposed features.
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Figure 6.1: Illustration of sub-band temporal envelopes estimated using FDLP for the word *adult’ spoken

(i) by an American speaker and (ii) by a British speaker.

6.1 FDLPCCs feature extraction

Frequency domain linear prediction (FDLP) is an efficient method for auto regressive (AR) modelling

of temporal envelopes of speech signal [112,[118-121]]. The AR model approximates the power spectrum

of the speech signal in time domain linear prediction (TDLP), whereas in FDLP, an all pole model is fitted

to the Hilbert envelope (squared magnitude of the analytic signal). As the estimated temporal peaks are the

resultant of longer time signal, they capture finer details of the linguistic units. We hypothesize that the

long temporal nature of FDLP spectrum may be advantageous in discriminating dialects. The extraction

of frequency domain linear prediction cepstral coefficients (FDLPCCs) from speech signal involves two

stages as shown in Figure The first stage (first seven blocks in the figure) involves the estimation of

sub-band temporal envelopes and the second stage (next three blocks in the figure) involves the extraction

of cepstral coefficients from sub-band FDLP envelopes. The steps involved in estimation of sub-band FDLP

envelopes are described in Section [6.1.1] and the extraction of cepstral coefficients (i.e., FDLPCCs) from
FDLP envelopes are described in Section [6.1.2]

6.1.1 FDLP method

This section describes the steps involved in the estimation of sub-band FDLP envelopes from speech

signal [119]. They are:
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Figure 6.2: Block diagram describing the steps involved in extraction of FDLPCCs.

* Speech signal s[n] is pre-emphasized to remove the low frequency variations caused due to recordings,

and to emphasize high frequency components.
x[n] = s[n] — as[n— 1] (6.1)

* DCT full-band sequence is computed by applying DCT over the pre-emphasized signal (x[n]) for every
second. Unlike short-time segmental feature extraction methods, spectral transformation is done over

a long temporal signal.

(2n—|—1)7rk) 7 (6.2)

y[k] = alk] Z‘bx[n]cos ( N

where k =0,1,2...N—1 and

1
L k=0
alk] = Wz
2 k=1,2,...,N—1

* Sub-band DCT components are derived by windowing the full-band DCT sequence. The sub-band
DCT sequence for a band f (critical band windowing) is represented by [f].

* Analogous to TDLP, applying DFT over the squared magnitude of analytic signal gives
auto-correlation of spectral coefficients. The inverse DFT (IDFT) of zero-padded DCT sequence is
called even symmetric discrete time analytic signal. The analytic signal derived from each sub-band
DCT component is given by:

qa[n] = IDFT (3[f]) (6.3)
Autocorrelation coefficients for each sub-band spectrum J[f] is derived by applying DFT over each

sub-band analytic signal, as given by:

ry[t] = DFT(|qa[n]|?) (6.4)
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» Similar to TDLP, these autocorrelations are used to obtain linear prediction coefficients that are
smoothed approximation of sub-band Hilbert envelopes. The LP order (or pole order) to estimate
LPCs modulate the efficient representation of sounds. The approximation of sub-band Hilbert
envelopes estimated using LPCs is referred as sub-band FDLP envelope in this study. The sub-band
FDLP envelope captures extended temporal context as the estimated temporal peaks are the resultant

of long-timescale summarization.

6.1.2 Extraction of FDLPCCs

* Energies in a set of sub-band FDLP envelopes are integrated in a long-term analysis window to obtain
FDLP short-term frames. To be analogous to short-time segmental feature extraction methods, the

window length and window shift are similar to conventional methods.

* DCT is applied over the logarithm of integrated FDLP energies across sub-bands within a frame to
obtain FDLPCCs for each frame.

6.1.3 Parameters used for FDLPCCs extraction

In this study, the entire signal is considered to obtain the full-band DCT sequence, and then the DCT
sequence is multiplied with mel-band Gaussian windows. Typically, the number of mel-band Gaussian

windows are given by:

A
Mnel—bands = ’—FhZZmel (%ﬂ 5 (65)

where fs is the sampling frequency in Hertz (Hz) and Fp,ome is a function that converts Hz to mel using
Slaney’s auditory toolbox [[127] which will result in 37. However, a different number of mel-bands such
as 13, 37, 80, 128 and 160 were investigated and it was observed that 37 and 80 mel-bands gave better
performance compared to others. In all the experiments of the study, 37 mel-bands are used.
Autocorrelation formulation of linear prediction is used to estimate temporal poles for each sub-band
FDLP envelope. The number of temporal poles is set to 160, similar to previous studies [[120]. The gain
normalized sub-band FDLP temporal envelopes are integrated along the time axis within a window of 25
msec, and half of it is used as window shift. Static FDLPCCs are obtained by applying DCT over the
logarithm of integrated FDLP energies across sub-bands within a frame. We investigated the effect of a
number of static cepstral coefficients (varying from 13 to 60) on the performance of dialect classification.
From static coefficients, A+AA and SDC coefficients [[80] are also derived, which are also investigated to see

their effectiveness on dialect classification

Thttps://github.com/iiscleap/FeatureExtractionUsingFDLP
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6.2 Results and discussion

This section investigates i-vector representations derived from baseline (MFCC-STFT) and proposed
(FDLPCC) features for dialect classification. To find the best configurations of FDLPCC features, i-vector
representations are derived from different static cepstral orders varying from 13 to 60 (13, 20, 30, 40, 50,
and 60). Further, both baseline and proposed features are investigated with different temporal contexts
(i.e., static+A, static+A+AA and static+SDCs). To summarize all the proposed features of the thesis,
FDLPCC features are compared to the baseline and proposed features from previous chapters. The existence
of complementary information is investigated in Section [6.2.3] by fusing at utterance-level (U-level) of
MFCC-STFT, ZTW/SFF-based features with FDLPCCs for dialect classification. Finally, the performance

of all the proposed features is compared to previous studies.

6.2.1 Effect of cepstral order and temporal context

Table [6.1] shows the performances for the static FDLP cepstral coefficients, by varying the number of
static cepstral coefficients from 13 to 60 (13, 20, 30, 40, 50, and 60). From the table, it can be observed that
FDLPCCs performed better for 20—dimensional static coefficients.

Table 6.1: Performances (in UAR%) for i-vector based dialect classification for FDLPCC features with static

cepstral coefficients, by varying cepstral coefficients dimension from 13 to 60 (13, 20, 30, 40, 50, and 60).

static cepstral coefficients

Features/
13 20 30 40 50 60
#static coeff.

FDLPCC 71.8 | 77.3 | 76.2 | 68.1 | 67.8 | 66.2

Table [6.2] shows the performances for the baseline and the proposed features with static, static+A,
static+A+AA, and static+SD coefficients. From the table, it can be observed that the inclusion of A
coefficients improved the performance of FDLPCC by 4.64% in relative. Including A+A coefficients
with static improved the performance of FDLPCC by 5.22% UAR in relative. Including shifted delta
coefficients with static improved the performance by 2.21% UAR in relative. This shows that temporal
context is required for dialect classification with FDLPCC features. However, due to its inbuilt temporal
summarization, it doesn’t improve with a longer temporal context provided by SDC when compared to AA

coefficients.
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Table 6.2: Performance (in UAR%) for i-vector based dialect classification system with baseline
(MFCC-STFT) and proposed (FDLPCC) features for all different temporal contexts such as static, static+A,

static+A+AA, and static+SD coefficients.

Feat. type static | static+A | static+A+AA | static+SDCs
MFCC-STFT | 75.67 | 76.38 77.21 77.98
Rel. Imp. - 0.94 2.04 3.05
FDLPCC 77.33 80.92 81.37 79.04
Rel. Imp. - 4.64 5.22 2.21

6.2.2 Comparison to other proposed features

Table [6.3] shows the performance (in UAR% and class-wise accuracies) of i-vector based dialect
classification system with the baseline (MFCC-STFT) and proposed features (ZTWCC, MFCC-ZTW,
SFFCC, MFCC-SFF, and FDLPCC). Dialectal variations can be observed either at frame level or across
frames. So, the ZTW and SFF based features that provide higher spectral and temporal resolution and
FDLP based features that provide longer temporal summarization are investigated. From the results, it
can be observed that both higher spectral and temporal resolution and longer temporal summarization are

important for dialect classification based on the performance of the proposed features. The

From class-wise accuracies of the table, it can also be observed that proposed features performed well in

discriminating with minority class (UK).

Table 6.3: Performances (in UAR% and class-wise accuracies) for the baseline and proposed (ZTWCC,
MFCC-ZTW, SFFCC, MFCC-SFF, and FDLPCC) features with the best configurations (i-vector approach).

Features/Class UAR AU UK US

MFCC-STEFT (static + SDC) || 77.98 | 87.35 | 56.18 | 90.42

ZTWCC (static +A+AA) 78.23 | 87.65 | 59.55 | 87.50

MFCC-ZTW (static +A+AA) || 78.73 | 87.35 | 58.43 | 90.42

SFFCC (static+SDC) 79.10 | 90.96 | 58.43 | 87.92

MFCC-SFF (static+SDC) 81.20 | 94.28 | 58.43 | 90.83

FDLPCC (static +A+AA) 81.37 | 86.14 | 66.29 | 91.67
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Among the proposed features, MFCC-SFF and FDLPCC outperformed all the other features. Similar
to the baseline and previously proposed features, the performance of AU and US classes is above 85%.
Considering the accuracy of the UK class, FDLPCCs outperformed all the other features with an accuracy
of 66.29%.

Figure [6.3] shows the confusion matrices of baseline (MFCC-STFT) and proposed (ZTW/SFF-CC,
MFCC-ZTW/SFF, and FDLPCC) for dialect classification. FDLPCCs reduced the confusion of the UK class
with the AU class when compared to baseline features while the confusion of the UK with the US remained
the same. FDLPCCs exhibited similar behaviour as MFCC-ZTW/SFF which reduced the confusion of the
UK with AU class.

Predicted (MFCC-STFT) Predicted (ZTWCC)

Predicted (MFCC-ZTW)

— 60
<
2
< 40
4.17 20
AU UK UsS AU UK UsS AU UK us
Predicted (SFFCC) Predicted (MFCC-SFF) Predicted (FDLPCC)
80
= 60
2
Q
< 40

AU UK us AU UK uUs AU UK Us

Figure 6.3: Confusion matrices for i-vector based dialect classification system with baseline (MFCC-STFT)
and proposed (ZTWCC, MFCC-ZTW, SFFCC, MFCC-SFF, and FDLPCC) features.

The performances of MFCC-SFF and MFCC-ZTW have improved when compared to MFCC-STFT for
UK and AU accents in the figure. The features derived from SFF and ZTW are hypothesized to represent
the intrinsic dynamic features such as trills, nasals, approximants, and fricatives [97-99, 101H103]|. Let us
understand how SFF and ZTW could have helped in dialect classification with an example. UK and AU
dialects are non-rhotic as compared to the US dialect where the strong pronunciation of /r/ is observed. The
representation of the transient behaviour /r/ by SFF and ZTW features might have helped to differentiate
UK and AU dialects from US dialect. This could have been the reason for the best behaviour of AU and UK
with MFCC-ZTW and MFCC-SFF.
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From the analysis of acoustic correlates in [[128] with pitch, it is observed that British speakers possess
the steepest rate of initial pitch rise among the three accents about 44.1% and 22.7% steeper than Australian
and American respectively. This coincides with the fact that they have the largest frequency range of
three. Similarly, British speakers possess the sharpest final fall rate in pitch compared to Australian and
American speakers. Results illustrate that British speakers tend to have a steeper pitch rise and fall rates
than American speakers. Furthermore, American speakers tend to have a lower pitch in the final words
of sentences compared to British speakers. This differentiating feature of the UK dialect which could be
represented better by FDLP, could be the reason for standing out performance of UK dialect in FDLPCC
when compared to MFCC-STFT.

6.2.3 Existence of complementary information

To know the existence of complementary information between features that provide long temporal
summarization and spectral features, experiments are carried out by fusing at utterance level (U-level)
i.e., fusion of i-vectors. In the U-level fusion of the i-vector approach, 100-dimensional i-vectors are
extracted from each of the baselines and proposed features, resulting in 200-dimensional i-vectors. Table[6.4]
shows the performances (in UAR%) of fusion experiments (columns 5 and 6) along with individual feature
performances (columns 3 and 4) for dialect classification.

Further, to investigate complementary information among features that provide high resolution (SFFCC,
MFCC-SFF, ZTWCC, MFCC-ZTW), along with baseline (MFCC-STFT) with features that provide longer
temporal summarization (FDLPCC), fusion experiments are conducted and reported in Table [6.4] From
the results, it is observed that i-vectors derived from FDLPCCs, when combined with i-vectors derived
from all spectral features, showed an improvement in performance for dialect classification. Fusion of
FDLPCCs with MFCC-STFT (row 3) gave a relative improvement of 6.69% and 2.25% (in UAR relative)
when compared to individual performances, MFCC-STFT and FDLPCCs in order. While the fusion of
ZTWCC and MFCC-ZTWCC (rows 6 and 7) have a relative improvement of 1.93% and 2.72% (in UAR
relative) when compared to best-performing FDLPCCs, respectively. Fusion of FDLPCCs with SFFCC
and MFCC-SFF (rows 4 and 5) gave a relative improvement of 3.97% and 3.23% (in UAR relative)
when compared to FDLPCCs, respectively. Among all the combinations, FDLPCCs, when combined with

SFF-based features, have shown more significant improvement in the performance of dialect classification.

6.2.4 Comparison of current studies with previous studies

This section compares the results obtained in the current study (i-vectors derived baseline and proposed
features with SVM) with the previous studies [[72}|84]. In [[72], both text based and audio based approaches

were investigated. In text based approach, term-frequency and inverse document frequency (TF-IDF) were
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Table 6.4: Performance (in UAR%) of dialect classification with fusion of i-vectors derived from FDLPCC
features with the i-vectors derived from MFCC-STFT, SFF/ZTW based features.

Fusion of feats UAR
Approach Fusion

(Featl + Feat2) Featl | Feat2
MFCC-STFT+FDLPCC | 77.98 83.20
SFFCC+FDLPCC 79.10 84.60

i-vectors 81.37
MFCC-SFF+FDLPCC 81.20 84.00
ZTWCC+FDLPCC 78.23 82.94
MFCC-ZTW+FDLPCC | 78.73 83.58

exploited. TF-IDF measures the originality of a word in a document. In audio based approach, GMM
super-vectors and i-vectors were used with the SVM classifier. A fusion of both text and audio approaches
is also investigated. In [[84f], DNN classifiers such as feed-forward neural network (FFNN), five-layer
convolution neural network (CNN), AlexNet, VGG-11, and ResNet-18 trained with STFI-spectrogram are
investigated. In this study, the corpus is modified by segmenting the utterances of the UK dialect to handle
imbalanced classes. FFNN is a DNN classifier with three fully connected layers. A five-layer CNN is a
DNN classifier with five convolution layers for segmental-level processing and fully connected layers for
utterance-level processing. The other DNN classifiers, AlexNet [[129]], VGG-11 [130]], and ResNet-18 [[131]
are typical deep architectures with a varied number of convolution layers. FreqCNN is proposed in [84]],

and its architecture comprises attention based convolution blocks along with basic convolution blocks.

Table @] shows the performance of dialect classification (in UAR% and class-wise accuracies) for
previous and current studies. From the first set of previous studies (rows 3-6) shown in Table [6.5] it can
be observed that audio based approaches performed better than text based approaches. Within the audio
based approaches, the i-vector approach performed better than the GMM approach. The fusion of audio
(i-vectors) and text based systems has shown an improvement in performance by 2.4% relative (in UAR)

than the i-vector system alone.

From the second set of previous studies (rows 8-13) shown in Table [@ it can be observed that their

proposed complex FreqCNN architecture performed better than all the simple neural network architectures.

On comparison of current thesis studies to previous ones, it can be observed that current studies
outperformed all the text and audio-based conventional approaches. The performance of conventional

i-vector systems with SFF-based and FDLPCC is better than a complex neural network (FreqCNN).
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Table 6.5: Comparison of current i-vector based dialect classification (with baseline and proposed features)

with previous dialect classification models over UT-Podcast corpus (in UAR% and class-wise accuracies).

Arch. type UAR | AU UK UsS

Text and audio based approaches from previous studies [72]

Audio System (GMM) 60.3 85.5 | 32.6 | 629
Audio System (i-vector) 745 | 78.0 | 61.8 | 83.8
Text System (TF-IDF logistic regression) || 58.7 | 83.1 | 32.6 | 60.4
Audio-Text system (Fusion) 76.3 86.1 60.7 82.1

DNN classifier from previous studies [84]

FFNN 614 | 70.8 | 50.6 | 629
Five-layer CNN 62.8 | 648 | 41.6 | 82.0
AlexNet 649 | 584 | 64.0 | 742
VGG-11 544 | 557 | 483 | 59.2
ResNet-18 61.7 69.3 | 382 | 775
FreqCNN 79.32 | 88.55 | 71.91 | 77.50
i-vector system with SVM (current study)
MFCC-STFT (static + SDC) 77.98 | 87.35 | 56.18 | 90.42
ZTWCC (static +A+AA) 78.23 | 87.65 | 59.55 | 87.50
MFCC-ZTW (static +A+AA) 78.73 | 87.35 | 58.43 | 90.42
SFFCC (static+SDC) 79.10 | 90.96 | 58.43 | 87.92
MFCC-SFF (static+SDC) 81.20 | 94.28 | 58.43 | 90.83
FDLPCC (static +A+AA) 81.37 | 86.14 | 66.29 | 91.67

However, it can be observed that FreqCNN has shown better performance in the classification of the UK

class.
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6.3 Summary and conclusions

Dialectal variations can be observed either at frame level or across frames. So, the ZTW and SFF-based
features that provide higher spectral resolution without compromising temporal resolution and FDLP-based
features that provide longer temporal summarization are investigated. From the results, it can be observed
that both a higher degree of spectral resolution and longer temporal summarization are important for
dialect classification based on the performance of proposed features when compared to the conventional
STFT-MFCC features. Overall, SFF-based and FDLPCC features performed better for dialect classification.

On investigation of different temporal contexts, it is observed that the SFF features that provide good
temporal resolution with higher temporal context improved performance. However, FDLPCCs that in-built
have long temporal summarization didn’t show greater improvement with shifted delta coefficients. From
the fusion of FDLPCC with ZTW/SFF features, it can be observed that FDLPCCs and SFF-based features
have more complementary information. With the proposed features, it can be observed that the performance
of minority class UK is improved when compared to baseline features. We propose to study deep neural

networks for dialect classification with proposed features.
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Chapter 7

Deep neural architectures for dialect classification

Modern end-to-end deep neural classifiers can handle both compression and classification [[125[/132,/133]].
The compressed latent representations learnt from these networks retain dialect discriminative information
and temporal dependencies across the frames. Deep neural classifiers were mainly investigated with
convolution neural networks (CNNs) and recurrent neural networks (RNNs) for dialect classification
[184,/125,/132H134]]. From studies by [82,|125]], it was found that compared to traditional statistical methods
(i-vectors+SVM), the end-to-end CNN architectures performed better by 10% absolute in accuracy for
Arabic English dialects.

Until now, this thesis proposed to leverage the signal processing approaches that provide good temporal
and spectral resolution (single frequency filtering (SFF) and (zero-time windowing (ZTW) based) and long
temporal summarization (frequency domain linear prediction (FDLP) based) for dialect classification. It
is observed that these proposed features performed better than baseline features with an i-vector based
classification system. The i-vectors are extracted in an unsupervised manner and result from a linear
transformation of Gaussian mean vectors. The embeddings derived from DNNs are extracted in a supervised
manner, and the resulting embeddings are the result of non-linear transformations. This non-linear
transformation changes the correlation between variables, and the supervised learning leads to retaining
only dialect discriminant information. To understand the advantages of proposed features with DNNGs, this
chapter investigates different DNN architectures that provide different temporal contexts.

The i-vector system uses different contextual processing approaches to improve classification. From
experimentation, it is observed that the temporal context was helpful in the classification of dialects. The
delta representations computed in the i-vector system result from linear transformation. The embeddings
derived from DNNs are the non-linear weighted transformation of the neighbouring frames, and these
weights are learnt by improving the performance for dialect classification (i.e., supervised approach).

Based on the advantages and effectiveness of deep neural networks for classification, different
architectures of deep neural networks are investigated in this chapter. The DNN classifiers require a larger

amount of data for training. The literature showed that data augmentation improved the performance by
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5.5% absolute accuracy [[82125]]. To overcome this, different data augmentation approaches are investigated
as part of this thesis. Different weight initialization of neural networks can lead to unstable performances.
To mitigate this, neural networks are trained multiple times and tested against each trained model, and then

the statistics of the performance are reported.

Even though RNNs were used for classification tasks in speech as they capture long temporal context,
they also require O(n) sequential operations for each unit. In contrast, CNNs require O(1) sequential
operations. Lower order sequential operations for CNN lead to parallelization of computations in
CNNSs. In contrast, higher order sequential processing will lead to higher computation time for RNNs.
Time-delay neural networks (TDNNSs) [[135] that provide higher temporal context than CNNs with similar
computation complexity and temporal convolution neural networks (TCNNs) [136]] that provide longer
temporal context from only past with similar computation complexity are explored for dialect classification.
Significant architectural changes were made to TDNN to obtain emphasized channel attention, propagation,
and aggregation in TDNN (ECAPA-TDNN), which was shown to improve the performance of speaker

verification system [137] and language identification [138] is investigated for dialect classification.

DNNs are investigated as part of the second step of the thesis plan to improve dialect classification
(as in Figure [1.3). Figure shows the schematic block diagram of the proposed dialect classification
system with deep neural networks (DNNs). The proposed system consists of mainly three stages; (1)
feature extraction, where feature representations from ZTW, SFF, and FDLP-based methods are derived,
(2) embeddings extraction, and (3) classification of dialects. In DNNs, both embeddings extraction and
classification are performed by DNN architectures such as CNN, TCNN, TDNN, and ECAPA-TDNN. Deep
neural classifiers are trained with frame-level features from an entire utterance. They are trained to extract

better embeddings and classify dialects better.

Deep Neural Network Approach Dialect

Neural Networks Dialect class
Featur'e (CNN, TCN, TDNN, and Embeddin Classifier
¢ " ' Extraction ECAPA-TDNN) ¢ g

|
l l l |

STFT-based SFF-based ZTW-based FDLP-based
features features features features

Figure 7.1: A schematic block diagram of the proposed deep neural network approach for dialect

classification.
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7.1 Convolution neural networks

CNNs are the most widely used deep neural architectures in speech [139], text [140], and image
processing [[141]]. CNNs were investigated previously for dialect classification with 1D convolutions [[1235]]
and 2D convolutions [[84]]. A convolution neural network is usually formed by convolution layers (Conv),
max-pooling, and fully connected (FC) feed-forward layers. The Conv layers of CNN extract the translation
invariant and localized temporal features by striding over windows. The average pooling layer compresses
the segmental-level information derived from the convolution layer to utterance-level information. FC layers

are trained to classify the dialects. CNN with 1D convolution layers is investigated for dialect classification.

7.1.1 Architecture

The initial CNN architecture was similar to the one presented in [125[]. Subsequently, modifications
were made to enhance performance, particularly concerning MFCC-STFT features. The primary alteration
involved introducing max pool layers and adjusting stride values. This study utilized a CNN with four
convolution layers and three fully connected layers. Table illustrates the architecture of the CNN
classifier, with columns representing the layers and configurations defined along rows. Convolution layer
configurations include the number of filters ( filters), filter size, and stride, while max-pool layers are defined

by kernel size and stride. Fully connected layers are defined by input and output dimensions.

Table 7.1: End-to-end CNN architecture for dialect classification. Conv represents the convolution layer,

and FC represents a fully connected layer.

Layers: Convl | Conv2 | Max pool | Conv3 | Conv4 | L2 pool | FC1 | FC2 | FC3
# filters/output dim. | 500 500 - 3000 3000 3000 1500 | 600 3
Kernel size 5 3 10 5 3 - - - -
Stride 1 1 10 1 1 - - - -

Figure is a block diagram of CNN architecture showing all the layers. Each layer is defined by
[outputsize]-[kernalsize]K-[stride]S. Convolution and max-pooling layers are segmental layers, and the
layers after L2 pool processes on utterance-level representations. Average pooling is done after convolution
layers to convert frame-level features to utterance-level representations. The fully connected layers (FCI,
FC2, and FC3) learn to classify dialects from the utterance-level representations. Rectified linear unit

(ReLU) activation is commonly applied in all the layers.
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Figure 7.2: A schematic block diagram showing architecture of convolution neural network.

7.1.2 Experimental Protocol

CNN is investigated by training with both the baseline and proposed features. The number of training
epochs is decided approximately based on the loss convergence and overfitting. CNN is trained for around 70
epochs with cross-entropy loss. A gradient descent optimizer with a learning rate of 0.001 is used to train the
model. To mitigate the side-effect of the neural network weights initialization, networks are trained multiple
times (six times for all the experiments) and tested against each trained model. The performance is averaged
across all models, and the mean and standard deviation of UAR% are reported for all the experiments.

For hyperparameter tuning, k-fold validation is done using only the train data. With the best parameters

settings, the new model is trained again with all the train data.

7.1.3 Results and discussion

The performance of the dialect classification system in the mean and standard deviation of UAR% and
mean of class-wise accuracies from six trials with CNN classifier are reported in Table The third
column of the table reports the mean and standard deviations of UAR%, and the fourth to sixth columns
report class-wise accuracies. The performances of baseline (MFCC-STFT) and proposed features (ZTWCC,
MFCC-ZTW, SFFCC, MFCC-SFF, and FDLPCC) with the CNN classifier are reported in the table. Overall,
it can be observed from the table that all the proposed features performed better than baseline features with
CNN.

However, the performances are very poor, especially the performance of the UK class is very low with

baseline features (11.99% accuracy for the UK). This is due to unequal strengths of the classes in the corpus
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during training, which led to biased predictions towards the majority classes (AU and US). Section

investigated different approaches for overcoming this challenge.

7.1.4 Class imbalance

UT-Podcast corpus is considered for experimenting with dialect classification. Chapter [3 provides more
details on the corpus. From the statistics (AU:449, UK:246, and US:406), it is observed that the classes are
imbalanced, and the size of the corpus is very small for investigating it with deep neural networks. With less
data and imbalanced classes, the network tends to learn more on the majority class leading to a bias towards
a class. Table also shows lower performance for the UK due to the bias of the model towards majority
classes (AU and US).

Table 7.2: Performance (mean and standard deviation of UAR% from six trials and class-wise accuracies)

of CNN classifier for baseline and proposed features.

Feat. type UAR AU UK US

Baseline features

STFT-based features | MFCC-STFT | 57.98+0.54 | 74.10 | 11.99 | 87.85

Proposed features

ZTW-based features | ZTWCC 73.82+1.13 | 85.94 | 52.25 | 83.26
MFCC-ZTW | 67.20£0.20 | 65.66 | 47.94 | 87.99

SFF-based features | SFFCC 68.99 +1.46 | 81.78 | 39.14 | 86.04

MFCC-SFF 68.15+0.54 | 72.04 | 45.32 | 87.08

FDLP-based features | FDLPCC 63.59£5.06 | 66.95 | 43.07 | 80.74

To overcome these class imbalance problem, three approaches were explored for dialect classification in

this thesis. They are - (1) class balanced loss (CBL) function, (2) data augmentations, and (3) resampling.

7.1.4.1 Class balanced loss function

To handle the imbalanced classes in the corpus, models are trained with class balanced loss function
[142]. This function penalizes the loss for majority classes while providing higher weights for minority
classes during training. The loss function with class-balanced weights is expressed as follows:

1-8
1—pBm

CB(p,y) = L(p,y), (7.1)
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where p is a vector of class probabilities computed by the classifier given as [py, p2,... pC}T, y is class label
that takes values between O to C, and L(p,y) computed loss. ny is class strength for class y, B = %, and N
is the total strength of the corpus.

Results: Table shows the performance (mean and standard deviation of UAR% from six trials and
mean of class-wise accuracies) for the CNN classifier trained with CBL function for baseline and proposed
features. The last column shows the relative improvement with CBL function when compared to Table [7.2]

It can be observed that there is an improvement in performance with CBL function when compared to
model trained with an unweighted loss function for both baseline and proposed features. It can also be

observed that there is an improvement in the performance of the UK class for all the features.

Table 7.3: Performance (mean and standard deviation of UAR% from six trials and class-wise accuracies)
of CNN classifier trained with class balanced loss (CBL) function for baseline and proposed features. RI is

relative improvement with class balanced loss function when compared to Table @

With class balanced loss function

Feat. type UAR AU UK US RI

Baseline features

STFT-based features | MFCC-STFT | 58.74£1.02 | 68.69 | 32.58 | 70.85 | 1.31

Proposed features

ZTW-based features | ZTWCC 72.772+0.58 | 84.65 | 52.24 | 84.26 | -1.49

MFCC-ZTW | 75.77£0.26 | 79.18 | 66.67 | 81.466 | 12.75

SFF-based features | SFFCC 69.84 £1.10 | 78.97 | 49.87 | 80.68 | 1.23

MFCC-SFF 73.994+0.08 | 73.566 | 65.32 | 83.08 | 8.57

FDLP-based features | FDLPCC 73.03£0.09 | 78.57 | 60.49 | 80.04 | 14.85

On comparison of MFCC-STFT features with CBL function and without CBL function, it can be
observed that there is a relative improvement of 1.31% UAR. For ZTW features, it can be observed that
performance of MFCC-ZTW improved by 12.75% UAR (relative) and performance of ZTWCCs remained
the same. For SFF features, it can be observed that both SFFCC and MFCC-SFF improved the performance
by 1.23% and 8.57 % UAR (relative), respectively. Improvement in performance of UK class can also be
observed with SFF features. For FDLP features, it can be observed that FDLPCCs improved the performance

by 14.85% UAR (relative) and shown an improvement in UK class accuracy too.
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On comparison of the baseline with the proposed features, the proposed features perform better than
the baseline features. From the results of ZTW features, ZTWCC and MFCC-ZTW performed better than
MFCC-STFT by 23.80% and 28.99% UAR (in relative), respectively. From the results of SFF-based features
in the table, it can be observed that SFFCC, and MFCC-SFF outperformed baseline features (MFCC-STFT)
by 18.90%, and 25.96% (relative UAR), respectively. FDLPCC features performed better than baseline
MFCC-STFT by 24.32% UAR (in relative). Class-balanced loss function have shown greater improvement

for proposed features than baseline features.

7.1.4.2 Data augmentation using speed and volume perturbations

Data augmentation is the second approach to overcome the class imbalance problem to generate more
data for training using different augmentation approaches such as speed and volume perturbations. Table
shows the distribution of UT-Podcast corpus before and after data augmentation. The number of utterances
available for training in each of the dialects before data augmentation are AU:449, UK:246, and US:406.
Data is augmented using speed and volume perturbation approaches to increase the training space, which
resulted in, AU:1347, UK:738, and US:1218 utterances. Speed perturbation involves time warping of speech
signal s(7) by a factor of & to get s(ar) [[125,/143]. Volume perturbation involves the simulation of different
recording volumes [125,[144]]. Speed perturbation with 0.9 and 1.1 factors and volume perturbation with
1.5 factor resulted in thrice the corpus size. Perturbations are implemented using SoX audio manipulation
tool [[145].

Table 7.4: Distribution of number of utterances (#utterances) in each dialect class of UT-Podcast (AU:
Australian English, UK: Britain English, and US: American English) before data augmentation and after

data augmentation for train and test datasets.

Before data aug. || After data aug.

Data type | AU | UK | US AU | UK | US

Train 449 | 246 | 406 || 1347 | 738 | 1218

Test 332 | 89 | 240 || 332 | 89 | 240

Results: DNN architectures are constrained to have sufficiently large amount of data for training.
The UT-Podcast dialect corpus used in this study is relatively smaller, and hence different levels of data
augmentations (speed, volume, and both) are investigated with CNN classifier. In Table Third column
(SP) and fourth column (VP) report the results with speed perturbation and volume perturbation respectively,

final column (SVP) reports the results with combination of speed and volume perturbations. Experiments
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were conducted with baseline feature representations (MFCC-STFT) and proposed feature representations
(SFFCC/ZTWCC, MFCC-SFF/MFCC-ZTW, and FDLPCC) to choose the best data augmentation approach

for further experiments.

Table 7.5: Performance (mean and standard deviation of UAR% from six trials) of CNN classifier with

speed perturbation (SP), with volume perturbation (VP), and with combination of both speed and volume

perturbations (SVP).
After data augmentation
Feat. type SP VP SVP
Baseline features
STFT-based features MFCC-STFT || 73.204+0.09 | 61.91+£0.69 | 76.70+0.56
Proposed features
ZTW-based features ZTWCC 73.061+0.12 | 71.81+0.19 | 74.69+0.14
MFCC-ZTW || 73.924+0.24 | 75.23+0.46 | 76.22+1.82
SFFCC 74.424+0.19 | 73.39+0.34 | 77.11£0.50
SFF-based features
MFCC-SFF 78.691+0.36 | 76.61+0.98 | 76.33£0.68
FDLP-based features | FDLPCC 75.16+£0.36 | 76.224+0.40 | 75.84 +0.18

The mean and standard deviation of UAR% from six trials are reported in the table. From the standard
deviation values, it be can observed that the accuracy is stable across multiple trials. With the individual
data augmentation (SP and VP) and combination of data augmentations (SVP), it can be seen that the
performance is improved for all the baseline and proposed features.

From the baseline features (row 4), applying speed and volume perturbations individually improved the
performance of MFCC-STFT by 26.25% and 6.78% UAR (in relative), and applying both the perturbations
together (SVP), improved the performance MFCC-STFT by 32.29% relatively compared to original data.

Applying both the perturbations together (SVP) improved the performance of ZTWCC and MFCC-ZTW
by 1.18% and 13.42% (relative UAR), respectively. Independently SP and VP improved the performances
of all the SFF-based features. Applying both the perturbations together (SVP) improved the performances
of SFFCC and MFCC-SFF by 11.77% and 12.00% (relative UAR), respectively. Independently SP, VP
and together SVP improved the performance of FDLPCCs by 18.19%, 19.86%, 19.26% UAR (in relative),
respectively. Overall, it can be observed that combination of both speed and volume perturbations (SVP)

gave better performance for all the feature representations (baseline and proposed).
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Hence the results of combination of speed and volume perturbations data are reported in Table in
comparison to original data. Table shows the performances in UAR (third column) and class-wise
accuracies (fourth-sixth columns) with SVP augmentation. The final column (RI) shows the relative
improvement with respect to original data (from Table[7.2)). It can be observed that along with performance
in UAR, the class-wise accuracy of minority class UK improved significantly for all the features. Further,
on comparison of performances with CBL function in Table performance with SVP is better for both

baseline and proposed features.

Table 7.6: Performance (mean and standard deviation of UAR% from six trials and class-wise accuracies)

of CNN classifier for baseline and proposed features.

After speed and volume perturbations

Feat. type UAR AU UK US RI

Baseline features

STFT-based features | MFCC-STFT 76.70+0.56 | 85.07 | 63.11 | 81.93 | 32.29

Proposed features

ZTW-based features | ZTWCC 74.69+£0.14 | 88.52 | 50.75 | 85.07 | 1.18

MFCC-ZTW 76.22+£1.82 | 64.71 | 76.97 | 85.97 | 13.42

SFF-based features | SFFCC 77.11 £0.50 | 85.80 | 61.42 | 84.37 | 11.77

MFCC-SFF 76.33+0.68 | 80.46 | 61.61 | 87.15 | 12.00

FDLP-based features | FDLPCC 75.84 £0.18 | 81.37 | 61.05 | 853 | 19.26

7.1.4.3 Resampling

Resampling is the third approach to deal with imbalanced classes [84]] in this thesis. It only increases
the strength of minority class which helps in reducing the bias of model during training. Table shows
the distribution of utterances for train and test sets, before and after resampling for UT-Podcast corpus.
Resampling only repeat the utterances of minority class UK in training set of UT-Podcast corpus. This
change increase the strength of minority class (UK) in training set from 246 to 492.

Discriminability among the dialect classes are visualized using t-SNE projections of latent features.
Figure shows the t-SNE projections of the latent representations from second fully connected layer
of CNN for MFCC-STFT (a) without and (b) with resampling. Projections are color coded by their dialect
class (UK:Green(+), US:Blue(A), and AU:Red(x)). It can be observed that all the projections of classes are
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Table 7.7: Distribution of number of utterances (#utterances) in each dialect class of UT-Podcast (AU:
Australian English, UK: Britain English, and US: American English) before and after resampling for training

and test datasets.

Before resampling || After resampling

Data type | AU | UK | US AU | UK | US

Train 449 | 246 | 406 449 | 492 | 406

Test 332 | &9 240 332 | 89 | 240

better separated after resampling (Figure [7.3(b)) compared to original data (Figure [7.3(a)). Not only UK
class, with resampling AU and US classes are also well separated. These projections are in synchronous

with the class-wise accuracies reported in Table [/.8| with CNN.

“ + UK e + UK
20
g"’** s US 20 ﬁ; * s US
15 o W% * AU 15 £+£ kK % * AU
B Aok A Py *
10 P e * *@%
£ 7 1 Xy kK
* - B W x FREE '

3

t-SNE Axis 2
o w
* +
Hf
e,
L ;
t-SNE Axis 2
w
4
%
e
2y
*
»
>

- *
A * s
3 { N A %{*f o {
i Cf s g ]
W a4 ¥ y +4
+
-10 % # -10 &, “H
% gﬁh A A
—15 # & 'y ‘A —15 *‘ ‘
0 20

-40 -20 40 -40 -20 0 20 40
t-SNE Axis 1 t-SNE Axis 1
(a) MFCC-STFT without resampling (b) MFCC-STFT with resampling

Figure 7.3: Plots showing t-SNE projections of the latent representations from fully connected layer of
CNN for MFCC-STFT (a) without and (b) with resampling. Projections are color coded by their dialect
class (UK:Green(+), US:Blue(A), and AU:Red(x)).

Table [7.8] shows the performance (mean and standard deviation of UAR% from six trials and mean of
class-wise accuracies) for CNN classifier trained with resampled data for baseline and proposed features.
Last column shows the relative improvement in perfomances of resampled data function when compared to
of original data in Table[7.2]

Overall, there is a significant improvement in performances for both the baseline and proposed features

with resampling. The baseline MFCC-STFT features improved by a UAR of 23.46% in relative. From the
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Table 7.8: Performance (mean and standard deviation of UAR% from six trials) of CNN classifier for dialect

classification with re-sampled corpus. (RI: relative improvement (in %) of re-sample data w.r.t original data

(Table .

After Re-sampling

Feat. type UAR AU UK US RI

Baseline features

STFT-based features | MFCC-STFT || 71.58+0.30 | 70.18 | 68.73 | 76.67 | 23.46

Proposed features

ZTW-based features | ZTWCC 78.72+0.44 | 79.77 | 84.27 | 71.11 | 6.64

MFCC-ZTW || 78.33+0.30 | 86.30 | 71.72 | 76.25 | 16.56

SFF-based features | SFFCC 79.32+0.34 | 87.40 | 71.35 | 77.57 | 14.97

MFCC-SFF 80.38+0.41 | 87.20 | 7491 | 77.91 | 17.95

FDLP-based features | FDLPCC 75.24+0.35 | 78.87 | 60.11 | 86.74 | 18.32

results of proposed ZTW features, ZTWCC and MFCC-ZTW improved by a UAR of 6.64% and 16.56%
UAR (in relative), respectively. From the results of SFF features, SFFCC and MFCC-SFF improved by a
UAR of 14.97% and 17.95% UAR (in relative), respectively. FDLPCCs improved by a UAR of 18.32% in
relative. When compared to SVP approach, the proposed features with resampling (ZTWCC, MFCC-ZTW,
SFFCC, MFCC-SFF, and FDLPCC) have shown significant improvement and MFCC-STFT have shown
comparable performance. So, for future experiments with other neural network approaches, resampling is

considered.

7.1.5 Comparison of baseline and proposed features with CNN

On comparison of proposed features (ZTW-based, SFF-based, and FDLP-based) with baseline
(STFT-based), it is observed that all the proposed features (ZTWCC, MFCC-ZTW, SFFCC, MFCC-SFF,
FDLPCC) performed better than baseline as given in Table From ZTW-based features, it can be
observed that ZTWCC and MFCC-ZTW performed better than MFCC-STFT by a UAR of 9.97% and 9.43%
UAR (in relative), respectively. From SFF-based features, it can be observed that SFFCC and MFCC-SFF
performed better that MFCC-STFT by a UAR of 10.81% and 12.29% UAR (in relative), respectively.
FDLPCCs performed better than MECC-STFT by 5.11% UAR (in relative). These results are in synchronous

with i-vector based system.
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Discriminability among the dialect classes are visualized using t-SNE projections of latent features.
Figure [7.4] shows the t-SNE projections of the latent features derived from second fully connected layer
of CNN classifier for best performing baseline feature (MFCC-STFT: Figure [7.4{(a)), proposed SFF-based
feature (MFCC-SFF: Figure b)), and proposed ZTW-based feature (MFCC-ZTW: Figure c)). It can
be observed that all the projections of classes are better separated in MFCC-SFF (Figure [7.4(b)) compared
to MFCC-STFT (Figure [7.4(a)) and MFCC-ZTW (Figure [7.4(c)). Whereas in Figures [7.4[a) and (c), the
projections of classes AU and US are well separated, and the projections of UK class are overlapped with
AU and US. Further, these projections are in synchronous with the class-wise accuracies reported in Table

[7.8 with CNN.
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Figure 7.4: Plots showing t-SNE projections of the latent representations from second fully connected layer
(FC2, see Section |7;1'|) of CNN for (a) MFCC-STFT, (b) MFCC-ZTW, and (c) MFCC-SFF. Projections are
color coded by their dialect class (AU:Red(x), UK:Green(+), and US:Blue(A)).

7.2 Time-delay neural network

TDNNs belong to the family of CNNs. TDNN differ from CNNs by introducing sub-sampling in
higher layers that led to wider temporal context and doesn’t loose much information due to correlated
neighbourhood activations. They were first introduced for speech recognition [146] and widely used in
extraction of speaker embeddings (x-vectors) [[135]] and speech recognition [147]. Apart from introducing
the wider temporal context, the TDNNs also optimize the time and space complexity during training by
reducing the operations (during forward pass and backward propagation) and the parameters of the network.

TDNN differ from CNN because of their sub-sampling. It is a scheme where it will allow selective

computations during forward and backward passes reducing the computation complexity. Figures [7.5] and
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demonstrate the wider context of TDNN when compared to CNN. The bottom most row shows the input
layer while the last row shows the nodes at third layer. A node in third layer is picked to demonstrate the
context captured by that node in both CNN and TDNN cases. Both of them use similar architecture, the
kernel or filter size (K) of one dimensional convolution is three with a stride (S) of one for all the layers.
In TDNN, sub-sampling or dilation (D) is two across second and third layers. It can be observed that both
the networks undergo similar computations, however the node in third layer of TDNN has wider context
(five frames from past and five frame from future) than CNN (three frames from past and three frames from

future). This shows that the temporal context can be improved with TDNN when compared to CNN.

O O O O OO0 o™
O O O O O

t-3 t-2 t-1 t t+1 t+2 t+3 t+4

Figure 7.5: Illustration of temporal context in convolution neural network at each layer. Here K is filter size

and S is size of sliding window.

t-5 t-4 t-3 t-2 t-1

Figure 7.6: Illustration of temporal context in time delay neural network for each layer. Here K is filter size,

S is size of sliding window, and D is dilation.

7.2.1 Architecture

Table shows the architecture of the TDNN classifier investigated in this study. The time-delay (TD)
layers of TDNN are combined with pooling layers and fully connected (FC) layers as in CNNs. The
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hyper-parameters that define TD layer are input dimension, output dimension, and context. Along with them
cumulative context of the layer is also defined in the table as total context. The first five TD layers process
acoustic dependencies at segmental level, while the layers after L2 pooling processes the utterance-level
dependencies. The TD layers of TDNN used in this study is similar to the architecture defined in [[135] for
speaker embeddings.

Table 7.9: End-to-end TDNN architecture for dialect classification. ’t’ represents current frame and *T°

represents entire utterance. TD represents time-delay layer and FC represents fully connected layer.

Layers: TD1 TD2 TD3 TD4 | TD5 | L2 pool | FC1 | FC2 | FC3
Input dim. (feat. dim.)*5 1536 1536 512 | 512 1500T | 1500 | 1500 | 600
Output dim. 512 512 512 512 | 1500 1500 | 1500 | 600 3
Context [t-2,t+2] {t-2,6t+2} | {t-3,t+3} | {t} {t} T 0 0 0
Total context 5 9 15 15 15 T T T T

7.2.2 Results and discussion

Table [7.10] shows the performances in mean and standard deviation of UAR from six trials of TDNN
classifier for dialect classification with resampled data. The performances are reported for both baseline
(MFCC-STFT) and proposed (ZTW, SFF, FDLP based) features with TDNN (in third column) and CNN (in
fourth column) classifier. From the table, it can be observed that the performance of all the features with
TDNN improved when compared to CNN. It is also observed that all proposed feature performed better than
baseline features with TDNN (except FDLPCCs).

From baseline features (MFCC-STFT), it can be observed that with TDNN as classifier the performance
of dialect classification improved by 9.97% UAR (relative) when compared to CNN. From ZTW-based
features, it can be observed that ZTWCC and MFCC-ZTW features improved by 4.28% and 1.25% UAR
(relative), relatively with TDNN when compared to CNN. From SFF-based features with TDNN, it is
observed that SFFCCs have shown similar performance and MFCC-SFF have shown an improvement 3.45%
UAR (relative) when compared to CNN. FDLPCCs also performed equally well with TDNN when compared
to CNN.

On comparison of ZTW based features with MFCC-STFT, it can be observed that, both ZTWCC and
MFCC-ZTW performed better with 4.28% and 0.75% UAR (relative), respectively. Among ZTW based
features, it is observed that, ZTWCCs performed better than MFCC-ZTW. On comparison of SFF based
features with MFCC-STFT, it can be observed that, SFFCC gave a similar performance while MFCC-SFF
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Table 7.10: Performance (mean and standard deviation of UAR% from six trials) of TDNN classifier for

dialect classification with re-sampled corpus.

Feat. type TDNN CNN

Baseline features

STFT-based features | MFCC-STFT 78.72+0.84 71.58+0.30

Proposed features

ZTW-based features | ZTWCC 82.09+0.62 78.72+0.44

MFCC-ZTW 79.31+0.67 78.33£0.30

SFF-based features | SFFCC 78.31+0.33 79.32+0.34
MFCC-SFF 83.15+0.76 80.38+0.41

FDLP-based features | FDLPCC 75.17+0.74 75.24+0.35

performed better by 5.62% UAR (relative). Among SFF based features, it is observed that, MFCC-SFF
features performed better than SFFCCs.

7.3 Temporal convolution neural network
TCNNs [136] belong to the family of CNNs with few constraints. The temporal convolution layers
(Tconv) of TCNN differ from CNNs by four architectural changes as given below:

1. Each node of temporal convolution (TConv) layer of the network is constrained only to the past
information. This prevents leakage from future to past which is achieved by convolving with k frames

in the past (k is the kernel size).

2. TConv layers model sequentially resulting in same output length from each hidden layer. This is

achieved by introducing zero-padding of length (k — 1) in each hidden layer.

3. The convolutions in each layer are dilated to widen the temporal context without deepening the

network. The receptive field at each layer is defined by (k— 1) xd.

4. Residual block that adds input to output before activation function.

TCNNs were previously explored in speech enhancement for sequential output processing that could replace
RNNs with few network parameters and wider context [[148]]. Motivated by this, TCNs are investigated in

classification framework by adding pooling layers and fully connected layers as in CNNss.
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Figure 7.7: Illustration of temporal context in convolution neural network for each layer. Here K is filter

size and S is size of sliding window.

Figure 7.8: Illustration of temporal context in temporal convolution neural network (TCNN) for each layer.

Here K is filter size, S is size of sliding window, and D is dilation.

TCNNs differ from CNNs because of their sub-sampling and casual constraint. Sub-sampling, along
with casual constraint, improved the temporal context only from past frames. This is demonstrated using
Figures and for CNN and TCNN. The bottommost row shows the input layer, while the last row
shows the nodes at the third layer. A node in the third layer is picked to demonstrate the context captured by
that node in both CNN and TCNN cases. Both of them use similar architecture, the kernel or filter size (K)
of one-dimensional convolution is three with a stride (S) of one for all the layers. In TCNN, sub-sampling or
dilation (D) is two across the second and third layers. It can be observed that both networks undergo similar
computations. However, the node in the third layer of TCNN has a wider context only from the past (i.e., ten
frames from the past) than CNN (three frames from the past and three frames from the future). This shows

that the temporal context from the past is improved with TCNN compared to CNN.
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7.3.1 Architecture

Table shows the architecture of the TCNN classifier investigated in this study. TConv represents
the temporal convolution layer. The filters in this network can only access the previous frames with the
filter sizes defined in kernel size. The hyperparameters that define the TConv layer are the number of
filters (#filters), kernel size, stride, and dilation. After the average pool (L2), the FC layers process the

dependencies across the entire utterance.

Table 7.11: End-to-end TCNN architecture for dialect classification. TConv represents the temporal

convolution layer, and FC represents the fully connected layer.

Layers: TConvl | TConv2 | Maxl | TConv3 | TConv4 | L2 pool | FC1 | FC2 | FC3
No. filters/Output dim. 500 80 - 500 500 500 1500 | 600 3
Kernel size 5 3 10 5 3 - - - -
Stride 1 1 10 1 1 - - - -
Dilation 1 2 - 1 2 - - R -

7.3.2 Results and discussion

Table [/.12| shows the performances in mean and standard deviation of UAR from six trials of TCNN
classifier for dialect classification with resampled data. The performances are reported for both baseline
(MFCC-STFT) and proposed (ZTW, SFF, FDLP based) features with TCNN (in the third column), TDNN
(in the fourth column) and CNN (in the fifth column). From the table, it can be observed that the performance
of most of the features improved with TCNN when compared to CNN. It is also observed that all proposed
features performed better than baseline features with TCNN (except MFCC-ZTW and FDLPCCs).

On comparison of TCNN with CNN for MFCC-STFT, it is observed that there is an improvement of
9.14% UAR (in relative). ZTW-based features have shown similar performance for TCNN and CNN. From
SFF-based features, it can be observed that SFFCCs improved the performance by 0.32% UAR (relative)
and MFCC-SFFs gave a similar performance for classification. With TCNNs, FDLPCCs performed better
by 0.66% UAR (relative). Overall, comparing three different neural networks (CNN, TDNN, and TCNN),
it can be observed that TDNN performed better for most of the features.

On comparison of proposed features (ZTWCC, MFCC-ZTW, SFFCC, MFCC-SFF, and FDLPCC) to
baseline MFCC-STFT features with TCNN, it is observed that ZTWCC, SFFCC, and MFCC-SFF performed
better by 0.70%, 1.93%, 3.29% UAR (relative), respectively. Overall, the proposed MFCC-SFF with TCNN
performed with a UAR of 80.69%.
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Table 7.12: Performance (mean and standard deviation of UAR% from six trials) of TCNN classifier for

dialect classification with re-sampled corpus. Performances of CNN and TDNN classifiers are also reported.

Feat. type TCNN TDNN CNN

Baseline features

STFT-based features | MFCC-STFT | 78.124+0.57 | 78.724+0.84 | 71.58+0.30
Proposed features

ZTW-based features | ZTWCC 78.67+ 1.67 | 82.09+£0.62 | 78.72+0.44

MFCC-ZTW | 76.17+£0.93 | 79.314+0.67 | 78.334+0.30

SFF-based features | SFFCC 79.63 + 0.88 | 78.314+0.33 | 79.32+0.34

MFCC-SFF 80.69 + 0.96 | 83.15+0.76 | 80.38+0.41

FDLP-based features | FDLPCC 75.74+1.36 | 75.17+0.74 | 75.24+0.35

7.4 Emphasized channel attention, propagation and aggregation in TDNN

From the experimental observations in previous sections, it is observed that TDNN has shown better

performance for dialect classification. So, multiple enhancements were made to TDNN which resulted

in ECAPA-TDNN [[137]].

They are mainly by introducing the following modules with TDNN: (1)

Squeeze-Excitation Res2Block scales each channel based on global knowledge. (2) Multilayer feature

aggregation and summation, which captures the relevant information from both shallow and deeper

feature maps. (3) Channel and context-dependent statistics pooling computes both temporal and channel

attention weighted mean and standard deviation.

* Squeeze-Excitation Res2Block (SE Res2Block) combines the benefits of Squeeze-Excitation (SE)

block (scales each channel according to global properties of the utterance) with Res2Net module

(computes multi-scale features with hierarchical residual connections within and reduces the model

parameters) [[149]]. Equation|7.4]| shows the computation of SE block. Channel weight s, scales down

each channel based on global mean descriptor z.

|
z = ?Xt:ht
s = o(Wyf(Wiz+b)+by)
h, = s:h,
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The SE Res2Block contains a time-delay layer which is preceded and succeeded by convolution layer

which is then followed by a SE block. This entire block has a residual connection over it.

Multilayer feature aggregation and summation of feature maps from all three SE Res2Blocks.
The shallow feature maps can also contribute towards more robust dialect embeddings. To capture
the relevant information from both shallow and deeper feature maps, the outputs from three

SE-Res2Blocks are aggregated and summated.

Channel and context-dependent statistics pooling is used to convert variable-length frame-level
features to fixed-length utterance-level features. This module is also called attentive statistic pooling
(ASP). Mean and standard deviations are computed by the weights computed based on both temporal

and channel attention scores. The temporal and channel attention scores are computed as follows:

erc = Ve f(Whe+b) +k. (7.5)
exper .
" Yl expes (7.0)

With o; . as temporal and channel scores, weighted mean vector is given as follows:

T
e =Y oy che (7.7)
t

Higher-order statistics (i.e., standard deviations as utterance-level features) are effective for higher
discriminability. So, the mean is concatenated with the standard deviation as fixed utterance level

representations. Standard deviation is computed as:

T
o =Y ot chye? — 2 (7.8)
t

7.4.1 Architecture

Figure shows the architecture of ECAPA-TDNN studied in this thesis, which is similar to that

in [138]]. One dimensional convolution layer (ConvlD) is the input layer. Followed by three layers of

SE-Res2Blocks are sequentially arranged. Each SE-Res2Block is elaborated on the right side of the figure.

Each SE-Res2Block has 2 Conv1D layers with a time-delay layer in between. This is followed by an SE

block which scales down the channel based on global characteristics. A skip connection is over the entire

block to reduce gradient degradation problem. The Output from three SE-Res2Blocks are concatenated

using aggregation and summation. After this aggregation, a ConvlD layer processes the concatenated

information to generate the features for the attentive statistics pooling (ASP). The weighted mean and

standard deviation are computed in attentive statistics pooling (ASP) layer. These statistics are computed
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Figure 7.9: A schematic block diagram showing architecture of ECAPA-TDNN. ASP: Attentive statistic

pooling, Conv1D:1 dimensional convolution layer, FC: fully connected feed forward layer.

using both channel and context attention weights and these statistics represent utterance-level features.

Finally, fully connected (FC) layer with softmax layer is used to classify dialect.

7.4.2 Results and discussion

Table shows the performances in mean and standard deviation of UAR from six trials of
ECAPA-TDNN classifier for dialect classification with resampled data. The performances are reported for
both baseline (MFCC-STFT) and proposed (ZTW, SFF, FDLP based) features with ECAPA-TDNN (in the
third column), TCNN (in the fourth column), TDNN (in the fifth column), and CNN (in last column). From

80



the table, it can be observed that the performance of all the features improved with ECAPA-TDNN when

compared to CNN. It is also observed that all proposed features performed better than baseline features.

From baseline features (MFCC-STFT), it can be observed that with ECAPA-TDNN, the performance
of dialect classification improved by 13.52% UAR (relative) compared to CNN. Among ZTW-based
features, ZTWCC and MFCC-ZTW features improved by 4.46% and 4.43% UAR (relative), relatively with
ECAPA-TDNN compared to CNN. Among SFF-based features, SFFCC and MFCC-SFF features improved
by 6.33% and 3.53% UAR (relative), relatively with ECAPA-TDNN compared to CNN. FDLPCCs also
improved their performance with ECAPA-TDNN compared to CNN by 8.79% UAR (relative).

Table 7.13: Performance (mean and standard deviation of UAR% from six trials) of ECAPA-TDNN
classifier for dialect classification with re-sampled corpus. Performances of CNN, TDNN, and TCNN

classifiers are also reported.

Feat. type ECAPA TDNN TCNN CNN
Baseline features
STFT-based
feat MFCC-STFT || 81.26+1.46 78.72+0.84 78.12+0.57 71.58+0.30
eat.
Proposed features
ZTW-based ZTWCC 82.23+2.16 82.09+0.62 78.67+ 1.67 78.72+0.44
features MFCC-ZTW 81.80+1.12 79.31£0.67 76.17£0.93 78.33£0.30
SFF-based SFFCC 84.34+2.12 78.31+0.33 79.63 + 0.88 79.324+0.34
features MFCC-SFF 83.22+0.98 83.154+0.76 80.69 £ 0.96 80.38+0.41
FDLP-based
FDLPCC 81.85+0.95 75.17+£0.74 75.74+1.36 75.24+0.35
features

Comparing ZTW-based features to MFCC-STFT with ECAPA-TDNN, it can be observed that both
ZTWCC and MFCC-ZTW performed better by 1.19% and 0.66% UAR (relative), respectively. Among
ZTW-based features, it is observed that ZTWCCs performed better than MFCC-ZTW. Comparing
SFF-based features to MFCC-STFT with ECAPA-TDNN, it can be observed that both SFFCC and
MEFCC-SFF performed better by 3.79% and 2.41% UAR (relative), respectively. Among SFF-based features,
it is observed that SFFCCs performed better than MFCC-SFF. The performance of FDLPCCs is better when
compared to MFCC-STFT with ECAPA-TDNN by 0.73% UAR (relative).

81



“é 10 &ﬁa A*‘z 10
*,%’ * g
G :

t-SNE Axis 2
-
*
“5’,* ¥
A
*
);E'" ‘ﬁﬁ;
»ﬁ’*
Bty

* AU 30 ” * AU 30 * AU
2 ﬂ o 4 + UK ks + UK UK s
pt % 40 +
¥+§¢+ . 4 US . % 4 US ” s US HaGE AL
* ;{H*‘ >y * * *. o A
10 oa e 24 .y
AT by R A s

ko *}@ A A
20 wk W
i 5 ITAR e
A

* > ol iF
-10 Y _ :;ﬁf o —20] Wil é S
8 ) "’5% 7 ﬁ«éﬁ **%‘*‘f*ﬁﬁ%xém}"w; A, *%f:
I K ol ** ok ++ + * *
-20 é&& 2x -20 o W -20 —40 wg’”’i g gL
i B i
30 —20 -10 0 10 20 30 40 50 -30 -20 -0 0 10 20 30 40 50 -30 -20 -10 0 10 20 30 40 -80 -60 -40 -20 0 20 40 60
t-SNE Axis 1 t-SNE Axis 1 t-SNE Axis 1 t-SNE Axis 1
(2) CNN (b) TCNN (c) TDNN (d) ECAPA-TDNN

Figure 7.10: Plots showing t-SNE projections of the latent representations from second fully connected layer
of CNN (a), TCNN(b), TDNN (c), and ECAPA-TDNN (d) for SFFCC features. Projections are color coded
by their dialect class (AU:Red(x), UK:Green(+), and US:Blue(A)).

Figure shows the t-SNE projections of the latent features derived from four deep neural classifiers,
CNN (Figure[7.10(a)), TCNN(Figure[7.10[b)), TDNN (Figure[7.10|(c)), and ECAPA-TDNN (Figure[7.10(d))
trained with one of proposed features (SFFCCs). From t-SNE projections of CNN (Figure [7.10(a)), it can
be observed that the projections of classes AU and US are well separated, and the projections of UK class
are overlapped with AU and US. Whereas from t-SNE projections of TCNN(Figure[7.10(b)), TDNN (Figure
[7.10(c)), and ECAPA-TDNN (Figure[7.10(d)), all the classes are relatively better separated when compared
to CNN. These observations are in conformity with the class-wise accuracies reported in Table [7.13] for
SFFCC features.

7.5 Results and discussion

After analysis of experiments without and with data augmentations to handle imbalanced classes with
CNN, investigation of different temporal contexts with CNN architecture, and investigation of different
DNN architectures as given in previous sections. This subsection briefly reports the experiments that
compared only the best performing DNN (ECAPA-TDNN) to i-vector based system for best performing
baseline and proposed features (MFCC-STFT, MFCC-ZTW, MFCC-SFF, and FDLPCC). Further, this
section also reports the comparison (best performing DNN (ECAPA-TDNN) with baseline and proposed
features IMFCC-STFT, MFCC-ZTW, MFCC-SFF, and FDLPCC)) to previous studies with DNN for dialect

classification.
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7.5.1 Comparison to i-vector based dialect classification system

Table shows the performance (in UAR%) of i-vector based dialect classification system (Chapters
and performance (in mean and standard deviation of UAR% from six trials) for best performing
ECAPA-TDNN with baseline (STFT-based) and proposed (SFF, ZTW, and FDLP-based) features. From
table, it is observed that both the baseline (MFCC-STFT) and proposed (MFCC-ZTW, MFCC-SFF, and
MFCC-ZTW) features improved when compared to i-vector system. Among all the features, MFCC-SFF
based features with ECAPA-TDNN performed better. It is also observed that the minor class UK performed
well (with accuracy > 70%) for all proposed features (MFCC-ZTW, MFCC-SFF, and FDLPCC) with deep
neural architecture (ECAPA-TDNN).

Table 7.14: Performance (in UAR%) of i-vector system (with original UT-Podcast) and performance (in
mean and standard deviation of UAR % from six trials) for best neural network architecture (ECAPA-TDNN)
with baseline (STFT-based) and proposed (SFF, ZTW, and FDLP-based) features (with resampled
UT-Podcast).

Feat. type UAR AU UK uUS

i-vector system (Chapters 4| - (6

MFCC-STFT (baseline) 77.98 87.35 | 56.18 | 90.42

MFCC-ZTW (proposed) 78.73 87.35 | 58.43 | 90.42

MFCC-SFF (proposed) 81.20 97.59 | 53.93 | 92.08

FDLPCC (proposed) 81.37 86.14 | 66.29 | 91.67

ECAPA-TDNN Architecture

MFECC-STFT 81.26+1.46 | 82.38 | 69.10 | 92.29
MFCC-ZTW 81.80+1.12 | 75.10 | 78.84 | 91.46
MFCC-SFF 83.22+0.98 | 79.12 | 79.78 | 90.76
FDLPCC 81.85+0.95 | 86.3 | 71.35 | 87.92

Figure shows confusion matrices for dialect classification with i-vectors and ECAPA-TDNN for
baseline (MFCC-STFT) and proposed (MFCC-ZTW, MFCC-SFF, and FDLPCC) features. Each value
represents the rate of a samples belonging to an actual class predicted as resultant class in %. The rows
represent actual class values, so the rows add up to 100. The value along diagonal shows the class-wise

accuracies while the other values gives the confusion percentage of actual class with predicted class. On
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Figure 7.11: Confusion Matrices for dialect classification system with i-vector and ECAPA-TDNN systems
for both baseline (MFCC-STFT) and proposed (MFCC-ZTW, MFCC-SFF, and FDLPCC) features.

comparison of i-vectors to ECAPA-TDNN, it can be observed that both baseline and proposed features
improved in UK class accuracy. It can also be observed that both confusion of UK class to AU and US
(values in first and third columns of second row) have reduced with ECAPA-TDNN when compared to
i-vectors for all features. Further, it is observed that MFCC-SFF have shown lower confusion across all the

matrix.

7.5.2 Comparison with previous studies

This section compares the results obtained for UT-Podcast corpus by the previous approaches that
uses DNNs and the current studies (with both baseline and proposed features). In the previous study [84],
the strength of utterances belonging to minority class (UK) are re-sampled for training. They investigated
six different neural architectures (feed-forward neural network (FFNN), five-layer CNN, AlexNet, VGG-11,
ResNet-18 and FreqCNN) with STFT spectrogram as input. Feed-forward neural network is a small deep
neural classifier with three fully connected layers. Five-layer CNN is a deep neural classifier with five 2D
convolution layers followed by fully connected layers. AlexNet [129], VGG-11 [130]], and ResNet
are typical deep neural architectures belong to family of CNNs with varied number of convolution layers.
FreqCNN is proposed in [84], and it’s architecture comprises of attention based convolution blocks along

with basic convolution blocks.
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Table shows the results (UAR and class-wise accuracies) from previous studies in [84] that uses
different neural networks with SPEC-STFT as input, and the results of proposed and baseline features with
ECAPA-TDNN classifier. The UAR% and class-wise accuracies of the current studies are the mean values
from six trials. For brief discussions, only the MEFCC-STFT from baseline and MFCC-ZTW, MFCC-SFF,
and FDLPCC from proposed are considered for comparison from current study. Among the six different
DNNs from previous studies [84], it can be observed that FreqCNN performed better (with 79.32% UAR)
than other classifiers. On the other hand, it can be observed that current studies with all the baseline and
proposed features (especially MFCC-SFF features) performed better than the previous studies. From the
comparison of class-wise accuracies among previous studies, it can be observed that other than AlexNet
and FreqCNN, all the classifiers identified UK dialect with less than 50%. However, AlexNet lacked its
performance in identifying AU dialect. On the other hand, almost all the proposed features identified UK
dialects with accuracy more than 70% without lacking performance in other dialect classes (AU and US).
Current studies with both baseline and proposed features outperformed all the architectures of previous

studies with similar data configurations.

Table 7.15: Performance in UAR% (mean and standard deviation from six trials) and class-wise accuracies
(of classes AU, UK, and US) for different deep neural architectures from previous studies and current studies
with all the features (STFT, ZTW, SFF, and FDLP based) using best DNN architecture (ECAPA-TDNN)
(with resampled UT-Podcast).

Class-wise accuracies

Input Feat. Type | Arch. type UAR AU UK US

Previous studies [84]

FFNN 61.42 70.78 | 50.56 | 62.92
Five-layer CNN 62.81 64.76 | 41.57 | 82.0
SPEC-STFT AlexNet 64.90 58.43 | 64.04 | 74.17
VGG-11 54.40 55.72 | 48.31 | 59.17
ResNet-18 61.66 69.28 | 38.20 | 77.50
FreqCNN 79.32 88.55 | 71.91 | 77.50

Current studies

MFECC-STFT 81.26+1.46 || 82.38 | 69.10 | 92.29

MFCC-ZTW 81.80+1.12 || 75.10 | 78.84 | 91.46
ECAPA-TDNN

MFCC-SFF 83.224+0.98 || 79.12 | 79.78 | 90.76

FDLPCC 81.85+0.95 || 86.3 | 71.35 | 87.92
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Table shows the results (UAR and class-wise accuracies) from previous studies in [84] and the
results of baseline and proposed features with three end-to-end classifiers from current studies. For
comparison with previous studies, results obtained for baseline (MFCC-STFT) and proposed (MFCC-ZTW,
MFCC-SFF, and FDLPCC) features are considered as in Table Among the five different DNNs from
previous studies [84], it can be observed that FreqCNN performed better than other classifiers. On the other
hand, it can be observed that all the proposed features with all the end-to-end classifiers outperformed the

previous studies.

7.6 Summary and conclusions

Major goal of this thesis is to study the dialectal variations and improve the performance of speech
recognition with an improved dialect classification system. So, initial studies proposed to use advanced
signal processing approaches that discriminate dialects better with traditional i-vector system for dialect
classification system. Then, based on our observations, basic to advanced deep neural networks are
investigated with proposed features for dialect classification to get best out of both stages. These approaches
are investigated with major dialects of English (AU, UK, and US). In most studies, Indian English is
considered as single dialect even though it has different native speakers. Based on the conclusions made
from major dialects of English (AU, UK, and US), embeddings from improved dialect classification system

are included with Indian English ASR to improve the performance.

Proposed features that provide high spectral resolution without compromising temporal resolution
derived using advanced signal processing approaches such as ZTW and SFF are investigated. It is observed
that proposed features (SFFCC, MFCC-SFF, ZTWCC, and MFCC-ZTW) performed better than baseline
features. Further, experimentation with features that provide longer temporal summarization derived using
FDLP based features are investigated for dialect classification. Proposed features are investigated for
different cepstral orders and temporal contexts for dialect classification. From the experiments, it is observed

that proposed features (FDLPCC) performed better than baseline features.

From the experiments with simpler (CNN) to advanced deep neural network (TCN, TDNN, and
ECAPA-TDNN) architectures that provide different temporal contexts, it is observed that advanced
neural network architectures improved the performance of dialect classification. It is also observed
that proposed features derived from SFF performed better. From the experiments, it is observed that
DNN based ECAPA-TDNN performed better in dialect classification than i-vector based approach. With
ECAPA-TDNN, the proposed MFCC-ZTW, MFCC-SFF, and FDLPCC outperformed the MFCC-STFT by
0.66%, 2.41%, and 0.73% (relative UAR), respectively. The best performance is given by MFCC-SFF with
ECAPA-TDNN architecture.
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Further, the best embeddings derived from improved dialect classification system are applied in English
ASR system in the following chapters. Furthermore, in extension to Indian English (with different L1
speakers), a dialect classification system with ECAPA-TDNN architecture trained with SFF based features
will be developed to derive dialect embeddings. These embeddings will be included in Indian English ASR

to handle dialectal variations.
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Chapter 8

Leveraging dialect embeddings in multi-dialect ASR system

Dialectal variations in speech can influence the performance of speech recognition systems [[8H10]. In [8]],
cross-accent models were found to increase the error rate by 40-50% (relative) compared to accent-specific
models. To deal with such situations, three different solutions were presented in the literature. They are,
multi-accented acoustic model [8l9]], accent dependent acoustic model [8], and accent adaptation methods
[OL12].

In the multi-accented acoustic model approach, automatic speech recognition (ASR) models were
trained with multiple accents of data to learn the traits of all the accents collectively [13]]. Developing
accent-dependent models requires more significant amounts of data (from each dialect) for training each
model independently [[8,14].

In acoustic model adaptations, various techniques such as MAP/MLLR adaptation of traditional
HMM-GMM acoustic model [[15L{16]], fine-tuning acoustic models to specific accents [13}/14], and inclusion
of accent embeddings [9}/10] were carried out to improve the performance. Joint modelling of accent
recognizer and speech recognizer was shown to improve the performance of the ASR system with seen

accented and unseen accented data [9,/12].

8.1 Multi-dialect speech recognition architectures

This section discusses five different architectures of DeepSpeech2 [150] system that evaluate

multi-dialect ASR system.

8.1.0.1 Pre-trained DeepSpeech2 model

DeepSpeech2 model is an end-to-end ASR model that maps a sequence of input features to a
sequence of graphemes [[150]]. Connectionist Temporal Classification (CTC) loss [[151] is used to train the
network. Figure[8.1|(without L1 embeddings block) shows the block diagram of DeepSpeech?2 architecture.

Short-time Fourier transform (STFT) spectrogram from a speech signal is computed with a 20 msec
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Hamming window with a shift of 10 ms. A sequence of 161-dimensional STFT spectrogram is passed
through two convolution 2D (Conv2D) layers with 32 filters of sizes (41,11) and (21,11). A stride of 2
along frequency in the first and second layers results in 41-dimensional features from 32 filters. Flattening
them results in 1312-dimensional features per time frame, which is then passed through 5 bi-directional long
short-term memory (LSTM) models. The output of LSTM at each time frame is passed to a fully connected
(FC) layer with a softmax function to predict the grapheme corresponding to that time frame.

Pre-trained DeepSpeech2 model is the model obtained after training the DeepSpeech2 model with 960

hrs of US-accented Librispeech corpus [152]]. The pre-trained system is evaluated for each dialect.

STFT Spectrogram

llx161xT

Conv2D
kernel size=(41, 11)
stride=(2, 2)

32x81xT
Conv2D
kernel_size=(21, 11)
stride=(2, 1)

v 32x41xT
Flatten
Pr
1312xT oposed
A4
utterance-level
LSTMS :Il 024XT Dialect
embeddings
1024xT ’
>/—|-—\<
1124xT

FC

l#graphemes xT

Figure 8.1: Block diagram of end-to-end DeepSpeech2 architecture with proposed utterance-level dialect

embeddings.
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8.1.0.2 Fine-tuned DeepSpeech2 model

The pre-trained DeepSpeech2 model is fine-tuned with the training data from the respective corpus to
improve speech recognition performance. This way the model can learn all the external (environment) and
internal (speaker) variabilities in speech. With the corpus containing data from all the dialects, the model

will be fine-tuned to all dialectal traits as well.

8.1.0.3 L1 embeddings with DeepSpeech2 model

The inclusion of dialect embeddings that contain the pronunciation traits to differentiate dialects can
improve the performance of multi-dialect ASR system. The i-vector based dialect embeddings and
ECAPA-TDNN based dialect embeddings extracted from both STFT based features and SFF based features
are investigated for speech recognition in this chapter.

Figure shows the proposed DeepSpeech2 architecture with utterance-level dialect embeddings. The
100-dimensional i-vectors/ECAPA-TDNN based dialect embeddings are concatenated with the output (of
size 1024) of fifth LSTM layer to obtain 1124xT matrix (T denotes total number of time frames). Only the
FC layer of the DeepSpeech?2 network is trained to learn the dialectal traits.

The inclusion of L1 embeddings that contain the accentual traits to differentiate L1 accent classes can
improve the performance of ASR with Indian English (L2).

Multi-task joint learning with similar to the architecture as in [9]] but with RNNs as in deep speech? is

also experimented. ASR is trained jointly with an objective L ;o = 0 * Lay + (1 — &) * Lpyp with a as 0.8.

8.1.0.4 Combining i-vectors and ECAPA-TDNN embeddings with DeepSpeech2

The i-vector dialect embeddings obtained in an unsupervised manner, not only contain dialect
information but also other variant information (speaker, gender, etc.) and ECAPA-TDNN embeddings are
trained to contain only dialect embeddings. So, both the embeddings (i-vector based dialect embeddings
and ECAPA-TDNN based dialect embeddings) are combined, which forms 200-dimensional utterance-level
dialect embeddings. The 200-dimensional dialect embeddings are concatenated with the output (of size
1024) of fifth LSTM layer to obtain 1224xT matrix. Similar to the above, only the FC layer of the
DeepSpeech2 network is trained to learn the dialect traits with dialect embeddings derived from both
MFCC-STFT and MFCC-SFF features.

8.2 Leveraging dialect embeddings in speech recognition system

The multi-dialect ASR system trained on American English (US) is investigated for three major dialects

(American: US, Australian: AU, and Britian: UK). The embeddings derived from an improved dialect
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classification system with major dialects of English (AU, UK, and US) are leveraged with a multi-dialect
ASR system. Common voice corpus [[153]] with three major dialects is considered to evaluate multi-dialect
ASR system. Based on the observations with UT-Podcast, the embeddings derived from the best dialect
classification model (ECAPA-TDNN with MFCC-SFF) will be applied to the speech recognizer.

8.2.1 Results and discussion

Table [8.1] shows the performance (in WER%) of ASR systems (pre-trained, fine-tuned, i-vector based
dialect embeddings, ECAPA-TDNN based dialect embeddings, and combined dialect embeddings) for the
major dialects (AU, UK, and US) of English. In addition, to dialect-wise WER (columns 2-4) and average
WER (column 5), the relative improvement (Rel. imp.) with respect to the pre-trained model and fine-tuned
models are reported in the table. The pre-trained model (Section is evaluated for speech from AU,
UK, and US dialects. From the results, it can be observed that the US dialect performed better compared to
AU and UK, with a WER% of 22.67. As the pre-trained model is trained on the speech from the US dialect,
the performance of the US is better than the other dialects is admissible. Between AU and UK dialects, the
UK performed better than AU.

The pre-trained DeepSpeech2 model is fine-tuned with all three dialects (Section with around
24.5 hrs of common voice corpus. The test data is excluded from the training data used for fine-tuning. The
fifth column of the table shows the performance (in WER%) of fine-tuned speech recognition system. It
can be observed that, on an average, fine-tuning improved the performance of pre-trained by 10.07% WER

(relative). The recognition performance of all three dialects improved with the fine-tuned model.

Dialect embeddings derived from i-vector and ECAPA-TDNN dialect classification systems. These
embeddings are used in finetuned models as in Section With MFCC-STFT features in i-vector and
ECAPA-TDNN systems, both the embeddings improved the performance of the ASR system. Relatively
i-vector based embeddings improved by 10.46% and 0.44% WER when compared to pre-trained and
fine-tuned DeepSpeech2 models, respectively. Additionally with joint training of ASR and dialect
classification, it can be observed that joint training of ASR and DID have shown to be slightly better than

dialect embeddings.

With SFF based i-vector dialect embeddings, the performance of the ASR system improved by 11.08%
WER and 1.13% WER (relative). While using SFF based ECAPA-TDNN dialect embeddings, improved by
11.52% and 1.61% WER (relative). It can also be observed that by leveraging SFF dialect embeddings there
is a slight improvement in WER when compared to STFT dialect embeddings.

The i-vector embeddings and ECAPA-TDNN embeddings are combined and are leveraged in the
DeepSpeech2 model as in Section [8.1.0.4] The last two rows of the table show the performance in
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Table 8.1: Performance (in WER%) of ASR systems (pre-trained, fine-tuned, i-vector based dialect
embeddings, ECAPA-TDNN based dialect embeddings, and combined dialect embeddings) for major

dialects of English. Rel. imp. refers to relative improvement.

Rel. imp. w.r.t. | Rel. imp. w.r.t.

Model Type AU UK usS Average
pre-trained fine-tuned
Pre-trained DeepSpeech2
Pre-trained DeepSpeech2 28.57 | 25.36 | 22.67 25.53 - -
Fine-tuned DeepSpeech2
Fine-tuned DeepSpeech?2 26.52 | 22.77 | 19.58 22.96 10.07 -

STFT dialect embeddings with Fine-tuned DeepSpeech2

i-vector based dialect emb. 26.52 | 22.34 | 19.72 22.86 10.46 0.44
ECAPA-TDNN based dialect emb. 26.28 | 22.19 | 19.91 22.79 10.73 0.74
Joint training [ASR+DID] 26.48 | 22.36 | 19.42 22.75 10.89 0.91

SFF dialect embeddings with Fine-tuned DeepSpeech2

i-vector based dialect emb. 26.60 | 22.26 | 19.25 22.70 11.08 1.13

ECAPA-TDNN based dialect emb. 26.50 | 22.16 | 19.12 22.59 11.52 1.61

Combined dialect embeddings with DeepSpeech2

STFT i-vector+ECAPA-TDNN emb. || 27.16 | 21.53 | 19.10 22.60 11.48 1.57

SFF i-vector+ECAPA-TDNN emb. 26.32 | 22.10 | 19.02 22.48 11.95 2.09

WER% with combined dialect embeddings. From the experiments, it can be concluded that using SFF
i-vector+ECAPA-TDNN embeddings performed better than any other with a performance of 22.48% WER.

It can be understood that dialect embeddings are helpful for speech recognizers with multi-dialect speech.
Further, the improvement of MFCC-SFF embeddings in multi-dialect ASR system is relative to its better

performance in classification.

8.3 L1 identification and leveraging I.1 embeddings in Indian English ASR

system

The native language (1) traits can be observed in the non-native (L.2) speech of a speaker. The influence
of the native language of the speaker may lead to mispronunciations. These mispronunciations of non-native

speakers may lead to the misrecognition of words leading to higher word error rates.

92



These mispronunciations are due to the effect of native language (L.1) phonology on second language
speech (i.e., non-native speech (L2)). In most of the existing studies, Indian English is considered as one
class, even though the speech is multi-lingual [154]]. From previous studies with acoustic model adaptation
[9,10], it was observed that the WER of Indian English was higher than other accents by a margin of 10-20%
(absolute). Jointly training ASR systems for L2 speech (Indian English) and L1 speech (Hindi, Kannada,
Gujarati, Marathi, Tamil, and Telugu) has shown to improve the performance [155]. These improvements
suggest that L1 influences L2 speech (Indian English). From the linguistic studies in [[154}/156}[157], it was
found that there exists some effect of L.1 on Indian English, even though the degree of this effect varies due
to multiple factors. Authors in [[14] divided Indian English into sub-groups (North, East, West, and South)
based on the ASR performance on cross L1 accent models. Note that in [14], Kannada, Malayalam, Tamil,
and Telugu are considered as one sub-group, as all of them are south Indian languages. The present study
considers Indian English from five closely related, such as Hindi, Kannada, Malayalam, Tamil, and Telugu

accents for evaluation of the ASR system.

Figure [8.2] shows phonetic confusion matrices (obtained from pre-trained DeepSpeech2 model as in
[158]) of non-native English speakers representing five distinct L1 accents, namely Hindi, Kannada,
Malayalam, Tamil, and Telugu. Upon examination of the figure, it becomes apparent that variations exist
in the phonetic confusions among different L1 accents when it comes to L2 speech. Upon analyzing the
confusion matrices, we noticed that despite Indian English being treated as a single category, the errors or
confidence mismatches in the confusion matrices indicate differences in pronunciation. Additionally, when
identifying the top 10 confused phones, it is noteworthy that /m/, /f/, and /a/ consistently appear among
them. A closer examination reveals that the phones they are confused with vary significantly across all the

accents.

L1 Accent: Hindi L1 Accent: Kannada L1 Accent: Malyalam L1 Accent: Tamil L1 Accent: Telugu
- . . -
B fa M =iy

Figure 8.2: Phonetic confusion matrices (obtained from pre-trained DeepSpeech2 model) of non-native

English belonging to five different L1 accents, such as Hindi, Kannada, Malayalam, Tamil, and Telugu.

Based on the observations from previous chapters for dialect classification, it can be observed that
SFF-based features with ECAPA-TDNN are helpful in discriminating dialects better. To assess the relevance
of these embeddings, first, we explored the ECAPA-TDNN system (along with popularly used i-vector

system) for L1 identification from L2 speech. Inspired by the performance of L1 identification, i-vectors
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and ECAPA-TDNN based embeddings are used to improve the performance of ASR for L2 (Indian English)
speech.

Major contributions of this section are as follows:
1. Proposal of ECAPA-TDNN system for L1 identification from L2 (Indian English) speech.

2. Effectiveness of L1 embeddings (i-vectors and ECAPA-TDNN embeddings) for improving the
performance of ASR for L2 speech.

3. Investigation of combined L.1 embeddings for improving the performance of ASR for L2 speech.

8.3.1 Multi-lingual multi-accent corpus

This study uses the NITK-IISc Multi-lingual Multi-accent Speaker Profiling (NISP) corpus [3]], which
was collected to develop automatic identification of physical characteristics (such as age, height, weight,
and accent). The corpus includes the non-native English (L2) speech data of native speakers of five different
Indian languages (L1) such as Hindi, Kannada, Malayalam, Tamil, and Telugu.

NISP corpus is recorded with a high quality microphone i.e., "Scarlett solo studio, CM25 a large
diaphragm condenser”. The sampling frequency of the recorded data is 44.1 kHz, and it is re-sampled
to 16 kHz.

It is a read speech collected along with the speaker’s physical parameters as well as regional information
and linguistic information. It is collected from faculty, students, and academia. The regional distribution of
the NISP corpus is given in Figure[8.3] The English of Telugu, Tamil, Malayalam, and Kerala speakers is
collected from Andhra Pradesh, Tamil Nadu, Kerala, and Karnataka respectively. While Hindi is collected
from multiple states of North India.

The text used in reading for corpus contains 2 common sentences taken from TIMIT, 3 common sentences
from news articles, 20 - 25 unique sentences without context from daily news articles, and 20 - 25 unique
sentences with context from short stories. This approximates 45 - 55 sentences from each speaker.

This corpus, in total, contains 38.23 hrs of speech, but only 36.88 hrs of speech that has transcription
is considered. The speakers are divided into training (60%), validation (20%), and test (20%) sets such
that a similar distribution is observed in gender. Figure [8.4] shows the distribution of speakers across train,
validation and test sets. The left bar graph shows the distribution of female speakers, and the right bar graph
shows the distribution of male speakers for each L1 class across datasets. The speakers are divided such that
60% of them are in the training set, with 40% divided between dev and test sets.

This resulted in the distribution of utterances as in Table [8.2] From the total of 13353 utterances, as a

result of speaker distribution (with respect to gender) led to 8538 utterances in training, 2424 utterances in
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Figure 8.3: Regional distribution of NISP corpus
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Figure 8.4: Distribution of speakers (Female on left and Male on right) across train, dev, and test sets with

respect to L1 classes for NISP corpus .

validation, and 2391 utterances in test sets. The number of utterances across each class is evenly distributed,

with slightly higher strength for the Hindi class.

The distribution based on gender resulted in the distribution of speech in duration across train, validation,
and test as in Figure[8.5]

More details about the NISP corpus are in [3]]. As per our knowledge, this is the only publicly available
corpus that contains non-native English (L2) speech of native speakers of five different Indian languages
(L1), and it can be downloaded from [[159].
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Table 8.2: Number of utterances in training, validation, and test sets of NISP corpus with respect to all five

L1 accents (Hindi, Kannada, Malayalam, Tamil, and Telugu).

No. of utterances
L1 Training | Validation | Test | Overall
Hindi 2359 776 624 3759
Kannada 1609 512 464 2585
Malayalam 1531 321 469 2321
Tamil 1491 477 349 2317
Telugu 1548 338 485 2371
Total 8538 2424 2391 | 13,353

Distribution of speech in duration

M Train M Dev Test
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4.83 4.67
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3.82
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Figure 8.5: Distribution of speech across train, dev, and test sets with respect to L1 classes in duration for

NISP corpus.

After carefully listening to each L1 speaker for the word "parental”, it is observed that the /e/ is varied for
/el to /&e/. It is also observed that the fluency of English spoken has different levels in each class. Changes

in intonation are also observed, while there are no variations in vocabulary.
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8.3.2 L1 identification from L2 speech

From the previous chapters, it can be observed that the traditional i-vector system can be used to capture
all the other speaker variations along with dialects. However, ECAPA-TDNN performed better than an
i-vector system for dialect classification. So, this section provides details and performances of (i-vector
system and ECAPA-TDNN system) from L2 (English) speech.

8.3.2.1 Feature extraction

From previous chapters that investigated different feature representations, it is observed that among
proposed MFCC-SFF performed well both with i-vector and DNNs. Along with best-performing features,
the baseline features MFCC-STFT are used for L1 identification. This section gives an overview of these
feature extraction methods.

MFCC-STFT: The extraction process of MFCC-STFT features is given in Chapter d MFCC-STFT
are the cepstral coefficients extracted from log mel STFT spectrogram. 13 and 80-dimensional MFCC
(extracted with 25 msec Hamming window with half of it as a shift) are used as input in i-vector system and
ECAPA-TDNN system, respectively.

MFCC-SFF: The MFCC-SFF features are extracted as given in Chapter [5| From the MFCC-SFF
spectrogram, mel filter bank energies (MFBE) are obtained using 80 mel filter banks. DCT is applied
over a log of MFBE-SFF to obtain MFCC-SFF. For the i-vector system, the first 20 cepstral coefficients of
MFCC-SFFs are used. While with the ECAPA-TDNN system, 80-dimensional MECC-SFFs are used.

8.3.2.2 i-vector system

For dialect/accent identification, an unsupervised approach to extract i-vectors [64] from MFCC-STFTs
are traditionally used [21},22,[29L/105.|160]]. Support vector machine (SVM) is used to identify the L1 of the
speaker from i-vectors, and it is referred to as ’i-vector system’. A 100-dimensional i-vector is considered
for this study. The i-vectors derived from an utterance retain the factors that are unique across the utterance.

These factors include not only accentual features but also other speaker characteristics.

8.3.2.3 ECAPA-TDNN system

The embeddings derived from supervised neural networks tend to contain more dialect/accent
information [[125]/133/{161]]. From our previous investigations on dialect classification in [[161]], Emphasized
channel attention, propagation and aggregation in TDNN (ECAPA-TDNN) system [137] outperformed all
the other neural networks. Motivated by this, the ECAPA-TDNN system is used for L1 identification from
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L2 speech. The architecture of the ECAPA-TDNN system is the same as in [[137]] (except the output of the
final fully-connected layer, which is set to 100).

8.3.2.4 Results of L1 identification

Two systems, i-vector and ECAPA-TDNN systems, were investigated for L1 identification. These
systems were investigated with baseline (MFCC-STFT) and proposed (MFCC-SFF) features.

i-vector system: Table shows the performance (in accuracy, unweighted average recall (UAR), and
class-wise accuracies) of the i-vector system with baseline MFCC-STFT and proposed MFCC-SFF for
L1 identification from L2 (English) speech. It can be observed that both the systems performed better
than chance-level accuracy (20%) for all the classes. The i-vector system with MFCC-STFT features
performed with 75.88% accuracy and 74.21% UAR. The class-wise accuracies show that the accuracies
of all the classes are greater than 70% except for the Malayalam class. On comparison of MFCC-SFF
with MFCC-STFT, it can be observed that the proposed MFCC-SFF performed better than MFCC-STFT by
3.11% relative in accuracy. It can also be observed that there is a slight improvement in the performance of

the Malayalam class.

Table 8.3: Performance (in accuracy (ACC.) and unweighted average recall (UAR)) of i-vector system for

L1 identification from L2 speech. Class-wise accuracies are also reported.

Features ACC. | UAR | Hindi | Kannada | Malayalam | Tamil | Telugu
MFCC-STFT || 75.88 | 74.21 | 90.01 78.88 40.72 74.50 | 86.91
MFCC-SFF 78.24 | 77.32 | 86.69 78.66 44.99 83.09 | 93.17

Figure 8.6 shows the confusion matrices i-vector based L1 identification system with MFCC-STFT and
MEFCC-SFF features. From baseline MFCC-STFT features, it can be observed that the Malayalam class is
highly confused with Tamil and Hindi. This confusion in the Malayalam class is reduced with MFCC-SFF
features, and further, an increase in the class accuracies of other classes is observed too.

ECAPA-TDNN model: Table shows the performance (in ACC., UAR, and class-wise accuracies) of
ECAPA-TDNN system with baseline MFCC-STFT and proposed MFCC-SFF for L1 identification from L2
(English) speech. On comparison of performances of ACC. and UAR of ECAPA-TDNN to i-vectors system,
it can be observed that both MFCC-STFT and MFCC-SFF have shown an improvement. MFCC-STFT
has shown an improvement of 2.82% ACC. at the same time, MFCC-SFF has shown an improvement of
3.07 % in comparison to i-vectors. Comparing baseline and proposed features with ECAPA-TDNN for
L1 identification, it can be observed that proposed MFCC-SFF performed better than MFCC-STFT by
3.36% ACC. (relative). All the class-wise accuracies are greater than 60% for MFCC-SFF features, showing
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Figure 8.6: Confusion Matrices for L1 identification system with i-vector system for both baseline

(MFCC-STFT) and proposed (MFCC-SFF) features.

an improvement for Malayalam class. Overall, MFCC-SFF with ECAPA-TDNN performed with 80.64%
accuracy. It can be recommended to use MFCC-SFF, which provides high spectral resolution for closer

dialects.

Table 8.4: Performance (in accuracy (ACC.) and unweighted average recall (UAR)) of ECAPA-TDNN

system for L1 identification from L2 speech. Class-wise accuracies are also reported.

Features ACC. | UAR | Hindi | Kannada | Malayalam | Tamil | Telugu
MFCC-STET || 78.02 | 77.71 | 75.69 94.11 51.92 74.07 | 92.76
MFCC-SFF 80.64 | 79.27 | 76.77 93.88 61.83 71.18 | 92.69

It is to be noted that the proposed results are better than the recent previous study [162]]. However, the
results are not comparable as the amount of data in considers only 55 speakers instead of all speakers
as in the current study.

Figure [8.7] shows the confusion matrices ECAPA-TDNN based LI identification system with
MFCC-STFT and MFCC-SFF features. From baseline MFCC-STFT features, it can be observed that the
Malayalam class is highly confused with Tamil and Hindi. A confusion of Hindi to Tamil and Tamil to Hindi
is also observed. Among all the classes, Telugu seemed to be a less confusing and well-classified class. On
comparison of ECAPA-TDNN to i-vector based confusion matrices (in Figure [8.6), the confusion of the
Malayalam class has reduced. The confusion in the Malayalam class is reduced with MFCC-SFF trained
ECAPA-TDNN based L1 identification system.
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Figure 8.7: Confusion Matrices for L1 identification system with ECAPA-TDNN model for both baseline
(MFCC-STFT) and proposed (MFCC-SFF) features.

Inspired by the results, ECAPA-TDNN embeddings (size of 100) are extracted from the final
fully-connected layer (after the FC layer in Figure [7.9) from model trained with both MFCC-STFT and
MFCC-SFFE. With the effectiveness of L1 identification using i-vector system and ECAPA-TDNN system,
i-vectors and ECAPA-TDNN embeddings are considered, and they are referred to as L1 embeddings’.
The L1 embeddings derived from the model trained with MFCC-STFT are called *STFT L1 embeddings’
and with MFCC-SFF are called SFF L1 embeddings’. For consistency, the sizes of both L1 embeddings
(i-vectors and ECAPA-TDNN) are considered 100. Both of these L1 embeddings are explored with
DeepSpeech2 based ASR system for improving the performance of ASR with Indian English (L2 speech)

with five different L1 accents.

8.3.3 Leveraging L1 embeddings in Indian English ASR system

This section initially reports the performance of the pre-trained DeepSpeech2 model (see Section
[8-1.0.T) and then reports the performance of fine-tuned DeepSpeech2 model (see Section [8.1.0.2)). Later,
the effectiveness of the L1 embeddings (see Section [8.1.0.3) with DeepSpeech2 is discussed. Finally,
combined L1 embeddings with the DeepSpeech2 model (see Section [8.1.0.4) is discussed. Table [8.5]
reports the performance in WER% for four variants of the ASR model (along rows) with respect to five
L1 accents (Hindi, Kannada, Malayalam, Tamil, and Telugu) (columns 2-6) of Indian English. The table
also reports average WER (column 7), relative improvement with respect to the pre-trained DeepSpeech2
model (denoted as ’Rel. imp. w.r.t. pre-trained’) (column 8), and relative improvement with respect to

fine-tuned DeepSpeech2 model (denoted as "Rel. imp. w.r.t. fine-tuned’) (column 9).
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The pre-trained DeepSpeech2 model is fine-tuned with 23.71 hrs (training data) of NISP corpus that
includes a speech from all five L1 accents. The pre-trained DeepSpeech? is trained for 100 epochs to obtain
fine-tuned DeepSpeech2 model. The results and discussion corresponding to this system are given in Section
8.3.3.2)

Table 8.5: Performance (in WER %) of ASR systems (pre-trained, fine-tuned, i-vector based L1 embeddings,
ECAPA-TDNN based L1 embeddings, and combined L.1 embeddings) for five different L1 accents of Indian

English. Rel. imp. refers to relative improvement.

Model Type Hindi Kannada Malayalam Tamil Telugu || Average Rel. imp. wrt. | Rel. imp. w.r.
pre-trained fine-tuned
Pre-trained DeepSpeech2
Pre-trained DeepSpeech2 H 54.40 39.26 51.77 65.86  53.27 H 5291 H - ‘ -
Fine-tuned DeepSpeech2
Fine-tuned DeepSpeech2 H 50.33 31.01 49.29 5722 4443 H 46.46 H 12.20 ‘ -
L1 class with Fine-tuned DeepSpeech2
One-hot encoded L1 classes H 38.52 21.15 35.56 43.25 29.30 H 33.56 H 36.57 ‘ 27.77
STFT L1 embeddings with Fine-tuned DeepSpeech2
i-vector based L1 emb. 40.02 21.73 37.83 4543 31.56 35.32 33.26 23.98
ECAPA-TDNN based L1 emb. 41.75 23.09 38.50 4370  33.46 36.10 31.78 2229
SFF L1 embeddings with Fine-tuned DeepSpeech2
i-vector based L1 emb. 41.13 21.54 36.78 43.87  29.59 34.58 34.64 25.43
ECAPA-TDNN based L1 emb. 40.72 19.04 34.00 4072 27.80 3245 38.66 30.14
Combined L1 embeddings with DeepSpeech2
STFT i-vector+ECAPA-TDNN emb. | 39.57 21.70 36.10 43.847 29.88 3422 34.64 26.34
SFF i-vector+ECAPA-TDNN emb. 32.92 15.77 28.31 3470  21.66 26.67 49.60 42.59

8.3.3.1 Pre-trained DeepSpeech2

Row 3 of Table [8.5] shows the performance (in WER%) of the pre-trained DeepSpeech2 model. From
the table, it can be observed that the average performance of the pre-trained DeepSpeech2 model is 52.91%
WER. Among the five L1 accents, Kannada performed better than all the other L1 accents. It can also
be observed that Kannada and Malayalam accented English are above the average, and Hindi, Tamil, and

Telugu accented English are below the average performance.
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8.3.3.2 Impact of fine-tuned DeepSpeech2

Row 5 of Table [8.5] shows the performance of fine-tuned DeepSpeech2 model. It can be observed
that fine-tuned DeepSpeech2 model gave a relative improvement of 20.58% WER over the pre-trained
DeepSpeech2 model. In comparison to the pre-trained DeepSpeech2 model, a consistent improvement can
be observed for all five L1 accents with an absolute improvement of 8.45%, 11.67%, 6.29%, 12.49%, and
14.72% for Hindi, Kannada, Malayalam, Tamil, and Telugu, respectively. This is expected as the fine-tuned

network learns the overall variations of L1 accents.

8.3.3.3 Proof of concept with ground truth L1 class

Row 7 of Table[8.5|shows the performance of a one-hot encoded L1 class with fine-tuned DeepSpeech2
model. It can be observed that providing the L1 class with fine-tuned DeepSpeech2 model gave a relative
improvement of 36.57% WER over the pre-trained DeepSpeech2 model. In comparison to fine-tuned
DeepSpeech2 model, providing L1 information improved the performance of fine-tuned DeepSpeech2
models by 27.77% WER (relative) on an average for all L1 classes. This shows that providing the native
(L1) language information to the Indian English ASR model with speakers from different L1s will improve
speech recognition performance.

It can also be observed that there is a consistent improvement for all five L1 accents with a relative
improvement of 29.19%, 46.13%, 32.61%, 34.33%, and 45.00% in WER for Hindi, Kannada, Malayalam,

Tamil, and Telugu, respectively.

8.3.3.4 Impact of L1 embeddings with DeepSpeech2

Rows 8-13 of Table show the DeepSpeech2 model with i-vector based L1 embeddings and
ECAPA-TDNN based L1 embeddings, respectively. It can be clearly seen that the inclusion of L1
embeddings in the DeepSpeech2 model significantly improved the performance when compared to
pre-trained and fine-tuned DeepSpeech2 models. This indicates that adding the information about the L1
accent of the speaker improves the performance of the ASR system for L2 speech. It can also be observed
that continuous latent representations i.e., L1 embeddings have shown similar performance when compared
to ground truth L1 classes.

The i-vector L1 embeddings derived using MFCC-STFT features gave a relative improvement of 33.26%
and 23.98% (in WER) over pre-trained and fine-tuned DeepSpeech2 models, respectively. While, i-vector
L1 embeddings derived using proposed MFCC-SFF features gave a relative improvement of 34.64% and
25.43% (in WER) over pre-trained and fine-tuned DeepSpeech2 models, respectively. On comparison of
STFT L1 embeddings and SFF L1 embeddings of the i-vector system, it can be observed that proposed
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SFF-based features outperformed. This shows that the SFF embeddings not only improved dialect

classification but also the embeddings derived from SFF are better in speech recognition.

With STFT based ECAPA-TDNN L1 embeddings, fine-tuned DeepSpeech2 model (refer to row 10
of Table [8.5)) gave an improvement of 31.78% and 22.29% over pre-trained and fine-tuned DeepSpeech2
models, respectively. While with SFF based ECAPA-TDNN L1 embeddings, fine-tuned DeepSpeech2
model (refer to row 13 of Table gave an improvement of 38.66% and 30.14% over pre-trained and

fine-tuned DeepSpeech2 models, respectively.

On comparison of i-vector L1 embeddings to ECAPA-TDNN based L1 embeddings with STFT features
(see rows 9 and 10 of Table [8.5)), it can be observed that only ECAPA-TDNN performed better for only
Tamil while other performed reasonably well. On comparison of i-vector L1 embeddings to ECAPA-TDNN
based L1 embeddings with SFF features (see rows 12 and 13 of Table [8.5)), it can be observed that
only ECAPA-TDNN performed better for all the L1 classes with an overall improvement of 6.16% WER

(relative).

Overall between both i-vectors and ECAPA-TDNN, both seemed to be important. Both combined might

improve speech recognition performance further.

8.3.3.5 Impact of combined i-vectors and ECAPA-TDNN L1 embeddings with DeepSpeech2

The last two rows of Table [8.5] show the results of combined L1 embeddings with the DeepSpeech2
model. From the table, it can be observed that combined L1 embeddings derived from SFF with
the DeepSpeech2 model outperformed all the other variants. Both the STFT combined (i-vectors and
ECAPA-TDNN) L1 embeddings and SFF combined L1 embeddings have shown an improvement when
compared to individual embeddings. This indicates that there exists complementary information between
i-vector based L.1 embeddings and ECAPA-TDNN based L1 embeddings. Combined STFT L1 embeddings
with the DeepSpeech2 model gave a relative improvement of 34.64% and 26.34% with respect to
pre-trained and fine-tuned DeepSpeech2 models, respectively. While combined SFF L1 embeddings with
the DeepSpeech2 model gave a relative improvement of 49.60% and 42.59% with respect to pre-trained and

fine-tuned DeepSpeech2 models, respectively.

Also, it can be seen that combined L1 embeddings with the DeepSpeech2 model performed better
for almost all the L1 accents compared to i-vector based .1 embeddings and ECAPA-TDNN based L1
embeddings, indicating the existence of complementary information in both L1 embeddings. It is also
observed that SFF combined L1 embeddings performed better than one-hot encoded ground L1 class
showing that the L1 embeddings derived from the proposed SFF approach better represented accentual

traits in speech.
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8.4 Summary and conclusions

To observe how the improved dialect embeddings can help speech recognition, the embeddings derived
from the proposed approach (i-vectors and ECAPA-TDNN embeddings from MFCC-SFF) are investigated
with multi-dialect speech recognition. From the experimentation, it is observed that the dialectal embeddings
that contain dialectal traits are advantageous for multi-dialect speech recognition. Further, with SFF based
i-vectors and ECAPA-TDNN embeddings which were better in the classification of dialects are more
advantageous in multi-dialect ASR system.

In this chapter, we proposed to use L1 embeddings (i-vectors and embeddings extracted from
ECAPA-TDNN) for improving the ASR performance of Indian English (L2). The relevance of these
embeddings was assessed by developing L1 identification systems. Five variants of DeepSpeech2 ASR
models were developed for L2 speech. They are: pre-trained, fine-tuned, i-vector based embedding,
ECAPA-TDNN based embedding, and combined embedding models. With STFT features, the i-vector
based embeddings and ECAPA-TDNN based embeddings gave better performance compared to the
pre-trained model by 33.26% and 31.78% and compared to fine-tuned model by 23.98% and 22.29%
in WER (relative), respectively. With SFF features, the i-vector based embeddings and ECAPA-TDNN
based embeddings gave better performance compared to the pre-trained model by 34.64% and 38.66% and
compared to fine-tuned model by 25.43% and 30.14% in WER (relative), respectively. Between the two
features, it is observed that SFF based (MFCC-SFF) helped to better represent L1 information that is useful
for speech recognition. Between the two embeddings, both seem to have L1 information and i-vectors
also have other variabilities (such as speaker, environment, and so on) that can improve ASR performance.
So, combined embeddings (i-vectors and ECAPA-TNN embeddings) are leveraged to use complementary
information. It is observed that there exists complementary information. Further, it can be concluded that
with SFF based combined L1 embeddings helped to reduce the word error of the fine-tuned DeepSpeech2
model from 46.46% WER to 26.67% WER which gave a 42.59% improvement relatively.
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Chapter 9

Summary and Conclusions

Due to multi-dialectal speech in real-time scenarios, the performance of the automatic speech
recognization (ASR) system will be degraded. It is observed from previous studies that the performance
of the acoustic model of speech recognizer can be improved with accent information. Previously, the dialect
embeddings or continuous representations derived from dialect classifiers were extracted using traditional
dialect classification approaches. The improved dialect embeddings that can represent dialects better can
improve the performance of the ASR system. This thesis is presented in three steps.

As a first step, different feature extraction methods were proposed for dialect classification. Dialectal
variations can be observed due to dynamic or transient sounds such as trill and aspiration, which are not well
represented by current STFT features. So, this thesis proposed to use features derived from signal processing
approaches, such as single frequency filtering (SFF) and zero-time windowing(ZTW) methods. The features
derived from these methods provide higher temporal resolution without compromising spectral resolution.
ZTWCC and MFCC-ZTW features derived using the ZTW method performed better than MFCC-STFT
features with the traditional i-vector dialect classification system. Also, SFFCC and MFCC-SFF derived
using the SFF method performed better than baseline MFCC-STFT features. s

Further, dialectal variations can also be observed as longer temporal variations in speech. FDLPCC
features extracted from the frequency domain linear prediction are investigated for dialect classification
to capture this longer temporal summarization. The FDLPCC features with the i-vector system performed
better than baseline MFCC-STFT features. From experimentation, it is concluded that in the i-vector system,
MFCC-SFF and FDLPCC features performed with a UAR of 81.25% and 81.37% UAR, respectively.

As a second step, deep neural networks were proposed for dialect classification. In traditional
i-vector-based approaches, the delta coefficients include temporal context in each frame. It is observed that a
longer temporal context is advantageous for dialect classification. So, the convolution neural network (CNN)
that provides a more extended temporal context with non-linear computations is investigated for dialect
classification. Different variants of CNN, such as TCNN, TDNN, and ECAPA-TDNN, are investigated

with proposed features to provide different temporal contexts. From the experiments, it is observed that
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SFF-based features performed well with longer temporal context (SDCs) in traditional i-vector approach
showed a similar improvement with better deep neural network architecture—the MFCC-SFF derived from
SFF method performed with a UAR of 83.22% for dialect classification. The longer temporal context by the
neural network is advantageous with MFCC-SFF for dialect classification.

As a third step, the embeddings derived from improved dialect classification are leveraged in a
multi-dialectal ASR system. The proposed MFCC-SFF features that outperformed all the other features
with i-vector and ECAPA-TDNN systems are leveraged in multi-dialect speech recognition systems.
Out of baseline MFCC-STFT embeddings and MFCC-SFF embeddings leveraged in multi-dialect ASR,
MFCC-SFF embeddings have shown slight improvement.

In most speech recognition models, Indian English is considered one class, even though it has speakers
from many native (1) languages. So, this thesis proposed to use L1 embeddings in the Indian English
ASR system to improve its performance. Based on the observations till now, MFCC-SFF features with
both i-vector and ECAPA-TDNN were observed to be better for dialect classification. So, we propose to
use the i-vectors and ECAPA-TDNN embeddings derived using MFCC-SFF for L1 identification. Further,
we propose to use the i-vectors and ECAPA-TDNN (L1) embeddings in the Indian English ASR system.
Likely to dialect classification, proposed MFCC-SFF features performed better for L1 identification. It is
also observed that the L1 embeddings derived using MFCC-SFF are more beneficial for the Indian ASR
system. SFF-based combined L1 embeddings improved the performance of the fine-tuned DeepSpeech2
model from 46.46% WER (finetuned model) to 26.67% WER, which is a relative improvement of 42.59%
WER.

This thesis worked on dialects of English. In the future, similar studies can be extended to dialects of
other languages. One of our studies also observed that the proposed SFF and ZTW features performed better
for classifying dialects in German.

The embeddings derived using MFCC-SFF features with ECAPA-TDNN can be used for Indian
languages to improve the acoustic models of multi-dialect Indian languages. Since the languages are
agglutinative and different words are formed based on dialects, approaches to handling language models
should also be in place. The word embeddings learned in neural language models are clustered based
on semantics, but it is blind to the internal structure of each word. Especially in agglutinative Indian
languages, a vast vocabulary of synonyms can be formed from a stem word with different affixes across
dialects. The word’s internal structure will help cluster the synonyms in such cases. In such languages
using the sub-word information such as characters, morphemes, or syllables, along with word embeddings,
improved the performance of language models [[163-167]]. From [[168]], it can be observed that syllable-level
representations are better than a character in morphologically rich languages. Inspired by that, we propose
investigating the importance of syllable information for word-level language models for dialectal Telugu

datasets. Based on this motivation, Telugu speech corpus can be collected for different dialects. Then, along
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with the proposed acoustic model, syllable-aware word-level language can be incorporated as part of the
dialectal Telugu ASR system.
Further, these studies can be extended to language identification and the inclusion of language

embeddings for a unified ASR system for all languages.
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