
Hybrid Multicore Algorithms for Some Semi-Numerical Applications and

Graphs

Thesis submitted in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science and Engineering

by

Dip Sankar Banerjee

200907007

dipsankar.banerjee@research.iiit.ac.in

Center for Security, Theory, and Algorithmic Research

International Institute of Information Technology

Hyderabad - 500 032, INDIA

December, 2014



Copyright c© Dip Sankar Banerjee, 2014

All Rights Reserved



International Institute of Information Technology

Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Hybrid Multicore Algorithms for Some

Semi-Numerical Applications and Graphs” by Dip Sankar Banerjee, has been carried out under my

supervision and is not submitted elsewhere for a degree.

Date Adviser: Dr. Kishore Kothapalli

Date Dip Sankar Banerjee



To My Grandfather

Late Shri Mono Mohan Mukherjee



Acknowledgments

I want to express immense gratitude to my advisor Dr. Kishore Kothapalli for his excellent guidance,

support and motivation. His deep insights into all of the problems tackled in this thesis combined with

exemplary work ethics has truly made this journey an enjoyable one.

I want to thank the members of my thesis committee comprising of Prof. R Govindarajan from the

Indian Institute of Science, Dr. Kannan Srinathan and Dr. Suresh Purini for their valuable feedbacks

regarding several aspects of this thesis.

I want to thank my teachers, Prof. PJ Narayanan, Prof. R. Govindarajulu who has endowed on me

knowledge that I will treasure upon for the rest of my life. I also wish to thank my research collaborators

Pariskshit Sakurikar, Shashank Sharma and Aman Bahl. They provided immense support towards the

completion of some of the critical components of the thesis and it was an absolute pleasure working

with them.

It was a excellent opportunity to work with all my lab mates at the Center for Security, Theory

and Algorithmic Research (C-STAR) over the last four years and I want to thank each one of them for

making my stay and work here so easy. Several of my friends at the International Institute of Information

Technology, Hyderabad provided me an excellent atmosphere to dwell, think, work and also to spend

fun times. Thanks to Broto Chakrabarty, Shamba Shankar Mandal, Akshat Kumar and Swarnabha Sen

for all the memories.

I want to take this opportunity to thank my parents whose endless examples of pursuing excellence

motivated me to work hard and stay focused at all times. I also express my happiness to my loving wife

Suchetana Chakraborty who has made everything possible in so many ways.

v



Abstract

The computing industry has undergone several paradigm shifts in the last few decades. Fueled by

the need of faster computing, larger data and real time processing needs parallel computing has emerged

as one of the dominant paradigms. Motivated by the success achieved in distributed computing mod-

els and the limitations faced by single core processors, parallel computing is the only alternative for

building faster computers. Parallel computing is one of the most challenging areas computer science in

the present and developing algorithms and optimization techniques for utilizing the processing power

present in a current generation parallel computer is still a very exciting area for research.

The parallel computing industry underwent a massive shift with the conventional sequential com-

puters hitting the power wall. It led to the development of multicore and many-core computing chips

that had multiple sequential computing cores packed into a single chip. The immediate impact was

the need for (re)designing sequential algorithms in order to utilize the computing power of such chips.

Combined with the intricate memory and cache structures, parallel algorithms require a higher degree

of engineering for the most optimal performance.

The many-core revolution started with the release of Graphics Processing Units (GPU) which had a

large number of compute cores and offered massive parallelism. With the evolution of the many-core

chips, the GPUs found application in graphics, gaming as well as general purpose computation. In the

same time frame, the Central Processing Units (CPU) too under went a sea of innovation and emerged

as more powerful and mature computing machines. However, the multicore CPUs were mostly ignored

in its initial days. With the advancement of accelerator platforms, the CPUs and GPUs are now able

to communicate in a more efficient manner. In the recent times there has been quite a few works such

as the ones in [79, 91, 43] that shows that hybrid algorithms actually provide better performance and

efficiency over conventional accelerator based computing.

In this thesis we work towards the development of hybrid multicore computing. Hybrid multicore

computing is developing algorithms and optimization strategies for popular computing primitives on

an hybrid platform. A hybrid platform is one which contains two or more multicore or many-core

devices. There are several challenges towards the efficient algorithm design on hybrid platforms such

as that of communication bottlenecks, load balance and synchronization. In this thesis we work towards

developing algorithms for some computing primitives such as that of list ranking, sorting and pseudo-

randomness and some graph algorithms. We experiment on a hybrid platform consisting of a 6-core

Intel CPU and Nvidia GPUs of broadly two generations.
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In our first work we work towards the development of hybrid algorithms for List Ranking. To this

end, we explore the algorithmic and analytical issues in hybrid multicore computing. Our case studies

involve two different ways of designing hybrid multicore algorithms. The main contribution of this

work is to address the issues related to the design of hybrid solutions. We show our hybrid algorithm

for list ranking is faster by 50% compared to the best known implementation [139].

This work is followed by a hybrid implementation of comparison sorting. Sorting has been a topic

of immense research value since the inception of Computer Science. In this work, we present a hybrid

comparison based sorting algorithm which utilizes a many-core GPU and a multi- core CPU to perform

sorting. The algorithm is broadly based on splitting the input list according to a large number of splitters

followed by creating independent sublists. Sorting the independent sublists results in sorting the entire

original list. On a hybrid platform, our algorithm achieves a 20% gain over the current best known

comparison sort result that was published by Davidson et. al. [32]. On the above experimental platform,

our results are better by 40% on average over a similar GPU-alone algorithm proposed by Leischner et.

al. [81]. Our results also show that our algorithm and its implementation scale with the size of the input.

We also show that such performance gains can be obtained on other hybrid platforms.

The use of many-core architectures and accelerators, such as GPUs, with good programmability has

allowed them to be deployed for vital computational work. The ability to use randomness in compu-

tation is known to help in several situations. For such computations to be made possible on a general

purpose computer, a source of randomness, or in general a pseudo random generator (PRNG), is essen-

tial. However, most of the PRNGs currently available on GPUs suffer from some basic drawbacks. It

is of high interest to develop a parallel, quality PRNG that also works in an on demand model. In this

work, we investigate a hybrid technique to create an efficient PRNG. The basic technique we apply is

that of random walks on expander graphs. Unlike existing generators available in the GPU program-

ming environment, our generator can produce random numbers on demand as opposed to a one- time

generation. Our approach produces 0.07 GNumbers per second. The quality of our generator is tested

with industry standard tests.

In the second part of the thesis, we work towards hybrid graph connected components and breadth

first search. For computing graph connected components we use a static load balancing technique for

partitioning of work between two devices and is followed by a low overhead consolidation phase for

merging the results. We achieve almost 25% improvement over the best known implementation in

[123]. For performing breadth first search (BFS), we employ a graph pruning strategy to reduce the size

of large graphs which is often composed of a large percentage of pendant nodes. We apply a hybrid BFS

on the remainder graph and is followed by a re-insertion phase. We achieve a 35% improvement over

the current best know solution which was published by Munguia et al. in [91].
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Chapter 1

Introduction

1.1 Parallel Computing Background

Computing paradigms have undergone a sea of change due to technological and economic considera-

tions. Need for faster computation, requirements for handling larger volumes of data, real-time analysis

and such have made the computing world undergo drastic paradigm shifts in several phases. Parallel

computing is one of the major paradigm shifts that took place in the early parts of 1980s. The shift was

motivated by the fact that in the near future, the Moore’s Law of transistor packing in a single die will

cease to hold. Also, there will be a power limitations to the clock frequency of a processor. Hence, it

will be imperative to design distributed processors that will be required to work in unison to perform a

certain computation.

1.1.1 Need for Parallel Computing

The biggest requirement for parallel computing was driven by the economy of world. There was a

constant demand for faster and more capable machines. The economy had forced the creation of the

”killer micro” [63]. It created a impediment towards innovative parallel computer design and was was

thought of as a replacement of vector processors. Currently we see the massive scale improvement

of many-core processors such as the Graphics Processing Units (GPU) and there is substantial proof

to show the near future unification of the CPU and the GPU. Fundamental limitations of sequential

processing such as the speed of light and dissipation of heat are the main causes [98].

1.1.2 Models of Parallel Computing

The earliest abstract machine of parallel computation was proposed by Fortune et al. in [40]. In this

work, the authors proposed a shared memory parallel random-access machine (PRAM). A generic model

of PRAM is shwon in Figure 1.1. In this model, the PRAM is intended as a parallel computing analogy

to the random access machine (RAM) for the sequential algorithm designers. In a similar way where the

RAM model neglects practical issues such as access time to cache memory versus the main memory, the
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PRAM model also neglects some issues such as that of synchronization and communication. In order

to identify the restrictions of the LogP model and make it more practical, there has been a wide array of

works that have been produced such as the ones in [4, 5, 44, 67, 88, 101]. In another major work that

re-works these neglects of the PRAM model was proposed by Culler et al. in the inspiring LogP model

[30].

Figure 1.1 The PRAM Model.

Although the literature contains several taxonomies of parallelism [35, 53, 115], one can talk about

two fundamental types of parallelism available for exploitation in software: data parallelism and task

parallelism. Data parallelism is mostly concerned with the execution of the same instruction on a large

data set. For example, element wise addition of two vectors such as the one that is commonly encoun-

tered in a lot of linear algebra applications commonly has a lot of data parallelism. Task parallelism

on the other hand, is achieved by the decomposition of an application into several independent tasks.

A multi-threaded web server can be a good example of task parallelism. Multiple requests of different

nature are handled in parallel. In general, we can see that most of the applications in parallel comput-

ing use a combination of data and task parallelism. Therefore most of the applications can be placed

somewhere in the middle of the entire spectrum. Although there might be a possibility to interchange

between data and task parallelism for an already existing parallel application. This might not always be

a possible.

In general, one can speak about a relationship between the current parallel architectures and types

of available parallelism. For example, massively multithreaded architectures [38, 75] are better than

others when dealing with large amounts of task parallelism. On the other side, GPUs [95] excel in data

parallel computations. However, as most computations cannot be hard-classified as having solely task

parallelism or solely data parallelism, an ultimate direct mapping of applications to architectures is an

ambitious proposal.

1.1.3 Large Scale Supercomputing

In the decade from 1990-2000, the supercomputing market was mainly dominated by clusters made

using off-the-shelf processors. Following that decade, of relative architectural stability we are currently

in an era of several disruptions and divergences. There is a massive divergence in the nature of ap-

plications and hence there is a requirement for different resources. This further leads to diversity and
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heterogeneity in architectures. Economics of scale on the other hand dictate only a handful of general

purpose architectures that can be manufactured at the commodity level at low cost. On one hand there is

the advantage of achieving low cost per unit on commodity processors, the custom made architectures

can perfectly match with the underlying problems. Application Specific Integrated Circuits (ASIC)

specifically falls under this custom made category of processors. Special purpose supercomputers, such

as Anton [118], which is used to simulate molecular dynamics of biological systems, will still find appli-

cations where the reward exceeds the cost. For broader range of applicability, however, supercomputers

that feature a balanced mixture of commodity and custom parts are likely to prevail.

Regardless of which architecture(s) will prevail in the end, the economic trends favor more paral-

lelism in computing because building a parallel computer using large number of simple processors has

proved to be more efficient, both financially and in terms of power, than using a small number of com-

plex processors [117]. The software world has to deal with this revolutionary change in computing. It

is safe to say that the software industry has been caught off-guard by this challenge. Most programmers

are not fundamentally trained to think in parallel. Many tools, such as debuggers and profilers, that are

taken for granted when writing sequential programs, were (and still are) lacking for parallel software de-

velopment. In the last few years, there have been improvements towards making parallel programming

easier, including parallel debugger, concurrency platforms, and various domain specific libraries.

One of the most promising approaches for tackling the software challenge in parallel computing is

the top-down, application-driven, approach where common algorithmic kernels in various important ap-

plication domains are identified. In the inspiring Berkeley Report [9], these kernels are called dwarfs(or

motifs).

1.2 Accelerator based Computing

The multicore revolution was fueled by the fact that the standard processor designs collided with

the power wall, the memory wall, and the ILP wall. Hence, the architectural designs progressed in

the multi-core direction where several processing cores are packed into one single chip. Each of these

cores run at a lower clock rate than a single core chip but the net throughput continues to rise. Another

recent phenomenon is the availability of many-core accelerators such as the GPUs. It is because of the

high cost to performance and the low cost to power ratios that has enabled GPUs become the devices

of desktop supercomputing. In Figure 1.2, we can see the increase in the theoretical peak performance

of the many-core GPUs and the multi-core CPUs over the last decade. Another similar architecture

is the Cell Broadband Engine which was designed by IBM in 2001. The Cell BE was fundamentally

an accelerator which had many heterogeneous features. In recent days architectures along the lines of

accelerators continue to be released. The Intel Many Integrated Core(MIC) is one of the significant

ones. However, the future roads in HPC systems are leading towards on-die hybrid systems at the level

of supercomputing as well as the commodity consumers. It is evident from these developments that
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the combination of general purpose CPU cores along with massively parallel accelerator cores provide

higher performance benefits.

Figure 1.2 Floating point operations per second for the CPU and GPU. Plot obtained from freely avail-

able documents provided by Nvidia.

The advent of multicore and manycore architectures saw them being deployed to speed-up compu-

tations across several disciplines and application areas. Prominent examples include semi-numerical

algorithms such as sorting [32], graph algorithms [112], image processing [39], scientific computations

[46, 27], and also on several irregular algorithms like [139, 108, 123]. Using varied architectures such

as multicore processors, the graphics processing units (GPUs) and the IBM Cell researchers have been

able to achieve substantial speed-ups compared to corresponding or best-known sequential implemen-

tations. In particular, using GPUs for general purpose computations has attracted a lot of attention

given that GPUs can deliver 4 TFLOP, or more, of computing power at very low prices and low power

consumption.

When using accelerators such as the GPUs and the SPUs in IBM Cell, typically there is a control

device that has to explicitly invoke the accelerator. Typically, data and program are transfered to the

accelerator, the accelerator computes and returns the results to the device. This approach however

has the drawback that the computational resources of the device, a CPU in most cases, are mostly

underutilized. As multicore CPUs containing tens of cores are on the horizon, this underutilization of

CPUs is a severe wastage of compute power. More recently, in [79], it is also argued that on a broad
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class of throughput oriented applications, the GPGPU advantage is only of the order of 3x on average

and 15x at best.

In Figure 1.3, we see a typical model of accelerator based computation. In this model all the data

and code is sent over to the GPU before any computation begins. After this the accelerator, which is the

GPU in this case, does the computation and sends over the results to the host device, which is the CPU.

The CPU on the other hand stays idle for all the period of time during which the accelerator is busy.

Figure 1.3 Conventional model of accelerator based computing.

1.2.1 Graphics Processing Units (GPU)

We first discuss how accelerator based computing was successful and a paradigm shifting phe-

nomenon. The whole world of parallel computing underwent a change when graphics practitioners

found that GPUs can be used for many general purpose computations. The term of General Purpose

Computing on Graphics Processing Units (GPGPU) was coined during that time. Although NVidia led

the initial development of the GPGPU program, soon significant contributions were made by industry

houses and scientists from several fields of research. Today, OpenCL is the dominant open source gen-

eral purpose computing language for accelerators, although the dominant proprietary framework is still

NVidia’s Compute Unified Device Architecture (CUDA).

One of the most significant initial results on the GPGPU front was that of the scan primitive pro-

posed by Sengupta et. al [116]. In this work, the authors demonstrated the power of GPU computing by

efficiently implementing a highly used computing primitive. Scan is an operation where, we apply an

associative operation on a set of contiguous operands. The authors basically employed the O(logn)

algorithm to compute the scan on an array by performing an up-sweep and a down-sweep. This tech-

nique was subsequently aided by applying well known caching and blocking techniques at each level

of the computation. The authors demonstrated their implementation on an early GT8800 GPU. They

showed that a scan on 1 million elements can be done in less than a millisecond. This was achieved by

running 128 threads on each core of the GPU which was previously impossible on any other parallel
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architecture. The authors also demonstrated the applicability of their scan primitive by using it in a

tri-diagonal solver and a sorting routine.

1.2.2 IBM Cell Broadband Engine

The Cell Broadband Engine (or the Cell BE) [65] is a novel architectural design by Sony, Toshiba,

and IBM (STI), primarily targeting high performance multimedia and gaming applications. In Figure

1.4, we see the chip layout of the IBM Cell BE processor. It is a heterogeneous multicore chip that

is significantly different from conventional multi-processor or multicore architectures. It consists of a

traditional microprocessor (called the PPE) that controls eight SIMD co-processing units called syner-

gistic processor elements (SPEs), a high speed memory controller, and a high bandwidth bus interface

(termed the element interconnect bus, or EIB), all integrated on a single chip.

Figure 1.4 The Cell BE Processor. Image obtained from Cell BE Programming Guide distributed by

IBM.
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The POWER4 processor which was also designed fundamentally for aiding graphics and games, was

re-designed to perform general purpose computations and renamed as the Cell. It was heavily used in

the Sony Playstation gaming consoles and also contributed towards many petaflop supercomputers such

as the IBM Roadrunner. An initial work on the Cell BE was of the implementation of a breadth first

search routine [112]. This paper also employed a famous technique known as the Bulk Synchronous

Parallel (BSP) model [133] for algorithmically re-designing BFS to suit the Cell BE architecture. The

paper employed SIMD operations in each of the Synergistic Processing Elements (SPEs). Proper work

distribution from the Power Processing Elements (PPEs) and synchronization among the two led to a

4x performance benefit over the conventional sequential implementations on Pentium machines. The

authors demonstrated a performance of around 100 million edges per second.

Another fundamental computing primitive of List Ranking was implemented in the Cell BE archi-

tecture by Bader et al. in [11]. Due to the highly irregular nature of list ranking, it is a particularly

challenging problem to parallelize on cached based and distributed memory architectures such as the

one found in the Cell BE. In this work, the authors describe a generic work-partitioning technique on

the Cell to hide memory access latency and apply this to efficiently implement list ranking.

1.2.3 Some other works using accelerators

In a more recent success story, the accelerator based implementations especially on latest generation

GPUs also demonstrate the prowess of wide array of throughput cores. Sorting has always been an

area of high interest for computer scientists and hence also highly pursued in the domain of massive

parallelism. In [81], the authors demonstrated a new randomized sorting technique. In this technique,

the authors divided the elements in a highly efficient pattern onto a certain number of bins. This efficient

binning helped in a better utilization of the shared resources that are present in a GPU. So, all the bins

can be concurrently scheduled onto the several symmetric multiprocessors(SMs) that are available for

sorting. The authors showed a performance of around 120 million elements per second on the GTX

280 GPU which was released in 2008. Along the similar lines, there was another comparison sort paper

[32] that appeared in 2011 which used the latest Fermi line of GPUs for sorting 32 bit integers. In this

paper, the authors showed the optimal usage of not only the shared memory that is available to all the

SMs, but also the registers that are available to each of the cores. The major contribution of the paper

was the memory access optimizations, the avoidance of conflicts and efficient usage of hardware that

is available. The results of the merge sort on GTX 580 was around 140 million elements per second

on an input list of 220 elements. The authors also demonstrated the applicability of their technique in

variable length keys such as strings. Both of these papers, very efficiently describe the use of massive

parallelism that is offered by the accelerators. We learn from these papers that in order to extract the

highest possible amount of performance, we need to run as many threads as possible in order to achieve

bandwidth saturation, remove irregularities in data access, and maximize shared cache usage.

In Table 1.1, we see a brief of the accelerator results that are currently known to be the state-of-the-

art. These results show the workload, the accelerator platform they have been implemented upon and
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the current best speed-up percentage they have over conventional parallel implementations on multicore

CPU.

Workload Platform Used Performance Speed-Up

List Ranking [139] GTX 280 GPU 5.7 ms 3x

(1 Million elements)

Sorting [81] GTX 580 GPU 250 MKeys/sec 1.7x

(16 Million elements)

SpMV [84] GTX 280 GPU 21 GFLOPS 5x

(2 Million Elements)

Breadth First Search [112] IBM Cell BE 25 GB/s 5x

(2 Million vertices)

Breadth First Search [91] GTX 580 GPU 3200 MElements/sec 4x

(5 Million vertices)

Connected Components [123] GTX 280 GPU 36 ms 8x

(16 Million vertices)

Table 1.1 This table shows the accelerator results over known parallel implementations. Values in the

brackets under Performance indicate the input size on which the performance was recorded.

1.3 Beyond Accelerator based computing

Special purpose accelerators are not ubiquitous in nature and hence pushing such accelerators to be

so may not be the right choice. Hence, it is required that one make a judicious choice of tasks that

one wishes to solve on a given kind of architecture. It is also believed that in future, high performance

computing will be dominated by platforms that contain a heterogeneous mix of processors with varying

capabilities. In particular Prof. Jack Dongarra quotes [33],

GPUs have evolved to the point where many real-world applications are easily implemented

on them and run significantly faster than on multi-core systems. Future computing archi-

tectures will be hybrid systems with parallel-core GPUs working in tandem with multi-core

CPUs.

In this case we can easily argue the case of many-core vs multi-core computing, where a many-core is

a combination of many low compute cores bundled in a chip and a multi-core is a chip where a small

number of high-power cores are packed. There are several scientific computations which have high

compute requirement, but are aided by graphical simulations which require low compute but a higher

number of working threads. Hence, we can intuitively make an assumption regarding the presence of

many large scale applications, that are not entirely suitable for accelerator type computations. There has

to be some kind of a trade-off that must exist in order to cater to all types of applications. In particular

we may look at some cases where there has been sufficient proof to show that some operations like the

atomic operations are not very well suited for the accelerators. Computations such as histograms which

8



are not time consuming ones in the CPU often suffer in GPUs. In paper [113], the authors have shown

an implementation of histogram on GPUs where they have dealt with the complications of efficiently

computing histograms. The authors have showed the complexity that is involved in the accumulation

stage of all the bins and the limited precision which is available. The CPUs, however have proved

time and again their efficiency in performing operations such as atomics, gather and scatter. It is the

development of the dedicated hardware units for these operations that enable the CPU to excel in their

implementations.

In 2010, Intel researchers published a paper which made an attempt to debunk the GPU computing

myth [79]. The paper mainly dealt with 14 computing primitives that are commonly used in large

applications. The authors implemented each of the workloads on the current generation multi-core

CPUs as well as the GPUs. They showed that, with proper optimizations and hardware utilization of the

CPU, the GPU results will never out-perform the CPU by the several orders of magnitude as they were

happening in many recent works.

The authors primarily revisited some of the works on GPUs that were done previously which claimed

improvements ranging from 10x to 100x. However, the authors found that with proper tuning of code

on the CPU and the GPU, the gap narrows down to only 2.5x. This is a very significant result that

was not expected after the success of the accelerators. The authors mainly focused on workloads which

find high application in scientific and financial computations. Workloads like SGEMM, Bilateral, FFT,

Convolution, Monte Carlo Simulations and Sorting are widely known and worked upon. In this paper

the authors focused on re-designing each of these workloads that will extract the maximum performance

out of a multi-core CPU. Techniques such as multi-level caching, data reuse and applying vector SIMD

operations as much as possible, were applied. In contrast to many-core designs, these tunings make

complete sense as simple assumption that the compiler takes care of all internal optimizations is wrong.

Hence, we need to look into the working of each and every instruction on a parallel CPU as we do on

an accelerator say GPU. So, in a nutshell, the authors found out an essential truth that accelerators are

not the only way ahead and multi-core CPUs can in no way be ignored from the whole picture.

From this work, we eventually can arrive at the idea that what if we are able to put both the multi-

core and th many-core processors to work together. A platform where these devices can communicate

among themselves was needed to make it possible. With the advent of PCI Express, this problem also

has been solved to a large extent as many accelerators and host processors can now communicate among

themselves although being bound by the bandwidth.

1.3.1 Non-overlapped hybrid computing

In one direction we can see computations that have two or more different devices working in an

interleaved manner. In such case of problems, usually the application is split into heterogeneous work

groups which are picked up by a single device based on the compute nature of that particular workload.

The typical execution pattern of non-overlapped hybrid execution is shown in Figure 1.5. One of the

popular works using this mechanism was proposed by Wei et al. in [139]. In this work, the authors
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have demonstrated a split of the input elements using a randomized mechanism. After this splitting, the

ranking of each sublist is performed by either the CPU or the GPU in an interleaved fashion. The size

of the individual sublists determine the execution platform of that piece. Another interesting work in

recent times on hybrid systems was proposed in [58]. In this paper the authors propose a Breadth First

Search technique for hybrid platforms. The basic technique applied in this paper is that of architectural

optimizations. The authors first present a CPU implementation of graph BFS which is followed by a

hybrid implementation. The hybrid implementation is not that of an overlapping nature. The applica-

tion chooses the CPU and GPU codes optimally depending on the graph type. So, this is more of an

interleaved execution rather than the overlapping data parallel execution. The authors, in this case also

shows that a fully optimized quad-core performance of a CPU can match that of a GPU in the case of

graph traversals which are usually irregular in nature. Results show that the hybrid implementation can

process nearly 250 million edges per second using 16 threads on a quad-core CPU. The GPU results are

in the range of 300 million edges per second. An interleaved sorting application routine that works on

separate work-units applying different algorithms was proposed by Sintorn et al. in [122].

Figure 1.5 Non-overlapped hybrid execution.

1.3.2 Overlapped hybrid computing

The second direction of hybrid computing is that of overlapped computation. A typical overlapped

execution pattern is shown in Figure 1.6. We work in most of our problems in this thesis on this track.

One of the first works in this direction was proposed by us on solving parallel list ranking in [16].

Further details of this work is provided in Chapter 6. In a more recent work Munguia et al. proposed a

hybrid BFS algorithm that works in an overlapped execution pattern in [91]. In this work, the authors

have shown a task based partitioning of the work load. This is followed by a work load aware execution

phase where work units are allocated to individual devices. The choice of the device for execution

is determined by a threshold. A similar work on graph exploration was proposed in [43], where the
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authors achieved good performance benefit from using overlapped execution pattern on popular graph

exploration algorithms.

Figure 1.6 Overlapped hybrid execution.

1.3.3 Current Results in Hybrid Computing

The Matrix Algebra on GPU and Multicore Architectures (MAGMA) initiative at the University of

Tennessee is one of the earliest works on hybrid computation. The group worked on familiar numerical

techniques in hybrid platforms. One of the relevant works from their group is [126]. In this work the

authors primarily focus on developing a Dense Linear Algebra (DLA) benchmark suite which would be

analogous to the LAPACK benchmark for conventional parallel systems. This DLA suite is proposed

purely to be run on hybrid multicore systems. The main motivation of the work stems from the fact

that the linear algebra computations are highly compute intensive kernels which involve a lot of double

precision operations on real numbers. The solution is based on data parallelism where the CPU acts as

the master device and runs the mother thread. Smaller kernels which are inefficient to be run on the CPU

and rest are offloaded to the GPU. Also the asynchrony between the two devices are utilized at regular

intervals to offload data/code. The authors demonstrate the performance of their solution strategy by

designing a hybrid code for LU factorization of matrices. The results are nearly 30% better than the

pure GPU implementations.

In Table 1.2, we show the performance and speedups that are obtained as a result of the hybrid

implementations over the known accelerator implementations.

Apart from the pure accelerator based computing model such as the ones in [116, 108, 112], hybrid

computing can be broadly classified into two generic streams.
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Workload Platform Used Performance Speed-Up

List Ranking [16] GTX 280 GPU 3.6 ms 1.5x

+ Intel i7 980x (16 Million elements)

Sorting GTX 580 GPU 290 MKeys/sec 2x

+ Intel i7 980x (128 Million elements)

SpMV [84] GTX 280 GPU 9.6 ms 1.5x

+ Intel i7 980x (32 Million elements)

Breadth First Search[17] GTX 580 GPU 3500 MElements/sec 1.5x

+ Intel i7 980x (16 Million vertices)

Connected Components [16] GTX 280 GPU 21 ms 1.5x

+ Intel i7 980x (16 Million vertices)

Table 1.2 This table shows the hybrid results and the improvements over the accelerator results. The

values in the brackets below the Performance indicates the input sizes on which the performance was

recorded. The input element sizes are similar to that used in Table 1.1 for consistancy.

1.4 Summary of this thesis

Accelerator based computing is here to stay, and there has been sufficient evidences to show that

heterogeneous computing is better than pure parallel computing in many ways. So, in the near future

we will see the shift of pure multicore computing towards hybrid multicore computing. In this thesis,

our main objective is to study the implications of accelerator based computing and provide parallel

primitives for the hybrid platform. Some of the questions we will be finding answers include: how

to arrive at efficient algorithms in the hybrid computing model for fundamental problems in parallel

computing such as list ranking, sorting, and how to analyze a hybrid algorithm for its efficiency, what

are the parameters that are important for a hybrid algorithm, and the like. In addition, we will focus on

optimization and tuning of hybrid systems. In our work we will also propose a characterization of the

hybrid workloads and how the implementations can be made platform aware.

The main goal in this thesis work would be to understand hybrid computing solutions in general.

This would include proposing newer models of computations, design of algorithms, and arriving at

guidelines for developing general purpose hybrid solutions. Issues like optimum resource utilization,

power management, and speeding up known parallel applications would be undertaken. The thesis

therefore argues that future parallel computing solutions would necessarily have to include elements of

hybrid multicore computing so as to be fast, efficient, and scalable.

In this thesis we broadly explore two different categories of workloads. In Part I of the thesis, we

focus on some semi-numerical computations like that of sorting and pseudo randomness. We work in

both task and data parallelism in these problems to achieve optimal results. In Part II of the thesis,

we concentrate on some graph algorithms which are mostly irregular computations. We attempt to

formulate ideal solutions for graph problems like list ranking, connected components and breadth first

search.
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Chapter 2

GPU and CPU Parallelism

2.1 Introduction

The microprocessors that are based on the single central processing unit (CPU) such as the ones

that are in the Intel Pentium series processors or the AMD Opteron family, encouraged a massive per-

formance increase and cost reductions in majority of the massively used computer applications. These

units brought Giga (billion) floating point operations per second (GFLOPS) to the desktop and hundreds

of GFLOPS to clusters. This gain in performances have allowed the software applications to provide

more functionality and generate more useful results. The users have demanded more improvements

once they have got accustomed to these improvements which has resulted in the creation of a paradigm

shifting cycle in the computer industry.

As a result of these improvements, the developers have mostly relied on the advancements made in

the hardware industry. The same applications simply run faster with every new generation of processors

that are introduced. Since 2003 however, this drive has dissipated owing to the energy consumption

and heat dissipation issues. The processors have been limited in their clock frequency, and the level of

productive activities that can be performed in each clock cycle. A majority of microprocessor vendors

have shifted to multiple processing units or processor cores, that are used in a single chip to increase

the processing power. The shift has made a tremendous impact in the software community [124].

Traditionally, a majority of the software applications were written as sequential programs that is

described by von Neumann [138], in his seminal work. The execution of these programs can be under-

stood as a human stepping sequentially through the lines of instructions. These programs are naturally

expected to run faster with each new generation of processors. However, such exception is no longer

valid. A sequential program will run on only one of the processing cores which will not be significantly

faster with each generation. Without the use of performance engineering, applications will not be able

to accommodate new features and capabilities with each new generation of processor. This will hence

reduce the growth opportunities in the entire computer industry. Application softwares that will continue

to enjoy performance improvements with each new generation of processors will be parallel programs.
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The new incentive for parallel program development has been termed as the “concurrency revolution”

[124]. However, the practice of parallel programming is in no means new. The community of high

performance computing has been existing for decades. The programs written mostly ran on large scale

expensive computers. In todays world when all the commodity microprocessors available to the users

are parallel computers, the application development drive for parallel programs have risen dramatically.

2.2 Multicore and Manycore

Since the revolution of parallel computing in 2003, the semiconductor industry have settled on two

main trajectories for designing microprocessors [62]. The multicore trajectory attempts to maintain the

execution speed of sequential programs while transitioning into multiple cores. The multicore began

as two-core processors which continued to double the number of cores with each new generation. The

current example being the Intel i7 processor family. It has 8 processing cores, each of which is an

out-of-order multiple instruction issue processor implementing full x86 instruction set. The micropro-

cessor supports simultaneous multi threading (SMT) or hyperthreading with two hardware threads and

is designed to maximize the execution speed of of sequential programs.

The other trajectory has been that of many-core. The many-cores focus more on execution through-

put of applications. The many-cores began as a large number of much smaller cores which also kept

doubling with each new generation. The current example being the NVidia Kepler GTX 680 graphics

processing unit (GPU) and has 2496 cores. Each of these cores too are heavily multi-threaded, in-order,

single instruction issue processor that shares the control and instruction cache. The GPUs have pre-

dominantly led the race of GFLOPS since 2003. The time line of the development has been shown

in Figure 2.1. While the performance improvement of general-purpose microprocessors have slowed

significantly, the GPUs have continued to improve relentlessly. The processing figures shown in Figure

2.1, does not necessarily mean the application speeds but are the theoretical processing peaks that can

be achieved.

At this point, there might be an obvious question regarding the performance gap between the CPU

and the GPU. The reason lies in the basic design philosophies that exist between the CPU and the GPU.

The CPU is designed for sequential code performance. There is a greater level of sophistication in the

control logic to allow instructions from a single thread of execution to execute in parallel or even out

of their sequential order while maintaining the appearance of sequential execution. More importantly,

the large cache memories that are provided to reduce the instruction and data access latencies of large

complex applications.

The design philosophy of the GPUs is shaped by the fast growing video and gaming industry. This

industry demands exceedingly high performance which exerts a massive economic pressure to perform

higher GFLOPS per video frame in high-end gaming applications. This demand makes the GPU sci-

entists to maximize the chip area and power budget dedicated to floating point operations. The most

heavily used solution is to employ massive number of threads. The hardware takes advantage of the
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Figure 2.1 Performance gap between CPUs and GPUs.Image obtained from [71].

large number of execution threads to find work to do when some of them are waiting for long latency

memory accesses. This minimizes the control logic required for each execution thread. Small cache

memories are provided to help control the bandwidth requirements of these applications so that all the

threads do not need to access the DRAM. As a result more chip area becomes available for floating point

calculations.

2.3 GPU Architecture

The Graphics Processing Units (GPU) were initially designed with fixed units which were not pro-

grammable. As the transistor budgets went up and flexibility rose, each of the hardware components

were made programmable. Although current generation GPUs still hold some specific hardware com-

ponents, they are mostly considered to be generic compute accelerators.

The GPUs are generally organized as an array of highly threaded streaming multiprocessors (SM).

The number of SMs that are present in the GPUs vary from generation to generation. Each of the SMs

have a number of cores or streaming processors (SPs) that share common control logic and instruction

cache. Each of the GPUs have multiple Graphic Double Data Rate (GDDR) DRAM which is commonly

referred as the global memory. These GDDR DRAMs differ from the DRAMs that are found on CPU

motherboards in the frame buffer memory that is used for graphics purposes. For common graphics

applications, they hold video images and texture information for 3D rendering. For compute, they

function as a very high bandwidth off-chip memory. For massively parallel applications the higher

bandwidth that is offered makes up for the longer latency of the global memory.
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Figure 2.2 Basic GPU Architecture.

Figure 2.3 A Nvidia Tesla 4 GPU, Nvidia GTX 580 GPU and a GTX 600 Series GPU. The images are

obtained from freely available documents provided by Nvidia.

The basic GPU architecture is shown in Figure 2.2. It is an abstraction of the generic GPU architec-

ture that is put out by Nvidia. Figure 2.3 shows the Nvidia GPUs that are commercially available in the

market as off the shelf devices. These GPUs are commonly used for either desktop computing or for

building large cluster servers.

A current generation Fermi GPU has a theoretical peak of 1.5 TFLOPS. Each of the multiprocessors

or the SMs execute in Single Instruction Multiple Data (SIMD) mode. That is, each of the thread pro-

cessor in a SM executes the same instruction simultaneously. The SIMD width of the current generation

GPUs is 8. Nvidia typically defines this execution model as Single Instruction Multiple Thread (SIMT).
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Each core of the GPU is clocked at 1.5 GHz and a GTX 580 Fermi GPU has 16 SMs in one card. So

the total number of cores that is present in the GPU if there are 32 SPs or cores is 16 ∗ 32 or 512.

Each of the multiprocessors execute in an asynchronous fashion. There is no communication across

the multiprocessors although there are synchronization mechanisms for groups of threads that are run-

ning inside each SM. A group of threads that are scheduled into any SM at a particular time can always

communicate amongst themselves. The threads of each SM can also communicate via the shared mem-

ory that is present in each SM. The communication mechanism for the multiprocessors is via the high

bandwidth off chip global memory. The operations on the common global memory locations by multiple

processors do not follow any order, making it hard to communicate. Only one of the multiple simul-

taneous operations on the memory succeeds, making it non-deterministic in nature. Atomic operations

on the hardware are meant to overcome above problem; they guarantee all operations to succeed but no

information on ordering of the operations is known.

Each multiprocessor has a special function unit which performs operations like, divide, square root,

etc. It is slower compared to other processing units but is infrequently used. Each multiprocessor has

a high bandwidth, low latency on-chip local memory (shared memory). Shared memory is a valuable

resource but is limited to 16KB on current generation GPUs. There is also a high-bandwidth, high-

latency large off-chip global device memory, over 1GB on high-end models. Device memory needs to

be filled via the PCIe bus by the host from the host memory. Data on the GPU device memory can be

pulled back to the host memory in a similar way. Recent software improvements have enabled the use

of host memory from the device, thus extending the amount data which can be processed beyond GPU

device memory.

Eight thread processors are grouped together to form a multiprocessor and several multiprocessors

are combined to form a device in the hardware model. Threads are combined together as thread blocks in

order to group large number of threads. These thread blocks form a grid of blocks, which are processed

on the GPU using a kernel. Each thread block is executed on a multiprocessor and thread of the block can

communicate through the shared memory of the multiprocessor. Synchronization can also be triggered

for the threads of a block using barriers. More than one thread block can occupy a multiprocessor.

These thread blocks are time-shared by interleaving warps of threads. No ordering of the threads warps

is guaranteed. The number of thread blocks which can be handled by a multiprocessor depends on

the resources used by each thread block. Private partitions in the shared memory and register file are

logically created for each thread block that occupies a multiprocessor.

A large number of threads is required for extracting enough parallelism on the GPU. The SIMD

instructions being executed on each multiprocessor may stall the processors if the instruction takes a long

time. A memory request from the global memory may take as much as 500 clock cycles. Time sharing a

large number of threads on a multiprocessor can improve the overall throughput of instructions. Thread

warps which are context switched can belong to the same block or different blocks being executed on a

multiprocessor. GPUs are also designed for structured data accesses, as they are designed for graphics
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processing. The memory is efficient when transactions are performed in an ordered manner by the

threads.

The current generation GPUs coalesce as long as all the reads/writes are from a block of memory of

64 or 128 bytes. Shared memory has a low latency but can suffer from bank conflicts. Shared memory

of 16KB is divided into 16 banks of 1KB each. Each consecutive word of the memory is placed in

consecutive banks, making it possible to read 16 words by a single half-warp (16 threads) without any

bank conflicts. In case of a bank conflict, the requests are serialized.

Above resources and limitations should be kept in mind for an efficient implementation on the GPU.

Data common to a thread block and required for processing more than once should be stored in the

shared memory. The life of the data in shared memory is that of the thread block and that data can not

be referred by other thread blocks. Data transaction from the global memory should be coalesced in

nature to achieve many fold performance as compared to non-coalesced reads and writes.

Each multiprocessor is equipped with a thread control unit (Figure 2.2) which manages the schedul-

ing of threads from multiple blocks assigned to the multiprocessor. All 8 thread processors perform

the same instruction in a clock cycle. Multiprocessors also have the synchronization units which al-

low synchronization of threads from a block. The most common use of synchronization is to maintain

data consistency when multiple threads are used to read data from global memory to shared memory,

assuming the data brought in can be used by other threads of the block.

2.4 GPGPU

Programmability of the GPUs has grown over the last decade. Shader model 3.0 introduced fully pro-

grammable vertex and pixel processing units. Support for vector operations on IEEE single precision

floating point numbers was introduced. Many high level languages like Cg by Nvidia, open standard

GLSL, HLSL by Microsoft etc. for shader programming made it easier to program the GPU and ac-

cess the computation power. It was studied that GPUs could accelerate some problems by an order of

magnitude over the CPU. With the introduction of shader model 4.0, an additional geometry generation

unit was added to the pipeline (Figure 2.4). General-purpose application on the graphics processing

unit (GPGPU) were mostly addressed through the pixel shader unit and was neither affected nor gained

much with the new shader model.

The GPGPU approach could address various non-graphics problems like in-game simulation of

physics and computational science. Given the earlier development on the GPUs was focused on graphics

applications, the programming environment was tightly constrained. Lack of exposure to the underly-

ing architecture also made it hard for non-graphics developer to port their applications to the GPU. The

developer was expected to be an expert in computer graphics in order to make effective use of the GPU.
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Figure 2.4 Shader Model 4.0 Pipeline. Geometry shader was introduced as new programmable unit in

the pipeline.

General purpose computation used a Stream Processing model where a series of operations (kernel

functions) are applied to each element from the set of data (a stream). A typical GPGPU problem is

mapped as a texture manipulation problem using the graphics pipeline. The main source of input and

output data containers are textures which earlier had access only from pixel shaders but now can also be

accessed from vertex and geometry shader (Figure 2.4) due to a unified shader model introduced with

shader model 4.0. The major limitation of this model was the limited scope of writing an output since

scatter was not supported. This approach had a significant learning curve but yet provided opportunities

for extreme speedups for selected applications.

2.5 Compute Unified Device Architecture (CUDA)

CUDA is a programming interface to the parallel architecture of the GPU for general purpose com-

puting. This interface is a set of library functions which is coded as an extension of the C language. A

compiler generates executable code for the CUDA device. The CPU sees a CUDA device as a multi-
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Figure 2.5 CUDA Hardware Model.

core co-processor. The CUDA design does not have memory restrictions of GPGPU. One can access all

memory available on the device with no restriction on its representation though the access times vary

for different types of memory. This enhancement in the memory model allows programmers to better

exploit the parallel power of the GPU for general purpose computing.

CUDA Hardware Model: At the hardware level the GTX 580 processor is a collection of 16 multi-

processors, with 32 processors each. Each multiprocessor has its own shared memory which is common

to all the 8 processors inside it. It also has a set of 32-bit registers, texture, and constant memory caches.

In any cycle, each processor of the multiprocessor executes the same instruction on different data. Com-

munication between multiprocessors is through the device memory, which is available to all processors

of the multiprocessors. A diagrammatic representation of the CUDA hardware model is shown in Figure

2.5.

CUDA Programming Model: We show the organization of the CUDA software model in Figure

2.6. For the programmer, the CUDA model is a collection of threads running in parallel. A warp is

a collection of threads that can run simultaneously on a multiprocessor. The warp size is fixed for a

specific GPU, 32 on present GPUs. The programmer decides the number of threads to be executed. If

the number of threads is more than the warp size, they are time-shared internally on the multiprocessor.

A collection of threads (called a block) is mapped to a multiprocessor at a given time. Multiple blocks

can be assigned to a multiprocessor and their execution is time-shared. A single computation on a device

generates a number of blocks. A collection of all blocks in a single computation is called a grid. All

threads of the blocks mapped to a multiprocessor divide its resources equally amongst themselves. Each
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Figure 2.6 CUDA Software Model.

thread and block is given a unique ID that can be accessed within the thread during its execution. Each

thread executes a single instruction set called the kernel. GPU is a co-processor to the CPU and needs

to be initiated by the CPU. A typical CPU/GPU application is executed in the following order when

initiated by the CPU.

1. Copy data from main memory to GPU memory

2. CPU instructs the process for GPU execution

3. GPU executes the program in parallel using many cores

4. Copy the results from GPU memory to main memory

GPGPU approach using the graphics pipeline had a steep learning curve due to unfamiliarity of

programmers with the graphics APIs. CUDA has several advantages over traditional general purpose

computation on GPUs (GPGPU) using graphics APIs.

1. Scattered reads/writes: Code can read from arbitrary addresses in memory.

2. Shared memory: CUDA exposes a fast shared memory region (16KB in size) that can be shared

amongst threads. This can be used as a user-managed cache, enabling higher band- width than is

possible using texture lookups

3. Faster downloads and read-backs to and from the GPU

4. Full support for integer and bitwise operations, including integer texture lookups.
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A sample CUDA code for vector addition looks as follows:

__global__ void vecAddKernel(float *A, float *B, float *C, int n)

{

int i = threadIdx.x + blockDim.x * blockIdx.x;

if(i < n)

C[i]=A[i]+B[i];

}

int main()

{

// Memory allocation for h_A, h_B, h_C

// I/O to read h_A and h_B elements

dim gridA(512, 512);

threads=512;

vecAddKernel<<<gridA, threads>>>(h_A, h_B, h_C);

}

2.6 Multicore CPU

CPUs have undergone a massive change in their conventional architecture from the time of single

core high clock frequency generations to the current multi-core CPUs. This change was primarily fueled

by the conventional architectures hitting the power wall and the Instruction Level Parallelism (ILP) wall.

The commodity CPUs available today are commonly called multi-core processors because of the high

compute power available in each of the cores which is a distinct difference with the many-core GPUs.

An important component in the basic architecture of a multicore processor is the cache structure. The

cache is basically a high speed buffer memory that is provided on the same die as the microprocessors

in order to facilitate faster access based on spatial or temporal locality. In the earlier days, there were

only a single level of cache that was provided, and each cache miss involved a corresponding penalty

in memory access. In the current generation of multicore processors usually a more complicated cache

structure can be observed. Current generation of processors typically have two levels of cache that is L1
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and L2 caches on the chip of the microprocessor. It was observed, that after the creation of these two

levels of cache, the performance of each of the cores could be enhanced significantly. However, with

more real life problems coming inside the realm of parallel computing, communication and synchro-

nization among the different cores became a major issue. It is therefore that the architects added a thord

level of off-chip cache which is commonly referred to as the L3 cache and is significantly higher in size

than the L1 and L2 caches. Data transfer among the different levels are still done in terms of bolcks

(cache lines) and conventional coherence protocols are used. The multicore processor which we use for

most part of our implementations is the Intel i7 980x which is based on the Westmere microarchitecture

from Intel. It has 64 KB per core L1 cache, 256 KB per core L2 cache and 8 MB of shared L3 cache.

From the point of view of performance, the broad optimization strategies that are needed for the

CPUs are approximately same as that of the GPUs. The Intel processors can be easily programmed

using the OpenMP specifications for creation and management of the threads. The CPU also has got

dedicated units for thread management and hence incurs very less overhead. Also, it is important that

for any hybrid implementation, we carefully optimize the implementation of the CPU side of the code.

The Intel architectures offer the Streaming SIMD Extensions (SSE) and Advanced Vector Extensions

(AVX) for intrinsically executing the SIMD code across the available resources on each of the cores.

Each of the cores as already stated has a local cache and a shared cache. It is important to take care about

maximum data reuse via the efficient use of each of these shared caches. Apart from that the 128 bit SSE

registers available are also needed to be efficiently used so that the code does not become instruction

bound. In all the hybrid implementations it is hence of high importance to maintain a parity between

the optimization strategies that is employed for the GPU as well as the CPU. This makes comparison of

performance and overall gains more intuitive. A sample AVX code to load and set the memory location

is shown below :

#include <stdio.h>

#include <stdlib.h>

// Required for AVX Instructions

#include <immintrin.h>

int main( int argc, char *argv[] )

{

float a = 6.0f;

float b = 19.0f;

// Following are using 128 bit SSE registers
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// Set SSE1 register to zero

__m128 SSE1 = _mm_setzero_ps();

// Load value of a into SSE2 register

__m128 SSE2 = _mm_set_ps1(a);

// Load value of b into SSE3 register

__m128 SSE3 = _mm_set_ps1(b);

// Adds value of a and b

__m128 SSE4 = _mm_add_ps(SSE2, SSE3);

// Following are doing the same thing as

above using 256 AVX registers

__m256 AVX1 = _mm256_setzero_ps();

__m256 AVX2 = _mm256_set1_ps(a);

__m256 AVX3 = _mm256_set1_ps(b);

__m256 AVX4 = _mm256_add_ps(AVX1, AVX2);

// Sets the 128 bit register to zero

__m64 MMX1 = _mm_setzero_si64();

// Sets the two 32 bit integers in reverse order

__m64 MMX2 = _mm_setr_pi32(6, 6);

__m64 MMX3 = _mm_setr_pi32(19, 19);

// Adds MMX3 value to that of MMX2

__m64 MMX4 = _mm_add_pi32(MMX2, MMX3);

return 0;

}
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2.7 Open Multi-Processing (OpenMP)

The last decade has seen a tremendous increase in the widespread availability and affordability of

shared memory parallel systems. Not only have such multiprocessor systems become more prevalent,

they also contain increasing numbers of processors. Meanwhile, most of the high-level, portable and/or

standard parallel programming models are designed for distributed memory systems. This has resulted

in a serious disconnect between the state of the hardware and the software APIs to support them. The

goal of OpenMP is to provide a standard and portable API for writing shared memory parallel programs.

Over the last several years, there has been a surge in both the quantity and scalability of shared

memory computer platforms [24]. Quantity is being driven very quickly in the low-end market by the

rapidly growing PC-based multiprocessor server/workstation market. The first such systems contained

only two processors, but this has quickly evolved to four- and eight-processor systems, and scalability

shows no signs of slowing. On the software front, the various manufacturers of shared memory parallel

systems have supported different levels of shared memory programming functionality in proprietary

compiler and library products. In addition, implementations of distributed memory programming APIs

like MPI are also available for most shared memory multiprocessors. Application portability between

different systems is extremely important to software developers.This desire, combined with the lack of

a standard shared memory parallel API, has led most application developers to use the message passing

models. This has been true even if the target computer systems for their applications are all shared

memory in nature. A basic goal of OpenMP, therefore, is to provide a portable standard parallel API

specifically for programming shared memory multiprocessors. There are other implementation models

that one could use instead of OpenMP, including Pthreads [94], MPI [100], HPF [74], and so on. The

choice of an implementation model is largely determined by the type of computer architecture targeted

for the application and the nature of the application.

OpenMP is primarily designed for shared memory multiprocessors. The important aspect for our

current purposes is that all of the processors are able to directly access all of the memory in the machine,

through a logically direct connection. Details on how a machine provides the programmer with this

logical view of a globally addressable memory are unimportant for our purposes at this time, and we

describe all such systems simply as shared memory.

OpenMP is not a new computer language; rather, it works in conjunction with either standard Fortran

or C/C++. It is comprised of a set of compiler directives that describe the parallelism in the source code,

along with a supporting library of subroutines available to applications. Collectively, these directives

and library routines are formally described by the application programming interface (API) now known

as OpenMP. The official OpenMP 4.0 documentation can be found at [1].

A sample OpenMP code to add an array of numbers looks as follows:

Code:

int main()

{
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int i;

int tot=0;

int a[12]={12,23,11,3,7,84,23,45,59,20,4,1};

omp_set_num_threads(4);

#pragma omp parallel for private(i) shared(tot) schedule(dynamic,3)

for(i=0; i<10; i++)

tot+=a[i];

printf("Total is : %d\n",tot)

}

Output:

Total is : 291

There are certain critical things that are to be noticed from the OpenMP code above. In the first place,

we see the #pragma compiler directive that is used to perform an auto parallization of the addition code.

In this style of parallization, we typically ask the compiler to perform the parallization as the operation

is fairly data parallel. In order to maintain consistancy of the results produced, it is important to point

out the variables that are private to each thread and the ones that are shared. In the code above, we see

that the loop iterator i has been declared as private as, the iterator should not be risked by any thread

to be modified by some other thread. The tot variable which is accumulating the sum, is declared as

a shared variable, as it is going to be used by each thread. Hence, if it is not shared, there would be

practically no summation and each thread will compute some partial sums.

The second important faceat of the above code is the schedule. We mention the schedule of the

above addition as dynamic as we intend to make the scheduling as much dynamic as possible. The other

alternative is a static schedule. In a static schedule, the chunk size (the second parameter in the schedule)

is compulsorily computed upon by each thread. Hence, it may happen that in some other application

with more heterogeneous workloads, each thread will wait until the work on its chunk is completed

before it proceeds with the next chunk. This creates an unnecessary wait time. Dynamic schedule on

the other hand is more flexible where the chunk sizes are allocated dynamically. So, whenever a thread

is finished with its own set of work, it can be immidiately assigned another chunk without wasting

any time. However, in many applications, a static schedule is important for maintaining proper data

dependencies and meeting synchronization barriers.
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Figure 2.7 OpenCL device architecture. Image obtained from OpenCL Specification.

2.8 Open Computing Language (OpenCL)

OpenCL is a standardized cross-platform programming language based on C. The design of OpenCL

was necessitated by the fact that there was an urgent need for the development of portable parallel

programs which has heterogeneous computing devices. There was a need for a standardized high-

performance application development platform for a variety of fast growing computing devices. CPU

based computing has mostly depended on standards such as OpenMP which usually do not encompass

SIMD functionalities. For heterogeneous computations, CUDA usually has constructs for addressing

memory hierarchies and SIMD executions but has been mostly device specific. These limitations make

it difficult for an application developer to access the computing power of CPUs, GPUs, and other types

of processing units from a single multi platform source code base.

The development of OpenCL was initiated by Apple Inc. and is maintained by the Khronos group.

OpenCL heavily draws inspiration from CUDA in the areas of supporting single code base for hetero-

geneous platforms, data parallelism and memory hierarchies.

OpenCL uses a data-parallel model for execution that has direct correspondences with CUDA. An

OpenCL program typically has two parts, the kernel which runs on one or more parallel devices and

a host program that controls the kernels. The typical model is to write the host program to launch

several kernels for parallel execution. When a kernel is launched, its code is executed by work-items

which is the equivalent of CUDA threads. There is an index space that defines the mapping of data

to the work items. Work items collectively forms the work-groups that corresponds to CUDA thread

blocks. Work-items in the same work-group can synchronize among themselves using barriers such as

syncthreads() in CUDA.
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OpenCL models a heterogeneous parallel computing system as a host and one or more OpenCL de-

vices. In Figure 2.7, we can see a conceptual model of the OpenCL device architecture. Each device

consist of one or more Compute Units (CUs) which corresponds to CUDA SMs. A CU can also corre-

spond to a CPU core or other types of execution units like FPGAs or DSPs. Each CU in turn has one or

more processing elements (PEs) which corresponds to CUDA SPs. Computation on a device ultimately

happens on a PE. Like CUDA, OpenCL too exposes a hierarchy of memory systems that can be used by

programmers. These memory types are typically global, constant, local and private. Unlike CUDA, the

constant memory can be dynamically allocated by the host. Like CUDA, the constant memory supports

read/write access by the host and read-only access by devices. To support multiple platforms, OpenCL

provides a device query that returns the constant memory size supported by the device.

2.9 Hybrid Platform

We use two different hybrid platforms for conducting the experiments. One is the high end platform

which is typically the one that is used for developmental purposes and is composed of server class

hardware. The other platform is the one that is commonly used in the commodity desktop and laptops.

We specifically choose to use these two platforms in order to show the advantage of hybrid computing

in a wider spectrum of high performance computing research.

2.9.1 Hybrid High

Our high-end hybrid platform is a coupling of the two devices described above, the Intel i7 980 and

the Nvidia GTX 580 GPU. The CPU and the GPU are connected via a PCI Express version 2.0 link.

This link supports a data transfer bandwidth of 8 GB/s between the CPU and the GPU. To program the

GPU we use the CUDA API Version 4.1. The CUDA API Version 4.1 supports asynchronous concurrent

execution model so that a GPU kernel call does not block the CPU thread that issued this call. This also

means that execution of CPU threads can overlap a GPU kernel execution.

In this thesis work, we mainly use the GTX 580 GPU from NVidia. GTX 580 is a current generation

Fermi micro-architecture from NVidia and has 16 streaming multi-processors (SM). Each SM has 32

cores which gives us a total of 512 compute cores which are each clocked at 1.54 GHz. Each of the SMs

of the latest Fermi processors have a hardware scheduler which schedules 32 threads at a time. This

group is called the warp and a half-warp is a group of 16 threads that execute in a SIMD fashion. Each

of the cores of the GPU now has a fully cached memory access via an L2 cache, 768 KB in size. In all,

the GTX 580 has a peak single precision performance of 1.5 TFLOPS.

Along with the GTX 580, we use an Intel i7 980x processor as the host device. The 980x is based

on the Intel Westmere micro-architecture. This processor from the Intel family with each core running

at 3.4 GHz and with a thermal design power of 130 W. The i7-980X has six cores and with active

SMT(hyper-threading) can handle twelve logical threads. The L3 cache has a size of 12 MB. The L1
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cache size is 64 KB per core and L2 is 256 KB. Other features of the Core i7 980 include a 32 KB

instruction and a 32 KB data L1 cache per core and the L3 cache is shared by all 6 cores.

We mostly use the above mentioned platform for our experiments. Apart from that we also include

some results using the NVidia K20 processor which is the latest offering from NVidia. The NVidia K20

is the first processor in the Kepler series which was released in 2012. The K20 processor offers dynamic

parallelism with both L1 and L2 caches. The K20c processor that we use has 13 SMs with 192 CUDA

capable cores on each of the SMs making a total of 2496 cores. Each of the cores are clocked at 2600

MHz and has a global memory of 5 GB. The L2 cache size is 1.25 MB and L1 cache size of 48 KB. The

K20c is also coupled with a Intel i7 980x processor and makes our third platform for experimentation.

2.9.2 Hybrid Low

Our low-end hybrid platform resembles a commodity desktop computing environment more closely.

The Hybrid-Low platform is a combination of an Intel Core 2 Duo E7400 CPU along with an NVidia

GT520 GPU.

The Intel Core 2 Duo CPU is one of the earliest multicore offerings from Intel and was released in

the year 2008. It has 2 cores with hyper-threading and each of the cores are clocked at 2.8 GHz. The

CPU consists of a 3 MB L2 cache and the maximum power consumption is around 65 W. The CPU was

designed entirely for commodity PCs which gives a sustained performance of about 20 GFLOPS.

The GT520 is a stand-alone graphics processor having 48 computing cores and 1 GB of global

memory. Each of the compute cores are clocked at 810 MHz. The GPU on an average give a sustained

performance of 77.7 GFLOPS and consume about 29W of power. In this system both the processors are

of a comparable performance range and hence provide a more realistic platform for experimenting the

hybrid programs.
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Chapter 3

Our Contributions

In this chapter we discuss the main ideas and contributions that we are presenting in this thesis. We

first discuss the fundamental problems and questions that we are trying to answer and then showcase the

results that we have obtained.

3.1 Motivation

An accelerator-based computing model typically involves adding an accelerator device to a host. The

accelerator is attached to the host via a PCI Express link, or could be sharing the same board with the

CPU. GPGPU, the acronym for general purpose computing on GPUs, follows the former model.

Most of the current literature on GPGPU considers the CPU as a host device and pushes most of

the computation to a GPU [116, 139, 108]. The CPU is practically idle in the computation process. As

issues such as performance and power dominate the present generation solutions for high performance

computing, the current practice of not utilizing a portion of computing resources is hardly the way

forward. Some of the advantages that are possible due to a combined CPU + GPU hybrid computing

model are:

• Performance Efficiency: It is the case that one particular processor may not be best suited for all

operations. Hence, in a given computation, it is likely that parts of the computation which are ex-

pensive on the GPU are better performed on the CPU and vice-versa. So offloading the expensive

operations of one device onto another is a logical choice to improve performance efficiency.

• More Data and Task Parallelism: One can extract more data parallelism from the hybrid model

in which we can make all the computational devices work in unison. This is unlike the usual case

where one processor performs a certain computation and the other is idle. A higher amount of

task parallelism is also possible as data parallelism is mostly exploited through CPU vectorization

and CPU warp level SIMD executions. In most of the applications analyzed in this thesis, we have

tried to design the algorithm in which it would be possible to allocate heterogeneous work units
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to each device which can then be executed in parallel to each other in an interleaved/overlapped

manner.

• Functional/Pipelined Parallelism: One can benefit via functional or pipelined parallelism also,

where different functions are processed on different devices.

• Programming Productivity: New programming environments like OpenCL are helping devel-

opers to write hybrid multi-core programs in a seamless manner.

Hence, it is important to employ a hybrid model which will utilize both the devices for solving

a particular problem. We can call an algorithm as a hybrid multicore algorithm if it is designed to

run on a hybrid computing platform. Hybrid algorithms are gaining attention recently [140, 126, 50].

However, using a collection of heterogeneous processors is highly non-trivial as it involves issues such

as the availability of a suitable programming model, synchronization, and communication mechanisms,

among others.

Fortunately, the programming support from the several vendors presently allows one to write multi-

architecture programs. The current GPU models, and other leading GPU platforms, allows kernel calls

to be executed in a non-blocking manner[29]. This is termed as asynchronous concurrent execution. It

means that the CPU, which initiates the kernel call can execute other CPU instructions while the kernel

is under execution on the GPU.

While the benefits of hybrid algorithms, and their programmability are clear, there are several an-

alytical questions that have to be answered to arrive at efficient hybrid algorithms. For instance, it is

likely that transfer of intermediate results between the CPU and the GPU may introduce certain delays

at either end. These delays can mean that either the CPU, or the GPU, or both, may be idle during

certain time periods. For an efficient hybrid multicore algorithm, one should minimize these idle times.

It may also be important to see which idle time can be tolerable. For example, keeping the GPU idle for

one second may mean a loss of more FLOPS than keeping the CPU idle for the same amount of time.

Thus, a hybrid algorithms has to make the right choices in its execution plan.

In a similar fashion, when hybrid algorithms are designed in a functional/pipelined parallel setting,

the goal should be to assign the right task on the right processor. In this case, it is not clear at the outset,

how to arrive at this assignment so as to minimize the total execution time and the total idle time, among

possibly other things.

3.2 Key Targets

Through this thesis work, we attempt to establish hybrid multicore computing as a basic parallel

computing model by (re)designing parallel algorithms for some basic computer science problems. We

implement these algorithms on different platforms consisting of modern generation multicore and many-

core architectures and validate our results.
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In the recent past there have been many works that have shown the massive advantages of commodity

parallel processors such as Graphics Processing Units (GPU) as well as multi-core CPUs. From the point

of heterogeneous parallel computing, we need to think about the following fundamental motives while

solving our problem.

1. Work Allocation : How to allocate the right job to the right processor ? It is a known fact that, all

the parallel processors that are commonly available today are not ideal. There has been no specific

work to show that a particular processor is right for all types of computations. So, when we have

access to multiple parallel processors on a particular platform, how do we decide on allocating

the right job to the right processor.

2. Load Balancing: Load balancing as always, is a fundamental challenge in any distributed or

parallel application. We need to decide on strategies that would optimally partition work amongst

the available processors without incurring a massive overhead.

3. Communication: The connectivity that exists among the processors are still in a naive state.

There is no high-speed link that is available in a tightly coupled system that has a very low latency

of communication. Hence, it becomes important to address this issue where we propose use of

data structures and algorithms that minimizes communication costs between the processors.

4. Synchronization: The parallel processors that are available will work in a concurrent fashion

during the execution of an application. These processors needs to talk among themselves in order

to produce correct results. However, due to the unavailability of any high speed link between the

processors, the synchronizing constructs can produce heavy overheads. We address this issue in

our work through algorithm design and use of caches.

3.3 Parallel Comparison Sorting

In recent years, using special purpose accelerators such as the Cell BE, and the GPUs have yielded

tremendous performance gains across application areas. Prominent examples include semi-numerical

algorithms such as sorting, graph algorithms, image processing, scientific computations, [116, 102]

and also on several irregular algorithms like [139, 108]. However, accelerator based computing has

relegated the role of CPUs. Typically in current models of computation the CPU transfers the input and

the program to the accelerator device, and gets the result from the accelerator.

Sorting is a problem of fundamental importance in Computer Science with a rich history of algo-

rithm design, analysis, and engineering. Several parallel algorithms and their corresponding efficient

implementations targeted at modern architectures including the Cell BE [15],GPU based works includ-

ing [110, 81, 32, 14], the Intel MIC [111], are being studied. However, all of the above works utilize

only a homogeneous device.
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Given the importance and relevance of hybrid computing, in this work we propose a hybrid algorithm

for sorting on a CPU+GPU platform. We specifically consider comparison based sorting algorithms for

reasons of wide applicability to settings such as variable length keys, and database records. We extend

the algorithm presented in [81], which is a natural extension of the standard quick sort [56], to operate

in a heterogeneous setting. The basic idea of sample sort [81] is to choose k − 1 pivots, or splitters,

from the input list. The input list is then split into k disjoint lists each containing roughly n/k elements.

Each of the sub-lists can be sorted independently. Typically, a recursive approach is taken to reduce the

size of the sublists further.

We redesign the above approach so as to work with CPU+GPU hybrid platforms. Our implementa-

tion offers advantages such as balanced work allocation amongst the CPU and the GPU, minimal idle

time, and minimal inter-device communication. On a dataset of 64 M keys selected uniformly at ran-

dom, our hybrid implementation offers a 40% speed-up over GPU based implementations of sample

sort [81], and a 20% speed-up over the recent merge sort based work [32] when run on a CPU+GPU

platform consisting of an Intel i7 980 and an Nvidia GTX 580 GPU. We also experiment with another

hybrid platform consisting of an Intel Core2 E4700 with an Nvidia GT 520 GPU that resembles a com-

modity desktop configuration. On this platform, our algorithm shows an improvement of 18% compared

to the currently best known comparison sort [32] results on GPU. We then extend our work to implement

a variable key sorting algorithm which performs on an average 25% better than the current best known

implementation proposed in [32]. Our work therefore shows that our approach has applicability to not

only research-end devices but also commodity platforms which have a large user base. In Figure 3.1 and

3.2, we see the performance of our key-value sorting algorithm in the high-end and low-end platforms.

The descriptions of the high-end and low-end platforms are provided in Chapter 3.
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Table 3.1 Comparison of properties

PRNG On-Demand Scalable High Speed

Supply Quality Rank

glibc rand() × √ × 5

CURAND
√ √ × 4

CUDPP × × √
3

M.Twister × √ √
2

Hybrid PRNG
√ √ √

1

3.4 Hybrid Pseudo Random Number Generator

Randomness is an essential computing resource for many computations [90, 73, 66]. Hence, in-

vestigations into sources of high quality (pseudo) random number generators (PRNGs) are important.

In parallel computing, designing parallel random generators is a challenging problem. This problem

becomes more significant, as we are witnessing a shift to multicore processors.

Most of the pseudo random number generators based on GPUs however suffer from several draw-

backs. For instance, PRNGs on GPUs require the application to pre-generate and store a large batch of

random numbers and then use them in the application. Apart from occupying a significant portion of

the limited storage on GPUs, this is not a satisfactory solution since the randomness demand of every

application cannot be known apriori. In Table 3.1, we can see the properties of the current PRNGs that

are commonly used and that of our hybrid PRNG.

It is therefore important that an on-demand pseudo random number generator be available so that

each thread running on a GPU can make an API call, such as the rand() function in ANSI C [70], to

obtain a new pseudo random number as required. Such an on demand generator also does not require as

much storage to store the random numbers in the GPU memory. Secondly, another limitation of present

generators on the GPUs is that they are not resource efficient. While the generator is working on the

GPU, the host to which the GPU is attached, typically a multicore CPU, is computationally idle. This is

not a good practice as the computational power of multicore CPUs is also ever increasing.

Our main result of this work is to design a high quality, fast, scalable, and on-demand random number

generator. We achieve this by employing random walks on expander graphs. Each thread performing

the walk is essentially executing independent of other threads. Therefore, our generator is thread-safe.

We can see a plot of the performance of our generator in Figure 3.3.

To improve the performance of our generator, we employ a hybrid computing platform consisting of

a multicore CPU and a GPU. Our generator produces 0.07 GNumbers per second. The results of our

generator has been put through rigorous quality testing using test suites such as the DIEHARD battery

of tests [83] and the TestU01 [78] suite.

We also show how to use our PRNG in two applications: list ranking, and a Monte Carlo based

photon migration. These applications demonstrate the speed of generation and the quality of the hy-
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brid PRNG respectively. In both these applications, using our PRNG leads to reduced runtime, and

improvements in quality.

3.5 Parallel List Ranking

List ranking a popular computing primitive. A very early work at parallel list ranking was proposed

by James Wyllie in his Ph.D. thesis [141]. The biggest contribution of Wyllie’s work was that of Parallel

Random Access Machine (PRAM) model [40]. In that model the author proposed the use of a shared

memory which can be accessed by several processors and can be used for sharing data and also syn-

chronizing between themselves. In this thesis he applied the PRAM model for solving the list ranking

problem using a technique called “pointer jumping“. Pointer jumping is a very fundamental operation

in parallel computation where any node can be made to point to the parent of its predecessor until con-

vergence. This operation finds application in a wide variety of problems. In [141], Wyllie also discusses

several other problems that can be solved using the PRAM model by adapting conventional sequential

algorithms.

List ranking on GPUs was first proposed by Rehman et al. in [108]. In this work, the authors pro-

posed a GPU optimized list ranking algorithm based on the popular Helman-Jaja list ranking approach

that was proposed in [52]. The authors proposed a recursive Hellman-Jaja algorithm for the GPU which

can rank 32 million elements in a second wand achieved a speedup of almost 9x over the parallel CPU

implementation and around 4x over the best reported Cell Broadband Engine implementation that was

proposed by Bader et al. in [11].

Wei and Jaja published a work on list ranking [139] that implemented list ranking on GTX 200 series

GPUs. This result was in turn an improvement over and earlier work on list ranking [108]. Wei and

Jaja employed a randomized algorithm to perform the list ranking where several elements were binned

into a certain number of bins which were in turn allocated to each of the SMs of a GPU. This would
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lead to each of the thread blocks completing the ranking process independent of each other and finally

consolidating to provide the final results. The authors showed a performance of around 300 ms for a

random list of 64 million elements.

This work was later improved by us [16] using an hybrid mechanism where we employed fractional

independent sets to engage the CPU and the GPU both at the same time. The algorithm utilized asyn-

chronous data transfer between the GPU global memory and the CPU memory. The iterative algorithm

took a finite number of steps to reach n/log(n) of nodes in the list. The rest of the nodes were removed

with proper book-keeping. After this the smaller list was ranked on the GPU using a popular GPU

algorithm for list ranking which took a very small fraction of the total time. After this step, the initially

removed nodes were re-inserted into the list in the reverse order of their removal. Overall, the algorithm

performed almost 25% better than the conventional GPU algorithm. This result also gives a clear indi-

cation that the hybrid approach is significantly better than the homogeneous accelerator based approach.

In Figure 3.4, we see the evolution of our hybrid implementation over ther first accelerator based imple-

mentations that was proposed in [108] and [139]. We provide the details of the hybrid implementations

in Chapeters 6 and 5 respectively.

Figure 3.4 Improvement of List Ranking from 2009 to the current hybrid implementation. We can see

that we acheived a speedup of mearly 3x over the original GPU implementation.

3.6 Graph Connected Components

Graphs are an important data structure in Computer Science because of their ability to model several

problems. Some of the fundamental graph problems are graph traversals, graph connectivity, and a

spanning tree of a given graph. In this work, we study the fundamental graph problem of connected

components of a graph on the GPU.
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Connected components is considered an irregular memory access algorithm (irregular algorithm),

which is not a good for the GPU computational model which relies heavily on regularity of memory

access. The focus of any algorithm designed for the GPU relies on regular/coalesced memory accesses

and increasing computation, focusing on data movement in the shared memory. The requirements for

connected components and GPU computational model are thus orthogonal to each other. Thus mapping

the connected components algorithm on to the GPU is non trivial.

In [16], we also worked on a graph connected components problem. This is an extension of the work

done in [123] where the authors have used the O(nlog n) Shiloach-Vishkin (SV) algorithm [119]

to compute the connected components of a random graph. In this work, the authors employ several

GPU optimizations in order to adapt the well known SV algorithm to the GPU. The optimizations like

edge-hiding, pointer jumping and hooking of subtrees are critical contributions in the GPU computing

and are now widely applied in other parallel implementations of graph problems. The authors of [123],

demonstrated good speed-ups of around 9x over equivalent CPU implementations.

We now experiment on the work partitioning path of hybridization where we first partition the graph

statically using a certain threshold and then perform the best known algorithm to compute connected

components on each of the device. These algorithms execute in an overlapped fashion and then syn-

chronize. This is then followed by a consolidation step where the results of both the devices are checked

to provide the final result. Due to this non-blocking execution of the kernels in the two devices, it is

pragmatic to say that the hybrid approach is always a better option where there is ample data parallelism.

Our implementation on a CPU+GPU hybrid platform achieves an average speed-up of 25% compared

to the best possible GPU implementation [123]. In Figure 3.5, we see the performance of our imple-

mentation over that of [123]. We also notice that our hybrid algorithm has very minimal idle time. We

also show that our approach can lead to auto-tuning.

Figure 3.5 Time comparison of connected components with respect to the results shown by Soman et

al. in [123].

37



3.7 Breadth First Search

In recent years, graph algorithm design has gained an important role in science, as many emerg-

ing large-scale scientific applications now require working with large graphs in distributed networks.

Breadth-First Search (BFS) is of particular relevance because it is widely used as a basis for multiple

fields. Other common graph applications also use Breadth-First Search as a fundamental part of their

algorithm. Some of the relevant problems include flow network analysis, the shortest- path problem,

and other graph traversals, such as the A* algorithm.

Disregarding memory optimization strategies, previous- graph parallelization efforts have been ori-

ented toward masking the I/O problems with high doses of aggressive parallelism and multi-threading.

Cray XMT, IBM Cell/BE, and NVIDIA GPUs are architectures that exploit such advantage and priori-

tize bandwidth over latency. Work on the mentioned platforms has shown great performance improve-

ments in overcoming the high latencies incurred during graph explorations. The general purpose GPU

(GPGPU) architectures have the added value of being an affordable solution while maintaining high

throughput and low power consumption levels. While any of the previously mentioned platforms offers

massive parallel processing power, its performance while traversing a graph will ultimately depend on

its connectivity properties, the architecture, and the memory- subsystem. GPGPU architectures yield

unmatched performance if sufficient parallelism is available and the graph fits on the GPUs memory.

But they fail to yield the same performance otherwise, due to large overheads and the impossibility of

overlapping the communication latencies with effective computation.
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In this work, we envisage a new strategy for optimal graph explorations through graph pruning. In

many recent works such as that of [37, 103], the authors have demonstrated the utility of graph prun-

ing in high performance and parallel applications. We show that new algorithms and implementation

strategies are required for efficient processing of current generation graphs on modern multicore archi-

tectures. Such strategies should help algorithms and their implementations benefit from the properties

of the graphs. Graph pruning aims to reduce the size of the graph by pruning away certain elements

of the graph. The required computation is then performed on the remaining graph. The result of this

computation is then extended to the pruned elements, if necessary.

For performing BFS on modern generation graphs, we perform a graph pruning phase where we

remove a majority of the pendent nodes that are present. We first show that such a preprocessing phase

can help reduce the size of the graph by an average of 35% on a wide variety of real-world graphs. This

helps us to obtain an average of 40% speed-up compared to the best known implementations for the

above problems on similar platforms [91]. In Figure 3.6, we show the results of our implementation.

Our preprocessing simply involves removing pendant nodes from the graph. This is done iteratively

so that nodes on pendant paths are also removed during preprocessing. In the post-processing phase, we

show that extending the output of the computation on the smaller graph can be done in a very straight-

forward and quick manner.

Our results improve the state-of-the-art for graph BFS by 35%. We achieve an average throughput of

2 billion edges per second on a wide range of data sets including graphs from the University of Florida

collection [2], and graphs generated using the Recursive Matrix Model (R-MAT). The R-MAT generator

is efficiently implemented in the GTGraph suite[13].
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PART I

Semi-Numerical Algorithms
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Introduction

In recent years, using special purpose accelerators such as the Cell BE, and the GPUs have yielded

tremendous performance gains across application areas. Prominent examples include semi-numerical

algorithms such as sorting, graph algorithms, image processing, scientific computations, [116, 102]

and also on several irregular algorithms like [139, 108]. However, accelerator based computing has

relegated the role of CPUs. Typically in current models of computation the CPU transfers the input and

the program to the accelerator device, and gets the result from the accelerator.

It is anticipated that advances in multi-core CPU technology will further drive the performance of

CPUs so as to scale challenges such as the power wall, the memory wall, and the like. Further, it

is strongly believed that future generation computer systems shall be heterogeneous in nature with a

mix of multi-core CPUs and special purpose accelerators. Hence, it becomes important to design and

implement efficient algorithms that work seamlessly on heterogeneous systems.

As CPUs evolve, there is a class of applications for which higher performance can be achieved by

using both the CPUs and the GPUs in the computation. This intuition is further strengthened by the fact

that the GPU is not a stand-alone device and actually needs a CPU to host it. Further, special purpose

accelerators are not ubiquitous in nature and hence pushing such accelerators to be so may not be the

right choice. Hence, it is required that one make a judicious choice of tasks that one wishes to solve

on a given kind of architecture. It is also believed that in future, high performance computing will be

dominated by platforms that contain a heterogeneous mix of processors with varying capabilities.

The challenge then lies in making the right choices so as to make best use of heterogeneity to achieve

fast, scalable, and efficient solutions to problems of practical interest. We explore these challenges in

this Part of the thesis where we explain our solutions for Comparison Sorting and Pseudo Randomness

with applications. In Chapter 4, we talk about hybrid solution of comparison sorting. In Chapter 5, we

discuss Pseudo Random Number generation on parallel architectues and use an application to show its

usability.
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Chapter 4

Hybrid Comparison Sorting

4.1 Introduction

Sorting is a problem of fundamental importance in Computer Science with a rich history of algo-

rithm design, analysis, and engineering. Several parallel algorithms and their corresponding efficient

implementations targeted at modern architectures including the Cell BE [15],GPU based works includ-

ing [110, 81, 32, 14], the Intel MIC [111], are being studied. However, all of the above works utilize

only a homogeneous device.

Given the importance and relevance of hybrid computing, in this work we propose a hybrid algorithm

for sorting on a CPU+ GPU platform. We specifically consider comparison based sorting algorithms for

reasons of wide applicability to settings such as variable length keys, and database records. We extend

the algorithm presented in [81], which is a natural extension of the standard quick sort [56], to operate

in a heterogeneous setting. The basic idea of sample sort [81] is to choose k − 1 pivots, or splitters,

from the input list. The input list is then split into k disjoint lists each containing roughly n/k elements.

Each of the sub-lists can be sorted independently. Typically, a recursive approach is taken to reduce the

size of the sublists further.

We redesign the above approach so as to work with CPU+GPU hybrid platforms. Our implementa-

tion offers advantages such as balanced work allocation amongst the CPU and the GPU, minimal idle

time, and minimal inter-device communication. On a dataset of 64 M keys selected uniformly at ran-

dom, our hybrid implementation offers a 40% speed-up over GPU based implementations of sample

sort [81], and a 20% speed-up over the recent merge sort based work [32] when run on a CPU+GPU

platform consisting of an Intel i7 980 and an Nvidia GTX 580 GPU. We also experiment with another

hybrid platform consisting of an Intel Core2 E4700 with an Nvidia GT 520 GPU that resembles a com-

modity desktop configuration. On this platform, our algorithm shows an improvement of 18% compared

to the currently best known comparison sort [32] results on GPU. We then extend our work to implement

a variable key sorting algorithm which performs on an average 25% better than the current best known

implementation proposed in [32]. Our work therefore shows that our approach has applicability to not

only research-end devices but also commodity platforms which have a large user base.

44



4.1.1 Motivation

We observe that in most GPGPU based computing, the CPU is practically idle in the computation

process. This leads to inefficient resource usage, more so as the computational power of present gen-

eration multicore CPUs is on the rise. Hence, to improve performance, we use such a hybrid CPU and

GPU system and target full resource utilization. We call this as hybrid multicore computing, or hybrid

computing in short. Hybrid computing is gaining tremendous research attention of late given that issues

such as power and performance dominate parallel computing.

Further, in a recent influential work [79], the authors argue and provide evidence for showing that on

a diverse collection of 14 workloads, GPUs can offer only modest performance advantage compared to

multicore CPUs. Sorting is one of the workloads considered in [79] where it is shown that the GPU is

on an average only 1.5 times faster than the CPU. We interpret the message of [79] as not to compare

one device against the other, but to study the benefits of using both the devices simultaneously. We call

this as hybrid computing.

Intuitively adding more computational resources should lead to faster execution. However, as the

resources in our model are heterogeneous in nature, apart from algorithm design, one has to address

challenges such as load balancing, appropriate work distribution, and synchronization issues so as to

translate the gains into reality. One useful technique in this context is that of static work partitioning

that is used in several popular libraries such as ScaLAPACK [18]. This technique requires one to

decompose the computation into independent subtasks so that overheads associated with communication

and synchronization can be minimized.

In line with the above, to be able to make effective use of a hybrid platform with respect to the sorting

workload, one has to think of algorithms that can quickly create independent subproblems. A portion of

these independent subproblems can then be solved on the CPU and the remaining subproblems can be

solved on the GPU. One such sorting algorithm that can create independent subproblems is quick sort

[56]. A generalization of quick sort where we choose several pivots, called as sample sort, has been

shown to be highly efficient on the GPU [81]. We therefore consider extending sample sort as a hybrid

algorithm. While the results of [81] are recently improved by a merge sort based work in [32], merge

sort does not give rise to independent subproblems. Further, the merge step requires several data transfer

and synchronization steps when run in a hybrid setting. Hence, we note that such algorithms are not

efficient on hybrid platforms. Our hybrid sample sort actually outperforms the results of [32].

While it is noted in several works that GPUs are very amenable to highly data parallel operations.

Radix sort is one such computation that benefits significantly from GPUs [110, 14]. Efficient imple-

mentations of radix sort on GPUs such as Thrust radix [110] and [14] can offer a throughput of 300

Million elements per second (Meps) for 32 bit inputs. This is not matched by comparison based sorting

on GPUs, the fastest of which has a throughput of 200 Meps. However, radix sort on the other hand

suffers from some specific drawbacks. In the first place, it is highly dependent on the efficiency of each

of the operations such as insertion and deletion of the digits. Also, they are not easily adaptable to dif-

ferent types of data such as variable length keys or multi-field records. Additionally, radix sort suffers
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from a worse space complexity when compared to comparison sorting techniques. These are some of

the factors that motivate us to work more towards comparison sorting algorithms rather than the radix

based ones.

4.1.2 Related Work

Radix sort algorithms are some of the most efficient algorithms that have been implemented on

GPUs and other multicore architectures. Radix sort is one of the easiest algorithms to be implemented

in parallel machines because of its reducibility to a popular primitive which is the scan or parallel

prefix operation. In works such as [19, 145, 125], the authors have shown the use of the scan and split

operation for efficiently implementing the radix sort routine. A popular randomized parallel algorithm

for radix sorting was proposed by Helman et al. in [51]. The most popular recent implementation of

radix sort was proposed by Merrill and Grimshaw [89]. However, radix sort algorithms suffer from a

basic bottleneck, where the sorting process becomes computationally more expensive with the increase

in the size of the keys.

In this Chapter, we present a comparison sort algorithm, which is the other well known mechanism

for sorting fixed length as well as variable length keys. As comparison sort depends on a comparison

function defined by the user and can have an ample parallelism involved, there has been extensive work

in this area since the earliest days of GPU computing. A result using bitonic sort on GPU platform was

proposed by Peters et al. in [104]. The popular divide and conquer based quicksort [56] algorithm also

has been of high interest in parallel computing. It was first demonstrated on GPU by Sengupta et.al. in

[116]. The result of this work was further improved in [23]. Another prominent result in comparison

sort was proposed by Satish et. al. [110]. In this paper, the authors have shown a merge sort algorithm

for the GPUs where small chunks of split data are put on the GPU and are then merge using popular

merging techniques efficiently.

Merge sort is another popular sorting algorithm which recursively merges multiple sorted sub-

sequences into a single sorted sequence. The first parallel merge sorting algorithm was proposed by

Richard Cole in [26]. In the earliest works on merge sorting on the GPU, the work of Purcell et al. in

[107], is of high importance. The current best result in comparison sort on GPUs is by Davidson et

al. [32]. The work also provides several insights into efficient implementation on GPUs by reducing

memory access latencies, improving register utilization and reducing segmentation.

Sample sort is a randomized version of the GPU quick sort technique where, instead of dividing the

entire list into two parts at any given iteration, there are a set of splitters that are chosen which divides

the list into many parts. Each of the sublists can be then processed in parallel irrespective of the other

bins. Some of the earliest works proposed in parallel sorting are those in [20, 36, 61]. In these works

sample sorting has been implemented using randomly chosen s samples from the n/p elements that are

present in each processor. Then every sth elements has been chosen as the splitter. Each processor Pi

then performs binary search on these splitters for each of the input elements which is then used to bin

the values. After this step, local sorting is done in each of the bins. Hence, it is natural that the biggest
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bottlenecks in this implementations are that of gathering the samples and sorting them. The larger the

value of s, the better the load is balanced, but it also significantly raises the gathering overhead. Another

bottleneck is that, no matter how the binning process is done, it creates higher irregularity and in turn

effects the efficiency. In the solution provided by Helman et al. in [51], the authors choose n/p2 splitters

using a mechanism that incurs no extra overheads in the identification of the splitters. They employ a

oversampling strategy due to which a higher number of bins are created and hence increases the locality

which reduces irregularity to a higher extent. In a more recent work, sample sort routine using random

splitters was shown by Leischner et.al in [81]. Sample sorting was also implemented by Dehne et al. in

[41] using deterministic splitters rather than random ones.

All of the above divide-and-conquer techniques gives rise to several efficient many-core algorithms

which vary only in the way they are individually implemented. In the gcc sort routine MCSTL proposed

in [121], the authors show that each core of the processors get an equal portion of the input. Each of

these portions are then sorted using an algorithm called the Introsort proposed in [92]. Then a final

k-way merging step is done for to merge all the intermediate steps.

There have been some efforts towards the design of hybrid algorithms for sorting. Notable among

them is the work by Govindaraju et al. [45], where the authors use a radix-bitonic combination algorithm

for sorting. Also worth mentioning is the work of Sintorn and Assarsson [122], where the authors show a

quicksort-merge sort technique for sorting a massive list of real numbers. These works can be classified

as hybrid only because of the mixed algorithms that the authors use and not because of the simultaneous

execution on two heterogeneous processors.

4.2 Our Solution

In this section, we describe our hybrid sorting algorithm. As mentioned in Section 4.1.1, we use a

hybrid variant of sample sort [81]. While merge sort may be more amenable on pure GPU solutions, as

mentioned in [110], we prefer sample sort as it avoids the costly inter-device communication. The main

idea of sample sort is to divide the input list into independent sublists using k = O(
√
n) pivots (also

called as splitters). These k splitters are chosen uniformly at random from the input list. The sublists

can be sorted recursively until their size drops below a threshold. Each such small sublist can then be

sorted individually. A summary of the algorithm appears in Algorithm 1. The algorithm is described

pictorially in Figure 4.1. Figure 4.2 shows an example run of the algorithm.

In the following, we now describe the changes required for executing the algorithm in a hybrid

manner. One important factor that our algorithm design addresses is to aim for load balance between

the CPU and the GPU and also within the GPU. In all our algorithms, we have used labels such as CPU,

GPU and CPU→ GPU. The label CPU refers to computations that take place in the CPU, and GPU refers

to those on the GPU. The label CPU→ GPU refers to the data transfers that is happening between the

CPU and the GPU.
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Figure 4.1 Different phases in hybrid sorting. The different colors represent the different bin labels

which are brought together by scattering.

Figure 4.2 An example run of our algorithm on a sample input of 9 elements. In this, we show the first

pass of the algorithm on our input list, that creates the first set of bins.
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Algorithm 1 HybridSort()

1: PHASE I : Creating bins.

2: PHASE II : Hybrid Histograms on CPU and GPU.

3: PHASE III : Scattering elements on both CPU and GPU.

4: PHASE IV : Recurse and sort small bins.

4.2.1 Phase I

Phase I involves selecting splitters as a uniform sample of the input list and then identifying the

bin into which each element can be assigned to based on the splitters. As in [81], we build a binary

search tree of the splitters. The bin to which an element belongs to can then be efficiently identified

by searching in the binary search tree. Having such a binary search tree is efficient since it reduces

thread divergence of a block of threads in a GPU. Such techniques have been found to be useful in also

multicore CPUs [81]. As we see in Algorithm 2, we now partition the list of labels into two parts each

of which can be handled by the CPU and the GPU respectively. Let us call these lists as Lc and Lg

respectively. As of now we employ the static partitioning strategy.

The static scheme of distribution of work have often been used in several popular benchmarks such as

ScaLAPACK [18]. The static strategy has been found to be good because of its optimal communication

costs, lesser synchronization overheads and scalable load balancing properties. In Section 4.4, we show

how the threshold of separation of the work between the two devices have a bearing on the final result.

Also, this parameter helps in another way by enabling us to auto tune the entire application.

After the separation of the data between the two devices, each of them now completes the binning

process by using the binary tree formed using the splitters. To facilitate a hybrid execution of the other

phases, we now associate each element with its bin number. We call these bin numbers as labels. This

allows us to treat some of the following phases on inputs in the range [1, k] thereby simplifying the later

phases.

Algorithm 2 Phase I(Integer ∗ I, Integer n,BlockSize BLOCK)

1: PHASE I : Create Bins

2: Select elements from the list at intervals of
√
n and from a binary search tree. n is the input number

of elements.

3: CPU :: Set Threshold which determines the ratio of division of L
4: CPU :: Divide L as Lg for GPU and Lc for CPU

5: CPU→ GPU :: Transfer Lg to GPU

6: CPU ::Use tree to optimally divide Lc among several bins in overlap of transfer.

7: GPU ::Use tree to optimally divide Lg among several bins after transfer is complete.

4.2.2 Phase II
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Algorithm 3 Phase II(Integer ∗ Lc, Integer ∗ Lg, BlockSizeBLOCK)

1: PHASE II : Hybrid Histograms

2: For each list Lg and Lc do in parallel

3: CPU :: Compute histogram Hc of Lc for LEN/BLOCK elements

4: GPU :: Compute block-wise histogram Hg of Lg for LEN/BLOCK elements

5: endfor

At the end of Phase I, elements that have a common label are scattered across the input. In Phase II,

described in Algorithm 3 for each label, we count the number of elements that have this label. This is

done by computing the histogram of the list Lc on the CPU and the histogram of the list Lg on the GPU.

In our application we use histograms in the second phase for getting the frequency of each bin label that

is present on each block.

4.2.3 Phase III

Algorithm 4 Phase III(Integer ∗Hg, Integer ∗Hc, BlockSizeBLOCK)

1: PHASE III : Scattering

2: For each histogram Lg and Lc do in parallel

3: GPU :: Perform local scan on Hg to get local offsets

4: CPU :: Perform global scan on Hc to get global offsets

5: endfor

6: For each List Lg and Lc do in parallel

7: GPU :: Perform local scattering to all bins in each BLOCK
8: CPU :: Perform global scattering across the single block

9: endfor

Phase III rearranges the elements of the input list according to their labels. This essentially is a

scattering step wherein elements with a given label are grouped together from various initial locations.

As we see in Algorithm 4, our approach in this phase involves performing a prefix sum across the

histogram results of all the blocks. The prefix sum gives us the intra-block offsets for each of the labels.

We first perform an intra-block scattering so that all the bin labels are adjusted to their appropriate places

within the block. Following this, we then scatter the labels across blocks. The CPU exploits the non-

blocking nature of the GPU kernels by executing a similar operation on its own part of the data. As, the

CPU works with only a single block of threads, the scattering carried out is a global scattering rather

than a local block wise scattering as done by the GPU. The difference between the local and global

scattering being that of scattering across multiple blocks and a single block of threads. As all of the Lc

labels are present on the CPU on only a single block, the global scattering can happen in an overlap with

the GPU scattering.

4.2.4 Phase IV
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Algorithm 5 Phase IV(Integer ∗ Lg, Integer ∗ Lc, BlockSizeBLOCK)

1: PHASE IV : Sorting individual bins

2: CPU→ GPU :: Transfer CPU bins to GPU

3: Repeat PHASE I through III until each BIN small enough for local sort.

4: Separate the bins again among CPU and GPU and apply best known sorting technique on each bin.

In Phase IV, described in Algorithm 5 we sub divide each of the bins by recursively repeating Phases

I to III as long as the size of each bin is not small enough to be efficiently sorted by a single thread of the

GPU. This arises from the fundamental bottleneck that the GPU suffers from where, we cannot assign a

heavy compute intensive job to each of the threads of the GPU. Hence, after the first round of splitting

and scattering, the size of each bin is still of the order of
√
n. This creates a high compute load for each

of the threads of the GPU which needs a smaller sized bin. So, in this phase, each of the bins are again

subjected to the same splits from Phase I. After, the size of each bin reaches a suitable size, they can be

efficiently sorted by a single thread. This smaller bin size is discussed in the following section.

4.3 Implementation Details

We borrow the some of the implementations for the initial 3 phases from [81] to improve the ef-

ficiency of the code on the GPU side. However, the hybrid nature of our algorithm introduces other

implementation challenges and opportunities for optimizations. This section describes those in each of

the phases.

4.3.1 Phase I

The computation in this phase involves finding the bin number to which each input element belongs

to. The bin number of an element is the number of splitters that are smaller than the element. On the

GPU, if all the elements are stored in contiguous locations, then one can benefit from a large number

of coalesced accesses in this computation. A further optimization described in [81] builds a height

balanced binary search tree out of the splitters. At this point, finding the bin number of an element

translates to a search in the binary search tree of splitters. One can also reduce thread divergence using

this technique [81].

For the above reasons, we notice that indeed this phase can be executed entirely on the GPU. In

fact, the time taken when this phase is executed on the GPU entirely is less than 2% of the overall time

even for large inputs. However, we choose to perform this step also on the CPU and the GPU. This is

justified by the fact that the input array is available only at the CPU at the beginning. For the GPU to

start executing, the input array has to be made available at the GPU. In addition, since the other phases

run simultaneously on both the CPU and the GPU, the output of this phase has to be sent to the CPU.
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This involves an unnecessary data transfer step, which can be avoided if the bin numbers of a portion of

the input is computed on the CPU.

We therefore choose a certain threshold and split the input array I into two parts, Ic and Ig. We

choose splitters in I , and also find the bin numbers of elements in Ic on the CPU. The array Ig and

the splitters are simultaneously transferred to the GPU. The GPU then computes the bin numbers of

elements in Ig. At the end of the Phase 1 we have a list of bin labels that correspond to each of the input

elements and is now called Lg and Lc for the GPU and the CPU parts respectively.

4.3.2 Phase II

Phase II computes the histogram of the bin labels. Computing histograms on the GPU is a well-

researched problem. Briefly, the entire computation is split into computing local histograms at each of

the SMs and then combining these histograms to arrive at a global histogram. One of the factors that

affect the GPU performance is the number of threads that should be launched on the GPU so as to use

to entire bandwidth on the GPU. Within each SM, to compute a local histogram, threads use shared

memory to improve memory coalescing. A fundamental bottleneck in the histogram computation on

GPUs is that GPUs offer very low throughput when using atomic operations.

This however, helps the hybrid computing model, since as described in Algorithm 3, the CPU also

computes the histogram on an independent input, Lc. This computation is data is simply added using

atomic primitives supported by OpenMP [24]. As we are having a constant block size, it is com-

paratively simpler to parallelize across all the available cores of the CPU. A manual unrolling of the

histogram serves this purpose and uses all the six cores that are available on the CPU and also gives

us a significant performance benefit. In addition to this, we ensure to carefully optimize the histogram

computation of the histogram on the CPU. We read in a certain tile of data into the L2 cache of the

CPU. This tile size is based on the size of the L2 cache on the Westmere CPU. We iterate in steps of

this tilesize so that the entire data on the L2 cache is used and does not require to be used afterwards.

Inside each of the unrolled loops, we now use a second tile size that reads data from the L2 cache into

the local cache of each of the cores. These cores now maintain a histogram store on the shared local

cache and performs the atomic increments. Each of the instructions issued for increments are vectorized

so as to ensure proper SIMD execution. We ultimately get a bandwidth bound performance from the

CPU which is marginally better than the GPU. At the optimal threshold, the GPU stays idle for only 2%

of the entire Phase II time.

At the end of this histogram computation, we synchronize the two devices using the CUDA event

synchronization functions. This is required since Phase III can start only after the histogram computation

is completed on both the devices.
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4.3.3 Phase III

The computation in this step is a scatter operation. On the GPU, we compute the offsets of elements

using a prefix scan over the results of the histograms. One thing to watch out here is that the scattering

step involves lots of irregular memory accesses on the GPU. In order to reduce this irregularity, and

facilitate higher coalescing, we use a special storage format for the histograms from Phase II. Instead

of conventionally storing the labels of the histograms in a row-major format as is commonly used, we

use a column major format that allows all the similar bin labels to be stored contiguously. The GPU

performs the local scattering across each of the blocks after which, we get all the bin labels arranged in

contiguous groups. The original input elements are also scattered along with their bin labels this so that

the list of input elements can be partitioned into independent sublists. We discuss in detail about this

optimization strategy in Section 4.3.5. We note that a similar strategy is used in [102].

The CPU scattering process also proceeds in parallel to the GPU scattering. As, we know that

irregular operations like gather and scatter adds a high overhead to the performance of each device, the

split of work between the two devices for this step provides a high benefit. The CPU scattering also

proceeds in a similar way as that of the GPU, with the only difference being that, the CPU works with

only a single block of threads and hence is technically doing a global scatter rather than a local one. We

optimize the scattering process on the CPU by again performing a two level tiling on the CPU block so

that maximum use of the shared cache can be ensured.

4.3.4 Phase IV

At the end of Phase III, the bins are independent of each other and can be sorted independently. In

Phase IV, each of the bins are recursively subdivided until they are small enough to be sorted quickly by

a single GPU thread. The threshold is chosen based on typically the number of elements that could be

accommodated into the shared memory of the GPU. On the Hybrid-High platform (cf. Section 2.9.1),

the GPU has a shared memory of 64 KB. In our implementation, each thread block on the GPU has

1024 threads. Given this, the threshold is chosen as 64 elements. Similar calculations can be done for

the GPU on the Hybrid-Low platform from Section 2.9.2. The thread wise quicksort that is performed

by the GPU is done in the shared memory. Typically for a list of 16 million, three rounds of recursion

was required after which the sorting on GPU took less than 2 ms to complete. At the above threshold,

the histogram and scattering phases in all of the recursive computations consume 5% of the total time

(See also Figure 4.4).

So far, we have discussed implementation issues surrounding our algorithm on the CPU and the GPU.

Apart from the above mentioned implementation issues, hybrid algorithms have other issues to address

that arise due to the hybrid nature of the computation. This could be in the form of additional data

structures, additional synchronization overheads, and the like. These may introduce critical scalability

challenges and hence minimizing their effect on the workload is needed. In the following section, we

mention some of these challenges with respect to the hybrid sorting algorithm.
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Figure 4.3 The count for each bin label is computed through histograms in shared memory and is written

back in column major order to global memory. Then the prefix sum provides the offsets for each of the

labels.

4.3.5 Memory Usage

A vital resource in hybrid computation is the available memory on the GPU for the hybridization.

Often there is a need to use extra data structures for the purpose of book keeping, synchronization and

consolidation. This extra space that is used may have an adverse effect on the scalability of the code

and is hence important to reduce or reuse as much as storage as possible. In this implementation, there

are two vital phases of hybrid computation. One is that of the histogram computation and the other is

that of the scattering.

In the histogram phase, the GPU is computing its local histograms which is stored in a single

d histStore space that is O(BLOCK ∗BING). Here BING is the total size of the bins that are allo-

cated to the GPU. The CPU on the other hand operates on only a single block and hence is O(BINC),

where BINC is the bins formed out of the CPU part of the elements. Each of these data structures are

hence consuming a large chunk of the available memory, and it is needed to reduce the footprint that is

left by these data structures. Once this phase of the computation is completed, in Phase III, the scattering

step needs an additional data structure, that will store the scattered elements from d blockHistStore.

That will again require a space of the same order of the histogram store. In order to optimize the usage

of the available memory on the GPU, we do the following.
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4.3.5.1 Higher coalescing of reads

In Figure 4.3 we see that the histogram is conventionally stored in the form of an array where each

block sequential writes the entries for A0, A1, A2...An. The numbers in this case represents the bin

labels which varies from A0 to BING. The drawback of this is that when the scattering phase starts,

it becomes an impediment to read all the A0s from each of the block entries. As, the A0s are all

stored at BLOCK sized distances from each other, there is a big stride that the thread needs to make

which introduces a lot of cache misses in the process. In order to overcome this, each of the clockwise

histograms are computed in the shared memory of the GPU and is written back on to an array called

d blockHistStore in the GPU global memory. This helps keep all the Ais together in the first block,

all the Bis in the second block and so on. This facilitates a higher coalesced read during the scattering

phase.

4.3.5.2 Reuse of histogram store

Now, after all the 0 bin labels have been read from the d blockHistStore structure, the first BLOCK

size of the d blockHistStore get freed. It is now available for reuse during the scattering phase. So,

what we now do is that during the scattering, we simply read all the bin labels from each of the blocks,

and scatter to the same locations from which the labels were just read from. This helps in both a

coalesced read and a write. Additionally, there is no need for an extra structure to store the scattered

elements. This step alone helped us in getting a big performance benefit over the conventional histogram

storage.

4.3.6 Sorting variable length keys

While sorting strings there are a completely different set of challenges that we come across. In this

case, we first start from the implementation of the sorting of the key-value pairs. We select the first 32

bits of the string as the key and the rest of it as the value. In the global memory we store each of these

keys and pointers to the rest of the strings. In the case of a tie, we need to go out into the global memory

and keep fetching sequences of 32 bits until the tie is broken.

In the hybrid model, there is a huge heterogeneity that is involved in the two devices that are involved.

In the CPU, while sorting strings, the overhead for fetching secondary bits for breaking of the ties is a

relatively easier phase because of the low latency of fetch from the main memory. On the other hand the

latency of fetch from the global memory is comparatively much higher in the case of the GPU. It must

also be noted that when a tie occurs there is a certain amount of time for which the other threads have

to wait until the tie is resolved. Now, in a massively parallel architecture like the GPU, this accounts for

a high overhead. Also, the idle time of the GPU increases which effectively affects the efficiency of the

entire process. So, in order to resolve this, we adopt a certain optimization, where we keep an additional

data structure maintaining 32 additional bits of the strings on the GPU memory at all times. So, in the

final sorting step, in case we face a tie, the additional bits can be immediately looked up and the tie
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can be resolved without the other threads not waiting for a large amount of time. In this way, what we

effectively achieve is a higher efficiency of the GPU which now stays idle for a lower time period. Also,

because we are storing only pointers to the rest part of the strings, this additional data structure only

makes the sorting equivalent to a 64 bit key-value sort, which does not affect the scalability to a large

extent.

4.4 Experiments and Results

In this section, we describe our experiments and results. We use the experimental platforms described

in Chapter 3 for all our experiments. We use the label ”Hybrid-High” for the hybrid platform introduced

in Section 2.9.1 and the label ”Hybrid-Low” for the hybrid platform introduced in Section 2.9.2. In our

experiments, we run our implementation and the implementation from [81, 32] on the GPUs included

in our hybrid platforms. The software for the implementations of [81, 32] have been provided by the

authors of the respective papers. For experimenting with our implementation, we have broadly concen-

trated on two different types of data sets. One is the fixed length keys which are of general interest to

anyone designing a new sorting algorithm. The other is the sorting of variable length keys which is built

over the implementation of the fixed length keys. The sorting of variable length keys such as strings

is not that much focused on by most of the implementations, but is of very high importance and finds

a very wide variety of applications. These applications can be in databases, data analytics, intelligent

systems and such. We primarily experiment using the following different types of inputs.

1. Fixed length keys: For fixed length keys, we use several different types of real numbered data

sets for bot 32 bits and 64 bits. Each of the data sets are inspired from the experiments that have

been carried out in [51].

• Uniformly Random: This dataset corresponds to that of an input drawn uniformly at ran-

dom and where each element is 64 bits long. For generating the dataset, we use the GPU

Mersenne Twister algorithm [87]. We seed the algorithm from [87] using a random value

generated using the glibc rand() and passed to the routine.

• Gaussian Distribution: The Gaussian/normal distribution the numbers are distributed on a

space or real numbers with a certain mean and standard deviation. Using the Central Limit

Theorem, we can sum up a certain number of random numbers and take their average to get

numbers that follow the normal distribution. In order to do that we make 12 calls to the glibc

rand() and take their average.

• Key Value Pairs: Another important study that is required in any sorting application is the

results on key-value pairs. We associated 32 bit random values to each of 32 bit the keys

that we are sorting and recorded the performance.

• Deterministic Duplicates: In this experiment we tried the use of deterministic duplicates

which is a distribution of natural numbers with a block wise logarithmic progression. Let
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Figure 4.4 Phase wise timing diagram for 4 million elements.

the input of n numbers be broken into p blocks for p being a power of 2. The first p/2 blocks

have all the numbers as log n, the next p/4 blocks have all the numbers as log(n/2), and so

on. In general, all the numbers in the block p/2i are set to log(n/2i1), for i = 1, 2, · · · , p−1.

Finally, for the pth block, the first n/2p elements are set to be log(n/p), the next n/4p

elements are set to log(n/2p), and so on.

• Randomized Duplicates: This input is a slight modification of the deterministic duplicates

dataset. Let the input of n numbers be arranged as p blocks. Each block is filled as follows.

Let B be an array of size r with each element of B chosen uniformly at random from

[0, r − 1]. Let S be the sum of elements in B. Then, the first B[1]/S × n/p elements of the

block are chosen uniformly at random from [0, r − 1], the next B[2]/S × n/p elements of

the block are chosen to be another number uniformly at random from [0, r − 1], and so on.

In our work, we set r to the total number of cores available on the CPU and GPU combined.

• Staggered: In this the input of n numbers is arranged in p buckets. In the buckets numbered

1 to p/2 (both inclusive), all the numbers are chosen uniformly at random from [(2i − 1) ·
231/p, (2i)·231/(p−1)], where i is the bucket number. For buckets numbered p/2+1 to p, all

the elements are chosen uniformly at random from [(2i−p−2)·231, (2i−p−1)·231/(p−1)].

• Bucket Sorted: In this an input of n numbers is organized into p buckets as follows. The

first n/p2 elements in each bucket are chosen uniformly at random from [0, 231/p − 1], the

second n/p2 elements in each bucket are chosen uniformly at random from [231/p, 232/(p−
1)], and so on.

2. Variable length keys: For sorting strings we mainly use two different data sets. First we exper-

iment with a Protein Sequence Database [132] which is 650 MB in size and has many protein

sequences that are represented using the popular “FASTA”. In this format, each of the sequences

are up to 120 characters long. Apart from this, we also experiment with a data set of 500 MB size

that is containing a set of random strings and are up to 500 characters in length.
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Figure 4.5 Percentage improvement over sample sort [81] at various phases.

4.4.1 Profiling, Resource Utilization, and Idle Times

One aspect of our hybrid implementation is that each phase of our hybrid algorithm runs faster than

the corresponding phase in the pure GPU version from [81]. This is shown in Figure 4.5. In Figure 4.5,

the times for Phase II and Phase III are only over the first iteration. This is justified since the overall time

taken by Phase IV, which includes recursive calls to Phases I-III, is a very small portion of the entire

runtime of the implementation. Also, this recursive calls happens over data that is present in each of

the bins that has been created in the first iteration. Hence, the overall impact of the hybridization is felt

mostly in the first iteration of the application. In Figure 4.5, we show the percentage improvement of

our hybrid implementation over the pure GPU sample sort implementation. We now analyze the results

of Figure 4.5.

In Phases II and III, we notice that there is a significant improvement that is achieved over the

corresponding pure GPU phases. In both of these phases, we notice that there is a benefit of around

25%. Further, the improvement of Phase II increases as the size of the input increases. This is because

of two reasons. Firstly, as the input size increases, the distribution of the numbers happen over a larger

number of bins. Hence, the conflicts arising during the atomic computations are reduced. Also, the

larger number of bins are now also divided among the CPU and GPU which leads to a higher degree of

work distribution. This leads to a better works sharing and consequent increase in the gain of Phase II.

In Phase III, we notice that the percentage improvement decreases over the input size. This can be

attributed to the nature of the computation in Phase III. The scattering operation introduces a lot of

irregularity in the memory accesses on a GPU. Such uncoalesced access patterns are known to affect

GPU performance. However, the performance gain can be attributed to the fact that CPUs do not suffer

as significantly as GPUs on gather-scatter operations.

Notice from Figure 4.5 that performance gain of our hybrid implementation in Phase I and Phase IV

is not very significant. This can be explained as follows. Phase I is not highly compute intensive. Indeed

in our experimentation, we notice that Phase I if run entirely on the GPU takes only less than 1% of the

total time. However, even this phase is done in a hybrid manner as that reduces the data communication
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Figure 4.6 Performance on uniformly random keys sorting in high-end platform.

overhead in the later phases. Doing so has the other benefit that the CPU utilization improves, and hence

the idle time reduces. This can be noticed also from Figure 4.4 where the phase-wise timings are shown

for an input of size 4 M. We define idle time of a device as the total time for which the device is idle.

The idle time of an implementation is then the maximum idle time experienced by any of the devices.

In our algorithm, the GPU is idle for at most 5% of the total runtime, and the CPU is idle for at most

12% of the total runtime. So, the idle time of our implementation is 12%.

In Phase IV, the size of each of the bins reduces significantly which again leads to a reduction on the

compute that is required by either the CPU or the GPU threads.

4.4.2 Results of Sorting

4.4.2.1 Results on Fixed Length Keys

In this section, we show the results of our implementation on various experimental datasets of fixed

length keys. Since most of the GPU sorting algorithms are designed on 32 bit numbers, we have exper-

imented using the 32 bit integers as well. Results on 64 bit integers are shown later.

The input is generated as a uniformly random dataset described earlier. In Figure 4.6, we report

the performance of the 32 bit key only sorting. In this case, we see that we achieve almost a 23%

improvement on an average over the closest best known result [32].

We now look at the sorting results for key-value pairs in Figure 4.7. As can be noticed from Figure

4.7, our hybrid implementation is on average 40% faster than the result of [81], and on average 20%

faster than the result of [32]. This improvement can be attributed to the fact that the majority of the

computation involves operations such as histogram and scattering which are very amenable to a hybrid

execution environment.
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Figure 4.8 Performance on 32 bit Gaussian in-

put.

We report the behavior of our algorithm on the inputs such as Gaussian distributed, Deterministic

Duplicates, Staggered, and Bucket sorted in the following. In Figure 4.8, we see the performance of our

algorithm on the Gaussian distributed input. We achieve an improvement of 10% on an average on the

Gaussian input because of the added overhead in the scattering phase. As the number of bins created in

this case is higher than the other inputs, the scattering in the first phase of the algorithm consumes more

time. In both Figure 4.7 and Figure 4.8, we notice a significant performance improvement only when

the input size cross the threshold of 218 elements. This can be attributed to the fact that on inputs greater

than 218 elements, the number of sublists that are created before the threshold of sorting is reached

enables the GPU to achieve bandwidth saturation. Hence, the number of threads employed towards the

whole GPU scattering process are higher which helps get higher gains.

In Figure 4.9, we see the performance of our algorithm on the input of Deterministic Duplicates. In

this dataset, the inputs are in logarithmic progression across all the blocks of the GPU. This leads to

a more idealistic data set for our mechanism and hence provides a good performance. We see that we

achieve almost a 15% speedup over merge sort in this case at the best case.

In Figure 4.10, we see the performance of our hybrid sorting mechanism, on the staggered input,

where we observe that our sorting method suffers a decline in performance. This decline can be at-

tributed to the fact that, the staggered input is randomized block wise over a certain period. Due to

this, there is a higher degree of irregularity that is introduced. This leads to a higher overhead in the

CPU-GPU scattering phase and hence suffers a overhead. In the other sorting algorithms such as merge

sort, this scattering phase is not there and hence performs significantly better.

The performance on Bucket sorted input is reported in Figure 4.11. In this case too we see that the

performance declines because of the block wise randomness. This case is similar to that of the staggered

input and hence suffers from a significant overhead in the scattering phase. The performance of other
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Figure 4.10 Performance on 32 bit staggered

input.

algorithms where such kind of irregularity does not come into the picture, performs good. In Figure

4.12, we see the performance on the input of Randomized duplicates where the performance is around

17% better on an average than the other algorithms. In this case too, the presence of duplicates, the

irregularity is decreased and hence the consequent overheads are also reduced to a good extent.
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Figure 4.11 Performance on 32 bit bucket
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4.4.2.1.1 64 Bit Inputs Performance of our sorting algorithm on 64 bit inputs is also important to

be experimented with. With the increase in bit length of the input, the stability of radix based sorting

algorithms decreases and hence the real advantage of comparison based sorting mechanisms become

important. The impact has been already studied at length in the work by Leischner et.al. in [81].
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In Figure 4.13 and 4.14, we see our performance in the 64 bit sorting case in comparison with the

sample sort. We achieve a benefit of 18% on the Gaussian input and of around 20% on the case of the

Deterministic Duplicates.
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input.
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istic duplicates input.

4.4.2.1.2 Results on Other Platforms We also experimented on the Hybrid-Low platform described

in Section 2.9.2. We see the result of the sorting in Figure 4.15. We experiment using 64 bit key-value

pairs on this platform and achieve a benefit of 18% on an average over the best known merge-sort

implementation.

In the Figures 4.16, 4.17, we see the performance of our key only and key-value sorting across three

different platforms that we have already explained in Section 2.9. The sorting method performs the

best with the K20c GPU as the GPU has a bigger sized L2 cache and offers a much higher degree of
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62



parallelism. So, due to the L2 caching of the data, the overhead suffered during Phase III is significantly

offset.
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Figure 4.16 Performance of 32 bit sorting

across different platforms at input of 221 uni-

formly random elements.
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Figure 4.17 Performance of key value sorting

across different platforms at input of 221 ele-

ments.

4.4.2.2 Variable Length Key Sorting

We now focus on the experimentation of our variable length key sorting. The most natural data

sets that we can obtain for variable length keys are that of strings. We experimented on broadly two

categories of strings, one of which is synthetic and the other one natural. The synthetic data set was

generated using randomness that is offered by popular PRNGs like the Mersenne Twister. We report

the performance in Figure 4.18. This is the result that is obtained from our execution on random string

database. We get a benefit of about 24% over the current best known sorting result that was reported by

Davidson et al. in [32]. One of the reasons for achieving the performance is the cached reads for the

additional 32 bits that are kept for resolving the ties that might occur in the sentences. In the protein

database that we choose, there is a good possibility that there can be repeats of protein sequences for

considerable distances. In Figure 4.19, we can see the performance of our sorting algorithm with the

caching and without the caching. It is important to mitigate the cost of divergence that will be caused

because of this ties. The cached reads helps in lowering the cost of divergence by not eliminating it, but

rather distributing it amongst all the threads that are at work. We can see that because of the caching of

the look forward bits, we get almost 2x benefit. As the size of the caches are limited, we can store only

up to 32 bits for each SIMD warp to work on.

Another possibility that we tried out, is storing random 32 bit sequences from the entire sentence.

However, choosing 32 bit random sequences demand another kernel which uses a standard linear con-
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gruential generator for randomness. This puts an additional overhead that affects the overall perfor-

mance.
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In Figure 4.20, we see the performance of the string sorting on random strings on the several plat-

forms of experimentation. As this sorting routine is an extension of the key-value sorting, we can see

that the performance on the K20c is the best where we can ideally use the caches for storing the look-

ahead bits. The performances on the other two platforms are also efficient and the GPU and CPU are

both busy in compute for nearly 90% of the entire run time. However, as we can notice from Figure

4.20, that there is no significant increase in the performance on the low end GT520 platform. This can
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be attributed to the lower number of threads that the GPU is capable of running. The amount of gain

that can be extracted from the platform is obtained at the lowest problem size of 200,000 elements.

Bandwidth saturation is achieved via the number of subproblems that are created at that input size. With

the increase of input size, even though we obtain similar speed ups, there is no major change as the GPU

is already at its peak performance limits.

4.4.3 Threshold Variation

Recall that in our implementation we use a fixed, static threshold for dividing the work between the

CPU and the GPU. Such static thresholding has been shown to be beneficial as it reduces the commu-

nication overhead apart from lesser synchronization overheads and scalable load balancing properties.

Further, even though the computation in each phase of our algorithm can potentially have a different

threshold, such a phase-wise thresholding again introduces communication overheads. Therefore, we

use a common threshold across all phases. The threshold values are experimentally determined. We first

create a static partition of the values with 10% of the bins on the CPU and the rest on GPU. Post this

step, we vary the threshold over a sufficiently big range so as the determine the optimaal split between

the two devices.

In Figure 4.21, we see the variation of the threshold percentage that we chose for the static parti-

tioning strategy. We notice that the threshold of partitioning steadily decreases with the increase in the

input size of the elements. This can be explained as follows. As the size of the input increases, a higher

threshold means that the CPU compute time does not evenly match the GPU compute time. Hence, a

lower threshold is suitable. A similar kind of a behavior is observed in the case of the low-end platform

too. The only difference being, the lower range of variation in the threshold because of a higher ratio in

GPU to CPU peak performances.

4.4.4 Scalability

Our sorting approach demonstrates a good degree of scalability as can be seen from Figure 4.6.

We were able to run experiments upto 224 elements. However, as with the case of most experiments

invlovlving GPUs, the limitation was the fixed size of the global memory. However, there were several

modifications that were introduced as explained in Section 4.3.5. As a result of these modifications we

were able to achieve 40% higher amount of scalability due to a higher efficient use of the available global

memory space and the data structures that were used for the gather, scatter and histogram computations.

4.4.5 Results of Phase II

The computation in Phase II is essentially that of a histogram and hence a scalable and efficient

hybrid histogram is of independent interest. Therefore, we compare the performance of Phase II of our
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hybrid algorithm with that of [106]. The work of [106] computes a histogram of the data on a GPU

alone.

As is mentioned in several earlier works [79, 113], the performance of the histogram on the GPU

depends heavily on the utilization of the shared cache of the GPU and the minimization of atomic

conflicts. Further, the GPU is not very amenable to such atomic operations. Hence, this computation

has the potential to benefit from a hybrid computing model. This is verified in Figure 4.22, where we

see that there is a gain of nearly 25% on an average over the pure GPU implementation. Such a gain is

remarkable given that the peak FLOP rating of the CPU in our experimental platform is only a tenth of

that of the GPU.

4.5 Conclusion

Our hybrid sorting clearly demonstrates the benefits that can be gained out of the use of heteroge-

neous processors that are most commonly available in today’s commodity desktops and laptops. In this

work we have implemented and verified our algorithm agains a wide array of inputs of fixed length as

well as variable length keys. All the results definitively show the adavantage of heterogeneous imple-

mentations. In the near future we will be having completely heterogeneous processors such as the ones

of AMD APUs and Intel Ivybridge. Hence, in hybrid programming and research in this area holds a lot

of promise.

In the near future we want to work on greater heterogeneous platforms such as the ones involving

multiple GPUs and other multicore processors such as the Intel MIC. It will be interesting to see the

performance of our sorting mechanism on such kind of platforms where there will be both tightly cou-

pled and loosely coupled processors. It will be our goal to arrive at a efficient performance model for

such kind of platforms using various computing primitves like sorting, searching, ranking and graph

algorithms.
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Chapter 5

Pseudo Random Number Generator for Hybrid Platforms

5.1 Introduction

Randomness is an essential computing resource for many computations [90, 73, 66]. Hence, in-

vestigations into sources of high quality (pseudo) random number generators (PRNGs) are important.

In parallel computing, designing parallel random generators is a challenging problem. This problem

becomes more significant, as we are witnessing a shift to multicore processors.

Most of the pseudo random number generators based on GPUs however suffer from several draw-

backs. For instance, PRNGs on GPUs require the application to pre-generate and store a large batch

of random numbers and then use them in the application. Apart from occupying a significant portion

of the limited storage on GPUs, this is not a satisfactory solution since the randomness demand of ev-

ery application cannot be known apriori. It is therefore important that an on-demand pseudo random

number generator be available so that each thread running on a GPU can make an API call, such as

the rand() function in ANSI C [70], to obtain a new pseudo random number as required. Such an

on demand generator also does not require as much storage to store the random numbers in the GPU

memory. Secondly, another limitation of present generators on the GPUs is that they are not resource

efficient. While the generator is working on the GPU, the host to which the GPU is attached, typically

a multicore CPU, is computationally idle. This is not a good practice as the computational power of

multicore CPUs is also ever increasing.

In this chapter, we address these limitations and demonstrate the design and implementation of a

fast, efficient, on demand, and high quality PRNG on a platform consisting of CPUs and GPUs.

5.1.1 Motivation

Most of the current random number generators are iterative in nature. The most popular among

these are the linear congruential generators which was first proposed by Lehmer [80], matrix congru-

ential generators [77], and the matrix recursive generators [72]. Several of these principles have been

implemented to provide some widely used PRNGs in GPUs [87, 99].
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Many of the popular PRNGs on the GPU, such as the Mersenne Twister [87] and CUDPP Rand [131],

require an initial knowledge of the quantity of random numbers required. This poses a severe difficulty

to applications where no such previous knowledge is available. Also, there may be applications which

require random numbers on the fly during execution. The current PRNGs suffer from this disadvantage

as the requirement cannot be changed dynamically.

Also, linear PRNGs, for example the rand()[70] function, were originally designed for sequen-

tial machines. Inherently it runs an linear congruential generator (LCG) [72] to generate new random

numbers and requires seeding to produce different sequences on each run. So, each of the iterations

are dependent on the earlier states for producing new numbers. Due to these state dependencies, they

become unusable for highly multi-threaded architectures and are not thread-safe. We cannot call this

generator from each core of a multicore processor as the generator would not produce correct results in

such an execution.

From the above discussion, it is clear that existing PRNGs on GPUs suffer from several drawbacks.

To motivate our work further, we present four properties that a parallel pseudo random number generator

has to satisfy.

• Scalability: Scalability suggests that large quantities of random numbers can be generated with-

out any limitations.

• Quality: Many cryptographic and security applications solely depend on good sources of random

numbers [144, 93]. Hence, the quality of the generator is important.

• On demand generation: It must be possible to use the generator without a-priori knowing the

quantity of random numbers required. Ideally, a simple API call should produce a new random

number without a large overhead.

• Performance: The performance aspect suggests that the time spent on generating a random num-

ber is as small as possible. One common way to measure this is to study the number of random

numbers that can be produced in a unit time.

We now give a comparison of the qualities that are possessed by the currently available PRNGs in

Table 5.1. The speed ranking in Table 5.1 (rank of 1 is fastest), shows the relative time taken by each

PRNG to generate a fixed quantity of random numbers.

We now turn our attention to the aspect of resource efficiency of PRNGs on GPUs. We observe that

in most GPGPU based computing, the CPU is practically idle in the computation process. This leads to

inefficient resource usage, more so as the computational power of present generation multicore CPUs is

on the rise. Hence, to improve performance, we use such a hybrid CPU and GPU system and target full

resource utilization. Hybrid multicore computing is gaining tremendous research attention of late given

that issues such as power and performance dominate parallel computing. Arriving at an efficient hybrid

PRNG that meets the requirements listed in Table 5.1 is a step in that direction.
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Table 5.1 Comparison of properties

PRNG On-Demand Scalable High Speed

Supply Quality Rank

glibc rand() × √ × 5

CURAND
√ √ × 4

CUDPP × × √
3

M.Twister × √ √
2

Hybrid PRNG
√ √ √

1

5.2 Related Work

One of the early implementation of PRNGs for GPUs is the Mersenne Twister (MT) first proposed in

[87] and later extended in [86]. Both these implementations however require that the quantity of random

numbers to be pre-specified.

In [131], authors have given a source of randomness necessary for graphics applications based on the

MD5 algorithm proposed by Rivest [28]. However, one major drawback of this is that CUDPP Rand

usually do not scale to very large requirements.

5.2.1 Our Methodology and Results

Our main result of this work is to design a high quality, fast, scalable, and on-demand random number

generator. We achieve this by employing random walks on expander graphs. Each thread performing

the walk is essentially executing independent of other threads. Therefore, our generator is thread-safe.

To improve the performance of our generator, we employ a hybrid computing platform consisting of

a multicore CPU and a GPU. Our generator produces 0.07 GNumbers per second. The results of our

generator has been put through rigorous quality testing using test suites such as the DIEHARD battery

of tests [83] and the TestU01 [78] suite. Our generator passes most of these tests as reported in Section

5.4.2.

We also show how to use our PRNG in doing a simple simulation of photon migration. These

application demonstrate the speed of generation and the quality of the hybrid PRNG respectively. In

both these applications, using our PRNG leads to reduced runtime, and improvements in quality.

5.3 Our Random Number Generation Technique

The main idea behind the development of our generator is to use parallel random walks on an ex-

pander graph. As each of the random walks on the graphs is entirely independent of each other, any

thread of the GPU can make a request for random number(s) at any point of time. The only operation

involved is to select a neighbor from the expander graph uniformly at random, perform a walk, and
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return the destination node as a random number. This random selection of a neighbor can be made by

using a few random bits. In the following, we explain our approach in more detail. Implementation

details are presented in Section 5.3.2.

5.3.1 Expander Graphs

We now define an expander graph and also describe the expander graph we use in our construction.

Let G(V,E) be an undirected regular graph of degree d. For a subset of vertices U ⊆ V , let us denote

by (U,U), with U = V \ U , the set of edges that have exactly one endpoint in U and another endpoint

in U . The edge expansion of G, denoted α(G), is defined as:

α(G) = min
U ⊆ V ;

|U | ≤ |V |/2

|(U,U )|
|U | .

A family of graphs G = {G1, G2, · · · } is called an edge expander family if there exists a constant

c so that for every G ∈ G, α(G) ≥ c. So here, c represents the edge-expansion factor of the graph. If

|V | = n, then ideally it would be possible to hae a c which is independent of n. In the ideal case, such

kind of an independence will exist for every construction of an expander graph. Although in a majority

of applications it is observed that for a constant c and every k, there exists a construction in the range

of k, k + 1, ..., ck. Also, it is preferrable that the degree dn for every vertex slowly grows to n and is

bounded by some constant. In most of the applications explicit constructions of expander graphs are

extremenly simple. It is possible to obtain an efficient construction from the strict upper bound and an

adjacency list that can be obtained using a closed form formula.

Example : If we define a prime number p, and a graph Gp = (Vp, Ep), in which Vp = 0, ...., p − 1

and for a ∈ Vp−0, then vertex a is connected to a+1 mod p, to a−1 mod p and to its multiplicative

inverse a−1 mod p. So vertex 0 is connected to 1, to p− 1 and has a self-loop. So, if we count all the

self loops, we will see that the graph is 3-regular. As all the vertices 0,1 and p − 1 has self-loops, we

can see that the graph is a union of a cycle over |Vp| and a matching over p− 3 vertices Vp− 0, 1, p − 1.

So, there exists a constant h, for which each p in Gp has an edge-expansion of at least h. A sample

execution for the same is shown for p = 13 in Figure 5.1.

In our construction of a PRNG, we have made use of explicit definitions of an expander graph due

to Gabber-Galil [42]. Here we consider the graph G as a bipartite graph with two independent set

of nodes X and Y . For a given integer m, with n = 2m2, we can assign unique labels of the form

(a, b) ∈ ZZm × ZZm to each of the vertices in X and Y . A Gabber-Galil expander on n vertices is

defined as follows [42]. The vertices of the graph are tuples of the from (x, y) for x, y ∈ ZZm. The

neighbors of a vertex (x, y) in X can be found in Y by these labels : (x, y), (x, 2x + y), (x, 2x + y +

1), (x, 2x + y + 2), (x + 2y, y), (x + 2y + 1, y), and (x + 2y + 2, y). All the above calculations are

done modulo m. The expansion of the graph is shown to be α(G) = (2−
√
3)/2 [42].
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Figure 5.1 The expander graph G13.

It has been shown [59] that random walks on expander graphs have a rapid mixing property so that

the position of the walk after a certain steps is close to the stationary distribution of the underlying

Markov process. For all our purposes, in this chapter, we do not statically create and store an expander.

We use the functions given in the previous paragraph to create the vertices on the fly during the execution

of the PRNG application.

5.3.2 Implementation Details

We initialize a 7-regular Gabber-Galil expander graph G of n = 265 nodes. With n = 265, each

vertex of the Gabber-Galil expander graph of the form (x, y) can be represented using 64 bits with x

and y being 32 bit each. The random numbers generated by our construction are the 64 bit vertex ids of

the expander graph G.

We initialize our generator by having each thread start at a random vertex of G and performing an

initial walk of length 64. To select the starting position, we need 64 random bits for each thread. In our

implementation, we make use of the CPU for this as follows. These random bits are generated on the

CPU and are supplied to the GPU. As current GPUs support asynchronous memory transfers, we can

pipeline the execution and transfer. The details of this process are explained in Algorithm 6.

In Algorithm 6, we use labels such as CPU, GPU, and CPU→ GPU. These represents the executions

that are happening at the individual processors at any point of time. We employ these labels in order to

distinguish between the parallel computations which are being carried out in each of these devices. The

label CPU→ GPU represents the asynchronous data transfer from the CPU to the GPU. The function

f(u, k) which is used in line 7 returns the kth neighbor of u according to the definition of the Gabber-

Galil expander graph.
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Algorithm 6 InitializeGenerator(G, l, bin)

Input: A 7− regular expander graph G of n nodes, the length of walk l and some random bits bin
Output: An initialized G

1: CPU :: Generate a random binary stream bin
2: CPU→ GPU :: Transfer bin asynchronously

3: GPU :: for each node u in G do in parallel

4: GPU :: for i = 0 to l
5: b(u) = (int)(bin(t) & (111 << (i ∗ 3))

{t is the Thread ID}
6: v = f(u, b(u)) { f(u, b(u)) gives the b(u)th

7: neighbor of u}
8: u := v
9: endfor

10: endfor

In Algorithm 6, we first initialize a graph such that each of the node can represent a unique 64 bit

number. As we have designed our algorithm to output 64 bit random numbers, each of the vertices

u and v represent a unique (x, y) as described in the above section. For the initialization phase, we

generate some random numbers using the CPU rand() utility which in turn calls the LCG present in the

glibc library. As each of the vertices have 7 neighbors to identify from randomly, it requires only

3 bits to do so. The CPU streams random bits to the GPU as long as the kernel is executing, and the

GPU has a constant supply of random bits to perform the walk. The overlap between the CPU and GPU

computation will be explained in Section 5.4.

Once each thread completes a random walk of length 64, each thread is now ready to generate

random numbers. To generate each random number, each thread has to essentially perform another

random walk. As these walks are completely independent, our approach allows for massive parallelism.

This can be done on demand also, unlike other GPU-based generators such as Mersenne Twister [86].

Let a walk be presently at vertex v. To continue the walk, we need to select a neighbor of v in G

uniformly at random. This therefore requires few random bits. As earlier, we use the CPU to generate

these random bits and supply them to the GPU in an asynchronous manner. At the end of the walk, each

thread outputs a 64 bit random number. The details of this approach are explained in Algorithm 2. The

asynchronous transfer in Line 1 is same as that of Algorithm 6.

Threads in an application that requires randomness can call the GetNextRand() routine to obtain

random numbers. The GetNextRand() routine is described in Algorithm 7. The application does not

require to pre-specify the number of bits before executing its kernels. The application has to only

initialize the random number generator as described in Algorithm 6 before using GetNextRand().

72



Algorithm 7 GetNextRand(G, bin)

Input: The initialized graph G and some random bits bin
Output: A new random number R

1: CPU→ GPU :: Generate and transfer bin asynchronously

2: GPU :: for i = 0 to l
3: b(u) = (int)(bin(t) & (111 << (i ∗ 3))

{here t is the Thread ID}
4: v = f(u, b(u)) {f(u, b(u)) gives the b(u)th

5: neighbor of u}
6: u := v
7: endfor

8: Return v

5.4 Experimental Results

Our experimental platform is described in Chapter 3. In Section 5.4.1 we study the speed and quality

of our generator compared to existing generators. In Section 5.4.2, we study the quality of the random

numbers produced by our generator. In all cases, the experiments are conducted over repeated trails and

the average values are reported.

5.4.1 Performance Analysis

We now compare the performance of our generator to presently available GPU based generators.

Some of the fastest generators on the GPU are the Mersenne Twister [86], and the CURAND utility

[97]. We have therefore compared against these generators. In this experiment, we study the time taken

to produce a random stream of N numbers for a given N ranging from 5 M to 1000 M. The resulting run

times are plotted in Figure 5.2. In Figure 5.2, the label “Hybrid Timing” refers to the timings obtained

by our generator. The label “Mersenne Twister” refers to the generator based on [87]. These timings

were obtained by running the example code which is provided by NVidia with the CUDA toolkit. The

label “CURAND” refers to the generator based on [97] from the CUDA library. CURAND is also an

on-demand variant which can generate numbers on the fly as requested by an application when it is

used in its Device API mode. We have considered the Device API for comparison since an on demand

supply of random numbers is supported only on this mode. As can be seen from Figure 5.2, the hybrid

generator outperforms both the Mersenne Twister based generator and the CURAND generator by a

factor of 2 in most cases.

Another aspect of a hybrid algorithm to study is the overall resource utilization. In our program,

the main work units are (i) an initial source of random bits, FEED, (ii) the transfer time required to

transfer these initial source of random bits, TRANSFER, and (iii) the generation of random numbers

using random walks on an expander, GENERATE. We map the FEED work unit onto the CPU and the

GENERATE work unit on the GPU. This is a natural mapping as GENERATE is massively parallel
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Figure 5.2 Timings across several list sizes

and hence can be done on the GPU. With this mapping, TRANSFER corresponds to transferring data

between the CPU and the GPU using the PCI Express link. In Figure 5.3, the time taken for each of the

above work units is indicated on the arrows. The arrow with label 6.2 ns corresponds to the TRANSFER

work unit. As can be seen, the CPU is almost never idle, and the GPU is idle for about 20% during each

iteration. The timings shown are for a batch size of 100 (see also Figure 5.4) where batch size, S, is

defined as the number of random numbers each thread is generating. For instance, if N random numbers

are to be generated, then with a block size of S, each of the N/S threads generate S random numbers

each.

81.2 ns

CPU Idle

81.2 ns

CPU :

GPU :

81.2 ns

61.45 ns 61.45 ns

6.2 ns 6.2 ns

86.6 ns

GPU Idle

FEED FEED FEED

GENERATE GENERATE

Figure 5.3 The overlapped execution of the work units.

In Figure 5.4, we study the variation of the timing with the block size. As we see, the timing is

minimum at a work load of around 100 numbers per thread. This suggests that when the GPU threads

are high but the work load per thread is low then the utilization of the system is low and the CPU stays

idle for most of the time. Beyond 100 numbers per thread, the utilization is high but the CPU gets

overloaded and the GPU starts to wait for CPU to transfer random bits. So, the time taken increases.

Comparison with rand(): Our hybrid generator can also work on other multicore architectures

with minor programmatic changes. This is showcased by developing our generator for a multicore CPU
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alone. In this case, each core of the CPU runs threads which perform random walks on the implicitly

defined expander graph.

On the CPU described in Chapter 3, we implemented our generator using the OpenMP specification

3.0 library. We then compare the time taken by our generator to that of the standard glibc rand()

which is provided by the Fedora 14 Linux distribution. The result of this experiment is shown in Figure

5.5. The label “CPU Rand Time” refers to the time taken by rand() to generate the required quantity

of random numbers. As can be seen, our generator scales up well compared to rand(). Further, our

algorithm is thread safe.
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Table 5.2 Quality Results of different algorithms

Algorithm DIEHARD Tests KS-Test D
Passed

Hybrid PRNG 15/15 0.167

CUDPP RAND 15/15 0.202

M. Twister 15/15 0.166

CURAND 8/15 0.534

glibc rand() 6/15 0.621

5.4.2 Quality

For studying the quality of our PRNG, we use several industry standard statistical tests. For instance,

we have taken the DIEHARD battery of tests based on statistical testing methods as proposed in [31].

This suite consists of 15 different statistical tests. Marsaglia [83] implemented these tests so that these

tests can be run for any PRNG easily. Each of the tests produces a p-value which is a measure of the

uniformity in distribution of these numbers. Each of the p-values are further verified using Kolmogorov-

Smirnov(KS) Test [31]. The KS test gives a measure of the uniformity of the numbers that are generated

and how well they pass the DIEHARD tests.

The DIEHARD tests state that if the values generated by a PRNG are truly random, then the values

are indistinguishable from a set of uniformly distributed values in the range of [0, 1). The test statistic

p should lie between 0.01 and 0.99 to pass the test. After the DIEHARD tests are completed, we

also looked at the KS test against a set of uniformly generated numbers. This test tries to measure

the maximal deviation between two curves drawn on a cumulative distribution function. A low value

indicates the lower deviation from a set of uniformly distributed values. The test statistic D gives a

measure of how well the generator performs in comparison to the other generators. As we see from

Table 5.2, the KS test result of our algorithm is comparable to that of Mersenne Twister and better than

that of CURAND.

Apart from the DIEHARD suite, we also use the TestU01 suite. Pierre L’Ecuyer and Richard Simard

implemented the TestU01 software library [78] which is a more advanced test than the DIEHARD tests.

This suite contains three different batteries: SmallCrush, Crush and BigCrush. These three tests are all

in the increasing order of quality. The results obtained from the tests are tabulated in table 5.3.

As we see from Table 5.3, our generator passes all the tests in the SmallCrush battery. It is able to

pass only fourteen and thirteen tests in Crush and BigCrush tests respectively. This is comparable to

other presently available PRNGs on GPUs such as CURAND and the Mersenne Twister based generator.
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Table 5.3 TestU01 test results
PRNG Test Suite Tests Passed

CURAND

SmallCrush 15/15

Crush 14/15

BigCrush 13/15

M.Twister

SmallCrush 15/15

Crush 13/15

BigCrush 13/15

Hybrid PRNG

SmallCrush 15/15

Crush 14/15

BigCrush 13/15

5.4.3 Discussion

One of the interesting aspects of our implementation is the use of CPU generated random numbers

to aid the GPU based generator. This can be justified by the following arguments regarding quality and

performance.

Our generator based on random walks on expander graphs, produces quality pseudo random numbers

as can be seen from the results of Section 5.4.2. The quality of our generator is better than glibc

rand(), and is comparable or better compared to existing PRNGs on GPUs. Hence, our technique can

be seen an improving the quality of a naive random number generator. Further, this increase in quality

is obtained by using a little amount of initial randomness. Our technique has connections to other works

on expander graphs such as probability amplification [90].

To perform a random walk, one has to select a neighbor of the current position of the walk uniformly

at random. This requires some source of randomness. Using a GPU based generator for this purpose

is not a good solution as it would still keep the CPU idle. Further, there are no fast, on-demand GPU

based generators. Hence, we make of the CPU to provide us with these few random bits that are used by

the GPU. This is also helping us improve the performance of our generator. Our generator is the fastest

known PRNG on GPUs as can be seen from Figure 5.5.

In our framework, we notice that the GPU is idle for a small fraction of the time. We are presently

using the ANSI C based rand() for this purpose. This is mainly due to the fact that there is no fast

randomness generator on a multicore CPU. Our generator, working on a multicore CPU can be used in

the place of rand(). As Figure 5.5 shows, this would help us in never keeping the GPU idle.

5.5 Application : Hybrid Monte Carlo

Monte Carlo methods are used in several areas of science to simulate complex processes, to validate

simpler processes, and to evaluate data. In Monte Carlo (MC) methods, a stochastic model is constructed
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in which the expected value of a certain random variable is equivalent to the physical quantity to be

determined. The expected value of this random variable is then determined by the average of many

independent samples representing the random variable. These independent samples are constructed by

the use of random numbers following the distribution of that random variable.

Photon migration, i.e., light propagation in a random media, is an area where MC simulations are

proven as a gold standard [21]. In this method, several photons are launched with their position and

direction initialized to either zeros (for some pencil beam initialized at the origin) or some random

numbers. A variance model is used for simulation, where the absorption of photons is simulated by

reducing weights and not discrete termination. At every step a photon takes, a fraction of its weight is

absorbed, and then photon packet is scattered. The new direction and weight of photon are updated.

After several such steps if the remaining weight of a photon is below a certain threshold, the photon is

terminated.

To summarize, the rules of photon migration can be expressed as step-size of photon movement

between sites of photon tissue interaction, and the angles of deflection in the photons trajectory in case

of a scattering event. The method is statistical in nature and we need to study the propagation of a large

number of photons. Due to this, the method requires a large amount of computation time. An earlier

work of photon migration on GPU [7] does this simulation across multiple layers of absorption. This

work uses a multiply with carry (MWC) based RNG to initialize the weights of the photons. We use the

same implementation to show that the simulation can happen in a much better way when it is plugged

in with the hybrid PRNG.

5.5.1 Our solution

We try to solve the problem of photon migration using the hybrid PRNG which has been explained in

the previous sections. The hybrid PRNG supply the random numbers which are used to initialize all the

simulation kernels used. There are specifically three simulation kernels which are used to simulate the

three different layers of the MC simulation. Our hybrid PRNG supplies the values which are required

at each layer.

The PRNG is the heart of the multi-layer simulation of photons. Each of the initial weights of the

photons must be set at a random value which should be generated independent of each other in order

to minimize the number of weight clashes that might happen at the different layers. These clashes

correspond to certain atomic operations. The better quality of random numbers ensure that there will be

lesser clashes and hence lesser serialization will occur. The hybrid PRNG works completely in a data

parallel way which ensures that whenever a call for the PRNG is made, it supplies a random number

irrespective of that at the other thread calls. The algorithm proceeds in an iterative fashion where a fixed

quantity of photon packets are processed in each iteration. This provides an ideal setting for the PRNG

to work as the GPU kernel execution times can be used to supply the graph with fresh random bits which

shall be used for random walks in subsequent iterations. Also, the high quality of the random numbers

supplied allows for more number of photons to be simulated at each layer.
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Algorithm 8 MCPhotonMigration(P,LayerParams)

Input: Number of photons P and parameters of layers

Output: Reflectance parameters and absorbed fraction

1: Initialize 7-regular graph G by Algorithm 6

2: CPU :: Generate and transfer asynchronously random binary stream bin.

3: GPU :: Launch a photon after initializing weights with getnextRand()

4: While the photon survives

5: GPU :: Remove the absorbed weight

6: GPU :: Scatter the photon

7: CPU :: Generate and transfer new bin in an

8: overlapping manner

9: GPU :: noOfUsedPhotons+ = 1
10: If noOfUsedPhotons ≤ maxNoOfPhotons
11: Goto step 3.

12: end while
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In Algorithm 8, we see the pseudo code of the algorithm applied. The PRNG is used in the algorithm

by using an overlap between the CPU and the GPU for generating and transferring the required random

bits. As the generation is not related to the GPU kernels, we have optimally made the CPU work towards

re-populating the bin array while the GPU is busy in steps 5 and 6. The result of the experimentation

can be observed from Figure 5.6. The number of photons is varied from 1 M to 256 M. The Y-axis

shows the time taken by our method, labeled ‘HybridResult’, and the time taken by the implementation

of [7], labeled ‘Original’. We can attribute this result to the following reasons:

• Reduced memory transaction overhead: As the PRNG works in an hybrid fashion, the actual

memory overhead of accessing the global memory for getting random numbers is minimized.

This is due to the reason that our implementation does not use any extra space for storing the

random numbers unlike [7]. In our model, random numbers are generated on the fly. Hence a

certain speedup is obtained.

• Lesser number of clashes in atomic operations: The quality of the hybrid PRNG has been

already discussed in Section 5.4.2. This is another advantage which the hybrid PRNG offers to

the MC simulation. As all the threads independently supply high quality random numbers to

initialize the weight of photons, the number of clashes happening is subsequent layers is reduced.

By clashes, we mean the behavior of two photons as a single one due to having the same weight.

As a higher amount of photons have unique weights, they are independently simulated. The

weights of these photons quickly fall below the threshold and are terminated. As a result, if we

are aiming to simulate a fixed number of photons, then all of them are simulated at a much lesser

amount of time. This contributes towards an overall speedup of around 20%.

5.6 Conclusions

In this work, we have presented an efficient pseudo random generator for GPUs. Our generator

satisfies all the conditions that are deemed important. Our generator also combines the computational

abilities of multicore CPUs and GPUs in a clever way to improve resource utilization. In future, we

wish to study cryptographic applications that often require high quality random numbers.
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PART II

Graph Algorithms
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Introduction

Graphics processing units provide a large computational power at a very low price which position

them as an ubiquitous accelerator. General purpose programming on the graphics processing units

(GPGPU) is best suited for regular data parallel algorithms. They are not directly amenable for algo-

rithms which have irregular data access patterns such as list ranking, and finding the connected compo-

nents of a graph, and the like.

Parallel computing on graphs however is often very challenging because of their irregular nature of

memory accesses. This irregular nature of memory access also stresses the I/O systems of most modern

parallel architectures. It is therefore not surprising that most of the recent progress in scalable parallel

graph algorithms is aimed at addressing these challenges via innovative use of data structures, memory

layouts, and SIMD optimizations [91, 49, 112]. Recent results have been able to make efficient use of

modern parallel architectures such as the Cell BE [112], GPUs [91, 58, 49], Intel multi-core architectures

[25, 142, 3] and the like. Algorithms running of GPUs have shown standout performance amongst these

because of its massive parallelism.

The architecture of GPUs the data parallel computing model best where a common processing kernel

acts on a large data set. Several general purpose data parallel applications [96] and higher-order prim-

itives such as parallel prefix sum (scan), reduction, and sorting [34, 116], [23] have been developed on

the GPU in recent years. From all these applications, it can be observed that GPUs are more suited for

applications that have a high arithmetic intensity and regular data access patterns. However, there are

several important classes of applications which have either a low arithmetic intensity, or irregular data

access patterns, or both. Examples include list ranking, an important primitive for parallel computing

[76], histogram generation, and several graph algorithms [49, 137, 136]. The suitability of GPUs for

such applications is still a subject of study. Very recently, the list ranking problem on GPUs is addressed

in [76] where a speed up of 10 is reported with respect to the CPU for a list of 64 million nodes.

In lieu of the above reasons we explore the graph algorithms in this part of the thesis and explain

our solutions in List Ranking, Graph Connected Components, and Breadth First Search. List Ranking

is discussed in Chapter 6 where we show a list shortening based approach for traversal and ranking. In

Chapter 7, we discuss Hybrid Graph Connected Components. Breadth First Search for Hybrid parallel

machines is discussed in Chapter 8.
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Chapter 6

Parallel List Ranking

6.1 Introduction

In many previous works it has been shown that GPUs are good at improving the performance of

regular computations such as those described in [116, 46, 27]. On such regular applications, GPUs can

outperform a single-core CPU performance by a large factor on average. In recent times, researchers

have studied how GPUs perform on irregular computations such as list ranking [139, 108], connected

components [123], among others. It is to be noted that in these cases, the speed-up compared to a single

core CPU performance is only of the order of 10 or less. More recently, in [79], it is also argued that on

a broad class of throughput oriented applications, the GPGPU advantage is only of the order of 3x on

average and 15x at best compared to the best known CPU implementations.

In this work, we explore the efficiency of a hybrid computing platform, consisting of a CPU and a

GPU, on two classical irregular computation based problems: list ranking, and graph connected compo-

nents. Our hybrid implementations for these problems improve on corresponding GPU based solutions

by a factor of 25% to 30% on an average. In arriving at our algorithms and implementations, we bring

several analytical and empirical issues in hybrid algorithms to the fore. We also discuss issues such as

scalability, resource utilization, and synchronization in hybrid computing platforms.

6.1.1 Related Work

General purpose computing on the GPUs, termed GPGPU, has matured enough in the research com-

munity. Some of the important works include [46, 123, 139]. In most of these works, the computation

is entirely performed on the GPU. In this chapter, we do not wish to provide a complete review of these

works.

In a recent work, Lee et al. [79] reported that typical GPU performance is on the average about 3

times faster than a multicore CPU performance on a class of throughput centric workloads. The main

message from [79] is that the CPUs are evolving and are matching the performance of GPUs up to a

small constant. It therefore makes practical sense to use both the CPU and the GPU for computation.

84



There are very few hybrid works reported in the literature so far. An early work is that of Tomov,

Dongarra, and Baboulin [126]. In [126], the authors use a combination of GPU and CPU to solve

dense linear algebra problems. Other recent works in this direction include hybrid approaches for QR

factorization [6], Cholesky factorization [82], triangular forms [130], and other associated works [128,

129, 127]. These works justify the applicability of hybrid computing platform for a variety of dense

linear algebra problems.

In [50], the authors utilize a CPU and GPU combination to give a parallel solution for the push-

relabel maximum flow algorithm. Their work optimally uses the two devices via a switching mechanism

to perform the push and the relabel operations on the two devices respectively. However, the work does

not focus on a overlapped execution between the two devices. Either of the devices perform some work

while the other is idle. Our work tries to use as much of overlap as possible in order to extract a higher

amount of data parallelism. This intra-device parallelism also ensures a higher amount of resource

utilization and compute power which is available in a single setup. In [139] the authors show how to

perform efficient list ranking on GPUs. They use the CPU to perform a part of the computation, during

which the GPU stays idle.

There has been recent work on list ranking on new and emerging architectures such as the IBM Cell

and GPUs, apart from algorithmic solutions in the PRAM model. In the parallel setting, several optimal

solutions have been proposed which uses the sparse-ruling sets like the one by Helman-JaJa [52]. The

Helman-JaJa solution has been used in the work of [11] on the Cell, in the work of [108] and [139] on

the GPUs. At present, the results of [139] outperform all the earlier works.

We now focus briefly on the literature with respect to finding the connected components of a given

graph. There are several PRAM algorithms for this problem, e.g., [55, 119]. The PRAM model is not

perfectly suitable for GPU computing, as it does not account for several factors such as memory latency

and hierarchy, communication latency, and synchronization, among others. In [48], the author presented

many optimizations for the PRAM model along with results in several multi-processor systems.A GPU

optimized version of the SV algorithm has been studied by Soman et al. in [123].

6.1.2 Our Results

In this chapter, we use the hybrid computing platform as described in Chapter 2. On this platform,

we study two fundamental problems: list ranking and graph connected components. For these two

problems, we employ different kinds of hybrid parallelism.

We design an efficient hybrid list ranking problem that uses techniques such as fractional independent

sets, and the Helman-JaJa algorithm[52]. Our algorithm can be seen as adding a preprocessing phase

to the Helman-JaJa algorithm that may be of independent interest even in a non-hybrid setting. Our

algorithm for list ranking is then implemented on a CPU+GPU hybrid platform. (See Section 2 for a

description of our computing platform). Our implementation can rank a list of 128 M nodes in about 287

ms which is faster by 50% compared to the fastest reported algorithm for list ranking [139]. The gains
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we obtain can be attributed to the hybrid problem solution. Also, we use the principles of producer-

consumer problems to minimize the idle times.

Additionally, we show that efficient hybrid algorithms can be designed for finding the connected

components of a graph. Our hybrid algorithm uses a variant of the popular Shiloach-Vishkin parallel

algorithm [119], and the sequential depth first search algorithm. Our implementation on a CPU+GPU

hybrid platform achieves an average speed-up of 25% compared to the best possible GPU implementa-

tion [123]. We also notice that our hybrid algorithm has very minimal idle time. We also show that our

approach can lead to auto-tuning.

6.2 Recursive Hellman Jaja Algorithm for List Ranking

The algorithm, as described by Helman and JaJa (RHJ) [52] reduces a list of size n to s and then

uses one processing node to calculate the prefix of each node of this new list. It would be unwise to

apply the same technique to the GPU, as this will leave most of the hardware underutilized after the

first step. Instead, we modify the ranking step of the original algorithm to reduce the list recursively

until we reach a list that is small enough to be tackled efficiently by the GPU or by handing over to

either the CPU for sequential processing or to Wylies algorithm on the GPU. Each element of an array

L contains both a successor and rank field. In first step of the algorithm, we select p splitter elements

from L. These p elements will denote the start of a new sublist and each sublist will be represented by a

single element in L1 . The record of splitters is kept in the newly created array L1 . Once all the splitters

are marked, each sublist is traversed sequentially by a processor from its assigned splitter until another

sublist is encountered (as marked in the previous step). During traversal, the local ranks of the elements

are written in list R. Once sublist has been traversed, the successor information, i.e the element (with

respect to indices in L1 ) that comes next is recorded in the successor field of L1 . It also writes the sum

of local ranks calculated during the sublist traversal to the rank field of the succeeding element in L1 .

Next step performs the recursive step. It performs the same operations on the reduced list L1 . First

step of the algorithm determines when we have a list that is small enough to be ranked sequentially,

which is when the recursive call stops.

Finally, we add the prefix values of the elements in R1 to the corresponding elements in R. Here R1

contains all the sublist lengths. Upon completion of an iteration of RHJ, the List R will have the correct

rank information with respect to the level in the recursive execution of the program.

Implementing the RHJ algorithm on the GPU is challenging for the following reasons: Programs

executed on the GPU are written as CUDA kernels. They have their own address space on the GPUs

instruction memory, which is not user-accessible. Hence CUDA does not support function recursion.

Also, each step of the algorithm requires complete synchronization among all the threads before it can

proceed.
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6.2.1 CUDA implementation of RHJ

All operations that are to be completed independently are arranged in kernels. Global synchroniza-

tion among threads can be guaranteed only at kernel boundaries in CUDA. This also ensures that all the

data in the global memory is updated before the next kernel is launched. Since each of the 4 phases of

the algorithm require a global synchronization across all threads (and not just of those within a block)

we implement each phase of the algorithm as a separate CUDA kernel. Since we are relying purely on

global memory for our computation, CUDA blocks do not have any special significance here except for

thread management and scheduling.

The first kernel is launched with p threads to select p splitters and write to the new list L1. The

second kernel also launches p threads, each of which traverse its assigned sublist sequentially, whilst

updating the local ranks of each element and finally writing the sublist rank in L1. The recursive step, is

implemented as the next iteration of these kernels, with the CPU doing the book-keeping between recur-

sive levels. Finally we launch a thread for each element in L to add the local rank with the appropriate

global sublist rank.

A wrapper function that calls these GPU kernels is created on the CPU. It takes care of the recursive

step and the recursion stack is maintained on the host memory. CUDA also requires that all the GPU

global memory be allocated and all input data required by the kernels be copied to the GPU beforehand.

Once we obtain the list size, the required memory image is created for the entire depth of recursion

before we enter the function.

The final sequential ranking step (which is determined by the variable limit) can be achieved in a

number of ways. It can either be handed over to Wyllies algorithm, or be copied to the CPU or be done

by a single CUDA thread (provided that the list is small enough). An appropriate value of limit for each

of these scenarios is discussed in the results section.

6.3 Hybrid List Ranking

The problem of list ranking can be stated as follows. Given a linked list of n nodes, find the distance

of each node in the list from one end of the list. The problem is easy to solve in the sequential setting

with a linear time solution. The problem is difficult to solve in the parallel setting as the solutions are

quite non-trivial and differ significantly from known sequential algorithms. However, list ranking is

identified as one of the fundamental problems in parallel computing by Wyllie [141] in 1978. Since

then, there have been several solutions to this problem. The range of techniques employed in existing

PRAM algorithmic solutions include independent sets, ruling sets, and deterministic symmetry breaking

[8, 141, 52, 120, 109].

Given the importance of the problem, recently solutions optimized to emerging architectures such

as the GPU [108, 139], and the IBM Cell [11] have been reported. The solution of [108] uses only the

GPU to perform list ranking. The solution of [139] uses the CPU also but not in the manner we envisage

in hybrid multicore computing. In [139], ranking a list of small number of splitters is done on the CPU
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followed by the global ranking on the GPU. Notice that while the CPU is working on the solution, the

GPU stays idle, and vice-versa.

In this section, we present a hybrid multicore algorithm to the list ranking problem using ingredients

such as fractional independent sets, and the Helman-JaJa algorithm. Our algorithm can be seen as

adding a preprocessing phase to the Helman-JaJa algorithm that may be of independent interest even

in a non-hybrid setting. In the hybrid setting, our solution can be seen as a pipelined parallelism based

solution as we use the approach of pipelined parallelism while still being a hybrid solution where both

the CPU and the GPU are working simultaneously for a majority of the time.

6.3.1 The Proposed Solution

Our list ranking algorithm can be described as follows. The basic idea is to remove a lot of nodes

from the given linked list L so that we can rank a small list L′ quickly. Once L′ is ranked, we can

reinsert the nodes removed and obtain the ranks for every node in L. The pseudo-code for our approach

is shown in Algorithm 9.

Algorithm 9 Listrank(List L)

1: Shrink L to a small list L′ by removing nodes from L
2: Rank the list L′

3: Re-insert removed nodes from L into L′ and rank L

To be able to do Step 1 efficiently, we need a fast mechanism to remove lot of nodes from L in one

iteration. One of the mechanisms to achieve this is to choose a maximal independent set of nodes that

can be removed from L. However, to be time-optimal, this requires O(log n) time per iteration [64].

However, linked lists are a class of graphs which have the property that a fractional independent set

can be computed also in parallel efficiently. Hence, we use this approach and also show below how to

compute a fractional independent set efficiently.

6.3.2 Fractional Independent Sets

Given a graph G = (V,E), a (c, d)–fractional independent set (FIS) is an independent set of nodes

U ⊆ V so that:

• |U | ≥ |V |/c, for some constant c,

• the degree of any node u ∈ U is at most d, for a constant d.

For a linked list L of n nodes, to compute a fractional independent set in parallel, we proceed as

follows. Each node v picks a bit, b(v) ∈ {0, 1}, uniformly at random and independent of other nodes.

Then, we say that a node v belongs to the FIS if b(v) = 1 and neither the predecessor nor the successor

of v also chose 1. It can be seen from relatively simple arguments (cf. [64]) that with high probability,

the FIS constructed above has at least n/c nodes for c ≥ 24.
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Figure 6.1 The linked list and pre-processing done. (a) The initial list with the rank values in square

brackets and random string in parenthesis. (b) Elements removed on the basis of the random string

and ranks adjusted (c) List obtained after the pre-processing, (d) Ranking the remaining list, and (e)

Restoration of the nodes removed from the list.

Our complete algorithm is shown in Algorithm 10. An example run of the algorithm is shown in

Figure 6.1. We discuss each phase of the algorithm in detail as follows.

Phase I Issues: Recent works on list ranking [108, 139, 11], that involve sublist ranking spend

the maximum amount of time on sublist ranking. Hence, it would be interesting to see how this can be

minimized. Our preprocessing technique helps in that direction as the list size reduces by a nonlinear

factor in a small number of iterations. In addition, spreading this computation on both the CPU and the

GPU in a pipelined manner helps us reduce the overall time taken further.

In theory, it holds that O(log log n) iterations of Phase I suffice to reduce the size of the remaining

list to O(n/ log n) (cf. [64]). In practice, we need that the list size reduces to an extent so that the

overall time taken by Phases I and II is minimized. We explore this trade-off experimentally in Section

6.4.1. The number of iterations r will be discussed later in Section 6.4.1.

In Algorithm 10, we note that in Phase I generating random numbers and using random numbers

to find nodes that would be part of the FIS and will be removed from the list can be processed in a

pipelined manner. See also Figure 6.4. The technique is similar to that of double buffering, where the

CPU generates random numbers and the GPU uses these random numbers. While the GPU is computing

using one set of random numbers, the CPU populates another set of random numbers to be used in the

next iteration. The choice of generating random numbers on the CPU and using them in lines 5–11 of
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Algorithm 10 ListRank(List L)

Input: A list of size n
Output: Ranks of the list provided

1: Phase I : Pre-processing CPU ::

2: for r iterations in parallel do

3: CPU :: Generate a random binary stream bin
4: CPU→ GPU :: Transfer bin asynchronously

5: GPU :: for each node u in the list do in parallel

6: Let b(u) be the bit choice of node u
7: if b(u) = 1 and b(pred(u)) = 0 and

8: b(succ(u)) = 0 then

9: Remove node u with proper book-keeping

10: endif

11: endfor

12: end for

13: Phase II : Sublist Ranking on the GPU

14: CPU :: Generate a random binary stream

15: CPU → GPU :: Transfer random binary stream to the GPU

16: GPU :: Select random splitters in the list obtained after Phase I

17: Rank each sublist locally in parallel on the GPU

18: Find global ranks of splitters

19: Compute global ranks of all elements

20: Phase III : Re-insertion

21: GPU :: Re-insert, and hence rank, the elements removed in Phase I
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Algorithm 10 is justified in the following section. Lines 5–11 of Algorithm 10 present a highly data

parallel program that is more suitable to be executed on the GPU.

Phase II Issues: In Phase II, the manner in which the remaining list at the end of Phase I is stored

makes it difficult to choose splitters. For instance, if we pick splitters at regular intervals as is done

in [108], we may choose entries in the successor array S that are no longer part of the list. A similar

problem arises when we use the technique of [139]. For this reason, we perform an element compaction

from S to S′ where S′ contains only the non-removed elements of S. One can then pick splitters in S′

and use them as splitters for the remaining list.

Phase III Issues: Phase III is the opposite of Phase I, and the book-keeping done in Phase I is useful

to insert the elements in the right order. Our algorithm follows the model of most parallel list ranking

algorithms [64].

6.4 Computing FIS using PRNG from Chapter 5

We now show the working of our algorithm using the PRNG that we defined in Chapter 5. In this

algorithm, we call the getNextRand() function which was defined in Algorithm 7 in Chapter 5.

Algorithm 11 ReduceList( L,G)

Input: A list L of size n and a 7 regular graph G
Output: A sublist of n/ log n nodes

1: Phase I : Pre-processing

2: CPU :: Initialize 7-regular graph G by Algorithm 6

3: for r iterations in parallel do

4: CPU :: Generate and transfer asynchronously random binary stream bin
5: GPU :: for each node u in the list do in parallel

6: temp=getNextRand(bin)

7: Let b(u) be the bit choice of node u from temp
8: if b(u) = 1 and b(pred(u)) = 0 and

9: b(succ(u)) = 0 then

10: Remove node u with proper book-keeping

11: endif

12: endfor

13: end for

We now describe Algorithm 11 in more detail. We first initialize a 7-regular Gabber-Galil expander

graph. This graph is then used to generate random numbers as required. As can be seen in Line 6 of

Algorithm 11, each thread can call getNextRand() to obtain a new random number that will be used

by this thread. Since this operation is done only for those nodes in L that are not removed in previous

iterations, the number of such calls is not known apriori. One can only say that the number of nodes in

L reduces by a constant factor in each iteration. Further, the GPU compute time is overlapped with an

asynchronous transfer from CPU.
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The ability to efficiently produce random numbers on demand in our current approach offers a big

advantage to our implementation compared to the hybrid implementation of Algorithm 10. In Algorithm

10, the CPU generates a quantity of random numbers that is predetermined to be an upper bound on the

number of nodes remaining in the list at each iteration. We will show shortly in our results that an on

demand generation reduces the runtime by 40%.

Once we have a list of size n/ log n, we continue with the approach of Phases II and III of the

algorithm in [16].

6.4.1 Experimental Results

The experimental platform which we use has been already described in Chapter 2. The list is stored

in a structure with the successor, predecessor, and the rank values. We experimented only on random

lists as they are the most difficult to rank due to their irregular nature of memory accesses.

In our experiments, we vary the size of the lists and measure the total running time. We compare the

time taken by the algorithm presented in Algorithm 10 with the following alternative approaches. The

algorithm presented in [139] is presently the fastest known algorithm for list ranking. We therefore pick

this algorithm and show that our hybrid approach is an improvement over the algorithm of [139]. We

also run the algorithm presented in Algorithm 10 in a non-hybrid manner by moving all the work to the

GPU. We call this a pure GPU algorithm. Here two possibilities arise as there are two known methods

to generate random numbers on the GPU. The CUDPP library function cudppRand() uses the MD5

based algorithm from [131]. A recent work [105] uses the Mersenne Twister based approach to generate

random numbers on the GPU. Both these two methods are used for experimenting on Algorithm 10.

Figure 6.2 shows the runtime of our algorithm on lists of various sizes in comparison with the timings

from Wei and JaJa [139]. In Figure 6.2, the label “Hybrid time” refers to our approach, and the label

“WJ10” refers to the timings from [139]. The label “Pure GPU-MD5” refers to the pure GPU algorithm

that uses the CUDPP library function cudppRand() to generate random numbers. The label “Pure

GPU-MT” refers to the pure GPU algorithm that uses the Mersenne Twister based random number

generation [105].

It can be observed from Figure 6.2 that the improved runtime of our approach is due to both algo-

rithmic improvements and also due to an efficient use of the computing platform. For instance, adding

the preprocessing step, Phase I, to the algorithm of [139] is an algorithmic improvement that reduces

the time for list ranking as can be seen from the plots labeled “Pure GPU-MD5” and Pure GPU-MT”.

Similarly, running Algorithm 10 on the GPU alone, by generating random numbers also on the GPU,

improves the results of [139] but is still slower compared to the hybrid algorithm. This figure also shows

that the scalability of our approach does not suffer. We were able to run the experiments on lists of sizes

upto 128M.
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Figure 6.2 Time Comparison with respect to pure GPU implementations and the best known result.

In the plot labeled “WJ10”, we use the numbers reported in [139]. Since the GPU hardware used by

[139] and the GPU in our computing platform are of the same generation and make, the comparison is

appropriate. We could not access the code from the authors of [139]. In the other three plots, we use

the same datasets and run the corresponding programs over multiple runs and considered the average

runtime in obtaining the plots. The results have a low variance.

In our work, to generate random numbers on the CPU, we use the standard library routine rand()

which is implemented in the glibc library of most linux distributions. The glibc rand() call imple-

ments a linear congruential generator to produce random numbers.

We now study the timing trade offs between Phase I and Phase II. To this end, we vary the number

of iterations. r in line 2 of Algorithm 10, and measure the time taken by Phase I and Phase II. On

extensive experimentation we observed that a value of r between 4 log log n and 5 log log n gives the

best possible overall time across several values of n. This is illustrated further by Figure 6.3 for a list of

128M. We measure the time taken by Phase I, Phase II, and the total time. (Since Phase III consumes

very little time, its effect on this trade off is ignored.) The time taken by Phase I increases as we increase

r, and this has the effect of reducing the size of the remaining list. Therefore, the time taken by Phase II

decreases as r increases. The total time, which is very close to the time taken by Phase I plus the time

taken by Phase II has a minimum at r = 4 log log n. In the plot labeled “Hybrid time” in Figure 6.2, the

values reported correspond to the above value of r.
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Table 6.1 Execution times across several list sizes. The list sizes are in million and the timings in

milliseconds

List Phase Phase Phase First Total GPU Time

Size I II III Transfer [WJ10]

1 1.696 0.721 0.096 0.114 2.636 5.593

2 3.293 1.397 0.095 0.207 4.992 10.711

4 6.346 2.757 0.092 0.395 9.591 20.342

8 12.525 5.352 0.096 0.772 18.745 38.472

16 25.452 10.565 0.096 1.422 37.535 75.691

32 49.423 20.884 0.111 2.661 73.079 140.182

64 98.756 41.686 0.113 5.213 145.763 296.723

128 196.512 83.015 0.114 7.312 286.953 574.911
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Figure 6.3 Trade offs between Phase I and Phase II and the total timings for a 128M sized list

In Table 6.1 we show the running time of each phases of our algorithm for lists of various sizes. It

can be noticed that Phase I dominates the overall time taken. Nevertheless, our total time consumed

is about 50% lower compared to [139]. Phase III, while running for the same number of iterations as

Phase I, still consumes very little time. This is because of the nature of computation in Phases I and III.

Phase I has lot more irregular memory accesses compared to that of Phase III, hence the difference in

their time consumption.

Since the present hybrid algorithm outperforms the results of [139], these results will also improve

the corresponding results from [108, 11, 109].
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Table 6.2 Generation, transfer and pre-processing timings for a list of 128 million. All the timings are

in Milliseconds. Iteration 0 refers to the generation of the first batch of random numbers on the CPU

and their transfer.

Iteration Generation Transfer Preprocessing

Time Time Time

0 32.40 0.163 —

1 28.35 0.096 30.45

2 22.59 0.082 25.08

3 18.70 0.053 20.68

4 15.25 0.040 18.35

5 12.88 0.035 14.08

6 10.56 0.027 12.84

7 8.30 0.013 10.66

8 6.09 0.008 8.50

To showcase the power of our hybrid algorithm approach, we focus on Phase I of our algorithm

and illustrate the runtime of various steps in Phase I. The main steps in Phase I are generating random

numbers on the CPU, transferring random numbers to the GPU, and using random numbers on the GPU

to find and use an FIS. We instrument our program to profile the first 9 iterations of Phase I, and the

results are shown in Table 6.2. The first row denotes the first generation and transfer. It can be noticed

from Table 6.2 that the time taken by the GPU to use the random numbers and remove nodes from the

linked list is greater than the time required to generate the random numbers on the CPU and transfer

them to the GPU. This is achieved by using an asynchronous transfer technique wherein a transfer from

the CPU to the GPU can be overlapped with GPU execution.

22.59 ms
0.082 ms0.163 ms

30.45 ms

CPU Idle

32.4 ms

GPU Idle

28.35 ms

GENERATE GENERATE GENERATE

ITERATION 1 ITERATION 2

TRANSFER TRANSFERTRANSFER

CPU :

GPU :

25.08 ms

Figure 6.4 Work units in overlapped execution for a list of 128 M elements for the first 2 iterations.
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Table 6.3 Generation, transfer and pre-processing timings for a list of 16 million

Iterations Generation Transfer Preprocessing

Time Time Time

1 4.35 0.057 5.45

2 3.59 0.040 3.08

3 2.70 0.033 2.68

4 2.25 0.030 2.35

5 1.88 0.025 2.08

6 1.56 0.017 1.84

7 1.30 0.013 1.66

8 1.09 0.008 1.50

The above scheme suggests that in our implementation, the GPU is never idle except for the first

time when random numbers are being generated on the CPU. This situation is illustrated in Figure 6.4

where the time taken by each step of Phase I is shown for a list of 128 M elements. Figure 6.4 shows

also how the various steps in Phase I overlap in their execution. It can be indeed noticed from Figure

6.4 that the GPU is idle only for less than 5% of the time.

6.4.1.1 Results using PRNG from Chapter 5

In our experiments we vary the list size to upto 128 million elements and compare the results with the

result of Algorithm 10. We also compare our results with two other techniques where the glibc random

number generator used in Algorithm 10 is replaced with a generator based on Mersenne Twister. This

is referred in Figure 6.5 as “Pure GPU MT“ and is hence a pure GPU implementation without any

involvement of the CPU. To summarize our generator outperforms the fastest running algorithm by

almost 40%.

It can be seen from Figure 6.5, that the improvement in runtime for reducing the list to a size of

n/ log n is due to two factors. Firstly, using hybrid algorithms helps by bringing also the CPUs into the

computation process. Secondly, an efficient on demand PRNG helps in reducing the runtime further as

can be seen from the plots labeled Hybrid-glibc and Hyrbid-PRNG. Given that Phases II and III of list

ranking take only 20% of the overall time, using Algorithm 10 for Phase I of list ranking as described in

[16] would result in an improvement of 50% in the runtime of list ranking over various list sizes ranging

up to 128 M nodes.
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Figure 6.5 The timing comparison with the other algorithms.

6.5 Conclusions

Our work here considered two fundamental problems and proposed hybrid multicore algorithms for

these two problems. Our work has brought up several important analytical issues with respect to hybrid

algorithms.

In our present work, we considered a very simple hybrid computing platform with only one multicore

CPU and a GPU. Our hybrid algorithms however are designed to scale when more CPUs or more GPUs

are added to the computing platform by making appropriate changes.

As hybrid algorithms become popular, it is also important to consider new programming mechanisms

that allow for implementing hybrid algorithms efficiently. For instance, mechanisms to improve the

synchronization support across devices can help programmability of hybrid algorithms.

In future, we wish to consider further fundamental problems for which one can design hybrid al-

gorithms. Other analytical issues that can be considered are: a mechanism to arrive at an optimal

assignment of tasks to processors, a notion of critical path in such an assignment, and the like.
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Chapter 7

Hybrid Graph Connected Components

7.1 Introduction

Graphs are an important data structure in Computer Science because of their ability to model several

problems. Some of the fundamental graph problems are graph traversals, graph connectivity, and finding

a spanning tree of a given graph. In this Chapter, we study the fundamental graph problem of finding

connected components of a graph on the GPU. It finds application in several other graph problems such

as bi-connected components, ear decomposition, and the like. Our implementation achieves a speed-up

of 9-12 over the best sequential CPU implementation and are highly scalable. Our work can thus lead

to efficient implementations of other important graph algorithms on GPUs.

7.2 Related Work

There have been several PRAM algorithms for the graph connected components problem. Hirschberg

et al. [54, 55] discuss a connected components algorithm that works in O(log2n) time using O(n2)

operations. However, the input representation has to be in the adjacency matrix format, which is a

limitation for large sparse graphs. For sparse graphs, Shiloach and Vishkin [24] presented an algorithm

that runs in O(log n) time using O((m+n)logn) operations on an arbitrary CRCW PRAM model. The

input for this algorithm can be in the form of an arbitrary edge list. A similar algorithm is presented

by Awerbuch and Shiloach in [10]. However, it should be noted that the PRAM model is a purely

algorithmic model and ignores several factors such as the memory hierarchy, communication latency

and scheduling, among others. Hence, PRAM algorithms may not immediately fit novel architectures

such as the GPU.

In [48], the authors presented a wide range of optimizations of popular PRAM algorithms for

connected components of a graph along with empirical results on a Connection Machine 2 and a

Cray YMP/C90. Their work includes optimizations for the Shiloach-Vishkin algorithm [119] and the

Awerbuch-Shiloach algorithm [10]. Though the architectures on which they reported empirical results

are dated, many algorithmic observations and inferences presented are relevant to our work also. An-
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other attempt at implementing connectivity algorithms was by Hsu et al [60]. Their method shows good

speedups on graphs that can be partitioned well. For random graphs, no major speedups were reported.

7.3 The Shiloach Vishkin Algorithm

The Shiloach-Vishkin algorithm involves iterative grafting and pointer jumping operations. In each

iteration, if (u,v) is an edge in the graph, then, under certain condition, the trees containing nodes u and

v are combined to form a single tree. This process is called grafting. Further, during each iteration,

pointer jumping is applied to reduce the height of the resulting trees. The algorithm terminates when

all the trees in the forest are stars, and each node is assigned to one star. In each iteration the following

steps are performed:

• Grafting trees: For each edge uv so that parents of u and v are different, one node changes parent,

if parent of either u or v is the root of its tree and the parent of the other node has a lower index

than the former.

• Grafting star trees onto other trees: This is done to reduce the depth of the resultant trees. The

trees are checked to ascertain whether they are stars or not by allowing nodes which are at a depth

of 2 or larger with respect to the root of the tree to mark its parent and the parent of its parents

as members of non stars. Thus all the nodes which are not part of a star will be marked by this

process. This step reduces the worst case complexity of the algorithm.

• Single pointer jumping: One step of pointer jumping is done to reduce the depth of the trees.

It is shown by Shiloach and Vishkin that this algorithm runs in O(log n) time using O(m + n)

operations. The number of iterations required for an edge to be inactive is large, hence increasing the

memory bandwidth usage. This is also relevant because reading an edge list is bandwidth intensive.

7.4 A Hybrid Algorithm for Graph Connected Components

We consider finding the connected components of a given undirected graph on our hybrid computing

platform. Finding the connected components of a graph is one of the fundamental graph problems

with several applications. Hence, a faster, efficient hybrid multicore solution for this problem is of

importance. Our strategy to solve the problem can be broadly described by the following three step

process.

• Partition the graph according to a certain threshold. A higher percentage is allocated for the GPU.

• Find the connected components in each of the partitions by using both the GPU and the CPU

concurrently.
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• Combine the components found at the CPU and the GPU to arrive at the connected components

of the input graph.

More details of our approach are given below. We partition the graph into a two parts according to

a certain percentage say t. A t% nodes are processed on CPU and (100 − t)% nodes are processed on

GPU. These t% nodes of CPU are further split into (t/c) parts where c is the total number of cores in

CPU. The CPU cores now perform sequential DFS on a subgraph corresponding to their partition. The

GPU processes the subgraph corresponding to its partition using the algorithm described in Algorithm

12 and [123]. A brief pseudo-code of our approach is given in Algorithm 12. In Sections 7.5– 7.7, we

describe each step of the algorithm in detail.

Algorithm 12 ConnectedComponents(G, t)

Input: A graph G = (V,E) with V = {v1, v2, · · · , vn} and a threshold t
Output: The number of components

1: CPU :: ncpu = nt
100

.

2: CPU :: Partition G into c + 1 pieces G1, G2, · · · , Gc+1 with V (Gi) = {v (i−1)·ncpu

c

· · · v i·ncpu

c

}
for 1 ≤ i ≤ c,
V (Gc+1) = V (G) − ∪c

i=1
V (Gi),

E(Gi) = E(G) ∩ (Vi × Vi), for 1 ≤ i ≤ c+ 1.

3: GPU :: Find the connected components of Gc+1 on the GPU

4: CPU :: Find the connected components of Gi on the ith core of the CPU, 1 ≤ i ≤ c
5: Transfer GPU components to the CPU

6: GPU :: Call ProcessCrossEdges

To partition the graph we just consider the first t% of the nodes in one partition and the remaining

nodes in the other partition. There may be better ways to partition the graph so as to minimize the

overall time, but those methods may be more time consuming in general. The approach we follow can

be seen as a case of MIMD data parallelism where different functions are applied on different data sets.

This is necessitated by the fact that the best algorithm suitable for a CPU may be different from the

best algorithm that is suitable for a GPU. For instance, solutions such as DFS/BFS are not very efficient

on architectures such as the GPU. Therefore we use the Shiloach-Vishkin (SV) algorithm [119] on the

GPU. Similarly, the overhead of the SV algorithm compared to a DFS/BFS kind of solution makes it

unsuitable on the CPU.

When finding the connected components of subgraph Gi, for 1 ≤ i ≤ c + 1, we only consider

edges e such that both the endpoints of e are in Gi. We call edges where the endpoints lie in different

subgraphs as cross edges. Figure 7.1 shows an example of cross edges. These cross edges are considered

in Algorithm 13 described in Section 7.7.
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Figure 7.1 An example run of the algorithm. The red dashed lines denotes the partitions within the GPU

or the CPU cores. The green edges are the cross-edges.

7.4.1 Example

An example run on a small sample graph has been shown in Figure 7.1. As we can see,that the

red dashed lines denotes the static partitions that are initially created amongst the two devices and also

among the various cores of the CPU (two in this case). In the next step, we observe the computation

of the components on each of the devices. The cross edges are denoted by green and are recorded in

the first phase during partitioning. In the final phase, these cross edges are used to fuse the components

together to form the final result.

7.5 The Shiloach Vishkin Algorithm for GPU

For finding the connected components of Gc+1 on the GPU, we utilize a modified version of the well

known Shiloach- Vishkin(SV) algorithm [119].

Typically, connected components algorithm is an irregular memory access algorithm which is ac-

tually considered to be highly unfit for a GPU implementation as stated in [123]. In order to reduce

the irregularity of the operations of the GPU computation the following optimizations in the Shiloach-

Vishkin algorithm are done.

• Removing atomic operations

• Reducing 64 bit read overhead by packing 32 bit reads.

• Allowing partial results from previous iterations to be carried forward

101



The implementation from [123] on the GPU follows three main steps: 1) Hooking 2) Pointer Jumping

3) Graph Contraction. These three steps are briefed below.

• Hooking: The selection of the parent nodes for the hooking process is randomized and the sensi-

tivity towards vertex labels is reduced. This reduces the overhead of the whole process. Also, in

the even iterations the node with the lower label selects the node with the higher ones as its parent

and the reverse happens in the odd iterations.

• Pointer Jumping: In the original Shiloach-Vishkin Algorithm single step pointer jumping was

proposed. However, we apply complete pointer jumping in order to convert the tree into a rooted

star in a single iteration. Now, the nodes of the tree are only present at two levels: the root level

and the leaf level.

• Graph Contraction: This process is achieved through edge hiding. As the edges are active

only in the hooking step, the edges are not activated for any further processing once hooking is

complete. In this way, the data movement is reduced thereby reducing the overheads involved.

The above GPU-specific optimizations to the Shiloach-Vishkin algorithm were introduced in [123]

and presently the results of [123] outperform the other GPU-based connected-component algorithms.

7.6 DFS on CPU

For finding the connected components of the graph Gi for 1 ≤ i ≤ c on the ith core of the CPU, we

use the standard DFS algorithm [28]. This is motivated by the fact that since the available parallelism

on the CPU is small, highly data parallel algorithms do not make a good fit. Further, each CPU core

can run independently minimizing any overheads in synchronization and communication. The output of

this step is that each CPU core labels the components identified uniquely.

7.7 Processing Cross Edges

After finding the connected components of each Gi for 1 ≤ i ≤ c+ 1, we construct a supergraph as

follows. Each of the components identified so far is represented by a super-vertex which is typically the

lowest numbered vertex in that particular component. Each of these super-vertices may be connected

by the cross-edges which we had earlier identified. Of the entire set of cross edges that connect a pair

of supervertices, we select only one such cross edge. We now run a parallel connected components

algorithm on this super-graph to identify the components which are connected by the cross-edges to

give us the final result.

We now present Algorithm 13 that identifies connected components in the supergraph. In Algorithm

13, we run threads for each of the cross edges of the supergraph S. Each of the threads checks the labels

of the end-points of the cross-edge. Here, label refers to the mark on each of the nodes which indicates
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Figure 7.2 Time comparison with graphs sizes varying from 500K to 4.5M nodes. The GPU times are

obtained by running the code from [123] on the same instances.

the super-vertex it belongs to. If the labels of the end-points differ, the labels of the two supervertices,

and hence two components, are set to the minimum of the two labels. This unifies the two components.

This is repeated until no labels can be updated.

Algorithm 13 ProcessCrossEdges(Supergraph S)

1: while Labels change do

2: for each of the cross-edges uv where uv ∈ S do

3: GPU :: label(u) = min(label(u), label(v))
4: GPU :: label(v) = min(label(u), label(v))
5: end for

6: end while

7.8 Results

Our experimental set up is as described in Chapter 3. In this work, we consider random graphs of

several components. These random graphs are generated according to the G(n, p) model [22] using the

GTgraph generator [13].

In Figure 7.2 we show the speed-up achieved by our hybrid algorithm on several graph sizes. The

label “Hybrid Time” refers to the runtime of Algorithm 12. The label “GPU Time” refers to the time ob-

tained by the code from the work of [123] on the same GPU as is used in our computing platform. Both

these implementations are run on the same datasets generated as described in the previous paragraph.

As can be seen from Figure 7.2, the hybrid algorithm consistently outperforms the best known GPU

implementation by about 25% on average. In all the results presented in Figure 7.2, and also elsewhere

in this section, the experiment is run for multiple runs and the average result is considered. In Figure 7.2,

the runtime of the hybrid algorithm reported are the figures which corresponds to the best thresholds.
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In our next experiment, we study the relationship between the threshold and the speed-up achieved

on a graph of a particular size. In Figure 7.3 we show the speedup obtained for a 1.5 million, and a

3 million node graph at various thresholds. As expected we see from Figure 7.3 that the speedup is

initially negative and then increases. From Figure 7.3 we see that the speedup reaches a maximum at

around the 25% threshold for 1.5 million nodes and 17% for 3 million node graph.
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Figure 7.3 Time comparison in graphs of size 1.5 million and 3 million nodes. The GPU timings are

the obtained by running the code from [123] on the same instances.

We also studied the effect of the graph size on the threshold. For this purpose, we vary the size of the

graph and find the threshold that gives best performance. The results of this study are shown in Figure

7.4. It can be noticed that the threshold reduces as the size of the graph increases. This can be explained

by the fact that the load on the CPU is comparable on small graphs when the threshold is high. As

the size of the graph goes up, this same load is reached on smaller thresholds. This exact behavior is

reflected in Figure 7.4 where the threshold varies accordingly.

It can be noted that the Algorithm 12 when run with a threshold of 0% will correspond to the algo-

rithm of [123]. This can be seen as the pure GPU algorithm. For the connected components problem,

the improvement in the performance is therefore due to the hybrid computing platform. To illustrate

this further, in Table 7.1 we show the time taken by the CPU and the GPU in our hybrid algorithm for

a graphs of varying sizes. The runtimes correspond to the optimum threshold of partitioning the graph.

This optimum threshold is identified emprically by iterating over a range of thresholds. It can be seen

from Table 7.1 that at the optimum threshold, the time taken by the GPU and the CPU are close to each

other. Additionally, the GPU is never idle except in two instances, and the CPU has no more than 5%

idle time.

7.9 Static Auto-tuning

Our experimental observations in the previous section imply that the size of the graph has some

bearing on the right threshold to use for best performance. As can be seen from Figure 7.3 , for a graph
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Table 7.1 Timing for finding connected components and cross-edge processing. All timings are in ms

and graph sizes in M

Graph GPU CPU Processing Total

Size Time Time Cross-Edges

1 4.13 4.03 0.01 4.14

1.5 4.30 4.23 0.01 4.31

2 7.64 7.71 0.02 7.73

2.5 13.80 13.65 0.02 13.82

3 12.89 12.76 0.03 12.92

3.5 14.73 14.55 0.03 14.76

4 17.61 17.70 0.05 17.75

4.5 19.91 19.34 0.06 19.97

of 1.5 M vertices, a threshold of 25% is good whereas for a graph of 3 M vertices, the threshold reduces

to 17%. In general, one can ask what threshold to choose for a given graph. To this end, we performed

our experiments on a range of graph sizes and a range of thresholds to identify the threshold that gives

the best performance for a given graph size. This best threshold with respect to various graph sizes is

shown in Figure 7.4. One can use the information from Figure 7.4 to know the right threshold to use for

any given graph size by using standard interpolation techniques if required. This resembles the static

auto-tuning model where certain parameters can be chosen according to specific input characteristics

before launching the parallel program. A similar kind of an experiment is performed where the number

of vertices in fixed at 2.5 M and the number of edges is varied. The result of this experiment is shown

in Figure 7.5.

One aspect to note from Figure 7.4 and Figure 7.5 is that the threshold decreases with increasing

graph size. This is due to the fact that the rate at which the CPU in our computing platform can process

edges is slower than the rate at which the GPU can. Hence, as the graph size increases, the portion of

edges that the CPU has to process decreases.

7.10 Conclusions and Future Work

In our present work, we considered a very simple hybrid computing platform with only one multicore

CPU and a GPU. Our hybrid algorithms however are designed to scale when more CPUs or more GPUs

are added to the computing platform by making appropriate changes. These changes are necessary in the

steps of static partitioning of the graph as well as the consolidation step where the components computed

by each CPU core or GPU is merged together based on the distributed cross-edges. In this scenario,

usually the communication bottleneck between the multiple nodes can prove to be an overhead. So,

keeping local copies of the cross edges in each of the GPU or CPU before the start of the computation

can help reduce this overhead.
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Figure 7.5 Threshold variation on a graph of

2.5 million nodes and edge sizes varying from

3M to 8M

As hybrid algorithms become popular, it is also important to consider new programming mechanisms

that allow for implementing hybrid algorithms efficiently. For instance, mechanisms to improve the

synchronization support across devices can help programmability of hybrid algorithms.

In future, we wish to consider further fundamental problems for which one can design hybrid al-

gorithms. Other analytical issues that can be considered are: a mechanism to arrive at an optimal

assignment of tasks to processors, a notion of critical path in such an assignment, and the like.
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Chapter 8

Parallel Breadth First Search

8.1 Introduction

Graph algorithms find a large number of applications in engineering and scientific domains. Promi-

nent examples include solving problems arising in VLSI layouts, phylogeny reconstructions , data min-

ing, image processing, and the like. Some of the most commonly used graph algorithms are graph

exploration algorithms such as Breadth First Search (BFS), and computing components. As the current

real life problems often involve the analysis of massive graphs, it is often seen that parallel solutions

provide an acceptable recourse.

Heterogeneous algorithms that aim to utilize all the computational devices in a commodity heteroge-

neous platform have also been designed for graph breadth-first exploration [58, 91, 43]. Most of these

use platforms consisting of multicore CPUs and GPUs. All of the above-cited works show an average

of 2x improvement over pure GPU algorithms.

Most of the above works in general aim at data structure optimizations but largely run classical

algorithms on the entire input graph. These algorithms are designed for general graphs whereas the

current generation graphs possess markedly distinguishable features such as being large, sparse, and

large deviation in the vertex degrees. In Figure 8.1, we show some of the real-world graphs taken from

[2]. As can be seen from Figure 8.1, these graphs have several vertices of very low degree, often as low

as 1. For instance, in the case of the graph web-Google, 14% of the vertices have degree 1. Table 8.1

lists other properties of a few real world graphs from [2].

Current parallel algorithms and their implementations [91, 43, 112, 58, 135] do not take advantage

of the above properties. For instance, in a typical implementation of the breadth-first search algorithm,

one uses a queue to store the vertices that have to be explored next. But, a vertex v of degree 1 that is

in the queue will not lead to the discovery of any yet undiscovered vertices. So, the actions of BFS with

respect to v such as adding it to the queue, dequeue it, and then realize that there are no new vertices

that can be discovered through vertex v are all unnecessary. These actions unfortunately can be quite

expensive on most modern parallel architectures as one has to take into account the fact that the queue is
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Figure 8.1 A sample of four real world graphs from [2]. On the top-left corner is the graph internet,

top-right is the graph web-google, bottom left is the graph webbase 1M, and the bottom-right is the

graph wiki-Talk.

to be accessed concurrently. Similarly, other operations such as checking of the status of a vertex, may

be quite disposable.

In light of the above paragraph, we envisage that new algorithms and implementation strategies are

required for efficient processing of current generation graphs on modern multicore architectures. Such

strategies should help algorithms and their implementations benefit from the properties of the graphs.

In this Chapter, we propose graph pruning as a technique in this direction. Graph pruning aims to

reduce the size of the graph by pruning away certain elements of the graph. The required computation

is then performed on the remaining graph. The result of this computation is then extended to the pruned

elements, if necessary.

In this Chapter, we apply the graph pruning technique to two important graph algorithms: Breadth-

first search, and connected components. In each case, we show that pruning pendant nodes iteratively

can result in reducing the size of the graph on real-world datasets, by as much as 25% in some cases.

This reduction in size helps us achieve remarkable improvements in speed for the above two workloads

by an average of 35%.

8.1.1 Related Work

Many recent works in parallel computing have focused on graph algorithms. Few among them

include [25, 58, 139, 91]. The work of Scarppaza et al. [112] demonstrates the use of an all-to-all

exchange of visited nodes information across the eight SPUs of a Cell BE. One of the first results of

BFS using GPUs is the work of Harish et al. [49]. Subsequent improvements to [49] centered around

the use of heterogeneous computing. In [58], Olukotun et al. use a CPU+GPU platform where the
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levels of the BFS with fewer discovered nodes are processed on the CPU and levels with large number

of discovered nodes are processed on the GPU. Using such a heterogeneous strategy, they achieve a

throughput of 0.4 Beps (Billion edges per second) on Erdos-Renyi random graphs. These are improved

further by Bader et al. [91]. Some of the prominent works on multicore CPUs include [25] where the

primary goal is to map the data structures to the cache hierarchy so as to improve the cache hit rates. A

recent work [43] partitions the graph so that low degree vertices are processed on the GPU and the high

degree vertices are processed on the CPU.

Graph connectivity on symmetric multiprocessors (SMP) is studied by Bader and Cong in [12]. Their

idea is to give each processor a stub spanning tree to which unvisited nodes may be added iteratively. In

a recent work, Harish and Narayanan [49] have implemented a modified BFS style graph traversal on

the GPU. Their implementation works with a sorted edge list as the input. There have also been other

efforts to implement parallel BFS on different architectures (cf. [112, 143, 47]).

Finding the connected components of a graph also is an important primitive and hence has attracted

a lot of attention within the parallel computing community. Popular parallel algorithms in the PRAM

model include the algorithm of Shiloach and Vishkin [119] and its variants by Greiner [48]. On GPUs,

a variant of Shiloach and Vishkin [119] is used by Soman et al. [123]. A heterogeneous execution of

this algorithm on a CPU+GPU platform with an improvement of 35% on average is shown in [16].

Algorithm or implementation decisions based on the nature of the graph is an emerging area of

research. In [37],the authors propose a Distributed Leaf Pruning (DLP) strategy that helps in achieving

a significant speedup over distributed communication networks. In this work, the authors noticed that in

many real life networks, like CAIDA, the average node degree of a graph with n nodes is very less than

n and nodes with an unitary degree is typically high. So, pruning these nodes from the graph, provided

a much better performance in packet forwarding strategies over the entire network.

In [103], the authors show novel pruning techniques that solves the maximum clique problem on

large sparse graphs. Their main idea is to prune the vertices that strictly have fewer neighbors than the

size of the maximum clique already computed. These are the vertices that can be exempted from the

computation as, even if a new clique is found, its size would not be greater than the maximum one that

is already computed.

Input pruning has been used as a technique in the design of work-optimal parallel algorithms in

the PRAM model. Popular examples include the list ranking algorithm of Anderson and Miller [8],

the optimal merging algorithm [26], the optimal range minima algorithm [114], and so on. In all of

these cases, the size of the input is reduced to an extent after which a slightly non-optimal algorithm is

employed. In a post-processing phase, the results on the reduced input is extended to obtain a result for

the entire input.

8.1.2 Our Results

In this work, we focus on graph BFS, and connected components. For these two graph algorithms,

we first show that a similar preprocessing phase can help reduce the size of the graph by an average
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of 35% on a wide variety of real-world graphs. This helps us to obtain an average of 40% speed-up

compared to the best known implementations for the above problems on similar platforms.

Our preprocessing simply involves removing pendant nodes from the graph. This is done iteratively

so that nodes on pendant paths are also removed during preprocessing. In the post-processing phase, we

show that extending the output of the computation on the smaller graph can be done in a very straight-

forward and quick manner.

Some of our specific contributions are as follows:

• Our results improve the state-of-the-art for graph BFS by 35%. We achieve an average throughput

of 2 billion edges per second on a wide range of data sets including graphs from the University

of Florida collection [2], and graphs generated using the Recursive Matrix Model (R-MAT). The

R-MAT generator is efficiently implemented in the GTGraph suite[13].

• On the connected components problem, we get an average 20% improvement over the best known

result on an identical platform [16]. A small change to the algorithm can also build a spanning

tree of a graph with very little extra time.

8.2 Our Approach

In this section, we present a three phase technique, outilned in Algorithm 14, for scalable parallel

graph algorithms of real world graphs. In the first phase, called the preprocessing phase, we reduce

the size of the input graph by removing redundant elements of the graph. Once the graph size reduces,

the second phase involves using existing algorithms to perform the computation on the smaller graph.

In a final phase, we then extend the result of the computation to the entire original graph via quick

post-processing, if required.

Let G be a large, sparse graph. As mentioned in Algorithm 14, let Prune(G) be a function that can

prune certain elements of G. Let G′ be the graph that remains after Prune(G). Let A be an algorithm

that can compute the desired solution. We then use algorithm A on the graph G′. Let O′ be the solution

on G′. In a post-processing third phase, we extend the solution O′ to a solution O of the entire graph G.

Algorithm 14 ProcessGraph(Graph (V, E))
1: /* Phase I – Prune */

2: G′ = Prune(G)
3: /* Phase II – Compute */

4: O′ = A(G′)
5: /* Phase III – Extend */

6: O = Extend(G,O′)

We note that if Phase I prunes only a constant fraction of the size of the graph, and one uses a standard

algorithm in Phase II, then the asymptotic runtime using the above technique is still unchanged. How-
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ever, even such a constant fraction reduction in size can have a considerable impact on the experimental

efficacy.

We envisage that different graph algorithms can benefit from corresponding pruning processes in

Phase I. Further, step 1 may also be performed iteratively. Each iteration may prune some nodes after

which more nodes may become candidates for pruning in the next iteration. We refer the reader to

Algorithm 15 for an illustration. In Algorithm 15, P refers to a property that vertices that are pruned

will satisfy. Similarly, the post-processing in Phase III can also be based on the problem at hand. If

Phase I is spread over multiple iterations, then Phase III may also be spread over multiple iterations,

possibly in the reverse order of iterations of Phase I.

Algorithm 15 Prune(Graph (V, E))
1: for i = 1 to r iterations do

2: for each vertex v ∈ G do

3: if v has property P then

4: Remove v, and all edges incident on v.

5: Store (v, i) for future re-insertion step.

6: endif

7: endfor

8: endfor

It is important to note that the property P can be evaluated quickly. This helps keep the overall time

for Phase I small. The time taken by a graph algorithm using our technique will depend on the extent of

pruning achieved in Phase I and also the time taken in Phase I and III. As can be noticed, in most cases,

there will also be a trade-off between time taken by Phase I and III and that of Phase II. In fact, such a

trade-off is observed in the case of list ranking [16].

Some of the properties that may be of interest are the following.

• Pendant nodes: Let us call a node v in a graph G as a pendant node if the degree of v is G is 1. For

the two workloads we consider in this Chapter, we show that a simple pruning based on removal

of pendant nodes suffices. This is also the pruning technique used in [37].

• Independent nodes: A subset of nodes is called as an independent set of nodes if they are mutual

non-neighbors. This has been used in list ranking algorithms [8] and its recent heterogeneous

implementation [139, 16].

• Graph partitioning: Graph partitioning calls for partitioning a graph G into a specified number

k equal partitions such that the number of edges that have end points in different partitions is

minimized. In an influential work, Karypis and Kumar [68], introduce the coarsening-refinement

approach. During the coarsening step, a matching of the current graph is computed and prunes

matched vertices.

The above examples indicate that various properties P can have applicability to different problems.

Thus, our approach is quite general. It must be noted that all the above examples are not implemented

111



Figure 8.2 The CSR format for representation.

on modern parallel architectures. In this Chapter, we show that our technique can be used on modern

parallel architectures too.

8.3 Breadth First Search

Breadth First Search (BFS), is one of the most widely used graph algorithms and finds massive ap-

plications in the domains of state space partitioning, graph partitioning, theorem proving, and networks.

The problem statement of the BFS is: given an undirected, unweighted graph G(V, E), and a source

vertex S , compute the minimum number of edges that are needed to reach every vertex of G from S .

The optimal sequential solution to this problem runs in O(V + E) time [28].

The well known sequential algorithm maintains a queue where the newly discovered vertices are are

inserted at the rear. Current vertices are deleted from the front of the queue and this process continues

until the queue is depleted. All the newly visited vertices are constantly enqueued along the way. For

representation of the graph in the memory, we use the compact adjacency list which is more popularly

known as the compact sparse representation (CSR). An example is shown in Figure 8.2. In CSR, all

the adjacency lists are packed into a single large array. An array Ea is used to store the adjacency lists

where the list for vertex i+1 immediately follows vertex i, for all the vertices in G. An array Va, stores

the starting indices of the corresponding adjacency lists in Ea. Each of the indices of Va acts as the

vertex number of of the graph. The key advantage of using this representation is that, the graph is stored

in a contiguous memory locations and no long strides are required to go from a neighbor of a certain

vertex. This helps in reducing the memory access irregularity and hence boosts the overall performance

of the BFS implementation.

8.3.1 Implementation

The basic approach of our algorithm is to first perform a pruning step where pendant vertices are

removed iteratively. This is followed by an efficient parallel execution of BFS on the CPU+GPU hybrid
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platform from Chapter 3. Finally, in a post-processing step, the level number for vertices that were

removed initially will be is computed. Our algorithm is described in Algorithm 16.

Algorithm 16 BFS(Graph (V, E)), V ertexS

1: Call Algorithm 15

2: Perform BFS in hybrid on GPU and CPU (See Algorithm 17)

3: for i = r to 1 do

4: Re-insert removed nodes according to (i, v)
information previously stored.

8.3.2 Phase I

The first phase of removing the pendant vertices is done entirely on the GPU as it is a purely parallel

step with no irregular memory operations involved. Hence, a hybrid implementation of this step puts an

unnecessary overhead of data transfer. We however add the following optimizations.

• To reduce the time spent in Phase I, we use the CSR representation and identify pendant vertices

as follows. Consider vertices u and v numbered consecutively. Then, u is a pendant vertex if

Va[u] and Va[v] differ by 1. If vertex u is numbered n, then the above rule has to be modified to

say that Va[n] = |Ea|. See Figure 8.2 for an illustration where vertex 5 is a pendant vertex, and

also Va[5] = 10. In essence, threads need not read the Ea array, and also do not have uncoalesced

accesses.

• Notice that if a node v that is removed in iteration i, then its only neighbor can now become a

pendant vertex in iteration i+1. Further, in iteration i+1, we need to check only such vertices w.

Therefore, we mark such w in iteration i, and do not check other vertices in iteration i + 1. This

helps in reducing the time spent in Phase I across each iteration. For illustration, see Figure 8.2.

If vertex 5 is removed in the first iteration, then vertex 3 is marked as a potential pendant vertex

in that iteration. Since the remaining degree of vertex 3 is now 1, also vertex 3 can be removed in

the second iteration.

8.3.3 Phase II

We now present our detailed algorithm in Algorithm 18 that is used in Phase II. Algorithm 17 is

similar in spirit to the one used by Munguia et al. [91]. The label CPU:: and GPU:: in Algorithm

17 refer to steps executed on the CPU and the GPU respectively. The CPU and the GPU maintain array

VISITED, FR, and NFR which contain the visited vertices, the current frontier vertices, and the next

frontier vertices, respectively. The array VISITED is shared between the two devices so that the status
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Algorithm 17 PhaseII(Graph (V, E), V ertex S)

Input: A graph G(V, E) and starting vertex S
Output: Level numbers of all the vertices.

1: Set a threshold for separating the vertex set between CPU and GPU.

2: Create Gc graph for CPU and Gg for GPU.

3: Create initial FR array with S
4: while FR ! = φ
5: GPU :: Call GPU BFS((G′,S), Array FR) (Algorithm 18)

6: CPU :: Perform CPU BFS [28].

7: Check NFR array of GPU and CPU for termination

8: Set FR := NFR

9: endwhile

10: Consolidate LEVEL values

Algorithm 18 GPU BFS (Graph (V, E), V ertex S, FR)

Input: A graph G(V, E) and starting vertex S
Output: Level numbers of all the vertices.

1: tid=threadID

2: Initialize LEVEL[S]=1;

3: Set NFR to NULL

4: Calculate range in FR based on size of Eg and threads

5: Find start and stop of index of vertices from range
6: for i = start to stop
7: VISITED[i]=1

8: for j ∈ all neighbors of i do

9: if(VISITED[j] == FALSE)

10: LEVEL[j]=LEVEL[j]+1;

11: Add j to NFR;

12: endif

13: endfor

14: endfor
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UF Sparse Matrix Collection

Graph Nodes Edges Pendant r

Vertices

internet 124,651 207,214 56,959 2

(45%)

dblp 2010 326,183 807,700 87,881 3

(26%)

watson 1 386,992 1,055,093 44,637 2

(11%)

webbase 1M 1,000,005 3,105,536 80,053 4

(8%)

wiki-Talk 2,394,385 5,021,410 176,617 4

(7.37%)

web-Google 916,428 5,105,309 134,452 3

(14.6%)

rail2586 923,269 8,011,362 117,342 4

(12.7%)

tp-6 1,014,301 11,537,419 194,764 4

(19%)

R-MAT Graphs

rmat 1 131,072 256,784 43,556 1

(33.2%)

rmat 2 263,144 554,678 67,345 2

(25.6%)

rmat 3 525,288 1,048,515 55,453 2

(10.5%)

rmat 4 1,056,534 2,097,345 78,234 3

(7.4%)

rmat 5 2,045,266 4,190,223 92,345 4

(4.5%)

rmat 6 3,074,344 8,456,240 105,117 3

(3.4%)

rmat 7 3,156,834 12,673,552 132,443 4

(4.2%)

rmat 8 3,765,223 16,673,993 153,442 4

(4.1%)

Table 8.1 The graphs used for experimentations and their properties. The column heading r in the last

column indicates the number of iterations required to remove all pendant vertices.
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of a vertex can be polled whenever required. This sharing is made possible via the use of host side

allocation through pinned memory. The array LEVEL is used to store the number of edges in a shortest

path from s to every other vertex in the graph. This arrays is maintained locally at both the CPU and the

GPU and is merged at the end of each iteration. An iteration corresponds to exploring all the vertices in

the current frontier, given by the FR array. Once either the CPU or the GPU checks that the NFR array

that it is maintaining is already explored by the other device. The execution stops and the LEVEL array

is transferred from the GPU to the CPU.

The entire algorithm executes until the current FR array is not empty, that is all the vertices has

been visited. To this end, both the CPU and the GPU work in a synchronous manner to perform the

exploration. The GPU does a thread based partitioning of the adjacency list Ea. The CPU on the other

hand does a more coarse grained execution on the Ec portion using the same algorithm using all the

threads available to it with simultaneous multithreading. The GPU BFS part maintains a frontier array

FR, which is the queue where it continually deletes elements from and also maintains a NFR which

is the next frontier to be visited. Both the CPU and the GPU maintains this NFR information locally

so as to minimize the communication overheads. To further minimize the cost of communication, we

transfer the NFR in an asynchronous manner so that maximum amount of overlap can be achieved with

the communication and the devices stay idle for the minimum amount of time. After each iteration,

both the CPU and the GPU communicates this NFR array and sets it as its current FR if it has not been

already visited by the other device. When the BFS algorithm on both CPU and the GPU terminates, the

two devices consolidates their LEVEL arrays.

8.3.4 Phase III

In Phase III of the algorithm, we re-insert the vertices that were removed in Phase I as follows. Let

v be a vertex removed in iteration i of Phase I, and let w be the only neighbor of v prior to its removal.

Then, the LEVEL number of v is set to be one more than the LEVEL number of w. Further, nodes

removed in iteration i are processed before those removed in iteration i−1. This entire step like Phase I

is done entirely on the GPU because of the higher degree of parallelism that enables us to run one thread

per node.

An example run of our algorithm is presented in Figure 8.3 for the graph from Figure 8.2.

8.3.5 Results

In this section, we present the results of our implementation. We compare the results with those of

[91]. The results of [91] are the currently reported best results for graph breadth first search on identical

platforms. In all of the results we do not time the initial transfer of the transfer of the GPU edges.

In Figure 8.4, we run our implementation on a sample of eight real world graphs from the University

of Florida dataset [2]. As shown in Figure 8.4, our results outperform the results of [91]. Similar effect

is seen also on random graphs generated using the R-MAT generator [13] as shown in Figure 8.5. These
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Figure 8.3 An example run of our algorithm on the graph in part (a). Part (b) is the graph obtained after

removing pendant nodes, (c) shows the result of Phase II, and (d) shows the result of Phase III.

graphs are generated with the default values for a = 0.45, b = 0.15, c = 0.15, and d = 0.25 of the

R-MAT as set by the authors as they represent many real world graphs. All the experiments were carried

out on the same platform using the code that was obtained from the respective authors of the papers.

Also, the results reported are averaged over multiple executions.
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To analyze the results we obtain we perform two further experiments. We study the percentage

improvement of our implementation as a function of the percentage of nodes that Phase I can remove.

The results of this experiment are shown in Figure 8.6 for the graphs webbase 1M, wiki-Talk and web-
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Google from the dataset of [2]. Figure 8.6 percentage of vertices are pruned from the input graph. The

improvement can be attributed to the lesser number of operations required in our implementation as

pruned vertices do not enter/exit arrays FR, VISITED, and NFR.

We also experimented on the trade-off between the number of iterations of Phase I and the overall

runtime. As an example, consider that the graph webbase 1M from the [2] dataset. Notice from Figure

8.7 that in the sixth iteration of Phase I, only 134 pendant vertices can be removed. The question we

seek to answer is whether one should run one more iteration of Phase I to remove these 134 vertices, or

move on to Phase II.

Figure 8.7 shows the results of the above experiment on the webbase 1M graph from the [2] dataset.

It can be noticed that the time taken for each iteration of Phase I does decrease. This is attributed to the

fact that successive iterations do not test each vertex whether it can be removed. Rather, we flag potential

pendant vertices in an iteration so that only those vertices are checked in the next iteration. The number

of nodes that are removed in each of the iterations are plotted over the Phase I curve. The overall runtime

decreases initially as we expect to remove more pendant vertices in the first few iterations of Phase I.

The time for Phase I is shown on the right-side Y-axis of Figure 8.7. The important observation we can

note from Figure 8.7 is that the overall runtime plateaus after five iterations of Phase I for the graph

considered. Therefore, it is worthwhile to stop Phase I once the number of remaining pendant vertices

reduces below a small threshold of say 500.
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8.4 Connected Components

Finding the connected components of a graph is of fundamental importance to graph algorithms.

Given a graph G = (V,E), the problem is to find a partitioning of V into disjoint sets V1, V2, · · · , so

that vertices u and v are in the same set if and only if there is a path between u and v in G. Well known

sequential algorithms such as the Depth First Search algorithm (DFS) [28] run in O(n + m) time.

Several efficient parallel algorithms in the PRAM model have been proposed. Popular among them

are the algorithms of Shiloach and Vishkin [119], and the algorithm of Greiner et al. [48]. However,

because of the irregular nature of operations involved, this workload is often difficult to implement on

most modern parallel architectures. Efficient implementations of the Shiloach and Vishkin algorithm

are known to exist for a variety of parallel architectures including symmetric multiprocessors [12], Cray

and CM2 [48], GPUs [123], and also on CPU+GPU systems [16].

In this section, we apply techniques from Section 8.2 and show that highly efficient hybrid algorithms

can be designed for this workload on the CPU+GPU hybrid platform described in Chapter 3. Our

solution can be broadly outlined in the following steps and follows the algorithm used in [16].

8.4.1 Implementation

The main steps of our implementation is outlined in Algorithm 19.

Algorithm 19 Connected Components(Graph (V, E))
Input: A graph G(V, E). Here |V | = n.

Output: Labels of each vertex identifying its component.

1: Call Algorithm 15

2: Initialize LEVEL[S]=1;

3: Set a threshold t.

4: CPU :: ncpu = nt
100

5: CPU :: Partition E into Ecpu and Egpu where Ecpu is the edges corresponding to ncpu nodes and

Egpu is the rest.

6: Find connected components of the graph G(V −ncpu, Egpu) on the GPU using the Shiloach-Vishkin

algorithm [119], and the connected components of G(ncpu, Ecpu) on the CPU using DFS. The graph

G[ncpu] is further divided into c equal partitions where c is the number of threads run on the CPU.

7: Use the cross-edges recorded during the partition phase to compute the final components.

8: Re-insert the edges removed in Step 1.

In Step 1 of Algorithm 19, we prune the pendant nodes in the given graph iteratively. This is done

by the sequence of steps as outlined in Algorithm 15.

In the next steps, we partition the graph according to a predetermined threshold t. The optimal value

of t is later on determined experimentally. We divide the edges of the graph so that the first t% is in one

partition and the rest in the other. We allocate the smaller partition to the CPU and the other to the GPU.

The partitioning strategy that we follow is can be defined as a case of MIMD data parallelism where

different functions are applied to the different data sets. This is because the algorithm that is well suited
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Figure 8.8 An example run of our algorithm on the graph in part (a). Part (b) is the graph obtained after

removing pendant nodes, (c) shows the result of Phase II, and (d) shows the result of Phase III.

for the CPU can be different from that of the GPU. We use the GPU friendly Shiloach-Vishkin (SV)

algorithm [119] for the GPU computation and DFS on the individual CPU cores.

GPU and CPU Optimizations : The Shiloach–Vishkin [119] algorithm is a well suited algorithm for

parallel implementation. However, we need to make some additional optimizations in order to make it

more efficient for the hybrid platform. Some of the major bottlenecks that we address are that of the

atomics, memory latencies and reducing divergence. Towards implementing these modifications for the

GPU, we perform the SV algorithm in three steps. In the first step, called the hooking step, we hook

subtrees of the graph whose root has a lower label to a tree with a higher label whenever there is an edge

uv such that u and v are in different subtrees. In the second step, we do pointer jumping where by we

shrink the existing trees to a rooted star so that the nodes are present only at two levels: either at the

root level or at the leaf level. In the final step we perform edge hiding. In this step, we stop processing

the edges of the smaller sub trees once their hooking step is over. This reduces the thread divergence

to a great extent and also reduces data movement. More details of these optimizations are described in

[123].

For finding the connected components of the graph Gi for 1 ≤ i ≤ c on the ith core of the CPU, we

use the standard DFS algorithm [28]. This is motivated by the fact that since the available parallelism

on the CPU is small, highly data parallel algorithms do not make a good fit. Further, each CPU core

can run independently minimizing any overheads in synchronization and communication. The output of

this step is that each CPU core labels the components identified uniquely.

In the final step, Step of Algorithm 19, the following post-processing is done. For a pendant vertex

v removed in the ith iteration, let w be the only neighbor of v. Then the vertex v is said to belong to the

component that w belongs to. In the above, we process vertices in the opposite order of their removal in

Step 1. An example run of our algorithm is presented in Figure 8.8 for the graph from Figure 8.2.
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show the percentage improvement.

8.4.2 Results

In this section, we present the results of our implementation. We compare the results with those of

[16]. The results of [16] are currently the best reported results for finding the connected components of

a given graph on a CPU+GPU platform.

In Figure 8.9, we ran our implementation on a sample of eight real world graphs from the Univer-

sity of Florida dataset [2]. This can be attributed to the fact that the pointer jumping operation in the

Shiloach-Vishkin algorithm is a highly irregular operation, and hence the fewer such operations the

better.

Similar to the BFS implementation, we also study the the percentage improvement of our implemen-

tation as a function of the percentage of nodes that Phase I can remove. The results of this experiment

are shown in Figure 8.10 for the graphs webbase 1M, wiki-Talk and Web Google from the dataset of

[2]. Due to the irregular nature of memory accesses, pointer jumping is the predominantly costly oper-

ation in the Shiloach-Vishkin [119] algorithm on the GPU. Since our technique reduces the number of

these operations, there is a significant impact on the overall runtime.

Finally, we also study the trade-off between the number of iterations of Phase I and the overall

runtime. This study is motivated by similar reasons as explained in Section 8.3.5. Figure 8.11 shows the

results of the above experiment for the graph webbase 1M from the dataset of [2]. It can be noticed that

the overall time taken decreases over iterations of Phase I and plateaus off at about five iterations for the

graph under consideration. The time for Phase I is shown on the right-side Y-axis of Figure 8.11.
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8.5 Conclusions

In this Chapter, we have proposed graph pruning as a technique to speed-up large graph algorithms

on modern parallel architectures. We applied the technique to two important problems in graphs. Our

results indicate that the technique is quite useful, especially for large sparse graphs.

In all the applications we studied in this Chapter, we needed to prune the pendant vertices. In future,

we wish to study other problems that will lead to the discovery of other pruning strategies.
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Chapter 9

Conclusions and Future Directions

9.1 Conclusions

Programming models for hybrid platforms is a vital area of research. The whole accelerator based

parallel computing community is often looking to develop devices which are having good programma-

bility. In [19], Blelloch proposes a parallel model of computation which is a successor to the previous

PRAM model. In this VRAM model of computation, the author shows the use of vector multiproces-

sors to compute several fundamental computing primitives. It is important to note the relevance of this

work as the current generation multiprocessors are all having SIMD and vector processing units which

requires vector instructions for performance. In [19], the author shows how a group of primitives can be

efficiently used to design a parallel application. The grouping of several primitives as a linear sequence

of parallel kernels, provide a seamless approach to designing parallel programs.

It is also of interest to extend our work to systems that has multiple GPUs and CPUs. A platform

consisting of Nvidia Tesla coupled with a Intel Xeon server that contains a dual socket or quad-socket

CPU will be a more mature platform to experiment upon. In the near future, it is also possible that we

might be having communication links that can provide bi-directional data transfer at the same instant

of time. Real life examples could be on-die hybrid systems. Such platforms will solve many design

challenges for hybrid computations but will equally pose some new ones.

As per the question of implementation of primitives. like the ones that are analyzed in this thesis,

there are some few interesting solutions that can be provided for efficient implementation on platforms

containing multiple GPUs and CPUs. We can see that, as we perform a static partitioning of the graph,

it can be very easily transformed into a problem where we fix a higher number of partitions based on

the total number of devices that are available on the platform. For example, we can perform a hierar-

chical partitioning, where we first decide on a partitioning percentage for the GPU. This percentage is

furthur subdivided by the number of GPUs that are available on board. Naturally, the rest of the graph

is distributed on the CPU in a similar fashion. There might be another possibility where we might have

different GPUs on the same platform which is quite often the case due to the release of new microar-
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chitectures within very small span of time. In that case, the partition allocated to for the GPUs can be

divided based on the ratio of the total number of cores available on each GPU.

Another point of interest is the implementation in platforms when the GPU global memory is too

short to accomodate the total amount of data that is present for the application. While this might be

a common problem that is faced by several application developers widely, there are several efficient

ways of overcoming this. One is asynchronous memory transfers. It is a very popular way of loading

data into the GPU memory using asynchronous transfers that is provided by CUDA through the use of

streams. Also, with other programming features such as pinned memory and universal addressing that

is provided CUDA 6.0 onwards makes this problem much more easier to tackle. Even in cases where

the devices work on non-disjoint data or input that is not statically input into the system, can make very

efficient use of pinned memory or universal addressing in order to perform efficient implementations.

In such cases, it is often a good idea to design the solutions in a way where the two devices approach

the shared data from two different dimensions until they overlap and the algorithm terminates.

In this thesis we attempt to provide efficient hybrid solutions for tightly coupled systems. In this

work, we provide high performance algorithms for some semi-numerical computations and does refine-

ment of novel algorithms on the subject. In most parts of this work, we concentrate towards performance

gains and efficiency. However, according to recent trends power and monetary expectations are exceed-

ing the considerable limits [57]. Hence all the algorithms are needed to be re-thought with power and

energy parameters taken into consideration. These considerations will lead to a healthy development of

hybrid computations and heterogeneous computations in general.

9.2 Future Directions

There are several interesting areas which can be investigated during the course of this work. As

hybrid computing is a relatively new topic in the world of parallel processing, there are several topics

which can be re-looked for finding answers in the hybrid concept. Some of the interesting topics are

discussed below.

9.2.1 All Pairs Shortest Path

The All Pairs Shortest Path (APSP) problem is a well known problem in graph theory. There has

been some research done on the APSP problem on accelerators such as the one in [134, 69]. As a future

work, we plan upon implementing a hybrid algorithm for APSP. We plan upon extending the work on

graph pruning in order to shorten the size of very large sparse graphs. It is intuitively understandable

that for any sparse node that is removed, the path to it will always pass through its predecessors. Hence,

the problem can be well suited to be solved using this technique.

Traditionally, the APSP problem is solved using the Floyd-Warshall algorithm between all the possi-

ble pairs of nodes. It is a O(n3) solution and is ideally not suited for parallel implementations. However,

124



with the elaborate caching mechanisms that are available in the modern generation multicore processors,

it is possible to implement a blocked Floyd-Warshall APSP. It reduces the memory access latencies to a

higher degree and provides an optimal solution. Such a solution has been already provided by Venka-

traman et al. in [134]. A heterogeneous implementation of the blocked APSP problem has also been

shown by Matsumoto et al. in [85]. However, the solution uses a non-overlapped APSP algorithm. In

order to achieve a better performance, we intend to extend this solution by doing graph pruning and then

performing blocked APSP on CPU and GPU in an overlapped fashion.

9.2.2 Randomized Approaches

Randomized approaches is parallel computing is also an interesting area of research. We plan on

deploying the random number generator which we have devised for Monte Carlo simulations. These

simulations usually require a good and reliable source of randomness. Randomized algorithms have

been proved to perform than deterministic ones in many problems of computer science [90]. High

quality random number source is essential for designing cryptographic applications. These applications

are of high computational intensity and often require good systems knowledge to provide good hardware

implementations. It will be interesting to see if the randomized mechanism perform better in a hybrid

setting rather than the homogeneous solutions.

Massively multithreaded computing has entirely changed the horizon of parallel computing and

through this thesis we want to further this idea by positioning hybrid computing as the future of parallel

computing.
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