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Abstract

Blockchain is a distributed ledger and it validates the transactions without any intervention

of a trusted third party (TTP). There are several advantages of using the blockchain-based

smart grid infrastructure, because decentralization, immutability, transparency, confidential-

ity and trust are maintained. A blockchain-based smart grid system contains several entities,

such as trusted registration authority (RA), service providers (SPs), IoT-enabled smart me-

ters (SMs), and users associated with a smart meter. SPs organize the electricity allocation

and energy trading system, and SMs are responsible for monitoring the power utilization and

they maintain the pricing to the consumers (users). SMs can be deployed in the homes, and

an attacker may capture some SMs and use the secure data stored into it. The communi-

cations between SPs and SMs must be secure so that passive/active attacks should not be

possible. To ensure the security and privacy of the users’ private information, it is extremely

required to design a secure and efficient access control scheme between SMs and SPs. With

the help from the blockchain technology, the secure data can be stored in the form of blocks

in a private blockchain. The SPs involved in the P2P SP network are responsible in validat-

ing the new blocks before adding them into the blockchain using the consensus algorithm.

To mitigate these issues, we first propose a new blockchain-based access control protocol

in internet of Things (IoT)-enabled smart-grid system, called DBACP-IoTSG. Through the

proposed DBACP-IoTSG, the data is securely brought to the service providers from their

respectively smart meters. The Peer-to-Peer (P2P) network is formed by the participating

services providers, where the peer nodes are responsible for creating the blocks from the gath-

ered data securely coming from their corresponding smart meters and adding them into the

blockchain after validation of the blocks using the voting-based consensus algorithm. In our

work, the blockchain is considered as private because the data collected from the consumers

of the smart meters are private and confidential. By the formal security analysis under the

random oracle model, non-mathematical security analysis and software-based formal security

verification, DBACP-IoTSG is shown to be resistant against various attacks. We carry out

the experimental results of various cryptographic primitives that are needed for comparative

analysis using the widely-used Multiprecision Integer and Rational Arithmetic Cryptographic

Library (MIRACL). A detailed comparative study reveals that DBACP-IoTSG supports more

functionality features and provides better security apart from its low communication and com-

putation costs as compared to recently proposed relevant schemes. In addition, the blockchain

implementation of DBACP-IoTSG has been performed to measure computational time needed

for the varied number of blocks addition and transactions per block in the blockchain.



The Industrial Internet of Things (IIoT) is able to connect machines, analytics and people

with IoT smart devices, gateway nodes and edge devices to create powerful intuitivenesses to

drive smarter, faster and effective business agreements. IIoT having interconnected machines

along with devices can monitor, gather, exchange, and analyze information. Since the commu-

nication among the entities in IIoT environment takes place insecurely (for instance, wireless

communications and Internet), an intruder can easily tamper with the data. Moreover, physi-

cal theft of IoT smart devices provides an intruder to mount impersonation and other attacks.

To handle such critical issues, we next design a new private blockchain-envisioned access

control scheme for Pervasive Edge Computing (PEC) in IIoT environment, called PBACS-

PECIIoT. We consider the private blockchain consisting of the transactions and registration

credentials of the entities related to IIoT, because the information is strictly confidential and

private. The security of PBACS-PECIIoT is significantly improved due to usage of blockchain

as immutability, transparency and decentralization along with protection of various potential

attacks. A meticulous comparative analysis exhibits that PBACS-PECIIoT achieves greater

security and more functionality features, and requires low costs for communication and com-

putational as compared to other pertinent schemes.

The communication among various entities in an edge computing based generic IoT envi-

ronment takes place via insecure (public) channel (e.g., via the Internet). It gives an oppor-

tunity to an adversary to mount various types of attacks, including “replay”, “man-in-the-

middle”, “impersonation”, and “Ephemeral Secret Leakage (ESL)” attacks. Moreover, the

adversary can physically capture to some IoT smart devices in order to compromise secure

communication among other non-compromised nodes in the network. Therefore, it is very

much essential that the data needs to be securely exchanged among various entities in the

network so that it will not be revealed to the adversary. Otherwise, if the adversary can

manipulate the genuine information, the transactions contained in a block in the blockchain

will not be also genuine. The access control mechanism plays a very crucial role here, because

the IoT devices require to send the information to their nearby gateway node and also the

gateway node needs to send the data to its associated edge server(s) securely. As a result,

we need to have a secure access control mechanism in edge computing based generic IoT en-

vironment to make secure communication among various entities in the network. The edge

servers in a peer-to-peer (P2P) edge servers network are considered as trusted and they are

responsible for creating, verifying and adding the blocks in their local ledgers first using con-

sensus algorithm. Later, the local ledgers maintained by the edge servers are then periodically

updated in the blockchain’s global ledger in order to avoid much burden at the blockchain



center. Due to blockchain technology, once the blocks are added into the blockchain, these

can not be further modified, updated or even deleted from the blockchain because each block

contains previous block hash, Merkle tree root, signature on the transactions and also current

block hash. Most of the access control protocols proposed in the literature in the IoT and

also in resource-constrained wireless sensor networks environments are vulnerable to attacks,

and they do not support blockchain feature in order to provide stronger security and more

functionality features, such as block verification in blockchain, transparency, decentralization

and immutability properties. Finally, we design a novel access control protocol in edge com-

puting based generic IoT environment where depending on the importance of the data in IoT

applications, the data are encrypted in the block (private blockchain) or these are stored in

unencrypted form in the block in the blockchain (public blockchain). There may be some

applications where we need to have both private and public data to be stored in a block in the

blockchain (consortium blockchain). Hence, we consider consortium blockchain access control

mechanism to address these issues. Towards this, a new consortium blockchain-enabled ac-

cess control scheme in edge computing based generic IoT environment (called CBACS-EIoT)

has been suggested, where the mutual authentication among the IoT smart devices and the

gateway node(s), and also among the gateway node(s) and respective edge server(s) occur. In

addition, key management phase is executed among the edge server(s) and associated cloud

server(s). Using the established secret keys, the entities in the network communicate securely.

The data gathered securely by the gateway nodes is then used to form various types of blocks

(private, public or consortium) at the edge server(s) based on application types in the generic

IoT environment. The created blocks are mined by the edge servers in order to add them

in the blockchain center. A detailed security analysis including the formal security and also

the simulation based formal security verification on CBACS-EIoT have been carried out to

exhibit that CBACS-EIoT is secure against passive and active attacks. Finally, a meticulous

comparative performance analysis shows that CBACS-EIoT offers superior security and sup-

ports more functionality features, and also provides less communication and computational

overheads as compared to existing relevant schemes.

Keywords: Internet of Things (IoT), Industrial Internet of Things (IoT), smart grids, edge

computing, blockchain, access control, authentication and key agreement, session key, formal

security, formal security verification, distributed system, peer-to-peer network, consensus al-

gorithms, Multiprecision Integer and Rational Arithmetic Cryptographic Library (MIRACL),

Automated Validation of Internet Security Protocols and Applications (AVISPA).
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Chapter 1

Introduction

An Internet of Things (IoT) consists of a huge number of things (devices) that are inter-

connected through the Internet. A “thing” or “object” in an IoT environment may be a

person, animal or physical object that can be assigned a unique identifier (IP address or

device ID). IoT devices can transfer sensing information from their surrounding areas via

the Internet to some server(s) for further processing. IoT devices can conduct several tasks

like “remote sensing”, “actuating (making an action)” and “support monitoring capabilities”.

Such devices can be made smart appropriately so that they can operate without any human

intervention. Thus, the objective of IoT is to offer a strong interaction among the physical

world and computer-based systems that can lead to improvements in the economic welfare,

along with the accuracy and efficiency while minimizing human interventions.

Figure 1.1 shows a generic IoT network architecture mentioning four different scenarios

(e.g., home, transport, community and national). Several smart devices, like sensors and

actuators can be installed or deployed in various applications where they are connected to the

Internet via the trusted Gateway Nodes (GWNs). The information (data) accessed by the

IoT devices can be accessed by various users (i.e., in case of “a smart home user in a home

application” and in case of “a doctor in a healthcare application”) [85].

Figure 1.2 also illustrates a generic IoT-based smart home application as a case study [187].

The smart devices are deployed into two groups: a) appliance and b) monitor. The devices

installed in the appliance and monitor groups, known as the “agents”, and communicate with

the central controller via wireless communications. A user can control a smart home system

by using the user interface. Moreover, the data gathered by any IoT smart device in the

monitoring group can be also accessed by a user.

Gartner Inc. [2] forecasted that the number of connected IoT devices can reach to 20.4
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Figure 1.1: IoT environment with various applications [214, 218]

Table 1.1: Various IoT units installed based by category (millions of units) [2]

Category 2016 2017 2018 2020

Consumer 3,963.00 5,244.30 7,036.30 12,863.00

Business: cross-industry 1,102.10 1,501 2,132.60 4,381.40

Business: vertical-specific 1,316.60 1,635.40 2,027.70 3,171

Total 6,381.80 8,380.60 11,196.60 20,415.40

billion by the year 2020. A summary of the number of IoT units (grouped by category) in-

stalled in terms of millions of units in 2016-2017 and the predicted number of units in 2018

and 2020, is illustrated in Table 1.1. IoT applications for smart TVs and digital set-top

boxes are being utilized by consumers, whereas the smart electric meters or smart meters

and commercial security cameras are being broadly used in smart grid implementations and

businesses, respectively [2]. Moreover, the industrial IoT applications and devices, such as



3

Figure 1.2: An example of an IoT-based smart home application [187]

manufacturing field devices, real-time location devices for healthcare applications and sensors

for electrical generating plants are the connected things in different businesses and manufac-

turing plants. It was pointed out that by the year 2020, cross-industry devices may reach 4.4

billion units, while the vertical-specific devices (e.g., specialized equipment used in hospital

operating theaters and tracking devices in container ships) was expected to reach 3.2 billion

units.

Table 1.2: IoT endpoint spending by category (millions of dollars) [2]

Category 2016 2017 2018 2020

Consumer 532,515 725,696 985,384 1,494,466

Business: cross-industry 212,069 280,059 372,989 567,659

Business: vertical-specific 634,921 683,817 736,543 863,662

Total 1379,505 1,689,572 2,094,881 2,925,787

Since the consumers are supposed to buy more IoT devices in the future, business invest-

ments are more likely to increase in future years. The IoT endpoint spending by category

(millions of dollars) [2] is briefed in Table 1.2.

In recent years, the growth of IoT has lead to creation of a huge volume of data that
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demands “massive computing resources, storage space and communication bandwidth” [151].

According to the prediction made by Cisco, 50 billion IoT devices are expected to be connected

to the Internet by 2020 [74], and this number may hit to 500 billion by 2025 [35]. It is also

predicted that the “data produced by human, machines and things would reach 500 zettabytes

by 2019, but the Internet Protocol (IP) traffic of global data centers would only reach 10.4

zettabytes” [3]. Hence, based on the observation reported in [36], “45% of IoT-created data

would be stored, processed and analyzed upon close to, or at the edge of network”.

1.1 IoT applications

There are various applications of a generic IoT network which are discussed as follows.

1) IoT based healthcare system

IoT-enabled healthcare system improves the quality of health services and provide better

healthcare facilities to every individuals across the world. In healthcare system a smart sensors

are connected with the network and continuously monitor the patient also constantly send

and receive health data with the hospital server. Moreover, the smart sensors can also able

to send emergency response to the concern authority. In the healthcare application different

IoT devices (also known as smart devices) are attached within the body of a person, and

these deployed devices are also called as “wireless body area network (WBAN)” [189]. The

devices are connected with the network and communicate each other to continuously monitor

the patient and the data are gathered by the mobile device and sent to the concern server via

access points. Moreover, it helps people who lives in the remote locations where in case of

critical scenario, hospitals can suggest to take appropriate actions to save the life of a patient.

However, as the data are strictly confidential and private, the data in transit must be not

leaked to any situation to the adversary [136].

There are many security issues raises, where if an unauthorized person gets access, it may

lead to catastrophic of a patient. Access control is one of the important security feature that

is essential for an IoT-enabled healthcare system that authorized user using his/her smart

mobile device to authenticate with the trusted Hospital Authority (HA) in a hospital [161].

Moreover, in situation like Coronavirus disease (COVID-19), many people carry out their

COVID tests from various diagnostics centers and if the patient’s medical tests are critical or

serious, the doctor may advised the patient to go for hospitalization [25, 40, 53]. Moreover,

the patient may choose different hospital for his/her treatment and the patient also need to
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share the health data with other healthcare providers where the medical tests has been done.

Therefore, the security and privacy of patient’s data is very important to share with other

hospitals. In such scenarios, it is required and necessity to design an appropriate access control

mechanism for such applications.

2) Industrial IoT system

In Industrial IoT (IIoT) system, sensors/actuators collect data from various machines in

which machines can become more consistent and accurate, and produce more efficiency in the

production. At the same time, it is also needed to achieve the quality control and sustainability

in industrial IoT system. In smart transportation application, IoT devices monitor various

parameters, such as traffic congestion, pollution in the air and surveillance, in order to make

the system automatic. One of the challenges faced in this application is how to ensure secure

data collection [59].

The recent development in IIoT systems it provides highly automated, dynamic and smart

machines which communicates with each other to produce maximum productivity, efficiency,

product quality and reduce product cost compared to traditional industry. Moreover, IIoT

system produces lot of data and it is a challenging task to protect individual data [113]. In

various cases it has been found that there are huge leakage in IIoT such as industrial power

consumption, raw material information, air quality, product planning, reactivity of a catalyst

in different temperature and air pressure conditions, and so on. An adversary may infer

such data and leakage of such information may reduce the productivity and efficiency of the

IIoT system. Therefore, it is important to design secure access control system between the

communicated devices [206].

3) Other potential applications

Some other potential applications that use the IoT as a technology are as follows:

• Smart home: In smart home application, IoT based smart homes can provide control-

ling and customizing the home appliances remotely. Though it has numerous benefits,

but also have several security challenges, such as privacy, integrity, confidentiality and

authenticity. The smart devices are connected with their nearby gateway node(s) via

the public Internet, and the gateway nodes forward the data to the nearby edge servers

in case of an edge-based IoT environment [219].
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• Internet of Vehicles (IoV) and smart transportation: IoV has numerous poten-

tial applications which comes with the use of the IoT-empowered smart devices. In IoV,

vehicles, roads, street signs and traffic lights can accordingly adjust to changing condi-

tions in order to assist the drivers, which will provide improve safety, ease congestion

and pollution reduction in the transportation system. Public communication among

various involved entities in the IoV environment makes several vulnerabilities and an

adversary can tamper with the communicated data also the adversary may launch sev-

eral attacks [209]. Therefore, it is required to provide better security and privacy of the

communicated data in IoV system over the public domain.

• Smart grid: The popularity and demand of the IoT-based smart grid is growing rapidly.

The IoT-based smart grid is embedded with smart sensors, objects, and actuators (IoT

smart devices). It provide a reliable transmission of energy which makes the system

automated and efficient, and also improves the economic benefits and deliver quality of

services. The smart objects or physical devices are integrated with an interconnected net-

work that helps in delivering the services efficiently. It has numerous advantages, but at

the same time it has also numerous challenges, such as centralized control, transparency,

poor interoperability, and privacy and security issues, including energy trading between

untrusted/nontransparent networks, auditing and verifying of transaction records in the

system [113].

• Internet of Drones (IoD): Due to increase of commercial drones applications, re-

cent forecasts indicate that there will be a 100 USD billion market opportunity over

the coming years based on the drones. A drone can be equipped with various IoT de-

vices, such as cameras, thermal infrared imaging, Global Positioning System (GPS),

and various other sensors to detect sound and image of a particular location. There are

several applications of drones where the drones can be widely used, ranging from mili-

tary, news-gathering (for example, videography and photography), security, agricultural

and logistics deployments, surveillance, medicine to traffic-monitoring applications. In

IoD system sensors are attached with the drones and communications happen over the

public channel, it faces various threats such as attacks during communication between

drone to drone or drone to ground server station, physical capture of some drones and

captured credentials stored within it using power analysis attacks [188].

• Smart agriculture: There are various fields where IoT plays a mojor role in smart

agriculture application. In agriculture monitoring, it monitors the affect and growth of
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the plants in every stage for their growth. However, various sensors are used to monitor

and gathering knowledge for agriculture, water, soil, plant monitoring, and irrigation

control and so on.

1.2 Advantages of IoT

There are various advantages and benefits of IoT applications, and some of them are listed

below.

• Cost effective: IoT helps to monitor the real time data with cost effectively and nominal

disturbance, such as wildlife monitoring, flooding and military surveillance, fire and

crops monitoring, and so on.

• Time efficient: In various applications such as medicine delivery, food or package deliv-

ery, traffic monitoring it reduces the time and provide a qucker services to the consumers.

• Reducing life threatening risks: With the help of IoT application, a patient can be

monitor remotely in case of major heart attacks or other health disease the IoT sensors

can sent alert to hospital and the patent can be moved to a hospital on prior time.

• Transformation of smart cities: Using IoT system life in metropolitan cities become

easy by providing services like smart parking and better navigation, real time view of

the traffic, accident alert and route optimization.

• Precision: A Global Positioning System (GPS) is installed in drone system to monitor or

control for a specific locations to observe farming obligations such as pesticide spraying,

identification of weeds, monitoring crop health, crop damage, crop assessment, field soil

analysis, irrigation monitoring and so on.

1.3 A generic architecture of an IoT system

The basic architecture of IoT consists of different IoT applications, such as smart home,

healthcare, industrial monitoring, smart vehicles and smart traffic management appliances,

etc. For each application, there are various component such as trusted registration authority

(RA), several IoT smart devices (SDi) are that installed in a proximity of their associated

gateway node (GWj). One or mode GWj can be associated with their nearby edge server ESl.
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Figure 1.3: A generic architecture of an IoT environment

The responsibility of RA is to register all the entities before starting any communication.

Figure 1.3 shows a generic architecture for IoT environment. A group of authorized edge

servers form a peer-to-peer (P2P) edge servers network, called P2P ES network. The peers in

the P2P ES network are responsible for collecting the data securely, validate it and process

to the cloud server for storage.

Each component in the IoT application is described below.

• IoT smart device: Several IoT smart devices can be installed or deployed in a particular

application. The smart devices are typically responsible for gathering their surrounding

information and transmit them to their nearby gateway nodes for further processing.

The IoT smart devices are typically resource limited in terms of memory, storage, com-

munication and computation capabilities.

• Gateway node: A gateway node (GW ) acts as an access point for a particular application.

The data collected by the GW form various smart IoT devices, which are then forwarded

to its associated edge sever (ES) for further processing.

• Edge server: An edge server is a device that manages the flow of data at the boundary
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among the network. An edge server contains various roles that are dependent on what

kind of devices used in the particular application. It typically acts as a network entry

(or exit) point, and is also responsible for various activities, such as “transmission”,

“processing”, “routing”, “filtering”, “monitoring”, “translation”, “storage of informa-

tion passing between networks”, etc.

• Registration authority: A registration authority (RA) is basically a fully trusted entity in

the network, which is responsible for registering all the deployed IoT smart devices, the

gateway nodes, edge servers and cloud servers in the BC. After successful registration,

each entity is pre-loaded with proper credentials prior to its deployment or placement

in the edge-based IoT environment.

1.4 Motivation and objective of the work

In Industrial Internet of Things (IIoT) environment, there are various types of applications

connected with the system and they integrate large-scale discrete heterogeneous data. Such

data can be from the smart sensor data, health care data, traffic data, environmental mon-

itoring data, and industrial manufacturing data. In some smart energy industries, sensors,

machines, and actuators collect huge amount of data such as energy, air quality, fault and

resource prediction, and product planning from various locations. It further produces large

data and enforce a huge amount of processing time to store the data in traditional centralized

system. Moreover, in chemical industry, there is an extensive amount of critical data, such as

reactivity of a catalyst in different temperature and air pressure conditions, results after the

chemicals reactions. In such scenario, inefficiency of IIoT system can seriously damage the

productivity of the industry.

Blockchain is a distributed chain of structure on a decentralized Peer-to-Peer (P2P) net-

work, which eliminates the requirement of centrally controlled system and allows the network

entities to store the data in a distributed fashion. Considering the demand of large-scale IoT

systems, it becomes infeasible and inefficient to store the huge volumes of data in a tradi-

tional IoT system. Therefore, we feel that a great essence in designing blockchain-based IoT

systems. Thus, it should provide an efficient and robust solution to deal with the security

requirements needed for IoT environments. Moreover, due to wireless communication happen

among different entities in IoT, an adversary should not be able to tamper with the sensitive

data. Tampering of data may include intercepting, modifying, deleting or even inserting fake

information during communication.
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With the help of the cloud computing upgradation, IoT platform can process information

in a traditional manner and transform the information into the real time actions. While the

cloud storage becomes an important role in an IoT or IIoT environment, however there are

issues related to threat of data, transparency and privacy preservation. This demands that

we require to integrate the blockchain technology with the industrial IoT applications. Since

the blockchain helps in providing the trusted sharing services where the reliable information

and data can be retrieved, the data (information) can be then traceable. At the same time,

the blockchain is also immutable; thus it enhances the security as well. Therefore, integration

of decentralized blockchain in IIoT system can enable better efficiency, transparency and

guarantee security solutions.

In an IoT environment, some smart devices may be physically captured or their battery

may drain out. Therefore, to prolong the lifetime of smart devices in the IoT environment,

new smart devices deployment is an important task. The deployed smart devices may not be

always assumed to be genuine ones as an adversary may deploy some malicious smart devices

in the network. In this case, it becomes hard to distinguish malicious new nodes from genuine

nodes in the IoT environment. This requires an access control method when new sensing

nodes are deployed in order to prevent malicious nodes from entering the network. Such an

access control method primarily deals with the following two tasks:

• Node authentication: The newly deployed sensing node must authenticate itself to its

neighbor nodes to prove that it is a legal node for accessing the information from the

other sensing nodes.

• Key establishment: A newly deployed sensing node should create a shared secret keys

with its existing neighbor nodes in order to ensure secure communication during the

transmission of information.

Additionally, a new sensing node’s addition phase is required for access control mechanism in

the IoT environment. Access control mechanisms are classified into two categories based on

their authentication type: certificate-less and certificate-based.

Most of the existing access control schemes proposed in the literature for both IoT and its

related environments, such as in wireless sensor networks (WSNs), smart grids, smart homes,

and healthcare, are either insecure against various known attacks or they are inefficient in

communication as well computation. To mitigate these issues, in this thesis, we aim to design

novel secure access control schemes for IoT environment using the blockchain technology in

order to eradicate the security pitfalls in the existing device access mechanisms.
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1.5 Summary of contributions

The reserach contributions towards this thesis have been summarized as follows.

1.5.1 Contribution #1

In the first contribution of the thesis, we propose a novel decentralized private blockchain-

based access control protocol in IoT-enabled smart-grid system, called DBACP-IoTSG. In

DBACP-IoTSG, registration of smart meters and service providers is performed in offline

mode prior to deployment in the IoT-enabled smart-grid environment. The access control

phase associated with DBACP-IoTSG permits a smart meter, say SMi to mutually authenti-

cate with its associated service provider, say SPj through “node authentication” process and

then to establish a session key among them for secret communication through “key estab-

lishment” process. The pairwise secret keys among the service providers are used for secure

consensus procedure. DBACP-IoTSG also supports dynamic node addition mechanism. We

then provide a detailed mechanism for a new block creation and addition in the blockchain

through the “Practical Byzantine Fault Tolerance (PBFT)” based consensus mechanism [38].

The proposed DBACP-IoTSG allows secure leader selection in the P2P SP network that is

responsible for a block verification and addition in the blockchain using voting-based PBFT

consensus algorithm.

The proposed DBACP-IoTSG allows to preserve both anonymity and untraceability prop-

erties that are extremely needed in an IoT-enabled smart grid environment. In addition,

DBACP-IoTSG also permits dynamic smart meter addition phase after initial deployment in

an event that if some service providers SPj may become faulty nodes or some smart meters

SMi may be physically compromised by an adversary. Furthermore, DBACP-IoTSG resists a

crucial active attack under the present de facto model, known as the Canetti and Krawczyk’s

model (CK-adversary model) [37], known as “ephemeral secret leakage (ESL)” attack. Next,

we provide a rigorous security analysis through the formal security under the broadly-accepted

“Real-Or-Random (ROR) oracle model” [37], informal (non-mathematical) security analysis

and also formal security verification using the widely-used AVISPA automated software tool

[17] through simulation.

We also provide the experimental results of various cryptographic primitives that are

needed for comparative analysis using the widely-used “Multiprecision Integer and Ratio-

nal Arithmetic Cryptographic Library (MIRACL)” [5]. A detailed comparative analysis

among DBACP-IoTSG and other relevant protocols in smart grid environment shows that
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DBACP-IoTSG supports better security and provides more functionality attributes, and also

requires less communication and computation costs. Finally, the blockchain implementation

of DBACP-IoTSG has been carried out in order to measure computational time required for

the varied number of blocks addition as well as the varied number of transactions per block

in the blockchain.

1.5.2 Contribution #2

In the second contribution of the thesis, we propose a novel “private blockchain-envisioned ac-

cess control scheme for Pervasive Edge Computing (PEC) in IIoT environment, called PBACS-

PECIIoT”. The purpose behind applying the the private blockchain is that the transactions

and registration credentials of the entities related to IIoT are confidential and private. In the

proposed PBACS-PECIIoT, registration credentials obtained by a smart device (SDi) and

the gateway node (GNj) are fetched from the Blockchain during the access control phase for

authentication and key agreement purposes. Additionally, it is also worth to notice that the

registration credentials stored in the blockchain center (BC) are fetched by an edge server

for key management purpose with its gateway node. The proposed scheme makes use of the

blockchain during the registration as well as access control and key management phases which

is significantly different from the first contribution.

After collecting the information securely from the deployed IoT smart devices by their

respective gateway node(s), the information is securely delivered to the edge servers by their

associated gateway nodes in form of transactions. The edge servers are then responsible for

building the blocks, verifying and adding them in the private blockchain with the help of the

proposed voting-based PBFT algorithm. The local ledgers are maintained by the edge servers

in the blockchain center. A detailed security analysis including the formal security verification

has been conducted. It demonstrates that PBACS-PECIIoT is secure against a number of

potential attacks against passive/active adversaries. The “real testbed experiments for various

cryptographic primitives with the help of widely-accepted Multiprecision Integer and Rational

Arithmetic Cryptographic Library (MIRACL)” [5] have been performed under both server

and Raspberry PI 3 platforms. These testbed experiments measure the computational time

for the primitives with respect to these platforms. Moreover, a detailed comparative analysis

among PBACS-PECIIoT and other related existing schemes has been performed. It shows the

effectiveness and robustness of PBACS-PECIIoT over other schemes. The proposed PBACS-

PECIIoT is also implemented through blockchain simulation study in order to measure its

performance as well as computational time.
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1.5.3 Contribution #3

In the last but not the least contribution of the thesis, a novel access control protocol in

edge computing based generic IoT environment has been designed (called CBACS-EIoT),

where depending on the importance of the data in IoT applications, the data are encrypted

in the block (private blockchain) or these are stored in unencrypted form in the block in the

blockchain (public blockchain). There may be some applications where we need to have both

private and public data to be stored in a block in the blockchain (consortium blockchain), for

example, a smart transportation system.

CBACS-EIoT offers access control among IoT smart devices and their associated gateway

nodes and also among the gateway nodes and edge servers. In addition, key management

process among the edge servers and the cloud servers in the blockchain center. The blocks

created by the edge nodes are mined and put in their respective local ledgers. The local

ledger having blocks are then added in the global ledger maintained by the cloud servers in

the blockchain center. All the secure communications among the IoT smart devices, gateway

nodes, edge servers and cloud servers happen using their respective secret (session) keys.

To assure that the proposed CBACS-EIoT is highly secure against various potential attacks

needed for an IoT environment, the formal security and informal security analysis, and also

the formal security verification using the broadly accepted AVISPA tool have been performed.

A meticulous comparative analysis on security and functionality features, communication and

computation overheads among the proposed CBACS-EIoT and existing schemes has been also

performed to demonstrate the superiority of security and efficiency of CBACS-EIoT over other

existing schemes.

1.6 Organization of the thesis

The organization of this thesis is as follows.

• Chapter 1 gives a brief overview of IoT architecture and its various applications, se-

curity and functionality requirements. It also discusses a taxonomy of various security

protocols in IoT. We then focus on access control, and the objective and motivation

behind the research work on access control mechanisms proposed for IoT using the

blockchain technology as a service.

• Chapter 2 discusses some mathematical preliminaries that are useful for discussing the

proposed schemes in this thesis work.
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• Chapter 3 presents the existing related work on various access control mechanisms in

IoT-related environment using both the blockchain and non-blochain services.

• In Chapter 4, we propose a novel decentralized private blockchain-based access control

protocol in IoT-enabled smart-grid system, called DBACP-IoTSG.

• In Chapter 5, we design a novel private blockchain-envisioned access control scheme

for Pervasive Edge Computing (PEC) in IIoT environment, called PBACS-PECIIoT.

• In Chapter 6, we then propose a novel access control protocol in edge computing based

generic IoT environment (called CBACS-EIoT) using consortium blockchain as a service.

• Finally, Chapter 7 summarizes the thesis by highlighting the research contributions

and then providing some future research directions.



Chapter 2

Mathematical Preliminaries

In this chapter, we explain some mathematical preliminaries which are required to design

various access control protocols in an IoT environment. We first start with the discussion

on one-way cryptographic hash function, its properties, and different associated applications.

Next, we discuss about the elliptic curve and its properties followed by elliptic curve cryptog-

raphy (ECC) and its various computationally hard problems. We discuss about an automated

simulation tool (known as “Automated Validation of Internet Security Protocols and Appli-

cations (AVISPA)” [17]) for checking whether a designed security protocol is safe under the

Dolev-Yao (DY) threat model [67] or not. Finally, we discuss the blockchain technology, its

various applications and underlying consensus protocols, and the Merkle tree that will be

useful for block construction in the blockchain.

2.1 Cryptographic one-way hash function

A one-way function is defined as a function for which finding the inverse of any random input

is computationally infeasible. A hash function is one that produces a fixed length output for

any arbitrary length input. In cryptography, a one-way hash function is used to produce a

digest or a hash value of a message with the following properties:

• The output is deterministic, that is, the same digest is produced for the same message.

• If the input message is altered even slightly, the hash digest should change significantly

to reduce the probability of correlation between the two hash values.

• Deriving the input x from the given hash value y = h(x) and the given hash function

h(·) is computationally infeasible. This property is called the one-way property.
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• For any input x, finding another input y such that h(x) = h(y) with y 6= x, is compu-

tationally infeasible. This property is otherwise known as the weak collision resistant

property.

• Identifying an input pair (x, y) such that h(x) = h(y) where y 6= x, is also computa-

tionally infeasible. This property is otherwise known as the strong collision resistant

property.

Mathematically, a one-way hash function can be defined as follows.

Definition 2.1 (One-way hash function). A “collision-resistant cryptographic one-way hash

function” h: {0, 1}∗ → {0, 1}l is treated as a “deterministic function that on a variable length

input string produces a fixed length output string of l bits, say”. Let AdvHASH
(A) (rt) denote the

“advantage of an adversary A in finding a hash collision” in h(·). Then, AdvHASH
(A) (rt) =

Pr[(i1, i2) ∈R A: i1 6= i2, h(i1) = h(i2)], where Pr[E] is the “probability of a random event

E”, and the input pair (i1, i2) ∈R A means that the input strings i1 and i2 will be randomly

picked by A. We say “an (ζ, rt)-adversary A attacking the collision resistance of h(·)” means

that A’s runtime is at the most rt and that AdvHASH
(A) (rt) ≤ ζ.

2.1.1 Various hash functions

In the following, we discuss some widely-used hash functions.

• Message Digest (MD) family: This hash family carries a variant of hash functions,

such as MD2, MD4, MD5, and MD6. MD2 is designed by Ronald Rivest in 1989

which takes an arbitrary length input and produces an 128-bit length output, and it is

reported in Request for Comments (RFC) 1115. MD2 is considered no longer secure

one-way hash function as it had preimage attack found in 2008, and collision attack was

revealed in 2009. Next, MD4 was developed by Ronald Rivest in 1990 [170]. It takes an

arbitrary length input and produces an 128-bits output. The security of MD4 has been

harshly compromised, and the first collision attack was reported in 1995. Then MD5 was

introduced by Ronald Rivest in 1992 which produces an 128-bits string as the output.

It is also cryptographically broken, but it is still widely used as a checksum to verify

data integrity against unintentional corruption. After that, MD6 was published in 2008

as a cryptographic hash function and it was also submitted to the National Institute

of Standards and Technology (NIST) Secure Hash Algorithm (SHA)-3 competition. A

short description of the MD family is shown in Table 2.1.
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Table 2.1: MD variants and their properties

MD variant Input size Output size Block size No. of rounds Publication Designer(s)

(in bits) (in bits) (in bits) year

MD2 Arbitrary 128 128 18 1989 Ronald Rivest

MD4 Arbitrary 128 512 3 1990 Ronald Rivest

MD5 Arbitrary 128 512 64 1992 Ronald Rivest

MD6 Arbitrary Variable Variable − 2008 Ronald Rivest

(0 < d ≤ 512) and others

• Secure Hash Algorithm (SHA): This hash family carries various secure hash func-

tions, such as SHA-1, SHA-2, and SHA-3, whereas SHA-2 has the variants of SHA-

226, SHA-256, SHA-384 and SHA-512, and SHA-3 also has “SHA3-224”, “SHA3-256”,

“SHA3-384”, and “SHA3-512” types of variants [140]. SHA-1 was introduced in 1995,

which takes an arbitrary length (in bits) input size and make blocks of 512-bits blocks

and produces 160-bit output after 80 rounds. It was developed by the United States

“National Security Agency (NSA)”, and is “U.S. Federal Information Processing Stan-

dard”. The original document of this algorithm (SHA-0) was published by National

Institute of Standards and Technology (NIST) in 1993 under the Secure Hash Stan-

dard, Federal Information Processing Standards Publications (FIPS PUB) 180. Later,

the algorithm was developed with various variants and they are mention in Table 2.2.

Nowadays, SHA-256 is used in various applications, like ESDSA, blockchain technology

and so on.

Table 2.2: SHA variants and their attributes

SHA variant Message size Block size Output size No. of rounds Publication Designer(s)

(in bits) (in bits) (in bits) year

SHA-1 < 264 512 160 80 1995 NSA

SHA-224 < 264 512 224 64 2001 NSA

SHA-256 < 264 512 256 64 2001 NSA

SHA-384/SHA-512 < 2128 1024 384/512 80 2001 NSA
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• RIPEMD: Hans et al. [66] designed a “fast cryptographic hash function”, called

RIPEMD-160. It was developed in the framework of the “EU project RIPE (Race

Integrity Primitives Evaluation)”. As the name suggests, this hash function produces

160-bit hash output as a message digest. RIPEMD-160 was designed towards the soft-

ware implementations that can be done easily on 32-bit architectures. Given an arbitrary

size input message (string), RIPEMD-160 compresses the input by dividing it into the

blocks, whose size is 512 bits each, as in SHA-1.

2.1.2 Cryptographic applications of hash functions

Hash functions can be used in building other cryptographic primitives like message authenti-

cation codes and pseudo-random number generators. They also help in verifying the integrity

of a message. Since it is very sensitive to even a small variation in input, hash digest can be

used to avoid storing passwords in cleartext. The Secure Hash Algorithm (SHA) standard has

algorithms with varying lengths of digest produced. Of these, the SHA-1 [2] with a 160-bit

hash digest is the most widely used in applications and protocols like Secure Socket Layer

(SSL). For better security, SHA-256 is preferred.

2.2 Elliptic curve and its properties

Consider a set Ep(a, b) of all solutions (x, y) ∈ Zp×Zp corresponding to a non-singular elliptic

curve of the form:

y2 = x3 + ax+ b (mod p)

over a prime or Galois field GF (p), where p > 3 is prime number, a, b ∈ Zp are two constants

fulfilling the condition 4a3 + 27b2 6= 0 (mod p), and Zp = {0, 1, . . . , p − 1}. Let O denote

the the point at infinity or zero point in Ep(a, b). Then, Ep(a, b) constitutes an abelian

or commutative group with respect to addition modulo p operation with O as the additive

identity.

The condition 4a3 + 27b2 6= 0 (mod p) is the necessary and sufficient condition that the

corresponding elliptic curve has a non-singular solution [153]. Let P = (xP , yP ) and Q =

(xQ, yQ) be two points in Ep(a, b), where xP and yP denote the x and y co-ordinates of the point

P , respectively, and xQ and yQ denote the x and y co-ordinates of the point Q, respectively.

Then, if P + Q = O, then xQ = xP and yQ = −yP . In addition, P + O = O + P = P ,

∀P ∈ Ep(a, b), where O is known as the additive identity. More precisely, the number of
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points on Ep(a, b), which is denoted by #(E), satisfies the following inequality [192]:

p+ 1− 2
√
p ≤ #(E) ≤ p+ 1 + 2

√
p.

In other words, the elliptic curve Ep(a, b) over Zp has roughly p points on it.

2.2.1 Point addition on an elliptic curve over a finite field

If P = (xP , yP ) and Q = (xQ, yQ) be two points in Ep(a, b), then R = (xR, yR) = P + Q is

calculated by the following rule [111]:

xR = (µ2 − xP − xQ) (mod p)

yR = (µ(xP − xR)− yP ) (mod p)

where µ =

{
yQ−yP
xQ−xP

(mod p), ifP 6= −Q
3xP

2+a
2yP

(mod p), ifP = Q.

The case P = Q is often referred as doubling the point, and it is represented as 2.P .

2.2.2 Scalar multiplication on an elliptic curve over a finite field

The scalar multiplication of an elliptic curve point P ∈ Ep(a, b) is denoted by k.P , where

k ∈ Z∗p = {1, 2, . . . , p − 1} is a scalar, and it is achieved by using repeated point additions

and doubling the point operations. For example, if P ∈ Ep(a, b), then 23.P is calculated

as 23.P = P + P + . . . + P (23 times). More efficient approach allows to compute 23.P =

2.(2.(2.(2.P )+P )+P )+P using three point additions and four doubling the point operations.

2.2.3 Elliptic curve discrete logarithm problem (ECDLP)

Given two points P,Q ∈ Ep(a, b) where Q = k.P and k ∈ Z∗p is a scalar. Computing k from

P and Q is computationally infeasible if p is sufficiently large (for example, p may be 160 bits

prime). This problem is referred to as “elliptic curve discrete logarithm problem (ECDLP)”.

Formally, ECDLP is defined as follows [56].

Definition 2.2 (Elliptic curve discrete logarithm problem (ECDLP)). Let Ep(a, b) be an

elliptic curve over a prime field GF (p), and P,Q ∈ Ep(a, b) where Q = k.P and k ∈ Z∗p .

Instance: (P,Q, r) for k, r ∈ Z∗p .

Output: Yes, if Q = r.P , i.e., k = r; No, otherwise.

Consider the following distributions:
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∆real = {k ∈ Z∗p , A = P,B = Q(= k.P ), C = k : (A,B,C)},
∆rand = {k, r ∈ Z∗p , A = P,B = Q(= k.P ), C = r : (A,B,C)}.

The advantage of any probabilistic, polynomial-time, 0/1-valued (false/true-valued) distin-

guisher D in solving ECDLP on Ep(a, b) is defined as follows:

AdvECDLP
D,Ep(a,b) = |Pr[(A,B,C)← ∆real : D(A,B,C) = 1]

−Pr[(A,B,C)← ∆rand : D(A,B,C) = 1]|,

where the probablity Pr[·] is taken over random choices of k and r. D is said to be an (t, ε)-

ECDLP distinguisher for Ep(a, b) if D runs at most in time t such that AdvECDLP
D,Ep(a,b) ≥ ε.

ECDLP assumption: There exists no (t, ε)-ECDLP distinguisher for Ep(a, b). In

other words, for every probabilistic, polynomial-time 0/1-valued distinguisher D, we have,

AdvECDLP
D,Ep(a,b) ≤ ε.

The security of the ECC depends on the intractability of ECDLP. There are several al-

gorithms, such as Pollard’s rho method [159] and baby-step giant-step method [180] to solve

ECDLP in exponential or sub-exponential time complexity. However, no efficient polynomial-

time algorithm exists for solving ECDLP so far in the literature, and solving ECDLP is an

open problem.

2.2.4 Elliptic curve computational Diffie-Hellman problem (EC-

CDHP)

The elliptic curve Diffie-Hellman is a variant of the Diffie-Hellman key agreement protocol

between two communicating parties over a public channel that utilizes elliptic curve private

and public keys pair to generate a shared secret key. The generated shared secret key is used

for subsequent secure communication between two parties. The “elliptic curve computational

Diffie-Hellman problem (ECCDHP)” is defined as follows.

Definition 2.3 (Elliptic curve computational Diffie-Hellman problem (ECCDHP)). Let P be

a point in Ep(a, b). The ECCDHP states that given the points k1.P ∈ Ep(a, b) and k2.P ∈
Ep(a, b) where k1, k2 ∈ Z∗p , it is computationally infeasible to compute k1.k2.P .

2.2.5 Elliptic curve decisional Diffie-Hellman problem (ECDDHP)

The “elliptic curve decisional Diffie-Hellman problem (ECDDHP)” is a computationally hard

problem, which forms the basis for many security protocols designed using elliptic curve cryp-

tography (ECC). The ECDDHP is defined as follows.
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Definition 2.4 (Elliptic curve decisional Diffie-Hellman problem (ECDDHP)). Let P be a

point in Ep(a, b). The ECDDHP states that given a quadruple (P, k1.P, k2.P, k3.P ), it is im-

possible to distinguish between whether k3 = k1.k2 or a uniform value, where k1, k2, k3 ∈ Z∗p .

The ECDLP, ECCDHP and ECDDHP are computationally infeasible when p is sufficiently

large. It is worth noticing that p having more than 160 bits is sufficient to make ECDLP,

ECCDHP and ECDDHP intractable.

2.2.6 Elliptic curve digital signature

Digital signatures are used to authenticate messages or digital documents while ensuring

non-repudiation and integrity. The signature algorithms employ asymmetric or public key

cryptography techniques and consist of three phases: 1) key generation, 2) signature generation

and 3) signature verification. Elliptic curve digital signature algorithm (ECDSA) is one such

variant of the original digital signature algorithm and it’s phases have been explained below.

• Key generation: First, the system is setup by choosing an elliptic curve Ep(a, b) and

its base point G. Then, every entity chooses its private key d ∈ Z∗p and computes its

corresponding public key as e = d.G.

• Signature generation: Consider an entity with parameters Ep(a, b), h(·), e, G, p where

h(·) is a collision-resistant hash function. Suppose m is the message to be signed. Using

its key pair (d, e) and a chosen random number k ∈ Z∗p , the entity computes the signature

as follows:

k.G = (x1, y1),

c = h(m),

r = x1 (mod p),

s = l−1(c+ d.r) (mod p).

If either r = 0 or s = 0, the algorithm restarts. Otherwise, (r,s) is the signature of

the sender for message m. The signer then sends the signed message 〈m, (r, s)〉 to the

verifier.

• Signature verification: The verifier verifies the signature (r, s) by first checking if
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r, s ∈ Z∗p , and then by using the signer’s public parameters computes the following:

c = h(m),

u = s−1 (mod p),

v = c.u (mod p),

w = r.u (mod p),

t = v.G+ w.e

= (tx, ty),

r∗ = tx (mod p).

The signature is accepted by the verifier only if r∗ = r.

2.2.7 ECC versus RSA

System security level is an ever present concern. The recommended security for current sys-

tems is 128-bits in terms of both the key length and the algorithm implementation. For

example, while RSA public-key cryptosystem is based on the computational complexity of

factorization, ECC utilizes the discrete logarithm problem. The implementation impacts sys-

tem parameters like processing capabilities and energy consumption. Jansma and Arrendondo

did a comparative performance analysis of the ECC and RSA signature algorithms on an Intel

P4 2.0 GHz machine with 512MB of RAM. Their results as recorded in [101] indicate that

ECC provides equivalent security as RSA for smaller key sizes. Also, the computation time

for key and signature generation is significantly less in ECC than in RSA, especially for larger

key sizes as ECC does not require large prime number generation like RSA. Table 2.3 presents

a comparison of key size and computation time for signature generation for each key length.

The significantly low computation time and resources required in ECC make it suitable for

resource constrained environments.

2.3 Simulation tools for verifying Internet security pro-

tocols

The formal security verification using automated software tools has gained a huge popularity

among the researchers in the security domain. The security protocols can be verified by

several verification tools to assure the security protocols that they are secure against some
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Table 2.3: Comparison of key length and computation time for signature generation [101]

Key length (in bits) Signature generation time (in seconds)

ECC RSA ECC RSA

163 1024 0.08 0.16

233 2240 0.18 7.47

283 3072 0.27 9.80

409 7680 0.64 133.90

571 15360 1.44 679.06

attacks, such as replay attack and man-in-the-middle attack. There are several formal security

verification tools under the Dolev-Yao (DY) model [67] for security protocols (for instance,

access control, authentication, and key agreement), such as: a) “Automated Validation of

Internet Security Protocols and Applications (AVISPA)” [17], b) ProVerif [32], and c) Scyther

[50].

2.3.1 AVISPA tool

In this chapter, we provide details description of AVISPA, which is a broadly-accepted auto-

mated software tool for the formal security verification for the presented security protocols in

chapters 4, 5 and 6.

AVISPA [17] is treated as a push-button approach for the validating the “Internet security-

sensitive protocols” as well as its applications. It supports a modular as well as expressive

formal language for identifying the security protocols together with their security possessions.

It also unites various back-ends that execute a heterogeneity of state-of-the-art automatic anal-

ysis methods. There are four back-ends which are implemented in AVISPA and these are: 1)

“On-the-fly mode-checker (OFMC)”, 2) “Constraint-logic-based Attack Searcher (CL-AtSe)”,

3) “SAT-based Model Checker (SATMC)”, and 4) “Tree Automata based on Automatic Ap-

proximations for the Analysis of Security Protocols (TA4SP)”, which are shown in Figure 2.1.

The details of these back-ends can be found in [17].

The tested protocols need to be implemented using the “High-Level Protocol Specification

Language (HLPSL)” with hlpsl file extension. The code written in HLPSL is then converted

into the “Intermediate Format (IF)” using the HLPSL2IF translator, which is fed into one

of the available four backends to get the “Output Format (OF)”. It is a role based language
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Figure 2.1: Architecture of AVISPA tool v.1.1 (adopted from [17])

where the roles can be: a) basic role, b) composition role, c) session role, and d) environment

role and goal. Each of these role is independent from the other roles, acquires some initial data

by parameters or transmits with the other roles by communication channels. The basic role

represents the role of each participant, whereas the composition role speaks for the structure of

the basic role. The session role indicates a single session for the protocol and it is parameterized

by all the necessary variables those are required for one session. The final role for the HLPSL

is called environment, which holds the session composition as well as the constants which

are globally defined. The goal has a duty to check the message authenticity as well as the

confidentiality (privacy) of secret messages/keys.

A role is defined along with the following characteristics:

• Local declaration: The variables and their types are declared.

• Constants declaration: Under this declaration, the constant variables and their types

can be declared, which are not local to the role and can be utilized in another roles.

• Initialization: Here, the local variables are initialized.
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• Accept declaration: The role can considered as done in this condition.

• Intruder knowledge declaration: At the starting of the role implementation, a set

of variables are provided to the intruder. The intruder is always denoted by the special

indentifier “i”.

Each of the following four goals holds the following credentials:

• secret(A,id,B): It means the secret A is shared with the agents in a set B characterized

by the protocol identifier, id.

• witness(A,B,id,C): It represents a “weak authentication” of A by B on C, which is

characterized by the protocol identifier, id.

• request(B,A,id,C): It is for a “strong authentication” of A by B on E, which is charac-

terized by the protocol identifier, id.

• wrequest(B,A,id,E): It is identical with the request(), but it is applied for a “weak

authentication”.

The HLPSL specification of a tested security protocol is first translated to its “Intermediate

Format (IF)” using a translator available in AVISPA, known as the HLPSL2IF translator. The

IF is taken as input to one of the four available back-ends (OFMC, CL-AtSe, SATMC and

TA4SP) to convert to the “Output Format (OF)”. The OF consists of the following important

sections [203]:

• SUMMARY: It states “whether the tested protocol is safe, unsafe, or whether the anal-

ysis is inconclusive”.

• DETAILS: It tells “a detailed explanation of why the tested protocol is concluded as

safe, or under what conditions the test application or protocol is exploitable using an

attack, or why the analysis is inconclusive”.

• PROTOCOL: It defines the “HLPSL specification of the target protocol in IF”.

• GOAL: It specifies “the goal of the analysis which is being performed by AVISPA using

HLPSL specification”.

• BACKEND: It provides “the name of the back-end that is used for the analysis, that is,

one of OFMC, CL-AtSe, SATMC and TA4SP”.
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• Finally, we have “the trace of a possible vulnerability to the target protocol, if any, along

with some useful statistics and relevant comments”.

We require three verifications that are needed to be checked for a tested security protocol: a)

“executability checking on non-trivial HLPSL specifications”, b) “replay attack checking”, and

c) “Dolev-Yao (DY) threat model checking” [67]. The executability check is extremely needed

to assure that the tested protocol can reach to a state where a possible attack can occur during

the protocol execution. To check the “replay attack on a tested protocol”, the backends check

whether the legitimate agents can execute “the specified protocol by performing a search of a

passive intruder”. In addition, the backends also verify whether any man-in-the-middle attack

can be performed by the intruder (i) for the DY threat model checking.

2.3.2 Other automated validation tools

ProVerif [32] is an “automatic symbolic protocol verifier that supports a wide range of cryp-

tographic primitives, defined by rewrite rules or equations”. Various security attributes, such

as authentication, secrecy and process equivalences can be proved through this tool for “an

unbounded message space and an unbounded number of sessions”.

Scyther [50] supports a “graphical user interface (GUI)” which accompaniments the

“command-line” and “Python scripting interfaces”. This tool containing the “command-line”

and “scripting interfaces” makes its utilization for “large-scale protocol verification tests”.

The main feature provided in Scyther is that it assures termination whilst permitting to prove

“correctness of protocols for an unbounded number of sessions”, and it alternatively produce

the output as the proof tree with the help of its backend.

2.4 Blockchain technology and its consensus protocols

In this section, we provide a brief overview of the blockchain technology including its various

applications, and the consensus algorithms used for mining the blocks in a Peer-to-Peer (P2P)

blockchain network.

2.4.1 Overview of blockchain

In 1991, Haber and Stornetta [88] introduced an abstraction for securing a chain of time-

stamped digital documents or records. However, in 2018, Satoshi Nakamoto published a
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formal draft known as “Bitcoin: A peer-to-peer electronic cash system” [148] that provided the

implementation of the blockchain technology using time-stamping concept in a cryptocurrency

scenario, popularly known as Bitcoin [4, 142].

A blockchain is considered as as shared distributed database or ledger containing a series of

blocks or chains that facilitates storing the information in the form of transactions. Blockchain

is formed by a Peer-to-Peer (P2P) distributed network, where the nodes are distributed. Thus,

the blockchain is decentralized in nature. The information stored in the blockchain is protected

and it is secured by the cryptographic techniques, like “elliptic curve cryptography (ECC)”

encryption/decryption, ECC-based digital signature, and one-way cryptographic hashing. The

initial block in the blockchain is referred as the “Genesis” block and the subsequent blocks

are linked with the previous blocks containing the cryptographic hash values of the previous

blocks. A typical blockchain structure with three nodes is shown in Figure 2.2. A block in

the blockchain has two parts: 1) header and 2) payload [245]. The block header contains

various fields, such as previous block hash, block version, timestamp, Merkle tree root value,

etc., whereas the block payload contains transactions. Finally, the current block hash and

signature on the block can be put in the block as well.

There are several advantages of using the blockchain technology as a service, because “de-

centralization”, “immutability”, “transparency”, “confidentiality” and “trust” are maintained

[146]. Transparency property means that “when an entity’s real identity is made secure, one

can still view all the transactions that were done by their public addresses”. Immutability

property allows that “once a block having the information is inserted into the private/public

blockchain, it can not be tampered later”. Blockchain is of three categories [4]: 1) “public

blockchain”, 2) “private blockchain” and 3) “consortium blockchain”. The public blockckchain

is “open to anybody to join, access, send, verify and receive transactions of the blocks in the

network”. Some applications that use public blockchain are “cryptocurrency (Bitcoin)” [148]

and “Ethereum”. In a private blockckchain, it is a considered as a fully trusted network. In

this case, “the access is only granted to a particular entity or a group of trusted entities” and

also “the owner of the network mainly decides which entity will perform a specific task”. A

consortium blockchain is treated as a “combination of both public and private blockchains”.

Consensus algorithms are needed in order to achieve “consensus among the nodes involved in

a peer-to-peer (P2P) blockchain network”. Some broadly-accepted consensus algorithms are

“Byzantine Fault Tolerance (BFT)”, “Practical Byzantine Fault Tolerance (PBFT)”, “Proof-

of-Work (PoW)”, and “Proof-of-Stake (PoS)” [11].

• Public (Permissionless) blockchain: In this case, everyone has the right to “join,
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Figure 2.2: Structure of blockchain (adopted from [172])

access, send, verify and receive transactions of the blocks” in the blockchain to create

a consensus. Bitcoin and litecoin are the popular cryptocurrencies that use the public

blockchain [4].

• Private blockchain: Private (permissioned) blockchains are created and also main-

tained by the private institutions (organizations). In such case, the creators will have

the access control over mining process as well as the consensus algorithm that are fol-

lowed by the private blockchain network. In other words, such type of blockchain is

considered as the distributed network with private control itself. One of the popular

use of the private blockchain is the healthcare system, where the data pertaining to the

patients, doctors, nurses, staffs, pharmacy, etc. are strictly confidential and private.

Hyperledger fabric or Sawtooth, and Ripple allow to form a private blockchain [4].

• Consortium blockchain: Under a consortium blockchain, a set of multiple financial

organizations (institutions) exists, where each financial organization will have its private

blockchain. In this type of blockchain, only a pre-selected set of peer nodes in the P2P

blockchain network are permitted to control the consensus process [4, 220]. Some open-

source consortium solutions include Hyperledger, Corda Ripple, Quorum, Ethermint,

and Multichain. An example of a consortium blockchain is as follows. Consider a

“supply-chain consortium blockchain between a logistics company and a manufacturer”,

where solving the problems in either of organizations would be beneficial for improving

the outcomes for both [7].
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2.4.2 Consensus algorithms

A consensus algorithm is defined as a process where the majority of the peer nodes of

the blockchain network need to reach to a common agreement for adding a block into the

blockchain (distributed ledger). In the following, we discuss some widely-used consensus al-

gorithms.

• Proof of Work (PoW): The abstraction of PoW was narrated from “reusable proof of

work” concept proposed by Finney in 2004 using Secure Hash Algorithm (SHA-1) (which

produces 160-bit hash output) [78]. It is the most popular consensus algorithm used in

the Bitcoin. PoW is a “compute-intensive-based consensus algorithm” [98] that was

implemented in 2008 by Nakamoto [148]. In PoW, if a new block needs to be added into

the blockchain network, the miner node needs to solve mathematical or cryptographic

puzzles, which is also referred as “proof of work problem”. The new block will only get

validated, if the sufficient number of P2P nodes agree. However, this process is very

expensive to add a block, becausethe miner requires a huge resource to solve the puzzles.

Additionally, selfish mining and “distributed denial of service (DDoS)” attacks are the

most common attacks that occurred in PoW.

• Proof of Stake (PoS): The PoS is also referred to as “capability based consensus

protocol”. Here, the miner is treated as a validator. To become a validator in PoS,

the members need to keep coins or tokens as a stake. However, the validators get

the transaction fees as a reward. A block in the network is first selected randomly

which has a large currency in stake. As compared to PoW, PoS requires relatively less

computational resources. In other words, PoS is considered as a relatively safe protocol

and inferior for an attack in the network.

• Delegated Proof of Stake (DPoS): Larimer in the year 2013 introduced the concept

of DPoS from the project, BitShares [1]. In DPoS, the blocks are validated by a set of

nodes (referred to as delegates or witnesses) in the network and each stakeholder can

give a vote in the election process [69]. Since a group of delegates controls a decision, it

is considered as a partially centralized consensus protocol.

• Byzantine Fault Tolerance (BFT): The functioning of BFT algorithm is based

on the voting mechanism which is used to create and add a block into the blockchain.

It gives conclusiveness for adding a block, which eliminates the possibility of rollbacks

in PoW. However, BFT (also known as “compute-intensive-based protocol”) requires
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less energy utilization. It has the ability to handle the Byzantine faults [114] in the

distrustful P2P environment, where a node can behave deceptively or maliciously. How-

ever, the scalability of BFT is not considered as efficient. Moreover, there are several

algorithms designed based on BFT, which include i) “Practical Byzantine Fault Toler-

ance (PBFT)”, ii) “Delegated Byzantine Fault Tolerance (DBFT)”, and iii) “Federated

Byzantine Agreement (FBA)” [201, 245].

• Practical Byzantine Fault Tolerance (PBFT): It is considered as a voting-based

consensus algorithm that was introduced by Castro and Liskov [38] in the year 1999.

If there exist disloyal or faithless nodes in the asynchronous distributed P2P network,

PBFT can assure the consensus process. It can handle the consensus even if the number

of faulty nodes in the network satisfies nf <
z−1

3
, that is, z > 3nf + 1, where z is the

total participated nodes in the P2P network.

• Ripple Protocol Consensus Algorithm (RPCA): In order to maintain the cor-

rectness as well as agreement of the network, RPCA is applied every few seconds by

all the nodes in the P2P network. The present ledger is treated as “closed” whenever

the consensus is reached, and it then comes the “last-closed ledger”. If the consensus

process becomes successful, and there is no fork in the network as well, the “last-closed

ledger” that is maintained by all the nodes in the P2P network will be considered as

identical [176].

In RPCA, a transaction only gets approved when 80% of the “Unique Node List (UNL)”

of a server agrees with it. Therefore, as long as 80% of the UNL is “honest”, RPCA does

not allow to approve any fraudulent transactions. In RPCA, for a UNL of n peer nodes

in the P2P network, the consensus maintains correctness if the condition: f ≤ n−1
5

is

satisfied, where f is the number of Byzantine failures.

2.4.3 Some blockchain applications

1) Blockchain application in smart grid

A blockchain-based smart grid system contains several entities, such as trusted registration

authority (RA), service providers (SPs), IoT-enabled smart meters (SMs), and users associ-

ated with a smart meter. Figure 2.3 shows the role of P2P network of service providers in a

smart grid. SPs organize the electricity allocation and energy trading system, and SMs are re-

sponsible for monitoring the power utilization and they maintain the pricing to the consumers
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(users). SMs can be deployed in the homes, and an attacker may capture some SMs and use

the secure data stored into it [105]. The communications between SPs and SMs must be secure

so that passive/active attacks should be not possible [199]. To ensure the security and pri-

vacy of the users’ private information, it is extremely required to design a secure and efficient

access control scheme between SMs and SPs. With the help from the blockchain technology,

the secure data can be stored in the form of blocks in a private blockchain. The SPs involved

in the P2P SP network are responsible in validating the new blocks before adding them into

the blockchain using the consensus algorithm. To mitigate these issue, we aim to design a

blockchain-based access control mechanism in an IoT-enabled smart grid environment.

Consensus
AlgorithmNew Block

New Block

New Block

New Block

Block l-1 Block l

SP1

Block l-1 Block l

SP2

Block l-1 Block l

SPj

Block l-1 Block l

SP3

P2P  SP Network

Figure 2.3: Blockchain-based P2P network of service providers (SPj) in smart grid (adapted

from [239])

2) Blockchain application in healthcare

A healthcare application using the blockchain technology is shown in Figure 2.4. Such an

application uses private blockchain in a group of trusted hospitals. In the network model

shown in Figure 2.5, it is assumed that the trusted Hospital Authority (HAi) of ith hospital

Hospitali will receive the private and confidential data securely with the help of access control

mechanism from its respective authorized registered users [173]. The HAi being the Miner

node constructs the blocks in the blockchain. All the transactions residing in the blocks are
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encrypted using the secret key of the HAi which is shared with its own users as well as other

trusted HAk of other hospitals Hospitalk. After validating the transactions in a block, an

intended verifier (for example, a doctor in hospital) can see the confidential and private data

of the Hospitali for diagnostic purpose.

Hospital 1

Hospital k

Hospital 2

HA 1
HA 2

HA k

Blockchain

Blockchain
Blockchain

Figure 2.4: Healthcare system with blockchain technology

3) Blockchain application in cyber-physical systems

Modern Industrial Cyber-Physical Systems (ICPS) utilizes the advanced “Artificial Intelli-

gence (AI)” and “Machine Learning (ML)” approaches in order to enhance several issues,

such as “scalability”, “speed” along with accuracy of ICPS security. In this paper, we mainly

focus on “accuracy of ICPS security” because of possibility of “data poisoning attacks”. To

alleviate such concerns, we design a new blockchain-enabled signature-based key management

protocol in an ICPS environment, which will allow the IoT smart devices to securely com-

municate with their respective gateway nodes. The gateway nodes after forming transactions

containing secure data from the smart devices forward those transactions securely to their at-

tached fog servers. Later, the cloud servers in the blockchain center are in charge of creating,

validating and appending the blocks in the private blockchain [54].

There are various advantages for using distributed storage against using a centralized

system in ICPS. The distributed storage in ICPS can make a system more robust and protect
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Hospital Authority (HA)

Nurse Consultant Doctor Pharmacy

Surgeon Patient Diagnostic Center

Mining by HA to form Blockchain

Figure 2.5: Network model with blockchain technology

the system from a single point of failure, low latency and cost effectiveness [116]. In particular,

a blockchain-based ICPS system can provide transparency, immutability, and strong security

against various attacks. Moreover, the AI/ML based algorithms are applied on the valid data

pertaining in the blocks of the blockchain for correct predictions that will further be very

useful for Big data analytics.

A blockchain-enabled ICPS network model is presented in Figure 2.6. Based on each ICPS

application belonging to a company, say Company A, we partition the deployed/installed IoT-

enabled smart devices into a number of disjoint groups (clusters), say Grj (j = 1, 2, · · · , ngr).

Each Grj will contain a number of IoT smart devices, say SDi (i = 1, 2, · · · , nsd) and a

gateway node GWNj. All the IoT smart devices SDi in Grj will communicate with their

GWNj securely using the created secret keys through the key management procedure. Each

GWNj in group Grj is attached with a fog server, say FSk (k = 1, 2, · · · , nfs).

The data securely brought by the gateway node GWNj from its IoT (smart) devices

SDi is used to form the transactions and forward them securely to its FSk. FSk will be

responsible for creating a partial block from the gathered secure transactions and forwarding

the partial blocks to a cloud server CSl (l = 1, 2, · · · , ncs) for verifying and adding the complete

blocks using some consensus algorithm, say the “Practical Byzantine Fault Tolerance (PBFT)

consensus algorithm” [38] under the P2P cloud servers network. The cloud servers belong to
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Figure 2.6: Blockchain-enabled ICPS (adopted from [54]

another company, say Company B. In addition, we have “AI-based Big data analytic center”

belonging to another company, say Company C, where the genuine transactional data stored

in private blockchain in the Blockchain Center (BC) are used for appropriate predictions with

AI/MI algorithms.

4) Other blockchain applications

There are also several other blockchain applications, like smart manufacturing, Internet of

Vehicles (IoV) [43, 70, 71, 72, 77, 163, 165, 186, 191, 213, 229], Internet of Drones (IoD)

[21, 24, 27, 28, 30, 143, 212, 231], supply chains [100, 147, 179, 223, 238], food industry

[79, 200, 208, 242], smart manufacturing [117, 118, 119, 196, 243], smart grids [29, 90, 130,

145, 157, 210, 232], and healthcare [16, 164, 166, 185, 197, 241]. Finally, Blockchain of Things

(BCoT) is illustrated in Figure 2.7.
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Figure 2.7: Blockchain of Things (BCoT)

2.5 Merkle tree and its use in blockchain

A Merkle tree is a data structure that is applied in many computer science applications. It

is also known as “binary hash trees”. Merkle trees are generated by repeatedly comtuing the

hashing pairs of the nodes (here transactions) until there is only one hash remained. This hash

is known as the “Merkle root” or the “root hash”. The construction of the Merkle trees takes

place in a bottom-up method as shown in Figure 2.8, where there are eight transactions Txi,

i = 1, 2, . . . , 8. Here, Hi: Hash of ith transaction Txi (HTxi
= H(Txi)); HTx1Tx2 = HTx1⊕HTx2

or H(HTx1|HTx2); and H12345678: Merkle root.

Now, we discuss the use of the Merkle tree in blockchain [81] as shown in Figure 2.9. In

this figure, we assume for the sake of simplicity that there are four transactions and using

these transactions the Merkle tree root is calculated. After that the Merkle root is stored in

the header of the block 1, where block 0 is the Genesis block in the blockchain. Note that

the pointer of the Merkle tree root is also stored in the block so that the entire tree can be

fetched during the verification process of the transactions containing in that block.

In Figure 2.10, we have shown the mechanism for verifying a transaction, say Y . In order

to do so, we only require to know H(WX), H(Y ), H(Z) and H(WXY Z). Once H(WXY Z)
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Figure 2.8: Creation of Merkle tree

Figure 2.9: Use of Merkle tree in blockchain [81]
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Figure 2.10: Verifying transactions using Merkle root

is re-calculated, it is checked against the value stored in the block’s header. If there is no

mis-match, the transaction Y is treated as authentic one.

In the context of the blockchain, a Merkle tree can store all the transactions residing in

a block by means of producing a “digital fingerprint of the entire set of transactions”. Thus,

the Markle tree allows a user to check if “a transaction can be included in a block or not”.

Finally, we list that Merkle trees will have three major benefits:

• It provides the integrity and validity of data (transactions) in a block.

• It helps in saving the “memory or disk space as the proofs, computationally easy and

fast”.

• The proofs and management need small amounts of information that will be transmitted

across the P2P network.

2.6 Summary

In this chapter, we have discussed those mathematical preliminaries that are useful in dis-

cussing and analyzing the proposed schemes in the subsequent contributory chapters in this

thesis work. We have discussed the one-way cryptographic hash functions and their important

properties. Next, we have discussed “elliptic curve cryptography (ECC)”, its properties and

also its related computationally hard problems. We have then discussed about the automated

software validation tools for formal security verification for the Internet security protocols to
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verify whether a security protocol is safe or unsafe. We have discussed the blockchain technol-

ogy, its various applications and underlying consensus protocols. Finally, we have discussed

the importance of the Merkle tree in the context of the transaction verification in a block into

the blockchain.



Chapter 3

Literature Survey

This chapter presents many existing security protocols in Internet of Things (IoT) environment

as well as wireless sensor networks (WSNs), which are based on access control, authentication,

and key agreement.

3.1 Bakground

3.1.1 Security requirements in IoT environment

Khalil et al. [106] discussed the integration of “Wireless Sensor Networks (WSNs) into IoT”.

While the sensor nodes in WSNs are resource limited in nature, the majority of IoT smart

devices are also resource constrained. Therefore, the security protocols proposed in WSNs

can be also applied to the IoT applications [60].

• Authentication: It involves authentication of sensing devices, users and gateway nodes

before allowing access to a restricted resource, or revealing crucial information.

• Integrity: The message or the entity under consideration must not be changed to ensure

integrity.

• Confidentiality: Confidentiality or privacy of the wireless communication channel pro-

tects from the unauthorized disclosure of information.

• Availability: The relevant network services should be made available to authorized users

even under denial-of-service attacks on the system.

• Non-repudiation: It requires to prevent a mischievous entity from hiding his/her actions.
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• Authorization: It guarantees that only the legitimate IoT sensing (smart) devices can

supply information to network services.

• Freshness: The information needs to be fresh and the old messages cannot be replayed

by any adversary.

Apart from the above security requirements, the following two important security properties

should also be satisfied:

• Forward secrecy: If “an IoT sensing node quits the network”, any future messages after

its exit must be prohibited.

• Backward secrecy: If “a new IoT sensing node is added in the network,” it must not

read any previously transmitted message.

3.1.2 Security attacks in IoT environment

Based on the aforementioned security requirements discussed in Section 3.1.1, several attacks

should be prevented in the design of security protocols for IoT environment. Some of these

attacks include the following [60]:

• Replay attack: A replay attack is one in which “an adversary, A attempts to mislead

another authorized entity by reusing the information during the transmission”.

• Man-in-the-middle attack: In this attack, A intercepts the “transmitted messages” and

tries to “change/delete/modify the contents of the messages delivered to the recipients”

on the fly.

• Stolen-verifier attack: This attack can occur if the GWN in the IoT network stores any

verifier/password table for user/device verification. It is important that the design of

security protocols in IoT should not store any verifier/password table for verification in

order for the protocols need to be resilient against this type of attack.

• Password guessing attack: In a password-based scheme, A may attempt to guess the

password of a legal registered user either online or offline mode with the help of the

eavesdropped messages and also stored credentials in the system or a user’s smart card

(mobile device). Thus, the credentials should be stored in such a way that even if the

user’s smart card (mobile device) is lost/stolen, A should not be able to derive the user’s

secret credentials.
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• Password change attack: In this attack, A may try to change the password of an au-

thorized registered user. For instance, if a smart card-based scheme of the smart card

(mobile device) of a legitimate user is compromised, A can breach the stored information

in that smart card to replace the user’s password with a fake password.

• Denial-of-Service attack: A Denial-of-Service (DoS) attack is any event that prevents

a system’s or network’ capability to perform its expected function. A DoS attack can

happen due to several factors including software bugs, hardware failures, environmental

conditions or resource depletion [221].

• Privileged-insider attack: In this type of attack, a trusted user within the organization

(also known as an insider) can act as a privileged-insider attacker. An insider user can

obtain the secret credentials of a registered user during the registration process of an

authentication scheme, and then try to misuse those credentials.

• Impersonation attack: In an impersonation attack, an attacker may attempt to falsify

a fake message to defraud other recipient entities in a network on behalf of a sending

entity. In such an attack, the receiver will believe that the message has been received

from a legitimate entity.

• Resilience against sensing device capture attack: In IoT environment, except the GWN

the IoT sensing devices are not physically protected. Hence, there is a possibility of

physical capturing of the sensing devices by an attackerA. Next, A can use the extracted

information stored in those captured sensing devices to compromise communication

between other non-compromised sensing devices.

• Resilience against new sensing devices deployment attacks: An access control scheme

designed in the IoT environment must be resilient against several attacks, such as “ille-

gal sensing devices deployment”, “Sybil”, “sensing device replication” and “wormhole”

attacks. In a large network, an Intrusion Detection System (IDS) helps to detect intrud-

ers and prevent attacks in the IoT system. IDS mostly works to prevent against internal

attacks and it can be categorized as flow based, payload based, and hybrid based IDS

[167]. In flow based IDS, it examine the frequency and the interval of the transmitted

message then based on its unusual behavior IDS provide warning. Moreover, payload

based IDS investigate based on the payload of a message. In addition, the hybrid based

IDS consist of both payload and flow based IDS. However, recent days various IDS also

uses machine learning techniques to classify the attacks [51].
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– In a wormhole attack [93], A tries to tunnel the information between two distant

locations with the help of an in-band or out-of-band channel. A wormhole can

deceive and bypass a large amount of network traffic. Thus, it can enable the

wormhole devices to easily obtain and control the network traffic.

– A Sybil attack occurs when a malicious sensing device falsely assumes multiple

identities [68, 150]. The claimed identities may or may not be from the existing

sensing devices’ identities.

– In a sensing device replication attack [158], A intentionally creates various replicas

of a compromised sensing device which are then inserted into the network.
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Two−factor
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Access/user access
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Certificate
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Device
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Identity

management
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Figure 3.1: A taxonomy of security protocols in an IoT environment [60]

3.1.3 Taxonomy of security protocols

The security protocols designed for IoT environment can be categorized into various types as

shown in the taxonomy presented in Figure 3.1.

1) Key management

Key management in IoT can be further categorized into two types based on the type of

cryptosystem used [60].

Key management based on public key cryptography is usually used to establish a secret

key among two (or more) communicating entities in a network. The techniques are based

on the well-known “public key based RSA algorithm” [169] or “Diffie-Hellman Key Exchange
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(DHKE) algorithm” [64]. Since DHKE is insecure against “man-in-the-middle attack”, its

secure version (“station-to-station key agreement protocol”) can be used for secure commu-

nication among entities [112]. However, both RSA and DHKE algorithms require expensive

operations due to modular exponentiation operations used by those algorithms. Recently,

“Elliptic Curve Cryptography (ECC)” has drawn considerable attention because of its effi-

ciency and security as compared to the RSA algorithm. A significantly low computation time

and resources required in ECC as compared to those in RSA make it suitable for resource

constrained environments such as those involving IoT sensing devices and sensors.

In a symmetric key based on pre-shared keys scheme, the key pre-distribution schemes

are based on the “bootstrapping protocol that establishes cryptographically symmetric keys

among two communicating sensing nodes in the network”. A bootstrapping protocol must

not only enable a newly deployed sensing node to initiate a secure communication, but it

must also permit the sensing node to join at a later time to establish secure communications

with other existing sensing nodes. However, the resource limitations of the sensing nodes and

the vulnerability of the physical sensing node capture attack make the implementation of this

protocol a challenge. Secure network connectivity is defined by the probability of establishing

a direct pairwise key between two neighbor IoT smart devices. Assume that this probability

is denoted by pcon, where 0 ≤ pcon ≤ 1. Now, if pcon = 1, a key pre-distribution scheme is

called deterministic; otherwise, it will be called probabilistic.

2) Authentication

Authentication is an important security service in the IoT environment.

• User authentication: In sensitive applications (e.g., healthcare and surveillance) of IoT,

real-time information is much needed to take immediate and corrective actions. Since

the information collected by the GWN may not always be real-time, it is necessary to

access the real-time data directly from the desired sensing nodes. Therefore, we need to

design user authentication schemes in IoT.

A typical user authentication scheme in IoT has the following phases:

– System setup: It allows the system parameters to be chosen by the GWN .

– Sensing node registration: Before the sensing nodes are deployed or installed, they

need to be registered with the GWN . The GWN then loads the necessary secret

credentials before deployment.
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– User registration: To access information (service) from certain sensing nodes, a

user Ui needs to register with the GWN . Ui first provides his/her credentials (e.g.,

identity, password and biometrics) secretly to the GWN and the GWN issues a

smart card or mobile device securely to Ui.

– Login: In this phase, Ui enters his/her credentials, and these are validated by smart

card (mobile device), a login request message is formed and sent to the GWN via

open channel.

– Authentication and key agreement: After receiving the login request message, the

GWN first validates it and if the validation passes, the GWN sends an authen-

tication request message to the sensing node being accessed, say SNj. SNj then

validates the received message and dispatches the authentication reply to Ui. Ui

also validates the received message from SNj. Only after mutual authentication

between Ui and SNj a session key SKij is established between them. Both later

use SKij secure communication.

– Password & biometric update: This phase is needed only when a legitimate user Ui

wishes to update his/her password and biometrics. It is desirable that Ui should not

involve the GWN for this activity and hence, this phase can be entirely executed

locally without the involvement of the GWN by Ui.

– Smart card (mobile device) revocation: If the smart card (mobile device) is lost or

stolen by an adversary, a user authentication scheme should allow the revocation

phase to issue a new smart card (mobile device) with a new set of credentials stored

into it.

– Dynamic sensing node addition: This phase is needed when some sensing nodes are

captured by an adversary or some sensing nodes are exhausted because of a power

failure (if the sensing devices are battery powered).

Depending on the number of factors considered in a user authentication scheme, it is

called a single-factor or a multi-factor scheme. For example, if only the user password is

used, a user authentication scheme is called single-factor scheme. If a smart card (mobile

device) and a user password are used, it is called a two-factor scheme, and if smart card

(mobile device), user password and biometrics are used, it is called a three-factor scheme

[102].

• Device authentication: Device authentication in IoT is useful when two IoT sensing
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devices need to authenticate each other for secure communications between them.

Jang et al. [99] designed an efficient device authentication mechanism. Their scheme

works without involving some central authority. They applied the Merkle hash-tree

to achieve authentication. Sharaf-Dabbagh and Saad [181] presented an authentica-

tion mechanism for the IT environment wherein the devices apply the fingerprinting

methods along with the transfer learning. Their scheme handles emulation attacks ef-

fectively by differentiating normal changes in the fingerprints due to the environment

from the changes done by an attacker. Sciancalepore et al. [177] developed another

device authentication and key management scheme. Their scheme applies the implicit

certificates with the ECC Diffie-Hellman key exchange protocol. The authors showed

that their scheme is energy-efficient with respect to other conventional schemes, replay

attack protection, fast re-keying mechanism and robust key negotiation.

3) Access control

Here, we consider two types of access control mechanisms in the IoT environment, namely

“device access control” and “user access control”.

• Device access control: The deployment of new sensing nodes in the IoT environment is

necessary to prolong the lifetime of sensing nodes because the nodes may stop functioning

due to battery power or because of a physical node capture by an attacker. A deployed

sensing node may not be a genuine node because malicious nodes can be deployed by

an adversary. In this case, it becomes hard to distinguish malicious new nodes from

genuine nodes in the IoT environment. This requires a sensing device access control

method when new sensing nodes are deployed in order to prevent malicious nodes from

entering the network. Such an access control method primarily deals with the two tasks:

a) node authentication and b) key establishment.

• User access control: To provide access right only to legal users for different services,

information and resources available in the IoT environment, user access control is also

another crucial security mechanism. Le et al. [115] proposed a mutual user access control

scheme based on ECC. The user access control scheme proposed by Wang et al. [205]

also relies on ECC but it is not scalable in that it does not support a large number of

sensing nodes. An ECC-based identity-based signature is applied in Mahmud-Morogan’s

user access control scheme [135]. Later, He et al. [91] developed a user access control

scheme which maintains a network user to protect his/her data access privacy from the



46 Literature Survey

network owner. Moreover, Chatterjee et al. [45] also proposed a hybrid approach with

the help of both public key ECC and symmetric cryptosystems to design an efficient

user access control scheme.

4) Privacy preservation

Some IoT applications contain the sensitive information collected by the IoT sensing devices.

Such information needs to kept private and secure. Examples of sensitive IoT information in-

clude physiological information collected by wearable devices [58, 61] and implantable medical

devices [215], secret information collected by IoT devices in smart home environment [219]

and energy consumption information collected by smart devices [216]. Thus, if these types of

information are leaked, it may pose serious threats including criminal activity and it may also

result in serious harm or even death (in the case of patients). To mitigate these issues, the

researchers have designed some privacy preserving schemes in IoT.

5) Identity management

In a distributed and dynamic network like the IoT environment, sensing devices and services

can be disclosed to various threat agents which can reveal their data including personal and

private identities of end users [31]. An Identity Provider (IdP) is a system that is required

to generate, maintain, and manage the identities. A Service Provider (SP) is a system that

provides services for users.

3.1.4 Functionality requirements for access control in IoT

The basic functionality requirements of an access control mechanism for an IoT environment

are as follows.

• An access control mechanism must facilitate dynamic IoT smart device deployment in

the target IoT network as the sensing devices often run out of battery or may go offline

due to a hardware failure and node capture by an adversary. Thus, it is required to

deploy new IoT smart devices to maintain the good health of the IoT environment.

• An access control mechanism must demand for mutual node authentication between any

two neighbor IoT smart devices before establishing the pair-wise shared secret keys.

• An access control scheme must ensure secure communication with properly shared ses-

sion keys establishment between any pair of nodes.
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• Given that the IoT smart devices contain limited resources with respect to computation

and transmission, an access control scheme must use a minimum number of messages

for node authentication and must employ lightweight computations to use it in real-time

applications.

• An access control mechanism must not involve the gateway nodes (base stations) for

establishing pair-wise secret keys to communicate securely. This will greatly reduce the

computation and communication overhead on the IoT smart devices. This will also

make dynamic deployment of new smart devices more efficiently as the new nodes can

establish the shared secret keys locally without communicating with the gateway nodes.

3.2 Existing access control schemes in smart grids

Musleh et al. [146] presented a survey work by considering several aspects, mechanisms, ad-

vantages, and also research challenges if the blockchain based solution is applied in the smart-

grid environment. Furthermore, they presented frameworks that are essentials for blockchain

based applications for smart grid. They also emphasized that the blockchain is appropriate

for utilizing the cyber-physical layer of the smart grid. They also mentioned that the power

grid will turn out to be a splendid usage of blockchain technology like other applications, such

as industrial sectors.

Andoni et al. [15] examined several industrial and academic sources to present basics of

blockchain related technologies, such as “system architectures” and “distributed consensus

algorithms”, crucial aspects of performance for blockchain related ecosystems. They partic-

ularly showcased some specific domains in which innovation is essential for energy system

stakeholders as well as industrial entities.

Kim and Huh [109] presented a smart grid design which replies on power trading system

and blockchain concept. Their design supports an architecture that can be applied for stable

P2P transactions for transitional smart contact mechanisms in order to stably to trade power

information of an already existing smart grid system. Wang et al. [207] examined various

related issues in smart grid system, such as need for “removal of the centralized control

and transition to a distributed architecture”, privacy and security aspects, auction pricing

approach at the settlement time, minimization of cost and maximization of benefit of the

system.

Aitzhan and Svetinovic [12] discussed the issue of supporting the transaction security in a

decentralized smart grid energy trading system, where it does not rely on a trusted third party
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(TTP). Moreover, through implementation on a “token-based private decentralized energy

trading system”, they showed that such a system allows the peer entities to negotiate trading

prices in an anonymous way and also to execute trading transactions in secure manner. To

provide security and privacy at a certain level, they applied multi-signatures, blockchain and

anonymous “encrypted message propagation streams”.

In recent years, several authentication and access control schemes are designed in the

smart grid systems [41, 47, 49, 92, 103, 122, 152, 156, 162, 174, 199, 246]. An authentication

protocol designed by Nicanfar et al. [152] is applicable for a home network, where a smart

meter can authenticate mutually with an authorized server. Li et al.’s mutual authentication

scheme [122] designed for smart grid system provides secure communication and it relies on

the Merkle hash tree concept. Another authentication scheme designed by Chan and Zhou

[41] provides a “two-factor cyber-physical device authentication” in order to provide security

in a smart grid system.

Qi and Chen [162] proposed an efficient authenticated key agreement mechanism for smart

grid environment using the “Elliptic Curve Qu-Vanstone (ECQV) implicit certificate” as the

building block. In their scheme, a mutual authentication takes place between a smart meter

and a service provider and a session key is established at the end of the mutual authentication.

However, their scheme does not support the blockchain solution. Chaudhry et al. [47] proposed

an authentication mechanism for “demand response management” (DRMAS) in a smart grid

edge computing based environment. In this scheme, the blockchain is not also supported.

Later, an anonymous key distribution method was suggested by Tsai and Lo [199]. Their

method relies on “bilinear pairings” and ECC, which supports mutual authentication among

a smart meter and a service provider. Also, a session key among them is crated for secret

communication once mutual authentication is successful. Unfortunately, their scheme is not

resilient to “ephemeral secret leakage (ESL)” attack, and also it does not offer “strong creden-

tials’ privacy of a smart meter” [156]. To eradicate the limitations of Tsai and Lo’s scheme

[199], another authentication mechanism was suggested in [156]. He et al. [92] also designed

another “Elliptic Curve Cryptography (ECC)-based anonymous key distribution scheme” for

a smart grid environment to reduce communication as well as computation overheads as com-

pared to Tsai and Lo’s protocol [199].

An authentication mechanism designed by Mahmood et al. [133] fails to support

“anonymity” feature because they transmitted the smart meter’s actual identity openly in

the network. In addition, their scheme fails to prorect “known session-specific temporary

information attack (ESL attack)”, and also does not provide “perfect forward security”, and
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“private keys leakage security” [9]. Furthermore, Mahmood et al. [134] also suggested another

authentication mechanism for smart grid system that is based on edge computing paradigm.

Unfortunately, Wang et al. [206] indicated that mutual authentication is not achieved in the

scheme [134] since the validity of utility control is not verified by a smart meter. In addition,

Wang et al. [206] designed a mutual authentication mechanism that utilizes blockchain tech-

nology. Because of utilization of blockchain, their protocol provides conditional privacy issue

and also key management.

Gai et al. [82] developed a model for “permissioned blockchain edge” in a smart grid

system. Their designed model is able to provide privacy protection along with energy security

by applying both blockchain technology and edge computing facility. They further applied

group signatures and channel authorization mechanisms to assure the validity of the involved

users in the smart grid.

Zhang et al. [239] designed a “decentralized keyless signature scheme based on a consortium

blockchain” to develop an effective key management. In their approach, the smart meters send

requests and then receive the responses using a P2P blockchain network for data transmission.

They suggested a decentralized consensus mechanism that does not need a trusted third party

or a trusted anchor. Zhou et al. [246] proposed an access control mechanism using blockchain

in the power system, which relies on “identity-based combined encryption”, “digital signature”

and “signcryption”. Their approach solves the “key escrow” issue of the distrustful third

parties.

Recently, Yao et al. [228] designed a “decentralized autonomous organization (DAO)

trading platform” for an industrial IoT environment that relies on blockchain network assisted

with cloud mining concept. They further modeled the “computational resource management

and pricing problem” along the miners and the resource provider as a “Stackelberg game”. In

addition, they applied a “multiagent reinforcement learning” technique in order to attain the

near-optimal strategy.

Table 3.1 summarizes various existing competing authenticated key agreement schemes

with respect to their cryptographic techniques used, advantages and limitations/drawbacks.
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Table 3.1: Cryptographic techniques, advantages and limitations of existing authentica-

tion/access control schemes in smart grids

Scheme Cryptographic Tech-

niques

Advantages Drawbacks/Limitations

Tsai and

Lo [199]

* ECC

* Bilinear pairings

* Hash functions

* Modular exponen-

tiations

* Mutual authentication

* Session key establishment

* Vulnerable to ephemeral secret leakage (ESL) at-

tack

* No strong credentials’ privacy of smart meter

* High computational cost

* Does not support blockchain solution

Mahmood

et al.

[133]

* One-way hash func-

tions

* ECC

* Mutual authentication

* Session key establishment

* Vulnerable to ESL attack

* No anonymity

* No perfect forward security

* No private keys leakage security

* Does not support blockchain solution

Mahmood

et al.

[134]

* Bilinear pairing

* ECC

* One-way hash func-

tions

* Modular exponen-

tiations

* Key agreement * No mutual authentication

* Does not support blockchain solution

* Vulnerable to ESL attack

* High computational cost

Wang et

al. [206]

* One-way hash func-

tions

* ECC

* Mutual authentication

* Key agreement

* Support blockchain solution

* No voting-based consensus mechanism for block

mining in blockchain

* No secure leader selection in P2P network

Zhou et al.

[246]

* Bilinear pairings

* ECC

* One-way hash func-

tions

* Support blockchain solution

* Signcryption-based access

control

* No secure leader selection in P2P network

* Vulnerable to ESL attack

* No perfect forward security

* No dynamic nodes addition after initial deployment

* High computational cost

Qi and

Chen

[162]

* ECC

* One-way hash func-

tions

* Mutual authentication

* Session key agreement

* Does not support blockchain solution

* No dynamic nodes addition after initial deployment

Chaudhry

et al. [47]

* ECC

* One-way hash func-

tions

* Mutual authentication

* Session key agreement

* Does not support blockchain solution

3.3 Existing access control schemes in IoT-related other

enviroments

Li et al. [121] proposed an access control method in an “Industrial Wireless Sensor Network

(IWSN)” environment. Their scheme permits a user to authorize, revoke, and authenticate

for accessing real time information inside IWSN. Though their protocol supports both public
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verifiability and ciphertext authenticity, but it is impractical because of heavy computational

overheads due to usage of the costly bilinear pairing operations.

Bilal and Kang [132] also designed an authentication approach in WSN deployment tailored

to the IoT environment. In their protocol, a sensor node can establish multiple concurrent

sessions to access information securely from other sensor nodes. Unfortunately, their approach

is vulnerable to “parallel-session hijacking attack”. Xue et al. [226] suggested an access control

mechanism for a smart home environment. Their scheme allows “authentication”, “secure

information access”, and “unified storage provision” at the same time. However, the primary

drawback related to this approach is that it does not provide “key agreement”. Moreover,

their scheme is vulnerable to “Ephemeral Secret Leakage (ESL) attack”.

Li et al. [124] presented a three-factor user authentication scheme for IIoT environment.

Unfortunately, their scheme fails to provide forward security and mobile device loss attack.

Luo et al. [131] designed another access control mechanism for WSN-based IoT environment.

Since their scheme is based on the identity based cryptographic technique, it is obviously

heavy in computation due to costly bilinear pairing operations.

Li et al. [123] designed an elliptic curve cryptography (ECC)-based authentication scheme

for IIoT which preserves privacy of the user and gateway nodes, and also provides wrong

password detection mechanism quickly. Zeng et al. [235] designed an “anonymous user au-

thentication (E-AUA)” protocol for both users and servers in an IoT environment. E-AUA

uses multi-server environment to provide better services and also to overcome network con-

gestion. Their scheme is also computationally expensive as costly bilinear pairing operations

are applied. Moreover, their scheme is susceptible to “offline password guessing”, “privileged-

insider”, and “server secret key leakage” attacks as mentioned in [138].

Esfahani et al. [73] designed an authentication protocol for IIoT with low computational

cost which is based on the lightweight primitives like one-way hash function and XOR op-

erations. However, their scheme requires to store secret authentication information on an

authentication server, which may endanger a single point of failure. Garg et al. [84] proposed

another lightweight ECC based authentication scheme for IoT based Industry 4.0 application.

Though their scheme requires less computation cost, it does not resist against IoT smart

device impersonation attack.

Leyou et al. [240] introduced a privacy preserving based CP-ABE scheme that supports

authority verification without any privacy leakage which provides constant size private keys

with short ciphertexts. It is also shown that the selective security under the “Decisional n-

Bilinear Diffie-Hellman Exponent (n-BDHE)” computational problem with decisional linear
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assumption, is achieved in this scheme.

Xu et al. [225] illustrated a framework for privacy-preserving ABAC system, which as-

sures the security and privacy of the outsourced users’ data stored in “Cloud Service Provider

(CSP)”. The framework also supports secure de-duplication which helps to eliminate redun-

dant encrypted data in the CSP with decent communication costs. Tian et al. [198] introduced

an ABE full privacy protection (ABE-FPP) scheme based on three stages; 1) key generation,

2) access control, and 3) partial decryption. It provides policy hidden strategy, known as

hybrid-verification strategy, that reveals only attribute names and also is able to hide its

values to preserve privacy during partial decryption.

Later, Gupta et al. [87] tried to address the access control problems in the “intelligent

transportation system (ITS)” ecosystem by proposing an ABAC system. Their system uses

the fine-grained policies with individualized privacy choice in order to grant/deny different

activities in the smart entities. Han et al. [89] discussed the “role-based access control

(RBAC)” that relies on the analysis using role-permissions matrices and also the implied con-

cept of lattices. They evaluated their methodology by applying it to other substantial practical

open-source systems, such as a) MediaWiki, b) Moodle, c) Joomla, and d) WordPress.

Amoon et al. [14] designed a “role-based reputed access control (RRAC)” scheme for

protecting malicious attacks in an IoT system. Their scheme achieves two types of features,

where it internally provides an “adaptive certificate based authentication” between users and

resources, and it also externally trusts user communication. However, the role of IoT devices

is determined separately based on reputation derived by the service provider (SP). In this

scheme, precision of reputation is achieved by eliminating untrusted devices that are based

on false reputation.

Lin et al. [125] proposed a blockchain-based secure access control protocol (BSeIn) for in-

dustry 4.0 which provides essential security features, such as “authentication”, “auditability”,

and “confidentiality”. Moreover, their scheme applies costly bilinear pairing operations that

substantially increase the computational overheads. Ren et al. [168] designed a “blockchain-

based access control scheme for edge based IIoT”. In their scheme, two entities make the

session key based on short and long terms secrets, and as a result, their scheme is secure

against ESL attack. Since the timestamp is not applied in their scheme, a strong replay

attack protection is not provided.

Guangsheng et al. [230] introduced a blockchain-based IoT application compatible with

the “attribute-based encryption (ABE)”, where the fine-grained access control is used for

attributes updation. In addition, they introduced a verification scheme and showed their
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solution outperforms in searching complexity and the system revokes the members when there

is a direct data leakage. However, Gao et al. [83] proposed trustworthy “Ciphertext-Policy

Attribute-Based Encryption (CP-ABE)” scheme using ciphertext-policy and attribute hiding

access policy with the help of blockchain technology. They used “homomorphic ElGamal

cryptosystem” in order to assure the privacy of the attributes.

Zhang et al. [244] proposed an “attribute-based access control (ABAC) framework for

smart city application” using blockchain smart contract technology. Their scheme consists

of a policy management using private Ethereum smart contracts for maintaining policies in

ABAC. They computed the cost of gas consumption on Ethereum platform.

Nakamura et al. [149] proposed “Capability-Based Access Control (CapBAC)” scheme

which stores and manages the capability tokens with local Ethereum-based implementation.

However, their scheme fails to resist potential attacks. Moreover, Liu et al. [126] presented a

CapBAC system using the blockchain technology to regulate the “dynamic identities (DIDs)”

for different identities and access rights granting to IoT devices.

Das et al. [60] presented a detailed taxonomy of various security protocols needed in an IoT

environment: a) key management, b) user and device authentication, c) device and user access

control, d) intrusion detection, e) privacy preservation, and f) identity management. They

discuss several security and functionality requirements, security challenges and attacks that

are possible in an IoT environment. They provided a meticulous comparative study of existing

IoT-related state-of-art security schemes based on discussed security and functionality features

they offer. Sherali et al.[233] discussed various IoT-related security threats. They analyzed

the current “cryptographic security standards” that are suitable for IoT smart devices and

systems. Furthermore, they performed a comparative analysis on several protocol standards

for IoT applications based on recent findings of the “National Institute of Standards and

Technology (NIST)”.

Deep et al. [63] reviewed the general architecture in an IoT environment. They dis-

cussed and examined various security aspect at each layer in the IoT protocol stack, such as

“perception layer”, “middleware layer”, “network layer” and “application layer”. The “per-

ception layer” consists of single devices that are connected to a network in IoT environment.

The devices are responsible for exchanging information. Some examples of the devices in

this layer include “sensors”, “actuators”, “Zigbee”, “Radio-Frequency Identification (RFID)

frameworks”, “Quick Response (QR) code”, and “Global Positioning System (GPS) systems”.

The “middleware layer” is an enhancement of the network layer which performs extensive data

processing and generate intelligent decisions. The “application layer” compromises of various
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Table 3.2: Cryptographic techniques, advantages and limitations of existing authentica-

tion/access control schemes in IoT environment

Scheme Cryptographic Tech-

niques

Advantages Drawbacks/Limitations

Li et al.

[121]

* Elliptic Curve Cryptog-

raphy (ECC)

* Bilinear pairings

* Hash functions

* Modular exponentiation

* A user is allowed to autho-

rize, revoke, and authenticate

for accessing real time informa-

tion inside IWSN

* Signcryption

* Heavy computational overheads due to bilinear pairing

operations

* Does not support blockchain security solution

Bilal and

Kang

[132]

* Encryption/decryption

* Hash function

* Mutual authentication

* Key establishment

* Establishment of multiple

concurrent sessions among sen-

sor nodes

* Vulnerable to parallel-session hijacking attack

* Does not support blockchain solution

Xue et al.

[226]

* Hash functions

* Signcryptions

* Encryption/decryption

* Authentication

* Secure information access

* Unified storage provision

* Does not provide “key agreement

* Vulnerable to “Ephemeral Secret Leakage (ESL) attack

under CK-adversary model

Li et al.

[123]

* ECC

* One-way hash function

* Fuzzy extractor for bio-

metric verification

* Mutual authentication

* Session key agreement

* Vulnerable to “Ephemeral Secret Leakage (ESL) attack

under CK-adversary model

* Does not support security blockchain solution

Luo et al.

[131]

* ECC

* One-way hash function

* Cross domain hetero-

geneous signcryption

(CDHSC)

* Bilinear pairings

* Authentication

* Session key agreement

* Does not support dynamic sensor node addition phase

* Does not support blockchain solution

* Computationally costly due to bilinear pairing operations

Lin et al.

[125]

* One-way hash function

*Hashed message authen-

tication code (HMAC)

* Modular exponentiation

* Mutual authentication

* Session key agreement

* User anonymity

* Supports blockchain solution

* Computationally costly

Zeng et al.

[235]

* ECC

* Bilinear pairings

* Online login and authentica-

tion

* Password change phase

* Insecure against offline password guessing

* Vulnerable to privileged-insider attack

* Vulnerable to server secret key leakage

* Does not support dynamic IoT device addition phase

* Does not support blockchain solution

Ren et al.

[168]

* ECC

* One-way hash functions

* Mutual authentication

* Session key agreement

* Supports blockchain solution

* Vulnerable to replay attack

* Does not support dynamic IoT device addition phase

Esfahani

et al. [73]

* One-way hash function

* Bitwise XOR operation

* Mutual authentication

* Session key agreement

* Single point of failure

* Does not support dynamic IoT device addition phase

* Does not support blockchain solution

Garg et al.

[84]

* ECC

* Physically Unclonable

Functions (PUFs)

* Mutual authentication

* Session key agreement

* Vulnerable to IoT smart device impersonation attack

* Does not support dynamic IoT device addition phase

* Does not support blockchain solution

Li et al.

[124]

* ECC

* One-way hash function

* Fuzzy extractor for bio-

metric verification

* Encryption/decryption

* Mutual authentication

* Session key agreement

* Does not provide forward security

* Insecure against mobile device loss attack

* Does not support security blockchain solution
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Table 3.3: Summary of drawbacks/limitations of existing schemes in IoT-enabled sensor net-

works environments

Scheme Limitations/Drawbacks

Huang [95] • Vulnerable to man-in-the-middle attack.

• Does not support blockchain technology.

Huang [94] • Does not allow regeneration of the finished hash chain.

• Vulnerable to replay attack.

• Does not support blockchain technology.

Kim and Lee [108] • A newly joined device can easily masquerade itself in this scheme.

• A legal registered device can also perform masquerading attack in this scheme.

• Does not support blockchain technology.

Li et al. [120] • Computational expensive due to IBC and “bilinear pairing”.

• Does not support blockchain technology.

Luo et al. [131] • Computational expensive due to IBC and “bilinear pairing”.

• Does not support blockchain technology.

Aziz et al. [20] • Vulnerable to ESL attack.

• Does not preserve anonymity and untraceability properties.

• Does not support blockchain technology.

IoT smart devices that can support personalized services to various users. The IoT smart

devices are typically considered as simple, low power, and lightweight that are usually vulner-

able to attacks. Moreover, they also discussed various security solutions that are suggested

in different layers, such as “perception layer”, “middleware layer”, “network layer” and “ap-

plication layer”. Table 3.2 gives a comparative analysis on various cryptographic techniques,

advantages and limitations of existing authentication/access control schemes in an IoT envi-

ronment.

Among the security services, authentication and access control play very crucial security

services for providing the security in an IoT environment. Several authentication and access

control mechanisms have been proposed in IoT, sensor networks, healthcare, and other appli-

cations [24, 39, 52, 55, 113, 135, 137, 138, 155, 188, 211, 217, 218]. In the following, we only

discuss the access control protocols related to IoT and wireless sensor networks (WSNs), be-

cause the IoT smart devices and sensors in IoT and WSNs respectively are resource constraint

in nature. An access control scheme is categorized into two board types: certificateless and

cetertificate-based.

A certificate-based access control mechanism in WSNs was proposed by Zhou et al.[247].

Their approach relies on the “elliptic curve cryptography (ECC)”. They further used the

“bootstrapping time” in order to avoid malicious sensor nodes deployment attack by an ad-

versary. Later, a dynamic access control mechanism was also designed in WSNs by Huang [95].
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This scheme relies on the existing Schnorr signature method [175] and also the sensor node

expiration time. Unfortunately, Huang’s scheme [95] was analyzed by Chatterjee et al. [44] to

exhibit that the scheme [95] is vulnerable to an active attack, known as “man-in-the-middle

attack”. To remedy this security limitation, Chatterjee et al.[44] suggested an improved access

control scheme which applies ECC technique and also “cryptographic one-way hash function”

based on WSN-related environment.

In a “certificate-less access control” approach, there are two categories: a) “hash-chain

based” and b) “hash-chainless”. Huang and Liu [96] designed an access control mechanism in

WSNs that uses one-way hash chaining. An access control mechanism suggested by Huang

[94] was cryptanalyzed by Kim and Lee [108] to exhibit that the scheme of Huang [94] was

insecure against replay attack. Furthermore, Huang’s scheme [94] had other limitation where

there was no way to renew an “exhausted hash chain”. To withstand such limitations, another

improved scheme was suggested by Kim and Lee [108], which overcame renewing “exhausted

hash chain” problem. Later, two attacks (masquerade attacks from a new sensor node itself

and other from a legal sensor node) were illustrated on Kim and Lee’s scheme [108] by Zeng

et al.[234]. In addition, another active attack is also pointed out by Shen et al. [182] on the

scheme of Kim and Lee’s scheme [108].

Braeken et al. [34] proposed an authentication protocol, called “efficient and distributed

authentication protocol (eDAAAS)”, that allows accessing the end-nodes in an IoT-enabled

smart home scenario. Since eDAAAS relies on “symmetric cryptosystem” and “one-way cryp-

tographic hash function”, it is a lightweight protocol. Luo et al. [131] proposed another

efficient scheme that permits access control in WSNs in the context of the IoT environment.

However, this scheme is computationally heavy as it applies “Identity-Based Cryptography

(IBC)” and “bilinear pairing” techniques. Li et al.[120] also designed an efficient access con-

trol approach in WSNs in the context of IoT environment that couples access privilege with

certain users. This scheme is also computationally heavy as in the scheme of Luo et al. [131].

Recently, Aziz et al. [20] also proposed a “lightweight and compromise-resilient authentica-

tion (LCA)” scheme in an IoT environment. LCA is only based on lightweight cryptographic

primitives, such as one-way hash function and bitwise XOR. It compromises various phases,

like “registration (between a user and authentication server (AS))”, “registration (between an

IoT smart device and AS)”, and “authentication and key exchange (between a user and an

IoT smart device via the AS)”. However, under the current de facto “Canetti and Krawczyk’s

model (CK-adversary model)” [37], their scheme is vulnerable to ESL attack as the session

key construction is purely hinged on temporal (short-term) random secrets. In addition, their
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scheme fails to maintain both anonymity and untraceability properties. Finally, Table 3.3

briefs the limitations of the state-of-art existing access control schemes that were designed for

IoT-enabled WSNs.

3.4 Summary

In this chapter, we critically reviewed the relevant access control/authentication schemes

related to smart grids and IoT-related environments. Next, we analyzed the consudered

existing schemes and also provided their drawbacks/limitations, cryptographic techniques used

and also advanatages.





Chapter 4

Private Blockchain-Based Access

Control Protocol in IoT-Enabled

Smart-Grid System

Now-a-days, modern power systems suffer from various challenges, for instance, ever-

expanding electrical energy demand, exponential growth in renewable energy sector, adap-

tation of large-scale IoT devices and also several security threats posed in Cyber-Physical

Systems (CPS). Another goal of IoT-enabled smart grid system is to maintain the reliability

and stability of the system [146]. These challenges put in discovering the security solutions

for reliable operations of the power system.

In recent years, there are several blockchain-based potential applications in smart grid

domain [193]. Some of the smart grid applications using blockchain are provided below.

• Power generation: With the help of the blockchain, the dispatching organizations can

have a full knowledge about the entire operation condition of a power grid in a real-

time viewpoint. This helps the organizations to develop dispatching actions in order to

maximize profits.

• Power transmission and distribution: The automation and control centers become

the decentralized systems with the help of the blockchain technology that conquer the

main challenges faced in the “‘traditional centralized systems”.

• Power consumptions: Using the blockchain, it can manage the energy trading among

the prosumers and various energy storage systems (e.g., electric vehicles)
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Recently, blockchain-based solution is one of the promising technology that can be used

for providing the security in the smart grid environment because of its uniqueness and also

decentralized architecture. Since the communication among the users, smart meters and ser-

vice providers take place via open environment, an adversary has opportunity to tamper with

the data, and can perform various prospective attacks including “replay”, “impersonation”,

“man-in-the-middle” and “ephemeral secret leakage (ESL)” attacks. Apart from these at-

tacks, the adversary can also trace the communicated messages and therefore, anonymity

and untraceability are the two main important functionality attributes that an access con-

trol security protocol should support those features. To deal with these issues, we propose a

new decentralized blockchain-based access control protocol in IoT-enabled smart-grid system

(DBACP-IoTSG), in which the data is collected from the smart meters securely by their re-

spective service providers before forming the blocks and adding those blocks in the blockchain

through a voting-based consensus mechanism in the P2P SP network. Because the blockchain

provides transparency and immutability properties, once the block is added in the blockchain

it can not be tampered by any adversary or even by legal entities in the smart grid net-

work, and anybody can see the information stored in the block. In this work, we mainly

concentrate on private blockchain because the collected data from the smart meters by the

service providers are confidential as well as private. It is worth noticing that we have applied

the blockchain as a service (BaaS) for secure data storage purpose. Blockchain-as-a-service

(BaaS) is defined as the “third-party creation and management of cloud-based networks for

companies in the business of building blockchain applications” [80].

4.1 Research contributions

The main contributions in this work are listed below:

• We propose a novel decentralized blockchain-based access control protocol in IoT-

enabled smart-grid system, called DBACP-IoTSG, based on the network model provided

in Figure 4.1. In DBACP-IoTSG, registration of smart meters and service providers is

performed in offline mode prior to deployment in the IoT-enabled smart-grid environ-

ment. The access control phase associated with DBACP-IoTSG permits a smart meter

SMi to mutually authenticate with its associated service provider SPj through “node

authentication” process and then to establish a session key among them for secret com-

munication through “key establishment” process. The pairwise secret keys among the

service providers are used for secure consensus procedure. DBACP-IoTSG also supports
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dynamic node addition mechanism.

• We then provide a detailed mechanism for a new block creation and addition in the

blockchain through the Practical Byzantine Fault Tolerance (PBFT) based consensus

mechanism [38].

• The proposed DBACP-IoTSG allows secure leader selection in the P2P SP network that

is responsible for a block verification and addition in the blockchain using voting-based

PBFT consensus algorithm.

• The proposed DBACP-IoTSG allows to preserve both anonymity and untraceability

properties that are extremely needed in an IoT-enabled smart grid environment. In

addition, DBACP-IoTSG also permits dynamic smart meter addition phase after initial

deployment in an event that if some service providers SPj may become faulty nodes or

some smart meters SMi may be physically compromised by an adversary. Furthermore,

DBACP-IoTSG resists a crucial active attack under the present de facto model, known

as the Canetti and Krawczyk’s model (CK-adversary model) [37] (see the threat model

in Section 4.2.2), known as “ephemeral secret leakage (ESL)” attack.

• Next, we apply the threat model given in Section 4.2.2 to provide a rigorous secu-

rity analysis through the formal security under the broadly-accepted “Real-Or-Random

(ROR) oracle model” [37], informal (non-mathematical) security analysis and also for-

mal security verification using the widely-used AVISPA automated software tool [17]

through simulation.

• We also provide the experimental results of various cryptographic primitives that are

needed for comparative analysis using the widely-used “Multiprecision Integer and Ra-

tional Arithmetic Cryptographic Library (MIRACL)” [5].

• A detailed comparative analysis among DBACP-IoTSG and other relevant protocols in

smart grid environment shows that DBACP-IoTSG supports better security and pro-

vides more functionality attributes, and also requires less communication and computa-

tion costs.

• Finally, the blockchain implementation of DBACP-IoTSG has been carried out in order

to measure computational time required for the varied number of blocks addition as well

as the varied number of transactions per block in the blockchain.
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4.2 System models

In this section, we follow the network and threat models that are applied in describing and

also in analyzing the proposed scheme (DBACP-IoTSG).
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Figure 4.1: Blockchain-based IoT-enabled smart grid architecture without trusted third party

(adapted from [239])

4.2.1 Network model

The network model considered in this work is shown in Figure 4.1. In this model, several users

are associated with a smart meter SMi and a group of smart meters are also associated with
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a service provider SPj. A group of service providers will form a peer-to-peer (P2P) service

provider network, which is called as the P2P SP network. There is a trusted registration

authority (RA) which is responsible for registering all the installed smart meters SMi and

service providers SPj in offline mode. The RA performs the registration process securely.

The communication between the users and a smart meter SMi takes place via secure

communication, whereas a smart meter SMi and a service provider SPj communicate securely

using a session key established among them with the help of an access control mechanism. In

addition, the service providers in the SP network also establish secret pairwise keys among

them for their secure communications. Under this network model, SMi first gathers the data

secretly from its associated users and then the collected data is brought secretly to the service

provider SPj under which the smart meters SMi are registered with SPj. SPj then forms

transactions using the collected data and creates a block. Next, the new created block can

be added in the existing blockchain provided that the consensus among the service providers

in the SP network is performed. Once a block is added in the blockchain, the modification or

deletion of that block is not permitted to maintain “immutability” property.

4.2.2 Threat model

For our proposed decentralized blockchain-based access control protocol in IoT-enabled smart-

grid system (DBACP-IoTSG), the following threat model is used.

• We contemplate the widely-accepted “Dolev-Yao (DY) threat model” [67]. According

to the DY model, an adversary A can insert malicious information, modify or delete

the message contents, apart from intercepting the messages among the communicated

entities in the IoT-enabled smart grid environment.

• The end-point communicating entities (users, smart meters and service providers) are

not contemplated as trustworthy parties in the network.

• We assume that some smart meters may be physically captured by A because the smart

meters can not be monitored in 24× 7. Once a smart meter is compromised physically,

all the stored credentials in its memory can be extracted by A with the help of advanced

power analysis attack [141].

• In addition, we adopt the recently contemplated de facto model, known as the Canetti

and Krawczyk’s model (CK-adversary model) [37] in the proposed DBACP-IoTSG. Un-

der the CK-adversary model, A not only can intercept the messages as in the DY model,
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but can also compromise secret credentials, secret keys and even session states if those

information are available in insecure memory of the devices (SMi and SPj) during the

access control phase [37].

4.3 The proposed scheme: DBACP-IoTSG

This section proposes a new decentralized blockchain-based access control protocol in IoT-

enabled smart-grid system, called DBACP-IoTSG, based on the architecture shown in Figure

4.1. DBACP-IoTSG contains several phases, namely a) system setup, b) registration of smart

meters and service providers, c) access control, d) key management among service providers,

e) block formation and addition in the blockchain, and f) new smart meters addition after

initial deployment in the smart grid environment.

To protect replay attack, we apply both random numbers and current timestamps gen-

erated by the entities in the network. It is thus assumed that the entities in the network

are synchronized with their clocks. It is also a typical assumption applied in many recent

authentication and access control protocols in IoT deployment [39, 42, 59, 137, 218, 219]. We

use various notations tabulated in Table 4.1 for describing and also analyzing the proposed

DBACP-IoTSG.

The entities involved in DBACP-IoTSG include the trusted registration authority RA, the

smart meters SMi (i = 1, 2, · · · , nsm) and the service providers SPj (j = 1, 2, · · · , nsp),

where nsm and nsp denote the number of smart meters and service providers to be deployed

initially in the network. All the involved service providers SPj form a peer-to-peer (P2P)

blockchain network, called SPN, which are responsible for creating blocks for transactions

that are securely received from their respective smart meters SMi. A leader from the SPN is

selected, which is responsible for adding the block after running the consensus algorithm.

In this chapter, we consider an access control mechanism which has basically the following

two tasks [60]:

• Node authentication: This task demands that the newly joined nodes (SMi and SPj)

must authenticate themselves to with other nodes to prove that they are authorized

registered nodes to access the services from each other.

• Key establishment: This task requires that a newly deployed node needs to establish

the shared secret pairwise key with its neighbor nodes after the mutual authentication
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Table 4.1: Notations and their significance

Symbol Significance

Eq(a, b) A non-singular elliptic curve of the form:

“y2 = x3 + ax+ b (mod q) with 4a3 + 27b2 6= 0 (mod q)”

G A base point in Eq(a, b) whose order is n as big as q

k.G Elliptic curve point multiplication;

k.G = G+G+ · · ·+G (k times)

Q+R Elliptic curve point addition; Q,R ∈ Eq(a, b)

u ∗ v Ordinary modular multiplication in GF (q)

RA, IDRA Trusted registration authority and its real identity

RIDRA Pseudo-identity of the RA

mkRA, PubRA Private and public keys of RA, respectively, PubRA = mkRA.G

SPj jth service provider

SPN P2P SP network of all registered service providers

IDSPj
, RIDSPj

Real and pseudo-identities of SPj, respectively

TIDSPj
Temporary identity of SPj

kSPj
, PubSPj

Private and public keys of SPj, respectively, PubSPj
= kSPj

.G

f(x, y) A symmetric bivariate t-degree polynomial over

the Galois field GF (q): f(x, y) =
∑t

i=0

∑t
j=0 aijx

iyj

where aij ∈ Zq = {0, 1, 2, · · · , q − 1}
SMi, IDSMi

ith smart meter and its real identity

TIDSMi
, RIDSMi

Temporary and pseudo identities of SMi, respectively

TCSPj
, TCSMi

Temporal credentials of SPj and SMi, respectively

CertSPj
, CertSMi

Certificates issued by the RA to SPj and SMi, respectively

RTSSPj
, RTSSMi

Registration timestamps of SPj and SMi, respectively

||, ⊕ Concatenation & bitwise XOR operations, respectively

TSx “Current timestamp generated by an entity X” (i.e., SPj or SMi)

∆T “Maximum transmission delay associated with a message”

h(·) “Collision-resistant cryptographic one-way hash function”

EC(·)/DC(·) Symmetric encryption/decryption

EP (·)/DP (·) “Public key encryption/decryption”

MAC “Message authentication code”
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between them is done satisfactorily. The established secret keys are then used by the

nodes for secret communication.

The detailed description of each phase is given below.

4.3.1 System initialization phase

The trusted RA is responsible for picking the system parameters using the following steps:

• S1. The RA selects a “non-singular elliptic curve of the form: y2 = x3 + ax+ b (mod q)

over the Galois field GF (q), where q is a large prime and 4a3 + 27b2 6= 0 (mod q) with

O as the point at infinity or zero point”. The RA also picks a base point G ∈ Eq(a, b)

whose order will be as big as q, say n, that is, n.G = O.

• S2. The RA selects an identity IDRA, and picks a master key mkRA as the private

key and its respective public key as PubRA = mkRA.G, and also its pseudo-identity

RIDRA = h(IDRA ||mkRA).

• S3. The RA then picks a “one-way cryptographic hash function h : {0, 1}∗ → {0, 1}lh

which takes an arbitrary length input string x ∈ {0, 1}∗ and produces a fixed length

output string of lh bits, h(x) ∈ {0, 1}lh”. For instance, h(·) can be taken as “Secure

Hash Algorithm (SHA-1) which produces 160-bit hash value and for more security,

it can be SHA-256 or SHA-512 [140]”. Moreover, to sign a message, the RA selects

the “Elliptic Curve Digital Signature Algorithm (ECDSA)” [104] which contains the

signature generation and verification algorithms.

• S4. Finally, the RA keeps mkRA as its private key, and publishes other parameters

{Eq(a, b), h(·), G, PubRA} which are publicly accessible to all the entities in the network.

4.3.2 Registration phase

This phase is executed by the RA in offline mode for the purpose of registering all the deployed

smart meters SMi, (i = 1, 2, · · · , nsm) and also the service providers SPj, (j = 1, 2, · · · , nsp).

It is worth noticing that the registered service providers SPj will be part of the SPN.

1) Smart meter registration phase

The following steps are essential to complete the registration process of each deployed SMi:
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• RSM1. For each SMi, the RA picks a unique real identity IDSMi
, a random temporary

identity TIDSMi
and calculates pseudo-random identity RIDSMi

= h(IDSMi
||mkRA

||RTSSMi
), where the registration timestamp of SMi is RTSSMi

.

• RSM2. For each SMi, the RA picks a random private key kSMi
and calculates its

respective public key PubSMi
= kSMi

.G. In addition, the RA calculates the temporal

secret for each SMi as TCSMi
= h(IDSMi

||mkRA ||kSMi
||RTSSMi

) and certificate as

CertSMi
= kSMi

+ h(RIDRA ||PubRA ||RIDSMi
) ∗mkRA (mod q) using its own private

key mkRA. The RA picks a random private key brSMi
and calculates its respective public

key BPubSMi
= brSMi

.G for each SMi.

• RSM3. Finally, the RA loads the credentials {TIDSMi
, RIDSMi

, TCSMi
, RIDRA,

CertSMi
, (brSMi

, BPubSMi
)} prior to its placement in the network, and declares all

public keys PubSMi
as public. It is also worth noting that all the information {TIDSMi

,

RIDSMi
, TCSMi

, CertSMi
, brSMi

} are distinct for each deployed SMi through the net-

work. The RA deletes all the generated private keys kSMi
and brSMi

for each registered

SMi.

2) Service provider registration phase

Similar to the smart meter registration process, the RA proceeds to execute the following

steps to complete the registration of each deployed service provider SPj under which the

smart meters SMi, (i = 1, 2, · · · , nsm) will be funcional:

• RSP1. For each SPj, the RA first picks a unique real identity IDSPj
, a random tempo-

rary identity TIDSPj
and computes its pseudo-identity as RIDSPj

= h(IDSPj
||mkRA

||RTSSPj
), where the registration timestamp of SPj is denoted by RTSSPj

.

• RSP2. For each registered SPj, the RA also picks a random private key kSPj
and

calculates its respective public key PubSPj
= kSPj

.G, and also the temporal secret as

TCSPj
= h(IDSPj

||mkRA ||kSPj
||RTSSPj

) and certificate using its own private key

mkRA as CertSPj
= kSPj

+ h(RIDRA|| PubSPj
) ∗mkRA (mod q).

• RSP3. For establishing pairwise secret keys among the service providers (see Sec-

tion 4.3.4), we apply the “polynomial-based key distribution approach” as suggested

by Blundo et al. [33]. To achieve this goal, the RA generates a “t-degree bivariate

symmetric polynomial of the form f(x, y) =
∑t

i=0

∑t
j=0 aijx

iyj over GF (q)”, where the
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coefficients aij ∈ Zq = {0, 1, 2, · · · , q − 1}, with the property that f(x, y) = f(y, x),

and calculates a polynomial share for SPj as f(RIDSPj
, y) =

∑t
i=0

∑t
j=0 aijRID

i
SPj

yj

(mod q), which turns out to be a t-degree univariate polynomial. Note that to store

this polynomial share, SPj needs to store (t+ 1) coefficients, which is equivalent to have

storage cost of (t+ 1) log2(q) bits as each coefficient is from GF (q).

• RSP4. Finally, the RA stores the credentials {(TIDSPj
, RIDSPj

), TCSPj
, RIDRA,

CertSPj
, f(RIDSPj

, y), {(TIDSMi
, RIDSMi

) |i = 1, 2, · · · , nsm}} in SPj, deletes all

the generated private keys kSPj
of the registered service providers SPj, and declares all

public keys PubSPj
as public. In addition, the RA also stores {(TIDSPl

, RIDSPl
) |l 6= j,

j = 1, 2, · · · , nsp} in SPj corresponding to all other service providers SPl.

4.3.3 Access control phase

Through this phase, a smart meter SMi will be able to authenticate with its respective service

provider SPj with the help of node authentication task, and then after mutual authentication

between them, they will generate a common session key with the help of key establishment

task. The detailed discussion is given through the following steps:

• AC1. SMi being the initiator node generates a random secret r1 ∈ Z∗q and current

timestamp TS1, and then calculates R1 = h(r1 ||RIDSMi
).G, X1 = h(TCSMi

||TS1)

⊕h(RIDRA ||RIDSMi
||TS1) and X2 = h(TIDSMi

||RIDSMi
||RIDRA ||R1 ||CertSMi

||TS1). Next, SMi sends the “node authentication request message” Msg1 = {TIDSMi
,

X1, R1, X2, CertSMi
, TS1} to SPj via open channel.

• AC2. SPj being the responder node, after receiving the message Msg1 at time TS ′1, first

checks the validity of received TS1 by |TS1 − TS ′1| < ∆T , and if it is valid, SPj fetches

RIDSMi
corresponding to received TIDSMi

and computes X ′2 = h(TIDSMi
||RIDSMi

||RIDRA ||R1 ||CertSMi
||TS1). If this criteria satisfies, SPj further verifies the re-

ceived certificate CertSMi
by the condition: CertSMi

.G = PubSMi
+ h(RIDRA ||PubRA

||RIDSMi
).PubRA. If it is valid, SPj considers SMi as valid and proceeds to the next

step.

• AC3. SPj calculates h(TCSMi
||TS1) = X1 ⊕ h(RIDRA ||RIDSMi

||TS1), and gen-

erates current timestamp TS2 and random secret r2 ∈ Z∗q . After this, SPj cal-

culates R2 = h(r2|| RIDSPj
).G, DKji = h(r2|| RIDSPj

).R1, Y1 = h(TCSPj
||TS2)

⊕h(RIDRA ||RIDSMi
||TS1 ||TS2), the session key SKji shared with SMi as SKji =
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h(DKji||h(TCSMi
||TS1) ||h(TCSPj

||TS2) ||CertSMi
||CertSPj

). Next, SPj generates a

new temporary identity TIDnew
SMi

for SMi, and calculates the session key verifier Y2 =

h(SKji ||TIDnew
SMi
||RIDSMi

||R2 ||CertSPj
||TS2) and TID∗SMi

= TIDnew
SMi
⊕ h(TIDSMi

||SKji ||RIDSMi
||TS2), and then sends the “node authentication response message”

Msg2 = {TID∗SMi
, R2, Y1, Y2, CertSPj

, TS2} to SMi via open channel.

• AC4. Let SMi receive the message Msg2 at time TS ′2. SMi validates the received times-

tamp TS2 by |TS2 − TS ′2| < ∆T . On satisfactory validation, SMi verifies the received

certificate CertSPj
by CertSPj

.G = PubSPj
+ h(RIDRA|| PubSPj

).PubRA, and if it is

valid, SMi calculates h(TCSPj
||TS2) = Y1 ⊕h(RIDRA ||RIDSMi

||TS1 ||TS2), DKij =

h(r1|| RIDSMi
).R2, the session key SKij shared with SPj as SKij = h(DKij||h(TCSMi

||TS1) ||h(TCSPj
||TS2) ||CertSMi

||CertSPj
), TIDnew

SMi
= TID∗SMi

⊕ h(TIDSMi
||SKij

||RIDSMi
||TS2) and session key verifier Y ′2 = h(SKij ||TIDnew

SMi
||RIDSMi

||R2 ||CertSPj

||TS2). If the verification Y ′2 = Y2 holds, SMi generates current timestamp TS3, cal-

culates the session key verifier for SPj as X3 = h(SKij ||TS2 ||TS3) and sends the

“key establishment acknowledgement message” Msg3 = {X3, TS3} to SPj via public

medium.

• AC5. If the message Msg3 is received at time TS ′3, SPj verifies the validity of TS3

by the condition: |TS3 − TS ′3| < ∆T . Upon satisfactory verification, SPj calculates

X ′3 = h(SKji ||TS2 ||TS3) using its previous computed SKji and generated TS2. Now,

if X ′3 = X3, SPj assures that SPj is sharing the same session key with SMi and updates

TIDSMi
with new TIDnew

SMi
in its database corresponding to SMi. In addition, SPj also

generates a current timestamp TS4 and computes X4 = h(SKji ||R2 ||TS4). SPj then

constructs a message Msg4 = {X4, TS4} and sends it to SMi via open channel.

• AC6. Assume that SMi receives the message Msg4 at time TS ′4. SMi validates times-

tamp TS4 by |TS4 − TS ′4| < ∆T . If it is validated successfully, SMi checks if X4 =

h(SKij ||R2 ||TS4). If it is valid, SMi assures that TIDSMi
has been successfully up-

dated with TIDnew
SMi

at SPj, and then replaces TIDSMi
with TIDnew

SMi
in its database

too. In this way, SMi shares the same session key SKij (= SKji) with SPj.

It is worth noticing that if the message Msg3 is lost somehow during the communication,

because of sending additional message Msg4 by SPj the smart meter SMi will not update

TIDSMi
with TIDnew

SMi
in its database. Thus, this will solve the de-synchronization in updating

temporary identity in each session between SMi and SPj. The overall access control phase is

briefed in Figure 4.2.
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Smart meter (SMi) Service provider (SPj)

Generate random secret r1 ∈ Z∗q ,

current timestamp TS1. Check if |TS1 − TS ′1| < ∆T?

Compute R1 = h(r1 ||RIDSMi
).G, If so, fetch RIDSMi

corresponding

X1 = h(TCSMi
||TS1) ⊕h(RIDRA to TIDSMi

.

||RIDSMi
||TS1), Compute X ′2 = h(TIDSMi

||RIDSMi

X2 = h(TIDSMi
||RIDSMi

||RIDRA ||RIDRA ||R1 ||CertSMi
||TS1).

||R1 ||CertSMi
||TS1). Verify certificate: if CertSMi

.G = PubSMi

Msg1 = {TIDSMi
, X1, R1, +h(RIDRA ||PubRA ||RIDSMi

).PubRA?

X2, CertSMi
, TS1}−−−−−−−−−−−−−→

If so, compute h(TCSMi
||TS1) =

(via open channel) X1 ⊕ h(RIDRA ||RIDSMi
||TS1).

Generate random secret r2 ∈ Z∗q ,

current timestamp TS2.

Compute R2 = h(r2|| RIDSPj
).G,

DKji = h(r2|| RIDSPj
).R1,

Y1 = h(TCSPj
||TS2) ⊕h(RIDRA

||RIDSMi
||TS1 ||TS2),

Check if |TS2 − TS ′2| < ∆T? SKji = h(DKji||h(TCSMi
||TS1)

Verify certificate: if CertSPj
.G = PubSPj

+ ||h(TCSPj
||TS2) ||CertSMi

||CertSPj
).

h(RIDRA|| PubSPj
).PubRA? Generate new temporary identity TIDnew

SMi
.

If so, compute h(TCSPj
||TS2) = Compute Y2 = h(SKji ||TIDnew

SMi

Y1 ⊕h(RIDRA ||RIDSMi
||TS1 ||TS2), ||RIDSMi

||R2 ||CertSPj
||TS2),

DKij = h(r1|| RIDSMi
).R2, TID∗SMi

= TIDnew
SMi
⊕ h(TIDSMi

SKij = h(DKij||h(TCSMi
||TS1). ||SKji ||RIDSMi

||TS2).

||h(TCSPj
||TS2) ||CertSMi

||CertSPj
), Msg2 = {TID∗SMi

, R2,

T IDnew
SMi

= TID∗SMi
⊕ Y1, Y2, CertSPj

, TS2}
←−−−−−−−−−−−−−−−

h(TIDSMi
||SKij ||RIDSMi

||TS2), (via open channel)

Y ′2 = h(SKij ||TIDnew
SMi
||RIDSMi

||R2 ||CertSPj
||TS2).

If Y ′2 = Y2, generate current timestamp TS3

and compute X3 = h(SKij ||TS2 ||TS3). Check if |TS3 − TS ′3| < ∆T ?

Msg3 = {X3, TS3}−−−−−−−−−−−−−→
If so, compute X ′3 = h(SKji ||TS2 ||TS3).

(via open channel) Check if X ′3 = X3?

If valid, generate a current timestamp TS4.

Check if TS4 by |TS4 − TS ′4| < ∆T? Compute X4 = h(SKji||R2 ||TS4).

If so, check if X4 = h(SKij||R2 ||TS4)? Msg4 = {X4, TS4}←−−−−−−−−−−−−−
If valid, update TIDSMi

with new TIDnew
SMi

. Update TIDSMi
with new TIDnew

SMi
.

Both SMi and SPj store the shared common session key SKij (= SKji).

Figure 4.2: Summary of access control phase in DBACP-IoTSG
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4.3.4 Key management phase

Assume two service providers SPj and SPl agree on establishing a symmetric pairwise key

between them. To achieve this purpose, the following steps are required to complete:

• KM1. SPj first generates current timestamp TSSPj
and sends the request message

{TIDSPj
, CertSPj

, TSSPj
} to SPl via open channel.

• KM2. SPl after receiving the request message at time TS∗SPj
, it validates timestamp

by the condition: |TS∗SPj
− TSSPj

| < ∆T . If it is verified successfully, SPl validates

the certificate by CertSPj
.G = PubSPj

+ h(RIDRA|| PubSPj
).PubRA. If both checks

are valid, SPl considers SPj as authentic and then retrieves RIDSPj
corresponding to

TIDSPj
from its database and generates current timestamp TSSPl

, calculates one-time

pairwise shared key with SPj as KSPj ,SPl
= h(f(RIDSPl

, RIDSPj
) ||CertSPj

||CertSPl

||TSSPj
||TSSPl

) and its verifier V KSPj ,SPl
= h(KSPj ,SPl

||TSSPl
). Next, SPl sends the

response message {TIDSPl
, CertSPl

, TSSPl
, V KSPj ,SPl

} to SPj via open channel.

• KM3. Upon reception of the response message at time TS∗SPl
, SPj retrieves RIDSPl

cor-

responding to received TIDSPl
from its database, and validates timestamp by TSSPl

by

|TS∗SPl
− TSSPl

| < ∆T and the certificate CertSPl
by checking the verification equa-

tion: CertSPl
.G = PubSPl

+ h(RIDRA|| PubSPl
).PubRA. If both checks are valid,

SPj calculates the one-time pairwise shared secret shared with SPl as KSPl,SPj
=

h(f(RIDSPj
, RIDSPl

) ||CertSPj
||CertSPl

||TSSPj
||TSSPl

) and its verifier V KSPl,SPj
=

h(KSPl,SPj
||TSSPl

). Note that KSPl,SPj
= KSPj ,SPl

as f(RIDSPl
, RIDSPj

) =

f(RIDSPj
, RIDSPl

). If V KSPl,SPj
= V KSPj ,SPl

, SPj treats SPl as authentic.

After this phase termination, both SPj and SPl share the same pairwise secret key KSPl,SPj

(= KSPj ,SPl
) and use it for their secret communications in future.

4.3.5 Block formation and addition phase

During the access control phase discussed in Section 4.3.4, it is worth noticing that a service

provider, say SPj and its associated smart meter SMi establish a session key SKij (= SKji).

Now, using this session key SKij, SPj will collect the encrypted informations of the form

(Tx, SignTx, BPubSMi
) from its smart meters (SMi), where SignTx is the ECDSA signature

generation algorithm [104] and BPubSMi
is public key of SMi. Thus, SPj can decrypt the

encrypted information using the same session key SKij. After that, SPj forms an encrypted
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transaction by encrypting the decrypted information using its own public key PubSPj
as

EPPubSPj
[Tx1, SignTx1 , BPubSMi

] and puts it into a global transactions pool, say GTranspool,

which will be available in the P2P SP network. Assume that GTranspool is filled by a list of

nt encrypted transactions, say {EPPubSPj
(Tx1, SignTx1 , BPubSMi

), EPPubSPj
(Tx2, SignTx2 ,

BPubSMi
), · · · , EPPubSPj

(Txnt , SignTxnt
, BPubSMi

)}. Now, when GTranspool reaches to the

transaction threshold, say Txthresh (the minimum number of transactions (nt) to be stored

in a block Blockm), that is, Txthresh = nt, a leader (L) will be elected by Algorithm 4 from

the P2P SPN using the similar strategy mentioned in [239]. After that L will create a block

Blockm as mentioned in Figure 4.3.

Block Header

Block Version (BVm) Unique block version number

Previous Block Hash (PBHashm) Hash value of previous block Blockm−1

Merkle Tree Root (MTRm) Merkle tree root on encrypted transactions

Timestamp (TSm) Block creation time

Owner (Om) of Blockm A service provider (SPj)

Public key of signer Om PubSPj

Block Payload (Encrypted Transactions)

Encrypted Transactions Txi EPPubSPj
(Txi, SignTxi

, BPubSMi
)

(i = 1, 2, . . . , nt)

Current Block Hash (CBHashm) Hash value of current block Blockm

acts as a signature on block

ECDSA signature on (CBHashm) SignCBHashm

Figure 4.3: Formation of a block Blockm on encrypted transactions by SPj in DBACP-IoTSG

Once the block Blockm is formed by the leader L, a voting-based consensus using PBFT

algorithm [38] will be executed in DBACP-IoTSG for block addition in the blockchain. First

of all, the leader L sends the block Blockm along with a distinct random number to other

service providers SPj in the P2P SPN for consensus purpose of verifying the block. If a

service provider SPj verifies the block successfully with the existing GTranspool, it sends its

verification status (V erStatus) securely to the leader L. L maintains the global commitment

message pool (GCMpool) which contains the valid block verification status (V erStatus) and

it is accessible to all the peer nodes. Now, based on valid V erStatus, the leader L increments
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its counter (V BCount), where V BCount is the number of valid votes in the pool GCMpool,

which was initially set to 0. If V BCount > 2nf +1, the leader L sends Commit message to all

the responded service providers and also adds the block Blockm in the blockchain. Meanwhile,

the other peer nodes in the P2P SP network will add the block in their distributed ledger. The

overall process is explained in Algorithm 2. Note that the added block Blockm can be verified

by any service provider and also by other entities involved in the network. However, only the

service provider SPj (L) who created Blockm can only decrypt the encrypted transactions

containing in that block, because SPj has the matching private key kSPj
corresponding to the

public key PubSPj
= kSPj

.G with the help of public key based ECC decryption algorithm.

Remark 4.1. There is a pool of transactions maintained by the P2P SP network, and if it

reaches to the transaction threshold, a leader (L) will be selected by the secure leader selection

algorithm described in Algorithm 4. After that, the leader L will create a block and start the

consensus algorithm in order to add this block into the blockchain as mentioned in Algorithm

2. To achieve this goal, the leader L will send the generated block with other encrypted ran-

dom number and voting request to its all peer nodes. After getting the block, other follower

service provider nodes will verify it with the existing transactions pool. Now, assume that the

leader L behaves like a malicious node, generates a fake block, and then broadcasts it to the

P2P SP network. After receiving the fake block, the followers will verify the block with the

existing transactions pool. If the block is found to be a fake one containing the unauthorized

transactions, at the verification time other follower nodes can easily verify the received block

with the existing transactions pool. However, it will not be verified with the existing pool as the

block contains fake transactions. Therefore, any fake block cannot be added to the blockchain.

As a result, the block transparency is achieved in the proposed scheme too.

4.3.6 Dynamic node addition phase

Sometimes, some service providers SPj may become faulty nodes or some smart meters may

be physically compromised by an adversary. Thus, it becomes essential to add some new

service providers or smart meters in the existing IoT-enabled smart grid system.

Assume that a new smart meter SMnew
i needs to be installed under an existing service

provider SPj and a new service provider SP new
j needs to be deployed in the existing P2P SP

network . To achieve this goal, the RA picks for SMnew
i a unique real identity IDnew

SMi
and

a random temporary identity TIDnew
SMi

, and computes its pseudo-random identity RIDnew
SMi

=

h(IDnew
SMi
||mkRA ||RTSnew

SMi
), where the registration timestamp of SMnew

i is RTSnew
SMi

. Fur-
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Algorithm 1 Secure Leader Selection
1: Suppose nf denotes the number of faulty nodes in the SP network and nsp > 3nf + 1.

2: Set Follower ← SPj , (j = 1, 2, · · · , nsp).

3: Assume Nov is the number of original votes. Set Nov ← 0.

4: Set a random timeout RTout and start a timer TMR.

5: while TMR > RTout do

6: Set Candidate← Follower.

7: Start a new timer TMRnew.

8: Set Nov = Nov + 1.

9: Generate a random number rSPj
∈ Z∗q and current timestamp TSSPj

.

10: Encrypt the voting request (V oteReq), random number rSPj
and timestamp TSSPj

using the shared pairwise

keys KSPj ,SPl
with other service providers SPl, (l 6= j, j = 1, 2, · · · , nsp) (already established during key man-

agement phase in Section 4.3.4) with the help of symmetric encryption EC(·) to generate the encrypted request

ECKSPj,SPl
[V oteReq, rSPj

, TSSPj
].

11: Transmit the message {ECKSPj,SPl
[V oteReq, rSPj

, TSSPj
], TSSPj

} to all other service providers SPl and wait for the

authentic votes reply messages.

12: After SPl receives message {ECKSPj,SPl
[V oteReq, rSPj

, TSSPj
], TSSPj

} at time TS∗SPj
, it first checks

the validity of timestamp by the condition |TSSPj
− TS∗SPj

| < ∆T . If this condition is verified,

SPl decrypts the encrypted request using the same pairwise key KSPj ,SPl
as (V oteReq, r′SPj

, TS′SPj
) =

DCKSPj,SPl
[ECKSPj,SPl

[V oteReq, rSPj
, TSSPj

]]. If the decrypted timestamp TS′SPj
matches with received TSSPj

, SPl

sends the vote reply message {ECKSPj,SPl
[V oteRep, rSPj

, TSSPl
], TSSPl

} to SPj , where TSSPl
is the current timestamp

generated by TSl and V oteRep is the vote reply.

13: for each vote reply message {ECKSPj,SPl
[V oteRep, rSPj

, TSSPl
], TSSPl

} received by SPj from other service providers

SPl at time TS∗SPl
do

14: if |TSSPl
− TS∗SPl

| < ∆T then

15: Compute (V oteRep, r∗SPj
, TS∗∗SPl

) = DCKSPj,SPl
[ECKSPj,SPl

[V oteRep, rSPj
, TSSPl

]].

16: if ((r∗SPj
= rSPj

) and (TS∗∗SPl
= TSSPl

) and V oteRep is positive) then

17: Set Nov = Nov + 1.

18: end if

19: end if

20: end for

21: if Nov >
nsp

2
+ 1 then

22: Leader ← Candidate.

23: else

24: Follower ← Candidate.

25: Repeat Steps 7–11 for new election.

26: end if

27: end while

28: return Leader

thermore, the RA picks a random private key knewSMi
of SMnew

i and calculates the respective

public key PubnewSMi
= knewSMi

.G, SMnew
i ’s temporal secret TCnew

SMi
= h(IDnew

SMi
||mkRA ||knewSMi

||RTSnew
SMi

) and certificate CertnewSMi
= knewSMi

+ h(RIDRA ||PubRA ||RIDnew
SMi

) ∗ mkRA (mod q)

using its own private key mkRA. The RA picks a random private key brnewSMi
and calculates

its respective public key BPubnewSMi
= brnewSMi

.G for SMnew
i . The RA then loads the credentials

{TIDnew
SMi

, RIDnew
SMi

, TCnew
SMi

, RIDRA, Cert
new
SMi

, (brnewSMi
, BPubnewSMi

)} in SMnew
i ’s memory prior

to its placement in the network, and declares the public keys PubnewSMi
and BPubnewSMi

as public.
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Algorithm 2 Voting-based consensus for block verification and addition in blockchain

Input: A block Blockm
Output: Global commitment message pool GCMpool and block addition status

1: Assume the leader (L) has the block Blockm. L generates a random number rnL and current timestamp TSL for each

follower service provider, say SPj .

2: L computes the encrypted voting request (V otReq) using the key KL,SPj
as ECKL,SPj

(V otReq, rnL) and

MACKL,SPj
(V otReq, rnL, TSL) using the shared key KL,SPj

established during the key management phase in Section

4.3.4.

3: L sends Blockm and MAC as {Blockm, ECKL,SPj
(V otReq, rnL), MACKL,SPj

(V otReq, rnL, TSL), TSL} to each follower

SPj , (j = 1, 2, · · · , nsp, L 6= SPj).

4: Assume SPj receives the message at time TS∗L.

5: for each follower node, SPj do

6: if (|TSL − TS∗L| < ∆T ) then

7: Compute block hash CBHash′m on received Blockm.

8: if ((CBHash′m = CBHashm) and (SignCBHashm = valid)) then

9: Compute the Merkle tree root, MTR′m on the encrypted transactions present in the block Blockm.

10: if (MTR′m = MTRm) then

11: Decrypt V otReq using the key KL,SPj
as (V otReq′, rn′L) = DCKL,SPj

[ECKL,SPj
(V otReq, rnL)] and MAC as

MACKL,SPj
(V otReq, rnL, TSL).

12: if (MACKL,SPj
(V otReq′, rn′L, TSL) = MACKL,SPj

(V otReq, rnL, TSL)) then

13: Send the block verification status V erStatus as {ECKL,SPj
(rn′L, V erStatus)} to L.

14: end if

15: end if

16: end if

17: end if

18: end for

19: Initialize V BCount← 0.

20: for each received message {ECKL,SPj
(rn′L, V erStatus)} from the follower SPj do

21: Compute (rn∗L, V erStatus) = DCKL,SPj
[ECKL,SPj

(rn′L, V erStatus)].

22: if ((rn∗L = rnL) and (V erStatus = valid)) then

23: Set V BCount = V BCount + 1.

24: end if

25: end for

26: if (V BCount > 2nf + 1) then

27: Send the commit response to all followers.

28: Add block Blockm to the blockchain.

29: end if

In addition, the RA also stores the information (TIDnew
SMi

, RIDnew
SMi

) in the database of SPj.

In a similar way, the new service provider SP new
j will be registered by the RA as described in

Section 4.3.2 prior to its deployment.

4.4 Security analysis

This section examines the proposed DBACP-IoTSG scheme against possible attacks that are

possible in blockchain-based IoT-enabled smart grid system. For this reason, we first prove the
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correction of established session key between a smart meter SMi and a service provider SPj,

and then conduct the formal security analysis under the random oracle model, the informal

security analysis, and also the formal security verification to assure that DBACP-IoTSG will

be secure against attacks with high probability.

4.4.1 Correctness proof of session key

Theorem 4.1 proves that the same session key is established between SMi and SPj.

Theorem 4.1. The session keys established between SMi and SPj are the same.

Proof. During the access control phase described in Section 4.3.3, the smart meter SMi calcu-

lates the session key SKij shared with the service provider SPj as SKij = h(DKij||h(TCSMi

||TS1) ||h(TCSPj
||TS2) ||CertSMi

||CertSPj
), where DKij = h(r1|| RIDSMi

).R2 and R2 =

h(r2|| RIDSPj
).G. On the other side, SPj also calculates the session key SKji shared with

SMi as SKji = h(DKji||h(TCSMi
||TS1) ||h(TCSPj

||TS2) ||CertSMi
||CertSPj

), where R1 =

h(r1 ||RIDSMi
).G and DKji = h(r2|| RIDSPj

).R1.

Now, it follows that

DKij = h(r1||RIDSMi
).R2

= (h(r1||RIDSMi
) ∗ h(r2||RIDSPj

)).G

= h(r2||RIDSPj
).(h(r1||RIDSMi

).G)

= h(r2||RIDSPj
).R1 = DKji.

Hence, SKij = h(DKij ||h(TCSMi
||TS1) ||h(TCSPj

||TS2) ||CertSMi
||CertSPj

) = h(DKji

||h(TCSMi
||TS1) ||h(TCSPj

||TS2) ||CertSMi
||CertSPj

) = SKji.

4.4.2 Formal security under ROR model

In this section, we employ the wide-accepted Real-Or-Random (ROR) oracle model [10] to

show that DBACP-IoTSG is secure against an adversary A for deriving the session-key be-

tween a smart meter (SMi) and a service provider (SPj). For this goal, we briefly discuss the

ROR model with semantic security notion, and then the session key security of DBACP-IoTSG

in Theorem 4.2. The adversary A will have the access to all the queries tabulated in Table

4.2. In addition, as discussed in [42], access to a “collision-resistant one-way cryptographic

hash function h(·)” is provided to all the involved participants including the adversary A. As

a result, we also model h(·) as a random oracle, say Hash.
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Table 4.2: Queries and their purposes

Query Purpose

Execute(Ψl1
SMi

, Ψl2
SPj

) Using this query, A is allowed to eavesdrop the

messages exchanged between SMi and SPj

CorruptSmartMeter(Ψl1
SMi

) Under this query, A is permitted to extract “the

credentials stored in a stolen or lost SMi”

Reveal(Ψl) Under this query, the session key SKij (= SKji)

shared between Ψl and its respective partner is

leaked to A
Test(Ψl) Under this query, A is allowed to appeal Ψl for

SKij (= SKji) and Ψl provides a “random out-

come of a flipped unbiased coin, say c”

The ROR model is associated with the following components:

• Participants. During the access control phase, two participants, namely a smart meter

(SMi) and a service provider (SPj) are involved apart from the RA that is only involved

during the registration and dynamic node addition phases. The notations Ψl1
SMi

and Ψl2
SPj

denote the l1 and l2 instances of SMi and SPj, respectively. These instances are known

as the “random oracles”.

• Accepted state. An instance Ψl will enter in its “accepted state” once it goes to an

accept state when the last valid protocol message is received. All the sent and received

messages can be then ordered in sequence, and this constitutes the “session identification

sid of Ψl for the current session”.

• Partnering. Two instances (Ψl1 and Ψl2) are partners to each other once the following

three criteria are valid:

– Ψl1 and Ψl2 need to be in “accepted states”.

– Ψl1 and Ψl2 need to share the same sid and they need to also “mutually authenticate

each other”.

– Ψl1 and Ψl2 need to be “mutual partners of each other”.

• Freshness. An instance Ψl1
SMi

or Ψl2
SPj

is called fresh when the established session key

SKij (= SKji) shared between SMi and SPj is not leaked to A using the Reveal(Ψl)
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query described in Table 4.2.

We now define “semantic security” of our proposed DBACP-IoTSG in Definition 4.1 prior

to prove Theorem 4.2.

Definition 4.1 (Semantic security). If we denote AdvDBACP−IoTSG
A (tpoly) as the “advantage

of an adversary A running in polynomial time tpoly in breaking the semantic security of the

proposed DBACP-IoTSG for computing the session key SKij (= SKji) between a smart meter

SMi and a service provider SPj”, AdvDBACP−IoTSG
A (tpoly) = |2Pr[c′ = c]− 1|, where c and c′

are respectively the “correct” and “guessed” bits.

Theorem 4.2. Let there be an adversary A running in polynomial time tpoly to calculate the

session key SKij (= SKji) established between a smart meter SMi and a service provider

SPj in the proposed protocol, DBACP-IoTSG. If qh, |Hash|, and AdvECDDHP
A (tpoly) represent

“the number of Hash queries, the range space of a one-way collision-resistant hash func-

tion h(·), and the advantage of breaking the Elliptic Curve Decisional Diffe-Hellman Problem

(ECDDHP)”, respectively, then AdvDBACP−IoTSG
A (tpoly) ≤

q2h
|Hash| + 2AdvECDDHP

A (tpoly).

Proof. We follow the proof this theorem in a similar way that was done in [24, 28, 42, 59,

137, 138, 188, 219]. There are three games, say GameAj for the adversary A, j = 0, 1, 2,

where we define SuccAGamej
as “an event that A can guess the random bit c in the game

GameAj correctly”. We then define A’s advantage in winning the GameAj in DBACP-IoTSG

as AdvDBACP−IoTSG
A,Gamej

= Pr[SuccAGamej
]. The detailed description of each game is given below.

• GameA0 : The “actual attack” performed by the adversary A against the proposed

DBACP-IoTSG under the ROR model always corresponds the initial game GameA0 .

The bit c needs to be selected randomly by A before the game GameA0 begins. The

semantic security defined in Definition 4.1 gives the following:

AdvDBACP−IoTSG
A (tpoly) = |2AdvDBACP−IoTSG

A,Game0
− 1|. (4.1)

• GameA1 : This game corresponds to an eavesdropping game, where the adversary A
makes use of the defined Execute query in Table 4.2. Using this query, A will be able to

intercept all the communicated messages Msg1 = {TIDSMi
, X1, R1, X2, CertSMi

, TS1},
Msg2 = {TID∗SMi

, R2, Y1, Y2, CertSPj
, TS2}, Msg3 = {X3, TS3} and Msg4 = {X4,

TS4}, and try to derive the session key SKij (= SKji). Next, A needs to execute Reveal

and Test queries in order to check whether the derived session key is a correct one or just



4.4 Security analysis 79

a random key. It is worth noting that SKij = h(DKij||h(TCSMi
||TS1) ||h(TCSPj

||TS2)

||CertSMi
||CertSPj

) = h(DKji||h(TCSMi
||TS1) ||h(TCSPj

||TS2) ||CertSMi
||CertSPj

)

= SKji, where DKij = h(r1|| RIDSMi
).R2 = (h(r1|| RIDSMi

) ∗ h(r2|| RIDSPj
)).G

= h(r2|| RIDSPj
).(h(r1|| RIDSMi

).G) = h(r2|| RIDSPj
).R1 = DKji. Since all the

temporal and long term secrets are protected by h(·), only interception of the messages

Msgm (m = 1, 2, 3, 4) will not lead to increase the success probability at all in deriving

the session key SKij (= SKji). Now, both the games GameA0 and GameA1 become

indistinguishable under the eavesdropping attack. Thus, we obtain the following:

AdvDBACP−IoTSG
A,Game1

= AdvDBACP−IoTSG
A,Game0

. (4.2)

• GameA2 : This game will correspond to an active attack, where we include the simu-

lations of Hash and CorruptSmartMeter queries, and also difficulty of solving ECD-

DHP. To derive the session key SKij (= SKji), the adversary A needs to derive DKij

(= DKji), where DKij = h(r1|| RIDSMi
).R2 and DKji = h(r2|| RIDSPj

).R1. Assume

that A has already the intercepted messages Msgm (m = 1, 2, 3, 4), and so, he/she has

the knowledge of R1 = h(r1 ||RIDSMi
).G and R2 = h(r2|| RIDSPj

).G. Since DKij =

h(r1|| RIDSMi
).R2 = (h(r1|| RIDSMi

) ∗ h(r2|| RIDSPj
)).G = h(r2|| RIDSPj

).(h(r1||
RIDSMi

).G) = h(r2|| RIDSPj
).R1 = DKji, the adversary A has to solve the compu-

tational ECDDHP to obtain DKij (= DKji) using R1 and R2. Furthermore, other

secrets (TCSMi
and TCSPj

) are embedded in the hash function h(·). In addition, using

the CorruptSmartMeter query, the adversary A will have the credentials {TIDSMi
,

RIDSMi
, TCSMi

, RIDRA, CertSMi
}. Then, having the knowledge of other secrets, such

as r1, r2, RIDSPj
and TCSPj

, A will be able to derive the session key SKij (= SKji).

We observe that both the games GameA1 and GameA2 are indistinguishable if we do not

have simulation of Hash and CorruptSmartMeter queries, and ECDDHP is not hard

problem. Using the results of birthday paradox for finding the hash collision and the

advantage of solving ECDDHP, we obtain the following relation:

|AdvDBACP−IoTSG
A,Game1

− AdvDBACP−IoTSG
A,Game2

| ≤ q2
h

2|Hash|
+ AdvECDDHP

A (tpoly). (4.3)

It is worth noting that all the queries are made by A, and it is only left for A to correctly

guess a bit to win the game GameA2 . Therefore, we have,

AdvDBACP−IoTSG
A,Game2

=
1

2
. (4.4)
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Eq. (4.1) gives

1

2
.AdvDBACP−IoTSG

A (tpoly) = |AdvDBACP−IoTSG
A,Game0

− 1

2
|. (4.5)

Eqs. (4.2), (4.3) and (4.4), and use of triangular inequality lead to the following derivation

from Eq. (4.5):

1

2
.AdvDBACP−IoTSG

A (tpoly) = |AdvDBACP−IoTSG
A,Game0

− AdvDBACP−IoTSG
A,Game2

|

= |AdvDBACP−IoTSG
A,Game1

− AdvDBACP−IoTSG
A,Game2

| (4.6)

≤ q2
h

2|Hash|
+ AdvECDDHP

A (tpoly).

Finally, if we multiply both sides of Eq. (4.6) by “a factor of 2”, we arrive to the final result:

AdvDBACP−IoTSG
A (tpoly) ≤

q2
h

|Hash|
+ 2AdvECDDHP

A (tpoly).

4.4.3 Informal security analysis

Through the informal (non-mathematical) security analysis, we exhibit that the proposed

DBACP-IoTSG resists various attacks, which are proved in Propositions 4.1–4.7.

Proposition 4.1. DBACP-IoTSG is secure against smart meter and service provider imper-

sonation attacks.

Proof. We consider the following impersonation attacks related to our DBACP-IoTSG:

• Smart meter impersonation attack: Suppose an adversaryA acts as a register smart

meter SMi and wants to communicate with the service provider SPj with the message

Msg′1 = {TIDSMi
, X ′1, R

′
1, X

′
2, CertSMi

, TS ′1}. To do so, A can select a random number

r′1 and timestamp TS ′1 to calculate R′1 = h(r′1 ||RIDSMi
).G and X ′1 = h(TCSMi

||TS ′1)

⊕h(RIDRA ||RIDSMi
||TS ′1) and X ′2 = h(TIDSMi

||RIDSMi
||RIDRA ||R′1 ||CertSMi

||TS ′1). Since RIDSMi
and TCSMi

are the secret credentials, so without knowledge of

these credentials it is “computationally infeasible problem” for A to generate R′1 = h(r′1

||RIDSMi
).G, X ′1 = h(TCSMi

||TS ′1) ⊕h(RIDRA ||RIDSMi
||TS ′1) and X2 = h(TIDSMi

||RIDSMi
||RIDRA ||R′1 ||CertSMi

||TS ′1) on behalf of smart meter SMi. Hence, DBACP-

IoTSG is resilient against “smart meter impersonation attack”.
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• Service provider impersonation attack: Let an adversary A act as a valid ser-

vice provider SPj and want to send a valid message Msg′2 = {(TID∗SMi
)′, R′2, Y

′
1 , Y

′
2 ,

CertSPj
, TS ′2} to SMi. For this purpose, A can select a random number r′2 and times-

tamp TS ′2 to generate R′2 = h(r′2|| RIDSPj
).G, DK ′ji = h(r′2|| RIDSPj

).R1 and Y ′1 =

h(TCSPj
||TS ′2) ⊕h(RIDRA ||RIDSMi

||TS ′1 ||TS ′2). A can also try to calculate the

session key SK ′ji = h(DK ′ji||h(TCSMi
||TS ′1) ||h(TCSPj

||TS ′2) ||CertSMi
||CertSPj

) and

generate a new temporal identity (TIDnew
SMi

)′ to calculate session key verifier Y ′2 = h(SK ′ji

||(TIDnew
SMi

)′ ||RIDSMi
||R′2 ||CertSPj

||TS ′2) and (TID∗SMi
)′ = (TIDnew

SMi
)′⊕ h(TIDSMi

||SK ′ji ||RIDSMi
||TS ′2). Again it is “computationally infeasible problem” forA to gener-

ate R′2, DK ′ji, Y
′

1 , SK ′ji, Y
′

2 , and (TID∗SMi
)′ without knowledge of the secrete credentials

RIDSPj
), TCSPj

, RIDSMi
, and TCSMi

. Hence, DBACP-IoTSG is resilient against “ser-

vice provider impersonation attack”.

Proposition 4.2. DBACP-IoTSG is resilient against smart meter physical capture attack.

Proof. Due to unfriendly (unattended) environment some smart meters may be captured phys-

ically by an adversary A. Then, A can extract the all stored information {TIDSMi
, RIDSMi

,

TCSMi
, RIDRA, CertSMi

} from a captured smart meter SMi which were stored during smart

meter registration phase (see Section 4.3.2) using the power analysis attacks [141]. Since the

secret credentials {TIDSMi
, RIDSMi

, TCSMi
, CertSMi

} are distinct for different smart me-

ters, compromising these credentials can not effect to the whole network. This is primarily

because these credentials will not be helpful in computing the session keys between other non-

compromised smart meters and a service provider SPj. Thus, compromise of SMi does not

reflect in compromising secure communications among non-compromised smart meters SM ′
i

and a service provider SPj, and hence, they can still communicate with 100% security. This

assures that DBACP-IoTSG is “unconditionally secure against smart meters capture attack”

and as a result, it is protected from “smart meter physical capture attack”.

Proposition 4.3. Replay attack is protected in DBACP-IoTSG.

Proof. The messages Msg1 = {TIDSMi
, X1, R1, X2, CertSMi

, TS1}, Msg2 = {TID∗SMi
, R2,

Y1, Y2, CertSPj
, TS2}, Msg3 = {X3, TS3} and Msg4 = {X4, TS4} are sent over public channel

during the “access control phase” discussed in Section 4.3.4, which is happened in between

smart meter SMi and service provider SPj. At the time of message creation, not only the

timestamps are included but the random numbers are also attached along with the messages.
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The timestamps are verified by the receiver(s) for checking message integrity and freshness.

Since the adversary A cannot produce the original timestamps which are used in that time

attached in the messages, replaying the old valid messages are then detected by the receivers.

Thus, DBACP-IoTSG is protected from the “replay attack”.

Proposition 4.4. Man-in-the-middle attack is protected in DBACP-IoTSG.

Proof. In this attack, an adversaryAmay intercept the “node authentication request message”

Msg1 = {TIDSMi
, X1, R1, X2, CertSMi

, TS1} from an insecure (open) channel and generate

another valid message Msg′1 on the fly so that the service provider SPj as the receiver can

not detect it as a modified one. But, A can not generate the values of R1, X1, and X2 to

produce the valid message Msg′1 due to the pre-loaded secrete credentials TCSMi
and RIDSMi

.

In a similar way, A also fails to create valid “node authentication response message” for the

intercepted message Msg2 = {TID∗SMi
, R2, Y1, Y2, CertSPj

, TS2} due to pre-loaded secret

information TCSPj
and RIDSPj

, and the shared session secrete key SKji is needed for this

purpose. Furthermore, A can not temper the “key establishment acknowledgment message”

Msg3 = {X3, TS3} and Msg4 due to computation of the authentic secret shared session key

SKji. Thus, DBACP-IoTSG is secure against the “man-in-the-middle attack”.

Proposition 4.5. DBACP-IoTSG is resilient against ephemeral secret leakage (ESL) attack.

Proof. In DBACP-IoTSG, using the access control phase, the smart meter SMi calculates the

session key SKij shared with the service provider SPj as SKij = h(DKij||h(TCSMi
||TS1)

||h(TCSPj
||TS2) ||CertSMi

||CertSPj
), where DKij = h(r1|| RIDSMi

).R2 and R2 = h(r2||
RIDSPj

).G. On the other side, SPj also calculates the session key SKji shared with SMi

as SKji = h(DKji||h(TCSMi
||TS1) ||h(TCSPj

||TS2) ||CertSMi
||CertSPj

), where R1 = h(r1

||RIDSMi
).G and DKji = h(r2|| RIDSPj

).R1. Since DKji = DKij, both SMi and SPj

share the same session key SKij = (= SKji), which is also proved in Theorem 4.1. It

is understandable that the “session key” is the combination of both the session-temporary

(ephemeral) credentials (also called as “short term secrets”), such as random numbers and the

“long-term secrets” (different secret credentials and pseudo-identities). The session key SKij

can only be disclosed when an adversary A compromises both the session-temporary as well

as long-term secrets. Moreover, usage of random numbers and timestamps in computation

of session keys between various SMi and SPj over different sessions makes distinct session

keys establishment among SMi and SPj. Even if a session key is disclosed for a specific

session, it will not result in calculating the session keys over other sessions because short and
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long term secrets are used. As a result, DBACP-IoTSG is secure against “session-temporary

information attack” and it also preserves the “perfect forward secrecy” property. In a nutshell,

DBACP-IoTSG is secure against “ESL attack”.

Proposition 4.6. DBACP-IoTSG preserves both anonymity and untraceability functionali-

ties.

Proof. Suppose an adversary A eavesdrops the messages Msg1, Msg2, Msg3 and Msg4. Since

each of the messages does not contain the real identity IDSMi
of a smart meter SMi and the

real identity IDSPj
of a service provider SPj directly, A cannot relate who is the sender or

receiver in the node authentication and key establishment session in access control phase.

Therefore, “anonymity” of both smart meter and service provider is preserved in DBACP-

IoTSG. Again, the parameters involved in various messages Msg1, Msg2, Msg3 and Msg4

are purely dynamic, and these are not same for any two key establishment sessions in access

control phase due to usage of both random numbers and current timestamps. Hence, A cannot

relate whether the messages exchanged between the entities over two successive sessions belong

to the same user or not. This also assures “untraceability” in DBACP-IoTSG.

Proposition 4.7. Block verification is supported in DBACP-IoTSG.

Proof. In DBACP-IoTSG, the block verification by the peer nodes (service providers) in the

P2P SP network is based on the well-known voting-based PBFT consensus algorithm as

discussed in Algorithm 2. It is worth noticing that a smart grid system is considered as an

“asynchronous distribution system”. Thus, a single node (peer node) failure is treated as

an independent event. Suppose an adversary A controls some nodes in the SP network and

enables them with malicious consensus algorithm. However, in DBACP-IoTSG, the leader (L)

makes a decision based on responses (erroneous response or positive response or no response).

As long as the L receives an adequate number of replies from the “non-failed nodes”, DBACP-

IoTSG assures security and activity of asynchronous system to encounter the requirements.

In addition, the leader selection in DBACP-IoTSG takes place securely through the use of

established pairwise secret keys among the service providers acting as peer nodes in the SP

network as illustrated in Algorithm 4. As a result, there is a negligible possibility of getting

corrupted responses from the non-failed authentic nodes. Thus, in DBACP-IoTSG, the block

verification takes place in a secure manner.
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Figure 4.4: HLSPL Specification for the role of the RA

4.4.4 Formal security verification: simulation study using AVISPA

This section gives the formal security verification of the proposed DBACP-IoTSG scheme using

the broadly-used automated software verification tool, known as “Automated Validation of

Internet Security Protocols and Applications (AVISPA)” [17]. In recent years, AVISPA-based

simulation becomes reliable as it has been applied in many authentication and access control
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Figure 4.5: HLSPL Specification for the role of smart meter SMi
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role serviceprovider (RA, SMi, SPj: agent, 
         % H is one−way hash function
         H: hash_func, 
         % send and receive channels under the Dolve−Yao (DY) threat model
         Snd, Rcv: channel(dy))

% Player: SPj
played_by SPj
def=
local State: nat,
      G, TIDspj, IDspj, MKra, RTSspj, Kspj, IDra, IDsmi, TIDsmi: text,
      RTSsmi, Ksmi, TS1, R1, R2, TS2, DKji, SKji, Y1, Pubra: text,
      R22, RIDra, RIDsmi, Pubsmi, Y2, RIDspj, Pubspj, TS3: text,
      F, GF: hash_func,
      SKraspj: symmetric_key
const sp1, sp2, smi_spj_r1, smi_spj_ts1, 
      spj_smi_r2, spj_smi_ts2: protocol_id

init  State := 0
transition
%%% Service provider registration phase
1. State = 0 /\ Rcv({TIDspj’.H(IDspj.MKra’.RTSspj’).
                      H(IDspj.MKra’.Kspj’.RTSspj’).
                      H(IDra.MKra’).GF(Kspj’.H(H(IDspj.MKra’.RTSspj’).
                      F(Kspj’.G)).MKra’).
                      TIDsmi’.H(IDsmi.MKra’.RTSsmi’)}_SKraspj) =|> 
   State’ := 3 /\secret({RTSspj’.Kspj’}, sp2, {RA}) 

%%% Access control phase
%% Receive message Msg1 from SMi via public channel
2. State = 3 /\ Rcv(TIDsmi’.xor(H(H(IDsmi.MKra’.Ksmi’.RTSsmi’).TS1’), 
                    H(H(IDra.MKra’).H(IDsmi.MKra’.RTSsmi’).TS1’)).
                    H(R1’.F(H(IDsmi.MKra’.RTSsmi’).G)).H(TIDsmi’.
                    H(IDsmi.MKra’.RTSsmi’).H(IDra.MKra’).
                    H(R1’.F(H(IDsmi.MKra’.RTSsmi’).G)).
                    GF(Ksmi’.H(H(IDra.MKra’).F(MKra’.G).
                    H(IDsmi.MKra’.RTSsmi’)).MKra’).TS1’).
                    GF(Ksmi’.H(H(IDra.MKra’).F(MKra’.G).
                    H(IDsmi.MKra’.RTSsmi’)).MKra’).TS1’)=|> 
   State’ := 5 /\ R2’ := new() /\ TS2’ := new()
               /\ R22’ := F(H(R2’.H(IDspj.MKra’.RTSspj’)).G)  
               /\ DKji’ := F(H(R2’.H(IDspj.MKra’.RTSspj’)).
                             H(R1’.F(H(IDsmi.MKra’.RTSsmi’).G)))
              /\ Y1’ := xor(H(H(IDspj.MKra’.Kspj’.RTSspj’).TS2’), 
                            H(H(IDra.MKra’).H(IDsmi.MKra’.RTSsmi’).TS1’.TS2’))
             /\ SKji’ := H(DKji’.H(H(IDsmi.MKra’.Ksmi’.RTSsmi’).TS1’).
                          H(H(IDspj.MKra’.Kspj’.RTSspj’).TS2’).
                          GF(Ksmi’.H(RIDra’.Pubra’.RIDsmi’).MKra’).
                          GF(Kspj’.H(RIDspj’.Pubspj’).MKra’))
            /\ Y2’ := H(SKji’.H(IDsmi.MKra’.RTSsmi’).R22’.
                        GF(Kspj’.H(RIDspj’.Pubspj’).MKra’).TS2’)
%%% Send message Msg2 to SMi via public channel
            /\ Snd(R22’.Y1’.Y2’.GF(Kspj’.H(H(IDspj.MKra’.RTSspj’).
                   F(Kspj’.G)).MKra’).TS2’)
%% SPj has freshly generated r2 and TS2 for SMi that are included in Msg2
            /\ witness(SPj, SMi, spj_smi_r2, R2’)
            /\ witness(SPj, SMi, spj_smi_ts2, TS2’) 
%%% Receive message Msg3 from SMi via public channel
3. State = 5 /\ Rcv(H(H(F(H(R2’.H(IDspj.MKra’.RTSspj’)).
                            H(R1’.F(H(IDsmi.MKra’.RTSsmi’).G))).
                            H(H(IDsmi.MKra’.Ksmi’.RTSsmi’).TS1’).
                            H(H(IDspj.MKra’.Kspj’.RTSspj’).TS2’).
                            GF(Ksmi’.H(RIDra’.Pubra’.RIDsmi’).MKra’).
                            GF(Kspj’.H(RIDspj’.Pubspj’).MKra’)).
                            TS2’.TS3’)) =|> 
% SPj’s acceptance of r1, TS1 (in Msg1) and TS3 (in Msg3) for SPj by SMi
   State’ := 7 /\ request(SMi, SPj, smi_spj_r1, R1’)
               /\ request(SMi, SPj, smi_spj_r1,  TS1’)
               /\ request(SMi, SPj, smi_spj_ts3, TS3’)
end role

Figure 4.6: HLSPL Specification for the role of service provider SPj
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role session (RA, SMi, SPj: agent,
              H: hash_func)
def=
  local  Sn1, Sn2, Sn3, Rv1, Rv2, Rv3: channel (dy)
  composition
      registrationauthority (RA, SMi, SPj, H, Sn1, Rv1)
   /\ smartmeter (RA, SMi, SPj, H, Sn2, Rv2)     
   /\ serviceprovider (RA, SMi, SPj, H, Sn3, Rv3)
end role

%%% Role for the goal and environment
role environment()
def=
  const ra, smi, spj: agent, 
         h, f, gf: hash_func,
         ts1, ts2, ts3: text, 
         sp1, sp2, smi_spj_r1, smi_spj_ts1, spj_smi_r2, 
         spj_smi_ts2, smi_spj_ts3 : protocol_id
  intruder_knowledge = {ra, smi, spj, h, f, gf, ts1, ts2, ts3}
  composition
           session(ra, smi, spj, h) 
        /\ session(ra, i, spj, h)
        /\ session(ra, smi, i, h)
end role

goal
%%% Confidentiality (privacy)
  secrecy_of sp1, sp2

%%% Authentication
authentication_on smi_spj_r1, smi_spj_ts1, smi_spj_ts3   
authentication_on spj_smi_r2, spj_smi_ts2

end goal
environment()

Figure 4.7: HLSPL Specification for the role of the session, goal and environment

protocols, such as the schemes in [39, 59, 137, 218, 219].

AVISPA is a “push button tool for formal verification”, which can detect whether a se-

curity protocol is “safe”, “unsafe” or “inconclusive” against passive and active attacks. At

present, AVISPA has the ability to detect replay and man-in-the-middle attacks by ana-

lyzing a security protocol through the formal verification. To implemented a tested secu-

rity protocol, the protocol needs to implement using the “High-Level Protocol Specification

Language (HLPSL)”. The HLPSL code written in a file with extension ·hlpsl is translated

into the “Intermediate Format (IF)” using the “HLPSL2IF” translator. The IF is then pro-

vided into one of the available four backends, namely: “On-the-fly mode-checker (OFMC)”,

“Constraint-logic-based Attack Searcher (CL-AtSe)”, “SAT-based Model Checker (SATMC)”

and “Tree Automata based on Automatic Approximations for the Analysis of Security Pro-
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Figure 4.8: Simulation results of DBACP-IoTSG under CL-AtSe and OFMC backends

tocols (TA4SP)”. Currently, SATMC and TA4SP backends do not support “bitwise exclusive

OR (XOR)” operation. Therefore, in this simulation, we only stick on two backends: OFMC

and CL-AtSe. The interested readers can see all the details about AVISPA and HLPSL

implementation in [17].

In our implementation, we have mainly three basic roles for the RA (see in Figure 4.4),

a smart meter SMi (see in Figure 4.5) and a service provider SPj (see in Figure 4.6). For

instance, consider the HLPSL implementation for the role of a smart meter SMi as shown in

Figure 4.5. In this role, the smart meter SMi as the initiator, during the registration phase,

it receives securely the registration information {TIDSMi
, RIDSMi

, TCSMi
, CertSMi

, brSMi
}

generated by the RA on behalf of SMi. During the access control phase, SMi sends the “node

authentication request message” Msg1 = {TIDSMi
, X1, R1, X2, CertSMi

, TS1} to SPj via

open channel, with the help of

“Snd(TIDsmi’.X1’.R11’.X2’.GF(Ksmi’.H(H(IDra.MKra’).F(MKra’.G).

H(IDsmi.MKra’.RTSsmi’)).MKra’).TS1’)”.

Next, after receiving the “node authentication response message” Msg2 = {TID∗SMi
, R2, Y1,
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Y2, CertSPj
, TS2} from SPj via open channel, it processes the message and then sends the

“key establishment acknowledgment message” Msg3 = {X3, TS3} to SPj via public medium.

In HLPSL, “secret({RTSsmi’.MKra’.Ksmi’}, sp1, {RA})” indicates that the secrets, namely

RTSSMi
, MKRA and KSMi

are kept secret only to the RA. The declaration “witness(SMi,

SPj, smi spj ts3, TS3’)” tells us that SMi has freshly generated the timestamp value TS3 for

SPj that is included in the message Msg3. Two declarations: “request(SPj, SMi, spj smi r2,

R2’)” and “request(SPj, SMi, spj smi ts2, TS2’)” indicate that SMi’s acceptance of the values

r2 and TS2 in the message Msg2 for SMi by the SPj.

Apart from these three basic roles, two mandatory roles for the session and goal & envi-

ronment need to be implemented (see in Figure 4.7). The basic purpose of defining the role of

goal is to keep a check on authentication of the communicated messages along with confiden-

tiality of the secret variables defined in the proposed DBACP-IoTSG. Here, “confidentiality

(privacy)” is achieved by the declaration: secrecy of, whereas “authentication” is achieved by

the declaration: authentication on.

We have then simulated DBACP-IoTSG using the “Security Protocol ANimator for

AVISPA (SPAN)” tool [18]. The simulation results are shown in Figure 4.8. It is worth

noticing that AVISPA implements the “Dolev-Yao threat model (DY model)” [67]. Hence,

an intruder (in AVISPA, it is always denoted by i) not only can intercept the communicated

messages, but can also modify, delete or insert the malicious messages in between the commu-

nication. Under OFMC backend, the simulation required 4663 milliseconds (ms) with 2240

visited nodes and 9 plies of depth. Under CL-AtSe backend, the simulation analyzed 55 states

and out of these states, 53 states were reachable, and it took translation time of 0.06 seconds

and computation time of 1.86 seconds. The results in Figure 4.8 clearly indicate that the

proposed DBACP-IoTSG is secure against replay and man-in-the-middle attacks.

4.5 Experimental results using MIRACL

In this section, we provide the experimental results of various cryptographic primitives that are

needed for comparative analysis in Section 4.6 using the widely-used “Multiprecision Integer

and Rational Arithmetic Cryptographic Library (MIRACL)” [5]. MIRACL, a C programming

based software library, is widely-accepted by the developers as the “gold standard open source

SDK for elliptic curve cryptography (ECC)” [5].

We perform the following cryptographic operations using MIRACL. The symbols Tbp, Tecm,

Teca, Tecenc/Tecdec, Tmtp, Texp and Th are used to denote the time required for “bilinear pairing”,
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Table 4.3: Experimental execution time (in milliseconds) for service provider

Primitive Max. time (ms) Min. time (ms) Average time (ms)

Th 0.149 0.024 0.055

Texp 0.248 0.046 0.072

Tmtp 0.199 0.092 0.114

Tecm 2.998 0.284 0.674

Teca 0.002 0.001 0.002

Tecenc 5.998 0.569 1.350

Tecdec 3.000 0.285 0.676

Tbp 7.951 4.495 4.716

Table 4.4: Execution time (in milliseconds) for smart meter (Raspberry PI 3)

Primitive Max. time (ms) Min. time (ms) Average time (ms)

Th 0.643 0.274 0.309

Texp 0.071 0.037 0.039

Tmtp 0.406 0.381 0.385

Tecenc 9.085 4.427 4.592

Tecdec 4.553 2.221 2.304

Tecm 4.532 2.206 2.288

Teca 0.021 0.015 0.016

Tbp 32.79 27.606 32.084

“elliptic curve point (scalar) multiplication”, “elliptic curve point addition”, “elliptic curve

encryption/decryption”, “map to elliptic curve point”, “modular exponentiation” and “one-

way hash function using SHA-256 hashing algorithm”, respectively. Moreover, a non-singular

elliptic curve of the form: “y2 = x3 + ax+ b (mod q) with 4a3 + 27b2 6= 0 (mod q)” has been

considered.

We consider the following two platforms:

• Platform 1. In this case, the platform is considered on the setting: “Ubuntu 18.04.4

LTS, with memory: 7.7 GiB, processor: Intel Core i7-8565U CPU @ 1.80GHz × 8, OS

type: 64-bit and disk: 966.1 GB”. Each experiment for a cryptographic primitive is run

for 100 times. Next, we have calculated the maximum, minimum and average run-time

in milliseconds required for each cryptographic primitive from these 100 runs. Table 4.3
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tabulates the experimental results for the considered cryptographic primitives.

• Platform 2. In this case, we consider the platform on the setting: “Raspberry PI 3 B+

Rev 1.3, Ubuntu 20.04 LTS, 64- bit OS, 1.4 GHz Quad-core processor, cores 4, 1 GB

RAM [6]”. Similar to the above case, we have also executed each primitive for 100 runs,

and from these runs the maximum, minimum and average execution time in milliseconds

are computed. The experimental results for each primitive are then reported in Table

4.4.

Table 4.5: Security and functionality attributes comparison

Scheme SFA1 SFA2 SFA3 SFA4 SFA5 SFA6 SFA7 SFA8 SFA9 SFA10 SFA11 SFA12 SFA13 SFA14 SFA15

Zhou et al. [246] X X X X X × × × × X X X × FBFT ×
Zhang et al. [239] × X X X X × × × × × × X × PBFT ×
DBACP-IoTSG X X X X X X X X X X X X X VPBFT X

Note: SFA1: “impersonation attacks”; SFA2: “replay attack”; SFA3: “man-in-the-middle

attack”; SFA4: “mutual authentication between a smart meter and service provider/power

provider/cloud storage provider” without involvement of a trusted authority; SFA5: “smart

meter physical capture attack”; SFA6: “session key-security”; SFA7: “ESL attack”; SFA8:

“perfect forward secrecy”; SFA9: “dynamic smart meter/service provider addition phase”;

SFA10: “anonymity preservation”; SFA11: “untraceability preservation”; SFA12: “support

blockchain-based solution”; SFA13: “secure leader selection in the P2P SP network”; SFA14:

“type of consensus mechanism used”; SFA15: “secure voting during consensus algorithm”

X: “the scheme is secure or it supports a feature”; ×: “the scheme is insecure or it does

not support a feature”; FBFT: “Federated Byzantine Fault Tolerance”; PBFT: “Practical

Byzantine Fault Tolerance”; VPBFT: “Voting-based PBFT”.

4.6 Comparative analysis

This section gives a detailed comparative analysis among our proposed DBACP-IoTSG and

other recent schemes of Zhou et al. [246] and Zhang et al. [239]. We measure the perfor-

mance comparisons of DBACP-IoTSG with other schemes [239, 246] for communication and

computation costs, and also for security and functionality attributes.
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4.6.1 Security and functionality attributes comparison

We compare various security and functionality attributes among our proposed DBACP-IoTSG

and other relevant schemes that are also based on blockchain technology [239], [246]. Table 4.5

exhibits the comparative study on these features among the schemes. It is worth noticing that

our DBACP-IoTSG provides much better security and also supports more functionality fea-

tures as compared to other schemes. Zhang et al.’s scheme [239] does not support “anonymity”

and “untraceability” features which are treated as crucial features in the IoT-enabled smart

grid environment. The consensus algorithms used in Zhou et al.’s scheme [246] and Zhang et

al.’s scheme [239] are FBFT and PBFT, respectively. In our DBACP-IoTSG, we have utilized

the puzzle-based solution combined with PBFT in order to make consensus more secure with

the pairwise keys established among the service providers.

4.6.2 Communication costs comparison

For comparative study on communication costs, it is assumed that 160-bit ECC provides the

same security level while it is compared with 1024-bit RSA public key cryptosystem, and

thus, an “elliptic curve point of the form G = (Gx, Gy), where x and y co-ordinates of G are

Gx and Gy respectively”, requires (160 + 160) = 320 bits. Since the random numbers are

selected from the finite field GF (q), they are 160 bits. Furthermore, a timestamp is 32 bits

and a hash value (digest) is 256 bits, if SHA-256 hash algorithm [140] is utilized for blockchain

technology to provide sufficient security level, and a message size in all schemes is taken as

160 bits. Table 4.6 shows comparison of communication costs among the schemes with the

number of messages and the number of bits required during the access control phase. In our

DBACP-IoTSG, four exchanged messages Msg1 = {TIDSMi
, X1, R1, X2, CertSMi

, TS1},
Msg2 = {TID∗SMi

, R2, Y1, Y2, CertSPj
, TS2}, Msg3 = {X3, TS3}, and Msg4 = {X4, TS4}

demand 1184, 1280, 288, and 288 bits, a total cost of 3040 bits. It is seen that our DBACP-

IoTSG requires less communication costs as compared to the scheme designed by Zhang et al.

[239]. Although the scheme of Zhou et al. [246] needs less communication cost as compared

to our DBACP-IoTSG, it is acceptable because it does not also support all the security and

functionality attributes (see Table 4.5) as compared to DBACP-IoTSG.

4.6.3 Computational costs comparison

We mainly consider the computation costs comparison during the access control phase among

the proposed DBACP-IoTSG and other existing competing schemes. We use the experimen-
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Table 4.6: Communication costs comparison

Scheme No. of messages No. of bits

Zhou et al. [246] 3 2464

Zhang et al. [239] 4 3328

DBACP-IoTSG 4 3040

Table 4.7: Computation costs comparison

Scheme Smart meter/User side Service provider/Power provider

/Cloud storage provider side

Zhou et al. [246] 3Tecm + Teca + Tmtp 6Tecm + Teca + Tmtp + 5Tbp

+3Tbp + 2Th +Texp + 8Th

≈ 104.135 ms ≈ 28.252 ms

Zhang et al. [239] 4Th Tecenc + Th

≈ 1.236 ms ≈ 1.405 ms

DBACP-IoTSG 4Tecm + Teca + 11Th 4Tecm + Teca + 11Th

≈ 12.567 ms ≈ 3.303 ms

tal results reported in Table 4.3 for a service provider or a power provider or cloud storage

provider. On the other side, since a smart meter or a user’s mobile device or smart card is

resource-constrained as compared to a server, we consider the experimental results reported

in Table 4.4 for the smart meter or user. In DBACP-IoTSG, a smart meter SMi requires

computational cost of 4Tecm+ Teca+ 11Th, which is roughly 12.567 milliseconds, whereas a

service provider’s computational cost is 4Tecm+ Teca+ 11Th, which is roughly 3.303 millisec-

onds. It is evident from Table 4.7 that DBACP-IoTSG needs less computational costs as

compared to Zhou et al.’s scheme [246]. Although Zhang et al.’s scheme [239] demands less

computational cost as compared to both Zhou et al.’s scheme [246] and DBACP-IoTSG, it

requires more communication cost (see Table 4.6) and it does not also support all the security

and functionality attributes (see Table 4.5).

4.7 Blockchain implementation

In this section, we provide the blockchain implementation of the proposed scheme (DBACP-

IoTSG). The simulations were executed on a platform having “Ubuntu 18.04, 64-bit OS with

Intel(R) Core(TM) i5-4210U CPU @ 1.70GHz, 4 GB RAM”. The script was developed in the



94 Private Blockchain-Based Access Control in IoT-Enabled Smart-Grid

Node.js language with VS CODE 2019 [107].

We considered that the number of peer nodes (nsp) in the P2P SP network is 20. A

service provider is a part of the P2P SP network, that securely collects the transactions from

associated smart meters to form a global transactions pool in the network. If the number of

transaction in transactions pool reaches to a pre-defined transaction threshold (the minimum

number of transaction to stored in a block), a leader is selected from the network for creating a

block and adding that block in the blockchain. The leader, say, L creates a block Blockm which

has the structure as shown in Figure 4.3, and wants to add this block into the blockchain. After

executing the consensus algorithm using the “Practical Byzantine Fault Tolerance (PBFT)

consensus algorithm” [38] provided in Algorithm 2, a block is finally added by the leader L in

the blockchain.

We consider the block version, previous block hash, Merkle tree root, timestamp (epoch

time), owner (Om) of Blockm that is owner identity, public key of Om, block payload, cur-

rent block hash (CBHashm) (using SHA-256 hashing algorithm), and ECDSA signature on

CBHashm are of sizes 32, 256, 256, 42, 160, 320, 640nt, 256, and 320 bits, respectively. Each

transaction Txi was encrypted using ECC encryption which outputs two elliptic curve points,

and as a result, an encrypted transaction requires (320 + 320) = 640 bits. As a result, the

total size for a block Blockm becomes 1642 + 640nt bits.

Figure 4.9: Blockchain simulation results for Case 1

In the following, three types of simulation cases are considered:

• Case 1: In this case, we assume nsp = 20 and the number of transactions per block is

70. The simulation results shown in Figure 4.9 shows the number of blocks mined into
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Figure 4.10: Blockchain simulation results for Case 2

Figure 4.11: Blockchain simulation results for Case 3

the blockchain versus the total computational time (in seconds). It is noticed that as

the number of blocks mined is increased, the computational time also increases.

• Case 2: In this scenario, we assume nsp = 20 and the number of mined blocks in each

chain is 60. The simulation results are provided in Figure 4.10. The simulation results

are based on the number of transactions pushed per block versus the total computational

time (in seconds). Similar to the trends observed in Case 1, the computational time also

increases as the number of transactions per block is increased.

• Case 3: In this scenario, we have fixed the number blocks mined as 40 and the number

of transactions per block as 50. The simulation results provided for Case 3 in Figure
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4.11 shows the computational time increases when the number of peer nodes (nsp) in

the P2P network is increased.

4.8 Summary

In this work, we attempted to address an important research topic in the IoT-enabled smart

grid system by designing a novel decentralized blockchain-based access control protocol in

IoT-enabled smart-grid system (DBACP-IoTSG). The proposed DBACP-IoTSG works with-

out involving a trusted third party. The blocks are then verified by a leader selection process

securely in the P2P SP network. After that the leader is responsible for running the consen-

sus algorithm securely to validate the blocks by its peer nodes using the Practical Byzantine

Fault Tolerance (PBFT) method, and after successful validation the blocks are added into the

blockchain. The transactions are encrypted using ECC encryption algorithm using the public

key PubSPj
of a service provider SPj who generates the blocks containing the transactions so

that only SPj can decrypt the transactions. DBACP-IoTSG is shown to be secure through

a rigorous security analysis using formal, informal and simulation-based formal security ver-

ification. A thorough comparative study among the proposed DBACP-IoTSG and other

relevant schemes shows DBACP-IoTSG’s better security and supporting of more functional-

ity attributes. Moreover, DBACP-IoTSG is also comparable with other schemes in terms of

communication and computation costs. Finally, the blockchain based implementation for the

proposed DBACP-IoTSG has been carried out to measure the computational time required

for the varied number of blocks in the blockchain and also the varied number of transactions

per block.



Chapter 5

Secure Access Control for Pervasive

Edge Computing in Industrial IoT

using Private Blockchain

In Chapter 4, we proposed an access control scheme in an Internet of Things (IoT)-enabled

smart grid environment, where after secure aggregation of the data from the smart meters by

their respective service providers, the transactions can be stored in blocks and then the blocks

can be added into a blockchain for future analysis. Therefore, we used the blockchain as a

service for secure data storage purpose only.

In this chapter, we have utilized the blockchain service not only for secure storage purpose,

but also for storing the registration credentials in the blockchain. Thus, the registration cre-

dentials related to IoT smart devices, gateway nodes and edge servers during the registration

process are directly stored in the blockchain center prior to their placement in the network.

During the access control and key management phases, the registration credentials from the

blockchain are used for authentication purposes. Recently, Pervasive Edge Computing (PEC)

becomes a very emerging computing standard. PEC consists of various heterogeneous mobile

edge devices, such as “smartphones”, “tablets”, “IoT smart devices”, “gateway nodes”, “edge

devices”, and so on. The devices can then communicate with each other to sense, process

the sensing information and also to build various applications at the network edge [227]. The

rapid growth of IIoT leads to many security attacks, such as “man-in-the-middle”, “imper-

sonation”, “replay” and “privileged-insider” attacks, which may cause serious damage to the

IIoT system. Since most traditional and existing IIoT infrastructures are based on centralized

system, they are expensive, inefficient and also vulnerable to a “single-point failure”. Recently,
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combining blockchain technology and IoT-based security solutions achieves popularity among

the researchers. Important features of blockchain (decentralization, tamper-proof, trustwor-

thiness, traceability and immutability) provide more functionalities and greater help to the

IIoT systems.

Considering the demand of large-scale IIoT systems, it becomes infeasible and inefficient

to store the huge volumes of data in a traditional IIoT system. Therefore, we feel that there

is a great essence in designing blockchain-based IIoT system for PEC. Thus, it should provide

an efficient and robust solution to deal with the security requirements needed for PEC in

IIoT environment. Since the information produced in the IIoT environment is strictly private

and confidential, the information must not be leaked in public. Moreover, due to wireless

communication happen among different entities in IIoT, an adversary should not be able

to tamper with the sensitive data. Tampering of data may include intercepting, modifying,

deleting or even inserting fake information during communication. Integrating IIoT with

blockchain technology in order to develop a “secure, distributed, and stable blockchain IIoT

network” seems to be a natural way [178]. In fact, the integration of blockchain along with

IIoT attracted a lot of interests among the stakeholders across industry and academia as well

[154]. Due to drawbacks present in IIoT-based “intelligent manufacturing system (IMS)” and

also the challenging problem associated to apply the blockchain in IMS, Zhang et al. [236]

suggested to combine IIoT with the “permissioned blockchain”. In this regard, they designed

an efficient “Manufacturing Blockchain of Things (MBCoT) architecture” for the configuration

of a secure, decentralized, and traceable IMS. Zhang et al. [237] also proposed a “multi-

access edge computing (MEC) enabled framework”. It helps in “data security assurance” and

“system latency performance” improvement.

To deal with the above-mentioned issues, we represent a novel access control scheme.

It allows secure communication among IoT smart devices and their relevant gateway nodes

through the designed access control process. It also provides secure communication among the

gateway nodes and the connected edge servers through the designed key management process.

The secure transactions are transformed into various blocks, and addition of those blocks are

done through the voting-based PBFT consensus algorithm. It is done by a group of P2P edge

servers nodes in the private blockchain.
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5.1 Motivation

In IIoT environment, there are various types of applications connected with the system and

they integrate large-scale discrete heterogeneous data. Such data can be from the smart

sensor data, health care data, traffic data, environmental monitoring data, and industrial

manufacturing data. In some smart energy industries, sensors, machines, and actuators collect

huge amount of data such as energy, air quality, fault and resource prediction, and product

planning from various locations. It further produces large data and enforces a huge amount

of processing time to store the data in traditional centralized system. Moreover, in chemical

industry, there is an extensive amount of critical data, such as reactivity of a catalyst in

different temperature and air pressure conditions, results after the chemicals reactions. In such

scenario, inefficiency of IIoT system can seriously damage the productivity of the industry.

These registration credentials stored in the blockchain are then used during the access control

and key management phases.

With the help of the cloud computing upgradation, IoT platform can process information

in a traditional manner and transform the information into the real time actions. While the

cloud storage becomes an important role in an IoT or IIoT environment, however there are

issues related to threat of data, transparency and privacy preservation. This demands that

we require to integrate the blockchain technology with the industrial IoT applications. Since

the blockchain helps in providing the trusted sharing services where the reliable information

and data can be retrieved, the data (information) can be then traceable. At the same time,

the blockchain is also immutable; thus it enhances the security as well. Therefore, integration

of decentralized blockchain in IIoT system can enable better efficiency, transparency and

guarantee security solutions.

5.2 Research contributions

The key contributions towards this work are mentioned below.

• We propose a novel “private blockchain-envisioned access control scheme for Pervasive

Edge Computing (PEC) in IIoT environment, called PBACS-PECIIoT”. The purpose

behind applying the the private blockchain is that the transactions and registration

credentials of the entities related to IIoT are confidential and private.

• In the proposed PBACS-PECIIoT, registration credentials obtained by a smart device

(SDi) and the gateway node (GNj) are fetched from the Blockchain during the access
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control phase for authentication and key agreement purposes. Additionally, it is also

worth to notice that the registration credentials stored in the blockchain center (BC)

are fetched by an edge server for key management purpose with its gateway node.

• After collecting the information securely from the deployed IoT smart devices by their

respective gateway node(s), the information is securely delivered to the edge servers by

their associated gateway nodes in form of transactions. The edge servers are then respon-

sible for building the blocks, verifying and adding them in the private blockchain with

the help of the proposed voting-based “Practical Byzantine Fault Tolerance (PBFT)”

algorithm. The local ledgers are maintained by the edge servers in the blockchain center.

• A detailed security analysis including the formal security verification has been conducted.

It demonstrates that PBACS-PECIIoT is secure against a number of potential attacks

against passive/active adversaries.

• The “real testbed experiments for various cryptographic primitives with the help of

widely-accepted Multiprecision Integer and Rational Arithmetic Cryptographic Library

(MIRACL)” [5] have been performed under both server and Raspberry PI 3 platforms.

These testbed experiments measure the computational time for the primitives with re-

spect to these platforms. Moreover, a detailed comparative analysis among PBACS-

PECIIoT and other related existing schemes has been performed. It shows the effective-

ness and robustness of PBACS-PECIIoT over other schemes.

• The proposed PBACS-PECIIoT is also implemented through blockchain simulation

study in order to measure its performance as well as computational time.

5.3 System model

In this section, the network as well as threat models used in the proposed scheme (PBACS-

PECIIoT) are discussed.

5.3.1 Network model

The network model used in the proposed PBACS-PECIIoT is shown in Figure 5.1. The

model shows different types of IIoT applications, such as mobile, car, aerospace, and food

manufacturing industry.
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Figure 5.1: Blockchain-envisioned edge-based IIoT environment

Various smart IoT devices are attached with each unit of an industry, and all the smart

devices, say (SDi| i = 1, 2, 3, . . . , nsd) are connected with the associated gateway node(s),

say (GNj| j = 1, 2, 3, . . . , ngn). Each GNj is connected with an edge server, say (ESl|l =

1, 2, 3, . . . , nes). The registration of all the entities (SDi, GNj, ESl) is executed by a trusted

registration authority, say (RAk |k = 1, 2, 3, . . . , nra) for a particular application. Here, nsd,

ngn, nes and nra represent the number of IoT smart devices, gateway nodes, edge servers

and RAs, respectively. All the registered ESl form a P2P edge servers network, which is also

called as the blockchain center. An edge server, being a leader node, say ESl, runs a consensus
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algorithm for creating, verifying, adding, and also mining the blocks in their local ledgers of

the blockchain center.

5.3.2 Threat model

The following threat is model in analyzing the security of the proposed scheme in this chapter.

• The involved entities in an “IIoT environment” need to communicate over insecure

channels. Therefore, an adversaryA can take an opportunity to manipulate/compromise

the data exchanged between them.

• In this work, we adapt the broadly-accepted “Dolev-Yao threat model (known as DY

model)” [67]. Under the DY model, A “not only eavesdrops, but can also modify, delete

and insert fake information during the communication among the entities”.

• In addition, we also adapt the widely-known “Canetti and Krawczyk’s model (CK-

adversary model)” [37] which is presently a de facto threat model as compared to the

DY model. Under the “CK-adversary model”, A can compromise the “secret credentials

shared between two communicating parties. This results the adversary A to compromise

the past or future established session keys between the communicating parties by means

of compromising the session states and session keys”.

• We assume that end-point entities (IoT smart devices) are not trusted, whereas the

gateway nodes and edge servers are semi-trusted and the registration authorities are

fully trusted.

• Since it may not be possible to monitor the IoT smart devices in 24 × 7, a physical

theft of some IoT smart devices by A may happen. It may then lead to compromise

the secret credentials stored in the captured devices using some sophisticated “power

analysis attacks” as mentioned in [141].

5.4 The proposed scheme: PBACS-PECIIoT

In this section, different phases relevant to the proposed private blockchain-envisioned access

control scheme for edge-based IIoT environment, PBACS-PECIIoT, has been designed.

The proposed PBACS-PECIIoT has various phases, like registration, access control, key

management, and block creation, verification and addition in blockchain. In Figure 5.2, we have
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Figure 5.2: Illustration of complete process in PBACS-PECIIoT

illustrated the complete process in PBACS-PECIIoT. Note that in this work, we consider the

access control that mainly consists of the following two tasks [94, 247]: 1) node authentication

and 2) key agreement.

The idea behind the design of the proposed scheme is to mutually authenticate two com-

municating entities through the access control mechanism. It helps in establishing the secret

session keys between the authorized entities in the IoT network so that they can secure com-

municate among each other for secure data delivery. In addition, the key management process
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between a gateway node and its associate edge server helps in secure communication among

them.

It is interesting to note that as compared to other existing schemes in the literature, in the

proposed PBACS-PECIIoT, the registration credentials obtained by a smart device (SDi) and

the gateway node (GNj) are fetched from the Blockchain during the access control phase for

authentication and key agreement purposes. Additionally, the registration credentials stored

in the blockchain center (BC) are also fetched by an edge server for key management purpose

with its gateway node.

The deployed IoT smart devices first send the messages encrypted with their established

session keys during the “access control phase” in Section 5.4.2 to their respective gateway

node(s). The gateway nodes then send the information encrypted with their secret keys es-

tablished during the“key management phase” in Section 5.4.3 to their respective edge servers.

An in-charge edge server is responsible to create a block containing the encrypted transac-

tions of information received from the gateway node(s) or IoT smart device(s) for a particular

application.

Since PBACS-PECIIoT makes use of current system timestamps for safeguarding replay

attacks, all the communicating entities, like “IoT smart devices”, “gateway nodes” and “edge

servers”, are synchronized with their clocks. It is a widely accepted presumption applied in

“different existing authentication and access control approaches under individual networking

scenarios” [59, 224]. The list of symbols tabulated in Table 5.1 are utilized in describing and

analyzing the proposed PBACS-PECIIoT.

5.4.1 Registration phase

During registration process of all the communicating entities, like “IoT smart devices”, “gate-

way nodes” and “edge servers”, each registration authority RAk (k = 1, 2, . . . , nra) selects the

following system parameters. First of all, each RAk will pick a large prime q and a “non-

singular elliptic curve Eq(α, β) : y2 = x3 + αx + β (mod q) over a finite (Galois) field GF (q)

with two constants α, β ∈ Zq = {0, 1, 2, . . . , q− 1} such that 4α3 + 27β2 6= 0 (mod q) and the

Elliptic Curve Discrete Logarithm Problem (ECDLP) becomes intractable due to sufficiently

chosen large prime q”. For instance, to make ECDLP intractable, q should be chosen at least

160 bits such that 160-bit “Elliptic Curve Cryptography (ECC)” security remains same as

that for an 1024-bit RSA public key cryptosystem [22]. In addition, each RAk also selects

a base point Gk corresponding to the chosen elliptic curve Eq(α, β) whose order will be as

big as q, and a common collision resistant cryptographic hash function h(·) (for example, we
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Table 5.1: Notations and their meanings

can apply the Secure Hash Algorithm (SHA-256) hash function). Furthermore, each RAk

picks its own secret (private) master key mkRAk
which is kept secret to itself, computes the

respective public key PubRAk
= mkRAk

· G and makes the system parameters {Eq(α, β), Gk,

h(·), PubRAk
} as public.

1) IoT smart devices registration

This phase occurs in offline mode prior to deployment of the IoT smart devices in their

respective deployment areas by the associated registration authority RAk. Note that the

private and public key pairs for the IoT smart devices are generated by the registration

authority RAk, and these are pre-installed in IoT devices’ memory before placing them in the

network.

For registering each deployed IoT smart device SDi for a particular application of IIoT,

the respective registration authority RAk first selects a unique identity IDSDi
and then com-

putes the corresponding pseudo-identity RIDSDi
= h(IDSDi

||mkRAk
) and temporal credential

TCSDi
= h(RIDSDi

||mkRAk
||RTSSDi

||prSDi
) of SDi, where the private key of each SDi is

a random secret prSDi
∈ Z∗q = {1, 2, . . . , q − 1} and its public key is PubSDi

= prSDi
· Gk,
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and RTSSDi
is the registration timestamp of SDi. The RAk stores the information {RIDSDi

,

prSDi
, PubRAk

} into its secure memory prior to placement in IIoT application, and makes

PubSDi
as public.

After that, the RA sends the registration related credentials RegCredSDi
= {RIDSDi

,

TCSDi
, PubSDi

, Eq(α, β), Gk} to the blockchain center (BC) in the form of a transac-

tion, say TxRegCredSDi
= 〈RIDSDi

, EPubSDi
[RegCredSDi

], ECDSA.SignmkRAk
[RegCredSDi

]〉,
where EPubX (·) and DprX (·) represent the “ECC-based encryption and decryption using the

public key PubX and private key prX of an entity,” respectively, and ECDSA.Sign(·) and

ECDSA.V er(·) denote the “elliptic curve digital signature algorithm (ECDSA)-based signa-

ture generation and verification methods,” respectively.

RAk deletes RIDSDi
, TCSDi

and (prSDi
, PubSDi

) from its database for “security reasons

in order to avoid privileged-insider attack”. It is worth noticing that the registration creden-

tials need not to be sent back to the IoT devices after the registration process, because the

credentials are directly stored in the memory of the deployed smart devices as well as in the

blockchain center prior to their placement in the network.

2) Gateway nodes registration

To register a gateway node GNj belonging to a particular IIoT application, its respective

RAk first picks the unique identity IDGNj
and then computes its pseudo-identity RIDGNj

=

h(IDGNj
||mkRAk

) and temporal credential TCGNj
= h(IDGNj

||RTSGNj
||mkRAk

) for GNj,

where RTSGNj
is GNj’s registration time. Next, RAk picks a “t-degree symmetric bivariate

polynomial over the finite (Galois) field GF (q) as gj(x, y) =
∑t

u=0

∑t
v=0 au,vx

uyv, where the

co-efficients au,v are from Zq, gj(x, y) = gj(y, x), and t >> ngn and t >> nes”, as in Blundo

et al.’s scheme [33]. Furthermore, RAk calculates the polynomial share gj(RIDGNj
, y) =∑t

u=0

∑t
v=0 au,v(RIDGNj

)uyv over GF (q) and sends the registration credential {RIDGNj
} to

GNj via a secure channel (for example, in person).

After receiving the registration credentials from RAk, GNj picks its own random secret

(private) key prGNj
∈ Z∗q , computes the respective public key PubGNj

= prGNj
·Gk, stores the

private key prGNj
in its secure database and publishes the public key PubGNj

. Next, the RAk

sends the registration credentials RegCredGNj
= {RIDGNj

, TCGNj
, gj(RIDGNj

, y), Eq(α, β),

Gk, {(RIDSDi
, PubSDi

)}, PubGNj
} to the blockchain center (BC) in the form of a transaction,

say TxRegCredGNj
= 〈RIDGNj

, EPubGNj
[RegCredGNj

], ECDSA.SignmkRAk
[RegCredGNj

]〉.
Note that only for the IoT smart devices SDi that are associated with GNj in a particular

IIoT application, {(RIDSDi
, PubSDi

)} are available to GNj. RAk also deletes RIDGNj
and
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TCGNj
from its database for security reasons in order to avoid “privileged-insider attack”, and

stores PubGNj
in each associated SDi’s memory. Finally, GNj stores the credentials {RIDGNj

,

prGNj
} in its secure database.

3) Edge servers registration

To register an edge server ESl belonging to one or more GNj for a particular IIoT ap-

plication, the in-charge RAk picks a unique identity IDESl
for ESl and computes the

pseudo-identity RIDESl
= h(mkRAk

||IDESl
) and the polynomial share gj(RIDESl

, y) =∑t
u=0

∑t
v=0 au,v(RIDESl

)uyv over GF (q). It is worth noticing that gj(x, y) is the common

polynomial shared between GNj and ESl. After that RAk sends the registration credentials

{RIDESl
} to ESl via secure channel.

Once the registration credentials are received by ESl from RAk, ESl picks its own ran-

dom private key prESl
∈ Z∗q , calculates the corresponding public key PubESl

= prESl
· Gk,

and publishes PubESl
as public. Here, the polynomial gj(x, y) is used to setup a symmetric

secret key between the “gateway node GNj” and its associated “edge server ESl”, which is

further utilized in establishing the session key SKESl,GNj
(SKGNj ,ESl

) between them for secret

communications (see Section 5.4.3).

The RA sends the registration credentials RegCredESl
= {RIDESl

, gj(RIDESl
, y), TCESl

,

PubESl
, Eq(α, β), Gk} to the blockchain center (BC) in the form of a transaction, say

TxRegCredESl
= 〈RIDESl

, EPubESl
[RegCredESl

], ECDSA.SignmkRAk
[RegCredESl

]〉. Finally,

ESl needs to store the credentials {RIDESl
, prESl

} in its secure database.

Remark 5.1. It is noted that the IoT smart devices registration phase occurs in offline mode

prior to deployment of the IoT devices in their respective deployment areas by the associated

RAk. In addition, the registration of the gateway nodes GNj and the edge servers ESl are

executed in secure channels by the RAk. As a result, there is no possibility of the impersonation

attacks by an adversary (including the insider attacker) at the device/gateway/edge server

registration phases because the encrypted registration credentials along with their signatures

are placed into the blockchain.

5.4.2 Access control phase

It is done between a “registered IoT smart device (SDi)” and its respective “gateway node

(GNj)” for a particular application in IIoT. This phase helps to perform a “mutual authen-

tication and session key establishment between SDi and GNj”. Before initiating the access
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control process, the SDi and GNj need to obtain the registration credentials that are already

stored in the blockchain center (BC). Note that this is executed only once because the regis-

tration credentials obtained from the BC can be stored in the secure databases of both SDi

and GNj. For this purpose, the following steps are involved:

i) Registration credentials obtained by smart device (SDi): SDi first sends a request message

RegCredReqSDi
= {RIDSDi

} to the BC over open channel for obtaining its registration

credentials. After receiving the request, the BC checks RIDSDi
and fetches the transac-

tion TxRegCredSDi
= 〈RIDSDi

, EPubSDi
[RegCredSDi

], ECDSA.SignmkRAk
[RegCredSDi

]〉
and sends it to SDi over public channel. SDi upon receiving TxRegCredSDi

, de-

crypts EPubSDi
[RegCredSDi

] using the public key PubRAk
of the associated RAk to

extract RegCredSDi
= {RIDSDi

, TCSDi
, PubSDi

, Eq(α, β), Gk}. Now, if the de-

crypted RIDSDi
matches with its received version, SDi further validates the signature

ECDSA.SignmkRAk
[RegCredSDi

] by applying the ECDSA.V er(·) algorithm using the

RAk’s public key PubRAk
. If the signature is valid, SDi then only stores RegCredSDi

in

its memory for the mutual authentication and key establishment purpose.

ii) Registration credentials obtained by gateway node (GNj): GNj also sends a re-

quest message RegCredReqGNj
= {RIDGNj

} for obtaining the registration cre-

dentials to the BC over open channel. Once the request is processed by the

BC, the BC checks RIDGNj
, fetches the transaction TxRegCredGNj

= 〈RIDGNj
,

EPubGNj
[RegCredGNj

], ECDSA.SignmkRAk
[RegCredGNj

]〉 corresponding to RIDGNj
and

sends it to GNj over public channel. Moreover, GNj upon receiving TxRegCredGNj
, de-

crypts EPubGNj
[RegCredGNj

] using the public key PubRAk
of the associated RAk to ex-

tract RegCredSDi
= {RIDSDi

, TCSDi
, PubSDi

, Eq(α, β), Gk}. On successful matching

of the decrypted RIDGNj
with its received version, GNj checks the validity of the sig-

nature ECDSA.SignmkRAk
[RegCredGNj

] using the public key PubRAk
. Upon successful

signature validation, GNj stores RegCredGNj
in its secure database for the mutual au-

thentication and key establishment purpose.

We now discuss the following steps needed for the access control between SDi and GNj with

the help of the obtained registration credentials RegCredSDi
and RegCredGNj

from the BC,

respectively.

• Step AC1. SDi picks a random secret rsSDi
∈ Z∗q and the current timestamp TSSDi

for

computing RSSDi
= h(TCSDi

||rsSDi
||prSDi

||RIDSDi
||TSSDi

) ·Gk. Furthermore, SDi
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computes signature on rsSDi
as SigSDi

= h(TCSDi
||rsSDi

||prSDi
||RIDSDi

||TSSDi
)

+h(RIDSDi
||PubSDi

||PubGNj
||TSSDi

) ∗ prSDi
(mod q). SDi then sends access control

request message MsgAC1 = {RIDSDi
, SigSDi

, RSSDi
, TSSDi

} to its corresponding gate-

way node GNj via open channel.

• Step AC2. If the message MsgAC1 is received at time TS∗SDi
, the GNj first checks time-

liness of received TSSDi
by verifying |TS∗SDi

− TSSDi
| < ∆T , where ∆T signifies the

“maximum transmission delay with a message”. If it is valid, GNj retrieves PubSDi
cor-

responding to RIDSDi
from its own database and verifies the received signature SigSDi

by the condition: SigSDi
·Gk = RSSDi

+h(RIDSDi
||PubSDi

||PubGNj
||TSSDi

) · PubSDi
.

Upon successful signature validation, GNj validates SDi as authentic device, cre-

ates a random secret rsGNj
∈ Z∗q and the current timestamp TSGNj

for calcu-

lating RSGNj
= h(TCGNj

||rsGNj
||prGNj

||RIDGNj
||TSGNj

) · Gk and the Diffie-

Hellman type key DHKGNj ,SDi
= h(TCGNj

||rsGNj
||prGNj

||RIDGNj
||TSGNj

) ·RSSDi
.

Furthermore, GNj evaluates its own polynomial share gj(RIDGNj
, y) at the point

y = RIDSDi
to obtain gj(RIDGNj

, RIDSDi
) and yGNj

= h(gj(RIDGNj
, RIDSDi

)

||SigSDi
||TSGNj

) ⊕h(DHKGNj ,SDi
||TSSDi

||TSGNj
), and also computes the signature

on rsGNj
and DHKGNj ,SDi

as SigGNj
= h(TCGNj

||rsGNj
||prGNj

||RIDGNj
||TSGNj

)

+h(RIDGNj
||RIDSDi

||PubGNj
||DHKGNj ,SDi

||yGNj
) ∗ prGNj

(mod q). Next, GNj dis-

patches the access control response message MsgAC2 = {RIDGNj
, SigGNj

, RSGNj
, yGNj

,

TSGNj
} to its corresponding SDi via open channel.

• Step AC3. Let SDi receive the message MsgAC2 at time TS∗GNj
. SDi then checks

TSGNj
’s validity by |TS∗GNj

− TSGNj
| < ∆T and if it is valid, SDi fetches PubGNj

cor-

responding to RIDGNj
from its memory. SDi calculates the Diffie-Hellman type key

DHKSDi,GNj
= h(TCSDi

||rsSDi
||prSDi

||RIDSDi
||TSSDi

) · RSGNj
and zSDi

= yGNj
⊕

h(DHKSDi,GNj
||TSSDi

||TSGNj
), which should be equal to h(gj(RIDGNj

, RIDSDi
)

||SigSDi
||TSGNj

), and verifies the signature by the condition: SigGNj
· Gk = RSGNj

+h(RIDGNj
||RIDSDi

||PubGNj
||DHKSDi,GNj

||yGNj
) · PubGNj

. Upon successful sig-

nature validation, SDi authenticates GNj as valid, generates current timestamp TS ′SDi
,

and computes the session key shared with GNj as SKSDi,GNj
= h(DHKSDi,GNj

||zSDi
)

and its verifier SKVSDi,GNj
= h(SKSDi,GNj

||TS ′SDi
). Finally, SDi sends the acknowl-

edgment message MsgAC3 = {SKVSDi,GNj
, TS ′SDi

} to GNj via public channel.

• Step AC4. Upon reception of the message MsgAC3 at time TS∗∗SDi
, GNj checks time-

liness of received TS ′SDi
by verifying |TS∗∗SDi

− TS ′SDi
| < ∆T . If the validation passes,
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Access Control Phase

IoT smart device (SDi) Gateway node (GNj)

Obtain registration credentials Obtain registration credentials

from the blockchain center (BC). from the blockchain center (BC).

Generates random secret rsSDi
∈ Z∗q ,

current timestamp TSSDi
.

Calculate RSSDi
= h(TCSDi

||rsSDi
||prSDi

Check if |TS∗SDi
− TSSDi

| < ∆T?

||RIDSDi
||TSSDi

) ·Gk, SigSDi
= h(TCSDi

If valid, retrieve

||rsSDi
||prSDi

||RIDSDi
||TSSDi

) +h(RIDSDi
PubSDi

corresponding to RIDSDi
.

||PubSDi
||PubGNj

||TSSDi
) ∗ prSDi

(mod q). Verify signature SigSDi
. If valid,

MsgAC1 = {RIDSDi
, SigSDi

, RSSDi
, TSSDi

}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

generate random secret rsGNj
∈ Z∗q ,

(via open channel) current timestamp TSGNj
.

Calculate RSGNj
= h(TCGNj

||rsGNj
||prGNj

||RIDGNj
||TSGNj

) ·Gk,

DHKGNj ,SDi
= h(TCGNj

||rsGNj
||prGNj

||RIDGNj
||TSGNj

) ·RSSDi
,

gj(RIDGNj
, RIDSDi

), yGNj
= h(gj(RIDGNj

,

RIDSDi
) ||SigSDi

||TSGNj
)

⊕h(DHKGNj ,SDi
||TSSDi

||TSGNj
),

Check if |TS∗GNj
− TSGNj

| < ∆T ? SigGNj
= h(TCGNj

||rsGNj
||prGNj

||RIDGNj

If valid, retrieve PubGNj
||TSGNj

) +h(RIDGNj
||RIDSDi

||PubGNj

corresponding to RIDGNj
. Calculate ||DHKGNj ,SDi

||yGNj
) ∗ prGNj

(mod q).

DHKSDi,GNj
= h(TCSDi

||rsSDi
||prSDi

MsgAC2 = {RIDGNj
, SigGNj

,

||RIDSDi
||TSSDi

) ·RSGNj
, RSGNj

, yGNj
, TSGNj

}
←−−−−−−−−−−−−−−−

zSDi
= yGNj

⊕ h(DHKSDi,GNj
||TSSDi

||TSGNj
). (via open channel)

SigGNj
·Gk = RSGNj

+h(RIDGNj
||RIDSDi

||PubGNj
||DHKSDi,GNj

||yGNj
) · PubGNj

?

If valid, generate current timestamp TS ′SDi
. Checks if |TS∗∗SDi

− TS ′SDi
| < ∆T?

Compute SKSDi,GNj
= h(DHKSDi,GNj

||zSDi
), If valid, calculate SKGNj ,SDi

= h(DHKGNj ,SDi

SKVSDi,GNj
= h(SKSDi,GNj

||TS ′SDi
). ||h(gj(RIDGNj

, RIDSDi
)|| SigSDi

||TSGNj
)),

MsgAC3 = {SKVSDi,GNj
, TS ′SDi

}
−−−−−−−−−−−−−−−−−−−−−−−−→

SKVGNj ,SDi
= h(SKGNj ,SDi

||TS ′SDi
).

(via open channel) Verify if SKVGNj ,SDi
= SKVSDi,GNj

?

If valid, session key is valid

and SKGNj ,SDi
(= SKSDi,GNj

).

Figure 5.3: Summary of access control phase

GNj then calculates the session key shared with SDi as SKGNj ,SDi
= h(DHKGNj ,SDi

||h(gj(RIDGNj
, RIDSDi

) ||SigSDi
||TSGNj

)) and its verifier SKVGNj ,SDi
= h(SKGNj ,SDi
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||TS ′SDi
). If the verification condition: SKVGNj ,SDi

= SKVSDi,GNj
holds good, both

GNj and SDi store the same session key SKGNj ,SDi
(= SKSDi,GNj

) for their secret

communications.

The above discussed access control phase is explained briefly in Figure 5.3.

5.4.3 Key management phase

Before the key management process starts, an edge server (ESl) needs to obtain its reg-

istration credentials from the BS like SDi and GNj as discussed in Section 5.4.2. Note

that GNj already obtained its registration credentials from the BC and stored in its secure

database. ESl issues a request RegCredReqESl
= {RIDESl

} for obtaining its registration

credentials to the BC over open channel. Once the BC checks the validity of RIDESl
,

it fetches the corresponding transaction TxRegCredESl
= 〈RIDESl

, EPubESl
[RegCredESl

],

ECDSA.SignmkRAk
[RegCredESl

]〉 and sends it to ESl over public channel. After decrypt-

ing EPubESl
[RegCredESl

] using the private key prESl
, ESl extracts RegCredESl

= {RIDESl
,

gj(RIDESl
, y), TCESl

, PubESl
, Eq(α, β), Gk} and checks the validity of both the decrypted

RIDESl
and the signature ECDSA.SignmkRAk

[RegCredESl
]. If all these are valid, ESl stores

RegCredESl
in its secure database which is used for the key management purpose as discussed

below.

The sole goal of this phase is to setup a (pairwise) secret key between a gateway node

(GNj) and its corresponding edge server (ESl) for their communications. This phase involves

the exchange of three messages, namely MsgKM1, MsgKM2 and MsgKM3 between GNj and

ESl, that use the registration credentials obtained from the BC along with random generated

secrets and current timestamps. After verifying the message MsgKM1, ESl generates the

session key shared with GNj and sends the message MsgKM2 to GNj. Validation of MsgKM2

by GNj assures mutual authentication between GNj and ESl. Furthermore, verification of

MsgKM3 guarantees that the “session key established between GNj and ESl are same and

legitimate”.

We now explain the followings stages:

• Step KM1. The initiator GNj first creates a random secret rsGNj1
∈ Z∗q and a current

timestamp TSGNj1
in order to calculate RSGNj1 = h(RIDGNj

||rsGNj1
||TCGNj

||TSGNj1

||prGNj
) · Gk. Next, GNj calculates the signature on rsGNj1

as SigGNj1
= h(RIDGNj

||rsGNj1
||TCGNj

||TSGNj1
||prGNj

) +h(RIDGNj
||PubGNj

||PubESl
||TSGNj1

) ∗prGNj
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(mod q) and dispatches the request message MsgKM1 = {RIDGNj
, RSGNj1

, SigGNj1
,

TSGNj1
} to its respective ESl via open channel.

• Step KM2. After receiving MsgKM1, if the timeliness check of the received timestamp

TSGNj1
passes, ESl proceeds to verify signature SigGNj1

by the condition: SigGNj1
·Gk =

RSGNj1
+h(RIDGNj

||PubGNj
||PubESl

||TSGNj1
)·PubGNj

. Now, if the signature is valid,

ESl treats GNj as valid, and creates a random secret rsESl2
∈ Z∗q and current times-

tamp TSESl2
to calculate RSESl2

= h(RIDESl
||prESl

||rsESl2
||TSESl2

) · Gk and the

Diffie-Hellman type key DHKESl,GNj
= h(RIDESl

||prESl
||rsESl2

||TSESl2
) · RSGNj1

.

After these computations, ESl also evaluates its own polynomial share gj(RIDESl
, y)

at the point y = RIDGNj
to have the secret gj(RIDESl

, RIDGNj
), and then computes

the secret pairwise key shared with GNj as SKESl,GNj
= h(DHKESl,GNj

|| gj(RIDESl
,

RIDGNj
)) and a signature on both rsESl2

and SKESl,GNj
as SigESl2

= h(RIDESl
||prESl

||rsESl2
||TSESl2

) +h(PubESl
||SKESl,GNj

||TSESl2
) ∗ prESl

(mod q). Next, ESl dis-

patches the response message MsgKM2 = {RIDESl
, RSESl2

, SigESl2
, TSESl2

} to GNj

via open channel.

• Step KM3. After checking the timeliness of the timestamp TSESl2
in the received mes-

sage MsgKM2, GNj computes the “Diffie-Hellman type key” DHKGNj ,ESl
= h(RIDGNj

||rsGNj1
||TCGNj

||TSGNj1
||prGNj

) · RSESl2
, gj(RIDGNj

, RIDESl
) = gj(RIDESl

,

RIDGNj
) using its own polynomial share gj(RIDGNj

, y) as gj(x, y) = gj(y, x) and the

session key shared with ESl as SKGNj ,ESl
= h(DHKGNj ,ESl

|| gj(RIDGNj
, RIDESl

)).

Next, GNj verifies the signature SigESl2
as SigESl2

·Gk = RSESl2
+h(PubESl

||SKGNj ,ESl

||TSESl2
) · PubESl

. If the signature validation passes, GNj also treats ESl as authentic

entity.

Finally, both GNj and ESl require to store the same secret pairwise key SKGNj ,ESl
(=

SKESl,GNj
) for their secure communications. This key management phase is briefly explained

in Figure 5.4.

5.4.4 Block creation, verification and addition in blockchain

In this section, we elaborate the process of block creation, verification and addition of that

block in the blockchain. For this issue, the IoT smart devices first send the messages encrypted

with their established session keys as described during the “access control phase” in Section

5.4.2 to their respective gateway node(s). In turn, the gateway nodes also send the information
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Key Management Phase

Gateway node (GNj) Edge server (ESl)

Obtain registration credentials

from the blockchain center (BC).

Create random secret rsGNj1
∈ Z∗q ,

current timestamp TSGNj1
.

Calculate RSGNj1 = h(RIDGNj
||rsGNj1

||TCGNj

||TSGNj1
||prGNj

) ·Gk, SigGNj1
= h(RIDGNj

||rsGNj1
||TCGNj

||TSGNj1
||prGNj

) +h(RIDGNj
Check validity of timestamp TSGNj1

.

||PubGNj
||PubESl

||TSGNj1
) ∗prGNj

(mod q). If valid, further verify signature SigGNj1
.

MsgKM1 = {RIDGNj
, RSGNj1

, SigGNj1
, TSGNj1

}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

If valid, create random rsESl2
∈ Z∗q ,

(via open channel) current timestamp TSESl2
. Calculate RSESl2

=

h(RIDESl
||prESl

||rsESl2
||TSESl2

) ·Gk,

DHKESl,GNj
= h(RIDESl

||prESl

Check validity of TSESl2
. ||rsESl2

||TSESl2
) ·RSGNj1

.

If valid, compute DHKGNj ,ESl
= h(RIDGNj

Obtain gj(RIDESl
, RIDGNj

), and compute

||rsGNj1
||TCGNj

||TSGNj1
||prGNj

) ·RSESl2
SKESl,GNj

= h(DHKESl,GNj
||

SKGNj ,ESl
= h(DHKGNj ,ESl

|| gj(RIDESl
, RIDGNj

)), and signature SigESl2

gj(RIDGNj
, RIDESl

)). = h(RIDESl
||prESl

||rsESl2
||TSESl2

)

Verify signature SigESl2
. +h(PubESl

||SKESl,GNj

If signature is valid, established key is legitimate, ||TSESl2
) ∗ prESl

(mod q).

and SKGNj ,ESl
(= SKESl,GNj

). MsgKM2 = {RIDESl
, RSESl2

, SigESl2
, TSESl2

}
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(via open channel)

Figure 5.4: Summary of key management phase

encrypted with their secret keys established during the“key management phase” in Section

5.4.3 to their respective edge servers. An edge server ESl is then responsible to construct a

block containing the encrypted transactions of information received from the gateway node(s)

or IoT smart device(s) for a particular application. Here, the ECC public key PubESl
is used

for generating the encrypted transactions because the information is strictly private and con-

fidential with respect to an IIoT application. ESl creates Merkle tree root on the encrypted

transactions along with timestamp and random number. The current hash block is computed

as CurBH = h(BlkV ||PreBH ||MrkTR ||IdtTm ||TSESl
||CreBID ||PubESl

||{EPubESl
(Txi)

|i = 1, 2, · · · , tn}) and the signature on CurBH as SigBlockk = ECDSA.SigprESl
(CurBH)

where ECDSA.Sig(·) denotes the “ECDSA signature generation algorithm”. The overall
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Figure 5.5: Architecture of a block Blockk for various transactions

structure of a block Blockk is shown in Figure 5.5. The encryption is used in the transac-

tions to make the transactions private with the edge server so that other P2P servers can not

decrypt without private key of the particular edge server. Since the encryption is performed

with the help of PubESl, so only particular edge server associated with an application can

see and decrypt the data. Finally, through the consensus algorithm provided in Algorithm

3, a leader among the group edge servers in the P2P network is selected using the existing

leader selection algorithm [239] and then the leader sends the created block, say Blockk to

its peer nodes to have the consensus among them for verifying and adding the block in their

local ledgers of blockchain center containing the fog servers. Note that we have applied the

“Practical Byzantine Fault Tolerance (PBFT)” algorithm [38] for consensus purpose. How-

ever, we have provided the voting-based PBFT version as the proposed consensus algorithm,

in which a leader L selected among the P2P network, generates a current timestamp TSL

and a random number rL to perform voting process. L then creates signature SigL using the

ECDSA signature generation algorithm with its own private key prL on the message h(Blockk

||TSL ||rL ||V TRreq), where V TRreq is voting request, and sends the request message 〈Blockk,
SigL, EPubESl

[rL, V TRreq], TSL〉 to each other edge server ESl via public channel. After suc-

cessful validation of timestamp TSL, Merkle tree root MrkTR, current block hash CurBH

and signature on block SigBlockk , each other node in the P2P network sends the response

message 〈EPubL [rL, TSESl
, V TRres], TSESl

〉 to L via public channel, where V TRres is the

“voting response” and TSESl
is the “current timestamp”.
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An edge server associated with an IIoT application is responsible to create the blocks and

store them into the blockchain after the consensus process as described in Algorithm 3.

Algorithm 3 Voting-based consensus for verification and addition of a block (Blockk)

Input: Blockk = {Block Header, Block Payload, CurBH, SigBlockk}; private-public key pairs

(prESl
, PubESl

), and nfESl
represents the number of faulty nodes in P2P network.

Output: Commitment & addition of Blockk in the blockchain after successful valida-

tion.

1: Assume a leader has been selected by ESl, say L using the leader selection algorithm [239].

2: L generates current timestamp TSL and a random number rL to perform voting process. L

creates signature SigL using ECDSA signature generation algorithm with its own private key

prL on the message h(Blockk ||TSL ||rL ||V TRreq), where V TRreq is voting request.

3: L sends the request message 〈Blockk, SigL, EPubESl
[rL, V TRreq], TSL〉 to each other edge server

ESl via public channel.

4: After receiving request message, each ESl checks timestamp TSL and if it is valid, it computes

(rL, V TRreq) = DprESl
[EPubESl

[rL, V TRreq]], verifies SigL using ECDSA signature verification

algorithm [104].

5: If the signature is valid, ESl further verifies MrkTR, CurBH, and SigBlockk on received block

Blockk.

6: After all the successful validations, ESl sends the response message 〈EPubL [rL, TSESl
, V TRres],

TSESl
〉 to L via public channel, where V TRres is the voting response and TSESl

is current

timestamp.

7: Assume that V Count represents the number of valid votes. Set V Count← 0.

8: for each received message 〈EPubL [rL, TSESl
, V TRres], TSESl

〉 from other edge nodes ESl do

9: L first checks validity of timestamp TSESl
, decrypts message using its private key prL and

validates rL, TSESl
and V TResp. If all are valid, set V Count = V Count + 1.

10: end for

11: if (V Count > 2nfESl
+ 1) then

12: L sends commit response for successful verification of Blockk to its all followers ESl.

13: Each ESl and L then add Blockk to their local ledgers.

14: end if

Remark 5.2. Due to hostile environment/power exhaustion of IoT smart devices, the de-

vices may be either physically captured or shut down. To continue the functionality of IIoT

environment, new smart device, say SDnew needs to be added. Prior to deployment, SDnew

is required to register by the trusted registration authority RAk in that particular application
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where existing other smart devices are already there. For registering SDnew, RAk needs to

follow the same steps as described in the IoT smart devices registration (see Section 5.4.1).

Remark 5.3. In this work, we have mainly considered the private blockchain scenario where

the data is private and confidential with respect to each edge server. However, there are some

applications, where the data needs to be shared inside the system. Thus, encrypting them will

make the entities without the secret keys unable to decrypt the data and use the data. In this

case, the edge servers can maintain a group (secret) key among them so that the selected shared

data (transactions) can be now encrypted with the help of the group key using symmetric key

encryption. Hence, the shared encrypted data can be decrypted by other edge servers using the

same group key.

5.5 Security analysis

In this section, we discourse the security analysis to show that the proposed PBACS-PECIIoT

is resilient against the following potential attacks. In addition, we also show the correctness

proofs of the session keys establishment during both the access control and key management

phases.

5.5.1 Correctness proof

We show that the established secret keys among different communicating entities during the

access control and key management phases are correct using the theorems 5.1 and 5.2.

Theorem 5.1. The session keys established by an IoT smart device (SDi) and its gateway

node (GWj) are the same during the access control phase provided in Section 5.4.2.

Proof. During the access control phase discussed in Section 5.4.2, an IoT smart device, SDi,

computes the session key shared with its gateway node, GNj, as SKSDi,GNj
= h(DHKSDi,GNj

||zSDi
). On the other side, the gateway node, GNj, also computes the session key shared with

SDi as SKGNj ,SDi
= h(DHKGNj ,SDi

||h(gj(RIDGNj
, RIDSDi

) ||SigSDi
||TSGNj

)).

Now, we have, zSDi
= yGNj

⊕ h(DHKSDi,GNj
||TSSDi

||TSGNj
) = h(gj(RIDGNj

, RIDSDi
)

||SigSDi
||TSGNj

). In addition, we have, and DHKSDi,GNj
= h(TCSDi

||rsSDi
||prSDi

||RIDSDi

||TSSDi
) · RSGNj

, DHKGNj ,SDi
= h(TCGNj

||rsGNj
||prGNj

||RIDGNj
||TSGNj

) · RSSDi
,

RSSDi
= h(TCSDi

||rsSDi
||prSDi

||RIDSDi
||TSSDi

) · Gk, and RSGNj
= h(TCGNj

||rsGNj

||prGNj
||RIDGNj

||TSGNj
) · Gk. Since zSDi

= h(gj(RIDGNj
, RIDSDi

) ||SigSDi
||TSGNj

), in
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order to show SKSDi,GNj
= SKGNj ,SDi

, it suffices to show that DHKSDi,GNj
= DHKGNj ,SDi

.

It then follows that

DHKSDi,GNj
= h(TCSDi

||rsSDi
||prSDi

||RIDSDi
||TSSDi

) ·RSGNj

= [h(TCSDi
||rsSDi

||prSDi
||RIDSDi

||TSSDi
) ∗

h(TCGNj
||rsGNj

||prGNj
||RIDGNj

||TSGNj
)] ·Gk

= [h(TCGNj
||rsGNj

||prGNj
||RIDGNj

||TSGNj
) ∗

h(TCSDi
||rsSDi

||prSDi
||RIDSDi

||TSSDi
)] ·Gk

= h(TCGNj
||rsGNj

||prGNj
||RIDGNj

||TSGNj
) ·RSSDi

= DHKGNj ,SDi
.

Hence, SKSDi,GNj
= SKGNj ,SDi

and the theorem follows.

Theorem 5.2. The session keys established by a gateway node (GWj) and its respective edge

server ESl are the same during the key management phase provided in Section 5.4.3.

Proof. During the key management phase (see Section 5.4.3), ESl computes the secret pair-

wise key shared with GNj as SKESl,GNj
= h(DHKESl,GNj

|| gj(RIDESl
, RIDGNj

)), where

DHKESl,GNj
= h(RIDESl

||prESl
||rsESl2

||TSESl2
)·RSGNj1

and RSGNj1 = h(RIDGNj
||rsGNj1

||TCGNj
||TSGNj1

||prGNj
) ·Gk. On the other side, GNj also computes the session key shared

with ESl as SKGNj ,ESl
= h(DHKGNj ,ESl

|| gj(RIDGNj
, RIDESl

)), where DHKGNj ,ESl
=

h(RIDGNj
||rsGNj1

||TCGNj
||TSGNj1

||prGNj
) ·RSESl2

and RSESl2
= h(RIDESl

||prESl
||rsESl2

||TSESl2
) ·Gk.

Since the bivariate polynomial gj(x, y) is symmetric, it follows that gj(RIDGNj
, RIDESl

)

= gj(RIDESl
, RIDGNj

). To prove SKESl,GNj
= SKGNj ,ESl

it is sufficient to show that

DHKESl,GNj
= DHKGNj ,ESl

. It is worth noticing that

DHKESl,GNj
= h(RIDESl

||prESl
||rsESl2

||TSESl2
) ·RSGNj1

= [h(RIDESl
||prESl

||rsESl2
||TSESl2

) ∗

h(RIDGNj
||rsGNj1

||TCGNj
||TSGNj1

||prGNj
)] ·Gk

= [h(RIDGNj
||rsGNj1

||TCGNj
||TSGNj1

||prGNj
) ∗

h(RIDESl
||prESl

||rsESl2
||TSESl2

)] ·Gk

= h(RIDGNj
||rsGNj1

||TCGNj
||TSGNj1

||prGNj
) ·RSESl2

= DHKGNj ,ESl
.

Hence, it follows that SKESl,GNj
= SKGNj ,ESl

.
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5.5.2 Formal security analysis under ROR model

In this section, we discuss about the “session key security under broadly-recognized Real-

Or-Random (ROR) oracle model [10] to show that PBACS-PECIIoT is secure against an

adversary A for deriving the session-key between a smart device (SDi) and a gateway node

(GNj) during the access control phase” described in Section 5.4.2. It is worth noticing that

the “ROR-model based security analysis” provides the semi-formal security proof where the

advantage of an adversary, say A, is computed, and A attempts to derive the session key

among two communicating entities in the network.

1) Random oracle model

We first describe the respective security model that is based on the works by Bellare et al. [23]

and Wu et al. [224], for the proposed scheme, that goes through a sequence of the interactive

games between a challenger and an adversary. Here, the main intention is to prove that the

proposed scheme provides the session key security against the adversary.

The adversary A is permitted to execute the following queries for deriving the session key:

• Execute(Θa1
SDi

, Θa2
GNj

): A carries out this query to eavesdrop the messages exchanged

between SDi and GNj.

• CorruptSD(Θa1
SDi

): It allows A to extract “the credentials stored in a stolen or lost

SDi’s memory”.

• Reveal(Θa): By executing this query, the session key SKSDi,GNj
(= SKGNj ,SDi

) is ex-

posed to A that is shared between Θa and its respective associate.

• Test(Θa): A is allowed to perform Θa to verify if the session key SKSDi,GNj
(=

SKGNj ,SDi
) is real or a random key.

Definition 5.1 of the semantic security is used to show the session key security of PBACS-

PECIIoT in Theorem 5.3. In addition, as discussed in [42], a “collision-resistant one-way

cryptographic hash function h(·) is accessed to all the involved participants including the

adversary A”. As a result, we also model “h(·) as a random oracle, say hash”.

The ROR model is associated with the following components:

• Participants. As we consider the access control between smart device SDi and gateway

node GNj mentioned in Section 5.4.2, two participants, namely SDi and GNj are en-

gaged for communication, and apart from these entities the registration authority RAk is
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also involved during offline registration purpose and dynamic node addition phase. The

notations Θa1
SDi

and Θa2
GNj

signify the ath1 and ath2 instances of SDi and GNj, respectively.

These instances are known as the “random oracles”.

• Accepted state. An instance Θa will enter in its “accepted state” once it goes to

an accept state when the last valid protocol message is received. If all the communi-

cated messages (sent and received) are put in an ordered sequence, it creates a “session

identification sid of Θa for the current session”.

• Partnering. Two instances (Θa1 and Θa2) will be the partners to each other if the

following are fulfilled: a) Θa1 and Θa2 are in “accepted states”; b) Θa1 and Θa2 share the

same sid and also “mutually authenticate each other”; and c) Θa1 and Θa2 are “mutual

partners of each other”.

• Freshness. An instance Θa1
SDi

or Θa2
GNj

is fresh if the established session key SKSDi,GNj

(= SKGNj ,SDi
) shared between SDi and GNj is not revealed to A using the Reveal(Θa)

query described above.

We now define the “semantic security” in Definition 5.1 prior to prove Theorem 5.3.

Definition 5.1 (Semantic security). The “advantage of an adversary A running in polynomial

time t in breaking the semantic security of the proposed PBACS-PECIIoT for deriving the

session key SKSDi,GNj
(= SKGNj ,SDi

) among a smart device SDi and a gateway node GNj”

in a particular session during the access control phase (ACP) is AdvPBACS−PECIIoT
A,ACP (t) =

|2Pr[c′ = c]− 1|, where “c and c′ are respectively the correct and guessed bits”.

2) Provable security

In this section, we apply the random oracle model discussed above in order to prove that the

proposed scheme provides the session key security that is described in Theorem 5.3.

Theorem 5.3. The advantage AdvPBACS−PECIIoT
A,ACP (t) of an adversary A running in polyno-

mial time t in order to derive the session key SKSDi,GNj
(= SKGNj ,SDi

) established between

SDi and GNj in a particular session during the access control phase (ACP) for the pro-

posed PBACS-PECIIoT is AdvPBACS−PECIIoT
A,ACP (t) ≤ q2h

|hash|+2AdvECDDHP
A (t), where qh, |hash|,

and AdvECDDHP
A (t) represent the “number of hash queries”, the “range space of a one-way

collision-resistant hash function h(·)”, and the “advantage of breaking the Elliptic Curve De-

cisional Diffie-Hellman Problem (ECDDHP)”, respectively.
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Proof. A similar proof is followed here as in [42]. In the proposed PBACS-PECIIoT, we con-

sider three games, namely GameAi for the adversary A, i = 0, 1, 2. We define SuccAGamei
as an

event wherein A can guess the random bit c correctly in the game GameAi . Therefore, A’s ad-

vantage to win the GameAi in the proposed PBACS-PECIIoT becomes AdvPBACS−PECIIoT
A,Gamei

=

Pr[SuccAGamei
]. The games are now defined as follows.

• GameA0 : Under this game, the adversary A plays a real attack under the ROR model

for the initial game GameA0 . Prior to beginning of the game GameA0 , A needs to pick a

random bit c. Therefore, the advantage of GameA0 is then

AdvPBACS−PECIIoT
A,ACP (t) = |2AdvPBACS−PECIIoT

A,Game0
− 1|. (5.1)

• GameA1 : In this game, A applies the eavesdropping attack to derive the ses-

sion key for a particular session. A performs the Execute query to intercept all

the communicated messages MsgAC1 = {RIDSDi
, SigSDi

, RSSDi
, TSSDi

}, MsgAC2 =

{RIDGNj
, SigGNj

, RSGNj
, yGNj

, TSGNj
} and MsgAC3 = {SKVSDi,GNj

, TS ′SDi
} during

the access control phase (ACP) between SDi and GNj mentioned in Section 5.4.2. After

that, A may try to generate the session key SKSDi,GNj
= h(DHKSDi,GNj

||zSDi
), where

DHKSDi,GNj
= h(TCSDi

||rsSDi
||prSDi

||RIDSDi
||TSSDi

) · RSGNj
and zSDi

= yGNj
⊕

h(DHKSDi,GNj
||TSSDi

||TSGNj
). Without knowledge of the long term secrets {TCSDi

,

prSDi
} and {TCGNj

, prGNj
}, A cannot succeed to derive the session key SKSDi,GNj

(= SKGNj ,SDi
). As the credentials are protected by the “cryptographic hash function

h(·)”, A will be unable to derive the session key even by executing the Reveal and Test

queries. Therefore, the games GameA1 and GameA0 are both indistinguishable under

such an eavesdropping attack. The following outcome is then produced:

AdvPBACS−PECIIoT
A,Game1

= AdvPBACS−PECIIoT
A,Game0

. (5.2)

• GameA2 : In this game, the adversaryA plays an active attack. A simulates the hash and

CorruptSD queries and tries to solve computational ECDDHP problem. A needs to ob-

tainDHKSDi,GNj
= h(TCSDi

||rsSDi
||prSDi

||RIDSDi
||TSSDi

)·RSGNj
(= DHKGNj ,SDi

)

to derive the session key SKSDi,GNj
. Assume that A hijacks all the transmitted mes-

sage {MsgAC1, MsgAC2, MsgAC3}. Thus, A knows the values RSSDi
and RSGNj

. From

RSSDi
and RSGNj

, A may try to compute the secret values h(TCSDi
||rsSDi

||prSDi

||RIDSDi
||TSSDi

) and h(TCGNj
||rsGNj

||prGNj
||RIDGNj

||TSGNj
), respectively. How-

ever, to derive these secrets credentials, A needs to know the long term secrets {TCSDi
,
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prSDi
, TCGNj

, prGNj
}, which becomes difficult problem due to solving ECDDHP. More-

over, the secrets are enclosed by a “one-way collision-resistant hash function (h(·))”.

In addition, A will execute CorruptSD to extract all the secret credentials {RIDSDi
,

TCSDi
, (prSDi

, PubSDi
), h(·), Eq(α, β), Gk}, but he/she has no knowledge about the

random secrets (short term secrets){rsSDi
, rsGNj

}. If A is aware of the long term secrets

as well as short term, then only he/she gets the session key SKSDi,GNj
(= SKGNj ,SDi

).

Therefore, the games GameA2 and GameA1 are indistinguishable if we exclude the hash

and CorruptSD queries in GameA2 . The birthday paradox result on “one-way collision-

resistant hash function (h(·))” and ECDDHP will result in the following relation:

|AdvPBACS−PECIIoT
A,Game1

− AdvPBACS−PECIIoT
A,Game2

| ≤ q2
h

2|hash|
+ AdvECDDHP

A (t). (5.3)

Since all the games have been executed by A, and it is “only remaining for A to correctly

guess a bit to win the game GameA2 ”, we have,

AdvPBACS−PECIIoT
A,Game2

=
1

2
. (5.4)

Eq. (5.1) gives
1

2
.AdvPBACS−PECIIoT

A,ACP (t) = |AdvPBACS−PECIIoT
A,Game0

− 1

2
|. (5.5)

Eq. (5.3) leads to the following inequality using Eq. (5.5):

1

2
.AdvPBACS−PECIIoT

A,ACP (t) = |AdvPBACS−PECIIoT
A,Game0

− AdvPBACS−PECIIoT
A,Game2

|

= |AdvPBACS−PECIIoT
A,Game1

− AdvPBACS−PECIIoT
A,Game2

|

≤ q2
h

2|hash|
+ AdvECDDHP

A (t). (5.6)

Hence, we have the final result: AdvPBACS−PECIIoT
A,ACP (t) ≤ q2h

|hash| +2AdvECDDHP
A (t).

Remark 5.4. If AdvPBACS−PECIIoT
A,KMP (t) be the advantage of an adversary A running in poly-

nomial time t in order to derive the pairwise secret key SKGNj ,ESl
(= SKESl,GNj

) established

between GNj and ESl in a particular session during the key management phase (KMP) for

the proposed PBACS-PECIIoT, similar to Theorem 5.3, we also have:

AdvPBACS−PECIIoT
A,KMP (t) ≤ q2

h

|hash|
+ 2AdvECDDHP

A (t).
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5.5.3 Informal security analysis

In the following propositions, through hueristic security analysis, we show that the proposed

scheme (PBACS-PECIIoT) is secure against various other attacks.

Proposition 5.1. The proposed PBACS-PECIIoT is secure against replay attack.

Proof. In PBACS-PECIIoT, during the access control phase described in Section 5.4.2 between

a smart device SDi and its gateway node GNj, the communicated messages MsgAC1, MsgAC2,

and MsgAC3 have both random nonces and current timestamps. The freshness of the messages

is provided by checking the timestamps. Similarly, for the key management among GNj and its

associated edge server ESl described in Section 5.4.3 the communicated messagesMsgKM1 and

MsgKM2 are also having random numbers and current timestamps. Thus, the receivers can

easily detect the old replayed messages that are re-transmitted by an adversary by validating

the attached timestamps of the messages. Therefore, PBACS-PECIIoT is resilient against

“replay attack”.

Proposition 5.2. The proposed PBACS-PECIIoT is secure against Man-in-the-Middle

(MiTM) attack.

Proof. Suppose an adversary A eavesdrops the access control request message MsgAC1 =

{RIDSDi
, SigSDi

, RSSDi
, TSSDi

} and tries to send another valid message, say Msg∗AC1 to the

receiver GNj. To achieve this goal, A can select a random number rs∗SDi
∈ Z∗q and timestamp

TS∗SDi
on the fly, and then calculate RS∗SDi

= h(TCSDi
||rs∗SDi

||prSDi
||RIDSDi

||TS∗SDi
) ·Gk.

Without knowledge of the temporal credential TCSDi
and permanent secret prSDi

, A can not

compute valid RS∗SDi
and other valid signature Sig∗SDi

for Msg∗AC1. Similarly, by intercepting

the messages MsgAC2, MsgAC3, MsgKM1 and MsgKM2, without temporal credentials and

permanent secret, A can modify them on the fly. PBACS-PECIIoT is then resilient against

“MiTM attack”.

Proposition 5.3. The proposed PBACS-PECIIoT is resilient against impersonation attacks.

Proof. Assume an adversary A plays as a legitimate smart device and tries to communicate

with the gateway node by creating a valid message MsgAC1 = {RIDSDi
, SigSDi

, RSSDi
,

TS∗SDi
}. For successful attack, A can pick a random secret rsSDi

∈ Z∗q and timestamp TS∗SDi

to calculate RSSDi
= h(TCSDi

||rsSDi
||prSDi

||RIDSDi
||TS∗SDi

) · Gk. Since A has no idea

about secrets TCSDi
and prSDi

, A can not compute valid MsgAC1. Similarly, it is also a

“computationally impossible task” for A to construct other valid messages MsgAC2, MsgAC3,



5.5 Security analysis 123

MsgKM1 and MsgKM2. This means that PBACS-PECIIoT is secure against “smart device,

gateway node and edge server impersonation attacks”.

Proposition 5.4. The proposed PBACS-PECIIoT is resilient against privileged-insider at-

tack.

Proof. During the registration phase, RAk does registration of all the entities (SDi, GNj,

and ESl) without providing any registration information from the entities. Instead, RAk

deletes all the secrets information (for example, temporal credentials and private keys) after

the credentials are stored in the memory of the registering parties after successful registration

prior to their deployment in a particular IIoT application. An adversary, being a privileged-

insider user of any RAK , can not then obtain any pre-loaded secret credentials of the deployed

entities. Hence, PBACS-PECIIoT is resilient against “privileged-insider attack”.

Proposition 5.5. The proposed PBACS-PECIIoT is resilient against physical IoT smart

device capture attack.

Proof. Due to existence of an unethical territory, there is a high chance that an adversary

A can physically capture few IoT smart devices SDi, and extract their stored credentials

{RIDSDi
, TCSDi

, (prSDi
, PubSDi

), h(·), Eq(α, β), Gk} by applying the “power analysis at-

tacks” [141]. However, the stored credentials are unique and different for all smart devices SDi.

Therefore, it is not possible for A to establish the session keys between a non-compromised

SDi and its respective GNj. This circumstance is known as “unconditionally secure against

smart device capture attack”. As a result, PBACS-PECIIoT is secure against “physical vehicle

capture attack”.

Proposition 5.6. The proposed PBACS-PECIIoT protects Ephemeral secret Leakage (ESL)

attack.

Proof. During the access control process between SDi and GNj, they establish a common ses-

sion key SKSDi,GNj
= h(DHKSDi,GNj

||zSDi
) (= SKGNj ,SDi

) where DHKSDi,GNj
= h(TCSDi

||rsSDi
||prSDi

||RIDSDi
||TSSDi

) · RSGNj
. Similarly, during key management phase be-

tween GNj and ESl, a common session key is established as SKGNj ,ESl
= h(DHKGNj ,ESl

||
gj(RIDGNj

, RIDESl
)) (= SKESl,GNj

), where DHKGNj ,ESl
= h(RIDGNj

||rsGNj1
||TCGNj

||TSGNj1
||prGNj

) · RSESl2
. In both the scenarios, in order to calculate DHKSDi,GNj

and

DHKGNj ,ESl
the short term (random nonces) and long term secrets (temporal credentials

and private keys) are necessary. Since in every session the session keys are unique and dis-

tinct, even through a session key is compromised in a particular session it does not affect
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on the session (secret) keys established in other sessions. PBACS-PECIIoT is then secure

against “session-temporary information attack” and it also provides the “perfect forward and

backward secrecy” goals at the same time.

Proposition 5.7. The proposed PBACS-PECIIoT provides block verification in Blockchain.

Proof. In PBACS-PECIIoT, suppose a verifier V wants to verify a given block, say Blockk in

the blockchain. To successfully verify Blockk, V requires computation of “Merkle tree root

(MrkTR)” on encrypted transactions and “current block hash (CurBH)” on all the entities

in Blockk. If MrkTR∗ = MrkTR and CurBH∗ = CurBH, V further validates SigBlockk

using “ECDSA signature verification algorithm” with the public key PubESl
of ESl. Since V

verifies all the MrkTR, CurBH and SigBlockk , it is quite hard for an adversary to tamper

the block Blockk in the blockchain. If all the validations are successful, V accepts Blockk as

a valid block in the blockchain.

Proposition 5.8. The proposed PBACS-PECIIoT protects transaction privacy leakage.

Proof. In blockchain, the user behavior can be traceable and it is important to preserve the

transaction privacy of the users. A transaction in public blockchain may contain sensitive

information and leakage of such critical data is a serious concern. Also, it is important to note

that the input transaction should not be linked to its corresponding outputs. The “Bitcoin”

and “Zcash” use one-time account to received cryptograms/puzzles. A secret key of user can

be used within it so that an attacker cannot derive whether the same transaction contains

a user’s credential. Moreover, a common wallet may also leakage some vital information

of the user. In the proposed PBACS-PECIIoT, due to the private blockchain criteria, the

transactions in a block are encrypted with the help of public key of the corresponding edge

server PubESl
. Therefore, the privacy of the transactions are fulfilled in PBACS-PECIIoT.

Proposition 5.9. The proposed PBACS-PECIIoT protects selfish mining attack.

Proof. Selfish mining attack is introduced by Eyal et al. in 2014 [75]. In a selfish mining attack

[75], an attacker may misuse the computation power and steal the inappropriate rewards

from the legitimate miners [19]. The attackers in the selfish mining may aim to retain the

large private chain as compared to the public branch so that they can individually hold and

dominate to add the additional new blocks. Thus, the selfish miners can obtain more blocks

and have a competitive advantage over legitimate miners. This strategy has been extensively

mentioned in Bitcoin, but very few attentions have been given to address it. Davidson et al.



5.6 Formal security verification using AVISPA: simulation study 125

[62] mentioned how the selfish mining can increment the earning of the miners for a larger

collection of cryptocurrencies. In PBACS-PECIIoT, we have considered private blockchain

and the mining is done by the P2P edge nodes which are treated as semi-trusted. Therefore,

selfish mining attack would be hard to perform in the proposed system.

Proposition 5.10. The proposed PBACS-PECIIoT is resilient against balance attack.

Proof. In this attack, an attacker tries to introduce a delay network communication between

a valid range of subgroups consisting of similar mining power capabilities to execute the

transactions. However, the miner needs to mine sufficient blocks to assure the subtree of

another subgroup is equally essential as compared to the transaction subgroups. Moreover,

an attacker can collect the transactions, which are not committed, in order to form a block

and it has immense possibility of exceeding the subtree which consists of the transactions.

In PBACS-PECIIoT, the individual edge server is connected with each application and it is

semi-trusted in the private blockchain. As a result, it is difficult to create a separate chain

and mine sufficient blocks into the blockchian. Hence, the balance attack is eliminated in the

proposed PBACS-PECIIoT.

Proposition 5.11. The proposed PBACS-PECIIoT is resilient against Sybil attack.

Proof. In this attack, an attacker can damage the reputation system by forging the identities

(i.e. fake users’ accounts) in the P2P network and use them to achieve the extremely huge

domination in the network for making the legitimate entities in minority. Such virtual nodes

or illegitimate nodes can then perform like genuine nodes to establish disproportionately huge

influence on the P2P network. These may lead to various other attacks, such as “Denial-of-

Service (DoS)” and “Distributed Denial-of-Service (DDoS)” attacks. However, it is required to

verify or authenticate such nodes and the identities prior to joining the network. In PBACS-

PECIIoT, if an edge server behaves like an attacker and tries to perform Sybil attack, it can

not dominate the entire network and make the legitimate entities in minority. Therefore, the

Sybil attack is resisted in the proposed PBACS-PECIIoT.

5.6 Formal security verification using AVISPA: simula-

tion study

The “AVISPA tool (Automated Validation of Internet Security Protocols and Applications)”

provides a “modular and expressive formal language for specifying security protocols and prop-



126 Private Blockchain-Based Access Control for PEC in IIoT

Figure 5.6: HLPL role specification for the RA in Case 1

erties, known as the High-Level Protocol Specification Language (HLPSL)” and integrates

various back-ends which help in implementing a “variety of automatic analysis techniques

ranging from protocol falsification (by finding an attack on the input protocol) to abstraction-

based verification methods for infinite numbers of sessions” [202]. AVISPA contains four

backends, namely a) “On-the-Fly Model-Checker (OFMC)”, b) “Constraint-Logic-based At-
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Figure 5.7: HLPL role specification for smart device SDi in Case 1
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Figure 5.8: HLPL role specification for gateway node GNj in Case 1
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Figure 5.9: HLPL role specification for session, goal and environment in Case 1
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Figure 5.10: Simulation results of PBACS-PECIIoT for Case 1 under OFMC backend

Figure 5.11: Simulation results of PBACS-PECIIoT for Case 1 under CL-AtSe backend

tack Searcher (CL-AtSe)”, c) “SAT-based Model Checker (SATMC)” and d) “Tree Automata

based on Automatic Approximations for the Analysis of Security Protocols (TA4SP)”.

The proposed scheme (PBACS-PECIIoT) has been implemented under the HLPSL for two
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scenarios:

• Case 1: It implements the registration and access control phases

• Case 2: It implements the registration and key management phases

In both the cases, we have the basic roles and the mandatory roles for the session and also

for the goal and environment. In Case 1, the basic roles in HLPSL implementation for the

RA, a smart device SDi and a gateway node GNj are shown in Figures 5.6, 5.7, and 5.8,

respectively. The HLPL role specification for the session, goal and environment in Case 1 is

also shown in Figure 5.9.

Since AVISPA implements the DY threat model [67] (as discussed in our threat model

in Section 2.2), an intruder (i) always takes part of an active participating entity during the

communication. Due to this, AVISPA has the ability to check whether a tested security pro-

tocol is resilient against “replay attack” and “man-in-the-middle attack”. We have simulated

Case 1 of PBACS-PECIIoT using the “SPAN, the Security Protocol ANimator for AVISPA”

[18] under the widely-used OFMC and CL-AtSe backends. The simulation results for Case 1

demonstrated in Figures 5.10 and 5.11 clearly show that PBACS-PECIIoT is robust against

both replay and man-in-the-middle attacks, under both OFMC and CL-AtSe backends.

In a similar way, in Case 2, the basic roles in HLPSL implementation for the RA, a gateway

node GNj, and an edge server ESl are shown in Figures 5.12, 5.13, and 5.14, respectively.

The HLPL role specification for the session, goal and environment in Case 1 is also shown in

Figure 5.15. We have also simulated Case 2 of PBACS-PECIIoT using SPAN. The simulation

results for Case 2 demonstrated in Figures 5.16 and 5.17 clearly show that PBACS-PECIIoT

is robust against both replay and man-in-the-middle attacks, under both OFMC and CL-AtSe

backends.

5.7 Experiments using MIRACL

We have done the testbed experiments for various cryptographic primitives with the help

of widely-accepted “Multiprecision Integer and Rational Arithmetic Cryptographic Library

(MIRACL)” [5]. MIRACL is a C/C++ based Crypto SDK which is regarded by the soft-

ware developers and cryptographers as the “gold standard open source SDK for elliptic curve

cryptography (ECC)”. In the following, we consider the following two scenarios:

The first platform that we have considered is for a server and the environment setting as

“Ubuntu 18.04.4 LTS, with memory: 7.7 GiB, processor: Intel Core i7-8565U CPU @ 1.80GHz
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Figure 5.12: HLPL role specification for the RA in Case 2

× 8, OS type: 64-bit and disk: 966.1 GB”. In the second platform, we have considered

a smart device under the Raspberry PI 3 implementation where the environment setting

is “Raspberry PI 3 B+ Rev 1.3, with CPU: 64-bit, Processor: 1.4 GHz Quad-core, 4 cores,

Memory (RAM): 1GB, and OS: Ubuntu 20.04 LTS, 64-bit” [6]. In addition, all the experiments

are run for 100 times for each cryptographic primitive under both the platforms, and we

then considered the “maximum, minimum and average run-time (in milliseconds) for each

cryptographic primitive”.

We use the following cryptographic primitives for the testbed experiments. The notations

Th, Tecm, Teca, Tme, Tbp, Tm, Ta, and Tsenc/Tsdec denote the time required to execute a “one-

way cryptographic hash function”, an “elliptic curve point (scalar) multiplication”, an “elliptic
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Figure 5.13: HLPL role specification for gateway node GNj in Case 2

curve point addition”, a “modular exponentiation operation”, a “bilinear pairing operation”,

a “modular multiplication over GF (q)”, a “modular addition over GF (q)”, and a “symmetric

encryption/decryption”, respectively. We also considered a non-singular elliptic curve of the

type: “y2 = x3 + αx + β (mod q)” for “elliptic curve point addition and multiplication”.

Finally, the experimental results for various cryptographic primitives under a server platform

and under the Raspberry PI 3 setting are provided in Table 5.2.

It is worth noticing that a Raspberry PI uses a “micro SD card” that has the capability to

store both the system and data. If we compare a “micro SD card” to the “modern hard drives

or solid-state drive (SSD) that are commonly found in computers (Desktops or Laptops)”, the

operations like reading and writing on the card are then quite slow in case of Raspberry PI

[8]. This is why the results reported in Table 5.2 show the average time difference between
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Figure 5.14: HLPL role specification for edge server (ESl) in Case 2

Table 5.2: Experimental results of cryptographic primitives on a server and a Raspberry PI 3

using MIRACL

the server and Raspberry PI.
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Figure 5.15: HLPL role specification for session, goal and environment in Case 2

5.8 Comparative study

In this section, we provide a detailed comparative study on “security and functionality

features”, “communication costs” and “computation costs” among the proposed PBACS-

PECIIoT and other state-of-art schemes of Li et al. [121], Luo et al. [131] and Xue et al.

[226].
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Figure 5.16: Simulation results of PBACS-PECIIoT for Case 2 under OFMC backend

Figure 5.17: Simulation results of PBACS-PECIIoT for Case 2 under CL-AtSe backend
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5.8.1 Communication costs comparison

In PBACS-PECIIoT, to evaluate the communication costs for the access control phase (Case

1) between SDi and GNj and for the key management phase (Case 2) among GNj and

ESl, we consider only communication messages among them. It is assumed that a “random

number”, an “identity”, a “one-way hash function (using SHA-256 hashing algorithm)”, an

“elliptic curve point P ∈ Eq(α, β)” and a “timestamp” are 160, 160, 256, 320, and 32 bits,

respectively.

In Case 1 of PBACS-PECIIoT, the communication costs for the messages MsgAC1 =

{RIDSDi
, SigSDi

, RSSDi
, TSSDi

}, MsgAC2 = {RIDGNj
, SigGNj

, RSGNj
, yGNj

, TSGNj
} and

MsgAC3 = {SKVSDi,GNj
, TS ′SDi

} require (256 + 160 + 320 + 32) = 768 bits, (256 + 160

+ 320 + 256 + 32) = 1024 bits, and (256 + 32) = 288 bits, which altogether demand 2080

bits. In Case 2 of PBACS-PECIIoT, the messages MsgKM1 = {RIDGNj
, RSGNj1

, SigGNj1
,

TSGNj1
} and MsgKM2 = {RIDESl

, RSESl2
, SigESl2

, TSESl2
} needs equally (256 + 320 + 160

+ 32) = 768 bits, which altogether require 1536 bits. The comparative study shown in Table

5.3 demonstrates that the communication costs for both Case 1 and Case 2 require less costs

as compared to other schemes.

Table 5.3: Comparison of communication costs

Protocol No. of messages Total cost (in bits)

PBACS-PECIIoT (Case 1) 3 2080

PBACS-PECIIoT (Case 2) 2 1536

Li et al. [121] 4 5408

Luo et al. [131] 2 3040

Xue et al. [226] 5 9344

5.8.2 Computation costs comparison

Assume Tpoly denotes the time required for “evaluation of an t-degree uni-variate polynomial”.

Based on the Horner’s rule [110], evaluating an “t-degree uni-variate polynomial” requires “t

modular multiplications” and “t modular additions”, that is, Tpoly = tTm+ tTa. We have

used the average time listed in Table 5.2 needed for various cryptographic primitives for a

server. On the other side, we have used the average time listed in Table 5.2 needed for various

cryptographic primitives for a smart device or user’s mobile device under Raspberry PI 3.



138 Private Blockchain-Based Access Control for PEC in IIoT

In Case 1 of PBACS-PECIIoT, an IoT smart device SDi requires the computation cost

of 6Th + 4Tecm + Teca ≈ 11.022 ms and a gateway note GNj needs the computation cost of

7Th + 4Tecm + Teca + Tpoly ≈ 6.083 ms. In Case 2 of PBACS-PECIIoT, both GNj and ESl

equally need the computation cost of 4Th + 4Tecm + Teca + Tpoly ≈ 5.918 ms. Here, we have

considered t = 1000 to support “unconditional security” as suggested by Blundo et al. [33].

The comparative analysis on computation costs in PBACS-PECIIoT for both Case 1 and Case

2 shows that PBACS-PECIIoT needs comparable costs with other existing schemes that are

tabulated in Table 5.4.

Table 5.4: Comparative computational costs analysis

Scheme Smart device/User cost Server cost (GN/ES)

PBACS-PECIIoT 6Th + 4Tecm + Teca 7Th + 4Tecm + Teca

(Case 1) ≈ 11.022 ms +tTm ≈ 6.083 ms

PBACS-PECIIoT − 8Th + 8Tecm + 2Teca

(Case 2) +2tTm ≈ 11.836 ms

Li et al. [121] 5Tme + 3Th 4Tme + 3Th + Tbp+

≈ 2.067 ms Tecm + Teca ≈ 5.845 ms

Luo et al. [131] Tbp + Th 3Tecm + 3Tbp + 3Th+

≈ 32.393 ms Teca + Tme ≈ 16.409 ms

Xue et al. [226] 4Tecm + Teca + 5Tbp 3Th + 3Tme + 2Tecm

+4Th + 6Tsenc/Tsdec +Teca + Tbp

≈ 170.92 ms ≈ 6.447 ms

5.8.3 Security and functionality features comparison

Various “security and functionality features” (FSF1–FSF16) are considered in comparative

study among PBACS-PECIIoT and other schemes (see Table 5.5). It is evident that PBACS-

PECIIoT provides better security features and more functionality attributes as compared to

those for other schemes of Li et al. [121], Luo et al. [131] and Xue et al. [226]. Considering

the comparative analysis on “communication and computation costs” and “security and func-

tionality features” (FSF1–FSF16), we can say that PBACS-PECIIoT is much practical to be

deployed for PEC in IIoT environment.

Since the fog servers are semi-trusted, the distributed databases with only timestamps can

not help to fulfill all the security requirements such as insider attack, device physical cap-
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ture attack, and most importantly session key security (ESL attack) under the CK-adversary

model. However, the proposed PBACS-PECIIoT provides the security features as compared

to the existing schemes.

Table 5.5: Comparison of functionality & security features

Feature Li et al. [121] Luo et al. [131] Xue et al. [226] PBACS-PECIIoT

FSF1 X X X X

FSF2 X X X X

FSF3 X X X X

FSF4 × × X X

FSF5 X X × X

FSF6 X X X X

FSF7 X × X X

FSF8 N/A X N/A X

FSF9 × × × X

FSF10 × X × X

FSF11 × × × X

FSF12 × × × X

FSF13 × × × X

FSF14 × × × X

FSF15 × × × X

FSF16 × × × X

Note: FSF1: “resistant to privileged insider attack”; FSF2: “replay attack”; FSF3: “man-

in-the-middle attack”; FSF4: “mutual authentication”; FSF5: “key agreement”; FSF6: “de-

vice/gateway node impersonation attack”; FSF7: “resilience against device physical capture

attack”; FSF8: “edge server impersonation attack”; FSF9: “session key security under the

CK-adversary model”; FSF10: “formal security verification using AVISPA tool”; FSF11: “dy-

namic node addition phase”; FSF12: “support to blockchain-based solution”; FSF13: “trans-

action privacy leakage”; FSF13: “selfish mining attack ”; FSF13: “balance attack ”; FSF13:

“ Sybil attack”.

X: “a scheme is secure or it assists a feature”; ×: “a scheme is insecure or it does not assist

a feature”; N/A: “not applicable in a scheme”.
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5.9 Blockchain implementation

In this section, we present the practical implementation of our proposed PBACS-PECIIoT,

and measure its performance in terms of computational time. The computational time is

considered to measure the costs for a block addition and mined in the P2P network. The per-

formance evaluation is considered using a reasonable amount of data for simulation. However,

the proposed model can also handle a huge volume of data for an IIoT environment. Many

discussions are for scalability issues in blockchain, but in real world scenario the lightning

network [160] can be used to handle the high transactions volume. The lightning network is

a layer 2 protocol which is specifically used to improve the scalability in blockchain network.

The environment was considered for simulation with the following setting: “CPU Architec-

ture: 64-bit, Processor: 2.60 GHz Intel Core i5-3230M, Memory: 8 GB, OS: Ubuntu 18.04.4

LTS”.

In each block in the blockchain, we have the block version (BlkV ), previous block hash

(PreBH), Merkle tree root (MrkTR), industry type (ITm), timestamp (TSESl
), creator

of block (CreBID), public key of signer (PubESl
), current block hash (CurBH), signature

(SigBlockk), whose sizes are taken as 32, 256, 256, 32, 32, 160, 320, 256 and 320 bits, respec-

tively. In addition, each encrypted transaction EPubESl
(Txti), (i = 1, 2, · · · , tn), consists of

two elliptic curve points and hence, it needs (320+320) = 640 bits. The total block size then

turns out to be 1664 + 640tn bits.

In order to measure the block generation time in the proposed PBACS-PECIIoT with

respect to the block structure mentioned in Figure 5.5, we have considered the average com-

putational time (in milliseconds) for hash function and ECDSA signature generation under

the MIRACL library for a server setting platform (see Table 5.2). This is because each edge

server is resource rich node in the network. Note that the time needed for an ECDSA sig-

nature generation is approximately Tecm + Th. In addition, we have also implemented the

Merkle tree using SHA-256 hashing algorithm. Based on these results, an edge server can

compute the block generation time. In Figure 5.18, a block generation time (in milliseconds)

by an edge server is shown for various number of encrypted transactions containing in the

block. The results show that the computational time increases when the number of encrypted

transactions in a block also increases.

Now, the blockchain implementation has been performed using the node.js language with

VSCODE 2019 with the voting-based consensus algorithm explained in Figure 3. The following

three cases are taken:
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Figure 5.18: Block generation time (in milliseconds) by an edge server, ESl

Figure 5.19: Blockchain simulation results in Case-I

Figure 5.20: Blockchain simulation results in Case-II
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Figure 5.21: Blockchain simulation results in Case-III

• Case-I: We have considered the number of blocks mined versus the total computational

time (in milliseconds) with the number of P2P nodes as 15 and the number of transac-

tions per each block as 100. The blockchain simulation outcomes under this scenario are

presented in Figure 5.19. It is observed that “as the number of blocks mined increases,

the total computational time increases”.

• Case-II: In this case, we have considered the number of transactions in per block versus

the total computational time (in milliseconds). The number of blocked mined is fixed at

20, whereas the number of P2P nodes remains as in Case 1 as 15. Figure 5.20 presents

the simulation results. It is worth noticing that the “total computational time increases

as the number of transactions per block also increases”.

• Case-III: In this case, we have considered the number of P2P nodes versus the total

computational time (in milliseconds). Moreover, the number of blocked mined is fixed at

20 and the number of transactions in per block is also fixed as 100. We can observe from

Figure 5.21 that the “total computational time increases with the increasing number of

P2P nodes too”.

5.10 Summary

We proposed a robust and efficient blockchain-based access control enabled blockchain solution

for PEC in IIoT deployment (PBACS-PECIIoT). We considered private blockchain scenario

due to strictly confidential and private data belonging to each IIoT application. The proposed

PBACS-PECIIoT is not only secure against various potential attacks, but it also offers various
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functionality features. The simulation results using the formal security verification under

AVISPA automated software tool demonstrate that PBACS-PECIIoT is secure against passive

and active attacks. Finally, a detailed comparative study reveals that PBACS-PECIIoT offers

better “security features” and more “functionality features”, requires low “communication

costs” and comparable “computational costs” as compared to existing relevant recent schemes.





Chapter 6

Consortium Blockchain-Enabled

Access Control in Edge

Computing-Based Generic IoT

Environment

In a consortium blockchain, lesser nodes are involved in comparison with the “public and

private blockchain networks”. Thus, it helps in processing the transactions at a much faster

speed. Since the consortium blockchain is considered as a permissioned network, each entity

requires a prior approval before its joining to an organization and it also works collectively

across various organizations. In this chapter, we consider an edge computing-based generic

Internet of Things (IoT) environment, whose structure well matches with the model of a

cross-domain IoT deployment. Due to these issues, we propose a novel consortium blockchain-

enabled access control scheme in edge computing-based generic IoT deployment as compared

to the access control mechanisms that were proposed in Chapters 4 and 5.

6.1 Motivation

If an adversary can manipulate the genuine information, the transactions contained in a block

in the blockchain will not be also genuine. The access control mechanism plays a very crucial

role here, because the IoT devices require to send the information to their nearby gateway node

and also the gateway node needs to send the data to its associated edge server(s) securely. As

a result, we need to have a secure access control mechanism in edge computing based generic
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IoT environment to make secure communication among various entities in the network. The

edge servers in a peer-to-peer (P2P) edge servers network are considered as trusted and they

are responsible for creating, verifying and adding the blocks in their local ledgers first using

consensus algorithm. Later, the local ledgers maintained by the edge servers are then periodi-

cally updated in the blockchain’s global ledger in order to avoid much burden at the blockchain

center. Due to blockchain technology, once the blocks are added into the blockchain, these

can not be further modified, updated or even deleted from the blockchain because each block

contains previous block hash, Merkle tree root, signature on the transactions and also current

block hash. Most of the access control protocols proposed in the literature in the IoT and

also in resource-constrained wireless sensor networks environments are vulnerable to attacks,

and they do not support blockchain feature in order to provide stronger security and more

functionality features, such as block verification in blockchain, transparency, decentralization

and immutability properties. This chapter attempts to design a novel access control protocol

in edge computing based generic IoT environment where depending on the importance of the

data in IoT applications, the data are encrypted in the block (private blockchain) or these are

stored in unencrypted form in the block in the blockchain (public blockchain). There may be

some applications where we need to have both private and public data to be stored in a block

in the blockchain (consortium blockchain). Hence, we consider consortium blockchain access

control mechanism to address these issues.

6.2 Research contributions

The main contributions made in the chapter as listed below:

• We design a new consortium blockchain-enabled access control scheme in edge comput-

ing based generic IoT environment (called CBACS-EIoT). CBACS-EIoT offers access

control among IoT smart devices and their associated gateway nodes and also among

the gateway nodes and edge servers. In addition, key management process among the

edge servers and the cloud servers in the blockchain center.

• The blocks created by the edge nodes are mined and put in their respective local ledgers.

The local ledger having blocks are then added in the global ledger maintained by the

cloud servers in the blockchain center. All the secure communications among the IoT

smart devices, gateway nodes, edge servers and cloud servers happen using their respec-

tive secret (session) keys.
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• To assure that the proposed CBACS-EIoT is highly secure against various potential at-

tacks needed for an IoT environment, the formal security and informal security analysis,

and also the formal security verification using the broadly accepted AVISPA tool have

been performed.

• A meticulous comparative analysis on security and functionality features, communica-

tion and computation overheads among the proposed CBACS-EIoT and existing schemes

has been also performed to demonstrate the superiority of security and efficiency of

CBACS-EIoT over other existing schemes.

6.3 System models

In this section, we discuss the network and threat models that are applied in our proposed

scheme.

Figure 6.1: Blockchain-based network model for generic IoT network
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6.3.1 Network model

The blockchain-based generic IoT network model is depicted in Figure 6.1. In this model,

there exist different IoT applications, such as smart home, healthcare, industrial monitoring,

smart vehicles and smart traffic management appliances, etc. For each application, there are

several IoT smart devices (SDi) are that installed in a proximity of their associated gateway

node (GWj). One or mode GWj are associated with their nearby edge server ESl.

A group of authorized edge servers form a peer-to-peer (P2P) network, called P2P ES

network. The peers (nodes) in the P2P ES network are responsible for mining the blocks

for adding them into their distributed local ledgers by applying some consensus algorithms.

In this chapter, we apply the “Ripple Protocol Consensus Algorithm (RPCA)” [209]. After

certain period of time, the local ledger is then updated in the corresponding existing global

ledger that is maintained by the BC.

For forming the blocks by an edge server (ESl), the data is first securely collected by the

gateway node(s) and the transactions formed by the securely collected data are passed secretly

to ESl. The ESl is then responsible for forming blocks and adding them in the local ledger.

This detailed process is explained in our proposed scheme (see Section 6.4). Various roles of

the involved entities in the network model are given below:

• IoT smart device: Several IoT smart devices can be installed or deployed in a particular

application. The smart devices are typically responsible for gathering their surrounding

information and transmit them to their nearby gateway nodes for further processing.

• Gateway node: A gateway node (GW ) acts as an access point for a particular application.

The data collected by the GW form various transactions, which are then forwarded to

its associated edge sever (ES).

• Edge server: An edge server is a device that manages the flow of data at the bound-

ary among two networks. It typically acts as a network entry (or exit) point, and is

also responsible for various activities, such as “transmission”, “processing”, “routing”,

“filtering”, “monitoring”, “translation”, “storage of information passing between net-

works”, etc. In this chapter, we consider an edge server which is mainly responsible for

collecting the transactions securely from its associated gateway nodes to form blocks,

and then the blocks are mined to add them into its local ledger.

• Blockchain center: A blockchain center (BC) is a group of cloud-based servers, which

is responsible for storing various data passed by the edge servers. In this chapter, we



6.3 System models 149

consider the BC as an entity where all the blocks are added from the local ledgers of

the edge servers to the global ledger of the BC in the blockchain.

• Registration authority: A registration authority (RA) is basically a fully trusted entity in

the network, which is responsible for registering all the deployed IoT smart devices, the

gateway nodes, edge servers and cloud servers in the BC. After successful registration,

each entity is pre-loaded with proper credentials prior to its deployment or placement

in the edge-based IoT environment.

6.3.2 Threat model

We apply the following threat model for this work in this chapter.

• Typically the widely-accepted “Dolev-Yao threat model (known as DY model)” [67]

is applied in a threat model in general networking environment. We also apply the

DY model in the IoT environment, because an adversary A can not only intercept the

communication between two entities (i.e., smart devices, gateway nodes, edge servers

and cloud servers), but can also insert malicious message contents in the transmitted

messages apart from modifying and deleting the contents in the communicated messages.

• Recently, another model, known as the “Canetti and Krawczyk’s model (CK-adversary

model)” [37] is more powerful as compared to the DY model, because the adversary

A can compromise the secret credentials, session keys and session states in a particular

running session between two communicating parties in the network. Thus, it is extremely

important that a designed protocol should have minimal effect on compromising past

and future session keys established between two entities even if a currently running

session is hijacked by A.

• It is assumed that the end point entities like the IoT smart devices are trusted in the IoT

environment. Furthermore, the blockchain center (BC) is treated as fully-trusted node,

whereas the gateway nodes and edge servers are considered as semi-trusted entities in

the IoT environment.

• Since the IoT smart devices can not be monitored 24 × 7 like environment, there is

chance of physical capturing of some IoT smart devices in the network. Using the power

analysis attacks as stated in [141], the extracted data from the memory of the captured

IoT smart devices can be further utilized in mounting other attacks like impersonation

attacks on other non-compromised IoT smart devices.



150 Consortium Blockchain-Enabled Access Control in Generic IoT

6.4 The proposed scheme: CBACS-EIoT

This section introduces a new proposed consortium blockchain-enabled access control scheme

in edge computing based generic IoT environment, which we call it as CBACS-EIoT. CBACS-

EIoT is based on a generic IoT based architecture with blockchain-enabled technology, where

based on a particular type of application it will be decided whether the block content needs

to be protected (encrypted) or not. For instance, in healthcare, smart home and surveillance

applications, the transactions containing in a block needs to be encrypted so that other unau-

thorized entities can not see the information stored in that block. On the other hand, in

smart transportation system and smart city environments the transactions (information) in

a block need not to be protected while the modification/updation of those information must

be infeasible task by unauthorized entities. There may be some applications in the IoT envi-

ronment, where we may require to protect the transactions in the blocks (private blocks) and

also to store the transactions without encryption (public blocks). Due to this, in this chapter

we consider the consortium blockchain where both public and private blocks can be stored

together in a blockchain that will be finally maintained by the blockchain center (BC) which

is shown in Figure 6.1. The list of symbols with their importance supplied in Table 6.1 for

describing and analyzing the proposed CBACS-EIoT.

For strong replay attack protection in the proposed CBACS-EIoT, we plan to utilize both

the random nonces and current system timestamps. The timestamp is typical used in many

authentication and access control protocols in several networks, including IoT, wireless sensor

networks, smart grids, smart homes, Internet of Drones (IoD), Internet of Vehicles (IoV), etc.

[39, 55, 59, 113, 137, 188, 211, 217, 218].

An access control mechanism in IoT environment deals with the two important functions

[60]: a) node (device) authentication and b) key establishment. Access control mechanisms are

broadly of two types: a) “certificate-less” and b) “certificate-based”. This chapter develops a

certificate-less access control mechanism to assist real-time data access by the gateway nodes

from their respective IoT smart devices based on their application types (i.e., battlefield,

healthcare, smart home, smart grid, and smart agriculture) in order make several transactions

of building blocks (private, public or consortium) and then adding the created blocks in the

blockchain.
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Table 6.1: List of symbols with their importance
Symbol Significance

Eq(u, v) A non-singular elliptic curve of the form:

“y2 = x3 + ux+ v (mod q) with 4u3 + 27v2 6= 0 (mod q)”,

two constants u, v ∈ Zq = {0, 1, 2, . . . , q − 1},
and q is a large prime so that elliptic curve discrete

logarithm problem (ECDLP) is intractable

G A base point in Eq(u, v) whose order is nG as big as q

k ·G Elliptic curve point (scalar) multiplication;

k ·G = G+G+ · · ·G (k times), k ∈ Z∗q
Q+R Elliptic curve point addition; Q,R ∈ Eq(u, v)

u ∗ v Ordinary multiplication of two numbers u, v ∈ Zq

RA,mkRA Trusted registration authority and its master key

SDi, IDSDi
ith IoT smart device and its associated identity

TIDSDi
, PIDSDi

Unique temporary and pseudo identities of SDi, respectively

mkSDi
Unique master key of SDi

RTSSDi
Registration timestamp of SDi

(kSDi
, PubSDi

) Private-public key pair of SDi, where PubSDi
= kSDi

·G
GWj jth gateway node associated with an application

(i.e., healthcare, smart-home, surveillance, smart transportation,

smart parking management system)

IDGWj
,mkGWj

Unique identity & master key of GWj

(kGWj
, PubGWj

) Private-Public key pair of GWj; PubGWj
= kGWj

·G
TIDGWj

, PIDGWj
Unique temporary and pseudo identities of GWj, respectively

ESl lth Edge server connected with one or more gateway node(s) GWj

IDESl
,mkESl

Identity and master key of ESl, respectively

(kESl
, PubESl

) Private-public key pair of ESl, where PubESl
= kESl

·G
TIDESl

, PIDESl
Unique temporary and pseudo identities of ESl, respectively

CSk kth cloud server in blockchain center connected with one or more ESl

IDCSk
,mkCSk

Identity and master key of CSk, respectively

(kCSk
, PubCSk

) Private-public key pair of CSk, where PubCSk
= kCSk

·G
TIDCSk

, PIDCSk
Unique temporary and pseudo identities of CSk, respectively

nsdj Number of IoT smart devices belonging to GWj

nes Number of edge servers in the IoT environment

ncs Number of cloud servers in the blockchain center

ngwl
Number of gateway nodes belonging to an ESl

f(x, y) Symmetric bivariate t1-degree polynomial over the Galois field GF (q):

f(x, y) =
∑t1

i=0

∑t1
j=0 ai,jx

iyj, where ai,j ∈ Zq, is selected for

each edge server ESl and its associated cloud server(s) CSk

gj(x, y) jth t2-degree symmetric bivariate polynomial gj(x, y) =∑t2
m=0

∑t2
n=0 bm,nx

myn over GF (q), where bm,n ∈ Zq is randomly

selected for each GWj and its associated edge server(s) ESl
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6.4.1 Setup phase

This phase is executed by the trusted registration authority (RA) to selected all the private

and public related credentials. The following steps are performed by the RA:

• Step S1: The RA first picks a “non-singular elliptic curve” Eq(u, v) of the form: “y2 =

x3 + ux + v (mod q) with 4u3 + 27v2 6= 0 (mod q)”, where q is a large prime so that

“elliptic curve discrete logarithm problem (ECDLP)” becomes intractable, with a “point

at infinity” or “zero point” O. Next, the RA selects a base point G in Eq(u, v) whose

order is nG as big as q, that is, nG ·G = G+G+ · · ·+G (nG times) = O, where k ·G
is known as the “elliptic curve point (scalar) multiplication” of the point G ∈ Eq(u, v)

and k ∈ Z∗q = {1, 2, · · · , q − 1}.

• Step S2: The RA selects a “cryptographic one-way hash function h(·)”. For example, we

use the Secure Hash Standard (SHA-256) hashing algorithm [140] to provide sufficient

security in the blockchain technology, which takes an arbitrary length string as input

and outputs 256-bit hash value as message digest. In addition, the RA also picks its

own master key mkRA.

• Step S3: Finally, the RA makes the information {Eq(u, v), G, h(·)} as public and keeps

its master key mkRA secret to it only.

6.4.2 Registration phase

In this phase, the trusted register authority (RA) initially registers all the IoT smart devices

(SDi) belonging to a particular gateway nodes (GWj), the gateway nodes (GWj), the edge

servers (ESl) and the cloud servers (CSk) before their functioning in the IoT environment.

The detailed descriptions of all the registration processes are given in the following subsections.

1) Gateway node registration phase

The RA enrols each gateway node GWj before secure communication with its designated

smart IoT devices for accessing the real time data directly. The following steps are involved

in this phase:

• Step GWR1: The RA first picks a unique identity IDGWj
, a master secret key mkGWj

,

and a random secret (private) key kGWj
∈ Z∗q for each GWj, and computes the public

key corresponding to the secret key kGWj
as PubGWj

= kGWj
·G.
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• Step GWR2: The RA then calculates a secret temporal credential as TCGWj
= h(IDGWj

||mkGWj
||RTSGWj

||mkRA), where RTSGWj
is the registration timestamp of GWj.

• Step GWR3: After that then RA picks a unique temporary identity TIDGWj
corre-

sponding to the real identity IDGWj
and computes the pseudo-identity as PIDGWj

=

h(IDGWj
||mkGWj

).

• Step GWR4: For each GWj, the RA selects a distinct t2-degree symmetric bivariate

polynomial gj(x, y) =
∑t2

m=0

∑t2
n=0 bm,nx

myn over the Galois (finite) field GF (q), where

bm,n ∈ Zq such that t2 � number of deployed gateway nodesGWj in the IoT environment

so that the proposed scheme becomes “t-collusion resistant and unconditionally secure”

[57] and gj(x, y) = gj(y, x). The RA also computes the polynomial share gj(PIDGWj
, y)

for each GWj, and makes PubGWj
as public.

After successful registration of each GWj by the RA, the credentials stored in each GWj’s

memory are shown in Figure 6.2.

TIDGWj
, P IDGWj

, TCGWj
, (kGWj

, PubGWj
), {(TIDSDi

, P IDSDi
)|i = 1, 2, · · · , nsdj},

gj(PIDGWj
, y), Eq(u, v), G, h(·)

Figure 6.2: Pre-loaded credentials in GWj’s memory

2) IoT smart device registration phase

The RA registers each IoT smart device (SDi) associated with a gateway node (GWj) in the

IoT environment by the following steps:

• Step SDR1: The RA chooses a master key mkSDi
for each SDi associated with a GWj

in a particular application field of IoT (e.g., e-healthcare or smart home). The RA also

picks a unique identity IDSDi
and a random private key kSDi

∈ Z∗q for each SDi, and

calculates the corresponding public key PubSDi
= kSDi

·G.

• Step SDR2: After computing PubSDi
in Step SDR1, the RA calculates SDi’s temporal

credential as TCSDi
= h(IDSDi

||mkSDi
||mkRA ||mkGWj

||RTSSDi
), where RTSSDi

is

the registration timestamp of SDi and mkGWj
is the master key already selected for

GWj by the RA in Section 6.4.2.
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• Step SDR3: Next, the RA selects a unique temporary identity TIDSDi
corresponding

to the real identity IDSDi
for each SDi and calculates its pseudo-identity as PIDSDi

=

h(IDSDi
||mkSDi

), and makes PubSDi
as public.

After successful registration of each SDi, the credentials stored in each SDi’s memory are

shown in Figure 6.3.

TIDSDi
, P IDSDi

, TCSDi
, (kSDi

, PubSDi
), Eq(u, v), G, h(·)

Figure 6.3: Pre-loaded credentials in SDi’s memory

3) Edge server registration phase

The RA registers all the edge servers ESl, (l = 1, 2, · · · , nes), before secure communication

with their associated gateway nodes. The following steps are executed in this phase:

• Step ESR1: For each ESl, the RA selects a unique identity IDESl
, a master secret

key mkESl
and a random secret key kESl

∈ Eq(u, v), and computes the public key

corresponding to the secret key kESl
as PubESl

= kESl
·G.

• Step ESR2: For each ESl, theRA also computes a secret temporal credential as TCESl
=

h(IDESl
||mkESl

||RTSESl
||mkRA), where RTSESl

is the registration timestamp of ESl.

• Step ESR3: Next, the RA picks a unique temporary identity TIDESl
corresponding

to the real identity IDESl
of each ESl and computes its pseudo-identity as PIDESl

=

h(IDESl
||mkESl

).

• Step ESR4: For each ESl, the RA then takes the same selected t2-degree symmet-

ric bivariate polynomial as done in Step GWR4 (see Section 6.4.2), where gj(x, y) =∑t2
m=0

∑t2
n=0 bm,nx

myn over GF (q), bm,n ∈ Zq, and another t1-degree bivariate symmet-

ric polynomial f(x, y) =
∑t1

i=0

∑t1
j=0 ai,jx

iyj over GF (q) where ai,j ∈ Zq such that t1 �
number of deployed edge servers ESl in the network so that the proposed scheme also

becomes “t-collusion resistant and unconditionally secure” [57] and f(x, y) = f(y, x).

The RA computes the polynomial shares gj(PIDESl
, y) and f(PIDESl

, y) for each ESl,

and makes PubESl
as public.

After successful registration of each ESl by the RA, the credentials stored in each ESl’s

memory are shown in Figure 6.4.



6.4 The proposed scheme: CBACS-EIoT 155

TIDESl
, P IDESl

, TCESl
, (kESl

, PubESl
), {(TIDGWj

, P IDGWj
)|j = 1, 2, · · · , ngwl

},
gj(PIDESl

, y), f(PIDESl
, y), Eq(u, v), G, h(·)

Figure 6.4: Pre-loaded credentials in ESl’s database

4) Cloud server registration phase

The RA requires to register all the cloud servers CSk, (k = 1, 2, · · · , ncs), containing in the

blockchain center (BC), prior to their secure communication with the associated edge servers.

This phase requires execution of the following steps:

• Step CSR1: For each CSk, the RA needs to pick a unique identity IDCSk
, a master

secret key mkCSk
and a random secret key kCSk

∈ Z∗q , and then to compute the public

key corresponding to the secret key kCSk
as PubCSk

= kCSk
·G.

• Step CSR2: The RA also selects a unique temporary identity TIDCSk
corresponding

to the real identity IDCSk
, and computes the pseudo-identity as PIDCSk

= h(IDCSk

||mkCSk
).

• Step CSR3: For each CSk, the RA selects the same t1-degree symmetric bivariate poly-

nomial as already done in Step ESR4 (see Section 6.4.2): f(x, y) =
∑t1

i=0

∑t1
j=0 ai,jx

iyj

where ai,j ∈ Zq such that t1 � number of deployed cloud server CSk in the cloud server

network/blockchain center. Next, the RA calculates the polynomial share f(PIDCSk
, y)

for each CSk, k = 1, 2, · · · , ncs, and makes PubCSk
as public.

After successful registration of each CSk by the RA, the credentials pre-loaded in each CSk’s

data are illustrated in Figure 6.5.

(kCSk
, PubCSk

), {(TIDESl
, P IDESl

)|l = 1, 2, · · · , nes}, {(TIDCSk
, P IDCSk

)|k = 1, 2, · · · , ncs},
f(PIDCSk

, y), Eq(u, v), G, h(·)

Figure 6.5: Pre-loaded credentials in CSk’s database

Remark 6.1. The purpose of selecting two types of bivariate polynomials, such as f(x, y) =∑t1
i=0

∑t1
j=0 ai,jx

iyj of degree t1 and gj(x, y) =
∑t2

m=0

∑t2
n=0 bm,nx

myn of degree t2 over the

Galois field GF (q) is as follows. The polynomial gj(x, y) has been used for establishing a

session key between a registered gateway node and its associated edge server during the access

control process in a particular session (see Section 6.4.3). On the other side, the polynomial

f(x, y) has been applied for establishing a pairwise secret key between an edge server and a

cloud server during the key management procedure (see Section 6.4.4).
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6.4.3 Access control phase

In this phase, we discuss two types of access control: a) access control between a smart device

and its gateway node, and b) access control between a gateway node and its associated edge

server.

1) Access control between smart device and gateway node

In this phase, a registered smart device, say SDi wants to validate itself with its associated

gateway node, say GWj in a particular application. Once that is done, SDi will establish a

session key for a particular session with its associated GWj for secure communication. For

this purpose, the following steps need to be executed:

• Step ACSG1: SDi first generates a random number rSDi
∈ Z∗q , picks current timestamp

TSSDi
, and calculates RSDi

= h(rSDi
||TCSDi

||PIDSDi
||TSSDi

) · G. After that SDi

generates a signature on rSDi
as Signi = h(rSDi

||TCSDi
||PIDSDi

||TSSDi
) + h(PubSDi

||PubGWj
||TSSDi

||TIDSDi
||PIDSDi

) ∗ kSDi
(mod q). Next, SDi constructs a message

MsgSG1 = {TIDSDi
, RSDi

, Signi, TSSDi
}, and then sends it to the GWj via open

channel.

• Step ACSG2: After receiving the message MsgSG1 from SDi at time TS ′SDi
, GWj first

verifies if |TS ′SDi
− TSSDi

| < ∆T or not, where ∆T is the “maximum transmission

delay”. If the condition is not true, GWj ignores the message. Otherwise, GWj fetches

PIDSDi
corresponding to TIDSDi

from its database, and calculates h(PubSDi
||PubGWj

||TSSDi
||TIDSDi

||PIDSDi
). GWj also verifies the signature of SDi as Signi.G

?
=RSDi

+

h(PubSDi
||PubGWj

||TSSDi
||TIDSDi

||PIDSDi
) · PubSDi

. If the signature is verified

successfully, SDi is believed to be a legitimate node and the next step will be executed;

else, SDi’s request is rejected by GWj.

• Step ACSG3: GWj generates a current timestamp TSGWj
and a random number rGWj

∈
Z∗q , and computes the corresponding public value RGWj

= h(rGWj
||TCGWj

||TIDSDi

||PIDSDi
||PIDGWj

||TSGWj
) ·G. After that GWj calculates the session key shared with

SDi as SKGWj ,SDi
= h(h(rGWj

||TCGWj
||TIDSDi

||PIDSDi
||PIDGWj

||TSGWj
).RSDi

||PIDSDi
). GWj also generates a new unique temporary identity TIDnew

SDi
for SDi and

calculates TID∗SDi
= TIDnew

SDi
⊕ h(SKGWj ,SDi

||TIDSDi
||TSGWj

).

• Step ACSG4: Now, GWj generates a signature on rGWj
as well as SKGWj ,SDi

as Signj =

h(rGWj
||TCGWj

||TIDSDi
||PIDSDi

||PIDGWj
||TSGWj

)+h(TIDSDi
||PIDSDi

||PubSDi
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||PubGWj
||SKGWj ,SDi

||TSGWj
) ∗ kGWj

(mod q) and constructs a message MsgSG2 =

{TID∗SDi
, RGWj

, Signj, TSGWj
}. After that GWj dispatches the message MsgSG2 to

SDi via public channel.

• Step ACSG5: After receiving the message MsgSG2 from GWj at time TS ′GWj
, SDi vali-

dates if |TS ′GWj
−TSGWj

| < ∆T or not. If it is valid, SDi calculates the session key shared

with GWj as SKSDi,GWj
= h(h(rSDi

||TCSDi
||PIDSDi

||TSSDi
).RGWj

||PIDSDi
). Next,

SDi verifies the signature of GWj as Signj ·G
?
=RGWj

+ h(TIDSDi
||PIDSDi

||PubSDi

||PubGWj
||SKSDi,GWj

||TSGWj
) · PubGWj

. If the signature is verified successfully, the

GWj is also trusted as a legitimate node by SDi and the next step is executed; else,

SDi discards the GWj’s message MsgSG2 .

• Step ACSG6: SDi extracts TIDnew
SDi

as TIDnew
SDi

= TID∗SDi
⊕ h(SKSDi,GWj

||TIDSDi

||TSGWj
). Moreover, SDi picks a current timestamp TS∗SDi

and calculates the session

key verifier as SKVSDi,GWj
= h(SKSDi,GWj

||TS∗SDi
) to build the last message MsgSG3 =

{SKVSDi,GWj
, TS∗SDi

}. SDi then dispatches MsgSG3 to GWj via open channel. At the

same time, SDi also updates TIDSDi
with the newly computed TIDnew

SDi
in its memory.

• Step ACSG7: After receiving the message MsgSG3 from SDi at time TS∗∗SDi
, GWj

validates if |TS∗∗SDi
− TS∗SDi

| < ∆T or not. If it holds, GWj further verifies

SKVSDi,GWj

?
=h(SKGWj ,SDi

||TS∗SDi
). GWj also updates TIDSDi

with TIDnew
SDi

cor-

responding to PIDSDi
in its database in order to sync with SDi.

Finally, both SDi and GWj will enjoy secure communication with the help of the established

session key SKSDi,GWj
(= SKGWj ,SDi

). The entire process is briefed in Figure 6.6.

2) Access control between gateway node and edge server

In this phase, the access control process between a registered gateway node, say GWj and its

associated edge server ESl is discussed. After successful mutual authentication among GWj

and ESl, both will agree on a session key for a particular session for secure communication.

The following stages are involved:

• Step ACGE1: GWj generates a current timestamp TSGWj
and a random number rGWj

∈
Z∗q to calculate the corresponding public value RGWj

= h(TIDGWj
|| TCGWj

|| PIDGWj
||

rGWj
|| kGWj

|| TSGWj
) · G using its own private key kGWj

. After that GWj creates a

signature on rGWj
as Signj = h(TIDGWj

||TCGWj
||PIDGWj

||rGWj
||kGWj

||TSGWj
)
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Smart device (SDi) Gateway Node (GWj)

Generate random secret rSDi
∈ Z∗q , current timestamp TSSDi

.

Compute RSDi
= h(rSDi

||TCSDi
||PIDSDi

||TSSDi
) ·G,

signature on rSDi
as

Signi = h(rSDi
||TCSDi

||PIDSDi
||TSSDi

)

+ h(PubSDi
||PubGWj

||TSSDi
||TIDSDi

||PIDSDi
) ∗ kSDi

(mod q).

MsgSG1 = {TIDSDi
, RSDi

, Signi, TSSDi
}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(via open channel) Check |TS ′SDi

− TSSDi
| < ∆T ? Accept/Reject?

If so, fetch PIDSDi
corresponding to TIDSDi

.

Compute h(PubSDi
||PubGWj

||TSSDi
||TIDSDi

||PIDSDi
).

Verify the signature

Signi.G
?
=RSDi

+ h(PubSDi
||PubGWj

||TSSDi
||TIDSDi

||PIDSDi
).PubSDi

If so, generate random secret rGWj
∈ Z∗q , current timestamp TSGWj

.

Compute RGWj
= h(rGWj

||TCGWj
||TIDSDi

||PIDSDi
||PIDGWj

||TSGWj
) ·G,

session key SKGWj ,SDi
= h(h(rGWj

||TCGWj
||TIDSDi

||PIDSDi
||PIDGWj

||TSGWj
).RSDi

||PIDSDi
).

Generate a new temporary identity TIDnew
SDi

for SDi.

Compute TID∗SDi
= TIDnew

SDi
⊕ h(SKGWj ,SDi

||TIDSDi
||TSGWj

).

Compute signature on rGWj
and SKGWj ,SDi

as

Signj = h(rGWj
||TCGWj

||TIDSDi
||PIDSDi

||PIDGWj
||TSGWj

) +h(TIDSDi

||PIDSDi
||PubSDi

||PubGWj
||SKGWj ,SDi

||TSGWj
) ∗ kGWj

(mod q).

MsgSG2 = {TID∗SDi
, RGWj

, Signj, TSGWj
}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(via open channel)

Check |TS ′GWj
− TSGWj

| < ∆T? Accept/Reject?

Compute SKSDi,GWj
= h(h(rSDi

||TCSDi

||PIDSDi
||TSSDi

).RGWj
||PIDSDi

).

Verify signature Signj ·G
?
=RGWj

+h(TIDSDi
||PIDSDi

||PubSDi

||PubGWj
||SKSDi,GWj

||TSGWj
).PubGWj

Extract TIDnew
SDi

= TID∗SDi
⊕ h(SKSDi,GWj

||TIDSDi
||TSGWj

).

Generate a current timestamp TS∗SDi
.

Compute session key verifier: SKVSDi,GWj
= h(SKSDi,GWj

||TS∗SDi
).

Update TIDSDi
with TIDnew

SDi
corresponding to PIDSDi

.

MsgSG3 = {SKVSDi,GWj
, TS∗SDi

}
−−−−−−−−−−−−−−−−−−−−−−−−→
(via open channel)

Verify |TS∗∗SDi
− TS∗SDi

| < ∆T? Accept/Reject?

Verify SKVSDi,GWj

?
=h(SKGWj ,SDi

||TS∗SDi
)

Update TIDSDi
with TIDnew

SDi
corresponding to PIDSDi

.

Both SDi and GWj store the shared common session key SKGWj ,SDi
(= SKSDi,GWj

).

Figure 6.6: Summary of access control between smart device (SDi) and gateway node (GWj)

+h(TIDGWj
||PubGWj

||PIDGWj
||TSGWj

) ∗kGWj
(mod q). Next, GWj constructs a

message as MsgGE1 = {TIDGWj
, RGWj

, Signj, TSGWj
} and sends it to the edge server

ESl via public channel.

• Step ACGE2: After receiving MsgGE1 at time TS ′GWj
from GWj, ESl validates if

|TS ′GWj
− TSGWj

| < ∆T is satisfied. If it is verified successfully, ESl fetches PIDGWj

corresponding to TIDGWj
from its database, and then checks the received signature by
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the condition: Signj.G
?
=RGWj

+h(TIDGWj
||PubGWj

||PIDGWj
||TSGWj

) · PubGWj
. If

the signature is verified successfully, GWj is believed to be a legitimate entity to ESl

and ESl executes the next step. Otherwise, ESl rejects GWj’s MsgGE1 .

• Step ACGE3: ESl now generates current timestamp TSESl
and random number

rESl
∈ Z∗q , and calculates the respective public value RESl

= h(PIDGWj
||TCESl

||PIDESl
||rESl

||kESl
||TSESl

) · G. After that ESl computes gj(PIDESl
, P IDGWj

) by

evaluating its own polynomial share gj(PIDESl
, y) at the point y = PIDGWj

, the Diffie-

Hellman type key DKlj = h(PIDGWj
||TCESl

||PIDESl
||rESl

||kESl
||TSESl

) · RGWj
,

the session key shared with GWj as SKESl,GWj
= h(gj(PIDESl

, P IDGWj
) ||DKlj) and

PID∗ESl
= PIDESl

⊕h(PIDGWj
||PubGWj

||PubESl
||TSESl

). Furthermore, ESl gener-

ates a signature on rESl
and SKESl,GWj

as Signl = h(PIDGWj
||TCESl

||PIDESl
||rESl

||kESl
||TSESl

)+ h(SKESl,GWj
||PIDGWj

||PubGWj
||PubESl

)∗kESl
(mod q). In addition,

ESl generates a new temporary identity TIDnew
GWj

for GWj and calculates TID∗GWj
=

TIDnew
GWj
⊕h(TIDGWj

||SKESl,GWj
||TSESl

) (mod q). After that, ESl forms a message

MsgGE2 = {PID∗ESl
, T ID∗GWj

, RESl
, Signl, TSESl

} and sends it to GWj via public

channel.

• Step ACGE4: After receiving the message MsgGE2 at time TS ′ESl
from ESl, GWj

checks the condition: |TS ′ESl
−TSESl

| < ∆T . If it is not valid, GWj rejects the message

MsgGE2 . Otherwise, GWj derives PIDESl
= PID∗ESl

⊕ h(PIDGWj
||PubGWj

||PubESl

||TSESl
) and computes gj(PIDGWj

, P IDESl
) by evaluating its own polynomial share

gj(PIDGWj
, y) at the point y = PIDESl

, the Diffie-Hellman type key DKjl = h(TIDGWj

||TCGWj
||PIDGWj

||rGWj
||kGWj

||TSGWj
) ·RESl

and the session key shared with ESl as

SKGWj ,ESl
= h(gj(PIDGWj

, P IDESl
) ||DKjl). If the signature verification by the condi-

tion: Signl·G
?
= RESl

+ h(SKGWj ,ESl
||PIDGWj

||PubGWj
||PIDESl

)·PubESl
is successful,

ESl is believed to be legitimate principal to GWj; otherwise, the session is terminated.

Next, GWj extracts TIDnew
GWj

as TIDnew
GWj

= TID∗GWj
⊕ h(TIDGWj

||SKGWj ,ESl
||TSESl

)

(mod q). After that GWj generates current timestamp TS∗GWj
and calculates the ses-

sion key verifier as SKVGWj ,ESl
= h(SKGWj ,ESl

||TS∗GWj
) in order to create a message

MsgGE3 = {SKVGWj ,ESl
, TS∗GWj

}. Finally, the message MsgGE3 is dispatched by GWj

to ESl via public channel. At the same time, GWj also updates TIDGWj
with the newly

computed TIDnew
GWj

in its database.

• Step ACGE5: After receiving the message MsgGE3 from GWj at time TS∗∗GWj
, ESl

validates the received timestamp TS∗GWj
by the condition: |TS∗∗GWj

− TS∗GWj
| < ∆T . If
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it is not valid, ESl immediately rejects GWj’s message MsgGE3 . On the other side, ESl

verifies the session key by the condition: SKVGWj ,ESl

?
= h(SKESl,GWj

||TS∗GWj
). If the

signature is valid, ESl updates the TIDGWj
with TIDnew

GWj
corresponding to PIDGWj

in

its database.

At the end of this phase, both GWj and ESl share the same secret session key SKGWj ,ESl

(= SKESl,GWj
). The entire method is summarized in Figure 6.7.

6.4.4 Key management phase between edge server and cloud server

In this phase, the key management procedure between an edge server (ESl) and a cloud server

(CSk) in the blockchain center is explained. At the end of successful key management, both

ESl and CSk will establish a secret key among them for secret communications.

The following steps are essential to fulfill this task:

• Step KMEC1: ESl first generates the current timestamp TSESl
and a random num-

ber rESl
∈ Z∗q to calculate f(PIDESl

, P IDCSk
) by evaluating its own polynomial share

f(PIDESl
, y) using PIDCSk

of the CSk, and AESl
= h(rESl

||PIDESl
||PIDCSk

||TSESl

||kESl
) ⊕ h(f(PIDESl

, P IDCSk
) ||TSESl

). After that ESl dispatches the message

MsgEC1 = {TIDESl
, AESl

, TSESl
} to CSk via a public channel.

• Step KMEC2: After receiving MsgEC1 at time TS∗ESl
, CSk checks the validity of times-

tamp TSESl
by the condition: |TS∗ESl

−TSESl
| < ∆T . If the timestamp validation passes,

it accepts the message MsgEC1 ; else, it rejects MsgEC1 . CSk then fetches PIDESl
corre-

sponding to TIDESl
received in MsgEC1 . Next, it calculates h(rESl

||PIDESl
||PIDCSk

||TSESl
||kESl

) = AESl
⊕ h(f(PIDCSk

, P IDESl
) ||TSESl

). Furthermore, it generates

the current timestamp TSCSk
and a random number rCSk

∈ Z∗q to calculate BCSk
=

h(rCSk
||TSCSk

||kCSk
) ⊕ h(f(PIDCSk

, P IDESl
) ||TSCSk

) and the secret key shared

with ESl as SKCSk,ESl
= h(h(rESl

||PIDESl
||PIDCSk

||TSESl
||kESl

) ||h(rCSk
||TSCSk

||kCSk
) ||f(PIDCSk

, P IDESl
)). After computing the secret key, it generates a new tem-

porary identity TIDnew
ESl

for ESl, and calculates the secret key verifier SKVCSk,ESl
=

h(SKCSk,ESl
||TSCSk

||TIDnew
ESl

), CCSk
= TIDnew

ESl
⊕ h(TIDESl

||SKCSk,ESl
||TSCSk

),

DCSk
= PIDCSk

⊕ h(PIDESl
||TIDESl

||TSCSk
), and also updates TIDESl

with TIDnew
ESl

corresponding to PIDESl
in its database. Finally, CSk sends the message MsgEC2 =

{BCSk
, CCSk

, DCSk
, SKVCSk,ESl

, TSCSk
} to ESl via open channel.
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Gateway Node (GWj) Edge Server (ESl)

Generate random number rGWj
∈ Z∗q , current timestamp TSGWj

.

Compute public value

RGWj
= h(TIDGWj

||TCGWj
||PIDGWj

||rGWj
||kGWj

||TSGWj
) ·G.

Generate a signature on rGWj
as

Signj = h(TIDGWj
||TCGWj

||PIDGWj
||rGWj

||kGWj
||TSGWj

)

+ h(TIDGWj
||PubGWj

||PIDGWj
||TSGWj

) ∗ kGWj
(mod q).

MsgGE1 = {TIDGWj
, RGWj

, Signj, TSGWj
}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(via public channel) Check |TS ′GWj

− TSGWj
| < ∆T ? Accept/Reject?

Fetch PIDGWj
corresponding to TIDGWj

and verify the signature:

Signj.G
?
=RGWj

+ h(TIDGWj
||PubGWj

||PIDGWj
||TSGWj

).PubGWj

Generate current timestamp TSESl
and random number rESl

∈ Z∗q .

Compute RESl
= h(PIDGWj

||TCESl
||PIDESl

||rESl
||kESl

||TSESl
) ·G.

Compute gj(PIDESl
, P IDGWj

),

DKlj = h(PIDGWj
||TCESl

||PIDESl
||rESl

||kESl
||TSESl

) ·RGWj
.

Compute session key SKESl,GWj
= h(gj(PIDESl

, P IDGWj
)||DKlj),

PID∗ESl
= PIDESl

⊕ h(PIDGWj
||PubGWj

||PubESl
||TSESl

),

signature on rESl
and SKESl,GWj

as

Signl = h(PIDGWj
||TCESl

||PIDESl
||rESl

||kESl
||TSESl

)

+h(SKESl,GWj
||PIDGWj

||PubGWj
||PubESl

) ∗ kESl
(mod q).

Generate new temporary identity TIDnew
GWj

for GWj.

Compute

TID∗GWj
= TIDnew

GWj
⊕ h(TIDGWj

||SKESl,GWj
||TSESl

) (mod q).

MsgGE2 = {PID∗ESl
, T ID∗GWj

, RESl
, Signl, TSESl

}
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(via public channel)

Check if |TS ′ESl
− TSESl

| < ∆T? Accept/Reject?

Derive PIDESl
= PID∗ESl

⊕ h(PIDGWj
||PubGWj

||PubESl
||TSESl

).

Compute gj(PIDGWj
, P IDESl

),

DKjl = h(TIDGWj
||TCGWj

||PIDGWj
||rGWj

||kGWj
||TSGWj

).RESl
.

Compute SKGWj ,ESl
= h(gj(PIDGWj

, P IDESl
)||DKjl).

Verify signature

Signl.G
?
=RESl

+ h(SKGWj ,ESl
||PIDGWj

||PubGWj
||PIDESl

).PubESl
.

Derive TIDnew
GWj

= TID∗GWj
⊕h(TIDGWj

||SKGWj ,ESl
||TSESl

) (mod q).

Generate current timestamp TS∗GWj
.

Compute SKVGWj ,ESl
= h(SKGWj ,ESl

||TS∗GWj
).

Update TIDGWj
with TIDnew

GWj
corresponding to PIDGWj

.

MsgGE3 = {SKVGWj ,ESl
, TS∗GWj

}
−−−−−−−−−−−−−−−−−−−−−−−−→
(via public channel)

Verify |TS∗∗GWj
− TS∗GWj

| < ∆T? Accept/Reject?

Check SKVGWj ,ESl

?
=h(SKESl,GWj

||TS∗GWj
)

If so, update TIDGWj
with TIDnew

GWj
corresponding to PIDGWj

.

Both GWj and ESl store the shared common session key SKGWj ,ESl
(= SKESl,GWj

).

Figure 6.7: Summary of access control between gateway node (GWj) & edge server (ESl)

• Step KMEC3: After receiving MsgEC2 from CSk at time TS∗CSk
, ESl verifies the va-

lidity of the message by checking the timestamp TSCSk
by the condition: |TS∗CSk

−
TSCSk

| < ∆T . If the condition is valid, ESl computes PIDCSk
= DCSk

⊕ h(PIDESl

||TIDESl
||TSCSk

), h(rCSk
||TSCSk

||kCSk
) = BCSk

⊕ h(f(PIDESl
, P IDCSk

) ||TSCSk
),
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and the secret key shared with CSk as SKESl,CSk
= h(h(rESl

||PIDESl
||PIDCSk

||TSESl
||kESl

)|| h(rCSk
||TSCSk

||kCSk
) ||f(PIDESl

, P IDCSk
)). In addition, ESl cal-

culates TIDnew
ESl

= CCSk
⊕ h(TIDESl

||SKESl,CSk
||TSCSk

) and checks the validity of

SKVCSk,ESl

?
= h(SKESl,CSk

||TSCSk
||TIDnew

ES ). If it is valid, CSk is treated as autho-

rized entity by ESl, and accepts SKESl,CSk
as the valid secret key. Furthermore, ESl

updates TIDESl
with TIDnew

ESl
corresponding to PIDESl

in its database.

The summary of this key management process is illustrated in Figure 6.8.

Edge Server (ESl) Cloud Server (CSk)

Generate current timestamp TSESl
and random number rESl

∈ Z∗q .

Compute f(PIDESl
, P IDCSk

) using PIDCSk
of CSk,

AESl
= h(rESl

||PIDESl
||PIDCSk

||TSESl
||kESl

) ⊕ h(f(PIDESl
, P IDCSk

)||TSESl
).

MsgEC1 = {TIDESl
, AESl

, TSESl
}

−−−−−−−−−−−−−−−−−−−−−−−−−→
(via open channel)

Check validity on timestamp TSESl
. Accept/Reject?

If so, fetch PIDESl
corresponding to TIDESl

.

Compute h(rESl
||PIDESl

||PIDCSk
||TSESl

||kESl
)

= AESl
⊕ h(f(PIDCSk

, P IDESl
)||TSESl

).

Generate current timestamp TSCSk
and random number rCSk

∈ Z∗q .

Compute BCSk
= h(rCSk

||TSCSk
||kCSk

) ⊕ h(f(PIDCSk
, P IDESl

)||TSCSk
),

and the secret key shared with ESl as

SKCSk,ESl
= h(h(rESl

||PIDESl
||PIDCSk

||TSESl
||kESl

)

||h(rCSk
||TSCSk

||kCSk
)||f(PIDCSk

, P IDESl
)).

Generate new temporary identity TIDnew
ESl

,

secret key verifier SKVCSk,ESl
= h(SKCSk,ESl

||TSCSk
||TIDnew

ESl
).

Compute CCSk
= TIDnew

ESl
⊕ h(TIDESl

||SKCSk,ESl
||TSCSk

),

DCSk
= PIDCSk

⊕ h(PIDESl
||TIDESl

||TSCSk
).

Update TIDESl
with TIDnew

ESl
corresponding to PIDESl

.

MsgEC2 = {BCSk
, CCSk

, DCSk
, SKVCSk,ESl

, TSCSk
}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(via open channel)

Check validity of timestamp TSCSk
. Accept/Reject?

If valid, derive PIDCSk
= DCSk

⊕ h(PIDESl
||TIDESl

||TSCSk
).

Compute h(rCSk
||TSCSk

||kCSk
) = BCSk

⊕ h(f(PIDESl
, P IDCSk

)||TSCSk
),

secret key SKESl,CSk
= h(h(rESl

||PIDESl
||PIDCSk

||TSESl
||kESl

)||
h(rCSk

||TSCSk
||kCSk

)||f(PIDESl
, P IDCSk

)),

TIDnew
ESl

= CCSk
⊕ h(TIDESl

||SKESl,CSk
||TSCSk

).

Check if SKVCSk,ESl
= h(SKESl,CSk

||TSCSk
||TIDnew

ES )?

If valid, CSk is treated as legitimate and accept SKESl,CSk
.

Update TIDESl
with TIDnew

ESl
corresponding to PIDESl

.

Both ESl and CSk share SKESl,CSk
(= SKCSk,ESl

) as a common secret key.

Figure 6.8: Summary of key management phase between edge server (ESl) and cloud server

(CSk)

6.4.5 Dynamic nodes addition phase

In this section, we discuss the mechanisms to dynamically add IoT smart devices as well as

the gateway nodes. The IoT smart device deployment is extremely essential due to power
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exhaustion of smart devices for their resource limitations or physical capturing of some IoT

smart devices (as explained in our threat model in Section 6.3.2).

1) New IoT smart device addition

To deploy a new IoT smart device, say SDnew in a particular IoT application (for example,

the jth application associated with the gateway node GWj), the registration authority RA

executes the following steps:

• Step SDA1: The RA picks a master key mkSDnew and a unique identity IDSDnew for

SDnew. Next, the RA picks a random private key kSDnew ∈ Z∗q and computes corre-

sponding public key PubSDnew = kSDnew ·G for SDnew.

• Step SDA2: The RA calculates SDnew’s temporal credential as TCSDnew = h(IDSDnew

||mkSDnew ||mkRA ||mkGWj
||RTSSDnew), where RTSSDnew is the new registration times-

tamp of SDnew and mkGWj
is the master key that was already stored in the RA database.

• Step SDA3: Next, the RA selects a unique temporary identity TIDSDnew correspond-

ing to the real identity IDSDnew for SDnew and calculates SDnew’s pseudo-identity as

PIDSDnew = h(IDSDnew ||mkSDnew), and makes PubSDnew as public.

• Step SDA4: Finally, the RA loads the secret information {TIDSDnew , P IDSDnew ,

TCSDnew , (kSDnew , PubSDnew), Eq(u, v), G, h(·)} into SDnew’s memory prior to its

placement in the IoT application. Furthermore, the RA also sends the information

(TIDSDnew , P IDSDnew) to the associated gateway node GWj by secure channel.

The summary of a new IoT smart device (SDnew) addition phase is provided in Figure 6.9.

2) New gateway node addition

For adding a new gateway node, say GWnew in a particular IoT application with its designated

smart IoT devices SDi, the following steps are associated:

• Step GWA1: For GWnew, the RA first picks a unique identity IDGWnew , a master secret

key mkGWnew , and a random secret (private) key kGWnew ∈ Z∗q . The RA then computes

the public key corresponding to the secret key kGWnew as PubGWnew = kGWnew ·G.

• Step GWA2: The RA calculates a secret temporal credential as TCGWnew = h(IDGWnew

||mkGWnew ||RTSGWnew ||mkRA), where RTSGWnew is the new registration timestamp of

GWnew.
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Registration authority (RA) New IoT smart device (SDnew)

Pick master key mkSDnew and unique identity IDSDnew for SDnew.

Select random private key kSDnew ∈ Z∗q for SDnew.

Calculate public key PubSDnew = kSDnew ·G,

temporal credential TCSDnew = h(IDSDnew ||mkSDnew

||mkRA ||mkGWj
||RTSSDnew) for SDnew.

Pick unique temporary identity TIDSDnew corresponding to IDSDnew .

Calculate pseudo-identity as PIDSDnew = h(IDSDnew ||mkSDnew).

Make PubSDnew as public. Credentials:

{TIDSDnew , P IDSDnew , TCSDnew ,

(kSDnew , PubSDnew), Eq(u, v), G,

h(·)} are loaded into its memory.

Figure 6.9: Summary of dynamic IoT smart device SDnew addition phase

• Step GWA3: Next, the RA picks a unique temporary identity TIDGWnew respective to

the real identity IDGWnew and calculates the pseudo-identity PIDGWnew = h(IDGWnew

||mkGWnew).

• Step GWA4: The RA computes the polynomial share gj(PIDGWnew , y) for GWnew that

is used for secure communication with its associated edge server, say ESl. The RA then

makes PubGWnew as public. Furthermore, the RA stores the credentials {TIDGWnew ,

P IDGWnew , TCGWnew , (kGWnew , PubGWnew), {(TIDSDi
, P IDSDi

)| i = 1, 2, · · · , nsdj},
gj(PIDGWnew , y), Eq(u, v), G, h(·)} into GWnew’s database prior to its deployment.

Finally, the RA sends the information (TIDGWnew , P IDGWnew) associated with of GWnew

to the respective edge server ESl by secure channel.

The summary of a new gateway node (GWnew) addition phase is also provided in Figure 6.10.

6.4.6 Blocks creation and addition in blockchain

This section provides the detailed procedures for creating, verifying and then adding a created

block by an edge server ESl in the P2P ES network.

1) Block creation

In the proposed CBACS-EIoT, the data are securely aggregated by a gateway node (GWj)

from their respective IoT smart devices (SDi) using their established secret keys through
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Registration authority (RA) New gateway node (GWnew)

Choose unique identity IDGWnew , master secret key mkGWnew ,

random secret (private) key kGWnew ∈ Z∗q for GWnew.

Calculate public key PubGWnew = kGWnew ·G,

secret temporal credential TCGWnew = h(IDGWnew ||mkGWnew

||RTSGWnew ||mkRA).

Choose unique temporary identity TIDGWnew

corresponding to IDGWnew .

Compute pseudo-identity PIDGWnew = h(IDGWnew ||mkGWnew),

polynomial share gj(PIDGWnew , y) for GWnew.

Make PubGWnew as public. Credentials:

{TIDGWnew , P IDGWnew , TCGWnew , (kGWnew ,

PubGWnew), {(TIDSDi
, P IDSDi

)| i = 1, 2, · · · , nsdj},
gj(PIDGWnew , y), Eq(u, v), G, h(·)}
are loaded into its memory.

Figure 6.10: Summary of dynamic gateway node GWnew addition phase

the access control phase described in Section 6.4.3. The gateway node GWj then forms

various transactions Txm (m = 1, 2, · · · , nt), that are further used in block construction by

its associated edge server ESl. Using the shared secret key SKGWj ,ESl
established during the

access control phase between a gateway node and an edge server described in Section 6.4.3,

GWj sends all the transactions securely to ESl. Now, based on the application type, there are

three types of block formation done by the ESl: a) formation of a block on public blockchain,

b) formation of a block on private blockchain, and c) formation of a block on consortium

blockchain as follows.

• In public blockchain, assume there is a block, say Blockp containing block header

and block payload. A block header in a public blockchain context contains block

version (BV ), previous block hash (PBHash), Merkle tree root (MTR), block type

(public), creation time of block (timestamp, TS), owner of block (ESl), and public

key of signer (ESl), that is, PubESl
. In block payload, we have the nt transactions

{Tx1, Tx2, · · · , Txnt}. A Merkle tree is constructed on these transactions first, and

then the Merkle Tree Toot (MTR) is calculated with the help of these transactions

by ESl. ESl computes the hash of the current block, CBHash as CBHash = h(BV

||PBHash ||MTR ||Public ||TS ||ESl ||PubESl
||Tx1 ||Tx2 || · · · ||Txnt). Next, ESl cal-

culates the signature BSign on CBHash using the signature generation of the “Elliptic

Curve Digital Signature Algorithm (ECDSA)” [104].
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• In private blockchain, the block header remains same as that for public block except

the block type will be treated as “private”. In this case, the transactions are encrypted

using the ECC-based public key encryption E(·) with the help of the public key PubESl

of ESl. The transactions {EPubESl
(Txi) |i = 1, 2, · · · , nt} are then used to calculate

the Merkle tree root (MTR). ESl computes the hash of the current block, CBHash

as CBHash = h(BV || PBHash|| MTR|| Private|| TS|| ESl|| PubESl
|| EPubESl

(Tx1)

||EPubESl
(Tx2) || · · · ||EPubESl

(Txnt)) and the signature BSign on CBHash using the

ECDSA signature generation algorithm.

• In consortium blockchain, a block Blockp containing the mixed types of transactions,

where some transactions can be encrypted using the public key PubESl
of ESl and re-

maining transactions can be unencrypted, say {EPubESl
(Tx1), Tx2, · · · , EPubESl

(Txnt)}.
In this scenario, the block header remains same as that for public/private block except

the block type will be treated as “hybrid”. The transactions {EPubESl
(Tx1), Tx2, · · · ,

EPubESl
(Txnt)} are then applied to calculate the Merkle tree root (MTR). In addition,

ESl computes the hash of the current block, CBHash as CBHash = h(BV || PBHash||
MTR|| Hybrid|| TS|| ESl|| PubESl

|| EPubESl
(Tx1) ||Tx2 || · · · ||EPubESl

(Txnt)) and the

signature BSign on CBHash using the ECDSA signature generation algorithm.

Figures 6.11, 6.12 and 6.13 show the structures of various blocks in public, private, and

consortium blockchains, respectively.

2) Block addition in blockchain

After constructing a Blockp by ESl, that block will be now added into the blockchain. To do

so, the ESl will first selects a leader, say L among the available nES edge servers acting as

miner nodes in the P2P ES network using the existing leader selection algorithm suggested

by Zhang et al. [239]. In this work, we consider two types of ledgers: a) local ledger that is

maintained by each edge server in the P2P ES network, and b) global ledger that is maintained

by the cloud servers in the blockchain center. The local ledger containing the blocks is securely

sent by an edge server to the cloud servers for updating those blocks in the global ledger. This

procedure is done periodically by the edge servers in order to avoid much burden at the cloud

servers. We also assume that there will be synchronization among the edge servers so that

the contents of the local ledgers maintained at the edge servers will be updated accordingly.

We apply the well-known “Ripple Protocol Consensus Algorithm (RPCA)” [209] for ver-

ification of a block Blockp and addition of that block through the voting mechanism to the
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Block Header

Block Version BV

Previous Block Hash PBHash

Merkle Tree Root MTR

Block Type Public

Timestamp TS

Owner of Block ESl

Public key of signer (ESl) PubESl

Block Payload (Transactions)

Transaction #1 Tx1

Transaction #2 Tx2

...
...

Transaction #nt Txnt

Current Block Hash CBHash

Signature on block using ECDSA BSign

Figure 6.11: Formation of a block on public blockchain

local ledgers of the edge servers. Note that each ESl has a pair of private-public keys (kESl
,

PubESl
), where PubESl

= kESl
· G. Without any loss of generality, we assume that a block

Blockp has the content as Blockp = {BV, PBHash, MTR, Public, TS, ESl, PubESl
, {Txi

|i = 1, 2, · · · , nt}, CBHash, BSign} for public blockchain. Similarly, one can also con-

sider other types of blocks in case of private and consortium blockchains. The procedure for

verifying and adding the block Blockp in the local ledgers of the edge servers is provided in

Algorithm 4.

6.5 Security analysis

In this section, we first provide the correctness of the establishment of the secret keys during

the access control and key management phases among different communicating entities. Next,

we provide a rigorous security analysis using both the formal security under the standard

random oracle model and the non-mathematical (informal) security analysis. Wang et al.

[204] analyzed several two-factor based authentication protocols. They observed that under

the accepted adversarial models, there are specific goals that are beyond attainment. They
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Algorithm 4 Consensus protocol for block verification and addition in blockchain
Input: A block Blockp = {BV, PBHash, MTR, Public, TS, ESl, PubESl

, {Txi |i = 1, 2, · · · , nt},
CBHash, BSign}
Output: Verification and addition of block in the blockchain
1: The leader L creates timestamp TSl and picks a cryptographic puzzle CPZl for each follower edge server node ESl in the

P2P ES network and starts voting process.

2: L encrypts the voting request (V TR) and puzzle using ECC-based public key cryptosystem with ESl’s public key PubESl
,

and sends EPubESl
(CPZl, V TR, TSl), the ECSDA signature on (CPZl, V TR, TSl) using its own private key kL, and

Blockp to each follower ESl, (l = 1, 2, · · · , nes), with ESl 6= L.

3: After receiving the message by each follower ESl from leader L at time TS∗l
4: for each peer node ESl do

5: Calculate Merkle tree root (MTR∗) on transactions {Txi |i = 1, 2, · · · , nt} in Blockp.

6: if (MTR∗ 6= MTR) then

7: Terminate the consensus process.

8: else

9: Compute block hash CBHash∗ on Blockp as CBHash∗ = h(BV || PBHash|| MTR∗|| Public|| TS|| ESl|| PubESl
||

Tx1|| Tx2|| · · · ||Txnt ).

10: if (CBHash∗ = CBHash) then

11: Verify the signature BSign on CBHash∗ in received Blockp using the ECDSA signature verification algorithm.

12: if signature is valid then

13: Decrypt the encrypted voting request with private key kESl
as (CPZ∗l , V TR∗, TSl) = DkESl

[EPubESl
(CPZl,

V TR, TSl)] using

14: the ECC decryption algorithm D(·).
15: if (|TS∗l − TSl| < ∆T ) then

16: Solve puzzle CPZ∗l (set puzzle answer as SPZl) and verify block (set verification status as BV Status).

17: Send the message containing verification status (BV Status), solved puzzle answer (SPZl), and voting reply

(V TL)

18: as {EPubL ((CPZ∗l , SPZl), (V TR∗, V TL), BV Status)} to the leader L.

19: end if

20: end if

21: end if

22: end if

23: end for

24: L sets V TCount← 0, where V TCount is the valid vote counter.

L also sets flagESl
= 0, ∀l = 1, 2, · · · , nES , L 6= ESl.

25: for each received message from the responders ESl do

26: L decrypts the message as ((CPZ∗l , SPZl), (V TR∗, V TL), BV Status) = DkL
[EPubL ((CPZ∗l , SPZl), (V TR∗, V TL),

BV Status)].

27: if ((CPZ∗l = CPZl) and (V TR∗ = V TR)) then

28: if ((SPZl = valid) and (V TL = valid) and (BV Status = valid) and (flagESl
= 0)) then

29: L sets V TCount = V TCount + 1 and flagESl
= 1.

30: end if

31: end if

32: end for

33: if (V TCount is more than 50% of the votes) then

34: Transaction enters the next round.

35: if (V TCount less than the pre-defined threshold value, that is, 80% of the votes) then

36: go to Step 26.

37: else

38: Send the commit response to all other followers ESl.

39: Add block Blockp into the blockchain in the local ledgers and complete the consensus process.

40: end if

41: end if
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Block Header

Block Version BV

Previous Block Hash PBHash

Merkle Tree Root MTR

Block Type Private

Timestamp TS

Owner of Block ESl

Public key of signer (ESl) PubESl

Block Payload (Encrypted Transactions)

Encrypted Transaction #1 EPubESl
(Tx1)

Encrypted Transaction #2 EPubESl
(Tx2)

...
...

Encrypted Transaction #nt EPubESl
(Txnt)

Current Block Hash CBHash

Signature on block using ECDSA BSign

Figure 6.12: Formation of a block on private blockchain

further pointed out that the formal methods based security analysis including random oracle

based model may not capture some structural mistakes. Therefore, assuring the soundness

of security protocols still continues as an open problem. Due to this important observations,

we also consider the formal security verification using a widely-accepted automated software

verification tool in Section 6.6.

6.5.1 Correctness proof

We show that the established secret keys among different communicating entities during the

access control and key management phases are correct using the theorems 6.1, 6.2 and 6.3.

Theorem 6.1. The session keys established between a smart device (SDi) and its gateway

node (GWj) are the same during the access control phase in Section 6.4.3.

Proof. During the access control phase, the gateway node GWj generates the session key

shared with the smart device SDi as

SKGWj ,SDi
= h(h(rGWj

||TCGWj
||TIDSDi

||PIDSDi
||PIDGWj

||TSGWj
).RSDi

||PIDSDi
), (6.1)
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Block Header

Block Version BV

Previous Block Hash PBHash

Merkle Tree Root MTR

Block Type Hybrid

Timestamp TS

Owner of Block ESl

Public key of signer (ESl) PubESl

Block Payload

Encrypted Transaction #1 EPubESl
(Tx1)

Transaction #2 Tx2

...
...

Encrypted Transaction #nt EPubESl
(Txnt)

Current Block Hash CBHash

Signature on block using ECDSA BSign

Figure 6.13: Formation of a block on consortium blockchain

where RSDi
= h(rSDi

||TCSDi
||PIDSDi

||TSSDi
) ·G. In a similar way, SDi also generates the

session key shared with the smart device GWj as

SKSDi,GWj
= h(h(rSDi

||TCSDi
||PIDSDi

||TSSDi
).RGWj

||PIDSDi
), (6.2)

where RGWj
= h(rGWj

||TCGWj
||TIDSDi

||PIDSDi
||PIDGWj

||TSGWj
) ·G.

Now, we have,

h(rGWj ||TCGWj ||TIDSDi

||PIDSDi ||PIDGWj ||TSGWj ).RSDi = (h(rGWj ||TCGWj ||TIDSDi ||PIDSDi ||PIDGWj ||TSGWj )

∗h(rSDi ||TCSDi ||PIDSDi ||TSSDi)) ·G

= h(rSDi ||TCSDi ||PIDSDi ||TSSDi) ·

(h(rGWj ||TCGWj ||TIDSDi ||PIDSDi ||PIDGWj ||TSGWj ) ·G)

= h(rSDi ||TCSDi ||PIDSDi ||TSSDi) ·RGWj (6.3)

The result in Eq. (6.3) is used in both Eqs. (6.1) and (6.2) to have SKGWj ,SDi
=

SKSDi,GWj
.
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Theorem 6.2. The session keys established between a gateway node GWj and its associated

edge server ESl are the same during the access control phase in Section 6.4.3.

Proof. During the access control phase, the session keys established by GWj and ESl shared

with ESl and GWj are repectively

SKGWj ,ESl
= h(gj(PIDGWj

, P IDESl
)||DKjl), (6.4)

where DKjl = h(TIDGWj
||TCGWj

||PIDGWj
||rGWj

||kGWj
||TSGWj

) ·RESl
,

SKESl,GWj
= h(gj(PIDESl

, P IDGWj
)||DKlj), (6.5)

where DKlj = h(PIDGWj
||TCESl

||PIDESl
||rESl

||kESl
||TSESl

) · RGWj
. Now, we have the

following derivation:

DKjl = h(TIDGWj
||TCGWj

||PIDGWj
||rGWj

||kGWj
||TSGWj

) ·RESl

= (h(TIDGWj
||TCGWj

||PIDGWj
||rGWj

||kGWj
||TSGWj

)

∗h(PIDGWj
||TCESl

||PIDESl
||rESl

||kESl
||TSESl

)) ·G

= h(PIDGWj
||TCESl

||PIDESl
||rESl

||kESl
||TSESl

)

·((h(TIDGWj
||TCGWj

||PIDGWj
||rGWj

||kGWj
||TSGWj

) ·G) (6.6)

= h(PIDGWj
||TCESl

||PIDESl
||rESl

||kESl
||TSESl

) ·RGWj

= DKlj.

It follows from Eqs. (6.4), (6.5) and (6.6) that

SKGWj ,ESl
= h(gj(PIDGWj

, P IDESl
)||DKjl)

= h(gj(PIDESl
, P IDGWj

)||DKjl)

= h(gj(PIDESl
, P IDGWj

)||DKlj)

= SKESl,GWj
,

since gj(PIDGWj
, P IDESl

) = gj(PIDESl
, P IDGWj

).

Theorem 6.3. The secret keys established between an edge server (ESl) and a cloud server

(CSk) are the same during the key management phase in Section 6.4.4.

Proof. During the key management phase, ESl generates a secret key shared with CSk as

SKESl,CSk
= h(h(rESl

||PIDESl
||PIDCSk

||TSESl
||kESl

)

||h(rCSk
||TSCSk

||kCSk
)||f(PIDESl

, P IDCSk
)). (6.7)
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Similarly, CSk generates a secret key shared with ESl as

SKCSk,ESl
= h(h(rESl

||PIDESl
||PIDCSk

||TSESl
||kESl

)

||h(rCSk
||TSCSk

||kCSk
)||f(PIDCSk

, P IDESl
)). (6.8)

Since the chosen bivariate polynomial f(x, y) is symmetric, we have f(PIDESl
, P IDCSk

) =

f(PIDCSk
, P IDESl

). Hence, from Eqs. (6.7) and (6.8), it follows that SKESl,CSk
= SKCSk,ESl

.

6.5.2 Formal security analysis

To prove the security of the session keys established between a smart device (SDi) and its

gateway node (GWj), between a gateway node (GWj) and its associated edge server (ESl), and

also between an edge server (ESl) and its associated cloud server (CSk) against an adversary

A in our proposed scheme (CBACS-EIoT), we apply the wide-accepted “Real-Or-Random

(ROR) oracle model” [10]. Using the ROR model, we use the semantic security approach to

prove the session key security of CBACS-EIoT in Theorem 6.4.

The ROR model is described by considering the following random oracles:

• Participants: At the time of the access control phase, the entities, namely smart devices

(SDi) and gateway nodes (GWj) are engaged apart from the RA which is only involved

during the registration and dynamic node addition phases. Here, Ψl1
SD and Ψl2

GW are used

to represent the lth1 and lth2 instances of SDi and GWj, respectively. These instances are

termed as the “random oracles”.

• Accepted state: An instance Ψl will go to its “accepted state”, when the last valid

protocol message is accepted. All the communication messages can be ordered in se-

quentially, and these together form the “session identification sid of Ψl for the currently

executed session”.

• Partnering: Two instances (Ψl1 and Ψl2) are assumed to be partners to each other, if

they follow the following rules:

– Ψl1 and Ψl2 require to be in “accepted states”.

– Ψl1 and Ψl2 require to share the same sid.

– Ψl1 and Ψl2 need to be “mutual partners of each other”.
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• Freshness. An instance Ψl1
SD or Ψl2

GW is fresh, if A cannot derive the established session

key shared between two participating entities after applying the Reveal(Ψl) query as well

as Test(Ψl) query provided in Table 6.2.

Under the ROR model, A has access to all the queries tabulated in Table 6.2. Further-

more, a “collision-resistant one-way cryptographic hash function h(·)” is accessible to all the

participants (SDi, GWj, ESl, CSk) including A as suggested in [42], and subsequently, we can

model h(·) as a random oracle, say Hash.

Table 6.2: Different queries and their purposes

Query Purpose

Execute(Ψl1
SD, Ψl2

GW ) A executes this query to eavesdrop the mes-

sages exchanged between SDi and GWj

CorruptSmartDevice(Ψl1
SD) A executes this query to extract “the creden-

tials stored in memory of SD by its physical

capturing”

Reveal(Ψl) A executes this query to reveal a session key

(the session key SKSDi,GWj
(= SKGWj ,SDi

)

between SDi and GWj or the session key

SKGWj ,ESl
(= SKESl,GWj

) between GWj

and ESl, or the session key SKESl,CSk
(=

SKCSk,ESl
) between ESl and CSk) shared

between Ψl and its respective partner

Test(Ψl) A executes this query to test the reality of

the session key between Ψl and its partner

The semantic security of the proposed CBACS-EIoT is now provided in Definition 6.1,

which is helpful in proving Theorem 6.4.

Definition 6.1 (Semantic security). If AdvCBACS−EIoT
A (tpoly) represents the advantage of an

adversary A in breaking the semantic security of CBACS-EIoT in time tpoly to derive the

session key SKSDi,GWj
(= SKGWj ,SDi

) between SDi and GWj or the session key SKGWj ,ESl

(= SKESl,GWj
) between GWj and ESl, or the session key SKESl,CSk

(= SKCSk,ESl
) between

ESl and CSk, then AdvCBACS−EIoT
A (tpoly) = |2Pr[c′ = c] − 1|, where c and c′ present the

“correct” and “guessed” bits, respectively, and Pr[E] is the probability of a random event E.



174 Consortium Blockchain-Enabled Access Control in Generic IoT

Theorem 6.4. Suppose an adversary A tries to derive the session key SKSDi,GWj
(=

SKGWj ,SDi
) between SDi and GWj or the session key SKGWj ,ESl

(= SKESl,GWj
) between GWj

and ESl, or the session key SKESl,CSk
(= SKCSk,ESl

) between ESl and CSk in polynomial

time tpoly in the proposed CBACS-EIoT. If qh, |Hash|, and AdvECDDHP
A (tpoly) represent “the

number of Hash queries”, “the range space of a one-way collision-resistant hash function

h(·)”, and “the advantage of breaking the Elliptic Curve Decisional Diffe-Hellman Problem

(ECDDHP)”, respectively, AdvECDDHP
A (tpoly) is expressed by the following:

AdvCBACS−EIoT
A (tpoly) ≤

q2
h

|Hash|
+ 2AdvECDDHP

A (tpoly).

Proof. The proof of this theorem is followed in similar manner as done in [42, 59, 137, 138,

188, 219]. According to the CBACS-EIoT, three games have been introduced, say GameAl

for the adversary A, l = 0, 1, 2. If SuccAGamel
is “an event that A can guess the random bit

c in the game GameAl correctly”, A’s advantage (success probability) is winning GameAl in

CBACS-EIoT can be then expressed as AdvCBACS−EIoT
A,Gamel

= Pr[SuccAGamel
]. Each of the games

is now described below.

• GameA0 : In this game, A executes the “actual attack” against CBACS-EIoT under the

ROR model. Here, A picks a random bit c before GameA0 begins. The semantic security

defined in Definition 6.1 gives the following:

AdvCBACS−EIoT
A (tpoly) = |2AdvCBACS−EIoT

A,Game0
− 1|. (6.9)

• GameA1 : A applies eavesdropping attack in this game to perform the Execute query

in order to intercept all the communicated messages during the access control and key

management phases. Suppose A intercepts the transmitted messages {MsgSG1 , MsgSG2 ,

MsgSG3} during the access control phase between SDi and GWj to derive the session

key SKGWj ,SDi
(= SKSDi,GWj

), the messages {MsgGE1 , MsgGE2 , MsgGE3} during ac-

cess control between GWj and ESl to derive the session key SKGWj ,ESl
(= SKESl,GWj

),

and also the messages {MsgEC1 , MsgEC2} to construct the session key SKESl,CSk

(= SKCSk,ESl
) during key management between ESl and CSk. Now, A applies Reveal

and Test queries to validate if the derived session keys are correct ones or they are just

random numbers. Since the temporal and long term secrets {TCSDi
, P IDSDi

, KSDi
,

TCGWj
, P IDGWj

, kGWj
} are needed to derive the session key SKGWj ,SDi

(= SKSDi,GWj
),

However, these secrets are protected by h(·), and thus, only interception of the messages

{MsgSG1 , MsgSG2 , MsgSG3} will not at all contribute in increasing the success proba-

bility in deriving the session key. The similar situation happens for deriving the secret
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keys SKGWj ,ESl
(= SKESl,GWj

) and SKESl,CSk
(= SKCSk,ESl

) by the adversary A due

to long and short term secrets. The games GameA0 and GameA1 then turn out to be

indistinguishable in the presence of an “eavesdropping attack”. Hence, we arrive to the

following condition:

AdvCBACS−EIoT
A,Game1

= AdvCBACS−EIoT
A,Game0

. (6.10)

• GameA2 : In this game, A plays an active attack, where A includes the simulations of

Hash and CorruptSmartDevice queries, and also the ECDDHP. To derive the ses-

sion key SKSDi,GWj
, SKGWj ,ESl

and SKESl,CSk
, A needs to calculate SKSDi,GWj

=

h(h(rSDi
||TCSDi

||PIDSDi
||TSSDi

) · RGWj
||PIDSDi

) (= SKGWj ,SDi
), SKGWj ,ESl

=

h(gj(PIDGWj
, P IDESl

) ||DKjl) (= SKESl,GWj) and SKESl,CSk
= h(h(rESl

||PIDESl

||PIDCSk
||TSESl

||kESl
)|| h(rCSk

||TSCSk
||kCSk

) ||f(PIDESl
, P IDCSk

)) (= SKCSk,ESl
),

respectively. Assume that A has all the intercepted messages {MsgSG1 , MsgSG2 ,

MsgSG3}, {MsgGE1 , MsgGE2 , MsgGE3}, and {MsgEC1 , MsgEC2}. From the intercepted

messages {MsgSG1 , MsgSG2 , MsgSG3} to derive the session key SKSDi,GWj
, A needs to

compute RSDi
= h(rSDi

||TCSDi
||PIDSDi

||TSSDi
) · G and RGWj

= h(rGWj
||TCGWj

||TIDSDi
||PIDSDi

||PIDGWj
||TSGWj

) · G. Since RSDi
and RGWj

are protected using

the h(·), to derive these parameters A needs to solve the ECDDHP in tpoly (polynomial)

time, which has advantage probability AdvECDDHP
A (tpoly) of the adversary A. Simi-

larly, for the other session keys A needs to solve the ECDDHP in tpoly time with same

probability AdvECDDHP
A (tpoly). Furthermore, all hash values are random in nature due

to the usage of current timestamps and random nonces in all the communicated mes-

sages during communication. In addition, by applying CorruptSmartDevice query, A
will have the credentials that will be helpful to derive the session keys. However, the

credentials in each IoT smart device are distinct and unique. Hence, both the games

GameA1 and GameA2 are both indistinguishable if we exclude the simulations of Hash

and CorruptSmartDevice queries, and also exclude the ECDDHP. By applying the

birthday paradox to find the hash collision and the advantage of solving ECDDHP, we

get the following result:

|AdvCBACS−EIoT
A,Game1

− AdvCBACS−EIoT
A,Game2

| ≤ q2
h

2|Hash|
+ AdvECDDHP

A (tpoly). (6.11)

Now, all the queries are executed by A, and it is only remaining for A to guess correctly

a bit for winning the game GameA2 . Therefore, it is obvious that

AdvCBACS−EIoT
A,Game2

=
1

2
. (6.12)
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Eq. (6.9) simplifies to the following derivation:

1

2
AdvCBACS−EIoT

A (tpoly) = |AdvCBACS−EIoT
A,Game0

− 1

2
|. (6.13)

The following derivation comes by simplifying Eqs. (6.10), (6.11), (6.12) and (6.13), and

applying the triangular inequality:

1

2
AdvCBACS−EIoT

A (tpoly) = |AdvCBACS−EIoT
A,Game0

− AdvCBACS−EIoT
A,Game2

|

= |AdvCBACS−EIoT
A,Game1

− AdvCBACS−EIoT
A,Game2

|

≤ q2
h

2|Hash|
+ AdvECDDHP

A (tpoly). (6.14)

Finally, the final result is arrived by multiplying both sides of Eq. (6.14) by “a factor of 2”:

AdvCBACS−EIoT
A (tpoly) ≤

q2
h

|Hash|
+ 2AdvECDDHP

A (tpoly).

6.5.3 Informal security analysis

In this section, we informally (non-mathematically) show that the proposed CBACS-EIoT is

robust against the following potential attacks. In addition, we also discuss other functionality

features that are offered by the proposed CBACS-EIoT.

Proposition 6.1. CBACS-EIoT is resilient against replay attack.

Proof. The communication messages involved during access control and the key management

phases among different entities, namely IoT smart devices, gateway, edge server and cloud

server are MsgSG1 = {TIDSDi
, RSDi

, Signi, TSSDi
}, MsgSG2 = {TID∗SDi

, RGWj
, Signj,

TSGWj
}, MsgSG3 = {SKVSDi,GWj

, TS∗SDi
}, MsgGE1 = {TIDGWj

, RGWj
, Signj, TSGWj

},
MsgGE2 = {PID∗ESl

, T ID∗GWj
, RESl

, Signl, TSESl
}, MsgGE3 = {SKVGWj ,ESl

, TS∗GWj
},

MsgEC1 = {TIDESl
, AESl

, TSESl
} and MsgEC2 = {BCSk

, CCSk
, DCSk

, SKVCSk,ESl
, TSCSk

},
respectively, as discussed in Sections 6.4.3 and 6.4.4. During the aforesaid individual message

formation, unique timestamps and random nonces are eventually are appended with each

message. For example, the message MsgSG1 consists of TIDSDi
, RSDi

, Signi, TSSDi
, where

TSSDi
signifies the current timestamp of the system (smart device), and RSDi

is a random

nonce selected by SDi. Moreover, both random numbers and timestamps are verified by the

intended receiver(s) and transmitter(s) ends for substantiating the freshness of each message



6.5 Security analysis 177

during the session key initiation task. Thus, only replaying the old timestamp-concatenated

messages is easily detected either by the transmitter and the receiver sides. Therefore, the

proposed CBACS-EIoT protects “replay attack”.

Proposition 6.2. CBACS-EIoT is resilient against man-in-the-middle(MiTM) attack.

Proof. Suppose an adversary A intercepts a smart device (SDi)’s request message MsgSG1 =

{TIDSDi
, RSDi

, Signi, TSSDi
} from an open channel (see Section 6.4.3), and tries to originate

another valid request message, say Msg′SG1
on the fly for its associated gateway node GWj

so that the GWj will be unable to detect it as an modified message. Since the adversary

A does not have the knowledge about the pre-loaded secret credentials, namely TCSDi
, and

the random secrets kSDi
and rSDi

, he/she cannot build the valid request message Msg′SG1
.

Similarly, A is also unable to construct a valid SDi’s response message msg′SG2
in lieu of the

actual intercepted message MsgSG2 = {TID∗SDi
, RGWj

, Signj, TSGWj
}. Because A does not

have the knowledge about the pre-loaded secret credentials (TCGWj
and kGWj

), and the chosen

random secret rGWj
and the computed session key SKGWj ,SDi

. Moreover, A can not change

SDi’s “acknowledgement message” MsgSG3 = {SKVSDi,GWj
, TS∗SDi

} due to the formation

of the authenticated shared secret session key SKGWj ,SDi
between SDi and GWj. In the

similar fashion, it is computationally intractable for A to compute the modified messages

Msg′GE1
, Msg′GE2

, Msg′GE3
, Msg′EC1

and Msg′EC2
without having the knowledge about the

corresponding parameters rGWj
, TCGWj

, kGWj
, rESl

, SKGWj ,ESl
, kESl

, rCSk
, SKESl,CSk

, kCSk
,

gj(PIDESl
, P IDGWj

) and f(PIDESl
, P IDCSk

). Thus, CBACS-EIoT is resilient against MiTM

attack.

Proposition 6.3. CBACS-EIoT is secure against IoT smart device, gateway node, edge server

and cloud server impersonation attacks.

Proof. Suppose an adversary A tries to act himself/herself as a legitimate smart device SDi

to gateway node GWj, and he (or she) wants to construct an authorization message, say

MsgSG1 = {TIDSDi
, RSDi

, Signi, TSSDi
}. In order to perform this operation, at first

A needs to choose a random number r′SDi
∈ Z∗q , and current timestamp TS ′SDi

, and later

needs to compute R′SDi
= h(r′SDi

||TCSDi
||PIDSDi

||TS ′SDi
) ·G and Sign′i = h(r′SDi

||TCSDi

||PIDSDi
||TS ′SDi

)+ h(PubSDi
||PubGWj

||TS ′SDi
||TIDSDi

||PIDSDi
) ∗ kSDi

(mod q). To

make the smart device impersonation attack viable, A needs to proof that RSDi
= R′SDi

, and

Signi = Sign′i. But, these require the implicit knowledge about the concerned parameters,

TCSDi
, IDSDi

, P IDSDi
,mkSDi

,mkRA,mkGWj
, RTSSDi

and kSDi
. Without knowing these pa-

rameters, it is computationally intractable to proof RSDi
= R′SDi

and Signi = Sign′i. A is
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then unable to claim that he/she should be a legitimate IoT smart device to the gateway node

GWj. Hence, CBACS-EIoT is resilient against smart devices impersonation attack.

Assume A tries to act himself (or herself) as a legitimate gateway node (GWj) to an edge

server ESl, and he (or she) wishes to create a valid message, say MsgGE1 = {TIDGWj
, RGWj

,

Signj, TSGWj
}. To do so, A can initially pick a random number r′GWj

and current times-

tamp TS ′GWj
to calculate R′GWj

= h(TIDGWj
|| TCGWj

|| PIDGWj
|| r′GWj

|| kGWj
|| TSGWj

) · G
and Sign′j = h(TIDGWj

||TCGWj
||PIDGWj

||r′GWj
||kGWj

||TS ′GWj
) +h(TIDGWj

||PubGWj

||PIDGWj
||TSGW ′j

) ∗kGWj
(mod q). However, to make the impersonation attack feasible, A

needs to show that RGWj
= R′GWj

and Signj = Sign′j. However, it needs the implicit knowl-

edge about the concerned parameters, TCGWj
, IDGWj

, P IDGWj
,mkGWj

,mkRA, RTSGWj
and

kGWj
, and thus, without knowing these parameters, it is computationally hard to proof RGWj

=

R′GWj
, and Signj = Sign′j. Therefore, A is unable to claim that he/she should be a legitimate

gateway node to ESl, and CBACS-EIoT protects gateway node (GWj) impersonation attack.

Suppose A attempts to act himself (or herself) as a legitimate edge server (ESl) to cloud

server CSk, and he (or she) wants to create a valid request message, say MsgEC1 = {TIDESl
,

AESl
, TSESl

}. In order to perform this task, A can pick a random number r′ESl
and current

timestamp TS ′ESl
, and then try to calculate A′ESl

= h(r′ESl
||PIDESl

||PIDCSk
||TS ′ESl

||kESl
)

⊕ h(f(PIDESl
, P IDCSk

)||TS ′ESl
). However, to make the impersonation attack feasible, A

requires to proof that AESl
= A′ESl

. Without the implicit knowledge about the concerned

parameters, IDESl
, IDCSk

PIDCSk
, P IDESl

, f(PIDESl
, P IDCSk

),mkCSk
,mkESl

and kESl
, it

is computationally hard to proof AESl
= A′ESl

. Thus, A is unable to claim that he (or she)

should be a legitimate edge server to CSk. As a result, CBACS-EIoT protects edge server

(ESl) impersonation attack.

Finally, consider that A tries to behave himself (or herself) as a legitimate

cloud server (CSk) to the edge server (ESl), and he (or she) wants to con-

struct a valid message, say MsgEC2 = {BCSk
, CCSk

, DCSk
, SKVCSk,ESl

, TSCSk
}.

To achieve this task, A can initially select a random number r′CSk
and current

timestamp TS ′CSk
, and then compute SKV ′CSk,ESl

= h(SKCSk,ESl
||TS ′CSk

||TIDnew
ESl

),

C ′CSk
= TIDnew

ESl
⊕ h(TIDESl

||SKCSk,ESl
||TS ′CSk

), B′CSk
= h(r′CSk

||TS ′CSk
||kCSk

) ⊕
h(f(PIDCSk

, P IDESl
)||TS ′CSk

), and D′CSk
= PIDCSk

⊕ h(PIDESl
||TIDESl

||TS ′CSk
). How-

ever, to make the impersonation attack feasible, A needs to satisfy SKVCSk,ESl
=

SKV ′CSk,ESl
, CCSk

= C ′CSk
, BCSk

= B′CSk
, and DCSk

= D′CSk
, respectively. But, to

assure the these conditions, A requires the implicit knowledge about the concerned pa-

rameters, SKCSk,ESl
, IDESl

, IDCSk
PIDCSk

, P IDESl
, f(PIDCSk

, P IDESl
),mkCSk

,mkESl
, and
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kCSk
. Hence, without knowing these parameters, it is also a computationally infeasible task

for A to compute the said four parameters. This means that A is unable to claim that he

(or she) should be a legitimate cloud server to ESl. Hence, CBACS-EIoT also protects cloud

server (CSk) impersonation attack.

Proposition 6.4. CBACS-EIoT is secure against privileged-insider attack.

Proof. The enrollment phase of individual principal with the RA is achieved in offline mode

as discussed in Sections 6.4.2, 6.4.2, 6.4.2 and 6.4.2. Also, any other entity is not permitted

to send its registration information to the trusted RA. In spite of this, the trusted RA alone

originates all the credentials for individual principal in offline prior to their deployment in

the IoT environment. Later, the RA encapsulates the corresponding information and stores

them into each principal as specified in Section 6.4.2. Such a setting prevents a privileged-

insider user of the RA, acting as an adversary, to avail any credentials that are pre-deployed

in the memory of the individual entity. Hence, there does not exist any possibility of the

privileged-insider attack in our proposed CBACS-EIoT.

Proposition 6.5. CBACS-EIoT is secure against Ephemeral Secret Leakage (ESL) attack.

Proof. During the access control phase between a smart device and gateway node, the smart

device SDi computes the session key SKSDi,GWj
shared with its associated gateway node

GWj as SKSDi,GWj
= h(h(rSDi

||TCSDi
||PIDSDi

||TSSDi
) ·RGWj

||PIDSDi
), where TCSDi

=

h(IDSDi
||mkSDi

||mkRA ||mkGWj
||RTSSDi

) and RGWj
= h(rGWj

||TCGWj
||TIDSDi

||PIDSDi

||PIDGWj
||TSGWj

) · G. On the other hand, GWj also calculates the session key SKGWj ,SDi

shared with SDi as SKGWj ,SDi
= h(h(rGWj

||TCGWj
||TIDSDi

||PIDSDi
||PIDGWj

||TSGWj
) ·

RSDi
||PIDSDi

), where TCGWj
= h(IDGWj

||mkGWj
||RTSGWj

||mkRA) and RSDi
= h(rSDi

||TCSDi
||PIDSDi

||TSSDi
) ·G. From Theorem 6.1, it follows that SKSDi,GWj

(= SKGWj ,SDi
).

Similarly, from Theorems 6.2 and 6.3, the distinct session keys SKGWj ,ESl
(= SKESl,GWj

) and

SKESl,CSk
(= SKCSk,ESl

) are shared between a gateway node GWj and an edge server ESl,

and between ESl and a cloud server CSk, respectively.

Intuitively, it can be easily seen from Section 6.5.2 that the “session key” is the arrangement

of both session-centric (ephemeral) credentials (also called as “short-term secrets”), which

are mainly the random numbers and timestamps, and the “long-term secrets” (temporal

credentials, master keys, pseudo identities, and bivariate polynomial shares). The session

keys SKSDi,GWj
, SKGWj ,ESl

and SKESl,CSk
can only be derived when an adversary A would

compromise both the session-centric as well as long-term secrets. Moreover, utilization of
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both random numbers and timestamps in session keys computation between SDi and GWj or

between GWj and ESl or between ESl and CSk over different sessions forms always distinct

session keys. In addition, for a particular session, even if any of the session keys is disclosed to

A, it will not effect in computing the session keys over other sessions. It happens due to the

utilization of short-term and long term secrets during session keys formation. Hence, CBACS-

EIoT is resilient against “session-temporary information attack”. Meanwhile, CBACS-EIoT

also preserves the “perfect forward and backward secrecy” property. Combining these, we

conclude that CBACS-EIoT is secure against “ESL attack”.

Proposition 6.6. CBACS-EIoT provides mutual authentication among various entities in-

volved in the IoT network.

Proof. During the access control phase between an IoT smart device (SDi) and its respective

gateway node (GWj) as presented in Section 6.4.3, SDi checks its GWj’s legitimacy before

construction of a session secret key and vice versa. In such a provision, GWj initially verifies

the freshness of SDi’s request message (MsgSG1) by substantiating the timestamp received

in the same message. Later, GWj checks the signature (Signi: computed on rSDi
utilizing

the private key (kSDi
) of the smart IoT device) of SDi by verifying the condition: Signi ·

G
?
=RSDi

+h(PubSDi
|| PubGWj

||TSSDi
|| TIDSDi

|| PIDSDi
) · PubSDi

. If both the conditions

are substantiated successfully, GWj establishes a secret shared session key with SDi. Similarly,

SDi also forms the shared secret session key with GWj. Furthermore, to justify that the two

intended parties (GWj and SDi) exchange the same shared secret session key (SKGWj ,SDi
=

SKSDi,GWj
) or not, a session key verifier (SKVSDi,GWj

) computation (at device end) and

validation (at GWj-side) approach is put forward. This ensures that both SDi and GWj

share the same shared secret key for a particular session.

In the similar fashion, both GWj and ESl construct their shared secret session key

SKGWj ,ESl
= SKESl,GWj

followed by a successful mutual authentication task. More precisely,

ESl first checks the freshness of GWj’s request message (MsgGE1) by verifying the received

timestamp appended into the same message. Later, ESl verifies the signature (Signj: com-

puted on rGWj
by utilizing the private key (kGWj

) of the gateway node) received from GWj by

checking the condition: Signj ·G
?
=RGWj

+h(TIDGWj
||PubGWj

||PIDGWj
||TSGWj

) ·PubGWj
.

If both the conditions are verified successfully, ESl establishes a secret shared session key with

GWj. The substantiation of ESl’s legitimacy to GWj is as similar as the verification process

between SDi and GWj.

During the key management phase between an edge server (ESl) and its associated

cloud server (CSk) as discussed in Section 6.4.3, CSk checks the legitimacy of ESl before
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establishment of a session secret key and vice versa. CSk first checks the freshness of

ESl’s request message (MsgEC1) by utilizing the timestamps embedded in the same mes-

sage. ESl also checks the legitimacy of CSk by verifying the timestamps from the re-

ceived response message acknowledged by CSk. Later, during session key formation phase,

both CSk and ESl need to show their ability to decrypt the session-specific random chal-

lenges, such as BCSk
(= h(rCSk

||TSCSk
||kCSk

) ⊕ h(f(PIDCSk
, P IDESl

)||TSCSk
)) and AESl

(=

h(rESl
||PIDESl

||PIDCSk
||TSESl

||kESl
) ⊕ h(f(PIDESl

, P IDCSk
)||TSESl

)) by utilizing their

pre-shared polynomial shares. If both the entities are able to decrypt the random challenges,

ESl and CSk establish a secret shared session key between them. Therefore, CBACS-EIoT

provides a robust mutual authentication among different entities involved in the network.

Proposition 6.7. CBACS-EIoT provides strong block verification.

Proof. In CBACS-EIoT, the block mining by the peer nodes (edge servers ESl) in the P2P ES

network is based on the widely-recognized “Ripple Protocol Consensus Algorithm (RPCA)”.

Assume a verifier, say V wants to verify a block present in the blockchain, which can be public,

private or hybrid type. Without any loss of generality, suppose V wishes to verify a public-

type block, say Blockp = {BV, PBHash, MTR, Public, TS, ESl, PubESl
, {Txi |i = 1, 2,

· · · , nt}, CBHash, BSign} as shown in Figure 6.11. V first requires to calculate the Merkle

tree root (MTR′) on the transactions stored in the block Blockp. If the recomputed MTR′

does not match with the stored MTR in Blockp, V discards the Blockm. Otherwise, V needs

to calculate block hash CBHash′ as CBHash∗ = h(BV || PBHash|| MTR∗|| Public|| TS||
ESl|| PubESl

|| Tx1|| Tx2|| · · · ||Txnt). If the calculated CBHash′ does not match with the

stored CBHash, V also discards the Blockm. Finally, V verifies the block signature BSign

by applying using the ECDSA signature verification algorithm using the public key PubESl
of

the signer ESl. If the signature validation takes place successfully, V accepts the block Blockp

as legitimate one. Thus, it is worth to observe that verification of a block in the blockchain is

done based on a three-level verification process.

Proposition 6.8. CBACS-EIoT is resilient against IoT smart devices physical capture attack.

Proof. In the presence of an unfriendly territory, there may be a chance to physically capture

of few IoT smart devices (SDi) by an adversary A as discussed in the proposed threat model

(Section 6.3.2). Meanwhile, A can extract all the pre-loaded credentials {TIDSDi
, P IDSDi

,

TCSDi
, (kSDi

, PubSDi
), Eq(u, v), G, h(·)} from a physically captured IoT smart device SDi’s

memory by utilizing the “power analysis attacks” [141]. The secret credentials {PIDSDi
,



182 Consortium Blockchain-Enabled Access Control in Generic IoT

TCSDi
, (kSDi

, PubSDi
)} stored in SDi are unique from the credentials pre-deployed in other

smart devices, SDm. Again, the pseudo identity PIDSDi
and temporal credential TCSDi

of

an IoT smart device SDi is computed by utilizing a “cryptographic one-way hash function”

by the registration authority RA in offline mode. Therefore, it is not possible for A to

reveal the master keys mkSDi
, mkRA and mkGWj

and original identity of SDi. As a result,

physical compromise of the secret credentials pre-deployed in SDi’s memory can not lead

the formation of the session keys among other non-captured smart IoT devices as well as

the non-compromised IoT devices and their associated gateway nodes. In other words, the

non-compromised smart devices can still able to communicate with their gateway nodes GWj

with 100% security. This scenario is known as “unconditionally secure” against node capture

attack . Therefore, CBACS-EIoT is resilient against “IoT smart devices physical capture

attack”.

Proposition 6.9. CBACS-EIoT preserves both anonymity and untraceability properties.

Proof. During the access control process between an IoT smart device (SDi) and a gateway

node (GWj) in a particular application described in Section 6.4.3, SDi sends the message

MsgSG1 = {TIDSDi
, RSDi

, Signi, TSSDi
}. GWj then generates a new temporary identity

TIDnew
SDi

for SDi, computes TID∗SDi
= TIDnew

SDi
⊕h(SKGWj ,SDi

||TIDSDi
||TSGWj

), and then

sends the message MsgSG2 = {TID∗SDi
, RGWj

, Signj, TSGWj
} to SDi. Meanwhile, after re-

ceiving the message MsgSG2 from GWj, SDi also computes TIDnew
SDi

= TID∗SDi
⊕h(SKSDi,GWj

||TIDSDi
||TSGWj

), updates TIDSDi
with the newly computed TIDnew

SDi
in its memory, and

sends the message MsgSG3 = {SKVSDi,GWj
, TS∗SDi

} to GWj. GWj also updates TIDSDi
with

TIDnew
SDi

corresponding to PIDSDi
in its database in order to sync with SDi. Since TIDSDi

is updated with TIDnew
SDi

, an adversary even intercepts the messages MsgSG1 , MsgSG2 and

MsgSG3 , he/she can not linked TIDSDi
with TIDnew

SDi
with the messages exchanged between

SDi and GWj in the next session. Moreover, all the components in the messages MsgSG1 ,

MsgSG2 and MsgSG3 are dynamic and distinct, because they are associated with the random

numbers (secrets) and current timestamps. The similar arguments work for the messages

MsgGE1 , MsgGE2 and MsgGE3 for the access control process between a gateway node (GWj)

and an edge server (ESl) in a particular application described in Section 6.4.3, and the mes-

sages MsgEC1 , MsgEC2 and MsgEC3 during the key management process between an edge

server (ESl) and a cloud server (CSk) described in Section 6.4.4. Hence, we can say that the

proposed CBACS-EIoT preserves both anonymity and untraceability properties at the same

time.
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Figure 6.14: HLSPL Specification for the role of the RA (Case 1)

6.6 Formal security verification via AVISPA tool: sim-

ulation study

In recent years, the formal security verification using automated tools becomes an important

component in proving the security of a security protocol. The “Automated Validation of Inter-

net Security Protocols and Applications (AVISPA)” [17] is one of the widely-used automated

software tools, which tests whether a security protocol is “safe” or “unsafe” or “inconclusive

(may or may not be safe)” against passive/active attacks. Detailed discussions on AVISPA

are provided in Chapter 2 (see Section 2.3.1).
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Figure 6.15: HLSPL Specification for the role of smart device SDi (Case 1)
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Figure 6.16: HLSPL Specification for the role of gateway node GWj (Case 1)
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Figure 6.17: HLSPL Specification for the role of the session, goal and environment (Case 1)

The designed security protocols need to tested AVISPA tool require to be specified in a

language, called “HLPSL (High Level Protocols Specification Language)”, which is a role-

oriented language [17]. The implementation of a security protocol in HLPSL is coded in a

file with extension “hlpsl”. HLPSL contains two types of roles: a) the “basic roles” that are

optional roles and used to represent each participant role, and b) the “composition roles”

that are mandatory roles and mainly used to represent scenarios of the developed basic roles.

It is worth noticing that each role is treated as an independent role from other roles, which
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Figure 6.18: Simulation results of CBACS-EIoT (Case 1) under OFMC and CL-AtSe backends

receive some starting information by the parameters and then contact with other roles by the

channels. In AVISPA, the channels are considered as the “Dolve-Yao (DY) threat model”

[67] (as it is also defined in our threat model in Section 6.3.2) channels and therefore, an

adversary can intercept, modify, update, delete of inject fake messages during communication

over public channels. More detailed information on AVISPA and HLPSL can be found in [17].

In our implementation, we consider the following three cases:

• Case 1: In this scenario, we have defined the basic roles for the participants: the RA

(see in Figure 6.14) “IoT smart device (SDi)” (see in Figure 6.15) and “gateway node

(GWj)” (see in Figure 6.16), and the mandatory composition roles (session and goal

& environment) during the access control phase between SDi and GWj (see in Figure

6.17).

• Case 2: In this scenario, we have defined the basic roles for the participants: the RA (see

in Figure 6.19), “gateway node (GWj)” (see in Figure 6.20) and “edge server (ESl)” (see

in Figure 6.21), and the mandatory composition roles (session and goal & environment)

during the access control phase between GWj and ESl (see in Figure 6.22).

• Case 3: In this scenario, we have defined the basic roles for the participants: the RA

(see Figure 6.24), “edge server (ESl)” (see in Figure 6.25) and “cloud server (CSk)”

(see in Figure 6.26), and also the mandatory composition roles (session and goal &
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Figure 6.19: HLSPL Specification for the role of the RA (Case 2)

environment) during the key management phase between ESl and CSk (see in Figure

6.27).

We have then simulated the three cases defined above under the “Security Protocol ANima-

tor for AVISPA (SPAN)” tool [18]. The simulation results for the three cases are illustrated in

Figures 6.18, 6.23 and 6.28, respectively. It is worth noticing that we have applied only OFMC

and CL-AtSe backends for the formal security verification in all the three cases. We have ex-
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Figure 6.20: HLSPL Specification for the role of gateway node GWj (Case 2)
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Figure 6.21: HLSPL Specification for the role of edge server ESl (Case 2)
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Figure 6.22: HLSPL Specification for the role of the session, goal and environment (Case 2)

cluded the simulation results under two other backends, namely SATMC and TA4SP. This

is because these backends do not currently support implementing the “bitwise exclusive-OR

(XOR)” operation, and the simulation results under these backends will appear as “inconclu-

sive”. The simulation results show that the proposed scheme for all the cases (Case 1, Case 2

and Case 3) is secure against both “replay” and “man-in-the-middle” attacks.
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Figure 6.23: Simulation results of CBACS-EIoT (Case 2) under OFMC and CL-AtSe backends

Table 6.3: Communication costs comparative study

Protocol Number of transmitted Total communication

messages cost (in bits)

Luo et al. [131] 2 3040

Li et al. [120] 2 3488

Aziz et al. [20] 5 4320

CBACS-EIoT (Case CA1) 3 1728

CBACS-EIoT (Case CA2) 3 1984

CBACS-EIoT (Case CA3) 2 1504

6.7 Comparative analysis

This section provides a detailed comparative study on the following: a) “security and func-

tionality features”, b) communication costs, and c) computation costs, among the proposed

CBACS-EIoT and other relevant existing schemes, such as the schemes suggested by Luo et

al. [131], Li et al. [120], and Aziz et al. [20].

In this section, we take the following three cases for comparative analysis for communica-

tion and computation costs:

• Case CA1: Access control phase between a smart device SDi and its associated gateway

node GWj.
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Figure 6.24: HLSPL Specification for the role of the RA (Case 3)

• Case CA2: Access control phase between a gateway node GWj and its associated edge

server ESl.

• Case CA3: Key management phase between an edge server ESl and its associated

cloud server CSk.

6.7.1 Comparative study on communication costs

For comparative analysis on communication costs, we consider an identity, a random nonce

(number), timestamp, an elliptic curve point and a hash value (we use SHA-256 [140] is used
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Figure 6.25: HLSPL Specification for the role of edge server ESl (Case 3)
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Figure 6.26: HLSPL Specification for the role of cloud server CSk (Case 3)
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Figure 6.27: HLSPL Specification for the role of the session, goal and environment (Case 3)

for blockchain technology), which need 160 bits, 160 bits, 32 bits, (160 + 160) = 320 bits and

256 bits, respectively. We assume that a message size in the schemes of Luo et al. [131] and

Li et al. [120] as 1024 bits. We consider the 160-bit ECC because it provides the equivalent

security level when it is compared with that for 1024-bit RSA public key cryptosystem [22].
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Figure 6.28: Simulation results of CBACS-EIoT (Case 3) under OFMC and CL-AtSe backends

Table 6.4: Execution costs (in milliseconds) required for different cryptographic operations

[224]

Entity Tecm Teca Te Tbp Th Tm

IoT smart device (Mobile device) 13.405 0.081 2.249 32.713 0.056 0.008

Gateway/Server 2.165 0.013 0.339 5.427 0.007 0.001

The access control and key management phases are considered for the proposed CBACS-

EIoT and other schemes [20, 120, 131]. In Case CA1, three communicated messages MsgSG1 =

{TIDSDi
, RSDi

, Signi, TSSDi
}, MsgSG2 = {TID∗SDi

, RGWj
, Signj, TSGWj

} and MsgSG3 =

{SKVSDi,GWj
, TS∗SDi

} require (160 + 320 + 160 + 32) = 672 bits, (256 + 320 + 160 + 32) = 768

bits, and (256 + 32) = 288 bits, respectively, which altogether require 1728 bits. In Case CA2,

three messages MsgGE1 = {TIDGWj
, RGWj

, Signj, TSGWj
}, MsgGE2 = {PID∗ESl

, T ID∗GWj
,

RESl
, Signl, TSESl

} and MsgGE3 = {SKVGWj ,ESl
, TS∗GWj

} need (160 + 320 + 160 + 32) = 672

bits, (256 + 256 + 320 + 160 + 32) = 1024 bits and (256 + 32) = 288 bits, respectively, which

altogether need 1984 bits. Furthermore, in Case CA3, two messagesMsgEC1 = {TIDESl
, AESl

,

TSESl
} and MsgEC2 = {BCSk

, CCSk
, DCSk

, SKVCSk,ESl
, TSCSk

} need (160 + 256 + 32) = 448

bits and (256 + 256 + 256 + 256 + 32) = 1056 bits, respectively, which altogether require 1504

bits. Table 6.3 illustrates comparison of communication costs among the proposed CBACS-

EIoT and other schemes of Luo et al. [131], Li et al. [120] and Aziz et al. [20] in terms of

number of transmitted messages and total communication costs in bits. It is evident that
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CBACS-EIoT performs better in communication costs as compared to other schemes in all

the cases.

6.7.2 Comparative study on computation costs

For comparative analysis on computation costs, the time needed for an “ECC point addition”,

an “ECC point multiplication”, a “cryptographic one-way hash function”, a “bilinear pairing

operation”, a “modular exponentiation operation”, a “t-degree polynomial evaluation” and a

“modular multiplication” are denoted by Tecm, Teca, Th, Tbp, Te, Tpoly and Tm, respectively.

The existing experimental results performed by Wu et al. [224] are used for rough computation

costs. Wu et al. [224] used a “personal computer (Dell with an Intel Core i5-4460S@2.90GHz

processor, 4GB main memory and the Window 8 operating system)” as the server, and a

“personal mobile device (Samsung Galaxy S5 with a Quad-core 2.45G processor, 2GB memory

and the Google Android 4.4.2 operating system)” as mobile device. Using the Horner’s rule

[110], the evaluation of a “t-degree uni-variate polynomial” needs t modular multiplications

and t modular additions, and hence, Tpoly = tTm + tTa ≈ tTm by omitting modular addition

operation as it is negligible as compared to “modular multiplication” operation. Approximate

times needed for various cryptographic primitives based on experimental results reported in

[224] are provided in Table 6.4.

The access control and key management phases are again considered for the proposed

CBACS-EIoT and other schemes [20, 120, 131]. In Case CA1, a smart device (SDi) and a

gateway node (GWj) require 4Tecm + Teca + 5Th ≈ 53.981 ms and 4Tecm + Teca + 5Th ≈ 8.708

ms, respectively. In Case CA2, GWj and an edge server ESl require 4Tecm +Teca +Tpoly + 7Th

≈ (8.722 + 0.001t) ms and 4Tecm + Teca + Tpoly + 7Th ≈ (8.722 + 0.001t) ms, respectively. In

Case CA3, ESl and a cloud server CSk need Tpoly + 7Th ≈ (0.049 + 0.001t) ms and Tpoly + 7Th

≈ (0.049 + 0.001t) ms, respectively. Even if the degree of bivariate polynomial is taken as

t = 1000, in Case CA2, total computation cost becomes 19.444 ms, and in Case CA3, total

computation cost becomes 2.098 ms. Table 6.5 tabulates the comparison of computation costs

among the proposed CBACS-EIoT and other schemes [20, 120, 131]. It is observed that the

proposed CBACS-EIoT requires less computation cost from the server side (gateway/edge

server/cloud server) as compared to the schemes [120, 131]. Moreover, the computation cost

of the proposed CBACS-EIoT at the smart device side is also comparable in that for other

schemes [120, 131]. Though the computational costs needed for IoT smart device or user

side and server side in the scheme of Aziz et al. [20] are lower as compared to those for our

proposed CBACS-EIoT, it is justifiable because CBACS-EIoT provides significantly better
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Table 6.5: Computation costs comparative study

Protocol Smart device/user cost Gateway/Server cost

Luo et al. [131] Th + Tbp 3Tecm + Teca + 3Tbp + Te + 3Th

≈ 32.769 ms ≈ 23.149 ms

Li et al. [120] Th + Tbp 3Tecm + 2Teca + Th + 4Tbp

≈ 32.769 ms ≈ 28.236 ms

Aziz et al. [20] 13Th 4Th

≈ 0.728 ms ≈ 0.028 ms

CBACS-EIoT (Case CA1) 4Tecm + Teca + 5Th 4Tecm + Teca + 5Th

≈ 53.981 ms ≈ 8.708 ms

CBACS-EIoT (Case CA2) − 8Tecm + 2Teca + 2Tpoly + 14Th

≈ (17.444 + 0.002t) ms

CBACS-EIoT (Case CA3) − 2Tpoly + 14Th

≈ (0.098 + 0.002t) ms

security and functionality features needed for a blockchain-based scheme, and also requires

less communication costs as compared to the scheme of Aziz et al. [20].

6.7.3 Comparative study on functionality and security attributes

Finally, Table 6.6 shows a comparative analysis on various “functionality and security at-

tributes” (ATTR1–ATTR15). From this table, it is evident that the proposed CBACS-EIoT

supports all the attributes (ATTR1–ATTR15) listed there. On the other hand, both the

schemes of Luo et al. [131] and Li et al. [120] do not support some attributes, such as

ATTR2, ATTR7–ATTR12, ATTR14 and ATTR15. In addition, Aziz et al.’s scheme [20] does

not support the attributes ATTR8–ATTR10, ATTR12 and ATTR15. More importantly, the

proposed CBACS-EIoT only supports the blockchain-based solution in order to keep trans-

parency, immutability and decentralized properties.
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Table 6.6: Comparison of functionality & security attributes

Attribute (ATTR) Luo et al. [131] Li et al. [120] Aziz et al. [20] CBACS-EIoT (all cases)

ATTR1 X X X X

ATTR2 × × X X

ATTR3 X X X X

ATTR4 X X X X

ATTR5 X X X X

ATTR6 X X X X

ATTR7 × × X X

ATTR8 × × × X

ATTR9 × × × X

ATTR10 × × × X

ATTR11 × × X X

ATTR12 × × × X

ATTR13 X X X X

ATTR14 × × X X

ATTR15 × × × X

ATTR1: “resilience against replay attack”; ATTR2: support to mutual authentication;

ATTR3: support to key agreement; ATTR4: “resilience against smart device impersonation

attack”; ATTR5: “resilience against gateway/server impersonation attack”; ATTR6: “re-

silience against malicious device deployment attack”; ATTR7: “resilience against smart de-

vice physical capture attack”; ATTR8: “resilience against ESL attack under the CK-adversary

model”; ATTR9: support to anonymity property; ATTR10: support to untraceability prop-

erty; ATTR11: “resilience against man-in-the-middle attack”; ATTR12: “provide formal

security analysis”; ATTR13: “support to formal security verification using AVISPA tool”;

ATTR14: support to dynamic device addition phase”; ATTR15: support to blockchain-based

solution

X: “a scheme is secure or it supports an attribute (ATTR)”; ×: “a scheme is insecure or it

does not support an attribute (ATTR)”.

6.8 Summary

In this article, we proposed a novel consortium blockchain-enabled access control scheme

in edge computing based generic IoT environment (CBACS-EIoT). CBACS-EIoT not only

supports access control among IoT smart devices and their associated gateway nodes, and

among the gateway nodes and edge servers, but also key management process among the edge

servers and the cloud servers. The transactions created from the data gathered security from

the IoT smart devices by the gateway nodes are securely forwarded to the nearby edge nodes for
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creating the blocks. The blocks are then mined by the nodes in the P2P ES network in order to

verify and add them in the blockchain center. A detailed security analysis including the formal

security under the random oracle model and formal security verification with the help of the

broadly-used AVISPA automated software verification tool suggest that the proposed CBACS-

EIoT can resist several potential attacks needed in a generic IoT environment. Moreover, a

rigorous comparative study reveals that the proposed CBACS-EIoT provides better security

and functionality attributes, and low communication cost and comparable computation cost

as compared to those for other relevant schemes.





Chapter 7

Conclusion and Open Research

Challenges

We first summarize the main contributions made in this thesis. Next, we also discuss some

open research challenges that could be interesting for the security issues in IoT-related appli-

caions.

7.1 Contributions

In this thesis, we attemted to design three access control frameworks in order to provide the

security in IoT-related environments for secure information sharing and data storage.

• We first designed a novel private blockchain-based access control protocol in IoT-enabled

smart-grid system.

• Next, we suggested a new private blockchain envisioned access control system for secur-

ing industrial IoT (IIoT)-based pervasive edge computing.

• Finally, we proposed a novel consortium blockchain-enabled access control mechanism

in edge computing based generic IoT environment.

The first proposal of the thesis supplied in Chapter 4 is to design a new blockchain-based

access control protocol in IoT-enabled smart-grid system, called DBACP-IoTSG. Through

the proposed DBACP-IoTSG, the data is securely brought to the service providers from their

respectively smart meters. The P2P network is formed by the participating services providers,

where the peer nodes are responsible for creating the blocks from the gathered data securely
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from their corresponding smart meters and adding them into the blockchain after validation

of the blocks using the voting-based consensus algorithm. In this work, the blockchain is

considered as private because the data collected from the consumers of the smart meters are

private and confidential. By the formal security analysis under the random oracle model,

non-mathematical security analysis and software-based formal security verification, DBACP-

IoTSG is shown to be resistant against various attacks. A detailed comparative study reveals

that DBACP-IoTSG supports more functionality features and provides better security apart

from its low communication and computation costs as compared to recently proposed relevant

schemes. In addition, the blockchain implementation of DBACP-IoTSG has been performed

to measure computational time needed for the varied number of blocks addition and also the

varied number of transactions per block in the blockchain.

The second contribution of the thesis provided in Chapter 5 is to propose a new pri-

vate blockchain-envisioned access control scheme for Pervasive Edge Computing (PEC) in

IIoT environment, called PBACS-PECIIoT. We considered the private blockchain consisting

of the transactions and registration credentials of the entities related to IIoT, because the

information is strictly confidential and private. The security of PBACS-PECIIoT is signifi-

cantly improved due to usage of blockchain. A meticulous comparative analysis exhibits that

PBACS-PECIIoT achieves greater security and more functionality features, and requires low

costs for communication and computational as compared to other pertinent schemes.

Finally, we have designed another novel consortium blockchain-enabled access control

scheme in edge computing based generic IoT environment (called CBACS-EIoT) in Chapter

6. In CBACS-EIoT, the mutual authentication among the IoT smart devices and the gateway

node(s), and also among the gateway node(s) and respective edge server(s) take place. In

addition, key management phase is executed among the edge server(s) and associated cloud

server(s). Using the established secret keys, the entities in the network communicate securely.

The data gathered securely by the gateway nodes is then used to form various types of blocks

(private, public or consortium) at the edge server(s) based on application types in the generic

IoT environment. The created blocks are mined by the edge servers in order to add them in

the blockchain center. A detailed security analysis including the formal security has revealed

that the proposed CBACS-EIoT is robust against various potential attacks needed in the IoT

environment. To further strengthen the security, the simulation based formal security verifi-

cation on CBACS-EIoT has been carried out to exhibit that CBACS-EIoT is secure against

passive and active attacks. Finally, a meticulous comparative performance analysis shows

that CBACS-EIoT offers superior security and supports more functionality features, and also
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provides less communication and computational overheads as compared to existing relevant

schemes.

7.2 Open research challenges

In this section, we mention few challenging research problems that can be targeted to enhance

the security in IoT-related applications.

7.2.1 Post-quantum access control

In an IoT environment, the communicated messages transmitted among the entities have

the sensitive information. Thus, maintaining message integrity and data privacy become the

challenging task due to resource-limited of the IoT smart devices.

In recent years, several security protocols, including sauthentication [139, 171, 184, 222],

access control [65, 86, 128, 194] and key agreement [48, 76, 97, 195] are suggested in the litera-

ture. However, these security solutions are based on traditional number-theoretic assumptions.

However, traditional cryptographic protocols dependent on the traditional number theory as-

sumptions may not resist the quantum attacks, as stated by Shor [183]. To overcome these

issues, a “post-quantum cryptography (known as quantum-resistant cryptography)” can be

deployed in IoT environment that can provide security against both quantum and classical at-

tacks [13]. Towards this goal, the “lattice-based cryptography (LBC)” can serve as a possible

solution [46, 127, 129] due to the following major advantages:

• The computational hard problems like “integer factorization problem (IFP)” and “dis-

crete logarithm problem (DLP)” may not be able to resist the quantum attacks, whereas

there are no quantum algorithms till date that can solve the lattice based security pro-

tocols in polynomial time.

• The cryptographic protocols that are dependent on the hardness of “average case” lattice

challenges can be further reduced to the hardness of “worst case” lattice problems as

well. Most public key-based cryptosystems suffer from such a problem.

• Most operations in LBC are linear, and hence, the LBC framework will enjoy computa-

tional efficiency over traditional public-key based cryptosystems.

Because the IoT devices are resource constrained in nature, they have less memory and limited

battery power. We need then design the security protocols that should be efficient enough so
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that they can properly function in the network. Therefore, the lattice based security schemes

should be adopted to the IoT devices in order to provide superior security as compared to

traditional public-key schemes.

7.2.2 AI/ML-based Big data analytics

In an IoT environment, a huge amount of data is produce through various real-time appli-

cations. Thus, there is a great need for Big data analytics for the gathered data. Towards

this, the machine learning (ML) which is a branch of artificial intelligence (AI) can provide

“an intelligence service based on the data as well as algorithms by learning and improving

its accuracy”. Whether the collected data is genuine (authentic) or a noisy data, the ML

techniques offer more accurate results on predictions. In case the data is poisonous, it may

lead to wrong predictions [26, 53, 144, 190]. As a result, it would be interesting if the ML can

be used for the malicious behavior of the deployed IoT devices in the network. In addition,

the ML techniques could be useful for detection of attacks, data security and privacy, and

malware analysis.
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