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Abstract

The ability to selectively focus on desired sounds in noisy environments poses a significant chal-
lenge with broad applications, including smart devices, driver assistance systems, smart homes, video
conferencing, drones, and hearing aids. Acoustic source localization involves identifying the position
of a sound source amidst various factors like reflections, reverberation, and background noise. While
extensively studied, acoustic source localization remains an active area of research due to its diverse
applications. Existing localization algorithms face several challenges that limit their effectiveness and
practicality. These challenges include reliance on narrowband models, computational efficiency, adapt-
ability to non-stationary targets, robustness against noise and reverberations, high-resolution localiza-
tion, and distinguishing between correlated sources. Overcoming these challenges is crucial for the
development of advanced localization algorithms that enhance accuracy, efficiency, and reliability in
practical scenarios.

This thesis is divided into two main parts. Firstly, a comprehensive performance analysis is con-
ducted to evaluate various localization algorithms using real-world datasets, aiming to gain a deep
understanding of their capabilities. Secondly, a novel technique called trajectory localization (TL) is
proposed, which enables accurate estimation of complex trajectories of multiple moving sources simul-
taneously, eliminating the need for tracking filters.

The technical contributions of this thesis include experimental validation of existing localization
algorithms and the development of wideband signal models and algorithms on real-world recordings.
Deep learning architecture is introduced that incorporates direction of arrival (DOA) derivatives for
improving the temporal continuity of DOA, hence resulting in smoother source trajectories. Next, we
develop parametric models and algorithms for joint localization and tracking tasks and explore various
trajectory localization algorithms. The effectiveness of the proposed algorithms is demonstrated through
their application to real-world recordings in challenging scenarios. Moreover, the proposed models and
algorithms have the potential to extend beyond sound waves and be applied to other data types, such as
radio waves, expanding their impact across various applications.
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Chapter 1

Introduction

Acoustic source localization involves determining the position of a sound source in the presence of
noise, which is further affected by factors like reflections, reverberation, and background interference.
The ability to concentrate on desired sounds in noisy environments is a challenging task and finds broad
applications in areas such as smart devices [1], advanced driver assistance for detecting other vehicles
[2], smart home to interact with the speaker [3], video conferencing for better meeting experience [4],
drones to recognize activity in their environment [5], and hearing aid to improve the focus on the desired
sound source [6]. Microphone arrays are commonly used in audio-based devices to capture sound
signals from multiple directions.

Acoustic source localization refers to the process of determining the exact spatial coordinates of a
sound source. In this thesis, we consider localization as direction-finding problem where the aim is to
find the direction of arrival (DOA). In DOA estimation problem, the angle or direction from which a
sound wave arrives at the sensor array is estimated. Localization provides estimates of source locations
at specific time instants. Along with localization, it is typically desired that the sources are tracked over
time. This is important because sources move around spatially; connecting the localization results over
time provides a complete source trajectory. Despite being an extensively studied problem in array signal
processing, acoustic source localization remains a critical and active area of research due to its diverse
applications.

The existing localization algorithms encounter multiple challenges that limit their effectiveness and
practicality. These challenges include reliance on wideband models that assume a flat spectrum, and
failing to capture the rich frequency spectrum in natural audio signals. It is crucial to incorporate co-
herent modelling and processing across multiple frequencies to overcome this limitation. Additionally,
computational efficiency is a key concern, demanding fast and hardware-friendly algorithms for real-
time applications. Adapting to non-stationary targets and accommodating changes in data is essential
for robust localization. Moreover, algorithms must be robust against noise and reverberations to oper-
ate accurately in noisy environments. High-resolution localization is vital when sources are in close
proximity, necessitating precise localization of each source. Lastly, accurately distinguishing between
correlated sources poses a challenge that needs to be addressed. Overcoming these challenges is crucial
for developing advanced localization algorithms and enhancing accuracy, efficiency, and reliability in
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various practical scenarios.

This chapter presents a general overview along with the background and motivation of the research
carried out in this thesis. It is followed by presenting the research scope, problems, and objectives of
this thesis. Towards the end, the contribution of the proposed research to the field and the author’s
contribution to the mentioned papers are summarised.

1.1 Objective and scope of the thesis

Accurate localization and tracking of sound sources in dynamic and noisy environments are crucial
with the increasing prevalence of smart devices equipped with microphone arrays. This thesis aims
to investigate and analyze various localization algorithms on real-world datasets to understand their
performance comprehensively. As audio signals have a rich frequency spectrum, the thesis aims to
enhance existing localization algorithms by exploring many wideband models and algorithms and their
applicability in real-world scenarios. Additionally, the research focuses on deep neural network (DNN)
based polyphonic sound event localization and detection (SELD) problems [7], which combine detection
and localization tasks and have practical applications. By incorporating DOA and DOA derivatives,
the proposed model seems to improve the temporal continuity of DOA estimates and suppress sudden
changes in DOA.

Furthermore, the thesis tackles two significant challenges in sound source localization and tracking.
Firstly, existing methods assume that the DOA of sound sources remains constant within short inter-
vals, limiting their effectiveness in capturing fast-moving sources. Secondly, grid-based approaches
commonly used in traditional methods suffer from reduced accuracy when resolving non-grid-aligned
source parameters. To overcome these limitations, this research focuses on developing novel paramet-
ric models and algorithms for joint localization and tracking tasks, eliminating the explicit need for
tracking filters to obtain smoother trajectories. The signal models and algorithms will be developed
to accurately estimate complex trajectories of multiple moving sources simultaneously. The research
focuses on general trajectory models capable of capturing linear and nonlinear motion. We introduced
gridless algorithms for DOA trajectory estimation to overcome the limitations of grid-based algorithms.
The performance evaluation of the proposed algorithms is carried out to demonstrate that by directly
estimating source trajectories, the algorithms will offer higher resolution, improved noise robustness,
and faster processing. The research will ultimately contribute to achieving more accurate source tra-
jectories without the explicit need for tracking filters, thereby advancing the sound source localization
and tracking field. In this thesis, we do not specifically address issues such as reverberation, reflections,
estimating source numbers, or considering varying source numbers.

The developed signal models and algorithms will not be limited to sound waves but can be extended
to other data types, such as radio waves. This versatility will expand the impact of the research across
various applications, including radar-based tracking, autonomous vehicles, and robot navigation [8–11].
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Ultimately, this research has the potential to contribute to a safer and more interconnected world where
smart devices can effectively perceive and track sources, leading to improved performance in numerous
applications.

1.2 Contributions

The following are the main technical contributions of this thesis:

• This thesis investigates and analyzes the performance of various existing localization algorithms
such as conventional beamforming (CBF), multiple signal classification (MUSIC), and sparse
Bayesian learning (SBL) using the real-world recordings from localization and tracking (LO-
CATA) dataset [12]. We demonstrate the effectiveness of SBL as a promising method for DOA
estimation, which addresses real-world challenges included in LOCATA. The performance anal-
ysis shows that the compressive sensing (CS) algorithm of SBL outperforms CBF and MUSIC in
all the considered tasks. The work establishes SBL as a robust approach for DOA estimation in
challenging scenarios.

• Building upon the findings of the above analysis, the thesis focuses on wideband DOA estima-
tion using SBL algorithms. We address the limitations of existing wideband SBL algorithms by
proposing a realistic signal model that considers the change in source variance across the fre-
quency range. Three wideband SBL variants (SBL1, SBL2, and SBL3) are applied and evaluated,
along with wideband versions of CBF and MUSIC. Through simulations and experiments using
the LOCATA dataset, we demonstrate that SBL3, which incorporates a shared colored spectrum,
performs best across different signal models and array configurations. This work presents an im-
proved understanding of wideband SBL algorithms and their applicability in real-world scenarios.
The findings reveal the effectiveness of an intermediate model that allows the spectrum to vary
with the frequency band, which accurately balances sparsity and power spectrum for real-world
signals.

• Next, we explore Deep Neural Network (DNN) based methods to show the significance of pre-
dicting DOA derivatives alongside DOA for enhancing localization performance. We propose a
new model, which combines DOA and their derivatives, and compare it with the existing which
predicts only DOA. Our experiments using the TAU-NIGENS Spatial Sound Events 2021 dataset
highlight the improvement achieved by considering both DOA and derivatives, especially under
low signal-to-noise ratio (SNR) conditions. This study emphasizes the importance of incorporat-
ing higher-order derivatives in sound event localization and detection tasks, opening avenues for
future research.

• We introduce novel parametric signal models: polynomial and bandlimited, to identify DOA tra-
jectories, which capture the dynamic motion of a source within a block. Instead of estimating
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DOA, the work focuses on estimating trajectory parameters. The grid-based TL-CBF, TL-OMP,
and TL-SBL algorithms are developed to estimate DOA trajectories. Grid-based methods face
challenges in resolving non-grid-aligned source parameters, leading to reduced localization accu-
racy. Gridless algorithms overcome these limitations by estimating parameters in continuous tra-
jectory space, improving real-world performance. We propose two gridless algorithms: i) Sliding
Frank-Wolfe (SFW), which solves the Beurling LASSO problem, and ii) Newtonized Orthogonal
Matching Pursuit (NOMP), which improves over OMP using cyclic refinement. Furthermore,
we extend our analysis to include wideband processing. The results present the impact of SNR,
number of snapshots, resolution limits, grid step size, and computational complexity. The study
highlights the potential of parametric trajectories to eliminate the need for tracking filters and
improve both localization and tracking performance.

• We apply the proposed algorithms to recordings from LOCATA. These recordings present chal-
lenging scenarios, such as near-field sources, ambient noise from nearby roads, and multiple
moving sources and arrays. We are particularly interested in observing how the proposed TL
algorithms in this thesis can be applied to showcase their superior performance in such scenarios.

Furthermore, in conjunction with the aforementioned contributions, the author has also participated
in developing data-driven methods for trajectory localization tasks. Specifically, the utilization of the
U-Net architecture has facilitated the estimation of linear trajectory parameters [13].

1.3 Structure of the thesis

The thesis is structured into the following chapters. Chapter 2 offers an overview of existing literature
on DOA estimation, including traditional methods, CS methods, DNN based methods, and gridless
localization methods are discussed.

Chapter 3 focuses on DOA estimation algorithms applied to real-world datasets, specifically LO-
CATA and detection and classification of acoustic scenes and events (DCASE). Experimental validation
of CBF, MUSIC and SBL on LOCATA is conducted, followed by performance analysis of wideband
SBL algorithms using different assumptions about the source spectrum. Additionally, we analyze the
DNN-based architecture for SELD tasks using the DCASE dataset.

In Chapter 4, we introduce a novel concept of trajectory localization for joint localization and track-
ing tasks. We propose several grid-based and gridless trajectory localization (TL) algorithms, where
trajectories are estimated for block array data instead of assuming a constant DOA. The analysis is fur-
ther extended to include multi-frequency signals. We also apply the proposed algorithms to recordings
from LOCATA.

Finally, Chapter 5 concludes the thesis by summarizing the research findings, providing a final per-
spective on the study, and laying the groundwork for future studies.
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Chapter 2

Background and literature review

This chapter discusses the mathematical representation of DOA estimation problem and explains
various localization algorithms. The discussion starts with traditional methods such as CBF, MUSIC,
generalized cross-correlation (GCC), generalized cross-correlation with phase transform (GCC-PHAT),
and steered response power with phase transform (SRP-PHAT) [14–16]. Next, the DOA estimation
problem is formulated as a sparse recovery problem, and CS based methods like basis pursuit (BP),
orthogonal matching pursuit (OMP), and SBL are explained [17, 18]. The chapter also delves into
deep learning-based approaches, which can be broadly categorized into classification and regression
tasks [19]. Finally, the chapter concludes by discussing gridless localization methods, including atomic
norm minimization (ANM) based methods, Newtonized orthogonal matching pursuit (NOMP), and
sliding Frank-Wolfe (SFW) [20–22].

2.1 Direction of arrival estimation

In array signal processing, source localization aims to find the directional information of the source
of interest with respect to receiver array [14]. The source localization is often considered a parameter
estimation problem, where the key parameter of interest is the DOA [23].

Sk(t)

dd
1 2 N-1 N

Figure 2.1 DOA estimation using N-element uniform linear array
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Fig. 2.1 illustrates an N -element uniform linear array (ULA), where d represents the inter-sensor
spacing between two consecutive sensors. Under the far-field assumption (when the distance between
the source and array is much greater than the inter-sensor spacing), the incoming wavefronts from
sources can be considered as plane waves impinging on the array [15]. The direction from which the
propagating wave impinges on the array is called the DOA. As the incident wavefront reaches each
sensor with different time delays, these delays correspond to phase differences in the frequency domain.
Properly arranging these time delays or phase differences can accurately reconstruct the signal received
from a source (the array output). The array response or steering vector represents the relative phase
differences between each element in the sensor array, and for ULA, it is expressed as

a(θk) =



1

ej 2π d
λ
sin(θk)

ej 2π 2d
λ

sin(θk)

...

ej 2π
(N−1)d

λ
sin(θk)


. (2.1)

Here ‘1’ represents the reference signal (received from sensor 1). The phase difference between two
consecutive sensors is ∆ϕ = 2π d

λ sin(θk), where λ is the wavelength and θk is the angle made by
the direction of propagation corresponding to kth source with the normal to the linear array (see Fig.
2.1). Note that (2.1) represents the steering vector for the ULA. The expression of the steering vector
differs across array structures (rectangular, circular, and spherical arrays) and also varies for 2D and 3D
localization.

Let there be K sources with complex amplitudes (x1, x2, . . . , xk) impinging on a ULA with N sen-
sors from different directions (θ1, θ2, . . . , θk) as shown Fig. 2.1. The frequency domain representation
of the narrowband single measurement vector (SMV) can be given as

y =
K∑
k=1

a(θk)xk + nk = Asv x+ n (2.2)



y1

y2
...

yN−1

yN
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1 1 . . . 1
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sin(θ1) ej 2π

d
λ
sin(θ2) . . . ej 2π

d
λ
sin(θK)

...
... . . .

...

ej 2π
(N−2)d

λ
sin(θ1) ej 2π

(N−2)d
λ

sin(θ2) . . . ej 2π
(N−2)d

λ
sin(θK)

ej 2π
(N−1)d

λ
sin(θ1) ej 2π

(N−1)d
λ

sin(θ2) . . . ej 2π
(N−1)d

λ
sin(θK)





x1

x2
...

xK−1

xK


+



n1

n2

...
nN−1

nN


Here y ∈ CN is the received measurement vector, Asv ∈ CN×K is the steering matrix whose

columns are the steering vectors corresponding to the K different angles (to be estimated). The x ∈ CK

denotes the complex amplitude of source signals, and n ∈ CN accounts for the additive noise. The
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complex source amplitudes x and noise n are modeled as random Gaussian and assumed to be indepen-
dent. It can be seen from (2.1) and (2.2) that the equations are nonlinear with respect to the direction
of arrivals, and the model is a narrowband model (single frequency). In the DOA estimation problem,
we are interested in solving the equations in (2.2) and finding the angles using the measurements. Let
us consider the signals are received at different timestamps, then a frequency domain representation of
multiple measurement vector (MMV) model is given as

Y = Asv X+ N (2.3)

Here Y = [y1,y2....yL] and N = [n1,n2....nL] are measurement and noise matrix with N × L dimen-
sion. Here L denotes the total number of snapshots. Asv is steering matrix (N ×K) whose columns are
steering vectors corresponding to K source angles. The source signals X have dimensions K×L, where
lth column represents the source amplitude from all K directions for lth snapshot. The MMV helps to
get better localization accuracy. Figure 2.2 illustrates a block diagram that provides a comprehensive
overview of these methods, which are broadly classified into four groups.

Localization
Algorithms

Gridless MethodsDeep Learning Based
Methods

Compressive Sensing
Based Methods

Traditional
Methods

1. CBF
2. MUSIC
3. GCC
4. GCC-PHAT
5. SRP-PHAT

1. NOMP
2. SFW
3. ANM Method

1. BP
2. OMP
3. SBL

1. Classification
Problem

2. Regression
Problem

Figure 2.2 Localization algorithms broadly divided into four categories

2.2 Traditional methods

The discussion begins with the straightforward method of beamforming, followed by the high-
resolution subspace-based approach called MUSIC. In the context of time-domain localization, the
discussion covers the GCC, GCC-PHAT and, subsequently, the SRP-PHAT algorithms.
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2.2.1 Conventional Beamforming (CBF)

CBF or spatial filtering is the simplest DOA estimation method [24]. This technique involves com-
puting the power spectrum across various angles on a predefined angular grid and then finding the peaks
from the spectrum to localize the source by amplifying the output in a specific direction while atten-
uating signals from all other directions [14]. Spatial weights are assigned to steering vectors during
the angular power spectrum computation. In other words, the received signals are combined coherently
when the steering angle aligns with the true DOA, resulting in a correlation peak. As depicted in Figure
2.3, the computed angular power spectrum exhibits multiple peaks corresponding to each source.

Figure 2.3 Conventional beamforming

Let M be the total number of potential DOAs on a predefined discrete angular grid θ ∈ [−90, 90]◦.
The steering vectors are computed for all M candidate angles. The source signal X has dimensions
M × L, where lth column represents the source amplitude from all M directions for lth snapshot. For
lth snapshot, the source amplitude in θ direction can be obtained by computing the correlation between
observation and all the steering vectors corresponding to M angles. The CBF power spectrum can be
computed using the below equation

PCBF(θ) =
1

L

L∑
i=1

|aH(θ) yi|2

=
1

L

L∑
i=1

aH(θ) yiy
H
i a(θ)

= aH(θ)Sy a(θ)

where Sy =
1

L

L∑
l=1

yl yHl . (2.4)
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Here a(θ) is the array steering vector (2.1) corresponding to a source located at θ angle. Sy is the
empirical data covariance matrix computed using L snapshots. The true data covariance is given as
Strue

y = E{yyH}. Incorporating both azimuth (horizontal angle) and elevation (vertical angle) angles
into the steering vector allows for more precise localization in two-dimensional space. Although CBF is
computationally efficient and robust to noise, it suffers from low resolution and many sidelobes; hence,
it is difficult to localize two nearby sources [17, 24].

2.2.2 Multiple Signal Classification (MUSIC)

MUSIC is a high-resolution subspace-based method for DOA estimation [25]. In this approach,
the estimated sample covariance matrix (Sy) is decomposed into two orthogonal subspaces: the signal
subspace and the noise subspace. While the specific signal components remain unknown, the sum of
the signal and noise components is given as Strue

y .

Strue
y = E{yyH}

= E{Asv XXH AH
sv}+ E{NNH}

= AsvSxA
H
sv + σ2 I. (2.5)

Here Sx is (K × K) signal covariance matrix, K is the number of source signals. The eigenvalue
decomposition is applied to the empirical sample covariance matrix (Sy) computed using (2.4). The
obtained eigenvectors are sorted in the descending order of the eigenvalues. The signal subspace Es is
constructed by selecting K eigenvectors, and the remaining (N − K) eigenvectors correspond to the
noise subspace En. The pseudo power spectrum for MUSIC is given by

Pmu(θ) =
1

aH(θ)EnEH
n a(θ)

. (2.6)

MUSIC uses the orthogonality between the signal and the noise subspaces to locate the maxima in
the spectrum [17]. The aH(θ) is orthogonal with the columns of En, the value of the denominator
is zero (or close to zero when noise is present), and Pmu(θ) shows a peak corresponding to source
DOA. For localizing multiple sources, the K such peaks will be selected. Although MUSIC is a high-
resolution method, its performance gets compromised with fewer snapshots. The covariance matrix
must be formed from sufficient snapshots to ensure accurate eigenvalue decomposition, separating the
eigenvectors into distinct signal and noise subspaces. Additionally, the number of signal sources must
be less than the number of sensors to ensure that the covariance matrix has enough dimensions to
distinguish between signal and noise subspaces.

2.2.3 Generalized Cross-Correlation (GCC)

The GCC method is a time domain localization method that computes delay or lags between two
received signals from the sensor pair. Let yl(t) and yk(t) are time domain received signals from sensor
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k and l. The Yk(ω) and Yl(ω) are the Fourier transform of yl(t) and yk(t). The time difference of
arrival (TDOA) estimate is the delay or lags τ̂kl that maximizes the cross-correlation Rkl(τ) between
kth and lth sensor and can be expressed as

τ̂kl = argmax
τ

Rkl(τ) (2.7)

Rkl(τ) =
1

2π

∫ ∞

−∞
Gk(ω) Yk(ω) G

′
l(ω) Y

′
l(ω) e

jωτ dω. (2.8)

Here Gk(ω) and Gl(ω) are prefilters designed to filter the received sensor signals, aiming to mitigate
the impact of channel interference and noise. The signal Y′

l(ω) represents the complex conjugate of
Yl(ω). Note that when the prefilters Gk(ω) and Gl(ω) are set to unity (i.e., no filtering is applied), the
expression in (2.8) is equivalent to the standard cross-correlation function. The computed delay τ̂kl can
be combined with the parameters of known array geometry using the relation τ̂kl =

d
c sin(θ). A matrix

D can be constructed to compute the delays using multiple sensors, whose columns are the inter-sensor
spacing for each pair of microphones. For N number of sensors, the total possible sensor pairs are given
by Nt =

N
C2. The DOA vector b(θ) for 1D localization can be obtained using these M computed

delays and their relationship can be given as

τ =
1

c
DTb(θ), (2.9)

where b(θ) is a unit vector representing DOA and τ is the vector containing M delays. The least-square
estimate of b(θ) is given by

b̂LS(θ) = [(DDT )−1 D] c τ̂ (θ). (2.10)

The performance of GCC degrades and often produces inaccurate DOA estimates in low SNR con-
ditions. Also, the GCC method suffers from low resolution and is not well-suited to handle multi-
frequency signals. Hence, for better performance in reverberant scenarios, different weighting functions
can be used, such as maximum likelihood (ML) weighting function, phase transform (PHAT), Roth
processor, smoothed coherence transform (SCOT), and bandpass weighting function [26].

2.2.4 Generalized Cross-Correlation with Phase Transform (GCC-PHAT)

To improve the robustness of GCC function, a phase transform (PHAT) weighting function is applied
in (2.8). It whitens the microphone signals by normalizing the cross-spectral density using the magni-
tude of spectrum [26]. When the PHAT weighing function is used as prefilters in (2.8), the method is
called GCC-PHAT. The GCC-PHAT is more robust to noise and amplitude differences than the GCC
method. The GCC-PHAT method is computed as

Rkl(τ ) =
1

2π

∫ ∞

−∞

1

|Yk(ω) Y
′
l(ω)|

Yk(ω) Y
′
l(ω) e

jωτ dω, (2.11)
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here Gk(ω)Gl(ω) = 1
|Yk(ω) Y′

l(ω)|
is the PHAT weighting function. The PHAT function tends to en-

hance the effect of frequencies with low power compared to noise power. This can cause the estimates
to be corrupted by the effect of uncorrelated noise [27]. In the case of multiple sources, the GCC-PHAT
may give erroneous peaks in the presence of reflections. Additionally, each source will be assigned by
the maximum lag, but the absolute maximum might not be assigned to the same source all the time,
hence resulting in artificial source switching [27, 28]. Hence, estimating the multiple sources using
GCC-PHAT often leads to incorrect estimates [28].

2.2.5 Steered Response Power with Phase Transform (SRP-PHAT)

To enhance the performance of GCC-PHAT, steered response power (SRP) is employed, offering
improved accuracy, particularly in scenarios with multiple sources or complex wavefront geometries,
making it well-suited for real-time applications. SRP operates on a concept akin to a beamformer,
where the power of the array output is calculated at various angles, and the angle corresponding to the
highest power is considered the true DOA. However, the performance of SRP may suffer in scenarios
with strong reflections. Different weighting functions can be utilized to improve its performance in such
cases [27, 28] to address this limitation. These techniques enable SRP to handle challenging acoustic
environments and deliver more reliable DOA estimates. In SRP-PHAT, a phase transform weighing
function is employed in conjunction with the SRP function to mitigate the effects of reflections and
reverberation. For SRP-PHAT, a cumulative GCC-PHAT value is calculated across all microphone
pairs at each delay (τq), which is associated with the candidate DOA (θq). The peak of the SRP-PHAT
function indicates the location of the source. Let us consider yk and yl as the signals arriving from
the direction θq and received by the kth and lth microphones, respectively. The time delay between yk

and yl can be denoted as τkl(θq). Then, the estimated GCC-PHAT value for yk and yl, analogous to
equation (2.11), can be expressed as

R̂PHAT
ykyl

(τkl(θq)) =
1

2π

∫ ∞

−∞

1

|Yk(ω) Y
′
l(ω)|

Yk(ω) Y
′
l(ω) e

jωτkl(θq) dω. (2.12)

Now the SRP-PHAT can be expressed by following

P (θq) =
N−1∑
k=0

N−1∑
l=0

R̂PHAT
ykyl

(τkl(θq), (2.13)

P (θq) =

N−1∑
k=0

N−1∑
l=0

1

2π

∫ ∞

−∞

1

|Yk(ω)Y
′
l(ω)|

Yk(ω)Y
′
l(ω) e

jωτkl(θq) dω, (2.14)

P (θq) =
1

2π

∫ ∞

−∞

N−1∑
k=0

N−1∑
l=0

1

|Yk(ω)Y
′
l(ω)|

Yk(ω)Y
′
l(ω) e

jωτkl(θq) dω. (2.15)
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The N represents the number of sensors. The value of P (θq) can be computed for different angles from
a discrete predefined angular grid. The direction, or true DOA, is determined by identifying the angle
for which P (θq) has its maximum value. From Equation (2.13), it is evident that SRP-PHAT involves
summing all possible combinations of GCC over sensor pairs. Consequently, when the number of
points to scan becomes large, the computation complexity of SRP-PHAT increases significantly [16]. To
mitigate this computational burden, SRP-PHAT with stochastic region contraction (SRC) is employed
[29]. Compared to GCC-PHAT, SRP-PHAT exhibits superior performance, as it is robust to noise and
offers improved localization of multiple sources with reduced ambiguity. This makes SRP-PHAT a
preferred method for various applications.

2.3 Compressive Sensing (CS) based methods

CS or sparse signal processing is an emerging field that has garnered significant attention across
various engineering disciplines, including computer science, information theory, electrical engineering,
and applied mathematics [18]. The CS framework addresses sparse inversion problems by utilizing
only a few noisy linear measurements while imposing sparsity constraints on unknown signals [30]. In
this section, we provide a concise introduction to CS and discuss its application to the DOA estimation
problem as a sparse recovery problem. We delve into popular CS methods, including BP, OMP, and
SBL, highlighting their significance in addressing the challenges of sparse signal recovery.

2.3.1 CS model for DOA estimation

The DOA estimation problem can be formulated as a sparse recovery (CS) problem. The signal
model given in (2.2) is reformulated as a sparse model, which linearly maps the compressible unknown
signal x into the given measurements y, is given as

y = Ax+ n. (2.16)

In this CS model (2.16), y ∈ RN is the measurements received from N sensors, x ∈ RM represents the
source amplitudes in M directions/angles from a predefined angular grid, and A is a N ×M dictionary
matrix whose columns are steering vectors corresponding to each candidate direction/angle from the
same predefined DOA grid. For example, let us consider a predefined DOA grid over [−90, 90]◦ with
1◦ resolution, then there is M = 181 candidate DOA in 1D localization (only azimuth). The sparsity
assumption is based on the fact that only a few sources are present among all the candidate angles. Let
K be the number of unknown sources (K < N ), and M ≫ K. Thus, in the given model, x is an
M -length vector with K-sparsity, and CS methods are employed to estimate the K non-zero values
corresponding to K directions or angles.

The dictionary A maps signal of interest x into the linear measurements y. Note that unlike system
(2.2), above system (2.16) is an undetermined system as M > N , i.e., the number of linear equations is
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less than the number of unknowns (x). The given system is underdetermined and has an infinite number
of solutions. The dictionary A is assumed to be known and fixed. The CS techniques are used to find
the sparsest solution for unknown x by imposing sparsity on it. The x is assumed to be K sparse,
i.e. only K nonzero values are present in x and M ≫ K. In literature, it has been shown that under
the sufficient sparsity assumption of underlying signal and the incoherence mapping of the underlying
signal into the measurements, CS methods can solve the given underdetermined system [18, 31–33].
The principal assumption of CS lies in the sparsity of the underlying signal (x) and its mapping into
fewer measurements using a sensing matrix (A).

2.3.2 Basis Pursuit (BP)

The given model in (2.16) is an underdetermined system, and one common approach would be the
least square solution, but the solution will be non-sparse. There are many different ways to find the
sparse solution for vector x such as l0 and l1 minimization techniques. Let the lp norm of a vector
x ∈ Rm is defined as

||x||p = (
m∑
i=1

|xpi |)
1
p . (2.17)

In equation (2.17), for p = 0, 1 and 2, the l0, l1, and l2 norm can be formulated. It can be seen that
when p = 0, it is known as the l0 norm (which is not a norm). The l0 norms count all the nonzero values
in the signal. The solution that minimizes the l0 norm gives the sparse solution.

The l0 norm minimization gives simply a sparse solution by counting the non-zero entries of vector
x, which contains the significant information of the vector x. The problem of l0 norm minimization can
be formulated as given in the below equation

min
x∈Rm

||x||0 subject to y = A x. (2.18)

The above equation leads to a non-convex optimization problem and is NP hard to solve it. The proof of
the above concept can be found in theorem 2.17 in [18]. As the above l0 minimization is intractable, to
solve it further and get the sparse solution CS methods of BP and least absolute shrinkage and selection
operator (LASSO) are explained in next subsection. The condition on sparsity and measurements to
reconstruct k sparse vector from the observations is well explained in chapter 2 of the excellent book
[18].

The l0 minimization problem is NP-hard and intractable, however, under the assumptions of suf-
ficient sparsity and incoherent columns of A, it can be approximated to l1 minimization problem
[17, 18, 33–35]. The BP provides the solution of x, whose coefficient has the minimum l1 norm [36].

min
x
|| x ||1 subject toy = Ax. (2.19)
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where ||x||1 =
∑M

i=1 |xi| represents the l1 norm of x. The above problem is a convex optimization
problem and can be solved using linear programming methods [35,36]. The BP solution is tractable and
can be solved efficiently even for larger dimensions. Due to the convexity, BP converges to the global
minima. If the noise n is included as in model (2.16), the BP formulation can be modified as

min
x
|| x ||1 subject to ||A x - y ||2 ≤ η. (2.20)

Here η is the upper bound of the noise norm such that ||n||2 ≤ η and ||n||2 = (
∑m

i=1 |n2
i |)

1
2 repre-

sents the l2 norm of n. It indicates the degree to which noise can be accommodated to yield a sparse
solution for the vector x. The mathematical insights about the approximation of l0 minimization into
l1 minimization can be understood using concepts of nullspace property (NSP) and restricted isometric
property (RIP) (refer chapters 4 and 6 of [18]). A regularization parameter λ is introduced in (2.20) to
get the balance between the sparsity and the noise tolerance. The unconstrained formulation for (2.20)
can be written as

min
x
||A x - y ||22 + λ|| x ||1 (2.21)

The above formulation is known as the LASSO method to solve the system model (2.16). The regu-
larization term λ acts as a weighting parameter between the sparsity and the noise tolerance. The high
value of λ leads to a more sparse solution, whereas the low value of λ provides solutions that closely
match the observed data. The LASSO problem can be solved using linear or quadratic programming
methods using simplex or interior point algorithms [36].

In the DOA estimation problem, the solution of x can be obtained by solving l1 minimization prob-
lem, given the observation (y) and sensing matrix (A). Further, if the noise level is unknown, then
the choice of η is of significant importance and, if chosen incorrectly, can lead to erroneous DOAs. In
(2.21), if noise is overestimated (λ is set to be high), it gives a very sparse solution (a few DOAs might
be missed). Also, if noise is underestimated (lower value of λ), the sparsity will get compromised (many
false DOAs). In [17], the DOA estimation is addressed using the CS-based l1 minimization technique.

2.3.3 Orthogonal matching pursuit (OMP)

In 2007, Tropp and Gilbert introduced an Orthogonal Matching Pursuit (OMP) method, which ex-
panded upon earlier developments in sparse signal recovery, particularly the matching pursuit technique.
OMP is a greedy algorithm and computationally efficient and faster compared to other CS methods [37].
The central idea of OMP is to iteratively identify the basis vector or column of the matrix A that yields
the maximum projection of the measurement vector y. At each iteration, the algorithm finds the index
of the column most correlated with the observation, removes that particular column from A, and con-
tinues to extract the next significantly correlated columns from the remaining residuals. In the end, K
columns are selected, containing information about the x signal of interest. The residual is guaranteed
to be orthogonal to all the columns of A .
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In [38], OMP method is used to address the DOA estimation problem. OMP offers the advantage
of low computational complexity and can work effectively with a single snapshot. The details about
this greedy algorithm can be referred to from [37]. In [38], OMP is applied to address DOA estimation,
and its performance is compared against the MUSIC and MVDR methods. The OMP algorithm is
summarized below.

Algorithm 1 OMP algorithm
1. r0 = y, A0 = ∅,Λ0 = ∅ and an iteration counter c = 1
2. Initialization: r0 = y, A0 = ∅,Λ0 = ∅ and an iteration counter c = 1
3. Find the corresponding index λc of the optimization problem

λc = arg max|AHrc−1|
4. Augment the index set Λc = Λc−1 ∪ {λc} and the matrix of chosen atoms Ac = A[:,Λc]
5. Solve the following optimization problem to obtain the signal vector estimate for Ac

xc = arg min
x
||Acx− y||2

6. Calculate the new approximation (βc ) of y and the new residual:
βc = Ac xc

rc = y − βc

7. Increase c by 1, and return to Step 2) if c < K.

2.3.4 Sparse Bayesian learning (SBL)

Let us consider the signal model as (2.16) to derive the SBL update equations for estimating the
hyperparameters. The optimization problem given in (2.21) and other lp minimization techniques can
also be derived using the Bayesian framework [39,40]. Let us consider model (2.16) with Gaussian noise
assumption, then the underlying optimization problem in (2.19) can be solved using the maximum-a
posteriori (MAP) estimator given as

x̂ = arg max
x

p(x|y) (2.22)

= arg max
x

p(y|x) p(x) (2.23)

= arg min
x

− log p(y|x)− log p(x) (2.24)

= arg min
x

|| y− A x ||22 + λ

M∑
i=1

g(|xi|), (2.25)

where g is a strictly concave function and often leads to the sparse solution with maximum N nonzero
values. The different choices of g(.) lead to different levels of sparsity. For the LASSO framework, a
Laplacian prior p(x) = a

2e
−a|x| and p(y|x) to be a Gaussian likelihood leads to the sparse solution for

x. Also, if both the prior and likelihood are assumed to be Gaussian, it leads to the l2 norm regularized
problem. In a similar manner, different l1 minimization techniques can be formulated with the correct
choice of prior.
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Let the g(xi) = |xi|p with p ≤ 1, then the MAP estimate can be given as

x̂ = arg min
x
|| y−Ax ||22 + λ

M∑
i=1

(|xi|p). (2.26)

The drawback of the MAP estimator is that if the prior is very sparse, i.e., p ∼ 0, many local minima will
be obtained, converging to sub-optimal local minima leads to convergence error. Also, if the prior is not
sparse enough, i.e., p ∼ 1, the obtained global minimum does not lead to the sparsest solution, resulting
in the structural error. A hierarchical Bayesian approach is used to avoid these errors, where the prior is
parameterized using hyperparameter γ. These hyperparameters are used to tie various parameters into
fewer parameters, leading to fewer minima. Sparse Bayesian learning is a technique which estimates
the information by computing the posterior distribution given by

γ̂ = arg max
γ

p(γ|y) = arg max
γ

∫
p(y|x) p(x|γ) p(γ) dx (2.27)

In SBL, instead of solving a MAP problem, the hyperparameter γ is estimated and further used to get the
posterior distribution of x given by p(x|y; γ̂). The solution for the above equation with different sparse
priors is not tractable, so some assumptions are needed to solve the problem. Let Gaussian scale mixture
be used to represent different sparse priors over x with different scale mixing density p(γi) given by

p(xi) =
∫

p(xi|γi) p(γi) dγi =
∫
N (xi; 0, γi) p(γi) dγi. (2.28)

The optimal value of hyperparameter γ can be estimated as

γ̂ = arg max
γ

p(γ|y) = arg max
γ

p(y|γ) p(γ) (2.29)

= arg min
γ

log |Σy|+ yTΣ−1
y y− 2

M∑
i=1

log p(γi), (2.30)

where Σy = σ2I + AΓAH is the covariance matrix and Γ = diag(γ1, . . . , γM ) = diag(γ) is the
diagonal matrix with all the γ’s in the diagonal. For the correct values of γ, the posterior distribution
can be computed as

p(x|y; γ̂) = N (µx,Σx), (2.31)

here µx = E[x|y; γ̂] = Γ̂AH(σ2I+AΓ̂AH)−1y and Σx = Cov[x|y; γ̂] = Γ̂AH(σ2I+AΓ̂AH)−1AΓ̂.

To further update the γ, the expectation maximization (EM) algorithm is applied, and the update rule
for γ can be given as

γi = µ2
x(i) +Σx(i, i). (2.32)
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The updated hyperparameter with nonzero values leads to the sparse solution for x. The further im-
provement in estimating the γ can be updated using the fixed point update rule given in [41–44]. The
fixed point update rule is advantageous over EM algorithms in terms of faster convergence. The fixed
point update rule can be found by differentiating the above cost function with respect to γ and equating
to zero, computed as

γ̂newm = γ̂oldm

||yHΣ−1am||22
aHmΣ−1am

(2.33)

(2.34)

= γ̂oldm

Tr[SyΣ
−1amaHmΣ−1]

aHmΣ−1am
(2.35)

where Sy = yyH is the sample covariance matrix and Tr[.] denotes the trace (sum of diagonal
elements) of a matrix. The results of SBL and further extension as multi-snapshot SBL are given in
[45–48].

γ̂newm = γ̂oldm

∑L
l=1 |yHl Σ−1

yl
am|2∑L

l=1 aHmΣ−1
yl

am
(2.36)

The results in the literature show that SBL performance is very robust to noise, coherence, and
multipath effects. It has been shown that compared to other existing methods, SBL gives high resolution
even for a single snapshot. Hence, it is a potential candidate to perform well in real-time scenarios for
better localization of sources.

2.4 Comparison of traditional and CS-based algorithms

In this section, Table (2.1) presents a comparison of the different localization algorithms discussed so
far. The table lists each method along with its advantages, disadvantages, and computational complexity
per iteration. The following terms are used to describe the complexity.

• N - number of sensors,

• M - number of candidate points on predefined angular grid,

• L - number of snapshots,

• K - number of sources,

• Nk - number of DFT components and

• I - number of iterations

• Nτ - number of computed for each GCC function in the time-lag domain.
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Algorithm Description Disadvantage Complexity

CBF spatial filtering, robust to noise
low resolution, difficult to
localize multiple sources

O(MNL)

MUSIC high resolution subspace based method
requires more number of
snapshots

O(N3 +N2ML)

GCC-PHAT
time domain method, computationally
efficient

difficult to localize multiple
sources

O(NkNτN
2) +O(M)

SRP-PHAT
time domain method, averaging
across GCC-PHAT pairs, robust to
reverberation

computationally costly, need
more sensor data

O(MNkN)

M-BP
CS based method, l1 minimization,
uses convex optimization

computationally costly,
intractable for large size data

O(M3L3)

OMP
CS based method, computationally
efficient

greedy algorithm, need more
measurements

O(NMK)

M-SBL
Bayesian probabilistic framework,
coherent processing of frequencies

computationally costly I(N3 +N2ML)

Table 2.1 Comparison of traditional and CS-based localization algorithms

2.5 Data-driven Methods

Recently, data-driven methods have shown promising results for sound source localization in re-
verberant and low SNR scenarios [19, 49–51]. As a result, various deep neural network (DNN) based
architectures such as feedforward neural networks (FFNN), convolutional neural networks (CNN), re-
current neural networks (RNN), convolutional recurrent neural network (CRNN) and encoder-decoder
architectures are proposed in recent years [19]. Most of the reported works have indicated the superi-
ority of DNN-based sound source localization (SSL) methods over classical localization approaches in
terms of high resolution and low erroneous DOAs [19, 52–57]. Typically low-level signal representa-
tions such as waveforms or spectrograms, power spectrums obtained from traditional methods such as
CBF, MUSIC, GCC-PHAT are fed into the DNN architectures and the features are learned to improve
the localization accuracy. In this section, we explore two specific approaches: regression and classi-
fication, using DNN for solving the DOA estimation problem. For an extensive literature survey on
different DNN techniques used for DOA estimation, please refer to [19].

2.5.1 Localization as classification problem

In DNN methods, DOA estimation is often approached as a classification problem, where each class
represents a specific zone in the search space. The search space is divided into several subregions of
similar size, and a neural network is trained to provide a probability of active source presence for each
subregion. This classification approach utilizes feedforward layers with softmax or sigmoid activation
functions in the final layer to produce spatial (pseudo)-spectrums indicating high probabilities of source
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activity in corresponding zones [19]. Peak-picking algorithms are then employed to extract DOA es-
timates, either by selecting the J highest peaks for known source counts or by choosing peaks above
a threshold for joint estimation of source count and localization. Spherical coordinates are commonly
used, with the azimuth angle quantized into Nθ regions [55, 56, 58–62]. Elevation estimation is less
explored. Recent SSL neural networks often estimate both azimuth and elevation using separate output
layers or a single layer representing zones on the unit sphere [63, 64]. Distance estimation is challeng-
ing and has received limited attention. Some studies also consider Cartesian coordinates, dividing the
horizontal plane into regions for classification [65, 66]. Classification methods suffer from a decreas-
ing angular difference between regions far from the microphone array, resulting in regression as the
preferred method for estimating Cartesian coordinates.

2.5.2 Localization as regression problem

Regression-based DNN networks provide source location estimates as continuous values, which of-
fers the advantage of potentially more accurate DOA estimation without quantization. However, it
has two drawbacks: the need for a known or assumed number of sources, as regression alone, cannot
determine source activity, and the source permutation problem inherent in multi-source localization,
common in deep learning-based source separation methods [67, 68]. In regression-based sound source
localization, the choice of coordinate type to be estimated is often driven by the context or applica-
tion, as regression typically requires only a small number of output neurons [57, 69, 70]. In terms of
coordinate estimation, spherical coordinates such as azimuth and elevation have been used by various
methods with different network architectures and output representations. Cartesian coordinates have
also been explored, with systems estimating (x, y) or all three coordinates (x, y, z) using regression
techniques [60, 71, 72]. In the context of the DCASE 2019 Challenge, several SELD systems have used
regression for Cartesian coordinates [7, 51, 73, 74].

2.5.3 SELD tasks

In the recent past, polyphonic sound event localization and detection (SELD) problems have gar-
nered a lot of attention among researchers, which combine the detection and localization tasks and have
many practical applications [7,51,54]. SELD is a crucial task in acoustic scene analysis, aiming to iden-
tify and locate multiple sound events within an audio signal while providing detailed spatial information
like azimuth and elevation angles and temporal occurrence. It comprises two key components: sound
event detection, for identifying sound event presence and temporal boundaries, and sound source local-
ization, for estimating spatial coordinates. SELD has wide-ranging applications such as surveillance,
robotics, and immersive audio, empowering machines to better perceive and interact with their acoustic
environment. In [51], the authors presented the pioneering work of SELDnet, the first paper address-
ing the SELD task, introducing a convolutional recurrent neural network that achieves simultaneous
sound event recognition, localization, and tracking while showcasing robust performance under diverse
conditions and emphasizing the significance of larger real-life training datasets for enhanced real-world
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applicability. Since its introduction, researchers have proposed various model architectures and features
to improve SELD performance [70, 72–75].

2.6 Gridless algorithms

The grid-based methods discretize the search space into a predefined angular grid of possible DOAs,
resulting in limited resolution, particularly when the actual DOAs don’t lie on predefined grid points.
In contrast, gridless localization algorithms enable a more detailed search in the continuum, potentially
enhancing resolution and localization accuracy. In this section, we discuss gridless methods NOMP,
SFW and briefly discuss ANM based methods.

2.6.1 Atomic Norm Minimization (ANM) Based Methods

To overcome the basis mismatch problem in compressive sensing problems, the DOA estimation
problem is formulated in a continuous angular space and the atomic norm is used as a sparse promoting
measure for general signals [76]. ANM is a mathematical optimization problem that has infinitely many
unknowns and is solved efficiently over a few optimization variables in the dual domain with semidef-
inite programming [76]. The DOA estimation problem is formulated as a minimization problem where
the objective is to minimize the atomic norm of the sparse signal subject to the observed measurements
and the array geometry. The atoms correspond to possible DOAs in continuous angular space. The
atomic norm of a signal is a measure of its sparsity in the atom domain. ANM based optimization
problem is solved using semi-definite programming in 1D and 2D scenarios [20, 76–84]. In [77], the
authors present ANM for the exact recovery of the unknown frequencies even if the continuous dictio-
nary is not incoherent at all and does not satisfy any sort of restricted isometry conditions. In [78], the
authors present positive semidefinite programs for ANM in recovering high-dimensional frequencies by
transforming dual problems to equivalent positive semidefinite program by using positive trigonometric
polynomials. In [76] ANM is applied for grid-free compressive beamforming. The work in [85] unifies
the two techniques; one is based on covariance fitting from a statistical perspective and termed as the
gridless SPICE, and the other uses the deterministic atomic norm by interpreting gridless SPICE (GLS)
as atomic norm methods in various scenarios for MMV model. Additionally, gridless methods have
been applied for non-uniform arrays and wideband processing [86–91].

2.6.2 Newtonized Orthogonal Matching Pursuit (NOMP)

The Newtonized OMP (NOMP) algorithm is a generalization of OMP to the continuous angular
space (θ ∈ [0◦, 360◦]) that employs Newton’s steps to refine source parameters in each iteration [21].
The iterative process comprises two main phases: identifying a new source and applying Newton re-
finements to enhance the parameters of previously identified sources. The Newton refinement process
plays a critical role for two reasons: 1) avoiding potential basis mismatch resulting from discretizing
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a continuous parameter space, and 2) providing feedback to locally improve parameters estimated in
earlier iterations [21]. The primary steps of NOMP are briefly outlined below:

• Grid-based initial estimation: The DOA and corresponding amplitude are estimated for each
source sequentially within the predefined discretized grid θd. The coarse estimates and amplitudes
are computed by solving

θ̂k = arg max
θd

|⟨r,a⟩|, (2.37)

where r is the residual initialized as measurement vector y. The corresponding source amplitude
is obtained using the following:

x̂k = aH(θ̂k)y. (2.38)

• Local Newton optimization: Ideally, the DOA should be estimated on the continuum, i.e., solv-
ing (2.37) over θ ∈ [0◦, 360◦]. Newton’s step helps to search over the continuum by locally
refining the estimate (θ̂k) obtained by picking the maximum over the discrete set θd. Once the
locally optimized DOA is obtained, the source amplitude and residual measurement get updated.

• Global cyclic feedback optimization: After completing the local optimization, we circularly
optimize the DOA and amplitude of all the identified K acoustic sources. This is the additional
step in NOMP, which provides feedback for local refinements of previously estimated DOAs.
This helps to better explain the measurements in light of new information regarding the presence
of another source. This feedback is presented in the form of an updated residue. This step is
crucial for fast convergence and high estimation accuracy.

• Update by least squares: Here the residual is updated by projecting measurements y onto the
subspace spanned by the estimated sources. This ensures that the residual energy is the minimum
possible for the current set of estimated DOAs.

However, the method encounters difficulties with coarse grids, where local Newton iterations fail to
converge towards the objective function’s local minimum [21, 92].

2.6.3 Sliding Frank-Wolfe (SFW)

An alternative gridless approach is the Sliding Frank-Wolfe (SFW) algorithm, which solves the
Beurling LASSO problem, i.e., a traditional LASSO in the continuum [22, 93]. Let us consider that
the sources are situated within a specified region denoted as B. The arrangement of these sources is
characterized by a measure denoted as ν. This measure is a function that accepts a subset of B as input
and produces a positive, real, or complex value. The purpose of this measure ν is to represent the dis-
tribution of sources within the domain of interest B, eliminating the necessity for a discrete grid. Dirac
mass function is one example of measure ν that can model a point source of unit amplitude at angle
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θ ∈ B [91]. The Beurling LASSO problem is formulated as

ν∗ = argmin
ν∈G

1

2

∣∣∣∣∣∣∣∣∫
B
a(θ) dν − y

∣∣∣∣∣∣∣∣2
2

+ λ|ν|(B) (2.39)

where G is the set of complex measures defined on B. The main difference between LASSO and
Beurling LASSO is that the DOA of the estimated sources is not limited to an angular finite grid.
The SFW algorithm solves the Beurling LASSO problem by iteratively adding the Dirac masses to the
measure, alternating with local updates of the DOA of the Dirac masses [91]. In each iteration of SFW, a
new source is added, and the DOA and source amplitude of all sources are optimized locally and jointly.
Under specific conditions, particularly when the solution is a finite sum of Dirac masses and is unique,
it has been demonstrated that this algorithm converges within a finite number of iterations [93]. The key
steps in SFW are summarized in Algorithm 2.

Algorithm 2 Sliding Frank-Wolfe Algorithm

1. Λ[0] ← ∅, r[0] ← y, tol = 1e−10

2. for k = 1, . . . ,K
3. Find the next source:

θ̂k = arg max
θi∈B

1
L

∑L
l=1

∣∣aH(θi) r
[k−1]

∣∣2 (a)

4. Λ[ k−1
2

] = {Λ[k−1], θ̂k}
5. Optimize the amplitude:

x[ k−1
2

] = arg min
x∈X

1
2

∣∣∣∣∣∣A(Λ[ k−1
2

]) x− y
∣∣∣∣∣∣2
F
+ λ||x||1 (b)

6. Optimize the amplitudes and parameters:
x[k],Λ[k] = arg min

Λ⊂B,x∈X

1
2 ||A(Λ) x− y||2F + λ||x||1 (c)

7. r[k] ← y− A(Λ[k]) x[k]
8. end for

Here Λ represents the set of estimated K DOAs. The residual r is initialized as a measurement vector
(y) and updated at each iteration. An iteration consists of the following steps:

• Adding a source Similar to the NOMP algorithm, a coarse DOA is estimated and used as initial-
ization for solving optimization problem (a) in algorithm 2.

• Local amplitude estimation The estimated DOA is used to compute the amplitude, which is used
as initialization to solve the optimization problem (b) in algorithm 2.

• Joint optimization: In the last step, both DOAs and amplitudes are jointly optimized as (c) in
algorithm 2. This problem is non-convex. At the end of each iteration, Λ and residual get updated.

The same steps are repeated until the K DOAs and their corresponding amplitudes are optimized. The
SFW has been extended to 3D acoustic source localization in a grid-free setting [91].
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Chapter 3

Analysis of DOA Estimation Algorithms on Real-world Data

This chapter focuses on the performance analysis of DOA estimation algorithms using real-world
recordings from two datasets: LOCATA and DCASE. The discussion begins by introducing the LO-
CATA dataset and explaining its processing steps. It describes how directional information is obtained
from the recordings and then applies DOA estimation algorithms such as CBF, MUSIC, and SBL.
Furthermore, the chapter analyzes three wideband signal models and compares different variants of
wideband SBL (referred to as SBL1, SBL2, and SBL3) that make various assumptions about the source
signal power spectrum. The DOA estimation performance of the SBL algorithms is compared with the
wideband processing of CBF and MUSIC.

The DCASE dataset is a collection of audio recordings used for developing and evaluating algo-
rithms for SELD task. Deep learning models are typically designed to handle multichannel audio data
captured by microphone arrays for the SELD task. We also explore the DNN based architecture and
conduct experimental validation using DCASE dataset. We address the issue of unrealistic DOA esti-
mates that arise in many methods due to the absence of temporal continuity models. To improve the
accuracy of DOA estimation, we propose an update rule that incorporates predicted DOAs and their
derivatives. In summary, this chapter provides a comprehensive and detailed experimental validation of
DOA estimation algorithms using real datasets.

3.1 LOCATA dataset and processing

The IEEE-AASP Challenge on sound source LOCATA offers an open-access data corpus of indoor
multi-channel audio recordings with multiple mobile sources and ground truth information for perfor-
mance evaluation. Since its release, various DOA estimation methods have been applied to this dataset,
leading to an active area of research and evaluation [12, 94, 95]. The LOCATA development dataset
performs the estimation of performing DOA. The LOCATA dataset comprises recordings collected in-
doors and features various microphone arrays as shown in Fig. 3.1, including: i) a 12-microphone
pseudo-spherical array named robothead, ii) a spherical array called eigenmike with 32 sensors, iii) a
15-microphone non-uniform planar array dicit, and iv) a hearing aid with 4 mics. The data is collected
indoors, and the dataset offers a range of localization and tracking tasks listed as
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LOCATA Development
dataset

Robothead
(12 mics)

Eigenmike 
(32 mics)

Dicit
(15 mics)

Hearing Aid
(4 mics)

Figure 3.1 Description about LOCATA dataset

• Task 1: single static source

• Task 2: multiple static sources

• Task 3: single moving source

• Task 4: multiple moving sources

• Task 5: single moving source when the array is also in motion

• Task 6: multiple moving sources when the array is also in motion

The LOCATA recordings have challenging scenarios such as near-field sources, reverberation, and
ambient noise (from a road in front of the building, measurement noise, and traffic sounds outside the
recording space). The recordings took place indoors in a 7.1 × 9.8 × 3 m3 room, featuring a rever-
beration time of approximately 0.55 seconds [96]. Further details and assumptions about the LOCATA
dataset can be found in [12, 94, 95, 97]. The data processing pipeline is shown in Fig. 3.2. We first
perform a short-time Fourier transform (STFT) on audio signals. Each block comprises 100 STFT
frames/snapshots and has a 90% overlap in block-level processing. The DOA estimation algorithms
are then applied to each data block, and the angular spectrum is computed. The DOA is obtained by
identifying the peak locations in the angular power spectrum. After estimating the DOAs, we perform
error analysis using the available ground truth, considering errors only when the voice activity detector
(VAD) [98] indicates the presence of voice. During data processing, the following parameter values are
utilized: an FFT size of 1024, a frequency range of [800, 2800] Hz, and a snapshot/frame duration of
0.03 seconds. For multi-frequency processing using CBF and MUSIC, the power spectrum is computed
at each frequency, and averaging is performed across narrowband spectrums. On the other hand, the
wideband SBL1 and SBL3 process all frequencies coherently (to be discussed later).
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Figure 3.2 Various steps involved for LOCATA processing

3.2 Performance analysis of CBF, MUSIC and SBL

As discussed earlier, CBF exhibits robustness to noise but lacks resolution, making it challenging to
localize closely spaced sources. On the other hand, while the MUSIC method offers high resolution, it
typically requires a large number of snapshots. In challenging environments with random noise and low
SNR, there is a need for high-resolution methods that can operate with fewer snapshots. For localizing
audio sources with rich frequency spectra, utilizing multi-frequency SBL methods is advantageous [46,
99]. Here, we evaluate SBL along with traditional DOA estimation methods of CBF and MUSIC on
various source localization tasks from the LOCATA dataset. While processing multi-frequency data, the
narrowband spectra obtained from CBF and MUSIC are averaged across the frequencies. The recordings
from robot-head and eigenmike for Task 1, 3, and 5 are considered for single source localization. The
comparative study shows that SBL significantly outperforms CBF and MUSIC on all considered tasks.

3.2.1 Performance metric

The DOA is estimated as the peak location of the power spectrum computed by DOA estimation
algorithms for each block. The spectrum is computed with 1◦ resolution both in azimuth and elevation.
The error between estimated and true DOAs are computed at block level during voice activity peri-
ods [98]. In instances where the signal energy surpasses the predefined threshold, the VAD is active/on;
otherwise, it remains deactivated. The mean absolute error (MAE), root mean squared error (RMSE),
and standard deviation (Std Dev) of the estimates are computed as

RMSE =

√∑N
i=1(ϕi − ϕ̂ i)2

N
, (3.1)

MAE =

∑N
i=1 |(ϕi − ϕ̂ i)|

N
, (3.2)

Std Dev =

√√√√ 1

N − 1

N∑
i=1

|(ϕi − ϕ̂ i)−
∑N

i=1(ϕi − ϕ̂ i)

N
|2, (3.3)
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where ϕ, ϕ̂, and N are the true DOA, estimated DOA, and the total number of DOAs, respectively. For
LOCATA, we compute the RMSE for each recording and report the average RMSE over all recordings
for each of the tasks. A source is said to be misdetected if the estimated DOA is more than ζ◦ away
from the true DOA. The probability of detection (Pd) for DOA estimation algorithms is also computed
as Pd(ζ) = 1− Nmiss(ζ)

Ntotal
, where Nmiss(ζ) is the number of misdetections (over all the recordings in each

task) and Ntotal is total number of blocks.

3.2.2 Results for robot-head array

For robot-head, DOA estimation and tracking errors have been computed for all the tasks as shown
in Table 3.1. Localization of single stationary talker (Task 1) and all algorithms give relatively low error
as seen from Table 3.1. It can be seen from Fig. 3.3 that in the case of Task 1 using SBL, 97% of
sources are detected within 10◦ of true DOA for the robothead. For Task 3, the moving talker causes its
distance from the stationary microphone array to change and has poorer DOA estimation performance
compared to Task 1. In Task 5, the talker is moving as well as the microphone arrays installed on the
platform are moving. In terms of probability of detection, SBL performs significantly better than CBF
and MUSIC for low values of ζ (Fig. 3.3) and the computed errors are least for SBL, followed by that
of MUSIC and CBF for all tasks.

Task Method
MAE RMSE Std Dev

az el az el az el

T1
CBF 4.48 10.0 5.27 12.2 0.04 0.12
MUSIC 1.96 3.94 2.20 5.91 0.01 0.06
SBL 1.10 3.57 1.25 3.72 0.01 0.01

T3
CBF 4.37 6.09 8.37 12.3 0.12 0.18
MUSIC 8.70 10.6 15.8 16.5 0.23 0.21
SBL 3.82 3.16 6.37 5.45 0.08 0.07

T5
CBF 15.7 11.7 36.7 18.6 0.58 0.25
MUSIC 8.36 9.85 23.4 17.2 0.58 0.24
SBL 2.98 3.93 10.5 7.57 0.17 0.11

Table 3.1 Error performance of robot-head array for Tasks 1,3 and 5 (averaged over all recordings)

3.2.3 Results for eigenmike array

The MAE for Task 1, 3, and 5 using eigenmike is shown in Fig. 3.4. Due to rotations of the eigenmike
within the shock mount, it is susceptible to scattering effects [94], which results in high azimuth error
(Fig. 3.4, note that the two plots have different vertical range). The estimates of azimuth and elevation
for an eigenmike recording from Task 3 are shown in Fig. 3.5 and Fig. 3.6. The estimates obtained
from SBL are much closer to ground truth compared to CBF and MUSIC when voice activity is present
(denoted by 1 in VAD plot). The VAD plot in Fig. 3.5 and Fig. 3.6 shows the output of the voice activity
detector. In instances where the signal energy surpasses the predefined threshold, the VAD is on (shown
as 1); otherwise, it remains deactivated, denoted by 0.
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3.3 Performance analysis of wideband signal models and SBL algorithms

As demonstrated in the earlier section, SBL has been successful in DOA estimation due to its robust-
ness and high resolution using a few snapshots. Most wideband SBL algorithms make the simplifying
assumption that distinct sources have the same power spectrum across frequency bands [42, 45, 46, 99,
100]. However, this assumption may not be true in practice (for example, speech signals). Recently, a
realistic model where the source variance is allowed to change by the same factor for each source across
frequencies is proposed in [101]. We consider three signal models: Model1 has a flat signal spec-
trum [42, 45, 46, 99, 100], Model2 has independent spectrum for each source, and Model3 [101] has a
shared colored spectrum with independent magnitude scaling for each source. We investigate the perfor-
mance of three wideband SBL variants: SBL1, SBL2, and SBL3 (each derived under the corresponding
model assumption). We discuss three variants of wideband SBL (SBL1, SBL2, and SBL3) with dif-
ferent source signal power spectrum assumptions. The localization performance of SBL algorithms is
compared with wideband processing of CBF and MUSIC. The experimental validation is presented us-
ing simulated data and experimental LOCATA data. This comparative study shows that SBL3, which
simultaneously enforces sparsity and models frequency-dependent signal spectrum, performs superior
in most scenarios.

3.3.1 Wideband signal models

We discuss three wideband signal models, each with distinct assumptions on the signal spectrum.
Consider a multi-frequency, multi-snapshot signal model as

Yf = AfXf + Nf , (3.4)

where f = 1, . . . , F is frequency index, Yf ∈ CN×L is the L snapshot observation matrix received
from N sensors, Af ∈ CN×M is the sensing matrix with mth column consisting of the steering vector
afm = [1, e

jπd c
fm

sin θm , . . . , e
jπ(N−1)d c

fm
sin θm ]T for a source located at angle θm, Xf ∈ CM×L is

source amplitude, and Nf ∈ CN×L is additive gaussian noise. The angles θm range over the 1-D an-
gular search grid [−π

2 ,
π
2 ] containing M discrete locations in azimuth. The columns of Xf are assumed

to be sparse with K non-zero entries corresponding to K active sources with K < N and K ≪ M .
We want to estimate the K active DOAs from the M candidate DOAs. The columns of Xf are assumed
zero-mean complex Gaussian with diagonal covariance matrix Γf . As discussed next, the assumptions
made on Γf give rise to various signal spectrum models.

Model1: For Model1, the variance of source amplitudes is constant across frequency bands; hence the
spectrum is flat, i.e.,

Γ1, .....,ΓF = Γ. (3.5)
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Model2: For Model2, we assume the source variance is changing across frequency bands, hence a
colored spectrum,

Γ1, .....,ΓF . (3.6)

Model3: Model1 discussed above is too restrictive as practical sources rarely have a flat spectrum.
Though Model2 is very general, it does not impose sparsity constraints across frequency bands. An
intermediate model that allows for spectrum to vary with frequency band and also keep sparsity same
across frequency bands can be given as [101],

Γf = cfΓ. (3.7)

The parameter cf accounts for the non-flat frequency spectrum. Note that this model restricts all the
sources to have the same spectrum up to a scaling constant.

3.3.2 Wideband SBL

In this section, we briefly discuss wideband SBL algorithms [45, 46, 100]. SBL uses a Bayesian
framework with prior parameterized by Γf . SBL estimates Γf whose diagonal is sparse [43] and hence
columns of Xf are also sparse. The non-zero locations of this diagonal give us the required DOAs.
Under assumptions of independence across snapshots and frequencies, the likelihood is

p(Y1:F |X1:F ) =
F∏

f=1

p(Yf |Xf ) =
F∏

f=1

L∏
l=1

p(yfl|xfl). (3.8)

In multi-snapshot, multi-frequency, SBL formulation [44, 100], the source amplitudes xfl are inde-
pendent, zero-mean, complex Gaussian vectors with possibly frequency-dependent diagonal covariance
Γf = diag(γf ) = diag([γf,1, . . . , γf,M ]) giving the prior

p(X1:F ) =
F∏

f=1

p(Xf ) =
F∏

f=1

L∏
l=1

p(xfl). (3.9)

The sparsity of source amplitude vectors is related to the sparsity of the parameter vector γf . As prior
(3.9) and likelihood (3.8) are Gaussian, the evidence p(Y1:F ) is also Gaussian

p(Y1:F ) =

F∏
f=1

p(Yf ) =

F∏
f=1

L∏
l=1

CN (yfl;0,Σf ), (3.10)

where Σf = σ2
fI + AfΓfA

H
f is covariance matrix, which changes with assumption on Γf and

CN () denotes complex Gaussian density function. The SBL method estimates the unknown param-
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eters γf , f = 1, . . . , F by maximizing the evidence p(Y1:F )

{γ̂1, . . . , γ̂F } = arg max
{γ1,...,γF }

p(Y1:F ) , (3.11)

= arg min
{γ1,...,γF }

F∑
f=1

L∑
l=1

(
yH
flΣ

−1
f yfl − log|Σf |

)
. (3.12)

SBL1: The first variant of multi-frequency SBL follows Model1 and assumes Γf constant across all
frequencies i.e. flat spectrum. For SBL1, the covariance matrix becomes Σf = σ2

fI + AfΓA
H
f and

only a single vector γ has to be estimated. To find the minimum of this non-convex objective function,
we differentiate with respect to γ and equate to zero. For details about this procedure, see [44, 100].
The resulting fixed-point update is,

γnew
m = γold

m

(∑F
f=1

∑L
l=1 |yH

flΣ
−1
f afm|2∑F

f=1 a
H
fmΣ−1

f afm

)
, (3.13)

where γm is the mth element of γ and afm is the mth column of the dictionary matrix Af . At conver-
gence, the estimate γ̂ is sparse [44, 100], which in turn enforces source amplitudes x to be sparse. As
γm is the source power corresponding to mth DOA, γ̂ is also called the SBL flat power spectrum.

SBL2: The flat signal spectrum assumption of SBL1 is restrictive and often violated for real-world
signals. Following Model2, in SBL2 we assume the variance of source amplitudes to be frequency
dependent. Solving the optimization in (3.12) is then equivalent to computing γf using the update rule
(3.13) at each frequency. A single γ̂ is obtained by averaging,

γ̂ =
1

F

F∑
f=1

γ̂f . (3.14)

SBL3: It follows Model3 and frequency dependence of source variance is modelled using the pa-
rameter cf as Γf = cfΓ. Assuming cf to be known, solving (3.12) gives the same update rule as
(3.13) with Σf = σ2

fI + cfAfΓA
H
f . An update rule for cf is derived by differentiating evidence with

respect to cf [101]. Here we use an empirical estimate cf ∝ Trace(Syf
), where Syf

= 1
LYfY

H
f and

normalize so that
∑F

f=1 cf = 1. Note that Trace(Syf
) is a measure of signal energy at f -th frequency.

This estimate is intuitive as it assigns a higher cf value for dominant frequencies present in the signal.
An alternate estimate of cf could be the largest singular value of the matrix Sy. However, from our
simulations, we observed that both give similar performance. The computational complexity of SBL1,
SBL2 and SBL3 are same and given by O(F × (N3 +MN2 +MNL)) [100].

Noise estimate: Along with estimating Γf , it is advantageous to estimate the variance of unknown
noise for faster convergence of SBL as it controls the sharpness of peaks [44]. Stochastic maximum
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likelihood [44, 100, 102] is used for efficient estimation of σ2
f given by

σ̂2
f =

Trace[(In −AM,fA
+
M,f )Syf

]

N −K
, (3.15)

where M is the set of indices where γ̂ is non-zero (|M| = K = number of sources), AM,f is the
matrix Af restricted to columns corresponding to indicesM and A+

M,f is the Moore-Penrose pseudo-
inverse of AM,f . For noise estimation, K is assumed to be known.

3.3.3 Performance analysis

We apply DOA estimation algorithms on both simulated data and audio signals from the LOCATA
dataset to compare the performance of different models and algorithms. A source is misdetected if the
estimated DOA is more than 30◦ away from the true DOA. We report the probability of detection (Pd)
as (1 - # missed sources/ # total active sources). For the correctly detected sources, RMSE is computed

as

√∑Ns
i=1

∑N
j=1(ϕij−ϕ̂ij)2

Nsim Ns
, where ϕ, ϕ̂, and Ns are the true DOA, estimated DOA, and the number of

sources respectively. Nsim represents the number of Monte Carlo simulations for simulated data and
the number of blocks for LOCATA. For LOCATA, we compute the RMSE and PD, averaged over all
recordings.

3.3.4 Simulated models

Signals are generated using all three models discussed in Section 3.3.1 following various assumptions
on Γ. For Model1, γm = 1 for each source. For Model2, γm is drawn from uniform distribution U[0, 10]

at each frequency. For Model3 we sample the parameters cf ∼ U[0, 10]. We define signal-to-noise-ratio
SNR = 10log10(

σ2
x

σ2
n
), where σ2

x and σ2
n are variance of signal and noise respectively. For Model1

σ2
x = γm = 1, and for Model2 and Model3, it is taken to be the variance of the uniform distribution

U[0, 10]. For all models, the noise variance is computed using signal variance and the desired SNR
value. For simulations, we use 5 sensors with 8 cm spacing in a uniform linear array and equispaced
frequencies from 800–2100 Hz. For simulations, DOAs are computed over a predefined angular grid
from −90◦ to 90◦ with spacing of 1◦.

3.3.5 Results for simulated data

We compare the results of SBL with CBF and MUSIC, and we obtain their wideband power spectrum
as the average of their narrowband power spectrum. To compare the methods, the RMSE is computed
over 500 Monte Carlo simulations at different SNRs and the number of snapshots. Fig. 3.7 shows the
RMSE vs SNR (ranging from −10 to 10 dB) and snapshots (ranging from 1 to 100). For both plots, we
consider two sources located at −10◦ and −25◦. For RMSE vs SNR, 100 snapshots and for RMSE vs
snapshots, SNR = 10 dB are fixed. For RMSE vs SNR, SBL1 and SBL3 performances are very similar
across all the models and SNR values. At SNR ⩾ 2 dB, all SBL algorithms have similar performance
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and error approaches 0 as SNR increases. In this range, MUSIC has a higher error than SBL. At lower
SNR, the SBL1, SBL3, and MUSIC show similar errors, while SBL2 has higher errors. For intermediate
SNR in Model2, SBL2 works best.

We can see from Fig. 3.8 that for all three models, the RMSE for SBL2 is always higher than for
SBL1 and SBL3. The performance of SBL1 and SBL3 is similar for Model1, whereas SBL3 performs
better than SBL1 for Model2 and Model3 for lower values of snapshots. Fig. 3.9 shows the spectrums
using simulated data with 100 snapshots for two sources located at 1◦ and 12.5◦ at 15 dB SNR. CBF has
a poor resolution as only one peak is obtained for all the models. SBL1 and SBL3 localize both sources,
and the spectrum is sparse. MUSIC and SBL2 also localize both sources but have relatively less sharp
peaks.
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Figure 3.9 Spectrum of two sources at [1, 12.5]◦ from various algorithms for wideband signal models

3.3.6 Results for LOCATA dataset

The LOCATA [12] development dataset is used for the performance comparison of algorithms. We
consider the recordings from robothead, dicit, and dummy arrays. We perform azimuth localization
using a predefined DOA grid from −180◦ to 180◦ with a spacing of 1◦. We note that Model2 and/or
Model3 from Section 3.3.1 better characterize the speech signals in this dataset. We follow the LOCATA
processing as discussed earlier, and the error analysis is done using the computed estimates and the
available ground truth. The error between estimated and true DOAs is computed at block level during
voice activity periods [98]. We use frequencies between 300–2500 Hz (F = 47 equispaced frequencies
are chosen). Table 3.2 and 3.3 report RMSE errors and detection probability for various tasks and arrays.
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Figure 3.10 Spatial spectrum for few selected blocks of recording-1 in Task 4 using dicit array (LO-
CATA)

Dicit: A uniform linear subarray of 7 sensors with 32 cm spacing is considered from a 15-sensor
dicit array. For dicit, the angular grid is considered from −90◦ to 90◦. We consider the recordings
from Tasks 2, 4, and 6 with multiple sources. The robustness of SBL3 can be seen from Fig. 3.9 and
Fig. 3.10 shows the spectrums obtained from all algorithms for both simulated data and LOCATA data.
Fig. 3.10 shows the spectrum obtained from different blocks in Task 4, recording-1 using a dicit array.
These selected blocks are representative of observations throughout the recording. CBF and MUSIC
show poor performance compared to SBL1 and SBL2, which localize both sources in 2 out of 3 blocks.
Multiple spurious peaks produced by SBL2 are visible. SBL3 localizes both sources in all the blocks and
shows superior performance compared to other algorithms. This is supported by RME, and detection
probability (PD) averaged across recordings of Task 2, 4, and 6 as shown in Table 3.2 and 3.3. This
shows that for real-world signals, SBL3 is more effective.

Dummy: The algorithms are compared on all tasks (1–6) foa r dummy with 4 sensors. Fig. 3.11
shows the DOA estimates for Task 5, recording 2 of the hearing aid. Task 5 consists of recording from
a moving source when both the source and array are in motion. The shaded region represents the active
voice period. It can be seen that for SBL3, the estimates are closer to the ground truth. The RMSE and
PD are reported in Table 3.2 and 3.3. SBL3 consistently outperforms all other algorithms. For Task 2,
SBL1 has low RMSE, but it also has low detection probability (see 3.3). Robothead: We report the
azimuth error for Task 2, 4, and 6 for the localization of multiple static and moving sources in Table 3.2.
Fig. 3.12 shows the DOA estimates of Task 6 recording-2 from block index 45 to 135 when both array
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Array Task
Localization algorithm

CBF MUSIC SBL1 SBL2 SBL3

Dummy

1 8.6 6.8 2.9 5.1 1
2 11.4 8.4 3.2 8.8 7.4
3 9.1 12.2 6.9 10.5 5.8
4 14.6 14.4 13.2 13.1 17.1
5 11.1 13.7 9.7 13.1 6
6 15.3 15.8 16.1 15.8 18

Dicit

2 17.2 15 13.1 17.9 12
4 15.2 12.8 12.8 12.5 11.2
6 16 12.7 9 10.2 9

Robothead

2 10.3 10 12.2 11.5 12.8
4 19.2 18.8 17 16.3 16
6 16.5 16.1 15.3 16.7 15.3

Table 3.2 RMSE (in ◦) using dummy, dicit and robothead (averaged over all recordings).

Figure 3.11 The estimated DOAs and ground truth (GT), Task 5, recording 2, dummy array (LOCATA)

and sources are in motion. It can be observed that both SBL1 and SBL3 give comparable estimates
for the shown part of the recording. For blocks 90 to 110, SBL3 estimates both sources accurately;
however, it estimates only one source accurately from blocks 120 to 130, as only one peak is obtained in
the spectrum. Similarly, SBL1 estimates both sources accurately from blocks 120 to 130 but estimates
one source only from blocks 90 to 110. The RMSE and PD reported in Table 3.2 and 3.3 show that
SBL3 performs best when averaged over all recordings.
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Array Task
Localization algorithm

CBF MUSIC SBL1 SBL2 SBL3

Dummy

1 99 99 100 99 100
2 90 40 29 67 85
3 81 74 71 58 85
4 41 31 46 50 55
5 100 99 100 99 100
6 16 18 38 33 45

Dicit

2 52 62 60 70 72
4 32 36 76 68 78
6 88 92 88 92 92

Robothead

2 80 85 86 94 91
4 46 63 81 81 87
6 45 44 44 38 47

Table 3.3 Probability of detection (in %) using dummy, dic,it and robothead (averaged over all record-
ings).

Figure 3.12 The estimated DOAs and ground truth (GT) on LOCATA dataset, Task 6, recording 2 using
robothead array

3.4 Improving DOA estimation accuracy via derivative prediction

Traditional DOA estimation methods rely on the analytical properties of array signals and do not
generalize well to non-ideabehaviorsrs such as multi-path signal propagation and uncertain noise char-
acteristics. Data-driven methods provide a new way to learn non-ideal behaviors by using general func-
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tion approximators such as neural networks and show promising results for source localization tasks.
In real-world scenarios, sudden large changes in the DOA are unexpected. To capture this, we train
our network to learn and predict DOA derivatives to maintain temporal continuity. DOA derivatives
provide information about the rate of change in the x, y, z positions. Thus, the combined DOA and
DOA derivative prediction provides a mechanism to suppress sudden DOA changes (if predicted by the
network) and estimate realistic, smooth motion trajectories. In this study, we focus on improving the
localization accuracy of an existing model [74] by predicting both the DOAs and their derivatives, i.e.,
changes in the x, y, z positions over time. We compare the existing localization models (considering the
detection ground truth to be known), which predicts only DOAs, with the model, which predicts both
DOAs and their derivatives. Our experiments reveal that DOA estimation can be a challenging task,
even for immobile sound sources. This research aims to understand better deep learning-based models
for DOA estimation tasks, focusing on combining DOAs with their derivatives to improve the source
trajectories. This work focuses on the effectiveness of incorporating the derivative information to obtain
smoother trajectories.

3.4.1 Model architecture

3.4.1.1 Features

The SALSA-Lite was introduced as an efficient computational version of the Spatial Cue-Augmented
Log-Spectrogram (SALSA) feature for MIC (audio format) data [73,74]. For M -channel audio record-
ing, SALSA-Lite is a (2M − 1) channel feature consisting of M log-power spectrogram with (M − 1)
frequency-normalized interchannel phase differences (NIPDs). The NIPD (Λ) approximating the rela-
tive distance of arrival (RDOA) can be written as

Λ(t, f) ≈ − c

2πf
arg |H∗

1(t, f)H2:M (t, f)| ≈ [d12(t) . . . d1M (t)], (3.16)

where Hm(t, f) = e
j2πfd1m(t)

c is the array response for any arbitrary array structure under the far-
field assumption and d1m(t) is the RDOA between the first (reference) and mth mic. The SALSA-Lite
provides the exact time-frequency positioning between the spectrogram and the NIPD, resulting in the
model being able to localize multiple overlapping sources.

3.4.1.2 Architecture

Figure 3.13 shows the neural network architecture designed to simultaneously predict the DOAs
and their derivatives. Here, the derivative represents the change in DOAs between two time frames.
The SALSA-lite is fed to the CRNN network, which consists of one convolutional layer, one average
pooling layer followed by four ResNet22 blocks [103] in the network body [73, 74]. The output othe f
ResNet block is fed into a two-layer bidirectional Gated Recurrent Unit (GRU) followed by two distinct
regression heads for predicting DOAs and their derivatives in Cartesian coordinates (x, y, and z), re-
spectively. Unlike the SELD network in [74], we focus only on the DOA estimation task and replace the
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Figure 3.13 Model architecture predicting both DOAs and DOA derivatives

detection head with the regression head, which predicts the derivatives of DOAs (x′, y′, z′) at different
timestamps as shown in Fig. 3.13. Along with predicting the intermediate DOAs, the additional deriva-
tive information helps to obtain better overall DOA estimates. Once the network predicts the DOAs and
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their derivatives, the final DOAs are obtained using the following update equation

x̂final
n =

x̂n + (x̂n−1 + x̂′n)

2
, n = 0, 1, . . . , N − 1 (3.17)

where x̂′n is prediction of the DOA derivative in x position (i.e., xn − xn−1) at nth time and x̂′0 = 0 is
the first derivative assumed to be zero. Similarly, the update rule for ŷfinal

n and ẑfinal
n can be obtained. By

additionally incorporating derivative predictions, we expect the DOA of moving targets to be estimated
more accurately. The number of active sources is assumed to be known for both the regression heads
(predicting DOAs and derivatives). The ground truth is used to compute the losses for both prediction
heads. The mean squared error (MSE) loss is minimized while training both the network heads and can
be written as

LOSSx = w1

N∑
n=1

(xn − x̂n)
2 + w2

N∑
n=1

(x′n − x̂n
′)2, (3.18)

LOSStotal = LOSSx + LOSSy + LOSSz, (3.19)

where xn and x′n are ground truth DOAs and their derivatives at nth timestamps, and x̂n and x̂n
′ repre-

sent the predicted DOAs and the predicted derivatives at nth timestamps respectively. In (3.18), LOSSx

represents loss computed for x positions and similarly LOSSy and LOSSz can also be computed. The
total loss minimized by the network is given in (3.19). Note that using appropriate weights for DOA
loss and its derivatives loss is important; we use equal weights for both DOA and derivatives loss
(w1 = w2 = 0.5). However the loss weights (w1 and w2) can be automatically optimized as described
in [104] and can be incorporated in (3.18).

3.4.2 Simulation results

3.4.2.1 Dataset and training

The TAU-NIGENS Spatial Sound Events 2021 dataset has been employed in this work to analyze
the performance of the proposed models. The dataset comprises 600 recordings, each one minute long
and with four channels, and is in the MIC data format with a sampling frequency of 24 kHz. The
dataset includes a diverse range of sound events featuring both stationary and mobile sources from 12
distinct classes. For this study, 400 recordings are used for training, while 100 recordings are allocated
to both validation and testing. The angular range for azimuth and elevation angles are [−180, 180)◦ and
[−45, 45]◦, respectively. For feature extraction, we followed the same setup as in [74], and frequencies
from 50 Hz to 2 kHz are processed to avoid the aliasing. While training, Adam optimizer [105] is used,
with the initial learning rate as 3×10−4 which linearly decreases to 10−4 over the last 15 epochs. A total
of 70 epochs with 32 batch size are processed. The validation set is used for model selection, whereas
the test data is used for the performance analysis.
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The DCASE data provides ground truth DOA labels every 0.1 seconds. While generating the ground
truth for DOA derivatives, the derivatives are considered as the difference between the previous and
current DOA. As a significant gap in DOA update time would result in an unreliable derivative estimate,
the derivative is considered zero if the source appears for the first time or a missing source reappears
after more than 20 frames (≈ 2 sec). We believe this is a reasonable choice since human motion patterns
do not change abruptly within short time spans.

3.4.2.2 Accuracy metric

Following the framework of our baseline method [74], we use the detection ground truth to compute
the error only for the frames where the sources are present/active. In this study, DOA/spatial error ∆σ

is computed as the angular distance between the predicted and true positions, [54, 106].

∆σ = arccos (ntrue.npred) .
180

π
, (3.20)

where ntrue and npred are unit norm vectors corresponding to the true and predicted positions, respec-
tively. In applications requiring indoor audio source localization, knowing the angular distance of a
source is more important than its Euclidean distance [12, 107].

Following the DCASE challenge convention [108], a source is considered as localized only when
the DOA error (averaged across the active frames within a block) is less than 20◦; we call these cases as
true positive (TP). The false negative (FN) counts the number of incidences when the averaged spatial
distance is more than 20◦. The evaluation criteria and threshold of 20◦ is used from the original DCASE
challenge TP criteria [51,54,106,108]. We report the probability of detection (Pd in %) as the fraction of
frames where the distance between the predicted and true positions is less than 20◦. Since the network
is designed to provide only one prediction per class, the error was not calculated for the cases where
multiple sources were present from the same class in the frame.

3.4.2.3 Effect of combining derivative

This subsection demonstrates the effect of combining the predicted derivatives with predicted DOAs.
Fig. 3.14 shows the predicted source trajectories from both Model-1 (with derivative estimation) and
Model2 (without derivative estimation) along with class-wise mean absolute error (MAE) computed
for the correctly detected sources for one of the recordings. The cross (×) in MAE plot denotes the
cases when the models have not detected the source. It can be seen that Model-1 detects more sources,
hence resulting in higher MAE for some classes compared to Model-2. The final DOA exhibits a
smoother trajectory since the outliers are eliminated by combining the derivatives via the proposed
update rule (3.17). The update rule is helpful even for static sources. We observed that Model-2 gives
more erroneous DOAs for static sources than Model-1. Overall, Model-1’s estimates are closer to true
trajectories, resulting in higher Pd. For this recording, the average Pd for static and moving sources for
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Model-1 and Model-2 are, Pds = 64%, Pdm = 78%, Pds = 53%, and Pdm = 52.4%, respectively. The
total Pd averaged over 100 recordings from the test data is reported in Table 3.4.

From Table 3.4, it is evident that both Model-1 and Model-2 show similar performance for the clean
dataset. We observed that Model-1’s performance degrades when the network predicts the erroneous
DOAs; hence combining them with equal weights leads to incorrect estimates. As a correction step,
the current DOA prediction with derivative and the past prediction can be weighted depending on the
threshold. A choice must be made depending on confidence in the present and past predictions.
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Figure 3.14 Effect of derivatives: true and predicted trajectories from Model-1 and Model-2 with class-
wise MAE.

SNR Model TPs TPm FNs FNm Pds Pdm

Clean
Model-1 28843 21523 13056 9892 68.8 68.5
Model2 27637 21389 14262 10026 65.9 68

-2dB
Model-1 17169 13097 24730 18318 40.9 41.7
Model2 17199 12487 24700 18928 41 39.7

-5dB
Model-1 15812 10919 26087 20496 37.7 34.7
Model2 14136 10522 27763 20893 33.7 33.4

Table 3.4 Performance of Model-1 and Model-2 at different SNR (averaged over test data).

3.4.2.4 Effect of transfer learning

To speed up the training process and reduce the risk of overfitting, we repeat the experiments using
the pre-trained CRNN weights from an existing SELD model using SALSA-Lite, where the best model
is obtained at the 47th epoch [74]. The dataset, architecture, and framework for the pre-trained model
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detailed in [74] is the same as the CRNN body used in this work. Keeping the CRNN body’s weights
fixed using the pre-trained SELD model increases the overall Pd is increased by 10 % for both Model-1
and Model-2, as shown in Table 3.5. From Fig. 3.15, it can be seen that Model-1 outperforms Model2
with higher Pd and lower DOA error.
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Figure 3.15 Effect of transfer learning: true and predicted trajectories from Model-1 and Model-2 with
classwise MAE.

SNR Model TPs TPm FNs FNm Pds Pdm

Clean
Model-1 33033 24687 8866 6728 78.8 78.5
Model-2 33431 24531 8468 6884 79.7 78

-2dB
Model-1 18349 12249 23550 19166 43.7 39
Model-2 17777 11906 24122 19509 42.4 37.8

-5dB
Model-1 15365 10060 26534 21355 36.7 32
Model-2 15404 9816 26495 21599 36.7 31.2

Table 3.5 Performance of Model-1 and Model-2 using the pretrained CRNN SELD model at different
SNR (averaged over test data).

3.4.3 Effect of low SNR levels

In order to assess the robustness of the models, we introduced synthetic additive white Gaussian
noise to the recordings from TAU-NIGENS Spatial Sound Events 2021 dataset despite the presence of
unknown interference and noise in the dataset. The results from Table 3.4 indicate a significant degra-
dation in the Pd of both models as the SNR level decreases. Nevertheless, Model-1 exhibits superior
performance in noisy scenarios due to the improved final DOAs resulting from estimated derivatives.
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The impact of SNR level on the source trajectories obtained from both models is presented in Fig. 3.16.
Our analysis suggests that Model-1 provides more reliable estimates than Model-2.
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Figure 3.16 Effect of low SNR levels: true and predicted trajectories from Model-1 and Model-2 with
classwise MAE.

3.5 Summary

In this chapter, we have considered DOA estimation as a compressive sensing problem and solved
it using sparse Bayesian learning algorithm. We use three array structures to show DOA estimation
results for different tasks of LOCATA dataset. The results show that CBF and MUSIC work well for a
stationary or slow-moving source but are error-prone in challenging tasks where the source and/or array
is moving. Multi-frequency SBL was observed to be robust to these challenges and performed well in
all the tasks. The study shows that SBL significantly outperforms CBF and MUSIC on all tasks.

Later, we analyzed three wideband signal models and derived wideband SBL update rules for each of
these models. We compared SBL methods with classical DOA estimation methods of CBF and MUSIC
on recordings of LOCATA and simulated data. Simulations show that SBL3 performs best across all the
signal models. SBL2 gives higher errors due to multiple false peaks. For hearing aid, SBL3 work best
for LOCATA data processing. For dicit and robothead SBL1 and SBL3 show similar performance (Task
4 and 6). This study shows that Model3 is an effective signal model that accurately balances sparsity
and power spectrum for real-world signals.

At last, we show the significance of predicting DOA derivatives in conjunction with DOAs (Model-1)
for enhancing the overall DOA estimation performance compared to solely predicting DOAs (Model-
2). Furthermore, we demonstrate that Model-1 is resilient to noise and performs better than Model-2
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under low SNR conditions. Given the broad range of applications of SELD tasks, our analysis reveals
that estimating DOAs and their derivatives cumulatively improves the source trajectories and overall
performance. In the future, it would be intriguing to investigate the potential impact of incorporating
higher-order derivatives in SELD tasks where detection and DOA estimation are simultaneously per-
formed.
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Chapter 4

Parametric Models and Algorithms for DOA Trajectory Localization

4.1 Introduction to Trajectory Localization

Traditional localization methods rely on block-level processing to extract the directional information
from multiple measurements processed together [14,23–25,28,49,109,110]. They estimate fixed DOA
within a block followed by tracking filters on these block estimates. This works well for slow-moving
targets but may not be ideal for fast motion. However, in real-world scenarios, the DOA is not con-
stant across the snapshots, which can lead to limitations in the performance of localization algorithms.
In [111], a sequential SBL algorithm was proposed to estimate time-varying DOAs, while in [49, 50],
neural network-based methods were used to obtain trajectories directly. Despite these advancements, al-
gorithms are still needed to accurately estimate DOA trajectories while being computationally efficient.

This chapter introduces a signal model incorporating source motion using parametric trajectories
and accounts for DOA motion (linear or nonlinear) within the block duration. This provides better DOA
estimates compared to models assuming fixed DOA. It can also be extended to other parametric models,
albeit with a further increase in processing complexity. Parametric trajectories can potentially eliminate
the need for tracking filters by implicitly performing both localization and tracking. We refer to this as
trajectory localization (TL). In trajectory localization, source trajectories are estimated instead of point
estimates. In this chapter,

• We developed two trajectory models to account for dynamic source DOA: (a) harmonic trajectory
model and (b) polynomial trajectory model.

• We developed an extension of CBF called TL-CBF to perform parametric trajectory estimation.

• Reformulated the trajectory model in a sparse signal framework and developed TL-SBL and TL-
OMP algorithms for trajectory localization.

• We developed two gridless algorithms to estimate the trajectory parameters: (a) SFW for trajec-
tory localization (TL-SFW) and (b) NOMP for trajectory localization (TL-NOMP).

• We formulated multi-frequency signal models and developed extensions of TL-SFW and TL-
NOMP to perform trajectory localization using multi-frequency signals.
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• We performed a comprehensive performance analysis of the proposed signal models and algo-
rithms to study the impact of signal-to-noise ratio (SNR), number of snapshots, resolution limits,
grid step size, and computational complexity.

• We experimentally validate proposed algorithms on real-world recording from the LOCATA
dataset.

4.2 Signal model

This section briefly overviews the static DOA model for ease of reading and discusses the proposed
parametric trajectory model. Polynomial and harmonic trajectory models are used to model complex
trajectories. The linear trajectory model, presented in our earlier work [13, 112], can be recovered as a
particular case of the polynomial model.

4.2.1 Static DOA Model

In this subsection, the DOA is assumed to be constant within a block. Let y ∈ CN be the measure-
ment vector received from an N−sensor uniform linear array (ULA), when K sources are present:

y =

K∑
k=1

a(θk)xk + n = Asvx+ n (4.1)

where Asv = [a(θ1) . . .a(θK)] is a matrix whose columns are steering vectors where a(θk) is steering
vector corresponding to the source direction θk and k = 1, . . . ,K. x = [x1, . . . , xK ] is the source
amplitude vector and n ∈ CN is the additive noise.

When a sequence of L observations is available, the above narrowband model can be extended to
multiple measurement vector (MMV) model [41, 44] as:

Y = AsvX + N = [Asvx1 . . .AsvxL] + N (4.2)

where Y = [y1 . . . yL] ∈ CN×L is the L snapshot observation matrix, X = [x1 . . .xL] ∈ CK×L

represents the source amplitudes of K sources over L > 1 snapshots, and N = [n1 . . .nL] ∈ CN×L

accounts for the additive noise across L snapshots. Under static DOA assumption, the source directions
(θk) do not change with time and are determined by analyzing the block of L snapshots.

4.2.2 Parametric models for DOA trajectory

In practical situations, sources are often in motion, making the assumption of constant DOA imprac-
tical. This presents a challenge in accurately estimating the DOA for moving sources. To overcome this
issue, we modelled and estimated linear DOA trajectories within block duration. However, the linear
assumption does not always hold true, as sources can exhibit complex, nonlinear motion. To address
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this limitation, we introduce two general trajectory models that capture linear and nonlinear motion –
polynomial and harmonic trajectories. In this work, we consider polynomial and harmonic trajectory
models, however any parametric model can be used to capture the linear/nonlinear motion of DOAs
within the blocks.

4.2.3 Polynomial model

Signals with constant/changing amplitude and polynomial phase are useful in many applications
[113–116]. For example, chirp signals representing second-order phase polynomials, quadratic FM sig-
nals corresponding to third-order phase polynomials, and radar returns from targets with constant accel-
eration featuring second-order phase terms [113,115]. The work in [117] derived the Cramer-Rao lower
bound on the variance of estimated parameters of signals with constant amplitude and polynomial phase.
In [118], a parameter estimation study is performed for non-stationary signals with time-varying ampli-
tudes and polynomial phase. The work in [119] explores the estimation of multicomponent polynomial-
phase signals impinging on a multi-sensor array, leveraging state-space modeling. In [120], Cramer–Rao
bounds and maximum likelihood estimation for random amplitude phase-modulated signal are studied.
Addressing the estimation challenge for signals comprising one or more components, [121] employs a
linear parametric model representing amplitude and phase functions. The derived Cramer-Rao bound
emphasizes the independent estimation of amplitude and phase parameters. The spatial time-frequency
distribution concept has been developed and employed in [122] to localize spatial sources, where the
PPS-like sources have been given great importance. In [123], the Extended Kalman filter is applied
to estimate the multi-component polynomial phase system. Exploiting spatial information given by a
multi-sensor array is shown to provide a high convergence rate. In the literature, RF signal impinging
on a single sensor whose phase is modulated (not linear) typically as a polynomial function, whereas
the proposed polynomial trajectory model characterizes the DOA at each snapshot, and when the DOA
is changing, the phase difference along the sensor array also changes.

We define a pth order polynomial trajectory as a function of snapshot number as

θl = ϕ+
P∑

p=1

αp

(
l

L− 1

)p

, l = 0, 1, . . . , L− 1 (4.3)

where θl represents the DOA at lth snapshot and ω = (ϕ, α1, . . . , αp) denotes the vector of trajectory
parameters for a source. The first order polynomial (p = 1) corresponds to the linear trajectory model,

θl = ϕ+ α1

(
l

L− 1

)
, l = 0, 1, . . . , L− 1, (4.4)

whereas the zeroth order polynomial (p = 0) corresponds to the static DOA case. Note that increasing
the number of parameters in the model allows for complex trajectories but, at the same time, leads to
higher computations in the trajectory estimation algorithms.
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4.2.4 Harmonic trajectory model

Alternate to the polynomial model, we can use the harmonic trajectory model as discussed in [124]
to generate trajectories,

θl = ϕ+

Q∑
q=1

{αq sin qνl + βq cos qνl} (4.5)

where ν denotes the fundamental frequency of sinusoidal signals to be added and ω = (ϕ, α1, . . . , αQ,

β1, . . . , βQ) denotes the vector of trajectory parameters for a source. These trajectories are guaranteed to
be bandlimited, with the maximum frequency being Qν. We choose Q based on expected DOA changes
within a block. As in the case of polynomial trajectories, increasing Q increases the computational cost
of trajectory estimation algorithms.

4.2.5 Observation model

Let ωk ∈ Ψ be the vector of parameters defining the kth source DOA trajectory, where Ψ is the
continuous trajectory space. Define Ã(ωk) ∈ CN×L to be the trajectory steering matrix containing
all the steering vectors as the DOA varies for the kth trajectory, i.e., Ã(ωk) =

[
a(θ1k) . . .a(θ

L
k ))
]
=[

ak1 . . .a
k
L

]
, where θl represents the lth snapshot DOA in an L-length block. Let X̃k = diag(xk),xk =

[x1k . . . x
L
k ]

T be the diagonal matrix of L complex amplitudes for the kth source. Thus, the MMV obser-
vation matrix when K sources are present can be expressed as,

Y =
K∑
k=1

Ã(ωk)X̃k + N =
K∑
k=1

ÃkX̃k + N , (4.6)

= Ā(W)X̄+ N = ĀX̄+ N , (4.7)

where X̄ = [X̃1 . . . X̃K ]T , Ā(W) = [Ã1 . . . ÃK ], andW = {ω1, . . . ,ωK} ⊂ Ψ. Here X̄ consists of
K diagonal matrices (of size L× L) stacked vertically. Let XL

K be the set of all such vertically stacked
diagonal matrices, thus X̄ ∈ XL

K .
In contrast to the static DOA MMV model (4.2), (4.7) represents the dynamic DOA MMV model,

which accounts for source motion through Ā(W . In trajectory localization, our aim is to estimate
parameters ωk defining the trajectory for all ω ∈ W the sources from the given observation matrix.

4.2.6 Sparse model

The above model (4.7) can be reformulated as a sparse signal model, allowing us to apply sparse
signal processing algorithms for DOA trajectory estimation. To demonstrate the sparse formulation,
we consider the linear trajectory estimation where ω = (ϕ, α). Let us consider a finely sampled grid
Ψd ⊂ Ψ in (ϕ, α) space. Let the uniformly sampled points in this trajectory space be denoted by
Ψd = {(ϕ1, α1), . . . , (ϕ1, αM2), . . . , (ϕM1 , αM2)}. A sparse model for (4.7) can be written as
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Y =

M1∑
m1=1

M2∑
m2=1

Ã(ϕm1 , αm2)X̃m1m2 + N (4.8)

=

M1∑
m1=1

M2∑
m2=1

Ãm1,m2X̃m1,m2 + N (4.9)

= Ãs X̃s + N , (4.10)

where Ãm1,m2 ≜ Ã(ϕm1 , αm2) and X̃m1,m2 are the changing DOA steering vector matrix and source
amplitude matrix for the source at (ϕm1 , αm2). Among all the potential M1M2 source trajectories, only
K trajectories are present in a given block and K ≪ M1M2. This sparsity is modelled by matrices
X̃m1,m2 , of which only K are non-zero. Here, we assume that the true sources lie on the grid. For com-
pact expression we define, Ãs = [Ã1,1 . . . ÃM1,M2 ] ∈ CN×M1M2L, and X̃s = [X̃1,1 . . . X̃M1,M2 ]

T ∈
CM1M2L×L. The above MMV model can be equivalently written as a single measurement model
(SMV) [125, 126] by vectorizing the observation matrix Y and appropriately changing the terms on
the right-hand side. Performing a column-wise vectorization operation on Y, we get

vec(Y) = yv = Ãvx̃v + nv (4.11)

Ãv = [IL ⊗ Ã1,1, . . . , IL ⊗ ÃM1,M2 ] (4.12)

x̃v = [diag(X̃1,1)
T , . . . , diag(X̃M1,M2)

T ]T (4.13)

nv = vec(N) , (4.14)

where IL ⊗ Ãm1,m2 ∈ CNL×L is the column-wise Kronecker product (Khatri–Rao product) of IL and
Ãm1,m2 , and IL is the L× L identity matrix. Here, the diag(·) operation on a square matrix returns the
diagonal of the matrix as a column vector. The sparsity structure of matrix X̃s is translated into a block
sparse structure of the vector x̃v. In the next section, we adapt SBL [43] and OMP algorithms to signal
model (4.11) giving trajectory localization SBL and OMP, i.e. TL-SBL and TL-OMP.

4.3 Grid-based algorithms for trajectory localization

Grid-based algorithms use a predefined grid where each grid point represents a possible trajectory
parameter to be estimated. The algorithm then analyzes the array measurements to determine the most
likely parameters by comparing the signal characteristics at different grid points. In this section, we
discuss grid-based methods for trajectory localization. We briefly describe existing methods [112] of
TL-CBF and TL-SBL and introduce an extension of orthogonal matching pursuit for the trajectory
model called TL-OMP. We conclude this section by showcasing grid-based TL algorithms for linear
trajectory estimation with ω = (ϕ, α) as described in (4.4).
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4.3.1 TL-CBF

A modification of the conventional beamforming (CBF) [24] algorithm for the linear trajectory model
is presented in [112]. We refer to it as CBF for trajectory localization, i.e., TL-CBF. The original CBF
algorithm computes the angular power spectrum at a predefined DOA grid by analyzing the correlation
between the observations and the steering vectors [17]. The DOA estimates are determined from the
peaks of this angular power spectrum. The TL-CBF extends this by computing the power spectrum
using the following expression,

PTL-CBF(ω) =
1

L

L∑
l=1

|aHl (ω)yl|2 , (4.15)

where the power spectrum PTL-CBF(ω) is a scalar-valued function of the vector variable ω. The power is
computed over a discrete trajectory space (ω ∈ Ψd) with M potential grid points for ω. The locations
of peaks in the spectrum are the estimated DOA trajectories. Figures 4.3 and 4.4 show the 2D and 3D
view of the same TL-CBF spectrum (4.15), and the locations of the peaks provide trajectory parameters.

4.3.2 TL-SBL

A derivative of SBL, TL-SBL, has been developed and applied to estimate DOA trajectory parame-
ters. Here, we derive the TL-SBL update rule following the approach in [45,99–101]. The block sparse
structure of x̃v has similarities with the static DOA MMV model [125, 126].
Prior: We assume that source amplitudes are i.i.d. across snapshots having zero-mean complex Gaus-
sian distribution

p(diag(X̃m)) ∼ CN (0, γmIL) , (4.16)

where γm is the variance, in this section, we use a simplified notation where the double index (m1,m2)

is replaced by a single index m and correspondingly the indices {(1, 1), . . . , (M1,M2)} are renumbered
as {1, 2, . . . ,M1M2}. We additionally assume the amplitudes are independent across sources. Thus
unknown x̃v is Gaussian distributed and parametrized by the vector γ = [γ1, . . . , γM1M2 ].
Likelihood: Assuming the noise to be zero-mean complex Gaussian distributed and i.i.d across sensors
and snapshots, the data likelihood can be given as

p(yv|x̃v;σ
2) = CN (yv; Ãvx̃v, σ

2INL) , (4.17)

where σ2 is the noise variance.
Evidence: In SBL, γ is estimated using evidence maximization (or type-II maximum likelihood) where
evidence is
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p(yv;γ) =

∫
x̃v

p(yv|x̃v;σ
2) p(x̃v;γ) dx̃v . (4.18)

Since both prior and likelihood are Gaussian, from properties of Gaussian densities, we get evidence
p(yv;γ) to be Gaussian with zero-mean and let the covariance matrix be Σyv . The log evidence can
thus be expressed as

log p(yv;γ) ∝ log |Σyv | − yH
v Σ−1

yv
yv , (4.19)

where Σyv = σ2INL + ÃvΣ0Ã
T
v , (4.20)

Σ0 = E(x̃vx̃
H
v ) . (4.21)

Evidence maximization can be performed by expectation maximization (EM) algorithm [125–127], but
its convergence is known to be slow [41, 43]. The TL-SBL method is based on a sparse modeling
framework, and the update rule for computing the TL-SBL spectrum is given as

γ̂new
m = γ̂old

m

yH
v ΣyvÂmÂH

mΣ−1
yv

yv

Tr[Σ−1
yv

ÂmÂH
m]

, (4.22)

where Âm = IL ⊗ Ãm, and Tr[·] denotes trace of a matrix. The mth grid point represents a potential
source (ωm) with corresponding to the trajectory steering matrix Ãm. The vector γ = [γ1, . . . , γm]

denotes the variance of source amplitude and, due to the hierarchical property of SBL, turned out to
be sparse. The locations of non-zero entries of γ signify the source DOA trajectory estimates. An
illustration of the TL-SBL spectrum (4.22) is shown in Fig. 4.5 and features well-defined peaks.

4.3.3 TL-OMP

To estimate the trajectory parameters, we modify the OMP algorithm [128,129]. This greedy method
iteratively selects the atoms from the dictionary on which the projection of the residual measurement
matrix is maximum,

ω̂ = arg max
ω∈Ψd

1

L

L∑
l=1

∣∣∣aHl (ω) r
[k−1]
l

∣∣∣2 , (4.23)

where r
[k−1]
l represents residual at lth snapshot for kth iteration. The residual for the next iteration is,

r
[k]
l = r

[k−1]
l −Pl r

[k−1]
l , (4.24)
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where Pl = al (a
H
l al)

−1 aHl is the projection matrix and aHl al = N . This ensures that the residual
observation vectors (at each of the lth snapshots) are orthogonal to the corresponding steering vectors
of the estimated source trajectories. The residual is initialized to the observation vector r[0]l = yl. TL-
OMP is a greedy algorithm that makes locally optimal choices at each step without considering the
global impact, leading to suboptimal solutions. The TL-OMP spectrum (4.23) at various iterations are
shown in Figure 4.6. A source is found at each iteration, and the residual is computed for next iteration.

4.3.4 Example

We compare the grid-based algorithms for linear DOA trajectories. Firstly, We compare the local-
ization ability of TL-CBF and TL-SBL with traditional CBF and SBL and later show a performance
comparison among various TL algorithms.

Example 1: In this experiment, a ULA with 10 sensors and d = λ
2 spacing is considered. TL-

CBF and TL-SBL algorithms require a grid over the parameters ϕ and α. We choose ϕ in the range
[−90◦, 90◦] with 1◦ separation and α in the range [−15, 15] with 1 unit separation. For CBF and SBL
algorithms we set θ grid in the range [−90◦, 90◦] with 1◦ separation. The SNR is 10 dB. Here we con-
sider K = 4 off-grid sources with (ϕ, α) parameters (−15.5, 2.5), (−25.5,−6.5),
(47.5, 4.5), and (71.5,−12.5) in a 100-snapshot block. The power spectrum in (ϕ, α) domain is shown
in Fig. 4.2 (a) for TL-CBF & TL-SBL (top row) and in θ domain for CBF & SBL (bottom row). SBL
and TL-SBL can identify all the off-grid sources, whereas CBF and TL-CBF miss a source. The cor-
responding DOA trajectories are shown in Fig. 4.1. The TL-CBF and TL-SBL algorithms can find
accurate on-grid approximations of the true off-grid trajectories.

Example 2: Figure 4.3, 4.5, and 4.6 show the 2D spectrum obtained from TL-CBF, TL-SBL and
TL-OMP, respectively. Observations are generated using a 10-sensor ULA with λ

2 spacing. In each
block, L = 30 snapshots are processed at 5 dB SNR. The grid over linear parameters are set as ϕ =

{−85 : 2 : 85} and α ∈ {−5 : 0.5 : 5}. Four sources are present with trajectories {(−11, 3.5), (20, 1.5)
, (61,−2.25), (−52,−4.75)}. These include both on-grid and off-grid sources. Figures indicate both
true and estimated trajectory parameters.

It can be seen from Figure 4.3 that TL-CBF has broad peaks, which makes it incapable of discerning
closely spaced trajectories, leading to poor resolution. In addition, there are numerous spurious peaks
associated with each source (see Figure 4.4 inset), which can cause repeated detection of the same
source. In contrast, the TL-SBL spectrum in Figure 4.5 offers higher resolution than TL-CBF but is
computationally intensive as the size of the search grid increases, making it unsuitable for real-time
applications. On the other hand, the TL-OMP spectrum shown in Figure 4.6 can estimate the trajectory
parameters accurately, but it is a greedy algorithm. The grid-based algorithms are prone to bias errors
when the parameters are off-grid. In this section, we only discussed the case of linear trajectories, but
these algorithms can be extended to other trajectories with the corresponding results presented later.
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Figure 4.1 (Example 1) Corresponding DOA estimates of K = 4 off-grid sources obtained from TL-
CBF, TL-SBL, CBF, and SBL algorithms at 10 dB SNR.
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Figure 4.2 (Example 1) Power spectrum of K = 4 off-grid sources obtained from TL-CBF, TL-SBL,
CBF, and SBL algorithms at 10 dB SNR.
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Figure 4.3 Example 2: TL-CBF spectrum for 4 source trajectories with true parameters (−11, 3.5),
(20, 1.5), (61,−2.25) and (−52,−4.75) [circle]. Detected and assigned peaks are shown by red cross.

Figure 4.4 Example 2: 3D view of the TL-CBF spectrum with inset showing spurious peaks around
the source (−52,−4.75).
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Figure 4.5 Example 2: TL-SBL spectrum for 4 source trajectories with true parameters (−11, 3.5),
(20, 1.5), (61,−2.25) and (−52,−4.75) [circle]. Detected and assigned peaks are shown by red cross.
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Figure 4.6 Example 2: TL-OMP spectrum at each iteration for 4 source trajectories with true param-
eters (−11, 3.5), (20, 1.5), (61,−2.25) and (−52,−4.75) [circle]. Detected and assigned peaks are
shown by a red cross.
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4.4 Gridless algorithms for trajectory localization

The performance of grid-based algorithms is limited when the true DOAs deviate from the grid or
when the grid is too coarse, resulting in low resolution. Additionally, finer grid results in increased
computational cost. In literature, various gridless methods have been proposed for DOA estimation to
address the limitations of grid-based localization algorithms. Gridless localization has been formulated
as an ANM problem and solved using semi-definite programming in 1D and 2D scenarios [20, 76–
84]. Additionally, gridless methods have been applied for non-uniform arrays and multi-frequency
processing [86–91]. The Newtonized OMP (NOMP) algorithm is a variation of OMP that employs
Newton steps to refine source parameters in each iteration [21]. An alternative gridless approach is
the Sliding Frank-Wolfe (SFW) algorithm [93], which solves the Beurling LASSO problem, i.e., a
traditional LASSO in the continuum [22]. SFW has been extended to 3D acoustic source localization
in a grid-free setting [91], and the choice of the regularization parameter is vital in obtaining accurate
solutions. Here, We describe an alternate model for (4.7) and formulate the Beurling LASSO problem
for gridless trajectory localization to address this limitation. We propose the TL-SFW and TL-NOMP
algorithms to solve this and extend them for multi-frequency signals.

4.4.1 Beurling LASSO

Let there be K sources with the trajectory parametersW = {ω1, . . . ,ωK} ⊂ Ψ. Similar to (4.1),
the lth snapshot can be expressed as

yl =
K∑
k=1

al(θ
l
k)x

l
k + n =

K∑
k=1

al(ωk)x
l
k + n . (4.25)

Using Dirac mass δω to represent a source with trajectory parameter ω ∈ Ψ, we can reformulate (4.25)

yl =

∫
Ψ
al(ω) dµl + n , (4.26)

µl =
K∑
k=1

xlk δωk
, (4.27)

where µl is the measure representing all the sources at the lth snapshot. Across snapshots, the amplitudes
change, but source trajectory parameters do not change. A Beurling LASSO problem is framed as,

µ∗
l = argmin

µl∈M

1

2

∣∣∣∣∣∣∣∣∫
Ψ
al(ω) dµl − yl

∣∣∣∣∣∣∣∣2
2

+ λ|µl| , (4.28)

where µ∗
l is the solution of the optimization problem,M is the set of complex measures defined on Ψ,

λ is the regularization parameter and |µl| represents any sparsity inducing norm of the measure µl. The
regularization parameter λ can be tuned to find the number of sources. The single snapshot formulation
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is not useful for estimating trajectories. The multiple snapshot extension could be written as,

µ∗ = argmin
µl∈M,∀l

1

2

L−1∑
l=0

∣∣∣∣∣∣∣∣∫
Ψ
al(ω) dµl − yl

∣∣∣∣∣∣∣∣2
2

+ λ

L−1∑
l=0

|µl| , (4.29)

where µ∗ is the collection of solution to all the measures {µ∗
l , l = 0, 1, . . . , L − 1}. In this work, we

assume the number of trajectories to be known; thus, we set λ = 0 and develop greedy iterative algo-
rithms [91]. From the solution µ∗, we obtain estimates for the trajectory parametersW and their corre-
sponding amplitudes using (4.27). In the presence of multi-frequency observations Yf , f = 1, 2, . . . , F ,
a multi-frequency Beurling LASSO can be constructed by adding across frequencies.

4.4.2 Sliding Frank-Wolfe algorithm (TL-SFW)

Algorithm 3 TL-SFW pseudo-code to solve (4.29)

1. W [0] ← ∅,R[0] ← Y, tol = 1e−10

2. for k = 1, . . . ,K

3. Find the next source:

ω∗ = arg max
ω∈Ψ

1
L

∑L
l=1

∣∣∣aHl (ω) r
[k−1]
l

∣∣∣2 (a)

4. W [ k−1
2

] = {W [k−1], ω∗}
5. Optimize the amplitude:

X̄[ k−1
2

] = arg min
X̄∈XL

k

1
2

∣∣∣∣∣∣Ā(W [ k−1
2

]) X̄− Y
∣∣∣∣∣∣2
F

(b)

6. Optimize the amplitudes and parameters:

X̄[k]
,W [k] = arg min

W⊂Ψ,X̄∈XL
k

1
2

∣∣∣∣Ā(W) X̄− Y
∣∣∣∣2
F (c)

7. R[k] ← Y− Ā(W [k]) X̄[k]

8. end for

MATLAB fmincon is used to solve equations (a), (b), (c)

We solve the Beurling LASSO problem (4.29) using greedy (λ = 0) Sliding Frank-Wolfe (SFW)
algorithm [22,91,93]. The SFW algorithm for trajectory localization (TL-SFW) is detailed in Algorithm
3. We iteratively solve (4.29) by adding one source at a time. An empty set is denoted as ∅. R[k] denotes
the N × L residual matrix at the end of iteration k and is initialized as R[0] = Y. Each iteration over
K trajectories consists of the following steps:

(i) Add a source: Solve (4.23) to find a coarse trajectory estimate on the predefined grid Ψd. Use
this estimate as initialization to solve the global optimization problem (a) in Algorithm 3 to obtain
ω∗.
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(ii) Amplitude estimation: Initialize all the k source amplitudes as diag(X̃k) = diag(ÃH(ωk)Y)

using the estimated trajectory parameters W [ k−1
2

]. Solve (b) to obtain optimized amplitudes
X̄[ k−1

2
].

(iii) Joint estimation: Jointly optimize the trajectory parameters and amplitudes by solving (c). Ini-
tialization is done usingW [ k−1

2
] and X̄[ k−1

2
] for this non-convex optimization problem.

The algorithm is proven to converge in a finite number of iterations under certain constraints [93].
Optimizations (a), (b), and (c) are performed using the sequential quadratic programming algorithm
[130] in the MATLAB 2018b function fmincon. For multi-frequency observations, problems (a) and
(c) are respectively modified as,

ω∗ = argmax
ω∈Ψ

1

L

F∑
f=1

L∑
l=1

∣∣∣aHlf (ω) r
[k−1]
lf

∣∣∣2 (4.30)

{X̄[k]
f }

F
f=1,W [k] = argmin

W⊂Ψ,X̄f∈XL
k

1

2

F∑
f=1

∣∣∣∣Āf (W) X̄f − Yf

∣∣∣∣2
F .

For multi-frequency processing, the trajectory parameters are estimated using the averaged spectrum
over F frequencies. The optimization (b) is solved F times to obtain the amplitudes X̄f at each fre-
quency. As the number of frequencies increases, the number of unknown parameters also increases,
leading to a higher computational cost.

4.4.3 Newtonized OMP (TL-NOMP)

Newtonized orthogonal matching pursuit (NOMP) is a variant of OMP that incorporates Newton
refinements to obtain precise off-grid estimates [21,92]. The NOMP algorithm for trajectory localization
(TL-NOMP) is given in Algorithm 4.

NOMP has three main steps when adding a new source:

(i) Find a source: Obtain an initial coarse estimate ω∗ of source trajectory parameter by searching
over the grid Ψd using (4.23) and estimate the corresponding amplitudes X̃∗.

(ii) Local Newton refinement: Compute the Hessian matrix (H) and gradient vector (g) for the
objective in (4.29) (assuming λ = 0). Refine the on-grid trajectory parameter estimate using
single-step Newton’s method over the continuum Ψ.

(iii) Global cyclic refinement: Starting with the current residual R∗ as the observation, add back each
of the identified sources (one at a time) and optimize parameters using Local Newton refinement.
Repeat until the convergence criteria are met.

The local Newton refinement provides an improvement on the initial on-grid parameter estimate. In
contrast, the global cyclic refinement provides a feedback mechanism to improve the estimates accu-
mulated from previous iterations. At the end of the k-th iteration, the residual R[k] is updated using
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Algorithm 4 TL-NOMP pseudo-code to solve (4.29)

1.W [0] ← ∅, R[0] ← Y, tol = 1e−6

2. for k = 1, . . . ,K

3. Find the next source:

ω∗ = arg max
ω∈Ψd

1
L

∑L
l=1

∣∣∣aHl (ω) r
[k−1]
l

∣∣∣2
diag(X̃∗) = diag

(
ÃH(ω∗)R[k−1]

)
4. Local Newton refinement:

ω∗ = ω∗ −H−1g

diag(X̃∗) = diag
(
ÃH(ω∗)R[k−1]

)
5. W [ k−1

2
] = {W [k−1], ω∗}

6. Global cyclic refinement:

R∗ ← Y− Ā(W [ k−1
2

]) X̄[ k−1
2

]

while
∣∣∣||R[k−1]||2f − ||R∗||2f

∣∣∣ < tol

for i = 1, . . . , k

R̂ = R∗ + Ã(ωi)X̃i

diag(X̃i) = diag
(
ÃH(ωi)R̂

)
Local Newton refinement of ωi and X̃i

R[k−1] ← R∗, R∗ ← R̂− Ã(ωi)X̃i

end for
end while

7. Use (4.24) to find the orthogonal residual R[k]

8. end for

(4.24) where data is orthogonally projected onto steering vectors corresponding to identified source
trajectories. For the multi-frequency implementation of NOMP, the objective in 4.29 is used instead.

Both TL-SFW and TL-NOMP solve (4.29) with the primary distinction lying in their refinement
processes. Once the coarse trajectory parameter is found, the TL-SFW solves three optimization prob-
lems: i) optimizing the coarse trajectory parameters using (a), ii) optimization of amplitudes for each
trajectory using (b), and iii) the joint estimation of estimated amplitude and trajectory parameters using
(c). The residual is updated in each iteration, and trajectory and amplitudes are optimized accordingly.
In contrast, the TL-NOMP uses a local single refinement process over each coarse on-grid estimate (in-
stead of solving (a) in TL-SFW) and then a global cyclic refinement method to converge and attain the
optimal solution, continuing until the stopping criteria are met. In the global cyclic refinement, the con-
tribution of each source is removed, and the rest are optimized as described earlier. The implementation
of SFW and NOMP is referred from [131], a helpful resource for developing TL-SFW and TL-NOMP.
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4.5 Simulation Results

4.5.1 Simulation setup

We demonstrate various algorithms using simulations with linear and nonlinear trajectories. The
performance of TL-SFW and TL-NOMP are compared with TL-CBF, TL-SBL and TL-OMP. A 10−
sensor uniform linear array (ULA) with inter-sensor spacing d = λ

2 is used. Unless stated otherwise,
simulations are for linear trajectories and narrowband signals. For grid-based methods TL-CBF, TL-
SBL, and TL-OMP, we construct the following grid over trajectory parameters: ϕ ∈ {−85 : 2 : 85} and
α ∈ {−5 : 0.5 : 5} resulting in a dictionary with M = 86 × 21 = 1806 trajectory steering matrices
Ã. Throughout the simulations, we consider L = 30 snapshots within a block at an SNR of 5 dB. The
source amplitudes and noise are complex Gaussian of the form a+ jb where a and b are generated using
zero-mean Gaussians. The signal and noise variance are σ2

x and σ2
n, respectively. The signal-to-noise

ratio is defined as SNR = 10log10(
σ2
x

σ2
n
). For TL-SBL, the noise variance is assumed to be known and

directly used in the update rule. However, an update rule for estimating the noise variance can also be
derived [44, 100, 102].

To compare the localization accuracy of TL methods, we report RMSE. Let θlk and θ̂lk be the ground
truth and estimated DOA obtained from trajectory parameters corresponding to the kth source. The
RMSE for kth source is given by,

RMSEk =

√∑L−1
l=0 (θlk − θ̂lk)

2

L
, k = 1, . . . ,K. (4.31)

We perform 100 Monte Carlo trials and report the RMSE averaged across all the trials and sources.
For TL-CBF and TL-SBL, if K sources are present, we identify K̂ = K + 2 peaks in the power
spectrum. By considering more peaks, we overcome the problem of spurious peaks and get the best
possible estimates closer to true trajectories. The Optimal SubPattern Assignment (OSPA) [132,133] is
used to solve the assignment problem between the K̂ estimated trajectories and K true trajectories. Let
T̂ ≜

{
T̂1, . . . , T̂K̂

}
be the set of K̂ estimated trajectories and T ≜ {T1, . . . , TK} be the set of K true

trajectories. The OSPA metric for sets T and T̂ is defined as

OSPA(T , T̂ ) ≜

[
1

K̂
min
π∈ΠK̂

K∑
k=1

dc(Tk, T̂π(k))
p + (K̂ −K)cp

] 1
p

(4.32)

where K ≤ K̂, the order parameter is 1 ≤ p ≤ ∞ and c is the cutoff parameter. ΠK̂ denotes the set
of all permutations of length K with elements {1, . . . K̂}. The dc(Tk, T̂π(k)) ≜ min(c, dt(Tk, T̂π(k)),
where dt(Tk, T̂π(k)) denotes the error between two trajectories computed using (4.31). We choose p = 2

and c = 100. Once assigned, a source is said to be detected if the RMSE between ground truth and the
assigned track is less than the detection threshold of 5◦. We report the probability of detection Pd, i.e.
the percentage of detected sources. The average RMSE is reported only for detected sources.
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4.5.2 SNR

We perform simulations with SNR ranging from −10dB to 30dB. Four source trajectories (linear)
are processed in a block containing L = 30 snapshots. The true trajectory parameters are W =

{(−11, 3.5), (20, 1.5), (61,−2.25), (−52,−4.75)}, such that some parameters are on-grid while the
rest are off-grid. The minimum error achievable by on-grid methods for each of these trajectories are
0, 0.51, 0.15, and, 0.53 respectively, giving an average of 0.30. The error vs SNR and Pd vs SNR plots
are shown in Figure 4.7. At low SNR, TL-CBF has the lowest RMSE; however, it exhibits lower Pd

compared to other approaches as it fails to detect all the sources. Both TL-NOMP and TL-SFW outper-
form all the grid-based methods as they can optimize the parameters beyond the grid. As SNR increases,
most algorithms reach saturation except TL-NOMP, which consistently enhances its performance. TL-
SFW has a slightly better detection rate at low SNR than TL-NOMP. TL-SBL error saturates to the
value of 0.30 beyond which its performance cannot improve since it can only find sources on the grid.
It performs better than TL-OMP, which is a greedy algorithm.
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Figure 4.7 Evaluation of TL-methods for linear trajectory localization for various SNR values. RMSE
vs SNR (top) and Pd vs SNR (bottom).

4.5.3 Snapshots

We evaluate algorithm performance with the number of snapshots ranging from 5 to 50 at 5 dB
SNR. The true trajectory parameters are the same as above. Figure 4.8 shows that as the number of
snapshots increases, the error decreases for all the algorithms. Both TL-SFW and TL-NOMP show
superior performance compared to all the other methods. Grid-based methods exhibit higher error than
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grid-free methods due to the bias present while estimating off-grid trajectory parameters, regardless of
the number of snapshots. TL-CBF has higher Pd for fewer snapshots, which reduce with increasing
snapshot number. This is likely due to the presence of spurious peaks (Figure 4.3), which become more
prominent with increasing snapshots (4.15).
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Figure 4.8 Evaluation of TL-methods for linear trajectory localization for various snapshots processed
within a block. RMSE vs Snapshots (top) and Pd vs Snapshots (bottom).

4.5.4 Grid step-size

We analyze the impact of step-size (ϕstep) used for creating ϕ grid in trajectory localization tasks.
The grid over α is fixed with α ∈ {−5 : 0.5 : 5} while the grid over ϕ is made coarser by increas-
ing ϕstep from 1 to 10. Let ϕg be the grid vector constructed using ϕstep with Nϕ grid points. For

this ϕstep experiment, the true parameters are
(
ϕg(⌊Nϕ × 0.2⌋), 3.5

)
,
(
ϕg(⌊Nϕ × 0.45⌋) + ϕstep

2 , 1.5
)

,(
ϕg(⌊Nϕ × 0.65⌋),−2.5

)
and

(
ϕg(⌊Nϕ × 0.9⌋) + ϕstep

2 ,−4.75
)

where ⌊.⌋ denotes the floor of a real
number. These source trajectories are chosen such that the true ϕ and α parameters have both on-grid
and off-grid combinations. As the step-size increases, the grid becomes less refined, and the perfor-
mance of grid-based methods is expected to degrade. Whereas TL-SFW and TL-NOMP are expected
to perform better since they improve upon the initial on-grid estimates by performing optimization and
refinement, respectively. This analysis is verified from simulation results shown in Figure 4.9. The
impact of grid step-size on gridless methods is low with TL-NOMP being most robust to the coarseness
of the ϕ grid.
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Figure 4.9 Error as function of parameter ϕ grid step-size with L = 30 snapshots at 5dB SNR.

4.5.5 Resolution

Resolution refers to the ability to distinguish between two nearby trajectories accurately. We con-
sider 3 sources with linear trajectory parameters as follows W = {(0, 3.5), (60,−4.5), (ζ, 2.5)}. The
3rd source trajectory varies as we increase ζ from −15 to 15. Specifically, its trajectory approaches that
of the 1st source and then diverges. We process 30 snapshots at 5 dB SNR. The results are shown in
Figure 4.10. TL-CBF, TL-OMP, and TL-SFW have low resolution when dealing with closely spaced
trajectories, as indicated by the peaks in the RMSE plot. Both TL-SBL and TL-NOMP outperform other
methods, with TL-NOMP having the lowest error among all the methods. The detection performance of
TL-SBL is influenced by our approach of selecting five peaks from the spectrum and subsequently iden-
tifying the three closest tracks after source association. Though there is a dip in error for all algorithms
around ζ ∈ [−3, 3], it is likely due to repeated identification of the same source. It cannot be attributed
to superior resolution ability.

4.5.6 Linear trajectory approximation for slowly moving sources

Here, we demonstrate how the linear trajectory model approximates and captures the DOA motion
of slowly moving sources with nonlinear trajectories.

Example 1: We simulate a moving source with nonlinear DOA trajectory as shown in Fig. 4.11.
The trajectory contains 31 non-overlapping blocks of L = 50 snapshots each. Within each block, the
DOA trajectory is approximately linear. The maximum change in DOA within any block is 11.5◦.
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Figure 4.10 Error as a function of source proximity (ζ) with L = 30 snapshots at 5dB SNR. RMSE vs
ζ (top) and Pd vs ζ (bottom).
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Figure 4.11 (Example 1) DOA estimates of CBF, TL-CBF, SBL, and TL-SBL for a moving source (10
dB SNR).
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Trajectories estimated from TL-CBF and TL-SBL closely align with the true trajectory whereas CBF
and SBL provide fixed DOA estimates in each block.

Example 2: Two moving sources with non-linear DOA trajectories are simulated in Fig. 4.12 (52
blocks with L = 30 snapshots each). The estimated DOAs by TL methods provide relatively smoother
trajectories. The root-mean-square DOA error for non-crossing regions is 2.98◦, 3◦, 2◦, and 1.78◦ for
CBF, TL-CBF, SBL, and TL-SBL respectively.
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Figure 4.12 (Example 2) DOA estimates of CBF, TL-CBF, SBL, and TL-SBL for two moving sources
(10 dB SNR).

4.5.7 Non-linear trajectories

Sample nonlinear trajectories, generated using 3 parameter quadratic and harmonic trajectory mod-
els, are shown in Figures 4.13 and 4.14, respectively. Each trajectory spans over L = 40 snapshots.
Estimated trajectories, by processing observations at 20 dB SNR, using TL-SFW and TL-NOMP are
shown as well. For both models, we construct the following grid over trajectory parameters: ϕ ∈ {−85 :

2 : 85} and α1, α2, β1 ∈ {−5 : 0.5 : 5}, resulting in a dictionary with M = 86 × 21 × 21 = 37926

trajectory steering matrices Ã. This is significantly larger than the number of grid points in the linear
case. Figure 4.15 shows error vs SNR for nonlinear trajectory estimation. We set L = 30 and use
sources with polynomial trajectories: W = {(−60, 1,−3), (−31, 0.4, 3.6), (20,−3, 2), (51, 4,−0.2)}.
TL-CBF frequently fails to detect trajectories, giving a poor detection rate of Pd ≈ 40%. TL-NOMP
performs worse than TL-OMP at low SNR (both in RMSE and Pd) but recovers at higher SNR values,
outperforming all other algorithms. TL-SFW shows marginal improvement over TL-OMP, with its er-
ror saturating at high SNR. All the results presented so far use a detection threshold of 5◦. Here, we
investigate the effect of changing this detection threshold on detection probability Pd.
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Figure 4.15 Performance of TL-methods for nonlinear trajectory localization at various SNR values.
RMSE vs SNR (top) and Pd vs SNR (bottom).

Figure 4.16 depicts the Pd as the detection threshold is changed for select SNR values. As expected,
an increase in the value detection threshold increases Pd. Similar to the inference from Figure 4.15,
at lower SNR, the performance of TL-OMP is better than that of TL-NOMP, whereas TL-SFW shows
superior detection performance at all SNR levels.

4.5.8 Computational effort

In this section, we present the computational time analysis of methods by varying snapshots from 5

to 50, at 5 dB SNR. We conduct experiments on a desktop equipped with an Intel(R) Core(TM) i7-8700
CPU operating at 3.19 GHz × 8 cores and 32 GB of memory. Figure 4.17 illustrates the computational
time required by each method for estimating linear (top) and nonlinear (bottom) trajectories. TL-CBF
and TL-OMP exhibit high computational efficiency leading to significantly shorter execution times when
compared to other methods. For nonlinear trajectories, TL-SBL requires significantly longer execution
times, even with a small number of snapshots. Hence, we omit TL-SBL results for the nonlinear case.
The computational requirements of TL-NOMP are higher than that of TL-SFW.

4.5.9 Multi-frequency processing

We generate multi-frequency observations and apply TL algorithms. The TL-SFW processes the
multi-frequency signals in a coherent manner (4.30), whereas other TL methods process them non-
coherently. We extend the TL-CBF and TL-OMP to multi-frequency observations by summing the
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Figure 4.16 Performance of TL-methods for nonlinear trajectory localization with varying detection
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spectrum across frequencies in (4.15) and (4.23). Due to its high computational complexity, we do not
include multi-frequency [100, 134] TL-SBL. We examine the performance by increasing the number of
frequencies processed as F = 1, 3, 5, and 7 with corresponding frequencies 1600, {1400, 1600, 1800},
{1000, 1200, 1400, 1600, 1800}, and {1000, 1200, 1400, 1600, 1800, 2000, 2200}. Figure 4.18 shows
that as the number of frequencies increases, the performance improves. The TL-NOMP offers the best
performance among all and significantly improves over TL-OMP. TL-SFW shows degraded perfor-
mance when more frequencies are used, which could be due to the additional amplitude parameters it
has to estimate as the number of frequencies increases.
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Figure 4.18 Performance of multi-frequency TL-methods for quadratic trajectories with different num-
bers of processed frequencies at various SNR.

4.5.10 Results on LOCATA

We apply the methods developed in this chapter to LOCATA experiment data [96]. A detailed de-
scription for the comprehensive understanding of the array configurations and recording conditions is
provided in chapter 3. We create ground truth data for each snapshot to analyze the trajectory models
and algorithms. During our dataset analysis, we noticed significant changes in the DOA within each
block, enabling trajectory localization models to capture these variations. We consider audio signals
from the dicit array in Task 4 (recording 2) with two moving sources. Data from a 7-sensor linear sub-
array of dicit with d = 32 cm inter-sensor spacing is processed (11 frequencies ranging from 200 to
450 Hz are utilized). Figure 4.19 shows the trajectory estimates for the two sources in a block consist-
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ing of 30 snapshots (0.1950 s duration). The result shows that the proposed TL model can handle the
real-world complexity and capture the DOAs changing within the block, hence improving the overall
localization accuracy. The proposed algorithms do not explicitly model reverberations and structured
noises that exist in real-world measurements. Thus, their performance may degrade when applied to
realistic acoustic environments.

Figure 4.19 Trajectory estimates of two moving sources using dicit array, Task 4, recording 2 from
LOCATA. Here, GT is ground truth

Algorithm Noise
resilience Resolution Effect of

grid-step
Computation
speed

Detection
probability

TL-CBF Low Low High Fast Low
TL-SBL Medium High High Slow Medium
TL-OMP High Low High Fast High

TL-NOMP High High Low Medium Medium
TL-SFW High Medium Medium Fast High

Table 4.1 Comparative analysis of various algorithms for trajectory localization.

4.6 Summary

In this chapter, we proposed two novel trajectory models: the harmonic and polynomial models.
We developed TL-CBF, TL-OMP, and TL-SBL algorithms for estimating the trajectories. To overcome
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the limitation of grid-based algorithms, we proposed two gridless algorithms for localizing the DOA
trajectories – TL-SFW and TL-NOMP – and demonstrated their superior performance in extensive sim-
ulations. We also extended the algorithms for multi-frequency processing. The proposed models and
algorithms are also validated using recordings from real-world LOCATA dataset. Table 4.1 summarizes
the performance characteristics of various algorithms, highlighting their noise resilience, resolution,
sensitivity to grid-step, speed, and detection probability. Among grid-based methods, TL-CBF and TL-
OMP are fast but have low to moderate resolution, whereas TL-SBL is slow but has high resolution.
Among the gridless methods, TL-SFW is preferable in scenarios where noise resilience, computational
efficiency, and detection rate are prioritized. At the same time, TL-NOMP is more suitable for applica-
tions that require noise resilience, and high resolution and coarse parameter grids are tolerable. Overall,
gridless algorithms outperform grid-based methods for trajectory localization.
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Chapter 5

Conclusion

This thesis provides valuable insights into localization algorithms through comprehensive analysis
of real-world datasets. The analysis of various localization algorithms (CBF, MUSIC, and SBL) and
exploration of wideband models (Model1, Model2, and Model3) help in enhancing the understanding
of localization algorithms and their practical applicability. The analysis on the LOCATA dataset shows
that compressive sensing based SBL is a promising method and robust to the challenges posed in real-
world scenarios. For task 1, 3 and 5, SBL consistently outperforms CBF and MUSIC across various
tasks, establishing SBL as a robust approach in challenging scenarios.

Building on these findings, the thesis addresses wideband DOA estimation using SBL algorithms,
evaluating a realistic signal model that accounts for changes in source variance across the frequency
range. By applying and evaluating three wideband SBL variants (SBL1, SBL2, and SBL3), along with
wideband versions of CBF and MUSIC, it is shown that SBL3, which incorporates a shared colored
spectrum, performs best across different signal models and array configurations. This work enhances
the understanding of wideband SBL algorithms and their applicability in real-world scenarios.

The thesis further explores the integration of Deep Neural Network based methods, highlighting the
importance of predicting DOA derivatives alongside DOA for improving localization performance. A
new model combining DOA and their derivatives is proposed, demonstrating improved performance
under low signal-to-noise ratio (SNR) conditions using the TAU-NIGENS Spatial Sound Events 2021
dataset. This study underscores the significance of incorporating higher-order derivatives in sound event
localization and detection tasks.

Additionally, the thesis introduces novel parametric signal models, such as polynomial and bandlim-
ited models, to identify DOA trajectories that capture the dynamic motion of a source. Grid-based
and gridless algorithms are developed to estimate these trajectories, with gridless methods like Sliding
Frank-Wolfe and Newtonized Orthogonal Matching Pursuit overcoming the limitations of grid-based
approaches by estimating parameters in continuous trajectory space. This improves localization accu-
racy and eliminates the need for tracking filters. The research also extends to wideband processing,
providing detailed results on SNR, number of snapshots, resolution limits, grid step size, and computa-
tional complexity. The proposed algorithms are applied to challenging real-world recordings from the
LOCATA dataset, which include challenging acoustic scenarios.
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In future, the work in this thesis can further analyze the applicability of proposed algorithms in
diverse acoustic scenarios accounting real-world implementation challenges such as near-field sources,
ambient noise, and different reverberation effect. The TL-algorithms can be generalized to different data
modalities to assess the efficacy of proposed model and algorithms. Additionally, a Cramér-Rao Bound
(CRB) analysis can be conducted for the proposed TL models to evaluate their theoretical performance
limits.

Moreover, the contributions of this thesis extend beyond sound waves and can be applied to other
data types, including radio waves. This versatility significantly enhances the impact of the research
across various applications. The outcomes of this research have the potential to contribute to a safer
and more interconnected world, where smart devices can effectively perceive and track sources, thereby
improving performance in numerous practical applications.
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New York, NY, 2013. (Cited on pages 5, 12, 13, and 14.)
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