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Abstract 

 Cell division refers to the process by which cells grow, replicate their genetic 

material, and divide to form daughter cells. Major biological processes, namely 

reproduction, development, wound healing and tissue regeneration, require cell division. 

Cells switch between quiescence and proliferation states for maintaining tissue 

homeostasis and regeneration. The cell division process is regulated by a wide range of 

extracellular and intracellular cues like growth factors, stress, and reactive oxygen species 

(ROS). The decision to exit or enter quiescence is dysregulated in proliferative and 

degenerative diseases. Hence, understanding the molecular mechanisms that control the 

reversible transition between quiescence and proliferation is crucial. In this thesis, we 

study the regulatory network involved in this decision-making in normal and disease 

(cancers and Alzheimer’s Disease) conditions and characterize the metabolic adaptation 

of cancers using systems biology approach. 

 At the restriction point (R-point), cells become irreversibly committed to the 

completion of the cell cycle independent of mitogen. The mechanism involving hyper-

phosphorylation of retinoblastoma (Rb) and activation of transcription factor E2F is 

linked to the R-point passage. However, stress stimuli trigger exit from the cell cycle back 

to the mitogen-sensitive quiescent state after Rb hyper-phosphorylation, but only until 

APC/C-Cdh1 inactivation. In the work presented here, we developed a mathematical 

model to investigate the reversible transition between quiescence and proliferation in 

mammalian cells with respect to mitogen and stress signals. The model integrates the 

current mechanistic knowledge and accounts for the recent experimental observations 

with cells exiting quiescence and proliferating cells. We show that Cyclin E-Cdk2 

couples Rb-E2F and APC/C-Cdh1 bistable switches and temporally segregates the R-

point and the G1/S transition. A redox-dependent mutual antagonism between APC/C-

Cdh1 and its inhibitor Emi1 makes the inactivation of APC/C-Cdh1 bistable. We show 

that the levels of Cdk inhibitor (CKI) and mitogen control the reversible transition 

between quiescence and proliferation. Further, we propose that shifting of the mitogen-

induced transcriptional program to G2-phase in proliferating cells might result in an 

intermediate Cdk2 activity at the mitotic exit and the immediate inactivation of APC/C-

Cdh1. Our study builds a coherent framework and generates hypotheses that have been 
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confirmed by experimental findings. 

 Proliferative diseases like cancer arise due to alterations in the regulation of the 

cell cycle. An emerging hallmark of cancer is metabolic reprogramming, which presents 

opportunities for cancer diagnosis and treatment based on metabolism. A comprehensive 

metabolic network analysis of renal cell carcinoma (RCC) subtypes, including clear cell, 

papillary, and chromophobe, was performed by integrating transcriptome data with the 

human genome-scale metabolic model to understand the coordination of metabolic 

pathways in cancer cells. We identified metabolic alterations of each subtype with respect 

to tumor-adjacent normal samples and compared them to understand the differences 

between subtypes. We found that genes of amino acid metabolism and redox homeostasis 

are significantly altered in RCC subtypes. Chromophobe showed metabolic divergence 

compared to other subtypes with upregulation of genes involved in glutamine anaplerosis 

and aspartate biosynthesis. A difference in transcriptional regulation involving HIF1A is 

observed between subtypes. We identified E2F1 and FOXM1 as other major 

transcriptional activators of metabolic genes in RCC. These results highlight the crosstalk 

between metabolism and cell division. Further, the co-expression pattern of metabolic 

genes in each patient showed variations in metabolism within RCC subtypes. We also 

found that co-expression modules of each subtype have tumor stage-specific behavior, 

which may have clinical implications.  

 Intriguingly, cell cycle dysregulation triggers not only proliferative diseases such 

as cancers but also drives degenerative diseases like Alzheimer's disease (AD). Aberrant 

production and aggregation of amyloid beta oligomers (Aβ) into plaques is a frequent 

feature of AD. However, therapeutic approaches targeting Aβ accumulation fail to reverse 

or inhibit disease progression. The approved cholinesterase inhibitor drugs are also 

mostly symptomatic treatments. During human brain development, the progenitor cells 

differentiate into neurons and switch to a postmitotic, resting state. However, cell cycle 

re-entry often precedes the loss of neurons. In this study, we developed mathematical 

models of multiple routes leading to cell cycle re-entry in neurons that incorporate the 

crosstalk between cell cycle, neuronal and apoptotic signaling mechanisms. We show that 

the integration of multiple feedback loops influences the severity of disease and makes 

the switch to pathological state irreversible. We observe that the transcriptional changes 
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associated with this transition are also characteristics of the AD brain. We propose 

targeting multiple arms of the feedback loop may bring about disease-modifying effects 

in AD. 

 Cell cycle re-entry during infection is also the underlying process of the adaptive 

immune response. Naïve T cells get activated on antigen priming and proliferate to form 

effector and memory cells. However, unlike other mammalian cells, these cells go 

through an extended lag phase followed by rapid division cycles. The cells undergo 

extensive metabolic reprogramming in the lag phase, which equips them for extensive 

clonal expansion. Some common regulators of metabolism and cell cycle coordinate cell 

growth with proliferation. In the final section of the work, we have developed a 

mathematical model to explore the crosstalk between metabolism and cell cycle in T cell 

activation and expansion. We demonstrate the interplay of multiple feedback loops in 

sustaining Myc levels for T cell activation, expansion, and metabolic reprogramming. 

This proposed model integrates information across literature and high throughput 

expression data (proteome) to provide systems-level insights. 

 Overall, we studied the regulatory network involved in quiescence versus 

proliferation decision-making in physiological and pathological conditions. We present a 

consensus picture that bridges different experimental studies and propose hypotheses that 

can help in further experimentation. Since proliferation and metabolism go hand in hand, 

we also characterized the metabolic adaptations of cancer that showed subtype-specific 

changes. This thesis expands the understanding of multiple pathological states that may 

aid in developing clinical applications. 
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Chapter 1  INTRODUCTION 

1.1 Background 

Cell cycle refers to the series of events through which cells grow, replicate their 

genome, and eventually divide into two daughter cells by mitosis. It is the underlying process 

necessary for growth, development, and reproduction. The precise regulation of the cell cycle 

is critical to maintain the genetic integrity of the cell. The cell cycle regulation is under the 

control of a complex regulatory network that processes a wide range of extracellular and 

intracellular signals to trigger cell cycle re-entry or arrest cell cycle, or trigger cell death. This 

complex regulatory network is responsible for the timely execution of cell cycle events in an 

ordered manner. Dysregulation of the cell cycle is the hallmark of proliferative diseases like 

cancer [1–3]. Therefore, cell cycle control has been an area of intense research for several 

decades. Such studies focus on mechanisms that influence not only the timing but also the 

frequency of DNA replication and cell division [4]. Several factors, such as stress, 

carcinogenic toxicants, and radiations that cause DNA damage, can considerably alter the cell 

cycle specific events [1]. A systems-level study of cell cycle control may provide an 

understanding of disease mechanisms and their treatment strategies. 

The entire cell cycle can be divided into four phases (Figure 1.1). Mother cells divide 

to form daughter cells which undergo a period of growth (G1). Most of the cellular proteins, 

RNA, other macromolecules, and membranes are synthesized in G1. It is followed by the S 

phase, which is the period of DNA synthesis. The next phase (G2) is another period of 

growth. Mitosis (M) follows the G2 phase. In the M phase, chromosome condenses, the 

nuclear envelope breaks down, mitotic spindles form, chromosomes attach to the mitotic 

spindles, and finally, separation of the sister chromatids occurs. G1 phase to G2 phase is also 

known as the interphase. The process completes with cytokinesis, i.e., separation of the 

daughter cells. The gap phases (G1, G2) are usually much longer (Figure 1.1) than the S or M 

phase [5]. This provides sufficient time for cell growth. Additionally, they also function as 

crucial regulatory transition points that can control progression to the subsequent cell cycle 

phase via the processing of various intracellular and extracellular signals [2, 3, 6]. 
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Figure 1.1: Four phases of the cell cycle. The cell grows during the interphase (G1, S, and G2). 

Cytokinesis usually follows mitosis (M phase); P, M, A, T represent prophase, metaphase, anaphase, and 

telophase respectively. Cells can switch between cycling and resting (quiescence – G0) state. 

1.2 Mammalian cell cycle 

  The passage of mammalian cells through the cell cycle is controlled primarily by 

various extracellular growth factors which signal cell proliferation. When cells are starved of 

growth factors, they withdraw from the cell cycle, cease to proliferate, and enter into a 

quiescent state (G0) [7, 8]. On restimulation, usually with serum, they resume cycling. 

However, in comparison to rapidly proliferating cells, they pass through a longer lag phase 

[8, 9]. Though the stimulus has widespread effects on cellular growth and metabolism, the 

length of the lag phase appears to be independent of the levels of serum or growth factors [9–

11]. After the lag phase, the cells start to enter the S phase asynchronously [10, 11]. On being 

stimulated with growth factor, cells cross a decision point that may be located even before the 

end of lag, after which they continue to divide without further stimulation [8, 9, 11, 12]. 

Hence, cells become committed to divide sometime before the transition from G1 to S phase. 

Normal cells are growth factor-dependent, and they must pass through the critical decision 

point in every cell cycle [13]. Molecular machinery underlying this decision point appears to 

be dysregulated in many cancers emphasizing its importance [14]. Interestingly, the factor(s) 

that determine the timing of this critical decision point remains unclear. On restimulation, 

some quiescent cells have higher growth factor requirements than others [15]. Even on 

stimulation at maximum strength, the cells cross the decision point to enter the S phase in an 

asynchronous manner [10, 11]. Though often considered to be merely a nuisance, the 

variability may be a consequence of the regulatory mechanism for cell cycle commitment. 
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Hence, understanding the origin of this variability is necessary for a complete understanding 

of the cell cycle control.  

1.2.1 Molecular components of the quiescence to proliferation reversible 

transition network 

The molecular players of the quiescence to proliferation reversible transition network 

broadly belong to two classes viz the cell cycle activators and inhibitors. They differ in their 

mode of action to either promote proliferation or maintain quiescence. Myc and E2F are the 

key transcription factors of the G1 phase that promote the exit from quiescence. Cyclin 

dependent protein-kinases (Cdk) are a class of cell cycle activators that function in complex 

with their regulatory Cyclin subunits (Cyc). Progression of the cell cycle is also regulated 

negatively by several molecular brakes, e.g., Cdk inhibitors (CDKI), p53 tumor suppressor, 

retinoblastoma proteins (Rb), and ubiquitin ligase (APC/C-Cdh1) [16, 17]. A brief overview 

of the network components follows: 

Myc 

 Myc family proteins (c-Myc, N-Myc, and L-Myc) are a class of transcription factors 

with oncogenic functions. Myc is the downstream effector of multiple signal transduction 

pathways which sense growth factors and nutrient availability or the cellular 

microenvironment, e.g., cellular adherence with the extracellular matrix. Myc promotes the 

cell cycle by inducing E2F, Cyc-Cdk activity (Figure 1.2). In addition to direct transcriptional 

regulation of Cyc, Myc hyperactivates Cyc-Cdk complexes through activation of the Cdk 

activating kinases and Cdc25 phosphatase. Myc further promotes replication by binding to 

origins of replication and through upregulation of gene products required for initiation of 

replication [18, 19].  

E2F protein 

E2F family proteins, typically E2F1-3a, regulate the expression of many genes 

required for cell cycle progression, DNA synthesis, DNA repair, and apoptosis in a context-

dependent manner (Figure 1.2) [20, 21]. E2F1 functions as a master regulator of the G1/S 

phase genes. While knockout (KO) of E2F proteins prevents cell cycle re-entry from 

quiescence [22], aberrant overexpression drives quiescent cells into the cell cycle [23]. E2F 
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activity is suppressed by Rb in the quiescent state by Rb-E2F complex formation, elimination 

of repression on E2F by Rb KO prevents exit to quiescence [24]. 

Cyclin-Cdk complex 

The cell cycle is controlled by multiple Cyc and Cdks, which belong to the family of 

serine/threonine kinases. Cdks form complexes with their cyclin binding partners and activate 

Cyc-Cdk kinase activity. The complexes regulate cell-cycle progression by phosphorylation 

of substrates like Rb. Cdk levels are considered to be comparatively constant and in excess of 

Cyc levels through the entire cell cycle. The oscillations in the expression level of Cyc result 

in the oscillations of Cyc-Cdk complexes levels. Different Cyc-Cdk complex gets activated in 

different phases of the cell cycle (Figure 1.2). Cyclins may be classified into different classes 

based on the temporal profile of protein expression and the corresponding cell-cycle control 

function, e.g., G1 cyclins, G1/S cyclins, S cyclins, and M cyclins. Growth factor stimulation 

activates the CycD-Cdk4/6 complex, whereas E2F activates CycE, CycA, and CycB 

dependent Cdk activity through direct or indirect transcriptional regulation of cyclins. Cdk 

activity is regulated by the Cdk inhibitors (CDKI) [25, 26].  

Cdk inhibitors (CDKI) 

The Cyc-Cdk complexes are negatively regulated by CDKIs belonging to two major 

classes. Cdk4/6 specific inhibitors include p16INK4a, p15INK4b, p18INK4c, and p19INK4d 

and are classified as INK4 proteins. The other class of inhibitors is called Cdk-interacting 

protein/kinase inhibitory proteins (Cip/Kip), e.g., p21CIP1, p27KIP1, and p57Kip2. CDKIs form 

trimer complex with Cyc-Cdk and inhibit their kinase activity. On the other hand, they are 

also known to stabilize the Cyc-Cdk complex association [21, 25, 26]. The INK4 protein 

level is usually high in the quiescent state, whereas p21CIP1 gets activated in response to DNA 

damage checkpoint activation. Tumor suppressor p53 is the transcriptional regulator of 

p21CIP1 and is one of the most frequent mutations observed in cancer [27].  

p53 

p53 is a tumor suppressor transcription factor that is induced by stress signals like 

DNA damage, nutrient deprivation, oncogene activation, etc. p53 drives cell-cycle arrest and 

provides an opportunity for DNA repair primarily by transcriptional activation of p21CIP1 and 
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apoptosis by induction of pro-apoptotic genes such as Noxa, Bad, Apaf1 [27, 28]. Further, 

p53 triggers antiproliferative signaling in response to growth factor stimulation which 

facilitates the filtering of signal versus noise [29].  

 

Figure 1.2: Cell cycle phase specific activity of Myc, E2F, CDKI and Cyc-Cdk complex. 

Rb protein 

Rb, or the retinoblastoma protein, functions as a tumor suppressor, and it belongs to 

the family of pocket proteins. Other members of the family include p130 and p107 [30]. Rb 

family proteins form complex with transcription factors of the E2F family and repress 

expression of the E2F-target genes (Figure 1.2) [30–32].  

Anaphase promoting complex/cyclosome (APC/C) 

 The anaphase promoting complex/cyclosome (APC/C), another tumor suppressor, is a 

multi-subunit E3 ubiquitin ligase that plays essential functions in the cell cycle. It is a highly 

conserved protein across multiple species and depends on two adaptor proteins, Cdh1 and 

Cdc20, for substrate recognition and enzyme activity. Both APC/C-Cdc20 and APC/C-Cdh1 

critically control the cell cycle by targeting proteins for proteasomal degradation through 

ubiquitination of important cell cycle regulators such as cyclins (CycA, CycB). Additionally, 

APC/C-Cdh1 prevents premature entry into the S phase by protecting CDKIs from 

degradation and keeping resultant Cdk activity low [33, 34]. 
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1.2.2 Pathological consequences of cell cycle dysregulation 

 The cell cycle control system regulates tissue homeostasis; most cells undergo up to 

40–60 cycles before they cease to proliferate and become senescent [35]. Alternatively, they 

may also exit the cell cycle during differentiation [36]. Dysregulation of the cell cycle control 

system results in abnormal phenotype [37]. Cancer is one such disorder that is associated 

with a defective cell cycle. In most cases, cancer cells fail to switch from proliferation to 

quiescence [38, 39]. Additionally, cell death machinery that controls apoptosis may also fail 

[40]. Other disorders associated with cell cycle dysregulation include neurodegeneration; 

terminally differentiated neurons re-enter the cell cycle, which then triggers cell death [41, 

42]. Hence, understanding the molecular basis of cell cycle dysregulation becomes critical for 

therapeutic intervention. 

1.3 Network motifs in the cell cycle control system 

 Cell cycle progression can be considered as a collection of unidirectional state 

transitions. The cell cycle control system operates through the integration and coordination of 

multiple feedback loops, which ensure these phase transitions are irreversible, i.e., even after 

the removal of transient triggering signals, the cell continues to move forward through the 

G1-S-G2-M stages. The feedback motifs may have a positive or negative effect. Accordingly, 

the output of the system amplifies or represses the input leading to a sustained or transient 

response. The frequently encountered motifs are shown below; both double positive (Figure 

1.3b) as well as double negative (Figure 1.3a) feedback loops result in positive feedback. 

Figure 1.3e and f have an odd number of negative effects (Ө), which make them negative 

feedback network motifs [43]. 

1.4 Theoretical approaches to study cell cycle 

 Cell cycle control mechanisms have been studied in detail by various biochemical and 

molecular biological methods [16]. However, traditional wet-lab experiments are often 

insufficient to build a complete understanding at the systems-level. Hence, alternative 

methods like mathematical modeling are being widely applied for the analysis of dynamic 

systems and deriving logical and convincing interpretations of different experimental 

observations [44, 45]. 
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Figure 1.3: Positive (a, b, c, d) and negative feedback motifs (e, f) in biological networks. ⊕ presents 

activation and Ө presents inhibition. 

1.4.1 Mathematical modeling 

 Mathematical modeling is a tool used to translate biomolecular networks into 

mathematical formulations, which help in a detailed analysis of the dynamical behavior of the 

components and their interactions [46]. It helps answer complex questions which cannot be 

addressed by intuition alone, gives insights into the systemic response, and facilitates the 

formulation of hypotheses for testing in the future. The most frequently used formulation is 

ordinary differential equations (ODEs), which is a deterministic modeling approach [47, 48]. 

The solutions of deterministic models are predetermined and predictable for a given set of 

equations, parameters and initial conditions [49, 50]. 

Ordinary differential equations (ODEs) 

 ODEs calculate the temporal evolution of the state variables that describe the 

biomolecular network. The collection of ODEs usually characterizes a nonlinear dynamic 

system that is difficult to solve analytically and requires computers to obtain numerical 

solutions.  The mathematical model captures the relationship among state variables. ODEs 

are suitable for the modeling of systems that are properly mixed, perfectly homogeneous, 

have a sufficiently large number of chemical components, and the reactions take place 

simultaneously; such assumptions hold true in many biological systems [44, 51]. The change 

in the concentration profile of a component (e.g., protein) with respect to time ([Cj(t)]) is 

described below:  
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𝑑[𝐶𝑗]

𝑑𝑡
 = Vsynthesis + Vactivation – Vdegradation – Vinactivation                                               (Eqn. 1.1) 

 The right-hand side of each ODE contains positive terms (synthesis and activation) 

and negative terms (degradation and inactivation) for each of the reactions in which C 

participates as a product or a reactant. The rate expressions (V) on the right-hand side can 

follow the standard rules of biochemical reaction kinetics (law of mass action (Eqn. 1.2) [52], 

Hill-equation (Eqn. 1.3) [53], or Michaelis-Menten rate law (Eqn. 1.4)) [54]. Different 

equations are adopted depending on the type of regulation of protein, e.g., complex formation 

(Eqn. 1.2), synthesis (Eqn. 1.3), inactivation (Eqn. 1.4). It can be noted that the same protein 

can also be subjected to all three regulations. 

Law of mass action: 
𝑑[𝐴]

𝑑𝑡
= 𝑘𝑑𝑖𝑠 ∗ [𝐴𝐵] –  𝑘𝑎𝑠 ∗ [𝐴] ∗ [𝐵]                   (Eqn. 1.2) 

 The concentration of protein A ([A]) at any time t is determined by the concentration 

of reactants ([A], [B], [AB]) and the rate at which protein A and inhibitor/activator B 

associate (kas) and dissociate (kdis). 

Hill function: 
𝑑[𝐴]

𝑑𝑡
= 𝑘𝑠 ∗

[𝐵]𝑛

𝐾𝑛+ [𝐵]𝑛  − 𝑘𝑑 ∗ [𝐴]     (Eqn. 1.3) 

 The concentration of protein A ([A]) at any time t is determined by the rate of 

synthesis (ks), rate of degradation (kd), the concentration of transcription factor B [B], Hill 

coefficient (n) that controls the steepness of the activation function, and activation coefficient 

K, which is the concentration of B that is needed to significantly activate the expression of 

[A]. The half-maximal expression value is reached when B = K. 

Michaelis Menten kinetics: 

𝑑[𝐴𝑝]

𝑑𝑡
= kp ∗ [𝐸𝑘𝑇] ∗

[𝐴𝑑𝑝]

𝐾𝑚𝑝+[𝐴𝑑𝑝]
 − kdp ∗ [𝐸𝑝𝑇] ∗

[𝐴𝑝]

𝐾𝑚𝑑𝑝+[𝐴𝑝]
       (Eqn. 1.4)  

 The concentration of the phosphorylated form of protein A ([Ap]) at any time t is 

determined by the rate of phosphorylation/dephosphorylation (kp/kdp), the total concentration 

of respective enzymes ([EkT], [EpT] representing the kinase and phosphatase, respectively), 

the concentration of substrate ([Adp]/[Ap]), and Michaelis constant (Kmp, Kmdp). Both 
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phosphorylation and dephosphorylation follow Michaelis-Menten kinetics, and values of Km 

control the steepness of activation/inactivation as proposed by Goldbeter and Koshland [55]. 

 Data obtained from various wet-lab experiments provide information about the 

parameter values. However, not all parameters have experimentally measured values, and 

some values can be estimated depending on the availability of temporal data. They can also 

be guessed in an iterative manner with the aim to simulate the qualitative behavior/dynamics 

of the biological system [56, 57]. The model developed may be minimal and relatively simple 

with only a few ODEs or elaborate and complex with many variables depending on which 

form closely captures the real behavior of cells [58, 59]. 

Bifurcation theory 

 The values of the parameters can be varied to study their effect on the response 

variable (sensitivity analysis) or to study how the qualitative behavior of the system changes 

from one state to the other state (bifurcation analysis). The parameters used in an ODE 

mathematical model capture specific biological processes and mimic different cellular 

functions. Changing these parameter values simulate the cellular response to various stimuli 

such as protein deletion or over-expression. Bifurcation diagrams or the “signal-response 

curves” show the steady state responses with respect to alteration in specific parameters in 

particular ranges or input signal S (Figure 1.4) [60]. An interesting characteristic of the 

signal-response curve is that a shift in parameter value can lead to a very dramatic change in 

the response of the system. A one-parameter bifurcation diagram and signal response curve 

are shown in Figure 1.4 [60].  In the bifurcation plot, the stable steady states are presented 

with solid lines, whereas the unsteady states are presented as dotted lines. The activation and 

inactivation thresholds (saddle nodes, SN) of the system are different (change in 𝑝𝑗 values). 

The saddle-node bifurcation occurs with both stable and unstable steady states coming 

together and disappearing with parametric changes [60–64].  

1.5 Experimental techniques for high throughput data generation 

 Several high throughput methods focus on characterizing meaningful biological 

information at the multiomics level (genome, epigenome, transcriptome, proteome, 

metabolome, etc.). The functional aspects of genomic changes are well understood by 
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routinely analyzing the gene expression (transcriptome), proteome, or metabolome data. The 

analysis of high-throughput data helps in understanding the molecular mechanisms and in 

differentiating the phenotype of interest (e.g., normal versus disease). It helps to draw a 

holistic picture of the biological system by understanding the crosstalk among biological 

processes [65–68]. 

 

Figure 1.4: Signal-response curve (left) and one parameter saddle node bifurcation (right). With variation 

in the signal strength S the response R varies. R turns on abruptly with gradual increase in S (threshold-

type response). On slowly decreasing S the gene expression may turn off (a) at the same threshold signal 

strength or, (b) lower than the threshold for gene activation (θact) or, (c) the gene may not be inactivated 

even after lowering the signal strength zero (irreversible transition). The one parameter saddle node 

bifurcation (right) corresponds to (b)[60]. 

1.5.1 Transcriptome data 

 Transcriptomics, as the name suggests, is the study of transcriptome or complete set 

of RNAs transcribed under defined conditions. The biological information encoded in the 

genome is decoded by gene transcription. Thus, quantification of the transcriptome reveals 

how genes are regulated under different conditions. It also bridges the gap between genotypic 

and phenotypic association [69]. The transcriptome data analyzed in this study were obtained 

using Microarrays and RNA sequencing (RNA-Seq) techniques.  

Microarray 

  Microarrays are basically a set of genes or oligonucleotides on a chip that usually 

characterize the genome/transcriptome of a species. The chip is divided into grids or arrays, 

also known as features, each of which has specific oligonucleotide sequences attached. The 
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sequences serve as probes and detect the presence of gene specific transcripts by 

complementary base pairing or hybridization. Messenger RNA (mRNA) samples from 

different systems, e.g., healthy and disease, are extracted, reverse transcribed into 

complementary (cDNA), and simultaneously fluorescently labeled. After hybridization of the 

labeled cDNA samples, the features on the microarray are identified by scanning. The 

intensity of fluorescence correlates with the expression level of the gene. The design and 

specificity of probes have advanced with time, allowing improvement in measurement 

accuracy of even the low abundance transcripts [70–74] (Figure 1.5). 

RNA sequencing 

 RNA sequencing (RNA-Seq) is another method for quantifying transcript levels more 

precisely. Similar to the microarray technique first, the extracted RNA is reverse transcribed 

into cDNAs fragments. Next, adaptors are attached to either one or both ends of the cDNA 

fragments. Each cDNA molecule is then sequenced in a high throughput manner to generate 

short sequence reads, usually 30-400 bp long from one (single-end) or both ends (pair-end) 

(Figure 1.5) [75]. The sequence reads are aligned to the reference genome, and transcribed 

regions of the genome are identified. This method provides higher coverage and better 

resolution of the dynamic transcriptome profile compared to microarray. It is an open system 

that also detects novel transcripts, alternatively spliced genes, and allele-specific expression. 

Common sequencing platforms include Illumina IG, Applied Biosystems, and Roche 454 

[76–79]. 

1.5.2 Transcriptome data analysis 

 In this section, an overview of different approaches adopted in this work for the 

analysis of transcriptome data is discussed.  

Differential gene expression analysis  

 Differential gene expression analysis facilitates the identification of the genes that 

show a difference in expression patterns under different conditions (time, disease state, etc.) 

[80]. Statistical analysis methods are applied to the gene expression data to quantify the 

magnitude (log fold change) and significance (p-value) of change in gene expression levels. 



 

12 

 

Commonly used R packages for the identification of differentially expressed genes include 

DESeq2 [81] and EdgeR [82] for RNA-Seq transcriptome data analysis. 

 

Figure 1.5: Microarray technique and RNA Sequencing technique workflow and comparison [75]. 

Gene co-expression network 

 The reconstruction of a biological network using genome-wide measurement provides 

a framework for interpretation at the systems-level. Gene co-expression networks (GCNs) are 

built from transcriptome data by computing co-expression scores between pairs of genes and 

defining a significance threshold. It generates an undirected graph; the nodes represent genes, 

and edges connect gene pairs that are significantly correlated. Densely connected gene 

modules usually share related biological functions. Intermodular connectivity signifies a 

higher-order organization of biological relationships, whereas intra-modular connectivity 

recognizes highly connected hub genes within modules. The network hubs may be molecular 

drivers like transcription factors [83]. GCNs cluster genes that are active simultaneously and 

are often active in the same or related biological processes. 

Genome-scale metabolic model 

 Genome-scale metabolic models (GEMs) represent a comprehensive picture of 

metabolism at the species/genome level [84]. These models organize information about 
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enzymes, their associated stoichiometric reactions, substrates, products, interactions with 

metabolites in in silico form. Transcriptome data can be integrated with GEMs to obtain 

tissue specific or disease specific metabolic networks [85–87]. This integrated approach aids 

the interpretation of how alterations at the transcriptome level map to the metabolome and 

associated pathways. Thus, GEMs facilitate metabolic response analysis as well as flux 

simulation at the systems-level [88]. Such interpretation is not possible by using metabolic 

pathway databases like the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 

[89, 90]. Several tissue specific GEMs, including hepatocyte, kidney, brain, adipocyte, have 

been archived for public access [84, 91–94]. The earliest GEMs developed for humans are 

Recon1 [95, 96] and the Edinburgh Human Metabolic Network (EHMN) [97, 98]. Later, the 

human metabolic reaction (HMR) and HMR2 database encompassing Recon1, EHMN, and 

KEGG were created [91, 99]. The genome scale metabolic models are progressively updated 

with new features, e.g., the latest version of Recon (Recon3D) includes three-dimensional 

structure data of metabolites and proteins. It enables the characterization of disease associated 

mutations and identification of metabolic response signatures in response to certain drugs 

[100]. 

1.6 Organization of Thesis 

 The cell cycle control system ensures the flawless execution of growth, development, 

morphogenesis, regeneration, and homeostasis. An orchestrated operation of the components 

controls the cellular fate; consequently, the cells may choose to rest in a dormant state 

(quiescence), actively cycle (proliferation), differentiate to attain specialized structure and 

function (differentiation), or cease to proliferate (senescence) and/or die (apoptosis).  

 The central theme of the work presented here is to explore the mechanism at the heart 

of the quiescence versus proliferation decision-making process and understand the 

adaptations in different cellular and pathological contexts. This thesis presents systems-level 

modeling and analysis of the reversible transition between quiescence and proliferation and 

commitment to the cell cycle. We have modeled a temporal window of reversibility where 

cells can switch between quiescence and proliferation depending on the mitogen and stress 

signals. The crossing of this temporal window leads to an irreversible commitment to 

proliferation, and the cells become independent of input signals. Redox state and metabolic 
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adaptations also contribute to cellular decision-making. For instance, redox imbalance drives 

oxidative stress and alters the cell cycle progression. Similarly, metabolism supports the 

biosynthetic and bioenergetic demands of proliferating cells. Hence, the interaction between 

the cell cycle, metabolism, and redox has also been explored, and the crosstalk mechanisms 

are highlighted. A deterministic modeling framework has been adopted to develop 

mathematical models of cell cycle re-entry in different contexts, which include epithelial, 

neuronal, immune cell lines, and normal and proliferative disease conditions. Additionally, 

transcriptome data of proliferative diseases and neurodegeneration, have been analyzed using 

different computational approaches to get network-level insights and to relate our models 

with clinical observations. Chapter 2 presents the mathematical model of quiescence to 

proliferation reversible transition and an irreversible commitment to the cell cycle in a normal 

mammary epithelial cell line. Chapter 3 reports a pan-cancer comparative analysis of G1/S 

dysregulation and metabolic adaptations, focusing especially on renal cell carcinoma. Chapter 

4 presents the mathematical model of aberrant cell cycle re-entry and apoptosis in 

neurodegeneration. Chapter 5 presents the mathematical model for cell cycle re-entry in naïve 

T-cell activation during an adaptive immune response with an emphasis on the temporal 

regulation of Myc in T-cell activation and clonal expansion. The last chapter summarizes the 

major conclusions of the thesis. 
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Chapter 2  MODELING OF REVERSIBLE 

TRANSITION BETWEEN QUIESCENCE 

AND PROLIFERATION 

2.1 Introduction 

Tissue homeostasis depends on the ability of mammalian cells to reversibly switch 

between quiescence (G0) and proliferation. Cells remain quiescent in the absence of mitogen 

and under stress conditions. Cells exit quiescence on mitogen stimulation and enter the G1 

phase of the cell cycle; later, they become committed to the completion of the cell cycle. The 

decision-making mechanism to exit or enter quiescence is dysregulated in proliferative and 

degenerative diseases [101, 102]. Proliferating tumor cells also heterogeneously switch to 

quiescence in response to anti-cancer drugs [103, 104]. The quiescent tumor cells persist, 

leading to relapse [105]. Hence, understanding the molecular mechanisms that control the 

reversible transition between quiescence and proliferation is crucial. 

The term restriction point (R-point) was coined to define the time point when cells 

become irreversibly committed to the completion of the cell cycle in the absence of mitogen. 

It was considered an early G1 event based on pulsing the mitogen to mitogen-starved (G0) 

cells [106, 107]. The underlying molecular mechanism of R-point involves the regulation of 

transcription factor E2F by a pocket protein retinoblastoma (Rb) [23, 108, 109], but recent 

experimental observations suggest the canonical view should be revisited. Conventionally, 

mitogen induced, Cyclin D-Cdk4/6 (CycD-Cdk4/6) driven, hypo-phosphorylation of Rb is 

believed to release E2F [110–112]. This E2F is considered indispensable to drive Cdk2 

dependent hyper-phosphorylation of Rb and full release of E2F via CycE transcription. The 

double negative feedback loop between Rb and E2F mediated through CycE-Cdk2 is 

proposed to ensure irreversible commitment to proliferation [113]. However, this view is 

challenged by the observations that hypo-phosphorylated/mono-phosphorylated Rb forms act 

as an inhibitor of E2F, and hyper-phosphorylation of Rb is required for the E2F activation 

[114–118]. Moreover, though selective inhibition of Cdk2 by chemical genetics approach 
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blocks R-point passage [119], major phosphorylation of Rb and CycE accumulation is 

detectable only after the R-point [120, 121]. These findings question the Cdk2 activity 

threshold needed for irreversibility. 

While R-point is located in the G1 phase of cells exiting quiescence, continuously 

cycling cells may overcome mitogen requirement in the G2 phase of the previous cycle. In 

the presence of mitogen, cycling cells are found to bifurcate into two populations as they exit 

mitosis  [122]. The majority of cells (80%) immediately commit to the cell cycle since they 

have Cdk2 activity at an intermediate level, while other cells with low Cdk2 activity 

experience transient quiescence. In the absence of mitogen, cells exit mitosis with low Cdk2 

activity to enter quiescence state and require mitogen for the cell cycle re-entry. Whether the 

R-point operates in the G1 or G2 phase of cycling cells is dependent on the cell type. The 

majority of cycling Swiss 3T3 cells exit mitosis with low Cdk2 activity (subjected to G1 R-

point) compared to MCF10A cells, which show intermediate Cdk2 activity (subjected to G2 

R-point) [122]. The proliferation to quiescence decision is controlled by the Cdk inhibitor 

p21. Endogenous DNA damage during the S-phase is shown to induce the synthesis of p21 in 

cycling cells [123, 124]. 

Further, a recent finding by Cappell et al. (2016) suggests that APC/C-Cdh1 

inactivation at the G1/S transition serves as a commitment point that prevents re-entry into 

quiescence. This is based on the evidence that cells re-enter the quiescence state in the 

presence of stress after Rb hyper-phosphorylation and before APC/C-Cdh1 inactivation. The 

cycling cells with intermediate Cdk2 activity immediately inactivate APC/C-Cdh1 and enter 

the S phase [125]. The molecular mechanism proposed for the commitment at the G1/S 

boundary depends on the irreversible inactivation of APC/C-Cdh1 by its inhibitor Emi1 [125, 

126]. CycE-Cdk2 is shown to initiate APC/C-Cdh1 inactivation before Emi1 promotes the 

accelerated inactivation. Studies have also shown that the proliferation to quiescence decision 

is controlled by double negative feedback loops between Cdk2 and p21, which control the 

degradation of p21 via the activation of two ubiquitin ligases, CRL4Cdt2 and SCFSkp2 [123, 

127, 128]. The regulation of APC/C-Cdh1 and p21 is linked via APC/C-Cdh1 dependent 

degradation of Skp2 [129, 130]. Further, Dong et al. (2014) showed that the levels of E2F 

increase in a Myc-dependent manner, and crossing an E2F threshold determines the cell cycle 

commitment. In this case, G1 phase Cyc-Cdks control the timing of E2F crossing the 



 

17 

 

threshold [131]. However, the inhibition of Cdk2 blocks APC/C-Cdh1 inactivation and the S-

phase entry [125]. 

How these regulations depending on mitogen and stress are integrated is yet to 

emerge. The complexity of the regulation coupled with different experimental setup/cell 

types makes it difficult to understand this problem by intuition alone. The mathematical 

modeling approach provides a scope to develop a coherent framework that will help to 

generate hypotheses for further exploration by experiments. Previous studies on mathematical 

modeling of R-point and G1/S transition have shown the bistable activation of E2F and 

inactivation of p21, respectively [113, 123, 127]. R-point models show how cells emerging 

out of quiescence become mitogen independent, and G1/S transition models show how p21 

controls heterogeneity in cycling and quiescence states. It is important to revisit these models 

in the light of newer findings [115, 125, 132–135]. 

In this study, we developed a mathematical model to investigate the reversible 

transition between quiescence and proliferation in mammalian cells. The model integrates the 

current mechanistic knowledge and accounts for the recent experimental observations with 

cells emerging out of quiescence and cycling cells. We propose model scenarios for the cell 

cycle entry and exit with respect to mitogen and stress. We show that CycE-Cdk2 couples 

Rb-E2F and APC/C-Cdh1 bistable switches and temporally segregates the R-point and the 

G1/S transition. A mutual antagonism between APC/C-Cdh1 and its inhibitor Emi1 can make 

the inactivation of APC/C-Cdh1 bistable. We propose Emi1 can switch from a substrate to an 

inhibitor of APC/C-Cdh1 in a redox-dependent manner.  

2.2 Model description 

 The model proposed here incorporates all the essential features controlling the 

reversible transition between quiescence and proliferation. At the heart of quiescence to 

proliferation transition is the regulation of Myc, E2F, Rb, CycD-Cdk4/6, CycE-Cdk2, 

APC/C-Cdh1, and Cdk inhibitors such as p21 (represented as CKI) (Figure 2.1). Mitogen 

stimulates early and late phases of signaling events that promote Myc stabilization [136]. 

Though Myc is activated with the early phase of mitogen signaling, the synthesis of Myc-

dependent proteins occurs only with the late phase of mitogen signaling. This delay might be 

due to the presence of anti-proliferative signals, which have to be inhibited by the late phase 
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of signaling. It is shown that p53-controlled anti-proliferative genes are induced by the early 

phase of mitogen signaling. This acts as restraint mechanism to prevent the commitment to 

the cell cycle until the late phase of mitogen signaling [29]. We consider mitogen as an input 

to the model, which promotes Myc-dependent synthesis of CycD, CycE, and E2F through the 

late phase of mitogen signaling. 

 In the model, CycD-Cdk4/6 mono-phosphorylates Rb, but this does not relieve the 

inhibitory effect of Rb on E2F. Rb inhibits E2F by forming a stoichiometric inhibitory 

complex (Figure 2.2a). CycE-Cdk2 hyper-phosphorylates the mono-phosphorylated form and 

relieves E2F inhibition [115]. The hyper-phosphorylation of Rb is required for relieving the 

Rb inhibition of E2F. We considered that higher levels of Cdk2 activity can hyper-

phosphorylate Rb independent of mono-phsophorylation (by higher levels of CycE-Cdk2 or 

CycA-Cdk2). The release of E2F promotes its own synthesis and the synthesis of CycE, 

CycA, and Emi1. We attempted to answer interesting questions such as how E2F gets 

activated initially and what sets the time window. The hyper-phosphorylation of 

Rb/activation of E2F is controlled by CKI, which forms a complex with CycD-Cdk4/6, 

CycE-Cdk2, and CycA-Cdk2 [26]. Stress raises the Cdk activity barrier by escalating CKI 

accumulation. We considered a higher threshold of CycE-Cdk2 is required to initiate APC/C-

Cdh1 inactivation by phosphorylation. Emi1 subsequently inactivates APC/C-Cdh1 by 

forming a stoichiometric inhibitory complex (Figure 2.2b). Although Emi1 and CycE both 

are E2F targets, Emi1 accumulates only in the late G1 phase. Such a delay in Emi1 

accumulation might be due to post-transcriptional/translational controls [137–139]. It has 

been proposed that Emi1 can be an APC/C-Cdh1 target similar to CycA [140]. Since Emi1 

regulation in G1 is largely unknown, we hypothesized that Emi1 is an APC/C-Cdh1 substrate 

(Figure 2.1) and explored the dynamical consequences. Post-APC/C-Cdh1 inactivation, the 

activation of SCFSkp2 and CRL4Cdt2 ubiquitin ligases target CKI for proteolysis in a Cdk2 

dependent manner [141, 142]. Since SCFSkp2 is an APC/C-Cdh1 substrate and CRL4Cdt2 

dependent proteolysis is coupled to DNA replication via PCNA, we consider that both 

ubiquitin ligases are directly regulated by APC/C-Cdh1 [129, 130, 143]. We assume that the 

degradation of CycE and E2F is promoted by the accumulation of CycA [144–146]. 
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Figure 2.1: The molecular mechanism controlling the commitment points in the mid and late G1 phase of 

the mammalian cell cycle. 

 

Figure 2.2: (a) The mechanism of Rb phosphorylation and dephosphorylation. Rbp and Rbpp represent 

the mono-phosphorylated and hyper-phosphorylated forms respectively. (b) The mechanism of APC/C-

Cdh1 activation and inactivation, Cdh1P and Cdh1dP represent the phosphorylated and dephosphorylated 

forms respectively. 

2.3 Methods 

 The network described in figure 2.1 was translated into a set of non-linear ordinary 

differential equations (ODEs), which describe the dynamics of individual components. Multi-

site phosphorylation and dephosphorylation of Rb and APC/C-Cdh1 were described using 

Michaelis-Menten kinetics, and E2F dependent synthesis of components (E2F, CycE, Emi1, 

CycA) were described by Hill equations (n = 1), while all other reactions were represented by 
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the law of mass action. The parameter values were initially taken from an existing 

mammalian cell cycle model [145]. Model parameter values were refined by simulating the 

model to capture the single-cell dynamics of reversible transition between quiescence and 

proliferation in the presence/ absence of mitogen and stress and qualitative behavior of 

various perturbations [122, 125, 127, 131, 147]. One- and two-parameter bifurcation analyses 

were performed to study the effect of different parameter values. Models were simulated 

numerically using XPPAUT, available from http://www.math.pitt.edu/~bard/ xpp/xpp.html, 

to obtain the temporal profiles and bifurcation diagrams. The equations and parameter values 

are presented at the end, in the appendix section (APPENDIX A).  

2.4 Results 

 Different model scenarios were considered based on initial signals (“trigger”) for E2F 

activation. Earlier models considered that CycD-Cdk4/6 dependent phosphorylation of Rb 

relieves some E2F that promotes its further increase and CycE accumulation. However, 

recent evidence showed that CycD-Cdk4/6 promotes the inhibition of E2F by Rb [115]. We 

explored how CycD and CKI control the Rb-E2F switch under this circumstance. In the 

presence of mitogen, levels of Myc and CycD increase, CycD overcomes the stoichiometric 

inhibition by CKI, leading to mono-phosphorylation of Rb. However, the Rb hyper-

phosphorylation can depend on the activation of existing CycE-Cdk2 by the inactivation of 

CKI or/ and on Myc- dependent synthesis of CycE [148]. Similarly, E2F activation after Rb 

hyper-phosphorylation can depend on its initial levels at the time of Rb hyper-

phosphorylation or/ and on Myc-dependent synthesis of E2F [131]. In the first scenario (no 

Myc-dependent synthesis), Rb hyper-phosphorylation and E2F activation occur prior to the 

major accumulation of CycE and E2F (Figure 2.3a), which is consistent with the 

experimental observations by Ekholm et al. (2001) [120]. We also checked the CycD 

requirement post-G1 entry. Hitomi and Stacey (1999) analyzed at what point in G1 the anti-

CycD antibody treatment becomes ineffective for cells emerging out of quiescence and 

cycling cells [147]. We found that the inhibition of CycD (mimicking anti-Cyclin D 

treatment) had no effect from the point when the CycE exceeds CKI levels to sustain Rb 

hyper-phosphorylation and E2F activation (Figure 2.3b). At very low CKI levels, this point 

coincides with the R-point when cells become independent of mitogen. Therefore, we 

conclude that CKI levels determine whether mitogen withdrawal and CycD inhibition 
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become ineffective at the same or different time points in the G1. Such difference has been 

reported for cells emerging out of quiescence and cycling cells [147].  

 

Figure 2.3: Temporal dynamics of quiescence to proliferation in the presence of mitogens. (a) E2F 

activation depends on its initial levels at the time of Rb hyper-phosphorylation. (b) Inhibition of CycD 

(kscycdm = 0, kscycds = 0) post-G1 entry doesn’t delay the dynamics much. Simulations are shown for S = 1 

(mitogen level). The arrow represents the time of CycD inhibition. RBpp, E2F, CycDT, CycE, CycAT, 

Cdh1, Emi1T, CKIT represent hyper-phosphorylated Rb, free E2F, total CycD, free CycE, total CycA, 

APC/C-Cdh1, total Emi1 and total CDK inhibitor respectively. 

 In the second scenario (E2F/CycE is not present initially), the E2F (and CycE) 

accumulation and Rb hyper-phosphorylation are delayed compared to the CycD accumulation 

and Rb mono-phosphorylation (Figure 2.4a). The exit from quiescence becomes independent 

of CycD (Figure 2.4b). Recent evidence from the MCF10A cell line and in vivo mice model 

demonstrate CycE-Cdk2 alone can hyper-phosphorylate Rb at a higher Cdk2 activity 

threshold in the absence of CycD-Cdk4/6 activity [149]. The location of the mitogen sensitive 

R-point in these two model scenarios will differ if Rb hyper-phosphorylation and E2F 

activation are required for the passage of the R-point. 

 Further, we show that a rise in CycE-Cdk2 activity (in an E2F-dependent manner) 

initiates APC/C-Cdh1 inactivation and accumulation of Emi1. The upregulation of Emi1 

leads to accelerated inactivation of APC/C-Cdh1 and degradation of CKI (Figure 2.3a). Here, 

the temporal separation between Rb hyper-phosphorylation and APC/C-Cdh1 inactivation is 

achieved due to the low and high Cdk2 threshold requirement for the substrates, respectively. 

A slow rise in CycE-Cdk2 activity is important for separating these two phases. A step-wise 

inactivation of APC/C-Cdh1 is achieved by coupling Emi1 accumulation to the CycE-Cdk2 

activity dependent inhibition of APC/C-Cdh1. In the presence of stress signals prior to the 
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inactivation of APC/C-Cdh1, CKI levels increase, leading to inactivation of CycE-Cdk2 and 

Rb dephosphorylation (Figure 2.5a). On the other hand, APC/C-Cdh1 inactivation leads to an 

increase in the degradation rate of CKI in the S-phase, which counteracts the CKI 

accumulation in the presence of stress, making the G1/S transition irreversible (Figure 2.5b). 

In the absence of Emi1, APC/C-Cdh1 inactivation slows down (Figure 2.6, solid line), and 

the inhibition of Cdk2 leads to the re-activation of APC/C-Cdh1 (Figure 2.6, dashed line). 

This is consistent with the experimental observation by Cappell et al. (2016) [125]. 

 

Figure 2.4: Temporal dynamics of quiescence to proliferation in the presence of mitogens. (a) E2F 

activation depends on Myc-dependent synthesis of E2F, (b) G1/S transition is delayed in the absence of 

CycD (kscycdm = 0, kscycds = 0). 

 

Figure 2.5: Temporal dynamics of proliferation to quiescence in the presence of stress (a) before and (b) 

after APC/C-Cdh1 inactivation. The arrow represents the time of exposure to stress (kscki = 0.6). 

We performed the one-parameter bifurcation analysis of Rb-E2F regulation to 

understand the reversible transition between quiescence and proliferation. We show that the 
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hyper-phosphorylation of Rb/activation of E2F is irreversible with respect to mitogen, as 

observed previously (Figure 2.7a) [113]. At higher levels of mitogen, the system is 

monostable (high E2F state), while at low/intermediate levels of mitogen, the system is 

bistable (low and high E2F states coexist). We studied the effect of increasing the CKI levels 

by performing the two-parameter bifurcation analysis. With an increase in the CKI levels, as 

observed in the presence of stress, the system transits from a high E2F state via bistable 

region to a low E2F state (shown by an arrow in Figure 2.7b). However, this can be 

counteracted by increasing the levels of mitogen, which overcomes the CKI stoichiometric 

inhibition. In the absence of CKI, the system is bistable only for very low levels of mitogen, 

and for intermediate and high levels of mitogen, the system is in a high E2F state. 

 

Figure 2.6: The dynamics of APC/C-Cdh1 inactivation in the absence of Emi1 (ksemi1 = 0). The dynamics is 

shown in the absence (solid line) and presence (dashed line) of Cdk2 inhibition (kdcyce = 0.01, kdcyca = 0.01). 

The arrow represents the time of Cdk2 inhibition. 

 

Figure 2.7: Bifurcation analysis of Rb-E2F subsystem. (a) The effect of increasing the levels of mitogen on 

Rb hyper-phosphorylation (Rbpp). Filled circle represents the stable steady state and empty circle 

represents the unstable steady state. The arrow shows the transition from mitogen- dependent to 

independent state. (b) Two parameters bifurcation diagram with different levels of mitogen and total 

CKI. The monostable and bistable regions are shown (E2F on and off). Q represents quiescence and P 

represents proliferation. 
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We also studied the sensitivity of the Rb inactivation/E2F activation threshold to a 5-

fold change in parameter values by performing two-parameter bifurcation analyses. The Rb 

inactivation threshold is most sensitive (steep change in threshold for a small fold change in 

parameter values) to synthesis/degradation rate of CycE (kscyceb, kdcyce) and E2F (kse2fb, kde2f), 

and Rb total (Figure 2.8a). Further, the Rb inactivation threshold changes gradually (higher 

slope) with respect to CKI total and degradation rate of CycD (kdcycd). On the other hand, the 

Rb activation/E2F inactivation threshold is sensitive (for less than 5-fold change) to the 

dephosphorylation rate of Rb (kdprbp) and shifts to the right (a positive value), bringing 

mitogen dependence with an increase in kdprbp. 

 

Figure 2.8: (a) The sensitivity of Rb inactivation/E2F activation threshold to 5-fold change in parameter 

values. The shift in the saddle node corresponding to Rb inactivation/E2F activation threshold is shown 

for 5-fold increase/decrease in base parameter value. (b) The sensitivity of APC/C-Cdh1 inactivation 

threshold to 5-fold change in parameter values. The shift in the saddle node corresponding to APC/C-

Cdh1 inactivation threshold is shown for 5-fold increase/decrease in base parameter value. The dashed 

lines (- -) indicate the two-fold change in the threshold and dotted lines (…) indicate the normalized base 

parameter value and threshold. 

 Further, we performed the bifurcation analysis of APC/C-Cdh1 regulation at the G1/S 

transition. Figure 2.9a shows that the CycE-Cdk2 activity initiates APC/C-Cdh1 inactivation 

but is not required to maintain its inhibition. This depends on the Emi1 accumulation, which 

is irreversible with respect to CycE-Cdk2 (Figure 2.9b). We also studied the sensitivity of 

APC/C-Cdh1 inactivation threshold to 5-fold change in parameter values by performing two 

parameter bifurcation analyses. We observed that the APC/C-Cdh1 inactivation threshold 

changes steeply with respect to the synthesis (ksmei1) and degradation (kdemi1c) rates of Emi1 

(Figure 2.8b). The APC/C-Cdh1 inactivation threshold also changes gradually with respect to 

activation (kacdh1) and inactivation (kicdh1e) rates of APC/C-Cdh1. Further, the time window 
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between Rb hyper-phosphorylation and APC/C-Cdh1 inactivation is also sensitive to these 

parameter values along with the synthesis rate of CycE (kscyce). 

 

Figure 2.9: Bifurcation analysis of G1/S transition. The effect of increasing CycE-Cdk2 activity on (a) 

Cdh1 inactivation and (b) Emi1 accumulation are shown. CycEt represents the total CycE-Cdk2 activity 

since, Cdk levels are considered abundant and kinase activity is regulated by the binding partner. Filled 

circle represents the stable steady state and empty circle represents the unstable steady state. The arrow 

shows the transition from G1 to S-phase. 

 We also analyzed the behavior of cycling cells that sense the presence of mitogen 

during the G2 phase of the preceding cell cycle. It is shown that many cells exit mitosis with 

intermediate Cdk2 activity, keep Rb phosphorylated, and increase the Cdk2 activity to 

commit immediately to the next cell cycle. On the other hand, a small fraction of cells enters 

a transient state of quiescence with low Cdk2 activity, and Rb is dephosphorylated [123, 

125]. We used the developed framework to understand the control of proliferation to 

quiescence decision by bifurcation in Cdk2 activity at the mitotic exit. We re-interpret Figure 

2.3a by shifting the Y-axis to an intermediate Cdk2 activity where Rb is hyper-

phosphorylated to replicate the mitotic exit initial conditions (APC/C-Cdh1 is active, Cdk2 is 

at an intermediate level, and Emi1 is low) as observed in experiments. The position of the Y-

axis is chosen based on the experimental observation that cycling cells commit to the next 

cycle immediately (~ 4 hrs) by inactivating APC/C-Cdh1 compared to cells coming out of 

quiescence (~ 8 hrs post R-point) [125]. The initial phase before the mitotic exit (left-hand 

side of Y-axis) is interpreted as the G2/M phase with re-accumulation of Myc and CycD in 

the presence of mitogen. Both of them are known to decrease after G1/S transition and 

increase in G2 only if the mitogen is present [134, 150, 151]. Similarly, in this framework, 

we assume that both E2F and CycE also re-accumulate after they are degraded in the G1/S 
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transition. In the absence of mitogen/CycD, the re-accumulation of E2F/CycE is affected, and 

cells enter into quiescence after mitotic exit even in the absence of CKI. Further, increasing 

the CKI levels, mimicking the effect of increase in DNA damage that occurs naturally during 

the DNA replication, also promote entry into quiescence and this can be transient if the CKI 

levels decrease due to the DNA repair in G1. This picture suggests that an intermediate Cdk2 

activity at the mitotic exit is due to an increase in CycE levels through G2/M. However, the 

recent mapping of protein dynamics has shown that CycE accumulates only after the mitotic 

exit, which contradicts our interpretations [134]. This can be reconciled if we hypothesize 

that there is an accumulation of CycE/E2F mRNA, which gets translated at/after the mitotic 

exit. E2F and CycE levels decrease in S/G2/M due to CycA-Cdk2 activation. However, a 

rapid inactivation of CycA-Cdk2 at the mitotic exit might lead to a faster rise in CycE that 

helps maintain an intermediate Cdk2 state. This is also supported by the evidence that in 

cycling cells, the accumulation of CycE is driven by the re-accumulation of Myc in G2 [148].

 Another interesting observation that emerges is whether Cdk2 activity at the mitotic 

exit exceeds Rb hyper-phosphorylation threshold. This is assumed to explain the immediate 

inactivation of APC/C-Cdh1 in cycling cells. Alternatively, an increase in the rate of 

synthesis of proteins in cycling cells compared to cells emerging from quiescence can also 

explain the faster activation of Cdk2 and inactivation of APC/C-Cdh1. The transcriptional 

difference can be attributed to the difference in the extent of chromosomal condensation in 

cells emerging out of quiescence and cycling cells [135]. 

2.5 Discussion 

 A mathematical modeling framework was developed to analyze how CycD and CKI 

control Rb-E2F regulation in two different contexts: quiescence to proliferation and 

proliferation to quiescence. We also explored how early (E2F activation) and late (APC/C-

Cdh1 inactivation) events of G1 are coupled to order the cell cycle progression in cells 

emerging out of mitogen starvation and in cycling cells. We studied the dynamics in the 

presence and absence of mitogen and stress. 

 We showed that CycD-Cdk4/6 by sequestering CKI tilts the CycE-Cdk2 and CKI 

dynamic balance towards the activation of CycE-Cdk2 and hyper-phosphorylation of Rb 

(Figure 2.1 and Figure 2.3a). This occurs in spite of CycD-Cdk4/6-dependent mono-

phosphorylation of Rb being inhibitory to E2F. Under this condition, we observed that the 
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length of the G1 phase is controlled by the rate of synthesis of CycE and Emi1. This provides 

an explanation for the observation that overexpression of CycD does not significantly alter 

the length of G1 [133]. However, increasing the rate of Myc-dependent synthesis of CycE 

and E2F makes CycD dispensable for the G0 to G1 transition as observed in some cellular 

contexts [149, 152, 153]. The entry is delayed, and the activity of E2F (free E2F) shows a 

delay relative to the total concentration of E2F (Figure 2.4b). Such a delay has been observed 

experimentally using a reporter for the E2F activity [154].  

 In CycD dependent situation, we also showed that the point in G1 when cells become 

independent of CycD is determined by CKI levels. This point coincides (at low CKI levels) 

or differs (at high CKI levels) with the point in G1 when cells become independent of 

mitogen (R-point). A difference can emerge since CycD is stable after mitogen withdrawal 

until S-phase entry. The slow response time ascertains alleviation of the CKI barrier even in 

the absence of the stimulus. We propose that such a scenario exists in cycling cells due to the 

endogenous stress in the S-phase or in cells emerging out of quiescence after longer treatment 

of mitogen withdrawal, both resulting in high CKI levels [123, 132]. Our analysis provides 

insights into the experimental observations obtained with mitogen withdrawal, anti-CycD 

treatment, and Cdk4/6 inhibition in cells emerging out of quiescence and in cycling cells 

[132, 147]. We also showed that increasing mitogen levels overcome the effect of increase in 

CKI and promote the cell cycle entry (Figure 2.7b). Such a picture explains the observation 

that longer treatment of mitogen withdrawal requires stronger re-stimulation to exit 

quiescence [135]. This view is also consistent with the observation that mitogen and DNA-

damage mediated signaling compete in G2 to control the cell cycle of daughter cells [132]. 

 At the G1/S boundary, we showed that a double negative feedback loop regulation 

between APC/C-Cdh1 and Emi1 could make the transition bistable with respect to CycE-

Cdk2 (Figure 2.9). E2F-dependent accumulation of Emi1 is insufficient to explain its timely 

accumulation in the late G1 phase and its action only after APC/C-Cdh1 is initially 

inactivated by CycE-Cdk2. Further, Emi1 overexpression accelerates APC/C-Cdh1 

inactivation, suggesting that its levels should be controlled for the timely inactivation of 

APC/C-Cdh1 [125, 126]. A delayed accumulation of Emi1 is achieved by considering Emi1 

as an APC/C-Cdh1 substrate. Although Emi1 acts as a pseudo-substrate of APC/C-Cdh1 

[155], evidences indicate that it can act as a substrate or inhibitor depending on the redox 
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status and it contains KEN and D-box motifs that are required for APC/C-dependent 

degradation [140]. Further, it is also shown that mRNAs of Emi1 and CycA accumulate in 

the late G1 phase. However, proteins fail to accumulate in the anti-oxidant treated cells. This 

suggests a coordination of reactive oxygen species (ROS) production and metabolism in 

driving the G1/S transition. Emi1 is also one of the most pronounced translationally-

repressed genes, and relieving its repression is also crucial for its accumulation [156]. These 

experiments suggest Emi1 levels are controlled both at the level of its synthesis and 

degradation for the G1/S transition. Our model prediction that a feedback loop regulation of 

Emi1 is required for rapid and switch-like inactivation of APC/C-Cdh1 at the G1/S boundary 

has been validated [157]. 

 The inactivation of APC/C-Cdh1 is accompanied by the degradation of CKI (Figure 

2.3a), which prevents stress mediated exit to quiescence (Figure 2.5b). This explains the 

experimental observation that stress can induce exit to quiescence until APC/C-Cdh1 is 

inactivated in MCF10A cells [125]. CKI degradation in S-phase also prevents DNA re-

replication [143]. A recent study shows that CRL4Cdt2 is a major ubiquitin ligase involved in 

CKI degradation [123], and its activation depends on the S-phase entry [141]. Direct 

evidence connecting the activation of CRL4Cdt2 to APC/C-Cdh1 inactivation is lacking, 

which has to be explored experimentally. Further, we showed that a distinct Cdk2 

requirement for R-point (low) and APC/C-Cdh1 inactivation (high) creates a window of 

opportunity for stress mediated exit to quiescence after R-point passage. In cycling cells, we 

proposed that the Cdk2 activity is at an intermediate level between two thresholds (for Rb 

hyper-phosphorylation and APC/C-Cdh1 inactivation) at the mitotic exit since early G1 phase 

events are shifted to G2, and APC/C-Cdh1 is inactivated immediately. Therefore, two 

independent routes for proliferation to quiescence depending on the mitogen withdrawal 

(which affects transcriptional program) and replication stress (which affects CKI levels) exist.  

 Previously, mathematical models were proposed to account for the dynamics of the 

mammalian cell cycle in full or in parts [113, 123, 127, 145, 158, 159]. The cell cycle models 

combined Rb-E2F and APC/C-Cdh1 through E2F dependent synthesis of CycA that 

promotes S-phase entry by inactivating APC/C-Cdh1 [145, 158]. However, the kinetics of 

APC/C-Cdh1 inactivation is unaffected after CycA knockdown in MCF10A and HeLa cells 

[125]. A mathematical model proposed for proliferation-quiescence decision incorporates 
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Emi1 dependent regulation of APC/C-Cdh1, but relies on CycA-Cdk2 for the switch-like 

inactivation of APC/C-Cdh1 [159]. This model shows that p21 degradation in S-phase 

reduces the ability of cells to enter quiescence in response to endogenous DNA damage, but it 

occurs independent of APC/C-Cdh1 inactivation. However, our model accounts for the 

experimental findings in MCF10A cells that Emi1 is required for the rapid and irreversible 

inactivation of APC/C-Cdh1 [125]. We demonstrated that the inactivation of APC/C-Cdh1 

promotes CKI degradation to suppress the stress sensitivity. A variation in the regulation can 

be observed due to the cell-type differences. Further, we also studied the effect of CycD on 

R-point in different cellular contexts incorporating recent experimental findings [115, 132]. It 

will be interesting to test the model hypotheses by experiments to further understand the 

reversible transition between quiescence and proliferation. In summary, our study provides 

mechanistic insights into both mitogen and stress sensitivity of the mammalian cell cycle and 

is included in the BioModels database as a curated model (BIOMD0000000954) [160, 161]. 

 In this chapter, we explored the quiescence-proliferation reversible decision-making 

in MCF10A, a non-transformed cell line, using the mathematical modelling approach. This 

model framework can be extended to study how various cancers develop and how cancer 

drug tolerance emerges under treatment. Recent findings suggest that the drug response 

controls Cyc-Cdk activity via transcription or proteolysis regulation [103–105]. Further, the 

model can help in the study of cell cycle re-entry in neurodegeneration. 
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Chapter 3  NETWORK BASED METABOLIC 

CHARACTERIZATION OF CANCERS 

3.1 Introduction 

Major biological processes, namely reproduction, development, wound healing and 

tissue regeneration, require cell proliferation. Cells proliferate in response to growth-

promoting stimulus; however, under adverse conditions, they move into a reversible, non-

proliferating state termed quiescence. Cells gauge the strength of proliferative and anti-

proliferative signals through multiple molecular players described as the cell cycle control 

system in earlier chapters. Proliferative diseases arise as a consequence of dysregulation of 

the proliferation to quiescence reversible transition. Cancer is a proliferative disease that 

affects millions worldwide; around 19.3 million new incidences were reported last year, and 

10 million individuals lost their lives [162]. The transcriptional regulation of genes may be 

altered in cancer due to underlying mutations in the genome or epigenetic changes. The 

Cancer Genome Atlas (TCGA) hosts large scale molecular data of over 20000 cancer and 

matched normal samples spanning 33 cancer types [163]. Several studies have analyzed 

TCGA transcriptome data obtained from different cancers to gain insight into the differential 

expression of genes in cancer [87, 164, 165]. 

 In addition to cell cycle dysregulation, metabolic reprogramming is an emerging 

feature of cancer. The rapidly proliferating cancer cells need to replicate their genome, 

increase the protein and lipid content and assemble them into daughter cells. Hence, 

metabolic alterations complement proliferation by meeting the high energy and anabolic 

demand. Initial studies by Otto Warburg pointed to aerobic glycolysis [166]; glycolysis 

fulfills the ATP requirement and provides carbon for fatty acid, nucleotide synthesis [167]. 

However, recent advances have started to reveal other metabolic alterations and plasticity of 

cancer metabolism [168]. Therefore, understanding how the metabolism differs from normal 

to disease state can elucidate the adaptations which promote cancer progression. Further, 

these findings may facilitate the screening of metabolic targets for therapeutic purposes. A 

pan-cancer analysis of different cancer types found a convergent metabolic landscape with 

upregulated nucleotide synthesis and downregulated mitochondrial metabolism as the main 
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features [169]. Rosario et al. analyzed the gene expression of metabolic pathways in KEGG 

and found that pentose and glucuronate interconversions (PGI) is significantly dysregulated 

in many cancer types while the polyamine synthesis is uniquely upregulated in prostate 

adenocarcinoma (PRAD) [170]. Peng et al. identified metabolic subtypes in 33 cancer types 

based on seven major metabolic processes. These metabolic signatures showed clinical 

relevance and association with somatic drivers [171]. 

A recent study on TCGA data revealed that the classification of 33 cancer types is 

dominated by tissue-type or cell-of-origin differences. This provides a basis for a focused 

pan-cancer analysis of individual tissues to map the cancer subtype-specific changes in the 

metabolism [172]. In this chapter, we focused on renal cell carcinoma (RCC), which is a 

heterogeneous cancer with three major histological subtypes viz clear cell (KIRC), papillary 

(KIRP), and chromophobe (KICH). These RCC subtypes also differ in cell-of-origin, KIRC 

and KIRP originate from cells of proximal convoluted tubule, whereas KICH develops from 

cells of distal convoluted tubule of the nephron [173]. A multi-platform genomic data 

analysis on RCC supported the site of origin as one of the major determinants in the 

classification of these subtypes [174]. Molecular characterization of RCC further revealed the 

subtype-specific mutations, methylation, and pathways [175]. RCC subtypes have distinct 

glycolytic and mitochondrial gene expression patterns. A metabolically divergent (MDD) 

group with poor survival is identified in KICH. These KICH samples with aggressive nature 

have been reclassified from KIRC after a histologic review [175]. However, many of the 

RCC studies have specifically explored metabolic alterations of only KIRC [92, 176]. The 

pan-RCC studies have either focused on analyzing expression patterns within tumors only 

and/or restricted the analysis to selective metabolic pathways [174, 175]. Hence, a 

comprehensive metabolic characterization of RCC subtypes with respect to the normal tissue 

of origin and including especially the less common KICH and KIRP, is required. 

First, we compared the metabolism of RCC with other cancer types using 

transcriptome data. To study metabolism, we used Genome-scale metabolic model (GEM) 

that provides a comprehensive view of metabolism and serves as a scaffold for interpreting 

high throughput data [177]. We observed that RCC subtypes show metabolic divergence 

from the other cancer samples. Further, cell cycle transcription factors emerged as important 

regulators of metabolic genes. The analysis showed that E2F1 and FOXM1 are the major 
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transcriptional activators of upregulated metabolic genes in RCC. To obtain additional 

insights into the metabolism of RCC subtypes, a network-based analysis was performed by 

integrating transcriptome data with the human genome-scale metabolic model [177, 178]. 

Our study revealed the role of amino acid metabolism and redox homeostasis in RCC 

subtypes in addition to glycolysis and TCA cycle alterations. A difference in glutamine 

metabolism was observed between subtypes, which is linked to the difference in 

transcriptional regulation involving HIF1A [179]. Heterogeneity within subtype was explored 

by extending the analysis to all tumor samples and identifying metabolic network modules 

based on the co-expression pattern of metabolic genes. We also identified metabolic modules 

that are linked to clinical traits of RCC subtypes. In summary, we present a comparative 

picture of the convergent and divergent alterations in cell cycle, metabolism, and redox 

regulation that support uncontrolled proliferation across RCC subtypes. 

3.2 Methods 

Preprocessed TCGA RNA-Sequencing (RNA-Seq) expression data spanning 20531 

genes across 33 cancer types was retrieved from Genomic Data Commons (GDC) portal 

(https://gdc.cancer.gov/). The analysis was restricted to 14 cancer types based on the 

threshold of at least 15 tumor matched normal samples (Table 3.1). The human genome-scale 

metabolic model (HMR version 2.0) was used to study cancer metabolism [177]. HMR2 is a 

comprehensive model with 8181 reactions, 3161 unique metabolites, and 3765 genes. The log 

fold change difference in HMR2 gene expression between each tumor and matched normal 

samples was calculated. The top 10% of metabolic genes based on the variance in fold 

change across samples were used for performing the principal component analysis (PCA). 

To specifically map the metabolic changes of RCC subtypes, the RNA-Seq raw count 

data of KIRC, KIRP, and KICH were obtained from the GDC portal. We used only pairs of 

tumor and tumor-adjacent normal samples (25 for KICH, 32 for KIRP, and 72 for KIRC) to 

perform differential gene expression analysis of HMR2 genes for each subtype using 

DESeq2, which also performs normalization internally using the median of ratios method 

[81]. Benjamini-Hochberg method [180] was used to adjust the p-value of genes obtained in 

the DESeq2 analysis. The adjusted p-value criteria were used to select differentially 

expressed genes in RCC (adj p-value ˂ 0.05). Transcriptional factor enrichment analysis of 

these genes was performed using Enrichr [181]. The upregulated and downregulated genes 
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between tumor and matched normal samples of each subtype were used as target genes. 

Enrichr provides different gene-set libraries to identify transcription factors from the target 

gene list. We used multiple libraries, including ChEA and 

ENCODE_and_ChEA_Consensus_TFs, to identify transcriptional factors associated with 

upregulated and downregulated genes. 

Table 3.1: Number of tumor and tumor-adjacent normal samples of 14 cancer types used for the 

principal component analysis. BLCA - Bladder Urothelial Carcinoma, BRCA - Breast invasive 

carcinoma, COAD - Colon adenocarcinoma, HNSC - Head and Neck squamous cell carcinoma, KICH - 

Kidney Chromophobe, KIRC - Kidney renal clear cell carcinoma, KIRP - Kidney renal papillary cell 

carcinoma, LIHC - Liver hepatocellular carcinoma, LUAD - Lung adenocarcinoma, LUSC - Lung 

squamous cell carcinoma, PRAD - Prostate adenocarcinoma, STAD - Stomach adenocarcinoma, THCA - 

Thyroid carcinoma, UCEC - Uterine Corpus Endometrial Carcinoma.  

The adjusted p-value of metabolic genes was also used to integrate the gene 

expression and the genome-scale metabolic model to identify reporter metabolites by the 

reporter metabolite algorithm (RMA) [178]. This method transforms the p-values into Z-

scores using the inverse normal distribution function and scores a metabolite based on 

aggregating Z scores of its k neighboring genes: 

𝑍𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒 =
1

√𝑘
∑ 𝑍𝑖

𝑘
𝑖=1      (Eqn. 3.1) 

The Z score of each metabolite was corrected for background distribution. 100000 sets of k 

genes were chosen at random to compute mean (µk) and standard deviation (σk). 

   𝑍𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =

𝑍𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒− 𝜇𝑘

𝜎𝑘
                                (Eqn. 3.2) 

Corrected Z scores were used for the p-value calculation. This method assumes that genes 

linked to the metabolite are co-expressed. Further, reporter pathways were also identified by 

aggregating the score of n metabolites of a pathway [182]. 

𝑍𝑝𝑎𝑡ℎ𝑤𝑎𝑦
𝑚 =

1

√𝑛
∑ 𝑍𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒

𝑛

𝑚𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒=1

                      (Eqn. 3.3) 

TCGA 

Project 
BLCA BRCA COAD HNSC KICH KIRC KIRP LIHC LUAD LUSC PRAD STAD THCA UCEC 

Normal 19 113 40 43 25 72 32 50 58 51 52 32 59 22 
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We identified the direction of change of reporter pathways by performing the analysis with 

only upregulated or downregulated genes in each subtype. 

 Since RMA was performed between only tumor and tumor-adjacent normal samples, 

we extended our study to analyze the co-expression pattern of metabolic genes in all available 

RCC samples (81 KICH, 290 KIRP, and 518 KIRC samples) in the GDC portal. This was 

done to understand the variations within the tumor samples and to map the tumor-stage 

specific changes. Co-expression networks of HMR2 genes were constructed for KICH, 

KIRC, and KIRP by performing the Weighted Gene Co-expression Network Analysis 

(WGCNA) in R [183]. WGCNA organizes the co-expressing genes into modules of 

functional pathways. Pearson correlations between gene expression levels were computed to 

construct the correlation matrix. The sign of correlations was retained by performing a linear 

transformation using the equation given below (Eqn. 3.4). 

𝑆𝑖𝑗 =
1+𝑐𝑜𝑟(𝑥𝑖,𝑥𝑗)

2
                                                        (Eqn. 3.4) 

 A weighted adjacency matrix was constructed using a function 𝑎𝑖𝑗 =  𝑆𝑖𝑗
𝛽

, where β 

represents soft-threshold power that is calculated by a scale-free topology criterion. 

Biological networks have few hub nodes, which have a higher degree. Such networks adhere 

to a power law of degree distribution. Here, the number of nodes having degree k decreases 

exponentially with an increase in k. These networks are called scale free because power laws 

have the same functional form at all scales. The coefficient of determination (R2) between 

log(p(k)) and log(k) measures how well a network satisfies a scale free topology criterion. 

p(k) is the frequency distribution of the degree k. The relationship between R2 and β is 

characterized by a saturation curve. The value of β is determined by scanning over a range 

(say β=1-20), and the lowest value where the saturation is reached is considered for the 

analysis. We obtained β = 14 for KIRC and β = 12 for KIRP and KICH. A topological 

overlap matrix (TOM) was obtained from the adjacency matrix, and hierarchical clustering 

was performed using a distance measure 1-TOM [184]. Modules of minimum size 100 were 

identified using the dynamic tree cut algorithm [185]. The module eigengene (ME) 

expression value was obtained using Singular Value Decomposition (SVD) [186]. Pearson’s 

correlation between ME values and clinical traits: disease (normal-0, tumor-1), stage 

(normal-0, stage I-1, stage II-2, stage III-3, stage IV-4), and survival data, were calculated to 
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identify relevant tumor modules [183]. We performed a hypergeometric test to identify 

HMR2 metabolic pathways associated with the modules. Eigengene expression values of 

individual pathways of significant modules were also visualized to confirm the stage-specific 

changes.  

3.3 Results 

3.3.1 RCC shows high variation in metabolism compared to other cancer 

types 

 We screened 14 cancer types from TCGA based on the availability of RNA-Seq data 

of both tumor and tumor-adjacent normal samples (668 samples) (Table 3.1). The human 

genome-scale metabolic model HMR2 was used to study the metabolic differences between 

different cancers. The fold change in the gene expression between each tumor and matched 

normal samples was used to cluster cancers. The degree of similarity and extent of 

heterogeneity in metabolic adaptations between different cancer types was explored. The log 

fold change was used to eliminate the tissue-of-origin differences between cancer types.  The 

PCA across 14 cancer types revealed that RCC samples have high variance compared to other 

tumor samples (Figure 3.1). RCC samples KIRC and KIRP cluster together and segregate 

from non-RCC samples along principal component 1 (PC1) and KICH samples along PC2. 

Unique features of RCC subtypes make them a suitable candidate for further investigation. 

 

Figure 3.1: Principal component analysis (PCA) of 14 cancer types. The log fold-change in expression of 

top 10% highly varying HMR2 genes (361) between tumor and matched normal samples was used to 

perform the PCA. 
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3.3.2 Reporter metabolic pathways in RCC subtypes 

 The differential gene expression (DGE) analysis between tumor and matched normal 

samples showed that metabolic genes were predominately downregulated in RCC subtypes 

(Table 3.2). We performed the transcriptional factor enrichment analysis of differentially 

expressed genes [181]. The downregulated genes were associated with HNF4A, LXR, RXR, 

and PPARA in RCC (adj p-value < 0.05) (Table 3.3). The upregulated genes were associated 

with E2F1 and FOXM1 in RCC and with HIF1A in KIRC and KIRP (adj p-value < 0.05) 

(Table 3.4). The expression of E2F1 and FOXM1 are upregulated in the RCC samples 

(Figure 3.2). The survival analysis based on E2F1 and FOXM1 expression level shows a 

significant survival difference, with the low expression group having a higher overall survival 

probability (Figure 3.3). We characterized the metabolic network-based alterations of RCC 

by mapping the gene expression changes to the reactions in HMR2 and identified reporter 

metabolites and pathways [178, 182]. Figure 3.4 shows the reporter pathways of KICH, 

KIRC, and KIRP. 

Table 3.2: Differentially expressed genes (|log2(FC)| ≥ 1 and adj p-value ≤ 0.05) between normal and 

cancer samples. 

 

 

Table 3.3: Transcription factor enrichment of downregulated genes using Enrichr [181]. 
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Table 3.4: Transcription factor enrichment of upregulated genes using Enrichr [181]. 

 

Figure 3.2: Box and whisker plot representing sample wise distribution of (a) E2F1 and (b) FOXM1 

expression data for RCC subtypes. As the values are log transformed to the base 2, four-fold change is 

measured as 2. The lower and upper whiskers represent minimum and maximum value respectively, 

circles represent outliers. Boundary of box represents first and third quartile range, mean is represented 

by ‘x’ and median by ‘—'. 
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Figure 3.3: Survival analysis using E2F1 and FOXM1 as a prognostic marker. Overall survival between 

low expression group (red) and high expression group (black) for (a) KICH (b) KIRC (c) KIRP show 

significant difference; the high expression group has a lower survival probability. The survival difference 

between low and high expression group was evaluated by Kaplan-Meier (KM) method [187] using the 

survival package in R [188]. 
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Figure 3.4: Reporter pathways of KICH, KIRC and KIRP. Red denotes upregulated and blue denotes 

downregulated pathways. The prefix c, m and s correspond to cytosol, mitochondria and extra-cellular 

compartment, respectively. p-values are log transformed (−log10p) and minus (−) was used to represent 

the downregulation of pathway. 
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One carbon metabolism 

 We found that the glycine, serine and threonine metabolism was downregulated in 

KICH. Serine and glycine provide one-carbon units to the folate cycle through one-carbon 

metabolism [189]. Further, conversion of choline, another source of one-carbon units, into 

glycine was downregulated (BHMT, CHDH, DMGDH, SARDH). The one-carbon 

metabolism was also downregulated in KIRC. However, a compartment-specific change was 

observed in RCC subtypes (Figure 3.4). We found that genes encoding cytosolic enzymes of 

the folate cycle (SHMT1, MTHFR) were downregulated while mitochondrial genes (SHMT2, 

MTHFD2) were upregulated in KICH (Figure 3.5). These mitochondrial genes were also 

upregulated in KIRP. On the other hand, both cytosolic and mitochondrial genes of the folate 

cycle were downregulated in KIRC. Further, genes involved in the methionine cycle (BHMT, 

MAT1A, MAT2A) and methionine salvage pathway (ADI1, AMD1, TAT) were 

downregulated in KICH. We also found most of these genes were downregulated in KIRP 

and KIRC. 

Glutathione metabolism 

 Serine and glycine are also precursors for glutathione synthesis. We found that 

extracellular glutathione metabolism was downregulated in KICH (Figure 3.4). Genes of 

glutathione salvage pathway, gamma-glutamyl transferases (GGT1, GGT2, and GGT5), 

alanyl aminopeptidase (ANPEP), and glutathione S-transferases (GSTA1, GSTA5, GSTM1, 

GSTM2, GSTT2) were downregulated. However, we observed that the gene involved in the 

de novo synthesis of glutathione was upregulated (GCLC) in KICH (Figure 3.5). This 

pathway requires cysteine and glutamate, which in turn might depend on the extracellular 

uptake of these amino acids. We found that the cysteine/glutamate transporter SLC7A11 was 

significantly upregulated in RCC subtypes. Further, KIRP and KIRC also showed similar 

alterations in glutathione metabolism. However, genes of de novo synthesis were unaltered in 

KIRC. 

Aromatic amino acid metabolism 

 The metabolism of aromatic amino acids was altered in RCC (Figure 3.4). We 

observed that phenylalanine, tyrosine and tryptophan biosynthesis and tryptophan metabolism 

were downregulated. Phenylalanine and tryptophan are essential amino acids, while tyrosine 
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is produced in vivo. Phenylalanine hydroxylase (PAH) gene involved in tyrosine synthesis 

from phenylalanine was significantly downregulated in RCC. Genes involved in the 

conversion of tryptophan into serotonin and tryptamine (TPH1, DDC) were also 

downregulated. However, indoleamine 2, 3-dioxygenase 1 (IDO1), and tryptophan 2, 3-

dioxygenase 2 (TDO2) genes involved in the first step of the tryptophan/kynurenine pathway 

were upregulated in all three subtypes. 

 

 

Figure 3.5: One carbon metabolism is affected in KICH. The expression of genes involved in folate cycle, 

methionine cycle and glutathione synthesis are altered. Downregulated genes are shown in blue while 

upregulated genes are shown in red color. 

Alanine, aspartate and glutamate metabolism 

 Genes involved in the conversion of alanine to pyruvate (AGXT, AGXT2, and GPT), 

aspartate to L-arginino-succinate (ASS1), glutamine to glutamate (GLS), glutamate to α-

ketoglutarate (GLUD2) and glutamate to succinate route (GAD, GABAT, SSADH) were 

downregulated in RCC. Interestingly, genes involved in the interconversion of oxaloacetate 

and aspartate (cytosol: GOT1, mitochondrial: GOT2) were upregulated only in KICH (Figure 

3.6), while downregulated in KIRC. In this pathway, glutamate is converted to α-

ketoglutarate and aspartate in mitochondria by GOT2 and aspartate is converted into 

oxaloacetate (OAA) in the cytosol by GOT1 [190]. ASNS involved in the conversion of 
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aspartate to asparagine was upregulated in RCC. Further, the gene encoding malate 

dehydrogenase enzyme, MDH2 was also upregulated which suggests that aspartate-malate 

shuttle is affected in KICH. Additionally, mitochondrial NADP-dependent malic enzyme 

ME3 involved in the conversion of malate to pyruvate was upregulated. This reaction is 

associated with NADPH production and maintenance of redox [191]. Despite overall 

downregulation of branched chain amino acids metabolism in RCC (Figure 3.4), the 

expression of branched chain aminotransferase (BCAT1), the first gene of this pathway, was 

upregulated in RCC (Figure 3.6). This reaction generates glutamate as a byproduct, which 

can support de novo glutathione biosynthesis or anaplerotic reactions. 

Arginine and proline metabolism 

 Genes involved in arginine and proline metabolism and polyamine synthesis were 

downregulated in RCC. Ornithine decarboxylase (ODC1), the rate limiting enzyme of 

polyamine synthesis, was downregulated in KICH and KIRC. An alternative route to 

polyamines generation from arginine via agmatine was also affected since genes encoding 

arginine decarboxylase (AZIN2), and agmatinase (AGMAT) were downregulated. Further, 

genes that participate in the urea cycle, namely nitric oxide synthase (NOS), arginase 2 

(ARG2) and ornithine transcarbamylase (OTC), were also downregulated in RCC. These 

genes control the conversion of arginine to citrulline, arginine to ornithine, and ornithine to 

citrulline, respectively. However, in KICH, we observed that OTC was upregulated. 

Central carbon metabolism 

 Glycolysis/ gluconeogenesis pathway and fructose and mannose metabolism were 

upregulated only in KIRP and KIRC. HIF1A target genes of the glycolytic pathway (GLUT1, 

HK2, HK3, ALDOA, GAPDH, PGK1, ENO1, LDHA, and PDK1) were upregulated. On the 

other hand, the TCA cycle and oxidative phosphorylation were upregulated in KICH (Figure 

3.4 and Figure 3.6). Further, genes involved in pyruvate to acetyl-CoA conversion (DLAT, 

PDH) and acetate to acetyl-CoA (ACSS1, ACSS3) conversion were upregulated in KICH and 

were downregulated in KIRC and KIRP. However, genes involved in the conversion of 

pyruvate to oxoacetate (PC) and oxoacetate to PEP (PCK1, PCK2) were downregulated in 

RCC. UDP glucuronosyltransferase family genes were mostly downregulated in KICH and 

KIRP while upregulated in KIRC. These genes participate in the interconversion of D-
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glucuronate and UDP-D-glucuronate. The pentose phosphate pathway, purine and pyrimidine 

metabolism were also upregulated in KIRP (Figure 3.4). 

 

 

Figure 3.6: Mitochondrial metabolism is altered in KICH; genes of malate-aspartate shuttle, aspartate 

synthesis and TCA cycle are upregulated (red) while glutamine metabolism genes are downregulated 

(blue). 

Fatty acid metabolism 

 Fatty acid synthase (FASN) was upregulated in KICH and KIRP. Genes of fatty acid 

degradation, ketogenesis (HMGCS2), cholesterol metabolism (CYP7A1, CYP8B1, 

CYP27B1), steroid hormone synthesis, lipid transport (APOA1, APOA2, and APOA5), and 

carnitine shuttle were downregulated, suggesting altered lipid metabolism in RCC. Further, 

the metabolism of xenobiotics by cytochrome P450 was also downregulated in KICH. 

Although most genes of this pathway were downregulated, few members of the cytochrome 

P450 superfamily with known links to cancer were upregulated in KICH (CYP1A1, 

CYP3A4, CYP3A7) [192]. 

3.3.3 Co-expression of metabolic genes in RCC 

 In the previous analysis, we considered only the tumor and matched normal samples 

to identify reporter metabolic pathways. We extended this study to include all the available 

samples of RCC to understand the variations within tumor samples at the level of 
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metabolism. We performed unsupervised WGCNA to identify modules of co-expressed 

genes and explored their variation in a cancer-stage specific manner. We identified 7 

metabolic modules in KICH, which showed disease- and stage-specific changes. M5_CH, 

M6_CH, and M7_CH modules showed a negative correlation with the disease, while 

M1_CH, M2_CH, and M3_CH modules showed a positive correlation with the disease 

(Table 3.5). The M5_CH module was downregulated in most tumor samples (Figure 3.7), 

while M6_CH and M7_CH modules showed differences with respect to a few late-stage 

samples that resembled normal samples. Interestingly, these late-stage samples correspond to 

the six recently reported as the metabolically divergent KICH (KICH-MDD) samples [175]. 

Major pathways associated with each module are provided in Table 3.5. The M5_CH module 

included downregulated reporter metabolic pathways. The M6_CH module was associated 

with protein modification and glycosphingolipid metabolism, while the M7_CH module was 

associated with sphingolipid metabolism and starch and sucrose metabolism. Both these 

modules showed a significant correlation with the overall survival time (Table 3.5). 

The upregulated M1_CH and M2_CH modules also showed differences with respect 

to KICH-MDD samples. These late-stage samples resembled normal samples. The M2_CH 

module was associated with oxidative phosphorylation, while the M1_CH module was 

associated with propanoate metabolism, valine, leucine, and isoleucine metabolism, 

tricarboxylic acid cycle, and glyoxylate dicarboxylate metabolism (Table 3.5). Further, this 

module included genes (GOT1, GOT2, BCAT1, and GCLC) that were found to be 

dysregulated in our study. We found that genes of alanine, aspartate and glutamate 

metabolism, glutathione metabolism, and propanoate metabolism can distinguish KICH-

MDD samples (Figure 3.8). Both M1_CH and M2_CH modules showed a significant 

correlation with stages and overall survival time. The M3_CH module showed a higher stage-

specific correlation and was associated with aminoacyl-tRNA biosynthesis and isolated 

reactions in HMR2 corresponding to cell cycle genes (Table 3.5). This module also included 

metabolic genes involved in pyrimidine metabolism (POLA2, RRM2, POLD1, POLE2, 

POLR3D, CAD, POLR3G, POLE), glycosaminoglycan metabolism (CHPF, CHPF2, 

B3GAT2, B3GALT6, CHSY3, CHST14), amino acid metabolism (DNMT1, SHMT2, 

MTHFD2, DNMT3B, TYMS, SRM, TDO2, ASNS) and lipid metabolism (FASN, ELOVL5, 

NRF1, FADS2, SQLE, CYP2R1, P4HB). We observed that the M3_CH module was specific 

to KICH-MDD. 
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Figure 3.7: Eigengene (ME) expression profile (y-axis) of KICH metabolic modules M3_CH and M5_CH, 

x axis represents 25 normal and 81 KICH samples. 

We identified metabolic modules of KIRP that showed disease- and stage-specific 

changes. M1_RP, M2_RP, M3_RP, and M4_RP modules showed a negative correlation with 

the disease while M5_RP, M6_RP, M7_RP, and M8_RP modules showed a positive 

correlation with the disease (Table 3.6). KIRP samples showed a heterogeneous behavior in 

different modules. The modules were either upregulated or downregulated in only some 

KIRP samples from different stages. The M2_RP module was associated with many reporter 

metabolic pathways, and the M1_RP module was associated with the tricarboxylic acid cycle 

and glyoxylate dicarboxylate metabolism and oxidative phosphorylation (Table 3.6).  
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Table 3.5: Pearson correlation value between module eigengene expression value and disease, stages and 

overall survival for KICH. p-value is given inside the bracket; HMR2 metabolic pathways associated with 

each module and their corresponding p-value are provided. 
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Figure 3.8: Eigengene (ME) expression profile (y-axis) of alanine, aspartate and glutamate metabolism; 

glutathione metabolism; propanoate metabolism in KICH (x axis represents 25 normal and 81 tumor 

samples). 

The upregulated M5_RP module was also associated with oxidative phosphorylation 

suggesting a complex pattern of gene expression in this pathway. On the other hand, the 

M3_RP module was downregulated in most KIRP samples and is associated with O-glycan 

metabolism and prostaglandin biosynthesis. Further, the M8_RP module was upregulated in 

mostly late stages of KIRP and was associated with nucleotide metabolism (RRM2, CAD, 
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TYMS, POLA2, NT5E, NME7, POLE2, POLR2D, POLE3, POLR3G, TK1, POLE). This 

module also included genes linked to HIF1A transcriptional activity (LDHA, NT5E, CA9, 

HK2), carbohydrate metabolism (RPIA, PFKFB4, NUP107, NUP62, HAS3, NUP43, ENO2, 

PFKP, NUP37), one carbon metabolism (MTHFD1L, MTHFD2, DNMT3B, TYMS) and cell 

cycle. 

In KIRC, modules M2_RC, M3_RC, and M4_RC showed a positive correlation with 

the disease, while M1_RC, M7_RC, M8_RC and M9_RC modules showed a negative 

correlation with the disease (Table 3.7). The M4_RC module was upregulated in most late 

stage KIRC samples. However, M2_RC and M3_RC modules were upregulated only in some 

KIRC samples. Major pathways associated with each module are provided in Table 3.7. The 

M4_RC module was associated with glycolysis and fructose and mannose metabolism. This 

module also included genes of the cell cycle, purine metabolism, and HIF1 transcriptional 

activity (PRKCG, PRKCB, SLC2A1, PIK3CD, ENO1, ENO2, HK2, HK1, HK3, LDHA, 

PGK1, ALDOA, GAPDH, PDK1). The M6_RC module showed a weak correlation with 

stages of KIRC, and it included genes of pentose and glucuronate interconversions (UDP 

Glucuronosyltransferase family genes) and glycine, serine and threonine metabolism 

(DMGDH, SHMT1, BHMT, BHMT2, CHDH, SARDH). Further, M8_RC and M9_RC 

modules were downregulated in most KIRC samples. The M8_RC module was associated 

with protein modification and glycine, serine and threonine metabolism, while the M9_RC 

module was associated with tricarboxylic acid cycle and glyoxylate dicarboxylate metabolism 

and other reporter metabolic pathways. 

3.4 Discussion 

 Different evidences suggest that cancer cells reprogram the metabolism to meet the 

requirement of cell growth and division. This presents opportunities for cancer diagnosis and 

treatment based on metabolic biomarkers and targets, respectively. In this work, we executed 

comparative metabolomic analysis across 14 tumor types and found RCC subtypes undergo 

unique reprogramming of metabolism. Identifying the shared and unique metabolic features 

of RCC subtypes may help in differentiating subtypes for an effective treatment. 
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Table 3.6: Correlation between module eigengene (ME) expression value and disease, stages and overall 

survival for KIRP. Pearson correlation is given with p-values inside the bracket. HMR2 metabolic 

pathways associated with each module are given with corresponding p-value inside the bracket. 
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Table 3.7: Correlation between module eigengene (ME) expression value and disease, stages and overall 

survival for KIRC. Pearson correlation is given with p-values inside the bracket. HMR2 metabolic 

pathways associated with each module are given with corresponding p-value inside the bracket. 
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 The metabolic network-based analysis of RCC subtypes revealed the systems-level 

alterations. The co-expression pattern of metabolic genes in each sample showed the 

variations in RCC metabolism. We observed that the differentially expressed metabolic genes 

in RCC are associated with cell cycle specific transcriptional factors E2F1 and FOXM1, 

suggesting that they can function at the crossroads of proliferation and metabolism. 

Amplification in the expression levels of E2F1 in RCC samples provides further evidence 

into the dysregulation around the Rb-E2F switch. Alterations in the activity of Rb-E2F 

switch’s key components e.g., mutations in the Rb family result in heightened E2F activity. 

Oncogenic E2F transformation is common in many forms of cancer, which leads to mitogen 

insensitivity and uncontrolled proliferation [193]. We observed that the lower level of E2F1 

is associated with better survival, which can be related to the trait of G1-like samples that are 

shown to have better survival and fewer defective cell cycle checkpoints [194]. 

 We found that glycine, serine and threonine metabolism (one-carbon metabolism), 

alanine, aspartate and glutamate metabolism, aromatic amino acid and branched chain amino 

acid metabolism were downregulated in RCC compared to tumor-matched normal samples 

(Figure 3.4). One carbon metabolism fuels the synthesis of amino acids, nucleotides, and 

polyamines, regulates the gene expression epigenetically, and maintains redox homeostasis 

through the methionine cycle [195, 196]. We also found that the polyamine synthesis 

pathway was downregulated in RCC. However, studies have shown that the gene expression 

and metabolites of one-carbon metabolism are upregulated only in aggressive KIRC [92, 

176]. Polyamines regulate cell proliferation and their levels are high in multiple cancers [197, 

198]. These changes can be attributed to tumor or stage-specific differences. We found that 

the expression of genes in glutathione (GSH) metabolism was dysregulated in RCC, which 

can affect the GSH levels and sensitivity to the oxidative stress. Our observations are 

consistent with recent studies focusing on glutathione metabolism in KICH [199, 200]. We 

also observed that the pentose phosphatase pathway genes were upregulated in RCC. The 

pentose phosphatase pathway intermediates are shown to be high in a metabolomic study of 

KIRC [92]. Although aromatic amino acid metabolism was downregulated in RCC, the 

tryptophan/kynurenine pathway genes (TDO1 and IDO1) were upregulated. Kynurenines 

have an immunoregulatory role of restricting the T cell activation [201]. UDP 

glucuronosyltransferase family of genes were differentially expressed in RCC subtypes. 
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These genes are shown to be dysregulated to a different extent and in different directions 

across cancers [170]. 

 The canonical route to generate glutamate from glutamine for anaplerotic reactions 

was also downregulated (Figure 3.6). However, the upregulation of glutamic-oxaloacetic 

transaminase enzymes GOT1 and GOT2 in KICH suggests a non-canonical route to utilize 

the carbon and nitrogen derived from glutamine (Figure 3.6). Coloff et al. have shown that 

the upregulation of transaminases and downregulation of GLUD can promote glutamine 

anaplerosis and non-essential amino acids (NEAA) synthesis in proliferating mammary 

epithelial cells [202]. Further, GOT1 and GOT2 can trigger a series of reactions involving the 

conversion of aspartate to pyruvate. This can potentially play a role in maintaining the redox 

state by increasing NADPH/NADP+ ratio. Human pancreatic ductal adenocarcinoma 

(PDAC) relies on the pathway involving GOT1, and knockdown of it is shown to increase 

reactive oxygen species and a decrease in growth [203]. 

 An increase in the expression of GOT1/2 and mitochondrial genes in only KICH 

suggests metabolic divergence. KIRC and KIRP showed an increase in the expression of 

genes in the glycolytic pathway and fructose and mannose metabolism. The upregulated 

metabolic genes in KIRC and KIRP were linked to HIF1A, while in KICH were linked to the 

cell cycle transcriptional activators E2F1 and FOXM1. Von Hippel-Lindau tumor suppressor 

(VHL) loss and HIF1A stabilization is the hallmark of KIRC [176]. Further, HIF1A is shown 

to inhibit the flux from glycolysis to the TCA cycle and promote glutamine reductive 

carboxylation (reverse TCA flux) for citrate generation. Interestingly, HIF1A is also shown to 

suppress the expression of aspartate producing genes GOT1 and GOT2 [179]. We also found 

argininosuccinate synthase 1 (ASS1) expression was downregulated, which can increase 

aspartate availability and is associated with poor prognosis in multiple cancers [204, 205]. In 

RCC, an increase in aspartate levels can promote cell proliferation due to its role in 

nucleotide synthesis [206]. In KICH, genes related to the aspartate-malate shuttle were also 

upregulated, suggesting that aspartate can act as an anaplerotic source for the TCA cycle. 

Further, FOXM1 and its targets (ASNS and FASN) were upregulated in RCC [207]. ASNS 

promotes the synthesis of asparagine, which is shown to be a suppressor of apoptosis in 

response to glutamine withdrawal [208]. FASN has an important role in tumor growth and 

survival [209]. On the other hand, the down regulated metabolic genes are associated with 



 

54 

 

HNF4A, PPAR, and LXR. HNF4A is a proximal tubule specific transcription factor and is 

downregulated in the late stages of KIRP and KIRC [173]. PPAR and LXR are nuclear 

receptors involved in the regulation of lipid metabolism [210, 211].  

 The co-expression pattern of metabolic genes showed that most metabolic changes in 

KICH-MDD are similar to other KICH samples and normal samples. Mitochondrial/oxidative 

metabolism was downregulated in MDD compared to other KICH samples, consistent with 

the previous observation [175]. Additionally, our work also shows that the genes of 

glutathione metabolism, propanoate metabolism, and alanine, aspartate and glutamate 

metabolism were also altered in KICH-MDD samples (Figure 3.8), providing further 

evidence for metabolic divergence. AMPK-mTOR signaling involved in mitochondrial 

biogenesis is shown to be dysregulated in KICH [212]. We observed that the expression of 

components of the AMPK complex was significantly upregulated in KICH samples 

compared to MDD samples (PRKAA2, PRKAB1, PRKAG1, PRKAG2). On the other hand, 

we found that a module related to cell cycle, pyrimidine metabolism, and amino acid 

metabolism (M3_CH) showed positive correlation with stages of KICH and was specific for 

the MDD group. The mitochondrial one-carbon metabolic genes of this module were 

upregulated. This pathway helps maintain the mitochondrial redox homeostasis during tumor 

growth [213]. The MDD group also consists of samples that were reclassified as KICH from 

KIRC, and these samples displayed the characteristics of the HIF1A cluster with its targets 

upregulated (e.g., CA9). These observations suggest that MDD samples have low AMPK and 

mitochondrial activity and high cell cycle and HIF1A activity. These features can be related 

to the aggressiveness of RCC samples. A similar classification of hepatocellular carcinoma 

(HCC) samples into HIF1A and AMPK clusters with the more aggressive stage belonging to 

the HIF1A cluster has been shown [214]. The active and functional form of mitochondria has 

been associated with a less aggressive form of tumors. Damaged mitochondria lead to 

enhanced ROS production and a higher mutational load [215]. We also found a module 

related to cell cycle and HIF1 transcriptional activity was upregulated in late-stage samples of 

KIRC and KIRP, which can serve as a biomarker for staging. Although KIRC and KICH 

show distinct metabolic phenotypes (glycolytic and oxidative), KIRP showed a more 

heterogeneous behavior. In KIRP, the mitochondrial metabolism was not fully 

downregulated. This can represent a hybrid phenotype with a subclass of samples showing 

aggressive phenotype like KIRC and less aggressive phenotype like chromophobe. A hybrid 
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metabolic phenotype utilizing both glycolysis and oxidative phosphorylation is shown to 

exist based on the mutual antagonism between HIF1 and AMPK [216]. Notably, glycolysis 

was upregulated, and mitochondrial oxidative phosphorylation was downregulated in a single 

cell RNA-Seq (scRNA-Seq) study of the KIRC as well [217]. 

 In summary, we observed cross talk between cell cycle and metabolism across RCC 

subtypes. The metabolic adaptations are coupled to cell cycle alterations, and both processes 

are regulated by common transcription factors. A comprehensive metabolic network-based 

analysis of RCC showed the metabolic differences between RCC subtypes. We specifically 

showed the metabolic divergence of KICH compared to other subtypes and linked the 

subtype-specific metabolic changes to the difference in the transcriptional regulation. The co-

expression of metabolic genes showed the pattern of gene expression in each patient. KICH 

showed uniform metabolic changes compared to KIRC and KIRP across stages except for the 

MDD samples. We found co-expression modules that showed tumor stage-specific behavior. 

Thus, our study identifies metabolic features associated with RCC subtypes, which can help 

towards cancer diagnosis and prognosis. The metabolic alterations identified by integration of 

genome-scale metabolic model and transcriptome data of less common RCC subtypes have to 

be supported by global metabolomic profiling to explore new opportunities for diagnostic and 

therapeutic intervention. The emergence of single cell RNA-Seq (scRNA-Seq) data of 

cancers provides further scope for exploration of metabolic changes. It is noteworthy that the 

results obtained from bulk RNA-Seq (TCGA) of RCC were similar to a recent scRNA-Seq of 

RCC [218]. The differentially expressed metabolic genes obtained from the scRNA-Seq 

study were enriched for the reporter pathways identified from the bulk RNA-Seq analysis. 

The significantly dysregulated metabolic processes include central carbon metabolism and 

one carbon metabolism in RCC. The heterogeneity of RCC metabolism can be further 

explored with help of scRNA-Seq data. 
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Chapter 4  MODELING CELL CYCLE RE-ENTRY IN 

NEURODEGENERATION 

4.1 Introduction 

Neurodegeneration refers to the gradual deterioration of neuronal structure and 

function, leading to loss of cognitive abilities and dementia. According to the recent reports 

from the World Health Organization (WHO), approximately 55 million people suffer from 

neurodegenerative disease worldwide, with an annual rise of about 10 million. Alzheimer's 

disease (AD) is the most prevalent neurodegenerative disease contributing to 60–70% of the 

cases [219]. These cases primarily belong to two subgroups, familial AD (FAD) and sporadic 

AD (SAD). FAD is usually associated with mutations in the amyloid precursor protein (APP) 

gene or its processing enzymes (PSEN1, PSEN2). These mutants exacerbate the 

accumulation of Aβ peptide and plaque formation in the extracellular region between 

neurons. Clinical manifestations of neurodegeneration usually appear at an earlier age. 

However, FAD is a less frequent form affecting only about 5% of the patients [220]. The 

etiology of SAD is more complex and attributes to multiple risk factors such as age, brain 

injury, inefficient removal of Aβ,  epsilon4 allele form of apolipoprotein E (APOE), midlife 

hypertension, high cholesterol, obesity but none of these serves as a determining factor [221–

223]. AD onset is late if the cognitive impairment symptoms appear among the elderly post 

65 years [220]; the frequency increases from 3% among people aged 65-74 years to 32% 

among 85 years and above. However, the onset of systemic changes like Aβ accumulation 

precedes the manifestation of dementia by more than a decade [223]. 

AD is a multifactorial disease, and in most cases, is not pinned down to a specific 

root. Numerous factors have been investigated for their potential as a causative agent, and 

several hypotheses have been proposed to provide the mechanistic detail of AD. Accordingly, 

various therapeutic approaches targeting the underlying molecular players have been tested 

[224, 225]. One of the earliest theories put forward is the cholinergic deficit hypothesis which 

attributes the loss of cholinergic neurons and reduction in acetylcholine synthesis to cognitive 

impairment in AD pathology [226]. Therefore, cholinesterase inhibitor (ChEI) drugs have 
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been in use for AD for decades now. However, this class of drugs is largely successful as a 

symptomatic therapy and has failed to fetch an overall promising disease-modifying effect in 

AD pathogenesis [224, 227]. ChEI manages AD symptoms by inhibiting cholinesterase, the 

enzyme that breaks down choline neurotransmitters. Its inability to inhibit disease 

progression, in general, suggests cholinergic neuronal atrophy is rather a consequence and not 

a mechanism of neurodegeneration [228, 229]. 

Another theory is the amyloid cascade hypothesis (ACH) that Hardy and Higgins 

proposed to describe AD pathogenesis in 1992. They hypothesized Aβ aggregates, the main 

constituent of amyloid plaque, as the causative agent of AD and other abnormalities like 

hyper-phosphorylation of the microtubule-associated protein tau (MAPT/tau), the formation 

of intracellular neurofibrillary tangles (NFT), cell loss, and dementia follow as subsequent 

effects of Aβ accumulation [230]. This hypothesis is supported by the driver mutations in 

FAD as well as genome-wide association studies (GWAS) in SAD. The risk genes identified 

in GWAS include SORL1, CLU, and APOE, which participate in the sorting and trafficking 

of proteins, preventing aggregate formation and clearance of deposits [231]. Other studies 

reported Aβ peptides may exist in multiple neurotoxic forms. Hence, since the proposal of 

ACH, numerous studies have explored the neurodegenerative effects of different forms of 

aggregated amyloid fibrils and soluble Aβ oligomers [232, 233].  Soluble Aβ oligomers are 

commonly found in AD brains and are more neurotoxic due to their diffusible nature. They 

can bind a wide array of protein and non-protein neuronal receptors, including glutamate 

receptors, and turn on downstream signaling processes. It can eventually lead to hyper-

phosphorylation of tau, dysregulation of the neuronal processes, synaptic degeneration, and 

loss of neurons [233]. Inhibitors interfering with APP processing, Aβ aggregation, and 

therapies facilitating Aβ clearance are most frequently tested in clinical trials. However, 

despite highly efficient removal of Aβ from plasma and cerebrospinal fluid, they have failed 

to fetch promising results in clinical trials [224]. The failure of Aβ plaque clearance therapies 

points towards the self-sustaining role of downstream effectors that regulate disease 

progression post Aβ exposure. Additionally, worsening cognitive decline in some case 

(NCT03131453) may be attributed to the physiological role of Aβ in long term potentiation at 

lower concentration (picomolar) [234]. Hence, the amyloid cascade hypothesis has been 

reviewed critically time and again [235–237]. Rather than exploring the series of events 
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leading to a cascade, the need to identify downstream self-amplifying mechanisms that 

regulate AD progression and sustain pathological manifestation in the absence of the initial 

trigger has been felt [238–240]. 

Expression of cell cycle activators is significantly upregulated in postmortem samples 

from degenerating regions of the AD brain [41, 241–247]. These proteins also show up in 

individuals with mild cognitive impairment and minor Aβ plaque load [248]. Similar finding 

is recapitulated in transgenic AD mice model, where appearance of cell cycle events in 

vulnerable regions of brain precede pathological markers [249]. Further, neuronal cell cycle 

re-entry transgenic mice model manifest NFT and amyloid pathology [250], whereas double 

transgenic mice exhibit the development of enhanced AD-associated features like tau 

pathology and enhanced neurodegeneration than transgenic AD mice model [251]. In line 

with the animal models, overexpression of cell cycle activators/oncogenes induces AD-like 

changes, whereas inhibitors of cyclin-dependent kinase (Cdk) rescue cell division and 

subsequent apoptosis in neuronal cell lines [252–254]. Further, pathological phosphorylation 

of tau by Cdks increases its stability leading to destabilization of microtubular dynamics, 

synaptic loss and neuronal dysfunction [255–258]. These observations suggest cell cycle re-

entry not only precedes neuron loss, but it also mediates and escalates the disease 

progression. It appears counterintuitive since neurons are known to exit proliferation 

permanently and maintain a postmitotic, differentiated state after human brain development 

[259]. High levels of Cdk inhibitors (CDKI), Retinoblastoma protein (Rb), and anaphase-

promoting complex/cyclosome (APC/C)-Cdh1 ensure a non-dividing state [247, 260–262]. 

On the other hand, cyclins perform alternate functions such as the regulation of synaptic 

plasticity in neurons [263, 264]. Cdk5 is the most abundant member of the Cdk family in 

neurons, and it forms complexes with p35 and p39. In contrast to the function of other Cdks, 

it participates in cell cycle suppression. Cdk5 is also involved in brain development, cortical 

neuron migration, and microtubule regulation [247, 259, 265, 266].  

In this chapter, we present different model scenarios for cell cycle re-entry in neurons. 

Mathematical models of control circuits leading to cell cycle regulated neuronal apoptosis 

(CRNA) were developed. We show that the integration of multiple feedback loops influences 

the severity of disease and makes the switch to pathological state irreversible. Based on the 

model predictions, we propose that simultaneous clearance of extracellular Aβ aggregates and 
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inhibition of multiple arms of the feedback loop may bring about disease-modifying effects in 

moderate and severe AD. The mathematical model presented here is the first such attempt to 

mechanistically link cell cycle re-entry with neuronal apoptosis. 

Further, we show the transcriptional changes in vulnerable regions of the AD brain 

are in accordance with the disease state captured by the models. Though the cell cycle control 

mechanism is dysregulated in both cancer and AD, neurons undergo apoptosis while cancer 

cells continue to proliferate. Our transcriptomic studies involving glioblastoma multiforme 

(GBM) samples reveal some underlying differences in the two pathological states.  

4.2 Model description 

We reconstructed CRNA control circuits based on the available information in the 

literature. The critical cell cycle regulators involved in the control of CRNA include APC/C-

Cdh1, Rb, E2F, p35/p25-Cdk5, Cyclin-Cdk, and CDKI (p21, p27). These proteins emerged 

as important players since they control a multitude of substrates. APC/C-Cdh1, Rb maintain 

the neurons in a nondividing, differentiated state, whereas Cyclin-Cdk, E2F drive cell cycle 

re-entry. Cdk5 and p27, on the other hand, act as a double-edged sword. Cdk5 activity is 

regulated in neurons by mechanisms involving autophosphorylation and rapid degradation 

[266]. Cdk5 deficient mice (Cdk5-/-) fail to develop normally and die perinatally with 

multiple abnormalities in the cerebral cortex, hippocampus, and cerebellum. In contrast, high 

Cdk5 activity contributes to the complex etiology of AD by hyper-phosphorylation of various 

physiological and non-physiological substrates [259]. Under physiological conditions, p27, a 

member of the Kip family of CDKI, also contributes to sustaining mature neurons in the 

differentiated state in a manner analogous to APC/C-Cdh1, Rb, and Cdk5. Gene silencing 

experiments targeting p27 promote cell cycle re-entry (Rb phosphorylation) and apoptosis in 

rat cortical neurons. Inhibitors of Cdk rescue this effect of p27 silencing [267]. However, 

immunohistology data from AD brain report accumulation of p27 in the cytosol of both NFT 

bearing and histologically indistinguishable neurons [268].  A buildup of cytosolic p27 in AD 

seems to contradict the canonical, neuroprotective role of p27 in differentiated neurons. We 

describe three network modules involving these components in the control of CRNA. 
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4.2.1 Module 1: Aβ-induced hyperactivation of extracellular signal-

regulated kinases (ERK) in neurons 

The temporal profile of ERK activity determines cell fate. A sustained but low 

activity of ERK promotes differentiated state of neurons [269–271]. In differentiated neurons, 

the p35-Cdk5 complex indirectly limits the sustained ERK activity (Figure 4.1) by inhibiting 

its upstream MAP kinase kinase-1 (MEK-1) through phosphorylation [272]. 

 

Figure 4.1: Molecular network representing competition between p35 and CycD for Cdk5 binding. Aβ, 

through nuclear export of p27 (dashed double headed black arrows), controls ERK activity; red color line 

with blunt end indicates inhibition and green arrow indicates transcriptional activation, discontinuous 

lines indicate indirect control. Solid lines with double headed arrows denote reversible association and 

dissociation of complexes. 

Cyclin D (CycD) competes with p35 for Cdk5 binding in the presence of Aβ and thereby 

intervenes with the physiological, neuroprotective function of Cdk5. Loss of p35-Cdk5 

activity dysregulates the MEK-ERK signaling pathway by relieving its repression. 

Hyperactivated ERK increases CycD expression further [269, 273, 274]. However, CycD, 

p35, and Cdk5 are abundant in postmitotic neurons [259, 263]. This raises the question of 

how the binding partner of Cdk5 switches from p35 to CycD on Aβ exposure. Cdk5 carries 

nuclear export signal and intrinsically tends to be localized outside nucleus [275]. In the 

resting neurons, p27 (CDKI) compartmentalizes p35-Cdk5 to the nucleus by trimer complex 
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formation. Aβ exposure exports p27 to the cytoplasm [275], and the relative compartment-

wise distribution of these proteins changes. CycD primarily localizes in the cytoplasm of 

differentiated neurons [276]. Cytosolic p27 stabilizes its association with Cdk5. siRNA 

targeted against p27 rescues p35-Cdk5 association and is neuroprotective [277]. Hence, Aβ, 

through nuclear export of p27, topples the p35-Cdk5 balance to CycD-Cdk5 state, leading to 

ERK hyperactivation and CycD accumulation. 

4.2.2 Module 2: Intracellular Ca2+-dependent APC/C-Cdh1 inactivation, 

Rb hyper-phosphorylation and E2F induction in neurons 

Rb and APC/C-Cdh1 maintain a non-proliferating, differentiated state of neurons. Rb 

suppresses the cell cycle by stoichiometric inhibition of the E2F transcription factor. APC/C-

Cdh1, on the other hand, belongs to the E3 ubiquitin ligase family that gets activated at the 

end of mitosis in cycling cells and remains active till the G1/S transition of the next cycle 

[125]. In the quiescent (G0) and differentiated state, APC/C-Cdh1 suppresses the cell cycle 

by promoting proteasomal degradation of cell cycle activators [278]. Glutamate 

excitotoxicity or Aβ exposure perturbs intracellular Ca2+ balance through stimulation of the 

ligand gated ion channel present on the membrane of differentiated neurons. Ca2+ 

dysregulation activates calpain catalyzed cleavage of p35 into p25; p25 has a slower turnover 

rate which increases the kinase activity of Cdk5 [233, 254, 279–281] (Figure 4.2). p25-Cdk5 

inactivates Rb and APC/C-Cdh1 by phosphorylation [282, 283]. While Rb phosphorylation 

frees E2F and drives the synthesis of cyclins, APC/C-Cdh1 inhibition brings down their 

degradation. Besides its direct role in cell cycle regulation, APC/C-Cdh1 also regulates the 

metabolic and redox state of cells. It diverts glycolytic flux towards the pentose phosphate 

pathway (PPP) through degradation of 6‑phosphofructo‑2-kinase/fructose‑2, 

6‑bisphosphatase‑3 (Pfkfb3). The nicotinamide adenine dinucleotide phosphate (NADPH) 

molecules produced as a by-product of PPP play a role in generating reduced glutathione 

(GSH) (Figure 4.2). GSH maintains redox homeostasis by scavenging reactive oxygen 

species (ROS) [284]. The APC/C-Cdh1 function is of prime importance in neurons since the 

high metabolic rate of the brain makes it susceptible to ROS generation and oxidative stress 

[285]. Further, E2F also contributes to ROS generation by increasing Cyclin B (CycB) 

accumulation (via. FOXM1) [286, 287] and APC/C-Cdh1 inactivation [125]. Mitochondrially 

localized CycB-Cdk1 phosphorylates Bcl-xL and interrupts ATP-synthase activity. This leads 
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to enhanced electron leak through the electron transport chain (ETC) and ROS accumulation 

(Figure 4.2) [288]. Excessive ROS adversely affects neuronal viability through oxidative 

DNA damage and apoptosome activation [289]. 

 

Figure 4.2: Molecular network representing Rb and APC/C-Cdh1 role in neuroprotection; red color line 

with blunt end indicates inhibition and green arrow indicates transcriptional activation, discontinuous 

lines indicate indirect control. Solid lines with double headed arrows denote reversible association and 

dissociation of complexes. The underlying mechanism is shown with +p for phosphorylation and Ub for 

ubiquitination. 

 APC/C-Cdh1 additionally manages neuronal activity via modulation of ligand-gated 

ion channels. Glutaminase (Gls1), an enzyme that catalyzes the conversion of glutamine to 

glutamate via glutaminolysis pathway, is an APC/C-Cdh1 substrate. In the absence of 

APC/C-Cdh1, Gls1 activity increases, leading to an increase in glutamate levels. The 

glutamate excitotoxicity triggers extended periods of receptor stimulation in neurons and 

dysregulation of intracellular Ca2+ [254, 283]. Ca2+ imbalance causes mitochondrial 

dysfunction and ROS generation. ROS accumulation alters membrane permeability by lipid 

peroxidation, and intracellular Ca2+ increases further [289–291]. Intracellular Ca2+ and ROS 

amplify each other, APC/C-Cdh1 contributes to the amplification through regulation of its 

substrates described above (Figure 4.2).  
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4.2.3 Module 3: DNA damage dependent increase in CycD-Cdk4/6 and 

E2F accumulation in neurons 

 While the excessive accumulation of ROS itself has the potential to induce apoptosis, 

oxidative DNA damage magnifies the quantum of neuronal loss [292]. Further, the source of 

DNA damage isn’t limited to oxidative stress; for instance, aberrant p25-Cdk5 activity also 

amplifies the extent of damage [293]. The stressors may thus be functional alone or in 

concert. DNA damage induces a series of damage responsive and checkpoint kinases. The 

damage sensing signals activate CycD-Cdk4/6, stabilize E2F by posttranslational 

modifications (PTM) and induce its transcription [294–297] (Figure 4.3). Concurrent 

phosphorylation of p53 by DNA damage sensing kinases leads to the accumulation of active 

p53 (p53aT), which stays predominantly in the p53 helper state [298, 299]. In this state, it 

activates transcription of p21(CDKI) that can block cell cycle re-entry by forming complex 

with CycD and Cyclin E(CycE).  

 

Figure 4.3: Molecular network representing DNA damage-induced route to cell cycle re-entry and 

subsequent apoptosis. The red color line with blunt end indicates inhibition. Arrows represent activation 

with green color indicating transcriptional regulation. Double headed arrows denote reversible 

association and dissociation of complexes. The underlying mechanism is shown with +p for 

phosphorylation and Ub for ubiquitination. 

 However, neurons may overcome the CDKI barrier and re-enter the cell cycle with an 

increase in CycD-Cdk4/6 and E2F activity that promote DNA repair and have a protective 

function. CycD-Cdk4/6 mono-phosphorylates Rb, which then gets hyper-phosphorylated by 
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E2F induced CycE [115]. Rb hyper-phosphorylation further relieves stoichiometric inhibition 

of E2F. Free E2F also promotes APC/C-Cdh1 inactivation and accumulation of SCFSkp2-

Cks1(Ubl) complex that promotes CDKI degradation in CycE-Cdk2 dependent manner [128–

130]. When the damage accumulates beyond repair potential, p53 and E2F coordinate the 

apoptotic signaling through induction of p53DINP1 that controls the conversion from p53 

helper state to p53 killer state. p53 in the killer state activates multiple pro-apoptotic genes 

[27, 300–302]. Thus, neurons may respond to a rise in E2F levels in a graded manner. At a 

moderate level, p53DINP1 remains low, and E2F helps in DNA repair, while at a higher 

level, it switches on the killer [303]. E2F also indirectly stabilizes p53 via modulation of its 

Mdm2 dependent degradation. It induces tumor suppressor protein ARF that associates with 

p53 inhibitor Mdm2 and brings down p53 degradation  [304] (Figure 4.3).  

4.3 Methods 

The three modules capturing alternative routes to cell cycle re-entry are regulated by 

complex molecular networks. These network modules presented in Figure 4.1-Figure 4.3 

were translated into a set of ordinary differential equations (ODE) and algebraic equations to 

describe the dynamics of individual components. Unless stated otherwise, the law of mass 

action was used to represent the synthesis, degradation, activation, inactivation, association, 

dissociation reactions, and transport mechanisms. 

Experimental evidence suggests that the ERK total protein levels don’t change, but 

Aβ stimulation alters its activity via  MEK-1 dependent phosphorylation of ERK [273]. 

Hence, the ERK total was modeled as a fixed parameter, and its activity was considered to be 

directly controlled by Aβ.   The activation/inactivation of ERK, which is known to exhibit 

ultrasensitive characteristics, was modeled as Michaelis-Menten kinetics [55, 305]. 

Considering the physiological function and ubiquitous abundance of p35, Cdk5, and p27 in 

differentiated neurons, the total concentration of p35 (p35T), Cdk5 (Cdk5T), and p27 (CDKIT) 

were modeled as fixed parameter in module 1.  

Rb and APC/C-Cdh1 activity is controlled by p25-Cdk5 and CycB-Cdk1 dependent 

phosphorylation, with their total levels fixed. The activation/inactivation of Rb and APC/C-

Cdh1 was modeled as Michaelis-Menten kinetics, and E2F dependent synthesis of E2F 

(autoactivation) and CycB were modeled as Hill functions. The model equations and 
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parameters used to describe these variables were taken from the mammary epithelial cell line 

quiescence to proliferation reversible transition model [306]. Ca2+ dependent activation of 

calpain in module 2 was also modeled as a Hill function since cooperative binding of two 

Ca2+ ions to calpain is known [307]. Similar to module 1, p35 was considered a fixed 

parameter. The activity of Cdk (Cdk5, Cdk1) was considered to be limited by its binding 

partner. Hence, the variables p35, p25, CycB represent the corresponding Cdk activity. We 

considered direct regulation of NADPH by APC/C-Cdh1, CycB regulation by E2F, ROS 

regulation by CycB, Ca2+ and ROS mutual amplification eliminating the intermediate steps 

involved in these regulations (Figure 4.2) to keep the model minimalistic.  

Rb-E2F regulation in module 3 is modeled similar to module 2. In the E2F-p53 

coordinated apoptotic signaling,  p53DINP1 and p53 killer synthesis were modeled as Hill 

functions, based on earlier models [301, 302, 306]. The cyclin (CycD, CycE) levels control 

the corresponding Cdk activity (Cdk4/6, Cdk2).  

Aβ was varied as the input parameter in module 1 and 2 to simulate the pathological 

state. The translocation of p27 into the cytosol (module 1) and levels of Ca2+ (module 2) were 

regulated by Aβ. DNA damage was the stimulus for module 3. The degradation rates of p53 

and E2F were reduced, while that of Mdm2 was increased in a DNA damage dependent 

manner. The synthesis rate of CycD was increased in the presence of DNA damage.  

The work focused on studying the emergent properties of molecular networks and the 

various perturbations and rescue experiments listed in Table 4.1-4.3. The experimental data 

indicates consistency in the cellular response across the same set of stimuli and inhibitors, but 

the quantitative measure showed differences. These variations may arise due to the 

differences in experimental handling, intrinsic noise, differences in the cell line, etc. 

Therefore, we combined these observations to present models that draw a consensus across 

multiple studies. We started the model simulations with parameter values obtained from cell 

cycle and apoptosis models [301, 302, 306]. The models were integrated, and the parameter 

values were refined to simulate the data corresponding to Aβ and DNA damage induced cell 

cycle re-entry and apoptosis. The models capture the qualitative picture of an increase or 

decrease in the number of cells undergoing apoptosis with experimental perturbations.   
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The complex formation is assumed to be rapid compared to synthesis, degradation, 

activation, inactivation, and transport rate constants. The knockout (KO) /inhibition 

experiments for state variables were simulated by setting either the synthesis or activation 

rate to zero; for fixed parameters, the KO condition was modeled by setting the total level of 

protein to zero. One and two-parameter bifurcation analyses were performed to characterize 

how the system responds to variations in the parameter values and study the effect of 

individual feedback loops. The default parameters were also varied in a ±10% range to test 

parameter sensitivity. The set of equations was solved numerically with XPPAUT. 

The simulations represent a dynamic picture but not the actual time scale of disease 

progression due to the unavailability of temporal data on systemic changes in disease 

progression. Therefore, rate constants (k) have a dimension of time-1. The state variables 

represent relative concentrations of respective components and are dimensionless. Michaelis 

constants (J) and half-saturation constants are also dimensionless. The equations and 

parameter values are presented at the end in the appendix section (APPENDIX B).  

Different model scenarios for cell cycle re-entry in neurons may lead to 

transcriptional changes. Transcriptome data of AD were analyzed to study the change in gene 

expression related to the proposed modules. Normalized expression data across multiple 

datasets from different regions of AD brain postmortem samples and control samples were 

retrieved from http://www.alzdata.org/ (Table 4.4) [308, 309]. Additional AD brain datasets 

were downloaded from gene expression omnibus (GEO) and processed using the GEO2R R 

script [310–314]. These datasets resolve samples into different groups: asymptomatic, 

incipient, moderate, and severe AD. Further, normalized temporal data from the rTg4510 

transgenic mouse model was also used to study progressive changes in AD [315]. The gene 

expression patterns of various targets of E2F, p53, and redox metabolism were studied. The 

list of genes under the regulation of these transcriptional factors and redox metabolism were 

obtained from the literature  [27, 286, 316]. E2F target genes which were associated with the 

cell cycle in at least one study were filtered [286]. The eigengene expression profile 

representing the maximum variance for the groups of genes of interest (E2F target, p53 

target, and redox metabolism) were obtained for each sample using the moduleEigengenes 

function of the WGCNA package in R [183]. Correlation between the representative 

http://www.alzdata.org/
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eigengene expression and disease state was obtained by the Pearson correlation method using 

the cor function in R.  

Since both neurodegeneration and cancer show aberrant cell cycle re-entry, our results 

from AD were also compared with the expression patterns from cancer. As RNA-Seq data of 

tumor matched normal glioblastoma multiforme (GBM) samples were not available in 

TCGA, the transcriptome data from primary tumor-derived glioblastoma multiforme stem 

cells (GSC) and neural stem cells (NSC) was analyzed (Table 4.4) [317]. The FPKM 

(Fragments Per Kilobase of transcript per Million mapped reads) data was quantile 

normalized using the normalize.quantiles function of preprocessCore package and then log 

transformed. GSC samples were subdivided into two distinct groups based on the 

classification provided by Mack et al.  [317]. The eigengene expression under these 

conditions was also calculated to study the correlation with disease. Statistical significance of 

the correlation values was obtained using the corPvalueStudent function in R that computes 

Student asymptotic p-value for given correlations [183]. 

4.4 Results 

4.4.1 Competition between CycD and p35 controls Cdk5 activity 

We attempted to integrate different experimental findings and present a consensus 

model for ERK dysregulation in neurons. At first, we captured the initial condition 

mimicking the differentiated neuron's resting state. Initially, p35-Cdk5 is almost equally 

distributed between different compartments (Figure 4.4a), and the nuclear form stays in p27 

bound trimer complex state. This is consistent with the observation of Zhang et al. (2010) 

[275], showing that p35-Cdk5 remains evenly distributed in the differentiated neurons as a 

nucleocytoplasmic protein with its nuclear localization dependent on p27. Conversely, CycD-

Cdk5 activity stays limited to cytosol since CycD is largely cytoplasmic in postmitotic 

neurons [276].  

Aβ exposure (Figure 4.4a) exports p27 to the cytosol, consequently p35 and Cdk5 

also move out of the nucleus. In the presence of cytosolic p27, CycD competes with p35 for 

complex formation with Cdk5, resulting in a decrease in p35-Cdk5 activity and an increase in 

CycD-Cdk5-p27 complex formation (Figure 4.4a). A reduction in p35-Cdk5 activity leads to 
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hyperactivation of ERK (Figure 4.4a). An increase in ERK activity leads to the accumulation 

of CycD that competes with p35 to decrease the p35-Cdk5 activity further. ERK 

hyperactivity and high CycD (Figure 4.4a) serve as markers for pathological state and cell 

cycle re-entry in differentiated neurons. These simulations are consistent with the 

experimental observations listed in Table 4.1 [273, 275, 277]. 

 
Figure 4.4: Aβ mediated activation of MEK-ERK signaling pathway. (a) Temporal dynamics of state 

variables is shown in the presence of Aβ, which induces p27 nuclear export.  At t=500, the Aβ level 

(marked by arrow) was set to 0.05 from zero. (b) Temporal dynamics of state variables on including the 

additional effect of Aβ on p35-Cdk5-p27 trimer dissociation. Relative level of state variable CycDTotal is 

represented on the right y-axis. a.u. represents arbitrary units. 

Further, we show that this positive feedback between CycD and ERK sustains 

ERKactive at pathological levels and gives rise to bistability (Figure 4.5a). The saddle node 1 

(SN1) corresponds to the Aβ threshold for transition from normal to disease state, while SN2 

corresponds to the threshold for the transition back to the normal state. Thus, decreasing Aβ 

does not lead to immediate reversal to the normal state unless its level falls below SN2. MEK 

inhibition limits CycD to value inadequate for competition with p35; hence the system 

remains in a low ERK activity state, and bistability is lost (achieved by kaerk =0, APPENDIX 

B). Modi et al. (2012) have shown similar cell cycle re-entry rescue experiments in primary 

cortical cell lines from rat (Table 4.1) [273]. Hence, we propose this Aβ induced cell cycle re-

entry mechanism as an ERK bistable switch. Aβ brings about competition between CycD and 

p35 for Cdk5 association; this turns the switch from a low ERKactive state to a high ERKactive 

state. 
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 The model was also used to simulate other rescue experiments summarized in Table 

4.1. In the absence of p27, CycD fails to sequester Cdk5 away from p35, and ERK activity 

remains low [277]. ERK and CycD form two arms of a feedback loop, and transfection of 

cortical neurons with CycD siRNA or Cdk4/6 inhibitor rescues the effect of Aβ [252, 273]. 

However, our model failed to capture the CycD KO phenotype through the Aβ effect on the 

cellular localization of p27 only. In the absence of CycD, the competition for complex 

formation ends, and p35-Cdk5-p27 trimer formation occurs in the cytosol, leading to a 

decrease in p35-Cdk5 activity and an increase in ERK activity (Figure 4.5b). Thus, we 

hypothesized that Aβ also directly destabilizes p35-Cdk5-p27 by some unknown mechanism 

(kdis35cki, APPENDIX B). This prevents the p35-Cdk5-p27 complex formation and blocks the 

transition to a high ERKactive state in the absence of CycD (Figure 4.5b). Evoking Aβ 

dependent trimer dissociation increases nuclear export and cytosolic activity of the p35-Cdk5 

complex. As a result, ERK suppression strengthens, and the Aβ threshold for ERKactive switch 

shifts to the right (Figure 4.5a). The dynamics also shows a delay in p35-Cdk5 inactivation 

and ERK hyperactivation (Figure 4.4a vs. 4.4b), which reproduces the temporary 

neuroprotection provided by Aβ triggered rise in p35-Cdk5 activity in the cytoplasm [275].  

We further studied how the levels of important regulators viz, p27, p35, and CycD 

affect the regulation of ERK by performing two-parameter bifurcation analysis. We analyzed 

the shift of the two saddle nodes, SN1 and SN2, with respect to second parametric changes. 

An increase in p27 (CDKITotal) levels reduces the Aβ threshold to activate ERK, showing the 

inverse relationship between Aβ and p27 (Figure 4.6a). Elevated p27 perturbs the cytosol and 

nuclear distribution of p35-Cdk5, leading to the sequestration of more p35-Cdk5 in the 

nucleus and activation of ERK. Therefore, the saddle node shifts to the left along the x-axis 

(Aβ). However, nuclear p35-Cdk5-p27 complex formation may still suppress the cell cycle 

re-entry [318]. A decrease in p27 levels increases the Aβ threshold due to an increase in the 

cytosolic concentration of p35-Cdk5 and stronger inhibition of ERK (Figure 4.6a). Hence, 

p27 can perform both anti and pro-apoptotic functions [267, 277] by controlling the p35-

Cdk5 nuclear and cytosolic concentration, respectively. Aβ helps in the transition from an 

anti to the pro-apoptotic function of p27 by altering the nuclear-cytoplasmic ratio of p35-

Cdk5 in the disease state.  
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Figure 4.5: Bifurcation diagram showing the effect of Aβ level on the ERK activation. The response curve 

is shown in the absence (red) and presence (blue) of additional effect of Aβ on p35-Cdk5-p27 trimer 

dissociation in the (a) control and (b) CycD KO conditions. The response curve of ERK shows bistable 

characteristics (two stable steady states and one unstable steady state for same value of Aβ marked by 

black filled circles and open circle respectively). Solid lines represent stable steady states, while dashed 

line represents unstable steady state. SN1 and SN2 represent the saddle nodes corresponding to ERK 

activation and inactivation, respectively. a.u. represents arbitrary units. 

 

Figure 4.6: Two-parameter bifurcation plots showing how saddle nodes (SN1 and SN2) of bistable switch 

corresponding to ERK activation and inactivation, respectively, shift with parametric variation. (a) The 

Aβ threshold for ERK activation and inactivation reduces with increase in p27 (CDKITotal). (b) An 

increase in the p35Total increases the CycD requirement to activate ERK (Aβ=0.005). p35Total below a 

certain threshold fails to suppress ERK and saddle nodes disappear via cusp bifurcation. a.u. represents 

arbitrary units. 



 

72 

 

We also simulated the relation between p35 and CycD by performing the two-

parameter bifurcation analysis for Aβ=0.005. Figure 4.6b shows that as the p35 total (p35Total) 

pool increases, the CycD level (kscycd, APPENDIX B) required for ERK activation also 

increases. Likewise, for a lower level of p35, the CycD requirement also reduces, reflecting 

the competition [277]. However, we observed if p35 levels drop beyond a threshold, the p35-

Cdk5 activity becomes inadequate to suppress ERK activity. Under such circumstances, ERK 

remains constitutively hyperactive; the bistable state disappears via cusp bifurcation. Thus, 

the bistable activation of ERK depends on the competition between CycD and p35 for Cdk5. 

Decreasing this competition by p35 overexpression bestows neuroprotection.  

Table 4.1: Summary of experimental data used to develop the framework of module 1. 

Cell line Stimulus Rescue Cell cycle entry Apoptosis  Reference 

Primary cortical 

neuron (Rat) 

Aβ42 ----------------- Yes Yes 

[273] Aβ42 MEK inhibitor No No 

Aβ42 CycD siRNA No No 

Primary cortical 

neuron (Rat) 

Soluble Aβ1-42 

oligomer 
----------------- Yes Yes 

[277] 
Soluble Aβ1-42 

oligomer 
p27siRNA Yes No 

Primary cortical 

neuron (Rat) 

Aβ aggregate ----------------- ----------------- Yes 

[252] Aβ aggregate Cdk4 inhibition ----------------- No 

Aβ aggregate Cdk6 inhibition ----------------- No 

Primary cortical 

neuron (Cdk5-/- 

Mice) 

Fibrillar Aβ1– 42  

Cdk5-NLS No Yes 

[275] 
Cdk5-NES Yes No 

4.4.2 Ca2+ and ROS nexus in Rb and APC/C-Cdh1 inactivation 

In the second module, we studied how different perturbations that converge on Ca2+ 

dysregulation and APC/C-Cdh1 inactivation drive transition to the disease state. This 

includes exposure to Aβ oligomer, glutamate excitotoxicity, and CycB overexpression (Table 

4.2). 

The model mimics the differentiated neuron condition by maintaining Rb, APC/C-

Cdh1 active (Figure 4.7a - Cdh1dp), Ca2+, ROS, E2F targets, and APC/C-Cdh1 substrates 

low. An increase in the Aβ level (Figure 4.7a) leads to a rise in the influx of Ca2+ and 

activation of p25-Cdk5, which helps to overcome the Rb and APC/C-Cdh1 barrier by 

phosphorylation (Figure 4.7a). This leads to amplification in Ca2+ and ROS levels by 
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feedback loops (Figure 4.2). In neurons, a rise in ROS generation has been linked to an 

increase in the percentage of cells undergoing apoptosis and is rescued by the addition of 

membrane-permeable anti-oxidants [284, 319]. Hence, we considered high ROS levels as a 

marker for pathological state. Rb hyper-phosphorylation, APC/C-Cdh1 inactivation marks 

cell cycle re-entry. We did not observe segregation of two events viz, first hyper-

phosphorylation of Rb at the restriction point (RP) and later APC/C-Cdh1 inactivation at the 

G1/S transition as seen with the canonical model of quiescence to proliferation transition on 

mitogen stimulation [125]. The temporal separation of RP and G1/S is regulated by the rate at 

which Cdk2 activity builds up [125, 306]. The order of G1 phase events is shown to be 

reversed in the mammary epithelial cell line with a change in the Cdk2 threshold for Rb 

hyper-phosphorylation and APC/C-Cdh1 inactivation in the absence of CycD [149]. Thus, we 

speculate our model observation may represent a non-canonical route to cell cycle re-entry in 

neurodegeneration with no temporal segregation of RP and G1/S transition. p25-Cdk5 is 

known to inactivate APC/C-Cdh1 without requiring Cdk2 [254] and hyper-phosphorylate Rb 

with an efficiency comparable to Cdk2 in neurons [282].  

The bifurcation analysis shows that the system is bistable and undergoes an 

irreversible transition to pathological state (high ROS) once Aβ levels cross a threshold value 

(Figure 4.7b). Such a transition also occurs with CycB overexpression or glutamate 

excitotoxicity (Figure 4.7c). These model features align with the experimental observations 

listed in Table 4.2 [254, 283, 288]. The pathological state arises from Rb and APC/C-Cdh1 

inactivation, which increases E2F targets and APC/C-Cdh1 substrates. This module includes 

multiple feedback loops that can switch the system irreversibly into a state of oxidative stress 

implying the transition becomes independent of the Aβ stimulus (Figure 4.7b). We perturbed 

the network to study the contribution of individual feedback loops. This includes the mutual 

antagonism between CycB-Cdk1 and APC/C-Cdh1 (CycB-Cdk1 -----| APC/C-Cdh1 -----| 

CycB-Cdk1) and APC/C-Cdh1 and Gls1 (APC/C-Cdh1 ---| Gls1 → glutamate → Ca2+ → 

p25-Cdk5 -----| APC/C-Cdh1). Inhibition of Gls1 (ksgls=0) or CycB-Cdk1 (kscycb=0=kscyc) 

shifts the saddle nodes to the right and leads to a drop in the upper steady state values of 

ROS, suggesting that each feedback contributes to the strength of amplification and targeting 

the feedbacks can delay the onset and disease progression (Figure 4.7d). The reversible 

characteristic of pathological state suggests that in the presence of inhibitor of feedback 
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loops, targeted removal of Aβ peptides may alleviate the severity of the disease. The 

vulnerability of neurons can thus be reduced by glutaminase inhibition, CycB KO, or by the 

addition of membrane permeable antioxidants (achieved by increasing kanadphb), which 

enhance the ROS scavenging capacity. Our model is consistent with rescue mechanisms that 

compensate for perturbations such as: addition of APC/C-Cdh1 inhibitor (achieved by 

making kacdh1=0), Aβ oligomers, glutamate, and CycB overexpression (Table 4.2).  

We then tested which nodes could be the most potential targets for therapeutic 

intervention. On evaluating the condition of p25-Cdk5 inhibition (Figure 4.7d) or collective 

downstream feedback loop blockade by glutaminase and CycB-Cdk1 inhibition (Figure 4.7d), 

we observe the jump to pathological state is lost. Intracellular Ca2+ influx initiates APC/C-

Cdh1 inactivation by p25-Cdk5 and accumulation of its targets. APC/C-Cdh1 is the central 

regulator of this network module, and therefore, perturbations around it have a significant 

effect on the phenotype [320] than the direct role of Aβ on Ca2+ influx and oxidative stress. 

This property of the model is in line with the “two-hit hypothesis” proposed for AD. Dual 

insult in the form of mitogenic stimulation (Rb and APC/C-Cdh1 inactivation) and oxidative 

stress (depletion of antioxidants and ROS generation) plays a crucial role in disease 

progression. On a single insult, cells adapt to a new steady but vulnerable state [321]. As 

glutamate excitotoxicity and CycB dysregulation converge on APC/C-Cdh1 deactivation, 

they may induce the irreversible transition to a pathological state. 

4.4.3 DNA damage-induced cell cycle re-entry: repair versus apoptosis 

Several physiological processes like ATP intensive neuronal activity makes the 

normal brain vulnerable to oxidative stress and DNA damage [285, 297]. Damage sensing 

kinases elevate p53 and E2F levels in an attempt to arrest and repair [294]. However, E2F 

and p53 can cooperate to trigger apoptosis when the damage is beyond repair [295, 300, 304, 

322]. An unscheduled S-phase entry creates replication stress that escalates the degree of 

DNA damage [323]. 

In the third module, we explored how the DNA damage-induced cell cycle re-entry 

occurs in neurons in an attempt to repair, but as a consequence, may lead to apoptosis. The 

differentiated neuron state is represented by dephosphorylated Rb (RbPP=0), E2F under 
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stoichiometric inhibition of Rb (E2Ffree=0), and dephosphorylated/inactive p53. Accordingly, 

the repair phase is represented by active p53 helper state, high p21 (CDKITotal), and cell cycle 

re-entry (marked by hyper-phosphorylated Rb) whereas, apoptotic state is represented by p53 

killer state, intermediate p21 (CDKITotal) and cell cycle re-entry (marked by hyper-

phosphorylated Rb). 

  

Figure 4.7: An alternate route to cell cycle re-entry via Rb hyper-phosphorylation and APC/C-Cdh1 

inactivation (a) Temporal dynamics of state variables is shown in the presence of Aβ by setting its level 

(marked by arrow) to 0.1 from zero at t=500. p25-Cdk5 hyperactivity relieves both Rb and APC/C-Cdh1 

barrier. (b) The bifurcation diagram showing the effect of Aβ on ROS accumulation. An irreversible 

transition to pathological state (oxidative stress) occurs with increase in Aβ level. (c) An increase in 

glutamate level by increasing ksglub (glutamate excitotoxicity) also shows the irreversible transition to 

pathological state (oxidative stress).  Solid lines represent stable steady states, while dashed line 

represents unstable steady state. (d) Blocking the individual feedback loops (red: Gls KO, ksgls=0; blue: 

CycB KO, kscycb=0=kscyc) turned on by APC/C-Cdh1 inactivation leads to a drop in the magnitude of 

oxidative stress and makes the transitions to pathological state reversible. Inhibition of p25-Cdk5 activity 

(green: ksp25=0) or termination of the downstream feedbacks (cyan: ksgls=0 AND kscycb=0=kscyc) rescue the 

transition to pathological state. SN1 and SN2 represent the saddle nodes corresponding to APC/C-Cdh1 

inactivation and activation, respectively. a.u. represents arbitrary units. 
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 Table 4.2: Summary of experimental data used to develop the framework of module 2. 

Cell line Stimulus Rescue 
Cell cycle entry 

(Approx.) 

Apoptosis 

(Approx.) 
Reference 

Primary 

cortical 

neuron 

(Rat) 

Glutamate 

excitotoxicity 

---------------- ---------------- Yes 

[288] 

Cyclin B1 inhibition ---------------- No 

CDK inhibition ---------------- No 

Cyc B1 expression 

---------------- ---------------- Yes 

CDK inhibition ---------------- No 

Phospho-defective 

Bcl-xL expression 
---------------- No 

Phospho-mimetic 

Bcl-xL expression 
---------------- Yes 

Primary 

cortical 

neuron 

(Rat) 

Glutamate 

excitotoxicity 

-------------------- Yes Yes 

[254] 

p27 expression No ------------ 

Cyclin B1 inhibition No ------------ 

Phospho-mimetic 

Cdh1 (inactive) 
Yes Yes 

Phospho-defective 

Cdh1 (active) 
No No 

Cdk5 inhibition No No 

Primary 

cortical 

neuron 

(Rat) 

Soluble Aβ1-42 

oligomer 

--------------------- Yes 

[283] 

Glutaminase inhibitor No 

Glutamate 
--------------------- Yes 

Glutaminase inhibitor No 

APC/C-Cdh1 

inhibitor 

--------------------- Yes 

Glutaminase inhibitor No 

Primary 

cortical 

neuron 

(Rat) 

APC/C-Cdh1 

inhibitor 

---------------------- --------------- Yes 

[284] 

Cyc B1 inhibition --------------- No 

Pfkfb3 inhibition --------------- No 

Cyc B1 + Pfkfb3 

inhibition 
--------------- No 

Pfkfb3 expression 
---------------------- --------------- Yes 

Glutathione --------------- No 

Analogous to mitogen, DNA damage induces the nuclear activity of CycD-Cdk4/6. 

DNA damage also increases the half-life of E2F by bringing down the degradation rate. 

However, DNA damage simultaneously induces the expression of p53 helper and its 

downstream target p21. At a lower extent of DNA damage, the cells remain arrested since the 

CDKI barrier exceeds total Cdk activity despite an increase in CycD-Cdk4/6, and E2F levels 

do not exceed the Rb level. At an intermediate level of DNA damage (Figure 4.8a), Rb is 

hyper-phosphorylated (Figure 4.8a), and E2F attains a higher steady state value since DNA 

damage-induced rise in CycD-Cdk4/6 helps cyclins (CycDTotal + CycETotal) overcome the 
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CDKI barrier (CDKITotal). Thus, the relative abundance of activators and inhibitors (cyclins 

and CDKI; E2F and Rb) determines the cellular state. A higher level of DNA damage (Figure 

4.8b) leads to the accumulation of p53 killer (p53killer) that, together with E2F, can induce the 

expression of apoptotic proteins. The DNA damage dependent module dynamics captures the 

observations compiled in Table 4.3 [297, 303, 323, 324]. 

Table 4.3: Summary of experimental data used to develop the framework of module 3. 

Cell line Stimulus Rescue 
Cell cycle entry 

(Approx.) 

Apoptosis 

(Approx.) 
Reference 

Primary cortical 

neuron (Mice) 

Camptothecin ----------------- Yes Yes [303] 

 E2F1 transfection ----------------- Yes Yes 

SH-SY5Y cells 
H2O2 ----------------- ------------ Yes 

[297] 
H2O2 E2F inhibitor ------------ Yes 

U2OS cells 

E2F1 transfection 

(low) 
----------------- Yes ------------- 

[324] 
E2F1 transfection 

(medium) 
----------------- 

Yes (and DNA 

repair) 
------------- 

E2F1 transfection 

(high) 
----------------- Yes Yes 

Primary 

hippocampal 

neurons (Mice) 

CycE-Cdk2 

transfection 
----------------- Yes Yes 

[323] 
CycE-Cdk2 

transfection 

p53DN 

(dominant 

negative) 

Yes No 

Bifurcation analysis with respect to variation in the level of DNA damage shows a 

separation of thresholds for Rb inactivation by hyper-phosphorylation (E2F activation) 

(Figure 4.8c) and p53 killer activation (Figure 4.8d). Rb gets inactivated at a lower threshold, 

while p53 killer gets activated at a higher threshold level of DNA damage. At an intermediate 

level between the two thresholds, the activation of E2F may indicate its functional role in 

DNA repair, as shown in Figure 4.9a [324]. The activation of E2F is irreversible with respect 

to DNA damage (Figure 4.8c) due to the feedback loop regulation involving Rb and E2F (Rb 

--| E2F → CycE-Cdk2 --| Rb). This suggests that once neurons commit to cell cycle re-entry, 

then there is no point-of-return and may undergo polyploidization [325]. p53 killer activation 

shows bistable activation at a higher level of DNA damage (Figure 4.8d). The activation of 

p53 killer depends on the activation of the positive feedback loop via p53DINP1, which 

promotes the conversion between p53 helper to killer. p53DINP1 levels begin to rise initially 

due to the rise in E2F levels, which, together with p53 killer, amplifies its levels further. 
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Since E2F levels required to activate cell cycle genes differ from the activation of pro-

apoptotic genes, the two bistable switches are separated, creating two different thresholds 

(Figure 4.8c, Figure 4.8d). This emergent dynamics delays the activation of apoptosis genes 

until DNA damage accumulates in neurons to higher levels. 

 
Figure 4.8: Cell cycle re-entry via DNA damage dependent E2F activation (a) Temporal dynamics of state 

variables is shown by setting the DNA damage to intermediate level (0.5 a.u.) from zero at t=500 (marked 

by arrow). (b) Temporal dynamics of state variables is shown for higher level of DNA damage (2.5 a.u.) at 

t=500 (marked by arrow). (c) The bifurcation diagram showing the bistable activation of E2F for lower 

values of DNA damage (shown in semi-log scale for better resolution). (d) Bistable activation of p53killer 

for higher values of DNA damage. Solid lines represent stable steady states, while dashed line represents 

unstable steady state. SNs represent saddle node corresponding to E2F and p53 killer 

activation/inactivation. a.u. represents arbitrary units.  
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An increase in E2F stabilization by DNA damage (fac2) shifts the saddle nodes of p53 

killer activation to lower DNA damage levels reducing the delay in activation of apoptosis 

(Figure 4.9b). Thus, the graded increase in E2F levels in neurons controls the cell fate 

decision [324]. 

 

Figure 4.9: (a) The bifurcation diagram showing the variation in E2F levels for lower and higher DNA 

damage levels.  E2F levels corresponding to an intermediate level of DNA damage (above SN1 but below 

SN3) may play a role in DNA repair. SN1 and SN3 correspond to DNA damage threshold for E2F and 

p53 killer activation, respectively. (b) The two-parameter bifurcation analysis showing the effect of 

altering the stability of E2F (fac2) on the DNA damage threshold for p53 killer activation (SN3) and 

inactivation (SN4). 

4.4.4 Sensitivity of models to parametric variation  

We presented a set of models that draw an integrated picture across various 

experimental observations. The set of parameters used in this study is one such example that 

describes the physiological and pathological phenotypes. Thus, we tested our choice of 

parameters by evaluating the model sensitivity after varying each parameter in a ±10% range. 

We quantified alteration in the bifurcation diagram by computing the fold change in threshold 

value (location of saddle node) with variation in the parameter values for each module 

(Figure 4.10– Figure 4.12). 132 out of the 136 total parameters tested from the three modules 

showed less than two-fold change in threshold value. Four parameters viz CKIT (p27Total), 

Cdk5T (Cdk5Total), kierk, and kaerk (ERK inactivation and activation rate) that directly control 

the competition between p35 and CycD in module 1 show more than two-fold change in 

threshold values in both directions on parameter variation. The irreversible characteristic of 
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the transition from normal to pathological state is preserved for all parameters under these 

perturbations in module 2 and module 3.  

 

Figure 4.10: Parameter sensitivity analysis for module 1. The bars represent the fold change in saddle 

node values for change in parameter (increase or decrease) from default values (fold change = 

SN(new)/SN(default)). Fold change in SN1 with increase (blue) and decrease (orange) in parameter values 

and fold change in SN2 with increase (grey) and decrease (yellow) in parameter values are shown.   

4.4.5 Expression profile of cell cycle and redox regulators in the AD brain 

and transgenic mouse model of AD 

The experimental data used in this study mostly represent characteristics of different 

neuronal cell lines. Therefore, we also analyzed clinical data emerging from AD patients. We 

studied the transcriptional changes associated with the model outcome in the hippocampus 

and entorhinal cortex (EC) regions of the AD brain. The beginning of memory loss and 

cognitive dysfunction are linked to neurodegeneration in EC and hippocampus [326–329]. 

The eigengene expression profile [186] of cell cycle genes under the transcriptional control of 

E2F shows a positive correlation with AD compared to normal samples in the EC and 

hippocampal regions (Table 4.4). Further, we analyzed the expression pattern of p53 

activated pro-apoptotic genes such as Noxa,  Bax,  p53,  p73,  p53DINP1,  Apaf1,  Casp6, 

p21, and Mdm2 [27]. The eigengene expression profile of these genes also shows a positive 
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correlation with the disease state (Table 4.4). Additionally, E2F and p53 transcriptional 

dysregulation is observed in the transgenic mouse model of AD (rTg4510) (Table 4.4). 

 

Figure 4.11: Parameter sensitivity analysis for module 2. The bars represent the fold change in saddle 

node values for change in parameter (increase or decrease) from default values (fold change = 

SN(new)/SN(default)). Fold change in SN1 with increase (blue) and decrease (orange) in parameter values 

are shown. 
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Figure 4.12: Parameter sensitivity analysis for module 3. The bars represent the fold change in saddle 

node values for change in parameter (increase or decrease) from default values (fold change = SN 

(new)/SN (default)). SN1: increase (blue) and decrease (orange); SN3: increase (light blue) and decrease 

(green); and SN4: increase (navy blue) and decrease (brown). 
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These findings are consistent with immunoblotting observations showing the activation of 

p53 in the AD brain [330, 331].  p53 is also activated in the Tg2576 transgenic mouse model 

of AD and with soluble Aβ treatment [332]. p53 expression in neurons is accompanied by 

DNA fragmentation [333]. Neurons from different brain regions of the 3x-transgenic AD 

mice show colocalization of Rb hyperphosphorylation (E2F activation) with a tau pathology 

marker. Further, the appearance of Rb hyperphosphorylation precedes the appearance of the 

tau pathology markers in the hippocampus of the AD brain [334].  Loss of APC/C-Cdh1 

function disturbs the balance between pro-oxidants and antioxidants leading to perturbation 

of redox homeostasis and oxidative stress. Analysis of eigen gene expression profile with 

genes involved in redox metabolism shows a significant dysregulation (Table 4.4). Most of 

the AD brain datasets from EC and hippocampus show a negative correlation with the 

pathological state. However, we also found evidence for a positive correlation with redox 

metabolism genes in the rTg4510 transgenic mouse model of AD and in one of the AD brain 

datasets from the EC region (Table 4.4). The upregulation of redox metabolism may result 

from a stress-responsive compensatory mechanism. NFT performs an alternative function via 

induction of a secondary neuroprotective mechanism [335–338]. The expression pattern of 

genes controlled by E2F, p53, and redox metabolism genes is in accordance with the different 

states captured by our models. Upregulation of E2F and p53 target genes in AD point towards 

probable apoptosis signaling whereas, downregulation of redox metabolism gene suggests 

oxidative stress. The clinical data analysis provides supporting evidence in patients and 

confirms these as relevant role players in AD pathogenesis. 

4.4.6 Neurodegeneration versus cancer 

 Dysregulation of the cell cycle marks the pathological state of both AD and cancers, 

but neurons die while attempting to divide, whereas cancer cells continue to divide 

uncontrollably [339]. Similar to the expression analysis in AD, we studied eigengene 

expression of p53 activated genes and redox metabolism genes in glioblastoma multiforme 

(GBM) to understand the underlying molecular difference [317, 340]. GSC derived from 

primary tumors contrasted strikingly from their progenitor NSC in the expression of p53 

activated genes (Table 4.4). Unlike AD, p53 target genes showed significant downregulation 

in GBM. p53 gene mutations are frequently observed in different cancers [225, 341]. Redox 

metabolism genes too showed heterogeneity across two GBM groups. The group with 
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classical, proliferative features showed upregulation (Pearson Correlation: 0.905; p-value: 

1.5e-06), whereas the second group with mesenchymal features exhibited downregulation of 

redox metabolism (Pearson Correlation: -0.669; p-value: 0.009). These differences attribute 

to differences in metabolic reprogramming among the subgroups [342]. 

Table 4.4: Cell cycle and redox metabolism gene expression pattern in AD and GBM. Pearson correlation 

coefficient and corresponding Student asymptotic p value for eigen gene expression profile with disease is 

given, *represents correlation of expression profile between wild type and transgenic mice, #represents 

correlation of expression profile with transgenic mice age. 

Disease Region/Group Gene set 
Pearson correlation 

coefficient 
p-value 

Identifier 

AD 

Hippocampus 

E2F target 0.306 2.4e-4 GSE28146, 
GSE29378, 
GSE36980, 

GSE48350, GSE5281 

p53 target 0.381 3.4e-6 

Redox metabolism -0.359 1.3e-5 

Entorhinal 
cortex 

E2F target 0.367 9.6e-4 GSE26927, 
GSE26972, 

GSE48350, GSE5281 
p53 target 0.35 1.7e-3 

Redox metabolism -0.404 2.5e-4 

Hippocampus 

E2F target 0.459 9.4e-3  
GSE1297 p53 target 0.518 2.8e-3 

Redox metabolism -0.517 2.9e-3 

Entorhinal 
cortex 

E2F target 0.718 9.3e-17  
GSE118553 p53 target 0.742 2.2e-18 

Redox metabolism 0.465 1.5e-6 

Transgenic 
mouse model 

of AD 

Entorhinal 
cortex 

E2F target 0.372* 3.7e-3*  
 
 

GSE125957 

p53 target 0.548* 7.0e-6* 

Redox metabolism 0.533* 1.4e-5* 

E2F target 0.731# 6.6e-6# 

p53 target 0.865# 1.4e-9# 

Redox metabolism 0.789# 3.8e-7# 

GBM 

Group 1 
p53 target -0.823 9.2e-5  

 
GSE119834 

Redox metabolism 0.905  1.5e-06 

Group 2 
p53 target -0.941 5.6e-7 

Redox metabolism -0.669 0.009 

4.5 Discussion 

Cell division plays an important role in tissue regeneration and development. 

However, unlike most of the other cell types, differentiated neurons are perceived to have 

entered a permanent postmitotic quiescent state. In AD, neurons undergo atrophy, and this 

loss is often associated with cell cycle re-activation. We studied the different routes to cell 

cycle re-entry in postmitotic neurons. The emergent properties of cell cycle control networks 
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were analyzed using a mathematical modeling approach. We showed how multiple feedback 

loops combine to make the transition from normal to pathological state irreversible and 

explored the effect of different perturbations that provide insights into drug targeting 

strategies. 

The first network module focused on Aβ induced positive feedback between ERK and 

CycD, which promotes a switch-like activation of ERK activity in neurons. We speculated 

that Aβ induces dissociation of p35-Cdk5-p27 nuclear complex and translocation of p27 leads 

to the activation of ERK by eliminating the competition between CycD and p35 for Cdk5. 

Further, in the resting neurons, the p35-Cdk5-p27 nuclear complex suppresses expression of 

proliferation promoting E2F1-DP1 target genes by competing with DP1 for E2F1 binding 

[318]. p27 also plays a role in stabilizing the CycD and Cdk4/6 interaction [21]. An increase 

in CycD accumulation with ERK activation can lead to an increase in CycD-Cdk4/6 activity, 

which influences the Rb-E2F switch by mono-phosphorylating Rb. CycD-Cdk4/6 derepresses 

genes under the control of RbL2/p130-E2F4 complex by phosphorylation. RbL2/p130-E2F4 

is known to suppress the pro-apoptotic gene B-Myb in healthy neurons [343]. This complex 

also participates in the formation of the DREAM complex, which suppresses MMB-FOXM1 

target genes, including CycB [286]. In addition, ERK also controls cell cycle progression by 

regulating Cdk2 location and Cdk1 activity [269, 344, 345].  CycB-Cdk1 is known to trigger 

phosphorylation of pro-apoptotic proteins BAD and FOXO1. In the absence of Akt signaling, 

CycB-Cdk1 dependent phosphorylation relieves the inhibition of these proteins by scaffold 

protein 14-3-3, leading to apoptosis in neurons [346–349]. Interestingly, Aβ is also known to 

inhibit Akt activity [350, 351]. 

An alternate route to CRNA centered around APC/C-Cdh1 inactivation mediated by 

Aβ-dependent Ca2+ dysregulation and oxidative stress. We showed an irreversible transition 

to a high ROS state at higher levels of Aβ due to the multiple feedback regulations of APC/C-

Cdh1. The irreversible transition also suggests that decreasing Aβ alone may not have the 

desired effect. We modeled inhibition of Gls1 and/or CycB that helps to reduce the levels of 

ROS, resulting in rescue. We observed glutaminase inhibitor completely abolishes the effect 

of APC/C-Cdh1 inhibitor but not of Aβ [283]. On the contrary, MEK inhibition appears to 

completely rescue CRNA induced by Aβ [273], which suggests crosstalk between these 

network modules and the ERK switch probably acts as an initiator module for apoptosis. We 
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proposed a scenario of how these two modules can crosstalk via Cdk5 regulation. The 

autophosphorylation of p35-Cdk5 protects it from calpain protease activity, but Aβ dependent 

rise in the CycD-Cdk5-p27 complex dissociates the p35-Cdk5 complex and makes p35 more 

susceptible to cleavage [266, 352]. Hence, CycD induction reduces p35  and Cdk5 

association (module 1) and helps in Ca2+  dependent generation of p25, which binds Cdk5 

strongly compared to CycD [273]. Subsequently, p25-Cdk5 inhibits APC/C-Cdh1 (module 2) 

and also phosphorylates substrates nuclear lamin, anti-apoptotic protein Mcl-1, and 

cytoskeletal proteins that can promote a transition to the apoptotic state [259, 353]. These 

mechanisms suggest that cell cycle re-entry may activate multiple routes to apoptosis. 

However, Aβ induced cell cycle re-entry also protects some proportion of neurons from 

apoptosis [354]. This indicates that cell fate decisions may be influenced by the heterogeneity 

in the stress levels (oxidative stress and DNA damage) experienced by individual neurons.  

The third passage to CRNA focused on DNA damage mediated CycD induction and 

E2F stabilization. Neurons make an irreversible commitment to the cell cycle with an 

increase in the level of E2F. This may play a role in DNA repair [295] and  polyploidization 

[325] that protects them from cell death under DNA damage and oxidative stress. A further 

increase in E2F level in a graded manner with an increase in DNA damage may lead to pro-

apoptotic gene expression in cooperation with p53 [322, 324]. We showed that the different 

thresholds for activation of DNA repair and apoptosis emerge by combining two bistable 

switches. The extent of DNA damage can exceed repair threshold if ROS (as observed with 

module 2) levels rise, which can induce oxidative DNA damage. 

In chapter 2, we captured the dynamics of how stress signals like oxidative stress and 

DNA damage induced transition back to quiescence after crossing the restriction point and 

before the G1/S boundary in mammary epithelial cell cycle model [306]. In contrast, we 

observed a scenario of how stress signals drive cell cycle re-entry in neurons. We attribute 

this difference to the defense mechanism in neurons against DNA damage since the levels of 

repair proteins are very low in the mature neuron state [296, 355]. This view differs from the 

recently proposed “cell cycle inertia” driven mechanism for the G1/S transition in the 

presence of stress signals close to the G1/S boundary in mammary epithelial cells. Here, cells 

commit to S-phase due to an inertia from rising Cdk2 activity with a slower accumulation of 

CDKI [356].  
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The work presented here investigated the network modules that set off CRNA and 

studied the role of different feedback loops in pushing the system into an irrevocable 

pathological state. The mathematical models were developed to simulate the multiple 

scenarios for cell cycle re-entry with a minimal number of state variables. Hence, it does not 

account for all the Aβ induced effects in neurons and amplification in Aβ levels due to 

feedback loop regulation [239]. Aβ amplifying loops may help to cross the threshold (saddle 

node) for an irreversible transition to the pathological state. Nevertheless, the pre-clinical 

phase of AD is characterized by neurons entering the cell cycle. The irreversible nature of 

AD points towards the need for understanding the disease progression mechanism in greater 

detail. The failure of therapeutic measures at various phases of clinical trials reflects mere 

removal of the causative agent is not sufficient for efficient treatment. We showed the 

convergence of cell cycle re-entry onto the activation of self-amplifying positive feedback 

loops, and shutting off feedback signals may serve as an efficient disease-modifying therapy. 

We also proposed mechanisms through which crosstalk between different routes to CRNA 

may take place and compared the scenario with cell cycle progression in other mammalian 

cells. 
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Chapter 5  MODELING T-CELL ACTIVATION AND 

CLONAL EXPANSION IN ADAPTIVE 

IMMUNE RESPONSE 

5.1 Introduction 

The immune system comprises several types of cells and chemical signals that 

collectively defend a host from foreign invaders such as viruses, microbes, toxins, and cancer 

cells [357]. The immune response is classified into two categories, viz innate and adaptive 

response. The innate immunity elicits a nonspecific defense mechanism that distinguishes 

foreign agent, but is independent of its nature and source. It acts within a few hours of 

encountering an invasion. However, it doesn’t create any memory to facilitate immunity for 

future exposure. On the contrary, the adaptive immune response is specific to the foreign 

agent or antigen. This antigen dependent process culminates in the memorization of infection 

history. The memory of an earlier encounter equips the host for a rapid and efficient response 

in the future. The innate immune responses evoke adaptive immunity, and they work together 

to get rid of the pathogens [358, 359]. 

T cells are a crucial constituent of the adaptive defense mechanism. They develop 

from the hematopoietic stem cells in the bone marrow and migrate to mature in the thymus. T 

cells present antigen-binding receptors called the T-cell receptor (TCR) on their membrane; 

every T cell expresses TCR of a unique type. Hence, a large repertoire of T cells that present 

a wide array of TCR forms the basis of antigen-specific adaptive immunity. T cells recognize 

antigens that are presented on the surface of antigen presenting cells (APC) by major 

histocompatibility proteins (MHC). MHC protein flags fragments of phagocytosed foreign 

proteins, microbes, or antigens when a cell gets infected with some intracellular pathogen. 

Post maturation in the thymus, the progenitor T cells further differentiate and undergo several 

divisions to become lineage restricted based on the MHC coreceptor CD4 or CD8 expression. 

These naïve CD4+ and CD8+ T cells remain in a dormant state, predominately localized 

within the lymph nodes until an antigen encounter. Once activated, T cells pass through a 
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major expansion phase where they rapidly proliferate to clear the infection. The proliferating 

cells differentiate to execute specific functions. While most of the effector cells undergo the 

contraction phase after the clearance of infection, some cells differentiate to create a memory 

of the infection [358, 360, 361]. Nevertheless, cell proliferation forms the ground for adaptive 

immunity, and its dysregulation can lead to immunodeficiency or autoimmunity.  

Naïve T cells exit quiescence on antigenic stimulation in a manner analogous to 

growth factor signaling of MCF10A cells described in chapter 2. However, T cells spend 

significantly more time in the G1 phase preparing to divide [362]. Though even genetically 

identical cells show asynchronous behavior, most non-immune quiescent cells from multiple 

cell lines commit to division and enter S-phase within 8-16hrs [125]. On the contrary, T cells 

take about 24-30hrs to commit and enter the S phase for the first round of division [362]. G0 

exit to G1/S transition in naïve CD4+ T cells require 25-30hrs, but naïve CD8+ T cells show 

variability and may commit faster than CD4+ in the presence of stronger antigen stimulus 

[363]. In the continuous presence of growth factors, mammalian cells continue to cycle. 

These cells can overcome growth factor requirement and cross the restriction point (mitogen 

sensitive checkpoint) in the G2 phase of the earlier cycle, causing a short G1 phase [122, 127, 

134]. The next cycle has an accelerated S-phase entry within 4-8hrs [125]. T cells, on the 

other hand, complete subsequent divisions once every 4hrs and drive rapid clonal expansion 

by curtailing the gap phases and multiplying several times [362, 364]. Further, evaluation of 

mitogen requirement in different cell lines reports that the continuous presence of growth 

factor can be substituted with two pulses of growth factor stimulation [29, 365, 366]. Despite 

continuous stimulation of growth factors, their downstream effectors such as ERK and 

PI3K/Akt manifest dynamic activation profiles in two waves form [29, 136, 367–370]. The 

first wave turns on both proliferative and antiproliferative signals triggered by p53 signaling. 

The second phase of activation suppresses the antiproliferative signal and is dispensable in 

p53 null mutants [29] (Figure 5.1). Whether such control of restriction point exists in T cells 

or not is unclear. Analogous to growth factors, antigen also triggers an immediate 

antiproliferative response in T cells involving activation of p53 [371, 372]. Antigen priming 

of TCR for 24hrs is required to activate T cells for proliferation. These cells undergo 

expansion driven by cytokine (Interleukin-2/IL-2) signaling [373–375]. Naïve T cells do not 

express IL-2 receptor (IL2R) alpha subunit (CD25), leading to the formation of dimeric IL2R  
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Figure 5.1: Mitogen signaling (marked by ↓) turns on both proliferative and antiproliferative signal. The 

continuous presence of mitogen can be substituted with mitogen pulses since the downstream effector 

shows biphasic activation. 
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complex with an intermediate ligand affinity. TCR signaling induces NFAT, Nf-κB, and AP-

1 driven transcription of IL-2 and IL2Rα [362, 376]. IL2Rα in complex with IL2Rβ and 

IL2Rγ gives rise to high affinity cytokine signaling [377]. Though TCR stimulation alone 

activates proliferation, lack of IL-2 signaling results in suboptimal clonal expansion and 

slower cell cycle progression [362]. In addition to IL2Rα, naïve CD4+ T cells also express 

inadequate IL2Rβ. Therefore, exogenous addition of  IL2 can reduce the TCR signaling 

threshold in CD8+ but not in CD4+ T cells [378]. These observations highlight despite being 

derived from a common lineage; the naïve states are programmed differently. 

 The proliferation of activated T cells is preceded by the growth phase and 

characterized by major metabolic rewiring in which cell size increases about 3 to 4-fold. Myc 

functions as a critical transcription factor for the global metabolic reprogramming in 

activated, primary T lymphocytes [379]. Recent evidence highlights Myc deficient T cells fail 

to increase cell size substantially and do not proliferate on stimulation with an antigen of 

adequate strength. Mass spectrometry data shows that despite immune activation, expression 

of most but not all proteins is compromised in Myc knockout (KO) T cells as compared to the 

wild type cells [380]. These observations establish Myc as a global proteome modulator too. 

Myc is also known to control the “division destiny” of T cells proliferative response i.e., the 

number of times T cells would divide depends on the Myc level; division ceases when Myc 

drops below a threshold value [381]. Hence, the adaptive immune response is largely 

coordinated by the temporal activity profile of proto-oncoprotein Myc. The temporal profile 

of Myc coincides with two phase activation of ERK, PI3K/Akt (Figure 5.1) on growth factor 

signaling in various mammalian cell lines [29, 136, 382]. Its levels rise rapidly to peak 

around 2hrs, which then decreases to an intermediate value followed by another rise around 

6hrs before dropping to a low level. ERK phosphorylates Myc at Ser62, which protects Myc 

from degradation and increases its half-life. Myc S62 phosphorylation promotes its 

phosphorylation at Thr 58 by GSK3β. Dual phosphorylation of Myc makes it a substrate for 

Pin1 catalyzed cis to trans conformational change at S62-P63 peptide bond. PP2A 

phosphatase recognizes this substrate in trans conformation and dephosphorylates Myc at 

S62. T58 mono-phosphorylated Myc subsequently undergoes ubiquitinylation and 

proteasomal degradation. PI3K/Akt inactivates GSK3β by phosphorylation and has a positive 

effect on Myc levels [383]. ERK and PI3K/Akt activity also rapidly increase on antigen 
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stimulation of TCR and show transient behavior in T cells [372, 384–386]. Myc rapidly 

accumulates within the first 4hrs of TCR stimulation and continues to increase thereof, albeit 

at a slower rate. Although the qualitative features remain identical in both CD4+ and CD8+ T 

cells, Myc rises to significantly higher levels in CD8+ T cells [380, 381]. Myc and mTORC1 

signaling targets e.g., proteins involved in translation, ribosome, nucleotide synthesis, glucose 

metabolism, show a delayed induction but continue to accumulate between 8-16hrs. IL2 

signaling components IL-2, IL2Rα follow similar behavior [372]. This pathway is known to 

control PI3K/Akt activity. However, IL2 signaling is dispensable for activation and becomes 

critical during expansion [362]. Further, overall GSK3β activity is modulated by multiple 

inhibitory and activatory phosphorylation. Inhibitory phosphorylation of GSK3β goes down, 

whereas activatory phosphorylation goes up as an immediate response to TCR stimulation. 

Different experimental observations have studied the phosphorylation status of distinct 

residues that collectively suggest  GSK3β  kinase  activity  downregulates  between  12 - 24 

hrs  of  TCR stimulation [372, 386, 387]. These data show apparent differences between 

GSK3β kinase activity and Myc profile which may be explained by alternate mechanisms 

e.g., enhanced production and stabilization of Myc by other means [380, 388, 389]. Further, 

new findings report that unlike previously believed, neither Akt-mediated N-terminal 

phosphorylation of GSK3β completely inhibit its activity nor is it the only regulatory kinase 

for GSK3β [386]. Several other kinases, including mTOR targets p70 S6 kinase and p90 Rsk, 

negatively regulate GSK3β [387]. 

In this chapter, we modeled the quiescence to proliferation transition in the presence 

of antigen, which triggers both proliferative and antiproliferative responses. Myc serves as a 

central regulator of the network by controlling proliferative and antiproliferative signals to 

drive entry into the proliferation phase. We showed a feature of dynamic change in the 

threshold for quiescence exit in T cells. To gain further insights into how Myc levels are 

maintained for an extended duration during T cell activation, we also developed a detailed 

model of Myc regulation that integrates transcriptional, translational, and post-translational 

controls. We showed that positive feedback loop regulation of Myc helps to sustain Myc 

levels and meet the metabolic demand. Interruption of the positive feedback between Myc 

and amino acid import interferes with immune cell activation. Finally, we also extended the 
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study to explore the gene expression pattern of Myc and amino acid transporters in other 

rapidly proliferating cells like cancer. 

5.2 Model description 

5.2.1 Activation of naïve T cells on antigen recognition 

 Quiescent naïve T cells get activated on antigen recognition by TCR and commit to 

proliferation [390]. We explored the quiescence to proliferation transition model [306] in the 

context of T cells. The underlying network remains the same, with antigen serving as an input 

signal to the model. Antigen priming turns on a series of events analogous to growth factor 

signaling. Myc repression gets relieved, and synthesis is turned on [391–393], which in turn 

promotes transcription of cell cycle activators E2F and cyclins (CycD, CycE) [19, 131, 149, 

345]. CycD in complex with cyclin dependent kinases (Cdk4/6) monophosphorylates Rb 

(RbP), the stoichiometric inhibitor of E2F.  E2F autoregulates itself and drives CycE 

transcription. CycE-Cdk2 inactivates Rb by hyperphosphorylation (RbPP). Naïve T cells 

express a varying degree of Cdk inhibitor (CDKI) [362, 394], which forms complex with 

Cyc-Cdk and inhibits its activity. APC/C-Cdh1 also maintains the G1 state by degradation of 

cyclins and Skp2, which promote CDKI degradation [129, 130]. APC/C-Cdh1 and Emi1, 

another E2F target, control G1/S transition through mutual inhibition  [157] (Figure 5.2).  

 

Figure 5.2: The molecular mechanism controlling the cell cycle re-entry in the presence of antigen in T 

cells. 
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 Antigen recognition by TCR triggers an immediate antiproliferative response 

mediated by the expression of the p53 tumor suppressor [371, 372]. p21, a CDKI of the 

Cip/Kip protein family, is the transcriptional target of p53 [286]. Its accumulation at the G0 

exit and early G1 further increases the barrier against Cdk activity. However, TCR signaling 

also induces Mdm2 [371], which forms complex with p53 and facilitates its rapid degradation 

by CRL4 E3 ubiquitin ligase [395, 396]. Dcaf1, an essential substrate receptor of CRL4, is 

induced by antigen stimulation driven Myc accumulation (Figure 5.2) [397, 398]. Hence, 

antigen recognition by TCR turns on an incoherent feed forward loop that delays the 

commitment to proliferation. We integrated the antiproliferative mechanism with our 

quiescence to proliferation reversible transition model [306] to explore how the relative 

abundance of inhibitors and activators impact system dynamics.  

5.2.2 Myc protein stability model 

 Naïve T cells actively maintain the state of quiescence through repressive chromatin 

modifications or transcriptional repression of cell cycle activators [390–392]. Further, these 

cells are not dormant; they actively transcribe several genes and translate the transcripts to 

sustain the non-proliferative state. Additionally, maintenance of quiescence is supported by 

high rates of mRNA, protein turnover e.g., the transcription factor that actively retains the 

quiescent state and blocks proliferation has shorter half-life [390]. Although it works like a 

futile cycle, this helps to quickly respond to antigen stimulation. c-Myc mRNA and protein 

levels increase within 2-4hrs of TCR signaling [380, 381, 391]. The cycle of protein synthesis 

and degradation is complemented by autophagy in nutrient limiting conditions [399]. Naïve T 

cells perform autophagy at a basal level, and this activity increases in activated T cells [400]. 

We consider that autophagy is activated by TCR signaling (Figure 5.3), which provides 

amino acids for translation. Myc aids glucose and amino acid metabolism by driving the 

expression of their transporters (SLC2A1, SLC1A5, SLC7A5) [379, 380, 401]. The 

intracellular glutamine facilitates transport across obligate exchanger SLC7A5: efflux of 

glutamine is coupled to the influx of essential amino acids such as leucine, methionine [380, 

402, 403]. The nutrient transporters are collectively represented as SLC in the model that 

contributes to an increase in the intracellular amino acid pool (aāpool), and Myc drives its 

synthesis (Figure 5.3). The localization of the amino acid transporter also depends on TCR 

signaling [380, 402]. The model considers the concurrent activation of ERK and Akt with 
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TCR signaling that can protect Myc from degradation (Figure 5.4). Unphosphorylated and 

GSK3β phosphorylated (Thr58) forms of Myc are rapidly degraded compared to ERK (S62) 

phosphorylated form. 

 

Figure 5.3: Molecular network showing the incoherent feedforward loop regulated by Myc. Metabolites 

are represented by rectangles, proteins are denoted by yellow-colored ovals. Green arrows represent 

translational regulation, protein synthesis depletes and degradation generates aāpool. 

 The uptake of amino acids is also accompanied by their utilization in different 

pathways. The glutamine gets utilized in the hexosamine pathway in the presence of glucose 

and produces uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). This metabolite 

(represented as Met1 in the model) donates N-acetylglucosamine (GlcNAc) to Myc for 

glycosylation at Thr58 in the O-GlcNAc transferase (OGT) catalyzed reaction. OGT 

competes with GSK3β for post translational modification of Myc at 58 and protects Myc 

from ubiquitinylation followed by proteasomal degradation (Figure 5.4). 

 The continuous supply of amino acids supports the synthesis of proteins, including 

Myc. Thus, Myc dependent uptake of amino acids supports its own synthesis and 

stabilization, forming a positive feedback circuit. Blocking either SLC1A5 or SLC7A5 

reduces the Myc levels at 20-24hrs [380, 401, 402]. The diverse functions of glutamine make 

it a conditionally essential amino acid in activated T cells [404]. On the other hand, many of 
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the glutamine metabolism enzymes are also Myc targets (e.g., Gls) [379]. This forms a 

negative feedback loop since glutamine depletion leads to a decrease in Myc levels. 

 

Figure 5.4: Molecular network that regulates Myc accumulation. Blue colored rectangles with rounded 

corners represent inputs to the model, yellow-colored circles and ovals represent the underlying 

mechanism. Met1 in model and figure 5.3 represents UDP-GlcNAC. 

 We consider Gls as a representative of these enzymes which metabolize glutamine. 

Hence, Myc turns on an incoherent feed forward loop that promotes both increase and 

decrease in intracellular amino acid level by transport and utilization, respectively (Figure 

5.3). Most of the metabolites generated from glutamine are used for biosynthetic and 

bioenergetic needs and are collectively represented by state variable Met2 in the model. The 

model presented here explores how the different feedback loops cross talk to control the 

levels of Myc based on the recent experimental observations [29, 377, 380, 383, 388, 389, 

402]. Based on the available data compiled from several sources, we also hypothesize a 

temporal order for the Myc protective mechanisms [372, 386, 387].  

5.3 Methods 

The wiring diagrams presented above (Figure 5.2-5.4) were translated into a set of 

ordinary differential equations (ODE) and algebraic equations to describe the dynamics of 

naïve T cell activation on antigen priming and Myc accumulation on T cell activation. 
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The proposed quiescence-proliferation reversible transition model presented in 

chapter 2 [306] was extended to include TCR signaling dependent synthesis of Myc, p53 and 

Mdm2, p53 dependent synthesis of CDKI, and Myc dependent synthesis of Dcaf1. The 

synthesis and degradation of new components were modeled by the law of mass action, and 

the new parameters were optimized to capture the temporal characteristics of naïve T cells 

quiescence exit. One parameter bifurcation analysis was performed to study the effect of 

variation in parameter value on the activation threshold (strength of TCR signal). The 

sensitivity of the model towards new parameters was evaluated by measuring the fold change 

in activation threshold with a ±10% change in the values. We performed proteome data 

analysis to compare CD4+ and CD8+ T cells. Temporal data of naïve and activated T cells 

were taken from Howden et al. [394] to explore the shared and unique features of the two T 

cell subsets. We used average expression from biological replicates for naïve and activated 

(post-24hr) CD4+ and CD8+ T cells to compute the fold-change in the expression. The 

expression profile of individual proteins along with their standard deviation (σ) is given in 

figure S1 to S3 (APPENDIX C). 

Next, we considered an existing dynamic model of Myc in the presence of growth 

factor signaling and expanded it to include alternate mechanisms that support Myc 

accumulation on T cell activation in the presence of antigen [136]. Lee et al. modeled the post 

translational modifications of Myc by ERK and GSK3β that influence its stability. Myc 

phosphorylation was modeled as enzyme catalyzed reactions following Michaelis-Menten 

kinetics. The extended model also included Myc regulation at the transcription, translation, 

and post translation levels (Figure 5.3 and 5.4). The enzyme catalyzed reactions were 

similarly modeled as Michaelis-Menten kinetics. Other reactions like import, export, 

synthesis, and degradation were modeled by the law of mass action. Myc dependent synthesis 

of glutaminase (Gls) and amino acid transporter (SLC) were modeled as Hill functions. The 

model parameters used to describe Myc phosphorylation by ERK and GSK3β were taken 

from the earlier model [136]. The parameter values were tuned to match the dynamics of Myc 

accumulation on T cell activation in normal and mutant conditions. TCR was used as the 

input parameter to simulate antigen exposure. Additionally, ERK and PI3K activity that is 

regulated by TCR were also considered as an input to the system. The knockout 

(KO)/inhibition experiments for state variables were simulated by setting the synthesis rate to 
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zero. The, final steady state of Myc represents the model output. The sensitivity of the model 

with ± 10% change in parameter values was tested by computing fold change in Myc total 

levels (
𝑀𝑦𝑐𝑇𝑜𝑡𝑎𝑙 𝑛𝑒𝑤 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝑀𝑦𝑐𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑓𝑎𝑢𝑙𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
).  

The state variables represent relative concentrations of respective components. The 

rate constants (k) have a dimension of time-1, and Michaelis constants (J) and half-saturation 

constants are dimensionless. The set of equations was solved numerically with XPPAUT. The 

equations and parameter values are presented in the appendix section (APPENDIX C).  

The model presented here aimed to study the adaptive immune response mediated by 

T cells on antigen stimulation. We also tested if the Myc and amino acid transporter 

relationship described in our model holds true in other rapidly proliferating cells like tumors. 

Transcriptome data of the different cancer types (Table 3.1) were analyzed to understand the 

expression pattern of amino acid transporter in cancers and examine its association with 

cancer types showing frequent dysregulation around Myc proximal network [405].  

5.4 Results  

5.4.1 Antiproliferative response triggered by antigen recognition regulate 

T cell activation threshold 

 The simulation of the model in the presence of antigen shows that CDKI (CDKIT) 

initially increases and then decreases at the G1/S transition. The time required for cell cycle 

re-entry increases due to an increase in the barrier for Cdk activation (Figure 5.5a). This 

delay is reduced in the absence of an antiproliferative response mediated by p53 (Figure 

5.5b). In the absence of Dcaf1, the incoherent feed forward loop is broken, and the G1/S 

transition is blocked due to the high CDKI barrier (Figure 5.5c). One parameter bifurcation 

analysis shows an irreversible T cell activation with an increase in TCR signal strength. The 

saddle node (SN1) shifts to the right with an increase in the TCR dependent p53 synthesis 

(ksp53), transiently blocking cells in G1 (Figure 5.5d). SN1 denotes the TCR signal threshold 

required for commitment to the cell cycle (Rb hyperphosphorylation/ E2F activation). 

Elimination of p53 is required to reduce the threshold for cell cycle re-entry (shifting SN1 to 

the left). Withdrawal of antigen stimulus doesn’t switch the system back to the quiescent state 



 

100 

 

(low RBpp) after transition, leading to an irreversible commitment to the cell cycle. This 

picture assumes that nutrient availability is not rate limiting in the control of protein levels. 

 Further, the new set of parameters was also varied in a range of ±10% to study their 

effect on the activation threshold. We observed that the activation threshold shifted by less 

than 10% (Figure 5.6) with parametric variations. 

 
Figure 5.5: Antigen triggered temporal dynamics of naïve T cell activation (quiescence exit) (TCR = 1) (a) 

in the presence (ksp53=0.01) and (b) in the absence of antiproliferative signaling (ksp53=0); and (c) in the 

absence of Dcaf1 (ksp53=0.01, ksdcaf1=0). (d) Bifurcation analysis of Rb-E2F subsystem. The effect of 

increasing the TCR signal strength on Rb hyper-phosphorylation is shown for three different values of 

p53 synthesis rate (ksp53=0, 0.001, 0.002). The TCR signal strength required for Rb inactivation increases 

(shifts right) with increase in ksp53. Filled circle represents the stable steady state and empty circle 

represents the unstable steady state. 
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Figure 5.6: Parameter sensitivity analysis for T cell quiescence exit. The bars represent the fold change in 

saddle node values for change in parameter (increase or decrease) from default values (fold change = 

SN(new)/SN(default)). Fold change in SN1 with increase(blue) and decrease (orange) in parameter values 

are shown.   

5.4.2 Quiescent state is programmed differently in naïve CD4+ and CD8+ T 

cells 

 The model presented above represents a generic network scheme of naïve T cell 

activation in the adaptive immune response. We analyzed proteome data from the two subsets 

of T  cells,  i.e.,  CD4+  and  CD8+, to  compare their state of quiescence [394].  The average 

protein concentration of total CDKI (cumulated p15, p18, p19, p21, p27) was around 7.5-fold 

higher in CD8+ T cells compared to CD4+ (Figure 5.7a). Thus, CD8+ T cells appeared to have 

a higher CDKI barrier against quiescence exit. However, experiments suggest that CD8+ T 

cells exit  quiescence more rapidly than CD4+ T cells under identical conditions and achieved 

higher clonal expansion with a greater mean division number [406, 407]. Differences in the 

cellular response of CD8+ and CD4+ cells have been linked to IL2 signaling responsiveness 

[378, 408], but the impact of IL2 signaling becomes evident only after cell cycle entry [362, 

407, 409]. These observations motivated us to explore other possibilities that explain CD8+ 

versus CD4+ difference in timing. We observed from proteome data that CD8+ T cells not 

only express a higher CDKI barrier but also larger total cyclins when compared to CD4+ T 

cells. Despite elevated expression of cyclins, CD8+ cells still remain trapped in the quiescent 

state because of a sizable inhibitor to activator ratio (CD8+ T cells: 7.2 ± 2.4, CD4+ T cells: 

3.5 ± 1.4) (Figure 5.7a). The overall protein abundance suggests that naïve CD8+ T cells are 

translationally more active, but the high CDKI barrier halts them in quiescence. Accordingly, 
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we observed that Myc shows 4-fold higher induction in CD8+ T cells 24 hrs post activation 

(Figure 5.7b). It controls both arms of the cell cycle entry network (Figure 5.2); it suppresses 

the negative arm by Myc dependent accumulation of Dcaf1 and promotes the positive arm by 

transcription of cyclins [149, 397]. CD8+ T cells also accumulate p53 inhibitor Mdm2 at a 

comparatively faster rate (Figure 5.7b). These observations suggest that activated CD8+ T 

cells may rapidly overcome the CDKI barrier and enter into the proliferative state. We have 

shown earlier that the slope of Cdk2 activity determines the temporal dynamics of G1 phase 

events [306]. A steeper slope of cell cycle activators in CD8+ T cells would imply a reduction 

in time for APC/C-Cdh1 inactivation and G1/S transition overcoming CDKI barrier. The 

inhibitor ratio of CD8+ to CD4+ shows a rapid decrease (Figure 5.7b). Myc also aids rapid 

proteome remodeling of CD8+ T cells through maintenance of amino acid supply (Figure 

5.7b). The amino acids support T cell activation and proliferation by performing a multitude 

of tasks, e.g., meeting biosynthetic demand for macromolecule synthesis, mTORC1 

activation, etc. [380, 410]. 

 

Figure 5.7: Proteome data analysis of naïve and activated CD4+ and CD8+ T cells. (a) Naïve CD8+ T cells 

have higher concentration of cumulative CDKI and cyclins, high CDKI versus cyclins level promote 

quiescence in T cells. Error bars represent standard deviation across biological replicates. (b) Activated 

CD8+ T cells synthesize inhibitors of CDKI (Mdm2, Dcaf1) and amino acid transporters (SLC1A5, 

SLC7A5) rapidly than CD4+ T cells (24 hrs data).  

5.4.3 TCR priming drives rapid induction of Myc independent of amino 

acid transporter 

 Antigen recognition by TCR induces different downstream cascades; Myc is one of 

the early responders to this signal. In this model, we explored the plausible mechanisms that 

regulate Myc on TCR engagement. On antigen recognition by TCR, Myc rapidly accumulates 

within 2 to 3hrs and further gradually increases to reach a higher steady state value. TCR 
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rapidly promotes Myc synthesis by controlling its transcription and increasing the amino acid 

levels (Figure 5.8a).  Our model efficiently simulates the temporal profile of Myc activation 

in both CD4+ and CD8+ T cells. 

 Naïve T cells repress Myc by several independent mechanisms, which include a low 

level of promoter usage, a block to transcriptional elongation, and fast degradation of c-myc 

mRNA. Stimulation of naïve cells causes accumulation of mRNA within 2hrs. TCR priming 

activates protein kinase C and increases intracellular calcium. Intracellular calcium 

coordinates early rise in c-myc gene expression by increasing transcription initiation [391]. 

Moreover, antigen stimulation rapidly phosphorylates and drives degradation of FOXO1, the 

upstream regulator of Lung Kruppel like transcription factor (LKLF). LKLF is highly 

expressed in naïve T cells. It is an important player that programs and maintains the quiescent 

state by negatively regulating Myc expression [390, 392].  

 

Figure 5.8: Antigen triggered temporal dynamics of different forms of Myc (a) in the presence and (b) in 

the absence of amino acid transporter (ksslc=0). Different forms of Myc are colored on the basis of post 

translational modification; p represents phosphorylation, M represents glycosylation at sites Ser62 and/or 

Thr58.  

 

 The increasing bioenergetic and biosynthetic demand of T cells requires a continuous 

supply of nutrients. However, the early rise of Myc is found to be unperturbed in the absence 

of essential amino acid transporter [380, 401]. We model this experimental observation by 

considering that the early demand of monomer units for protein synthesis is satisfied by the 

intracellular pool. Figure 5.8b simulates the transporter knockout condition (ksslc=0). This 
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shows that continuous replenishment of amino acids becomes crucial to sustain Myc at the 

later stage (24hrs). 

 These observations are supported by the results showing an active proteolysis 

mechanism in T cells. T cells activation induces autophagy rapidly to support the biosynthetic 

demand of these cells [400]. Autophagy generates amino acids to fuel new protein synthesis 

as well as ATP to provide energy for peptide bond formation [399]. It becomes important, 

especially at the earlier time point prior to the transcription induced metabolic 

reprogramming of T cells.  

5.4.4 Temporal dynamics of Myc depends on post translational 

modification 

 Next, we studied the impact of posttranslational modification on the temporal profile 

of Myc. Although we observe that an increase in Myc synthesis rate with TCR signaling 

account for its rapid accumulation, this may also depend on the change in its stability due to 

posttranslational regulation. We observe that, similar to growth factor signaling [136], our 

model output is also modulated by the profile of ERK (Figure 5.9a). ERK brings down Myc 

degradation by S62 protective phosphorylation. Indeed, antigen recognition by TCR evokes 

ERK activity within minutes, and Myc level is significantly compromised in the presence of 

PD184352, a highly specific inhibitor of MEK, an upstream regulator of ERK [377]. 

 Additionally, Myc levels are also determined by PI3K-Akt activity in multiple cell 

lines. PI3K-Akt signaling axis protects ERK phosphorylated Myc from GSK3β inhibitory 

phosphorylation (Figure 5.1). However, in T cells, GSK3β activity does not decrease 

immediately with TCR signal compared to mitogen stimulation experiments [372, 386, 387]. 

We modeled an alternate mechanism that may account for Myc stability. This involves 

competition between OGT and GSK3β. OGT adds N-acetylglucosamine at Thr58 and masks 

Myc from phosphorylation at that site [388, 389]. We hypothesized glycosylation may protect 

Myc at an early time point when GSK3β activity is still high. The model simulation shows 

that in the absence of OGT, there is a reduction in Myc level by 6hrs (Figure 5.9b). It 

efficiently mimics experimental results of reduction in Myc level after 6hrs of antigen 

stimulation of naïve T cells in the presence of OGT inhibitor [388]. 
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5.4.5 Positive and negative feedback loop regulation of Myc 

 While glycosylation plays a role in Myc accumulation by protecting Myc from 

degradation, this may not be the sole mechanism since amino acid transporter is required for 

sustaining Myc levels [380]. This raises the question of why glycosylation alone can’t protect 

Myc or when and how the amino acid transporters become crucial for Myc. We hypothesized 

Myc turns on negative feedback loop(s) that evoke dependence on additional means to 

sustain the Myc levels. 

 

Figure 5.9: Antigen triggered temporal dynamics of different forms of Myc (a) in the absence of ERK 

activity (Erkmax=Erkresidual=0) and (b) in the absence of OGT activity (Vmax=Vmaxn=0). Different forms of 

Myc are colored on the basis of post translational modification; p represents phosphorylation, M 

represents glycosylation at sites Ser62 and/or Thr58. 

 Our simulation shows a gradual depletion of the amino acid pool with an increase in 

Myc levels in the absence of amino acid transporter (Figure 5.10). This is due to the presence 

of the negative feedback loop: aāpool → Myc -| aāpool. A fraction of glutamine channels 

through the hexosamine biosynthesis pathway, which uses glutamine as a substrate and 

generates N-acetylglucosamine as a product [379, 388], thereby reducing the intracellular 

amino acid pool. In addition to protection of Myc, glutamine supports the biosynthetic 

demand of proliferating T-cells by providing intermediate metabolites for the TCA cycle, 

nucleotides, other amino acids, lipid, polyamines, and anti-oxidant synthesis. Enzymes 

involved in glutamine metabolism are also the transcriptional targets of Myc. Gls is one such 
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enzyme that is a Myc target and catalyzes glutaminolysis. Other enzymes also show similar 

trait e.g., Cad, Ppat, Odc, Oat, Glud, Got, Pfkl, Pfkfb3, Aldoa, Gpi, Ldha [379]. Further, Myc 

being a central regulator of metabolic reprogramming and proteome remodeling drives large 

scale protein synthesis [379, 380]. Thus, the intracellular amino acid pool can decrease with 

Myc induced metabolic reprogramming.  Hence, the nutrient limiting state needs to be 

continuously replenished, and we show that this negative feedback loop is counter-acted by a 

positive feedback loop driven by Myc induced expression of essential amino acid transporters 

(Myc → SLC → aāpool → Myc). Thus, T cells under antigen stimulation are unable to meet 

an increase in high anabolic rate and protein synthesis on essential amino acid transporter KO 

or withdrawal of amino acid supply. External amino acid supply plays an important role in T-

cell activation (Figure 5.10). 

 

Figure 5.10: Temporal dynamics of intracellular amino acid pool on activation in wild type T cells (green) 

and in presence of transporter blocker (red, kimp=0).  Myc triggers negative feedback loops that deplete 

cells of amino acids. 

We also tested how the steady state value of Myc is affected by the alternate 

mechanism of Myc stabilization by varying corresponding parameter values in the range of 

±10% of their base value.  The steady state value of Myc changed by less than 10% with 

variation in parameter value (Figure 5.11). 
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Figure 5.11: Parameter sensitivity analysis for Myc protein stability model. The bars represent the fold 

change in steady state value of Myc for change in parameter (increase or decrease) from default values. 

Fold change with increase (blue) and decrease (orange) in parameter values are shown. 

5.4.6 SLC7A5 expression is altered in pan-cancer 

 We also explored whether the relationship between Myc and amino acid transporter is 

specific to T cells or is a generic scheme. We extended the model observations to tumor cells 
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since both proliferate fast and show convergent metabolic changes. Most of the 14 tumor 

types described earlier show upregulation of the SLC7A5 transporter. The sample wise fold 

change in expression of tumor versus matched normal samples (Table 3.1) show that 

SLC7A5 is upregulated in different cancers (Figure 5.12). We compared this transcriptome 

data analysis results with available information about the Myc proximal network 

dysregulation in TCGA tumor samples. Myc proximal network includes Myc itself, its related 

transcription factors, and its co-regulatory proteins that collectively form a single 

transcriptional module regulating the expression of Myc targets [405]. Upregulation of 

SLC7A5 (Figure 5.12), a Myc transcriptional target, is observed in the tumor types with the 

most frequent occurrence of alterations such as focal deletion of suppressors (MXDs, MNT, 

MGA), amplification of drivers (MYC paralogs, MAX, MLX), or mutations of network 

members in the Myc proximal network (Figure 5.13 [405]). 

 

 

Figure 5.12: Box and whisker plot representing sample wise distribution of SLC7A5 expression data for 

14 tumor types. As the values are log transformed to the base 2, four-fold change is measured as 2. The 

lower and upper whiskers represent minimum and maximum value respectively, circles represent 

outliers. Boundary of box represents first and third quartile range, mean is represented by ‘x’ and 

median by ‘—'. 
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Figure 5.13: Among the 14 tumor types studied in gene expression data analysis, LUSC and LUAD show 

the most frequent alteration in Myc proximal network. The LUSC and LUAD tumor samples also show 

high log2(fold change value) reported in figure 5.12 (figure reproduced from [405]). 

 

 Intriguingly, comparison of survival probability based on SLC7A5 expression shows 

better discrimination in tumor types where Myc proximal network mutation frequency isn’t 

high in population e.g., KIRC, KIRP. On the contrary, LUSC and LUAD do not show 

significant survival difference based on the expression of SLC7A5 (Figure 5.14). We 

attribute this observation to uniform upregulation of Myc and its target (Figure 5.13), thereby 

limiting its potential in disease prognosis. 

5.5 Discussion 

 The work presented here focuses on the transition of naïve T cells to the activated 

state. Naïve T cells remain quiescent until they are challenged by antigen priming [390]. An 

array of cell cycle inhibitors, e.g., Cip/Kip family CDKI operate to maintain quiescence 

[394]. 

  We studied the initial 24hrs of naïve T cell activation, which is known to be 

dependent on TCR priming [373]. As an early response to antigen recognition, T cells turn on 

an anti-proliferative response [371] that raises the CDKI barrier further and transiently blocks 
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the cells from immediately entering into a proliferative state by increasing the threshold for 

E2F activation. An immediate rise in inhibitors could be the cells’ mechanism to filter 

random noise in the form of transient stimulus from a meaningful, sustained biological signal. 

In case of adequate and persistent signal, the inhibitors would gradually be removed or 

overcome by the activators. Alternately, an initial rise in CDKI barrier may provide cells with 

sufficient time window to grow and prepare for multiple rounds of division, also termed 

clonal expansion. Myc expression is turned on within 2 hrs [391]. It drives extensive 

metabolic reprogramming of T cells and cell growth [379, 380]. Thus, an early transient 

arrest could be crucial for clonal expansion.  

 

Figure 5.14:  Survival analysis using SLC7A5 as a prognostic marker. Overall survival probability 

between low (black) and high expression group (red) for (a) KIRC (b) KIRP show significant difference 

(hazard ratio HR > 2, p value < 0.01); the high expression group has a lower survival probability. (c) 

LUSC and (d) LUAD don’t show significant difference in survival probability of the two groups (hazard 

ratio HR < 2, p value > 0.01). 

 We also observed that despite the higher CDKI barrier, the CD8+ T cells progress 

faster through the cell cycle. This picture differs from Kwon et al. (2017), who showed that 
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fibroblast cells move deeper into quiescence with increase in CDKI levels on extended 

periods of mitogen starvation or contact inhibition. These cells take longer to exit quiescence 

[135]. However, CD8+ T cells have higher ribosome and translational complex numbers 

compared to CD4+ T cells [394]. Our proteome data analysis suggests that the possession of 

greater biosynthetic capacity may help naïve CD8+ T cells to accumulate cell cycle proteins 

rapidly than naïve CD4+ T cells. Cell cycle activators serve as accelerators, and inhibitors 

operate as brakes; they collectively ensure that the CD8+ T cells maintain a quiescent but 

prepared state. On stimulation, these cells swiftly build up not only the activators but also 

“inhibitors of inhibitors” and rapidly get rid of the molecular brakes. A similar strategy has 

been proposed in earlier studies where an apparently futile cycle of protein synthesis and 

degradation forms the basis of a rapid response system. These cells are continuously “running 

to stand still” [390, 411]. We propose translationally active CD8+ T cells are programmed to 

be stuck in quiescence by keeping the inhibitor’s barrier up. The differences between 

response dynamics of T cells subsets could be an adaptation that supports their effector 

functions. CD8+ cells differentiate into antigen specific cytotoxic T cells [412, 413]. Antigen 

specificity, clubbed with the ability of rapid expansion, makes them ideal for providing 

immunity against numerous virulent viral invasion [407]. Moreover, CD8+ T cells vary based 

on specific antigen receptor presented on their surface, so only a subset of the starting naïve 

cell population proliferates on antigen recognition. This further necessitates the need for a 

rapid quiescence exit. On the other hand, CD4+ T cells activate nonspecific immune response. 

CD4+ T cells differentiate into TH1 or TH2 helper T cells that produce cytokines, e.g., 

interferon (INF) – γ, IL-4, etc. [414]. Although cytokine-mediated immunity is primarily 

beneficial, under certain conditions, it can cause hyperinflammatory response [408]. Hence, 

delayed activation of CD4+ T cells would impose a more stringent commitment to 

proliferation and ensure a balance between protective and proinflammatory function. 

Remarkably, along similar lines, extensive regulatory mechanisms are put in place to 

constrain the differentiation of CD4+ T cells into large numbers of effector cells [412, 415]. 

On the contrary, CD8+ T cells readily develop into effector cytotoxic T cells even after brief 

stimulation [412, 416, 417]. 

 Myc regulates proteome remodeling of T cells on TCR activation. Its knockout 

severely compromises overall growth and protein synthesis. The Myc stability model 
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explains the underlying principle involved in the rapid accumulation and maintenance of Myc 

levels with antigen stimulation. We show that Myc dependent metabolic adaptations create a 

situation of active accumulation and utilization (incoherent feedforward loop) of amino acids 

that are crucial for T cell activation. Myc facilitates its own transcription and translation by 

inducing amino acid uptake and ribosome machinery [379, 380, 401]. The imported amino 

acids provide the raw material for protein synthesis and also help in the activation of nutrient 

sensor mTORC1 (Met, Leu) [418, 419]. mTORC1 promotes protein translation by 

phosphorylating and activating translation factors [420, 421]. Further, glutamine also 

specifically controls the translation of Myc mRNA. Its 3’UTR region senses the 

unavailability of glutamine through metabolic intermediate and suppresses protein synthesis 

[422]. Myc also promotes the utilization of amino acids; therefore, an influx of amino acids 

plays a decisive role in T cell activation [379]. We show that a positive feedback loop 

between Myc and amino acid transporter is required to drive the sustained presence of Myc 

for T cell activation. Furthermore, Myc dampens the inhibitors that antigen stimulation sets 

off and drives proliferation.  

 In summary, we extended our quiescence-proliferation reversible transition model in 

the context of T cells to present a comprehensive picture of quiescence exit by including the 

dynamic regulation of CDKI barrier. We proposed a molecular basis for the differences in 

naïve CD4+ and CD8+ T cells activation. Further, we showed how multiple feedback loops 

function together in an ordered, non-redundant manner at the systems-level to maintain Myc 

levels in proliferating T cells. The Myc stability model incorporated the transcriptional, 

translational, and post-translational regulation of Myc controlled by antigen and amino acid 

metabolism. We also showed that cancer cells with frequent mutations around Myc proximal 

network also dysregulate essential amino acid transporters. Hence, the model presented here 

might also be a universal feature of Myc-induced tumors.  
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Chapter 6  CONCLUSION 

 The work presented in this thesis focused on mathematical modeling and analysis of 

the cell cycle regulation at a systems-level and exploring its crosstalk with metabolism and 

redox homeostasis. In the first part of the work, we studied the molecular basis of decision-

making points: reversible transition between quiescence to G1 and irreversible G1/S phase 

transition in normal mammalian cell lines. The model provided mechanistic insights into both 

mitogen and stress sensitive commitment points of the mammalian cell cycle and accounted 

for the recent experimental findings. The underlying principle of commitment points is 

irreversibility, which emerges due to positive feedback loops giving rise to bistable 

characteristics. Thus, the system maintains an activated/inactivated steady state despite the 

withdrawal of the stimulus. While the irreversibility at the restriction (R)-point is a 

consequence of double negative feedback loop between E2F and Rb (E2F → CycE -| Rb -| 

E2F), the G1/S commitment point becomes irreversible due to the novel double negative 

feedback between APC/C-Cdh1 and Emi1 (APC/C-Cdh1 -| Emi1 -| APC/C-Cdh1). We 

showed that the major G1-phase events are coupled via sequential activation of two bistable 

switches. The CycE-Cdk2 activity couples early (R-point) and late events of the G1 phase 

(APC/C-Cdh1 inactivation). The difference in inactivation threshold for Rb and APC/C-Cdh1 

phosphorylation by CycE-Cdk2 temporally segregates the two toggle switches. Thus, 

interlocking multiple bistable switches forms the basis for unidirectional progression through 

G1. The model has been included as a curated entry in the BioModels database [160, 161], 

and part of our model hypothesis is validated by experimental observations of an independent 

group [157]. 

 Extension of the normal cell cycle model to pathological context forms the basis of 

the next part of the work. Dysregulation of the decision-making points leads to proliferative 

diseases like cancers. The uncontrolled cellular division in cancer is supported by extensive 

metabolic reprogramming. We carried out transcriptome data analysis of different cancer 

types and found the metabolism of the RCC subtypes to be uniquely altered. Specifically, we 

observed metabolic divergence in KICH compared to other RCC subtypes. RCC subtypes can 

be broadly classified into three metabolic states viz oxidative, glycolytic, and hybrid. KICH, 
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the less aggressive form, showed oxidative phosphorylation phenotype, whereas the KIRC 

subtype mapped to the aerobic glycolysis state. KIRP, on the other hand, behaved 

heterogeneously, representing a hybrid phenotype with a subclass showing an aggressive 

phenotype like KIRC and another like chromophobe. We mapped these subtype-specific 

metabolic changes to the difference in the transcriptional regulation. The cell cycle 

transcription factors (E2F and FOXM1) [194] were identified as key regulators of 

metabolism, hinting at their cross talk. Network modules constructed based on co-expression 

profiles of genes aided the investigation of intragroup diversity. Unlike KIRC and KIRP, 

KICH showed uniform behavior across samples in most cases. Segregation of six KICH 

samples with respect to specific metabolic pathways facilitated recognition of metabolic 

divergence in an aggressive form of the disease. KICH being the less frequently studied 

subtype of RCC, our metabolic-network based study contributes to further understanding of 

cancer metabolism. 

 Another spectrum of cell cycle dysregulation is neurodegeneration. Loss of neurons in 

Alzheimer’s disease is also attributed to dysregulated proliferation [246]. The existing 

therapies for AD attempt to target the root cause but remain limited as a symptomatic therapy 

[228]. In this part of the thesis, we explored the systemic regulation and consequence of 

several cell cycle re-entry mediated self-amplifying feedback loops through mathematical 

modeling. The modeling showed that integration of multiple feedback loops leads to an 

irreversible transition from low to high ROS pathological state.  The in-silico perturbation 

experiments provide insights into drug targeting strategies. The transcriptional changes 

predicted by the model are consistent with transcriptome data from AD patients. We showed 

the emergence of different thresholds of E2F activation for DNA repair and apoptosis 

through coupling of multiple bistable switches, which emerges due to the double negative 

feedback loop regulation between Rb and E2F and positive feedback loop via p53DINP1. 

DNA damage controls E2F levels that maintain the balance between pro-survival and pro-

apoptotic fate. Our study also highlights the role of APC/C-Cdh1 in controlling the redox and 

metabolic state of differentiated neurons. Thus, G1/S bistable switch (APC/C-Cdh1On/Off) also 

applies in the context of neuroprotection and neurodegeneration. The framework presented 

here is the first theoretical attempt to mechanistically model the link between cell cycle re-

entry and neuronal apoptosis. 
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 In the last section of the thesis, we extended the quiescence to proliferation reversible 

transition model to simulate naïve T cell activation as part of the adaptive immune response. 

We also proposed the rationale behind the differences in CD8+ versus CD4+ T cells response. 

Since Myc resides at the junction of metabolism and cell cycle, a detailed mathematical 

model of Myc regulation was developed that explains the rapid activation and maintenance of 

its level during T cell activation. The model showed that the positive feedback loop 

regulation of Myc via amino acid uptake is required to sustain its levels during T cell 

activation. Such a regulation helps to counteract an increase in Myc-dependent metabolic 

reprogramming and growth, which leads to amino acid utilization.  

 Overall, the thesis attempted to generate novel mechanistic insights into the cell cycle 

control system (G0-G1/S) in different cellular contexts and in normal and disease conditions 

using systems biology and bioinformatic approaches. These serve as a useful hypothesis for 

further experiments. A coherent picture of cell cycle control was developed by bringing 

together vast literature that may help in improving the understanding of proliferative diseases 

and development of drug treatment strategies. 
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APPENDIX A 

Model details of quiescence to proliferation reversible transition 
𝑑[𝑀𝑦𝑐]

𝑑𝑡
 = 𝑘𝑠𝑚 ∗ [𝑆] −  𝑘𝑑𝑚 ∗ [𝑀𝑦𝑐] 1 

𝑑[𝐶𝑦𝑐𝐷𝑇]

𝑑𝑡
=  𝑘𝑠𝑐𝑦𝑐𝑑𝑚 ∗ [𝑀𝑦𝑐] +  𝑘𝑠𝑐𝑦𝑐𝑑𝑠 ∗ [𝑆] −  𝑘𝑑𝑐𝑦𝑐𝑑 ∗ [𝐶𝑦𝑐𝐷𝑇] 2 

𝑑[𝐶𝑦𝑐𝐸𝑇]

𝑑𝑡
=  𝑘𝑠𝑐𝑦𝑐𝑒𝑏 + 𝑘𝑠𝑐𝑦𝑐𝑒𝑚 ∗ [𝑀𝑦𝑐] +  𝑘𝑠𝑐𝑦𝑐𝑒 ∗

[𝐸2𝐹]

(𝑘𝑚𝑠 + [𝐸2𝐹])

− (𝑘𝑑𝑐𝑦𝑐𝑒 + 𝑘𝑑𝑐𝑦𝑐𝑒𝑎 ∗ [𝐶𝑦𝑐𝐴]) ∗ [𝐶𝑦𝑐𝐸𝑇] 
3 

𝑑[𝐶𝑦𝑐𝐴𝑇]

𝑑𝑡
=  𝑘𝑠𝑐𝑦𝑐𝑎 ∗

[𝐸2𝐹]

(𝑘𝑚𝑠𝑎 +  [𝐸2𝐹])
− (𝑘𝑑𝑐𝑦𝑐𝑎 + 𝑘𝑑𝑐𝑦𝑐𝑎𝑐 ∗ [𝐶𝑑ℎ1]) ∗ [𝐶𝑦𝑐𝐴𝑇] 4 

𝑑[𝐸2𝐹𝑇]

𝑑𝑡
=  𝑘𝑠𝑒2𝑓𝑏 + 𝑘𝑠𝑒2𝑓𝑚 ∗ [𝑀𝑦𝑐] + 𝑘𝑠𝑒2𝑓 ∗

[𝐸2𝐹]

(𝑘𝑚𝑒2𝑓 + [𝐸2𝐹])

− (𝑘𝑑𝑒2𝑓 + 𝑘𝑑𝑒2𝑓𝑎 ∗ [𝐶𝑦𝑐𝐴]) ∗ [𝐸2𝐹𝑇] 

5 

𝑑[𝐶𝑜𝑚𝑝1]

𝑑𝑡
=  𝑘𝑎𝑠1 ∗ [𝐸2𝐹] ∗ [𝑅𝑏] + 𝑘𝑟𝑏𝑑𝑝 ∗ [𝑃𝑃2𝐴] ∗

[𝐶𝑜𝑚𝑝2]

(𝑘𝑚𝑝𝑝 +  [𝐶𝑜𝑚𝑝2])
− 𝑘𝑑𝑖𝑠

∗ [𝐶𝑜𝑚𝑝1] −  𝑘𝑟𝑏𝑝 ∗ [𝐶𝑦𝑐𝐷] ∗
[𝐶𝑜𝑚𝑝1]

(𝑘𝑚𝑑 +  [𝐶𝑜𝑚𝑝1])
− 𝑘𝑟𝑏𝑝2

∗ ([𝐶𝑦𝑐𝐸] + [𝐶𝑦𝑐𝐴]) ∗
[𝐶𝑜𝑚𝑝1]

(𝑘𝑚𝑑2 + [𝐶𝑜𝑚𝑝1])
− (𝑘𝑑𝑒2𝑓 + 𝑘𝑑𝑒2𝑓𝑎 ∗ [𝐶𝑦𝑐𝐴])

∗ [𝐶𝑜𝑚𝑝1] 

6 

𝑑[𝐶𝑜𝑚𝑝2]

𝑑𝑡
=  𝑘𝑎𝑠1 ∗ [𝐸2𝐹] ∗ [𝑅𝑏𝑝] + 𝑘𝑟𝑏𝑝 ∗ [𝐶𝑦𝑐𝐷] ∗

[𝐶𝑜𝑚𝑝1]

(𝑘𝑚𝑑 +  [𝐶𝑜𝑚𝑝1])
−  𝑘𝑑𝑖𝑠

∗ [𝐶𝑜𝑚𝑝2] − 𝑘𝑟𝑏𝑑𝑝 ∗ [𝑃𝑃2𝐴] ∗
[𝐶𝑜𝑚𝑝2]

(𝑘𝑚𝑝𝑝 +  [𝐶𝑜𝑚𝑝2])
− 𝑘𝑟𝑏𝑝𝑝

∗ ([𝐶𝑦𝑐𝐸] + [𝐶𝑦𝑐𝐴]) ∗
[𝐶𝑜𝑚𝑝2]

(𝑘𝑚𝑒 + [𝐶𝑜𝑚𝑝2])
− (𝑘𝑑𝑒2𝑓 + 𝑘𝑑𝑒2𝑓𝑎 ∗ [𝐶𝑦𝑐𝐴])

∗ [𝐶𝑜𝑚𝑝2] 

7 

𝑑[𝑅𝑏𝑝]

𝑑𝑡
=  𝑘𝑟𝑏𝑝 ∗ [𝐶𝑦𝑐𝐷] ∗

[𝑅𝑏]

(𝑘𝑚𝑑 +  [𝑅𝑏])
+ 𝑘𝑑𝑖𝑠 ∗ [𝐶𝑜𝑚𝑝2] − 𝑘𝑎𝑠1 ∗ [𝐸2𝐹] ∗ [𝑅𝑏𝑝]

− 𝑘𝑟𝑏𝑑𝑝 ∗ [𝑃𝑃2𝐴] ∗
[𝑅𝑏𝑝]

(𝑘𝑚𝑝𝑝 +  [𝑅𝑏𝑝])
− 𝑘𝑟𝑏𝑝𝑝 ∗ ([𝐶𝑦𝑐𝐸] + [𝐶𝑦𝑐𝐴])

∗
[𝑅𝑏𝑝]

(𝑘𝑚𝑒 + [𝑅𝑏𝑝])
− (𝑘𝑑𝑒2𝑓 + 𝑘𝑑𝑒2𝑓𝑎 ∗ [𝐶𝑦𝑐𝐴]) ∗ [𝐶𝑜𝑚𝑝2] 

8 

𝑑[𝑅𝑏𝑝𝑝]

𝑑𝑡
=  𝑘𝑟𝑏𝑝𝑝 ∗ ([𝐶𝑦𝑐𝐸] + [𝐶𝑦𝑐𝐴]) ∗

[𝑅𝑏𝑝]

(𝑘𝑚𝑒 + [𝑅𝑏𝑝])
+ 𝑘𝑟𝑏𝑝𝑝 ∗ ([𝐶𝑦𝑐𝐸] + [𝐶𝑦𝑐𝐴])

∗
[𝐶𝑜𝑚𝑝2]

(𝑘𝑚𝑒 + [𝐶𝑜𝑚𝑝2])
+ 𝑘𝑟𝑏𝑝2 ∗ ([𝐶𝑦𝑐𝐸] + [𝐶𝑦𝑐𝐴]) ∗

[𝑅𝑏]

(𝑘𝑚𝑑2 + [𝑅𝑏])
+𝑘𝑟𝑏𝑝2

∗ ([𝐶𝑦𝑐𝐸] + [𝐶𝑦𝑐𝐴]) ∗
[𝐶𝑜𝑚𝑝1]

(𝑘𝑚𝑑2 + [𝐶𝑜𝑚𝑝1])
− 𝑘𝑟𝑏𝑑𝑝𝑝 ∗ [𝑃𝑃2𝐴]

∗
[𝑅𝑏𝑝𝑝]

(𝑘𝑚𝑝𝑝 +  [𝑅𝑏𝑝𝑝])
 

9 
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𝑑[𝐶𝑘𝑖𝑇]

𝑑𝑡
=  𝑘𝑠𝑐𝑘𝑖 − (𝑘𝑑𝑐𝑘𝑖 + 𝑘𝑑𝑐𝑘𝑖𝑐 ∗ ([𝐶𝑦𝑐𝐸] + [𝐶𝑦𝑐𝐴]) ∗ [𝑈𝑏𝑙]) ∗  [𝐶𝑘𝑖𝑇] 10 

𝑑[𝐶𝑦𝑐𝐸𝐶𝑘𝑖]

𝑑𝑡
=  𝑘𝑎𝑠𝑐𝑘𝑖 ∗ [𝐶𝑦𝑐𝐸] ∗ ([𝐶𝑘𝑖𝑇] − [𝐶𝑦𝑐𝐸𝐶𝑘𝑖] − [𝐶𝑦𝑐𝐷𝐶𝑘𝑖] − [𝐶𝑦𝑐𝐴𝐶𝑘𝑖])

− (𝑘𝑑𝑖𝑠𝑐𝑘𝑖 + 𝑘𝑑𝑐𝑦𝑐𝑒 + 𝑘𝑑𝑐𝑦𝑐𝑒𝑎 ∗ [𝐶𝑦𝑐𝐴] + 𝑘𝑑𝑐𝑘𝑖 + 𝑘𝑑𝑐𝑘𝑖𝑐

∗ ([𝐶𝑦𝑐𝐸] + [𝐶𝑦𝑐𝐴]) ∗ [𝑈𝑏𝑙]) ∗ [𝐶𝑦𝑐𝐸𝐶𝑘𝑖] 

11 

𝑑[𝐶𝑦𝑐𝐴𝐶𝑘𝑖]

𝑑𝑡
= 𝑘𝑎𝑠𝑐𝑘𝑖 ∗ [𝐶𝑦𝑐𝐴] ∗ ([𝐶𝑘𝑖𝑇] − [𝐶𝑦𝑐𝐸𝐶𝑘𝑖] − [𝐶𝑦𝑐𝐷𝐶𝑘𝑖] − [𝐶𝑦𝑐𝐴𝐶𝑘𝑖])

− (𝑘𝑑𝑖𝑠𝑐𝑘𝑖 + (𝑘𝑑𝑐𝑦𝑐𝑎 + 𝑘𝑑𝑐𝑦𝑐𝑎𝑐 ∗ [𝐶𝑑ℎ1]) + 𝑘𝑑𝑐𝑘𝑖 + 𝑘𝑑𝑐𝑘𝑖𝑐

∗ ([𝐶𝑦𝑐𝐸] + [𝐶𝑦𝑐𝐴]) ∗ [𝑈𝑏𝑙]) ∗ [𝐶𝑦𝑐𝐴𝐶𝑘𝑖] 

12 

𝑑[𝐶𝑦𝑐𝐷𝐶𝑘𝑖]

𝑑𝑡
=  𝑘𝑎𝑠𝑐𝑘𝑖 ∗ [𝐶𝑦𝑐𝐷] ∗ ([𝐶𝑘𝑖𝑇] − [𝐶𝑦𝑐𝐸𝐶𝑘𝑖] − [𝐶𝑦𝑐𝐷𝐶𝑘𝑖] − [𝐶𝑦𝑐𝐴𝐶𝑘𝑖])

− (𝑘𝑑𝑖𝑠𝑐𝑘𝑖 + 𝑘𝑑𝑐𝑦𝑐𝑑 + 𝑘𝑑𝑐𝑘𝑖 + 𝑘𝑑𝑐𝑘𝑖𝑐 ∗ ([𝐶𝑦𝑐𝐸] + [𝐶𝑦𝑐𝐴]) ∗ [𝑈𝑏𝑙])

∗ [𝐶𝑦𝑐𝐷𝐶𝑘𝑖] 

13 

𝑑[𝐶𝑑ℎ1𝑑𝑝]

𝑑𝑡
=  𝑘𝑎𝑐𝑑ℎ1 ∗

([𝐶𝑑ℎ1𝑇] − [𝐶𝑑ℎ1𝑑𝑝])

(𝑘𝑚1𝑐𝑑ℎ + ([𝐶𝑑ℎ1𝑇] − [𝐶𝑑ℎ1𝑑𝑝]))

− (𝑘𝑖𝑐𝑑ℎ1𝑒 ∗ [𝐶𝑦𝑐𝐸] + 𝑘𝑖𝑐𝑑ℎ1𝑎 ∗ [𝐶𝑦𝑐𝐴]) ∗
[𝐶𝑑ℎ1𝑑𝑝]

(𝑘𝑚2𝑐𝑑ℎ + [𝐶𝑑ℎ1𝑑𝑝])
 

14 

𝑑[𝐸𝑚𝑖1𝑇]

𝑑𝑡
=  𝑘𝑠𝑒𝑚𝑖1 ∗

[𝐸2𝐹]

(𝑘𝑚𝑒𝑚𝑖 + [𝐸2𝐹])
− (𝑘𝑑𝑒𝑚𝑖1 + 𝑘𝑑𝑒𝑚𝑖1𝑐 ∗ [𝐶𝑑ℎ1]) ∗ [𝐸𝑚𝑖1𝑇] 15 

𝑑[𝐸𝑚𝑖𝐶]

𝑑𝑡
=  𝑘𝑎𝑠𝑒𝑐 ∗ ([𝐶𝑑ℎ1𝑇] − [𝐸𝑚𝑖𝐶]) ∗ ([𝐸𝑚𝑖1𝑇] − [𝐸𝑚𝑖𝐶])

− (𝑘𝑑𝑖𝑒𝑐 + 𝑘𝑑𝑒𝑚𝑖1 + 𝑘𝑑𝑒𝑚𝑖1𝑐 ∗ [𝐶𝑑ℎ1]) ∗ [𝐸𝑚𝑖𝐶] 
16 

𝑑[𝐶𝑑ℎ1]

𝑑𝑡
=  𝑘𝑎𝑐𝑑ℎ1 ∗

([𝐶𝑑ℎ1𝑇] − [𝐸𝑚𝑖𝐶] − [𝐶𝑑ℎ1])

(𝑘𝑚1𝑐𝑑ℎ + ([𝐶𝑑ℎ1𝑇] − [𝐶𝑑ℎ1𝑑𝑝]))
+ (𝑘𝑑𝑖𝑒𝑐 + 𝑘𝑑𝑒𝑚𝑖1 + 𝑘𝑑𝑒𝑚𝑖1𝑐 ∗ [𝐶𝑑ℎ1]) ∗ ([𝐶𝑑ℎ1𝑑𝑝] − [𝐶𝑑ℎ1])

− (𝑘𝑖𝑐𝑑ℎ1𝑒 ∗ [𝐶𝑦𝑐𝐸] + 𝑘𝑖𝑐𝑑ℎ1𝑎 ∗ [𝐶𝑦𝑐𝐴]) ∗
[𝐶𝑑ℎ1]

(𝑘𝑚2𝑐𝑑ℎ + [𝐶𝑑ℎ1𝑑𝑝])
− 𝑘𝑎𝑠𝑒𝑐

∗ [𝐶𝑑ℎ1] ∗ ([𝐸𝑚𝑖1𝑇] − [𝐸𝑚𝑖𝐶]) 

17 

𝑑[𝑈𝑏𝑙]

𝑑𝑡
=  𝑘𝑠𝑢𝑏𝑙 − (𝑘𝑑𝑢𝑏𝑙 + 𝑘𝑑𝑢𝑏𝑙𝑐 ∗ [𝐶𝑑ℎ1]) ∗ [𝑈𝑏𝑙] 18 

 

Algebraic Equations 

[𝐸2𝐹] = [𝐸2𝐹𝑇] − [𝐶𝑜𝑚𝑝1] − [𝐶𝑜𝑚𝑝2] 19 
[𝑅𝑏] =  [𝑅𝑏𝑇] − [𝑅𝑏𝑝] − [𝑅𝑏𝑝𝑝] − [𝐶𝑜𝑚𝑝1] − [𝐶𝑜𝑚𝑝2] 20 

[𝐶𝑦𝑐𝐸] =  [𝐶𝑦𝑐𝐸𝑇] − [𝐶𝑦𝑐𝐸𝐶𝑘𝑖] 21 

[𝐶𝑦𝑐𝐷] =  [𝐶𝑦𝑐𝐷𝑇] − [𝐶𝑦𝑐𝐷𝐶𝑘𝑖] 22 
[𝐶𝑦𝑐𝐴] =  [𝐶𝑦𝑐𝐴𝑇] − [𝐶𝑦𝑐𝐴𝐶𝑘𝑖] 23 

[𝐶𝑑ℎ1𝑃] =  [𝐶𝑑ℎ1𝑇] − [𝐶𝑑ℎ1] − [𝐸𝑚𝑖𝐶] 24 
 

Model parameter description 

Symbol Description Value  

S Mitogen level 1 

ksm Rate constant of Myc synthesis driven by Mitogen 0.1min-1 

kdm Rate constant of Myc degradation 0.1min-1 

kscycdm Rate constant of Cyclin D synthesis driven by Myc 0.004min-1 

kscycds Rate constant of Cyclin D synthesis driven by Mitogen 0.004min-1 

kdcycd Rate constant of Cyclin D degradation 0.008min-1 

kscyceb Rate constant of basal(constitutive) Cyclin E synthesis 0.0001min-1 
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kscycem Rate constant of Cyclin E synthesis driven by Myc 0.0005min-1 

kscyce Rate constant of Cyclin E synthesis driven by E2F 0.004min-1 

kdcyce Rate constant of Cyclin E degradation 0.001min-1 

kdcycea Rate constant of Cyclin E degradation driven by Cyclin A 0.01min-1 

kms Activation coefficient of E2F for Cyclin E synthesis 0.25 

kscyca Rate constant of Cyclin A synthesis driven by E2F 0.008min-1 

kdcyca Rate constant of Cyclin A degradation 0.004min-1 

kdcycac Rate constant of Cyclin A degradation driven by APC/C-Cdh1 0.5min-1 

kmsa Activation coefficient of E2F for Cyclin A synthesis 0.1 

kse2fb Rate constant of basal(constitutive) E2F synthesis 0.0003min-1 

kse2fm Rate constant of E2F synthesis driven by Myc 0.0015min-1 

kse2f Rate constant of auto-regulated E2F synthesis 0.004min-1 

kde2f Rate constant of E2F degradation 0.003min-1 

kde2fa Rate constant of E2F degradation driven by Cyclin A 0.01min-1 

kme2f Activation coefficient of E2F for its synthesis 0.25 

RbT Total concentration of Rb 1 

PP2A Total concentration of PP2A 1 

kas1 Association rate constant of E2F and dephosphorylated Rb, E2F and mono-
phosphorylated Rb 

100min-1 

kdis Dissociation rate constant of Comp1 and Comp2 1min-1 

krbp Phosphorylation rate constant of Rb/Comp1 by Cyclin D-Cdk4/6 5min-1 

krbdp Dephosphorylation rate constant of mono-phosphorylated Rb/Comp2 by 
phosphatase (PP2A) 

1min-1 

krbpp’ Phosphorylation rate constant of Rb/Comp1 by Cyclin E-Cdk2 0.5min-1 

krbdpp Dephosphorylation rate constant of hyper-phosphorylated Rb by phosphatase 
(PP2A) 

0.1min-1 

krbpp Phosphorylation rate constant of mono-phosphorylated Rb/Comp2 by Cyclin E-
Cdk2 

2min-1 

kmd Michaelis constant for Rb/Comp1 mono-phosphorylation 0.01 

kme Michaelis constant for mono-phosphorylated Rb/Comp2 hyper-phosphorylation 0.05 

kmpp Michaelis constant for mono-phosphorylated Rb/Comp2/hyper-phosphorylated 
Rb dephosphorylation 

0.05 

kmd2 Michaelis constant for Rb/Comp1 hyper-phosphorylation 0.5 

kscki Rate constant of basal(constitutive) CKI synthesis 0.04min-1 

kdcki Rate constant of CKI degradation 0.2min-1 

kdckic Rate constant of CKI degradation driven by ubiquitin ligase 1min-1 

kascki Association rate constant of CKI and Cdk 100min-1 

kdiscki Dissociation rate constant of CKI-Cdk complex 0.1min-1 

ksubl Rate constant of basal(constitutive) ubiquitin ligase synthesis 0.004min-1 

kdubl Rate constant of ubiquitin ligase degradation 0.002min-1 

kdublc Rate constant of ubiquitin ligase degradation driven by APC/C-Cdh1 0.2min-1 

ksemi1 Rate constant of Emi1 synthesis driven by E2F 0.45min-1 

kdemi1 Rate constant of Emi1 degradation 0.2min-1 

kdemi1c Rate constant of Emi1 degradation driven by APC/C-Cdh1 2min-1 

kmemi Activation coefficient of E2F for Emi1 synthesis 0.1 

kasec Association rate constant of Emi1 and APC/C-Cdh1 100min-1 

kdiec Dissociation rate constant of Emi1-APC/C-Cdh1 complex 0.1min-1 

Cdh1T Total concentration of APC/C-Cdh1 1 

kacdh1 Rate constant for activation of APC/C-Cdh1 by dephosphorylation 0.1min-1 

kicdh1e Rate constant for inactivation of APC/C-Cdh1 by Cyclin E-Cdk2-dependent 
phosphorylation 

0.14min-1 

kicdh1a Rate constant for inactivation of APC/C-Cdh1 by Cyclin A-Cdk2-dependent 
phosphorylation 

0.2min-1 

km1cdh Michaelis constant for APC/C-Cdh1 dephosphorylation 0.02 
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km2cdh Michaelis constant for APC/C-Cdh1 phosphorylation 0.25 

 

Dynamic variable description  

Symbol Description Initial  
Condition 

[Myc] Concentration of Myc 0 
[CycDT] The total concentration of Cyclin D 0 
[CycET] The total concentration of Cyclin E 0.119 
[CycAT] The total concentration of Cyclin A 0 
[E2FT] The total concentration of E2F transcription factor 0.106 

[Comp1] Concentration of Rb-E2F complex 0.105 
[Comp2] Concentration of Rbp-E2F complex  0 

[Rbp] Mono-phosphorylated Rb 0 
[Rbpp] Hyper-phosphorylated Rb 0.001 
[CkiT] The total concentration of Cyclin dependent Kinase (CDK) Inhibitors 0.2 

[CycECki] Concentration of CycE-Cki complex 0.115 
[CycDCki] Concentration of CycD-Cki complex 0 
[Cdh1dp] The total concentration of APC/C-Cdh1 in dephosphorylated form (includes both 

free APC/C-Cdh1 and APC/C-Cdh1 bound to Emi1) 
1 

[Emi1T] The total concentration of Emi1 0.002 
[EmiC] Concentration of Emi1-APC/C-Cdh1 complex (includes both phosphorylated and 

dephosphorylated APC/C-Cdh1 in complex with Emi1) 
0.002 

[Cdh1] Concentration of free, dephosphorylated APC/C-Cdh1 0.998 
[Ubl] The total concentration of Ubiquitin ligases 0.02 
[E2F] Concentration of free E2F 0.001 
[Rb] Concentration of free, dephosphorylated Rb 0.894 

[CycE] Concentration of free CycE 0 
[CycD] Concentration of free CycD 0 

[Cdh1P] Concentration of free, phosphorylated APC/C-Cdh1 0 
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APPENDIX B 

 

Model details of neurodegeneration (module 1) 

𝑑[𝑝35𝑛]

𝑑𝑡
= 𝑘𝑑𝑖𝑠𝑝35 ∗ [𝑝35𝐶𝑑𝑘5𝑛] + 𝑘𝑖𝑚𝑝 ∗ [𝑝35𝑐] −  𝑘𝑎𝑠𝑝35 ∗ [𝑝35𝑛] ∗ [𝐶𝑑𝑘5𝑛] −  𝑘𝑒𝑥𝑝

∗ [𝑝35𝑛] 

1 

𝑑[𝐶𝑑𝑘5𝑛]

𝑑𝑡
=  𝑘𝑑𝑖𝑠𝑝35 ∗ [𝑝35𝐶𝑑𝑘5𝑛] + 𝑘𝑖𝑚𝑝 ∗ [𝐶𝑑𝑘5𝑐] − 𝑘𝑎𝑠𝑝35 ∗ [𝑝35𝑛] ∗ [𝐶𝑑𝑘5𝑛]

−  𝑘𝑒𝑥𝑝 ∗ [𝐶𝑑𝑘5𝑛] 

2 

𝑑[𝑝35𝐶𝑑𝑘5𝑛]

𝑑𝑡
=  𝑘𝑎𝑠𝑝35 ∗ [𝑝35𝑛] ∗ [𝐶𝑑𝑘5𝑛] + (𝑘𝑑𝑖𝑠35𝑐𝑘𝑖𝑏 + 𝑘𝑑𝑖𝑠35𝑐𝑘𝑖 ∗ [𝐴𝛽])

∗ [𝑝35𝐶𝑑𝑘𝐶𝐾𝐼𝑛] + 𝑘𝑖𝑚𝑝 ∗ [𝑝35𝐶𝑑𝑘5𝑐] −  𝑘𝑑𝑖𝑠𝑝35 ∗ [𝑝35𝐶𝑑𝑘5𝑛]

−  𝑘𝑎𝑠𝑝35𝑐𝑘𝑖 ∗ [𝑝35𝐶𝑑𝑘5𝑛] ∗ [𝐶𝐾𝐼𝑛] −  𝑘𝑒𝑥𝑝 ∗ [𝑝35𝐶𝑑𝑘5𝑛] 

3 

𝑑[𝑝35𝐶𝑑𝑘𝐶𝐾𝐼𝑛]

𝑑𝑡
=  𝑘𝑎𝑠𝑝35𝑐𝑘𝑖 ∗ [𝑝35𝐶𝑑𝑘5𝑛] ∗ [𝐶𝐾𝐼𝑛] − (𝑘𝑑𝑖𝑠35𝑐𝑘𝑖𝑏 + 𝑘𝑑𝑖𝑠35𝑐𝑘𝑖 ∗ [𝐴𝛽])

∗ [𝑝35𝐶𝑑𝑘𝐶𝐾𝐼𝑛] 

4 

𝑑[𝑝35𝐶𝑑𝑘5𝑐]

𝑑𝑡
=  𝑘𝑎𝑠𝑝35 ∗ [𝑝35𝑐] ∗ [𝐶𝑑𝑘5𝑐] + (𝑘𝑑𝑖𝑠35𝑐𝑘𝑖𝑏 + 𝑘𝑑𝑖𝑠35𝑐𝑘𝑖 ∗ [𝐴𝛽])

∗ [𝑝35𝐶𝑑𝑘𝐶𝐾𝐼𝑐] +  𝑘𝑒𝑥𝑝 ∗ [𝑝35𝐶𝑑𝑘5𝑛] −  𝑘𝑑𝑖𝑠𝑝35 ∗ [𝑝35𝐶𝑑𝑘5𝑐]

−  𝑘𝑎𝑠𝑝35𝑐𝑘𝑖 ∗ [𝑝35𝐶𝑑𝑘5𝑐] ∗ [𝐶𝐾𝐼𝑐] − 𝑘𝑖𝑚𝑝 ∗ [𝑝35𝐶𝑑𝑘5𝑐] 

5 

𝑑[𝑝35𝐶𝑑𝑘𝐶𝐾𝐼𝑐]

𝑑𝑡
=  𝑘𝑎𝑠𝑝35𝑐𝑘𝑖 ∗ [𝑝35𝐶𝑑𝑘5𝑐] ∗ [𝐶𝐾𝐼𝑐] − (𝑘𝑑𝑖𝑠35𝑐𝑘𝑖𝑏 + 𝑘𝑑𝑖𝑠35𝑐𝑘𝑖 ∗ [𝐴𝛽])

∗ [𝑝35𝐶𝑑𝑘𝐶𝐾𝐼𝑐] 

6 

𝑑[𝐶𝐾𝐼𝑛]

𝑑𝑡
= 𝑘𝑖𝑚𝑝𝑐𝑘𝑖 ∗ [𝐶𝐾𝐼𝑐] +  (𝑘𝑑𝑖𝑠35𝑐𝑘𝑖𝑏 + 𝑘𝑑𝑖𝑠35𝑐𝑘𝑖 ∗ [𝐴𝛽]) ∗ [𝑝35𝐶𝑑𝑘𝐶𝐾𝐼𝑛]

− (𝑘𝑒𝑥𝑝𝑐𝑘𝑖𝑏 + 𝑘𝑒𝑥𝑝𝑐𝑘𝑖 ∗ [𝐴𝛽]) ∗ [𝐶𝐾𝐼𝑛] − 𝑘𝑎𝑠𝑝35𝑐𝑘𝑖 ∗ [𝑝35𝐶𝑑𝑘5𝑛] ∗ [𝐶𝐾𝐼𝑛] 

7 

𝑑[𝐸𝑟𝑘𝑖]

𝑑𝑡
=  𝑘𝑖𝑒𝑟𝑘 ∗ [𝑝35𝐶𝑑𝑘5𝑐] ∗

[𝐸𝑟𝑘𝑎]

([𝐽𝑖𝑒𝑟𝑘] + [𝐸𝑟𝑘𝑎])
− 𝑘𝑎𝑒𝑟𝑘 ∗

[𝐸𝑟𝑘𝑖]

([𝐽𝑎𝑒𝑟𝑘] + [𝐸𝑟𝑘𝑖])
 

8 

𝑑[𝐶𝑦𝑐𝐷𝑇]

𝑑𝑡
=  𝑘𝑠𝑐𝑦𝑐𝑑𝑏 + 𝑘𝑠𝑐𝑦𝑐𝑑 ∗ [𝐸𝑟𝑘𝑎] − 𝑘𝑑𝑐𝑦𝑐𝑑 ∗ [𝐶𝑦𝑐𝐷𝑇] 

9 

𝑑[𝐶𝑦𝑐𝐷𝐶𝑑𝑘5𝑐]

𝑑𝑡
= 𝑘𝑎𝑠𝑐𝑦𝑐𝑑 ∗ [𝐶𝑦𝑐𝐷] ∗ [𝐶𝑑𝑘5𝑐] + 𝑘𝑑𝑖𝑠𝑐𝑦𝑐𝑐𝑘𝑖 ∗ [𝐶𝑦𝑐𝐷𝐶𝑑𝑘𝐶𝐾𝐼𝑐]

− (𝑘𝑑𝑖𝑠𝑐𝑦𝑐𝑑 + 𝑘𝑎𝑠𝑐𝑦𝑐𝑑𝑐𝑘𝑖 ∗ [𝐶𝐾𝐼𝑐]  + 𝑘𝑑𝑐𝑦𝑐𝑑) ∗ [𝐶𝑦𝑐𝐷𝐶𝑑𝑘5𝑐] 

10 

𝑑[𝐶𝑦𝑐𝐶𝑑𝑘𝐶𝐾𝐼𝑐]

𝑑𝑡
= 𝑘𝑎𝑠𝑐𝑦𝑐𝑑𝑐𝑘𝑖 ∗ [𝐶𝐾𝐼𝑐] ∗ [𝐶𝑦𝑐𝐷𝐶𝑑𝑘5𝑐] − (𝑘𝑑𝑖𝑠𝑐𝑦𝑐𝑐𝑘𝑖 + 𝑘𝑑𝑐𝑦𝑐𝑑)

∗ [𝐶𝑦𝑐𝐶𝑑𝑘𝐶𝐾𝐼𝑐] 

11 

[𝑝35𝑐] = [𝑝35𝑇] − [𝑝35𝑛] − [𝑝35𝐶𝑑𝑘5𝑛] − [𝑝35𝐶𝑑𝑘𝐶𝐾𝐼𝑛] − [𝑝35𝐶𝑑𝑘5𝑐]
− [𝑝35𝐶𝑑𝑘𝐶𝐾𝐼𝑐] 

12 

[𝐶𝑑𝑘5𝑐] = [𝐶𝑑𝑘5𝑇] − [𝐶𝑑𝑘5𝑛] − [𝑝35𝐶𝑑𝑘5𝑛] − [𝑝35𝐶𝑑𝑘𝐶𝐾𝐼𝑛] − [𝑝35𝐶𝑑𝑘5𝑐]
− [𝑝35𝐶𝑑𝑘𝐶𝐾𝐼𝑐] − [𝐶𝑦𝑐𝐷𝐶𝑑𝑘5𝑐] − [𝐶𝑦𝑐𝐶𝑑𝑘𝐶𝐾𝐼𝑐] 

13 

[𝐶𝐾𝐼𝑐] = [𝐶𝐾𝐼𝑇] − [𝐶𝐾𝐼𝑛] − [𝑝35𝐶𝑑𝑘𝐶𝐾𝐼𝑛] − [𝑝35𝐶𝑑𝑘𝐶𝐾𝐼𝑐] − [𝐶𝑦𝑐𝐶𝑑𝑘𝐶𝐾𝐼𝑐] 14 
[𝐸𝑟𝑘𝑎] =  [𝐸𝑟𝑘𝑇] − [𝐸𝑟𝑘𝑖] 15 
[𝐶𝑦𝑐𝐷] = [𝐶𝑦𝑐𝐷𝑇] − [𝐶𝑦𝑐𝐷𝐶𝑑𝑘5𝑐] − [𝐶𝑦𝑐𝐶𝑑𝑘𝐶𝐾𝐼𝑐] 16 
[𝑝35𝑛𝑇] = [𝑝35𝑛] + [𝑝35𝐶𝑑𝑘5𝑛] + [𝑝35𝐶𝑑𝑘𝐶𝐾𝐼𝑛] 17 
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[𝑝35𝑐𝑇] = [𝑝35𝑐] + [𝑝35𝐶𝑑𝑘5𝑐] + [𝑝35𝐶𝑑𝑘𝐶𝐾𝐼𝑐] 18 
[𝐶𝐾𝐼𝑛𝑇] = [𝐶𝐾𝐼𝑛] + [𝑝35𝐶𝑑𝑘𝐶𝐾𝐼𝑛] 19 
 

Parameter description 

Symbol Description Value 
Aβ Amyloid beta protein level Varied 
CKIT Total concentration of Cdk inhibitor (CDKI) 4 
Cdk5T Total concentration of Cdk5 2 
p35T Total concentration of p35 2 
kimp Nuclear import rate constant of p35, Cdk5 and p35-Cdk5 complex 0.4time-1 
kexp Nuclear export rate constant of p35, Cdk5 and p35-Cdk5 complex 10time-1 
kasp35 Association rate constant of p35 and Cdk5 100time-1 
kdisp35 Dissociation rate constant of p35-Cdk5 complex 1time-1 
kasp35cki Association rate constant of p35-Cdk5 complex and CDKI 10time-1 
kdis35ckib Dissociation rate constant of p35-Cdk5-CDKI complex 1time-1 
kdis35cki Aβ driven dissociation rate constant of p35-Cdk5-CDKI complex 10time-1 
kimpcki Nuclear import rate constant of CDKI 10time-1 
kexpckib Basal nuclear export rate constant of CDKI 0.01time-1 
kexpcki Aβ driven nuclear export rate constant of CDKI 10time-1 
ErkT Total concentration of ERK 1 
kierk Rate constant for inactivation of ERK 0.25time-1 
kaerk Rate constant for activation of ERK 0.1time-1 
Jierk Michaelis constant for ERK inactivation 0.1 
Jaerk Michaelis constant for ERK activation 0.1 
kscycdb Rate constant of basal(constitutive) Cyclin D synthesis 0time-1 
kscycd Rate constant of Cyclin D synthesis driven by ERK 0.01time-1 
kdcycd Rate constant of Cyclin D degradation 0.002time-1 
kascycd Association rate constant of Cyclin D and Cdk5 10time-1 
kascycdcki Association rate constant of CycD-Cdk5 and CDKI 10time-1 
kdiscycd Dissociation rate constant of CycD-Cdk5 complex 0.1time-1 
kdiscyccki Dissociation rate constant of CycD-Cdk5-CDKI complex 0.1time-1 
 

Dynamic variable description 

Symbol Description Initial 
Condition 

[𝑝35𝑛] Concentration of free nuclear p35 0.016 
[𝐶𝑑𝑘5𝑛] Concentration of free nuclear Cdk5 0.003 
[𝑝35𝐶𝑑𝑘5𝑛] Concentration of nuclear p35-Cdk5 complex 0.027 
[𝑝35𝐶𝑑𝑘𝐶𝐾𝐼𝑛] Concentration of nuclear p35-Cdk5-CDKI complex 0.838 
[𝑝35𝐶𝑑𝑘5𝑐] Concentration of cytoplasmic p35-Cdk5 complex 0.741 
[𝑝35𝐶𝑑𝑘𝐶𝐾𝐼𝑐] Concentration of cytoplasmic p35-Cdk5-CDKI complex 0.023 
[𝐶𝐾𝐼𝑛] Concentration of free nuclear CDKI 3.056 
[𝐸𝑟𝑘𝑖] Concentration of inactive ERK 0.905 
[𝐶𝑦𝑐𝐷𝑇] The total concentration of Cyclin D 0.473 
[𝐶𝑦𝑐𝐷𝐶𝑑𝑘5𝑐] Concentration of cytoplasmic CycD-Cdk5 complex 0.266 
[𝐶𝑦𝑐𝐷𝐶𝑑𝑘𝐶𝐾𝐼𝑐] Concentration of cytoplasmic CycD-Cdk5-CDKI complex 0.08 
[𝑝35𝑐] Concentration of free cytoplasmic p35 0.355 
[𝐶𝑑𝑘5𝑐] Concentration of free cytoplasmic Cdk5 0.022 
[𝐶𝐾𝐼𝑐] Concentration of free cytoplasmic CDKI 0.003 
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[𝐸𝑟𝑘𝑎] Concentration of active ERK 0.095 
[𝐶𝑦𝑐𝐷] Concentration of free Cyclin D 0.127 
[𝑝35𝑛𝑇] Concentration of total nuclear p35 0.881 
[𝑝35𝑐𝑇] Concentration of total cytoplasmic p35 1.119 
[𝐶𝐾𝐼𝑛𝑇] Concentration of total nuclear CDKI 3.894 
 

Model details of neurodegeneration (module 2) 

𝑑[𝐶]

𝑑𝑡
= 𝑘𝑖𝑛𝑏 +  𝑘𝑖𝑛𝑎𝑏 ∗ [𝐴𝛽] + 𝑘𝑖𝑛𝑔𝑙𝑢 ∗ [𝐺𝑙𝑢] +  𝑘𝑖𝑛𝑟𝑜𝑠 ∗ [𝑅𝑂𝑆] − 𝑘𝑜𝑢𝑡 ∗ [𝐶] 

20 

𝑑[𝐶𝑎𝑙]

𝑑𝑡
=  𝑘𝑠𝑐𝑎𝑙𝑏 + 𝑘𝑠𝑐𝑎𝑙 ∗

[𝐶]𝑛𝑐𝑐

(𝑘ℎ𝑐𝑎𝑙
𝑛𝑐𝑐 + [𝐶]𝑛𝑐𝑐)

− 𝑘𝑑𝑐𝑎𝑙 ∗ [𝐶𝑎𝑙] 
21 

𝑑[𝑝25]

𝑑𝑡
= 𝑘𝑠𝑝25 ∗ [𝐶𝑎𝑙] ∗ ([𝑝35𝑇] − [𝑝25]) −  𝑘𝑑𝑝25 ∗ [𝑝25] 

22 

𝑑[𝐶𝑑ℎ1𝑑𝑝]

𝑑𝑡
=  𝑘𝑎𝑐𝑑ℎ1 ∗

[𝐶𝑑ℎ1𝑝]

(𝐽𝑎𝑐𝑑ℎ1 + [𝐶𝑑ℎ1𝑝])
− 𝑘𝑖𝑐𝑑ℎ1 ∗ ([𝑝25] + [𝐶𝑦𝑐𝐵])

∗
[𝐶𝑑ℎ1𝑑𝑝]

(𝐽𝑖𝑐𝑑ℎ1 + [𝐶𝑑ℎ1𝑑𝑝])
 

23 

𝑑[𝐺𝑙𝑠]

𝑑𝑡
= 𝑘𝑠𝑔𝑙𝑠 − (𝑘𝑑𝑔𝑙𝑠 + 𝑘𝑑𝑔𝑙𝑠𝑐 ∗ [𝐶𝑑ℎ1𝑑𝑝]) ∗ [𝐺𝑙𝑠] 

24 

𝑑[𝐶𝑦𝑐𝐵]

𝑑𝑡
= 𝑘𝑠𝑐𝑦𝑐𝑏 + 𝑘𝑠𝑐𝑦𝑐 ∗

[𝐸2𝐹]

(𝑘ℎ𝑐𝑦𝑐 + [𝐸2𝐹])
− (𝑘𝑑𝑐𝑦𝑐𝑏 + 𝑘𝑑𝑐𝑦𝑐𝑏𝑐 ∗ [𝐶𝑑ℎ1𝑑𝑝]) ∗ [𝐶𝑦𝑐𝐵] 

25 

𝑑[𝐺𝑙𝑢]

𝑑𝑡
= 𝑘𝑠𝑔𝑙𝑢𝑏 + 𝑘𝑠𝑔𝑙𝑢 ∗ [𝐺𝑙𝑠] ∗ [𝐺𝑙𝑛] − 𝑘𝑑𝑔𝑙𝑢 ∗ [𝐺𝑙𝑢] 

26 

𝑑[𝑅𝑂𝑆]

𝑑𝑡
= 𝑘𝑠𝑟𝑜𝑠𝑏 + 𝑘𝑠𝑟𝑜𝑠𝑐𝑎 ∗ [𝐶] + 𝑘𝑠𝑟𝑜𝑠𝑐 ∗ [𝐶𝑦𝑐𝐵] − 𝑘𝑑𝑟𝑜𝑠 ∗ [𝑅𝑂𝑆] − 𝑘𝑖𝑔𝑠ℎ ∗ [𝑅𝑂𝑆]

∗ [𝐺𝑆𝐻]2 

27 

𝑑[𝑁𝐴𝐷𝑃𝐻]

𝑑𝑡
= (𝑘𝑎𝑛𝑎𝑑𝑝ℎ𝑏 + 𝑘𝑎𝑛𝑎𝑑𝑝ℎ𝑐𝑑ℎ ∗ [𝐶𝑑ℎ1𝑑𝑝]) ∗ ([𝑁𝐴𝐷𝑃𝑇] − [𝑁𝐴𝐷𝑃𝐻])

− (𝑘𝑖𝑛𝑎𝑑𝑝ℎ + 𝑘𝑎𝑔𝑠ℎ ∗ [𝐺𝑆𝑆𝐺]) ∗ [𝑁𝐴𝐷𝑃𝐻] 

28 

𝑑[𝐺𝑆𝐻]

𝑑𝑡
= 2 ∗ 𝑘𝑎𝑔𝑠ℎ ∗ [𝐺𝑆𝑆𝐺] ∗ [𝑁𝐴𝐷𝑃𝐻] − 2 ∗ 𝑘𝑖𝑔𝑠ℎ ∗ [𝑅𝑂𝑆] ∗ [𝐺𝑆𝐻]2 

29 

𝑑[𝐸2𝐹𝑇]

𝑑𝑡
= 𝑘𝑠𝑒2𝑓𝑏 + 𝑘𝑠𝑒2𝑓 ∗

[𝐸2𝐹]

(𝑘ℎ𝑒2𝑓 + [𝐸2𝐹])
− 𝑘𝑑𝑒2𝑓 ∗ [𝐸2𝐹𝑇] 

30 

𝑑[𝐶𝑜𝑚𝑝1]

𝑑𝑡
= 𝑘𝑎𝑠𝑒2𝑓 ∗ [𝐸2𝐹] ∗ [𝑅𝑏] − 𝑘𝑑𝑖𝑠𝑒2𝑓 ∗ [𝐶𝑜𝑚𝑝1] −  𝑘𝑝𝑝𝑟𝑏 ∗ ([𝑝25] + [𝐶𝑦𝑐𝐵])

∗
[𝐶𝑜𝑚𝑝1]

(𝐽𝑝𝑝𝑟𝑏 + [𝐶𝑜𝑚𝑝1])
− 𝑘𝑑𝑒2𝑓 ∗ [𝐶𝑜𝑚𝑝1] 

31 

𝑑[𝑅𝑏𝑝𝑝]

𝑑𝑡
=  𝑘𝑝𝑝𝑟𝑏 ∗ ([𝑝25] + [𝐶𝑦𝑐𝐵]) ∗

[𝑅𝑏]

(𝐽𝑝𝑝𝑟𝑏 + [𝑅𝑏])
+  𝑘𝑝𝑝𝑟𝑏 ∗ ([𝑝25] + [𝐶𝑦𝑐𝐵])

∗
[𝐶𝑜𝑚𝑝1]

(𝐽𝑝𝑝𝑟𝑏 + [𝐶𝑜𝑚𝑝1])
− 𝑘𝑑𝑝𝑟𝑏𝑝𝑝 ∗

[𝑅𝑏𝑝𝑝]

(𝐽𝑑𝑝𝑟𝑏 + [𝑅𝑏𝑝𝑝])
 

32 

[𝐶𝑑ℎ1𝑝] = [𝐶𝑑ℎ1𝑇] − [𝐶𝑑ℎ1𝑑𝑝] 33 

[𝐺𝑆𝑆𝐺] =
([𝐺𝑆𝐻𝑇] − [𝐺𝑆𝐻])

2
 

34 

[E2F] = [𝐸2𝐹𝑇] − [𝐶𝑜𝑚𝑝1] 35 
[𝑅𝑏] = [𝑅𝑏𝑇] − [𝐶𝑜𝑚𝑝1] − [𝑅𝑏𝑝𝑝] 36 
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Parameter description 

Symbol Description Value 
Aβ Amyloid beta protein level Varied 
Cdh1T Total concentration of APC/C-Cdh1 1 
GSHT Total concentration of Glutathione (GSH) 2 
NADPT Total concentration of NADP 1 
p35T Total concentration of p35 2 
kinb Basal rate constant of Ca2+ influx 0.005time-1 
kinab Aβ dependent rate constant of Ca2+ influx 1time-1 
kinglu Glutamate (Glu) dependent rate constant of Ca2+ influx 0.4time-1 
kinros Reactive oxygen species (ROS) dependent rate constant of Ca2+ 

influx 
0.3time-1 

kout Rate constant of Ca2+ efflux 0.5time-1 
kscalb Basal rate constant of calpain activity regulation 0.001time-1 
kscal Ca2+ modulated rate constant of calpain activity regulation 0.4time-1 
ncc Cooperativity of Ca2+ binding to calpain protein 2 
khcal Half saturation constant of Ca2+ for calpain activity regulation 0.5 
kdcal Rate constant of calpain degradation 0.3time-1 
ksp25 Rate constant of p25 synthesis driven by Calpain activity 0.1time-1 
kdp25 Rate constant of p25 degradation 0.05time-1 
kicdh1 Rate constant for inactivation of APC/C-Cdh1 by CycB, p25 0.1time-1 
Jicdh1 Michaelis constant for APC/C-Cdh1 phosphorylation by CycB, p25 0.1 
kacdh1 Rate constant for activation of APC/C-Cdh1 by dephosphorylation 0.1time-1 
Jacdh1 Michaelis constant for APC/C-Cdh1 dephosphorylation 0.1 
ksgls Rate constant of glutaminase (Gls) synthesis  0.01time-1 
kdgls Basal rate constant of Gls degradation 0.01time-1 
kdglsc Rate constant of APC/C-Cdh1 dependent Gls degradation 0.15time-1 
kscycb Basal rate constant of Cyclin B (CycB) synthesis 0.001time-1 
kscyc Rate constant of E2F dependent CycB synthesis 0.01time-1 
khcyc Half saturation constant of CycB for its synthesis 0.25 
kdcycb Rate constant of CycB degradation 0.01time-1 
kdcycbc Rate constant of APC/C-Cdh1 dependent CycB degradation 0.1time-1 
ksglub Basal rate constant of glutamate (Glu) synthesis 0.0001time-1 
ksglu Rate constant of glutaminase catalysed Glu synthesis 0.01time-1 
kdglu Rate constant of Glu degradation 0.01time-1 
Gln Total concentration of glutamine (Gln) 1 
ksrosb Rate constant of basal ROS synthesis 0.001time-1 
ksrosca Rate constant of Ca2+ dependent ROS synthesis 0.15time-1 
ksrosc Rate constant of CycB dependent ROS synthesis 0.1time-1 
kdros Basal rate constant of ROS degradation 0.15time-1 
kigsh Rate constant of ROS scavenging by GSH 0.5time-1 
kagsh Rate constant of GSSG reduction to GSH by NADPH 0.5time-1 
kanadphb Basal rate constant of NADPH generation 0.001time-1 
kanadphcdh Rate constant of NADPH generation by APC/C-Cdh1 0.04time-1 
kinadph Basal rate constant of NADPH inactivation 0.01time-1 
kse2fb Rate constant of basal (constitutive) E2F synthesis 0.0003time-1 
kse2f Rate constant of auto-regulated E2F synthesis 0.004time-1 
kde2f Rate constant of E2F degradation 0.003time-1 
khe2f Half saturation constant of E2F for its synthesis 0.25 
RbT Total concentration of Rb 1 
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kase2f Association rate constant of E2F and Rb 100time-1 
kdise2f Dissociation rate constant of Comp1 1time-1 
kpprb Phosphorylation rate constant of Rb/Comp1 by p25 and CycB 0.25time-1 
kdprbpp Dephosphorylation rate constant of Rbpp 0.1time-1 
Jpprb Michaelis constant for hyper-phosphorylation of Rb/Comp1 0.05 
Jdprb Michaelis constant for dephosphorylation of Rbpp 0.05 
 

Dynamic variable description 

Symbol Description Initial 
Condition 

[C] Concentration of intracellular Ca2+ ion 0.072 
[Cal] Concentration of activated calpain 0.031 
[p25] Concentration of p25-Cdk5 complex 0.116 
[Cdh1dp] Concentration of APC/C-Cdh1 in dephosphorylated form 0.987 
[Gls] Concentration of glutaminase enzyme 0.063 
[CycB] Concentration of CycB-Cdk1 complex 0.01 
[Glu] Concentration of glutamate  0.073 
[ROS] Concentration of reactive oxygen species 0.006 
[NADPH] Concentration of NADPH (in the scavenger form) 0.567 
[GSH] Concentration of glutathione in reduced form 1.916 
[E2FT] The total concentration of E2F transcription factor 0.108 
[Comp1] Concentration of Rb-E2F complex 0.107 
[Rbpp] Concentration of hyper-phosphorylated Rb 0.052 
[𝐶𝑑ℎ1𝑝] Concentration of APC/C-Cdh1 in phosphorylated form 0.013 
[𝐺𝑆𝑆𝐺] Concentration of glutathione in oxidized form 0.042 
[E2F] Concentration of free E2F transcription factor 0.001 
[𝑅𝑏] Concentration of free dephosphorylated Rb 0.841 
 

Model details of neurodegeneration (module 3) 
𝑑[𝑝53𝑇]

𝑑𝑡
=  𝑘𝑠𝑝53 − (𝑘𝑑𝑝53𝑝 +  𝑘𝑑𝑝53𝑝𝑝 ∗ [𝑀𝑑𝑚2]) ∗ [𝑝53𝑇] 

37 

𝑑[𝑝53𝑎𝑇]

𝑑𝑡
= 𝑘𝑎𝑝53 ∗ 𝑑𝑛𝑎𝑑𝑎𝑚𝑎𝑔𝑒 ∗ ([𝑝53𝑇] − [𝑝53𝑎𝑇]) − 𝑘𝑖𝑝53 ∗ [𝑝53𝑎𝑇]

− (𝑘𝑑𝑝53𝑝 + 𝑘𝑑𝑝53𝑝𝑝 ∗ [𝑀𝑑𝑚2]) ∗ [𝑝53𝑎𝑇] 

38 

𝑑[𝑝53𝑘𝑖𝑙𝑙𝑒𝑟]

𝑑𝑡
= 𝑘𝑘𝑖𝑝53 ∗ [𝑝53𝐷𝐼𝑁𝑃] ∗

[𝑝53ℎ𝑒𝑙𝑝𝑒𝑟]

(𝐽𝑝𝑝53 + [𝑝53ℎ𝑒𝑙𝑝𝑒𝑟])
− 𝑘𝑘𝑖𝑑𝑝53

∗
[𝑝53𝑘𝑖𝑙𝑙𝑒𝑟]

(𝐽𝑑𝑝𝑝53 + [𝑝53𝑘𝑖𝑙𝑙𝑒𝑟])
− (𝑘𝑑𝑝53𝑝 + 𝑘𝑑𝑝53𝑝𝑝 ∗ [𝑀𝑑𝑚2]) ∗ [𝑝53𝑘𝑖𝑙𝑙𝑒𝑟] 

39 

𝑑[𝑀𝑑𝑚2𝑇]

𝑑𝑡
= 𝑘𝑠𝑚𝑑𝑚2𝑝 + 𝑘𝑠𝑚𝑑𝑚2𝑝𝑝 ∗ [𝑝53𝑇] − 𝑘𝑑𝑚𝑑𝑚2 ∗ [𝑀𝑑𝑚2𝑇] 

40 

𝑑[𝐴𝑟𝑓𝑇]

𝑑𝑡
= 𝑘𝑠𝑎𝑟𝑓𝑝 + 𝑘𝑠𝑎𝑟𝑓𝑝𝑝 ∗ [𝐸2𝐹] − 𝑘𝑑𝑎𝑟𝑓 ∗ [𝐴𝑟𝑓𝑇] 

41 

𝑑[𝐴𝑟𝑓𝑀𝑑𝑚]

𝑑𝑡
= 𝑘𝑎𝑠𝑎𝑚 ∗ [𝐴𝑟𝑓] ∗ [𝑀𝑑𝑚2] − 𝑘𝑑𝑠𝑎𝑚 ∗ [𝐴𝑟𝑓𝑀𝑑𝑚] − 𝑘𝑑𝑚𝑑𝑚2 ∗ [𝐴𝑟𝑓𝑀𝑑𝑚]

− 𝑘𝑑𝑎𝑟𝑓 ∗ [𝐴𝑟𝑓𝑀𝑑𝑚] 

42 
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𝑑[𝑝53𝐷𝐼𝑁𝑃]

𝑑𝑡
= 𝑘𝑠𝑑𝑖𝑛𝑝1 + 𝑘𝑠𝑑𝑖𝑛𝑝2 ∗

[𝑝53ℎ𝑒𝑙𝑝𝑒𝑟
3 ]

(𝑘ℎ𝑑𝑖𝑛𝑝
3 + [𝑝53ℎ𝑒𝑙𝑝𝑒𝑟

3 ])
+ 𝑘𝑠𝑑𝑖𝑛𝑝3

∗
[𝑝53𝑘𝑖𝑙𝑙𝑒𝑟

3 ]

(𝑘ℎ𝑑𝑖𝑛𝑝1
3 + [𝑝53𝑘𝑖𝑙𝑙𝑒𝑟

3 ])
∗

[𝐸2𝐹3]

(𝑘ℎ𝑑𝑖𝑛𝑝2
3 + [𝐸2𝐹3])

− 𝑘𝑑𝑑𝑖𝑛𝑝 ∗ [𝑝53𝐷𝐼𝑁𝑃] 

43 

𝑑[𝐶𝑦𝑐𝐷𝑇]

𝑑𝑡
= 𝑘𝑠𝑐𝑦𝑐𝑑𝑠 ∗ [𝑆] + 𝑘𝑠𝑐𝑦𝑐𝑑𝑔 ∗ 𝑑𝑛𝑎𝑑𝑎𝑚𝑎𝑔𝑒 − 𝑘𝑑𝑐𝑦𝑐𝑑 ∗ [𝐶𝑦𝑐𝐷𝑇] 

44 

𝑑[𝐶𝑦𝑐𝐸𝑇]

𝑑𝑡
= 𝑘𝑠𝑐𝑦𝑐𝑒𝑏 + 𝑘𝑠𝑐𝑦𝑐𝑒 ∗

[𝐸2𝐹]

(𝑘ℎ𝑐𝑦𝑐𝑒 + [𝐸2𝐹])
− 𝑘𝑑𝑐𝑦𝑐𝑒 ∗ [𝐶𝑦𝑐𝐸𝑇] 

45 

𝑑[𝐸2𝐹𝑇]

𝑑𝑡
= 𝑘𝑠𝑒2𝑓𝑏 + 𝑘𝑠𝑒2𝑓 ∗

[𝐸2𝐹]

(𝑘ℎ𝑒2𝑓 + [𝐸2𝐹])
− 𝑘𝑑𝑒2𝑓 ∗ 𝑘𝑑𝑒2𝑓𝑑𝑛𝑎𝑑𝑎 ∗ [𝐸2𝐹𝑇] 

46 

𝑑[𝐶𝑜𝑚𝑝1]

𝑑𝑡
= 𝑘𝑎𝑠𝑒2𝑓 ∗ [𝐸2𝐹] ∗ [𝑅𝑏] + 𝑘𝑑𝑝𝑟𝑏𝑝 ∗

[𝐶𝑜𝑚𝑝2]

(𝐽𝑑𝑝𝑟𝑏 + [𝐶𝑜𝑚𝑝2])
− 𝑘𝑑𝑖𝑠𝑒2𝑓 ∗ [𝐶𝑜𝑚𝑝1]

− 𝑘𝑝𝑟𝑏 ∗ [𝐶𝑦𝑐𝐷] ∗
[𝐶𝑜𝑚𝑝1]

(𝐽𝑝𝑟𝑏 + [𝐶𝑜𝑚𝑝1])
− 𝑘𝑝𝑝𝑟𝑏𝑐𝑦𝑐𝑒 ∗ [𝐶𝑦𝑐𝐸]

∗
[𝐶𝑜𝑚𝑝1]

(𝐽𝑝𝑝𝑟𝑏 + [𝐶𝑜𝑚𝑝1])
− 𝑘𝑝𝑝𝑟𝑏 ∗ [𝑝25] ∗

[𝐶𝑜𝑚𝑝1]

(𝐽𝑝𝑝𝑟𝑏 + [𝐶𝑜𝑚𝑝1])
− 𝑘𝑑𝑒2𝑓

∗ 𝑘𝑑𝑒2𝑓𝑑𝑛𝑎𝑑𝑎 ∗ [𝐶𝑜𝑚𝑝1] 

47 

𝑑[𝐶𝑜𝑚𝑝2]

𝑑𝑡
= 𝑘𝑎𝑠𝑒2𝑓 ∗ [𝐸2𝐹] ∗ [𝑅𝑏𝑝] + 𝑘𝑝𝑟𝑏 ∗ [𝐶𝑦𝑐𝐷] ∗

[𝐶𝑜𝑚𝑝1]

(𝐽𝑝𝑟𝑏 + [𝐶𝑜𝑚𝑝1])
− 𝑘𝑑𝑖𝑠𝑒2𝑓

∗ [𝐶𝑜𝑚𝑝2] − 𝑘𝑑𝑝𝑟𝑏𝑝 ∗
[𝐶𝑜𝑚𝑝2]

(𝐽𝑑𝑝𝑟𝑏 + [𝐶𝑜𝑚𝑝2])
− 𝑘𝑝𝑟𝑏𝑝 ∗ ([𝐶𝑦𝑐𝐸] + [𝑝25])

∗
[𝐶𝑜𝑚𝑝2]

(𝐽𝑝𝑟𝑏𝑝 + [𝐶𝑜𝑚𝑝2])
− 𝑘𝑑𝑒2𝑓 ∗ 𝑘𝑑𝑒2𝑓𝑑𝑛𝑎 ∗ [𝐶𝑜𝑚𝑝2] 

48 

𝑑[𝑅𝑏𝑝]

𝑑𝑡
= 𝑘𝑝𝑟𝑏 ∗ [𝐶𝑦𝑐𝐷] ∗

[𝑅𝑏]

(𝐽𝑝𝑟𝑏 + [𝑅𝑏])
+ 𝑘𝑑𝑖𝑠𝑒2𝑓 ∗ [𝐶𝑜𝑚𝑝2] + 𝑘𝑑𝑒2𝑓 ∗ 𝑘𝑑𝑒2𝑓𝑑𝑛𝑎𝑑𝑎

∗ [𝐶𝑜𝑚𝑝2] − 𝑘𝑎𝑠𝑒2𝑓 ∗ [𝐸2𝐹] ∗ [𝑅𝑏𝑝] − 𝑘𝑑𝑝𝑟𝑏𝑝 ∗
[𝑅𝑏𝑝]

(𝐽𝑑𝑝𝑟𝑏 + [𝑅𝑏𝑝])
− 𝑘𝑝𝑟𝑏𝑝

∗ ([𝐶𝑦𝑐𝐸] + [𝑝25]) ∗
[𝑅𝑏𝑝]

(𝐽𝑝𝑟𝑏𝑝 + [𝑅𝑏𝑝])
 

49 

𝑑[𝑅𝑏𝑝𝑝]

𝑑𝑡
= 𝑘𝑝𝑟𝑏𝑝 ∗ ([𝐶𝑦𝑐𝐸] + [𝑝25]) ∗

[𝑅𝑏𝑝]

(𝐽𝑝𝑟𝑏𝑝 + [𝑅𝑏𝑝])
+ 𝑘𝑝𝑟𝑏𝑝 ∗ ([𝐶𝑦𝑐𝐸] + [𝑝25])

∗
[𝐶𝑜𝑚𝑝2]

(𝐽𝑝𝑟𝑏𝑝 + [𝐶𝑜𝑚𝑝2])
+ 𝑘𝑝𝑝𝑟𝑏𝑐𝑦𝑐𝑒 ∗ [𝐶𝑦𝑐𝐸] ∗

[𝑅𝑏]

(𝐽𝑝𝑝𝑟𝑏 + [𝑅𝑏])
+ 𝑘𝑝𝑝𝑟𝑏𝑐𝑦𝑐𝑒

∗ [𝐶𝑦𝑐𝐸] ∗
[𝐶𝑜𝑚𝑝1]

(𝐽𝑝𝑝𝑟𝑏 + [𝐶𝑜𝑚𝑝1])
+ 𝑘𝑝𝑝𝑟𝑏 ∗ [𝑝25] ∗

[𝑅𝑏]

(𝐽𝑝𝑝𝑟𝑏 + [𝑅𝑏])
+ 𝑘𝑝𝑝𝑟𝑏

∗ [𝑝25] ∗
[𝐶𝑜𝑚𝑝1]

(𝐽𝑝𝑝𝑟𝑏 + [𝐶𝑜𝑚𝑝1])
− 𝑘𝑑𝑝𝑟𝑏𝑝𝑝 ∗

[𝑅𝑏𝑝𝑝]

(𝐽𝑑𝑝𝑟𝑏 + [𝑅𝑏𝑝𝑝])
 

50 

𝑑[𝐶𝐾𝐼𝑇]

𝑑𝑡
= 𝑘𝑠𝑐𝑘𝑖𝑏 + 𝑘𝑠𝑐𝑘𝑖𝑝53ℎ ∗ [𝑝53ℎ𝑒𝑙𝑝𝑒𝑟] + 𝑘𝑠𝑐𝑘𝑖𝑝53𝑘 ∗ [𝑝53𝑘𝑖𝑙𝑙𝑒𝑟]

− (𝑘𝑑𝑐𝑘𝑖 + 𝑘𝑑𝑐𝑘𝑖𝑐 ∗ [𝐶𝑦𝑐𝐸] ∗ [𝑈𝑏𝑙]) ∗ [𝐶𝐾𝐼𝑇] 

51 

𝑑[𝐶𝑦𝑐𝐸𝐶𝐾𝐼]

𝑑𝑡
= 𝑘𝑎𝑠𝑐𝑘𝑖 ∗ [𝐶𝑦𝑐𝐸] ∗ ([𝐶𝐾𝐼𝑇] − [𝐶𝑦𝑐𝐸𝐶𝐾𝐼] − [𝐶𝑦𝑐𝐷𝐶𝐾𝐼])

− (𝑘𝑑𝑖𝑠𝑐𝑘𝑖 + 𝑘𝑑𝑐𝑦𝑐𝑒 + 𝑘𝑑𝑐𝑘𝑖 + 𝑘𝑑𝑐𝑘𝑖𝑐 ∗ [𝐶𝑦𝑐𝐸] ∗ [𝑈𝑏𝑙]) ∗ [𝐶𝑦𝑐𝐸𝐶𝐾𝐼] 

52 
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𝑑[𝐶𝑦𝑐𝐷𝐶𝐾𝐼]

𝑑𝑡
= 𝑘𝑎𝑠𝑐𝑘𝑖 ∗ [𝐶𝑦𝑐𝐷] ∗ ([𝐶𝐾𝐼𝑇] − [𝐶𝑦𝑐𝐸𝐶𝐾𝐼] − [𝐶𝑦𝑐𝐷𝐶𝐾𝐼])

− (𝑘𝑑𝑖𝑠𝑐𝑘𝑖 + 𝑘𝑑𝑐𝑦𝑐𝑑 + 𝑘𝑑𝑐𝑘𝑖 + 𝑘𝑑𝑐𝑘𝑖𝑐 ∗ [𝐶𝑦𝑐𝐸] ∗ [𝑈𝑏𝑙]) ∗ [𝐶𝑦𝑐𝐷𝐶𝐾𝐼] 

53 

𝑑[𝑈𝑏𝑙]

𝑑𝑡
= 𝑘𝑠𝑢𝑏𝑙 − (𝑘𝑑𝑢𝑏𝑙 + 𝑘𝑑𝑢𝑏𝑙𝑐 ∗ [𝐶𝑑ℎ1𝑑𝑝]) ∗ [𝑈𝑏𝑙] 

54 

[𝐸2𝐹] = [𝐸2𝐹𝑇] − [𝐶𝑜𝑚𝑝1] − [𝐶𝑜𝑚𝑝2] 55 
[𝑅𝑏] = [𝑅𝑏𝑇] − [𝐶𝑜𝑚𝑝1] − [𝐶𝑜𝑚𝑝2] − [𝑅𝑏𝑝] − [𝑅𝑏𝑝𝑝] 56 
[𝐶𝑦𝑐𝐸] = [𝐶𝑦𝑐𝐸𝑇] − [𝐶𝑦𝑐𝐸𝐶𝐾𝐼] 57 
[𝐶𝑦𝑐𝐷] = [𝐶𝑦𝑐𝐷𝑇] − [𝐶𝑦𝑐𝐷𝐶𝐾𝐼] 58 
[𝐴𝑟𝑓] = [𝐴𝑟𝑓𝑇] − [𝐴𝑟𝑓𝑀𝑑𝑚] 59 
[𝑀𝑑𝑚2] = [𝑀𝑑𝑚2𝑇] − [𝐴𝑟𝑓𝑀𝑑𝑚] 60 

[𝑝53ℎ𝑒𝑙𝑝𝑒𝑟] = [𝑝53𝑎𝑇] − [𝑝53𝑘𝑖𝑙𝑙𝑒𝑟] 61 

𝑘𝑑𝑝53𝑝𝑝 =
1

(1 + 𝑓𝑎𝑐1 ∗ 𝑑𝑛𝑎𝑑𝑎𝑚𝑎𝑔𝑒)
 

62 

𝑘𝑑𝑚𝑑𝑚2 = 𝑘𝑑𝑚𝑑𝑚2𝑝 + 𝑘𝑑𝑚𝑑𝑚2𝑝𝑝 ∗ 𝑑𝑛𝑎𝑑𝑎𝑚𝑎𝑔𝑒 63 

𝑘𝑑𝑒2𝑓𝑑𝑛𝑎𝑑𝑎 =
1

(1 + 𝑓𝑎𝑐2 ∗ 𝑑𝑛𝑎𝑑𝑎𝑚𝑎𝑔𝑒)
 

64 

 

Parameter description 

Symbol Description Value 
dnadamage Magnitude of DNA damage Varied 
𝑘𝑠𝑝53 Rate constant of constitutive p53 synthesis 0.5time-1 

kdp53p Rate constant of basal p53 degradation 0.1time-1 
kap53 Rate constant of DNA damage driven p53 activation 0.5time-1 
kip53 Rate constant of p53 inactivation 0.05time-1 
kkip53 Rate constant of p53 killer activation driven by p53DINP1 0.07time-1 
kkidp53 Rate constant of p53 killer inactivation 0.14time-1 
Jpp53 Michaelis constant for phosphorylation of p53 helper 0.5 
Jdpp53 Michaelis constant for dephosphorylation of p53 killer 0.1 
ksmdm2p Rate constant of constitutive Mdm2 synthesis 0.02time-1 
ksmdm2pp Rate constant of Mdm2 synthesis driven by p53 0.3time-1 
kdmdm2p Rate constant of basal Mdm2 degradation 0.1time-1 
kdmdm2pp Rate constant of Mdm2 degradation driven by DNA damage 1time-1 
ksarfp Rate constant of constitutive Arf synthesis 0.01time-1 
ksarfpp Rate constant of Arf synthesis driven by E2F 0.3time-1 
kdarf Rate constant of Arf degradation 0.1time-1 
kasam Association rate constant of Arf and Mdm2 10time-1 
kdsam Dissociation rate constant of Arf-Mdm2 complex 2time-1 
ksdinp1 Rate constant of basal (constitutive) p53DINP1 synthesis 0.0006time-1 
ksdinp2 Rate constant of p53DINP1 synthesis driven by p53 helper 0.016time-1 
ksdinp3 Rate constant of p53DINP1 synthesis driven by p53 killer and E2F 0.1time-1 
kddinp Rate constant of p53DINP1 degradation 0.01time-1 
khdinp Half saturation constant of p53 helper for p53DINP1 synthesis 0.5 
khdinp1 Half saturation constant of p53 killer for p53DINP1 synthesis 0.5 
khdinp2 Half saturation constant of E2F for p53DINP1 synthesis 1.2 
S Mitogen level 0 
kscycds Rate constant of Cyclin D(CycD) synthesis driven by Mitogen 0.008time-1 
kscycdg Rate constant of CycD nuclear activity induction driven by DNA 

damage 
0.01time-1 
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kdcycd Rate constant of CycD degradation 0.001time-1 
kscyceb Rate constant of basal (constitutive) Cyclin E(CycE) synthesis 0.0002time-1 
kscyce Rate constant of CycE synthesis driven by E2F 0.004time-1 
kdcyce Rate constant of CycE degradation 0.001time-1 
khcyce Half saturation constant of E2F for CycE synthesis 0.25 
kse2fb Rate constant of basal(constitutive) E2F synthesis 0.0003time-1 
kse2f Rate constant of auto-regulated E2F synthesis 0.004time-1 
kde2f Rate constant of E2F degradation 0.004time-1 
khe2f Half saturation constant of E2F for its synthesis 0.25 
[RbT] Total concentration of Rb 1 
kase2f Association rate constant of E2F and Rb; E2F and Rbp 100time-1 
kdise2f Dissociation rate constant of Comp1 and Comp2 1time-1 
kprb Phosphorylation rate constant of Rb/Comp1 by CycD-Cdk4/6 5time-1 
kprbp Phosphorylation rate constant of Rbp/Comp2 by CycE-Cdk2/p25-

Cdk5 
2time-1 

kpprbcyce Phosphorylation rate constant of Rb/Comp1 by CycE-Cdk2 0.5time-1 
kpprb Phosphorylation rate constant of Rb/Comp1 by p25-Cdk5 0.25time-1 
kdprbp Dephosphorylation rate constant of Rbp/Comp2 1time-1 
kdprbpp Dephosphorylation rate constant of Rbpp 0.1time-1 
[p25] Total concentration of p25 0 
Jprb Michaelis constant for phosphorylation of Rb/Comp1 0.01 
Jprbp Michaelis constant for hyper-phosphorylation of Rbp/Comp2 0.05 
Jpprb Michaelis constant for hyper-phosphorylation of Rb/Comp1 0.05 
Jdprb Michaelis constant for dephosphorylation of Rbp/Comp2/Rbpp 0.05 
ksckib Rate constant of basal(constitutive) CDKI synthesis 0.04time-1 
ksckip53h Rate constant of CDKI synthesis driven by p53 helper 0.2time-1 
ksckip53k Rate constant of CDKI synthesis driven by p53 killer 0time-1 
kdcki Rate constant of basal CDKI degradation 0.2time-1 
kdckic Rate constant of CDKI degradation driven by ubiquitin ligase 1time-1 
kascki Association rate constant of CKI and Cyclin-Cdk complex 100time-1 
kdiscki Dissociation rate constant of CDKI-Cyclin-Cdk complex 0.1time-1 
fac1 Weighted factor representing effect of DNA damage on p53 

stability 
0.1 

fac2 Weighted factor representing effect of DNA damage on E2F 
stability 

0.3 

ksubl Rate constant of basal(constitutive) ubiquitin ligase synthesis 0.004time-1 
kdubl Rate constant of ubiquitin ligase degradation 0.002time-1 
kdublc Rate constant of ubiquitin ligase degradation driven by APC/C-

Cdh1 
0.2time-1 

[Cdh1dp] Total concentration of dephosphorylated APC/C-Cdh1 1 
 

Dynamic variable description 

Symbol Description Initial 
Condition 

[p53T] The total concentration of p53 0.374 
[p53aT] The total concentration of activated p53 0 
[p53killer] Concentration of p53 killer 0 
[Mdm2T] The total concentration of Mdm2 1.323 
[ArfT] The total concentration of Arf 0.103 
[ArfMdm] Concentration of Arf-Mdm2 complex 0.087 
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[p53DINP] Concentration of p53DINP1 0.06 
[CycDT] The total concentration of Cyclin D(CycD) 0 
[CycET] The total concentration of Cyclin E(CycE) 0.216 
[E2FT] The total concentration of E2F transcription factor 0.079 
[Comp1] Concentration of Rb-E2F complex 0.078 
[Comp2] Concentration of Rbp-E2F complex 0 
[Rbp] Mono-phosphorylated Rb 0 
[Rbpp] Hyper-phosphorylated Rb 0.017 
[CKIT] The total concentration of cyclin dependent kinase inhibitors (CDKI) 0.2 
[CycECKI] Concentration of CycE-CDKI complex 0.183 
[CycDCKI] Concentration of CycD-CDKI complex 0 
[Ubl] The total concentration of Ubiquitin ligases 0.02 
[E2F] Concentration of free E2F transcription factor 0.001 
[𝑅𝑏] Concentration of free dephosphorylated Rb 0.905 
[𝐶𝑦𝑐𝐸] Concentration of free CycE complex 0.033 
[𝐶𝑦𝑐𝐷] Concentration of free CycD complex 0 
[𝐴𝑟𝑓] Concentration of free Arf 0.016 
[𝑀𝑑𝑚2] Concentration of free Mdm2 1.236 

[𝑝53ℎ𝑒𝑙𝑝𝑒𝑟] Concentration of p53 helper 0 
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APPENDIX C 

 

Model details of naïve T cell activation on antigen recognition  

(Additions to quiescence proliferation reversible transition model described in Appendix A) 

𝑑[𝑀𝑦𝑐]

𝑑𝑡
 = 𝑘𝑠𝑚 ∗ [𝑇𝐶𝑅] − 𝑘𝑑𝑚 ∗ [𝑀𝑦𝑐] 1 

𝑑[𝐷𝑐𝑎𝑓1]

𝑑𝑡
 =  𝑘𝑠𝑑𝑐𝑎𝑓1 ∗  [𝑀𝑦𝑐]   ̶  𝑘𝑑𝑑𝑐𝑎𝑓1 ∗  [𝐷𝑐𝑎𝑓1] 2 

𝑑[𝑀𝑑𝑚2]

𝑑𝑡
 = 𝑘𝑠𝑚𝑑𝑚2 ∗ [𝑇𝐶𝑅] − 𝑘𝑑𝑚𝑑𝑚2 ∗ [𝑀𝑑𝑚2] 3 

𝑑[𝑝53]

𝑑𝑡
 = 𝑘𝑠𝑝53𝑏  + 𝑘𝑠𝑝53 ∗ [𝑇𝐶𝑅] −  𝑘𝑑𝑝53 ∗ [𝑝53]  ∗  [𝑀𝑑𝑚2] ∗  [𝐷𝑐𝑎𝑓1] − 𝑘𝑑𝑝53𝑏

∗ [𝑝53]  
4 

𝑑[𝐶𝑦𝑐𝐷𝑇]

𝑑𝑡
=  𝑘𝑠𝑐𝑦𝑐𝑑𝑚 ∗ [𝑀𝑦𝑐] + 𝑘𝑠𝑐𝑦𝑐𝑑𝑠 ∗ [𝑇𝐶𝑅] −  𝑘𝑑𝑐𝑦𝑐𝑑 ∗ [𝐶𝑦𝑐𝐷𝑇] 5 

𝑑[𝐶𝑘𝑖𝑇]

𝑑𝑡
=  𝑘𝑠𝑐𝑘𝑖𝑏 + 𝑘𝑠𝑐𝑘𝑖 ∗  [𝑝53] − (𝑘𝑑𝑐𝑘𝑖 + 𝑘𝑑𝑐𝑘𝑖𝑐 ∗ ([𝐶𝑦𝑐𝐸] + [𝐶𝑦𝑐𝐴]) ∗ [𝑈𝑏𝑙]) ∗  [𝐶𝑘𝑖𝑇] 6 

 

Model parameter description 

Symbol Description Value  

TCR Antigen signal strength 1 

ksm Rate constant of Myc synthesis driven by antigen 0.1min-1 

kdm Rate constant of Myc degradation 0.1min-1 

ksdcaf1 Rate constant of Dcaf1 synthesis driven by Myc 0.0005min-1 

kddcaf1 Rate constant of Dcaf1 degradation 0.0005min-1 

ksmdm2 Rate constant of Mdm2 synthesis driven by antigen 0.001min-1 

kdmdm2 Rate constant of Mdm2 degradation 0.001min-1 

ksp53b Basal synthesis rate of p53 0.0002min-1 

ksp53 Rate constant of p53 synthesis driven by antigen 0.01min-1 

kdp53b Basal rate of p53 degradation 0.002min-1 

kdp53 Rate constant of p53 degradation driven by Mdm2 and Dcaf1 0.02min-1 

kscycdm Rate constant of Cyclin D synthesis driven by Myc 0.004min-1 

kscycds Rate constant of Cyclin D synthesis driven by antigen 0.004min-1 

kdcycd Rate constant of Cyclin D degradation 0.008min-1 

ksckib Rate constant of basal(constitutive) CKI synthesis 0min-1 

kscki Rate constant of p53 driven CKI synthesis 0.2min-1 

kdcki Rate constant of CKI degradation 0.2min-1 

kdckic Rate constant of CKI degradation driven by ubiquitin ligase 1min-1 

 

Dynamic variable description  

Symbol Description Initial  
Condition 

[Dcaf1] Concentration of Dcaf1 0 

[Mdm2] Concentration of Mdm2 0 

[p53] Concentration of p53 0.1 
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Model details of Myc protein stability 
𝑘𝑑𝑒𝑔𝑝𝑟𝑜 =  𝑑𝑚 ∗ [𝑀𝑦𝑐] + 𝑑𝑚𝑔 ∗ [𝑀𝑦𝑐𝑇58𝑀] + 𝑑𝑚𝑠 ∗ [𝑀𝑦𝑐𝑆62𝑃] + 𝑑𝑚𝑔𝑠 ∗ [𝑀𝑦𝑐𝑆62𝑃𝑇58𝑀]

+ 𝑑𝑚𝑡 ∗ [𝑀𝑦𝑐𝑇58𝑃] + 𝑘𝑑𝑔𝑙𝑠 ∗ [𝐺𝑙𝑠] + 𝑘𝑑𝑠𝑙𝑐 ∗ [𝑆𝐿𝐶] 

1 

𝑘𝑠𝑦𝑛𝑝𝑟𝑜 = (𝑘𝑠𝑚𝑏 ∗ [𝑇𝐶𝑅] + 𝑘𝑠𝑔𝑙𝑠 ∗
[𝑀𝑦𝑐𝑇

𝑛]

𝐾ℎ𝑔𝑙𝑠
𝑛 + [𝑀𝑦𝑐𝑇

𝑛]
+ 𝑘𝑠𝑠𝑙𝑐 ∗

[𝑀𝑦𝑐𝑇
𝑛]

𝐾ℎ𝑠𝑙𝑐
𝑛 + [𝑀𝑦𝑐𝑇

𝑛]
)  

∗
[𝑎𝑎𝑝𝑜𝑜𝑙]

𝐾𝑚𝑎𝑎 + [𝑎𝑎𝑝𝑜𝑜𝑙]
 

2 

𝑑[𝑀𝑦𝑐]

𝑑𝑡
=  𝑘𝑠𝑚𝑏 ∗ [𝑇𝐶𝑅] ∗

[𝑎𝑎𝑝𝑜𝑜𝑙]

𝐾𝑚𝑎𝑎 + [𝑎𝑎𝑝𝑜𝑜𝑙]
+ 𝑘𝑚𝑑 ∗

[𝑀𝑦𝑐𝑇58𝑀]

𝐾𝑑𝑚𝑒𝑡 + [𝑀𝑦𝑐𝑇58𝑀]
− 𝑘𝑚𝑠 ∗ [𝐸𝑟𝑘]

∗
[𝑀𝑦𝑐]

𝐾𝑚𝑠𝑒𝑟𝑘 + [𝑀𝑦𝑐]
− 𝑉𝑚𝑎𝑥𝑛 ∗

[𝑀𝑒𝑡1]

𝐾𝑚𝑒𝑡 + [𝑀𝑒𝑡1]
∗

[𝑀𝑦𝑐]

𝐾𝑚𝑔𝑛 + [𝑀𝑦𝑐]
−  𝑑𝑚 ∗ [𝑀𝑦𝑐] 

3 

𝑑[𝑀𝑦𝑐𝑇58𝑀]

𝑑𝑡
=  𝑉𝑚𝑎𝑥𝑛 ∗

[𝑀𝑒𝑡1]

𝐾𝑚𝑒𝑡 + [𝑀𝑒𝑡1]
∗

[𝑀𝑦𝑐]

𝐾𝑚𝑔𝑛 + [𝑀𝑦𝑐]
− 𝑘𝑚𝑑 ∗

[𝑀𝑦𝑐𝑇58𝑀]

𝐾𝑑𝑚𝑒𝑡 + [𝑀𝑦𝑐𝑇58𝑀]
− 𝑘𝑚𝑠

∗ [𝐸𝑟𝑘] ∗
[𝑀𝑦𝑐𝑇58𝑀]

𝐾𝑚𝑠𝑒𝑟𝑘 + [𝑀𝑦𝑐𝑇58𝑀]
  − 𝑑𝑚𝑔 ∗ [𝑀𝑦𝑐𝑇58𝑀] 

4 

𝑑[𝑀𝑦𝑐𝑆62𝑃]

𝑑𝑡
=  𝑘𝑚𝑠 ∗ [𝐸𝑟𝑘] ∗

[𝑀𝑦𝑐]

𝐾𝑚𝑠𝑒𝑟𝑘 + [𝑀𝑦𝑐]
+ 𝑘𝑚𝑑 ∗

[𝑀𝑦𝑐𝑆62𝑃𝑇58𝑀]

𝐾𝑑𝑚𝑒𝑡 + [𝑀𝑦𝑐𝑆62𝑃𝑇58𝑀]
−  𝑘𝑚𝑡

∗ [𝐺𝑠𝑘3𝛽] ∗
[𝑀𝑦𝑐𝑆62𝑃]

𝐾𝑚𝑡𝑔𝑠𝑘 + [𝑀𝑦𝑐𝑆62𝑃]
− 𝑉𝑚𝑎𝑥 ∗

[𝑀𝑒𝑡1]

𝐾𝑚𝑒𝑡 + [𝑀𝑒𝑡1]

∗
[𝑀𝑦𝑐𝑆62𝑃]

𝐾𝑚𝑔 + [𝑀𝑦𝑐𝑆62𝑃]
 −  𝑑𝑚𝑠 ∗ [𝑀𝑦𝑐𝑆62𝑃] 

5 

𝑑[𝑀𝑦𝑐𝑆62𝑃𝑇58𝑀]

𝑑𝑡

=  𝑉𝑚𝑎𝑥 ∗
[𝑀𝑒𝑡1]

𝐾𝑚𝑒𝑡 + [𝑀𝑒𝑡1]
∗

[𝑀𝑦𝑐𝑆62𝑃]

𝐾𝑚𝑔 + [𝑀𝑦𝑐𝑆62𝑃]
+ 𝑘𝑚𝑠 ∗ [𝐸𝑟𝑘]

∗
[𝑀𝑦𝑐𝑇58𝑀]

𝐾𝑚𝑠𝑒𝑟𝑘 + [𝑀𝑦𝑐𝑇58𝑀]
− 𝑘𝑚𝑑 ∗

[𝑀𝑦𝑐𝑆62𝑃𝑇58𝑀]

𝐾𝑑𝑚𝑒𝑡 + [𝑀𝑦𝑐𝑆62𝑃𝑇58𝑀]
 − 𝑑𝑚𝑔𝑠

∗ [𝑀𝑦𝑐𝑆62𝑃𝑇58𝑀] 

6 

𝑑[𝑀𝑦𝑐𝑇58𝑃]

𝑑𝑡
=   𝑘𝑚𝑡 ∗ [𝐺𝑠𝑘3𝛽] ∗

[𝑀𝑦𝑐𝑆62𝑃]

𝐾𝑚𝑡𝑔𝑠𝑘 + [𝑀𝑦𝑐𝑆62𝑃]
 − 𝑑𝑚𝑡 ∗ [𝑀𝑦𝑐𝑇58𝑃] 

7 

𝑑[𝐴𝑘𝑡𝑃]

𝑑𝑡
=   𝑘𝑎𝑝 ∗ [𝑃𝑖3𝑘] ∗

[𝐴𝑘𝑡]

𝐾𝑎𝑝𝑝𝑖3𝑘 + [𝐴𝑘𝑡]
− 𝑘𝑎𝑑 ∗

[𝐴𝑘𝑡𝑃]

𝐾𝑎𝑑𝑝𝑝 + [𝐴𝑘𝑡𝑃]
 

8 

𝑑[𝐺𝑠𝑘3𝛽]

𝑑𝑡
=   𝑘𝑔𝑑 ∗

[𝐺𝑠𝑘3𝛽𝑃]

𝐾𝑔𝑑𝑝𝑝 + [𝐺𝑠𝑘3𝛽𝑃]
− 𝑘𝑔𝑝 ∗ [𝐴𝑘𝑡𝑃] ∗

[𝐺𝑠𝑘3𝛽]

𝐾𝑔𝑝𝑎𝑘𝑡 + [𝐺𝑠𝑘3𝛽]
 

9 

𝑑[𝐺𝑙𝑠]

𝑑𝑡
=   (𝑘𝑠𝑔𝑙𝑠 ∗

[𝑀𝑦𝑐𝑇
𝑛]

𝐾ℎ𝑔𝑙𝑠
𝑛 + [𝑀𝑦𝑐𝑇

𝑛]
) ∗

[𝑎𝑎𝑝𝑜𝑜𝑙]

𝐾𝑚𝑎𝑎 + [𝑎𝑎𝑝𝑜𝑜𝑙]
− 𝑘𝑑𝑔𝑙𝑠 ∗ [𝐺𝑙𝑠] 

10 

𝑑[𝑀𝑒𝑡1]

𝑑𝑡
=   𝑘𝑐𝑎𝑡ℎ𝑒𝑥 ∗ [𝐺𝑙𝑢𝑐𝑜𝑠𝑒] ∗

[𝑎𝑎𝑝𝑜𝑜𝑙]

𝐾𝑐𝑎𝑡ℎ𝑒𝑥𝑜𝑔𝑡 + [𝑎𝑎𝑝𝑜𝑜𝑙]
−  𝑉𝑚𝑎𝑥 ∗

[𝑀𝑒𝑡1]

𝐾𝑚𝑒𝑡 + [𝑀𝑒𝑡1]

∗
[𝑀𝑦𝑐𝑆62𝑃]

𝐾𝑚𝑔 + [𝑀𝑦𝑐𝑆62𝑃]
− 𝑉𝑚𝑎𝑥𝑛 ∗

[𝑀𝑒𝑡1]

𝐾𝑚𝑒𝑡 + [𝑀𝑒𝑡1]
∗

[𝑀𝑦𝑐]

𝐾𝑚𝑔𝑛 + [𝑀𝑦𝑐]
 

11 
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𝑑[𝑎𝑎𝑝𝑜𝑜𝑙]

𝑑𝑡
=   (𝑘𝑑𝑝𝑟𝑜 + 𝑠𝑐𝑎𝑙𝑒𝑓𝑎𝑐2 ∗ 𝑘𝑖𝑚𝑝 ∗ [𝑆𝐿𝐶] ∗ [𝑎𝑎𝑒𝑥𝑡]) ∗ [𝑇𝐶𝑅] + 𝑘𝑑𝑒𝑔𝑝𝑟𝑜 − (𝑘𝑒𝑥𝑝

+ 𝑘𝑑𝑎𝑎𝑝) ∗ [𝑎𝑎𝑝𝑜𝑜𝑙] − 𝑘𝑠𝑦𝑛𝑝𝑟𝑜 −  𝑘𝑐𝑎𝑡 ∗ [𝐺𝑙𝑠] ∗
[𝑎𝑎𝑝𝑜𝑜𝑙]

𝐾𝑐𝑎𝑡𝑔𝑙𝑠 + [𝑎𝑎𝑝𝑜𝑜𝑙]
− 𝑘𝑐𝑎𝑡ℎ𝑒𝑥

∗ [𝐺𝑙𝑢𝑐𝑜𝑠𝑒] ∗
[𝑎𝑎𝑝𝑜𝑜𝑙]

𝐾𝑐𝑎𝑡ℎ𝑒𝑥𝑜𝑔𝑡 + [𝑎𝑎𝑝𝑜𝑜𝑙]
 

12 

𝑑[𝑎𝑎𝑒𝑥𝑡]

𝑑𝑡
=   𝑘𝑎𝑎𝑒𝑥 + 𝑠𝑐𝑎𝑙𝑒𝑓𝑎𝑐1 ∗ 𝑘𝑒𝑥𝑝 ∗ [𝑎𝑎𝑝𝑜𝑜𝑙] − (𝑘𝑑𝑎𝑎𝑒𝑥 + 𝑘𝑖𝑚𝑝 ∗ [𝑆𝐿𝐶] ∗ [𝑇𝐶𝑅]) ∗ [𝑎𝑎𝑒𝑥𝑡] 

13 

𝑑[𝑆𝐿𝐶]

𝑑𝑡
=   (𝑘𝑠𝑠𝑙𝑐 ∗

[𝑀𝑦𝑐𝑇
𝑛]

𝐾ℎ𝑠𝑙𝑐
𝑛 + [𝑀𝑦𝑐𝑇

𝑛]
) ∗

[𝑎𝑎𝑝𝑜𝑜𝑙]

𝐾𝑚𝑎𝑎 + [𝑎𝑎𝑝𝑜𝑜𝑙]
− 𝑘𝑑𝑠𝑙𝑐 ∗ [𝑆𝐿𝐶] 

14 

𝑑[𝑀𝑒𝑡2]

𝑑𝑡
=   𝑘𝑐𝑎𝑡 ∗ [𝐺𝑙𝑠] ∗

[𝑎𝑎𝑝𝑜𝑜𝑙]

𝐾𝑐𝑎𝑡𝑔𝑙𝑠 + [𝑎𝑎𝑝𝑜𝑜𝑙]
−  𝑘𝑑𝑚𝑒𝑡2 ∗ [𝑀𝑒𝑡2] 

15 

[𝐺𝑠𝑘3𝛽𝑃] = [𝐺𝑠𝑘3𝛽
T

] − [𝐺𝑠𝑘3𝛽] 16 
[𝐴𝑘𝑡] =  [𝐴𝑘𝑡T] − [𝐴𝑘𝑡𝑃] 17 

[MycT] = [Myc] + [MycS62P] + [MycT58P] + [MycT58M] + [MycT58MS62P] 18 
[Erk] = [𝐸𝑟𝑘𝑚𝑎𝑥] for ((t ≤ t1) OR (t2 ≤ t ≤ t3)) 𝑒𝑙𝑠𝑒 [𝐸𝑟𝑘𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙] 19 

[Pi3k] = [𝑃𝑖3𝑘𝑚𝑎𝑥] for ((t ≤ t1) OR (t2 ≤ t ≤ t3)) 𝑒𝑙𝑠𝑒 [𝑃𝑖3𝑘𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙] 20 
 

 

Model parameter description 

Symbol Description Value  

TCR T cell receptor specific antigen level 1 

𝐾𝑚𝑎𝑎 Activation coefficient of aapool for protein synthesis 3 

𝐾𝑎𝑝𝑝𝑖3𝑘 Michaelis constant for Akt phosphorylation 0.01 

𝑘𝑎𝑝 Rate constant of Akt phosphorylation 360hr-1 

𝐾𝑎𝑑𝑝𝑝 Michaelis constant for Akt dephosphorylation 0.01 

𝑘𝑎𝑑 Rate constant of Akt dephosphorylation 72hr-1 

𝐾𝑔𝑝𝑎𝑘𝑡 Michaelis constant for GSK3β phosphorylation 0.01 

𝑘𝑔𝑝 Rate constant of GSK3β phosphorylation 360hr-1 

𝐾𝑔𝑑𝑝𝑝 Michaelis constant for GSK3β dephosphorylation 0.01 

𝑘𝑔𝑑 Rate constant of GSK3β dephosphorylation 72hr-1 

𝐾𝑚𝑠𝑒𝑟𝑘  Michaelis constant for MycS62 phosphorylation 0.01 

𝑘𝑚𝑠 Rate constant of MycS62 phosphorylation 6hr-1 

𝐾𝑚𝑡𝑔𝑠𝑘 Michaelis constant for MycT58 phosphorylation 0.01 

𝑘𝑚𝑡 Rate constant of MycT58 phosphorylation 0.6hr-1 

𝑑𝑚 Rate constant of Myc degradation 2.08hr-1 

𝑑𝑚𝑔 Rate constant of MycT58M degradation 0.3hr-1 

𝑑𝑚𝑔𝑠 Rate constant of MycS62PT58M degradation 0.3hr-1 

𝑑𝑚𝑠 Rate constant of MycS62P degradation 0.3hr-1 

𝑑𝑚𝑡 Rate constant of MycT58P degradation 2.08hr-1 

t1erk Timing of first phase of ERK activation  1 

t2erk Timing of second phase of ERK activation 0 

t3erk Timing of end of second phase of ERK activation 0 

Erkmax Maximum activity of ERK 1 

Erkresidual Residual activity of ERK 0.1 

t1pi3k Timing of first phase of PI3K activation 1 

t2pi3k Timing of second phase of PI3K activation 0 

t3pi3k Timing of end of second phase of PI3K activation 0 
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Pi3kmax Maximum activity of PI3K 1 

Pi3kresidual Residual activity of PI3K 0.1 
𝐴𝑘𝑡𝑇 Total concentration of Akt 1 
𝐺𝑠𝑘3𝛽𝑇 Total concentration of GSK3β 1 

𝑉𝑚𝑎𝑥  Rate constant of MycS62P glycosylation 2.5hr-1 
𝑉𝑚𝑎𝑥𝑛 Rate constant of Myc glycosylation 0.5hr-1 
𝑘𝑚𝑑  Rate constant of Myc deglycosylation 0.1hr-1 
𝐾𝑚𝑔  Michaelis constant for MycS62P glycosylation 0.01 

𝐾𝑚𝑔𝑛 Michaelis constant for Myc glycosylation 0.5 

𝐾𝑑𝑚𝑒𝑡 Michaelis constant for Myc deglycosylation 0.01 

𝐾𝑚𝑒𝑡 Michaelis constant of Met1 for Myc deglycosylation 0.01 

n Cooperativity of Myc binding to target gene promoter 1 
𝑘ℎ𝑔𝑙𝑠  Activation coefficient for Gls synthesis 0.5 

𝑘𝑠𝑔𝑙𝑠  Rate constant of Gls synthesis 0.3hr-1 

𝑘𝑑𝑔𝑙𝑠  Rate constant of Gls degradation 0.025hr-1 

𝑘𝑐𝑎𝑡  Rate constant of glutaminolysis 10hr-1 
𝐾𝑐𝑎𝑡𝑔𝑙𝑠  Michaelis constant for glutaminolysis 0.01 

𝑘𝑐𝑎𝑡ℎ𝑒𝑥  Rate constant of glutamine metabolism in hexosamine biosynthesis pathway 1hr-1 
𝐾𝑐𝑎𝑡ℎ𝑒𝑥𝑜𝑔𝑡  Michaelis constant for glutamine utilization in hexosamine biosynthesis pathway 0.5 

Glucose Glucose level 1 

𝑘𝑑𝑚𝑒𝑡2 Rate constant of Met2 degradation 1hr-1 

𝑘𝑒𝑥𝑝  SLC mediated cytosolic export rate constant of amino acids 1 

𝑘𝑖𝑚𝑝  SLC mediated cytosolic import rate constant of amino acids 1 

𝑘𝑠𝑚𝑏  Rate constant of Myc synthesis driven by TCR signaling 5hr-1 

𝑘𝑠𝑠𝑙𝑐 Rate constant of SLC synthesis 0.05hr-1 

𝑘ℎ𝑠𝑙𝑐 Activation coefficient for SLC synthesis 0.5 

𝑘𝑑𝑠𝑙𝑐 Rate constant of SLC degradation 0.02hr-1 

𝑘𝑑𝑝𝑟𝑜 Rate constant of protein degradation by autophagy 15hr-1 

𝑘𝑑𝑎𝑎𝑝 Utilization rate constant of amino acids in non-protein components (e.g., nucleotides, 
GSH etc.) 

1hr-1 

𝑘𝑎𝑎𝑒𝑥 Basal cytosolic export rate constant of amino acids 100hr-1 

𝑘𝑑𝑎𝑎𝑒𝑥 Basal cytosolic import rate constant of amino acids 1hr-1 

scalefac1 Scaling factor to adjust for cytosol and extra-cellular volume ratio 0.1 

scalefac2 Scaling factor to adjust for cytosol and extra-cellular volume ratio 1 

 

Dynamic variable description  

Symbol Description Initial  
Condition 

[𝑀𝑦𝑐] Concentration of Myc 0 
[𝑀𝑦𝑐𝑇58𝑀] Concentration of T58 glycosylated Myc 0 
[𝑀𝑦𝑐𝑆62𝑃] Concentration of S62 phosphorylated Myc 0 

[𝑀𝑦𝑐𝑆62𝑃𝑇58𝑀] Concentration of S62 phosphorylated T58 glycosylated Myc 0 
[𝑀𝑦𝑐𝑇58𝑃] Concentration of T58 phosphorylated Myc 0 

[𝐴𝑘𝑡𝑃] Concentration of phosphorylated Akt 0.01 
[𝐺𝑠𝑘3𝛽] Concentration of unphosphorylated 𝐺𝑠𝑘3𝛽 1 

[𝐺𝑙𝑠] Concentration of Gls 0 
[𝑀𝑒𝑡1] Concentration of Met1 0 

[𝑎𝑎𝑝𝑜𝑜𝑙] Concentration of amino acids in cytosol 0 

[𝑎𝑎𝑒𝑥𝑡] Concentration of amino acids in extra-cellular space 100 
[𝑆𝐿𝐶] Concentration of SLC 0 

[𝑀𝑒𝑡2] Concentration of Met2 0 
[MycT] The total concentration of Myc 0 
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[𝐴𝑘𝑡] Concentration of unphosphorylated Akt 0.99 
[𝐺𝑠𝑘3𝛽𝑃] Concentration of phosphorylated 𝐺𝑠𝑘3𝛽 0 

 

 
Figure S1: Protein concentration data [380] of cell cycle inhibitors was used for CD4+ and CD8+ T cells 

comparison. Y axis represents concentration measured in μg/million cells; numbers along X axis 

represent the biological replicates. Error bars denote the standard deviation across replicates, data linked 

to figure 5.7. 

 

 
Figure S2: Protein concentration data [380] of cell cycle activators that regulate anti-proliferative 

response dynamics was used for CD4+ and CD8+ T cells comparison. Y axis represents concentration 

measured in μg/million cells; numbers along X axis represent the biological replicates. Error bars denote 

the standard deviation across replicates, data linked to figure 5.7. 
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Figure S3: Protein concentration data of Myc and its targets [380] was used for CD4+ and CD8+ T cells 

comparison. Y axis represents concentration measured in μg/million cells; X axis represents the biological 

replicates. Error bars denote the standard deviation across biological replicates, data linked to figure 5.7. 

 


