
Efficient Parallel Algorithms for Sparse Matrix Operations on a GPU
with Applications

Thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Computer Science and Engineering

by

Dharma Teja Vooturi
201207571

dharmateja.vooturi@research.iiit.ac.in

International Institute of Information Technology, Hyderabad
(Deemed to be University)

Hyderabad - 500 032, INDIA
June 2024

Copyright © Dharma Teja Vooturi, 2024

All Rights Reserved

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Efficient Parallel Algorithms for Sparse
Matrix Operations on a GPU with Applications” by Dharma Teja Vooturi, has been carried out
under my supervision and is not submitted elsewhere for a degree.

Date Adviser: Prof. Kishore Kothapalli

To My Parents

Venkanna and Sujatha

Acknowledgments

I would like to express my sincere gratitude to my advisor Prof. Kishore Kothapalli for his
excellent guidance and unwavering support through out my PhD journey. I would also like to
thank Dr. Girish Varma for guiding me on a key problem in my thesis.

I would like to thank the members of my thesis committee comprising of Dr. Yogesh Simmhan
from the Indian Institute of Science, Dr. Rupesh Narse from the Indian Institute of Technology
(Madras), and Prof. Kamalakar Karlapalem for their valuable feedback on the thesis.

I would like to thank all IIIT faculty and staff who strive to create the right environment for
students to blossom. I would like to thank my lab mates at Centre for Security, Theory, and Algo-
rithmic Research (CSTAR), who made my time at IIIT interesting and fun. I would like to specially
thank Jatin Agarwal for being there from the beginning through all the ups and downs.

I am grateful to TCS for supporting my PhD through TCS Research fellowship. I am also
grateful to IBM Research and Intel Labs for providing me the necessary industry exposure through
internship opportunities.

I would like to thank my parents who have strived hard to provide me better education and
supported my choice of doing PhD. I would like to thank my wife Dr. Mamatha and my son
Nirvaan for providing the necessary family support.

v

Abstract

Computational approaches use computing machines to perform functional tasks like image clas-
sification, speech recognition, fluid flow simulation, etc. A computational approach is composed of
many computational tasks, and the time taken to perform a functional task using a computational
approach depends on the time taken to process the underlying computational tasks of that compu-
tational approach. Furthermore, the time taken to perform a computational task depends on three
factors: the computing machine, algorithm and data structures, and the input to the computational
task. Improved run time performance for a computational task can be obtained by co-designing
algorithm and data structures while being aware of the target computing machine and the input.
A computational approach, when applied to a functional task, achieves a certain level of accuracy
and takes a certain amount of time to perform. While accuracy is independent of the computing
machine, time is dependent on the choice of the computing machine. Hence, better computa-
tional approaches can be designed by being aware of the computing machine. The proposed re-
search work is categorized into two themes: 1) Design efficient algorithms and data structures for
a computational task on a given instance of (computing machine, input class). 2) Design efficient
computational approaches for a functional task on a given computing machine. In these themes,
there are choices to be made on the computing machine, computational tasks, and computational
approaches. We chose GPU for the computing machine due to its high throughput, high memory
bandwidth, and its applicability in accelerating a wide variety of computational tasks from different
application domains. We chose sparse matrix operations for the computational tasks, as they play
a crucial role in computational approaches that are used to solve problems in application domains
like scientific computing, artificial intelligence(AI), and graph analytics. We chose Artificial Neu-
ral Networks(ANN) for the computational approach, as it is able to achieve human-level accuracy
for many functional tasks in the AI domain. The GPU computing machine and ANN computational
approach have kickstarted the AI revolution, and we made these choices because of the opportunity
it offers and the potential impact that can be created using our proposed co-design approach.

vi

vii

In the first part (Chapters 2-3) of the thesis, we focus on the co-design approach for designing
better algorithms and data structures for computational tasks on the GPU. We work on two compu-
tational tasks, namely QBMM (Matrix Multiplication computational task (C = A × B), where A
andB are Quasi Band sparse matrices), and HSOLVE (Matrix solver computational task (Ax = b),
where A is a Hines sparse matrix), and achieve an average speedup of 2× for QBMM and 2.5× for
HSOLVE by using the co-design approach.

In the second part (Chapters 4-8) of the thesis, we focus on GPU-aware computation approaches
based on Artificial Neural Networks (ANN) for efficiently performing functional tasks in the area
of Artificial Intelligence (AI). The efficiency of an ANN can be measured using four metrics:
accuracy, memory, compute, and runtime. Sparse ANNs, a subclass of ANNs, are shown to have
better memory and compute metrics with minimal/no loss in the accuracy metric compared to dense
ANNs. However, the only problem is that despite having less compute, sparse ANNs take more
time to process on GPU than dense ANNs. This is because sparse ANNs have irregular compute
and memory access, which is unsuitable for highly regular hardware like GPU. This problem can
be alleviated by making the sparsity structured. However, introducing structure negatively affects
the accuracy metric. The challenge, then is to design structured sparsity patterns that lead to better
runtime metric on the GPU while maintaining the accuracy metric.

Block sparsity pattern leads to better runtime performance on the GPU when compared to the
unstructured sparsity pattern, due to its regularity in compute and memory access patterns. So in
Chapter 5, we propose a novel method to train block sparse ANNs from scratch. Sparse ANNs
can be generated either by training from scratch or by finetuning. While training from scratch
provides maximum flexibility in generating sparse ANNs, finetuning is widely used to generate
sparse ANNs because it is faster and uses an already available pre-trained dense ANN as the starting
point. However, the main disadvantage of the finetuning method from a runtime perspective on
GPU is that finetuning is very sensitive to the imposed sparsity pattern, with accuracy inversely
proportional to the rigidity in the sparsity pattern. While block sparsity pattern leads to better
runtime performance on the GPU, its rigidity (a block must be either completely zero or not) leads
to less accurate sparse ANNs with finetuning method. So, to fix the rigidity in block sparsity
and make it more flexible for maintaining accuracy during finetuning, we introduce the idea of
having multiple blocking levels in the sparsity pattern. The main advantage of a sparsity pattern
with multiple blocking levels is its ability to retain essential parameters that play a crucial role in
achieving good accuracy for the finetuned sparse model while maintaining the structure required
for improving runtime performance.

viii

We propose two sparsity patterns with multiple blocking levels: HB (Hierarchical Block) in
Chapter 6 and RMB (Regularized Multi Block) in Chapter 7. With HB, we showed that the ac-
curacy gap present with plain block sparsity pattern can be significantly bridged while retaining
the potential to accelerate on the GPU. With a deep understanding of the GPU architecture and
finetuning dynamics, we build up on the HB sparsity pattern and design a more generic, uniform,
and accuracy-friendly RMB sparsity pattern by introducing regularizing constraints on multiple
blocking levels while retaining the flexibility required for maintaining accuracy. With the RMB
sparsity pattern, we reach an important milestone of achieving the same accuracy level as that of
the unstructured sparsity pattern (most suitable for accuracy and least suited for runtime perfor-
mance on GPU) while being 4-5x faster on the GPU for the industry standard image classification
task on Imagenet dataset using the Resnet50 model. We further apply our RMB sparsity pattern
on an image segmentation task and observe the same accuracy levels as the unstructured sparsity
pattern while being 4-5x faster on the GPU. It is also important to note that on the latest A100 and
H100 NVIDIA GPUs, hardware acceleration is provided for the 2:4 sparsity pattern, which is a
simple configuration of our generic RMB sparsity pattern.

Edge devices are widely deployed to perform AI tasks for latency, reliability, and privacy rea-
sons. These devices operate on a low power budget and thus have limited memory capacity and
compute capabilities. Because of the importance of edge devices and their unique characteristics,
there is a need to develop ANNs that are efficient on edge devices. In Chapter 8, we address
this need using our proposed RBGP (Ramanujan Bipartite Graph Product) framework. The RBGP
framework uses Ramanujan graphs to improve the accuracy metric by ensuring good connectivity
between neurons in the ANN. The RBGP framework uses the idea of graph products for improving
memory and runtime metrics by generating structured sparse ANNs with cloning and uniformity
properties. On the NVIDIA Jeston Nano GPU, we are able to achieve the same accuracy levels as
that of unstructured sparsity while reducing the memory requirement by half and being 7-10x faster
on the GPU. Even though the RBGP sparse ANNs are designed for edge devices, they achieve sim-
ilar gains on the NVIDIA V100 server GPU.

In summary, our work demonstrates that significant runtime benefit can be obtained for com-
putational tasks and functional tasks by using the co-design approach and hardware aware compu-
tational approaches respectively. Our choices of GPU for the computing machine, sparse matrix
operations for the computational tasks, and ANNs for the computational approach are made only to
demonstrate the potential benefit. Nevertheless, the same ideas can be applied to different choices
of computing machines, computational tasks that arise, and computational approaches that are used
to solve a wide variety of functional tasks from different application domains.

Contents

Chapter Page

1 Introduction . 1
1.1 Graphics Processing Unit (GPU) . 5

1.1.1 Architecture . 6
1.1.2 Programming Model (CUDA) . 6

1.2 Sparse Matrices . 7
1.2.1 Application Domains . 8
1.2.2 Sparse Matrix Operations on GPU . 9

1.3 Co-design Approach for Computational Tasks . 11
1.3.1 Input-aware Algorithms . 11
1.3.2 Hardware-aware Algorithms . 13
1.3.3 Input-aware Data Structures . 14
1.3.4 Hardware-aware Data Structures . 15
1.3.5 Codesign of Algorithm and Data Structure 16

1.4 Hardware-aware Computational Approach . 17
1.5 Document Flow . 18

2 Quasi-Band Sparse Matrix-Matrix Multiplication . 20
2.1 Preliminaries . 21
2.2 Algorithm . 22

2.2.1 Matrix Partition . 24
2.2.2 Multiplying Abands with Bbands . 24
2.2.3 Multiplying Asparse with Bbands . 25
2.2.4 Merging . 26

2.3 Experimental Results and Analysis . 26
2.3.1 Datasets . 26
2.3.2 Experimental Platform . 28
2.3.3 Results on Real-world Datasets . 28
2.3.4 Synthetic Datasets and Results . 30

2.4 Conclusion . 31

ix

CONTENTS x

3 Hines Matrix Solver . 32
3.1 Hines Matrix . 35

3.1.1 The Hodgkin-Huxley Model . 35
3.1.2 A General Form . 37
3.1.3 Necessary Conditions . 39

3.2 Our Approach . 40
3.2.1 EDD on an Undirected Graph . 40
3.2.2 Domain Matrix of Hines Matrix . 41
3.2.3 An O(N) Linear Algorithm for HinesSolver 43
3.2.4 EDD for HinesSolver on GPU . 45
3.2.5 Implementation Details . 48

3.3 Results and Analysis . 49
3.3.1 Platform . 49
3.3.2 Dataset . 49
3.3.3 Results . 49
3.3.4 Further Experiments . 50

3.4 Conclusion . 54

4 Sparse Neural Networks on GPU . 56
4.1 Artificial Neural Network Primer . 56
4.2 Sparse Neural Networks . 57
4.3 Runtime performance on GPU . 59
4.4 Sparsity Pattern Co-design . 60

5 Dynamic Block Sparse Reparameterization of Convolutional Neural Networks 63
5.1 Approach . 65
5.2 Experiments . 69

5.2.1 Effectiveness of DBSR on classification networks 69
5.2.2 Comparison with block pruning . 72
5.2.3 Semantic Segmentation . 73

5.3 Conclusion . 74

6 Hierarchical Block Sparse Neural Networks . 75
6.1 Approach . 76

6.1.1 Pruning Methodology . 77
6.1.2 Performance Model . 78

6.2 Results . 79
6.2.1 ResNet-v2-50/Imagenet . 79

6.3 Conclusion . 80

CONTENTS xi

7 Regularized Multi Block Sparse Neural Networks . 82
7.0.1 Our Contributions . 83

7.1 Preliminaries . 84
7.1.1 Sparse Matrix Structures . 84
7.1.2 Sparse Matrix Storage Formats . 85

7.2 Our Algorithm for RMBMM . 87
7.2.1 BLMM . 88
7.2.2 MBLMM . 88
7.2.3 RMBMM . 89

7.3 RMBMM on a GPU . 90
7.3.1 RMBMM-GPU . 90
7.3.2 Experimental Platform . 91
7.3.3 Exploring the RMB Sparsity Pattern Space 91

7.3.3.1 Varying Block Size . 91
7.3.3.2 Varying Grouping . 94
7.3.3.3 Varying Blocklet Matrix . 94
7.3.3.4 Varying Multi-Blocklet Matrix 95

7.3.4 Comparing RMBMM with CSRMM and BSRMM 96
7.4 Regularized Multi Block (RMB) Sparse Neural Networks 97

7.4.1 Generation of Sparse Neural Networks 97
7.4.1.1 Unstructured Pruning . 97
7.4.1.2 Block Pruning . 98
7.4.1.3 RMB Pruning . 98

7.4.2 Image Classification . 98
7.4.2.1 VGG11/CIFAR-100 . 101
7.4.2.2 Resnet18/CIFAR100 . 101
7.4.2.3 Resnet50/ILSVRC12 . 102

7.4.3 Image Segmentation . 103
7.4.3.1 FCN-Resnset{50,101}/VOC12: 103

7.4.4 Exploring the RMB Sparsity Pattern Space 104
7.4.4.1 Varying Block Size . 104
7.4.4.2 Varying Multi-Blocklet Matrix 105

7.5 Conclusion . 106

8 Ramanujan Bipartite Graph Products for Efficient Block Sparse Neural Networks 108
8.1 Preliminaries . 110
8.2 Ramanujan Bipartite Graph Product Framework 111

8.2.1 Ramanujan Bipartite Graph Generation 115
8.3 The RBGP Framework for GPU . 116

8.3.1 The RBGP4 Sparsity Pattern . 118
8.4 Results . 121

CONTENTS xii

8.4.1 Image Classification . 122
8.4.2 Machine Translation . 125

8.5 Conclusion . 127

9 Conclusions and Future Directions . 129
9.1 Conclusions . 129
9.2 Future Directions . 130

9.2.1 Optimal Structured Pruning Algorithms 130
9.2.2 GPU Aware Multi Block Sparse Training 130

Bibliography . 132

List of Figures

Figure Page

1.1 NVIDIA’s Volta V100 GPU (https://devblogs.nvidia.com/inside-volta/) 7
1.2 Sample of sparse matrices from scientific computing [22]. 8
1.3 Sample of sparse matrices from deep learning. 9
1.4 Sample of sparse matrices from graph analytics [22]. 10
1.5 The influence graph of a computational task. Algorithm and data structures are

used to perform a computational task. The choice of the computing machine and
the input to the computational task influences the design of the algorithm and data
structures. 12

1.6 Input-aware data structures. COO format only stores non zero values along with
row and column indices.DIA format only stores non zero diagonals with diagonal
indices. 14

1.7 Multi threaded matrix vector multiplication(c = A × b), where each thread com-
putes an element in c. Memory is divided into four banks, where consecutive loca-
tions in memory have consecutive bank id’s in a cyclical manner. 15

1.8 Influence graph for the design of computational approach for performing a func-
tional task. Accuracy,time, and computing machine influences the design of a com-
putational approach. 18

1.9 Sparse matrices in QBMM and HSOLVE sparse matrix operations 19

2.1 DIA, COOSR, and COOSC matrix storage formats. 22
2.2 Demonstration of key observations in Quasi Band Matrix Multiplication 23
2.3 Quasi Band Matrix Multiplication . 23
2.4 Results on real world datasets from [22]. 29
2.5 Percentage of time taken across the various steps of our algorithm on quasi-band

matrices from Table 2.3. 30
2.6 Studies on quasi-band matrices with varying bandPercentage, nnzPercentage and

spatial distribution of non-band Elements. 31

3.1 Multi compartment neuron modelling. 37

xiii

LIST OF FIGURES xiv

3.2 The general form of Hines matrix corresponding to compartmentalized neuron in
Figure 3.1b with J = [10,14]. 39

3.3 Decomposition strategies. 46
3.4 Recursive application of fine decomposition with K=3 46
3.5 Mapping Stage-1 computation to tridiagonal solver(TRSV) with three right hand

sides in MIN-TRSV. 47
3.6 Results on the input dataset. Our approach (R-FINE-TPT) achieves 2.5x speedup

on average over MIN-TRSV approach. 50
3.7 Impact of varying K on R-FINE-TPT approach. 51
3.8 Impact of varying recursion depth D on speedup. 51
3.9 Impact of varying resolution on R-FINE-TPT and MIN-TRSV approaches. 52
3.10 Impact of varying right hand sides on speedup. 52
3.11 Threshold function for matrix with multiple right hand sides 53
3.12 Best value of K in Fine Decomposition . 53

4.1 An example Sparse Feed Forward Neural Network(SNN) 58
4.2 Sparsity patterns . 60
4.3 The effect of sparsity pattern on the performance of the SDMM operation on a

V100 GPU. The matrix size is set to 4096 and the block size in the block sparsity
pattern is set to 32. The runtime for dense case is 10.5 ms. 60

4.4 Dual effect of sparsity pattern on the accuracy and the run time of a sparse neu-
ral network for image classification task on the CIFAR-100 dataset using VGG11
model. The error/accuracy for the dense neural network is 31.5/68.5. 62

4.5 Impact of sparsity pattern on accuracy and runtime metric 62

5.1 W and S are parameters of a neural network layer with block size (2x2). Before
training, S is initialized to 1. During training, S is regularized to induce sparsity.
At the end of the training, S becomes sparse due to regularization, and thus result
in a block sparse neural network layer. 65

5.2 Cache friendly blocking scheme for efficiently processing BSMM (block sparse
matrix multiplication) operation. 68

5.3 Comparison of block sparse models from DBSR approach with structured sparse
models from (SSS) [40] for the task of image classification on Imagenet dataset. . 70

5.4 Effect of varying block size on model efficiency. 71
5.5 Comparison of DBSR approach with block pruning approach on image classifica-

tion task over CIFAR datasets for VGG network with block size 32x32 72
5.6 Comparison of DBSR approach with block pruning approach on image classifica-

tion task over CIFAR datasets for Resnet20 network with block size 8x8 73

LIST OF FIGURES xv

6.1 Hierarchical block sparse(HBS) neural network layer L with three parameter groups
L1,L2, and L3. The corresponding parameter group matrices M1,M2,and M3 are
block sparse matrices with block sizes 4x4,2x2, and 1x1 respectively. 77

6.2 2-Level block sparse generation : Block sizes=[(2x2),(1x1)] sparsities=[50,75] . . . 78

7.1 A multi-block matrix with two block matrices of block sizes (2,3) and (2,2). 84
7.2 Negative and positive cases of a block matrix being a blocklet matrix. All the block

matrices have block size 2x2. 85
7.3 A regularized multi block matrix (RMB) with block size (bh, bw) = (8, 8). Each

block is either a multi-blocklet matrix or a zero matrix. 86
7.4 CRMB storage format for storing a RMB sparse matrix with block size (6,6). Each

non zero block in the matrix is stored in CMBL storage format, which inturn uses
CBL storage format to store blocklet matrices. 87

7.5 Varying block size in RMB sparsity pattern. 93
7.6 Varying grouping in RMBMM-GPU Algorithm. 95
7.7 Varying blocklet matrix for a given blocklet type. 96
7.8 Varying multi blocklet matrix configuration. 96
7.9 Speedup of RMBMM wrt CSR-B and BSR-B. 97
7.10 Separation of a blocklet matrix Abbl of type (2,2) from an input matrix Abres of

size (6,6). Block strengths are first calculated for each 2x2 block in Ares and a
block with maximum strength is chosen for each of the three row blocks. 99

7.11 Resnet50 network over ILSVRC12 dataset. Accuracy of the dense model is 76.13%. 102

8.1 Types of block sparse matrices with block size (4,4). In a BS matrix, a block is
either completely zero or not. In a CBS matrix, all non zero blocks have the same
non zero pattern. In a UBS matrix, all row/column blocks have equal number of
non zero blocks. A CUBS matrix is both a UBS matrix and a CBS matrix. 111

8.2 Bipartite graph product operation (⊗b) along with matrix view. Biadjacency matrix
of the product graph has CBS (Cloned Block Sparse) pattern with block size (2,2). 112

8.3 Biadjacency matrix BA of a bipartite graph generated using RBGP framework. BA
has RCUBS (Recursive Cloned Uniform Block Sparse) sparsity pattern with three
blocking levels (16, 16), (8, 8) and (2, 2). 113

8.4 2-lift operation on graph G. Clone graph Gc is first created and edges (u1, v1) and
(u2, v2) are randomly chosen to cross over with the corresponding edges (uc1, v

c
1)

and (uc2, v
c
2) respectively in the clone graph. 115

8.5 Sparse matrix multiplication using register blocking technique with a compatible
sparsity pattern. For a sparsity pattern to be compatible, RM row blocks in AT
corresponding to an element group in CT should have the same sparsity pattern. . . 120

LIST OF FIGURES xvi

8.6 Efficiency of RBGP4MM operation on GPU. In RBGP4 sparse matrix, sparsity is
due to base graphs Go and Gi. The sparsity of Go is set based on isp (Sparsity
of Gi) and total sparsity. For denser tiles, speedups are close to ideal and as isp
increases, efficiency decreases. Size of matrices are set to 4096x4096. 121

8.7 MatricesAs,B,and C are divided into 4,2, and 2 tiles respectively. Both dense, and
sparse tile cases have the same 50% sparsity. But to process a tile of C in dense tile
case using tiling approach, only half the B matrix needs to be accessed. Whereas
in the sparse tile case, entire B matrix needs to be accessed. 121

8.8 Throughput for VGG19 and WRN-40-4 networks on V100 GPU. 124
8.9 Throughput for VGG19 and WideResnet-40-4 (WRN) networks on Jetson Nano2GB

edge GPU. 125
8.10 Throughput of the key kernel (512-512-N) in Transformer network on V100 and

Jetson Nano GPUs. 128

List of Tables

Table Page

1.1 Key sparse matrix operations. 10

2.1 Glossary of Terms . 21
2.2 Properties of Band Matrices. Letter K stands for a thousand, and letter M stands

for a million. 27
2.3 Properties of Quasi-Band Matrices. Letter K stands for a thousand, and letter M

stands for a million. 27

3.1 Notation used in general form, algorithms and proof. 38
3.2 Details of neuron morphologies . 51

5.1 Block sparse models generated using DBSR approach for the task of image clas-
sification on Imagenet ILSVRC2012 dataset. Centre crop is used for calculating
error. 70

5.2 Comparison of block sparse models from DBSR approach with models from other
structured pruning methods for the task of image classification over Imagenet dataset.
We can see that DBSR models are more efficient in parameters and FLOPS when
compared to SSS models. 71

5.3 Block sparse ERFNet models with 16x16 block size for the task of semantic seg-
mentation over cityscapes dataset. 73

6.1 HBS configuration vs Retained percentage on ResNet-v2-50 model. 76
6.2 Varying sparsity with block size set to 1x1. 79
6.3 Varying block size with sparsity set to 50%. 79
6.4 Varying block size with two levels. (Cumulative-Sparsity=50) 80
6.5 Hierarchical block sparsity with varying distribution. (Cumulative-Sparsity=50) . . 80
6.6 Quasi block sparsity with varying distribution. (Cumulative-Sparsity=50) 81

xvii

LIST OF TABLES xviii

7.1 Storage cost (in MB) of the CRMB and the CSR data formats for storing a sparse
matrix of size 4096×4096 with an RMB sparsity pattern. CRMB-(x,y) corresponds
to an RMB sparsity pattern with blocklets of type (x,y)). 87

7.2 VGG11 network over CIFAR100 dataset. Accuracy of the pretrained dense model
is 68.58%. 101

7.3 Resnet18 network over CIFAR100 dataset. Accuracy of the pretrained dense model
in 72.9%. 102

7.4 FCN-Resnet50 network over VOC2012 dataset. Accuracy of the pretrained dense
model is 56.12%. 103

7.5 FCN-Resnet101 network over VOC2012 dataset. Accuracy of the pretrained dense
model is 60.09%. 104

7.6 Effect of varying block size in RMB on accuracy and runtime of VGG11 sparse
model. 104

7.7 Effect of varying block size in RMB on accuracy and runtime of Resnet18 sparse
model. 105

7.8 Effect of varying block size in RMB on accuracy and runtime of FCN-Resnet50
sparse model. 105

7.9 Effect of varying block size in RMB on accuracy and runtime of FCN-Resnet101
sparse model. 106

7.10 Effect of varying blocklet types in RMB on accuracy and runtime of VGG11 sparse
model. 106

7.11 Effect of varying blocklet types in RMB on accuracy and runtime of Resnet18
sparse model. 107

7.12 Effect of varying blocklet types in RMB on accuracy and runtime of FCN-Resnet50
sparse model. 107

7.13 Effect of varying blocklet types in RMB on accuracy and runtime of FCN-Resnet101
sparse model. 107

8.1 Memory and runtime of sparsity patterns for image classification on CIFAR10 and
CIFAR100 datasets using VGG19 networks running on V100 and Jetson Nano
GPUs. For block pattern, we set block size to be (4, 4). Memory is given in MB,
and time is given in milliseconds for one forward pass in training with 256 batch size.122

8.2 Memory and runtime of sparsity patterns for image classification on CIFAR10 and
CIFAR100 datasets using WideResnet-40-4 networks running on V100 and Jetson
Nano GPUs. For block pattern, we set block size to be (4, 4). Memory is given
in MB, and time is given in milliseconds for one forward pass in training with 128
batch size. 123

8.3 Machine translation on IWSLT (de to en) dataset using Transformer network. For
block pattern, we set the size to be 4x4. Dense transformer model has a BLEU
score of 34.51 takes up 150.56MB of memory. 126

LIST OF TABLES xix

8.4 Runtime performance of key kernels in transformer network for unstructured,block,
and RBGP4 sparsity patterns on V100 and Nano GPUs. For block pattern, we set
the size to be 4x4.Kernel notation X-Y-N corresponds to matrix multiplication with
matrix sizes (X,Y) and (Y,N). The value of N is set to 16K. 127

Chapter 1

Introduction

The ability to process computation by machines plays an essential role in advancing science,
technology, and engineering. From mechanical calculators to supercomputers, computing ma-
chines have grown tremendously in their capabilities and speed. For instance, the first commercial
CPU (Central Processing Unit), Intel 4004, launched in 1971, had a clock speed of 740 kHz.
Modern-day CPUs have clock speeds that go upwards of 5,000,000 kHz, a 6800x fold increment!
Despite this growth, the demand for faster and more capable computing machines is like never
before.

Modern day computing devices are based on the von Neumann Architecture (VNA), where a
computing machine consists of a CPU (processing and control units) and a memory unit. In VNA,
a computational task is expressed as a series of instructions and these instructions are processed
by the CPU. Synchronization on the CPU is done using a clock, and a given instruction takes a
fixed number of clock cycles to process. One of the earliest and cleanest way to improve CPU
performance is to increase the clock speed. By increasing the clock speed, the time taken for a
clock cycle decreases and thus the time for processing an instruction. But unfortunately, clock
rates have reached their saturation, and increasing clock rates any further will result in impractical
power requirements and heat dissipation. This is commonly known as the power wall [33].

Stagnated clock speed is not a dead end for the CPU performance. The performance of a CPU
can be increased by improving the instruction throughput. An instruction is processed in multiple
stages like fetch, decode and so on. One way to increase the instruction throughput is to have
multiple execution units for each stage of instruction and pipeline the instructions. This way, at
any given point of time multiple instructions are processed. Other techniques like out-of-order
execution, branch prediction, etc., are being used to increase the instruction throughput. But all of

1

these techniques are limited by the amount of parallelism available at the instruction level. This is
commonly known as the ILP (Instruction Level Parallelism) wall [33].

Memory unit is an integral part for CPU performance. The CPU needs to access the main
memory (RAM) for reading and writing the data. Over the years, the rate at which the CPU can
perform operations have grown much faster than the rate at which memory can be accessed from
the RAM. This scenario leads to CPU idling, where the CPU is waiting for memory access to
complete before processing the next operation. Computer architects have partially addressed this
problem by the use of intermediary fast memories (cache memory) between the CPU and the RAM.
The idea is to store frequently used data from the RAM in to a cache memory and reduce access
time by retrieving data from a faster cache memory than from the slow RAM. But the caches are
limited in size and work well only if the memory access patterns have spatial and temporal locality.
The higher rate at which operations can be performed on a CPU when compared to the lower rate
at which memory can be accessed from the RAM is commonly known as the memory wall [33].

The performance of a single core (computing unit) CPU is saturated due to the power, ILP,
and memory walls. So in order to provide more performance, computer architects have shifted
to multi-core designs, where a CPU has more than one core and these cores can process inde-
pendent computation in parallel to increase the CPU performance. Furthermore, technologies like
hyper-threading allowed for more efficient use of these multiple cores in the CPU. However, the
performance gains obtained on multi-core CPUs are not ideal i.e., doubling the number of cores
does not necessarily double the performance. The realized performance depends on various factors
like the amount of parallelism, the frequency of synchronization, memory access patterns, arith-
metic intensity, etc. Even though, a multi-core computing machine offers more performance than
a single core machine, they are still subjected to power, ILP, and memory walls.

Computational tasks are diverse in nature. For example, the computational task of adding two
arrays is very different from that of sorting an array. The former is embarrassingly parallel and can
be completed in a single step if there are enough computing cores. In contrast, the latter cannot be
performed in a single step irrespective of the number of computing cores available. This diversity
in computational tasks influences the design of computing machines. By and large, computing
machines can be classified into three categories, namely general-purpose, accelerator, and ASIC
(Application Specific Integrated Circuit). A CPU is an example of a general-purpose machine that
can process any computational task, and because of this generality, the performance is normalized
across the board. A GPU (Graphics Processing Unit) is an example of an accelerator that results in
more performance than a CPU for computational tasks that have a high degree of parallelism. On
the contrary, the GPU has less performance than a CPU for computational tasks that are sequential.

2

A TPU (Tensor Processing Unit) is an example of ASIC explicitly designed to accelerate machine
learning and artificial intelligence applications. Because of the diversity in computational tasks,
there is a need to develop different computing machines to maximize performance.

Orthogonal to the choice of a computing machine, the performance of a computational task
depends on the choice of data structures and algorithms. For example, suppose we consider the
computational task of searching a number in a sorted array of size N . In that case, the linear search
algorithm has O(N) time complexity, whereas the binary search algorithm has only O(logN)

time complexity. In another example, suppose you consider the computational task of counting
the number of edges in a sparse graph G(V,E). In that case, the adjacency matrix data structure
leads toO(N2) time complexity, whereas the adjacency list data structure leads toO(N+M) time
complexity, where N = |V | and M = |E|. Thus, using the right algorithms and data structures
can significantly improve the performance of a computational task.

The design of data structures and algorithms is influenced by two factors: the computing ma-
chine and the input to the algorithm. An algorithm/data structure that gives good performance on
one computing machine may not give similar performance on another computing machine. Sim-
ilarly, an algorithm/data structure that is good for one input class may not be the right choice for
another input class. Hence, the optimal performance for a computational task on a given instance
of (computing machine, input class) can be obtained by designing data structures and algorithms
that exploit the characteristics of the computing machine and the input class.

Computational approaches are used to perform functional tasks in the real world using comput-
ing machines. A functional task can be as trivial as solving a differential equation to as complex as
simulating the brain. A computational approach is primarily evaluated using two metrics: namely
accuracy and time. The goal is to design computational approaches that maximize accuracy on the
functional task and minimize time on the computing machine. On a given computing machine,
the runtime performance of a computational approach depends on the efficiency with which the
computing machine can execute the underlying computational tasks. For example, suppose the
computing machine supports parallelism, and the majority of the computational tasks in the chosen
computational approach are serial. In that case, the computing machine cannot efficiently execute
the underlying computational tasks.

The computing machine plays a critical role in the runtime performance of the low level com-
putational tasks and the high level computational approaches. Apart from the computing machine,
the input to a computational task also plays an important role in the runtime performance of the
computational task. Given these relationships, following is the core theme of our research:

3

• Design efficient algorithms and data structures for a computational task on a given instance
of (computing machine, input class). Design efficient computational approaches for a func-
tional task on a given computing machine.

Given the above theme, there are choices to be made on the computing machine, computational
tasks, and the computational approaches. We choose GPU for the computing machine, sparse
matrix operations for the computational tasks, and artificial neural networks for the computational
approach. The choices are made based on the available opportunities and the potential impact.
Below, we expound more on why these choices are made.

Why GPU? : GPU (Graphics Processing Unit) is a specialized computing machine that is de-
signed to accelerate a graphics rendering pipeline. The key characteristic of a graphics rendering
pipeline is that the computation is simple and parallel. The GPU is designed to exploit this by
having thousands of simple cores, and a high bandwidth memory. Earlier versions of the GPU
had fixed functionality with no support for programmability. Over time, the GPU has become
programmable, which allowed for flexibility in the graphics rendering pipeline and led to richer
graphics content. As an offshoot, the ability to program the GPU allowed for accelerating a wide
range of workloads that share similar computational characteristics as that of graphics. This phe-
nomenon is commonly referred to as GPGPU (General Purpose compute on GPU). Due to the
capability of the GPU to achieve significant performance gains for a wide variety of applications
while being power and cost efficient when compared to CPU, we choose GPU as the computing
machine.

Why sparse matrix operations? : BLAS (Basic Linear Algebra Subprograms) is a collection
of basic vector and matrix operations that are widely used in many computational approaches. GPU
offers significant performance gains for many dense BLAS operations like GEMV (Multiplication
of a matrix with a vector) and GEMM (Multiplication of a matrix with a matrix). Even though
dense BLAS operations are ubiquitous, many computational approaches in important domains like
scientific computing, deep learning, and graph analytics have sparse matrix operations, where one
or more operands are sparse, i.e., a significant number of elements are zeros. Sparse matrix op-
erations are more challenging to accelerate on GPU due to variability in the locations of non-zero
elements in the operands (vector, matrix). Not only is it challenging, but it is impossible to come
up with a single algorithm that provides optimal performance for all classes of the sparse operands.
One aspect of our core theme of the research proposal is to design efficient algorithms and data
structures that exploit the characteristics of the input to the computational task. Because of mul-
tiple sparse matrix classes (Diagonal, Block, etc.) that occur in different application domains, we
choose sparse matrix operations as the computational tasks.

4

Why Artificial Neural Networks? : Data and compute are growing at an exponential rate.
Computational approaches based on Artificial Neural Networks (ANN) that rely heavily on data
and compute are now capable of achieving human-level performance on many tasks such as image
classification, speech recognition, language translation, etc. Because of its importance, it is crucial
to design ANNs that are efficient in compute, memory, runtime, and accuracy on the task at hand.
An essential property of ANNs is that they are flexible. For the same task, one can design multi-
ple ANNs to achieve the same level of accuracy. On a given hardware, this flexibility offered by
ANN-based computational approaches allows us to design runtime-efficient ANNs without com-
promising on accuracy. Furthermore, training ANNs can sometimes take up to days, and improving
the runtime, even by a small factor, will have a significant impact. The majority of ANN compute
consists of matrix multiplication operations, which can be significantly accelerated by the GPU(our
choice of hardware). Hence, we choose ANN as the computational approach for our work.

1.1 Graphics Processing Unit (GPU)

A GPU is a specialized hardware designed to accelerate computation in graphics rendering
workloads. Due to strong thrust from gaming community to render more and more realistic graph-
ics, the processing capabilities of GPUs have dramatically increased. Computation in graphics
rendering workloads have following three main characteristics: 1) Large amount of computation,
2) High degree of parallelism and 3) Throughput over latency. At 4K resolution (3840× 2160) and
60 frames per second (fps), real time rendering requires to process over half a billion pixels every
second resulting in large amount of computation. As computation across pixels is independent, this
results in high degree of parallelism. As the scale at which human vision operates in-terms of fps
is limited, graphics processing workloads can be efficiently processed by focusing on throughput
rather than on latency.

The availability of high computational throughput and memory bandwidth on GPUs allowed for
the acceleration of workloads that share similar characteristics with graphics rendering workloads.
Realizing that GPUs can be used not just for accelerating graphics processing workloads, NVIDIA
developed CUDA [1], a proprietary framework for programming NVIDIA GPUs. This ability to
program GPUs opened up the possibility of accelerating many workloads from different domains
like scientific computing, machine learning, data analytics, etc. [66]. OpenCL [4] and SYCL [44]
frameworks emerged as open alternatives to program GPUs from all vendors, including NVIDIA.
GPUs from all vendors (NVIDIA, AMD, Intel, etc.) share the same key high-level architectural
design of multiple simple cores and high-bandwidth memory. In this section, we provide details on
the NVIDIA GPU architecture and the CUDA programming model.

5

1.1.1 Architecture

A GPU architecture is designed to be a throughput oriented processor aimed at workloads with
high degree of fine grained parallelism and vast amount of computeA. A GPU has large number
of simple cores grouped into units called streaming multiprocessors (SMs). A group of SMs are
packed into a TPC (Texture Processing Clusters) and a group of TPCs are further grouped into GPC
(Graphics Processing Clusters). Each SM has a set of registers, shared memory, and an L1 cache.
On some of the modern GPUs, the shared memory and L1 cache are pooled into one memory
sub-system and can be configured depending on the needs of a workload. Apart from having an L1
cache for each SM, a GPU has an L2 cache which is shared across all the SMs. A GPU has multiple
memory controllers which are shared by all SMs to fetch data from DRAM. In order to perform
computation, data has to go through the memory hierarchy of GPU all the way from DRAM to
registers. Figure 1.1 shows the architecture layout of NVIDIA Volta V100 GPU model.

Execution models on parallel architectures can be broadly classified into two classes, namely
SIMD (Single Instruction, Multiple data) and MIMD (Multiple Instruction Multiple Data). An
example of MIMD is a multi core CPU, where each core has an independent instruction stream and
can operate on different data elements. In the SIMD execution model, a single instruction stream
is shared across multiple cores and accesses different data elements. A GPU follows a variant
of SIMD model called the SIMT (Single Instruction Multiple Thread) execution model. In the
SIMT model, each core is assigned a thread and they share a single instruction stream with the
exception that some cores can be idle while others execute a single instruction. At the core of an
SM, computation is processed using a warp of threads using SIMT model, where the size of a warp
is fixed for a given GPU. Each SM has warp schedulers which schedules warps on to cores. When
a warp requires memory access, it is the job of warp scheduler to schedule an available warp onto
cores in the SM. Apart for this, some GPUs have support for accelerating matrix operations using
systolic arrays and has native support for different data types like bfloat16, tf32, fp8, int8, fp4 etc.

1.1.2 Programming Model (CUDA)

CUDA (Compute Unified Device Architecture) is a parallel computing framework developed
for harnessing the computational power of GPU for general purpose compute. CUDA provides
extensions for popular programming languages like C, C++ and Fortran. These extensions are used
by programmer to express parallelism in a simple and easy manner. A compute task is broken down
into computational tasks called GPU kernels. Each kernel is launched with a specified number of
threads. Threads are grouped into thread blocks and these thread blocks are then grouped into

6

Figure 1.1: NVIDIA’s Volta V100 GPU (https://devblogs.nvidia.com/inside-volta/)

grid blocks. Grouping of thread and grid blocks is upto the programmer and is configured for
each kernel. Once the kernel is launched, thread blocks in a grid are enumerated and launched
on SMs based on the availability of resources. On an SM, threads of a thread block are executed
concurrently and thread blocks themselves can execute concurrently on an SM.A thread block is
active until all threads within the thread block are complete. Once a thread block is completed,
a new thread block is scheduled in its place. A kernel finishes when all the thread blocks in the
kernel are processed.

1.2 Sparse Matrices

A sparse matrix is a matrix where a significant number of elements in the matrix have zero
value. A sparse matrix operation is a matrix operation, where one or more operands are sparse.
When compared to a dense matrix, the main advantage of a sparse matrix is that it can be stored
and processed efficiently by skipping the storage and compute corresponding to zero elements.
Sparse matrices come from many different domains of computing and have multiple operations. In
this section, we first go through some key application domains and show how they are generated
and the importance of sparse matrix computations in those domains. We also discuss some of the
key sparse matrix operations in context of GPU hardware.

7

1.2.1 Application Domains

Scientific computing: Mathematical models which model natural phenomenon in science are
typically represented in the form of PDE’s (Partial Differential Equations). These PDE’s are then
solved by discretizing spatial dimension using finite difference/element methods. This discretiza-
tion in space leads to sparse matrices and to compute values at those discrete locations, one needs
to solve a sparse matrix system Ax = b, where A is a sparse matrix. Examples of sparse matrices
that arise in scientific computing can be seen in Figure 1.2. A sparse matrix system can be solved
either by using a direct method or an iterative method. But regardless of the choice one makes, both
the methods involve operations on sparse matrices which need to be performed at every time step
of the simulation. So parallelizing sparse computations in scientific computing greatly decreases
the simulation time and will hasten scientific discoveries.

(a) lshp3025 (b) ukerbe1 dual (c) can 715

Figure 1.2: Sample of sparse matrices from scientific computing [22].

Deep learning: Modern day intelligent systems like speech recognition, face detection, lan-
guage translation, etc. are based on deep neural networks. A typical deep neural network is com-
posed of many layers. The Fully Connected (FC) layer, a key layer in deep neural networks takes
in an input neuron tensor x and produces an output neuron vector y using a parameter matrix W .
In the FC layer, all input neurons are connected to all output neurons. The value of neuron yi is
obtained by performing a weighted summation of x with row vector wi. Thus, to compute all of
y, we need to perform a matrix multiplication y = Wx, where W is the weight matrix with wi

as the ith row. The weights of a neural network are initialized at random and are adjusted based
on the gradients calculated from backpropagation technique at every time step. Once the neural
network/model is sufficiently trained, pruning techniques [28–30, 49] can be employed to remove
significant number of elements in weight matrix W with minimal loss to model accuracy. Pruning

8

elements in weight matrixW , converts a dense matrix into a sparse matrix and this leads to a sparse
model which has less computational complexity and storage than that of dense model. In Figure
1.3, we can see some of the sparse matrices obtained by pruning dense neural networks. Once a
sparse model is generated, it is deployed in cloud/mobile/IOT setting and is processed again and
again for the lifetime of the application. Hence, it becomes extremely important that sparse matrix
operations that occur in deep learning are processed efficiently.

(a) conv1 90 (b) res2a branch2b 90 (c) res3a branch1 90

Figure 1.3: Sample of sparse matrices from deep learning.

Graph analytics: A graph models pairwise relationships between different entities and is used
to capture relationships in social networks, biological networks, etc. These relationships/edges
among entities are typically captured using an adjacency matrix A, where each entry A[i, j] cor-
responds to relationship between entities i and j. Many of the adjacency matrices that come from
real world graphs are highly sparse and some of them are shown in Figure 1.4. Many graph compu-
tations like multi-source breadth first search, triangle counting, betweenness centrality etc require
operations involving sparse adjacency matrix [42]. Thus by accelerating sparse matrix operations
in graphs, graph analytics can be accelerated.

1.2.2 Sparse Matrix Operations on GPU

Table 1.1 lists some of the key sparse matrix operations that occur in many applications.
SPMV: Computation in SPMV (y = As × x) involves multiplying a sparse matrix As with a

dense vector x to produce a dense output vector y. In SPMV, each element in y can be processed
independently and this leads to high degree of parallelism. As A is a sparse matrix, the number of
nonzeros in each row varies and thus the amount of compute for processing elements in y. This
non uniformity in compute poses challenges for GPU architectures. For example, if we naı̈vely

9

(a) as-735 (b) email-Eu-core (c) p2p-Gnutella08

Figure 1.4: Sample of sparse matrices from graph analytics [22].

SPMV Multiplication of a sparse matrix with a dense vector.
CSRMM Multiplication of a sparse matrix with a dense matrix
SPMM Multiplication of two sparse matrices

SPSOLVE Solving a system of sparse linear equations

Table 1.1: Key sparse matrix operations.

assign a thread to compute an element y, the runtime is limited by the thread which has maximum
compute. Another challenge with SpMV is that it is a bandwidth bound kernel and its performance
is limited by the amount of bandwidth available on GPU.

CSRMM: In CSRMM (C = As × B), a sparse matrix As is multiplied with a dense matrix
B to produce a dense matrix C. As each element in C can be processed independently, CSRMM
has high degree of parallelism. Similar to SPMV, computation of elements across rows in C is non
uniform due to varied number of non zeros in each row. CSRMM requires multiple accesses to
elements in input matrices A and B. To compute elements in ith row of C, each element in C[i, :]

requires loading the ith row ofA into memory. Similarly to compute jth column inC, each element
in C[:, j] requires loading the jth column of B into memory. Efficient GPU algorithms exploit this
by loading portions of A and B into fast memories like registers, shared memory and then reusing
them as much as possible, while they are in fast memory. CSRMM is a compute bound kernel and
its performance is limited by amount of compute on GPU.

SPMM: In SPMM (Cs = As × Bs), two sparse matrices As and Bs are multiplied together to
generate a sparse matrix Cs. Similar to CSRMM, there is abundant parallelism as each non zero
element in C can be processed in parallel. Computation in SPMM is processed in following two

10

steps. In step 1, the non zeros in matrix Cs are identified and in step 2, computation correspond-
ing to non zeros in Cs is performed. The reason for the division is to have less memory footprint,
as we do not want to storeCs matrix in a dense format and do unnecessary compute for zeros inCs.

SPSOLVE: Any matrix solver takes the form (Ax = b), where matrix A and vector b are
known and vector x is the unknown. Solution x can be computed by using techniques like direct
methods like gauss elimination, LU factorization or by iterative methods like conjugate gradient,
GMRES etc. Majority of the compute in iterative methods comprises of SPMV operations. Parallel
algorithms for direct methods are more challenging than iterative methods, as majority of compu-
tation in iterative methods is comprised of SPMV operations, which are reasonably optimized on
GPU. For direct methods, techniques from graph theory are used to expose more parallelism and
regularity.

1.3 Co-design Approach for Computational Tasks

The design of algorithms and data structures for performing a computational task is influenced
by two factors, namely, the computing machine(hardware) and the input class. Figure 1.5 shows the
influence graph, where the (computing machine, algorithm, data structures, input) are nodes and
edges capture the influences between them. Designing an algorithm/data structure in isolation may
not always lead to optimal performance. Optimal performance can be obtained by co-designing
both algorithm and data structures in tandem. This co-design becomes even more critical when
the computing machine and the input have strong influences. In this section, we understand these
influences in detail and show that efficient algorithms and datastructures can be designed by being
aware of them.

1.3.1 Input-aware Algorithms

An algorithm takes an input, processes it, and produces an output. Given two inputs, an algo-
rithm may take different amount of time for them. For example, let us take the computational task
of sorting with two inputs where the first input is already sorted and the second input is unsorted.
If we use the quick sort algorithm [20] with first element as the pivot, the sorted input takes more
time than the unsorted input. This behaviour is not desirable as the algorithm is taking the worst
possible time for the best possible input. Now, if we know that the inputs to the algorithm are
either already sorted or almost sorted, we will not get good performance by using the quick sort

11

Figure 1.5: The influence graph of a computational task. Algorithm and data structures are used to
perform a computational task. The choice of the computing machine and the input to the computa-
tional task influences the design of the algorithm and data structures.

algorithm. This leads to the following important question : “For a given class of input, can we
design better algorithms by being aware of the properties of the input class ?” The answer is yes
and such algorithms are called input-aware algorithms. Let’s take a simple example of MV (Mul-
tiplication of a matrix A with a vector b) operation (c = A × b), where we expect input matrix
A to be sparse (significant number of elements are zeros). Both Algorithms 1 and 2 perform the
MV operation, but Algorithm 1 is invariant to the input and takes same amount of time for any A.
In contrast, Algorithm 2 is aware of the input A being sparse and exploits it for performance by
skipping computation corresponding to zero elements in A.

Algorithm 1 Multiplication of a sparse ma-

trix A with a vector b (Input agnostic)
1: for i=1:N do

2: for j=1:N do

3:

4: c[i] += A[i][j] × b[j]

5:

6: end for

7: end for

Algorithm 2 Multiplication of a sparse ma-

trix A with a vector b (Input-aware)
1: for i=1:N do

2: for j=1:N do

3: if A[i][j] != 0 then

4: c[i] += A[i][j] × b[j]

5: end if

6: end for

7: end for

12

1.3.2 Hardware-aware Algorithms

Computing machines(hardware) have varied features and capabilities. Due to this variability,
any single algorithm does not give optimal performance on all types of hardware. For example,
running a serial algorithm on a parallel hardware does not exploit the parallel computing capability
of the hardware and leads to sub-optimal performance. For a given hardware, efficient algorithms
can only be designed by being aware of the hardware and exploiting its capabilities. Let’s take a
simple example of MV (Multiplication of a matrix A with vector b) operation (c = A × b) on an
Intel CPU with hardware support for AVX (Advanced Vector eXtensions) instructions. AVX is a set
of instructions where simple operations like addition, subtraction etc, are performed on vectors of
a fixed size (4,8 etc). These vector instructions are accelerated by the underlying SIMD units in the
hardware and leads to increased performance. Both Algorithms 3 and 4 perform the MV operation,
where an entry in c is calculated in N/L steps (N is the size of the matrix and L is the vector size
of the AVX instruction). In each step, corresponding vectors of size L are multiplied and the result
is accumulated. The only difference is in Lines 6 to 8. In Algorithm 3, vector multiplication of
size L is serial, whereas in Algorithm 4, it is parallelized using an AVX instruction. This results in
superior performance for Algorithm 4 as it exploits the AVX capability of the hardware.

Algorithm 3 Multiplication of a matrix A

with a vector b (Hardware agnostic)
1: for i=1:N do

2: Vacc = [0,...,0] . Array of size L

3: for j=1:N/L do

4: V1 = A[i][j*L:(j+1)*L]

5: V2 = b[j*L:(j+1)*L]

6: for k=1:L do

7: Vacc[k] += V1[k]* V2[k]

8: end for

9: end for

10: c[i] = Σl=L−1
l=0 Vacc[l]

11: end for

Algorithm 4 Multiplication of a matrix A

with a vector b (Hardware-aware)
1: for i=1:N do

2: Vacc = [0,...,0] . Array of size L

3: for j=1:N/L do

4: V1 = A[i][j*L:(j+1)*L]

5: V2 = b[j*L:(j+1)*L]

6:

7: Vacc += AVX-MUL(V1,V2)

8:

9: end for

10: c[i] = Σl=L−1
l=0 Vacc[l]

11: end for

13

Figure 1.6: Input-aware data structures. COO format only stores non zero values along with row
and column indices.DIA format only stores non zero diagonals with diagonal indices.

1.3.3 Input-aware Data Structures

Data structures play a critical role in the run time performance of a computational task. In
Section 1.3.1, we have seen that efficient algorithms can be designed by being aware of the input.
Similarly, efficient data structures can be designed by being aware of the input. For a given input
class, the design of the data structures is driven by the properties of the input class. Let us under-
stand this idea using data structures for storing a matrix. A matrix is typically stored in either row
major format (rows are stored contiguously in memory) or in column major format (columns are
stored contiguously in memory). Sparse matrices (significant number of elements are zeros) are
a sub class of matrices, and if our input class is sparse matrices, then you can exploit the sparsity
property and store only the non zero elements of the matrix in a generic sparse matrix format like
COO (Coordinate) format, where non zeros along with its corresponding row and column indices
are stored. You can take this idea even further. Within sparse matrices, diagonal sparse matrices
are an input class where non zeros are aligned in the form of diagonals. Now, if the input class is
diagonal sparse matrices, then you can store the matrix in DIA(diagonal) format, where non zero
diagonals are stored along with diagonal indices. From Figure 1.6, we can see that, shifting to
COO format for sparse matrix input class decreases memory requirement from 16 to 12 dwords,
and shifting from COO format to DIA format for diagonal sparse matrix input class decreases the
memory requirement from 12 to 5 dwords.

14

(a) No padding (b) Column padding

Figure 1.7: Multi threaded matrix vector multiplication(c = A × b), where each thread computes
an element in c. Memory is divided into four banks, where consecutive locations in memory have
consecutive bank id’s in a cyclical manner.

1.3.4 Hardware-aware Data Structures

The capabilities and properties of two different hardware can be significantly different, and a
single choice of data structure may not result in optimal performance. This provides an opportunity
for designing efficient data structures by being aware of the hardware. Using an example of matrix-
vector (MV) multiplication (c = A × b) for the computational task and a GPU for the hardware,
let’s understand the idea of hardware-aware data structures. To perform MV on a GPU, we follow
a simple parallel algorithm, where each element in c is mapped to a thread, and each thread takes
N time steps to complete, whereN is the number of columns in the matrixA. Shared memory on a
GPU is divided into banks, where consecutive memory locations have straight bank id’s cyclically.
For example, when the bank size is 2, memory locations 1, 2, 3, 4 have bank id’s 1, 2, 1, 2. The
property of the shared memory is that the memory access time is inversely proportional to the
number of unique banks accessed by a warp of threads in a given time step. In Figure 1.7, we show
MV operation with two data structures, namely row-major and column-padded-row-major. In the
row-major case, all memory accesses into A matrix fall under a single bank in a given time step,
resulting in increased memory access times and decreased run-time performance. By shifting to
column-padded-row-major format, all memory accesses into A matrix fall into different banks in a
given time step, resulting in reduced memory access times and improved run-time performance.

15

1.3.5 Codesign of Algorithm and Data Structure

Sections 1.3.1-1.3.4 showed how efficient algorithms and data structures can be designed by
being aware of the hardware and input in isolation. But designing the algorithm or data structures
in isolation may not always lead to better performance for a given computational task. The better
option is to follow a co-design approach, where algorithms and data structures are designed in
tandem. Additionally, the effects of hardware and input make it even more important to follow a
co-design approach for better performance on the computational task.

In this section, let us understand the idea of co-design using a simple example. Let us take an
example of the computational task of finding the L1 norm (sum of absolute values of the matrix)
of a dense matrix on a CPU with a single level of cache memory. For the data structure, a dense
matrix can be stored either in row-major or column-major formats (See Figure 1.6). In row/column
format, the rows/columns are stored contiguously in memory. For the algorithm, the L1 norm of a
matrix can be computed either using row-by-row or column-by-column algorithms as described in
Algorithms 5 and 6 respectively. When looked at in isolation, the choice of data structure among
row-major and col-major and the choice of algorithm among row-by-row and column-by-column
are on equal footing. This choice in data structure and algorithm leads to four approaches, namely
RR (Row major for data structure and Row-by-row for algorithm), RC, CR, CC. Despite making
good choices for data structure and algorithms, all four approaches do not lead to equal performance
due to inconsistent memory access patterns and their effect on cache reuse.

In a CPU, the cache memory sits between the processor and the RAM and is an order of mag-
nitude faster for accessing memory. The role of cache memory is to store frequently used memory
portions in DRAM and feed them to the processor at a faster rate than DRAM. The cache size is
limited, and if needed, it has to make space for the new memory block by evicting the old memory
block, also known as a cache miss. This cache miss is costly as it requires accessing memory from
DRAM. In two of our approaches, i.e., RC and CR, every memory access will be a cache miss as
the memory accesses are strided by the number of rows and columns, respectively. On the other
hand, the memory access pattern for RR and RC has a stride of only 1, reducing the number of
cache-misses by a factor of L, where L is the number of elements in the cache line. Hence, it is im-
portant to follow a co-design approach for achieving optimal performance on a given computational
task.

16

Algorithm 5 L1 norm of a matrix A.

(Row by Row)
acc = 0

for row=1:A.rows do

for col=1:A.columns do

acc += A[row][col]

end for

end for

Algorithm 6 L1 norm of a matrix A.

(Column by column)
acc = 0

for col=1:A.columns do

for row=1:A.rows do

acc += A[row][col]

end for

end for

1.4 Hardware-aware Computational Approach

Computational approaches are used to perform many functional tasks like speech recognition,
fluid flow simulation, protein folding, etc. Unlike a computational task, where time is the only
characteristic, a functional task has an additional accuracy characteristic along with time. This
dual characteristics lead to two types of computational approaches, namely accuracy-centric and
time-centric. In accuracy-centric/time-centric approach, accuracy/time is optimized at the cost
of time/accuracy. In reality, it is not always possible to design a computational approach that is
optimal in both accuracy and time. While accuracy depends solely on the computational approach,
time depends on both the computational approach and the computing machine (hardware). On
a given hardware, two different computational approaches that have same accuracy and compute
(number of operations) may have different time due to the difference in the efficiencies with which
the underlying compute can be performed on that hardware. This effect of hardware on the time
of a computational approach implies that efficient computational approaches can be designed by
being aware of the hardware than by designing the computational approach in isolation. Figure 1.8
summarizes the influences on the design of the computational approach in context of the computing
machine (hardware).

17

Figure 1.8: Influence graph for the design of computational approach for performing a functional
task. Accuracy,time, and computing machine influences the design of a computational approach.

1.5 Document Flow

The thesis is divided into two parts. Part 1 comprises of Chapters 2-3, and Part 2 comprises of
Chapters 4-8. Part-1 focuses on co-design approach for computational tasks, and Part-2 focuses on
co-design approach for functional tasks. We conclude the thesis in Chapter 9.

18

PART-I
Matrix operations are the fundamental building blocks in many applications. Depending on the

number of non-zeros in the matrix operands, a matrix operation can be classified into two types,
namely dense matrix operation and sparse matrix operation. Unlike a dense matrix operation,
where all the matrix operands are dense matrices, a sparse matrix operation has one or more matrix
operands that are sparse matrices (A matrix where significant number of elements are zero values).
Two sparse matrices can have same number of non-zero elements, but can vastly differ in the
arrangement of non-zero elements and thus can lead to various classes of sparse matrices. This
variability makes it more challenging to design a single algorithm that results in good performance
across all the sparse matrix classes. Furthermore, on a hardware like GPU, different sparse matrix
classes lead to different levels of irregularity in compute and memory access patterns. This provides
a rich set of challenging problems to work up on using the co-design approach (Section 1.3).

Co-design approach helps in speeding up computational tasks by exploiting the properties of the
input and the hardware in the design of the algorithm and data structures. In Part-1 of the thesis,
we demonstrate the effectiveness of the co-design approach on the GPU hardware for two (compu-
tational tasks)/(sparse matrix operations), namely QBMM (Matrix Multiplication computational
task (C = A * B), where A and B are Quasi Band sparse matrices), and HSOLVE (Matrix solver
computational task (Ax=b), where A is a Hines sparse matrix).

(a) Quasi Band sparse Matrix : A multi-band
matrix along with non-zero elements in the
non-band region.

(b) Hines sparse matrix : A symmetric ma-
trix with only one non-zero element after each
main diagonal non-zero element.

Figure 1.9: Sparse matrices in QBMM and HSOLVE sparse matrix operations

19

Chapter 2

Quasi-Band Sparse Matrix-Matrix Multiplication

Multiplying two sparse matrices, denoted SPMM, is an important and challenging problem in
parallel computing with applications to a wide variety of disciplines including climate modeling,
computational fluid dynamics, and molecular dynamics [22]. Due to the importance of SPMM, a
number of works aimed at efficient algorithms and their implementations on a variety of architec-
tures are reported in the literature [13, 52, 72].

A current trend in parallel algorithm engineering is to focus on customizing algorithms based
on input characteristics. Such a customization allows the algorithms to benefit from the properties
of the input. Recent examples include finding the strongly connected components of real-world
graphs by Hong et al. [39], mapping graph traversals to a CPU+GPU heterogeneous platform by
Gharibieh et al. [26], sparse matrix-vector multiplication and matrix-matrix multiplication of scale
free matrices by Indarapu et al. [41] and Ramamoorthy et al. [72].

In this context, we note that applications such as aerodynamics and computational fluid dynam-
ics [22] produce sparse matrices called as quasi-band matrices that exhibit a near-diagonal nature
of sparsity. As noted by Yang et al. [85], many sparse matrices also can be reordered or divided
into a near-diagonal form.

In this chapter, we focus on quasi-band matrices and design a GPU algorithm to multiply two
such matrices. Our work extends the work of Yang et al. [85] who design a GPU algorithm for
multiplying a quasi-band matrix with a dense vector. Our algorithm starts by separating the in-
put quasi-band matrices into a diagonal part and the rest as a sparse part. Once such a separation
is achieved, we introduce specific optimizations to perform the four multiplications: the diago-
nal/sparse part with the diagonal/sparse part.

Our main technical contributions can be summarized as follows.

20

Table 2.1: Glossary of Terms

Term Description
nnz Number of nonzero elements in a matrix.

nnzPercentage Percentage of NNZ to all elements in matrix.
bandPercentage Percentage of NNZ in band part to NNZ in matrix.
bandOccupancy Percentage of NNZ in band part to all elements in band part.

bandCount Number of bands present in the matrix.
diagonalCount Total number of diagonals across all the bands in the matrix.

• We propose an algorithm (see Section 2.2) for multiplying two sparse quasi-band matrices.
Our algorithm identifies the indices of the output matrix that will have nonzero entries and
uses this information to manage the space required and an estimate of the work required.

• An implementation of our algorithm on an Nvidia K40 GPU achieves a speedup of 5x and
2x on average over a collection of band and quasi-band matrices, respectively, taken from
the University of Florida dataset [22]. (See Section 2.3).

• We also perform experiments on synthetic quasi-band matrices to understand the effect of
the nature of the matrix on the speedup. (See Section 2.3).

2.1 Preliminaries

We start with a few definitions. If all the nonzero elements in a matrix are in a single diagonal
then that matrix is called a uni-diagonal matrix. If there exists a diagonal index pair (i, j) such that
i ≤ j and all the non-zero elements of a matrix are present between diagonals di (leftOffset), dj
(rightOffset) then such a matrix is said to be a uni-band matrix with a bandwidth of (j − i + 1).
If multiple such disjoint pairs of indices exist then it is called a multi-band matrix. Uni-band and
multi-band matrices are commonly referred to as band matrices. A band matrix along with some
non-zero elements in the non-band diagonals is called a quasi-band matrix. We also use the terms
defined in Table 2.1 that indicate some of the properties of quasi-band matrices. We make use of
the following data structures for storing the quasi band sparse matrix.

DIA Format [9] : Each diagonal in the matrix with at least one nonzero is stored as a column
array of length equal to the number of rows in the matrix. Diagonals are numbered starting with
zero for the principal diagonal and−1 and +1 for the diagonals to the left and right of the principal

21

Figure 2.1: DIA, COOSR, and COOSC matrix storage formats.

diagonal, and so on. These numbers, called as diagonal offsets, are stored in a separate array called
offsetArray. Figure 2.1 shows an example of storing a sparse matrix in DIA format.

COOSR (COOSC) Format: These can be thought of as a mix of the COO and the CSR (CSC)
formats reported in [9]. Each non-zero element in a matrix can be mapped to a triplet (value,
row, column). In this format we store three arrays data, rowIndex, and colIndex each of length
nnz(number of non-zero elements in the matrix). Elements are ordered row (resp. column) wise in
the arrays. An array rowPtr (colPtr) of length [rows+ 1]([columns+ 1]) is also stored. An index
i in rowPtr (colPtr) array maps to the index value of first element of row (column) i in value array.
Figure 2.1 shows an example of storing a sparse matrix in COOSR and COOSC formats.

2.2 Algorithm

One of the prime difficulties of sparse matrix multiplication is the lack of any relation between
the nature and degree of sparsity of the input matrices and their product matrix. On multi- and
many-core architectures, other difficulties such as load imbalance imply that efficient sparse matrix
multiplication is often challenging. One way of addressing this difficulty is to look for particular
properties of the input matrices and their impact on the product matrix. To this end, focusing on
quasi-band matrices, we start with the following observations.

22

(a) Observation 1 example : Diagonal with index -2
in Aband when multiplied with diagonal with index
1 in Bband leads to diagonal with index -1 (-2+1) in
Cbb

(b) Observation 2 example : Non zero element at
index (0,1) when multiplied with band matrix with
diagonals (-1,0,1) results in contributing to output in
row 0 and columns (0,1,2) (-1+1, 0+1, 1+1)

Figure 2.2: Demonstration of key observations in Quasi Band Matrix Multiplication

Figure 2.3: Quasi Band Matrix Multiplication

Observation 1. Multiplying two uni-diagonal matrices A and B with diagonal offsets ao and bo

respectively results in another uni-diagonal matrix with diagonal offset (ao + bo).

Observation 2. When a matrix A having a single non-zero element aij is multiplied with a uni-

band matrix B defined by diagonal offsets (lefto, righto), in the product matrix C = A×B, only

elements in row i with column indices between [max(0, j + lefto) : min(Bcols − 1, j + righto)]

are effected.

To make use of the above observations, in the matrix product C = A × B, we start by parti-
tioning quasi-band matrices A and B into their band and non-band components denoted Abands
andAsparse, Bbands andBsparse respectively. As Figure 2.3 the matricesA andB can be written
as the sum of Abands, Asparse, and Bbands, Bsparse, respectively. Appealing to the distributive
nature of matrix multiplication over addition, we notice that the product matrix C := A × B is
the result of adding the matrices Cbb, Csb, Cbs, and Css.=, where Cbb = Abands × Bbands,
Csb = Asparse ×Bbands, Cbs = Abands ×Bsparse and Css = Asparse ×Bsparse. An outline
of the above approach is shown in Algorithm 7.

23

The computation of each of the four matrix products along with how to achieve the required
partitioning of A and B is described in subsections 2.2.1–2.2.3. For computing Css we use the
SPMM kernel from NVIDIA’s cusparse library [2].

Algorithm 7 Algorithm for multiplying quasi-band matrices A and B into C.

1: A = Abands +Asparse (Abands is A1
band +A2

band ++Am
band)

2: B = Bbands +Bsparse (Bbands is B1
band +B2

band ++Bn
band)

3: Cbb = Abands ×Bbands

4: Csb = Asparse ×Bbands

5: Cbs = Abands ×Bsparse

6: Css = Asparse ×Bsparse

7: C = MERGE(Cbb, Csb, Cbs, Css)

2.2.1 Matrix Partition

We first calculate diaOccupancy for each diagonal in the matrix. DiaOccupancy for a diag-
onal is defined as the percentage of non-zero elements in that diagonal to the rows of the matrix.
We filter all the diagonals which have diaOccupancy greater than a threshold diaOcc to a set S.
Diagonals in set S are potential pivots of bands. We start by identifying the band surrounding
the diagonal with the largest diaOccupancy in S. This is done by including this diagonal and the
diagonals to its left and right so long as their bandOccupancy is more than a threshold bandOcc.
These diagonals are then recognized as one band and the diagonals from S which intersect with
the band are removed from S. The process is repeated to locate other bands of diagonals until S is
empty. The diagonals that are chosen as part of some band are arranged in the DIA format. The left
over elements are arranged in the COOSR format for Asparse and COOSC format for Bsparse. As
threshold diaOcc is used for finding pivot diagonals of bands, we keep the value at 50%. We also
set bandOcc to be 40%, to ensure that bands are nearly half dense.

2.2.2 Multiplying Abands with Bbands

In this section we present optimizations that can be applied when we multiply two band matri-
ces. We perform the multiplication in two steps: a preprocessing step and a computation step.

In the preprocessing step, we use Observation 1 to allocate the correct space for the matrix
Cbb which we store in the DIA format. Each diagonal from Abands having offset ao can then be
multiplied with each diagonal inBbands having offset bo in parallel. Furthermore each row element

24

r in the resultant diagonal can be updated atomically in parallel using equation Cbb(ao + bo, r) +=

Abands(ao, r)×Bbands(bo, r+ao) provided diagonal offset ao + bo and row index r+ao are valid.
(For a matrix M represented in the DIA format, M(o, r) refers to the element with diagonal offset
o and row number r.). An outline of computation step is shown in Algorithm 8.

Algorithm 8 Multiplying Abands with Bbands.

1: for ao in Abands.offsetArray do
2: for bo in Bbands.offsetArray do
3: for r in [0 : Arows) do
4: if (−Arows < ao + bo < Bcols) and (0 <= r + ao < Arows) then
5: Cbb(ao + bo, r) = Abands(ao, r) ∗Bbands(bo, r + ao)
6: end if
7: end for
8: end for
9: end for

2.2.3 Multiplying Asparse with Bbands

We now use Observation 2 in this computation. We start with a preprocessing step where we
find all the column segments effected by Asparse×Bi

bands for any i. These segments may overlap
with each other. We proceed by merging these segments so that we can then allocate necessary
storage for the matrix Csb in the COOSR format.

In the actual computation step, we note from Observation 2 that an element e from Asparse at
row r and column c can be multiplied with each diagonal in Bbands having offset bo in parallel.
Such a computation effects at most one element in Csb with row r and column (c + bo). As Csb
is stored in the COOSR format, this element needs to be introduced in to row r of Csb by doing
binary search on column indices of row r. An outline of computation step is shown in Algo 9.
Using the COOSR format instead of CSR format increases the efficiency of our algorithm as we
have simultaneous access to the row and the column indices of elements. This can be observed in
steps 3 and 4 in Algorithm 9.

The multiplication of Abands with Bsparse is similar to that of Asparse×Bbands. In this case
row segments will be effected, instead of column segments. Another change to note is that we store
the matrix Cbs in the COOSC format.

25

Algorithm 9 Multiplying Asparse with Bsparse.

1: for i in [0 : Asparse.NNZ) do
2: for bo in Bbands.offsetArray do
3: r = Asparse.rowIndex[i]
4: c = Asparse.colIndex[i] + bo
5: if 0 ≤ c < B.cols then
6: index = SEARCH(c, Csb.colIndex[Csb.rowPtr[r]:Csb.rowPtr[r + 1]− 1])
7: Csb.data[index]+ = Asparse.data[i] ∗Bbands(bo, c)
8: end if
9: end for

10: end for

2.2.4 Merging

In the merging step, an element e at row r and column c in the matrix C has to be accumulated
from corresponding elements in the four sub-products Cbb, Csb, Cbs and Css. This is done in four
steps. In the first step, for every element with row index r and column index c in the matrix Cbs
we check if there is a corresponding element in any of the matrices Csb, Css, and Cbb. If it exists,
we consolidate the contribution of the element (r, c) in Cbs with one of the other three matrices.
In the second step, we consolidate overlapping elements in Css with elements in matrices Csb and
Cbb. In the third step, we consolidate overlapping elements in Csb with elements in matrix Cbb.
Having easy access to both the row and column indices via the COOSR/COOSC formats makes
the merge process efficient compared to using CSR/CSC formats.

We now have all the four subproducts that do not have any overlapping elements, but they all
are not in the same format. In the fourth step, we convert matrices Cbs and Cbb into the COOSR
format leaving us with four non-overlapping matrices in the COOSR format. It is now easy to
combine these four matrices to a single matrix C in the COOSR format. (See also [72].)

2.3 Experimental Results and Analysis

2.3.1 Datasets

We experiment with real-world band and quasi-band matrices from the University of Florida
sparse matrix collection [22]. The matrices we use and some of the properties are shown in Tables
2.2 and 2.3. We also experiment with a variety of synthetic datasets that help us understand the
impact of the nature of the matrix on our algorithm. These are described in Section 2.3.4.

26

Table 2.2: Properties of Band Matrices. Letter K stands for a thousand, and letter M stands for a
million.

Matrix Rows NNZ Band
Count

Diagonal
Count

Band
Occupancy

Band
Spread

Bai/af23560 24K 484K 5 33 62.50 12.90
Boeing/crystm03 25K 583K 27 39 88.80 689.21

Castrillon/denormal 89K 1156K 5 13 99.75 6.67
Averous/epb1 15K 95K 3 11 58.96 3.77

Norris/fv1 10K 87K 3 9 99.32 4.08
Nasa/nasa2146 2K 72K 3 45 76.63 13.79

Boeing/pcrystk03 25K 1751K 9 99 72.66 76.53
Oberwolfach/windscreen 22K 1482K 9 99 79.36 909.68

Nemeth/nemeth21 10K 1173K 1 169 73.39 0

Table 2.3: Properties of Quasi-Band Matrices. Letter K stands for a thousand, and letter M stands
for a million.

Matrix Rows NNZ Nonband
Elements

Band
Count

Diagonal
Count

Band
Percentage

Band
Occupancy

Schenk IBMSDS/ 103K 2M 9.5K 5 31 99.55 66.73
matrix 9

Fluorem/PR02R 161K 8.2M 61K 5 108 99.25 47
Boeing/pwtk 218K 11M 2.1M 3 71 81.46 61.31

Simon/raefsky3 21K 1.5M 34K 3 93 97.71 75.48
Schenk AFE/af shell9 505K 18M 10M 1 25 42.93 59.83

Norris/heart1 3557 1.4M 0.95M 1 239 31.51 52.32
DNVS/trdheim 22K 1.9M 1.4M 1 35 25.92 64.88
HB/cegb2802 2802 277K 156K 1 67 43.73 65

MathWorks/Sieber 2290 15K 8K 1 5 46.18 60.02
Muite/Chebyshev3 4101 37K 16K 1 9 55.59 44.43

27

2.3.2 Experimental Platform

We use the K40 GPU from the NVidia Tesla series in our experiments. The host on which K40
is mounted is an Intel i7-4790K CPU with 32GB of global memory. To program the GPU we used
CUDA API Version 6.5.

2.3.3 Results on Real-world Datasets

We show results as speedup when compared to SPMM kernel (cusparseScsrgemm) in NVIDIA’s
cusparse library [2] and SPMM kernel (mkl scsrmultcsr) from the Intel MKL library [3]. Both
cusparseScsrgemm and mkl scsrmultcsr expect the input matrices to be in the CSR format. The
computation is done in single precision.

Band Matrices: Figure 2.4a shows the speedup achieved by our algorithm on band matrices
from Table 2.2. In our algorithm, only steps partitioning and computing Abands × Bbands need to
be executed as the input matrices are band matrices. Speedup variations can be partly explained as
follows.

Firstly, notice that for matrices with more bandOccupancy, the number of unproductive com-
putations in our algorithm reduce. Hence, for our algorithm, a high bandOccupancy is helpful.
On the other hand, given that the input and the output matrices are band matrices, the number of
nonzeros in the output matrix depends on how bands are spread in the input matrices. We capture
the above via parameter bandSpread which is calculated as follows. Take the middle diagonal
in each band to be a pivot diagonal. Calculate the distance (absolute difference of the diagonal off-
set values) between all pairs of pivot diagonals. Divide sum by dimension and multiply it by 100
to arrive at bandSpread of the matrix. Table 2.2 shows the bandSpread value for all matrices
considered. It can now be noticed that the performance of the SPMM routine from cusparse

degrades as bandSpread increases. Hence, we expect that a high bandSpread usually results in a
bigger speedup keeping other parameters fixed.

Following the above, consider matrices af23560, crystm03, pcrystk03, and wind-
screen that have near equal size. Matrix af23560 has less bandOccupancy and less bandSpread
when compared to matrix crystm03. Hence the former has less speedup. Matrix windscreen
has high bandOccupancy and high bandSpread compared to that of matrix pcrystk03 resulting
in a better speedup. Matrices epb1, fv1, and nasa2146 have very small size and NNZ compared
to others. To offset the cost of partitioning and pre-processing, a reasonable size and NNZ are
desirable. Hence these matrices show a lesser speedup. Among matrices epb1 and fv1, epb1
has low bandOccupancy and low bandSpread resulting in low speedup.

28

 0

 2

 4

 6

 8

 10

 12

a
f2

3
5

6
0

c
ry

s
tm

0
3

d
e

n
o

rm
a

l

e
p

b
1

	

fv
1

		

n
a

s
a

2
1

4
6

p
c
ry

s
tk

0
3

w
in

d
s
c
re

e
n

n
e

m
e

th
2

1

S
p

e
e

d
 U

p

Matrix

cuSPARSE
MKL

(a) Band × Band. Average speedup of 5x and 6x is
achieved when compared to cuSPARSE and MKL
respectively.

 0.5
 1
 2
 4
 8

 16
 32
 64

m
a

tr
ix

_
9

P
R

0
2

R
	

p
w

tk
	

ra
e

fs
k
y
3

a
f_

s
h

e
ll9

h
e

a
rt

1
	

tr
d

h
e

im
	

c
e

g
b

2
8

0
2

S
ie

b
e

r	

C
h

e
b

y
s
h

e
v
3

S
p

e
e

d
 U

p

Matrix

cuSPARSE
MKL

(b) Quasi-Band × Quasi-Band. Average speedup
of 2x(Excluding Chebyshev3) and 1.3x is achieved
when compared to cuSPARSE and MKL respec-
tively.

Figure 2.4: Results on real world datasets from [22].

Quasi-band Matrices: Figure 2.4b shows the speedup achieved by our algorithm on quasi-
band matrices from Table 2.3. For quasi-band matrices, the performance of our algorithm and
also that of the SPMM library routine from cusparse depends on various factors such as nnzPer-
centage, bandPercentage, bandOccupancy, bandCount, diagonalCount, bandSpread, and the spatial
distribution of non-band elements. Because of various dependencies among these factors, it is in
general not possible to explain the speedup achieved.

On matrix 9, the high speedup achieved is due to its high bandPercentage. On the other hand,
though the matrix PR02R has a bandPercentage comparable to that of matrix 9, the speedup is not
as high due to poor bandOccupancy. For matrix trdheim, the low speedup can be attributed to
the fact that all the nonzero elements are present in a small band of diagonal indices (-531 to 531).
This ensures that also the cusparse library routine performs well. The matrix Chebyshev3

has its nonzero elements outside of the bands cohesively within the first four rows. Such a structure
is likely to create load imbalance in the cusparse library routine for SPMM which results in a high
speedup for our algorithm. (See also Experiment 3 in Section 2.3.4).

Profile: In Figure 2.5, we show the time taken by various steps of our algorithm on matrices
from Table 2.3 as a percentage of the overall time. As we use cusparse library for computing
Css, this suggests that indeed multiplying sparse matrices is always difficult and focusing on the
nature of sparsity is usually beneficial.

29

 0

 20

 40

 60

 80

 100

 120

 140

m
a
tr

ix
_
9

P
R

0
2
R

p
w

tk

ra
e
fs

k
y
3

a
f_

s
h
e
ll9

h
e
a
rt

1

tr
d
h
e
im

c
e
g
b
2
8
0
2

S
ie

b
e
r

C
h
e
b
y
s
h
e
v
3

P
e
rc

e
n
ta

g
e

Matrix

Matrix Partition
Band*Band

Sparse*Band

Band*Sparse
Sparse*Sparse

Merging

Figure 2.5: Percentage of time taken across the various steps of our algorithm on quasi-band ma-
trices from Table 2.3.

2.3.4 Synthetic Datasets and Results

We conduct three experiments with synthetic quasi-band matrices to understand the factors that
influence the speedup and runtime of our algorithm. We consider synthetic matrices with 16,000
rows, an nnzPercentage of 0.5%, a bandOccupancy of 90% and a bandPercentage of 95%. The
number of bands and the position of the bands are chosen uniformly at random.

In Experiment 1, we study the impact of bandPercentage and bandOccupancy. The results of
this study, shown in Figure 2.6a, indicate that a high bandPercentage is favorable to our algorithm
compared to bandOccupancy. In Experiment 2 we study the impact of nnzPercentage. The results
of this study, shown in Figure 2.6b, indicate that a high nnzPercentage improves the performance
of our algorithm. This can be understood from the highly parallel structure of the algorithm.

In Experiment 3, we consider three data layouts i.e, RANDOM,ROW-BLOCK and COLUMN-
BLOCK for the non-band elements in matrix. In case of RANDOM, the non-band elements are
spread uniformly at random in non-band part. In case of ROW-BLOCK and COLUMN-BLOCK,
the non-band elements are filled in contiguous rows and columns respectively. Figure 2.6c shows
the speedup as we vary the bandPercentage for a given data layout. As can be observed, our algo-
rithm too suffers in the RANDOM distribution model but is faster compared to the library routine
from cusparse once the bandPercentage crosses 85%. Further, the speedup on COLUMN-

30

BLOCK distribution is lower compared to that of ROW-BLOCK. The reason for this can be at-
tributed to the fact that the library routine from cusparse does 5X times better on COLUMN-
BLOCK compared to ROW-BLOCK as there is lesser chance of load imbalance in the COLUMN-
BLOCK.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

85 90 95 100

S
p

e
e

d
 U

p

Band Percentage

Band-Occupancy = 85
Band-Occupancy = 90
Band-Occupancy = 95

Band-Occupancy = 100

(a) bandPercentage

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

S
p

e
e

d
 U

p

NNZ Percentage

Dimension = 6000
Dimension = 8000

Dimension = 10000

(b) nnzPercentage

 0

 1

 2

 3

 4

 5

 6

 7

 8

70 75 80 85 90 95

S
p

e
e

d
 U

p

Band Percentage

COLUMN-BLOCK
ROW-BLOCK

RANDOM

(c) sparsity

Figure 2.6: Studies on quasi-band matrices with varying bandPercentage, nnzPercentage and spa-
tial distribution of non-band Elements.

2.4 Conclusion

We have demonstrated that significant performance improvement can be achieved on the GPU
by designing input aware algorithms and data structures (Refer Sections 1.3.1 and 1.3.3 for more
details), as opposed to designing input agnostic methods. For the sparse matrix multiplication oper-
ation with band and quasi-band sparsity patterns for the input, our input-aware approach achieved
a speedup of 5x and 2x on average over a collection of band and quasi-band matrices respectively.

31

Chapter 3

Hines Matrix Solver

Sparse matrices and computations on sparse matrices arise in many areas of science and engi-
neering such as computational fluid dynamics, computational neuroscience and molecular dynam-
ics [22]. Prominent among the computations on sparse matrices include matrix vector multiplica-
tion, matrix matrix multiplication, and solving a system of linear equations where the underlying
matrix of coefficients is sparse. The importance of these computations can be gauged by the fact
that these computations are included as dwarfs in the Berkeley report [7]. It is therefore not sur-
prising that most modern libraries in the parallel setting include optimized routines for the above
computations on sparse matrices [2, 3].

Several researchers have focused on improving the performance of sparse matrix computations
on a variety of modern many- and multi-core architectures. Prominent examples include [84], [61]
and [5]. Wangdong et al. [84] and Matam et al. [61] provide efficient algorithms for sparse matrix
vector multiplication and sparse matrix matrix multiplication respectively on hybrid (CPU+GPU)
architectures. Agullo et al. [5] optimize direct matrix solvers for Intel KNL architectures.

In recent years, one approach that is being used to improve the efficiency of sparse matrix
computations on modern parallel architectures is to understand the strucure of sparsity of the matrix
and its implications to parallel algorithm design and implementation. Examples of such instances
are seen in the work of Ramamoorthy et al. [72] for multiplying two scale-free sparse matrices,
Vooturi et al. [80] for multiplying two quasi-band sparse matrices, Buluc et al. [13] for multiplying
two hyper-sparse matrices, and Wangdong et al. [85] for multiplying a quasi-band sparse matrix
with a dense vector.

In this chapter, we investigate GPU algorithms for sparse matrix solver(Ax = B) operation
that solves for x, where A is a Hines sparse matrix [35] . A Hines matrix is a symmetric matrix
where the main diagonal is non zero and after each main diagonal entry, there is only one nonzero

32

element. Solving a system of linear equations with the underlying matrix being a Hines matrix is
denoted as HinesSolver in the rest of the chapter.

The rest of the chapter is organized as follows: In this section, we first motivate the problem,
discuss related work, and list our key contributions. In Section 3.1, we describe how a Hines
matrix is generated from the mathematical model, its structural properties and a general form. In
Section 3.2, we describe a linear O(N) algorithm for HinesSolver using an Exact Domain
Decomposition method (EDD) and also discuss how to tailor our algorithm on a GPU. Results and
experiments are discussed in Section 3.3. Finally, we conclude and outline future work in Section
3.4.

Motivation: Neuron simulations [73] happen in a time-step manner and a HinesSolver is
invoked in each time-step. Generally, researchers have to run these simulations for many time-steps
to understand a particular behaviour. For example, a single neuron simulation running for a neuron
time of one minute with 1 milli second time-step involves 60,000 HinesSolver instances. In a
given time-step, the computation apart from a HinesSolver is parallel and is suitable for GPU.
By having HinesSolver on a GPU, simulations can be made faster by making use of GPU
hardware and avoiding costly memory transfers from GPU to CPU at each time-step.

In case of network simulations, which involve the study of the behavior of interconnected neu-
rons, multiple Hines matrix systems have to be solved at each time-step. It is possible to map the
computation of solving multiple Hines matrix systems into a single big Hines matrix system, which
when solved gives solutions to the individual systems.

Further, researchers frequently run experiments which involves changing only a single parame-
ter while keeping other parameters fixed. These types of experiments also result in solving multiple
Hines matrices in each time-step. We discuss one such case in Section 3.3.4, where for a set of
experiments the matrix remains the same, but the right hand side vectors vary in a given time-step.

Hence, parallelizing HinesSolver on a GPU can speedup neuron simulations and also en-
able researchers to perform rapid experimentation.

Related work: HinesSolver is studied in the sequential setting by Hines [34]. Hines [34]
proposed a modified Gauss elimination algorithm whose runtime is O(N), where N is the num-
ber of rows in the Hines matrix. Hines also proposed parallel Gauss elimination algorithms for
HinesSolver in [35] and [36]. To understand these algorithms, it is helpful to visualize a
Hines matrix as a rooted tree with self-loops. These algorithms are based on the fact that suitably
selected subtrees can be processed in parallel. However, this approach suffers from the following
drawbacks. Firstly, there is a constraint on subtree division which limits the amount of parallelism
available. Secondly, they are designed for optimizing network simulations on multi-core architec-

33

tures, where multiple Hines matrices of different sizes have to be solved and the ability to break a
tree allows for efficient load balancing.

In HinesSolver, triangularizing the segments at the same level of a tree can be done in
parallel. This idea was exploited by Roy et al. in [10] which is also based on Gauss elimination.
One of the drawbacks of this approach is that the parallel time of the algorithm is bounded by the
depth of the tree. Another drawback is that the amount of parallelism and computation at each level
is dependent on the input and hence can introduce significant load imbalance.

Some of the above problems are solved by Mascagni [60], Larriba Pey [48] who introduced
the Exact Domain Decomposition (EDD) technique to solve matrices corresponding to undirected
graphs. EDD involves solving a domain matrix of size equal to the number of nodes with degree
greater than two. In case of matrices corresponding to undirected graphs, the domain matrix does
not exhibit any special properties and it was suggested to solve using any direct solver, such as
Gauss elimination.

Contributions: In this work, we first start by proving that the domain matrix obtained via
the exact domain decomposition method on a Hines matrix has the same structural properties as
that of a Hines matrix. This result has three immediate benefits: (i) it allows us to apply the exact
domain decomposition technique recursively, (ii) As the recursion bottoms out, the small size of the
resulting domain matrix allows us to invoke a sequential HinesSolver [34] in much less time,
and (iii) It allows us to introduce a decomposition strategy called fine decomposition which can
be efficiently mapped onto a GPU. Using the above observations, we design an efficient parallel
algorithm and its GPU implementation to solve a system of linear equations where the underlying
matrix is a Hines matrix.

Our experimental results on an Nvidia Tesla K40c GPU over a variety of inputs indicate that our
algorithmic approach R-FINE-TPT based on fine decomposition is 2.5x faster than the previously
known approach. We also conduct experiments to study the effect of parameters such as amount
of fineness in R-FINE-TPT, depth of recursion, compartment resolution and number of right hand
sides in the matrix system to show the robustness of our approach.

Finally, we employ a machine learning technique called linear regression to find a threshold
function which helps in deciding when to stop the recursion in our algorithm.

34

3.1 Hines Matrix

3.1.1 The Hodgkin-Huxley Model

The Hodgkin-Huxley model [38], revolutionized the understanding of how nerve cells generate
electrical signals, known as action potentials. This mathematical model describes the behavior of
the cell membrane in response to electrical stimuli in neurons. It is based on the concept of ion
channels, specialized protein structures embedded in the cell membrane that control the flow of
ions, such as sodium and potassium, across the membrane. The model incorporates equations that
represent the dynamics of ion movement through these channels, accounting for factors like voltage
and time. Through meticulous experimental observations and mathematical analysis, Hodgkin and
Huxley elucidated the mechanisms underlying action potential generation and propagation, laying
the foundation for modern neuroscience and computational neuroscience.

A non-linear differential equation [38] models how potential difference (Vm) changes with re-
spect to ion-channels, current and other properties of a neuron. To simulate the model, a neuron
is discretized spatially into multiple compartments as shown in Figure 3.1a. The relationships be-
tween various compartments in a compartmentalized neuron can then be represented as a rooted
tree as shown in Figure 3.1b where each node in the tree corresponds to a compartment. A node Vi
in the tree has a unique parent compartment Vp and child compartments as shown in Figure 3.1c.
The tree is then numbered using a DFS numbering scheme from leaves to root. DFS numbering
ensures two things.

1. The number of a node is larger than all its children and smaller than its parent.

2. The compartments in each branch of the neuron have consecutive numbers.

The current balance equation of the ith compartment at the jth timestep is then described according
to Equation 3.1.

(V j
i − V

j−1
i)× Ci

∆t
= (Ei − V j

i)/Rmi + (V j
p − V

j
i)×Gai,p+∑

k=IonChannels(i)

Gj
i,k × (Ei,k − V j

i) + Iexti+∑
c=children(Vi)

(V j
c − V

j
i)×Gai,c (3.1)

35

where V j
i and Gj

i,k represent voltage and conductance of ion channel k respectively for com-
partment i at time step j. The constants Iexti, Ci, Ei, Rmi, Ei,k correspond to external current,
membrane capacitance, membrane resting potential, membrane resistance, and reverse potential of
ion channel k respectively for compartment i. Gat1,t2 represents the radial conductance between
compartments t1 and t2. ∆t is the time interval between two time steps. The only unknowns
in Equation 3.1 are V j

i ,V j
p and {V j

c |c ∈ children(Vi)}. By isolating them, Equation 3.1 can be
written in a concise manner as shown in Equation 3.2. For more details refer [12].

Aj
i,pV

j
p +Aj

i,iV
j
i +

∑
c=children(Vi)

Aj
i,cV

j
c = bji (3.2)

where

Aj
i,i =

(
Ci

∆t
+

1

Rmi
+

∑
r=neigh(i)

Gai,r +
∑

k=IonChannels(i)

Gj
i,k

)

Aj
i,p = Gai,p, ∀c∈children(Vi)A

j
i,c = Gai,c

bji =

(
Iexti +

Ei

Rmi
+ V j−1

i × Ci

∆t
+

∑
k=IonChannels(i)

Gj
i,k × Ek

)

V j
i V j

p and {V j
c |c ∈ children(Vi)} are the voltages of ith compartment, parent compartment

of Vi and child compartments of Vi respectively at jth time step and Aj
i,i,A

j
i,p and {Aj

i,c|c ∈
children(Vi)} are the corresponding coefficients. The current balance equations of all com-
partments can then be represented in a matrix form A #»x =

#»

b , where #»x = [V j
1 · · ·V

j
N]T and

#»

b = [b1 · · · bN]T . Solving this linear system gives the voltage values for compartments in each
time-step. Figure 3.2 corresponds to the structure of the matrix formed by the current balance equa-
tions of compartmentalized neuron in Figure 3.1b. The matrices obtained from the voltage PDE
simulations fall under a class of matrices called Hines matrices. A Hines matrix has the following
structural properties:

1. The matrix is symmetric. [Aij = Aji]

2. In each row i, there exists only one nonzero element with column index j such that j > i.
[∃!j|(Ai,j 6= 0 and j > i)]

From Equation 3.2, we can see that the off-diagonal elements ofA have contributions only from
the radial conductance Gat1,t2. As the radial conductance between any two compartments t1 and

36

(a) Compartmentalized neuron (b) Neuron tree
(c) Parent and children of ith com-
partment

Figure 3.1: Multi compartment neuron modelling.

t2 is the same irrespective of order i.e, Gat1,t2 = Gat2,t1 , the matrix A is symmetric. The only
non-zero element in row i after Ai,i corresponds to the coefficient of parent compartment of Vi.

3.1.2 A General Form

A Hines matrix A can be represented in a general form along with some conditions. Let R
be the set of compartments with more than one children and junction set J be a superset of R.
Dividing the matrix at rows J and columns J results in a grid G of dimensions (S + 1)× (S + 1),
where S = |J |. Each main diagonal entry of G is a block diagonal matrix Tri with ki blocks,
with each block being a symmetric tridiagonal matrix. A non main-diagonal entry of G is a zero
matrix O. A Hines matrix A can then be represented in the form of Equation 3.3. We however
note that not all matrices which can be represented in the form of Equation 3.3 are Hines matrices.
In Section 3.1.3, we describe the conditions that the general form should satisfy for it to represent
only Hines matrices. The notation used for describing general form is described in Table 3.1.

37

A #»x =
#»

b Matrix system
Tri(Tr

1
iT r

ki
i) Block diagonal matrix with ki blocks

Trji Symmetric Tridiagonal matrix
»

Cij(
»

C1
ij ...

»

Cki
ij) Column vector

»

Cij split into ki vectors.
J, Ji Junction array J and ith junction.

#»xi Vector #»x [Ji−1+1:Ji–1]
#»

bi Vector
#»

b [Ji−1+1:Ji–1]
xi,bi #»x [i],

#»

b [i]

Ai,j A[i][j]

Parent[i] Column index of the only non-zero entry
after Ai,i

JunctionIndex[k] Index of junction k in junction array J

Table 3.1: Notation used in general form, algorithms and proof.

A =

Tr1
#»

C1,1 O ..
#»

C1,S O
#»

CT
1,1 AJ1,J1

#»

CT
2,1 .. AJ1,JS

#»

CT
(S+1),1

O
#»

C2,1 Tr2 ..
#»

C2,S O

: : : : : :
#»

CT
1,S AJS ,J1

#»

CT
2,S .. AJS ,JS

#»

CT
S+1,S

O
#»

CS+1,1 O ..
#»

CS+1,S TrS+1

(3.3)

Tri =

Tr1i

Tr2i
.

.

T rkii

»

Ci,j =

»

C1
i,j

»

C2
i,j

.

.
»

Cki
i,j

(3.4)

#»x =

#»x 1

xJ1
#»x 2

:

xJS
#»xS+1

#»

b =

#»

b 1

bJ1
#»

b 2

:

bJS
#»

b S+1

[#»xi,

#»

bi] =

»

x1i ,
#»

b1i
»

x2i ,
#»

b2i
:

»

xkii ,
»

bkii

 (3.5)

38

Figure 3.2: The general form of Hines matrix corresponding to compartmentalized neuron in Figure
3.1b with J = [10,14].

3.1.3 Necessary Conditions

Condition 1: For a given Trri , where 1 ≤ i ≤ S + 1 and 1 ≤ r ≤ ki, only one column vector
among { # »

Cr
ij |i ≤ j ≤ S} is non-zero with only one non-zero element at the end.

Each Trri is bounded by two rows startRow and endRow in matrix A. As Trri is a tridiagonal
matrix, the matrix element to the right of each main diagonal element in Trri is in itself except for
endRow. From general form, we know that Parent[endRow] has to be in junction set J . As there
is only one non-zero after each main diagonal element in a Hines matrix, the matrix element to the
right of AendRow,endRow has to be in one of the column vectors { # »

Cr
ij |i ≤ j ≤ S}. As the non-zero

column vector is also bounded by startRow and endRow, only the last element of that vector is non-
zero. For the matrix in Figure 3.2, we can see that each tridiagonal matrix (Tr11, T r

2
1, T r

3
1, T r

1
2)

has only one nonzero column vector (
»

C1
1,2,

»

C2
1,1,

»

C3
1,1,

»

C1
2,2) to its right.

Condition 2: For a given junction Ji,
»

Cki
i,i 6=

#»
0 .

Each tridiaonal matrix Trri corresponds to an unbranched segment in the tree. For a junction
node Ji, Tr

ki
i corresponds to the segment which is numbered just before numbering junction node

Ji. From a DFS numbering scheme, we can say that Ji=Parent[endRow(
»

Trkii)]. So,
»

Cki
i,i be-

comes a non-zero vector. For the matrix in Figure 3.2, both the vectors corresponding to junctions
i.e,

»

C3
1,1 and

»

C1
2,2 are non-zero.

39

Condition 3: If Parent[Ji] ∈ J , then (
»

C1
i+1,i)

T =
#»
0 , else (

»

C1
i+1,i)

T 6= #»
0 and has exactly

one non-zero at the first index.
If Parent[Ji] /∈ J , then according to DFS numbering system Parent[Ji] = Ji + 1. This

means AJi,(Ji+1) 6= 0. As AJi,(Ji+1) is the first element of (
»

C1
i+1,i)

T , (
»

C1
i+1,i)

T [1] = AJi,(Ji+1).

As there can be only one non-zero element to the right of AJi,Ji , all the elements of (
»

C1
i+1,i)

T are
zero except for the first one.

If Parent[Ji] ∈ J , then the row and column of the only non-zero element to the right of AJi,Ji

belong to J . This means all the row vectors to the right of AJi,Ji are zero vectors which includes
(

»

C1
i+1,i)

T .

For matrix in Figure 3.2, both Parent[J1] and Parent[J2] are not in J . Hence both
»

C1
2,1

T
and

»

C1
3,2

T
are non-zero.

Condition 4: For a given junction row Ji, all row vectors after (
»

C1
i+1,i)

T are zero vectors.
Only one non-zero element exists after each main diagonal element in Hines matrix. From the

previous condition, we know that for a junction row Ji, it may only be part of row vector (
»

C1
i+1,i)

T .

So the rest of the row vectors after (
»

C1
i+1,i)

T are zero vectors.

3.2 Our Approach

3.2.1 EDD on an Undirected Graph

The Exact Domain Decomposition (EDD) method was first employed by Mascagni [60] to solve
matrices corresponding to undirected graphs. The main idea is to create subdomains by breaking
the graph at nodes with degree greater than two. In such a decomposition, each subdomain corre-
sponds to a chain graph and the matrix of the subdomain corresponds to a tridiagonal matrix. These
subdomains are solved independently and the solutions are fused together based on subdomain re-
lationships to construct the final solution. Any undirected graph can be represented in general form
described in Equation 3.3. Thus the EDD algorithm for a matrix that can be represented in general
form can be described in Algorithm 10.

40

Algorithm 10 Exact Domain decomposition method for a matrix in general form corresponding to
an undirected graph.

1: ∀i=1:S+1

»

Ri = Tri|
#»

b i . Solve independent tridiagonal systems

2: ∀i=1:S+1∀j=1:S

»

Pi,j = Tri|
»

Ci,j . Solve independent tridiagonal systems
3: ∀i=1:S∀j=1:S

4: M [i][j] = (
∑l=S+1

l=1

»

Cl,i
T

×
»

Pl,j)−AJi,Jj . Generate domain matrix M

5: ∀i=1:S Mrhs[i] = (
∑l=S+1

l=1

»

Cl,i
T

×
»

Rl)− bJi
6: Mx = M |Mrhs . Solved domain matrix

7: ∀i=1:S+1
#»xi =

»

Ri −
∑k=S

k=1 Mx[k]×
»

Pi,k . Construct final solution

Algorithm 10 has following four stages:
1) Solve tridiagonal systems.
2) Construct the the domain matrix M .
3) Find solutions at junctions (M |Mrhs).
4) Construct the final solution (#»x).

In stage-1, each tridiagonal matrix Tri is solved with multiple right hand sides ∀1≤j≤S
»

Ci,j and
#»

bi . A tridiagonal system can be solved in linear time in the size of the matrix, and the sum of all
tridiagonal matrices Tr1 to TrS+1 is (N−S), so the time complexity for stage-1 isO(N ∗S−S2).
In stage-2, the domain matrixM and its right hand sideMrhs are constructed using rows at junction
indices of matrix A and the tridiagonal solutions computed in stage-1. Each entry in M and Mrhs

takes O(N) time and as there are S2 elements in M , the time complexity for stage-2 is O(N ∗S2).
In stage-3, the domain matrix M is solved with Mrhs to compute Mx(junction node solutions)
using Gauss elimination. Thus the time complexity for stage-3 isO(S3). In stage-4, the solution for
non junction nodes are computed usingMx and tridiagonal solutions in stage-1. The computational
pattern is similar to stage-1 and thus has the time complexity ofO(N∗S−S2) .The total complexity
for all stages in Algorithm 10 is O(N ∗ S + S3).

3.2.2 Domain Matrix of Hines Matrix

In this section, we prove that when EDD is applied on a Hines matrix, the domain matrix M is
again a Hines matrix.

Theorem 3. The domain matrix M when EDD is applied on a Hines matrix is a Hines matrix.

41

Proof. We prove it by showing that the domain matrix M satisfies the structural properties of a

Hines matrix as described in Section 3.1.

(i) The matrix is symmetric, Mi,j = Mj,i.

From Algorithm 10, we know that any element Mi,j of the domain matrix M can be constructed

as follows:

Mi,j =

(
S+1∑
l=1

»

Cl,i
T × (Trl)

−1 × # »

Cl,j

)
−AJi,Jj

and

Mj,i =

(
S+1∑
l=1

»

Cl,j
T × (Trl)

−1 × # »

Cl,i

)
−AJj ,Ji

If R is a symmetric matrix of size N ×N and p, q are column vectors of size N , then pT ×R× q

= qT ×R× p. So for a valid l, i, and j, (
»

Cl,i
T × (Trl)

−1 × # »

Cl,j) = (
»

Cl,j
T × (Trl)

−1 × # »

Cl,i).

As a Hines matrix is a symmetric matrix, AJi,Jj = AJj ,Ji .

Hence the matrix M is symmetric.

(ii) In each row i, there exists only one nonzero element with column index j such that j > i.

[∃!j|(Mi,j 6= 0 and j > i)]

For a given junction row Ji, the non-zero row vectors before and after AJiJi can be divided into

two sets Sleft and Sright respectively. Because a Hines matrix is symmetric, Sleft can contribute

only to the main diagonal element Mi,i of the domain matrix M . From the Conditions 3 and 4, we

know that Sright = {
»

C1
i+1,i

T
} or ∅. Each element in row i of M after main diagonal element Mi,i,

j > i, can then be represented in the following cases.

Case 1: Sright = {
»

C1
i+1,i

T
}

In this case, we can see that:

Mi,j =
»

C1
i+1,i

T
× (Tr1i+1)

−1 ×
»

C1
i+1,j

42

From condition 1, we know that for Tr1i+1, there exists only one non-zero column vector to its

right i.e, ∃!j|(
»

C1
i+1,j 6=

#»
0 &j > i).

Case 2: Sright = ∅

We have that Mi,j = −AJi,Jj . From the conditions 3 and 4, we know that this can happen only

if Parent[Ji] ∈ J . As there is only one non-zero element after AJi,Ji , only one of the elements

from set {AJi,Ji+1 , AJi,Ji+2AJi,JS} is non-zero.

In both cases, for a given row i in the domain matrix M , there exists only one j such that j > i

and Mi,j 6= 0.

3.2.3 An O(N) Linear Algorithm for HinesSolver

A Matrix A that can be expressed using the general form (Section 3.1.2) can be solved using
Algorithm 10. Hines matrices are only a subset of matrices that can be expressed in general form
and using Algorithm 10 for HinesSolverleads to O(N ∗ S + S3) time complexity. Because
Hines matrix has extra conditions (Section 3.1.3) on top of the general form, there is lot of zero
compute is Algorithm 10. For example, because domain matrix of a Hines matrix is also a Hines
matrix 3.2.2, there is no need to compute all S2 elements of S in stage 3, as only 3∗S−2 elements
are non-zero in a Hines matrix. Similarly, there is zero compute in other stages due to zero vectors
in the Hines matrix. We remove such zero compute from Algorithm 10 and express in the form of
Algorithm 11, which is a linear time O(N) algorithm.

Analysis: In Steps 3,6,7, and 10 of Algorithm 11, independent tridiagonal systems are being
solved. The cumulative size of the tridiagonal systems from Step-3 is bounded by N and that of
Steps 6,7, and 10 is bounded by 2N . So Stage-1 involves solving tridiagonal systems with cumu-
lative size bounded by 3N . As a tridiagonal system can be solved in linear time, the complexity
of Stage-1 is O(N). The complexity for computing both the main diagonal of M and right hand
sideMrhs isO(

∑i=S
i=1 ni), where ni is the number of neighbours of compartment Ji. It can be seen

from Step-16 that the complexity for computing non-zero off diagonal element of M is O(1). As
(
∑i=S

i=1 ni < 2N) and the domain matrix M has only 2(S − 1) non-zero off diagonal elements,

43

Algorithm 11 O(N) algorithm for HinesSolver using EDD.

1: #Stage-1 Solve tridiagonal systems.
2: for i=1:S do

3: Qi = Tr1i+1|
»

C1
i+1,i

4: for r=1:ki do
5: col = JunctionIndex[Parent[endRow(Trri)]]

6: P r
i = Trri |

»

Cr
i,col

7: Rr
i = Trri |

#»

bri
8: end for
9: end for

10: R1
S+1 = Tr1S+1|

»

b1S+1 // End case
11:

12: #Stage-2 Constructing the domain matrix.
13: for i=1:S do
14: M [i][i] += (C1

i+1,i[1] ·Qi[1]−AJi,Ji)

15: col = JunctionIndex[Parent[endRow(Tr1i+1)]]
16: M [i][col] = (C1

i+1,i[1] · P 1
i+1[1]−AJi,Jcol)

17: Mrhs[i] += (C1
i+1,i[1] ·R1

i+1[1]− bJi)
18: for r=1:ki do
19: col = JunctionIndex[Parent[endRow(Trri)]]

20: M [col][col] +=
»

Cr
i,col[|

»

Cr
i,col|] · P r

i [|
»

Cr
i,col|]

21: Mrhs[col] +=
»

Cr
i,col[|

»

Cr
i,col|] ·Rr

i [|
»

Cr
i,col|]

22: end for
23: end for
24:

25: #Stage-3 Find solutions at junctions
26: Mx = M |Mrhs

27:

28: #Stage-4 Construct #»x .
29: for i=1:S do
30:

»

x1i+1 -= Mx[i]×Qi

31: for r=1:ki do
32: col = JunctionIndex[Parent[endRow(Trri)]]

33:
#»
xri -= Mx[col]× P r

i

34:
#»
xri += Rr

i

35: end for
36: end for

44

the complexity of Stage-2 is O(N + S). As a Hines matrix can be solved in linear time [34], the
complexity for solving domain matrix in Stage-3 is O(S). Stage-4 has the same loop structure
as that of Stage-1. In places where a tri-diagonal system is solved, vector scaling and addition is
performed. Hence the complexity of Stage-4 is O(N). The complexity of Stages 1-4 are O(N),
O(N + S), O(S) and O(N) respectively. As the number of junctions S cannot exceed N , the
complexity of our algorithm is O(N).

3.2.4 EDD for HinesSolver on GPU

In this section, we show how HinesSolver can be efficiently mapped onto a GPU archi-
tecture using EDD. In Section 3.2.3, we showed that the complexity of our algorithm is O(N),
irrespective of the number of junction compartments. We use this fact and propose a decomposi-
tion strategy called fine decomposition.
Minimal Decomposition(Jmd): Compartments with more than one children are chosen as junc-
tions.
Fine Decomposition(Jfd): The goal of this decomposition is to have equal size tridiagonal systems
to solve in Stage-1. In order to achieve that, we break each branch of the tree into K sized chains
and include last compartment of each chain in junction set Jfd. Apart from these compartments,
Jfd includes all compartments which have more than one children i.e, junction set Jmd.

An example of minimal decomposition and fine decomposition with K = 4 for a given tree are
shown in Figures 3.3a and 3.3b respectively. Hollow nodes in Figures 3.3a and 3.3b correspond to
junction compartments.

Algorithm 12 describes the recursive algorithm for HinesSolver using the Exact Domain
Decomposition method.

Stage-1: In this stage, the computation involves solving many tridiagonal systems. This com-
putation can be performed using two approaches TRSV and TPT.
TRSV: Making all junction rows and junction columns of matrix A zero, except for main diagonal
elements results in a tridiagonal matrix T . Figure 3.5 shows the tridiagonal matrix T obtained
from the Hines matrix shown in Figure 3.2. From Stage-1 of Algorithm 11, we know that each
tridiagonal Trri has to be solved with at least two and at most three right hand sides. We position
them accordingly as shown in Figure 3.2 and use an optimized tridiagonal solver from NVIDIA’s
CUDA library CuSparse [2] to solve tridiagonal matrix T with three right hand sides.
TPT: In this approach, we map each thread to solve an independent tridiagonal system. In minimal
decomposition, independent tridiagonal systems that have to be solved in Stage-1 are big and have

45

(a) Minimal Decomposition (b) Fine Decomposition with K=4

Figure 3.3: Decomposition strategies.

Figure 3.4: Recursive application of fine decomposition with K=3

46

Figure 3.5: Mapping Stage-1 computation to tridiagonal solver(TRSV) with three right hand sides
in MIN-TRSV.

lot of variance in size. So using TPT approach for solving tridiagonal systems suffers from less
parallelism, higher load imbalance and more amount of work per thread. TRSV approach hides
these to some extent and takes advantage of optimized library function for tridiagonal solver. This
compatibility leads to MIN-TRSV approach.

In fine decomposition, each independent tridiagonal system in Stage-1 is almost of same size
and has equal compute. So using the TPT approach, one can take advantage of the SIMD architec-
ture of a GPU. This compatibility leads to R-FINE-TPT approach.

Stage-2: In this stage, we construct the domain matrix system (M,Mrhs). As there is no
dependency among the non-zero elements of the domain matrix system, they can be constructed in
parallel.

Stage-3: In this stage, we have a choice to run the algorithm recursively to solve domain matrix
system (M |Mrhs). In the R-FINE-TPT approach, we run the algorithm recursively and stop when
using a GPU is no longer efficient. In case of MIN-TRSV, we do not run the algorithm recursively.
The reason is that the tree corresponding to domain matrix when minimal decomposition is applied
has no vertices of degree two. Applying any decomposition recursively on that tree will not reduce

47

the size of domain matrix size significantly. So in the MIN-TRSV approach, the runtime is less
when we do not recurse.

Stage-4: Stage-4 involves constructing final solution #»x . As there is no dependency among
elements of #»x , each element of #»x can be constructed in parallel.

Algorithm 12 Recursive algorithm for HinesSolver using Exact Domain Decomposition
method.

R-EDD(A,
#»

b , decomposition, num-rhs)
{
if decomposition == MIN then

Use minimal decomposition with TRSV approach to solve tridiagonal systems in Stage-1.
else if decomposition == FINE then

Use fine decomposition with TPT approach to solve tridiagonal systems in Stage-1.
end if
Stage2: Construct domain matrix system (M , Mrhs)
if decomposition == FINE and
Threshold(rows(M),num-rhs) == False then

Mx = R-EDD(M , Mrhs, decomposition, num-rhs)
else

Transfer (M ,Mrhs) to CPU.
Solve Domain system Mx = M/Mrhs on CPU.
Transfer Mx to GPU.

end if
Stage-4: Construct #»x
return #»x
}

3.2.5 Implementation Details

A Hines matrix A of size N is stored using two arrays, parent array P of size N and data array
D of size 2N . P [i] stores the column index of the only nonzero afterA[i][i]. AsA is symmetric, we
store only the nonzero values of upper triangular matrix in a row major fashion in D. By storing in
the row major fashion, we get better memory coalescing while accessing a tridiagonal matrix Trji
in Stage-1. We used buffer arrays to avoid replication of tridiagonal matrices in the computations
of Stage-1. We employed NVIDIA’s CUDA Occupancy Calculator tool to configure thread block
sizes in CUDA kernels.

48

3.3 Results and Analysis

3.3.1 Platform

We use an Nvidia Tesla K40c GPU for all our experiments. It is mounted on an Intel i7-
4790K CPU with 32GB RAM. The K40c has a total of 2880 cores organized in 15 SMx, with each
core clocked at 745 MHz. It provides a peak double precision floating point performance of 1.43
Tflops and single precision floating point performance of 4.29 TFlops. Each SM also has a 64KB
configurable cache to exploit data locality.

3.3.2 Dataset

All input Hines matrices come from neuron morphologies taken from www.neuromorpho.org

[8]. We choose our dataset in such a way that they come from different parts of brain and has vari-
ation in size and the number of junctions. Some details of the chosen morphologies are shown in
Table 3.2. We group the dataset into three categories: small (7K-11K), medium (29K-35K), and
large (80K-120K) neurons based on size of the matrix.

3.3.3 Results

We compare our R-FINE-TPT approach with the MIN-TRSV approach which is based on mini-
mal decomposition strategy suggested by Mascagni in [60]. These approaches differ in the decom-
position strategy used for finding junctions and the computation strategy used to solve tridiagonal
systems in Stage-1. All operations are carried out in double precision. From the results in Figure
3.6, it can be observed that R-FINE-TPT is faster than MIN-TRSV for all classes of input. It has to
be noted that we achieve a speedup of 2x on EC5 neuron, which is the neuron with highest number
of compartments than any other neuron in the repository [8].

The reason for the good performance of R-FINE-TPT over MIN-TRSV is that in R-FINE-TPT
there is more parallelism, less work per thread, and negligible load imbalance. Whereas in case
of MIN-TRSV, threads have to coordinate among themselves to solve one big tridiagonal system
with three right hand sides. This requirement for coordination results in poor performance when
compared to R-FINE-TPT.

49

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

E
C

5
-6

0
9
2
0
2
-2

R
a
t-

n
g
f

A
lv

a
re

z

s
k
in

A
1
2
-1

8
-2

r

L
3
9
5
-L

C
N

M
A

3
4
9
-d

S
A

C

H
IC

A
P

3

1
4
-t

ra
c
e
d

a
lp

h
a
M

N
4

c
e
ll-

3
6
-t

ra
c
e

 1

 2

 3

 4

 5

 6

T
im

e
(m

s
)

S
p
e
e
d
u
p

R-FINE-TPT
MIN-TRSV

speedup

Figure 3.6: Results on the input dataset. Our approach (R-FINE-TPT) achieves 2.5x speedup on
average over MIN-TRSV approach.

3.3.4 Further Experiments

In this section, we perform two sets of experiments. One set of experiments study the impact
parameters such as K in the fine decomposition, depth D in the recursion, and varying the number
of right hand sides on the runtime of the algorithm. The second set of experiments are aimed
at coming up with guidelines to choose appropriate values for K and D automatically based on
empirical data. For some experiments we use linear neuron as our model. In linear neuron, there is
only one branch and all the compartments have only one child.

Varying K in Fine Decomposition: In this experiment, we study how varying K in fine
decomposition affects overall runtime and runtime of individual stages in R-FINE-TPT. To under-
stand the behaviour, we take a linear neuron of size 100K as the input. For a linear neuron with N
compartments, there are roughly N/K junctions and 3N/K tridiagonal systems of size (K−1) to
be solved in Stage-1. As we increase K, number of threads to be launched i.e, 3N/K decreases in
Stage-1 and work per thread i.e., solving tridiagonal of size (K− 1) increases. Having few threads
with more work is not good for GPU and it can be observed in run time of Stage-1 in Figure 3.7.
AsK increases, running time of Stage-1 increases. Stage-3 of EDD involves time for recursive call
T (N/K). It decreases with increase in K and it can be observed in Figure 3.7. Threads launched
in Stage-2 and Stage-4 are very light and changingK has little impact on their runtime. The overall
runtime decreases to a certain K and then increases. For our input linear neuron of size 100K the
best performance is at K = 3.

50

Neuron Compartments Junctions Branches
EC5-609202-2 123248 1321 2259

Rat-ngf-11-11-04 114193 468 941
Alvarez-Control-Cell-1 84254 185 370

skinA12-18-2r 82110 3287 6183
L395-LCN 35630 787 1554

MA349-dSAC 35190 1838 3483
HICAP3 29159 119 242
14-traced 11193 546 1042

alphaMN4 9231 69 151
cell-36-trace 7881 97 184

Table 3.2: Details of neuron morphologies

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

2 3 4 5 6 7 8 9 10

T
im

e
(m

s
)

K in Fine Decomposition.

R-FINE-TPT
Stage-1
Stage-3
Stage-2
Stage-4

Figure 3.7: Impact of varying K on R-FINE-
TPT approach.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 3 4 5

S
p

e
e

d
U

p

Recursion level(D)

Small
Medium

Large

Figure 3.8: Impact of varying recursion
depth D on speedup.

51

 0

 10

 20

 30

 40

 50

 60

 70

1 2 4 8 16 32 64 128

T
im

e
(m

s
)

P-resolution

Large-MIN-TRSV
Large-R-FINE-TPT
Medium-MIN-TRSV

Medium-R-FINE-TPT
Small-MIN-TRSV

Small-R-FINE-TPT

Figure 3.9: Impact of varying resolution on
R-FINE-TPT and MIN-TRSV approaches.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

5 10 15 20 25 30 35 40 45 50

S
p

e
e

d
U

p

Number of right hand sides

Small
Medium

Large

Figure 3.10: Impact of varying right hand
sides on speedup.

Varying the Depth (D) of Recursion: In this experiment, we study the effect of recursion
depth D on the R-FINE-TPT approach. From Figure 3.8, we can see that as we increase D, the
speedup increases to a certain point and decreases from then on. This is due to the fact that at
inflexion point it is better to solve the matrix on a CPU rather than running the algorithm recur-
sively. For large neurons, the inflection point is atD = 3 and the average size of the domain matrix
at D = 3 is 1800. For such small matrices, it is faster to solve it on a CPU despite the cost of
memory transfers. As long as we have bigger matrices to solve at each level, it is beneficial to run
the algorithm recursively.

Varying Resolution: In compartmental modelling, each branch of the neuron is divided into
multiple compartments. More accurate simulations are possible by increasing the number of com-
partments into which a branch is divided. The morphology file contains a particular compartmen-
talization of a neuron. In this experiment, we obtain a P -resolution morphology by breaking an
original compartment in the morphology into P compartments. If the input morphology has N
compartments, P -resolution morphology contains P ×N compartments. From Figure 3.9, we can
see that R-FINE-TPT performs better than MIN-TRSV for all resolutions. The primary reason for
this is that using fine decomposition enables us to have computation in Stage-1 divided in to many
threads with very little work. This coupled with recursion is the reason for better performance
compared to MIN-TRSV.

Varying Right Hand Sides: Voltage behaviour studies have a lot of parameters to tinker with.
For example, in Equation 3.2, having different values of external compartment current (Iexti)
effects only right hand side of the matrix system. Now, it is possible to do multiple simulations
for different values of Iexti at once. This is advantageous because it suffices to factorize the

52

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10 20 30 40 50 60 70

S
iz

e
 o

f
th

e
 m

a
tr

ix
(N

)

Number of right hand sides(R)

Threshold value
N-5245/M - 40 = 0

Figure 3.11: Threshold function for matrix
with multiple right hand sides

 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0

 1
0

0
0

0

 2
0

0
0

0

 3
0

0
0

0

 4
0

0
0

0

 5
0

0
0

0

 6
0

0
0

0

 7
0

0
0

0

 8
0

0
0

0

 9
0

0
0

0

 1
0

0
0

0
0

B
e

s
t

K
 v

a
lu

e

Matrix size(N)

Best K

Figure 3.12: Best value of K in Fine Decom-
position

tridiagonal matrices in Stage-1 only once and use the factorizations for all right hand sides. In
this experiment, we see how R-FINE-TPT behaves with change in the number of right hand sides.
From Figure 3.10, it can be seen that speedup increases with respect to number of right hand sides
for all classes of neurons.

Determining the Threshold Function: In this experiment, we find a boolean threshold func-
tion for deciding when to stop the recursion in Algorithm 12. The threshold function depends on
two parameters: the size of the matrix, N , and the number of right hand sides, R. We have to break
the recursion at a stage where using CPU is better than using GPU. So, we run an experiment to
find out the largest matrix size at which CPU is better than GPU for each value of R. From Fig-
ure 3.11, we can see that the data is following 1/x behaviour. Hence we modeled the function as
(N = a0/R+a1) and used linear regression to find constants a0 and a1 at which the error is mini-
mum. Threshold function thus obtained from the above technique is (N−(5245/R)−40 ≤ 0). The
actual value in case of R = 1 is 3500 and it is recommended to use threshold function (N ≤ 3500)

when using R = 1.
Choosing K in Fine Decomposition: In this experiment, we provide insights for choosing

best value for K in fine decomposition when R = 1. The choice of K depends on the size of
the matrix N and the K values chosen for matrices less than size N . For linear neurons of size
N > 3500, we ran our algorithm for different values of K and chose the K which gave the best
runtime. We find best K values for all matrix sizes constructively. Hence, in the lower levels of
recursion, we use the computed best K values. From Figure 3.12, we can see that the variance of
K is high for small values of N . For larger values of N , where recursion depth is greater than one,
the best value of K remains constant at three. One interesting thing to observe is that for neurons

53

around size 20000, it is possible to go down two levels in the recursion but the best K value is
the one that recurses only once. To get good performance, maintain a look up table for smaller
matrices and use K = 3 for larger matrices.

3.4 Conclusion

In scientific simulations based on ordinary and partial differential equations, matrix solvers
are almost always a bottleneck and making them faster reduces simulation time considerably. In
this work, we have demonstrated that embracing the semantics of matrices into parallel algorithm
design helps in designing efficient parallel solvers. The general form given for Hines matrices in
this work provides a framework for proving more results on Hines matrices.

54

PART-II

Artificial intelligence is on the rise with functional tasks (image captioning, speech recognition,
language translation, playing the game of Go, etc.) in areas like computer vision, speech, and lan-
guage processing, etc. reaching or surpassing human-level accuracy. This progress can be largely
attributed to computational approaches based on artificial neural networks (ANN) and hardware
like GPU (Graphics Processing Unit). Based on the degree of connectivity between the neurons, a
neural network can be classified into two types: Dense Neural Network (DNN) and Sparse Neural
Network (SNN). The effectiveness of a neural network can be characterized using four attributes:
accuracy, memory, compute, and runtime. For any given trained dense neural network, a sparse
neural network can be generated that achieves the same accuracy, but takes less memory and less
compute. But there is no guarantee that the generated sparse neural network leads to lower runtime
than the dense neural network on hardware like GPU. This seems counter intuitive. Because in the-
ory, less compute should translate to less runtime. But in reality, it is not always possible because
the efficiency with which a GPU can process the underlying computational tasks in a sparse neural
network is much less than processing computational tasks in a dense neural network.

Runtime of a sparse neural network on a GPU depends on how the neurons are connected with
each other or simply put, the sparsity pattern. If the sparsity pattern is unstructured, then it results
in irregularity in compute and memory access patterns on the GPU, which leads to lower efficiency
for the underlying computational tasks in a sparse neural network. On the other hand, if the sparsity
pattern is highly structured, then there is less irregularity, which leads to increased efficiency and
decreased runtime. But imposing the structure comes at the cost of decreased sparsity for a given
accuracy, and decreased accuracy for a given sparsity.

In Part-2, we propose solutions for generating sparse neural networks that are efficient in both
accuracy and runtime on the GPU. First, in Chapter 4 , we provide the necessary background for
sparse neural networks in the context of the GPU hardware. In Chapter 5, we propose a dense
to sparse training approach that generates sparse neural networks with block sparsity pattern. In
Chapter 6 and 7, we propose a fine-tuning approach to generate sparse neural networks with hierar-
chical block and regularized multi block sparsity patterns. In Chapter 8, we propose a static sparse
to sparse training approach to generate sparse neural networks with Recursive Cloned Uniform
Block sparsity pattern generated using graph products of Ramanujan graphs.

55

Chapter 4

Sparse Neural Networks on GPU

4.1 Artificial Neural Network Primer

Artificial neural networks (ANN) can be of many types and each type of ANN is used for certain
class of functional tasks. Convolutional neural networks, for example are used for performing
image related functional tasks like image recognition, image segmentation etc. Recurrent neural
networks for example, are used for performing functional tasks like language translation etc. Let us
now understand what an artificial neural network is and how it is trained using the help of a simple
feed forward neural network (FFN). An FFN can be expressed as a series of layers L1 . . .LN .
Layer L1 takes the input I , and LN produces the output O. Each layer Ll has Nl neurons on the
left and Nl+1 neurons on the right. In a dense FFN, all the neurons on the left are connected to all
the neurons on the right leading toNl+1×Nl number of connections. Each connection is associated
with a parameter, and for a layer Ll, these parameters can be arranged in the form of a matrixWl of
size (Nl+1, Nl), and these parameters are called weight parameters. In layer Ll, along with weight
parameters, there is another set of parameters called bias parameters bl of size Nl+1. Each layer
takes in an input matrix Xl of size (Nl, B) and produces an output matrix Xl+1 of size (Nl+1, B),
where an entry in Xl+1 is calculated using Equation 4.1. In Equation 4.1, ActivationFunction is a
non-linear function like sigmoid, ReLU etc. The computation required for computing Xl+1 matrix
can be expressed in the form of matrix multiplication using 4.2.

Xl+1[i, j] = ActivationFunction

(
k=Nl∑
k=0

Wl[i, k] ∗Xl[k, j] + bl[i]

)
(4.1)

Xl+1 = ActivationFunction (MatrixMultiplication(Wl, Xl) + bl) (4.2)

56

Processing an input I through the neural network involves setting X1 = I and calculating the
output O or XN+1 by recursively using Equation 4.2. Once the output is generated, a loss function
calculates the loss with the reference output, and the loss is propagated back into the network using
back propagation to calculate the gradients for the parameters in the network. An optimizer then
takes these gradients and updates the parameter values to minimize the loss value. This process
is repeated for multiple inputs for multiple times until the loss converges. The performance of a
neural network can be measured using the following four metrics:

1. Accuracy : Accuracy achieved by the neural network on the functional task.

2. Memory : Memory required for storing the parameters of the neural network.

3. Compute : Floating point operations (FLOPS) required to process the neural network.

4. Runtime : The wall clock time taken to run the neural network on the hardware.

An optimal neural network achieves maximum accuracy by using the minimum amount of mem-
ory and compute. However, there is no definite way of arriving at such a neural network, and in
practice, there are trade-offs between memory, compute, and accuracy. Sparsification of neural
networks [28, 29, 51, 69] is an effective way to reduce memory and compute requirements with a
minimal trade-off in accuracy.

4.2 Sparse Neural Networks

A sparse neural network (SNN) is a neural network where only a subset of connections are
present between the neurons in a neural network. For example, in a dense feed forward neural
network withN neurons in each layer, N2 connections are present in each layer, with every neuron
on the left connecting to every neuron on the right. In comparison, a sparse feed forward neural
network has less than N2 connections because only a subset of connections are present in each
neural network layer. Figure 4.1 shows an example of a sparse feed forward neural network with
four layers, where only 5 out of 12, 4 out of 9, 4 out of 9, and 6 out of 12 connections are present
in layers one, two, three, and four respectively.

A connection in a neural network contributes to memory and compute in a neural network.
Because a sparse neural network has fewer connections than a dense neural network, the parameter
matrix Wl in Equation 4.2 becomes sparse. A sparse matrix can be efficiently stored and processed
by avoiding storage and compute corresponding to the zero elements. Because of this, a sparse

57

Figure 4.1: An example Sparse Feed Forward Neural Network(SNN)

neural network takes less memory to store and requires less compute when compared to a dense
neural network. One of the primary use cases of sparse neural networks is edge devices, where the
resources are limited. Less memory and compute requirements of sparse neural networks make it
an ideal choice for edge devices.

The runtime metric for evaluating the efficiency of a neural network is subjective, whereas other
metrics(accuracy, memory, and compute) are objective. This is because the runtime is subject to
the choice of hardware. On an ideal hardware, a sparse neural network with s% reduction in
compute when compared to the corresponding dense neural network should result in a runtime
speedup of 100/(100− s). For example, a 50% reduction in compute should result in 2x speedup
in runtime. But on parallel hardware like GPU, sparse neural networks lead to poor or negative
runtime performance gains due to the irregularity in computation of sparse neural networks. A
tough way to realize the fruits of reduced number of FLOPS is to design specialized ASIC hardware
like EIE, SCNN [27, 68] for accelerating sparse neural networks. But this requires a lot of work in
terms of developing hardware, middleware, and software stack. On top of that, the utility of such
specialized hardware is limited to only sparse workloads. In contrast, a parallel hardware like GPU
can accelerate many compute intensive workloads from different application domains. In order to
address the runtime performance on GPU like hardware, the focus has shifted to structured sparse
neural networks [32, 50, 58, 62, 87] that lead to improved runtime performance.

Sparse neural networks can be divided into types: unstructured and structured, depending on the
sparsity pattern (how the neurons are connected) present in them. In an unstructured sparse neural
network, the sparsity pattern does not follow any particular pattern. In a structured sparse neural
network, the sparsity pattern has a structure. For example, when all neurons connect to an equal

58

number of neurons, we say it has a sparsity pattern with a uniform structure. Structured sparse
neural networks are essential because they lead to improved runtime metric on widely used AI
hardware like GPU when compared to an unstructured sparse neural network. The improvement is
proportional to the degree of structure in the sparsity pattern.

Computational approaches for generating sparse neural networks can be divided into four cat-
egories depending on when and how the sparsity is incorporated in the neural network training
process.

Dense to sparse training approach: The training starts with a dense neural network and ends
with a sparse neural network. During the training, connections are removed using various tech-
niques like pruning, regularization, and masking etc.

Finetuning approach : It is a dense to sparse training approach, with a key difference that the
training starts with a pretrained dense neural network instead of a randomly initialized dense neural
network.

Dynamic Sparse to Sparse training approach : The training starts and ends with a sparse
neural network with connections updated during the training process. The important thing is that
the number of connections remain same throughout the training period.

Static sparse to sparse training approach : The training starts and ends with a sparse neural
network without change in connections during the training process.

4.3 Runtime performance on GPU

A sparse neural network has only a subset of connections that a dense network has. This re-
duced number of connections makes the weight parameter matrix, i.e., Wl in layer l, into a sparse
matrix, and the MatrixMutliplication operation in Equation 4.2 becomes an SDMM (Matrix
Multiplication of a Sparse matrix with a Dense matrix) operation (C = As x B). The number of
FLOPS in the SDMM operation depends only on the amount of sparsity in As and is independent
of the sparsity pattern in which the non-zero elements of As are arranged. Hence on an ideal hard-
ware, the runtime of SDMM should depend only on the amount of sparsity in As. However, on
a GPU, the run time of the SDMM operation depends also on the sparsity pattern present in As.
From Figure 4.3, we see that for a given sparsity or FLOPS, the run time of SDMM when As has a
block sparsity pattern is close to 4x faster when compared to the case when As has an unstructured
sparsity pattern. The reason for the performance gap is that efficient parallel algorithms on a GPU
can be designed for SDMM when As has a block sparsity pattern. Figure 4.3 also considers the
case of row/column sparsity where entire rows/columns are removed. From Figure 4.3, we also

59

see that the row/column sparsity pattern is 4-5x faster than the block sparsity pattern. As entire
rows/cols are removed in row/column sparsity, the resulting SDMM operation can be processed as
a small dense matrix multiplication using fast dense GPU kernels. The choice of sparsity pattern
plays an essential role in the run time performance of SDMM operation on a GPU and, thus, the
run time performance of the sparse neural network on the GPU.

(a) Unstructured (b) Block(2x2) (c) Row (d) Column

Figure 4.2: Sparsity patterns

Figure 4.3: The effect of sparsity pattern on the performance of the SDMM operation on a V100
GPU. The matrix size is set to 4096 and the block size in the block sparsity pattern is set to 32. The
runtime for dense case is 10.5 ms.

4.4 Sparsity Pattern Co-design

Connectivity between neurons in a neural network layer can be captured using a mask matrixM
with M [i][j] value set to one if ith neuron on the left connects to jth neuron on the right, and zero

60

otherwise. If there areN neurons on either side of a neural network layer, and if the sparsity is 50%,
then there are (N2!)/((N2/2)! × (N2/2)!) possible mask matrices. Even when N = 8, the count
goes to a staggering ∼ 1.8 ∗ 1018. However, if a block-structured sparsity pattern with block size
2x2 is imposed, the number of possibilities comes down to 12870. Furthermore, if a row or column
structured sparsity pattern is imposed, the number of possibilities comes down to 70. So clearly,
we can see that the number of possible mask matrices reduces when the sparsity pattern becomes
more structured. Fewer possible mask patterns translate to less variability in memory access and
compute patterns on the GPU. From Figure 4.3, we can see how going from unstructured to block
to row/column sparsity pattern helps in improving the runtime performance on the GPU. Does this
mean that choosing a highly structured sparsity pattern leads to efficient sparse neural networks?
The answer is No. Because the choice of sparsity pattern also affects the neural network’s accuracy
metric. While structure has positive effect on the runtime metric, it has an inverse effect on the
accuracy metric, with more structure leading to lower accuracy. This is because the parameters do
not have any inherent structure and as the sparsity pattern gets more structured, the freedom in the
choice of which parameters to keep or discard decreases and thus leads to lesser accuracy.

Pruning is a widely used method for generating sparse neural networks, where the parameter’s
magnitude determines the parameter’s importance. To achieve a sparsity of s%, pruning methods
follow a greedy approach and remove the bottom s% of the parameters. But doing so results in an
unstructured sparsity pattern, which we already know results in poor runtime on the GPU. So in
order to improve the runtime performance of sparse neural networks on GPU, structured pruning
methods are used. In structured pruning methods, parameters are pruned in a structured manner
while maximizing the preservation of important parameters. However, imposing structure results
in a suboptimal choice of parameters, leading to lower accuracies. To demonstrate the effect of the
structure on accuracy, we picked the image classification task on CIFAR100 dataset. For the neural
network, we chose VGG11 neural network [77] and generated block sparse neural networks with
varying degrees of structure by varying the block size from 1x1 to 16x16. From Figure 4.4, we
can see that as the block size increases, the error (100-accuracy) increases, or in other words, the
accuracy decreases. From Figure 4.4, we can also see that the runtime decreases as the block size
increases. This is because SDMM operation with a larger block size can be efficiently processed
on the GPU. More structure decreases accuracy but improves runtime. Less structure improves
accuracy but decreases runtime. The challenge now is to design sparsity patterns that lead to a
better tradeoff between task accuracy and GPU runtime.

Part I of the thesis focused on designing better algorithms and data structures for sparse matrix
operations on the GPU where the sparsity pattern of the input sparse matrices are fixed, i.e., Quasi-

61

Figure 4.4: Dual effect of sparsity pattern on the accuracy and the run time of a sparse neural
network for image classification task on the CIFAR-100 dataset using VGG11 model. The er-
ror/accuracy for the dense neural network is 31.5/68.5.

Figure 4.5: Impact of sparsity pattern on accuracy and runtime metric

Band sparsity pattern in QBMM (Matrix Multiplication computational task (C = As×Bs), where
As and Bs are Quasi Band sparse matrices), and Hines sparsity pattern in HSOLVE (Matrix solver
computational task (Asx=b), where As is a Hines sparse matrix). In both cases, the sparsity pattern
of the input sparse matrices is fixed, and the algorithm and data structures are co-designed by
exploiting the properties of the input sparsity pattern. The core operation in sparse neural networks
is the SDMM(Matrix Multiplication of a Sparse Matrix with a Dense Matrix) (C = As × B)
operation. Here the sparsity pattern of As is not fixed and can be chosen. Figure 4.5 shows how the
choice of the sparsity pattern affects the accuracy, the data structure for As, and the algorithm for
SDMM operation. Given these dependencies, we can generate efficient sparse neural networks on
GPU only by co-designing the sparsity pattern, the data structure, and the algorithm on the GPU.

62

Chapter 5

Dynamic Block Sparse Reparameterization of Convolutional Neural

Networks

Structured sparse neural networks help in improving runtime performance on GPU hardware.
Several types of structured sparsity patterns like filter sparsity [57], channel sparsity [40] and block
sparsity [81] were proposed. In filter/channel sparsity, the unit is a row/column which is either
completely zero or non-zero. In block sparsity, the unit is a block of parameters with dimensions
(bh, bw), where the parameters in a given block are either all zero or non-zero. Both filter and
channel sparsity are special cases of block sparsity and it has been shown in [76], that the computa-
tion of block sparse operations can be efficiently processed on parallel hardware like GPU. This is
because the algorithms for processing block sparse operations heavily piggyback on the algorithms
used for dense operations. Block sparsity is important also because, newer processor architectures
have components like systolic array (TPU) and tensor core (V100 GPU), which process matrices
in blocks. Hence block sparsity could be better exploited by these processor architectures. In this
work, due to the generic nature of block sparsity pattern and its good runtime performance bene-
fits, we developed techniques to generate efficient block sparse networks. Following are our main
contributions:

• We develop a simple, easy to use, and effective approach (DBSR) for generating structured
sparse neural networks with most generic block sparsity pattern. When compared to dense
training, our DBSR approach requires only one extra hyper parameter ζ, which controls the
amount of sparsity.

63

• As part of DBSR approach, we propose a block scaling operation and a block scaled con-
volution layer which forms the basis for quickly exploring new techniques for generating
structured sparse neural networks.

• We show the effectiveness of DBSR approach on important vision tasks like image classifica-
tion and semantic segmentation over varied networks (VGG, Resnet20, Resnet50, ResneXt50,
ERFNet) and datasets (CIFAR, Imagenet, Cityscapes).

In Section 5.1, we detail our approach and discuss the performance aspects of block sparsity in
context of a GPU. In Section 5.2, we go through our results and experiments. We finally conclude
the chapter in Section 5.3.

Related Work : Generation of structured sparse neural networks can be classified into two
paradigms: in vitro and in vivo. In the in vitro paradigm, a sparse model is generated from a pre-
trained dense model. In the in vivo paradigm, a sparse model is learned during the training process.
The common methodology underlying approaches based on in vitro paradigm has two main steps.
They are: 1) Prune structural units from a pre-trained model based on some criterion 2) Finetune
the pruned model to recover accuracy. Approaches in in vitro paradigm differ only in the chosen
pruning criterion, and sparsity pattern. The L1 norm of the weights of a unit structure is chosen
as the pruning criterion in [50, 58] and [81] for pruning filters and blocks respectively. In [57], the
filters of a current layer are pruned based on the channel weights of next layer. In [32], channel
pruning is performed based on LASSO regression based channel selection method. In [87], filters
are pruned across layers in a joint fashion by back propagating scores corresponding to the filters.
In [62], filters are pruned using Taylor expansion based pruning criterion. Even though in vitro
approaches are less computationally intensive than a full training, there are many challenges like
determining the pruning percentages for layers, the choice of hyper parameters for fine-tuning and
so on. This makes it difficult to use in vitro approaches in practice.

Our approach falls under the in vivo paradigm, where sparsity generation is tightly coupled
with the training process. In our approach, we associate a scaling parameter for each structure,
thus allowing our method to generate varied type of structured sparsity patterns. We focus on
the block sparsity pattern, which is the most generic structured sparsity pattern with filter and
channel sparsity patterns being sub cases of block sparsity. Many of the previous approaches in
in vivo paradigm, focus only on filter or channel sparsity. In [53], filter sparsity is generated by
regularizing scaling parameters already present in batch norm layers. To also support filter sparsity
generation for layers with out batch norm, [40] introduced additional scaling parameter for each
output activation channel. Both [40, 53] differ from our approach as they scale output activation

64

Figure 5.1: W and S are parameters of a neural network layer with block size (2x2). Before training,
S is initialized to 1. During training, S is regularized to induce sparsity. At the end of the training,
S becomes sparse due to regularization, and thus result in a block sparse neural network layer.

channels rather than weights thus limiting to generation of only filter sparsity pattern. In [82],
weights of a chosen structure are regularized by using group LASSO regularization. This differs
from our approach, as we regularize scaling factors associated with the block of weights rather
than weights themselves. The idea of using group LASSO regularization was adapted for recurrent
neural networks to generate structured sparse RNNs with block sparsity pattern [64]. In [55], a
binary variable is associated with each structure, and the binary value is stochastically learned
during training. Our method is a non stochastic approach, where scaling variable is a real valued
number that is trained along with weight parameters.

5.1 Approach

Our approach DBSR (Dynamic Block Sparse Reparameterization) generates block sparsity
through the training process in a dynamic fashion. The main idea in the DBSR approach is to
use trainable scaling parameters for the blocks and generate block sparsity by pushing the values
of scaling parameters to zero using L1 regularization. DBSR approach makes use of two building
blocks, namely block scaling operation and block scaled convolution layer. We first describe them
in detail and later use them to formulate our approach. We also discuss about the performance
aspects of block sparse networks.

Block Scaling Operation: Block scaling operation denoted by ∗b, takes two input tensors S
and W , and produces a single output tensor WS . Input tensor S is a 2D tensor with dimensions
(s1, s2) and W is at least a 2D tensor with dimensions (w1, w2, ..wn) . Blocking is performed on
outer two dimensions ofW , with dimensions (bh, bw), where bh = w1/s1 and bw = w2/s2. In the

65

forward (resp backward) pass, each element in W (dWS) is scaled by the scaling factor associated
with it’s block to generate WS(dW). In the backward pass each entry in dS is calculated by taking
dot product of the associated blocks in W and dWS . Algorithms 13 and 14, detail the computation
in the forward and backward pass of block scaling operation.

Block scaled convolution layer : The convolution operation in a convolutional layer consists
of producing an output activation tensorO, by applying convolution on an input activation tensor I .
O = conv(W, I), where W is a 4D parameter/filter tensor. Block scaled convolution layer is built
on top of regular convolution layer with additional parameters and computation. In block scaled
convolution layer, we store an additional 2D parameter tensor S along with W . The computation
in a block scaled convolution layer is processed in two steps: 1) A block scaling operation is
performed on S and W to generate WS (WS = S ∗b W). 2) Using WS , the convolution operation
is performed on input I to produce output O (O = conv(WS , I)).

Algorithm 13 Forward pass for block scaling operation WS = S ∗b W .

1: s1, s2 = S.shape

2: w1, w2, .., wn = W.shape

3: bh = w1/s1 . Block height

4: bw = w2/s2 . Block width

5:

6: for i = 0 : w1 − 1 do

7: for j = 0 : w2 − 1 do

8: WS [i, j] = S[i/bh, j/bw] ∗W [i, j]

9: end for

10: end for

11:

12: return WS

66

Algorithm 14 Backward pass for block scaling operation WS = S ∗b W .

1: for i = 0 : s1 − 1 do

2: for j = 0 : s2 − 1 do

3: hr = i ∗ bh : (i+ 1) ∗ bh− 1

4: wr = j ∗ bw : (j + 1) ∗ bw − 1

5: W bij = W [hr, wr]

6: dW bij
S = dWS [hr, wr]

7: dS[i, j] = Sum(W bij . ∗ dW bij
S)

8: dW [hr, wr] = S[i, j] ∗ dW bij
S

9: end for

10: end for

11:

12: return dW, dS

Formulation : Learning block sparsity in a neural network is jointly modelled with primary
learning task as an optimization problem according to Equation 5.1, where (xi, yi) is an instance in
dataset, M is a model, and L is a loss function. W and S correspond to weight and block scaling
parameters respectively. Rw(.) and RS(.) are regularizers used for W and S respectively.

min
W,S

N∑
i=1

L (M(S,W, xi), yi) /N +Rw(W) +Rs(S) (5.1)

Given the choice of block size, all convolutional layers in model M are converted into block
scaled convolution layers. Before training, all parameters in S are given equal importance by
initializing them to a value of 1. As training progresses, the values of parameters in S change
dynamically due to the error propagation from loss function and regularizers. In order to generate
sparsity, we push the values of scaling parameters S to zero by using L1 regularization (ζ ∗ |S|)
for Rs(.). The hyper parameter ζ controls the amount of sparsity in the model. Zero clipping is
performed on S (where S = max(0, S)) after every training iteration to ensure that the values in S
remains positive. Once the model is trained, S can be discarded after updating blocks in W using
a block scaling operation (W = S ∗b W).

67

Figure 5.2: Cache friendly blocking scheme for efficiently processing BSMM (block sparse matrix
multiplication) operation.

In our approach, there is a small memory and compute overhead when compared to dense model
training. Memory overhead is due to the need for storage of block scaling parameters S along
with weight parameters W . Compute overhead comes from additional block scaling operation
performed before convolution operation. These memory and compute overheads are limited only
to training, and are not present in inference.

Performance of block sparse CNNs : In popular deep learning libraries like cuDNN [17],
convolution operation is performed by posing it as a matrix multiplication operation (GEMM)
(O = W ∗ Imat), where each row in W matrix corresponds to a flattened 3D filter and Imat is a
lowered matrix of 3D input I . So in order to accelerate convolution operation, an efficient GEMM
operation is required. In case of block sparse convolution, we need an efficient block sparse matrix
matrix multiplication (BSMM) operation.

Efficient algorithms for the BSMM operation can be adapted from fast dense matrix multiplica-
tion (GEMM) algorithms that are based on cache friendly blocking schemes. In blocking scheme,
theC matrix is divided into blocks, and a block inC is computed by iteratively loading correspond-
ing blocks in A and B into a cache and then multiplying them. By keeping the blocks in the cache,
memory accesses become more efficient and thus increases runtime performance. For BSMM, we
can use the same blocking scheme based algorithms used for GEMM, except that the computation
corresponding to zero blocks are skipped. For example in Figure 5.2, we can see that a block C11 is
computed in only two steps as there are only two nonzero blocks corresponding to C11 in A. Using
the blocking scheme, efficient block sparse kernels for GPU are successfully developed in [76] to
deliver ideal speedups.

68

5.2 Experiments

We evaluate our approach on Imagenet [75] and cityscapes [19] datasets for the task of image
classification and semantic segmentation respectively. For image classification, we choose two
state of the art networks Resnet50 [31], and ResneXt50 [83]. And for semantic segmentation, we
choose realtime semantic segmentation network ERFNet [74]. In all our experiments, we use the
same experimental setting used for dense model training.

5.2.1 Effectiveness of DBSR on classification networks

Resnet50/Imagenet : In Resnet50, we chose 32x32 as the block size and trained multiple
networks by varying ζ which controls the sparsity. From Table 5.1, we can see that with only an in-
crease of 0.47 in Top-1 error, our model Resnet50-32x32-A decreases both parameters and FLOPS
of Resnet50 by ∼30%. More compact models can be generated by increasing the value of ζ. For
instance, Renset50-32x32-C decreases parameters by a factor of 2.5x, and FLOPS by a factor of
2x, with an increase of 2.66 in Top-1 error when compared with Resnet50. In [31], two small dense
networks Resnet18 and Renset34 are carefully designed to have less memory and computational
footprint. When compared with them, our models have more efficiency. Our model Resnet50-
32x32-D has 1.47 less Top-1 error, and takes 30% less parameters and 20% less FLOPS when
compared to Resnet18. Similarly when compared with Resnet34, our model Resnet50-32x32-B
has 0.34 less Top-1 error, and takes ∼38% less parameters and FLOPS. From comparisons with
small dense models such as Resnet18 and Resnet34, we can observe that big sparse models are
more efficient in terms of both memory and FLOPS. This observation was also made by [63] in
case of recurrent neural networks.

ResneXt50/Imagenet : In ResneXt50, grouped convolutions are introduced to improve ac-
curacy and reduce memory and computational requirements. While applying DBSR, we do not
replace grouped convolutional layers with block scaled convolution layers. The reason for that is a
grouped convolution layer has inherent block sparsity pattern with blocks strictly lying on the main
diagonal. From Table 5.1, we can see that with only an increase of 0.48 in Top1-error, our model
ResneXt50-32x32-A decreases parameters and FLOPS of ResneXt50 by 49% and 45% respec-
tively. While model ResneXt50-32x32-C with higher ζ values decreases parameters by a factor of
∼3.1x and FLOPS by a factor of ∼2.6x with only 2.01 increase in Top-1 error.

Comparison with SSS [40] : SSS (Sparse Structure Selection) is a recent work, where struc-
tured sparse neural networks are generated from dense networks (Resnet50, ResneXt50) through
the training process. Similar to SSS, our DBSR approach generates structured sparse networks

69

Model Top-1 Error #Params #FLOPS
Resnet18 30.24 11.67M 1.8B
Resnet34 26.70 21.77M 3.6B
Resnet-50 24.61 25.5M 3.85B

Resnet50-32x32-A 25.08 17.89M 2.74B
Resnet50-32x32-B 26.36 13.36M 2.19B
Resnet50-32x32-C 27.27 10.81M 1.85B
Resnet50-32x32-D 28.77 8.41M 1.42B

ResneXt-50 23.35 24.96M 4.23B
ResneX50-32x32-A 23.83 12.72M 2.32B
ResneXt50-32x32-B 24.69 9.39M 1.83B
ResneXt50-32x32-C 25.36 8.03M 1.65B
ResneXt50-32x32-D 26.20 6.60M 1.59B

Table 5.1: Block sparse models generated using DBSR approach for the task of image classification
on Imagenet ILSVRC2012 dataset. Centre crop is used for calculating error.

(a) Resnet50 parameters (b) Resnet50 FLOPS (c) ResneXt50 parameters (d) ResneXt50 FLOPS

Figure 5.3: Comparison of block sparse models from DBSR approach with structured sparse mod-
els from (SSS) [40] for the task of image classification on Imagenet dataset.

with block sparsity pattern through the training process. From Figure 5.3, we can see that when
compared to models generated using SSS, DBSR models are more efficient in memory, compute,
and error. For both Resnet50 and ResneXt50, we can see from Figures 5.3a & 5.3c, that DBSR
approach becomes even more effective as the number of parameters in the model decreases. This is
especially useful for effectively running low capacity models on resource limited embedded GPUs
like Jetson TK2.

Comparison with structured pruning methods : We compare our DBSR approach with other
structured pruning based methods like filter pruning [50], channel pruning [32] and ThinNet [57].
From Table 5.2, we can see that our model Resnet50-32x32-A has 0.75-1.6 less Top-1 error when

70

Model Top-1 Error Top-5 Error Params #FLOPs
ResNet-34-pruned [50] 27.44 - 19.9M 3.08B

Resnet-50-pruned [50] (From [40]) 27.12 8.95 - 3.07B
Resnet-50-pruned(2x) [32] 27.70 9.20 - 2.73B

Resnet50-pruned (ThinNet-30) [57] 27.96 9.33 16.94M 2.44B
Resnet-50-32x32-B (Ours) 26.36 8.23 13.36M 2.19B

Resnet-101-pruned [86] 25.44 - 17.30M 3.69B
Resnet50-32x32-A (Ours) 25.08 7.73 17.89M 2.74B

Table 5.2: Comparison of block sparse models from DBSR approach with models from other
structured pruning methods for the task of image classification over Imagenet dataset. We can see
that DBSR models are more efficient in parameters and FLOPS when compared to SSS models.

(a) Resnet50 parameters (b) Resnet50 FLOPS (c) ResneXt50 parameters (d) ResneXt50 FLOPS

Figure 5.4: Effect of varying block size on model efficiency.

compared to other pruning based approaches while still taking less number of parameters/FLOPS.
When compared with pruned Resnet-101 from [86], our model has 0.36 less Top-1 error and has
26% less FLOPS for similar number of parameters. It should be noted that pruning approach is
orthogonal to DBSR approach and can be applied on DBSR models to further decrease memory
and computational requirements.

Varying block size : In this experiment, we would like to see the effect of block size on model
efficiency. We train multiple block sparse models with block sizes 8,16 and 32. From Figure
5.4, we see that the models with smaller block sizes are more effective when the model capacity
(number of parameters/FLOPS) is less. This might be because when number of parameters are
less, flexibility offered by smaller block sizes helps in improving connectivity. But as the model
capacity increases, the effectiveness gap among block sizes decreases. From Figure 5.4, we can
see that the block size 16 has more efficiency than block size 8 for models with higher capacity.

71

(a) CIFAR10 parameters (b) CIFAR10 FLOPS (c) CIFAR100 parameters (d) CIFAR100 FLOPS

Figure 5.5: Comparison of DBSR approach with block pruning approach on image classification
task over CIFAR datasets for VGG network with block size 32x32

5.2.2 Comparison with block pruning

Our DBSR approach generates structured sparse neural networks with a block sparsity pat-
tern. Block sparse neural networks can also be generated by adapting pruning approach [31] to
prune blocks instead of individual elements. We compare our DBSR approach with block prun-
ing approach on CIFAR datasets CIFAR10 & CIFAR100 [45] over VGG [77] and ResNet-20 [31]
networks. Our VGG network for CIFAR is adapted from VGG16 network [77], with fc6 and fc7
replaced by a single fc layer of size 512, and batch normalization layer is added to all convolution
and fc layers.

In DBSR, we train the model for 240 epochs with base learning rate set to 0.1. For block
pruning, we finetune the pruned model for 24 epochs with base learning rate set to 0.01. For both
DBSR and block pruning, the learning rate is decreased by a factor of 10 at 3/6, 4/6 and 5/6 th of
the training/finetuning cycle. We use SGD with nestrov momentum optimization with momentum
and weight decay values set to 0.9 and 1e-4 respectively.

VGG/CIFAR : For VGG, we set the block size to 32x32 and generate block sparse models
with different model capacities. From Figure 5.5, we can see that models generated from our
DBSR approach are more efficient than that of block pruning approach. Block pruning has an
effect on error even for small amount of pruning. However, that is not the case for DBSR models.
For CIFAR10, up to 90% parameter reduction and 50% FLOPS reduction can be achieved while
maintaining accuracy comparable to that of dense. Similarly for CIFAR100, upto 80% parameter
reduction and 40% FLOPS reduction can be achieved with comparable accuracies to that of dense.

Resnet20/CIFAR : In Resnet20, the number of channels in convolutional layers are less and
range only from 16 to 64. Hence we chose 8x8 as the block size for Resnet20. From Figure 5.6,
we can see that our approach performs better than block pruning. The effectiveness of DBSR for

72

(a) CIFAR10 parameters (b) CIFAR10 FLOPS (c) CIFAR100 parameters (d) CIFAR100 FLOPS

Figure 5.6: Comparison of DBSR approach with block pruning approach on image classification
task over CIFAR datasets for Resnet20 network with block size 8x8

Resnet20 is less when compared with that of VGG. This might be due to the residual connections
in Resnet20, which make it more robust to block pruning approach. With little loss in accuracy, up
to 50% parameters and 30% FLOPS can be reduced for CIFAR10, and upto 30% parameters and
FLOPS can be reduced for CIFAR100.

5.2.3 Semantic Segmentation

We extend our DBSR approach to the task of semantic segmentation and evaluate on cityscapes
dataset [19] using ERFNet [74] network. The choice of ERFNet is due to its low capacity and
ability to do real time semantic segmentation, which is critical for many applications. ERFNet fol-
lows an encoder-decoder architecture with factorized convolutions. In our experiments, we choose
16x16 as the block size and convert all convolution layers into block scaled convolution layers. For
training, we use the same setup used for dense training. Table 5.3, shows our results on ERFNet
over cityscapes dataset. With only a loss of 1% in mIoU, our model ERFNet-16x16-A decreases
parameters by 30% and FLOPS by 20% when compared with dense ERFNet. More compact mod-
els can be found in Table 5.3 by increasing the value of ζ.

Model mIoU #Params #FLOPS
ERFNet 67.75 2.05M 29.83B

ERFNet-16x16-A 66.74 1.47M 23.82B
ERFNet-16x16-B 66.30 1.23M 21.92B
ERFNet-16x16-C 65.37 1.02M 19.47B
ERFNet-16x16-D 63.61 0.75M 15.87B

Table 5.3: Block sparse ERFNet models with 16x16 block size for the task of semantic segmenta-
tion over cityscapes dataset.

73

5.3 Conclusion

In this work, we developed a simple and effective technique called DBSR (Dynamic Block
Sparse Reparameterization) for generating efficient block sparse neural networks. Unlike post-
training pruning approaches, our DBSR approach tightly integrates structured sparsity generation
with the training process and results in efficient models on standard vision tasks like image classifi-
cation and semantic segmentation when compared to state of the art structured sparsity approaches.

74

Chapter 6

Hierarchical Block Sparse Neural Networks

In neural networks, each parameter is equally important before the training begins. As the train-
ing progresses, the importance of these parameters varies. One can prune away the least important
parameters during or after the training process with minimal/no loss to the model accuracy. Early
studies by [21,30], have shown the efficacy of pruning technique in reducing the model complexity.
More recently, pruning techniques were successfully applied on many classes of neural networks:
On Convolutional Neural Networks(CNNs), Han et al. [29] show how to generate sparse CNNs
from pretrained dense CNNs using finetuning approach. On recurrent neural networks(RNNs),
Narang et al. [63] show how to generate sparse RNNs by pruning away parameters at regular inter-
vals during the training process.

Most common way of pruning a neural network is fine grained pruning, where pruning is per-
formed at the level of individual element and the sparsity obtained due to it is unstructured. For
a given neural network, if K% of the model parameters are uniformly pruned across all layers,
the computational complexity of the model reduces by a factor of 100/(100 −K). For example,
pruning half of the parameters in a model decreases the computational complexity by 2x. But for
fine grained pruning, the runtime benefit obtained by decrease in computational complexity is far
from ideal on regular parallel hardware such as GPU.

To deal with runtime performance issues of unstructured sparse neural networks, researchers
have resorted to pruning parameters in a more structured way and leverage the structure for runtime
performance. Towards that end, Narang et al. [64] have performed block pruning in Recurrent
Neural Networks (RNNs), and Wen et al. [82] have performed filter pruning. But the common
observation is that for a given sparisty, the model obtained by these highly structured pruning
(block, filter) have less accuracy than fine grained pruning.

75

Fine grained pruning lacks runtime performance, and highly structured pruning lacks model
accuracy. But we would like our sparse networks to have both accuracy and runtime performance.
In this work, we arrive at such sparse models using our proposed class of sparse neural networks
called HBsNN (Hierarchical Block sparse Neural Networks).

Motivation : The importance of a parameter in a neural network is strongly correlated with
its magnitude. When we perform highly structured pruning like block sparse, we lose significant
number of high magnitude parameters due to the imposed structural constraints. Row 1 in Table 6.1,
shows the percentage of top {10,20,30,40,50}% elements retained after pruning 50% of elements in
a block sparse manner using 32x1 block size on a pretrained Resnet-v2-50 model. One can see that
24% of the top 10% elements are pruned out. It has been found empirically that high magnitude
parameters play a significant role in generating sparse models with good model accuracies. One
simple way to retain high magnitude weights is to bring fluidity to the sparsity structure. In Table
6.1, one can see that for a given sparsity of 50%, incorporating multiple levels of structure leads
to improved top-* percentages. Based on this observation, we propose a class of sparse neural
networks called Hierarchical Block sparse Neural Networks (HBsNN) which are more fluid and
can retain high magnitude parameters. Sparse models obtained by fine grained pruning or block
sparsity are a subset of HBsNN.

(block-heightx1)/sparsity top-10 top-20 top-30 top-40 top-50
32/50 76.04 69.81 65.80 62.82 60.42

(32,16)/(75, 75) 80.25 72.95 68.16 64.63 61.80
(32,16,8)/(75, 87.5, 87.5) 85.00 76.56 70.91 66.77 63.40

(32,16,8,4)/(75, 87.5, 93.75, 93.75) 89.83 80.06 73.49 68.63 64.75
(32,16,8,4,1)/(75, 87.5, 93.75, 96.875, 96.875) 100 90.71 79.23 72.03 66.84

Table 6.1: HBS configuration vs Retained percentage on ResNet-v2-50 model.

6.1 Approach

In HBsNN, the sparse parameter matrix M of a given layer is composed of multiple sparse
parameter matrices i.e, M = M1 + ... + MN , where each Mi is a block sparse matrix with
different block dimensions. As it is suboptimal to split the value of a non-zero in M across many
matrix levels, a non-zero element in M is contributed by only one Mi i.e, ∀j,k∈NMj ∗Mk = 0.
Apart from this, matrices have to satisfy hierarchical structure, where dimensions of block inMi+1

should divide dimensions of block in Mi i.e, Dim(Mi)%Dim(Mi+1) = 0. In Figure 6.1, we have
a 3 level configuration with block dimensions 4x4,2x2 and 1x1 respectively.

76

Figure 6.1: Hierarchical block sparse(HBS) neural network layer L with three parameter groups
L1,L2, and L3. The corresponding parameter group matrices M1,M2,and M3 are block sparse
matrices with block sizes 4x4,2x2, and 1x1 respectively.

6.1.1 Pruning Methodology

For a given matrix I , block dimensions (bh, bw) and sparsity sp, block sparsity is generated by
dividing the matrix I into a grid, where each grid element is of size (bh, bw). Each grid element
is then given a rank using the absolute summation values of that grid block. We then sort these
values and prune away sp % of blocks to generate a block sparse matrix. In case of hierarchical
block sparsity with N levels, block sizes BS = [(bh1, bw1), . . . (bhN , bwN)] and sparsities SP =

sp1, . . . spN are provided for all the levels. Let Ik and Mk be the input and output matrices at
level k. In level k, we perform a block sparse pruning with block size (bhk, bwk) and sparsity
spk to generate Mk. We then generate input to layer k + 1 by removing elements of Mk from Ik

i.e, Ik+1 = Ik −Mk. Figure 6.2, shows an example of 2 level HBS pruning on 4x4 matrix with
BS=[(2,2),(1,1)] and SP = [50,75]. In case of networks where parameters of a layer are arranged
in more than two dimensions, block dimensions correspond to outer two dimensions. For example,
in case of CNNs, blocking is performed on ofm(output feature maps) and ifm(input feature maps).

77

Figure 6.2: 2-Level block sparse generation : Block sizes=[(2x2),(1x1)] sparsities=[50,75]

6.1.2 Performance Model

In this section, we describe a performance model for evaluating performance of a layer in a
HBsNN. For a given HBS configuration, let Fdense and Fsparse be the amount of compute for
dense and sparse operations respectively. As a layer in HBsNN has multiple levels (L1, . . . , LN),
Fsparse =

∑i=N
i=1 FLi

sparse, where FLi
sparse is the amount of compute in ith level of the layer. Due

to irregularity in sparse computation, it is not always possible to realize the ideal speedup i.e,
Fdense/Fsparse. The achievable speedup depends primarily on two factors: 1) Amount of spar-
sity and 2) Dimensions of blocks. We quantify the sub-optimal speedup with an irregular factor
function irf(sparsity, blockDimensions) parameterized by those two factors. By taking these
factors into effect, the cost of dense (Cdense), and the cost of sparse neural network (Csparse) are
defined according to Equations 6.1 and 6.2 respectively. The achievable speedup can then be de-
fined according to Equation 6.3. The irf(. . .) function in Equation 6.2 varies from system to
system and has to be obtained by running micro benchmarks on that system. But on a regular
parallel hardware such as a GPU, irf function is inversely proportional to block size. So, inorder
to maximize performance, one needs to maximize sparsity for levels with smaller block sizes, and
minimize sparsity for levels with larger block sizes.

Cdense = Fdense (6.1)

Csparse =
i=N∑
i=1

FLi
sparse

irf(Sparsity(Li), BlockDims(Li))
(6.2)

SpeedUp =
Cdense

Csparse
(6.3)

78

6.2 Results

6.2.1 ResNet-v2-50/Imagenet

We take a pretrained Renset-v2-50 model with top-1 and top-5 accuracy of 76.13% and 92.86%
respectively and then generate sparse models from it using prune and retrain methodology from
[29]. Except for the first convolution layer and the last fully connected layer, we prune all the
layers. The pruned model is then trained for 18 epochs with the same set of hyper parameters as that
of the pretrained model. The initial learning rate for training is set to 1/100th of the base learning
rate used for pretrained model. A step based learning rate decay is followed, where learning rate is
decreased by a factor of 10 and 100 respectively at 9th and 14th epoch respectively.

Varying sparsity : In this experiment, we study how the accuracy varies with respect to sparsity.
We vary sparsity from 50% to 87.50% with block size set to 1x1. From Table 6.2, we can see that
accuracy decreases with sparsity. This is due to the fact that more number of elements are pruned
away with increase in sparsity and this reduces the model capacity.

Sparsity Top-1 Accuracy Top-5 Accuracy
50 76.42 (+0.29) 93.03 (+0.17)
75 75.12 (-1.01) 92.34 (-0.52)

87.50 71.58 (-4.55) 90.58 (-2.28)

Table 6.2: Varying sparsity with block size set to 1x1.

Varying block size : In this experiment, we study how accuracy varies with respect to block
size. Other parameters like sparsity and number of levels are kept the same. From Tables 6.3 and
6.4, we can see that the accuracy decreases with increase in the block size. This is due to the fact
that as we increase the block size, a large number of high magnitude elements are pruned away due
to increased structural constraint.

Block-size Top-1 Accuracy Top-5 Accuracy
4x1 75.73 (-0.40) 92.70 (-0.16)
8x1 75.19 (-0.94) 92.49 (-0.37)
16x1 75.03 (-1.10) 92.36 (-0.50)
32x1 74.52 (-1.61) 91.99 (-0.87)

Table 6.3: Varying block size with sparsity set to 50%.

79

Block-size/sparsity Accuracy
Level-1 (L1) Level-2 (L2) Top-1 Top-5
4x1/53 1x1/97 75.93 (-0.20) 92.81 (-0.05)
8x1/53 1x1/97 75.67 (-0.46) 92.65 (-0.21)
16x1/53 1x1/97 75.55 (-0.58) 92.75 (-0.11)
32x1/53 1x1/97 75.26 (-0.87) 92.48 (-0.38)

Table 6.4: Varying block size with two levels. (Cumulative-Sparsity=50)

Varying sparsity distribution: In this experiment, we set sparsity to 50% and distribute it
across multiple levels with block sizes ranging from 32x1 to 1x1 in a hierarchical fashion. Each
row in Table 6.5 corresponds to a Hierarchical block sparse configuration and we can see that
accuracy increases by having more fluidity in the structure imposed on sparsity. Another way of
bringing fluidity and retaining structure is through Quasi block sparse configuration, which is a
subset of Hierarchical block sparse configuration. In this case, there are two levels where one
level has block sparsity and another level has unstructured sparsity with block size 1x1. In Quasi
block sparse configuration, block sparsity caters for performance and unstructured sparsity caters
for accuracy. From Table 6.6, we can see that the accuracy increases with increase in fluidity and
with minimal loss to accuracy, significant amount of compute can be made regular.

Sparsity Accuracy
L1-(32x1) L2-(16x1) L3-(8x1) L4-(4x1) L5-(1x1) Top-1 Top-5

50 - - - - 74.52 (-1.61) 91.99 (-0.87)
75 75 - - - 74.85 (-1.28) 92.37 (-0.49)
75 87.50 87.50 - - 75.18 (-0.95) 92.49 (-0.37)
75 - 75 - - 75.22 (-0.91) 92.43 (-0.43)
75 87.50 93.75 93.75 - 75.31 (-0.82) 92.50 (-0.36)
75 - - 75 - 75.44 (-0.69) 92.63 (-0.23)
75 87.50 93.75 96.875 96.875 75.63 (-0.50) 92.67 (-0.19)

Table 6.5: Hierarchical block sparsity with varying distribution. (Cumulative-Sparsity=50)

6.3 Conclusion

In HBsNN models, levels with smaller block sizes cater for bridging accuracy gap and levels
with larger block sizes cater for improving performance. Thus HBsNN models have better accu-
racies than highly structured sparse models and have better performance than unstructured sparse

80

Sparsity Accuracy
L1-(32x1) L2-(1x1) Top-1 Top-5

62.50 87.50 75.92 (-0.21) 92.79 (-0.07)
56.25 93.75 75.64 (-0.49) 92.62 (-0.24)

53 97 75.26 (-0.87) 92.48 (-0.38)

Table 6.6: Quasi block sparsity with varying distribution. (Cumulative-Sparsity=50)

models. This fluidity in structure in HBsNN models is essential to obtain better sparse models
which are both accurate and performant.

81

Chapter 7

Regularized Multi Block Sparse Neural Networks

A large portion of the computation in sparse neural networks comprises of multiplying a sparse
matrix with a dense matrix, denoted SDMM in this chapter. The SDMM operation with an un-
structured sparsity pattern cannot be efficiently processed on modern architectures such as GPUs
due to irregularity in compute and memory accesses. However, efficient parallel algorithms on a
GPU can be designed for SDMM when the sparsity pattern is more structured. Thus, the run time
performance of sparse neural networks on a GPU is dependent on the sparsity pattern present in
the underlying matrix.

In sparse neural networks obtained using pruning based approaches, the choice of sparsity pat-
tern not only effects the run time, but also effects the accuracy of the task for which the neural
network is trained for. Sparsity patterns which have a good run time performance on a GPU may
not have a good accuracy and vice-versa. The real challenge then is to, given a target architecture,
identify a sparsity pattern, a storage format, and an algorithm for SDMM that leads to sparse neural
networks which are efficient in both run time and accuracy.

Efficient parallel algorithms for sparse matrix operations can be designed when the sparsity
pattern is known a-priori. The benefits of such an approach are, for instance, shown by Yang et
al. [85] for multiplying a sparse matrix with a quasi-band sparsity with a dense vector, Vooturi
and Kothapalli for multiplying two quasi-band matrices [80], and Picciau et al. for solving sparse
triangular systems [70]. Such algorithms designed for specific classes of inputs outperform the
corresponding general-purpose algorithms by even a factor of magnitude in some cases. This line
of work is used in also parallel algorithms for various graph problems ranging from finding the
strongly connected components [39], finding shortest paths and centrality values [16, 67], finding
2-connected components [24, 78], to name a few.

82

To design efficient parallel algorithms in the context of sparse neural networks, the effect of
sparsity pattern on accuracy presents additional challenges when adapting the above mentioned
line of work. In particular, given a degree of sparsity, the position of nonzero elements can impact
the accuracy of the neural network. Therefore, on a given target architecture, sparsifying neural
networks presents opportunities where an optimal sparsity pattern can be designed taking into
account the effect of sparsity pattern on accuracy, and the characteristics of the target architecture.

7.0.1 Our Contributions

In this chapter, we aim to exploit these opportunities and propose to use a codesign approach
that identifies a suitable sparsity pattern, a storage format, and the associated algorithms towards
efficient sparse neural networks. To this end, we introduce a novel structured sparsity pattern, called
the Regularized Multi-Block (RMB), that is highly suitable in the context of parallel algorithms for
sparse neural networks on modern accelerator based architectures. We also show that using the
RMB sparsity pattern we can reduce the amount of space needed to store a sparse matrix apart
from allowing for efficient parallel algorithms for the SDMM operation. Following are our main
contributions:

• We propose a novel, structured, flexible, and generic sparsity pattern called the RMB (Reg-
ularized Multi Block) sparsity pattern which results in more efficient sparse neural networks
on a GPU.

• We develop an efficient GPU algorithm for an instance of the SDMM operation called
RMBMM (matrix multiplication of a sparse matrix with a dense matrix, where the mul-
tiplicand has an RMB sparsity pattern). Our algorithm outperforms the generic CSRMM
routine from cuSPARSE library by a factor of 6-9x (Figure 7.9).

• We evaluate the RMB sparsity pattern on an image classification task on the Imagenet dataset
and generate sparse neural networks which are 4-5x and 2-3x more efficient in run time
when compared to sparse neural networks with unstructured, and block sparsity patterns
respectively (Figure 7.11).

Related work : On modern parallel architecture like GPU, one simple and effective way
to overcome the performance issue of sparse neural networks is to resort to structured pruning
methods. In structured pruning methods, pruning is performed with structured sparsity patterns like
block, row, and column. Among them, pruning approaches which result in row and column sparsity

83

Figure 7.1: A multi-block matrix with two block matrices of block sizes (2,3) and (2,2).

patterns are deeply explored in [32, 50, 53, 57] due to the fact that SDMM operations with row or
column sparsity pattern can be processed efficiently using existing fast dense kernels and does not
require developing a new sparse kernel. But a major drawback with the row or column sparsity
pattern is the rigidity with which pruning is performed. For a given sparsity, this rigidity limits the
choice of elements to retain and thus results in sub-par sparse neural networks. When compared
to the row and column sparsity patterns, block sparsity pattern is less rigid in nature. Narang et
al. [64] explore a block sparsity pattern with a single block type. Vooturi et al. [81] explore a block
sparsity pattern with multiple hierarchical block types. Both [64] and [81] result in sparse neural
networks that either compromise on the accuracy or the regularity in computation, which is key for
runtime performance. Our proposed RMB (Regularized Multi Block) sparsity pattern retains the
accuracy while not compromising on the regularity in computation. In [14], bank balanced sparsity
pattern, a subcase of RMB sparsity pattern is proposed to efficiently process sparse neural networks
on a FPGA.

7.1 Preliminaries

7.1.1 Sparse Matrix Structures

In this section, we define our proposed sparse matrices using block matrix as the unit.
Block matrix (Ab) : A matrix is called a block matrix if the non-zero elements in the matrix

are structured in the form of blocks of size (bh, bw) on a uniform matrix grid.
Multi Block Matrix (Amb) : If a matrix can be expressed as a disjoint sum of block matrices

(Amb = A1
b + · · · + AN

b), then such a matrix is called a multi-block matrix. Figure 7.1 shows an
example of a multi-block matrix.

Blocklet Matrix (Abl) : A blocklet matrix is a block matrix of block size (bh, bw) with follow-
ing properties:

84

(a) Negative (b) Negative (c) Positive (d) Positive

Figure 7.2: Negative and positive cases of a block matrix being a blocklet matrix. All the block
matrices have block size 2x2.

1. The number of non-zero blocks is equal to the number of row blocks nrb, where nrb =

(Abl.rows/Abl.bh)

2. Each row block has only one non-zero block.

Figure 7.2 shows negative and positive cases of a block matrix being a blocklet matrix. The
block matrix in Figure 7.2a violates Property 1 as it has five non-zero blocks instead of four. The
block matrix in Figure 7.2b violates Property 2 as the number of non-zero blocks in row blocks 0
and 2 is not one. Figures 7.2c and 7.2d shows valid cases of a block matrix being a blocklet matrix.

Multi Blocklet Matrix(Ambl): A matrix is called a multi-blocklet matrix if it can be expressed
as a sum of blocklet matrices (Ambl = A1

bl + · · ·+AN
bl). A blocklet matrix is also a multi blocklet

matrix with the number of blocklets equal to one.
Regularized Multi-Block Matrix (Armb): A regularized multi Block (RMB) Matrix is a block

matrix where each block is either a multi-blocklet matrix or a zero matrix. Figure 7.3 shows
an example of an RMB matrix with block size (8,8), where the three non-zero blocks are multi-
blocklet matrices.

7.1.2 Sparse Matrix Storage Formats

In this section, we propose our sparse matrix storage formats CBL,CMBL,CRMB for storing
blocklet, multi blocklet, and regularized multi-block matrix respectively. CBL: The Compressed
BlockLet (CBL) storage format is designed specifically for storing a blocklet matrixAbl. It consists
of a 2D array values of size (Abl.rows,Abl.bw), and a 1D array indices of size equal to the
number of row blocks nrb (nrb = Abl.rows/Abl.bh). Non-zero blocks in Abl are stored in values

85

Figure 7.3: A regularized multi block matrix (RMB) with block size (bh, bw) = (8, 8). Each block
is either a multi-blocklet matrix or a zero matrix.

in such a way that kth column in values is formed by concatenating the kth column of all the
non-zero blocks in the order of their row blocks. Similarly, the column block indices of the non-
zero blocks in Abl are stored in indices array in the order of their row blocks. In Figure 7.4, we
can see that 0th column of values for the second blocklet matrix i.e [2,6,4,8,6,2] is formed by
concatenating 0th columns of the three non-zero blocks i.e, [2,6], [4,8], and [6,2] in the order of
their row blocks.

CMBL: The Compressed Multi-BlockLet (CMBL) storage format is used for storing a multi-
blocklet matrixAmbl. AsAmbl is simply a collection of blocklet matrices, the CMBL format stores
them as an array bl matrices of type CBL. Figure 7.4 shows examples of multi-blocklet matrices
stored in the CMBL storage format.

CRMB : The Compressed Regularized Multi-Block (CRMB) storage format is used for storing
a regularized multi-blocklet matrix Armb. It consists of three arrays mbl matrices, indices and
rowBlockPtr. As all the non-zero blocks in Armb are multi-blocklet matrices, they are stored
in mbl matrices array of type CMBL in the row major fashion. Similarly, the column block
indices of non-zero blocks in Armb are stored in the indices array in the row major fashion. In
rowBlockPtr, the ith element points to the starting non-zero block of the ith row block in the
bl matrices array.

The CRMB data format is specifically designed to efficiently store and process sparse matrices
with an RMB sparsity pattern. One could also use the generic CSR data format to store an RMB
sparse matrix. While the storage cost of CSR depends only on the amount of sparsity, the storage

86

Figure 7.4: CRMB storage format for storing a RMB sparse matrix with block size (6,6). Each non
zero block in the matrix is stored in CMBL storage format, which inturn uses CBL storage format
to store blocklet matrices.

cost of the CRMB data format depends also on the blocklet configuration in RMB sparsity pattern.
In Table 7.1, we compare storage costs of the CSR data format with the CRMB data format for
three blocklet configurations (1,1), (2,2), and (4,4). From Table 7.1, we can see that for the finest
possible blocklet configuration i.e, (1,1), the CRMB storage cost is within a meagre 5% of CSR
storage cost and for coarser blocklets, storing an RMB sparse matrix in the CRMB data format can
reduce storage costs by a factor of ∼2x when compared to the CSR storage format. This is due to
the fact that for higher blocklet types, only one index needs to be stored for a single block.

Storage format sparsity = 50% sparsity = 75% sparsity = 87.5%
CSR 64.02 32.02 16.02

CRMB-(1,1) 66.25 33.25 16.75
CRMB-(2,2) 41.25 20.75 17.50
CRMB-(4,4) 34.75 17.50 8.88

Table 7.1: Storage cost (in MB) of the CRMB and the CSR data formats for storing a sparse matrix
of size 4096×4096 with an RMB sparsity pattern. CRMB-(x,y) corresponds to an RMB sparsity
pattern with blocklets of type (x,y)).

7.2 Our Algorithm for RMBMM

In this section, we show our algorithm for RMBMM by building upon algorithms for multi-
plying a blocklet sparse matrix with a dense matrix (BLMM) and for multiplying a multi-blocklet
sparse matrix with a dense matrix (MBLMM).

87

7.2.1 BLMM

The BLMM operation (CT = ATbl × BT) is an instance of the SDMM operation with the
multiplicand having a blocklet sparstiy pattern. The BLMM operation is processed according to
Algorithm 15, with ATbl stored in the CBL storage format. The outer for loop in Algorithm 15
runs for ATbl.bw steps and in kth step, the computation associated with the kth column of all the
nonzero blocks in ATbl is processed.

In a given step, multiple rows from B may be accessed as non-zero blocks in Abl may not
be in the same column block. Lines 4-6 describe the mapping between an element in the kth

column of Abl.values and its choice of row in B. First, the row block into which the element
belongs is calculated and then its associated column block index is accessed from Abl.indices.
Subsequently, the index of the associated row in B is calculated using the column block index
of the element and the current step number. The time complexity of the BLMM operation using
Algorithm 15 is O(ATbl.bw × ATbl.rows × BT.columns). Our algorithm is efficient as it does
not process computation corresponding to zero blocks. But if ATbl were to be stored as a dense
matrix and processed as a dense matrix, the complexity would beO(ATbl.columns×ATbl.rows×
BT.columns) irrespective of the block size in ATbl.

Algorithm 15 Matrix multiplication of a blocklet matrix ATbl with a dense matrix BT . (CT =
ATbl ×BT).

1: for k in [0 : ATbl.bw) do
2: for i in [0 : ATbl.rows) do
3: for j in [0 : BT.columns) do
4: rbInd = i/ATbl.bh
5: cbInd = ATbl.indices[rbInd]
6: rowB = (cbInd×ATbl.bw) + k
7: CT [i][j] += ATbl.values[i][k]×BT [rowB][j]
8: end for
9: end for

10: end for

7.2.2 MBLMM

The MBLMM operation (CT = ATmbl × BT) is an instance of the SDMM operation with
the multiplicand having a multi-blocklet sparsity pattern. As ATmbl matrix is a sum of blocklet
matrices (ATmbl =

∑n=N
n=1 ATn

bl), the MBLMM operation involving ATmbl can be expressed as a

88

sum of sub-products (CT =
∑n=N

n=1 ATn
bl×BT) where each sub-product corresponds to a BLMM

operation. Algorithm 16 is used to process the MBLMM operation withATmbl stored in the CMBL
format.

Algorithm 16 Matrix multiplication of a multi-blocklet matrix ATmbl with a dense matrix BT
(CT = ATmbl ×BT).

1: num blocklets = |ATmbl.bl matrices|
2: for n in [0, num blocklets) do . Loop through blocklets
3: ATbl = ATmbl.bl matrices[n]
4: CT += ATbl ×BT . Process using Algorithm 15
5: end for

7.2.3 RMBMM

RMBMM (C = Armb × B) is an instance of the SDMM operation with the multiplicand
having an RMB sparsity pattern. For processing the RMBMM operation, we use a tiling based
approach similar to the one used for efficiently processing GEMM (dense matrix multiplication)
operation [65]. In the tiling approach, the matrix C is divided into tiles of size (TM, TN). Each
output tile CT in C is then processed in steps. In each step a tile AT of size (TM, TK) from
Armb and its corresponding tile BT of size (TK, TN) from B are multiplied together to produce
a partial output of CT . For a given hardware, tiling parameters TM, TK and TN are chosen to
maximize performance.

Algorithm 17 describes the RMBMM operation using the tiling approach with Armb stored in
the CRMB storage format. In RMBMM, tiling parameters TM and TK are set to Armb.bh and
Armb.bw respectively. Lines 6-17 in Algorithm 17 describe the computation required for process-
ing an output tile in C with index (rb, cb). As each output tile is computed in steps, the number of
steps required for processing an output tile CTrb,cb is equal to the number of non-zero tiles/blocks
in the row block rb of Armb. In each step, an MBLMM operation is performed as a tile/block in
Armb is a multi-blocklet matrix. Our algorithm is optimal as we do not process computation as-
sociated with zero tiles in Armb and uses an efficient MBLMM operation for processing non-zero
tiles.

89

Algorithm 17 Tiled Matrix multiplication of a regularized multi-block matrix Armb with a dense
matrix B (C = Armb ×B) parameterized by TN .

1: TM = Armb.bh
2: TK = Armb.bw.
3: nrb = C.rows/TM . Number of row blocks in C
4: ncb = C.cols/TN . Number of column blocks in C
5: for rb, cb in [0 : nrb)× [0 : ncb) do
6: rowRangeA = [rb× TM : (rb+ 1)× TM)
7: colRangeB = [cb× TN : (cb+ 1)× TN)
8: start mid = Armb.rowBlockPtr[rb]
9: end mid = Armb.rowBlockPtr[rb+ 1]− 1

10: for mid in [start mid : end mid] do
11: ATmbl = Armb.mbl matrices[mid] . A tile
12: ind = Armb.indices[mid]
13: rowRangeB = [ind× TK : (ind+ 1)× TK)
14: BT = B[rowRangeB][colRangeB] . B tile
15: CT += ATmbl ×BT . Process using Algorithm 16
16: end for
17: C[rowRangeA][colRangeB] = CT
18: end for

7.3 RMBMM on a GPU

In this section, we first show how the RMBMM operation can be efficiently mapped onto a GPU
using our GPU algorithm RMBMM-GPU. Later we explore the space of RMB sparsity patterns and
study its effect on the run time of the RMBMM operation on GPU.

7.3.1 RMBMM-GPU

The RMBMM operation can be efficiently implemented on a GPU by exploiting the properties
of RMB sparsity pattern. In Algorithm 17, the outer for loop which runs through all the output
tiles in C can be parallelized. So on a GPU, we map the computation of an output tile CT in C
to a thread block. From Line 15 of Algorithm 17, we can infer that a thread block has to perform
a series of MBLMM operations, (ATmbl × BT), where each operation computes a partial output
of CT . As elements of ATmbl and BT are repeatedly accessed in the MBLMM operation, their
values are loaded onto the shared memory before performing the operation. For processing the
MBLMM operation, we use Algorithm 18, a reframed version of Algorithm 16 and show how

90

it can be mapped onto a GPU. In Algorithm 18, the output tile CT is further tiled into subtiles,
where each subtile corresponds to a group of elements of size (GR,GC). The for loop in Line 3 of
Algorithm 18 which runs through all the element groups in CT can be parallelized. So on a GPU,
we map the computation corresponding to an element group to a thread. For a given thread, we
further avoid multiple accesses to shared memory by loading them once to the local variables and
reuse multiple times. Shared memory requirement of our algorithm is TK × (TM + TN) words
and registers required for storing operands and output in Line 19 is GR+GC +GR×GC words.
As each SMX has a limited amount of shared memory and registers, we choose TN,GR,GC in
such a way that it maximizes run time efficiency. Note that the value ofGR should divide the block
height of all the blocklets in the matrix Armb. This is because, for the Algorithm 18 to work, the
values loaded into Areg in Algorithm 18 should come from a single block.

7.3.2 Experimental Platform

We use an Nvidia Volta V100 GPU with 16GB of RAM for all our experiments. The V100
has a total of 5120 cores organized in 80 streaming multi-processors (SMX). It has a peak single
precision floating point performance of 15.7 Tflops and a peak memory bandwidth of 900 GBps.
Each SMX also has a combined data cache and shared memory of 128KB, which can be configured
as per requirements of the workload. For programming the V100 GPU, we use CUDA Version 9.0.

7.3.3 Exploring the RMB Sparsity Pattern Space

For a given amount of sparsity, the run time of an RMBMM operation (C = Armb×B) depends
on many parameters like the block size in RMB matrix, the number of blocklet matrices per block,
the type of blocklet for each blocklet matrix etc. In this section, we explore these factors and how
they effect performance of the RMBMM operation on a GPU. We set the dimensions of all the
matrices in our experiments to be 4096×4096.

7.3.3.1 Varying Block Size

As the block size is a significant aspect of the RMB sparsity pattern, we study the effect of block
size (bh, bw) in the Armb matrix on the performance of Algorithm RMBMM-GPU. Each non-zero
block in Armb is set to be a multi-blocklet matrix with only one blocklet matrix of type (bh, bw).
We perform the following two experiments.

91

Algorithm 18 Grouping based matrix multiplication of a multi-blocklet matrixATmbl with a dense
matrix (CT = ATmbl ×BT)) parameterized by grouping parameters GR,GC.

1: nrg = CT.rows/GR
2: ncg = CT.columns/GC
3: for rg, cg in [0 : nrg)× [0 : ncg) do
4: Areg[GR], Breg[GC], Creg[GR][GC] . Registers
5: Creg = 0
6: num blocklets = |ATmbl.bl matrices|
7: for n in [0, num blocklets) do
8: ATbl = ATmbl.bl matrices[n]
9: for k in [0 : ATbl.bw) do

10: rbInd = (rg ×GR)/ATbl.bh
11: cbInd = ATbl.indices[rbInd]
12: rowB = (cbInd×ATbl.bw) + k
13: for gr in [0 : GR) do
14: Areg[gr]= ATbl.values[rg ×GR+ gr][k]
15: end for
16: for gc in [0 : GC) do
17: Breg[gc] = BT [rowB][cg ×GC + gc]
18: end for
19: Creg += Areg ×Breg
20: end for
21: end for
22: rgRange = [rg ×GR : (rg + 1)×GR)
23: cgRange = [cg ×GC : (cg + 1)×GC)
24: CT [rgRange][cgRange] += Creg
25: end for

92

In the first experiment, we study the effect of increasing the block size from 4×4 to 64×64 in
multiples of 2. The grouping parameters GR and GC are set to 1. In Algorithm RMBMM-GPU,
the tiling parameters TM and TK are set to bh and bw respectively and the tiling parameter TN
is chosen to maximize occupancy for a given block size. From Figure 7.5a we can see that the
time taken by Algorithm RMBMM-GPU decreases with increase in block size. This is because
as the block size increases, the number of times an element has to be loaded into shared memory
decreases and thus increases performance.

In the second experiment, we study the effect of changing the block size from a skinny block
with block width 2 to a fat block with block width 64 in multiples of 2. We use three configurations
for (TM,TN) = [(32,32), (64,64), (128,64)]. The grouping parameters GR and GC are each set to
4 resulting in a 16 way grouping. Sparsity is set to 50%. From Figure 7.5b, we see that as block
width or TK increases, the run time decreases and then starts to increase. This is because of the
trade-off between the number of steps taken and the amount of shared memory required. When
TK is reduced by 2, it decreases the shared memory requirement by half. This helps in increasing
occupancy. But this also increases number of steps and synchronization operations.

So in order to get performance for RMBMM-GPU operation, the choice of the block size should
be big and not skinny.

(a) Varying block size for a given sparsity. (b) Varying block width (TK) from skinny to bulky.

Figure 7.5: Varying block size in RMB sparsity pattern.

93

7.3.3.2 Varying Grouping

Grouping is parameterized by two parameters namely GR and GC. In grouping, GR × GC
elements inC matrix are mapped onto a single thread. To study the effect of grouping on Algorithm
RMBMM-GPU, we perform the following two experiments.

In the first experiment, we focus on grouping and vary grouping from 1 to 64 in multiples of 2
with grouping performed only along the column axis i.e, GR = 1. We choose the following three
tiling configurations TM,TK,TN = [(32,32,32), (64,64,64), (128,32,128)]. Sparsity is set to 50%.
From Figure 7.6a, we can see that as we increase grouping, the runtime decreases up to a certain
point and then increases. This is because the number of registers required increases with grouping
and this hampers occupancy of the SMX on a GPU.

In the second experiment, we fix the amount of grouping to 16 and change the layout in
which grouping is applied. The total number of registers required in Algorithm RMBMM-GPU
is GR+GC+GR×GC (beyond any other additional registers used), and the number of operations
performed is GR×GC before resetting register buffers. When grouping is (1,16), 33 registers are
required for doing 16 operations whereas only 24 registers are required for doing the same 16
operations when grouping is (4,4). If the total grouping amount is G, then using a grouping of
(
√
G,
√
G) results in optimal register usage. But grouping in 2D can result in increased bank con-

flicts while accessing elements from shared memory. From Figure 7.6b, we can see the tradeoffs
between 2D grouping and decreasing bank conflicts. In case of (128,32,128) tiling configuration,
(4,4) layout has the best performance. This is because square layout is optimal and as each warp
takes care of a single column in CT , it has no bank conflicts in accessing elements of BT from
shared memory.

From the above experiments, we conclude that limited grouping is good. Further, grouping
layout should to be chosen to optimize register usage and minimize shared memory bank conflicts.

7.3.3.3 Varying Blocklet Matrix

The type of a blocklet matrix is defined by its block size. In this experiment, we study how the
choice of a blocklet matrix of a given type effect the run time of the RMBMM-GPU Algorithm. For
a given blocklet matrix Abl of type (bh, bw), there are (Abl.cols/bw)(Abl.rows/bh) possible blocklet
matrices of that type. Among those possibilities, we choose three representative blocklet matrices
namely vertical, diagonal, and random. In vertical, all the nonzero blocks in the blocklet matrix
have zero column block index. In diagonal, the column block index of a non zero block is equal
to its row block index. And in random, column block indices for non zero blocks are chosen at

94

(a) Varying grouping amount across column axis. (b) Varying layout of 16 way grouping.

Figure 7.6: Varying grouping in RMBMM-GPU Algorithm.

random. The block size of Armb is set to (128,32) and the tiling parameter TN is set to 64. We
perform a 32 way grouping with a (4,8) layout. Each block in Armb is set to be a multi-blocklet
matrix with only one blocklet matrix of type (bh, bw). From Figure 7.7, we can see that for a
given blocklet type (bh, bw), all the three representative patterns have the same run time. This
implies that for a given blocklet type, the performance of RMBMM-GPU is invariant to the choice
of blocklet matrix with that type. The reason for this invariance is because we load tiles from Armb

and B into shared memory and all accesses for processing any blocklet matrix of a given type are
made from the shared memory.

7.3.3.4 Varying Multi-Blocklet Matrix

In this experiment, we study how the choice of a multi-blocklet matrix effects the run time of
the RMBMM-GPU Algorithm. Let Ambl be a multi-block matrix of size (128,32). Ambl can have
N blocklets and each blocklet can be of any type. If Ambl has 50% sparsity, then some of the
possible combinations are: 1 blocklet matrix of type (64,16), two blocklet matrices of type (32,8)
etc. From Figure 7.8, we can see that for a given sparsity run time increases with increase in number
of blocklets in multi-block matrices. The reason for that is that more blocklets leads to more data
loads due to increased number of indices and increased number of iterations in the algorithm.

95

Figure 7.7: Varying blocklet matrix for a given
blocklet type.

Figure 7.8: Varying multi blocklet matrix con-
figuration.

7.3.4 Comparing RMBMM with CSRMM and BSRMM

Given an RMBMM operation(C = Armb × B), it can be efficiently processed on a GPU
using our RMBMM-GPU Algorithm described in Section 7.3.1. We compare our RMBMM-GPU
approach with following two benchmarks namely CSR-B and BSR-B.

• CSR-B: Any sparse matrix can be stored in CSR storage format irrespective of its spar-
sity pattern. In this benchmark, we store sparse matrix Armb in CSR format and process
RMBMM operation using CSRMM API call from cuSPARSE library.

• BSR-B: As an RMB matrix is also a multi block matrix, it can be expressed as a sum of
block matrices (Armb = A1

b + · · · + AN
b). Thus the RMBMM operation can be expressed

as a sum of SDMM operations with block sparsity pattern (C =
∑i=N

i=1 Ai
b × B). In this

benchmark, we process each partial product Ai
b × B using the BSRMM API call from the

cuSPARSE library and accumulate the run times.

For Armb, we set the block size to (128, 32) and generate random RMB matrices with blocklet
types (64,16), (32,8), (16,4), (8,2), (4,1). For each non-zero block, the number of blocklets and
the types of the blocklets are chosen at random. From Figure 7.9, we see that processing the
RMBMM operation as a CSRMM or a BSRMM leads to large penalties in terms of run time. This
corroborates our idea of using a codesign approach of choosing the sparsity pattern (RMB), storage
format (CRMB) and the associated GPU algorithm (Algorithm RBMMM-GPU).

96

Figure 7.9: Speedup of RMBMM wrt CSR-B and BSR-B.

7.4 Regularized Multi Block (RMB) Sparse Neural Networks

In this section, we generate sparse neural networks with RMB sparsity pattern and compare
them with unstructured, and block sparse neural networks on the metrics of accuracy, and run time.
To that end, we consider two AI tasks, namely image classification and image segmentation.

7.4.1 Generation of Sparse Neural Networks

Sparse neural networks are generated using the pruning approach [29] from a pre-trained dense
neural network. In a pruning approach, unimportant parameters from each layer of a pre-trained
dense network are pruned/removed based on some criterion. The resultant sparse network is then
retrained to recover the lost accuracy from pruning. Specifics on how the pruning approach is
applied with unstructured, block, and RMB sparsity patterns for a given layer are described below.
For a given layer, let A be the dense parameter matrix to be pruned in that layer and N be the
number of parameters or size of A.

7.4.1.1 Unstructured Pruning

Parameters are pruned at an individual level based on their magnitude. Given the amount of
pruning/sparsity percentage sp, parameters are first sorted and then the smallest sp% of the pa-
rameters are pruned. We store the obtained sparse matrix in CSR storage format and process the
SDMM operation using the CSRMM API call from the cuSPARSE library.

97

7.4.1.2 Block Pruning

Parameters are pruned in the units of blocks of size (BH,BW). In order to prune the blocks, we
first quantify the strength of a block by summing up the magnitude of elements in that block. Once
block strengths are computed, blocks are sorted and the smallest sp% of the blocks are pruned. The
sparse matrix obtained from block pruning is stored in the BSR format and the SDMM operation
is processed using the BSRMM API call from cuSPARSE.

7.4.1.3 RMB Pruning

The core operation in RMB pruning is to prune a dense block Ab of size (BH,BW) in A
into a multi-blocklet matrix Abmbl with K blocklet matrices Ab1bl, . . . , Ab

K
bl of types (blh1, blw1),

. . . ,(blhK , blwK) respectively. The pseudo-code for RMB pruning is provided in Algorithm 19.
The outer for loop goes through all the dense blocks in A. And for a given dense block Ab, the
multi-blocklet matrix Abmbl is generated in K steps, where in the ith step, the blocklet matrix Abibl
is generated from the current residual matrix Abres using Algorithm 20 (Also see Figure 7.10).
The residual matrix Abres is initialized to Ab and the multi-blocklet matrix Abmbl is initialized to
0. In each step, Abres and Abmbl are respectively updated by subtracting and adding the generated
blocklet matrix in that step. The resultant sparse matrix obtained after RMB pruning is stored in
the CRMB format and is processed using our RMBMM-GPU Algorithm.

The time complexity of Algorithm 20 is linear in the size of the input matrix as it consists of only
piece-wise reduction operations for calculating block strengths and max operations for choosing
the blocklet pattern. As Algorithm 20 is invoked K times for each dense block in A, the total time
complexity of RMB pruning is O(K ×N). As K is typically a small number, the time complexity
of RMB pruning is linear in the size of the input matrix A.

7.4.2 Image Classification

In Image classification, the task of a neural network is to correctly classify the image into one
of the predefined classes. For our experiments, we use three neural network architectures, namely
VGG11 [77], Resnset18 [31] and Resnet50 [31] architectures and two datasets, namely CIFAR-
100 [46] and ILSVRC2012 [75] datasets. Multiple sparse neural networks with different sparsity
amounts are generated for each sparsity pattern using corresponding pruning methods described
in Section 7.4.1. For block pruning, we set the block size to 4x4 so as to avoid generating sparse

98

Figure 7.10: Separation of a blocklet matrix Abbl of type (2,2) from an input matrix Abres of size
(6,6). Block strengths are first calculated for each 2x2 block in Ares and a block with maximum
strength is chosen for each of the three row blocks.

Algorithm 19 RMB pruning of a dense parameter matrix A into a sparse matrix Armb with
RMB sparsity pattern. Each dense block Ab of size (BH × BW) is pruned into a multi-
blocklet matrix Abmbl composed of K blocklet matrices Ab1bl, . . . , Ab

K
bl with blocklet types

(blh1, blw1), . . . , (blhK , blwK).

1: nrb = A.rows/BH
2: ncb = A.cols/BW
3: Armb = 0
4: for (rb, cb) in [0, nrb)× [0, ncb) do
5: rRange = [rb×BH : (rb+ 1)×BH)
6: cRange = [cb×BW : (cb+ 1)×BW)
7: Ab = A[rRange][cRange] . Dense block
8: Abres = Ab . Residual matrix initialization
9: Abmbl = 0 . Multi-blocklet matrix initialization

10: for i in [1 : K] do
11: Abibl = separate blocklet(Abres, blhi, blwi)
12: Abres = Abres −Abibl . Update residual matrix
13: Abmbl += Abibl . Update multi-blocklet matrix
14: end for
15: Armb[rRange][cRange] = Abmbl

16: end for
17: return Armb

99

Algorithm 20 Separating blocklet matrix Abbl of type (BLH,BLW) from input matrix Abres.

1: separate blocklet(Abres, BLH,BLW) :
2: nrb = Abres.rows/BLH . Number of row blocks
3: ncb = Abres.cols/BLW . Number of column blocks
4: b strengths = zeros(nrb, ncb) . Block strengths
5: for (rb, cb) in [0 : nrb)× [0 : ncb) do
6: rRange = [rb×BLH : (rb+ 1)×BLH)
7: cRange = [cb×BLW : (cb+ 1)×BLW)
8: b strengths[rb][cb] = sum(|M [rRange][cRange]|)
9: end for

10: Abbl = 0 . Blocklet matrix initialization
11: for rb in [0 : nrb) do
12: m cb = max ind(b strengths[rb][:]) . Index of the block with maximum strength in row

block rb.
13: rRange = [rb×BLH : (rb+ 1)×BLH)
14: cRange = [m cb×BLW : (m cb+ 1)×BLW)
15: Abbl[rRange][cRange] = Abres[rRange][cRange]
16: end for
17: return Abbl

models with high accuracy loss. For RMB, we set the block size to be 128x32 and limit blocklet
matrices to be of type (1,1).

Training setup: CIFAR100 dataset has a total of 60K images coming from 100 image classes.
Out of which, we use 50K images for training, and 10K images for testing. For CIFAR100, we
also augment the data for training, by taking a 32x32 random crop from a 4 padded 32x32 original
image or its horizontal flip. For networks trained over CIFAR100, the base dense network is trained
for 120 epochs. For VGG11 and Resnet18, the pruned model is retrained for 16 epochs with initial
learning rate set to 0.01. Learning rate is decreased by a factor of 10 at epochs 8 and 12.

The ILSVRC12 dataset has 1.2 million images coming from 1000 image classes. Out of them
50K images are used for testing and the rest are used for training. For data augmentation in training
networks with ILSVRC12, a random 224x224 crop is taken from the resized original image or its
horizontal flip. For Resnet50, the base dense network is trained for 100 epochs. Initial learning
rate is set to 0.1 and is decreased by a factor of 10 at epochs 30, 60 and 90. For Resnet50, the
pruned model is retrained for 16 epochs with initial learning rate set to 1e-3. The learning rate is
decreased by a factor of 10 at epochs 8 and 12. For the loss function, we use the cross entropy
loss, and for the optimization, we use the stochastic batched gradient descent optimizer with batch

100

sparsity = 50% sparsity = 75% sparsity = 87.5%
Sparsity
pattern

Accuracy Time
(ms)

Accuracy Time
(ms)

Accuracy Time
(ms)

Unstructured 68.46 132 67.73 86 66.81 56
Block 67.31 64 65.63 35 64.11 19
RMB 68.57 25 68.04 15 66.38 10

Table 7.2: VGG11 network over CIFAR100 dataset. Accuracy of the pretrained dense model is
68.58%.

size 256, weight decay of 1e-4, and momentum of 0.9. For all the considered networks, namely
VGG11, Resnet18, and Resnet50 all the layers are pruned except for the first convolutional layer
and the last fully connected layer, which are directly connected to input and output respectively.
Run time is reported for processing a 64 batched input.

7.4.2.1 VGG11/CIFAR-100

From Table 7.2, we can see that when compared to unstructured models, RMB models have the
same level of accuracy and are 5-6x faster for the same number of parameters. And when compared
to block models, RMB models are more accurate and are up to 2-3x faster for the same number
of parameters. From Table 7.2, we can also see that despite having 2x less number of parameters,
RMB model with 87.5% sparsity is more accurate and is 3.5x faster than block model with 75%
sparsity.

7.4.2.2 Resnet18/CIFAR100

From Table 7.3, we can see that when compared to unstructured models, RMB models achieve
similar accuracy levels and are 3x faster. Further as we increase sparsity, the accuracy gap between
block and RMB increases and this shows the inability of block pruning to generate sparse neural
networks with high degree of sparsity. From Table 7.3, we can see that for the same level of
accuracy, RMB model with 75% sparsity takes 2x less parameters and is 2.8x faster when compared
to block model with 50% sparsity.

101

sparsity = 50% sparsity = 75% sparsity = 87.5%
Sparsity
pattern

Accuracy Time
(ms)

Accuracy Time
(ms)

Accuracy Time
(ms)

Unstructured 72.92 58 71.95 42 71.11 30
Block 71.57 36 69.88 20 67.32 11.2
RMB 72.64 20 71.84 13 70.86 9.4

Table 7.3: Resnet18 network over CIFAR100 dataset. Accuracy of the pretrained dense model in
72.9%.

7.4.2.3 Resnet50/ILSVRC12

The ILSVRC12 dataset is a strong test for our proposed RMB sparsity pattern as it has 20x
more images and 10x more classes than that of CIFAR100 dataset. From Figure 7.11, we see
that when compared to block sparsity, RMB models are more accurate and are 2-3x faster for the
same number of parameters. And also when compared to unstructured models, RMB models are
4-5x faster and have the same level of accuracy except for the case when sparsity is 87.5%. This
is because when sparsity becomes very high, the effect of structural constraints in RMB sparsity
pattern on accuracy becomes more acute.

Figure 7.11: Resnet50 network over ILSVRC12 dataset. Accuracy of the dense model is 76.13%.

102

sparsity = 50% sparsity = 62.5% sparsity = 75%
Sparsity
pattern

Accuracy Time
(ms)

Accuracy Time
(ms)

Accuracy Time
(ms)

Unstructured 55.71 550 55.37 441 53.64 373
Block 51.25 331 48.5 258 39.9 192
RMB 56 123 54.87 103 52.74 84

Table 7.4: FCN-Resnet50 network over VOC2012 dataset. Accuracy of the pretrained dense model
is 56.12%.

7.4.3 Image Segmentation

In image segmentation, the task of a neural network is to correctly classify each individual
pixel in an image into one of the predefined classes. For our experiments we use two FCN (Fully
Convoluted Networks), FCN-Resnet50, and FCN-Resnet101 over PASCAL VOC12 dataset.

Training setup: The VOC12 dataset has a total of 2931 images with pixels labelled into one
of the 20 predefined classes. Of there, half of the images are used for training and other half for
testing. For data augmentation, a random 480x480 crop is taken from the resized original image
or it’s horizontal flip. For FCN-Resnet50 and FCN-Resnet101, the base network is trained for 30
epochs with initial learning rate set to 0.01. For the loss function, we use cross entropy loss and for
optimizer, we use batched stochastic gradient descent optimizer with batch size 8, weight decay
1e-4, and momentum of 0.9. The pruned network is retrained for 10 epochs with initial learning
rate set to 1e-3. For both FCN-Resnet50 and FCN-Resnet101, we prune all the layers except for the
first convolutional layer connected to the input and last two convolutional layers before the output.
Run time is reported for processing 4 batched input.

7.4.3.1 FCN-Resnset{50,101}/VOC12:

From Tables 7.4 and 7.5, we see that for the same number of parameters, RMB sparse models
are 4-5x and 2-3x faster than unstructured and block sparse models respectively. It is also clear
that the rate at which accuracy drops with respect to sparsity is very high for block sparsity pattern
when compared to unstructured and RMB patterns. At higher sparsities, RMB performs slightly
worse than unstructured. This is due to the fact that any kind of structured pattern cannot be as
flexible as unstructured pattern.

103

sparsity = 50% sparsity = 62.5% sparsity = 75%
Sparsity
pattern

Accuracy Time
(ms)

Accuracy Time
(ms)

Accuracy Time
(ms)

Unstructured 59.92 1876 59.45 1596 58.72 1314
Block 56.3 1133 53.87 840 47.08 654
RMB 59.73 363 59.33 299 57.67 235

Table 7.5: FCN-Resnet101 network over VOC2012 dataset. Accuracy of the pretrained dense
model is 60.09%.

7.4.4 Exploring the RMB Sparsity Pattern Space

The RMB sparsity pattern offers a vast space of configurations and the choice of configuration
has varied effects on run time and accuracy of the sparse model. In Section 7.3.3, we have explored
the space of RMB sparsity pattern from the viewpoint of run time performance and in this section
we will explore RMB sparsity pattern from the viewpoint of accuracy.

7.4.4.1 Varying Block Size

In this experiment, we study the effect of varying block size in RMB sparsity pattern on accuracy
and run time of RMB sparse models. Using RMB pruning (Algorithm 19), we generate sparse
models with an RMB sparsity pattern for block sizes 8x8, 16x16, and 32x32 for different sparsity
amounts. In the imposed RMB sparsity pattern, we limit blocklet matrices to be of type (1,1). From
Tables 7.6, 7.7, 7.8, and 7.9 we can see that for a given sparsity, the accuracy of the model is robust
to block size and as the block size increases, run time performance improves significantly. This
robustness to the block size allows us to choose higher block size in the RMB sparsity pattern and
improve run time performance without any loss in accuracy.

sparsity = 50% sparsity = 75% sparsity = 87.5%
Block size Accuracy Time

(ms)
Accuracy Time

(ms)
Accuracy Time

(ms)
8x8 68.26 62 67.38 51 66.36 45
16x16 68.51 45 67.65 32 66.65 26
32x32 68.45 37 67.95 25 66.42 19

Table 7.6: Effect of varying block size in RMB on accuracy and runtime of VGG11 sparse model.

104

sparsity = 50% sparsity = 75% sparsity = 87.5%
Block size Accuracy Time

(ms)
Accuracy Time

(ms)
Accuracy Time

(ms)
8x8 72.78 40 71.51 33 70.68 29
16x16 72.83 31 72.07 23 70.82 19.2
32x32 72.63 24 71.85 17 70.61 13.7

Table 7.7: Effect of varying block size in RMB on accuracy and runtime of Resnet18 sparse model.

sparsity = 50% sparsity = 62.5% sparsity = 75%
Block size Accuracy Time

(ms)
Accuracy Time

(ms)
Accuracy Time

(ms)
8x8 55.65 302 54.75 274 51.85 244
16x16 56.07 230 54.91 200 52.41 171
32x32 56 188 54.87 163 52.74 137

Table 7.8: Effect of varying block size in RMB on accuracy and runtime of FCN-Resnet50 sparse
model.

7.4.4.2 Varying Multi-Blocklet Matrix

In this experiment, we study how the choice of a multi-blocklet matrix in RMB sparsity pattern
effects the accuracy and run time of the model. We fix the block size in RMB sparsity pattern
to be 128x32 and limit a multi-blocklet matrix to have up to two unique blocklet types. Using
RMB pruning, we generate sparse models for different multi-blocklet configurations across differ-
ent sparsity amounts. From Table 7.10,7.11, 7.12, and 7.13 we can see that for a given sparsity as
we move towards coarse blocklet types, the accuracy of the model decreases and run time perfor-
mance improves. The accuracy decreases because the flexibility in pruning decreases with increase
in the coarsity of blocklet types and the run time performance increases because coarser blocklets
offer more regularity in computation and decreases the number of blocklets in a multi-blocklet
matrix.

The space of RMB sparsity pattern offers rich structures which can be configured according to
the runtime and accuracy needs of the usecase. As a general rule of thumb, use coarser blocklet
types for maximizing runtime performance, and finer blocklet types for maximizing accuracy.

105

sparsity = 50% sparsity = 62.5% sparsity = 75%
Block size Accuracy Time

(ms)
Accuracy Time

(ms)
Accuracy Time

(ms)
8x8 60.01 1013 59.01 916 57.31 811
16x16 59.94 756 59.54 657 57.52 560
32x32 59.93 608 59.44 521 57.74 433

Table 7.9: Effect of varying block size in RMB on accuracy and runtime of FCN-Resnet101 sparse
model.

sparsity = 50% sparsity = 75% sparsity = 87.5%
Blocklet
types

Accuracy Time
(ms)

Accuracy Time
(ms)

Accuracy Time
(ms)

1x1 68.57 24.56 68.04 14.70 66.38 9.91
2x2 67.56 17.72 66.30 11.65 64.53 8.46
4x4 66.90 14.91 66.18 10.09 64.02 7.74
2x1,1x1 68.38 24.74 67.58 14.66 66.15 9.89
4x2,2x1 68.24 20.38 66.74 12.94 65.11 9.13
8x2,4x2 67.05 17.23 65.87 11.31 64.71 8.27

Table 7.10: Effect of varying blocklet types in RMB on accuracy and runtime of VGG11 sparse
model.

7.5 Conclusion

Due to the dual effect of a sparsity pattern on the accuracy and runtime of a sparse neural
network, we followed a codesign approach, where the sparsity pattern (RMB), its storage format
(CRMB), and a corresponding algorithm (RMBMM-GPU) for SDMM are designed in tandem to
result in sparse neural networks that are both accurate, and performant on a GPU. The space of the
proposed RMB sparsity pattern is rich and can be configured according to the runtime and accuracy
needs of an application.

Inorder to induce an RMB sparsity pattern, we proposed a simple homogeneous pruning ap-
proach (RMB pruning), where all the non zero blocks in RMB have the same multi-blocklet con-
figuration. We believe that more efficient sparse neural networks can be generated by embracing
heterogeneity.

106

sparsity = 50% sparsity = 75% sparsity = 87.5%
Blocklet
types

Accuracy Time
(ms)

Accuracy Time
(ms)

Accuracy Time
(ms)

1x1 72.64 20.33 71.84 12.96 70.86 9.36
2x2 72.27 15.4 70.37 10.56 68.94 8.15
4x4 71.67 13.25 69.62 9.6 67.7 7.74
2x1,1x1 72.67 20.3 71.88 12.96 70.54 9.29
4x2,2x1 72.3 17.67 71.13 11.59 69.84 8.59
8x2,4x2 71.77 15.22 70.5 10.44 68.47 8.11

Table 7.11: Effect of varying blocklet types in RMB on accuracy and runtime of Resnet18 sparse
model.

sparsity = 50% sparsity = 62.5% sparsity = 75%
Blocklet
types

Accuracy Time
(ms)

Accuracy Time
(ms)

Accuracy Time
(ms)

1x1 56 123.14 54.87 103.23 52.74 83.51
2x2 54.03 96.46 51.89 84.65 46.57 73.29
4x4 50.54 87.07 46.53 77.6 36.11 68.8
2x1,1x1 55.95 122.35 54.78 102.26 52.08 82.7
4x2,2x1 54.86 106.67 52.71 92.24 49.38 78.07
8x2,4x2 52.36 94.95 49.22 84.01 41.76 72.99

Table 7.12: Effect of varying blocklet types in RMB on accuracy and runtime of FCN-Resnet50
sparse model.

sparsity = 50% sparsity = 62.5% sparsity = 75%
Blocklet
types

Accuracy Time
(ms)

Accuracy Time
(ms)

Accuracy Time
(ms)

1x1 59.73 362.79 59.33 298.83 57.67 235.45
2x2 57.86 268.38 55.98 238.28 51.82 203.42
4x4 55.88 247.71 51.7 219.56 42.78 189.4
2x1,1x1 60.2 370.3 59.24 304.58 57.42 239.45
4x2,2x1 59.28 318.78 57.6 271.33 54.48 225.09
8x2,4x2 56.9 279.9 54.25 244.2 47.55 208.5

Table 7.13: Effect of varying blocklet types in RMB on accuracy and runtime of FCN-Resnet101
sparse model.

107

Chapter 8

Ramanujan Bipartite Graph Products for Efficient Block Sparse

Neural Networks

Deep Neural Networks can help many real world tasks to achieve high prediction accuracies.
However, such solutions cannot be easily ported to edge devices because of the highly constrained
runtime environment with low memory and power usage constraints. Sparsity is an essential tool
for generating compute and memory efficient DNNs. Despite this, the predominant choice of
DNNs in production edge or server devices is dense instead of sparse. This is mainly because
unstructured sparse neural networks tend to have poor run time performance on majority of the AI
hardware, which are primarily designed for accelerating dense neural networks. Hence for truly
uncovering the potential of sparsity in edge devices, it is necessary to generate structured sparse
neural networks that are in harmony with the dense AI hardware.

Structured sparse neural networks can be generated using two approaches, namely D2S (Dense
to Sparse) and S2S (Sparse to Sparse). In D2S, we start with a dense neural network and make
it sparse during the training process. In S2S, we start and end the training process with a sparse
neural network. D2S can be further divided into two types, namely Train-D2S and Finetune-
D2S. In Train D2S, the starting neural network is untrained, and in Finetune-D2S, the starting
neural network is pretrained. In Chapter 5, we used a Train-D2S approach to generate efficient
sparse neural networks with block sparsity pattern. In Chapters 6 and 7, we used a Finetune-D2S
approach to generate sparse neural networks with hierarchical block (HB), and regularized multi
block (RMB) sparsity patterns respectively. In theory, using a Train-D2S to generate complex
structured sparsity patterns like HB and RMB will be more efficient because the starting point is
not a trained network. The reason we did not do that is because it is computationally intensive
to maintain the structure during the training due to multiple levels of blocking. One can avoid

108

this and still generate complex structured sparse neural networks using Static-S2S approach, where
the connectivity between neurons is fixed throughout the training process. In this work, we use a
static-S2S approach based on the concepts of Ramanujan graphs, and graph products to generate
structured sparse neural networks that are highly effective in memory and runtime metrics, which
are critical for edge devices.

The run time of a sparse neural network on a given hardware is dependent on the efficiency
with which the multiplication of a Sparse Matrix with a Dense matrix (SDMM) operation can
be implemented. On a hardware like a GPU with a deep memory hierarchy (Registers > Shared
memory > L2 cache > DRAM), the SDMM operation will have good run time efficiency if and
only if it maximizes data accesses from faster memory through data reuse. For a structured sparse
neural network, the amount of reuse depends on the choice of the structured sparsity pattern. In
addition, the chosen pattern should be well connected to allow for good flow of information in
the neural network. In this work, we address these requirements and generate structured sparse
networks that are performant and connected. Following are our main contributions:

• Propose the Ramanujan Bipartite Graph Product (RBGP) framework for generating struc-
tured sparse neural networks that have multiple levels of block sparsity, good connectivity,
and takes less memory for storage.

• Using the RBGP framework, we propose the RBGP4 structured sparsity pattern for the GPU,
a representative dense hardware, and achieve good run time efficiency for the multiplication
of a Sparse Matrix with a Dense Matrix (SDMM) operation on a GPU.

• We demonstrate the utility of the RBGP4 sparsity pattern on image classification and ma-
chine translation tasks on an edge (Nvidia Jetson Nano 2GB) as well as on server class
(Nvidia V100) GPUs, and obtain significant speedups when compared to commonly used
sparsity patterns like unstructured and block.

Related work : In the static sparse training approach, training starts and ends with a sparse
neural network with connections remain unchanged. In other words, the mask (choice of connec-
tions) in each layer of the sparse neural network is kept fixed throughout the training process. Prior
works in static sparse training approach differ in the way the mask is chosen. Prabhu et al. [71]
makes use of expander graphs, and generates a random mask with row uniformity pattern, where
all the rows in the mask have equal number of non zeros. Sourya et al. [23] generate a random
mask with both row and column uniformity. Frankle et al. [25] use an unstructured mask generated
by pruning a trained dense model. Kepner et al. [43] use the idea of radix topology to generate a

109

mask with cyclical diagonal pattern. Blocking pattern is the key requirement for achieving run time
performance on dense AI hardware, and none of the above works incorporate block sparsity pat-
tern. In this work, we impose the block sparsity pattern at multiple levels using RBGP framework,
and achieve good run time performance on GPU, a representative dense AI hardware.

8.1 Preliminaries

In this section, we setup various definitions and notations used throughout the paper. First we
define various types of block sparsity patterns.

Block Sparse (BS) matrix: A BS matrixWbs is a sparse matrix, where non zero elements are struc-
tured in the form of blocks of size (bh, bw). The matrixWbs has (Wbs.rows/bh×Wbs.columns/bw)

number of blocks, and a block in Wbs is either a zero block with all zeros or a non-zero block with
some or all elements as non-zeros. Figure 8.1a shows an example of a BS matrix.

Cloned Block Sparse (CBS) matrix: A CBS matrix is a block sparse matrix with block size
(bh, bw) where all the non zero blocks of size (bh, bw) have the same non-zero pattern. Figure
8.1b shows an example of a CBS matrix.

Uniform Block Sparse (UBS) matrix: A UBS matrix Wubs is a block sparse matrix with block
size (bh, bw) where all the row/column blocks of size (bh,Wubs.columns)/(Wubs.rows, bw) have
equal number of non-zero blocks of size (bh, bw). Figure 8.1c shows an example of a UBS matrix.

Cloned Uniform Block Sparse (CUBS) matrix: A CUBS matrix is a block sparse matrix with
block size (bh, bw) that is both UBS and CBS matrix with block size (bh, bw). Figure 8.1d shows
an example of a CUBS matrix.

Recursive CUBS (RCUBS) matrix: An RCUBS matrix Ws is a sparse matrix with K levels of
blocking B1, ..., BK and following recursion: Ws is a CUBS matrix with block size B1, and a non
zero block of size Bi in Ws is again a CUBS matrix with block size Bi+1. Figure 8.3 shows an
example of RCUBS matrix with three levels of blocking.

We consider the bipartite graph G = (U, V,E) representation of matrices (with dimension
|U | × |V |). In a biregular bipartite graph, all the vertices in U and V have same degree dl and
dr respectively. The degree also characterizes the sparsity of such graphs. The eigenvalues of a
graph G are the eigenvalues of its adjacency matrix and they characterize many graph properties
including connectivity [18]. A bipartite graph with N vertices have eigenvalues ±λ1, ...,±λN/2,
where λ1 ≥ λ2... ≥ λN/2. The spectral gap between λ1 and λ2 is a measure of the connectivity
properties of the graph [6]. Ramanujan Graphs are graphs with optimal connectivity (as measured

110

(a) Block Sparse (BS)
matrix.

(b) Cloned Block Sparse
(CBS) matrix

(c) Uniform Block
Sparse (UBS) matrix.

(d) Cloned Uniform
Block Sparse (CUBS).

Figure 8.1: Types of block sparse matrices with block size (4,4). In a BS matrix, a block is either
completely zero or not. In a CBS matrix, all non zero blocks have the same non zero pattern. In
a UBS matrix, all row/column blocks have equal number of non zero blocks. A CUBS matrix is
both a UBS matrix and a CBS matrix.

by the spectral gap) for a given level of sparsity [56] as defined below.

Ramanujan bipartite graph: A Ramanujan bipartite graph is a (dl, dr)-biregular bipartite graph,
where the second largest eigenvalue λ2 is less than or equal to (

√
dl − 1 +

√
dr − 1).

Bipartite Graph Product (⊗b): A bipartite graph product (Gp = G1 ⊗b G2) takes two bipartite
graphs, G1(U1, V1, E1) and G2(U2, V2, E2) as the input and produces a bigger bipartite graph
Gp(Up, Vp, Ep) where Up = U1×U2, Vp = V1×V2, and Ep is constructed using the cross product
of edges from G1 and G2 i.e, Ep = {((u1, u2), (v1, v2))|(u1, v1) ∈ E1 and (u2, v2) ∈ E2}. A
bipartite graph product can also be viewed from a matrix viewpoint in the following way.

A bipartite graphG(U, V,E) can be represented as a bi-adjacency matrixBA of size (|U |, |V |),
with BAuv = 1 if (u, v) ∈ E, and zero otherwise. For the bipartite graph product (Gp = G1 ⊗b

G2), the bi-adjacency matrix of Gp is equal to the tensor product (⊗) of the bi-adjacency matrices
of the input bipartite graphs G1 and G2 i.e., BAp = BA1⊗BA2. Figure 8.2 shows an example of
bipartite graph product from the viewpoint of both a graph and a matrix.

8.2 Ramanujan Bipartite Graph Product Framework

The connectivity between neurons in a layer L of a sparse neural network can be captured using
a bipartite graph G, where left/right neurons in L correspond to left/right vertices in G, and the
connections between left and right neurons in L correspond to undirected edges between left and
right vertices in G. The core idea in the RBGP (Ramanujan Bipartite Graph Product) framework is

111

Figure 8.2: Bipartite graph product operation (⊗b) along with matrix view. Biadjacency matrix of
the product graph has CBS (Cloned Block Sparse) pattern with block size (2,2).

to expressG as a bipartite graph product of Ramanujan bipartite graphs i.e (G = G1⊗b ...⊗bGK),
where K is the number of base graphs. In the rest of the section, we show how expressing the
connectivity of a layer using bipartite graph products leads to sparse neural networks that have
structured sparsity, good connectivity, and memory efficiency.

Structured Sparsity: In the bipartite graph product (Gp = G1 ⊗b G2), the biadjacency matrix
of Gp is equal to the tensor product (⊗) of the biadjacency matrices of G1 and G2 i.e, BAp =

BA1 ⊗ BA2. In the tensor product, BAp is constructed by replacing each non zero element in
BA1 with BA2 matrix, and each zero element in BA1 with zero matrix of size BA2. As BA2 is
repeated, BAp will have a CBS (Cloned Block Sparse) sparsity pattern with block size equal to the
size of BA2 or (|G2.U |, |G2.V |). Figure 8.2 shows an example of a bipartite graph product, where
the biadjacency matrix of the product graph has a CBS pattern with block size (2, 2). Additionally,
when G1 is a biregular bipartite graph, BAp will have a CUBS (Cloned Uniform Block Sparse)
sparsity pattern as BA1 will have equal number of elements in all rows and all columns.

In the RBGP framework, the bipartite graph G of a layer L in the neural network is con-
structed by performing a series of (K − 1) bipartite graph products on K base biregular bipar-
tite graphs (G = G1 ⊗b · · · ⊗b GK) that are Ramanujan. The bipartite graph G can be rewrit-
ten as G = G1 ⊗b CG2, where CG2 = (G2 ⊗b · · · ⊗b GK). As G1 is a biregular bipar-
tite graph, BA (biadjacency matrix of G) will have the CUBS sparsity pattern with block size
(Πi=K

i=2 |Gi.U |,Πi=K
i=2 |Gi.V |). Going deeper, as CGi = (Gi ⊗b CG(i+1)), and also as all the base

graphs are biregular, BA will have an RCUBS (Recursive Cloned Uniform Block Sparse) sparsity
pattern with (K − 1) blocking levels B1 · · ·B(K−1), where Bj = (Πi=K

i=j+1|Gi.U |,Πj=K
i=j+1|Gi.V |).

Figure 8.3 shows an example bipartite graph generated using the RBGP framework with four base
graphs and three block sizes, (16, 16), (8, 8), and (2, 2).

112

Figure 8.3: Biadjacency matrix BA of a bipartite graph generated using RBGP framework. BA
has RCUBS (Recursive Cloned Uniform Block Sparse) sparsity pattern with three blocking levels
(16, 16), (8, 8) and (2, 2).

Memory Efficiency: A sparse neural network can be efficiently stored by only storing the infor-
mation related to the connections that are present in the sparse layers. For a sparse layer L and its
associated bipartite graph G, |E(G)| memory is required for storing the parameters correspond-
ing to connections, and another |E(G)| memory is required for storing connectivity information
in the form of adjacency list of G. Thus a total of 2 × |E(G)| memory is required for storing
the information of a layer in a sparse neural network. But in a RBGP sparse neural network, the
memory requirement can be reduced by reducing the memory required for storing connectivity in-
formation. In the RBGP sparse neural network, as G is constructed using K base bipartite graphs
(G = G1 ⊗b ... ⊗b GK), the connectivity information of G can be reduced from

∏i=K
i=1 |E(Gi)|

to
∑i=K

i=1 |E(Gi)|, by only storing the connectivity information of the individual base graphs. For
example, the bipartite graph G generated using RBGP framework in Figure 8.3 has 512 edges
(8× 2× 8× 4), but it only requires storing 22 edges (8 + 2 + 8 + 4) from the base graphs to con-
struct the connectivity information of G, thus leading to a 23x reduction in memory requirement
for storing the connectivity information when compared to a random bipartite graph with same
number of edges as G.

Advantageous for edge: Edge devices are constrained in memory and computational capability.

113

Thus, sparse neural networks are ideal for edge devices as they have a low memory footprint and
compute. However, the only drawback is that the run time performance is subject to the sparsity
pattern present. Our RBGP framework addresses this issue by generating structured sparse neural
networks with RCUB (Recursive Cloned Uniform Block) sparsity pattern. The cloning and block-
ing properties allow for effective utilization of memory hierarchy, and uniformity property helps in
load balancing the compute. Together, these properties will improve runtime performance on any
dense AI hardware, be it an edge or server (see Section 8.4). Furthermore, the cloning property in
the RCUB sparsity pattern allows for minimizing the memory required for storing the connectivity
information in a sparse neural network by storing the cloned pattern’s connectivity information
only once.

Good connectivity: Connectivity in a sparse neural network is key for ensuring good flow of
information. It is well known [6] that connectivity of the graph is characterized by the spectral
gap between the largest and second largest eigenvalue (in absolute terms) of the adjacency matrix.
In this section, we show that the spectral gap for the block sparse graph we construct using graph
products, are optimal for any level of sparsity, for large graphs.

For a d-regular bipartite graph the largest eigenvalue in absolute value is d and −d. The next
largest eigenvalue is considered as the second largest eigenvalue λ2. The spectral gap is d − λ2,
and the larger the spectral gap, the better connected the graph. Suppose the bipartite graph has
n vertices on both sides, the degree d is αn with α being the density of the graph. For a given
value of d, the best possible spectral gap of d − 2

√
d− 1 is achieved by Ramanujan Graphs [6].

We construct block sparse graphs using graph products of smaller Ramanujan Graphs and show
below that this construction has similar spectral gap as n → ∞. For simplicity we consider the
case where the bipartite graph G is the graph product of G1, G2 which are bipartite graphs with n
vertices on each side and degree d = αn. Note that G has degree d2 and sparsity 1− α2.

Theorem 4. Let G = G1 ⊗b G2 where Gi are bipartite graphs with n vertices on each sides and

degree d = αn. Then for any fixed level of density α or sparsity (1− α),

IdealSpectralGapd2
SpectralGap(G)

→ 1 as n→∞ (8.1)

where IdealSpectralGapd2 = d2−2
√
d2 − 1 is the best possible spectral gap for d2-regular graphs

and SpectralGap(G) is the spectral gap of the block sparse graph G that we construct.

Proof. The biadjacency matrix of G is the tensor product of biadjacency matrices of G1 and G2.

Hence the eigenvalues of the biadjacency matrix are the product of eigenvalues of biadjacency

114

Figure 8.4: 2-lift operation on graph G. Clone graph Gc is first created and edges (u1, v1) and
(u2, v2) are randomly chosen to cross over with the corresponding edges (uc1, v

c
1) and (uc2, v

c
2)

respectively in the clone graph.

matrices of G1 and G2. Since G1 and G2 are Ramanujan Graphs, their second largest eigenvalue is

2
√
d− 1. Hence, the second largest eigenvalue of G is λ2(G) = d× 2

√
d− 1. The ideal value of

the second largest eigenvalue for graphs of degree d2 is 2
√
d2 − 1. Hence Equation 8.1, becomes

d2 − 2
√
d2 − 1

d2 − 2d
√
d− 1

=
1− 2

√
1/d2 − 1/d4

1− 2
√

1/d− 1/d2
.

Hence, for any fixed level of density α or sparsity (1 − α), n → ∞ (large matrices), d → ∞, the

left hand side of Equation 8.1 tends to 1.

8.2.1 Ramanujan Bipartite Graph Generation

A construction for Ramanujan Bipartite graph (RBG) was given by Bilu et al. [11]. The proof
that this construction obtains the optimal eigenvalue gap was given by Marcus et al. [59]. We use
algorithms (graph lifts) derived from these constructions to generate Ramanujan Bipartite Graphs
for a given sparsity.

2-lift operation: A 2-lift is an operation applied on a graph G to produce a bigger graph GL

that is twice as big as G in both vertices and edges. In the 2-lift operation, a clone graph Gc

is first created and the vertex set of GL is set to be the union of vertex sets of G and Gc i.e,
V (GL) = V (G) ∪ V (Gc). The edge set of GL i.e, E(GL) is then constructed in the following
way: for an edge (u, v) ∈ G, and its corresponding clone edge (uc, vc) ∈ Gc, either the identity
edge pair {(u, v), (uc, vc)} or the crossover edge pair {(u, vc), (uc, v)} is chosen at random and
added to E(GL). Figure 8.4 shows an example of a 2-lift operation.

Generating sparse biregular bipartite graph: A 2-lift operation when applied on a biregular
bipartite graph also results in a biregular bipartite graph that is twice as big with same left and right
degrees. A biregular graph G(U, V,E) with sparsity(1.0 − |E(G)|/(|G.U | × |G.V |)) sp, can be

115

generated by repeatedly applying log2(1/(1− sp)) 2-lift operations on a complete bipartite graph
with (1− sp)× |G.U | left and (1− sp)× |G.V | right vertices.

Generating an RBG graph: A Ramanujan bipartite graph is a biregular bipartite graph with
an additional constraint on the second largest eigenvalue of the adjacency matrix of the graph.
To generate an RBG graph, we sample sparse biregular bipartite graphs generated using 2-lift
operations until the sampled graph is Ramanujan. We found that an RBG graph with sizes in the
order of thousands can be generated in the order of minutes. For a layer in the RBGP sparse neural
network, the base Ramanujan graphs are generated only once before training and hence sampling
approach is not a bottleneck.

8.3 The RBGP Framework for GPU

Dense matrix multiplication (GEMM) operation (C = A× B) can be efficiently implemented
on hardware with a deep memory hierarchy like a GPU because of the high degree of data reuse
present in GEMM operation. On the other hand, the efficiency of sparse matrix multiplication
(SpGEMM) operation (C = As ×B) depends on the sparsity pattern of As. For example, a struc-
tured pattern like a block sparsity pattern leads to more efficiency than an unstructured sparsity
pattern. Our goal is to design a sparsity pattern such that the SpGEMM operation can be efficiently
implemented. We do that by closely following the techniques of the GEMM implementation. The
efficiency of the GEMM operation on a GPU is primarily due to two techniques: tiling, and register
blocking.

Tiling: In tiling, matrices A, B and C are divided into tiles of sizes (TM, TK), (TK, TN),
and (TM, TN) respectively and the tile CTij in C is computed in A.cols/TK or S steps i.e.,
CTij =

∑S
k=0(ATik × BTkj). In each step, the tiles AT and BT are loaded into cache and the

subproduct (AT × BT) is computed entirely out of cache. For tiling to be compatible with spar-
sity, the sparsity has to be at the tile level where a tile is either zero or not. Additionally, if the tile
sparsity is uniform i.e., each (TM,A.cols) sized row block in A has an equal number of nonzero
tiles, then all the tiles in C can be computed in equal number of steps. A uniform tile sparsity in A
can be achieved using the RBGP framework by setting G = Go ⊗bGt, with Go as sparse, and size
of Gt equal to the tile size of A.

Register blocking: In register blocking (RegBlock), tile matrices AT , BT and CT of sizes
(TM, TK), (TK, TN), and (TM, TN) respectively are further divided into subtiles of sizes
(BM,BK), (BK,BN), and (BM,BN) respectively. Further, elements in CT are divided into

116

Algorithm 21 RegBlockMM (CTreg+ = ATs × BT) operation using register blocking (Reg-
Block) technique. Pattern of ATs is set as (Gr ⊗b Gi ⊗b Gb), where base graphs Gr and Gb

are dense with |Gr.V | = 1. Among RegBlock parameters (RM,RN,BM,BN), parameters
RM,BM, and BK are set to |Gr.U |, |Gb.U |, and |Gb.V | respectively. CTreg is stored as a
6D array of shape [EM,EN,RM,RN,BM,BN], where EM = ATs.rows/(RM × BM) and
EN = BT.cols/(RN ×BN)

1: function LOADBLOCK(matrix, (i, j), (bh, bw)) . Load block of size (bh,bw) at block index
(i,j)

2: return matrix[i× bh : (i+ 1)× bh][j × bw : (j + 1)× bw]
3: end function

4: for (em, en) in [0, EM)× [0, EN)) do . Looping through element groups
5: Areg[RM][BM][BK] . Registers
6: Breg[RN][BK][BN] . Registers
7: for ik in [0 : Gi.dl) do . Looping through non zero sub tiles
8: for rm in [0 : RM) do
9: bm = rm× EM + em

10: Areg[rm] = LoadBlock(ATs.data, (bm, ik), (BM,BK)) . Load into registers
11: end for
12: bk = Gi.adj list[em][ik]
13: for rn in [0, RN) do
14: bn = rn× EN + en
15: Breg[rn] = LoadBlock(BT, (bk, bn), (BK,BN)) . Load into registers
16: end for
17: for rm, rn in [0, RM)× [0, RN) do
18: CTreg[em][en][rm][rn]+ = Areg[rm]×Breg[rn] . Computation out of

registers
19: end for
20: end for
21: end for

117

element groups, where each element group is of size (RM ×RN ×BM ×BN), and is arranged
as a strided 2D grid of subtiles with grid size as (RM,RN), and strides as (TM/BM)/RM

in row dimension and (TN/BN)/RN in column dimension. Each element group is computed
in TK/BK steps, where in step i, RM subtiles from ith column block of AT and RN subtiles
from ith row block of BT are loaded into registers and the computation is performed entirely out
of registers. Figure 8.5 shows the flow of RegBlock with (RM, RN) as (2,2). For RegBlock to
be compatible with sparsity, the sparsity must be at the subtile level, and all RM row blocks in
AT corresponding to an element group should have the same subtile sparsity pattern. Additionally,
having all row blocks inAT to have an equal number of non zero subtiles allows for all the element
groups in CT to be computed in an equal number of steps. The above requirements of sparsity in
AT can be achieved by setting Gt = Gr ⊗b Gi ⊗b Gb, where graphs Gr and Gb are dense with
sizes (RM, 1) and (BM,BK) respectively. Figure 8.5 shows a sparsity pattern that is compatible
with the RegBlock technique.

8.3.1 The RBGP4 Sparsity Pattern

A sparsity pattern that is compatible with the tiling and register blocking techniques can be gen-
erated using the RBGP framework consisting of four base Ramanujan bipartite graphs Go,Gr,Gi,
and Gb i.e, G = Go⊗bGr ⊗bGi⊗bGb, where graphs Go and Gi as sparse, and graphs Gr and Gb

as dense with |Gr.V | = 1. We call this sparsity pattern as the RBGP4 sparsity pattern.

CRBPG4 storage format: Any bipartite graph G generated using the RBGP framework is a
biregular bipartite graph and because of that the RBGP4 sparse matrix As has an equal number of
nonzeros in each row, where nnzr (the number of non-zeros in a row) is equal to (Go.dl ×Gr.dl ×
Gi.dl ×Gb.dl). In the CRBGP4 format, the non-zeros in As are stored in the form of a matrix M
of size (As.rows, nnzr), where the non-zero elements in row r are stored in M [r]. Coming to the
index information of As, we only store adjacency lists of graphs Go and Gi as other base graphs
Gr and Gb are dense.

RBGP4MM on GPU: We implement the RBGP4MM (Multiplication of an RBGP4 sparse
matrix As with dense matrix B) operation (C = As × B) as described in Algorithm 22 using
tiling and register blocking (RegBlock) techniques. In lines 5-6, some of the tiling and RegBlock
parameters are set using the RBGP4 configuration (Go, Gr, Gi, Gb) of As. In line 9, we loop
through the tiles in C and as tiles in C can be computed independently, we parallelize this for loop
and map CT (a tile in C) to a thread block on GPU. As each row block in As has Go.dl number
of non zero tiles, CT is computed in Go.dl steps. In line 12, we access the tile index oind from

118

Algorithm 22 RBGP4MM (C = As × B) operation using tiling and RegBlock(Register
Blocking) techniques. Among tiling parameters(TM, TK, TN), and RegBlock parameters
(RM,RN,BM,BK), parameters TM, TK,RM,BM,BK are set using RBGP4 configuration
(G = Go ⊗b Gr ⊗b Gi ⊗b Gb) of As.

1: function LOADBLOCK(matrix, (i, j), (bh, bw)) . Load block of size (bh,bw) at block index
(i,j)

2: return matrix[i× bh : (i+ 1)× bh][j × bw : (j + 1)× bw]
3: end function

4: Gt = Gr ⊗b Gi ⊗b Gb

5: TM, TK = |Gt.U |, |Gt.V |
6: RM,BM,BK = |Gr.U |, |Gb.U |, |Gb.V |
7: EM = TM/(RM ×BM)
8: EN = TN/(RN ×BN)
9: for (cm, cn) in [0, C.rows/TM)X[0, C.cols/TN) do . Looping through tiles in C

10: CTreg[EM][EN][RM][RN][BM][BN] = 0 . Size of CTreg is equal to tile size of C
i.e, TM × TN

11: for ok in [0, Go.dl) do . Loop through non zero tiles in row block of As

12: oind = Go.adj list[cm][ok]
13: ATs.data = LoadBlock(As.data, (cm, ok), (TM,Gt.dl)) . Load from main

memory to cache
14: ATs.pattern = Gr ⊗b Gi ⊗b Gb

15: BT = LoadBlock(B, (oind, cn), (TK, TN)) . Load from main memory to cache
16: syncthreads()
17: RegBlockMM(ATs, BT,CTreg) . Perform (CTreg+ = ATs ×BT) using

Algorithm 1
18: syncthreads()
19: end for
20: for (em, en) in [0, EM)× [0, EN)) do . Looping through element groups
21: for (rm, rn) in [0, RM)× [0, RN) do
22: for (m,n) in [0, BM)× [0, BN) do
23: row = cm× TM + rm× (TM/RM) + em×BM +m
24: col = cn× TN + rn× (TN/RN) + en×BN + n
25: C[row][col]+ = CTreg[em][en][rm][rn][m][n]
26: end for
27: end for
28: end for
29: end for

119

Figure 8.5: Sparse matrix multiplication using register blocking technique with a compatible spar-
sity pattern. For a sparsity pattern to be compatible, RM row blocks in AT corresponding to an
element group in CT should have the same sparsity pattern.

the adjacency list of graph Go. In lines 13 and 15, threads in a thread block collectively load tile
data from main memory into shared memory using step and tile indices. In line 38, we perform the
RegBlockMM operation (CTreg+ = ATs ×BT).

We implement the RegBlockMM operation as described in Algorithm 21. Elements in CT are
divided into element groups, where each element group is of size (RM ×BM ×RN ×BN). As
groups of elements within a CT can be computed independently, we parallelize the for loop in line
4, and map an element group in CT to a thread on GPU. From line 7, we can see that each thread
performs Gi.dl steps to process a group of elements in CT . Lines 8-19 describe the computation
performed in each step. In lines 8-11, RM subtiles from ATs are loaded into registers using step-
index ik, and in lines 13-16 RN subtiles from BT are loaded into registers based on subtile index
bk accessed in line 12 from adjacency list of Gi. In lines 17-19, subtiles loaded into registers are
multiplied to generate an intermediate output for the associated element group. Instead of writing
the intermediate output into the main memory, they are accumulated in registers.

In Algorithm 22, after processing all non zero tiles corresponding to CT in As using Reg-
BlockMM calls, each thread writes the result of its associated element group into main memory
from registers.

RBGP4 runtime characteristics: In RBGP4 sparsity pattern (G = Go⊗bGr⊗bGi⊗bGb), asGr

and Gb are dense or complete graphs, sparsity in G is solely due to presence of graphs Go and Gi.
If sp, osp, isp are the sparsities of G,Go, and Gi respectively, then sp = 1− (1− osp)× (1− isp).
For a given sparsity in G, the sparsity distribution among Go and Gi plays a key role in the effi-
ciency obtained for the RBGP4MM operation (C = As × B). As RBGP4 sparse matrix can be
divided into two classes, namely a dense tile (DT) and a sparse tile (ST). In DT, isp = 0 and this
means that a non zero tile in As is either full or empty. In ST, (isp > 0) and a non zero tile is

120

Figure 8.6: Efficiency of RBGP4MM operation
on GPU. In RBGP4 sparse matrix, sparsity is
due to base graphs Go and Gi. The sparsity of
Go is set based on isp (Sparsity of Gi) and total
sparsity. For denser tiles, speedups are close to
ideal and as isp increases, efficiency decreases.
Size of matrices are set to 4096x4096.

Figure 8.7: MatricesAs,B,andC are divided into
4,2, and 2 tiles respectively. Both dense, and
sparse tile cases have the same 50% sparsity. But
to process a tile ofC in dense tile case using tiling
approach, only half the B matrix needs to be ac-
cessed. Whereas in the sparse tile case, entire B
matrix needs to be accessed.

sparse. Figure 8.7 shows an example of DT and ST class matrices with 50% sparsity, where the
DT case requires one step to compute a tile in C and requires to access only half the B. However,
the ST case requires two steps, and requires to access all of B. This affects the efficiency of the
RBGP4MM operation as number of steps and memory accesses to main memory increase. In Fig-
ure 8.7, we can see that DT case (isp = 0) has the highest efficiency. This is because the number of
memory accesses from main memory decreases proportionally with the sparsity. However, for the
ST case (isp > 0) as the tile gets sparser, the efficiency decreases. This is because number of steps
required to compute a tile in C increases, which in turn increases the number of memory accesses
from the main memory.

8.4 Results

The goal of the RBGP framework is to design sparse neural networks that can be efficiently
processed on AI hardware designed to accelerate dense neural networks. In Section 8.3, using the
RBGP framework, we proposed the RBGP4 sparsity pattern for the GPU, a dense AI hardware
that is used across the spectrum from edge to server, and showed that the RBGP4 sparsity pattern
leads to better run time efficiency on GPU. In this section, we evaluate sparse neural networks

121

Sparsity Pattern CIFAR10 CIFAR100 Memory V100 Time Nano Time
Accuracy Accuracy (MB) (ms) (ms)

00.00 Dense 93.14 70.64 77.39 22 1040

50.00% Unstructured 92.67 70.31 77.39 165 13276
Block 92.45 70.75 41.12 94 12760
RBGP4 92.58 70.48 38.76 20 1886

75.00% Unstructured 91.99 69.32 38.71 86 8822
Block 91.93 68.72 20.57 48 6314
RBGP4 91.99 68.34 19.40 13 998

87.50% Unstructured 90.88 65.41 19.37 79 6412
Block 90.62 65.37 10.30 25 3202
RBGP4 90.48 65.39 9.72 8 582

93.75% Unstructured 90.01 62.33 9.70 50 4748
Block 89.40 62.90 5.16 14 1688
RBGP4 89.32 62.79 4.88 6 490

Table 8.1: Memory and runtime of sparsity patterns for image classification on CIFAR10 and
CIFAR100 datasets using VGG19 networks running on V100 and Jetson Nano GPUs. For block
pattern, we set block size to be (4, 4). Memory is given in MB, and time is given in milliseconds
for one forward pass in training with 256 batch size.

with the RBGP4 sparsity pattern on two applications, namely image classification and machine
translation, and compare them with unstructured, and block sparsity patterns. For training sparse
neural networks, we use the predefined approach (choice of connections are chosen apriori to the
training process) and benchmark them on edge (Nvidia Jetson Nano 2GB) GPU as well as server
(Nvidia V100) GPU. For processing unstructured and block sparse neural networks, we use the
cuSparse library provided by Nvidia.

8.4.1 Image Classification

We perform the image classification task on CIFAR datasets using VGG19 [77] as adapted by
Liu et al. [54], and WideResnet-40-4 [88] networks. CIFAR10 and CIFAR100 datasets have 50K
training images and 10K validation images each. We incorporate an equal amount of sparsity in
all the layers for both the networks except for the first convolutional layer connected to the input
and the final classifier layer. The convolution operation in a convolutional layer can be expressed
as a matrix multiplication operation [17], where a 4D parameter tensor W of shape (K,C,R, S)

122

Sparsity Pattern CIFAR10 CIFAR100 Memory V100 Time Nano Time
Accuracy Accuracy (MB) (ms) (ms)

00.00 Dense 95.01 77.20 34.10 40 2082

50.00% Unstructured 95.42 77.92 34.10 241 23247
Block 95.49 77.52 18.12 165 21877
RBGP4 95.34 78.27 17.13 32 3249

75.00% Unstructured 95.10 76.89 17.05 135 16470
Block 94.92 76.50 9.07 85 10956
RBGP4 94.72 76.80 8.57 20 1903

87.50% Unstructured 94.48 75.21 8.53 102 12399
Block 94.56 74.55 4.54 45 5611
RBGP4 94.38 75.25 4.30 16 1231

93.75% Unstructured 93.57 73.09 4.27 69 9507
Block 93.55 71.86 2.27 26 2976
RBGP4 93.53 72.44 2.16 14 1024

Table 8.2: Memory and runtime of sparsity patterns for image classification on CIFAR10 and
CIFAR100 datasets using WideResnet-40-4 networks running on V100 and Jetson Nano GPUs.
For block pattern, we set block size to be (4, 4). Memory is given in MB, and time is given in
milliseconds for one forward pass in training with 128 batch size.

123

Figure 8.8: Throughput for VGG19 and WRN-40-4 networks on V100 GPU.

is viewed as 2D matrix W̃ of shape (K,C ×R× S). For our experiments, we impose the sparsity
pattern on W̃ . For the optimizer, we used SGD optimizer with a momentum of 0.9, weight decay
of 1e-4, and an initial learning rate of 0.1. The VGG19/WideResnet-40-4 network is trained for
160/200 epochs with a batch size of 256/128. For VGG19, the learning rate is multiplied by 0.1 at
epochs 80 and 120. And for WideResnet-40-4, the learning rate is multiplied by 0.2 at epochs 60,
120 and 160. Furthermore, we used the knowledge distillation [37] technique for improving the
training performance.

RBGP4 vs others: In Tables 8.1 and 8.2, we compare our RBGP4 sparsity pattern with un-
structured and block sparsity patterns for sparsity levels of 50%, 75%, 87.5% and 93.75%. We can
see that RBGP4 is as accurate as unstructured and block sparsity patterns while being faster and
smaller. On V100/Nano GPU, RBGP4 is up to 10x/11x faster and takes 2x less memory when
compared to unstructured sparsity pattern, and is up to 5x/7x faster when compared to block spar-
sity pattern.

Throughput vs batch size: GPUs are throughput-oriented machines that maximize run time effi-
ciency by hiding memory access time with compute. The throughput for image classification task
is defined as the number of images classified per second or simply images/sec. In this experiment,
we study the effect of batch size on throughput. For V100 and Nano, we change the batch size
from 32 to 2048 and 1 to 128, respectively, in multiples of 2. From Figure 8.8 and 8.9, we see that

124

Figure 8.9: Throughput for VGG19 and WideResnet-40-4 (WRN) networks on Jetson Nano2GB
edge GPU.

on both V100 and Nano GPUs, RBGP4 has higher throughput than unstructured and block spar-
sity patterns. In the unstructured sparsity pattern, throughput remains flat because of the irregular
memory and compute patterns present in the unstructured pattern. However, for the block sparsity
pattern, it is either flat or marginally increases due to some amount of regularity in block structure.
However, in the case of RBGP4 sparsity pattern, the throughput increases with batch size and sta-
bilizes. This is because some of the layers in the RBGP4 sparse networks are extremely bandwidth
bound at smaller batch sizes and offer limited data reuse across the memory hierarchy on the GPU.

8.4.2 Machine Translation

For the machine translation (MT) task, we train the transformer network [79] on the IWSLT
dataset [15] with German (de) as the source language and English (en) as the destination language.
The IWLST dataset has 160K and 7K sentence pairs for training and testing, respectively. We use
the transformer network because it is widely used in the NLP (Natural Language Processing) com-
munity and is shown to be effective on many NLP tasks. We configure the transformer network
to have six encoder blocks, six decoder blocks, and four attention heads. In the MT task, each
sentence is divided into word tokens, where each token is represented as an embedding vector, and
we set its size to 512. In transformer network, both encoder and decoder blocks have two fully
connected layers fc1 and fc2 at the end. The number of input feature maps (ifm) for fc1 and
the number of output feature maps (ofm) for fc2 are equal to the embedding size. As fc1 and
fc2 are consecutive, ofm of fc1 and ifm of fc2 are equal and is set to 1024. We trained the

125

BLEU at sparsity Memory (MB) at sparsity

Pattern 50.00% 75.00% 87.50% 93.75% 50.00% 75.00% 87.50% 93.75%

Unstructured 34.38 33.34 32.53 31.26 150.56 100.56 75.56 63.06
Block 33.81 33.40 32.13 31.13 103.68 77.13 63.84 57.20
RBGP4 34.36 33.59 32.54 31.28 100.74 75.73 63.15 56.90

Table 8.3: Machine translation on IWSLT (de to en) dataset using Transformer network. For block
pattern, we set the size to be 4x4. Dense transformer model has a BLEU score of 34.51 takes up
150.56MB of memory.

network for 50 epochs using Adam optimizer with beta values of 0.9 and 0.98. The initial learning
rate is set to 5 × 10−4 and is decreased gradually by dividing it by the square of the training step.
We use a dropout value of 0.3 and weight decay of 10−4 for regularization. The first encoder and
the first decoder block are kept as dense, and an equal amount of sparsity is incoroporated in the
rest of the encoder and decoder blocks.

RBGP4 vs others: In the MT task, the BLEU (bilingual evaluation understudy) score metric
is used for evaluating the quality of the translated text. From Table 8.3, we can see that across
different sparsities, the RBGP4 sparsity pattern has BLEU scores on par with unstructured and
block sparsity patterns. When compared to the unstructured pattern, RBGP4 takes up to 30% less
memory. It has to be noted that the memory includes fixed components like dictionaries, which
take up a significant amount of memory. There are three key matrix multiplication operations in a
transformer network that repeatedly occur across encoder and decoder blocks. These three kernels
are of the form E-E-N, E-F-N, and F-E-N, where E (512) is the embedding size, F (1024) is the
number of input feature maps of the last fully connected layer in encoder and decoder blocks, and
N is the number of tokens in the batch.(kernel X-Y-Z should be interpreted as the matrix multipli-
cation of two matrices of size (X,Y) and (Y,Z)). In Table 8.4, we compare the runtime performance
on these kernels across different sparsities. From Table 8.4, we can see that on V100/Nano GPU,
our RBGP4 approach is up to 12x/25x and 7x/8x faster when compared to unstructured and block
sparsity patterns, respectively.

Throughput vs batch-tokens (N): In the machine translation task, an input sentence to be trans-
lated is first divided into tokens that are either words or sub-words. In a batch of sentences, each
sentence can have a different number of tokens. Batch-tokens is the cumulative sum of tokens of
all sentences in a batch. In this experiment, we study how batch-tokens (N) affect the run time of

126

V100 runtime (ms) at sparsity Nano runtime (ms) at sparsity

Kernels Pattern 50% 75% 87.5% 93.75% 50% 75% 87.5% 93.75%

512-512-N Unstructured 5.68 2.92 1.59 1.29 607 448 349 258
Block 3.89 2.00 1.06 0.60 535 272 127 75
RBGP4 0.65 0.34 0.24 0.15 73 36 20 11

512-1024-N Unstructured 11.34 5.69 5.46 2.76 1096 762 587 447
Block 7.69 3.91 2.04 1.10 1061 535 272 129
RBGP4 1.26 0.66 0.45 0.25 146 70 38 20

1024-512-N Unstructured 11.30 5.75 3.11 2.49 1217 899 700 550
Block 7.75 3.97 2.10 1.18 1070 544 280 135
RBGP4 1.16 0.61 0.42 0.25 153 71 39 21

Table 8.4: Runtime performance of key kernels in transformer network for unstructured,block,
and RBGP4 sparsity patterns on V100 and Nano GPUs. For block pattern, we set the size to be
4x4.Kernel notation X-Y-N corresponds to matrix multiplication with matrix sizes (X,Y) and (Y,N).
The value of N is set to 16K.

512-512-N, a representative kernel. For V100 and Nano, we vary N from 1K to 16K and 64 to
1K respectively in multiples of 2. From Figure 8.10, we can see that as the value of N increases,
throughput of RBGP4 increases and stabilizes. This is because at lower N values, the amount of
compute is less, and the kernel is heavily bound by bandwidth.

8.5 Conclusion

We used ideas from extremal graph theory and combinatorics to make sparse neural networks
runtime efficient. Ramanujan graphs, which give optimal connectivity for a given level of sparsity,
are used to model connections in a neural network layer. Furthermore, we obtain structured block
sparsity by using products of Ramanujan graphs. We prove that the product graph also has the
optimal connectivity for large matrices. For the specific case of GPUs, we describe how the block
sparsity can be efficiently implemented in hardware, by exploiting the memory hierarchy through
data reuse. Benchmarks of this implementation are shown to give significant runtime improvements
on both edge and server GPUs. Similar ideas could be used to generate structured sparsity patterns
that result in runtime efficient implementations in other hardware. We expect such methods will
be useful specifically for edge devices where the runtime environment is highly constrained. For

127

(a) V100 GPU

(b) Jetson Nano GPU

Figure 8.10: Throughput of the key kernel (512-512-N) in Transformer network on V100 and
Jetson Nano GPUs.

future work, generating combinatorial structured sparsity patterns like RBGP4 during the training
process could lead to more accurate models.

128

Chapter 9

Conclusions and Future Directions

9.1 Conclusions

Computing machines have become indispensable in today’s world. Applications run on com-
puting machines using computational approaches. The need for enabling more applications and to
run them efficiently and accurately fuels the innovation in the design of both computing machines
and computational approaches. There are only two ways to make applications run more efficiently
on existing computing machines. The first way is to efficiently run the underlying computational
tasks of an existing computational approach. The second way is to design new computational
approaches. In this thesis, we provide solutions to both ways. For the first way, we proposed a “co-
design approach for computational tasks”, a methodology where algorithms and data structures are
co-designed to improve the runtime performance of the computational task by being aware of the
input and the computing machine. For the second way, we proposed a “hardware aware compu-
tational approach”, a methodology where the characteristics of the computing machine guide the
design of the computational approach, resulting in efficient computational approaches.

Among the computing machines, the GPU computing machine has created a space for itself
by super charging the field of Artificial Intelligence(AI) through acceleration of Artificial Neural
Networks(ANN) based computational approaches. Since the first proof point of AlexNet [47] in
2012, the progress has been phenomenal in the field of AI. Because of such importance and the
potential impact, we chose ANN based computational approaches for the study. Sparse ANNs
achieve similar accuracy when compared to dense ANNs, while taking less compute and memory
requirements. But the only problem with sparse ANNs is that they have poor runtime performance
on the GPU due to irregularity in the compute and memory patterns. We made three contributions:
1) Developed a computational approach for generating block sparse neural networks, which can

129

be easilty accelerated on the GPU 2) We proposed GPU friendly structured sparsity patterns like
Hierarchical Block(HB), and Regularized Multi Block (RMB) and improved runtime performance
on the GPU when compared to unstructured sparse ANNs without comprimising on the accuracy.
3) We proposed a novel way to generate structured connectivity patterns aimed for the edge devices
using Ramanujan graphs and bipartite graph products.

9.2 Future Directions

During the course of our work, we came across several different areas which can be investigated
more to generate optimal sparse neural networks. Generating sparse neural networks has many sub-
tasks, like ranking and pruning, choosing the structure, pruning schedule, etc. Some interesting
topics are discussed below.

9.2.1 Optimal Structured Pruning Algorithms

Pruning parameters in a neural network layer is essential for generating sparse neural networks.
In order to prune parameters, the parameters have to be ranked using some criterion, say magnitude
of the parameter, and then the low rank parameters are pruned to achieve the target sparsity. How-
ever, this results in an unstructured sparsity pattern, which has poor runtime performance on the
GPU. We have shown that multi-level block sparsity patterns like HB(Chapter 6) and RMB(Chapter
7) leads to better runtime performance on GPU and proposed a simple pruning algorithm to gen-
erate multi-level block sparsity patterns. But we believe that more optimal pruning algorithms can
be developed to increase sparsity without affecting performance and accuracy.

9.2.2 GPU Aware Multi Block Sparse Training

A sparse neural network can be generated either by finetuning or by training from scratch. In
finetuning, the starting point is a pretrained dense model, and because of that the obtained accuracy
using finetuning approach is very sensitive to the structure imposed. The optimal way to generate
a sparse neural network is to use the training approach and induce sparsity through the training
process. In Chapter 5 , we provided an algorithm for inducing block sparsity pattern during training
because of its suitability for the GPU. However, block sparsity is a very rigid structure, and we
believe that more accurate sparse models can be generated by using multi block sparsity patterns
like HB and RMB while retaining good runtime performance on the GPU.

130

Related Publications

1. Dharma Teja Vooturi, Girish Varma, Kishore Kothapalli. Ramanujan bipartite graph
products for efficient block sparse neural networks at Journal on Concurrency and Com-
putation: Practice and Experience, pages e6363, 2021. (https://doi.org/10.1002/cpe.6363)

2. Dharma Teja Vooturi, Kishore Kothapalli . Efficient Sparse Neural Networks Using Reg-
ularized Multi Block Sparsity Pattern on a GPU at International Conference on High
Performance Computing (HiPC), pages 215-224, Hyderabad, 2019.

3. Dharma Teja Vooturi, Girish Varma, Kishore Kothapalli . Dynamic Block Sparse Repa-
rameterization of Convolutional Neural Networks at Workshop On Compact and Efficient
Feature Representation and Learning(CEFRL), held in conjunction with International Con-
ference on Computer Vision(ICCV), pages 3046-3053, Seoul, 2019.

4. Vooturi, Dharma Teja, Dheevatsa Mudigere, and Sasikanth Avancha. Hierarchical block
sparse neural networks in arXiv preprint arXiv:1808.03420 (2018).

5. Dharma Teja Vooturi, Kishore Kothapalli, Upinder Singh Bhalla. Parallelizing Hines Ma-
trix Solver in Neuron Simulations on GPU at International Conference on High Perfor-
mance Computing (HiPC), pages 388-397, Jaipur, 2017.

6. Dharma Teja Vooturi, Kishore Kothapalli. Parallel Algorithm for Quasi-Band Matrix-
Matrix Multiplication, at Parallel Processing and Applied Mathematics(PPAM), pages
106-115, Krakow, 2015.

131

Bibliography

[1] Cuda development toolkit. https://developer.nvidia.com/cuda-toolkit.

[2] cusparse library. https://developer.nvidia.com/cusparse.

[3] Intel math kernel library, https://software.intel.com/en-us/articles/intel-mkl/.

[4] Opencl development framework. https://www.khronos.org/opencl/.

[5] E. Agullo, A. Buttari, M. Byckling, A. Guermouche, and I. Masliah. Achieving high-performance

with a sparse direct solver on Intel KNL. PhD thesis, Inria Bordeaux Sud-Ouest; CNRS-IRIT; Intel

corporation; Université Bordeaux, 2017.

[6] N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.

[7] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W. L.

Plishker, J. Shalf, S. W. Williams, et al. The landscape of parallel computing research: A view from

berkeley. 2006.

[8] G. A. Ascoli, D. E. Donohue, and M. Halavi. Neuromorpho. org: a central resource for neuronal

morphologies. Journal of Neuroscience, 27(35):9247–9251, 2007.

[9] N. Bell and M. Garland. Implementing sparse matrix-vector multiplication on throughput-oriented

processors. In Proceedings of the conference on high performance computing networking, storage

and analysis, pages 1–11, 2009.

[10] R. Ben-Shalom, G. Liberman, and A. Korngreen. Accelerating compartmental modeling on a graphical

processing unit. Frontiers in neuroinformatics, 7:4, 2013.

[11] Y. Bilu and N. Linial. Lifts, discrepancy and nearly optimal spectral gap. Combinatorica,

26(5):495–519, Oct. 2006.

[12] J. M. Bower and D. Beeman. The book of GENESIS: exploring realistic neural models with the

GEneral NEural SImulation System. Springer Science & Business Media, 2012.

[13] A. Buluc and J. R. Gilbert. Challenges and advances in parallel sparse matrix-matrix multiplication.

In 2008 37th International Conference on Parallel Processing, pages 503–510. IEEE, 2008.

132

[14] S. Cao, C. Zhang, Z. Yao, W. Xiao, L. Nie, D. Zhan, Y. Liu, M. Wu, and L. Zhang. Efficient and

effective sparse lstm on fpga with bank-balanced sparsity. In Proceedings of the 2019 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays, pages 63–72, 2019.

[15] M. Cettolo, J. Niehues, S. Stüker, L. Bentivogli, and M. Federico. Report on the 11th iwslt evaluation

campaign, iwslt 2014. Proceedings of the International Workshop on Spoken Language Translation,

Hanoi, Vietnam, 57, 2014.

[16] M. Chaitanya and K. Kothapalli. Efficient multicore algorithms for identifying biconnected compo-

nents. International Journal of Networking and Computing, 6(1):87–106, 2016.

[17] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro, and E. Shelhamer. cudnn:

Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[18] F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

[19] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and

B. Schiele. The cityscapes dataset for semantic urban scene understanding. In Proc. of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT press,

2009.

[21] Y. L. Cun, J. S. Denker, and S. A. Solla. Optimal brain damage. In Advances in Neural Information

Processing Systems, pages 598–605. Morgan Kaufmann, 1990.

[22] T. A. Davis and Y. Hu. The university of florida sparse matrix collection. ACM Transactions on

Mathematical Software (TOMS), 38(1):1–25, 2011.

[23] S. Dey, K.-W. Huang, P. A. Beerel, and K. M. Chugg. Pre-defined sparse neural networks with hard-

ware acceleration. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 9(2):332–

345, 2019.

[24] D. Dutta, M. Chaitanya, K. Kothapalli, and D. Bera. Applications of ear decomposition to efficient

heterogeneous algorithms for shortest path/cycle problems. In 2017 IEEE International Parallel and

Distributed Processing Symposium Workshops (IPDPSW), pages 864–873. IEEE, 2017.

[25] J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks.

International Conference on Learning Representations (ICLR), 2018.

[26] A. Gharaibeh, L. B. B. Costa, E. Santos-Neto, and M. Ripeanu. On graphs, gpus, and blind dating: A

workload to processor matchmaking quest. In 2013 IEEE 27th International Symposium on Parallel

and Distributed Processing, pages 851–862. IEEE, 2013.

133

[27] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally. Eie: Efficient inference

engine on compressed deep neural network. SIGARCH Comput. Archit. News, 44(3):243–254, June

2016.

[28] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[29] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for efficient neural

network. In Advances in neural information processing systems, pages 1135–1143, 2015.

[30] B. Hassibi and D. G. Stork. Second order derivatives for network pruning: Optimal brain surgeon. In

Advances in neural information processing systems, pages 164–171, 1993.

[31] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of

the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[32] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep neural networks. Proceedings

of the IEEE International Conference on Computer Vision (ICCV), pages 1389–1397, 2017.

[33] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative approach. Elsevier, 2011.

[34] M. Hines. Efficient computation of branched nerve equations. International journal of bio-medical

computing, 15(1):69–76, 1984.

[35] M. L. Hines, H. Eichner, and F. Schürmann. Neuron splitting in compute-bound parallel network

simulations enables runtime scaling with twice as many processors. Journal of computational neuro-

science, 25(1):203–210, 2008.

[36] M. L. Hines, H. Markram, and F. Schürmann. Fully implicit parallel simulation of single neurons.

Journal of computational neuroscience, 25(3):439–448, 2008.

[37] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. NIPS Deep Learning

and Representation Learning Workshop, 2015.

[38] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its application

to conduction and excitation in nerve. The Journal of physiology, 117(4):500–544, 1952.

[39] S. Hong, N. C. Rodia, and K. Olukotun. On fast parallel detection of strongly connected components

(scc) in small-world graphs. In Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, pages 1–11, 2013.

[40] Z. Huang and N. Wang. Data-driven sparse structure selection for deep neural networks. In Proceed-

ings of the European Conference on Computer Vision (ECCV), pages 304–320, 2018.

134

[41] S. B. Indarapu, M. Maramreddy, and K. Kothapalli. Architecture- and workload- aware heterogeneous

algorithms for sparse matrix vector multiplication. In Proceedings of the 7th ACM India Computing

Conference, 2014.

[42] J. Kepner and J. Gilbert. Graph algorithms in the language of linear algebra. SIAM, 2011.

[43] J. Kepner and R. Robinett. Radix-net: Structured sparse matrices for deep neural networks. 2019 IEEE

International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 268–274,

2019.

[44] Khronos Group. SYCL 2020 Specification, 2020. https://www.khronos.org/registry/

SYCL/specs/sycl-2020/html/sycl-2020.html.

[45] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Technical report,

Citeseer, 2009.

[46] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[47] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural

networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[48] J. L. Larriba-Pey, M. Mascagni, A. Jorba, and J. J. Navarro. An analysis of the parallel computation

of arbitrarily branched cable neuron models. In PPSC, pages 373–378, 1995.

[49] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In Advances in neural information

processing systems, pages 598–605, 1990.

[50] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for efficient convnets. In

International Conference on Learning Representations (ICLR), 2016.

[51] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky. Sparse convolutional neural networks. In

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015.

[52] W. Liu and B. Vinter. An efficient gpu general sparse matrix-matrix multiplication for irregular data. In

2014 IEEE 28th International Parallel and Distributed Processing Symposium, pages 370–381. IEEE,

2014.

[53] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang. Learning efficient convolutional networks

through network slimming. Proceedings of the IEEE International Conference on Computer Vision

(ICCV), pages 2736–2744, 2017.

[54] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Rethinking the value of network pruning. arXiv

preprint arXiv:1810.05270, 2018.

[55] C. Louizos, M. Welling, and D. P. Kingma. Learning sparse neural networks through l 0 regularization.

arXiv preprint arXiv:1712.01312, 2017.

135

[56] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, 8(3):261–277, 1988.

[57] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning method for deep neural network com-

pression. In Proceedings of the IEEE international conference on computer vision, pages 5058–5066,

2017.

[58] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J. Dally. Exploring the regularity of sparse

structure in convolutional neural networks. arXiv preprint arXiv:1705.08922, 2017.

[59] A. W. Marcus, D. A. Spielman, and N. Srivastava. Interlacing families i: Bipartite ramanujan graphs

of all degrees. Annals of Mathematics, 182(1):307–325, 2015.

[60] M. Mascagni. A parallelizing algorithm for computing solutions to arbitrarily branched cable neuron

models. Journal of neuroscience methods, 36(1):105–114, 1991.

[61] K. K. Matam, S. R. K. Bharadwaj, and K. Kothapalli. Sparse matrix matrix multiplication on hy-

brid cpu+ gpu platforms. In Proc. of 19th Annual International Conference on High Performance

Computing (HiPC), Pune, India, pages 1–10, 2012.

[62] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. Pruning convolutional neural networks for

resource efficient inference. ICLR, 2016.

[63] S. Narang, E. Elsen, G. Diamos, and S. Sengupta. Exploring sparsity in recurrent neural networks.

arXiv preprint arXiv:1704.05119, 2017.

[64] S. Narang, E. Undersander, and G. Diamos. Block-sparse recurrent neural networks. arXiv preprint

arXiv:1711.02782, 2017.

[65] R. Nath, S. Tomov, and J. Dongarra. An improved magma gemm for fermi graphics processing units.

The International Journal of High Performance Computing Applications, 24(4):511–515, 2010.

[66] J. D. Owens, M. Houston, D. Leubke, S. Green, J. E. Stone, and J. C. Phillips. Gpu computing.

Proceedings of the IEEE, 96(5):879–899, 2008.

[67] C. Pachorkar, M. Chaitanya, K. Kothapalli, and D. Bera. Efficient parallel ear decomposition of

graphs with application to betweenness-centrality. In 2016 IEEE 23rd International Conference on

High Performance Computing (HiPC), pages 301–310. IEEE, 2016.

[68] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. S. Emer, S. W. Keckler,

and W. J. Dally. SCNN: an accelerator for compressed-sparse convolutional neural networks. CoRR,

abs/1708.04485, 2017.

[69] J. Park, S. Li, W. Wen, P. T. P. Tang, H. Li, Y. Chen, and P. Dubey. Faster cnns with direct sparse

convolutions and guided pruning. arXiv preprint arXiv:1608.01409, 2016.

136

[70] A. Picciau, G. E. Inggs, J. Wickerson, E. C. Kerrigan, and G. A. Constantinides. Balancing locality and

concurrency: Solving sparse triangular systems on gpus. In 2016 IEEE 23rd International Conference

on High Performance Computing (HiPC), pages 183–192. IEEE, 2016.

[71] A. Prabhu, G. Varma, and A. Namboodiri. Deep expander networks: Efficient deep networks from

graph theory. The European Conference on Computer Vision (ECCV), September 2018.

[72] K. R. Ramamoorthy, D. S. Banerjee, K. Srinathan, and K. Kothapalli. A novel heterogeneous algo-

rithm for multiplying scale-free sparse matrices. In 2015 IEEE International Parallel and Distributed

Processing Symposium Workshop, pages 637–646. IEEE, 2015.

[73] S. Ray, R. Deshpande, N. Dudani, and U. S. Bhalla. A general biological simulator: the multiscale

object oriented simulation environment, moose. BMC Neuroscience, 9:1–2, 2008.

[74] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo. Erfnet: Efficient residual factorized con-

vnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation Systems,

19(1):263–272, 2018.

[75] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla,

M. Bernstein, et al. Imagenet large scale visual recognition challenge. International journal of com-

puter vision, 115:211–252, 2015.

[76] A. R. Scott Gray and D. P. Kingma. Gpu kernels for block-sparse weights. 2017.

[77] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.

In International Conference on Learning Representations, 2015.

[78] G. M. Slota and K. Madduri. Simple parallel biconnectivity algorithms for multicore platforms. In

2014 21st International Conference on High Performance Computing (HiPC), pages 1–10. IEEE,

2014.

[79] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.

Attention is all you need. Advances in Neural Information Processing Systems, 2017.

[80] D. T. Vooturi and K. Kothapalli. Parallel algorithm for quasi-band matrix-matrix multiplication. In

Parallel Processing and Applied Mathematics: 11th International Conference, PPAM 2015, Krakow,

Poland, September 6-9, 2015. Revised Selected Papers, Part I 11, pages 106–115. Springer, 2016.

[81] D. T. Vooturi, D. Mudigere, and S. Avancha. Hierarchical block sparse neural networks. arXiv preprint

arXiv:1808.03420, 2018.

[82] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in deep neural networks.

In Advances in neural information processing systems, pages 2074–2082, 2016.

137

[83] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations for deep neural

networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

1492–1500, 2017.

[84] W. Yang, K. Li, and K. Li. A hybrid computing method of spmv on cpu–gpu heterogeneous computing

systems. Journal of Parallel and Distributed Computing, 104:49–60, 2017.

[85] W. Yang, K. Li, Y. Liu, L. Shi, and L. Wan. Optimization of quasi-diagonal matrix–vector multiplica-

tion on gpu. The international journal of high performance computing applications, 28(2):183–195,

2014.

[86] J. Ye, X. Lu, Z. Lin, and J. Z. Wang. Rethinking the smaller-norm-less-informative assumption in

channel pruning of convolution layers. arXiv preprint arXiv:1802.00124, 2018.

[87] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y. Lin, and L. S. Davis. Nisp:

Pruning networks using neuron importance score propagation. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2018.

[88] S. Zagoruyko and N. Komodakis. Wide residual networks. Proceedings of the British Machine Vision

Conference (BMVC), pages 87.1–87.12, September 2016.

138

