
Requirements Engineering Practices for
Developing Enterprise Virtual Reality Software Products

Thesis submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
in

Computer Science and Engineering

by

Sai Anirudh Karre
20162153

saianirudh.karri@research.iiit.ac.in

International Institute of Information Technology
Hyderabad - 500032, INDIA

June, 2024

Copyright © Sai Anirudh Karre, 2024

All Rights Reserved

https://sai11101989.github.io

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this PhD thesis, titled “Requirements Engineering Practices
for Developing Enterprise Virtual Reality Software Products” by Sai Anirudh Karre, has been carried
out under my supervision and is not submitted elsewhere for a degree.

Date Advisor: Dr. Y. Raghu Reddy

To my Parents

Late Karre Srinivas Rao M.A(PPM), PGDBM

Karre Uma Devi M.Com, PGDECE

Acknowledgments

My journey at IIIT-Hyderabad has been a wonderful experience. It could not have been so without the
support of many people. Firstly, I thank my advisor, Dr.Y. Raghu Reddy, for accepting me as a student
and constantly guiding me during the MS Research program and eventually into the Ph.D. program.
His guidance has helped me improve both as a researcher and a person. His help and support during
difficult times strengthened and motivated me to move further. I also thank the faculty of the Software
Engineering Research Center: Dr. Venkatesh Chopella, Dr. Raman Saxena, Dr. Karthik Vaidhyanathan
and Prof. Viswanath Kasturi for creating a research-driven ecosystem at IIIT Hyderabad and providing
great feedback on my research. I thank my fellow research mates at Software Engineering Research
Center: Lalit Mohan Sanagavarapu, Mritunjay Kumar, Aman Banerjee, Abhinav Gupta, Raghav Mittal,
Y. Pawan Kumar Gururaj, Mohammad Waqas Wani, Vivek Pareek, Vivek Iyer, Dhiraj Shanmukha Mitra
V, Abhay Kumar and Amogha Halhalli.

In particular, I am grateful to Prof. Kamalakar Karlapalem and Late Prof. Kesav Nori for sowing
seeds of my early research ability and creating enthusiasm and tremendous motivation to pursue research
at IIIT Hyderabad. I sincerely thank my manager(s) from my workplace who supported me with a
hassle-free research journey: Mr. Ryan Persichilli - Sr. Director, Accurate Background (USA); Mr.
Nihil Kantameni - VP (Success), India, Mr. Khaled Itani - VP(Technology), USA , Mr. Craig Fearon -
VP(Products), Canada from SumTotal Systems Inc. I sincerely thank my workplace mentor, Mr. Rajesh
Kedarisetti, Product Owner at BlueCross BlueShield of Tennessee (USA), for motivating me throughout
my journey.

I also thank my reviewers Prof. Sudipto Ghosh - Colorado State University, USA; Prof. Prasad
Onkar - IIT Hyderabad and Prof. Suresh Purini - IIIT Hyderabad for providing valuable feedback and
helping me shape the overall thesis better.

I could not have accomplished it without the support and understanding of my parents. I wish to
thank my parents, Uma Devi Karre, Late Srinivas Rao Karre, and my sister Sharath Deepika Karre for
being my constant support and motivation. I am also thankful to the IIIT Ph.D. Student Community, IIIT
Academic Office, and fellow students for giving me an inspiring environment and many opportunities
to grow.

v

Abstract

Virtual Reality (VR) is an emerging technology that is gaining traction across various domains in the
past decade. Mainstream adoption is still work in progress, especially in enterprise domains like health
care, manufacturing, construction, Defence, National Security, etc. Building VR technology has its own
set of challenges. Challenges like volatile hardware, low computation capacity, trademark monopolies,
hyper-enthusiastic user base, lack of evident domain expertise, and lack of structured processes within
the developer ecosystem, have been encountered by the VR Enterprise and Consumer community over
the years. These challenges require thorough investigation to understand the state-of-the-art approaches
and formulate better solutions to optimally utilize VR technology.

To comprehend the development practices adopted while building VR software products, we con-
ducted an year-long multi-level exploratory study with the VR Enterprise developer community world-
wide. As part of this empirical study, we observed a wide range of strategies, methodologies, ap-
proaches, and models embraced by the VR practitioners while building new-age VR software products
at various stages of VR product development (including requirements gathering, VR product design,
software toolkits, VR product quality, VR product release, and reuse). The major observations from
the empirical study being: (1) conventional software engineering practices are force-fitted and practiced
to manage overall VR products (2) modified conventional approaches that deal with specific software
problems are embraced as alternate solutions to VR problems (3) most of the VR Enterprise commu-
nity have their antecedents in gaming industry (4) VR Enterprise suffers from hardware and software
cross-platform support and portability issues (5) development cost of the overall VR product will spike
if development practices are altered during VR product development and (6), requirements engineering,
software quality (specifically usability), security, and lack of open-source software tools are the thrust
areas for immediate advancement. Research support is needed to improve and introduce VR enterprise-
centered approaches to produce high quality VR software products and to reduce development costs.

After studying the development practices of the VR Enterprise, we looked at relevant literature. We
reviewed academic research on Requirements Engineering methods, Software Quality, and Software
Usability methods for VR product development. Academic methods focus on conventional software
development. They do not consider the realities of VR Enterprise practices. Literature shows poor
requirements engineering practices negatively impact VR product development. Rigorous, enterprise-
oriented requirement methods could help mitigate VR software quality issues.

vi

vii

The primary motive of this thesis is to discuss the need for rigorous requirements engineering for
VR product development. We present a novel tool-based approach to specifying requirements for VR
products using a conceptual understanding of VR as a domain. We formulate a “Role-based model
template” for a VR software system that provides a meta-model understanding of VR as a domain. The
model template of the VR software system illustrates the bare minimum concepts and the underlying
attributes required to build a minimalistic VR software product. The model template can be customized
by the VR development community without altering its bare minimum concepts and attributes. This
allows mechanisms to ease overall VR development and overcome being tied to specific VR hardware
and software development (s).

Further, we developed VReqST - a requirement specification tool for VR requirement analysts to
formally elicit, analyze, and specify requirements based on the role-based model template. VReqST
can be used by VR designers to eventually design VR scene templates with higher precision. VR de-
velopers can avoid imagination stress by relying on these design templates. VReqST-based requirement
specifications enable traceability, reusability, and incorporate quality requirements in VR product de-
velopment. To understand VReqST’s practical influence, we had the VR Enterprise adopt and provide
feedback on it. Their systematic, iterative feedback helped improve the tool with developer-friendly
features and enhancements. As proof-of-concept, we also used VReqST to specify requirements for a
real-time VR depression detection application.

As a future work, we envision expanding VReqST’s capabilities to serve as an input for Generative
AI tools, aiding in the various stages of development of VR software and facilitating model-driven
development approaches for VR products.

Contents

Chapter Page

1 Introduction . 1
1.1 Motivation . 1

1.1.1 Problem Statement . 4
1.1.2 Research Journey . 5
1.1.3 Scope of our Research . 6

1.2 Contributions . 7
1.3 Outline of the Work . 8

2 Overview of Virtual Reality . 11
2.1 Background . 11
2.2 Modalities of Reality . 13
2.3 Key Concepts . 15
2.4 Virtual Reality Technology Stack . 17

2.4.1 Virtual Reality Software . 19
2.4.2 Virtual Reality Hardware . 20

3 Virtual Reality Community Ecosystem . 22
3.1 Is Virtual Reality Product Development Different? . 22

3.1.1 Survey with VR Community . 24
3.1.2 Focused Interviews with VR Practitioners . 25
3.1.3 VR Online Forum Study . 27

3.2 Observations from Empirical Studies on VR Community 29
3.2.1 Insights from Survey . 29
3.2.2 Attributes from Interviews . 29
3.2.3 Themes from Online Forums . 37

3.3 Thurst Areas for Research to ease VR Product Development 38
3.3.1 Conventional Software Products Vs VR Software Products 41

3.4 Usability Practices in Virtual Reality Products . 43
3.4.1 Discussion on Usability Methods & Metrics for VR Products 47
3.4.2 Sufficiency & Necessity of Usability Evaluation of VR Software 53

3.5 Software Quality Metrics for Virtual Reality Products 53
3.5.1 Discussion on Software Quality Metrics, Usage Trend across Field-of-Interests

for VR Products . 56

viii

CONTENTS ix

4 Literature Review - Requirements Engineering for VR Product Development 69
4.1 Mapping Study - RE for VR Software Products . 69

4.1.1 Requirement Elicitation Methods for VR Software Products 76
4.1.2 Requirement Analysis Methods for VR Software Products 81
4.1.3 Requirement Specification Methods for VR Software Products 83
4.1.4 RE Methods with specific Field of Interest for VR Software Products 83
4.1.5 RE Attributes to Capture VR Product Requirements 85

5 Understanding Virtual Reality Domain through a Model Template 91
5.1 Attributes for VR Software Requirement Specification 91
5.2 Role Based Model Template for Specifying VR Software 95
5.3 Virtual Reality Software System Meta Model . 99

5.3.1 Extending VR Meta-model to Domain-specific and Context-specific applications 104
5.3.2 Implications of VR Model Template for VR Community 107

6 Model Based Requirement Specification for Virtual Reality Software 109
6.1 Authoring Tools vs Requirement Specification Tools 111
6.2 VReqST - To specify VR Requirements . 113

6.2.1 Model Template and its Validator . 113
6.2.2 VReqST Overview . 115
6.2.3 VReqST Validation Workflow . 117
6.2.4 Fillable Model Template and Validator Files 118
6.2.5 Understanding Behavior and State in VReqST 160
6.2.6 VReqST Features . 161

6.3 Example Specifications . 162

7 Validation of VReqST Tool in Practice . 165
7.1 VR Community Adoption & Feedback . 166

7.1.1 VReqST Validation Study Setup . 167
7.1.2 VReqST Impact and Experience Survey . 168
7.1.3 Observations - Validation Study . 169
7.1.4 Observations - Impact and Experience Survey 176
7.1.5 VReqST extensions in VR product development 178

7.2 Requirement Specifications for Depression Detection Application using VR: a Proof of
Concept . 183

8 Deploying and Configuring VReqST in Practice . 187
8.1 Hardware Requirements . 187
8.2 Software Requirements . 188
8.3 Deployment Steps . 188
8.4 Configuring Database . 189

9 Future Work: Model Driven Development for Virtual Reality Software 190
9.1 Few Concepts . 190
9.2 MDD Pipleline for VR . 191

Bibliography . 197

List of Figures

Figure Page

1.1 2017 Gartner Hype Cycle for Emerging Technologies 2

2.1 Understanding the dimensions within Modalities of Reality 13
2.2 Participant exploring a Visual Acuity Test through a VR Scene 14
2.3 Meta Quest 3 Head Mounted device . 15
2.4 Viewing angle and degrees of freedom in VR: (a) 3-DoF, (b) 3-DoF+, (c) 6-DoF 16
2.5 Hardware - Software Technology Stack of Virtual Reality Technology 18
2.6 Taxonomy of Virtual Reality Offering [185] . 20

3.1 Time spent by Stakeholders in a week . 31
3.2 Common Codes from Interview Study . 32
3.3 Consolidated Observations of a typical VR Product Development Cycle 38
3.4 Yearly Trend of Usability Evaluation method Adoption in VR Software Development . 51
3.5 Software Quality Spread in VR . 57

4.1 Paper Extraction Process and corresponding results 75
4.2 Requirement Elicitation Method and Maturation levels 80
4.3 Overall Requirement Elicitation, Analysis and Specification Methods observed as part

of Mapping Study . 84

5.1 Common Codes from Interview Study . 97
5.2 Example VR Scene built using WebXR API and AFrameJS 99
5.3 UML four layered meta-model architecture . 100
5.4 RBML Class diagram of model template for requestor authorization workflow 101
5.5 Role based Model Template of a bare minimum VR Software System 102
5.6 UML four layered meta-model architecture for Virtual Reality Domain 104
5.7 VR Soccer Training Application by Rezzil Inc. 105
5.8 Visualizing top-down stack layers on extending VR meta model 106
5.9 Visualizing example of extending VR meta model to HealthCare (Pharmacology) Ap-

plication Domain . 107

6.1 Understanding rigour of Requirement gathering for 2D vs 3D Animation Vs 3D Envi-
ronment
Note: These images was generated with the assistance of AI 110

6.2 Model Template and Validator . 113

x

LIST OF FIGURES xi

6.3 VReqST - Architecture . 114
6.4 Overview of VReqST - Author Journey . 116
6.5 Validation Workflow of Model Template and Custom Behaviour Editor - VReqST Tool 118
6.6 VR Bowling Alley Game in a developer mode (UNITY Engine) - Point-of-View 1 & 2 162
6.7 VR Art Gallery using limitless walking (UNITY Engine) - Point-of-View 1 & 2 163

7.1 Multi-stage view of Requirement Authoring . 171
7.2 Managing Requirement Specification as Projects . 172
7.3 In-page validation message for a given model template 172
7.4 Customizing Validator Files through UI . 173
7.5 Revisions to Article and Action-Response Model Template 174
7.6 Revisions to Behavior Editor to Review, Author and Publish custom behaviors 175
7.7 Compatibility of VReqST with existing processes group by Size of Organization . . . 177
7.8 Ease of UI/UX of VReqST in practice group by Organization Size 178
7.9 Ability to Specify VReqST specifications by frequency of usage across organizations . 179
7.10 Ability to track VReqST requirements by frequency of usage across different class of

organizations . 180
7.11 Ability to extend VReqST to Domain specific applications group by ability to specify

requirements based on conventional standards across different class of organizations . . 181
7.12 Ability to convert conventional specifications to VReqST Specification 182
7.13 Scene flow of Positive Scenes in Mental Health VR Application 184
7.14 Scene flow of Negative Scenes in Mental Health VR Application 184
7.15 Scene flow of Neutral Scenes in Mental Health VR Application 185

9.1 Model Driven Development using LLM and GenAI for Virtual Reality Software Products 192

List of Tables

Table Page

3.1 Participants’ designated role and experience . 26
3.2 Coefficient ratings of Use-case by demographic . 30
3.3 Interview Questions . 32
3.4 Consolidated observations by Thrust Area . 39
3.5 PICOC definitions for literature study on Usability Evaluation Methods in VR 45
3.6 PICOC definitions for literature study on Software Quality metrics in VR 54
3.7 Usability Evaluation Methods - Categorized based on metric and by Industry Type. . . 67
3.8 Software Quality Metrics mapped with respective type and VR Theme 68

4.1 PICOC definitions for literature study on Requirements Engineering approaches in VR 71
4.2 Requirement Elicitation method mapped with respective reference 89
4.3 Requirement Analysis methods mapped with respective Domain and its reference . . . 90
4.4 Requirement Specification methods mapped with respective Domain and its reference . 90

5.1 Example bindings for a test-case of kicking the ball using template class 105

6.1 Comparision between Authoring Tools and Requirement Specification Tools 112
6.2 VReqST - Model Concepts with corresponding Model Attributes 115

xii

Chapter 1

Introduction

1.1 Motivation

The concept of an immersive, computer-generated environment was first explored in the 1960s
through research in fields like computer graphics, human-computer interaction, and simulation. Science
fiction movies, novels, and video games featuring virtual worlds and immersive experiences captured
the public’s imagination and fueled interest in VR technology in the early 1990s. VR practitioners
from academia and industry have developed many applications to illustrate how VR can be used to
complex tasks and ease sophistication. However, compared to web-based and mobile applications, VR
as a technology is yet to gain broad based acceptance. Head-mounted devices (HMDs) seem to be
still restricted to niche domains/applications. As shown in Figure 1.1, The Emerging Technologies
Hype Cycle, published in the 2017 Gartner Report, outlines five distinct phases in the life-cycle of a
technology: Technology Trigger, Peak of Inflated Expectations, Trough of Disillusionment, Slope of
Enlightenment, and Plateau of Productivity. In the 2017 report, Virtual Reality (VR) technology was
positioned on the Slope of Enlightenment, indicating that the technology was beginning to mature, and
its potential benefits were becoming more evident as it moved towards mainstream adoption. Since
2018, VR has consistently been plotted on or above the Plateau of Productivity. In other words, the
report suggests that VR technology has reached its full potential and has become an established part
of the business landscape. During the Slope of Enlightenment phase, more practical applications and
use cases of the technology for enterprises started to emerge and become better understood. Second-
and third-generation VR products were released, and more realistic expectations were formed about the
technology’s capabilities, limitations, and potential applications. However, despite the reported matu-
rity, widespread adoption of VR has proven more challenging than anticipated for various reasons. To
comprehend the overall challenges hindering widespread adoption, there is a pressing need to examine
the current state-of-the-art in VR technology, its capabilities, its developer community, and the prac-
tices employed by this community. This examination will provide insights into the underlying factors
contributing to the adoption problems faced by the masses.

1

Figure 1.1 2017 Gartner Hype Cycle for Emerging Technologies

VR products can be categorized as (1) Consumer VR and (2) Enterprise VR. “Consumer VR”
refers to virtual reality applications and experiences primarily intended for personal entertainment and
leisure. These applications typically prioritize creating immersive gaming experiences, interactive sto-
rytelling, virtual tourism, and other forms of entertainment. The main focus in consumer VR is on
developing visually stunning and highly interactive environments that can transport users to different
virtual worlds. On the other hand, “Enterprise VR” refers to virtual reality applications specifically
designed for professional and business purposes. These applications aim to enhance productivity, train
employees, simulate real-world scenarios, and improve various industries such as healthcare, archi-
tecture, engineering, and manufacturing. Enterprise VR emphasizes providing realistic simulations,
accurate representations of real-world environments, and practical training experiences. It is crucial
to distinguish between Consumer VR and Enterprise VR because the objectives of these applications
differ significantly. Consumer VR applications like gaming demand high-performance rendering on

2

the Head-Mounted Display (HMD) to ensure smooth and immersive experiences. These applications
require exceptionally high frame rates rendering to prevent motion sickness and provide a seamless
virtual experience. On the other hand, VR applications designed for diagnosing Myopia or Glaucoma,
for example, may not require the same level of performance on the HMD. These medical applications
primarily focus on accurately representing visual stimuli and measuring specific eye conditions. While
a high frame rate rendering may enhance the overall experience, it may not be as critical as in gaming
applications. Recognizing the varying performance requirements in different VR applications is essen-
tial for optimizing resources and ensuring the best user experience. By understanding the specific needs
of each application, developers can allocate resources accordingly.

Who are developing the VR products? - As we explore towards low adoption of enterprise VR
products, we need to learn that conventional software practitioners have moved from ad-hoc processes
to customized processes for developing software. Software practitioners have benefited from decades
of empirical studies conducted by academic researchers, which have helped guide more reliable ap-
proaches to software product development. Empirical evidence suggests that standardized methods and
tools strengthen the processes for Industrial practice [1]. Improvements to these methods and tools can
advance product quality and help practitioners during product development. Given the rapid technologi-
cal advances, clearly understanding the processes involved in executing disruptive and rapidly changing
systems can impact product usage in the market [151]. Thus, “Virtual Reality” as technology can no
longer be developed in conventional approaches and requires a VR-centered approach to improve prod-
uct usage. Since 2005, VR-based Games have been considered VR software products due to their rich
exposure among gamers [219]. However, this view does not apply to Enterprise VR products as they are
more complex and domain-specific in execution. As traditional software products are now undergoing
a refreshing change by transforming themselves into VR-based offerings, more software engineering
practices are being adopted by VR practitioners. The primary goal of such a transformation in practices
is to provide a cutting-edge experience to its consumers [30]. Enterprise Software providers are now
investing in VR-based business solutions to reconstruct the traditional ideas for the new generation of
consumers. As per Digi-Capital Market Research Report, [2], there has been $3 billion investment in the
VR Enterprise product market for the next decade. It includes various applications in areas like Educa-
tion, Health, Art/Design, HRTech, Services, Tourism, News, etc., to provide a personalized visual expe-
rience to respective end-users. Invariably, these products are being developed by software practitioners
practicing traditional software engineering principles while building a routine software product [107]
for the conventional market. Traditional Game developers and designers actively involved with VR-
based games have created an ecosystem for software developers to enter into VR space [31]. Game
developers are good at design and strategy planning. In the past two decades, they have adopted some
software engineering principles and fine-tuned the practices based on their development needs [186].
They even adopted game-based development guidelines and a game-based development cycle [15] to
improve their internal processes for an easy VR product release. With developers’ amalgamation from

3

gaming and software engineering into VR space, a new ecosystem has emerged [265]. By imparting
traditional SE practices, core software developers are building enterprise products using game-based
VR engines. Oculus, a leading VR technology firm, has opened developer support programs [3] to fill
the talent gap for enterprise VR product development in this ecosystem.

These observations posits us further to explore the VR developer ecosystem, their practices, and
approaches in detail. It may help us determine the gaps and instigate new proposals for building better
enterprise VR products so that it can raise the adoption of VR to the masses. We constructed our
problem statement around these early observations and motivation to investigate further. We illustrate
the problem statement in detail in the following sub-section.

In contrast to VR Technology, other alternate reality-based technologies like Augmented Reality
(AR), Mixed Reality (MR), and Extended Reality (XR) borrow concepts from VR in practice. Our
focus is primarily on VR due to its unique properties and use cases. However, our work can still be
extended or applied to other alternate realities in practice after thorough experimentation. We further
detail the differences between these alternate realities along with the unique properties of VR in Chapter
2.

1.1.1 Problem Statement

In early 2017, we started exploring the area of VR through the lens of software engineering to un-
derstand the reasons behind the poor adoption of VR as a technology for developing enterprise VR
applications to reach the masses. Over time, we synthesized the following problem statements to inves-
tigate the reasons in the following stages.

• What is the journey of a typical VR product from development to delivery? - At this prelim-
inary stage, such an investigation will help us understand the overall processes, practices, tools,
standards, and stakeholders involved during VR product development in an Enterprise setup. It re-
quires closely examining VR practitioners who release VR products for a targeted customer base.
It is worth investigating as it helps us identify the potential gaps in adopting VR as a technology
for building enterprise products.

• Is VR product development different from conventional software product development? -
In general, VR is yet another software. All aspects of conventional software engineering practices
may apply to VR product development. However, we may not guarantee they will help to deliver
a satisfactory, i.e., a quality VR product. Such an investigation will help understand how various
areas of conventional product development, like requirement gathering, design, coding, testing,
and release, are managed in practice. This review can provide us with a direction toward exploring
each vertical to determine the areas of improvement and suggest a solution to ease VR product
development.

• What areas within the VR product development life-cycle require research support? - Con-
sidering the outcome of examining the gaps in VR software development, exploring the areas of

4

interest within VR product development requires additional research support. Here, the scope of
research support is to determine new tools, methods, approaches, or metrics that can eventually
ease VR product development.

These problem statements aim to understand the overall VR enterprise ecosystem to conduct more
profound research into specific areas that can enable the VR enterprise to improve adoption issues in
practice.

1.1.2 Research Journey

We started our research journey in January 2017, exploring areas of interest in researching Virtual
Reality from a Software Engineering context. Various new articles and white papers by industry leaders
plagued our early overview of virtual reality as a next-generation emerging technology with billions
of worth in the marketplace. In the middle of 2017, we started contacting the VR Community (both
VR Enterprises and VR Consumers) to understand the overall VR ecosystem. We observed VR got its
facelift in early 2011 when Palmer Luckey, the founder of OculusVR (now merged into Meta Inc.), re-
leased a well-defined VR head-mounted device tethered to personal computers. Existing head-mounted
displays in the market suffered from low contrast, high latency, low field-of-view, high cost, and extreme
bulk and weight. OculusVR addressed all such gaps by introducing a variety of VR HMDs like Oculus
Rift and Oculus Rift S with a focus on the gaming industry. It created a phase shift for VR in the con-
sumer market. The Oculus HMDs started attracting significant interest from industry and professional
spheres for productivity enhancement, visualization, and advertising. Various architecture, automotive,
and manufacturing firms have shown great interest in visualizing their products in VR space. By end
of 2017, the VR Enterprise products had risen significantly with a vast talent pool across the globe.
Conversely, there is a severe crisis in the VR enterprise developer community as they began adopting
approaches, methods, and various other engineering practices from conventional software engineering.
Apart from the gaming industry, there was no widespread adoption across the masses due to a lack of
enterprise products that suffice the intent of VR in practice. Thus, we started exploring the VR domain
through the prism of Software Engineering and tried to understand their VR Community.

As part of our journey, we conducted a first-of-its-kind multi-year empirical study with the VR com-
munity to understand their strategies for developing VR software products. We recorded potential areas
of research that require Software Engineering expertise to address the challenges faced by the VR com-
munity. Requirements, Design Versioning, Usability, Software Quality, Product Planning, and Release
management are observed to be the areas within the VR product life cycle that require immediate re-
search assistance and tool support. We developed a conceptual model for a VR system and a meta-model
for building future tools for VR product development. We explored Requirements as a critical area of
interest from a software engineering perspective, as effective requirement management can improve the
overall quality of the VR product. We developed a requirement specification tool called VReqST to

5

elicit, specify, analyze, and manage requirements for VR product development. We later evaluated the
tool in practice and improvised it with the feedback from the VR community.

With the advent of the early large-language model in 2018 and their evolution towards generating
detailed 3D models without extensive expertise in 3D modeling software like Blender, Maya, or 3ds
Max. Recently, a 3D-LLM [115] was developed that considers 3D point clouds and their features as
input to perform a diverse set of 3D-related tasks, including captioning, dense captioning, 3D ques-
tion answering, task decomposition, 3D grounding, 3D-assisted dialog, navigation, and so on. Such
could enhance such tools to consider VReqST specifications as input to generate instruction-driven 3D
modeling and 3D design versioning. It can accelerate automated LLM-based 3D article designs using
VReqST specifications as an alternative to human-driven designs. Integration of LLMs with model-
driven development through VReqST may ease overall VR software development in the future. While
VReqST-based requirement specifications create various design versions using LLMs, a VR developer
can pick one among many design templates to transform it into code. LLM-based MDD using VReqST
for VR Software requires a multi-year effort, and we plan to consider this as our future work.

1.1.3 Scope of our Research

The challenges illustrated in section 1.1 require a multi-disciplinary approach carving across Soft-
ware engineering principles, Software Product Development methodologies, and Human-Computer In-
teraction for the Virtual Reality Domain. However, this thesis discusses a technological perspective of
Virtual Reality while borrowing knowledge and concepts from core software engineering. This thesis
aims to identify directions to ease the development of Virtual Reality products by delivering an approach
for new evaluation methods and tools across the VR product development lifecycle.

• This thesis discusses our attempts to understand the VR practitioners’ ecosystem through empiri-
cal studies and identify thrust areas for improvement and potential research.

• By identifying the thrust areas, It also discusses systematic literature reviews in these thrust areas
on academic research databases to deduce currently available practices and review their impact
on current VR product development.

• With the extent of improving the thrust areas in VR, this thesis illustrates VR as a domain through
a role-based model template that acts as a meta-model for VR. This aids the VR community in
creating a customizable semantic knowledge base to build new tools for VR product development.

• Using bare-minimum VR semantics, we formulated a requirement specification tool called VRe-
qST that helps the VR community elicit and specify VR requirements effectively. It demonstrates
the development of a tool for VR using a model template. Similar tools can be developed for
VR to simplify other development tasks like VR scene design versioning, scene generation, 3D
environment generation, article generation, open-source physics engines, test-case creation, VR
code versioning and VR code-build management.

6

• This thesis validates the capabilities of VReqST by running a iterative validation study with VR
community. We revised VReqST based on the feedback from Industry practitioners and have used
it to specify requirements for a VR based depression detection application as a proof-of-concept.
These are the significant contributions of this thesis.

1.2 Contributions

In this section, we illustrate our overall contributions to our this thesis.

Understanding VR Developer Community: We conducted detailed multi-year empirical study on
understanding the day-to-day challenges faced by VR developer community in practice and published a
detailed work at ISEC 2019.

• Sai Anirudh Karre, Neeraj Mathur, and Y. Raghu Reddy. 2019. Is Virtual Reality Product Devel-
opment different? An Empirical Study on VR Product Development Practices. In Proceedings
of the 12th Innovations in Software Engineering Conference (formerly known as India Software
Engineering Conference) (ISEC’19). Association for Computing Machinery, New York, NY,
USA, Article 3, 1–11. https://doi.org/10.1145/3299771.3299772

Examining the VR Developer Practices: Based on our insights from the detailed empirical study about
challenges faced by VR developer community, we examined various methods that are practiced by VR
developers during the Enterprise VR product development in the form of systematic literature reviews.
Our primary thrust areas for reviews are Requirements Engineering, Software Quality and Usability.
We published our observations at SAC 2019, SIGAPP 2019 Journal, ISEC 2021, ISEC 2023 and ACM
Transactions of Software Engineering Methodology Journal 2024.

• Sai Anirudh Karre, Neeraj Mathur, and Y. Raghu Reddy. 2019. Usability evaluation of VR
products in industry: a systematic literature review. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing (SAC ’19). Association for Computing Machinery, New
York, NY, USA, 1845–1851. https://doi.org/10.1145/3297280.3297462

• Sai Anirudh Karre, Neeraj Mathur, and Y. Raghu Reddy. 2020. Understanding usability evalu-
ation setup for VR products in industry: a review study. SIGAPP Applied Computing Review
Journal, Volume 19, Issue 4 (December 2019), 17–27. https://doi.org/10.1145/3381307.3381309

• Mohit Kuri, Sai Anirudh Karre, and Y. Raghu Reddy. 2021. Understanding Software Quality
Metrics for Virtual Reality Products - A Mapping Study. In 14th Innovations in Software En-
gineering Conference (formerly known as India Software Engineering Conference) (ISEC 2021).
Association for Computing Machinery, New York, NY, USA, Article 8, 1–11.
https://doi.org/10.1145/3452383.3452391

7

• Sai Anirudh Karre, Raghav Mittal, and Raghu Reddy. 2023. Requirements Elicitation for Vir-
tual Reality Products - A Mapping Study. In Proceedings of the 16th Innovations in Software
Engineering Conference (ISEC ’23). Association for Computing Machinery, New York, NY,
USA, Article 12, 1–11. https://doi.org/10.1145/3578527.3578536

• Sai Anirudh Karre, Raghav Mittal, and Raghu Reddy. 2024. Requirement Engineering Meth-
ods for Virtual Reality Software Product Development - A Mapping Study, ACM Transactions
on Software Engineering Methodology Journal, pp:1-30, https://doi.org/10.1145/3649595. (Ac-
cepted November 2023, Published February 2024).

Meta-model of Virtual Reality as a Technology Domain: After concluding our comprehensive sys-
tematic literature reviews, we conceptualized a meta-model for Virtual Reality technology domain. This
is to ideate new tools for VR developers in the observed thrust areas and provide strong tool support
to ease their overall product development. We published the Virtual Reality meta-model based on the
concepts of role-based modeling approach in ASE 2022.

• Sai Anirudh Karre, Vivek Pareek, Raghav Mittal, and Raghu Reddy. 2023. A Role Based Model
Template for Specifying Virtual Reality Software. In Proceedings of the 37th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE ’22). Association for Computing
Machinery, New York, NY, USA, Article 225, 1–5. https://doi.org/10.1145/3551349.3560514

VReqST - Tool for Requirement Specification: Using the Virtual Reality role based model template
i.e. a meta-model of VR, we developed a requirement specification tool to specify VR requirements
called VReqST. We worked with VR community from Industry and revised the tool incrementally to
make it more usable and adaptable. We submitted our tool to RE 2024 and a detailed validation re-
sults to Frontiers Journal on Virtual Reality, 2024. We also published a short validation study in ACM
CompEd 2024 to understanding capability of VReqST as a teaching aid to specify complete and correct
specifications when authored by group of novice requirement analysts.

• Sai Anirudh Karre, Raghu Reddy. 2024. Model Based Requirement Specification for Virtual
Reality Software Products, Frontiers Journal on Virtual Reality, 2024 [TO BE SUBMITTED]

• Sai Anirudh Karre, Karthik Vaidhyanathan, and Y. Raghu Reddy. 2023. A Tool based Experi-
ment to Teach Elicitation and Specification of Virtual Reality Product Requirements. In Pro-
ceedings of the ACM Conference on Global Computing Education Vol 2 (CompEd 2023). Associ-
ation for Computing Machinery, New York, NY, USA, 195. https://doi.org/10.1145/3617650.3624936

1.3 Outline of the Work

In this section, we discuss the organization of our thesis.

8

Chapter 1: So far, in the current chapter, we discuss our early observations about Virtual Reality
Technology which motivated us towards formulating our problem statement for research. We discussed
our research overview at length along with is scope. We also detailed our contribution in terms of pub-
lications and patents paved a direction to identify solutions to our motivation.

Chapter 2: In this chapter, we present detailed background about Virtual Reality, Definitions, Key
concepts related to VR along with VR Technology Stack. We further detail the prevailing software en-
gineering challenges while developing VR software products.

Chapter 3: In this chapter, we discussed the state-of-the-art methods and approaches practiced by
the VR developer ecosystem collected from our multi-year empirical study. We present the methodol-
ogy of our empirical study. We also present our results from the survey, focused interviews and online
forum threads. We illustrate our key findings by presenting thrust areas for research in VR domain to
ease overall VR product development. We also present various methods practiced by VR community in
thrust areas like usability and software quality through systematic literature reviews.

Chapter 4: Considering requirement engineering being the key area in the life cycle of VR product
development, we present detailed systematic mapping study on methods practiced by VR community to
elicit, specify and analyze the requirements for build VR software products. As requirements is one the
key thrust areas for our research interest, we explore in detail to understand the bare-minimum attributes
that are required for building VR products to ease requirement gathering for VR.

Chapter 5: In this chapter, we illustrate a role-based model template to specify a VR Software product.
These present our methodology, approach towards data collection, analysis and overall observations in
regard to model template. We suggest the ways of relying on our model template for developing pro-
ductivity tools for VR to ease VR software development.

Chapter 6: In this chapter, we introduce VReqST - a model based requirement specification tool for
building VR software. We describe the tool overview, validation workflow, authoring behaviors and
state in VReqST and its additional features. We also present few VR scene examples to illustrate sam-
ple specifications developed using VReqST.

Chapter 7: In this chapter, we discuss the validation strategies of VReqST in practice. We illustrate
our endeavors toward reaching the VR Enterprise for adoption and feedback. We provide details about
the feedback we received in iteration and our strategy to improve VReqST for better adoption. We also
present our proof-of-concept on leveraging VReqST to specify requirements for a VR based depression
detection application.

9

Chapter 8: In this chapter, we illustrate details on software and hardware requirements to configure
and deploy VReqST. We also included required configuration settings that are required to be applied on
underlying supporting software to implement VReqST as in-house or as a cloud offering.

Chapter 9: In this chapter, we present our future work on extending our role-based model template
along with VReqST requirement specifications to transform the prevailing VR product development
life cycle into a Model-driven VR product development in practice using 3D large learning models and
Generative AI.

10

Chapter 2

Overview of Virtual Reality

2.1 Background

Virtual reality (VR) has a rich history from the 1950s. The concept of VR was initially explored
by researchers who sought to create immersive environments that could deceive the human senses into
perceiving a realistic alternate reality. Here are some key milestones in the history of VR:

• 1962: The Sensorama was a machine that is one of the earliest known examples of immersive,
multi-sensory (now known as multimodal) technology. This technology, which was introduced
by Morton Heilig and is considered one of the earliest virtual reality (VR) systems.

• 1965: Ivan Sutherland presented the concept of the Ultimate Display, envisioning a virtual world
viewed through a Head-Mounted Display (HMD).

• 1968: Ivan Sutherland and Bob Sproull created the first virtual reality head-mounted display
(HMD) system, named The Sword of Damocles. It was suspended from the ceiling and required
users to be strapped in although it was too heavy for comfortable use.

• 1969: Myron Krueger developed ”artificial reality” experiences, leading to the development of
VIDEOPLACE technology.

• 1972: General Electric built a computerized flight simulator with a 180-degree field of vision.

• 1975: Krueger’s VIDEOPLACE was the first interactive VR platform, using computer graphics
and projectors

• 1977: Developed at MIT, the Aspen Movie Map enabled users to virtually tour Aspen, Colorado,
through video filmed from a moving car.

• 1982: Finger-tracking gloves for VR called ”Sayre” gloves were invented, laying the foundation
for data gloves in early VR

11

• 1984: Jaron Lanier founded VPL Research, one of the first companies to develop and sell VR
products.

• 1989: Crystal River Engineering developed real-time binaural 3D audio processing for VR appli-
cations

• 1990: Jonathan Waldern exhibited Virtuality, a VR arcade machine, at the Computer Graphics 90
exhibition in London. This was the first mass-produced VR entertainment system.

• 1991: Sega introduced its VR-1 motion simulator in its SegaWorld arcades.

• 1991: NASA scientist Antonio Medina designed a VR system for driving Mars robot rovers from
Earth in real-time

• 1994: SEGA released SEGA VR-1, a motion simulator arcade machine.

• 2010: The first prototype of the Oculus Rift headset was designed.

• 2014: Facebook acquired Oculus for $2 billion, and Sony announced the launch of Project Mor-
pheus, a VR headset for its PS4 console.

• 2015: Google launched Cardboard, which uses a head mount to turn a smartphone into a VR
device.

• 2016: The first generation Oculus Rift device was released, followed by Sony’s PlayStation VR
(PSVR).

• 2017: Microsoft launched the Xbox One X, its VR-ready games console and headset.

• 2018: Facebook released its untethered Oculus Go headset, and Lenovo’s Mirage Solo, the first
headset running Google Daydream, became available.

• 2019: Sony announced that it had sold more than four million PSVR headsets.

• 2021: More than 85 million VR headsets were in use in China.

• 2023: Cloud-based VR gaming is expected to be increasingly prominent, supported by 5G net-
works.

These milestones represent the evolution of VR technology from its inception to its current state, with
improvements in both hardware and software, as well as the development of ecosystems to support its
adoption. The history of VR showcases a continuous drive towards creating immersive digital experi-
ences that engage multiple senses and transport users into interactive virtual worlds.

12

Figure 2.1 Understanding the dimensions within Modalities of Reality

2.2 Modalities of Reality

Figure 2.1 provides a detailed illustration of modalities of reality. The modalities of reality refer to
the various aspects or dimensions of reality that can be distinguished. In psychology and therapy, reality
is often discussed through concepts like perception, cognition, emotion, and behavior.

• Perception refers to how individuals interpret and organize sensory information from the environ-
ment. In reality therapy, perception is closely linked to responsibility, as people are encouraged
to take accountability for their choices and actions.

• Cognition involves mental processes such as thinking, learning, and problem-solving. Reality
therapy emphasizes the present moment and encourages individuals to focus on modifying their
actions to change behavior rather than delving into the past.

• Emotion are a crucial aspect of human experience and are often intertwined with perception,
cognition, and behavior. Reality therapy does not focus on the underlying causes of emotional
issues but rather on helping individuals take responsibility for their behavior and make more
desirable choices.

• Behavior is a central component of reality therapy, which views it as a choice rather than a
symptom of a mental health condition. The goal is to help individuals recognize the reality of
their choices and choose more effective behaviors.

The above concepts vary with transitions in the modalities of reality. As shown in Figure 2.1, Physical
reality is what we observe daily that can be perceived through our human eye as we move along the
spectrum of reality modalities - augmented reality and augmented virtuality are converse to each other.

13

Figure 2.2 Participant exploring a Visual Acuity Test through a VR Scene

Augmented Reality, i.e., AR, is a projection of virtual objects overlayed in a real-world environment
when visualized through a hand-held or a head-mounted glass device. Similarly, Augmented Virtuality,
i.e., AV, is when real-world objects are projected and controlled in a virtual environment through a hand-
held or a head-mounted glass device. To the end of the modalities of reality spectrum, we have Virtual
Reality, i.e., VR, an immersion in a wholly digital environment that shuts off from the real world. In this
thesis, we are primarily concerned with virtual reality (VR) technology, which is defined as follows.

Virtual Reality (VR) is an immersive technology that lets user be a part of a virtual environ-
ment where the interaction between user and simulation/computer-generated environment can be
exploited by human sensory simulation like touch, vision, hearing and force perception [126].

Sensory simulation in VR may use a range of devices, from so-called ”immersive” wearable dis-
plays to conventional desktop or room-scale computer technologies, and from whole-/part-body motion
capture or tracking devices and traditional gaming controllers to physiological interfaces (such as eye-
tracking and brain-computer links). VR technology is increasingly being adopted in various domains
like healthcare, gaming, aviation, etc. Fig 2.2 shows a participant wearing a VR Head-mounted device
and experiencing a Visual Acuity Test VR Scene.

14

2.3 Key Concepts

In this section, we will go through few key concepts that are required for us to understand the length
and breadth of Virtual Reality technology.

Figure 2.3 Meta Quest 3 Head Mounted device

Head-Mounted Display (HMD) - is a device that presents visual information directly to the user’s
eyes via a small display unit attached to a headband or helmet. HMDs are used in applications such as
virtual reality (VR) gaming, military training, medical procedures, and engineering simulations. They
can be monocular, featuring a single display for one eye, or binocular, with separate displays for each
eye to create stereoscopic 3D effects. HMDs often incorporate other technologies, such as positional
audio, eye tracking, and hand tracking, to enhance the overall experience. Fig 2.3 illustrated the patented
meta quest 3 by Meta Inc1.

Degrees of Freedom (DoF) - In context to real-world objects, DoF is used in various fields, includ-
ing physics, engineering, and statistics, to describe the number of system parameters that may vary
independently. In simpler terms, it represents the number of independent ways a system can be adjusted
or changed. The concept of DoF is essential because it helps us understand the range of possibilities

1MetaQuest 3 Head-Mounted Device - https://patents.google.com/patent/US20140361956

15

within a particular system and the constraints that govern those possibilities.Thus, in simple terms, the
degree of freedom DoF is a term that describes the axes along which an object can move.

In context to virtual reality, 2DOF and 3DOF refer to the degrees of freedom (DoF) that a VR head
mounted device supports. DoF is a term that describes the axes along which an object can move. For
example, your elbow joint has one degree of freedom (1DOF). In VR, headsets can track movement
along multiple axes, and the number of axes tracked determines the DoF of the headset [169]

• A 2DOF VR headset provides orientation tracking around the three axes where an object can be
rotated. This is suitable for mobile VR headsets and standalone VR headsets like the Oculus Go,
where users can look around in the environment but cannot move around physically.

• A 3DOF VR headset provides orientation tracking and allows users to look around the environ-
ment. It is suitable for mobile VR headsets and standalone VR headsets like the Oculus Go. Users
can visualize a virtual reality around them and look at its details.

• A 6DOF VR headset provides both orientation and position tracking, allowing users to move in
3 axes (x, y, and z) and any combination of these three axes. This is necessary for users who
want to walk around the reality they are experiencing, explore open-world virtual reality games,
or interact with objects in the environment.

Figure 2.4 Viewing angle and degrees of freedom in VR: (a) 3-DoF, (b) 3-DoF+, (c) 6-DoF

The choice between 2DOF, 3DOF, and 6DOF depends on the application and the desired level of im-
mersion. 3DOF is suitable for experiences where users do not need to move around physically. At the
same time, 6DOF is necessary for experiences where users need to interact with the environment more
realistically. The cost and complexity of the hardware and software required for 6DOF tracking are
higher than for 2DOF or 3DOF tracking, which can affect the headset choice.

16

Virtual Reality Disruptive Capabilities: The following are significant capabilities of VR technology
that play a disruptive factor in adopting this technology for building enterprise products.

• Immersion: It is the sensation of being present in a virtual environment, where the user feels as
if they are physically present in the virtual world. It is achieved through high-quality graphics,
3D audio, and haptic feedback.

• Interactivity: It is the ability to interact with the virtual environment, such as by moving ob-
jects, manipulating the environment, or controlling the viewpoint. It is achieved through motion
tracking, hand tracking, and other input devices.

• Presence: Presence is the feeling of being present in the virtual environment, where the user feels
as if they are truly there and not just observing a simulation. It is achieved through a combination
of immersion and interactivity.

• Spatial audio: It is the use of 3D audio to create a sense of space and depth in the virtual environ-
ment. Spatial audio can help users locate objects and sounds in the virtual world and can enhance
the overall sense of immersion.

• Motion tracking: It is the use of sensors and algorithms to track the user’s movements and
translate them into the virtual environment. Motion tracking can be used to track the user’s head,
hands, and body movements, allowing for a more natural and intuitive interaction with the virtual
world.

• Haptic feedback: It uses physical sensations to enhance the user’s interaction with the virtual
environment. Haptic feedback can include vibrations, force feedback, and temperature changes.
It can help users feel more connected to the virtual world.

• Real-time rendering: It is the ability to generate high-quality graphics and animations in real-
time, allowing for a smooth and responsive interaction with the virtual environment. Real-time
rendering is essential for creating a convincing and immersive VR experience.

• User interface: The user interface is how users interact with the virtual environment, including
controllers, gestures, and voice commands. A well-designed user interface can help users navigate
the virtual world and interact with objects and other users.

2.4 Virtual Reality Technology Stack

In Virtual Reality, a 3D computer generated environment is expected to act and feel real. VR based
systems can facilitate participants to interact with objects in virtual world and thereby create a percep-
tion of participants being a part of this virtual world. Just like any modern system, the major technology

17

aspects of virtual reality are its hardware and software. The hardware aspect of Virtual Reality pri-
marily constitutes Head Mounted Device (HMD) along with some external and internal sensors. The
HMDs include a liquid crystal display, liquid crystal on silicon, Organic light-emitting diodes, eye
trackers, hand-trackers, positioning tracking systems, head-tracking, and many other sensors which aid
computer-generated imagery. There are several types of HMDs and evolution of HMDs can be traced
back to a few decades [74]. Virtual Reality software systems are Object-oriented, scene-graph based,
and three - dimensional graphic systems written in third generation programming languages like C++. It
provides building blocks for composing three-dimensional scenes, animated three-dimensional objects,
three-dimensional interaction, and the associated haptic controllers for tracking actions and gestures.
Fig 2.5 gives an overview of the Technology Stack of VR software and hardware system. Software and

Figure 2.5 Hardware - Software Technology Stack of Virtual Reality Technology

Hardware support for VR are limited to the scope of human senses, which include sight, hearing, and
touch only. Currently, VR has the potential to capture requests and responses from Human Eyes, Ears,
Limbs, and speech. Researchers are exploring ways to extend the software-hardware support to smell,
feel, and emotional stimuli. These senses deliver requests and responses from peripheral hardware de-
vices like Head Mounted Devices (HMDs), Desktop Machines, Mobile Phones, Gamepad or Keyboard,
and mouse to integrated GPU circuits (which include mobile, desktop, or custom hardware). These GPU
circuits interact with a software kernel that can load drivers for gestures, speech, graphics, and latency.
Fig 2.6 provides the high level taxonomy of virtual reality offering [185].

18

2.4.1 Virtual Reality Software

Traditionally, Virtual Reality applications are written in C++ using the 3D graphics library. Virtual
Reality Modelling Language (VRML) is first introduced in 1993 to generalize design and modeling
of virtual reality scenes. It also reduces hardware dependencies to some extent. Web3D Consortium, a
working group under the World Wide Web Consortium set up in 1997 introduced a web-based 3D graph-
ics standard. With advent of variations in hardware support for Virtual Reality, a variety of hardware
HMDs released into the market. Formfactor, visual characteristics play an essential role in determining
the VR hardware. These characteristics are considered by developers while developing a VR Scene
for enterprise applications. In the 2010s’ decade, VR hardware matured with introduction of a vari-
ety of sensory systems, which helped developers to capture human sensory data. Gaming Engines like
Unity, UnReal extended its engines to accommodate Virtual Reality product development by introduc-
ing extended physics and ecosystem binaries to developers. WebVR was started as an experimental
JavaScript library for realizing VR on Web, now supports all HMDs along with all mainstream web
browsers. Following are few widely used Software Development Toolkits and Game Engines for VR
Product development.

• OpenVR - is an SDK and an API that was developed by Valve in order to support HTC Vive and
other related VR headsets.

• PSVR-devkit/ Sony PlaystationVR is created to develop games and apps for Sony playsta-
tionVR.

• Oculus Integration/Oculus SDK is one of the best VR SDK as it includes various samples,
assets and specific kits as well as audio’s packs to build VR applications.

• Cross Platform SDK - Google had developed Google VR SDK this sdk can used to build VR ex-
periences in Daydream enabled Smartphone or google cardboard. Amazon had developed Ama-
zon sumerian which supports wide range of Virtual Reality devices like Oculus quest2/quest,
Oculus Rift, Google daydream, HTC Vive, HTC Vive pro.

• Unity is a popular game development engine that can be used to build powerful VR applications.
Unity has asset store which can be used to import premade 3d models to build applications faster.
Using unity we can develop applications which can run on Oculus quest/rift, HTC Vive, HTC
vive pro, Google Daydream.

• Unreal also offers powerful VR development tools. We can develop applications which supports
wide range of devices like Oculus, Sony PlaystationVR, HTC Vive, Daydream, Samsung gear
VR.

• Cryengine is well known for Game developers. It also provides a powerful VR software de-
velopment tool. This supports popular VR platforms like Oculus, Xbox , Sony PlaystationVR
etc.,

19

• WebXR Device API provides access to input and output capabilities commonly associated with
Virtual Reality (VR) and Augmented Reality (AR) devices. It allows you develop and host VR
and AR experiences on the web. It provides access to input (pose information from headset and
controllers) and output (hardware display) capabilities.

• A-Frame is a web framework for building virtual reality (VR) experiences. A-Frame is based
on top of HTML, making it simple to get started. But A-Frame is not just a 3D scene graph or a
markup language; the core is a powerful entity-component framework that provides a declarative,
extensible, and composable structure to three.js.

Figure 2.6 Taxonomy of Virtual Reality Offering [185]

2.4.2 Virtual Reality Hardware

Virtual Reality headsets now a days are based on smartphone technology which includes: gyro-
scopes, accelerometers and magnetometers which are used for tracking head, hand and body positions.
Some VR devices even have eye tracking. Tiny HD screens for stereoscopic displays and powerful
lightweight processors have resulted in VR devices being less expensive and usable. In addition to the
development of affordable omnidirectional cameras, production of VR images and videos has increased,
which are used to record 360 video photography at a relatively low resolution or highly compressed for-
mat that can be used again for streaming 360 videos. Special devices like CAVE or HMD are used to
create an immersive feeling. Two images are generated and displayed from different perspectives to cre-
ate a spatial impression. To make interactions in the virtual world special input devices are required like

20

motion controllers, wired gloves etc. Controllers uses optical tracker for location and navigation of user
to move freely without any wires. Additional other senses or feel can be obtained from omnidirectional
threadmills along with vibrating gloves and suit which causes force input to the hand or other parts of
the body.

21

Chapter 3

Virtual Reality Community Ecosystem

This chapter introduces the composition of the Virtual Reality developer community ecosystem. We
present our detailed observations on how VR product development differs from conventional software
development. We also present our insights on these observations, which helped us identify potential
thrust areas that require attention from the software engineering research community to ease overall VR
product development.

3.1 Is Virtual Reality Product Development Different?

Over the years, software product development has moved from adopting ad-hoc processes to struc-
tured processes. Empirical evidence suggests that standardized methods and tools strengthen the pro-
cesses for Industrial practice [1]. Periodic tweaks to these methods and tools can improve product qual-
ity and help practitioners during product development. Given the rapid technological advances, clearly
understanding the methods involved in building and executing disruptive and rapidly changing systems
can impact product usage in the market [151]. VR is a disruptive technological advancement in recent
times with an impressive commercial marketplace [2]. It is a computer-generated scene that resembles
a pragmatic experience in a virtual environment [126]. It was primarily built to generate a simulated
training setup and administer virtual exposure to real-life events using head-mounted devices (HMD).
VR Games are considered traditional software products due to their rich exposure among gamers [219].
However, this view does not hold for enterprise VR software products.

The traditional software products are now undergoing a vital change by transforming themselves into
a VR-based offering to provide a cutting-edge experience to its consumers [30]. Enterprise Software
providers are investing in VR-based business solutions to reconstruct the traditional ideas for the new
generation of consumers. As per Digi-Capital Market Research Report [2], there has been $3 billion
dollar investment in the VR Enterprise product market for 2017. This includes a wide range of markets
like Education, Health, Art/Design, HRTech, Services, Tourism, News, etc., to provide a personalized
visual experience to respective end-users. These products are now being built by the same software
practitioners practicing traditional software engineering principles while building a routine software

22

product [107] for the conventional market. Game developers and designers have created an ecosystem
for software developers to enter into VR space [31]. Game developers are good at design and strategy
planning. Over a decade, they adopted a few software engineering principles and turned them based
on their development needs [186]. They follow development guidelines and a game-based development
cycle [15] to improve their internal processes for a better VR product release. With the amalgamation
of developers from gaming and software engineering into the VR space, a new ecosystem has now
emerged [265]. Using domain knowledge, software developers build enterprise products using game-
based VR engines. Oculus, a leading VR tech leader, has opened up developer support programs [3] to
fill the talent gap for enterprise VR product development.

Given such progress, there is particular value in studying the software development strategies for
building enterprise software in VR. This is possible if an empirical study can be done on the currently
indoctrinated practices. Such a study can help in addressing some open research questions:

• What aspects of traditional software development methods are adopted by VR developers?

• What challenges are faced during the enterprise VR product development?

• Is VR Product development different from traditional software product development?

In the following sections, we detail an empirical study conducted on 697 VR developers from various
countries (predominantly North America, Asia, and Europe) to study the practices and detail some
thrust areas that are to be treated differently in enterprise VR product development compared to regular
enterprise software.

Methodology

Murphy et al. [186] conducted a study on understanding the significant differences between Video
Game Development and Software Development. They followed a two-stage approach, which included
qualitative interviews and quantitative surveys. Given the exploratory nature of our research, we devel-
oped a different plan for studying VR Ecosystem. We began our research with a simple VR practition-
ers’ survey in Industry to understand the day-to-day experiences of VR practitioners while building VR
Products. We realized that the survey was able to capture only superficial information. We could not
document the day-to-day practices of VR Practitioners based on survey data. The survey results led us
to conduct a focused study for capturing comprehensive data. While formulating the theory from the
interview results, we explored other methods that may point us to additional relevant data. The online
developer forums are sufficient as they have a unique data set supply. We gained insights into the re-
search questions based on the results from these data sources.

23

Research Instruments - Information gathered from a large set of VR practitioners, Focused
interviews and Online Developer forums

3.1.1 Survey with VR Community

Intent - The survey was primarily conducted to understand the development practices of a wide set
of VR developers while building VR Products. This section provides exhaustive details of our survey
setup.

Survey Instrument - Each question has a single idea. There is defined scope to consider, such as
time period and tasks relevant to the question. The survey questions are written in neutral, simple and
easy language to avoid leading respondent to a specific answer. Response options were made clear, con-
sistent and included a full range of responses that might occur. For categorical responses, we ensured
that the options were mutually exclusive and exhaustive and they could pick only one option. There
exists a guide to respondents to provide the response in a consistent format and units.

Survey Design - The survey was primarily concentrated on the VR practitioner’s day-to-day tasks.
We wanted to understand the amount of time spent on respective tasks on a typical day and wanted to
understand their contribution towards VR product development. These tasks included strategy building,
product design, coding, maintenance, release, quality and usability testing. We also asked participants
to share additional tasks performed by them to understand if there were any unconventional tasks.

Participation Selection - We have reached out to 1636 participants from the below four known tar-
get population:

• VR Conference - Participants from VR practitioner Meet-ups, Conferences, Group meetings and
Sales Pitches. A large portion of our survey participation, around 1127 participants, were from
this group.

• VR Developer Community - Participants from VR Design workshops, Developer workshops,
Training centers and VR Unity™testing centers. There were about 140 participants from this
group.

• Online Community - These participants are active moderators of online VR/AR developer fo-
rums and communities. About 310 participants were from this group.

• VR Enthusiasts - These participants were not active VR developers but aspirants looking to enter
into VR product development. We were able to reach out to 59 such participants as part of our

24

offline survey in one of the VR Job fairs. Most these participants were from regular industry who
were engaged in non-VR product development.

We included VR Enthusiasts as part of our survey population as we consider them to be the silver-lining
group [283] who can share hidden facts that may not usually be captured in regular focused survey
methods.

Analysis - We invited respondents from Online Community through personalized emails to partici-
pate in a survey on “Your Experiences with VR Product Development” [176]. In case of Offline sur-
vey respondents, we invited them to the designated booths of VR Conference, Meet-Up groups and
Training Centers with an incentive to participate. The respondents could enter a booth with a free VR
roller coaster ride near the booth after successful completion of the survey. We received a total of 697
responses (response rate 43%), of which 512 responses were from the population of 1127 “VR Confer-
ence” (response rate 45%) and 91 from the population of 140 “VR Developer Community” (response
rate 65%), 72 from the population of 310 “Online Community” (response rate 23%) and 22 from the
population of 59 “VR Enthusiasts” (response rate 37%). In terms of demographics, 22% of survey
respondents are female and 78% are male. Respondents vary in terms of geographic locations: North
America (12%), Asia (61%), Europe (8%) and rest of the world (19%). This indicates that participants
were diverse and are individual contributors.

3.1.2 Focused Interviews with VR Practitioners

Intent - After a thorough review of the survey results, we formulated a focused interview to capture
data from different dimensions i.e. the day-to-day activities, practices, challenges, methods etc. This
section provides details of the interview setup.

Participant Selection - We interviewed various VR developer groups with varying thoughts and prac-
tices. The representative sample set was kept as diverse as possible using purposeful sampling ap-
proach [183]. As part of the approach, the goal was not to build a random and generalize sample, but
rather to try and represent a range of the relevant sample with a relative exposure to what one is trying to
study. To capture such multiple perspectives, we interviewed practitioners from multiple levels. There
were few participant’s roles which were unique to VR Industry but shared similar responsibilities unlike
Non-VR software industry.

Founder is the title for individuals who founded a company with a vision and provide a strategy to
build products for the respective market. Product Managers are product owners who build the product
timeline and define feasible features. Architects are system designers who build the fundamentals of
the product. Software Developer does coding and integrate the modules build by various teams. UX/UI

25

Table 3.1 Participants’ designated role and experience
Exp <5 5 <Exp <15 Exp >15

Founder P3, P21 P22 P1, P27
Product Manager P13 P11, P39, P41 P16, P29, P32, P46

Architect P26, P47 P10, P30, P42
Software Engineer P8, P18, P19, P45 P6, P7, P9, P35, P36, P37 P52
UX/UI Engineer P40 P20, P48 P23

QA Engineer P5, P14 P31, P33, P34
UX/UI Designer P4, P49, P50, P51 P17, P25, P27
Release Engineer P15, P53 P2, P43

Performance Engineer P12, P44 P24, P38, P42 P28

Designer is a 3D Artist and UX designer for VR environments. QA Engineer takes care of quality
assurance and conducts testing process. UX/UI Engineer is a Usability Evaluator who conducts field
tests of VR environment with various participants and provides confirmation of usage and usefulness
of the VR product. Release Engineer takes care of build and versioning system of the product. They
are responsible for maintenance and integration of code-base. Performance Engineer evaluates the per-
formance of the VR ecosystem and generates results to Software Developers and UX/UI Designer for
improvements. There are many other domain-specific functional roles which are merged with relative
roles to avoid duplicity.

Interview Protocol - We reached out to VR Community at various platforms both offline and online,
and 53 participants agreed to participate. We asked them to formally introduce their products and talk
about their role in VR product development. We started with demographic questions and asked about
their experience, level of expertise, experience in the current company, their designation and their spe-
cific role. Table 3.1 contains the list of participants by their designated role and their work experience
(Exp). We explained the research intent and requested them to discuss their perspectives in an unbi-
ased manner. We assured them that personal details pertinent to the participants and the company they
represent will be kept anonymous to avoid operational challenges.

We asked about their day-to-day work schedule, processes they follow, team meetings patterns, other
focused meetings (if any) and about understanding as well as actual contribution towards the VR prod-
ucts developed. We later talked in-depth about their practices and asked them about product develop-
ment attributes significant for their respective role. The attributes are qualities which are followed while
building a product [151]. We asked the participant to rank the relevance of the attribute as high or low
based on their understanding. Additionally, we asked them about their thoughts on less significant at-
tributes which were not related to their role and captured their rating. The participants also came up
with few interesting attributes which helped us include them as part of our initial attribute list for further
interviews. The average time of an interview was around 30 minutes and the details captured were based
on participant’s consent.

26

Analysis - The interviews were transcribed with relevant consent from the participants in regards to
the taping or recording the interview [176]. We depended on an data analysis approach [12] called
‘open coding’. This approach refers to having an open mind while synthesizing the data and not being
biased by existing literature or personal experiences. It involves a thorough review of the data to capture
as many codes, context and categories as possible [183]. For better clarity, we provide an example of an
interview transcript snippet from the Code→Context →Category.

Interview Transcript Snippet: ‘I find field studies as a common tool for ecosystem testing. I
personally don’t see any challenges with it. It only concerns when we have the feedback based
evaluation. There are no right tools to understand the VR environment. They are dynamic and
not constant on every release. [P40]’
Attributes: Process exists but lack of relevant tools causes evaluation issues
Code (Context): Lack of efficient methods/tools (Testing)

Participants were interviewed by the authors independently. The results were reviewed together and
the common categories were identified [183]. We conducted a triage with other researchers in this
research area and were able to finalize the categories by merging our categories together. The following
sub-sections provide in-depth analysis of our observations recorded as part of this study.

3.1.3 VR Online Forum Study

Intent - Online or Virtual developer forums are viewed as knowledge transfer portals [46]. These
forums generally tend to facilitate serious discussion among the associates. They can also be considered
as a focused discussion group with a significant outcome. As part of an Online or Virtual developer fo-
rum, a developer arrives with a business use-case or a problem to obtain responses from domain experts.
Different respondents share their thoughts and they arrive at a solution by the end of a discussion. The
developer does have a choice to rate the best correct answer as it helps other associates with a similar
problem to rely on the same answer. This discussion cycle is endless and over a period of time, the
forum turns into valuable knowledge base. Thus, we believed that the content from these developer
forums needs to be reviewed to understand thematic challenges in VR developer community.

Research Protocol - Almost all the content in a discussion forum is in natural language. Thus it is
difficult to quantify the consequence of the discussion using qualitative methods. We adopted Interac-
tion Analysis Model (IAM) [174] to study the content at different levels and generate the thematic issues
and challenges faced during VR Product development. IAM is a knowledge construction approach. This
approach is considered to be one of the efficient qualitative methods to assess themes of an online dis-
cussion [174]. There are multiple phases involved in IAM approach. We formulated the phases relative
to our research without making significant changes to the original approach.

27

• Phase I: Identifying areas of agreement between participants.
• Phase II: Identifying areas of disagreement; asking and answering questions to clarify disagree-

ment.
• Phase III: Negotiating the meaning of terms and negotiation of relative weights to be used for

various arguments.
• Phase IV: Testing the proposed new knowledge against existing cognitive schema, personal ex-

perience or other sources.
• Phase V: Phrasing of agreement and applications of newly constructed meaning.

We used a mechanism suggested by Newman et al. [174] to rate the content based on Newman, Webb
and Cochrane protocol using a rater scale code. The categories of rating are Relevance (R+, R−),
Importance (I+, I−), Novelty (N+, N−), Ambiguities (A+, A−), Linking Ideas (L+, L−), Justi-
fication (J+, J−), Critical Assessment (C+, C−), Practical Utility (P+, P−) and Width of Under-
standing (W+,W−). Each category has a Positive and Negative Indicator. There may be many other
indicators adaptable for detailed analysis. However, as part of our study, we confined ourselves to a
simplified version of rating codes. Positive Indicators indicate the state of being relative and Negative
indicator indicates the state of being absolute. For each coding category (e.g. J, justification), one counts
the number of positive (x+ in the above formula) and negative (x−) contributions and then calculates
the ratio. This produces a measure that is independent of the quantity of participation, reflecting only
the quality of the messages. Ratios for an individual category may range from a −1 (all uncritical,
all surface) to +1 (all critical, all deep). For example, if we evaluate Relevance (R+, R−) code with
count(R+) = 10 and count(R−) = 21 then CT = −0.35. CT value between two or more raters will
judge the criticality of the discussion. Such discussions are used for analyzing thematic issues of VR
product development among VR developers.

Forum Selection - We conducted a heuristic study on available online VR developer forums. To avoid
bias in forum selection, the authors independently reviewed the forums and came to a consensus about
the specific forums that needed to be studied in detail.Based on our analysis, we found most of the
developer forums to be trivial and not focused on VR Developer community. Thus we focused on
VR focused forums apart from the forums hosted by VR Developer Engine providers. UnityForum by
Unity™, OculusVR Forum by Oculus™ and VivePort Forum by Samsung Vive™ were three widely
used discussion forums with reasonable and significant discussion content. Most of the other developer
discussion forums had direct references to these three forums.

Analysis - We conducted this part of the study for about three months. 310 discussion threads were
collected from various discussion forums using IAM approach. Codes were defined based on these
discussions using Newman, Webb and Cochrane protocol and the relative Critical Thinking (CT) ratio
was calculated. There were 211 threads which had CT > 0 i.e. they were considered to be critical
and deep in discussion. We conducted a detailed commentary and listed out thematic process, chal-

28

lenges and practices in a VR Product development setup based on VR developer discussion. Following
sub-sections contains in-depth analysis of the observations recorded as part of the research method.

3.2 Observations from Empirical Studies on VR Community

In this section, we present our observations recorded as part of above study setup.

3.2.1 Insights from Survey

Our Survey participants are classified into eight groups: Founder, Product Owner, Designer, Devel-
oper, QA Engineer, Usability Engineer, Release Engineer and Others (if any). This division was done
based on generalized perspectives of roles in the field of Software Engineering [54]. As part the survey,
we requested participants to provide details about the amount of % time spent towards VR product de-
velopment tasks in a given 40 hour work week. Figure 3.1 shows various cluster blocks with details of
hours spent by the respective stakeholder on specific tasks. The darker the block, the higher the time
spent. This study gave us an understanding of a stakeholder‘s contribution towards a task during VR
product development.

Using the survey data, we were able to conduct statistical T-Test on a few interesting use-cases to
understand the significance of the data. Table 3.2 contains the self-explanatory data with significant
coefficients of use-cases for a given demographic. A positive coefficient indicates a positive signifi-
cance to the defined use-case over a demography. Similarly, a negative coefficient indicates a negative
significance to the defined use-case over a demography. Comparison between demographics was not
intentional. However, we found the results to be interesting as it gave raise to new research questions
related to social influences in product development. At this point, we were unable to reach a conclusion
about VR product development being any different from traditional software development. The major
reason being the comparison of these results with non-VR product development teams. Given the in-
conclusiveness of the survey results, we used them as a starting point to construct a questionnaire for
focused interviews.

3.2.2 Attributes from Interviews

Based on the Interview study setup discussed in previous section, the questions discussed with the
participants are made available here [176]. We compiled the responses to each question from all the
participants, split them based on user responses, and later re-ordered them based on similarity of in-
tent. We removed redundant comments and grouped the responses based on common code [176]. The
authors have independently handled this exercise and administered a triage session with some others
researchers to identify the common codes. There was a clear discussion among fellow researchers on fi-
nalizing the codes. Figure 3.2 shows the identified common codes using an open coding approach [176].

29

Table 3.2 Coefficient ratings of Use-case by demographic
Demographic Use-Case Coefficient

Asians
compared to
North American

Involving customers during
all phases of development

Conduct Usability Field
Testing before release

Capture Requirements in
plain text

-0.54 ↓

-0.32 ↓

0.71 ↑

North Americans
compared to
Europeans

Involving customers during
all phases of development

Conduct Usability Field
Testing before release

Capture Requirements
in plain text

0.31 ↑

0.51 ↑

-0.22 ↓

Asians
compared to
Europeans

Involving customers during
all phases of development

Conduct Usability Field
Testing before release

Capture Requirements
in plain text

-0.55 ↓

-0.27 ↓

0.77 ↑

Males compared
to Females

Conduct brown-bag sessions for
Knowledge transfer across Org

-0.33 ↓

Founders
compared to
Product Owner

Conduct Story board to
design overall product flow

-0.37 ↓

QA Engineers
compared to
Usability Engineers

Maintain Bug Tracker
to record defects

0.69 ↑

30

Figure 3.1 Time spent by Stakeholders in a week

Understanding Market health - We gained some understanding from the interview participants in
regards to the importance of understanding the market before building a product. Based on our relative
transcripts, it was evident that only few markets are matured for VR and most of them are not ready yet.
Designing a targeted VR Product is very difficult as factors like culture, tradition, localization etc. need
to be considered. It was clearly apparent from some of responses given by the participants.
[P27] We together built a great attendance management product, but we couldn’t woo clients who can
buy it
[P30] Our third VR product was better than our regular mobile/web offerings. Clients were reluctant to
switch as they didn’t get the VR product
[P43] I found it to be strange as one of our old customers didn’t want to choose a VR app over an
old-fashioned web app due to resource challenges.
[P13] It was just hype for some clients. Very few wanted a clear shift into VR

31

Table 3.3 Interview Questions
Q1 What are your responsibilities towards VR product

development?
Q2 What tools do you use to Strategies/ Design/ Test/

Develop VR Products?
Q3 What are the approaches/ processes/ methods do

you follow for VR Product Development?
Q4 What challenges do you face while following these

approaches/ processes/ methods?
Q5 What are the measures you take or plan to take to

mitigate your challenges?
Q6 How do you measure and ensure the quality out of

your work?

Figure 3.2 Common Codes from Interview Study

32

Gathering reasonable requirements - With a shift from Web/Mobile to VR based apps, requirements
tend to flow from different directions. However, identifying the right requirements and capturing them
within the scope of the VR product is crucial. We found practitioners adopting traditional methods to
gather and analyze requirements were facing serious issues as the techniques did not work in the VR
setting.
[P21] Clients tend to compare with fellow competitors and fail to provide us valid requirements. They
just copy features and ask for enriched ones.
[P36] I couldn’t understand the requirements from Design team as they were very vague and unstruc-
tured.
[P3] I know I choked my team with inputs. I was actually trying to find a better way to normalize them.
But it was too late for some projects. We learned and progressed further.

Maintaining Clarity in Design - Lack of simplicity in product flow can cause a lot of effort cost to
product owners. This has been a traditional problem for software engineers. However, it is too ex-
pensive for VR products in terms of time and resources. VR Practitioners are heavily dependent on the
design. Due to the limited prototyping capacity in VR, versions of design gets complicated over a period
of time. This causes sheer confusion among the VR product groups.
[P52] I did see a flow of requirements which are changing every hour. There was no room for simplicity
[P8] I was new to this VR dev space and it was totally design oriented. It is difficult for a new hire to
match up as we are not sure on where to begin
[P45] I always had a backup code for all design revisions and maintained the latest code for access.
The rest ignore it and we land up in chaos while releasing the module code
[P44] The slightest change in design layout will impact load time of the object rendered on the scene. It
is costlier to estimate the need for an object in a scene

Multilevel design strategy - VR Product Dev teams faced setbacks while building products using top-
down approaches. We found that product owners tend to chose hybrid development models to design
and develop VR products. They involve all practitioners across different verticals of product develop-
ment to produce a better and satisfied design.
[P11] We understood the need for building a strategy for designing our VR. We conduct 3-5 storyboard
sessions to make the design multi-level. This will help the non-designers understand the intent of the
product
[P39] - Features are to be set free from frequent updates. I bring uniqueness to each feature. This halts
frequent updates and helps related developers and tester to be focused on current design
[P40] - In our second VR project, our design approach was abstract. Our team lost control of code and
overall idea. We made sure that we include everyone in a design phase so that they get what exactly we
were doing

33

[P25] - I found the core idea not being transcended to developers and testers from PM team as the
design appeared obscure to us

Reusable and Understandability in Code - The scope of coding in VR is mostly associated with
building events, actions, performance and interaction between the objects in the VR scene. Most of the
tasks tend to be unique to each and every scene. It is a requisite for a code developer to always be in
sync with the designer. Any slightest change or miss could trouble to the overall product design flow.
[P18] I didn’t code with coding standard in my mind and as a team, we now do face issues
[P6] I hold triage sessions among the developers and we did gain confidence in understanding each
others code
[P9] Too much log notes. It is not helping us on how we code. Our leads should come up with a process
to help each of us to understand the logic behind the defined scene actions. Expected Vs Actual are not
correctly reviewed
[P19] In the past, our code version control was a joke. We read about current methods and we are now
trying practicing them. I look forward to a positive change
[P24] I find it difficult to map the code and it’s flow while referencing slow performance check-points in
VR Scene
[P44] Coders need to inculcate a habit of including comment tags or check-in tags while they conduct a
change check-in. I cannot trace the scene which was actually working with the present one

Formulate Sustenance Policy - Policies defined for large-scale product development were not aligned
with the VR product development. As part of Sustenance mode of fixing defects, minute fixes in Scene/-
Code/Sound etc. are recorded. These small changes end up becoming a pile of change trackers which
becomes difficult for maintaining too many releases builds. This is an open problem, which requires a
new release-strategy for VR products which can sustain small changes and help developers track them
easily. It appears that there is a need for formulating a post-release strategy for VR products as they are
different from traditional software production.
[P33] VR bug reports are bizarre. I found them unclear than traditional products
[P5] I worked on C# projects before joining VR dev team. I found bug fixes to be not as per standard as
they are not structured
[P50] Design versions are not shared down to QA team correctly. They land up testing an incorrect
design version, which is not of relevance to the planned fix
[P53] I tried to understand how our QA works and later realized to help them chalk out a plan for a
policy to mitigate invalid check-ins
[P52] We started with a strong bugfix SLA and we do see improvement. However, as the project becomes
larger, we found it difficult to pass on bugs to QA team due to too many Dev validation processes. A
very less turn-around time causing a peer pressure

34

Understanding Usefulness - Most of the practitioners did find obstacles on judging the usefulness
of the VR app as there are no adequate conventions to study them while working with the customer.
Based on the remarks from practitioners, it was clear that current practitioners are looking for a VR
knowledge base which could help them strategize the intent of the product based on past experiences of
other practitioners. Failures accumulated by a valuable VR Dev team who focuses on rich VR apps can
greatly contribute to avoiding such barriers in VR Community.
[P18] It is unfortunate that we do not understand whether to build a VR app is usable by the end user.
Our end users taught us a serious lesson to our design and testing team to improve the layouts with
more examination
[P30] I thought accessibility to be a key factor for end users to run the app. It rebounded when we ended
up adding too many controllers. We never knew where to limit, we found the user experience testing be
promising as it was the only way to find out if we are right and where to stop
[P14] It was odd to know that we delivered a unusable VR app to our target audience. Our processes
didn’t consider usability issues

Responsive Actions/Events - VR apps provide personalized end-user experience. As all the actions
and its relative reactions play a prominent role, it is necessary for practitioners to evaluate responsive-
ness of the VR app. As per remarks, traditional strategies are to be empirically examined as they do not
suffice the needs for such current evaluations. Persona-based evaluations should be encouraged as the
VR apps are highly focused on individual experience.
[P42] Designers tend to ignore few elements which increase the load time of the scene. I removed them
and moved the tested VR Scene to QA every time. All such unwanted events are to be filtered at Code
level. I formulated an approach to avoid this, but as people are involved - we might find more time for
adoption
[P38] User events and actions are undeclared and set open while running the VR Scene. The scene
turns unresponsive and undergoes irrelevant code re-factoring. Due to lack of clear design and code
standards, I am facing regular performance defects. This is unfortunate as with repeated red-flags, PM
team does care of it. It has been like an elephant in a room single our initial release
[P15] I failed to release a responsive app for the first, second and third time. We re-worked found a flaw
in our process. We still follow it as we don’t have enough resource to experiment on a new one

Lack of Efficient methods/tools - Tools are vital for building products. The absence of adequate tools
exposes the reality of VR product development. Few of the practitioners were keen on possessing a
version control system for design and efficient usability evaluation tools to handle their product mainte-
nance and release.
[P26] One of the tough challenges we faced is with tools. We do have good design engines and coding
tools. But, lack of efficient version control system for design and Usability testing does cost us a lot
[P3] We were really not sure on how to test the VR app apart from conducting a standard field evalua-

35

tion. We do not find any good tools for beta testing the app before moving it to release

Enabling seamless release - Product Owners are experimenting with existing practices like Kanban,
Agile, Scrum etc. to build VR products. These approaches are deemed to be thriving to some degree.
Few practitioners have come up with the tailored approaches to ease their overall VR development.
[P39] As I was part of a small dev team, I used to distribute the action items to our team and we switched
our roles every week so that we learn and cover the actions proposed. We tracked down the health of
each task every weekend and discuss possible improvements
[P10] We followed KanBan approach design and release. We evaluate an engineer’s contribution based
on their availability towards the project
[P52] As I was part of a large company which also works on non-VR products, we were abiding by our
regular release processes

Challenges on maintaining design versions - Design and its related patterns are vital for VR Scene and
Content developers. It accelerates their work and helps them build more content in less time. However,
with a lack of design version control storing too many versions of the same scene causes an immense
hurdle for UI/UX designers.
[P49] Our design repository was stacking up with undesired data. We used a divide and conquer proce-
dure to classify the wanted and the unwanted designs
[P51] We started by building a VR scene repository. Our approach was to label the objects in all avail-
able scenes and re-use them based on a markup language. This has created a customized asset library
which was dedicated to all our projects
[P4] I was owning the design library and our team was out of control on managing the versions as there
was no clear version control on designs. We used a tag based method to identify the version and its
author. This solved a lot of manual designer effort over a period of time
[P17] We moved our sketch boards of VR scenes to storyboard team every end of the day. In return the
next day, we found the design to be totally different. We used a backtracking approach to identify the
newly added objects and saved the new version for future reference

Setting right expectations - Understanding the need and sharing the desired output is widely accepted
by customers. With the lack of efficient methods, a product owner might fail to project the designed vs
released version of the product. This creates a phenomenal trust issue between the product owner and
the consumer. Currently, practitioners find it difficult to track and map the expectation during product
release. [P31] Actual code Vs Expected Code was always different. This is causing last-minute hassles
in release
[P14] We introduced scrum based processes to identify actual-vs-expected outcome evaluation. This
saved us a lot of resource time

36

Going above and beyond - Product Owners tend to woo customers by generating best possible re-
sults in tough times in spite of the disorganized approaches. The existing methods are not robust enough
to handle quick changes or alteration on released products, leading to compromise in VR product devel-
opment and delivery.
[P29] Our product offerings outperformed customer expectations as we delivered projects on time
[P1] Our fourth project was successful as we did fine-tune our release approach
[P22] We maintained a clear client retention policy. We did offer new features at a same cost which was
first demoded to them

3.2.3 Themes from Online Forums

We conducted an IAM analysis [174] on the VR developer forum data and have finalized 211 discus-
sion threads which are rich in the discussion as their Critical Thinking Index was more than zero. We
categorized the discussion threads based on their underlying need from a VR Practitioner’s perspective.
Below details provide the percentage against each category from the overall inquiry circle. This data
helped us to a certain extent in recognizing the areas where the VR practitioners need help.

General - 7% of the threads include regular inquiries about expected behavior, possibilities on new
releases, setup, hardware, installation and How/Where to find desired resources. Examples - “Does
Unity 2017 bring something new to VR or can I stick with 5.6?” and “How do you build a React VR
project as a native app a la VrShell/Oculus Home?”

Code Level - 52% of the threads include regular inquiries about code level implementation of novel
features, understanding warning, display, build, SDK and errors etc. Examples - “How to handle OVR-
CameraRig.UpdateAnchors () errors?” and “Is there any way to set a defined X and Y as a starting
point on the 360 video?”

Documentation - 4% of the threads include inquiries about the documentation details and ReadMe
files of the SDK or JS toolkits. Examples - “Vive / Viveport FAQ: Where do I get the free/bundled games
with my Vive? How do I redeem the codes?” and “Docs/diagrams on communications flows between
Rift -> Touch -> Constellation”

Performance - 8% of the threads include inquiries about the handling performance issues, managing
performance level data and other details related to the performance of VR Scenes. Examples - “How
does dynamic clock scaling on S8 work?” and “Why are Exynos-based phones able to do 4x MSAA
cheaply vs. SD-based ones (2x)?”

Functionality - 19% of total threads include inquires about the processes/steps to achieve customized
functionality, aspired features which are not directly related to code but is related logic and process.

37

Figure 3.3 Consolidated Observations of a typical VR Product Development Cycle

Examples - “How to InputTracking current LeftHand/RightHand?” and “How to Insert own content in
Oculus Go?”

As part of our study, we were able to capture relevant attributes from Interviews and relevant themes
from online forum study. We consolidate the observations and discuss them in the next Section.

3.3 Thurst Areas for Research to ease VR Product Development

We formulate our observations by means of Inductive reasoning on “Virtual Reality Product Devel-
opment” and overall practitioners’ practices based on the results captured in the empirical case-study.
In this section, we present the data in various dimensions and discuss them in detail. We reason that VR
Product Development is diverse from traditional Software Product Development. Figure 3.3 presents us
the details of practices followed by VR Practitioners. This includes day-to-day challenges of specific at-
tributes for each stakeholder. These observations are consolidated as key traits essential for VR product
development.

Key Traits: Value, Strategy, Approaches, Tools and Challenges

The Value trait provides the motive of the respective team towards the VR development. Strategy
presents their plan towards achieving the task. Approaches & tools detail them about their current
methods involved as part of their development process and finally, Challenges provides details of the
problems faced during the respective portion of VR product development. These observations are in
relevance with the Enterprise VR Industry setup. Additional details of these observations are listed as

38

Table 3.4 Consolidated observations by Thrust Area
Thrust Areas What is working? What is not working?

Planning Project Management principles are effec-
tive to adopt. It is essential to conduct cost
and effort estimation.

Identifying the right target audience and
converting wrong product scope to a tar-
geted set of end users.

Requirements Conducting incremental specification re-
views and constantly correlating them
with design constraints can show good re-
sults.

No definite methodology to elicit require-
ments. It can be considered as a time-
consuming activity due to its sophistica-
tion in detailed design.

Design Some tools are available to design and pro-
totype the scenes, tasks and its relative ac-
tions. Out-of-box design patterns are be-
ing practiced with minimal effort.

Lack of design versioning causes serious
issues while tracking insignificant changes
to the design. It takes a similar effort to
manage an unimportant change and a vi-
brant change in design.

Security Minimal security implementation is in cur-
rent adoption. Standard security protocols
can be realized based on the domain of the
product.

No definitive understanding of security
standards as VR provides the designers to
capture the cognitive abilities of the end
users. Security compulsions can be com-
promised if they are not considered seri-
ous. Domain-specific security protocols
are in great need.

Usability Traditional approaches are promising and
can address minimal usability evaluation.

Currently, there are no automated methods
to address usability concerns. No scope of
support to 508 Compliance. It is practi-
cally difficult for disabled/ semi-disabled
end users to use VR products. It is difficult
to evaluate accessibility of VR products.

part of Figure 3.3 for better clarity.

Stakeholder Profiles - We found a variety of new stakeholders in the VR Product Development pro-
cess which is not in common with regular Software Product Development. Job Profiles like VR Scene
Director who primarily takes care of other practitioners like VR Scene Designers, Aucostic Editors, Au-
dio/Visual Developers, VR Scene Artists, Content Editors and Integration Specialists are unique to VR
product development. These practitioners are part of a core VR Scene development team who build
the actual prototype administrated by Product Manager. They take care of sound, light, visual and aes-
thetic effects of the VR Scene. These profiles are traditionally adopted from Gaming and Multi-media
software product development teams. Their expertise is considered to be essential for a rich VR Scene
development. VR based Usability Experts, Cognitive Scientists, and Field Testers are other minor Job
profiles apart from traditional software job profiles. The stakeholders who fit these profiles are primar-
ily into Usability evaluation especially for studying the depth, vergence, and accommodation of the VR
Scene.

39

Customer Impact - The experience of using VR apps is changing rapidly in commercial markets.
Consumers tend to experience a variety of applications with lively features. The customer could have
a wholly different experience from one VR headset to another. As VR apps are highly dependent on
hardware, it becomes significantly difficult for product owners to release multiple versions of the same
app. In other words, device-specific app development is not an easy process. As a result, product own-
ers either restrict themselves to one VR headset or tend to release multiple versions (if commercially
viable) of headset specific VR apps to capture the market share. As part of our study, we found that
58% of product owners involve their customers during all phases of the product development to ensure
that they are going in a right direction. 79% of product owners involve their consumers during the beta
testing (pre-release versions) phase to understand the customer experiences and reactions. Out of the
above, almost all i.e 93% of the product owners obtain a clear design-to-code sign-off before building
the actual product. We could infer from the data that the product owners consider customer engagement
as a key factor in successful product release. We could see that the customers largely influenced VR
product development as VR apps are primarily personalized and persona based in nature.

Areas of Improvement - Heuristically we recognized thrust areas in VR product development. They
can be loosely admitted as minimal attributes for constituting a relevant VR product. Based on our
study, we could deduce the details of practices found to be favourable for VR practitioners. We were
able to record hurdles that cause serious trouble to product owners during product development. We
observed a need for further research on these thrust areas so as to visualize a seamless VR product de-
velopment in future. Table 3.4 provides details of practices which are “working” and “not working”
for VR practitioners today. It is remarkable that few of these challenges were predicted to be matter of
concern in 1968’s NATO Software Engineering Conference [221]. It is always arguable that in spite of
progress in research, we still tend to face difficulties as the software evolves.

Thrust Areas: Planning Strategies, Requirement Elicitation, Design Thinking, Usability
centered human reasoning and Security

Development Practices - Coding and Testing play a vital role in VR Product release. VR Scene ob-
ject actions, events, and related work-flows ought to be handled through code. As part of our study, we
could see that VR Developers were trying to accommodate software engineering practices in the course
of VR development process. 76% of product owners conduct regular triage sessions among designers,
developers, and testers to have a constant track of product progress. Out of this 76%, 81% of product
owners maintain product timelines which include regular targets and deadlines. The rest follow inter-
nal deadlines which may or may not contribute towards overall product progress. 89% of the product
owners encourage their employees to contribute towards brown-bag sessions so that it helps rest of the
practitioners to be up to speed. 54% of the practitioners are dissatisfied with the traditional usability
evaluation approaches as they are not productive and do not yield real-world results.

40

Complexities in VR Development - Primarily maintaining VR Scene Repositories and its related ver-
sions is a difficult task. Trailing small defect fixes and managing its related code builds is tough for
Release teams. Usability Evaluation is time-consuming and is costlier for developers in times of gen-
erating negative results. Tracking and constant comparison between wire-frame design and the end
product is a cumbersome activity. Based on these observations, we conclude that enterprise VR product
development is different from the enterprise software product development.

3.3.1 Conventional Software Products Vs VR Software Products

Following are the key difference on how VR software product development is different from con-
ventional software product development.

• Developing Experiences: The major driver of VR software products (enterprise VR and con-
sumer VR) is the level of immersive user experience that is closer to realism within confined
virtual environments to simulate a realistic interaction. While traditional enterprise or consumer
software products also look at user experience, the focus is on meeting the business goals, and
user experience is just a contributory factor to meeting the business goals. However, the use cases
that are too complex to comprehend in the real world rely on VR as a solution. For example,
training designated specialists on protocols to access Bio-Safety Lab (Type 4)1 is difficult as it
contains too many stand-operating procedures for curating high-risk, maximum containment, and
life-threatening viruses. Due to its limited access, training healthcare practitioners in a real-world
Bio-Safety Lab (Type 4) setup is almost impossible.

• Multimodality: Traditional enterprise and consumer software products accept inputs from lim-
ited set of hardware sources like keyboards, point devices, etc. VR software products support
multimodal interactions [175]. Some of them are Gestures, Gaze, Auditory stimuli using hap-
tic devices, kinaesthetic (related to proprioception), temperature, pressure, pain-sensing, etc. The
implication of using multimodal user interactions makes VR software development difficult. Thus
it requires additional process and product supervision from the early stages of development.

• Development Cycle: In addition to the Requirements-Design-Code-Test-Release style of tra-
ditional software product development, VR product developers must address Acoustics, Spatial
Presence, Environment Perception, Realism, Environment-User interactions, etc., during the var-
ious stages. The development should accommodate both hardware and software development
cycles. The synergy between software and hardware practitioners should go hand-in-hand for
better results.

1https://www.phe.gov/s3/BioriskManagement/biosafety/Pages/Biosafety-Levels.aspx

41

• Stakeholders: VR software products require skilled developers to ideate and implement sound,
presence, light, gravity, cognition, and physics. VR Software development also involves hardware
practitioners who provide firmware updates to the VR hardware for focused VR applications.

• Tool Usage: The Software Development Toolkit for VR Environment design and development
is limited. There is a serious need for new tools at all levels of software design. Areas like
Requirement elicitation, specification, Testing, and Release lack versioning.

• Process and Practices: Majority of the VR Developer community are from the gaming and
design industry [107]. They have very low exposure to established conventional software devel-
opment methodologies due to a lack of foundational training from a VR perspective. It is observed
that VR community need help with releasing low-cost VR software as they lack effective meth-
ods of Product Planning, Requirement Elicitation, Specification, Design, Security, and Usability.
These are observed to be the thrust areas that need better tool and methodology support for VR
community.

• Volatile Hardware: In short, platform fragmentation in technology happens when a market com-
prises multiple highly-incompatible technologies or technology stacks, forcing prospective buyers
of a single product to commit to an entire product ecosystem rather than maintaining a free choice
of complementary products and services. There exists severe platform fragmentation between VR
Software and Hardware. There is very low cross-platform support due to proprietary SDKs caus-
ing VR community to build VR software for conformant devices. This makes the VR community
back away from serious roadmap planning. OpenXR, an open standard, is being formulated by
the VR developer community to address this challenge to some extent [97]. However, this still
requires community acceptance, maturity in practice and adoption.

Previous studies have shown a need for a new Software Development Life cycle for VR product de-
velopment as none of the methods fit the VR product development [265]. To validate the same from an
industrial perspective, we conducted this empirical study within the VR community to learn the current
practices and challenges while building VR products in the Industry. As part of this empirical study, we
uncovered that VR practitioners follow the approaches that fit their temporary project needs to succeed
in their business. However, most product owners are attempting to experiment with the available diverse
approaches as they need more confidence in the robustness of existing approaches and are unsure of the
outcomes. They follow their predecessor’s failures and plan their future product development to avoid
loss. We find new areas that researchers can study based on our empirical observations to help VR prod-
uct teams build better products with minimal loss. Usability has become a significant hassle for product
owners as none of the current approaches help them understand their customers, as the VR products are
persona-focused but not social. Accessibility is an area that researchers can look at in-depth, especially
for VR products. The VR Ecosystem is ready to adopt new trends in Software Engineering. However,
there is a substantial need for robust methods that can ease VR product development.

42

In the following sub-sections, we present our detailed literature reviews on the observed thrust areas
like Usability and Software to understand their state-of-the-art methods in practice, determine gaps, and
plan our potential research statement.

3.4 Usability Practices in Virtual Reality Products

Traditionally, VR software products are oriented towards Gaming domain [219]. Gaming companies
have produced personalized games in single and multi-player format to provide real-time individual ex-
perience to players. They paved a path for creating next-level cutting edge means of entertainment. This
virtual experience setup is set to transcend into Enterprise Software. However, Enterprise VR products
are yet to hit the market at a full-scale due to various challenges like non-standardized HMDs, Usability,
Accessibility, lack of guidelines, etc. To explore the spread of these challenges in Industry, researchers
we conducted a focused empirical study to understand the underlying differences between Enterprise
Software Product Development and Virtual Reality Product Development. Chapter 2 provides detailed
observations from our empirical study. The study showed Usability to be one of the important qualities
of VR products and its evaluation as one of contributing factors in the success or failure of VR prod-
ucts. Usability can be defined as the ease of use of a product where ease of use can be considered as
a measurable attribute. Recent empirical research by Ulas et al. [265] has also stressed on the need for
a new Software Development Methodology for building Enterprise VR products considering usability
and maintainability as a significant challenge. The increased number of VR applications being devel-
oped by Industry and the need for Usability evaluation on these applications led us conduct a Systematic
Literature Review in the existing literature to learn about the Usability Evaluation methods exercised in
VR Product Development.

Software practitioners who practice Software Engineering (SE) principles while developing a reg-
ular software product are increasingly being used to build VR products [107]. Game developers and
designers who are competent in design and strategy planning have created an ecosystem for software
developers to enter into VR space [77]. Over a decade, they were able to adopt SE principles to meet
their development needs. They are following development guidelines [219] and a game based develop-
ment cycle [15] to improve their practices. This amalgamation of developers from gaming and SE into
VR space opened new avenues and challenges for practitioners. The primary objective of some of the
researchers was to “Understand the modalities of Virtual Reality Product Development in Software
Industry”. Our empirical study from previous sections articulates these challenges and recorded vital
insights. These insights include essential considerations on development practices, testing strategies and
potential thrust areas for future research from the VR Industry community.

For a recap, following is the gist of our empirical study from previous sections on industry practi-
tioners to record the differences between development practices specific to VR software products and
non-VR software products. Some of the observations recorded from Industrial Practitioners study are
given below:

43

• VR Product development is different from traditional Software Product development.
• VR Development process is complicated, unstructured and can be formulated based on the level

of practitioners’ participation.
• Design and Usability reflect VR Product sensitivities. They have a direct impact on product

quality.
• There are almost no comprehensive testing strategies for VR Products to improve over multiple

product releases.
• Usability Evaluation is considered to be a costlier affair as it requires a personalized setup. Most of

the time they yield fluctuated results as the products tend to be persona based and hence different
results are obtained from different participants.

• Design Versioning and Sustenance Maintenance are time-consuming and confusing at times for
unstructured VR Product Builds.

• Support tools for VR product development practices was inadequate
• Stakeholder conflicts are far more given the wider variety of stakeholder involved in the develop-

ment of VR products

Quality of Experience (QoE) is the central aspect of VR Products. As group or mob studies cannot
distinguish the outcome of a personalized experience of a single participants, VR Product offerings are
currently being generalized for a particular audience and are agreed upon a common ground. Usability
is the underlying area which has an omnipresent impact across VR Product Development Cycle. That
motivated us to understand the means of usability studies practiced in Industry while building VR appli-
cations for target audiences. Subsequently, this research can help future Industry practitioners to choose
a better usability evaluation methods as per their future product needs.

Software Engineering considers usability as one of the key software quality attributes. Usability is
a measure which can be employed for any product. ISO-9241-11 defines usability as “The extent to
which a product can be used by specified users to achieve specified goals with effectiveness, efficiency,
and satisfaction in a specified context of use” [121]. Usability constantly reminds the product owners
to consider the end user perception while designing the product. It has to be regulated at every stage
of software product development so as to constantly improve the ease of usage. There are Usability
Evaluation Methods (UEM) to address various end-user user-cases in a real-world scenario. However,
VR practitioners are still unsure of the best available methods to conduct Usability Evaluation. In this
section, we present our systematic literature review to record the usability evaluation methods suggested
by different researchers while working on assessing the VR apps.

Research Questions

The Systematic literature study was performed considering the parameters defined by Kitchenham
et al. [150]. The primary goal of our study is to capture the usability evaluation methods practised
by various Industrial researchers while evaluating their VR products and applications as part of their

44

research. We followed an evidence-based PICOC (Population, Intervention, Comparison, Outcome and
Context) method [22] to formulate our research questions. As per PICOC method, our general concepts
are presented in Table 4.1. Our work tries to address the following research questions:

R1: What are the evaluation methods used to measure usability in VR products?
R2: What are the metrics captured while conducting usability evaluation in VR products?
R3: Is there a trend in implementing a certain usability evaluation method in regards to VR
products?
R4: Is there anything unique about usability evaluation setup in Industry VR Products?

Table 3.5 PICOC definitions for literature study on Usability Evaluation Methods in VR
Criterion Description

Population Virtual Reality related products and applications
Intervention Usability Evaluation Methods
Comparison Comparison between the results captured in various

Usability Evaluation Methods
Outcome Studies where Usability Evaluation Methods are ap-

plied on VR based products and applications
Context Academia, Software Industry and Other Empirical

Studies

Search Strategy

We began our literature review by identifying keywords and some search strings deduced from the
research questions. The search strategy was set by a search string enabling the identification of studies
that describe the execution of at least one usability evaluation method applied to a VR Industry software
product. The search terms were chosen with concepts resulting from the PICOC method.

C1: “Virtual Reality” OR “Virtual Programming”
C2: “Usability method” OR “Usability technique” OR “Usability Engineering” OR “Usability Prac-
tice” OR “Usability Approach” OR “Usability Process” OR “Usability Test” OR “Usability Procedure”
OR “Usability Study” OR “Usability Studies” OR “Usability Assessment” OR “Usability Evaluation”
OR “Usability Inspection”
C3: “Industry” OR “Commercial” OR “Enterprise”
C4: “Publication Year” > “2000”

The resulting string can be formulated as ‘C1’ AND ‘C2’ AND ‘C3’ AND ‘C4’.

While constructing the search string, we considered Virtual Reality and Virtual Programming keywords

45

first to filter the papers from VR Space. As we are exploring Usability space, we included all possible
potential keywords in regards to Usability. To identify the literature from VR Industry, we included
Industry related keywords as the new level filter. In regards to the year of publication, we considered
the year - 2000 as a limit to extract the literature. To the best of our knowledge, we believe there wasn’t
any significant work in the VR space before that. We conducted a multi-level analysis on VR research
area and found that the VR technology was highly simplified after the year 2000 with the advent of new
hardware. Additionally, we reviewed the search strings multiple times and incrementally developed
them based on a peer-review approach. We worked with a few fellow researchers in the research area
to build a robust string to generate effective results. Once the search string was finalized, the authors
independently conducted the search activity and were able to record identical results. The authors have
conducted a string search against all available attributes of a research paper including abstract, Contents
of Paper, Keywords, etc. We filtered these attributes further to avoid miscellaneous papers.

Databases and Paper Selection

The search was conducted using the search string against electronic databases - IEEE Xplore, ACM
Digital Library, Scopus and Science Direct. The search ordering was based on the databases that re-
turned most of the results. The search fields were selected to assure that the search process is made
similar across these databases. We omitted the grey literature and focused on active publications. Our
review considers research papers published until August 2018.

Exclusion Criteria - Articles with poor details about the study setup on VR Products. Articles which
had irrelevant information about HCI techniques, topics related to description of usability engineering
or Non-Industry papers were excluded. We have also not considered papers which do not mention any-
thing about the commercial aspect of the VR product built as part of their research.

Inclusion Criteria - The paper which contains the use of Usability Evaluation Methods as part of
their title, or abstract or keywords considered. The article includes terms related to the search string.
The paper consists of the study conducted in Industry or on an Enterprise Product was provided primary
consideration. Only papers written in English and whose abstract or title mentions the relevance to our
review considered.

Data Extraction

The process of data extraction was conducted based on the protocol proposed by Kitchenham et
al. [150]. For every paper extracted based on the search criteria, we captured the attributes like Type of
Paper, UniqueID, Author(s), Editor(s), Title of the paper, Pages, keywords, DOI, year of publication,
ISBN, Publisher, Extraction date, Database. As part of data extraction, the search string returned 84
papers across all the databases. We implemented the inclusion and exclusion criteria over these research

46

papers. We were able to filter them to 36 research papers which hold good for our literature review.
Table 3.7 provides details of these finalized research papers.

3.4.1 Discussion on Usability Methods & Metrics for VR Products

Based on the data, we found that the Industrial researchers have seriously considered Usability Eval-
uation as a pointer for practical realization of their VR Product. The Table 3.7 contains the details of
Usability Evaluation methods applied on VR apps categorized based on the metric and by the type of
Industry. In this section, we discuss our research questions and discuss the relevant observations.

R1: What are the evaluation methods used to measure usability in VR products?

Widely Used Approaches - Controlled Experiments are found to be the most widely used usability
evaluation approach for Industry-based VR applications. Industries like Health Care, Manufacturing,
Simulation studies and Software products have considered this approach as a better way to understand
the usability issues. Almost all these applications are built for training and simulation studies. The VR
application developers have followed Presence Survey (discusses the mental experience of the user) and
Informal Usability Survey (that do not require facilitators) to capture the participants’ overall reaction
post usability evaluation.

Focused Approaches - Selective domains have made use of Usability evaluation methods for a par-
ticular set of end users. Haptic centred controlled Experiments, Pluralistic Walk-through, Subjective
and Objective Evaluation are implemented primarily in large-scale enterprise VR applications. Other
minor methods include Psychometric Assessment, Workload Assessment and Use-case based Usability
testing. Most of these methods are employed on applications like Mixed Reality based Simulator ap-
plications, Physiological Signal Sensor training applications and Venepuncture Training for Medicinal
Practitioners.

Group Study Approaches - There are applications that require observations from targeted user groups.
Usability evaluation methods like Focus Group Experiments, Pluralistic Walk-through, Cognitive Ques-
tionnaire and Task-based Heuristic evaluations are employed for VR Usability Testers to understand the
multi-user experience in business sensitive VR applications.

Empirical Methods - Apart from conducting usability evaluation methods, VR Industrial practition-
ers have applied survey-based empirical approaches to capture the participant feedback to understand
the impact of their usability evaluation. Standardized survey methods like NASA Task Load Index, IBM
Ease of Use Survey, Social Response Scale and Systematic Usability Survey are implemented mainly
on Simulation, Manufacturing and Healthcare related VR applications. The Usability practitioners have
adopted these empirical approaches as part of their usability study to understand the Quality of Experi-

47

ence (QoE) of the VR product. All the VR products collected as part of our research followed a usability
evaluation method to calculate the desired usability metrics. An empirical approach was also observed
to capture the user feedback corresponding to the conducted usability study.

R2: What are the metrics captured while conducting usability evaluation in VR products?

Regular Metrics - Table 3.7 contains a detailed portrayal of Usability metrics which are captured
during the usability evaluation. Of these metrics, Effectiveness, Efficiency and Satisfaction are found
to be the most widely captured metrics. There are few unique metrics like Inter-pupillary Distance,
Physical Interaction Capacity, Bio-mechanical Feedback, Force Exerted, Galvanic Skin Response, Skin
Temperature, Heart Rate and Spatial Orientation Test focused to specific VR applications which are
built for handling sensitive tasks and their respective actions.

Unique Metrics - Different practitioners across various VR products calculated the same character-
istic in a unique manner. Interaction Capacity is a metric which explains the capacity of a user to
interact within the Virtual Environment. Practitioners have captured the user interaction in Virtual Car
Interior [179] based on the time spent by a user over each task in the virtual environment. However, in
a case of the tourism-based VR application [249], user interactions were captured based on navigation
time across the virtual environment. Other studies include projection based applications [82] where the
first person experiences were captured based on a wait and response time to calculate the interaction
capacity of the participant in usability evaluation.

Novel Metrics - Efficacy is another unique metric which is being captured from a brain injury community-
dwelling individuals [247]. The motive of this metric is to understand the ability of the participants to
produce intended results decided by a medical practitioner. A degree of dizziness or Vertigo based met-
ric is captured [158] to evaluate the user experience in immersive 3D Map environments. Apart from
the above, the rest of the metrics are captured as per usability guidelines using survey-based empirical
methods.

R3: Is there a trend in implementing a certain usability evaluation methods in regards to VR
products?

Shift in Approach - We find a minor trend as part of the methods and metrics employed in the
published works on Industry VR products. There has been a progressive shift on using particular usabil-
ity evaluation methods over a period. Notably, the training based education VR products have shifted

48

their evaluation strategy from heuristic cognitive based methods to Group based evaluation methods.
The probably reason could be due to increased levels of understanding of group learning setups. The
domain-specific VR apps pertinent to Health Care and Manufacturing initially followed Controlled Ex-
periments. Later, most of the products adopted Haptic based methods due to the significant change in
sensitivity of the tasks involved in the evolving VR product.

Automation in VR - We see a slight trend in automating the usability evaluation methods across
products in Industry. Industry researchers have claimed that automation helped the practitioners avoid
manual biased results to some extent. However, there is no strong empirical evidence to support their
argument. Business critical applications in the area of Construction [68], Health Care [247], Gesture
Interaction [48] and Understanding force a certain level of automation with in their VR products. Hap-
tic based virtual environment [234] has some automation efforts by practitioners. Spaceflight operation
evaluation [83], Electronic device evaluation [29] has automated means to understanding usability chal-
lenges replacing a human-based usability evaluation approaches. A small set of distinct products in the
field of Manufacturing [19], Retail Product View [142], Fashion [28] and Museums [82] adopted auto-
mated approaches to detect the usability metric and avoid human prejudice during usability evaluation.

R4: Is there anything unique about usability evaluation setup in Industry VR Products?

Product Liability - Industry VR Products are constrained by business decisions in line with the
demands of the consumers. They are expected to provide rich set of features that are attractive to their
consumers and at the same be released at the right time. Most of the products face setbacks in the Prod-
uct Quality Evaluation stage. Whenever an abnormal feature flow is identified, the relevant intended
behaviour requires serious inspection. The slightest change in a feature flow influences the relative
design, code and work-flow of the entire VR Product. When compared to non-Industry VR products,
Industry VR products are bound to be compliant as they have real-world outcomes. Any loss of data or
life has severe consequences in real-world, and it is more concerning for Manufacturing and Healthcare.
Most of these applications are involved in training and simplifying day-to-day activities.

Content Development - The results from Usability Evaluation provide more options to VR product
stakeholders to enrich the product as needed. Every usability testing cycle requires review from the
entire VR Product development teams to compare and critique the change implemented to address the
usability issue. Change in feature flow and task-actions drastically impact original design and requires
upgradation of the VR content to meet usability requirements. Content Development is comparatively
expensive as it requires multi-level design strategy across all the VR Scenes. It is unique for Industry
practitioners to comply and also have sanity in content design across the VR Product to provide a quality
user experience.

49

Product Versioning - Industry VR product is poised to stay longer in the market as it is expected to
generate revenue. Thus it is common to adopt product versioning methods which are unique to Industry
VR Products. It is evident that it is complicated to manage and maintain design versions of VR Product
when compared with code-based version repositories. Code repositories are robust and mature when
compared with design version repositories. Unlike code repositories, where structure of the artifact is
well know, design artifacts involved in VR products, for example, a VR scene design does not have
a well established representation. Hence, support for versioning must be looked at from multiple per-
spectives. Commercial VR Products in Fashion [28], Simulation [290] and HRMS [301] have involved
designers in maintaining two or more major design threads such that the design layouts are dynamically
altered based on the target audience base.

Effort Estimation - VR Products a relatively recent phenomenon and developers tend to involve a
variety of people who are unique to VR production. In contrast to traditional Software Product De-
velopment, VR teams include practitioners like VR Scene Designers, Acoustic Editors, Audio/Visual
Developers, VR Scene Artists, Content Editors and Integration Specialists who are unique to VR prod-
uct development. Usability Evaluation results create new work-load across these stake-holders which
indicates a rise in product development cost regarding stake-holder effort. None of the VR Products
measured initial effort estimation to plan for future releases. It is significant for a VR Product to have
an effort estimation strategy to minimize the future product version cost.

Usability Guidelines - We found that guidelines are vital for constructing a usability evaluation of
VR Products for focused domains like healthcare and simulation-based Industries. Usability Guideline
based Usability Evaluation was found to be in health care products while capturing metrics like Reac-
tion Time, Response Time, and Interaction Capacity. Product developers built VR products based on
Usability Guidelines, and the VR Usability practitioners have evaluated the VR Scene based on the com-
pliance of the applied guideline. Practitioners have transformed this activity as a validation experiment
under the Usability Evaluation setup. The Simulation-based VR Applications [83] [19] [247] utilized
guideline-based evaluation in most of the cases.

Observations

Fig 3.4.1 illustrates the yearly trend of adoption of Usability Evaluation methods on Industrial VR
Products over a decade. Based on these results, we observe that focused applications require focused
Usability Evaluation methods like Haptic based techniques, Heuristic Reviews, and Psychometric As-
sessment. These results of these methods have a significant impact on the workflow of the VR Scene.
Most of these methods are followed in HealthCare and Simulation-based studies. We also observe
that Controlled Experiments and Cognitive Walkthrough are two widely used methods across the years.
These two methods are implemented across various Industry domains, thus explains to be a distinct

50

Figure 3.4 Yearly Trend of Usability Evaluation method Adoption in VR Software Development

usability study method for quick results. Regarding the existing literature, we could reason that both
Controlled Experiments and Cognitive Walkthrough approaches provide the following benefits for every
VR Scene.

• Controlled Experiments and Cognitive Walkthrough are easy to set up and execute.
• These methods yield prompt results and help the practitioners deduce quick inferences.
• They do not involve in complex workflows.
• It is accessible and easy for the test subjects to participate in the experiment.
• They are compact and flexible with the changes to the requirements of a VR Scene.

Constructing a Simple Evaluation - Based on our review, we perceived that some of the practition-
ers had not followed a particular protocol to execute a Usability Evaluation using a specified test setup.
However, some researchers were clear and strict about the workflow of their study setup. Cases where
the motivations of the VR Scene were clear, usability evaluation was performed over all stages of VR
Scene development. We gathered such instances and have come up with a simple protocol to conduct or
establish as Usability Evaluation Setup for a VR Scene.

• Define Motive - The Usability Practitioner has to define the motivation against VR Scene design.
These motives should be in line with requirements specified for a VR Scene. One has to ensure
that the evaluation should not alter the initial specifications but should facilitate a way to meet

51

those specifications. Practitioners [301] [28] were clear about their motives and have cascaded
the same during their entire product development, which aided them in generating better test
results.

• Identify Test Subjects - The VR Product should have a purpose and should be developed with
the intent to deliver a solution to the target audience. The participants of the Usability Evaluation
Setup should be the sub-set of the respective target audience. The practitioners should expect 360-
degree feedback on the VR Scene and should be able to revisit the specifications if the usability
is not up to the mark. Practitioners, as part of focused application [247] [79] [25], have ensured
that their target audience is from the right domain to have efficiently gather results.

• Define Tasks and Actions - The Usability Practitioners should be able to define the workflow of
the test setup. In the case of a Car Interior VR Scene [179], the practitioners have set the flow of
events for a test subject to perform. The Tasks are clearly defined in a step-by-step fashion so that
the participant is clear about the next steps in the evaluation. The Practitioner should be able to
gather the actions out of the tasks performed by the participant and later conclude those actions.

• Design Experiment - The Design of the Experiment should be inline with the scope of the VR
Scene. [83] [147] [276] have developed a methods to design the experiment for conducting sim-
ulation studies. Practitioners have to define the cause using the independent and dependent vari-
ables of a VR Scene. This intent results in the effects out of the experiment for a respective
cause.

• Review and Redo - After gathering the results, the practitioners have to evaluate the data pointers
from used metrics and correlate them with their expectations - the Expected Vs. Actuals should
be reviewed with the VR Scene developers. The product owners will have to work on the caveats
identified as part of the studies and should be able to redo the VR Scene development. Practition-
ers [293] [82] here have involved their developers in reviewing the test results so that they can
plan to revisit the Scene and address the challenges from time-to-time.

Scope of Automation

In our review, we observe that the demand for usability has increased [137]. It is due to the rise in the
reach of VR Products to end-users and the novelty involved with them. Now-a-day, Usability Evalua-
tion is being executed even after the first sprint of a VR Scene development. In such a state, automation
can assist practitioners in having to minimize the effort and time while performing Usability Evalua-
tion. Recent Studies on automated usability evaluation have appeared [110], where a fully automated
approach has been developed to perform predefined tasks in a fixed test setting. Here task trees are
generated that records the actual usage of the scene during the Scene development. Later the recording
will be used to analyze the usability smells. The defined approach is applied to a large case study and
has recorded diverse issues related to user efficiency. We may argue that the proposed approach [110]
may help practitioners identify usability issues but may not be able to specify the misunderstandings
of users from a different test population. It is considered to be a challenge for usability practitioners to

52

automate. However, a semi-automated usability test setup seems promising for Usability evaluation as
human perception is difficult to be automated. A task-driven automation method for VR developers and
a participant based evaluation for VR Tests followed by a developer-designer review may help capture
observations from all directions.

3.4.2 Sufficiency & Necessity of Usability Evaluation of VR Software

This work intrigued us to explore and discuss the levels of necessity and sufficiency required for
conducting a Usability Evaluation in VR products. Notably, in regards to VR Products - Usability Eval-
uation is a costlier activity [137] when compared with the rest of the tasks involved in VR Product
Release. While working on VR products, Usability practitioners should examine the testing strategy by
classifying the available usability metrics and usability evaluation methods into necessary and sufficient
categories. The necessary attribute is an attribute that must be present for an event to occur may include
metrics like Response Time, Attention, Reaction Time, User Satisfaction and Effectiveness. These met-
rics may help determine usability at a practical level. These metrics appear to be most reasonable for any
VR based product(s). In regards to usability evaluation methods, Controlled Experiments and Cognitive
Walkthrough seem to be reasonable and widely used methods for sensible results. Sufficiency here is an
attribute of being adequate or sufficient for conducting the usability evaluation. Visual Feedback may
be a useful usability metric as a sufficient attribute. Task-based Focused Group Study may be an ideal
sufficiency usability evaluation method. The above observations are based on our review. Usability
Practitioners may choose customized usability metrics and customized usability evaluation methods for
focused results.

3.5 Software Quality Metrics for Virtual Reality Products

ISO Standard 9126 [84] quality model classifies quality into a collection of quality characteristics
and sub-characteristics. Various metrics can be used to measure these quality characteristics. Product
owners have to adopt diverse software quality metrics to track the health of the software product after
every product release. Software quality of an enterprise software product involves quality assessment,
quality assurance, and quality evaluation. Researchers have proposed various approaches and metrics
to address software quality problems at different stages of software production. Shihab et al. [246]
conducted a literature review of more than 100 published research papers on software defect prediction.
It was found that most of the approaches did not provide guidance on industrial adoption and rarely
considered the impact, risk, and dependency associated with the predicted or forecasted defects. The
practical adoption of software quality methods in the industry is limited as software industry tends to be
reactive. Compared to traditional software developers, VR practitioners have fairly limited knowledge
about the state-of-art metrics needed for quality management of VR products [137]. In this section,
we detail a systematic mapping study performed on existing VR literature to explore software quality

53

Table 3.6 PICOC definitions for literature study on Software Quality metrics in VR
Criterion Description

Population Virtual Reality related software products and appli-
cations

Intervention Software quality metrics or indicators
Comparison Comparison between the results captured in various

software quality metrics
Outcome Studies where software quality metrics/indicators

are applied to VR product and apps
Context Academia, software industry and other empirical

studies

metrics or indicators used by VR developers while developing VR products.

Research Questions

The Systematic Mapping Study uses the guidelines suggested by Petersen et al. [204]. The primary
goal of the study is to capture the details of software quality indicators or metrics adopted by VR
developers while developing their respective VR Products. We followed an evidence-based approach
called PICOC method. PICOC is an acronym for Population, Intervention, Comparison, Outcome, and
Context [22]. Application of the PICOC concepts to VR products study is shown in Table 4.1. PICOC
method helped formulate the research questions effectively and document the scope of mapping study.
Following are research questions:

R1: What are the existing software quality metrics/indicators used as part of VR prod-
uct(s)/app(s)?
R2: Is there any trend in adapting certain software quality metrics/indicator in VR prod-
uct(s)/app(s)?
R3: Are there any domain specific VR Software Quality metrics?

Search Strategy

For any systematic mapping study establishing a search string is key. As a first step, keywords perti-
nent to Software Quality metrics in VR applications were identified. The research questions R1, R2, and
R3 are related to each other and hence only one search string was constructed. The search strategy was
set to enable identification of studies that describe the presence of at least one software quality metric
or indicator applied to VR Software Product.

*Search String: The search terms were chosen with concepts resulting from the PICOC method. Below

54

are the details of search strings.

C1: “Virtual Reality” OR “Virtual Programming” OR “Virtual Reality Product” OR “Virtual Learning”
OR “VR” OR “Virtual Environment”
C2: “Software Quality” OR “Software Metrics” OR “Software Indicators” OR “Software Evaluation”
OR “Metric” OR “Metrics” OR “Indicator” OR “Indicators” OR “Quality Assessment” OR “Quality
Improvement” OR “Quality Evaluation” OR “Quality Measurement”
C3: “Publication year” > “2000”

The resulting string formulated for addressing research questions R1, R2, and R3 is ‘C1’AND ‘C2’
AND ‘C3’. We considered Virtual Reality and Virtual Programming related keywords as the initial
search filter. Software Quality Metrics is a major factor, hence we expanded the search space to con-
sider all potential keywords pertaining to quality metrics. We conducted a multi-level analysis [150] on
the Virtual Reality research area and found that with the advent of new hardware there was a significant
shift in VR technology and corresponding software after the year 2000. Hence, the year 2000 was con-
sidered as a limit for publication year to extract the literature.

*Search Quality Assessment: We reviewed the search strings multiple times and incrementally de-
veloped them based on a peer-review approach [150]. We also conducted a manual search of the search
string incrementally and compared the results in every validation cycle. Our peer-reviewers graded
the manual search validation results and helped us finalize the search string. We worked with fellow
researchers from similar research areas to our finalize the search string. Once the search string was
finalized, the authors independently conducted the search activity against all available attributes of a
research paper including abstract, contents of the paper, keywords, etc. and recorded the respective re-
sults. We filtered these attributes further to avoid miscellaneous research papers. Our review supplement
data can be found here [181].

Databases and Paper Selection

We conducted this search activity against major electronic research databases including IEEE Xplore,
ACM Digital Library, Springer, and ScienceDirect. The search order was based on the databases that
returned most results. The search fields and search string was formulated to assure that the search pro-
cess is made similar across these electronic research databases. We omitted the grey literature (research
produced by organizations outside of the traditional commercial or academic publishing and distribution
channels) and focused only on active publications. Our review considers research papers published till
September 2020.

Exclusion Criteria - Articles short on metric description details were ignored. Research papers with no
clarity on their VR product setup were ignored as it is critical for judging the quality metric used in a

55

VR scene. Articles that focused only on software quality processes/models/techniques, topics related to
the description of software quality engineering, or industry white papers were excluded from our study.
Also, papers that did not mention anything about the quality aspect of the VR product built as part of
their research was not considered. Books were not included as part of this mapping study as books tend
to cover broader data that is more useful for in-depth analysis rather than mapping study.

Inclusion Criteria - Papers that discussed the use or implementation of a Software Quality Metric(s) or
Indicator(s) in their title, abstract, or keywords are considered. Peer reviewed publications that contain
clear details about the VR products and documents were given primary consideration. Only articles
written in English were considered as part of our study.

Data Extraction

Data was extracted using the process proposed by Kitchenham et al. [150]. For every paper extracted
using the search strategy, attributes like type of paper, uniqueID, author(s), editor(s), title of the paper,
pages, keywords, DOI, year of publication, ISBN, publisher, extraction date, database type from the re-
search database was extracted. The search string returned 491 research papers across all the databases.
Inclusion and exclusion criteria was applied to these research papers to filter down the results to 227
research papers. Upon further review, 77 research papers were found to have used at least one software
quality metric/indicator with a reasonable explanation and some mechanism to gauge the metric value.
Figure 3.5 provides a grouping of the quality indicators identified based on indicator type. Some of
the quality indicators could have been classified in more than one category, however to keep it simple
we placed them in a single category based on our own experience in software quality engineering. The
details of our mapping study analysis from various research databases are made available in our re-
sources [181]. This resource contains step by step evaluation and filtration of research papers conducted
over a period of time.

3.5.1 Discussion on Software Quality Metrics, Usage Trend across Field-of-Interests for

VR Products

Quality is not orthogonal to product development, it involves the usage of various validation mecha-
nisms and corresponding measurable attributes through various stages of Product Development. Hence
the software quality indicators identified span the entire spectrum of VR product development. In the
review process, we came across several papers where researchers used software quality metrics for
validating their VR Prototype or Product.

Based on the review of literature, we conducted a coding based thematic analysis [59] of the gathered
research papers. Based on the coding results, we broadly categorized the gathered data into six themes:
VR Audio Quality, VR Scene Quality, VR Video Quality, VR QoE (Quality of Experience), VR Image
Quality and VR Code Quality. In this section, we analyze the research questions and discuss the relevant

56

observations.

Figure 3.5 Software Quality Spread in VR

R1: What are the existing software quality metrics/indicators used as part of VR
product(s)/app(s)?

Figure 3.5 presents the software quality themes in the context of VR Product Development. The
discussion in this section is based on the observed themes.

VR Code Quality: Ghrairi et al. [93] were the first to directly analyze queries of VR practitioners

57

from a Software Engineering perspective using the StackOverflow forum. They provided insights on
various practitioners’ challenges on day-to-day VR product development. They also conducted an ex-
ploratory study on the code quality of open-source VR projects from GitHub. They observed that most
of the VR projects had weak-level of comments, almost all the projects had at least one God Class and
other code smells. They also found the dominance of open-source VR Engines in Open Source VR
Projects. Source Line of Code (SLOC), Cyclomatic Complexity (CC), number of methods per class,
and the Depth of the Inheritance Tree (DIT) are the most widely used quality metrics by the VR practi-
tioners. In effect, there were no specific metrics for VR code quality.

VR Video Quality: Jiachen et al. [288] conducted a subjective evaluation of 3D Panoramic Virtual
Reality Video Quality Assessment using 3D Convolutional Neural Networks. They conducted an em-
pirical study on 3D Panoramic VR Video Dataset and determined the initial quality of these videos
using a subjective score for each data sample. They proposed a ‘fusion strategy score’ to rank and deter-
mine the quality of the VR Video project process. They considered MultimediaQA, VRVideoQA, and
ImageQA indexes as a measure for the quality of their assessment. Their future plans include the appli-
cation of their proposed score on large VR video databases to help VR Practitioners adopt the proposed
score and metrics as part of conventional VR product development. Alireza et al. [296] conducted a
quality assessment comparative study between tile-based method and truncated square pyramid (TSP)
method of projecting VR Videos. These methods are primarily involved in Streaming VR Videos which
are subject to latency issues. Quality-Assessment-View (QAV) Index was used to assess the quality of
VR Video. Subjective evaluation was performed and the observed data was analyzed to determine the
merits and demerits of these methods. Sijia Chen et al. [51] reviewed Omnidirectional VR Videos and
conducted an objective evaluation to calculate the spherical structural similarity index (SSSI) and com-
pare this quality metric results with traditional heuristic methods. They also conducted an experimental
assessment to determine the relationship between two domains to determine the video quality.

Sebastian et al. [240] made attempts to understand the methods to render virtual viewports from
supplementary depth information to create a better VR video quality. Depth-image-based rendering and
Peak-Signal-to-noise ratio are two quality metrics used to evaluate the VR video quality. They con-
ducted a subjective evaluation and published their findings. Naty et al. [248] conducted an experimental
study on understanding the performance and computational complexity of 360 degrees VR Video. They
were part of a research group that developed new coding tools to address video encoding and decoding
to avoid noise and a better bit rate in VR Videos. They have used Weighted-Peak-Signal-to-Noise Ratio
as a custom metric to evaluate the 360 degrees VR Video quality. Shu Yang et al. have introduced a
quality assessment method for panoramic videos which is based on multi-level quality factors. This
is calculated based on the region of interest in a given VR Scene [289]. They conducted a subjective
valuation using a few panoramic scenes and captured insightful results. Their observations shows that
the quality assessment method is easy to implement, when compared with traditional video quality as-
sessment method. Carlos et al. proposed two novel metrics to study the user behavior under 360-degree

58

movie cuts [173]. This is to examine the influence of user perception on a 360 degree movie cuts over
large scale video scenes.

VR Image Quality: Wei et al. [258] conducted a subjective quality valuation of compressed virtual
reality images in VR scenes. They performed a correlation study with popular objective quality mea-
sures and published their observations. They used Single-Stimulus method to collect the subjective
scores from participants and have computed the MultiScale Structural Similarity Index (MSSI) to de-
termine the quality of the images in a VR Scene. Huiyu Duan et al. [69] established an exhaustive
VR Image dataset and worked on perceptual quality assessment of Omnidirectional images in VR. The
image quality assessment measures were applied on their dataset and suggestions were provided on the
improvement of images based on VR Scene setup. Junfei Qiao et al. [212] reviewed 3D Synthesized
views used for the rapid development of high-quality VR Scenes. They formulated an algorithm as
part of their previous work and compared it with their existing dedicated No-Reference Image Quality
Assessment (NIQA) method to assess the quality of the Image in a high-quality VR Scene. They set
up an experimental study to comprehend image quality degradation and distortions. Further, they have
recommended guidelines for low-level compression of images in VR Scene to avoid rendering issues.
Rahim et al. [215] introduced a content-dependent objective quality assessment procedure to evaluate
the distortions that occur while building the viewport in VR Scenes. They used a supervised learning
method to classify their dataset to determine the viewport quality of 360 degrees images in a given VR
Scene. They set up an experiment to predict the proposed metric against the viewport quality of the
image set with reasonable accuracy.

VR Audio Quality: Miroslaw et al. have reviewed issues with spatial audio as part of their previ-
ous work and have now reviewed the quality aspects of compressed audio on emerging HMDs [188].
They adopted the MUSHRA test methodology (Multiple Stimuli with Hidden Reference and Anchor)
to assess the quality of soundscape of a 360 degree streaming VR for immersion setup. They conducted
a subjective evaluation of raw audio content and captured the quality of user experience. They reviewed
the options of compressing the spatial audio and proposed a few guidelines for practitioners. They plan
to develop an objective spatial audio quality metric as part of their future work. Jules et al. [85] were
the first to study continuous movement recognition and real-time sound parameter generation in a VR
Scene. They conducted series of experiments to understand the mapping between the design process and
user interaction through a VR Scene using machine learning approach. They used Auditory Feedback as
a quality measure to determine the health of their study. David Triantafyllou et al. [264] are pioneers on
studying sound in VR scenes. They conducted two experiments to determine the relationship and short-
comings between physical-world sound and VR Scene sound. They identified the difference between
these two experimental conditions and used auditory feedback to assess the quality. They have pub-
lished a few guidelines to practitioners on building combinations of surfaces with better natural sounds
in virtual environments. Ceenu et al. [90] investigated whether audio signals and haptic feedback can

59

act as indicators for real-world boundaries, such as objects, walls, and people. They used NASA TLX
Survey and Presence questionnaire to gather feedback on presence and workload from the participants
in their study setup. Adrielle et al. studied Audio localization in a VR Scene using spatial audio metrics
like the NASA TLX questionnaire to capture workload while performing actions like gaze pointing and
wand pointing towards the projected audio in VR Scene [182].

VR Scene Quality: Blaine Bell et al. [33] are first to investigate the quality of rendered VR plane.
As part of their work, authors focused on view management in a 3D view plan and determine the prop-
erties of objects, position, size, transparency, and shapes of the virtual world. They proposed a layout
decision approach and conducted a subjective evaluation. Further, they proposed a custom quality metric
to determine the view plan representation in a virtual world. Ying Zhang et al. [294] created a multi-
model interface for the virtual environment for an assembly application. They evaluated multi-model
feedback on assembly task activities through simulation in the virtual world. They were the first to
build such an interface and conduct a heuristic auditory and sensory feedback study to assess the quality
of their environment. They also conducted a subjective evaluation and captured the observations via a
questionnaire. They provided recommendations to the practitioners on building an efficient task perfor-
mance based VR Scene. Shun Li et al. worked on a virtual surgical simulation setup with an intent to
understand the thermal damage of a bone tissue using bone drilling [160]. They formulated a virtual
surgical process and evaluated the virtual scenes using a customized quality metric called ‘Temperature
Distribution’. Dongdong et al. explored the differences of visual discomfort caused by long-term im-
mersion between virtual environments and physical environments [103] across a variety of VR scenes.
Visual fatigue scale (VFS), change of pupil size (PS), and accommodation response (ACR) are captured
as metrics. Bilal et al. conducted a task-based subjective evaluation of a driving simulation [223] using
the user-experience questionnaire and Gaze interaction metrics.

Carvalheiro et al. [49] proposed a haptic based interaction system for virtual reality products. This in-
cludes a combination of tracking devices for hands and objects in a given scene. Their solution receives
haptic stimuli by manipulating real objects mapped to virtual objects. They conducted a subjective
evaluation via an experiment setup and proposed a quality metric called ‘Simulation Awareness’ to un-
derstand the stimuli experience of the end-users in a virtual world. Rohan et al. [50] presented a novel
algorithmic framework to optimize the depth of camera placements for a given virtual environment.
As part of the study, they utilized a quality metric called simulated annealing and depth inaccuracy to
evaluate the quality of the construction of the scene in virtual space. In [148], the author investigated a
unique visual comfort model for the real prediction of a 3D VR Scene, which is based on the physiologic
mechanism. They conducted an experimental study to evaluate r model by utilizing a customized quality
metric called multimodel interactive continuous scoring. This helped them understand the stability and
perception of 3D VR Scene images. Jann et al. conducted a VR Scene tolerance study using a custom
scale called [88] Cybersickness Susceptibility Questionnaire. The scope of this metric is to predict the
Scene tolerance of the participant.

60

Hak et al. [146] proposed a quality metric of exceptional motion in VR Video Contents for VR
sickness assessment. Their metric was developed to improve the quality of VR scenes to avoid sickness
issues. They validated the work using Simulator sickness questionnaires in VR environments. Viktorija
et al. studied Levitation Simulator using VR based shooting scene to capture workload using the NASA
TLX Task-based survey [198]. Jeremy et al. proposed an innovative method to navigate into VR Scenes
by opting for acceleration parameters from the users in real-time [205]. The motivation was to address
VR Sickness issues. They have conducted a case study and used customized quality metrics called
Motion-Sickness Dose Value and Electro-dermal activity to judge their results. Ke Gu et al. proposed
a novel referenceless quality metric for depth-image based rendering of VR Scenes [98]. This is to
ensure that the synthesized free-viewpoint videos are generated with higher accuracy and with less
geometric distortion. An experiment was conducted to review the quality method and was compared
with traditional models. Yingxue et al. worked on improving the immersive viewing experience for VR
Scenes [298]. They proposed a display protocol and evaluated it against panoramic VR Scene videos
to review the distortions and video coding compression. They conducted a case study on all these VR
Scenes and heuristically reviewed the quality of the scenes using the mean opinion score method from
the participants. Deba et al. proposed a method for defining a quality metric on context-aware intelligent
environments with inference to address physiological processes [229]. Their work was focused on VR
Scenes which requires a visual feedback model, and developed a Supermarket application for validation.
They used the electrodermal activity as a quality metric and conducted a tasked based experiment to
assess their proposed method.

Brendean John et al. [130] worked towards investigating pupillary light response in the virtual scene
setup. They used a custom quality metric called pupil light response as a reference scale to detect and
identify the rates of cognitive-emotional responses from the participants who were part of the case study.
They built a task-based activity experiment and proposed guidelines for building effective scenes with
reasonable pupillary interaction. Markus Wirth et al. investigated interaction techniques in a virtual real-
ity scene setup focused on a diagnostic radiology application. This is first of its kind domain-specific VR
Application where a VR Scene based quality metric was evaluated from Software Engineering perspec-
tive [282]. Attractiveness, Pragmatic/Hedonic Quality attributes were evaluated as part of a thorough
experiment for radiologists.

VR QoE (Quality of Experience): Mapar et al. [172] and Akpan et al. [14] adopted a heuristic-based
personalized quality metric to evaluate a space flight simulation setup and an assembly product. They
conducted a study to determine the quality of experience and used egocentric depth perception as a met-
ric [131]. Jarvinen et al. [125] conducted a series of experiments on the spatial setup in VR scenes and
evaluated their experiment VR scene to evaluate the quality of experience in spatial memory. They used
a customized test called Spatial memory test to gauge the quality. Ruddle et al. [228] conducted a VR
scene evaluating using travel time, collision index, and speed profile index as the quality of experience
in their case study VR Scenes. Markus et al. [281] assessed the personality traits of athletes using a

61

VR football game scene using the Presence Questionnaire. Monthir et al. compared Game-pad and
Naturally-mapped Controller Effects on Perceived Virtual Reality Experiences [17] and captured cus-
tomized metrics Self-reported Presence, Self-reported Engagement, and Self-reported Accuracy. Peng
et al. [202] conduct a comparative study between a PC and VR based presence evaluation of emotional
challenge-based games.

Lugrin et al. [166] conducted a subjective evaluation of a task-based assembly activity to analyze
the quality of experience of a participant through quality metrics In-game performance index, In-game
navigation, Multi-Screen usage index to determine the adaptable of VR Scene. Charles et al. [208] built
a workstation in a VR environment to understand the physical risk factors in humans. The quality of
the experience was evaluated in a subjective evaluation using rapid upper limb assessment, averaged
muscle activations, Total task time as quality indicators. Hamam et al. [105] built a game to analyze
the quality of user experience in a VR scene by capturing User State Measure, perception measure and,
physiological measure as quality indicators and shared significant insights. Steinicke et al. [254] built a
simulation system to study the presence of a participant using a presence evaluation method. Aristidou
et al. [20] investigated the motion capture technology for virtual spaces with a specific focus on folk
dance motion analysis. They present a framework to identify the styles in dance motion and use Laban
Movement Analysis to study the quality of experience of the generated Scene. Gayathri et al. studied
spatial memory w.r.t heights in adults and teens using a Virtual staircase [187]. Metrics like Turning
error, Latency, and Corsi Scores are captured as a case study. Precision and Task Completion time are
captured along with a Subject Questionnaire to evaluate collaborative tasks in VR [87].

Additionally, various other quality metrics are implemented on prototypes for focused applications
through a subjective evaluation to understand the quality of experience. They include metrics like In-
teraction Modality [196], Locomotion Index [41] [86], Haptic based systems include Realism, control,
interface quality, ability to examine, performance, and haptic subscales [24], Speech, and language-
based therapy applications used Electrodermal Activity, Heart Rate, Miss Clicks [143], Rehabilitation
Game employed Hand Movement Velocity as a customized metric [170]. Heuristic and Survey based
evaluations were conducted as part of studies [116], [199], [270], [227] where metrics like perceptual
ration, estimated path length, recall time and immersion score were used as metrics. Andreea et al. con-
ducted a quality evaluation of the effect of thermal visual representation on users grasping Interaction in
Virtual Reality application [38]. A novel metric called Grasp Aperture was presented and used as part
of the study.

The VR Applications which are focused on healthcare can broadly be categorized as detection ap-
plications and intervention applications. Given that VR is still nascent, studies have focused more on
detection rather than intervention. Metrics like Electrocardiograph signal, galvanic skin response, blood
volume pressure, electrodermal activity [232] [144], Flow Experience Analysis for task-based activi-
ties [118], Miss Rate, Merge Rate, Fragmentation Rate in case of rehabilitation and trauma-based VR
applications [213], Effect of Reach-ability [70], Vibrotactile Feedback [192], Interface quality, and Re-
alism Index along with an immersive tendency survey [241], Heart Rate, and Skin Conductivity [73]

62

are used to assess the quality of applications. In [271], PPG signals and EEG signals are captured
to study the participant’s attention in terms of learning VR applications. This study was conducted
to understand the multi-dimensional physiological characteristics of the participants towards immersed
learning. Elena et al. were the first to study anti-stress adaptation to a new educational environment
for foreign students [261] using a VR tool called Emotional Experience designer. This tool captures
emotional and muscle relaxation as quality metrics. Multi-user Isness medical condition experiences
were studied using a discussion-based questionnaire [94].

VR applications which are focused on providing high quality of experience through enhanced band-
width use interesting approaches. Krogfoss et al. studied the impact of 5G bandwidth and its impact
on improving the VR Audio and Video quality. They conducted a QoE assessment with customized
metrics like content resolution (cod – coding), start delay (s), and stalling ratio (t) to assess the experi-
ence of a VR scene using 5G bandwidth [153]. Robertro et al. developed a two-stage method to enable
efficient Streaming via QoE-aware Mobile Networks for AR/VR Scenes [260]. The proposed Dynamic
path selection approach uses a new QoE model for video streaming. Pupillometry based metric was
proposed by Kenya et al. as a Method to evaluate Reading Comprehension in VR-based Educational
Comics [231]. Maria et al. Human-Centered QoE approach was adapted to assessing Delay, Jitter and
Packet Loss in VR Applications [266].

R2: Is there any trend in adapting certain software quality metrics/indicator in VR
product(s)/app(s)?

As part of our study, we observed that metrics that can be considered as a common set used across VR
software applications, are fairly limited. Most of the quality indicators or metrics for VR applications
are limited to particular usage and need. The trend seemed to be more towards researchers opting for
customized quality metrics and building a methodology around the quality metric with a subjective
or objective evaluation. Most of these customized metrics are unique and are found to be used as
part of focused VR applications like rehabilitation, trauma, education, and fun task-based prototypes.
Metrics like Temperature distribution [160], Electrodermal Activity, Heart Rate, Miss Clicks [143],
Hand Movement Velocity [170], and Pragmatic and Hedonic Quality [282] are widely used health care
based application over a decade. Other metrics like Rapid upper limb assessment, averaged muscle
activations, Total Task Time [208], Heuristic Evaluation [172] [14], Auditory and Sensory Feedback
[294], Immersion Score [270] are distinctively followed in the manufacturing domain over a decade.
Due to distinction in scene design across various domains, no traces of a generic software metric(s) or
indicator(s) are found to be practiced.

In some cases [90], researchers relied on a common quality indicator for multiple quality factors
like workload and presence. It shows that there is a need for new approaches for use-case based adop-
tion. It clearly shows us that the practitioner’s attitude towards adopting a software quality metric is
unique and varies based on the intent of the scene. Most of the practitioners have not considered at
least one metric in common to address essential quality requirements. These observations motivate the

63

need for a Software Quality Evaluation framework for VR applications, which includes strategies
for addressing Image, Video, Code, and Audio quality challenges in a generic way. Such frameworks
can be realizable if and only if multiple empirical studies are attempted on large VR product data sets.
This will help future VR practitioners to adopt generalized quality metrics as a basis and then develop
focused quality metrics on top of the framework, based on their business needs. We plan to explore this
avenue as part of our future work and will attempt to work towards formulating a generalized Software
Quality Evaluation framework for VR products.

Scope for Automation - As part of our review study, it was surprising to note that practitioners or
VR product(s) are not using automated methods or metrics to assess software quality. Developers are
making progress in building frameworks/tools that can be used for VR testing. While most of the VR
Quality metrics are defined to achieve Quality of Experience, a large number of these metrics are being
evaluated manually. Metrics like lines of code [93], lack of cohesion [93], Omnidirectional IQA [69],
and depth image-based rendering [98] are currently captured using semi-automated methods. New au-
tomated methods as well as a moving current semi-automated methods to fully automated methods can
shift the make the assessment more objective. There is tremendous scope for developing automated
approaches to assess/improve VR quality. For example, in VR simulation software, Interface testing
software, etc. automated assessment of various qualities can significantly help in making the applica-
tions better.

R3: Are there any domain specific VR Software Quality metrics?

Table 3.8 illustrates the details of the metrics used as part of VR product quality assessment across
specific Quality Themes (or) Domain. Domain - It is not a type of industry or business but a common
theme under which a VR product is developed. To categorize, we consider VR applications that are
involved in assembling the objects in a specific order that may come under the Assembly domain. VR
Apps which require the users to perform tasks and generate actions in the given VR scene are regarded
as Task-Action domain. VR Apps based on games for fun or serious games are acknowledged as Gam-
ing Domain. VR Apps, which provides health care solutions, comes under Healthcare Domain. The
categorization of domain here is not specific to a business need, but it is a heuristic set portrayed as a
domain. To present the metrics in Table 3.8 in a well-defined form, we categorized them into below
types.

Widely Used Metrics: Heuristic Evaluation with Presence Survey is the most widely used quality
metric by most of the simulation-based VR applications [172] [298] [202] [14]. Auditory Feedback is
another metric is used by practitioners to assess VR audio quality [85] [264]. Apart from these two
approaches, the rest appear to be either distinct to a particular VR product or not relevant for generic
usage. QoE based metrics like Jitter, Delay, and Packet Loss were captured using Subjective Evalua-
tion [266].

64

Unique Metrics: We observed a few quality metrics which are only one of its kind; unlike anything
else. Flow Experience Analysis [118] is used in the Task-based quality assessment methods. This
metric can be customed to a specific scale and updated based on the practitioner’s strategy. User state
measure [105], Realism Index [24], Spatial Memory Test [125], Simulation Awareness [49], and Laban
Movement Analysis [20] are the quality metrics which are unique on gathering results and their evalu-
ation. In one case, researchers used the Presence Survey and NASA TLX Survey for capturing quality
data for both Audio and Haptic feedback, which was uncommon in the case of other works [90]. Visual
fatigue scale (VFS), Change of pupil size (PS), and Accommodation response (ACR) are captured to
evaluate Fatigue Rate due to prolonged Immersion in a large VR Scene [103]. A Gender-based case
study was conducted to understand VR Scene tolerance [88] by introducing a metric called Cybersick-
ness Susceptibility Questionnaire.

Novel Metrics: We observed a few novel metrics which are not found to be used in traditional software
product development. Effect of Reachability [70], Pupillary Light Response [130], Miss Rate - Merge
Rate - Fragmentation Rate [213], Temperature Distribution [160] and Vibrotactile Feedback [192] are
few of the metrics. We observe that these metrics are novel and can be adopted by upcoming VR
products that are planning to focus on Quality-of-Experience and VR scene quality. New QoE metrics
content resolution (cod – coding), start delay (s), and stalling ratio (t) to assess the experience of a VR
scene using 5G bandwidth [153]. Frames to reach a ROI (framesToROI) and Percentage of total fixa-
tions inside the ROI (percFixInside) are new metrics developed to study user behavior in a 360-degree
video scene [173]. Pupillometry based metric like capturing pupil size and dilation time were captured
to study reading comprehension in Educational comics [231]. Customized Metrics like Self-reported
Presence, Self-reported Engagement, and Self-reported Accuracy [17] are captured in comparison stud-
ies. Grasp in VR is studied through the Grasp Aperture metric [38].

Empirical Metric Evaluation Methods: The domain-specific VR applications relied on empirical
approaches to gather the metric data. Question Survey [93] [143], Subjective Survey [288] [172], Pres-
ence Survey [41] , and Presence Questionnaire [24] [90] [281] have primarily used as part of Task-
Action based VR applications. Mean Opinion Scores [298], Comparative Analysis [212] and Case
Study [205] [296] [208] [69] [50] [98] [160] [248] [229] [144] [105] [213] [88] [94] [130] based empir-
ical methods are practiced in Gaming based VR applications. Experimental Setup [131] [232] [118] [14]
[228] [116] [70] [199] [49] [294] [146] [270] [73] [125] [192] [33] [85] [264] [282] [20] [166] [87] [261]
[223], Temporal Visual Comfort Model [148], Kinect skeletal model [170], Kennedy-Lane Simulator
Sickness Questionnaires [254] based empirical methods are used in the Healthcare domain. Single-
Stimulus [258] and Immersive Experience Questionnaire [227] [271] [196] are followed in Assembly-
simulation based VR applications. Susanne et al. conducted the effectiveness of Questionnaires in VR
User Studies as a quality aspect and found that questionnaires reduces Break in Presence (BIP) and

65

theoretical bias [210].

Customized Quality Models: Few researchers proposed Quality models on improving the streaming
of Audio and Video data [153] [260]. These models are formulated based on network bandwidth. LTE
and 5G bandwidths play a vital role in these quality models where Network key quality indicators and
QoE quality indicators are compared with the varied scale of network bandwidth. to judge the stream-
ing quality. Cloud Quality Assessment Model using local binary patterns were proposed to improve the
screen quality of VR HMDs for rendering effective scene quality [66].

Conclusion: In this chapter, we present the overall practices of the VR Community while building
VR software products. We also present our observations from our empirical study, a review of usability
and software quality practices. Improving software quality can be achieved by focusing on better re-
quirements during the development process of software products. By ensuring that the requirements are
well-defined, complete, and unambiguous, developers can avoid misunderstandings and misinterpreta-
tions that can lead to errors and bugs in the software. Clear and precise requirements also help to ensure
that the software meets the needs and expectations of its users, reducing the likelihood of rework and
revisions. Additionally, involving stakeholders in the requirements gathering and validation process can
help ensure the software meets their needs and expectations, improving its quality. The following chap-
ter presents detailed results of a systematic literature review on Requirement engineering (RE) practices
within the VR community. Such a study will help us identify the gaps in current RE practices and help
us investigate novel RE methods for the VR community to ease overall VR product development.

66

Table 3.7 Usability Evaluation Methods - Categorized based on metric and by Industry Type.
Industry Usability

Evaluation Approach Calculated Metrics Empirical
Method Primary Studies

Automobile Heuristic Focused
Group Experiment

Interaction Capacity
Response Time

Informal Usability Tests [179]

Education
Psychomotor Assessment Inter-pupillary Distance

Systematic Usability Scale
NASA TLX Survey

[35]

Pluralistic Walkthrough Understandability Presence Survey [47]
Cognitive Walkthrough Engagement , Endurability Pictorial Rating [11]

Electronics Focus Group Experiments
Ease-of-Use

User Satisfaction
Usability Survey [29]

Fashion Cognitive Walkthrough Effectiveness Usability Survey [28]

Healthcare

Controlled Experiments
Response Time

Attention , Efficacy
Informal Usability Survey [247]

Focused Group Experiments
Reaction Time
Response Time

Usability Survey [79]

Cognitive Walkthrough
Average Fixation Duration

Effectiveness
Response Time Index

Social Communication Questionnaire
Social Response Scale

[25]

Informal Controlled Group Experiment
Ease-of-Use

Overall Satisfaction
IBM Ease of Use Survey [65]

HRMS Focused Group Experiments
Ease-of-Use

Understandability
Usability Tests [301]

Manufacturing

Cognitive Walkthrough

Efficiency
User Satisfaction

Usability Survey [68]

User Satisfaction Presence Survey [117]
Ease of Usage Informal Usability Survey [67]

Task based Heuristic Evaluation
Interaction Capacity

Response Time
Effectiveness

Use-case based Usability Tests [165]

Heuristic Information Evaluation
Effectiveness

Visual Feedback
Effectiveness Survey [19]

Haptic based Subjective and Objective Evaluation
Biomechanical Feedback

Physical Interaction Capacity
Subjective Evaluation [290]

Controlled Experiments Understandability Usability Survey [262]

Pluralistic Walkthrough
Efficiency

Satisfaction
Effectiveness

Systematic Usability Scale [21]

Retail Use-case based formal evaluation Ease-of-use
Informal Usability Test

[286]

Controlled Focus Group Experiment
Interaction Capacity

Efficiency
User Satisfaction

[142]

Simulation

Controlled Experiments Response Time
Subjective Evaluation

[83]

Haptic based Controlled Experiments
Force Exerted

Response Time
[234]

Physiological Signal based Experiments
Skin Temperature

Heart Rate
Galvanic Skin Response

[147]

Context-of-Use
Effectiveness

Efficiency , Satisfaction
Cognitive Questionnaire [267]

Haptic based Pluralistic Walkthrough
Biomedical Feedback

Ease-of-Use
Subjective Responsive Index [251]

Task based Focus Group Evaluation
Reaction Time

Completion Time
Systematic Usability Scale

NASA Task Load Index
[276]

Software

Cognitive Walkthrough Visual Feedback - [89]

Controlled Experiment

Immersion , Accuracy
Comfort , Fun

Non-fatigue , Non-dizziness
Overall Satisfaction
Degree of Dizziness

Presence Survey [158]

Visual Feedback
Usability Survey

[48]
Spatial Orientation Test [111]

Qualitative Expert Review Ease-of-Use Informal Usability Survey [250]

Controlled Experiment
Manipulability

Comprehensibility
HAR Usability Scale [236]

Interaction Capacity
Effectiveness

Informal Usability Survey [249]

Tourism Pluralistic Walkthrough Understandability Systematic Usability Scale [293]

Cognitive Walkthrough
Effectiveness

Interaction Capacity
Informal Usability Survey [82]

67

Table 3.8 Software Quality Metrics mapped with respective type and VR Theme
VR Quality Domain (or) Theme Software Quality Metrics Used Type of VR Product References
Streaming VR Video Quality Quality Assessment View (QAV) Streaming VR Video [296]

VR Audio Quality
MUSHRA test methodology Use-Case Specific VR Product [188]
Auditory Feedback ML based Approach [85]
Auditory Feedback Questionnarire [264] [90] [182]

VR Code Quality LOC, CC, %Lack of Cohesion Case Study [93]

VR Image Quality

MultiScale Structural Similarity (MSSIM) Use-Case Specific VR Product [258]
Spherical Structural Similarity Index Use-Case Specific VR Product [51]
DIBR-synthesized IQA metric Use-Case Specific VR Product [212]
perceived viewport quality,
Content Dependent Objective quality metric

360 degree video/image [215]

VR Paranomic Scene Quality
BP-based quality assessment of panoramic videos Use-Case Specific VR Product [289]
Heuristic Coding Lab [298] [260]

VR QoE

Electrodermal Activity, Heart Rate, Miss Clicks Speech and Language Theraphy [143] [144]
Immersive Experience Questionnaire Use-Case Specific VR Product [227]
Interaction Modality Use-Case Specific VR Product [196]
Hand Movement Velocity Rehabilitation Game [170]
Interface quality, Realisum Index Use-Case Specific VR Product [241]
Locomotion Index Use-Case Specific VR Product [41] [38] [86]
UserState Measure, Perception Measure,
Physiological Measure

Game [105]

Egocentric Depth Perception Task Based Activity [131]
electrocardiographic signal, galvanic skin response,
blood volume pressure, electrodermal activity

Task Based Activity [232] [271]

Flow Experience Analysis Task Based Activity [118]
Heuristic Assembly Product [14]
Presence Evaluation Use-Case Specific VR Product [254] [281] [17]
Subjective Evaluation Exercise IoT App [213] [266]
Subjective Evaluation Use-Case Specific VR Product [228] [87]
Subjective Evaluation Task Based Activity [116] [231]
Subjective Evaluation, content resolution, start delay, stalling ratio Task Based Activity [70] [153]
Subjective Evaluation Walk-In-Place activity [199]
Heuristic Auditory and Sensory Feedback Case Study - Automobile Driving [270]
Heart Rate, Skin Conductivity Case Study - Public Speaking [73]
Spatial Memory Test Case Study - Spaces [125] [187]
Vibrotactile Feedback Task Based Activity [192]
realism, control, interface quality,
ability to examine, performance,
haptic sub-scales

Haptic Based Case Study [24] [202]

Laban Movement Analysis Task Based Activity [20]
In-game Performance, In-game Navigation,
Multi-Screen usage

Task Based Activity [166] [94]

VR Scene Quality

Simulated Annealing, Depth Inaccuracy Use-Case Specific VR Product [50]
Motion-Sickness Dose Value, Electro-Dermal Activity Use-Case Specific VR Product [205]
depth image-based rendering Use-Case Specific VR Product [98]
Multi-modal interactive continuous scoring Use-Case Specific VR Product [148]
temperature distribution Virtual Surgery - Bone Drilling [160]
electrodermal activity quality metric Super Market [229]
Subjective Evaluation, Visual Discomfort Task Based Activity [130] [103]
Subjective Evaluation Custom Haptic Setup [49]
Heuristic Auditory and Sensory Feedback Assembly Product [294]
Heuristic Auditory and Sensory Feedback Case Study [146]
View Plane Representation View Plan - Visible Surface Determination [33]
Attractiveness, Pragmatic and Hedonic Quality Diagnostic Radiology - Interaction [282]

VR Simulation Quality Heuristic Space Flight Simulation, Driving [172] [223]

VR Task Quality
rapid upper limb assessment,
averaged muscle activations,
Total Task Time

Assembly Product [208]

VR Video Quality

MultimediaQA, VRVideoQA, Image QA Use-Case Specific VR Product [288]
depth-image-based rendering,
peaksignal-to-noise ratio

Use-Case Specific VR Product [240]

omnidirectional IQA Use-Case Specific VR Product [69]
weighted Peak Signal to Noise Ratio Use-Case Specific VR Product [248] [173]

68

Chapter 4

Literature Review - Requirements Engineering for VR Product

Development

This chapter presents our detailed systematic mapping study on Requirement Engineering practices
within VR community. This exercise identifies the methods for given thrust areas from the literature and
also helps us comprehend the scope and intent of each method for a given VR application domain.

4.1 Mapping Study - RE for VR Software Products

Karakostas et al. [164] have articulated various aspects of Requirement Engineering (RE) like Re-
quirement Elicitation, Requirement Analysis, Requirement Specification, Requirement Validation, and
Requirement Management. They clearly distinguished what Requirement Engineering should focus on
for any given technology. Vegendla et al. have conducted a Systematic Mapping Study on RE in various
software Ecosystems [268]. They recorded all possible methods practiced in the software ecosystem.
Pacheco et al. have studied the maturity of RE methods in traditional software products [123]. Vivian
et al. conducted qualitative studies on using VR technology to gather requirements for VR product
development [104]. Their observations show that Virtual Environments help gather requirements in de-
veloping VR simulators and VR training environments. However, their work focuses on requirements-
gathering processes in Mozilla Hubs and AltspaceVR-specific applications without explicitly mention-
ing a specific method in detail. Fariha et al. explored open-source Unity VR projects to understand how
developers optimize VR applications [193]. They focused primarily on performance optimization in the
context of non-functional requirements, and there was no mention of a requirement engineering method
required to optimize a VR project.

Requirements gathering and analysis are still challenging for mainstream software products [216].
Over the years, advancements in requirement engineering methods have enabled the development of pro-
cesses wherein systematic elicitation, analysis and specification techniques are used rather than ad-hoc
requirements-gathering methods. While researchers have written about the need to move from gath-
ering to eliciting requirements, Jaramillo et al. [124] were the first to conduct an extensive systematic

69

literature review on requirement elicitation methods practiced on mainstream software products. The
study covered research papers spanning 25 years. In the study, the authors claim that the results remain
relevant even now in understanding the state of art in Requirements Engineering. Their work provided
insights into various perspectives of requirements to be considered for mainstream software products.
Sufian et al. conducted a large-scale survey of software requirements prioritization Techniques [257]
for mainstream software products. They found various prioritization techniques and tools used in the
requirements-gathering process. One of the objectives of that study was to identify tools & techniques
that new researchers in the area can use. Studies by Sufian et al. [257], Pacheco et al. [123], Jaramillo
et al. [124], and Vegendla et al. [268] help understand the potential usage and maturity of existing RE
methods in conventional software and do not provide any insights on the methods in the VR domain.

Santos et al. [60] conducted a systematic literature review on consolidating existing evidence regard-
ing the requirement-gathering methods for building Virtual Reality systems and also studied the use of
Virtual Reality technology to conduct the Requirement gathering in general. Their results indicate the
need for studies that show the use of the RE process for VR systems as technological peculiarities need
to be considered [60]. Their conclusions are based on a small dataset (only 12 primary studies). Their
study lacks a detailed exploration of areas like elicitation, analysis, and specification of requirements
for VR products. Most of the studies from the existing literature do not provide any insights into the RE
methods used in the VR community. These studies primarily highlight the gaps in RE methods during
VR product development. As the rigor required in understanding RE methods for VR is high, there is a
need to study the literature in detail. Such a study can provide an overview to the VR community about
RE practices and help them possibly adopt the best methods for better VR product development.

Mapping Study Steup

This section discusses the mapping study process, including search strategy, search string, databases,
exclusion & inclusion criteria, paper selection, and data extraction. “Requirement Engineering” is a
multi-layered process that constitutes the following stages:

• Requirement Elicitation - a practice of researching and discovering the requirements of a system
of users, customers, and other stakeholders.

• Requirement Analysis - a practice of determining user expectations for a new or modified feature
or a product.

• Requirement Specification - a practice of documenting requirements in a prescribed purpose and
order of implementation.

• Requirement Validation - a process of confirming the specified requirements agree with the stake-
holder’s requests.

• Requirement Management - a practice of ensuring overall goals of product development are
successfully met during the development and release of a software product.

70

Table 4.1 PICOC definitions for literature study on Requirements Engineering approaches in VR
Criterion Description

Population Virtual Reality related products and applications
Intervention Requirement Elicitation, Analysis and Specification

Methods
Comparison Comparison of results captured in various RE Stud-

ies
Outcome RE methods applied to VR product and apps
Context published academic and industrial studies

A requirement analyst follows these steps to provide precise inputs to the underlying design, develop-
ment, testing, and release teams. This clears ambiguity and confusion among the underlying developer
teams. Among these stages - Requirement Elicitation, Requirement Analysis, and Requirement Speci-
fication primarily orient toward various methods & techniques. In contrast, Requirement Validation and
Requirement Management (including change management) tend to be subjective in practice and imple-
mentation. Thus, as part of our mapping study, we focused on the methods and techniques practiced
during Requirement Elicitation, Analysis, and Specification.

Research Questions

The Systematic Mapping Study described in this section uses the guidelines suggested by Petersen et
al. [204] in conjunction with the PICOC method [22]. PICOC (Population, Intervention, Comparison,
Outcome, and Context) can be used to define the scope and context among reviewers who conduct
an investigation. The general notions of the PICOC method applied to our study is shown in Table 4.1.
Using the Intervention and population criteria of PICOC, we constructed the potential research questions
of the mapping study under the set context (published academic and industrial studies) defined as part
of PICOC. Below are our research questions:

RQ1: What are the requirement elicitation methods used while building VR product(s)/app(s)?
RQ2: What are the requirement analysis methods used while building VR product(s)/app(s)?
RQ3: What are the requirement specification methods used while building VR product(s)/app(s)?
RQ4: Are there any requirement engineering methods for VR product(s)/app(s) specific to a field
of Interest?
RQ5: What are the specific attributes captured during elicitation, analysis, and specification of
requirements for VR Software Product(s)?

All the above research questions are formulated to explore the requirement engineering methods
adopted as part of various stages of VR product development requirements and the adoption maturity.
Here, “maturity” of a method is meant to signify a widely used and accepted method over time by a
wide range of VR community. For the rest of the paper, we describe “VR community” as VR researchers

71

from academia and industry who illustrated their work in the available literature only that are found us-
ing respective requirement engineering methods for our investigation. We do not consider individual
VR practitioners from Industry who practice requirement engineering methods in their day-to-day de-
liverables as part of this mapping study as it requires an additional ethnography study to understand their
practices in detail. Research questions RQ1, RQ2, and RQ3 are formulated to explore the requirement
elicitation, analysis, and specifications methods separately for better illustration and mapping. Santos
et al. [60] used their observations on a very limited dataset, whereas we studied literature available on
various databases and examined methods adopted in various stages of VR product development require-
ments. Research question RQ4 considers adopting the observed methods from elicitation, validation,
and specification in the field or domain of interest. Here the “field of interest” is interpreted as a class
or a domain of products that fall under a particular type of industry. This categorization is only to un-
derstand how RE methods vary across industries. Still, it does not mean the RE method is unique to
a particular domain or should not be employed on other domain applications. RQ5 was to articulated
to understand what VR attributes are considered by VR community for eliciting, analyzing, and speci-
fying requirements for VR software products. This facilitates the creation of the bare-minimum set of
attributes that constitute VR products and, therefore the development of VR-specific RE templates that
may be used by VR community while managing overall RE process.

Search Strategy

An essential part of the mapping study is the identification of keywords used for searching the
databases. More often than not, this tends to be an iterative process. The research questions - RQ1,
RQ2, and RQ3 are related in many aspects. Hence, the initial iteration involved a shared search query
set. However, peer reviews on the resulting papers found too many outliers that did not fit the interven-
tion criterion specified in Table 4.1. Thus we had to formulate a separate search string for elicitation
and another for analysis and specification.

Relevant work and observations for RQ1, RQ2, and RQ3 are detailed independently. No new search
query strings are defined for RQ4 and RQ5. Based on the search results for RQ1, RQ2, and RQ3, ob-
servations for RQ4 and RQ5 are deduced.

Search String: The finalized search string deduced after multiple iterations is given below:

C1: “VR” OR “Virtual Reality*”
C2: “Requirement Elicitation” OR “Software Requirement*” OR “Requirement Engineering” OR “Re-
quirement Management” OR “Requirement process” OR “Requirement Evaluation” OR “Functional
Requirement” OR “Non-Functional Requirement”
C3: “Requirement Analysis” OR “Requirement Specification” OR “Functional Requirement” OR “Non-
Functional Requirement”

72

‘C1’AND ‘C2’ is the resultant search string formulated for research question RQ1.
‘C1’AND ‘C3’ is the resultant search string formulated for research questions RQ2 and RQ3.

Given the focus on VR, the query string C1 considers the possible variants of the Virtual Reality key-
word. The requirement Engineering domain is the core of our study; thus, all likely keywords regarding
requirements are considered. The initial version of the C2 query string contained ‘Requirement’ as one
of the keywords. We had to remove the keyword ‘Requirement’ as it returned too many papers that
were not relevant to the study. Further, we narrowed down the list of keywords as per RE process defi-
nitions [164]. Given that VR technology is relatively recent, we did not consider the year of publication
as a filter for the search string. The query string C2 focuses on Requirement Elicitation, and C3 focuses
on Requirement Specification and Analysis. Overall, we considered papers that mention requirement
elicitation, analysis, or requirement specification method(s) to develop a VR product and have moderate
to significant information about the VR Product. For example, at minimum, the papers that provided
details about the product input/output, domain, target users, scope and extent of interactions, etc. were
considered. Investigating the metrics and demerits of the observed methods over each other is not in
the scope of our current mapping study as there isn’t enough literature available to establish the facts.
However, we illustrate the benefits of a few methods by using the observed field-of-interest as a data
point.

Search Quality Assessment

We followed Petersen et al. [204] guidelines on formulating and finalizing the search string. We
developed an initial search string and reviewed it among this mapping study’s authors and other fellow
researchers from our research center. The peer-review approach [204] helped us revise the search string
closer to our research questions. The authors of this paper have independently conducted the search
activity after finalizing the search string, and the results were independently recorded. This activity
helped us address search filtration biases. It is an iterative process that sometimes generates outcomes
conflicting with each other’s observations. We used “Inductive Reasoning” to address the conflicts by
mapping the specific observation of a peer reviewer with our research questions to arrive at a generalized
conclusion that agrees with all the reviewers. This process helped us avoid bias in decisions, deviations
from our study, and duplicated results. After thorough consideration, the generalized conclusions are
considered for developing the search string for our mapping study. The search was conducted against the
research paper’s attributes like abstract, contents of the paper, title, and keywords. Further filtration was
done on these attributes to eliminate unmatched research papers. Our supplement data with collections
of the gathered papers is available here [181].

73

Databases and Paper Selection

The study considered published research papers until February 2023. Major electronic research
databases - IEEE Xplore, ACM Digital Library, Springer, and Science Direct were used for conducting
the search. The dataset includes special edition journals, articles, industry talks, prototypes, etc. Grey
Literature, i.e., research that is either unpublished or has been published in the non-commercial form
(for example - Policy documents, standards, etc.), were omitted. We focused only on active research
publications. There were no additional filters placed on these databases. The database included publica-
tions of indexed journals, conference proceedings, review papers, workshop proceedings, late-breaking
works, industry track papers, and companion proceedings. The search order performed on the databases
returned most of the results. The search fields and search string were formulated so that the search
process was similar across all the electronic research databases.

Exclusion Criteria - Articles with unnecessary information about requirement engineering, topics re-
lated to the description of requirement engineering, or industry white papers were excluded. Articles
with sparse details about the requirement elicitation, analysis, or specification method and with no
related study setup on VR products were ignored. Papers that did not mention anything about the re-
quirements of the VR product built as part of their research were also not considered. Newsletters,
editorials, press notes, and magazine articles were excluded from the study as they did not have enough
literature for our research. Reports were excluded from the study as they have insufficient details about
the practice of requirement engineering methods. Books were excluded from the study as they are too
comprehensive for a mapping study and are likely candidates for literature review rather than a mapping
study. As shown in Fig 4.1, all the paper counts in each stage are exclusive to a particular database, and
we avoided repetition of the same paper across the databases and considered it under one database.

Inclusion Criteria - Papers that proposed or revised or discussed requirement engineering method(s)
and approach(s) were considered as part of our study. Book chapters, conference proceedings, confer-
ence articles, and early-access research papers were considered for review. Full-length journal proceed-
ings were included as part of the journals. An equal match of the search keywords against the title,
abstract, keywords, or some part of the paper was also considered. The paper consists of the studies
conducted in academia or on an enterprise product that were given primary consideration. All papers
were included immaterial of the publication date. Papers published only in the English language were
considered.

Paper Extraction

We followed the paper extraction guidelines proposed by Petersen et al. [204]. Attributes like Paper
UniqueID, Paper Type (Journal/Conference/Review Article), Author(s), Editor(s), Title of the paper,
Pages, keywords, DOI, year of publication, ISBN, Publisher, Extraction date, and Type of DataSource

74

are extracted for each paper. As shown in Fig 4.1, we conducted data extraction for Requirement
Elicitation and Requirement Analysis-Specification separately based on the search strings designed for
respective research questions. Query strings C1 and C2 are utilized for extracting papers for RQ1, i.e.,
for Requirement Elicitation. Query strings C1 and C3 are utilized for extracting papers for RQ2 and
RQ3, i.e., for Requirement Analysis and Specification.

Our initial search of query strings C1 & C2 generated 1771 papers from respective databases. We
filtered these papers using the exclusion and inclusion criteria and later conducted forward and reverse
snowballing. This resulted in the final set of 60 papers for requirement elicitation methods practiced
by VR community. Our second search query string C1 & C3 generated 932 papers in total from all
the databases. We filtered these papers based on the exclusion and inclusion criteria and separated
them into two buckets. One with all papers on requirement analysis and the other with papers on
requirement specification. After applying forward and reverse snowballing, we arrived at a finalized list
of 36 papers for studying requirement analysis methods in VR and 10 papers for studying requirement
specification methods in VR. The overall search filtration data is made available as part of supplemental
material [181].

Figure 4.1 Paper Extraction Process and corresponding results

75

Artifacts

We conducted the mapping study based on the guidelines proposed by Peterson et al. [204]. The
resultant artifacts of the work are a collection of research papers downloaded from various research pa-
per databases. We initially downloaded research papers using dedicated search strings for the respective
research paper databases. Using this initial download paper dump, we filtered papers at every step of
our mapping study. Each research paper database provides a paper download in different formats. For
example, IEEE and Springer provide paper titles and meta-data information in CSV (comma-separated
values) file format. ACM will only provide you with each paper’s BibTeX Bibliographical Database
file. Science Direct will provide you with the BibTex file and the paper’s PDFs for download.

We narrowed the initial paper dump to the final paper set by conducting filtration methods in the fol-
lowing order as per systematic mapping study guidelines [204] - search quality assessment, peer-review
by a domain expert, applying exclusion and inclusion criteria, and forward-backward snowballing. Us-
ing the final paper set, we illustrated our mapping study results. These artifacts are reproducible using
the same study setup and filtration process. The artifacts produced are documented as part of supple-
mental material [181].

4.1.1 Requirement Elicitation Methods for VR Software Products

The search strategy and filtration criteria ensured that each paper reviewed had some aspect of elic-
itation, analysis, or specification of requirements for VR products or prototypes. In this section, we
discuss our observations on the types of methods identified, a trend identified by a method over the
years, and methods specific to a field of interest as the responses to our research questions.

RQ1: What are the requirement elicitation methods used while building VR product(s)/app(s)?

The elicitation methods used by VR community are categorized into four different themes. The
themes are categorized based on our analysis of filtered literature and the nature of usage/implementation
of the requirement elicitation methods in developing a VR product or a prototype:

• Widely Used Methods

• Focused Methods

• Customized Methods

• Distinct Methods

Widely used methods are predominantly described and applied similarly in the relevant literature. Fo-
cused methods are limited to specific categories of VR products. Customized methods are methods
claimed to be a common RE method but are customized by the VR community to achieve their goal.
Distinct methods are RE methods that are not conventional RE methods but are developed for particular
VR products.

76

Widely used methods

In instances where VR community are unaware of the initial product design or have very limited
knowledge about the VR product, ‘Direct Inspection’ method has broad acceptance across all the do-
mains. The direct method is simple and empowers the requirement analyst to figure out the requirements
by themselves. In the early stage of product development, with no clear way forward, requirements are
determined based on the potential interests of the end users. No other structured methods are followed
by the practitioners to record and formulate the initial requirements in these cases. A few of the use cases
include - building collaborative design apps using VR for better Design [239], building user-centered
data visualization in VR [40] for personalized view, simulation-based evaluation of user interfaces in
automotive industry [207] for multi-user and multi-task assistance, implementing a second-life virtual
world platform for effective human interaction [127] for addressing social phobias, haptics based editor
for designing immersive experiences in VR [63], and NASA’s simulation-based ground test and protocol
analysis tool for spacecraft [91].

In most domain-specific applications, specifically domains like healthcare, VR community seek in-
puts from ‘Domain Experts Review’. Simulation-based medical planner for patients with cardiovas-
cular disease [252], Training medical practitioners on conducting minimal invasive abdominal cancer
surgery [280], educating surgeons about endoscopic surgery using simulation-based methods [295],
training dental practitioners on addressing dental anesthesia [58], implementation of patient-specific
cognitive engine for robotic needle insertion during surgeries [259], conducting eye-tracking based
evaluation techniques for a nursing professional to treat pediatric patients [201], Spinal Cord Injury
re-hab [133], Care ecosystem for ADHD patients [253] etc. require domain experts to be a part of the
development process. Other prototypes included the implementation of remote handling operations for
a JET [233], virtual training systems for Industry workers [195], Game-based education on Safety for
Industries [128], facilitating building model adoption in the construction industry [99], AR-based appli-
cation for controlling resources on construction projects [149], developing a visual inspection system
for an in-vessel robot in spaceships [274], motion-based games for building physiotherapy applica-
tions [200], improving social skills in autistic children [26]. Studies on domain expert reviews in other
domains like entertainment and tourism include the implementation of virtual Indonesian musical in-
strument [108], developing a 3D city model for real-estate market development [235] and VR Tour
Guiding [167]. A Likert based questionnaire is used to prioritize the need for a feature in a VR-based
training tool called MediTool [168]. User feedback is captured by providing 2D and 3D-based train-
ing setup to understand the impact of VR-based training on medical surgeons. VR Cycling Scenes are
developed to use them as part of an empirical field study on understanding the physical environmental
factors related to cycling in older adults [162]. Practitioner’s reviews are captured to develop the flow
of the cycling scene to ensure that they are relevant to the context of cycling.

‘Survey Questionnaire’ is another requirement elicitation method preferred by VR community. Use
cases like luxury brand virtual shopping [18] with diverse options for selection as features, building
virtual worlds for personalized data and process visualization [102], understanding human emotional

77

responses concerning arousal and valence [75], providing virtual experiences through social VR [101],
understanding students’ perspectives on mixed reality in higher education [279] are few of the research
prototypes that followed survey-based questionnaire method.

Focused Methods

VR community use the existing ‘Domain Knowledge’ method while formulating requirements. In
this case, the domain expert elicits the requirements and then reviews them by VR community to assess
whether they can be built as a VR product. This is in contrast to the widely used method of ‘Domain
Experts Review’ where in the requirements that are previously elicited are reviewed by the domain
expert.

Enhancing UML modeling using VR [37], developing a structured teaching system using virtual
platforms [242] and building location-based services for virtual college campus tour [277] are research
works where VR community have relied on existing domain knowledge. In [189], authors discuss a
VR-based simulator training in the maintenance of Railway Wagons.

While solving real-world problems, VR community have relied on the ‘Practitioner’s Studies’ or
literature of existing practitioners. Use cases include a therapy system for arm and hand rehabilita-
tion [211], Building a haptic-based dental simulator and its related patient examination system [273],
examining multi-modal interactions for foot reflexology [55]. Practitioner’s Studies are widely pre-
ferred for use-cases involving protocols and standards. In cases where VR community require precision
in requirements, ‘Subjective Inspection’ method is followed. Software Development Process Educa-
tion [100], Therapy for overcoming Glossophobia or fear of public speaking [113] and building a haptic
feedback system for assessing wrist motor functions for patients with upper motor neuron lesions [163]
are use cases where this method is used.

VR community follow ’User Case Studies’ in cases where VR applications require user-centered
observations. VR community built novel solutions for large-scale collaborative VR environment sim-
ulations [39], multi-user VR environments [122], social interaction using ubiquitous virtual environ-
ments [157], developing ontologies for real-time interactive systems [278], developing virtual class
service using a predefined SERVQUAL methodology [64], Edge Computing based Human Behaviour
Recognition System [243] building intelligent systems for virtual roaming [52] and user-centered de-
sign for facial surgery training [177]. All such cases required a focused understanding of users and their
behavior in a virtual environment.

Customized Methods

Customized methods are formulated to address complex requirements, specifically where a common
RE method is unavailable to achieve its goal. It applies to instances where VR community must build
a particular solution for a targeted VR problem. ‘Case Studies’ based method helps VR community
understand the complexities behind end-user demands and capture customized observations to address

78

the product needs. Virtual Negotiation Training application [43], Designing a game-based interactive
stroke rehabilitation system [109] followed case study-based method. Our study observed some other
minor methods apart from the above methods. ‘Situated Cognitive method’ used to study the social
conventions on learning for non-natives and low literates [238]. ‘Participatory Workshops’ method is
used to develop serious games for providing and promoting healthy habits in the northeastern Brazilian
countryside [61]. For heuristic evaluation of virtual museum ‘Structured Interviews’ are conducted
from end-users via smartphone [184]. ‘Behavioral Questionnaire’ method is used for examining the
participants for studying therapy for a sense of presence and meta-cognition to VR exposure of Social
Phobias and Fear of Flying [197]. ‘Role Play Flow Analysis’ method is used while developing a role-
play game-based app for a virtual environment. VR community develop and practice these custom
methods to address VR products’ important requirements and market needs.

Distinct Methods

In a few use cases, VR community followed unconventional methods to meet the product require-
ments. Such methods are referred to as Distinct methods. Practitioners followed the rapid ‘Prototype’
method to address frequent changes in requirements [71] while building virtual actors for a collabora-
tive learning environment. It helped them to address dynamic requirements and enhance the prototype
in a timely fashion. Another method called ‘Core Task Analysis’ is used for developing a mobile aug-
mented reality tool for maintenance work [237]. A method like this can help developers drill down the
necessary features based on the tasks defined in the application. VR developers can easily correlate the
intent and motive behind a defined task while building the VR product. ‘Story boarding’ method is used
while building training systems for bridging gaps between end-users and developers in the Software
Development ecosystem [222]. It provides an end-to-end flow of responsibilities for every task in a VR
product. A method like ‘Psychological theories’ is used for developing a virtual environment for early
diagnosis of dementia patients [272]. It follows a steady and thorough multilevel process to capture re-
quirements before finalizing the features. ‘Mental model technique’ is another method used to construct
an image-based spatial presence of virtual experience [180]. Requirements are generated based on the
tailored metal model defined per participant. A customized method called ‘RE-FIT method’ proposed
by Bhimani et al. [36] uses virtual experience for empowering people with special needs. This method
steadily captures the requirements and correlates with the end-users needs.

Maturity of the requirement elicitation methods in practice

RE elicitation methods have matured over the past three decades. The practices in some meth-
ods have evolved while others remain unchanged. We broadly categorize the unchanged methods as
Traditional Methods and all others as Evolved methods. Fig 4.2 describes the year-wise requirement
elicitation methods used by VR community and the methods’ maturity over time. Each squircle in the
figure represents the count of papers relevant to that RE method published in a given year. The size of

79

the squircle is correlated to the number of RE methods. Squircles with a darker red shade are traditional
methods with an unchanged overall elicitation process. The Squircles with a darker shade of blue color
are evolved methods whose elicitation process has changed over time. The Squircles in the middle that
falls between red and blue shades are distinct methods that address specific VR problems.

Figure 4.2 Requirement Elicitation Method and Maturation levels

Traditional Methods Based on the available data, we observe that the adoption of requirement elic-
itation methods in VR started more than two decades ago with simple methods like ‘Direct Inspection’,
‘Prototyping’ and ‘Use case Studies’. As per Fig ??,‘Direct Inspection’ is unchanged and widely used.
Researchers conducted a direct inspection to determine the value of the product scope for target users
and then formulated constraints of the product idea by not implementing any specified techniques to
build an early prototype version of VR products. Most early VR products are highly focused on a
specified need or activity, which might not make VR community think about novel methods while cap-

80

turing requirements. Early VR applications for collaborative design-based VR environments [239] and
User-centered data visualization [40] are no longer usable as these VR apps are highly sophisticated
and dependent on customized external hardware for generating immersive experience to the end-users.
The value of VR simulation gained prominence in the healthcare industry, leading VR community to
adopt ‘Domain Expert Reviews’ as a method for gathering requirements to build simple applications for
healthcare practitioners.

Evolved Methods - With the advent of simplified hardware for VR, new VR applications emerged
around 2009. As per Fig 4.2, there is a shift in requirement elicitation methods used for building VR
applications that require domain knowledge or domain expert reviews. The need for VR community
to interact with real-world practitioners to gather and correlate their gathered requirements with real-
world scenarios has gained prominence. With the rise in addressing complex problems through VR, VR
community built customized methods to meet the requirements of the target audiences of respective VR
applications. ‘Situated Cognitive method’ and ‘RE-FIT Method’ are distinct methods that are created by
VR requirement analysts to elicit and finalize requirements. Other distinct methods, including ‘Partici-
patory Workshops’, ‘Role Play Flow Analysis’ for multi-user applications, and ‘Core Task Analysis’ for
task-based applications with complex actions are recommended for VR developers. Most remarkably,
methods like ‘Psychological theories’ recorded by domain practitioners and ‘Mental model technique’
help VR community to develop better User-centered social or personalized VR applications in the future.

Among all the elicitation methods studied, usage of the automated or semi-automated method was not
observed as part of prevailing practices in the VR development ecosystem. VR community uses manual
elicitation methods as part of their requirement elicitation process. Although, this was not the initial
criterion for our inquiry in this study, we make this observation for future work.

4.1.2 Requirement Analysis Methods for VR Software Products

RQ2: What are the requirement analysis methods used while building VR product(s)/app(s)?

The Requirements Analysis methods published and available in the various databases are less than
the requirements elicitation methods. Table 4.3 illustrates most of the requirement analysis methods
practiced by the VR community. Based on the available literature, it can be observed that VR community
have customized conventional requirement analysis methods to determine user expectations for a new
or modified product.

81

Requirement Analysis Methods in Practice

In this section, we collated all the requirement analysis methods practiced widely in detail in most
of the observed literature. For clarity, we describe the requirement analysis method’s name and usage
on an example system.

‘Object Oriented Method’ is observed to be the most widely used analysis method, primarily for
VR products in healthcare like developing electro-vibration haptic feedback simulation system [299],
exposure therapy for acrophobia [16], Ankel Rehabilitation [81], and Endotracheal Incubation Sim-
ulation Training [218]. Other customized versions of the Object Oriented method are ‘Object-Entity
modeling’ and ‘Object Oriented domain-centered method’. These methods are used in recreation and
simulation-based education VR products [300] [206].

Methods like ‘Control Flow Chart Method’ are primarily used for building VR products in Man-
ufacturing [62] [112]. ‘Use case flow diagrams’ [23] [132] [209], ‘Heuristic (Human-centered ap-
proach)’ [226] [224], and ‘Physical mock-up analysis methods’ [34] [45] are also widely used.

A few distinct methods were employed for specific VR products like ‘Abstract-to-Concrete Gap
Analysis’ to develop a Mechatronic Assembly Simulation Scene [244], ‘Strategic Dependency Model (i*
star)’ for developing Multi-agent 3D Game for Cognitive Simulation for manufacturing [9], ‘Thematic
Analysis’ on developing a Vehicle Pedestrian Communication for Vision Impaired pedestrians [56] and
‘Workflow Technique’ for Micro-robotic cell injection training system [80].

Maturity on Usage of Requirement Analysis Methods

Early works that used requirement analysis methods for VR products primarily relied on model-
based validation. For example, Flow Chart for building Virtual Campus System [287], Sequence Di-
agram for Surgery Simulation [27], Unified Modeling Language for VR Conceptual modeling [37]
and Abstract-to-concrete Gap Analysis for developing Mechatronic Assembly Simulation [244] are few
early VR scenes that relied on model-based requirement validation which is conventional software en-
gineering practice. Later, we observed that most requirement analysis methods are centered around Ob-
jected Oriented method, its variants, and Flow Chat Analysis over time. Apart from these observations,
no other significant insights could be generated with the available data on the maturity of requirement
analysis methods in VR product development.

Although this is separate from the initial investigation criteria and by considering the observed re-
quirement analysis methods, it isn’t easy to automate requirement analysis methods when compared
to requirement elicitation methods. The observed requirement analysis methods are more potent in ex-
amining the technical feasibility of VR product capabilities during the analysis phase. These methods
must be modified to manage requirement traceability if the requirements are incrementally captured. VR
product development is not amenable to incremental development life cycle as it significantly increases

82

development costs [138]. Thus there is scope for automation and development of novel traceability-
based requirement analysis methods.

4.1.3 Requirement Specification Methods for VR Software Products

RQ3: What are the requirement specification methods used while building VR product(s)/app(s)?

The available literature on Requirement specification methods is significantly low. There is limited
evidence of VR community using VR-specific requirement specifications methods or adopting con-
ventional software engineering methods for VR products. We observed 10 studies from the available
literature that orient towards the following methods illustrated in Table 4.4. Functional SRS Documen-
tation is a predominantly used requirement specification method by VR community. There are other
variants of this method, such as UML/Legacy SRS documentation [214], UML/Design Research Docu-
mentation [13], Templatized Specifications [194], Plan Documentation [129] and Task Tree Documen-
tation [57]. These variants are customized versions of the prevailing SRS documentation method from
traditional software engineering. For example, task tree documentation and templatized specification
methods have a distinct way of specifying requirements post-elicitation. Task tree documentation spec-
ifies requirements in a tree-branch-node form. Templatized specification method specifies requirements
in collapsible-expandable form rather than a linear SRS documentation.

Common Scene Definition Framework [32], Conceptual VR Prototyping [171] and Mental Modal
Technique [180] are distinct requirement specification methods that are used on sample VR scenes and
studying spatial presence. In contrast to requirement elicitation and requirement analysis from previous
section, discussing the maturation of requirement specification methods over time is difficult due to the
very small dataset. Elicitation and Analysis of requirements in VR are widely practiced and matured
over time. However, this is not the case with requirement specification methods. However, Functional
SRS documentation appears to be the only widely used method by almost all VR community. Thus,
an exploratory study among VR community is required to understand their requirement specification
practices in detail.

4.1.4 RE Methods with specific Field of Interest for VR Software Products

RQ4: Are there any requirement engineering methods for VR product(s)/app(s) specific to a field
of Interest?

Fig 4.3 illustrates the overall requirement elicitation, analysis, and specification methods adopted by
VR community to build potential VR products. Table 4.2, Table 4.3, and Table 4.4 provide a broad
categorization of requirement elicitation, analysis, and specification methods used by VR community
grouped by field of interest. We have classified the identified research works into the potential field of in-
terest like ‘Design’ - for product owners and developers, ‘Analytics’ - for data visualization, ‘Education’

83

- for both social learning and technical education, ‘Health care’ - for physiotherapy, general medicine,
surgeries, and rehabilitation; ‘Space’ - for vessel inspection, simulation studies, and training; ‘Automo-
tive’ - for safety regulation; ‘Construction’ - for quality control; ‘Entertainment’ and ’Social’ Industries
for respective business centered applications. ‘Manufacturing was distinctly observed in requirement
analysis papers with detailed practitioner simulations for large-scale industries. ‘Tourism’, ‘Simulation’,
‘Recreation’, and ‘Military’ industries practice requirement analysis and specification methods for their
respective domain needs. This classification does not claim that the observed methods are limited to
only a particular field of interest. The methods illustrated under a given field of interest can be em-
ployed in another. However, we only deduced these classification based on our observations from the
gathered literature.

Figure 4.3 Overall Requirement Elicitation, Analysis and Specification Methods observed as part of
Mapping Study

The study shows that the Healthcare domain is an early adopter of VR-based applications to address
complex problems. Table 4.2 and Table 4.3 show that requirements elicitation and requirements analysis
methods are widely practiced in this domain. VR applications in healthcare involve training activities,
simulation-based surgery studies, rehabilitation practices, medication planning, and treatment planning.
Practitioners have adopted the ‘Domain Expert Review’ elicitation method as the best fit in such health-
care applications. In a few cases, they rely on ‘Practitioner’s Reviews’ and respective theories to elicit

84

requirements. One reason for choosing such a focused method could be the real-world implications
of these products on end-users. In contrast, there is limited usage of requirement-specific methods in
Healthcare.

‘Object-Oriented method’ is a detailed requirement analysis method compared to other requirement
analysis methods like ‘Workflow Technique’, ‘Focus group studies’ and ‘Heuristic - Human-centered
methods’ practiced in Healthcare domain. In general, almost all the domain-specific tasks are well man-
aged by experts from the respective fields. Thus involving such experts as part of requirement elicitation
will yield better results and pave a path for a robust VR product. Other elicitation methods like Case
Studies, RE-FIT method, and Psychological theories that have distinct features and offerings are also
used.

Products built for the social network domain widely rely on questionnaire-based requirement elicita-
tion method. The questionnaires are subjective and objective in structure. They are designed to capture
target-user understanding in detail and help the VR community to prioritize and plan the feature af-
ter every release. Entertainment, Design, and other minor domains follow various questionnaire-based
requirement elicitation methods. Education is a unique domain that adopted processes like Core Task
Analysis and Situated Cognition method to build VR-based educational products. These elicitation
methods are structured and iterative in their setup. This aids requirement analysts in conducting re-
quirement studies after product enhancement and subsequent release. On the other hand, Use-case flow
diagrams are observed to be widely used requirement analysis methods in the Education domain. The
Core Task Analysis elicitation method appears to be ideal for VR applications requiring frequent re-
quirements changes. It also decreases the cost of analysis as this method has the flexibility to capture
the understanding of change in specification. Military is one such domain that appears to have applied
Flow Chart analysis method along with a Plain documentation method for the specification of require-
ments. Recreation-based VR applications also utilized Functional SRS documentation as a specification
method, whereas employed Object-orient method, Flow Chart, and Use-case flow model for conducting
requirement analysis.

Overall, the observed requirement engineering methods practiced in Virtual Reality Products - which
include requirement elicitation, requirement analysis, and requirement specification, are illustrated as
part of Table 4.2, Table 4.3, and Table 4.4. These methods are grouped by field of interest to display
their adoption across these areas. This information may help requirement analysts to choose and adopt
an appropriate method for conducting hassle-free VR product development.

4.1.5 RE Attributes to Capture VR Product Requirements

RQ5: What are the specific attributes captured during elicitation, analysis, and specification of
requirements for VR Software Product(s)?

85

Requirement analysts are expected to have some degree of domain understanding for the product
that they are gathering, analyzing and specifying the requirements. In general, a meta-model-based do-
main understanding is a common practice for most requirement analysts to interpret the minimum set of
attributes of a particular domain. For example, fields like Multi-Similarity Systems [203], Distributed
Embedded Systems [44], etc. are few such cases that require an understanding the domain specific
attributes and possibly a creation of domain-specific languages. Based on the reviewed literature we
were able to formulate a minimal set of attributes required to conduct requirement elicitation, conduct
analysis and then specify for VR product development. We term them as bare-minimum attributes. To
start with, VR community can use these essential attributes to conduct elicitation, validation, and spec-
ification of requirements for VR product development. The following are the bare-minimum attributes
deduced heuristically using the “abductive reasoning” approach (a method of reasoning that involves
inferring which of several explanations for particular observed facts is the most compelling one) for con-
ducting elicitation, analysis, and specification of requirements for a VR Product. These bare-minimum
attributes are building blocks for understanding VR products. They are detailed as follows:

• Scene Properties: Capturing the 3D environment properties is key for any VR product. It is
required to understand the dimensions, degree of freedom, and boundaries of the play area of a
3D environment from the respective stakeholders. For example, different variants can offer a VR
therapy product for overcoming Glossophobia or fear of public speaking [113]. The VR commu-
nity should understand the scope and degree of the scene to deliver potential layouts considering
the requirement.

• Articles: These are the assets or objects of a 3D environment that play a significant role in the
interaction. For example, a VR training product for facial surgery requires specific medical hand-
held tools to interact with the persona in the scene. VR community should be able to record and
co-relate the intent and usage of these tools for executing a surgery training scene.

• Action-Responses: VR community must research the possible actions between the articles and
participants in a scene and their potential responses to one another. These action responses be-
tween the available articles in a VR scene could be synchronous and asynchronous. This defines
the behavior of an article in a given scene. For example, a VR product for early diagnosis of
dementia patients [272] requires a careful understanding of the articles and dementia participant
traits to address the diagnosis. The interactions of such participants could be sensitive and dis-
creet.

• Acoustics: audio is a vital attribute of a 3D Environment that defines the authentic aesthetics of a
scene. It provides an advantage to the scene while addressing the intent of the scene. For example,
a VR Tour guiding product [167] aims to provide the remote aesthetics of a tour. The acoustic
effects of a tour, monument, or place will elevate the participant’s experience in such a VR scene.
VR community should obtain an abstract view of such acoustic effects while working with the
stakeholders during the elicitation.

86

The above-defined bare-minimum set of attributes is inevitable and necessary for the elicitation pro-
cess for VR products. All other attributes can be considered add-ons and may add more richness to the
VR product. The following attributes can be considered as necessary and sufficient for elicitation of
requirements for a VR product.

• Control-flow of Scene: It is significant to register the expected journey of a scene across a time-
line from the stakeholders. A constructive control flow of the overall scene will position the scope
and limits of a VR product. The observed methods - Story boarding, Role Play Flow Analysis,
and Mental model technique help VR community elicit the control flow of the scene to some ex-
tent. For example, a VR product that aims to construct an image-based spatial presence of virtual
participant experience [180] requires eliciting the possible journey of a participant for a quality
VR scene.

• Action-flow of Articles: Synchronous and Asynchronous flow of events in a 3D scene will help
VR community define the articles’ timeline in a given VR scene. Article action flow is crucial
to define the behavior of a scene. For example, VR products that provide massively multi-user
interactions [122] require eliciting all possible action events of all the articles in the scene to
generate potential response outcomes.

• Data-flow: Logging the data in all levels of VR scene execution is optional. However, under-
standing the data flow is required in the case of VR products that need to judge participants’
journeys in the scene. For example, VR products that implement a patient-specific routine for
robotic needle insertion during surgeries [259] require eliciting a sequence of events and their
respective data points to evaluate the correctness of needle insertion.

Overall Observations: Based on our observations from previous section, methods like Domain Expert
Review, Direct Inspection, Survey Questionnaire, and Use case-based Studies are widely used for their
ease of execution. It is easier and faster to elicit a VR product using these methods. However, it requires
multiple iterations to reach precise specifications as most of the target products are domain-specific.
Based on our observations from previous section, VR community have developed new methods like
Situated Cognitive method, Participatory Workshops, Structured Interviews, Behavioral questionnaires,
and Role Play Flow Analysis to avoid multiple iterations. These methods help VR community to elicit
requirements briefly, eventually reaching detailed specifications of a VR product.

Most of these methods emerge from conventional software engineering practices and show some
results that are difficult to determine if they positively or negatively impact VR product development.
Despite the method, VR community must thoroughly understand VR as a domain to elicit, analyze and
specify requirements. Our study reveals less evidence that observed methods do not imply domain un-
derstanding and are generic in practice. This implies more responsibility on requirement analysts to
capture proper and correct requirements in the context of the VR Domain. The elicitation output of
experienced VR community is anticipated to be more productive than a naive VR community. This

87

is a severe gap within the participant’s expertise and should be addressed for better requirement gath-
ering. Despite the expertise of the VR community, the method should be able to provision the bare-
minimum aspect of the VR domain on gathering requirements. In such cases, a human-in-a-loop may
confuse VR developers as the requirements become unclear. There is an excellent scope for introducing
a domain-centered model-backed requirement-gathering method(s) that can help VR requirement ana-
lysts to gather requirements irrespective of their level of expertise. Almost all the observed methods do
not address this gap. New tools and methods are to be formulated to address this gap and improve the
requirement-gathering process for VR product development.

Scope and Extent of Automation: Overall, the RE Methods for elicitation, analysis, and specification
for VR products discussed in previous sections are primarily manual. Few of them are domain-specific,
and few others are laborious and require significant human effort. There is negligible possibility of
automating the observed methods. Automated RE methods may minimize the chances of errors, lead-
ing to enhanced accuracy. Although this was not the initial criterion for our inquiry in this study, we
believe this is an important aspect and could be of interest to the VR community. While automation
of RE methods enabled conventional software practitioners in Test case generation [217] and Reuse
and configuration [161] etc., it also facilitates software practitioners to accelerate model-driven devel-
opment [154] of software products. However, based on our observations - such automated practices are
yet to be developed and adopted by the VR community.

Here, automation can be defined in two-fold i.e., firstly - automation of the RE method itself and sec-
ondly - using any given RE method in an automated development pipeline. Considering the complexity
of VR Software, the automation of RE methods may require detailed ideation and further research. We
may also need metrics to define the quality and traceability of the requirements generated through these
methods. However, using existing RE methods for VR in an automated development pipeline seems fea-
sible if the output of existing RE methods practiced by the VR community is formalized using a minimal
set of elements and attributes illustrated in previous section. In that case, we can facilitate model-driven
development for VR software. Text-to-image models like DALL.E [220] can play a pivotal role in eas-
ing VR product development and help mitigate challenges illustrated in part of this chapter.

Conclusion: This chapter presents our detailed observations from the systematic mapping study con-
ducted to understand requirement engineering practices in virtual reality. Overall, we infer that almost
all the methods observed across these thrust areas are well known to the conventional software engineer-
ing domain and, in most cases, are force-fitted to address the need of the hour. There has yet to be an
attempt made by the VR community to evaluate the impact, influence, and relevance of these methods
on VR technology in practice. This is primarily because of an unclear understanding of Virtual Reality
as a technology domain and what it takes to create novel methods that operate for VR software prod-
ucts. These observations are closer to our conclusions from Chapter 3. This motivated us to examine the
bare-minimum attributes of a VR technology domain to develop novel methods for the VR community.

88

Table 4.2 Requirement Elicitation method mapped with respective reference
Field of Interest Requirement Elicitation Method About the Product/Prototype Reference

Analytics Direct Inspection Data Visualization [239]

Automotive Direct Inspection Simulator based Automotive UI [40]
Domain Expert Review Train Wagon Maintenance Simulator [189]

Construction

Domain Expert Review Building Modelling in Construction Industry [71]
Domain Expert Review AR for Construction Control [252]
Domain Expert Review VR for Safety Training [280]
Domain Expert Review City Model Planner [233]

Design

Direct Inspection Collaborative Design Setup [39]
Usecase Studies Collaborative Virtual Environment [37]

Domain Knowledge UML using VR [195]
Domain Knowledge VR Content Authoring [242]

Storyboarding Design and Code Review within Teams [237]
Usecase Studies Intelligent Interactive and User Cognition [207] [243]

Mental model technique VR for Spatial Presence Experience [211]
Survey Questionnaire Arousal and Valence Studies for VR [177]

Direct Inspection Haptic Editor for Immersion Experience [295]
Use case Studies Roaming in VR Scene [99]

Subjective Inspection VR for Haptic Feedback [222]

Education

Prototyping Collaborative Learning VR App [127]
Domain Expert Review Industrial Training [122]

Core Task Analysis Maintenance Training VR App [157]
Usecase Studies Virtual Class Services [43]

Situated Cognitive method Learning App for Non Natives and Low Literates [109]
Serial Inspection SE Process Education [278]

Survey Questionnaire MR for Higher Education [149]

Entertainment

Direct Inspection Second Life 3D Platform [64]
Survey Questionnaire VR Shopping [273]
Survey Questionnaire Personalized Virtual Worlds [238]
Structured Interviews Virtual Museum and Tour Guiding [18] [167]

Domain Expert Review Teaching Virtual Indonesian Musical Instrument [200]

HealthCare

Domain Expert Review Medical Planning for cardiovascular disease [272]
Domain Expert Review Abdominal Cancer Surgery Training [102]

Participatory Studies Arm and Hand Rehabilitation therapy [26]
User Centered Approach Maxillo-Facial Surgery Training [180]
Domain Expert Review Endoscopic Surgery Simulation Training [55]

Case Studies Interactive Stroke Rehabilitation [128]
Practitioner’s Review Dental Simulation Studies for Dentists [61]

Domain Expert Review Physiotherapy Motion Games and Spinal Cord [184] [133]
Psychological theories Early Diagnosis of Dementia [197]
Practitioner’s review Traditional Foot Reflexology Study [58]

Participatory Workshops Promoting Health Education in Brazil Country Side [75]
Domain Expert Review Dental Anesthesia Training [201]
Domain Expert Review Virtual Pediatric Patient Training System for Nurses [259]
Domain Expert Review Robotic Needle Insertion Training and ADHD [108] [253]

Likert Based Survey Health Care Education [168]
Practitioner’s Review Physical impact on Cycling in Older Adults [162]

RE-FIT Method VR for Special Needs [274]

Social

Use case Studies Multi-User Virtual environments [36]
Use case Studies Social VR using Sensors System [235]

Case Studies Virtual Negotiation Training [101]
Domain Expert Review Social Skills for Autistic Children [63]

Behavioral Questionnaire Therapy for Social Phobias [100]
Survey Questionnaire Social VR [52]
Domain Knowledge Campus Virtual Tour [279]

Role Play Flow Analysis Role-play in VR Game for Elders [277]
Subjective Inspection VR for Glossophobia [91]

Space
Domain Expert Review JET Flight Remote System [292]
Domain Expert Review In-Vessel Visual Inspection System [113]

Direct Inspection Space Simulation Studies [163]

89

Table 4.3 Requirement Analysis methods mapped with respective Domain and its reference
Requirement Analysis Method VR Product/Prototype Field of Interest Reference

Thematic analysis Vehicle Pedestrian Communication for Vision Impaired pedestrians Automotive [56]
Flow Chart Virtual Campus System

Design

[287]
Gap Analysis using CAD Engineering Design Review [284]
Physical Mock-Up analysis Design Review and FEMA Analysis System [34]
Object Oriented method Electrovibration Haptic Feedback in VR [299]
Object-Oriented Domain centered method Human Anatomy Puzzle

Education

[206]
Functional flow charts Computer Hardware Assembly VR Training Scene [263]
UML Conceptual Modelling [37]
Object-Oriented method Note taking Interface in VR Learning Environment [53]
Use case flow diagrams VR Campus tour [23]
Use case flow diagrams Basic Electronics training boards [132]
Heuristic - Human centered approach Computer Assembly VR Training [226]
Workflow Technique micro-robotic cell injection training system

HealthCare

[80]
Heuristic - Human centered approach Train Patients with Dementia to accomplish daily routines [224]
Object-Oriented method Exposure Therapy for acrophobia [16]
Sequence Diagram Virtual Surgery Simulation [27]
Control Flow Chart method Diagnosing Dyslexic Children Potential [106]
Object-Oriented method Ankle Rehabilitation [81]
Object-Entity modeling Endotracheal Intubation Simulation Training [218]
Focus group studies Motor-cognitive exergames for neuro-related diseases [225]
Prototype/Physical model Rehabilitation VR Serious Games [78]
Event Flow Graph Complex Commercial Manufacturing Systems

Manufacturing

[62]
Iterative - Control flow study Automotive Simulation Feedback tool [10]
Abstract-to-Concrete Gap Analysis Mechatronic Assembly Simulation Scene [244]
Control Flow Chart method Special Equipment Inspection System [112]
Object-Oriented method Welding Training Simulation [291]
Strategic Dependency Model (i* star) Multi-agent 3D Game for Cognitive Simulation [9]
Flow Chart Battlefield Simulation Military [297]
Object-Oriented method Virtual Archery Experience

Recreation

[95]
Object-Oriented method First Person Shooting with self-transforming controllers [152]
Flow Chart Virtual Kiosk [230]
Use Case flow model Archery Instruction [209]
Object-Entity modeling Rescue Training in Earthquake ruins

Simulation
[300]

Grant Chat flow Industry robotics simulation [72]
Flow Chart Analysis Cruise Ship Travel Training

Tourism
[256]

Physical model Adoption Interaction System for Digital Heritage [45]

Table 4.4 Requirement Specification methods mapped with respective Domain and its reference
Requirement Specification Method VR Product/Prototype Field of Interest Reference

CSDF (Common scene definition framework) Sample VR Scene
Design

[32]
Contextual VR Prototyping Sample VR Game [171]
mental model technique Navigation Spatial Presence [180]
UML and legacy SRS Documentation SE Presentations in VR

Education
[214]

UML and Design Research Document Programming Education using VR [13]
Templatized Specifications VR Foot Reflexology Therapy HealthCare [194]
Plain Documentation Defence Training Simulation for Multiplayer Shooting Military [129]
Functional SRS Documentation VR Relax-Refresh System Recreation [55]
Functional SRS Documentation Halden Reactor Project Simulation [96]
Task Tree based Documentation Space Debris Education Space [57]

90

Chapter 5

Understanding Virtual Reality Domain through a Model Template

This chapter presents our journey toward illustrating the bare-minimum aspects of the Virtual Reality
technology domain through a meta-model from a software engineering perspective. This will aid the
VR community in developing novel tools and formulating methods across all the observed thrust areas
to ease their overall VR software product development experience.

5.1 Attributes for VR Software Requirement Specification

A Virtual Reality (VR) software system strives to induce a targeted behavior in an organism (predom-
inantly a human or an animal) using artificial sensory simulation [156]. VR hardware and software have
evolved independently, causing disparity in the overall evolution of VR as a domain. Consequently, it
has become difficult for VR Practitioners’ to build portable and cross-platform VR products. Several at-
tempts are made to standardize VR as a domain through standards like VRML (Virtual Reality Modeling
Language) by W3C - 1997 [269], COLLADA (COLLAborative Design Activity) by Sony - 2004 [120],
O3D by Google - 2010 [119] etc. These standards have failed due to a lack of interoperability support of
VR software with VR Hardware [42]. Following are few detailed insights on these prominent standards
and the reasons for adoption failure.

VRML (Virtual Reality Modeling Language) [269] is a file format for describing three-dimensional
(3D) interactive vector graphics, designed particularly for the web. It allows the creation of 3D scenes
and objects to be viewed in an web browser or a standalone VRML browser, called a “player”. VRML
files can be created and edited using various 3D modeling software, and can include textures, lighting,
physics properties, animations, and behaviors. VRML has been replaced by X3D (ISO/IEC 19775-1)
as the standard for 3D web graphics.

O3D was a web-based 3D graphics API developed by Google as an alternative to Flash and other
3D technologies. It was designed to enable the creation and display of interactive 3D graphics in web
browsers, without the need for additional plugins or software. O3D provided a JavaScript API for cre-

91

ating and manipulating 3D scenes, objects, and animations, and supported features such as lighting,
texturing, and physics. O3D was intended to make it easier for web developers to create and share 3D
content, and to provide a more immersive and interactive web experience for users.

COLLADA (COLLAborative Design Activity) is a royalty-free, XML-based file format for 3D dig-
ital assets. It was developed by the Khronos Group, an industry consortium focused on the creation of
open standards for 3D graphics, and is used for exchanging 3D models and scenes between different
applications and platforms. COLLADA supports a wide range of 3D modeling features, including ge-
ometry, textures, lighting, animations, and physics. It is designed to be platform-independent and can
be used to exchange 3D assets between different operating systems, hardware platforms, and software
applications. COLLADA files can be exported and imported by a variety of 3D modeling tools, game
engines, and other software, making it a popular choice for interoperability in the 3D graphics indus-
try. COLLADA is often used for creating and sharing 3D models and scenes for use in real-time 3D
applications, such as games, simulations, and virtual reality experiences. It is also used in the film and
television industry for creating 3D visual effects and animations.

Despite initial interest and support, all of these standards failed to gain widespread adoption due to a
number of challenges as discussed below:

• Limited browser support: At the time of VRML’s and O3D’s introduction, few web browsers
supported the format, making it difficult for users to view and interact with VRML content.

• Complexity: COLLADA is a complex and powerful file format that supports a wide range of 3D
modeling features. This complexity can make it difficult for some users and developers to work
with, and can lead to issues with interoperability between different applications and platforms.

• Performance issues: VRML and O3D files could be large and complex, leading to slow loading
times and poor performance on many systems.

• Lack of standardization: VRML lacked a clear and consistent set of standards, making it diffi-
cult for developers to create consistent and reliable content.

• Limited authoring tools: There were few user-friendly tools available for creating VRML con-
tent, making it difficult for non-technical users to create and share their own 3D models.

• Competition: VRML faced competition from technologies like Flash and Java 3D, while O3D
was challenged by WebGL, Three.js, and Unity. Similarly, COLLADA competed with other 3D
file formats such as FBX and glTF. These alternatives offered similar capabilities and gained
wider adoption, reducing the appeal of VRML, O3D, and COLLADA.

• Limited use cases: VRML and O3D was primarily used for creating 3D models and environments
for the web, and did not have a wide range of other applications, limiting its appeal.

• Lack of community and developer support: COLLADA and O3D did not have a strong com-
munity or developer support, making it difficult for the technology to gain momentum and attract
a critical mass of users and developers.

92

On other end, formats like FBX (Filmbox) and glTF (GL Transmission Format) and gaining wide
popularity as their proprietary in nature.

FBX (Filmbox) is a proprietary file format used for exchanging 3D digital assets between different
applications and platforms. It was developed by Kaydara and owned by Autodesk Inc. was used for
exchanging 3D models, animations, and other assets between different 3D modeling tools, game en-
gines, and other software. FBX supports a wide range of 3D modeling features, including geometry,
textures, lighting, animations, and physics. It is designed to be platform-independent and can be used
to exchange 3D assets between different operating systems, hardware platforms, and software applica-
tions. FBX files can be exported and imported by a variety of 3D modeling tools, game engines, and
other software, making it a popular choice for interoperability in the 3D graphics industry. It is often
used for creating and sharing 3D models and scenes for use in real-time 3D applications, such as games,
simulations, and virtual reality experiences. It is also used in the film and television industry for creating
3D visual effects and animations. As it is proprietary format, it is not open to the public. Thus users
must have a license to use the FBX software development toolkit and underlying tools for working with
this format. However, FBX is widely supported by many 3D modeling tools and game engines, and is a
popular choice for interoperability in the 3D graphics industry.

glTF (GL Transmission Format) on other end is an open, royalty-free file format for 3D digital as-
sets. It was developed by the Khronos Group, an industry consortium focused on the creation of open
standards for 3D graphics, and is used for exchanging 3D models and scenes between different appli-
cations and platforms. glTF is designed to be lightweight and efficient, with a focus on real-time 3D
applications, such as games, simulations, and virtual reality experiences. It supports a wide range of
3D modeling features, including geometry, textures, lighting, animations, and physics, and is designed
to be platform-independent and easy to use. glTF is an open standard, which means that it is freely
available to the public and can be used and implemented by anyone. It is supported by a wide range of
3D modeling tools, game engines, and other software, and is becoming an increasingly popular choice
for interoperability in the 3D graphics industry. glTF is often compared to other 3D file formats, such
as COLLADA and FBX, which offer similar capabilities. However, glTF has several advantages over
these formats, including its lightweight and efficient design, its focus on real-time 3D applications, and
its open and royalty-free status. As a result, glTF is gaining popularity as a modern and flexible file
format for exchanging 3D assets between different applications and platforms.

In contrast, despite being proprietary (in case of FBX) and open, royalty-free (in case of glTF) they
are not widely acceptable due to volatility in their underlying meta-model of Virtual Reality technol-
ogy domain. For example, consider a human that has little or no awareness of the interference [156].
Such a human through a software system aspires to simulate a real-world environment as an immersive
3-Dimensional (3D) environment, primarily through 3D computer-generated graphics. Various human
sensory aspects like auditory, haptic (through force), olfactory, vision, human motor, proprioception

93

(body position and movement), and cognitive capacities are experienced through this system. Immer-
sion and Presence are ideal states of a VR software system but are not necessary prerequisites for en-
gagement and interaction.Despite the rise in computation power of VR hardware, VR software systems
do not adequately achieve realism through underlying VR software. VR hardware and VR Software
have evolved independently, leading to severe platform fragmentation. Such challenges still continue
with FBX and glTF standards. Recently attempts were made to support interoperability between VR
software and hardware using OpenXR standard APIs [97].

OpenXR is an open standard for virtual reality (VR) and augmented reality (AR) devices, developed
by the Khronos Group, an industry consortium focused on the creation of open standards for 3D graph-
ics. It provides a common, cross-platform API (Application Programming Interface) for accessing and
controlling VR and AR devices, allowing developers to create applications that can run on a wide range
of devices without the need for custom integration.It is initially designed to simplify the development
and deployment of VR and AR applications, by providing a single, unified API that can be used across
different devices and platforms. This allows developers to create applications that can run on a wide
range of devices, without the need to write custom code for each device or platform. OpenXR is an
open standard, which means that it is freely available to the public and can be used and implemented by
anyone. It is supported by a wide range of VR and AR device manufacturers, software companies, and
other organizations, and is becoming an increasingly popular choice for cross-platform development in
the VR and AR industry. OpenXR is still in the process of being developed and is not yet a final, stable
standard. However, it is expected to be released in the near future, and is already being used by some
developers and organizations for cross-platform VR and AR development.

Overall, the available standard are either in draft or require more comprehensive usage/feedback within
the VR practitioner community. Various commercial VR providers proposed and practiced variants of
the VR conceptual model. These models are open-ended and do not permit interoperability to meet the
necessities of a bare-minimum VR software system. At a minimum, a VR software system should depict
the components like scene, scene-objects, camera, action-responses, and behavior outcomes. However,
the existing conceptual models do not provide common control and data flow to facilitate construct-
ing a bare-minimum VR software system. Thus, we address the problem by formulating the following
research questions:

RQ: What constitutes a meta-model of a bare minimum VR software system?

In the following section, we discuss our study setup, data analysis, and our theory on creating a
meta-model for VR software systems to avoid platform fragmentation and portability issues.

94

5.2 Role Based Model Template for Specifying VR Software

Methodology

Conceptualizing a meta-model for VR systems requires a thorough understanding of VR as a domain
in addition to understanding VR systems in application domains like health care, banking, etc. We made
an unsuccessful attempt by conducting a systematic literature review on understanding what constitutes
a bare-minimum VR software system. The results were obsolete and no longer significant to com-
prehend contemporary VR software systems. Most of the primary and secondary studies [159] [245]
suggested superficial information on the working of a typical VR software system. Most secondary
studies present VR from an application point of view with no precise details on underlying aspects of
VR as a domain. We found studies that explain VR as a software system applied in various fields like ed-
ucation, tourism, simulation, healthcare, and design applications with no underlying information about
using the constructs of a bare-minimum VR software system. Given the limited academic literature,
we adopted the Socio-Technical Grounded Theory (STGT) approach [114] to investigate components
of bare-minimum VR software systems.

Socio-Technical Grounded Theory (STGT) is a modern version of traditional sociological Grounded
Theory methodology, specifically designed for Software Engineering and other socio-technical domains.
It is based on over 15 years of experience and combines socio-technical principles with grounded theory
methods to explore the intersection of technology and society. STGT is intended to provide increased
clarity and flexibility in its methodological steps and procedures. [114] It is an iterative and incremental
research method using available resources with abductive reasoning for theory development. As per the
STGT approach, the following particulars represent the boundaries of our work:

• Domain & Actors: VR is our domain, and the VR practitioners who take part in VR software
development are considered as actors. Here VR Designers, Developers, Acoustic Engineers, VFX
Artists, VR Testers, UX Engineers, Release Engineers, etc. are considered as VR practitioners.

• Phenomenon: To a meta-model for VR to illustrate a bare-minimum VR software system
• Data/Tools/Techniques: Qualitative data collected through informal interviews, VR SDKs and

VR Standards.
• Researcher: This study is reviewed and managed by VR Experts who act as researchers in this

study.

Below are the detailed steps that are required to be applied to conduct the STGT in practice:

• Define the Socio-Technical Research Context: This involves understanding the phenomenon
being studied, the domain and actors involved, the researcher’s role, and the nature of the collected
data.

• Conduct Basic Data Collection: Collect data through various methods, such as observations,
interviews, and document reviews, focusing on the socio-technical aspects of the research context.

95

• Analyze Data: Analyze the collected data using inductive and deductive reasoning, identifying
themes, patterns, and concepts related to the research question.

• Develop Emergent or Structured Theory: Develop a theory based on the analyzed data, using
either an emergent or structured approach, depending on the nature of the research question and
the data collected.

• Iterate and Refine: Iteratively repeat the previous steps, refining the theory and updating the
analysis as new data is collected and analyzed.

• Report Findings: Document and report the findings, ensuring that the research process and the
developed theory are transparent and accessible to others.

Based on STGT approach, we defined our research context as follows. We present our additional
observations in the following sub sections.

Research Context: The proprietary standards failed to create cross-platform support for VR
software driving the VR technology domain into a platform-dependent system.

Data Collection

We relied on the following resources to gather the required data to establish the theory for construct-
ing a meta-model for VR software systems.

Informal Interviews We conducted informal interviews with developer communities of UNITY Tech-
nologies, Epic Games, Khronos Group (OpenXR), and the VR/AR Association (UK/APAC) for nearly
four months (Oct-2021 to Jan-2022). The interviews aimed to understand practitioners’ perspectives
of a bare-minimum VR software system in practice. Participants with a minimum of five years of VR
development experience were considered for interviews. In total, 39 VR practitioners participated. The
following questions were the basis for the informal interviews.

• What do you consider desired elements of a meta-model for VR software system?
• Do current VR Development tools explain elements of a bare-minimum VR software system?
• Did you build any supporting tools for VR? If yes, How did they gather meta-information about

a bare-minimum VR System?

VR SDKs Selection: Our interactions with VR practitioners led us to review widely used VR SDKs like
UNITY3D [7], Unreal Game Engine [8], CryEngine [5], AframeJS [4], and Amazon Lumberyard [6].
We examined SDK source code, underlying classes, and white papers. All other non-technical propri-
etary materials are excluded from examination.

VR Standards Selection: Interactions with VR practitioners led us to explore VR standards in de-
tail. We considered prior standards - VRML [269], X3D [285], WebXR, O3D [119], and prevailing

96

standards - OpenXR [97] and IEEE VR/AR Working Group for our study. Additionally, we examined
peer-reviewed publications to understand the components of a meta-model for a bare-minimum VR
software system.

Data Analysis

We used the Open Coding method [255] to annotate the interview transcripts, VR Standard docu-
mentation, and VR SDKs documentation with essential details. Our annotation criteria are to check for
the presence of elements that explain the constructs of a bare-minimum VR Software system and depict
the control and data flow among them. These annotations are linked with generalized codes, which have
the same meaning as our annotation criteria. These codes are further generalized into common labeled
concepts. The researcher has the flexibility to decide the concept labels. The concepts are ordered into
a category goal for our study. Fig 5.1 explains a few examples of open codes linking overall concepts
and categories to provide an overall understanding of a bare-minimum VR software system.

Figure 5.1 Common Codes from Interview Study

Observations

Based on the codes generated using open-coding, we used Abduction Reasoning [114] to theorize
a meta-model for a bare minimum VR software system. Abductive reasoning helps researchers con-
duct data analysis through different means such as hunches, clues, metaphors or analogy, symptoms,

97

patterns, and explanations. This approach opens various avenues for creative thinking and theory devel-
opment. Following are the data points and observations captured to depict bare-minimum concepts that
are found to constitute a VR Software System. These concepts are the building blocks of a meta-model
understanding of a VR software system.

• Scene - A 3D environment or space with (un)limited dimensions in terms of length, breadth, and
height with elements operating together as a whole in their respective part. It is referred to as
“play area” in VR SDKs and “virtual operating space” in most VR standards.

• Article - A 3D object with specific dimensions along its state and physical properties, including
material type, texture, color. It has other properties like Pixel/Voxel type, CanCastShadow, IsRig-
itObject, IsCollidiable, CanRotate, Isluminous, etc. These objects are engaged as static objects or
interactable with the character in a given scene.

• Action - Any engagement between two or more articles leads to interaction, causing a known/un-
known outcome. The engagement may be internal and external to objects within the prescribed
scene.

• Audio - This element is associated with the scene and article. A scene may or may not have
background audio. An article may or may not give rise to audio internally or externally due to an
action by another article within the prescribed scene.

• Behavior - The Action’s outcome and the object’s transformation within the prescribed scene.

• Viewsource - An initial viewpoint of a person trying to experience the scene. It is called a camera
in VR SDKs and viewpoint in VR standards.

• Timeline - All the possible events are categorized into synchronous events and asynchronous
events that are based on a trigger i.e. due to an external stimuli. There is possibility of a non-
trigger based synchronous and asynchronous events that are within the article and will not be
based on a trigger i.e. not due to an external stimuli.

The culmination of the above concepts varies between various VR standards and VR Software Devel-
opment toolkits(SDKs) based on their levels of abstraction and nomenclature. However, the overall
concepts described above are the bare-minimum set to construct a VR software system and they can
be observed consistency across various VR standards and VR Software Development toolkits(SDKs) in
different forms. To understand how SDKs perceive the same underlying meta-model elements differ-
ently, we present examples using WebXR API1 and AFrameJS2 VR Scenes. Fig 5.2 contains a WebXR
scene3 as (a) that presents no-audio 3D scene with a centered view-source, cube articles placed at a
particular height with no action but a changes behavior in terms of color when clicked on the cube. On

1https://immersiveweb.dev/
2https://aframe.io/docs/1.5.0/introduction/
3https://immersive-web.github.io/webxr-samples/input-selection.html?usePolyfill=0

98

Figure 5.2 Example VR Scene built using WebXR API and AFrameJS

another end, an AframeJS scene 4 (b) presents a no-audio 3D scene with a centered view-source, with
un-sized articles placed at a distance with no action but changes behavior in terms of their dimension
with any external intervention. These two scenes are different and are built using different VR SDKs.
These two SDKs work under different meta-model concepts and code templates. The WebXR-based
scene is obsolete as prevailing browsers no longer support this standard. The AframeJS based scene
is supported by javascript-based browsers only (chrome, firefox etc.). These two scenes are built for
the web and are not compatible with high-end head-mounted-device consumption. One of the SDKs,
WebXR, is now deprecated, thus limiting the portability of all WebXR scenes and causing platform
fragmentation. Such gaps can be avoided if they are built using a shared underlying meta-model of VR.
The following section presents a role-based model template representing a shared meta-model for a VR
software system.

5.3 Virtual Reality Software System Meta Model

The Unified Modeling Language5 is a programming language with an independent notion for spec-
ifying, visualizing, constructing and documenting systems. It is an Object Management Group (OMG)
standard language for object-oriented modeling. The UML infrastructure is defined as a four-layer
architecture as shown in Fig 5.3

• Level M3 (meta-metamodel layer) defines a language for specifying metamodels. The meta
object facility is an example of meta-metamodel

4https://aframe.io/aframe/examples/animation/warps/
5https://www.uml.org/

99

Figure 5.3 UML four layered meta-model architecture

• Level M2 (metamodel layer) contains models that specify modeling languages. The UML meta-
model and the common warehouse metamodel (CWM) are the examples of metamodels.

• Level M1 (model layer) contains models that describe semantic domains. The model layer con-
sists of models expressed in languages specified by M2 meta-models.

• Level M0 (user data) consists of object configuration specified by the models at level M1.

The UML was designed primarily as a notation for modeling a single application and its use to model
application families in problematic. The Role based meta-modeling language (RBML) is an UML based
language extension that supports rigorous specification of patterns that characterize a family of design
models proposed Kim et al. [145]. As RBML uses UML syntax, UML tools can be used to create RBML
specifications. A RBML specification consists of set of role models that describe pattern properties
from different perspectives with additional details. A variant of the RBML that facilitates generation
of compliant models from pattern descriptions is used in this work. Template diagrams rather than role
models are used to specify families of models. The UML models are obtained from template diagrams
by binding the template parameters to actual values.

A Role represents a specific set of responsibilities, behaviors, or functions within a system or model.
It defines expected behaviors and interactions without specifying the concrete implementation. Roles
are typically more abstract and focus on the purpose or function an entity fulfills in a given context. In
contrast, A Template is a predefined structure or pattern that can be reused and instantiated multiple
times. It provides a blueprint for creating consistent instances of a particular element or component.
Templates are more concrete and focus on the structure and attributes of an entity. In practice, we can
use both roles and templates as part of a meta-model, where roles help define the abstract behaviors and

100

interactions between entities and templates to provide concrete implementations or structures for those
roles. For example, a Developer role to represent the responsibilities and interactions of a developer
in the process, DeveloperTemplate to define the specific attributes and structure of a developer entity
in your system. This combination allows the model both the dynamic, behavioral aspects (with roles)
and the static, structural aspects (with templates) of your system. As the focus is on illustrating static
and structural aspects of VR Software System, as part of our work - we use the notion of templates to
describe the meta-model of VR technology domain. Fig 5.4 illustrates an example of a class diagram us-

Figure 5.4 RBML Class diagram of model template for requestor authorization workflow

ing RBML specification to describe a meta-model system that authorizes a requestor by identifying the
desired operation from the authorizing repository. Here |Requestor, |Authorizer and |AuthRepository
are class templates. |Requestor carries an attribute called |reqId as part of the class attribute template.
|Authorizer carries an attribute function called |Operation with parameters |reqID and |params*, i.e.,
any additional domain specification parameters are allowed with a multiplicity of one to many along
with instantiation multiplicity through do |Operation as part of its attribute template. |AuthRepository
class template carries |authreqId and |authoperId as part of the attribute template and |checkAuth with
parameters |reqId and |operId as the operation template. The |Requestor and |Authorizer class tem-
plates are associated with the association template called |accesses with multiplicity parameters such
as |m and |n where |m.lower >= 0 and |n.lower >= 0. |Authorizer and |AuthRepository class tem-
plates are associated with an association template called |checksWith with multiplicity parameters such

101

as |x and one where |x.lower >= 0. The meta-model (M2) from Fig 5.4 will aid technology domain-
specific software practitioners to adopt and execute on underlying applications the require authorization
workflow as of their model instances (M1) to eventually develop application object models (M0).

Figure 5.5 Role based Model Template of a bare minimum VR Software System

Based on Role Based meta-modeling language, we present a role-based model template to illustrate
meta-model for Virtual Reality as Technology Domain. Figure 5.5 presents the role-based model tem-
plate class diagram of a bare-minimum VR software system. Template elements are marked with the
“|” symbol. As shown in Figure 5.5, |Scene, |Viewsource, |Time, |Behavior, |Physics, |Requestor,
|Article, |Audio, |State and |Action are called as class templates. Each class template consists of two
sections, the attribute template and the operation template. For example, the |Audio class template has

102

|sourcetype, |noise, |init, |inext as part of attribute template section and |runsound, |syncsound, and
|asyncsound are listed as part of association template section. Each association template is defined with
a cardinality [1..*], i.e., one to many with |param* as unlimited parameters. Each role model template
class is linked with UML based relationship specifications with association definitions like |acesses,
|Impartswith, |RendersInto, |Syncwith and |Validateswith . The virtual software system is invoked by
a |Requestor class template. |Audio, |Action and |Scene class templates are initiated synchronously
to load underlying |Article(s) with their |State and respective |Behavior(s) through a |ViewSource onto
|Scene. |ViewSource initiates all other class templates asynchronously with |Time .

Fig 5.6 illustrates the UML four-layered meta-model architecture deduced by considering the model
template for the VR technology domain from Fig 5.5.

• Level M3 (meta-metamodel layer) defines a language for specifying meta models, i.e., RBML
meta-object factory. It helps us illustrate class templates, attribute templates, operation templates,
association templates, multiplicity parameters, and Instantiation multiplicity.

• Level M2 (metamodel layer) contains models that specify VR software system metamodel. It
describes the class templates, attributes, associations, and multiplicity parameters related to the
VR Technology domain.

• Level M1 (model layer) Using the metamodel, we create tools associated with the VR technology
domain, like Software development Toolkits, domain specification languages, productivity tools
for the VR community to ease design, testing, coding, and release, etc. Example: OpenSource
VR Engine, Model-based VR TestCase Generation tools, Model-based Design Editors.

• Level M0 (end-user application) This layer presents the end-user applications developed us-
ing the tools developed by the VR community. Example: Flight simulator, Virtual Compliance
Training of Safely Bio-Critical Lab.

To understand the instantiation of the VR meta-model into the VR application, we bring an example
that provides bindings between the meta-model and its related application using a virtual reality soccer
training application developed by Rezzil Inc. Fig 5.7 provides us a VR scene where the soccer trainee
is required to perform a task called “Kick”. Table 5.1 illustrates the bindings for a test case to verify
the action:kick and the response audio:splash associated with article:ball. The example bindings can
be used as part of a novel VR Test case generator tool. This table provides a correlation between the
meta-model attributes and a potential test-case generator application-specific attributes for a VR soccer
training application instance. Using the test-case application specification, a custom test-case generator
tool can be developed to generate test cases for a game like VR applications.

103

Figure 5.6 UML four layered meta-model architecture for Virtual Reality Domain

5.3.1 Extending VR Meta-model to Domain-specific and Context-specific applications

The role-based model template for a bare-minimum VR software system can be extended to an
application centered on a domain or to a context within a given domain. In the context of software
applications, a domain refers to the specific field or area of expertise that the software is designed
to serve. It represents the concepts, processes, and rules that define the problem space the software
aims to solve. Application domains vary widely, ranging from healthcare and finance to gaming and
social media. Domains are often associated with specific industries or business processes and may
involve specialized terminology and workflows. Software developers use domain models to represent
these domains and create software solutions tailored to their needs. By understanding the domain,
developers can design context-specific applications and effectively address the challenges users face in
that field. As shown in Fig 5.8, we can visualize the top-down stack of layers using the VR model
template for domain-specific and context-specific applications by extending underlying attributes from
bare-minimum attributes to domain-specific and context-specific attributes.

For better illustration, let us consider x represents the bare-minimum attributes of the VR model tem-
plate called V 0 where V 0(x) represents the collection of bare-minimum attributes that belong to the VR
model template. Now y represents the customized attributes with an extended role-based model tem-
plate called V 1 where V 1(y) represents the collection of extended attributes belonging to the extended
VR model template. Thus, as per equation 5.1, the collection of bare-minimum attributes from the

104

Figure 5.7 VR Soccer Training Application by Rezzil Inc.

Meta-model parameter Application Specific element
|Action Kick
|Audio Splash
|Article Ball
|Action::|kinematic Kick::kinematic
|Action::|motion Kick::motion
|Action::|syncEvent Kick::syncEvent
|Audio::|init Splash::init
|Audio::|syncsound Splash::syncsound
|Impartswith impartswith
|accesses accesses
|x *
1 1
|m *

Table 5.1 Example bindings for a test-case of kicking the ball using template class

VR model template and customized attributes together now constitutes the overall extended role-based
model template.

V 0(x) ∪ V 1(y) = V 01 (5.1)

For example, |material is one of the bare-minimum attributes from the |Article class of the VR model
template from Fig 5.5 belonging to V 0(x). This is a bare minimum attribute as it is generic across all
the VR developer engines. However, the customized attributes like |roughness, not a bare-minimum
property of a |material but a unique property of specific VR engines belonging to V 1(y), can be included
to extend the bare-minimum model template. In contrast to the Domain-specific model templates V 2,
these are further extended by including domain-specific attributes represented by z where V 2(z) is the
collection of all such domain-specific attributes belonging to the domain-specific VR model template as
shown in the equation 5.3.

105

Figure 5.8 Visualizing top-down stack layers on extending VR meta model

(V 0(x) ∪ V 1(y)) ∪ V 2(z) = V 012 (5.2)

For example, consider the pharmacology domain in healthcare, where a domain-specific practitioner
(pharmacologist) uses various chemicals to develop, identify, and test the drugs to cure, treat, and pre-
vent diseases. The microcentrifuge is one of the many apparatus they rely on to spin down and separate
chemical particles in small volumes of liquid samples. Consider a pharmacology domain-specific VR
scene developed to train pharmacologists; a pre-curated domain-specific article |microcentrifuge will
be equipped we fixed |material properties that are unique to a pharmacology domain. Similarly, the
|microcentrifuge can be used for different context-specific use cases, such as the molecular separation
of cell organelles (like various nuclei or DNA or RNA), phenol extraction, and studying the effects of
drugs on various biological systems. Suppose a VR training scene is developed for pharmacologists
on such context-specific applications V c . In that case, VR practitioners must rely on context-specific
knowledge and standard operating procedures in such use cases to design a VR application. In such
cases, context-specific attributes are to be used as part of VR application development, which is still an
extension of the domain-specific model template. As shown in equation 5.3, if V c is a context-specific

106

Figure 5.9 Visualizing example of extending VR meta model to HealthCare (Pharmacology) Applica-
tion Domain

application, it constitutes model attributes of V 012 which are from domain-specific model template and
combination of various contexts i.e. V c1, V c2, V c3 ... V cn where n can be of infinite contexts for a
given application domain.

V c = V 012 + V c1 + V c2 ++ V cn where 0 < n < ∞ (5.3)

Fig 5.9 illustrates this example by presenting the model attributes in layers. This figure shows that
|material is a bare-minimum model attribute (V 0), and |roughness is a custom model attribute related to
the VR technology domain (V 01), |microcentrifuge is a pharmacology domain-specific model attribute
(V 012), a sub-domain of the healthcare domain. |picomicrocentrifuge is a context-specific domain, a
specific model attribute (V c1) that belongs to a specific use-case of pharmacology experiments, which
inherits the properties of |microcentrifuge but maintains distinctive properties in practice. Thus, it is a
unique context-specific model attribute of the pharmacology domain. Thus, a role-based model template
for a VR software system can be extended to a customizable, VR technology domain-centered model
template. It can be extended further to a domain-specific application and a context-specific application
within a given application domain.

5.3.2 Implications of VR Model Template for VR Community

Studies have shown that enterprise VR product development differs from traditional software de-
velopment [139]. Contemporary VR practitioners are primarily from the gaming industry. They are
adopting development methods that fit their needs to succeed in their business. Thus the VR practition-
ers are left with few monopolistic tools and frameworks. A VR Meta-model will provide a conceptual

107

overview of VR as a technology domain and help practitioners create novel open-source tools to sup-
port and ease overall VR product development. The following are a few of many use-cases that can be
formalized by ideating generic approaches to ease VR product development.

• Requirements - This area is a challenging aspect for VR. The meta-model will help practitioners
build generic open-source tools to elicit, specify and track requirements in detail across the VR
product development. These requirements can be programmatically validated across different
stages of VR product development.

• Code Analysis - There is almost no tool support for VR source code analysis. Code patterns play
a great role in addressing unstructured code in large-scale VR scenes. A meta-model can help
build generic open-source tools to refactor, modularize the code-base, define code patterns, and
suggest code-reusability.

• Testing - Unit testing and cognitive walkthroughs are currently practiced to test the VR scenes.
Quality and Usability guidelines are manually evaluated through these studies. A meta-model can
help build generic automated test-case generation, test strategies, guideline-based code-validation,
and evaluation code-metrics specific to VR.

• Release - Traditional in-place release management is currently practiced in VR. A meta-model
can aid dev-ops practitioners in automating the packaging of various components of VR with
novel release strategies. Generic release management can address platform fragmentation to a
certain extent.

• Physics Engines - Most widely used prevailing physics engines are either customized or propri-
etary. A meta-model can be used to develop a novel physics engine with and beyond the natural
laws of physics. Different variants of VR engines can be developed with varying degrees of
complexity.

Conclusion: A role-based model template as a meta-model for a bare-minimum VR software system is
critical to building future developer tools for VR software. We constructed this meta-model theory using
abductive reasoning of codes generated using open coding of informal interview transcripts, VR SDKs
documentation, and VR standards documentation. The presented meta-model will help VR practitioners
develop generic open-source tools to ease VR product development and address platform fragmentation
between VR hardware and software. Based on the formulated role-based model template for Virtual
Reality products, we aim to develop a novel tool to address the thrust areas identified in the previous
chapter. Specifically, in the following chapter, we use this VR technology domain meta-model to de-
velop a requirement specification tool to ease the overall requirement-gathering process and improve
the end-to-end VR product delivery.

108

Chapter 6

Model Based Requirement Specification for Virtual Reality Software

Traditionally VR software product development involved writing programs to generate synthetic
worlds using geometric primitives and simulated physics [155]. Such programs are hardware depen-
dent, highly customized in design, not scalable, not portable and have limited usage as they are highly
contextual to a particular use-case. For example, software simulation applications to train users on com-
plex tasks in military combat, space exploration, etc. Modern VR software products have evolved from
standardized software-development toolkits (SDK) that support portability and re-usability of geometric
primitives along with the applicable physics laws. Most of these SDKs like UNITY3D [7], Unreal Game
Engine [8], CryEngine [5], AframeJS [4], and Amazon Lumberyard [6] etc. are influenced by computer
graphics-based game engines predominantly used for Two-Dimensional (2D) and Three-Dimensional
(3D) Game development, and are now repackaged as VR SDKs. Studies have shown that most of the
current VR software developers are from the gaming and visual effects industry [15] and primarily rely
on Game-Development processes to build VR Products. In our previous work, we conducted a multi-
year empirical study [138] to understand the development methods adopted by the VR community. As
part of this empirical study, we studied 1600+ VR community through VR Conferences, VR Developer
Meetups, VR Online Community Forums, and other VR enthusiasts. We used focused interviews with
diverse sample sets using a purposeful sampling approach, online forum thread study using interaction
analysis model (IAM), and Online Survey. Our empirical study concludes that VR product development
is primarily different from conventional software product development due to difference in Multimodal-
ity Challenges, Volatile Hardware, Platform Fragmentation, Diverse Stakeholders, Software Portability
issues, Difficulty in achieving Realism and Poor Tool Support. In contrast, Requirements Engineering
is one of the key thrust area of research as it has poor tool support [138].

Does rigorous requirement engineering matter for VR software development? - A typical VR scene
revolves around various entities like scene terrain, assets involved in the scene, action responses between
the assets, custom behaviors, timeline, design, control flow of the overall scene, acoustics, physics, light
source, reflexes of the participants, and many more. Gathering the requirements of all these entities is
a laborious task. The requirement analyst should always be cautious about the control flow and data

109

flow of VR scenes correlated with the rise in the scene’s length and the extent of the entity’s usage.
In contrast, our prior empirical study [138] shows that RE methods for conventional software product
development do not sufficiently work for VR as they do not consider the aspects of personalized human
experiences and extent of realism in the diverse entities involved in VR products. Let us consider an

Figure 6.1 Understanding rigour of Requirement gathering for 2D vs 3D Animation Vs 3D Environment
Note: These images was generated with the assistance of AI

example to understand the rigor behind requirements gathering in VR software. Fig 6.1 illustrates three
different types of virtual assets they are the 2-Dimensional non-animated static image of an Apple la-
beled as (A) and (B) is a 2-Dimensional dynamic animated graphic, which is an illustration of cutting a
watermelon, (C) is a 3-Dimensional virtual dynamic environment of a fruit crush game where a player
is supposed to thrash fruits in the digital world to gain points. To develop (A), we need properties like
Color, Texture, and Dimension of the asset. In the case of (B), we may need additional properties along
with previous properties like Cast Shadow, Point-of-View position, minimal interaction, and partial dy-
namic in user response. However, in the case of (C) - it required capturing many more properties like
layout information, scale, material, gravity, mass, audio, ray-casting, Object OnCollision, Object Rigid-
ness, light sources, motion, rotation, occlusion, angular drag, Object Kinematic properties, Interpolation
of an object, Vobble effect of Object, VR participant locomotion, environment depth, scene rendering,
synchronous-asynchronous VR participant task-action-responses, control flow and data flow of overall
events. Comparatively, the sophistication levels of requirements are too high in (C) than in (A) or (B)
for low-fidelity games like Fruit Ninja. As a result, the requirements Engineering process is complex
due to the extent of realism involved in VR software products.

110

Recent studies [190] [191] show that most design authoring tools for VR software that consider re-
quirements as input where input is expected in a specified format. This can cause a loss of information
flow into the design leading to confusion. Authoring tools need to be customizable to allow different pa-
rameters as inputs to facilitate multiple interaction flows. However, these tools overlook may desirable
aspects of VR interaction design. It was also observed that a given authoring tool may or may not capture
all possible requirements elicited by the requirement analyst. The VR prototype engineer must rely on
multiple authoring tools to arrive at a minimum viable product for VR development teams. Even in the
case of our multi-year empirical study on understanding VR product development being different from
conventional software product development, current VR community predominantly elicit and specify
VR product requirements in plain English using an unstructured template. They were also found to use
methods like Task-Tree and Event-Action with less precision [138]. While capturing requirements in
such simple ways is inefficient, it is desirable if clear guidelines, templates, and traceability mechanisms
are established to track the changes. Practices that require manually intensive efforts degrade the quality
of the VR Scene and eventually increase the delivery cost due to loss of information during the require-
ments analysis process. All the above observations motivated us to develop a requirement specification
tool for VR community to ease VR product development.

6.1 Authoring Tools vs Requirement Specification Tools

VR Authoring Tools: - An authoring tool is a software application or platform that enables users
to create content in a cohesive and interactive format, including text, code, graphics, audio, and video.
These tools simplify content creation, making it accessible even to those without advanced technical
skills. In the context of virtual reality technology domain, VR authoring tools are explicitly created to
develop interactive and immersive virtual reality (VR) content. They enable users to develop VR ex-
periences without requiring extensive programming knowledge. They offer an intuitive user interface,
integration of multimedia assets, support for a wide range of VR devices, support collaborative features
across various VR developer engines, and integration support to external software like learning man-
agement systems to host VR content. Sometimes, VR authoring tools cater to different expertise levels,
offering pre-made interactions and scenes for non-specialists or customizable content for specialists.
Unfortunately, most VR authoring tools do not incorporate authoring tools as an integral feature in the
VR developer tools. Due to serious platform fragmentation issues within the VR technology domain,
individual VR practitioners develop custom plugins to streamline the VR content to modify and dis-
tribute across distinct VR developer engines. Examples of VR authoring tools include AirVu Authoring
Tool, LearnBrite, Storyflow, and CenarioVR. These tools cater to various industries, such as educa-
tion, healthcare, manufacturing, and customer service, providing customizable solutions predominantly
for developing immersive VR training modules. It is pretty rare to observe a VR authoring tool that
conventional VR practitioners can use as a general-purpose tool. This is primarily because the artifacts

111

Table 6.1 Comparision between Authoring Tools and Requirement Specification Tools
Feature Authoring Tools Requirement Specification Tools

Focus Implement the requirements into
Design or Mockups or Work-
flows

Specify, tracking and maintain require-
ments

Target audience Designers, Developers, and sub-
ject matter experts

Project managers, Technical stakehold-
ers and Customers

Key functions Structured workflows, attribute
assignment, requirement hierar-
chy

Traceability, change management, ver-
sion control, specification

Use cases Early stage of design and devel-
opment

Throughout the development process

VR Tool Examples AirVu Authoring Tool,
LearnBrite, Storyflow, Ce-
narioVR

Task Tree Templates, Conventional
SRS Templates

generated from such VR authoring tools may not work across different VR developer engines and do
not support multiple VR devices.

VR Requirement Specification Tool: Requirement specification tools help manage, organize, and
document software requirements throughout the development of software products. Their primary goal
is to ensure that all stakeholders involved in a software project have a clear understanding of the re-
quirements and that the final product aligns with the initial vision. Such tools are required to support
the creation of requirements, provide traceability, collaboration, change management, the ability to pri-
oritize requirements, version control of requirements, etc. In the context of virtual reality technology
domain context, there isn’t a dedicated requirement specification tool that can suffice such VR tech-
nology domain-specific needs. Due to the lack of VR-centered requirement specification tools, the
VR community is heavily relying on conventional approaches like Software Requirement Specification
Templates, Task tree based Requirement specification templates etc.

As shown in Table 6.1, we illustrate the differences between authoring and requirement specification
tools. In brief, authoring tools are for authoring and organizing content based on requirements, while
requirement specification tools are for managing and tracking requirements throughout development.
Also, the authoring tools focus on clarity and conciseness, while requirement specification tools provide
a more comprehensive approach to requirements management. As there is a need for such comprehen-
sion in the VR technology domain, we developed a model-based requirement specification tool. In the
following subsection, we provide more details about our novel requirement specification tool that can
help requirement analysts specify requirements with higher precision and clarity.

112

6.2 VReqST - To specify VR Requirements

The VReqST, i.e., “Virtual Reality Requirement Specification Tool,” is developed for requirement
analysts of the VR community to specify requirements using a role based model template of VR Soft-
ware System [140]. VReqST will aid requirement analysts to describe Scene properties, Article proper-
ties, Actions - Responses between these articles in the given scene along with their state change, custom
behaviors (like algorithms, logic interpretation, etc.) that are to be executed in a defined timeline. Our
first iteration for VReqST was oriented towards a formal-specification language with pre-defined code
constructs. We exchanged our early ideas with requirement analysts from the VR Community through
various platforms. Based on the feedback from VR community, we simplified it into a model template
tool instead of evolving it into a formal-specification language. In contrast, VReqST behaves as an
informal form of a specification language. In the following sub-sections, we present the details about
different model template(s), their underlying validator(s), the architecture, tool overview and workflow
of VReqST.

Figure 6.2 Model Template and Validator

6.2.1 Model Template and its Validator

As mentioned in previous Section, model templates are extensions of model concepts defined as part
of the role-based model template for VR Software Systems [140]. These model concepts are scene,
Article, Action-Response, Behavior, and Timeline. Each model concept constitutes of model attributes
that act as properties of the respective model concept. Table 6.2 provides the mapping of model concept
and their model attributes. In case of VReqST, we represent each model concept as a model template file.
They are represented in JSON (JavaScript Object Notation) format. The model template file contains
model attributes, a minimum set required to capture requirements for VR Software products as shown
in Table 6.2. For example, the model template file of the model concept called “Article” contains one
of the model attributes called “IsKinematic” - a physics property of the article that can execute motion

113

when an external force is applied. The scope of this attribute is boolean, i.e., it can only hold either
value ’1’ or ’0’ where ’1’ signifies that the respective article holds kinematic physics property, whereas
’0’ signifies that respective article does not hold kinematic physics property.

All such validation rules for model attributes for a given model template are defined as part of the
underlying validator. Each model template file (scene, article, action-response, and timeline) has a dis-
tinct validator file to validate the datatype and scope of the model attributes, as shown in Fig 6.2. These
validator files are also represented in JSON format. The model template files and their corresponding
validator files are available as part of our documentation [135]. Table 6.2 provides details of the default
naming convention for the model template file and validator files for respective model concept. The
requirement analysts can rely on VReqST documentation to specify requirements in the model template
file while eliciting requirements with their stakeholders. These model template files will aid requirement
analysts on probing the requirements more accurately.

Figure 6.3 VReqST - Architecture

114

Table 6.2 VReqST - Model Concepts with corresponding Model Attributes
Model Concepts Model Template File Validator File Model Attributes

Scene scene.json svalid.json

scenename, sid, slabel, playarea,#pid,#length playarea,
#breadth playarea,#height playarea,#comment,
#x scenecenter,#y scenecenter,#z scenecenter,
camera,IsSceneObject,trackingorigin, initialcamerapos,
viewport, clippingplane, horizon, dof, skybox,
controllers, gravity, interaction, nestedscene, audio,
timeline, Opttxt1,usertype,uplayarea,initialupos,

uplayareacenter

Article article.json artvalid.json

objectname, sid, slabel, IsHidden, enumcount, Is3DObject,
HasChild,shape,dimension,IsText,IsText3D,CastShadow,
ReceiveShadow,ContributeGlobalIlumination,IsIlluminate,
Transform initialpos,Transform initialrotation,
Transform objectscale ,repeattransfrom,XRGrabInteractable,
XRInteractionMaskLayer,TrackPosition,TrackRotation,
Throw Detach,forcegravity,velocity,angularvelocity,
Smoothing duration,attachtransform,hasmass,dragfriction,
angulardrag,Isgravityenable,IsKinematic,CanInterpolate,
CollisionPolling,aud hasaudio,aud type,aud src,aud volume,
aud PlayInloop,aud IsSurround,aud Dopplerlevel,aud spread,
aud mindist,aud maxdist, Opttxt1,@context img source

Action-Response actres.json arvalid.json
actresid,sourceObj,targetObj,IsCollision,response,comment,
Syncronous,repeatactionfor

Timeline timeline.json tvalid.json

animate trigSync,tsyncid,tsOntriggertrue,SyncObjList,tSyncNote,
animate nontrigSync,ntsyncid,ntsOntriggerfalse,ntSyncObjList,
ntSyncNote,animate trigAsync,tasyncid,taOntriggertrue,
AsyncObjList,tAsyncNote,animate nontrigAsync,ntasyncid,
ntaOntriggerfalse, ntAsyncObjList,ntAsyncNote,routine,
routeid,starttime,endtime,order

6.2.2 VReqST Overview

VReqST is a web-based tool built using the MERN (Mongo-ExpressJS-ReactJS-NodeJS) technology
stack, i.e., a ReactJS framework is for client-end web page rendering, ExpressJS framework and NodeJS
for server-end setup, and MongoDB as a database to store the data. Fig 6.3 illustrates the architecture
of VReqST tool. The source code, tool demo, documentation, and sample requirement specification
examples are available as part of our resources [135]. Requirement Analysts of VR products are the
target users of VReqST. This tool is developed as a web-based tool to aid requirement analysts to author
requirements on-demand and refer them to subsequent team with less hassle. This will eventually ease
VR designers and developers to develop overall VR software product and trace back to requirements
swiftly.

As shown in Fig 6.4, there are two sections in the VReqST tool, i.e., Authoring Wizard and Validator
Engine. The requirement analysts are only exposed to the authoring wizard while authoring VR software
product specifications, whereas the validator engine is executed in the background. As shown in Fig 6.4,
the requirement analyst are required to start with scene-related details, i.e., the scene model template
is the first stage of the VR requirement specification. Once the required model attributes of the scene
model template are composed, the specification is validated using the scene validator. Upon successful

115

Figure 6.4 Overview of VReqST - Author Journey

validation, the requirement analyst can compose an article model template, a second stage of the VR
requirement specification. All the dependent scene model attributes are carried forward to the article
model template. The article model attributes are validated using the article validator. Upon successful
validation, scene and article-related model attributes are carried forward to the following stage, i.e.,
action-response, the third stage of VR requirement specifications. The requirement analyst must define
all possible action responses between articles that are listed as part of the article model template in
second stage. Along with all possible action responses, the state of an article and its initial, final, and
transition states are to be defined.

After completing the action-response model template, all the scene, article, and action-response
attributes are carried into the customer behavior editor. This is the fourth stage of authoring VR re-
quirement specifications. The custom behavior editor in VReqST will help requirement analysts define
behaviors using logic and conditional constructs. For example, in the case of VR games - scoring cri-
teria can be codified as part of this stage. In the case of VR simulation scenes, custom algorithms like
co-location or locomotion can be codified. The codified code constructs are validated based on the be-
havior validator. After authoring behaviors, the requirement analysts are required to present the overall
specifications in a timeline. This is the final stage of VR requirement specification. The attributes de-
fined in all the previous stages can be presented as asynchronous and synchronous events. A timeline
validator validates the attributes associated with the timeline model template. After completing all the
stages, a final specification file combining all the model attributes will be published. This final specifi-
cation is now available for designers and developers to initiate VR software product development. All
the stages in VReqST are linear and cannot be skipped, i.e., the specification will start with a scene,
article, action response, behavior, and timeline. We may not be able to specify articles directly without

116

specifying scene information. We can navigate back to the respective stage if validation of a given stage
is complete. We shall go through the detailed validation workflow of VReqST in following subsection.

6.2.3 VReqST Validation Workflow

Fig 6.5 illustrates an overall validation workflow of specifications of the model template using the
respective validator. We detail this section into two parts: validation of model template files and valida-
tion of custom behavior editor

Model Template Validation: Fig 6.5.a provides detailed steps for validating the model template file.
There are 4 model templates in VReqST. This applies to the scene, article, action response, and timeline
model template files; below are the steps in validating the model template file.

• Step 1: The requirement analyst accesses the authoring wizard and chooses a fillable model
template (scene, article, action response, or timeline). This fillable model template contains all
the model attributes. The requirement analyst must choose the validate option upon filling in all
the required details for model attributes in a given model template file.

• Step 2: The validate button will convert the filled model template file into an abstract syntax tree
with all the model attributes. The validator file contains the validation rules and validates the
model attributes in the abstract syntax tree.

• Step 3: If the validation is successful, the final model template is processed by the specification
processor, where all the previous step’s model attributes are carried forward and linked to support
traceability. The finalized specifications are published to the requirement analyst. If the validation
fails, model attributes are to be revised per the validator logic in the authoring wizard.

Custom Behavior Editor Validation: Fig 6.5.b provides detailed steps for validating the custom be-
havior editor. As shown in Fig 6.4, Stages 1, 2, 3, and 5 are fillable model template files validated against
respective validator files. However, stage 4 in the authoring wizard contains a custom behavior editor
that allows requirement analysts to write custom behaviors on articles and their action responses. These
behaviors are business rules with expected output for the corresponding output. These business rules
are use-case-based and vary from product to product. Following are the steps involved in validating the
behaviors.

• Step 1: The requirement analyst uses the WRITE wizard to describe the behaviors using inbuilt
code constructs like IF, IF-ELSE, SWITCH, FOR, WHILE, DO, and DO-WHILE. The syntax of
these code constructs does not follow any specific programming language but follows a simplified
version as prescribed per our documentation [135]. The scene, article, and action response model
attributes are made available as part of the WRITE wizard to specify behaviors.

117

Figure 6.5 Validation Workflow of Model Template and Custom Behaviour Editor - VReqST Tool

• Step 2: If the behavior logic is specified per the prescribed code construct, the behavior logic
is valid. The valid behavior logic is listed in the READ and PUBLISH wizard of the custom
behavior editor. The READ wizard will help requirement analysts review the written behavior
logic. Out of all the specified behaviors, the requirement analyst can pick and choose the desired
behaviors to be included in the final specification. The PUBLISH wizard will help achieve this
task. If the behavior logic is invalid, it is required to be specified again as per the prescribed code
constructs defined as part of our documentation [135].

• Step 3: The published behaviors are converted into base-64 as multi-line code snippets cannot
be stored in JSON object files. All the chosen behaviors from the PUBLISH wizard are ordered
under a single behavior file and are stored in the database.

• Step 4: All the previous step’s model attributes are carried forward and linked with the pub-
lished behavior file to support traceability. This step is carried forwarded into the timeline model
template, which is the final step of the VReqST tool.

6.2.4 Fillable Model Template and Validator Files

Following are the fillable model template file definition and their corresponding validator file defini-
tion. Below is the Fillable Scene Model template File.

118

1 {

2 "_scenename":"",

3 "_sid":"",

4 "_slabel":"",

5 "_playarea":{

6 "#pid":"",

7 "#length_playarea":"",

8 "#breadth_playarea":"",

9 "#height_playarea":"",

10 "#comment":"",

11 "#x_scenecenter":"",

12 "#y_scenecenter":"",

13 "#z_scenecenter":""

14

15 },

16 "_camera":

17 {

18 "IsSceneObject":"",

19 "trackingorigin":""

20 },

21 "_initialcamerapos":{

22 "#x_initialcamerapos":"0",

23 "#y_initialcamerapos":"5",

24 "#z_initialcamerapos":"0"

25 },

26 "_viewport":{

27 "#x_viewport":"",

28 "#y_viewport":"",

29 "#w_viewport":"",

30 "#h_viewport":""

31 },

32 "_clippingplane":{

33 "near_cp":"",

34 "far_cp":""

35 },

36 "_horizon":"",

37 "_dof":"",

38 "_skybox":"",

119

39 "_controllers":

40 {

41 "type":"",

42 "raycast":"",

43 "raydistance":"",

44 "raythinkness":"",

45 "raycolor":"",

46 "raytype":""

47 },

48 "_gravity":{

49 "value":""

50 },

51 "_interaction":"",

52 "_nestedscene":{

53 "#value":"",

54 "#scenecount":"",

55 "#sid_order":""

56 },

57 "_audio":"",

58 "_timeline":"",

59 "_Opttxt1":"",

60 "@context_mock":"",

61 "usertype":[

62 {

63 "type": "",

64 "uplayarea":{

65 "#length_uplayarea":"",

66 "#breadth_uplayarea":"",

67 "#height_uplayarea":""

68 },

69 "initialupos":{

70 "#x_initialupos":"",

71 "#y_initialupos":"",

72 "#z_initialupos":""

73 },

74 "uplayareacenter":{

75 "#x_uplayareacenter":"",

76 "#y_uplayareacenter":"",

120

77 "#z_uplayareacenter":""

78 }

79 },

80 {

81 "type": "",

82 "uplayarea":{

83 "#length_uplayarea":"",

84 "#breadth_uplayarea":"",

85 "#height_uplayarea":""

86 },

87 "initialupos":{

88 "#x_initialupos":"",

89 "#y_initialupos":"",

90 "#z_initialupos":""

91 },

92 "uplayareacenter":{

93 "#x_uplayareacenter":"",

94 "#y_uplayareacenter":"",

95 "#z_uplayareacenter":""

96 }

97 }

98]

99 }

Listing 6.1 Fillable Scene Model Template

Below is the Validator File for the fillable Scene Model template File.

1 {

2 "_scenename":{

3 "req":"mandatory",

4 "typeof":"string",

5 "repeat":"notallow",

6 "%comment%":"Mention your VR Scene name here"

7 },

8 "_sid":{

9 "req":"mandatory",

10 "typeof":"string",

11 "repeat":"notallow",

12 "%comment%":"A fillable Unique Identifier of the scene"

121

13 },

14 "_slabel":{

15 "req":"optional",

16 "typeof":"string",

17 "repeat":"notallow",

18 "%comment%":"A fillable Optional text field for scene description in 200

words"

19 },

20 "#pid":{

21 "req":"mandatory",

22 "root":"_playarea",

23 "typeof":"string",

24 "%comment%":"Unique identifier for playarea in the VR Scene"

25 },

26 "#length_playarea":{

27 "req":"mandatory",

28 "root":"_playarea",

29 "typeof":"string",

30 "repeat":"notallow",

31 "%comment%":"Length dimension of the playarea and it is mandatory value tag"

32 },

33 "#breadth_playarea":{

34 "req":"mandatory",

35 "root":"_playarea",

36 "typeof":"string",

37 "repeat":"notallow",

38 "%comment%":"Breadth dimension of the playarea and it is mandatory value tag"

39 },

40 "#height_playarea":{

41 "req":"mandatory",

42 "root":"_playarea",

43 "typeof":"string",

44 "repeat":"notallow",

45 "%comment%":"Height dimension of the playarea and it is mandatory value tag"

46 },

47

48 "#x_scenecenter":{

49 "req":"mandatory",

122

50 "root":"_playarea",

51 "typeof":"number",

52 "repeat":"notallow",

53 "%comment%":"x-axis value of scene center of the playarea and it is mandatory

value tag"

54 },

55 "#y_scenecenter":{

56 "req":"mandatory",

57 "root":"_playarea",

58 "typeof":"number",

59 "repeat":"notallow",

60 "%comment%":"y-axis value of scene center of the playarea and it is mandatory

value tag"

61 },

62 "#z_scenecenter":{

63 "req":"mandatory",

64 "root":"_playarea",

65 "typeof":"number",

66 "repeat":"notallow",

67 "%comment%":"z-axis value of scene center of the playarea and it is mandatory

value tag"

68 },

69

70

71 "IsSceneObject":{

72 "root":"_camera",

73 "req":"mandatory",

74 "typeof":"boolean",

75 "repeat":"notallow",

76 "%comment%":"true for yes, false for no. This is to set initial camera in

the scene. Additional attributes include IsSceneObject which holds boolean

value and trackingorigin holds string value i.e. either floor (physical real-

world ground) or +/- height from the physical real-world ground. Example: 5+

floor"

77 },

78 "trackingorigin":{

79 "root":"_camera",

80 "req":"mandatory",

123

81 "typeof":"string",

82 "repeat":"notallow",

83 "%comment%":"true for yes, false for no. This is to set initial camera in

the scene. Additional attributes include IsSceneObject which holds boolean

value and trackingorigin holds string value i.e. either floor (physical real-

world ground) or +/- height from the physical real-world ground. Example: 5+

floor"

84 },

85 "#x_initialcamerapos":{

86 "root":"_initialcamerapos",

87 "req":"mandatory",

88 "typeof":"number",

89 "repeat":"allow",

90 "%comment%":"x-axis value of initial camera position of the playarea and it

is mandatory value tag"

91 },

92 "#y_initialcamerapos":{

93 "root":"_initialcamerapos",

94 "req":"mandatory",

95 "typeof":"number",

96 "repeat":"allow",

97 "%comment%":"y-axis value of initial camera position of the playarea and it

is mandatory value tag"

98 },

99 "#z_initialcamerapos":{

100 "root":"_initialcamerapos",

101 "req":"mandatory",

102 "typeof":"number",

103 "repeat":"allow",

104 "%comment%":"z-axis value of initial camera position of the playarea and it

is mandatory value tag"

105 },

106

107 "#x_viewport":{

108 "root":"_viewport",

109 "req":"mandatory",

110 "typeof":"number",

111 "repeat":"allow",

124

112 "%comment%":"x-axis value of viewport of the playarea and it is mandatory

value tag"

113 },

114 "#y_viewport":{

115 "root":"_viewport",

116 "req":"mandatory",

117 "typeof":"number",

118 "repeat":"allow",

119 "%comment%":"y-axis value of viewport of the playarea and it is mandatory

value tag"

120 },

121 "#w_viewport":{

122 "root":"_viewport",

123 "req":"mandatory",

124 "typeof":"number",

125 "repeat":"allow",

126 "%comment%":"width value of viewport of the playarea and it is mandatory

value tag"

127 },

128 "#h_viewport":{

129 "root":"_viewport",

130 "req":"mandatory",

131 "typeof":"number",

132 "repeat":"allow",

133 "%comment%":"height value of viewport of the playarea and it is mandatory

value tag"

134 },

135

136 "near_cp":{

137 "root":"_clippingplane",

138 "req":"mandatory",

139 "typeof":"number",

140 "repeat":"notallow",

141 "%comment%":"Used to represent near clipping plane with value ranging from

0.0 to 1000000"

142 },

143

144 "far_cp":{

125

145 "root":"_clippingplane",

146 "req":"mandatory",

147 "typeof":"number",

148 "repeat":"notallow",

149 "%comment%":"Used to represent far clipping plane with value ranging from 0.0

to 1000000"

150 },

151

152 "_horizon":{

153 "req":"mandatory",

154 "typeof":"boolean",

155 "repeat":"notallow",

156 "%comment%":"true for yes, false for no. This is to set horizon sun to map

the terrian with real world"

157 },

158 "_dof":{

159 "req":"mandatory",

160 "typeof":"number",

161 "repeat":"notallow",

162 "%comment%":"accepts two values 3 and 6. Throw errors for the rest of the

values"

163 },

164 "_skybox":{

165 "req":"mandatory",

166 "typeof":"number",

167 "repeat":"notallow",

168 "%comment%":"accepts two values 3 and 6. Throw errors for the rest of the

values"

169 },

170

171 "type":{

172 "root":"_controllers",

173 "req":"mandatory",

174 "typeof":"string",

175 "repeat":"notallow",

176 "%comment%":"To decide the type of controller like Hand, fingure, gesture and

other types of controllers"

177 },

126

178 "raycast":{

179 "root":"_controllers",

180 "req":"mandatory",

181 "typeof":"boolean",

182 "repeat":"notallow",

183 "%comment%":"It is a Physics function that projects a Ray into the scene,

returning a boolean value if a target was successfully hit. It is a true or

false flag"

184 },

185 "raydistance":{

186 "root":"_controllers",

187 "req":"mandatory",

188 "typeof":"number",

189 "repeat":"notallow",

190 "%comment%":"It is the distance represents the magnitude of the vector from

the ray’s origin to the impact point. Value 10 is "

191 },

192 "raythinkness":{

193 "root":"_controllers",

194 "req":"mandatory",

195 "typeof":"number",

196 "repeat":"notallow",

197 "%comment%":"It is the thickness of ray with minimum value as 1 and max value

as 10"

198 },

199 "raycolor":{

200 "root":"_controllers",

201 "req":"mandatory",

202 "typeof":"string",

203 "repeat":"notallow",

204 "%comment%":"It is the color or ray casted in the Scene. Use color name and

use transparent for no color"

205 },

206 "raytype":{

207 "root":"_controllers",

208 "req":"mandatory",

209 "typeof":"string",

210 "repeat":"notallow",

127

211 "%comment%":"It is a type of ray which can be a straightline, curve line,

wave etc."

212 },

213 "value":{

214 "root":"_gravity",

215 "req":"mandatory",

216 "typeof":"number",

217 "%comment%":"value of earth gravity. Default is 10."

218 },

219 "_interaction":{

220 "req":"mandatory",

221 "typeof":"boolean",

222 "repeat":"notallow",

223 "%comment%":"This describes the interaction capacity in the scene. True for

interactions on and False for no interactions"

224 },

225 "#value":{

226 "root":"_nestedscene",

227 "req":"mandatory",

228 "typeof":"boolean",

229 "repeat":"notallow",

230 "%comment%":"True if there is a scene within a scene."

231 },

232 "#scenecount":{

233 "root":"_nestedscene",

234 "req":"mandatory",

235 "typeof":"number",

236 "repeat":"notallow",

237 "%comment%":"Number of scenes as nested scenes"

238 },

239 "#sid_order":{

240 "root":"_nestedscene",

241 "req":"mandatory",

242 "typeof":"number",

243 "repeat":"notallow",

244 "%comment%":"the order of the nested scenes"

245 },

246 "_audio":{

128

247 "req":"mandatory",

248 "typeof":"boolean",

249 "repeat":"notallow",

250 "%comment%":"true for spatial audio, false for no spatial audio"

251 },

252 "_timeline":{

253 "req":"mandatory",

254 "typeof":"boolean",

255 "repeat":"notallow",

256 "%comment%":"true for timed scene with dynamic events, false for a static

scene with static events"

257 },

258 "_Opttxt1":{

259 "req":"optional",

260 "typeof":"string",

261 "repeat":"notallow",

262 "%comment%":"For user optional text"

263 },

264 "@context_mock":{

265 "req":"optional",

266 "typeof":"string",

267 "repeat":"notallow",

268 "%comment%":"For external reference URLs like figma screens or other

resource links"

269 },

270 "usertype":{

271 "req":"mandatory",

272 "typeof":"object",

273 "repeat":"notallow",

274 "%comment%":"Defines the scene as Single user or Multi-user scene along with

additional values like uplayarea to define the length, breadth and height of

the user along with initialupos value in x,y,z coordinates"

275 },

276 "type":{

277 "root": "usertype",

278 "req":"mandatory",

279 "typeof":"string",

280 "repeat":"allow",

129

281 "%comment%":"Is the scene single user type or a multi user type. Use single or

multi for value tag"

282 },

283 "#length_uplayarea":{

284 "root": "uplayarea",

285 "proot":"usertype",

286 "req":"mandatory",

287 "typeof":"number",

288 "repeat":"allow",

289 "%comment%":"The length of a user playarea"

290 },

291 "#breadth_uplayarea":{

292 "root": "uplayarea",

293 "proot":"usertype",

294 "req":"mandatory",

295 "typeof":"number",

296 "repeat":"allow",

297 "%comment%":"breadth of a user playarea"

298 },

299 "#height_uplayarea":{

300 "root": "uplayarea",

301 "proot":"usertype",

302 "req":"mandatory",

303 "typeof":"number",

304 "repeat":"allow",

305 "%comment%":"height of a user playarea"

306 },

307 "#x_initialupos":{

308 "root": "initialupos",

309 "proot":"usertype",

310 "req":"mandatory",

311 "typeof":"number",

312 "repeat":"allow",

313 "%comment%":"x-axis of a user in this user play area"

314 },

315 "#y_initialupos":{

316 "root": "initialupos",

317 "proot":"usertype",

130

318 "req":"mandatory",

319 "typeof":"number",

320 "repeat":"allow",

321 "%comment%":"y-axis of a user in this user play area"

322 },

323 "#z_initialupos":{

324 "root": "initialupos",

325 "proot":"usertype",

326 "req":"mandatory",

327 "typeof":"number",

328 "repeat":"allow",

329 "%comment%":"z-axis of a user in this user play area"

330 },

331 "#x_uplayareacenter":{

332 "root": "uplayareacenter",

333 "proot":"usertype",

334 "req":"mandatory",

335 "typeof":"number",

336 "repeat":"allow",

337 "%comment%":"x-axis initial position of a user in this user play area"

338 },

339 "#y_uplayareacenter":{

340 "root": "uplayareacenter",

341 "proot":"usertype",

342 "req":"mandatory",

343 "typeof":"number",

344 "repeat":"allow",

345 "%comment%":"x-axis initial position of a user in this user play area"

346 },

347 "#z_uplayareacenter":{

348 "root": "uplayareacenter",

349 "proot":"usertype",

350 "req":"mandatory",

351 "typeof":"number",

352 "repeat":"allow",

353 "%comment%":"z-axis initial position of a user in this user play area"

354 }

355

131

356 }

Listing 6.2 Scene Validator

Below is the Fillable Article Model template File.

1 {

2 "articles": [

3 {

4 "_objectname": "",

5 "_sid": "",

6 "_slabel": "",

7 "_IsHidden": "",

8 "_enumcount": "",

9 "_Is3DObject": "",

10 "HasChild": "",

11 "shape": "",

12 "dimension": {

13 "dradii": "",

14 "dvolumn": "",

15 "dlength": "",

16 "dbreadth": "",

17 "dheight": ""

18 },

19 "IsText": "",

20 "IsText3D": "",

21 "lighting": {

22 "CastShadow": "",

23 "ReceiveShadow": "",

24 "ContributeGlobalIlumination": ""

25 },

26 "IsIlluminate": "",

27 "Transform_initialpos": {

28 "#x_initialpos": "",

29 "#y_initialpos": "",

30 "#z_initialpos": ""

31 },

32 "Transform_initialrotation": {

33 "#x_initialrotation": "",

34 "#y_initialrotation": "",

132

35 "#z_initialrotation": ""

36 },

37 "Transform_objectscale": {

38 "#x_objectscale": "",

39 "#y_objectscale": "",

40 "#z_objectscale": ""

41 },

42 "repeattransfrom": {

43 "distfactorx": "",

44 "distfactory": "",

45 "distfactorz": ""

46 },

47 "Interaction": {

48 "XRGrabInteractable": "",

49 "XRInteractionMaskLayer": "",

50 "TrackPosition": "",

51 "TrackRotation": "",

52 "Throw_Detach": "",

53 "forcegravity": "",

54 "velocity": "",

55 "angularvelocity": ""

56 },

57 "Smoothing": "",

58 "Smoothing_duration": "",

59 "attachtransform": {

60 "#rotate_x": "",

61 "#rotate_y": "",

62 "#rotate_z": "",

63 "#pos_x": "",

64 "#pos_y": "",

65 "#pos_z": ""

66 },

67 "XRRigidObject": {

68 "value": "",

69 "mass": "",

70 "dragfriction": "",

71 "angulardrag": "",

72 "Isgravityenable": "",

133

73 "IsKinematic": "",

74 "CanInterpolate": "",

75 "CollisionPolling": ""

76 },

77 "aud_hasaudio": "",

78 "aud_type": "",

79 "aud_src": "",

80 "aud_volume": "",

81 "aud_PlayInloop": "",

82 "aud_IsSurround": "",

83 "aud_Dopplerlevel": "",

84 "aud_spread": "",

85 "aud_mindist": "",

86 "aud_maxdist": "",

87 "_Opttxt1": "",

88 "@context_img_source": "",

89 "state": [

90 {

91 "stateid": "",

92 "statename": "",

93 "stateinitial": "",

94 "statetransition": [

95 {

96 "sevent": "",

97 "starget": "",

98 "spref": ""

99 },

100 {

101 "sevent": "",

102 "starget": "",

103 "spref": ""

104 }

105],

106 "statefinal": ""

107 },

108 {

109 "stateid": "",

110 "statename": "",

134

111 "stateinitial": "",

112 "statetransition": [

113 {

114 "sevent": "",

115 "starget": "",

116 "spref": ""

117 },

118 {

119 "sevent": "",

120 "starget": "",

121 "spref": ""

122 }

123],

124 "statefinal": ""

125 }

126]

127 }

128]

129 }

Listing 6.3 Article Model template

Below is the Validator File for the fillable Article Model template File.

1 {

2 "articles": {

3 "req": "mandatory",

4 "typeof": "object",

5 "repeat": "notallow",

6 "%comment%": "Array list of Articles that its respective properties"

7 },

8 "_objectname": {

9 "req": "mandatory",

10 "typeof": "string",

11 "repeat": "allow",

12 "root": "articles",

13 "%comment%": "Name of the Object"

14 },

15 "_sid": {

16 "req": "mandatory",

135

17 "typeof": "string",

18 "repeat": "allow",

19 "root": "articles",

20 "%comment%": "unique identifier to identify the object"

21 },

22 "_slabel": {

23 "req": "mandatory",

24 "typeof": "string",

25 "repeat": "allow",

26 "root": "articles",

27 "%comment%": "50 character label to describe the object"

28 },

29 "_IsHidden": {

30 "req": "mandatory",

31 "typeof": "number",

32 "repeat": "allow",

33 "root": "articles",

34 "%comment%": "Flag to determine if the object is hidden or unhidden"

35 },

36 "_enumcount": {

37 "req": "mandatory",

38 "typeof": "number",

39 "repeat": "allow",

40 "root": "articles",

41 "%comment%": "Count of objects in the scene"

42 },

43 "_Is3DObject": {

44 "req": "mandatory",

45 "typeof": "number",

46 "repeat": "allow",

47 "root": "articles",

48 "%comment%": "Flag to determine if the object is 3D or not"

49 },

50 "HasChild": {

51 "req": "mandatory",

52 "typeof": "number",

53 "repeat": "allow",

54 "root": "articles",

136

55 "%comment%": "Flag to determine if the object has linked child object"

56 },

57 "shape": {

58 "req": "mandatory",

59 "typeof": "string",

60 "repeat": "allow",

61 "root": "articles",

62 "%comment%": "Shape of the object, mention the geometery type"

63 },

64 "dradii": {

65 "req": "mandatory",

66 "typeof": "number",

67 "repeat": "allow",

68 "proot": "articles",

69 "root": "dimension",

70 "%comment%": "radius of the object if it is a sphere else NULL"

71 },

72 "dvolumn": {

73 "req": "mandatory",

74 "typeof": "string",

75 "repeat": "allow",

76 "proot": "articles",

77 "root": "dimension",

78 "%comment%": "volumn of the object to determine the size"

79 },

80 "dlength": {

81 "req": "mandatory",

82 "typeof": "string",

83 "repeat": "allow",

84 "proot": "articles",

85 "root": "dimension",

86 "%comment%": "Length of the object if it has a length property"

87 },

88 "dbreadth": {

89 "req": "mandatory",

90 "typeof": "string",

91 "repeat": "allow",

92 "proot": "articles",

137

93 "root": "dimension",

94 "%comment%": "Breadth of the object if it has a breadth property"

95 },

96 "dheigth": {

97 "req": "mandatory",

98 "typeof": "string",

99 "repeat": "allow",

100 "proot": "articles",

101 "root": "dimension",

102 "%comment%": "Height of the object if it has a height property"

103 },

104 "IsText": {

105 "req": "mandatory",

106 "typeof": "boolean",

107 "repeat": "allow",

108 "root": "articles",

109 "%comment%": "Flag to determine if it is a Text object"

110 },

111 "IsText3D": {

112 "req": "mandatory",

113 "typeof": "boolean",

114 "repeat": "allow",

115 "root": "articles",

116 "%comment%": "Flag to determine if it is a 3D Text object"

117 },

118 "CastShadow": {

119 "req": "mandatory",

120 "typeof": "string",

121 "repeat": "allow",

122 "proot": "articles",

123 "root": "lighting",

124 "%comment%": "Flag to determine if the object can cast shadow"

125 },

126 "ReceiveShadow": {

127 "req": "mandatory",

128 "typeof": "string",

129 "repeat": "allow",

130 "proot": "articles",

138

131 "root": "lighting",

132 "%comment%": "Flag to determine if the object can receive a shadow"

133 },

134 "ContributeGlobalIlumination": {

135 "req": "mandatory",

136 "typeof": "string",

137 "repeat": "allow",

138 "proot": "articles",

139 "root": "lighting",

140 "%comment%": "Flag to determine if the object contributes to overall scene

illumination or self glowing object"

141 },

142 "IsIlluminate": {

143 "req": "mandatory",

144 "typeof": "boolean",

145 "repeat": "allow",

146 "root": "articles",

147 "%comment%": "Flag to determine if the object can illuminate self"

148 },

149 "#x_initialpos": {

150 "req": "mandatory",

151 "typeof": "string",

152 "repeat": "allow",

153 "proot": "articles",

154 "root": "Transform_initalpos",

155 "%comment%": "x-axis initial position of the object in the scene terrian"

156 },

157 "#y_initialpos": {

158 "req": "mandatory",

159 "typeof": "string",

160 "repeat": "allow",

161 "proot": "articles",

162 "root": "Transform_initalpos",

163 "%comment%": "y-axis initial position of the object in the scene terrian"

164 },

165 "#z_initialpos": {

166 "req": "mandatory",

167 "typeof": "string",

139

168 "repeat": "allow",

169 "proot": "articles",

170 "root": "Transform_initalpos",

171 "%comment%": "z-axis initial position of the object in the scene terrian"

172 },

173 "#x_initialrotation": {

174 "req": "mandatory",

175 "typeof": "string",

176 "repeat": "allow",

177 "proot": "articles",

178 "root": "Transform_initalrotation",

179 "%comment%": "x-axis initial rotation stance of the object in the scene

terrian"

180 },

181 "#y_initialrotation": {

182 "req": "mandatory",

183 "typeof": "string",

184 "repeat": "allow",

185 "proot": "articles",

186 "root": "Transform_initalrotation",

187 "%comment%": "y-axis initial rotation stance of the object in the scene

terrian"

188 },

189 "#z_initialrotation": {

190 "req": "mandatory",

191 "typeof": "string",

192 "repeat": "allow",

193 "proot": "articles",

194 "root": "Transform_initalrotation",

195 "%comment%": "z-axis initial rotation stance of the object in the scene

terrian"

196 },

197 "#x_objectscale": {

198 "req": "mandatory",

199 "typeof": "string",

200 "repeat": "allow",

201 "proot": "articles",

202 "root": "Transform_objectscale",

140

203 "%comment%": "x-axis tranformable object scale of the object in the scene

terrian"

204 },

205 "#y_objectscale": {

206 "req": "mandatory",

207 "typeof": "string",

208 "repeat": "allow",

209 "proot": "articles",

210 "root": "Transform_objectscale",

211 "%comment%": "y-axis tranformable object scale of the object in the scene

terrian"

212 },

213 "#z_objectscale": {

214 "req": "mandatory",

215 "typeof": "string",

216 "repeat": "allow",

217 "proot": "articles",

218 "root": "Transform_objectscale",

219 "%comment%": "z-axis tranformable object scale of the object in the scene

terrian"

220 },

221 "#distfactorx": {

222 "req": "mandatory",

223 "typeof": "string",

224 "repeat": "allow",

225 "proot": "articles",

226 "root": "repeattransform",

227 "%comment%": "Distance Factor in x-axis of the object"

228 },

229 "#distfactory": {

230 "req": "mandatory",

231 "typeof": "string",

232 "repeat": "allow",

233 "proot": "articles",

234 "root": "repeattransform",

235 "%comment%": "Distance Factor in y-axis of the object"

236 },

237 "#distfactorz": {

141

238 "req": "mandatory",

239 "typeof": "string",

240 "repeat": "allow",

241 "proot": "articles",

242 "root": "repeattransform",

243 "%comment%":"Distance Factor in z-axis of the object"

244 },

245

246 "XRGrabInteractable": {

247 "req": "mandatory",

248 "typeof": "string",

249 "repeat": "allow",

250 "proot": "articles",

251 "root": "Interaction",

252 "%comment%": "Flag to determine if the object is grabbable and has

interaction"

253 },

254 "XRInteractionMaskLayer": {

255 "req": "mandatory",

256 "typeof": "string",

257 "repeat": "allow",

258 "proot": "articles",

259 "root": "Interaction",

260 "%comment%": "Flag to determine if the object interaction has masked layer"

261 },

262 "TrackPosition": {

263 "req": "mandatory",

264 "typeof": "string",

265 "repeat": "allow",

266 "proot": "articles",

267 "root": "Interaction",

268 "%comment%": "Flag to determine if the object can have a tracker position"

269 },

270 "TrackRotation": {

271 "req": "mandatory",

272 "typeof": "string",

273 "repeat": "allow",

274 "proot": "articles",

142

275 "root": "Interaction",

276 "%comment%": "Flag to determine if the object can have a tracker rotation"

277 },

278 "Throw_Detach": {

279 "req": "mandatory",

280 "typeof": "string",

281 "repeat": "allow",

282 "proot": "articles",

283 "root": "Interaction",

284 "%comment%": "Flag to determine if the object can be thrown and detachable"

285 },

286 "forcegravity": {

287 "req": "mandatory",

288 "typeof": "string",

289 "repeat": "allow",

290 "proot": "articles",

291 "root": "Interaction",

292 "%comment%": "Flag to determine if the object can have a force gravity

applied"

293 },

294 "velocity": {

295 "req": "mandatory",

296 "typeof": "string",

297 "repeat": "allow",

298 "proot": "articles",

299 "root": "Interaction",

300 "%comment%": "Flag to determine if the object can hold natural velocity"

301 },

302 "angularvelocity": {

303 "req": "mandatory",

304 "typeof": "string",

305 "repeat": "allow",

306 "proot": "articles",

307 "root": "Interaction",

308 "%comment%": "Flag to determine if the object can hold an angular velocity"

309 },

310 "Smoothing": {

311 "req": "mandatory",

143

312 "typeof": "string",

313 "repeat": "allow",

314 "root": "articles",

315 "%comment%": "Flag to determine if the object can hold smoothing"

316 },

317 "Smoothing_duration": {

318 "req": "mandatory",

319 "typeof": "string",

320 "repeat": "allow",

321 "root": "articles",

322 "%comment%": "Flag to determine if the object smoothing duration"

323 },

324 "#rotate_x": {

325 "req": "mandatory",

326 "typeof": "string",

327 "proot": "articles",

328 "root": "attachtransform",

329 "repeat": "allow",

330 "%comment%": "Flag to determine x-axis of object rotation position"

331 },

332 "#rotate_y": {

333 "req": "mandatory",

334 "typeof": "string",

335 "proot": "articles",

336 "root": "attachtransform",

337 "repeat": "allow",

338 "%comment%": "Flag to determine y-axis of object rotation position"

339 },

340 "#rotate_z": {

341 "req": "mandatory",

342 "typeof": "string",

343 "proot": "articles",

344 "root": "attachtransform",

345 "repeat": "allow",

346 "%comment%": "Flag to determine z-axis of object rotation position"

347 },

348 "#pos_x": {

349 "req": "mandatory",

144

350 "typeof": "string",

351 "proot": "articles",

352 "root": "attachtransform",

353 "repeat": "allow",

354 "%comment%": "Flag to determine x-axis of object transform position"

355 },

356 "#pos_y": {

357 "req": "mandatory",

358 "typeof": "string",

359 "proot": "articles",

360 "root": "attachtransform",

361 "repeat": "allow",

362 "%comment%": "Flag to determine y-axis of object transform position"

363 },

364 "#pos_z": {

365 "req": "mandatory",

366 "typeof": "string",

367 "proot": "articles",

368 "root": "attachtransform",

369 "repeat": "allow",

370 "%comment%": "Flag to determine y-axis of object transform position"

371 },

372 "value": {

373 "req": "mandatory",

374 "typeof": "string",

375 "proot": "articles",

376 "root": "XRRigidObject",

377 "repeat": "allow",

378 "%comment%": "Level of rigid with the scale of 1 to 10"

379 },

380 "mass": {

381 "req": "mandatory",

382 "typeof": "string",

383 "proot": "articles",

384 "root": "XRRigidObject",

385 "repeat": "allow",

386 "%comment%": "Flag to mention the mass of the object"

387 },

145

388 "dragfriction": {

389 "req": "mandatory",

390 "typeof": "string",

391 "proot": "articles",

392 "root": "XRRigidObject",

393 "repeat": "allow",

394 "%comment%": "Flag to determine if the object can hold drag friction"

395 },

396 "angulardrag": {

397 "req": "mandatory",

398 "typeof": "string",

399 "proot": "articles",

400 "root": "XRRigidObject",

401 "repeat": "allow",

402 "%comment%": "Flag to determine if the object can be angular drag"

403 },

404 "Isgravityenable": {

405 "req": "mandatory",

406 "typeof": "string",

407 "proot": "articles",

408 "root": "XRRigidObject",

409 "repeat": "allow",

410 "%comment%": "Flag to determine if the object abides by natural gravity"

411 },

412 "IsKinematic": {

413 "req": "mandatory",

414 "typeof": "string",

415 "proot": "articles",

416 "root": "XRRigidObject",

417 "repeat": "allow",

418 "%comment%": "Flag to determine if the object is mobile or kinematic"

419 },

420 "CanInterpolate": {

421 "req": "mandatory",

422 "typeof": "string",

423 "proot": "articles",

424 "root": "XRRigidObject",

425 "repeat": "allow",

146

426 "%comment%": "Flag to determie if the object can interpolate"

427 },

428 "CollisionPolling": {

429 "req": "mandatory",

430 "typeof": "string",

431 "proot": "articles",

432 "root": "XRRigidObject",

433 "repeat": "allow",

434 "%comment%": "Flag to determine if the object can CollisionPolling"

435 },

436 "aud_hasaudio": {

437 "req": "mandatory",

438 "typeof": "string",

439 "root": "articles",

440 "repeat": "allow",

441 "%comment%": "Flag to determine if the object has audio setup"

442 },

443 "aud_type": {

444 "req": "mandatory",

445 "typeof": "string",

446 "root": "articles",

447 "repeat": "allow",

448 "%comment%": "Type of Audio file"

449 },

450 "aud_src": {

451 "req": "mandatory",

452 "typeof": "string",

453 "root": "articles",

454 "repeat": "allow",

455 "%comment%": "Audio Source file and its path"

456 },

457 "aud_volume": {

458 "req": "mandatory",

459 "typeof": "string",

460 "root": "articles",

461 "repeat": "allow",

462 "%comment%": "Measure of audio volume"

463 },

147

464 "aud_PlayInloop": {

465 "req": "mandatory",

466 "typeof": "string",

467 "root": "articles",

468 "repeat": "allow",

469 "%comment%": "Flag to determine if the audio is playable in loop"

470 },

471 "aud_IsSurround": {

472 "req": "mandatory",

473 "typeof": "string",

474 "root": "articles",

475 "repeat": "allow",

476 "%comment%": "Flag to determine if the audio of the object is surroundable"

477 },

478 "aud_Dopplerlevel": {

479 "req": "mandatory",

480 "typeof": "string",

481 "root": "articles",

482 "repeat": "allow",

483 "%comment%": "Audio doppler level of the object if available"

484 },

485 "aud_spread": {

486 "req": "mandatory",

487 "typeof": "string",

488 "root": "articles",

489 "repeat": "allow",

490 "%comment%": "Audio spread measure of the object"

491 },

492 "aud_mindist": {

493 "req": "mandatory",

494 "typeof": "string",

495 "root": "articles",

496 "repeat": "allow",

497 "%comment%": "Minimum distance covered via audio"

498 },

499 "aud_maxdist": {

500 "req": "mandatory",

501 "typeof": "string",

148

502 "root": "articles",

503 "repeat": "allow",

504 "%comment%": "Maximum distance covered via audio"

505 },

506 "_Opttxt1": {

507 "req": "mandatory",

508 "typeof": "string",

509 "root": "articles",

510 "repeat": "allow",

511 "%comment%": "optional notes placeholder to add additional notes about the

object"

512 },

513 "@context_img_source": {

514 "req": "mandatory",

515 "typeof": "string",

516 "root": "articles",

517 "repeat": "allow",

518 "%comment%": "Sample image source file location for designer reference"

519 },

520

521 "state":{

522 "req":"mandatory",

523 "root":"ObjAction",

524 "typeof":"object",

525 "repeat":"allow",

526 "%comment%":"This is a master node for state array object to defined states of a

given action and its response over objects"

527 },

528

529 "stateid":{

530 "req":"mandatory",

531 "root":"ObjAction",

532 "typeof":"number",

533 "repeat":"allow",

534 "%comment%":"Define your own unique identifier to identify a state"

535 },

536

537

149

538 "statename":{

539 "req":"mandatory",

540 "proot":"state",

541 "root":"ObjAction",

542 "typeof":"string",

543 "repeat":"allow",

544 "%comment%":"Provide a state name for a given stateid"

545

546 },

547

548 "stateinitial":{

549 "req":"mandatory",

550 "proot":"state",

551 "root":"ObjAction",

552 "typeof":"string",

553 "repeat":"allow",

554 "%comment%":"Describe your Initial Statement in less than 10 words"

555 },

556

557 "statetransition":{

558

559 "req":"mandatory",

560 "proot":"state",

561 "root":"ObjAction",

562 "typeof":"object",

563 "repeat":"allow",

564 "%comment%":"to describe the underlying events and target with a preference value

"

565 },

566

567 "sevent":{

568 "req":"mandatory",

569 "proot":"statetransition",

570 "root":"ObjAction",

571 "typeof":"string",

572 "repeat":"allow",

573 "%comment%":"to describe the underlying events and its target along with a

preference value"

150

574 },

575

576 "starget":{

577 "req":"mandatory",

578 "proot":"statetransition",

579 "root":"ObjAction",

580 "typeof":"string",

581 "repeat":"allow",

582 "%comment%":"to describe the underlying target for a given event along with a

preference value"

583 },

584

585 "spref":{

586 "req":"mandatory",

587 "proot":"statetransition",

588 "root":"ObjAction",

589 "typeof":"number",

590 "repeat":"allow",

591 "%comment%":"to describe the perference value for a given sevent and starget. It

starts with value 0"

592 },

593

594 "statefinal":{

595

596 "req":"mandatory",

597 "root":"state",

598 "proot":"ObjAction",

599 "typeof":"string",

600 "repeat":"allow",

601 "%comment%":"Describe your final Statement in less than 10 words"

602 }

603

604

605 }

Listing 6.4 Article Validator

Below is the Fillable Action Response Model template File.

1 {

151

2 "ObjAction": [

3 {

4 "actresid":"",

5 "sourceObj":"",

6 "targetObj":"",

7 "IsCollision":"",

8 "response":"",

9 "comment":"",

10 "Syncronous":"",

11 "repeatactionfor":""

12

13 }

14]

15 }

Listing 6.5 Action Response Model Template

Below is the Validator File for the fillable Action Response Model template File.

1 {

2

3 "ObjAction":{

4 "req":"mandatory",

5 "typeof":"object",

6 "repeat":"notallow",

7 "%comment%":"Collection of Objects that are set for action and corresponding

response"

8 },

9

10 "actresid":{

11 "req":"mandatory",

12 "root":"ObjAction",

13 "typeof":"string",

14 "repeat":"allow",

15 "%comment%":"Unique Identifier for a given action and response"

16 },

17

18 "sourceObj":{

19 "req":"mandatory",

20 "root":"ObjAction",

152

21 "typeof":"string",

22 "repeat":"allow",

23 "%comment%":"Source object where the action is applied or originated"

24 },

25

26 "targetObj":{

27 "req":"mandatory",

28 "root":"ObjAction",

29 "typeof":"string",

30 "repeat":"allow",

31 "%comment%":"Target object where the action’s response is made visible"

32 },

33

34

35 "IsCollision":{

36 "req":"mandatory",

37 "root":"ObjAction",

38 "typeof":"boolean",

39 "repeat":"allow",

40 "%comment%":"Flag to determine if the action is based on collision"

41 },

42

43 "response":{

44 "req":"mandatory",

45 "root":"ObjAction",

46 "typeof":"string",

47 "repeat":"allow",

48 "%comment%":"Defines the type of response, i,e, natural law based response or

a customized response"

49 },

50

51 "comment":{

52 "req":"mandatory",

53 "root":"ObjAction",

54 "typeof":"string",

55 "repeat":"allow",

56 "%comment%":"Illustrate in words the course of response and its journey"

57 },

153

58

59 "Syncronous":{

60 "req":"mandatory",

61 "root":"ObjAction",

62 "typeof":"boolean",

63 "repeat":"allow",

64 "%comment%":"Defines if the response is Syncronous to action or has any delay

or Asyncronous to other objects"

65 },

66

67 "repeatactionfor":{

68 "req":"mandatory",

69 "root":"ObjAction",

70 "typeof":"string",

71 "repeat":"allow",

72 "%comment%":"Flag to use or repeat the same action for other objects. Metion

the targetobjects ids or names"

73 }

74

75

76

77

78 }

Listing 6.6 Action Response Validator

Below is the Fillable Timeline Model template File.

1 {

2

3 "animate_trigSync":{

4 "tsyncid":"",

5 "tsOntrigger":"true",

6 "SyncObjList":[],

7 "tSyncNote":""

8 },

9 "animate_nontrigSync":{

10 "ntsyncid":"",

11 "ntsOntrigger":"false", "ntSyncObjList":[], "ntSyncNote

":""

154

12 },

13 "animate_trigAsync":{

14 "tasyncid":"",

15 "taOntrigger":"true", "tAsyncObjList":[], "tAsyncNote":""

16 },

17 "animate_nontrigAsync":{

18 "ntasyncid":"",

19 "ntaOntrigger":"false", "ntAsyncObjList":[], "ntAsyncNote

":""

20 },

21

22

23 "routine": [{ "routeid":"", "starttime":"", "endtime":"", "order

":[] }]

24

25

26

27 }

Listing 6.7 Timeline Model Template

Below is the Validator File for the fillable Timeline Model template File.

1 {

2 "tsyncid":{

3 "root": "animate_trigSync",

4 "req":"mandatory",

5 "typeof":"number",

6 "repeat":"notallow",

7 "%comment%":"Unique Identifier for animating scene synchronously based on a

trigger"

8 },

9 "tsOntrigger":{

10 "root": "animate_trigSync",

11 "req":"optional",

12 "typeof":"boolean",

13 "repeat":"notallow",

14 "%comment%":"True or false flag if this is a triggered animation based an

action"

15 },

155

16 "SyncObjList":{

17 "root": "animate_trigSync",

18 "req":"optional",

19 "typeof":"object",

20 "repeat":"notallow",

21 "%comment%":"List of objects are animated in a timeline that are triggered

Synchronously"

22 },

23 "tSyncNote":{

24 "root": "animate_trigSync",

25 "req":"optional",

26 "typeof":"string",

27 "repeat":"notallow",

28 "%comment%":"place holder for additional notes for Sync object"

29 },

30

31 "ntsyncid":{

32 "root": "animate_nontrigSync",

33 "req":"mandatory",

34 "typeof":"number",

35 "repeat":"notallow",

36 "%comment%":"Unique Identifier for animating scene synchronously based on a

non trigger"

37 },

38 "ntsOntrigger":{

39 "root": "animate_nontrigSync",

40 "req":"optional",

41 "typeof":"boolean",

42 "repeat":"notallow",

43 "%comment%":"True or false flag if this is a non triggered animation based an

action"

44 },

45 "ntSyncObjList":{

46 "root": "animate_nontrigSync",

47 "req":"optional",

48 "typeof":"object",

49 "repeat":"notallow",

156

50 "%comment%":"List of objects are animated in a timeline that are non

triggered ASynchronously"

51 },

52 "ntSyncNote":{

53 "root": "animate_nontrigSync",

54 "req":"optional",

55 "typeof":"string",

56 "repeat":"notallow",

57 "%comment%":"place holder for additional notes for Sync object"

58 },

59

60

61

62 "tasyncid":{

63 "root": "animate_trigAsync",

64 "req":"mandatory",

65 "typeof":"number",

66 "repeat":"notallow",

67 "%comment%":"Unique Identifier for animating scene asynchronously based on a

trigger"

68 },

69 "taOntrigger":{

70 "root": "animate_trigAsync",

71 "req":"optional",

72 "typeof":"boolean",

73 "repeat":"notallow",

74 "%comment%":"True or false flag if this is a triggered animation based an

action"

75 },

76 "tAsyncObjList":{

77 "root": "animate_trigAsync",

78 "req":"optional",

79 "typeof":"object",

80 "repeat":"notallow",

81 "%comment%":"List of objects are animated in a timeline that are triggered

ASynchronously"

82 },

83 "tAsyncNote":{

157

84 "root": "animate_trigAsync",

85 "req":"optional",

86 "typeof":"string",

87 "repeat":"notallow",

88 "%comment%":"place holder for additional notes for ASync object"

89 },

90

91 "ntasyncid":{

92 "root": "animate_nontrigAsync",

93 "req":"mandatory",

94 "typeof":"number",

95 "repeat":"notallow",

96 "%comment%":"Unique Identifier for animating scene asynchronously based on a

non trigger"

97 },

98 "ntaOntrigger":{

99 "root": "animate_nontrigAsync",

100 "req":"optional",

101 "typeof":"boolean",

102 "repeat":"notallow",

103 "%comment%":"True or false flag if this is a non triggered animation based an

action"

104 },

105 "ntAsyncObjList":{

106 "root": "animate_nontrigAsync",

107 "req":"optional",

108 "typeof":"object",

109 "repeat":"notallow",

110 "%comment%":"List of objects are animated in a timeline that are non

triggered ASynchronously"

111 },

112 "ntAsyncNote":{

113 "root": "animate_nontrigAsync",

114 "req":"optional",

115 "typeof":"string",

116 "repeat":"notallow",

117 "%comment%":"place holder for additional notes for ASync object"

118 },

158

119

120 "routine":{

121 "repeat":"notallow",

122 "req":"mandatory",

123 "typeof":"object",

124 "%comment%":"To mention a repeated routine of timeline actions"

125 },

126

127

128 "routeid":{

129 "root": "routine",

130 "req":"mandatory",

131 "typeof":"number",

132 "repeat":"allow",

133 "%comment%":"Unique identifier of a routine"

134

135 },

136 "starttime":{

137 "root": "routine",

138 "req":"optional",

139 "typeof":"string",

140 "repeat":"allow",

141 "%comment%":"Start Timestamps of routine"

142

143 },

144 "endtime":{

145 "root": "routine",

146 "req":"optional",

147 "typeof":"string",

148 "repeat":"allow",

149 "%comment%":"End Timestamps of routine"

150

151 },

152 "order":{

153 "root": "routine",

154 "req":"optional",

155 "typeof":"object",

156 "repeat":"allow",

159

157 "%comment%":"Order of items in a routine, mention the routine ids in a

sequence to understand the order of events."

158

159 }

160

161

162 }

Listing 6.8 Timeline Validator

6.2.5 Understanding Behavior and State in VReqST

For example, to author “Behavior” - assume that we are building a tic-tac-toe game in VR with two
articles, Circle (O) and Cross (X). If three of any one of these articles form a straight line (vertical,
horizontal, diagonal) in a tic-tac-toe game, the player with the respective article is deemed the winner.
To author this behavior in Stage 4, we use the code snippet below using a CASE condition, and every-
thing in bold is the pre-defined code construct from behave.json. The text in italics are articles from
article.json, and the rest is in free-form text, which is not validated. The code snippet construct in bold
is validated using behave.json.

1: CASE # Circle OR Cross = true #
2: C1: forms straight vertical line = player:winner;
3: C2: forms straight horizontal line = player:winner;
4: C3: forms straight diagonal line = player:winner;
5: C4: player: next step;
6: !

The requirement analysts can specify behaviors using in-built code constructs. These code constructs
do not follow existing programming standards but are custom-made for VReqST. They follow an in-
built syntax that is simplified and easy for a non-developer. After considering the feedback from VR
community and as requirement analysts are are full-scale developers, we made them low-code.

Similarly, “State” transition can be specified by defining state parameters like initial state and final
based on transition parameters like event and target. For example, to describe the state transition of
sun-rise in VReqST, the requirement is to specify that while the sun rises, the sun rays should cast a
shadow and transition snow to water in a specified time counter.

1 {

2 "state": [

160

3 {

4 "id": "sunrise2013",

5 "name": "Sun Rise in New York",

6 "initial": "dark horizon",

7 "transition": [

8 {

9 "object": ["Sun","trees"],

10 "event": "rising",

11 "target": "sun ray cast shadow on all assests from east to west"

12 },

13 {

14 "object": ["Sun","Snow"],

15 "event": "rising",

16 "target": "turn the snow into water gradually after 35 seconds"

17 }

18],

19 "final": "Display sunrise with cast shadow on trees and snow converted to water

after 50 seconds"

20 }

21]

22 }

Listing 6.9 Sample State Template

6.2.6 VReqST Features

Following are a few significant features of the VReqST tool that are provisioned for requirement
analysts to embrace based on the sophistication of their VR software product:

• Bare minimum model template and attributes: VReqST provides bare minimum model at-
tributes related to specific model concepts by default. These default model attributes are illus-
trated in Table 6.2. The underlying validator file for the respective model template file constitutes
validation rules associated with these bare-minimum attributes. The requirement analysts can use
these default model template attributes to author simple VR software products.

• Implement new model template and attributes: The requirement analysts can include new
model attributes without altering the bare minimum model attributes for a given model concept.
For every newly implemented model attribute in the model template file, a validation logic should
exist in its validator file. For example, if a new attribute called ”color” (inspired by OpenXR
standard specification [97] - XrColor4f structure) is included scene.json, whose validation rule for

161

variables (r, g, b, a) with datatype as (float, float, float, float) and non-nullable should be included
as part of svalid.json. Thus, supporting new model attributes extends the scope of capturing
requirement specifications for VR. The steps to update these files are available as part of our
documentation [135].

• Managing Specifications: The step-by-step process of managing projects in VReqST and de-
tailed screen-flow are available in supporting documentation [135]. Requirement Analysts can
rely on this document to manage their VR requirement specification projects. Requirement an-
alyst can author requirement specifications for multiple VR products through a project manage-
ment page. Each project follows the specification workflow mentioned as part of Fig 6.4 and
Fig 6.5. Requirement analysts can write, save, edit, re-edit, and delete the authored requirement
specifications of their respective VR products.

6.3 Example Specifications

We used VReqST to specify requirements for two VR applications to understand the capabilities and
shortcomings. We specified detailed requirements for a VR bowling alley game and a VR Virtual art
gallery that uses a limitless locomotion algorithm called PragPal [178]. We developed these VR Scenes
using the UNITY Game Engine Version - 2022.2.16 and works on Oculus Meta Quest 2 head-mounted
device.

Figure 6.6 VR Bowling Alley Game in a developer mode (UNITY Engine) - Point-of-View 1 & 2

VR Bowling Alley Game: A VR bowling alley game is a virtual facility where bowling is played.
It is a multiplayer game that follows all the bowling alley rules. The Game scene is played under a 30
ft (length) x 30 ft (breadth) x 30 ft (height) virtual play area. The game contains a bowling ball, ten
pins, a pinsetter for setting the pins in a frame, an alley lane, and a gutter that acts as a boundary for the
alley lane. The game is controlled by a Control Desk that registers the parties, registers bowlers, and
manages the party assignment to the game lanes. There are ten games for each party player. The scores

162

are displayed on the scoreboard. The player from a party who scores the highest in all ten games wins.
We authored and shared the VR bowling alley game specifications with the VR developer to design and
develop the game. The final working game [134] and the sample specifications are available as part of
our resources [136].

Figure 6.7 VR Art Gallery using limitless walking (UNITY Engine) - Point-of-View 1 & 2

VR Virtual Art Gallery: The VR virtual art gallery is an endless corridor comprising two walls run-
ning parallel to each other. The end users walk through the gallery to explore the art exhibits on these
walls and progress in the forward direction. Under the influence of an underlying locomotion algorithm,
the users’ path is virtually limitless in a limited physical space, i.e., within a fixed physical play area,
the user is set to locomote limitless in a virtual play area. We authored the requirement specifications
of this virtual art gallery and the underlying limitless locomotion algorithm using the VReqST to study
the capabilities of specifying algorithms using the behavior step. The final working game [178] and the
sample specifications are available as part of our resources [136]. This validation helped us conduct
a Unit Test of VReqST and demonstrate its capabilities of specifying custom features and algorithms
for a given VR scene. Considering these early observations, we planned to conduct a detailed study in
practice to examine the completeness and correctness of requirements specified through VReqST as a
future work. In the following chapter, we present validation of VReqST tool in practice.

Specifications by Novice Users: At IIIT Hyderabad, we offered a CS300 level Software Engineer-
ing (SE) course during Spring 2023 focused on building software systems using SE practices. The
course had 130+ Undergraduate, Graduate, and Industry student learners. We randomly created 28
teams with a team size of 4 to 5 students for all the course related tasks and activities. Requirement
engineering concepts were announced as part of the course to the students before announcing the as-
signment. We conducted a team-based assignment as an experiment [141] in a classroom setup to use
the VReqST [135] tool to elicit and specify requirements using a VR application as an example domain.

163

As a prerequisite, we let students use some VR applications at our University VR lab and recommended
watching a few VR movies. The experiment consists of two phases, as described below. The duration
of each phase is 2 weeks. As part of phase one, each team must internally elicit one VR application and
write detailed requirements using a Software Requirement Specification (SRS) template [76] supplied
to them. As part of phase two, the SRS documents from the previous phase are exchanged randomly
among teams. Each team is now required to use the VReqST tool [135] to elicit and specify the re-
quirements of VR applications from the allocated SRS document, i.e., each team receives one random
SRS document except the one they authored. We created a well-defined evaluation rubric [76] to grade
the requirements correctness of VR application by comparing SRS submission and its related VReqST
specification. We have set up a face-time between the teams who authored the SRS submission and its
correlated VReqST submission to grade the requirement correctness in the presence of a VR domain
expert. All these specification submissions are made available as part of our resources [136].

Conclusion: In this chapter, we illustrate the overall workflow of a requirement specification tool called
VReqST to author specifications for building VR software products. We developed this tool based on
role based model template of VR Software system and have presented few sample specifications for
reference. We present our detailed validation study as part of following chapter.

164

Chapter 7

Validation of VReqST Tool in Practice

How do we validate a requirement specification method? Software requirements are not static
and evolve throughout the software development lifecycle. As the project progresses, new requirements
may arise due to changing user needs, technological advancements, and stakeholder feedback. As a
result, software development teams must be agile and adaptable in managing and accommodating these
evolving requirements. Conversely, requirement specifications are vital in ensuring that software prod-
ucts meet the desired functionalities, performance, and quality standards during this evolution process.
Requirement specifications serve as a guiding framework for the software development team during
requirement evolution. These specifications comprehend the software’s intended behavior and enable
the software practitioners to make informed design decisions and develop solutions that align with the
specified requirements. By adhering to these specifications, software development teams can create reli-
able, efficient products that meet their users’ expectations. Consistency, Completeness and Correctness
of Requirements (R) Specification (S) are only be validated and verified under the context a given Do-
main (D) [92]. As shown in below equation 7.1, given the assumption that the machine will perform as
instructed by the specification, and that our model of the domain faithfully predicts how the real world
will behave [92].

S ∪D ∈ R (7.1)

These observations holds true even for VR software systems and its VR practitioner community. How-
ever, the critical difference is the evolution of VR requirements is very difficult to track and supervise
unless there is a structured approach to comprehending VR as a technology domain. VReqST aims to
address this gap. VReqST is developed to specify, maintain, track, and manage the evolution of VR
software product requirements more precisely. Considering this as our motivation, we reached the VR
community to understand how VReqST can disrupt this evolution and aid the VR community in easing
overall VR product development. In the following sub-sections, we present our attempts to validate the
adoption and impact of VReqST in practice.

165

7.1 VR Community Adoption & Feedback

We reached the VR Community from the Industry through various channels like Linkedin, VR/AR
Meetups, Online VR Summits, Discord XR Connect, Khronos Group – Deloitte Digital and UNITY
Unite Expo (2022 & 2023) to promote VReqST for validation, adoption, and feedback. We clearly
defined our evaluation study’s objectives, ensuring they are Specific, Measurable, Achievable, Relevant,
and Time-bound. This ensures we receive a clear direction for our validation and helps incrementally
improve the tool for wider adoption. We reached more than 500 practitioners from the VR Commu-
nity, of which only 101 participants have shown to deploy the tool in-house for validation. Of these
participants, 53 have actively participated in iterations and helped us revise and improve the tool over
time. These participants includes Business Analysts, VR Product Managers, VR Program Managers.
VR Quality Engineers and VR Developers. This multi-year empirical study was conducted between
October 2022 and January 2024. Following are the steps followed by the practitioners who have shown
interest in implementing and validating VReqST in practice.

• Firstly, we shared VReqST official documentation and steps to install the tool so that they can
groom and identify the intent along the tool’s usage into their regular processes [135].

• We have put in all our efforts to deploy VReqST to integrate seamlessly with their existing pro-
cesses and scale effectively with their existing requirement specification practices.

• We helped the participants understand the practicality and viability of implementing the VReqST
tool. Assess the potential benefits against the costs, resources, and time required for integration
with their conventional approaches.

• We requested to involve diverse teams, domain experts, and stakeholders from their internal orga-
nization to gather varied perspectives and insights. We leveraged collective expertise to compre-
hend the tool’s potential impact across various aspects of their VR product development. These
diverse viewpoints will help us identify the tool’s opportunities, threats, and unforeseen implica-
tions in practice.

• We received enhancements to VReqST and incorporated them in a new version of the tool. We re-
ceived enhancements in three iterations and we included the revisions and released a new version
in all the three iterations for further adoption.

• In the end, we conducted a short survey to understand the impact of VReqST in their day-to-day
business when compared to their conventional practices.

In the following subsection, we present our detailed study setup, feedback received in three iterations
along with the impact survey details.

166

7.1.1 VReqST Validation Study Setup

The following steps are involved in our validation study setup with VR community practitioners in
respective iterations.

Iteration 1

• In early October 2022, we provided the source code of our first version of VReqST tool1 to deploy.

• We requested to author at least 2-3 new requirement specifications of their existing projects using
VReqST and share them with their VR developers.

• As part of the early analysis, we requested the requirement analysts to review the capabilities of
the VReqST tool compared with their conventional requirement specification processes.

• The total of 53 unique VR practitioners have deployed the tool during this iteration.

Iteration 2

• We re-connected with the VR practitioners and sought their feedback in mid April 2023. We
implemented the feedback from iteration 1 and shared the revised VReqST tool2 for redeployment
in May 2023.

• We requested the practitioners to re-author the old specifications using the revised tool and also
the new requirements to experience the revisions and ease-of-use with new enhancements.

• During this period, we collected feedback from these VR practitioners on iteration 2 version of
the VReqST tool and documented for further improvement.

• The total of 48 out of 53 unique VR practitioners have provided feedback on the iteration 2 version
of the VReqST tool.

• However, all the 53 unique VR practitioners have deployed the iteration 2 edition of VReqST
tool.

Iteration 3

• The received significantly valuable feedback during our iteration 2 and enhanced the tool during
July 2023 to October 2023. We completed our iteration 3 version of VReqST tool3 by end of
October 2023 and delivered it to the engaged VR practitioners during early November 2023.

• All the 53 unique VR practitioners have deployed the iteration 3 edition of VReqST tool. This
was the final iteration of our VReqST enhancements that significantly improved the workflow and
ease-of-use of the VReqST in practice.

1https://github.com/Shambhaviiiit/VReqST
2https://github.com/Amogha027/VReqST
3https://github.com/Amogha027/VReqST-2

167

In the following sub-section, we present detailed observations shared by VR practitioners during each
iterations along with the implementation information related to those enhancements in detail.

7.1.2 VReqST Impact and Experience Survey

After a thorough review of iterations and implementing feedback on VReqST, we reached out to
the VR practitioners to share their experiences on using VReqST and the impact it has made on their
day-to-day activities. The following are the questions posed to VR practitioners to help us understand
their experiences and impact of VReqST on their VR product development journey in contrast to their
regular processes.

1. Is the VReqST tool compatible with the existing tools that you use for your overall VR software
product development?

2. Is the overall user-interface of VReqST tool’s user interface and design is intuitive enough and
user-friendly for your team members?

3. Does the VReqST tool allow you to specify requirements for necessary features in your VR soft-
ware to meet your business needs?

4. With whom and how frequently did you use VReqST tool while specifying or explaining the
requirements to your target users (developers or stakeholders)?

5. Are you able completely specify and track the requirements associated with your feature in a
given VR scene?

6. Does the tool allow you to correctly specify the requirement as per the conventional standards of
the VR technology domain?

7. Is the VReqST tool’s performance and stability under different conditions and workloads accept-
able for your day-to-day business?

8. Do you see the VReqST tool can be extendable with your current product needs and adapt to
future needs considering updates to VR technology domain?

Overall, our validation study and Impact & Experience Survey of the VReqST tool focuses on the
following quality attributes listed below in particular stack order. We evaluated the benefits of VReqST
using these attributes. We share detailed observations from the VR practitioners using these quality
attributes for better quantification.

• Specify: Ability to specify the requirements using the existing model templates.

• Customization: Ability to customize and alter the model template and underlying validator to
meet custom business requirements.

168

• Scalability: Ability to scale VReqST to include new model attributes for applications that are
domain specific and context specific.

• Traceability: Ability to trace the requirements across various stages of specifications.

• Usability: Ability to use the overall tool and manage track changes to the requirements.

7.1.3 Observations - Validation Study

While releasing the incremental version of VReqST during three iterations, we gathered feedback
through informal interviews with the VR practitioners on VReqST. We summarize the overall observa-
tions gathered during all the iterations using ’Abductive Reasoning’ approach and illustrated below. We
categorized these observations into two parts - Merits and Enhancements

Merits

• Meets the Intention: The VReqST tool can meet its required intention, i.e., specifying VR re-
quirements, customizing the VR model template and its validator, and scaling the VR model
template to new model attributes.

• Supports Traceability: The VReqST tool supports traceability. We can trace defined articles and
their action responses and state information across the trail of overall specifications. This helps a
VR developer and quality engineer to trace, define, and test the flow of events while developing
the VR scene.

• Improves Clarity: The VReqST tool helps improve requirement gaps and present clarity as the
specifications are precise. It also reduces the time required to comprehend the overall implication
of a specification as the model template provides details from Scene to timeline.

• Enhances productivity: The VReqST tool avoids back-and-forth communication between de-
velopers and product managers on requirement clarification, eventually helping accomplish de-
veloper tasks more effectively and increasing output by saving time and effort.

• Increases adaptability: By managing requirements of various projects through projects view,
helps requirement analysts to adapt to new workflows and achieve better results.

• Enhances collaboration: As the specifications can be shared across various projects, multiple
stakeholders can collaborate on projects simultaneously, fostering teamwork and communication.

• UI/UX: The practitioners has reported 20+ recommendations to the overall UI/UX design. We
included the updates in an iterative release. As the VReqST tool is still a prototype, we can extend
industry-scale UI/UX features in the user interface that can impact user experience. End-to-end
usability testing on VReqST helped us improve the usability aspects of the tool.

169

• Resuability: The specifications authored in VReqST are either localized to a specific project or
can be extended to a given new scene. The tool has ability to save, share and re-use the authored
specifications, especially for articles and their action responses as a repository. Such a repository
bank can help other requirement analysts to adopt and reuse based on their business needs.

Enhancements

• Simplify Authoring: Currently, the requirement analysts (RA) are required to specify require-
ments using the JavaScript Object Notation (JSON) model template files. Instead, if a form-based
model template to JSON conversion is handled at all stages of VReqST, we may see higher adop-
tion of VReqST from VR practitioners with non-programming backgrounds.

• Security and Privacy Aspects: Security and Privacy requirements are a few key areas of overall
VR Software. The VReqST tool in its current form does not provide any model attributes linked
with security and privacy in line with bare minimum model attributes. This may lead to setbacks
in the practice of adopting VReqST.

• Complexity: Authoring complex behavior requires much conceptual effort compared to conven-
tional requirement specifications that are authored in plain English. The behavior editor needs to
be either gamified or allowed to be in a low-code mode to improve the overall adoption of the
behavior editor.

In contrast to the consolidated observations, we present detailed feedback that we gathered during
each iteration below, along with the revisions performed on the VReqST tool. We shared the revised
tool during each iteration and have incorporated these changes accordingly.

Iteration 1

• Multistage Authoring - Our initial VReqST tool didn’t support a multi-stage authoring of our re-
quirements specifications for available model template files like Scene, Article, action responses,
Custom behaviors, and Timeline in a particular order. As shown in Fig 7.1, we revised the user in-
terface of the Authoring wizard to include the model template validation in a particular order. The
highlighted pane using a blue outline clearly illustrates the revision. Each stage requires success-
ful validation to enter into a new specification stage, i.e., unless scene model template validation
is unsuccessful, one cannot navigate to the article model template. Upon completing all stages,
the requirement analysts can navigate all the stages to go through the individual specifications in
detail. This revision helps requirement analysts review and specify requirements in stages and
trace them to the initial specification.

• Project Management - In our initial VReqST edition, the requirement specification was static
and linear, i.e., a requirement analyst must specify and download the finalized specifications.
However, in the revised version, we included user-management and project-management modules

170

to manage the specifications group for a particular project. This will help requirement analysts
save, maintain, and revise the specifications for individual projects. As part of this revision, we
can now create a new project, share it with others and edit/revise in future based on the changes
to our business need. Fig 7.2 illustrates these additions.

• In-page Validation Messages - We revised our ad-hoc message regarding validation status on
demand on the same page rather than performing validation at the end of all stages. With the
inclusion of multi-stage authoring, we implemented successful and failure messaging as in-page
status messages, as shown in Fig 7.3.

• We have converted the underlying MongoDB instance from a private cloud cluster to a public
cloud cluster so that the VR practitioners can download the underlying DB with the core in-
stallation instance and re-point it to their private cloud cluster instances. This will help the VR
community practitioners to store their requirement specifications as private.

• Other minor revisions include font changes and text re-sizing across different pages, including
additional fields on the registration page, and a few minor implementation changes to make it
simpler to deploy.

Figure 7.1 Multi-stage view of Requirement Authoring

171

Figure 7.2 Managing Requirement Specification as Projects

Figure 7.3 In-page validation message for a given model template

Iteration 2

• Customizing Validator Files - Until the iteration 1 version of VReqST, the requirement analyst
had to rely on the core model template validator for each validation stage, i.e., scene, article,
action-response, custom, and timeline. The model template validator must be updated directly
from the backend if they wish to customize. However, as part of this revision, we provisioned
a customizing model template validator through UI. We also provide the ability to choose the
custom validator while authoring the specification during project creation. Thus, as part of this

172

Figure 7.4 Customizing Validator Files through UI

iteration, the requirement analyst can upload a custom validator for each VR requirement spec-
ification stage and choose this custom validator while creating a requirements project. Fig 7.4
illustrates the new view of My projects, My validators, i.e., a list of custom validators created by
oneself, and all model template validators created by the rest of the other requirement analysts
who use the same tool.

• Authoring States of Article - Until the previous iteration, the state for a given article is not
included as part of the default article model template. As part of this iteration, the underlying
article model template now supports the ”state” of an article where the requirement analyst will
now have the ability to define the initial state, final state, and state transition of a given article
based on the event performed w.r.t a given timestamp.

• Other minor revisions include additional text on welcome page, Include documentation support
as Help, ability to review past and ongoing project details are included as part of this iteration.

Iteration 3

• Article and Action/Response Template revisions - Until iteration 2, the requirement analysts
must specify all the articles in a single article model template. As part of this iteration, we re-
vised the article model template view stage by providing a new button to specify one article after
another. As shown in Fig 7.5, the highlighted article stage in blue contains articles like coin 1,
coin 2, etc, listed beside the model template editor. Upon successfully specifying each article
in Step 2, the requirement analyst can click on the respective article to revise the specification
before moving to the next stage, i.e., the action-response stage. As shown in Fig 7.5, Step 3,
highlighted in blue, i.e., action-response, also has a similar update. Instead of authoring all action
responses between two articles in a single action-response model template file, we can now author

173

Figure 7.5 Revisions to Article and Action-Response Model Template

them separately and view them individually. For example, from Fig 7.5 under Step 3, i.e., action
response, we may find examples of specifications of action-response between player and coin as
player grabcoin, player steercart, player jumprailcart, etc.

• Behavior Editor Revisions - As part of this iteration, we revised the entire workflow of Step
4, i.e., the Behavior editor formerly known as ”Custom JSON Step.” This step has three modes:
(1) ‘author behaviors’, view authored behaviors, and publish the specifications from the list of
authored behaviors. As shown in Fig 7.6, the author behavior mode contains three sections,
code constructs (if, if-else, for, while, etc.), and a list of articles from the previous step. The
requirement analyst will drag and drop the code constructs and articles to define the behavior
conditions. (2) ‘view author behavior mode’ contains a list of options to view the list of behaviors
from the ‘author behaviors’ mode. (3) ‘publish’ mode contains a list of opens to drag and a list
of behaviors to be included in the final validation list of behavior step. These three modes can be
visualized in Fig 7.6.

• Other minor revisions include text re-sizing across different pages, including additional fields on
the validator file picker page, and a few minor implementation changes to make it simpler to
deploy.

After considering thorough feedback from the VR Community, we updated the VReqST tool in
three iterations and released it as an open-source tool. In contrast to this feedback, we surveyed the
participants to understand the impact and overall experiences of using VReqST in practice. We present
more details in this regard in the following subsection.

174

Figure 7.6 Revisions to Behavior Editor to Review, Author and Publish custom behaviors

175

7.1.4 Observations - Impact and Experience Survey

Between December 2023 and January 2024, We reached the 53 VR practitioners who participated
in the VReqST iterative Validation study to participate in an Impact and Experience Survey4 to provide
their overall experience of their team on using VReqST and their experiences in utilizing the specifica-
tions in practice. 26 VR practitioners among 53 have responded to the survey. Following are the detailed
observations from the survey.

Demography of Participants: Most organizations that participated in this Impact and Experience sur-
vey have been building enterprise VR products for about six years on average, with two years being
the minimum tenure of a given organization on a lower end and 20+ years for the maximum tenure of
a given organization on a higher end on building VR products from countries US, UK, India, China,
Europe and Australia. Among the 26 participants, we have Engineering Manager(s), Engineering Di-
rectors with various capacities, Product Managers, Technical Architects, and Software Engineers who
work in XR, an Emerging Technology domain have participated. The participants of the survey pri-
marily build VR products in the following domains: Health Care, Defense, Simulation, Digital Twins,
Interior design, Inner environment design, Industrial layout, Corporate Education, Compliance Train-
ing, Entertainment, Gaming, Drug discovery, Medical protocol design, Gaming Content, Cinema, Retail
marketing, Marketing Campaigns, Authoring Tools, Metaverse, Fashion, Ads, Wearables, Financial An-
alytics, Tourism, Consulting, Enterprise Banking and Recreational tours. These practitioners are from
Deloitte Digital, Plug XR, CornerstoneOndemand, SAP-XR, Samsung Studios, SkillSoft, UNITY De-
veloper Group, ThoughWorks Dev Group, Khronous Dev Community, and many other VR open source
practitioners helped us provide their valuable feedback.

Compatibility: Fig 7.7 illustrates that most participants observe that the VReqST tool is compatible
with their existing processes and can be easily integrated without any hassle. Primarily, small organiza-
tions with an organization size of less than 200 employees have found VReqST to be highly compatible
with their regular VR product development processes.

Ease of Use (UI/UX): Fig 7.8 illustrates that most participants observe that the VReqST tool is in-
tuitive, considering its user interface and overall user experience seem manageable in practice. Small
organizations with an organization size of fewer than 200 employees have found VReqST to be highly
consistent with its UI design and ease of use in practice.

Frequency of Use: Fig 7.9 illustrates that most participants who started using VReqST frequently or
occasionally for authoring requirement specifications for their VR products have mentioned that VRe-
qST can specify requirements in detail irrespective of the organization’s size. In almost all cases, the
VReqST is highly capable & easy to specify requirements, or it is manageable compared to their con-

4https://forms.office.com/r/LVsaBEyHs5

176

Figure 7.7 Compatibility of VReqST with existing processes group by Size of Organization

ventional approaches.

Feature Tracking: Fig 7.10 illustrates that most participants who started using VReqST frequently
or occasionally for authoring requirement specifications for their VR products have mentioned that
VReqST can easily track and trace requirements irrespective of the organization’s size. In almost all
cases, the VReqST is highly capable & easy to track and trace requirements to overall features across
the requirement specifications of overall VR products when compared to their conventional approaches.

Extendability: Fig 7.11 illustrates that most participants who started using VReqST for authoring
requirement specifications for their VR products have observed that VReqST is highly extendable and
adaptable in practice. It can be extended to accommodate new model attributes, as the underlying model
validator can be customized for domain-specific or context-specific applications. Most small and mid-
range organizations working on context-specific VR products observed VR as a better alternative to
specifying requirements to meet their business goals.

Additional Observations: Along with the survey questionnaire, we asked the survey participants to
share their additional insights on adopting and using VReqST. The following subsection illustrates de-
tailed responses in participants’ words, which we have coded into specific themes for better illustration.

177

Figure 7.8 Ease of UI/UX of VReqST in practice group by Organization Size

7.1.5 VReqST extensions in VR product development

With the VR community practitioners’ exposure to VReqST, the following ideas are suggested as
future extensions to the VReqST tool through the survey. Using Open Coding approach, an grounded
theory approach to generate themes out of contextual comments captured through a survey. Code Gen-
eration, Test Case Generation, Risk and Dependencies, Traceability, Maintenance and Portability, New
Requirement Types are the generated themes. We detailed them as follows along with the citation of
comments from the respective participant.

Code Generation - VReqST-based requirement specifications can be extrapolated further on generat-
ing model-driven code generation tools for scenes and 3-dimensional articles. Irrespective of the VR
technology stack, VReqST specifications can be used to develop new tools that can generate alternate
versions of code snippets for behaviors that could be generated on-demand during the scene play. It is
one of the critical future aspects of extending VReqST into automated scene generation and behavior
generation on run time.

• In most cases, VReqST specifications can be used into automation pipeline. This is yet to be
explored. We are looking at expanding the underlying template to support security requirements.
[P4]

178

Figure 7.9 Ability to Specify VReqST specifications by frequency of usage across organizations

• It helps Consultants to gather requirements. Needs more automation to channel the JSON spec to
codegen and testing.[P12]

• Very detail. This tool will have no value if this is not pulled into a automation pipeline. There is
need to build supporting tools like co-pilot to build code with VReqST Specs.[P15]

• Provides ability to record requires specs with higher precision. Need this to be part of automated
delivery pipeline for more adoption. [P17]

• We just entered XR market with a garment wearable product. We are looking at integrating the
JSON spec to asset generation using AI models. Thanks for keeping this opensource. [P20]

Test case Generation- As VReqST curates the requirements in detail, automated test case generation of
scene dynamics, article properties, action responses, behaviors, and timeline of events can be effortlessly
explored to comprehend the quality of a delivered VR scene. A new novel customizable software testing
framework can be developed out of VReqST as a external wrapper to generate on-demand test cases
during run-time to improve the performance of the VR scene.

• We started as pilot project with two Requirement analysts. We found VReqST to be high ex-
tendable. The generated specifications can be used as input source for our Test case generation
system to conduct unit and integration testing. We are planning to extend our specifications for
automated design validations. Thank you for collaboration. [P1]

• We are building games for about 20 years now with highly templatized terrain data and internal
asset repository. We might have to do backward re-engineering of existing assets to this spec
for automated scene, test case generation and interaction-flow testing. This tool definitely helps
newbies, Good Luck with the tool.[P23]

179

Figure 7.10 Ability to track VReqST requirements by frequency of usage across different class of
organizations

Risk and Dependencies - With detailed VReqST requirements, the requirement analyst can determine
the risk of prioritizing or extending new features. The requirement analyst can easily understand the
overall dependencies of articles and their action responses over each other. These dependencies will
help the requirement analyst estimate the consequence of the continuous evolution of a feature in VR
and contribute towards a quality VR product.

• Although it requires some effort, but VReqST output is a good input source for our low-code
platform. Most of the asset and behavior generation can be automated to some extent. The
specifications are easy to maintain and versioning. Most of our designers rely on the JSON text
to go through the specific for revisions. [P2]

• Easy to integrate into our establish processes. Easy to author small requirements and later trace
it to a large specification. Helps is maintaining requirement repository for dedicated projects in
regards to assets and terrain definitions. Helps re-draw scope and risk on failing to meet the
requirement. [P9]

• Plugable to internal VR authoring tools. Easy to determine the risk requirement failure in imple-
mentation. However, it is difficult to read requirement in JSON format. Need a better way to read
the VReqST specification in detail.[P10]

180

Figure 7.11 Ability to extend VReqST to Domain specific applications group by ability to specify
requirements based on conventional standards across different class of organizations

• VReqST may not be much useful as we have curated fixed pre-defined visualization templates.
However, it helps when we have to redesign a new visualization template. reusability and trace-
ability of reporting feature is easy to notice from specification to template. We may have to less
adaption but may become vital in specific business cases. We suggest to extend a AI mode to
predict/propose visualization templates for recorded VReqST specifications.[P18]

Traceability - As the VReqST requirement specifications establish a relationship between VR concepts
like scenes, articles, action responses, and timelines - the changes made in one concept will reflect
across other concepts. These specifications support design traceability to understand the rationale behind
design decisions. New tools can be developed along side VReqST to handle code traceability to aid the
purpose of code segments and helps in debugging. Such new tools can support test traceability to help
testers to identify gaps in test-case coverage.

• Need to put in more effort to define our product specific validator. We cannot use the tool with
our own business/context specific validator. Easy to version and trace the specifications. For RAs
it is difficult to ready JSON specifications as they are not technically skilled. [P5]

• Traceability of feature is key. Easy to author micro requirements. [P24]

Maintenance and Portability - With substantial requirements, the challenges with VR platform portabil-
ity, i.e., porting VR scenes developed using a particular technology stack to another, can be mitigated to

181

Figure 7.12 Ability to convert conventional specifications to VReqST Specification

some extent. As VReqST can distinguish platform-independent requirements from platform-dependent,
the VR developers can now maintain platform-independent source code independently from the regular
code branch. Figure 7.12 provides us the ability to port conventional requirement specification into
VReqST specification. Such a practice may improve the maintainability and versioning of VR source
code.

• We are still in early stages of adoption. Our analysts are not tech savvy to use this tool. But our
developers like it as it helps them understand requirements with higher accuracy. We still need to
explore its capabilities on portability.[P3]

• When we started, we had to author our own validator. It is easy to integrate but requires a lot
of early effort. The first start move is difficult. Require a strong community support to reuse and
share the artifacts specifications. There is a need for a asset specification repo in github etc.[P6]

• We most use it for AR ad campaigns. Easy to use and manage specifications. [P25]
• We can also author requirements for AR applications by updating the underlying validator. The

specifications are portable between VR only and MR applications even if they are authored for
AR applications. Need to put it extra effort to develop underlying template for our own business
need.[P8]

• It requires a lot of effort to understand and update the domain specific validator. Require more
community support.[P11]

182

• The requirements are too detail. Difficult to illustrate large terrains with such high specifics.
However, easy to author micro requirements. [P14] Our use-cases are high domain specific. We
need to put alot of efforts to develop the underlying validator. For now, we are better with our
conventional approach to capture requirements in templates. [P22]

New Types of Requirements - The current VReqST version does not facilitate security, privacy, and
usability requirements. The VR community recommends facilitating additional features to VReqST,
including customizable security, privacy, and usability requirements, as part of the new model template.
These requirement types are non-generic and domain-centered. They may vary from application to ap-
plication. As VReqST is customizable, the security, privacy, and usability requirements can be included
beyond the bare minimum model template. It can be managed by domain-specific requirement ana-
lysts to accommodate such new requirement types by composing a custom model template on par with
bare-minimum model template.

• The specificity of requirements is maintained through this tool. It requires training as our BAs are
not enough technical to author specifications in JSON. Request to provide a form based template
that can convert to JSON in backend.[P7]

• Request to include privacy related specification validator as default. It helps cover compliance
use-cases easily.[P13]

• Fashion requires clear specifics. VReqST fills that gap. It is slightly painful to write our custom
validator. But easy to maintain and re-trace the specifications. Need strong collaboration among
XR community partners to share open source asset specs to re-shareability. [P16]

• Currently our plain english req specs are being converted to Vreqst specs. It helps us create large
terrain templates for future touring projects. Behavior editor is coolest feature. Easy to author
and track linkages between the interactions. [P19]

7.2 Requirement Specifications for Depression Detection Application us-

ing VR: a Proof of Concept

Background: Between January 2023 and October 2023, researchers from Software Engineering Re-
search Center5 and Cognitive Science Lab6 from IIIT Hyderabad worked towards developing multiple
Virtual Reality Scenes for the detection or intervention of depression using VR technology. These VR
scenes are used as a medium to evoke emotions that are deemed to result in positive, negative, and
neutral emotions. These three emotions are evoked using positive, negative, and neutral environments.
Fig 7.13, 7.14, and 7.15 illustrate the positive scene, negative scene, and neutral scene with top view
and side views. The requirement specifications of these VR scenes are first authored using VReqST,
they are revised and then finalized for design and development. These VR Scenes are developed in

5https://serc.iiit.ac.in
6https://sites.google.com/view/ps-pacgroup/home

183

UNITY Game Engine [7] and are visualized using HTC Vive Pro 2. This headset has a dual RGB low
persistence LCD screen with a resolution of 2448 × 2448 pixels per eye (4896 x 2448 pixels combined)
and a refresh rate of 90/120 Hz. It has a field of view of 120 degrees and requires two compatible base
stations and two compatible motion controllers. We used a PC with RAM 16GB and graphics Card 970.

Experiment: The three developed VR scenes are designed to evoke the participants’ positive, nega-
tive, and neutral emotions while locomoting in the virtual environment. While the participant is un-
der locomotion under the influence of a VR scene, the participant’s gait pattern is captured using a
VelGmat [275], i.e., a Velostat-based gait mat that captures gait pressure. The gait pattern under the
influence of positive, negative, and neutral scenes will reveal the levels of depression in a given partici-
pant as the scene evokes emotions. The participant is required to walk around in the environment once
clockwise around the right shelf and once anti-clockwise around the left shelf, and in each round, while
returning, pick up the specified object and place it into the respective crate.

VR Scene Requirements: All three environments have a 10 x 2 feet aisle with six feet-high shelves
on both sides, two feet apart. There are two similar aisles on the right and left that allow the players to
circle the right and left shelves clockwise and anticlockwise, respectively. The walking area is separated
from the respective terrain by a glass wall. The right aisle has an opaque wall with images of positive
and negative environments. Both shelves are stacked with four objects on three different levels. The
aisles on the sides have crates in the corners.

Figure 7.13 Scene flow of Positive Scenes in Mental Health VR Application

Figure 7.14 Scene flow of Negative Scenes in Mental Health VR Application

184

Figure 7.15 Scene flow of Neutral Scenes in Mental Health VR Application

• Positive Environment - Fig 7.13 illustrates the top and side view of the positive scene. The
goal of the positive scene is to evoke happiness in the participant. It is primarily achieved using
bright and warm lighting source with saturated colors with a pleasant background music. The
environment is filled with forest terrain with trees around a central plan with two racks separated
by a walkable area. The racks contain few objects. The two large crates on two ends of the
center pane are on one side of the scene, whereas the other end of the center pane contains images
floating on a virtual wall. The objects in the scene are primarily under color-grade shades of light
blue and light pink for better differentiation. The images on the display wall are selected from the
IAPS database7 with high valance ratings (above 50). The International Affective Picture System
(IAPS) is a database of pictures designed to provide a standardized set of pictures for studying
emotion and attention. It is widely used in psychological research. The tree assets used in the
forest were imported from the Unity Demo URP terrain.

• Negative Environment - Fig 7.14 illustrates the top and side view of the negative scene. The goal
of the negative scene is to evoke sadness in the participant. It is primarily achieved using dark
and low-intensity lighting source with dull colors along with a disturbed background music. The
environment is filled with forest terrain with trees around a central plan with two racks separated
by a walkable area. The two large crates on two ends of the center pane are on one side of the
scene. The racks are bulkier and contain too many objects, thus making the space feel more
congested. One end of the center pane contains images floating on a virtual wall. The objects
in the scene are primarily under color-grade shades of dark brown and dark green, making them
difficult to differentiate. The images on the display wall depict decay and suffering, selected
from the IAPS database with very low valance ratings (less than 50). The International Affective
Picture System (IAPS) is a database of pictures designed to provide a standardized set of pictures

7https://www.imageemotion.org/

185

for studying emotion and attention. It is widely used in psychological research. The tree assets
used in the forest were imported from the Unity Demo URP terrain.

• Neutral Environment - Fig 7.15 illustrates the top and side view of the neutral scene. This
controlled environment is designed to collect participants’ gait data without emotional elicitation
in the VR. The Scene contains black and white colors on all the objects, with no Images on the
wall or music.

The VReqST specification of the proof-of-concept application are made available as part of our re-
sources [136]. The resources contain the model template files and their attributes related to positive,
negative and neutral scene.

Conclusion: We evaluated VReqST - the requirement specification tool in practice by working with
practitioners from the VR Community. The practitioners from Deloitte Digital, Plug XR, Cornersto-
neOndemand, SAP-XR, Samsung Studio, SkillSoft, UNITY Developer Group, ThoughWorks, Khronous
Dev Community, and many other VR open source practitioners helped us provide their valuable feed-
back. We revised the VReqST tool in three iterations and released it as an open-source tool for further
adoption. As the VR meta-model backs VReqST, it can significantly improve overall VR product devel-
opment through a Model-Driven development approach for VR products. We further detail this as our
future work in following chapter.

186

Chapter 8

Deploying and Configuring VReqST in Practice

VReqST - the requirement specification tool can be implemented as a single host instance residing
on a single server for local user consumption in closed networks and as a Software-as-Service instance
on the cloud for sharing across the teams in an open network. This section describes the steps required
to deploy and configure the VReqST tool in practice.

8.1 Hardware Requirements

Following are the bare-minimum hardware requirements for deploying VReqST.

• Client Machine (end user): A minimum of a Pentium 4 processor with at-least 128MB of RAM
is needed, while 256MB is recommended for optimal performance. A minimum of 100MB of free
disk space is necessary, with 200MB or more recommended for efficient operation. Ensure that
you have enough storage capacity to accommodate your desired web browser and any associated
files, such as bookmarks and cache. Any standard display should suffice, as long as it allows you
to view web pages comfortably. Keyboard and mouse are essential for interacting with websites
and inputting text. Touchpads or touchscreens can also serve this purpose. Additionally, a network
connection is crucial for browsing the internet. This can include wired connections via Ethernet
cables or wireless connections using Wi-Fi or cellular networks.

• Server Machine (VReqST Host Server): A multi-core processor with a high clock speed is
ideal for handling heavy traffic and resource-intensive applications. Look for a processor with at
least 8 cores and a frequency higher than 3 GHz. Ensure you have enough RAM to accommodate
simultaneous user requests and prevent your website from slowing down or crashing. If your
website receives a lot of traffic, consider a dedicated server with at least 16 or 32GB of RAM.
Choose a storage option that fits your capacity and performance needs. While traditional hard
disk drives (HDDs) are cheaper and offer a lot of storage space, they have relatively slow reading
and writing speeds. Solid-state drives (SSDs) are faster and more expensive but provide better
performance. 1 TB of ROM is recommended.

187

8.2 Software Requirements

Following are the bare-minimum software requirements for deploying VReqST.

• Client Machine (end user): Any basic operating system, like Windows 10 or above, MacOS, or
any Linux variant, is required on a client’s machine. A web browser to browse the VReqST ap-
plication and its related documentation site. TCP/IP protocol suite to communicate with network
and gain access to internet.

• Server Machine (VReqST Host Server): In addition to the client machine software require-
ments, deploy git from https://git-scm.com to access VReqST source code from Github version
control. Deploy Node.js version 14 from https://node.js.org and install it on the server machine.

8.3 Deployment Steps

Following are the detailed steps to deploy VReqST tool on the server machine.

• Open git terminal and use the command and install

$ git clone https://github.com/Amogha027/VReqST-2

• Now navigate to VReqST-2, VReqST-main and VReqST folder and run the following command
on the terminal

$ cd VReqST-2/VReqST-main/VReqST

• This will deploy the VReqST on the server machine.
• The backend server and validation server instances are already hosted on render.com1. This will

build and executes our project code into production dynamically.
• Alternatively, to host the application on hosted instance, update the environment URLs of valida-

tion server and backend in the following path of node.js application through command terminal
- ‘frontend/client/src/server urls.jsx’ as follows

$ export const validation_server = "http://localhost:5001"

$ export const backend = "http://localhost:5002"

• To start the backend server on port 5002, navigate to VReqST folder on command terminal and
run following.

1https://render.com/

188

$ cd backend

• To start validation server on Port 5001, navigate to VReqST folder on command terminal and run
following

$ cd validation_server

$ npm install

$ nodemon index.js

• To start the application on port 3000, navigate to VReqST folder on command terminal and run
following

$ cd frontend

$ npm install

$ npm run client-install

$ npm run dev

• Upon running the application, the VReqST will be launched on the default browser with a local
site http://localhost:3000. You may allow the site access to intranet by providing a desired domain-
name and grant access to targeted user-group.

8.4 Configuring Database

: Following are the detailed steps required to configure MongoDB database instance on-demand
remotely.

• Access https://mongodb.com and create an account. Create a new project and add a new database
to the project.

• Define 4 collection with following naming convention - customrules, jsons, projects and users.
• This will create a new dedicated isntance of the database that is required to be linked to your

VReqST.
• You may access the collection data under databases listed on https://mongodb.com
• In case of any additional details, please refer to the help section on the VReqST website that will

redirect to the official documentation2 and a demo video3

2https://saianirudh-karri.gitbook.io/vreqst
3https://www.youtube.com/watch?v=G9-aW0vW8uA

189

Chapter 9

Future Work: Model Driven Development for Virtual Reality Software

Model-driven development (MDD) is a software engineering methodology that emphasizes the cre-
ation and use of domain models. These are conceptual models representing various aspects of a software
system. They serve as blueprints for software development, guiding the process from design to code
generation. MDD involves abstracting technical aspects such as logic, data models, and user interfaces
into visual representations that can be easily manipulated. The ultimate goal of MDD is to enhance
productivity, improve software quality and facilitate collaboration among developers of varying skill
levels. In the context of Virtual Reality Software Products, our role-based model template can be use-
ful in formulating a model-driven development approach for Virtual Reality Software Products using
domain-specific Large Language models and Generative AI.

9.1 Few Concepts

Domain-specific LLMs (Language Learning Models) are designed to specialize in a specific in-
dustry domain or use case, focusing on capturing the nuances and terminology unique to that domain.
By following below steps and techniques, developers can create powerful and effective Domain-Specific
Large Language Models tailored to specific industries or fields, providing more accurate, reliable, and
efficient outputs within those domains.

• Prompting: A well-crafting question or prompts that guide the model in generating outputs tai-
lored to a specific domain. Providing specific instructions to the model can produce more relevant
and accurate responses within a particular field.

• Fine-Tuning: Fine-tuning a generic LLM on a targeted dataset specific to the domain is crucial.
This process involves training the model on domain-specific data to enhance its performance
within that specialized area. Fine-tuning allows the model to understand industry terminologies
and nuances better

• Retrieval Augmented Generation (RAG): RAG combines the strengths of information retrieval
and LLMs. By connecting the model to external knowledge sources like databases, it can fetch

190

relevant information to generate responses. This technique is valuable for providing explainable
and accurate answers, especially in fields where up-to-date information is crucial

• Domain Expert Review: Building a domain-specific LLM requires collaboration with domain
experts to curate training datasets, annotate data, and evaluate the model’s performance accurately.
This collaboration ensures that the model captures the specific nuances and requirements of the
domain effectively.

• Evaluation: To measure the performance of a domain-specific LLM, comparing it to ground truth
data is essential. Ground truth data, which is annotated datasets used for evaluation, helps assess
the model’s generalization and performance, allowing for adjustments to enhance its effectiveness

Generative AI refers to artificial intelligence models capable of creating new content, such as text,
images, audio, or synthetic data, based on a given prompt or input. These models are trained on vast
amounts of data and employ advanced algorithms, such as transformers, to generate novel outputs that
often appear indistinguishable from human-generated content. Examples of generative AI include Chat-
GPT1, a chatbot that can generate text, and DALL-E2, a tool that creates images from text descriptions.

Generative AI has numerous applications across various industries, including entertainment, edu-
cation, and business optimization. However, it also poses challenges, such as the potential for misuse
in creating deepfakes or generating content that infringes on copyright laws. Despite these concerns,
the field of generative AI continues to evolve rapidly, with ongoing research aimed at improving the
accuracy, reliability, and safety of these systems.

9.2 MDD Pipleline for VR

Our Role-based model template for comprehending the Virtual Reality Technology domain is a back-
bone for formulating Model-driven development for developing Virtual Reality Software Products. Us-
ing our Role-based model template for VR, we developed an open-source requirement specification tool
called VReqST. This tool can apprehend bare-minimum concepts related to the VR technology domain.
It can generate precise and clear specifications that can become an input to our MDD pipeline for Virtual
Reality.

Fig 9.1 describes a development pipeline for Virtual Reality software. During the requirement phase,
VReqST can be used to specify requirements which are then used as input to a 3-dimensional Large
Learning Model (LLM) that is specific to VR domain. The input will be in a JSON format. In the
design phase, the 3-D LLM is trained using 3-D object data sources that offer data in the form of point
clouds, voxels, or meshes to generate multiple desired articles, mock design templates for terrain, 3-
dimensional environment, and respective action-response flow.

1https://chat.openai.com/auth/login
2https://openai.com/dall-e-2

191

Figure 9.1 Model Driven Development using LLM and GenAI for Virtual Reality Software Products

The output of the 3-D LLM can be used as input to a low-code platform that generates the behav-
ior script for specific VR game engines and creates a consolidated behavior script library for future
reference. A model-based testing protocol can be formulated for these behavior scripts based on the
generated code snippets. The overall 3-D run-through can be evaluated using a machine learning BOT
through point-of-view testing. The tested artifact can now be deployed using a model-based deploy-
ment approach, where changes reflected in the model (scene artifacts, article artifacts, action-response
artifacts, behavior artifacts, and timeline artifacts) can be deployed asynchronously in an incremental
approach to production.

However, despite various automated processes involved in the proposed overall MDD pipeline for
Virtual Reality software development, it is partially a human-in-a-loop process. Human validation is
required in a few stages to validate the exactness and quality of the resultant VR Scene. This hypothesis
requires a lot of conviction to execute at a large scale.

192

Related Publications

Below is the list of publications related to my Ph.D. thesis group by year and type of publication.
They support the evidence of my research and helped deduce conclusions to the overall requirement
engineering practices for improving Virtual Reality software product development.

Journal Publication

1. Sai Anirudh Karre, Raghu Reddy. 2024. Model Based Requirement Specification for Virtual
Reality Software Products, Frontiers Journal on Virtual Reality, May 2024 [Submitted]

2. Sai Anirudh Karre, Y. Raghu Reddy, and Raghav Mittal. 2024. RE Methods for Virtual Reality
Software Product Development: A Mapping Study. ACM Trans. Softw. Eng. Methodol. 33, 4,
Article 88 (May 2024), 31 pages. https://doi.org/10.1145/3649595

3. Sai Anirudh Karre, Neeraj Mathur, and Y. Raghu Reddy. 2020. Understanding usability evalu-
ation setup for VR products in industry: a review study. SIGAPP Applied Computing Review
Journal, Volume 19, Issue 4 (December 2019), 17–27. https://doi.org/10.1145/3381307.3381309

Conference Publication

1. Sai Anirudh Karre, Karthik Vaidhyanathan, and Y. Raghu Reddy. 2023. A Tool based Experi-
ment to Teach Elicitation and Specification of Virtual Reality Product Requirements. In Pro-
ceedings of the ACM Conference on Global Computing Education Vol 2 (CompEd 2023). Associ-
ation for Computing Machinery, New York, NY, USA, 195. https://doi.org/10.1145/3617650.3624936

2. Sai Anirudh Karre, Vivek Pareek, Raghav Mittal, and Raghu Reddy. 2023. A Role Based Model
Template for Specifying Virtual Reality Software. In Proceedings of the 37th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE ’22). Association for Computing
Machinery, New York, NY, USA, Article 225, 1–5. https://doi.org/10.1145/3551349.3560514

3. Sai Anirudh Karre, Raghav Mittal, and Raghu Reddy. 2023. Requirements Elicitation for Vir-
tual Reality Products - A Mapping Study. In Proceedings of the 16th Innovations in Software
Engineering Conference (ISEC ’23). Association for Computing Machinery, New York, NY,
USA, Article 12, 1–11. https://doi.org/10.1145/3578527.3578536

4. Mohit Kuri, Sai Anirudh Karre, and Y. Raghu Reddy. 2021. Understanding Software Quality
Metrics for Virtual Reality Products - A Mapping Study. In 14th Innovations in Software En-
gineering Conference (formerly known as India Software Engineering Conference) (ISEC 2021).

193

Association for Computing Machinery, New York, NY, USA, Article 8, 1–11.
https://doi.org/10.1145/3452383.3452391

5. Sai Anirudh Karre, Neeraj Mathur, and Y. Raghu Reddy. 2019. Usability evaluation of VR
products in industry: a systematic literature review. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing (SAC ’19). Association for Computing Machinery, New
York, NY, USA, 1845–1851. https://doi.org/10.1145/3297280.3297462

6. Sai Anirudh Karre, Neeraj Mathur, and Y. Raghu Reddy. 2019. Is Virtual Reality Product Devel-
opment different? An Empirical Study on VR Product Development Practices. In Proceedings
of the 12th Innovations on Software Engineering Conference (formerly known as India Software
Engineering Conference) (ISEC’19). Association for Computing Machinery, New York, NY,
USA, Article 3, 1–11. https://doi.org/10.1145/3299771.3299772

I worked with many student researchers during my tenure as a Ph.D. student between 2017 and 2024
at the Software Engineering Research Center - IIIT Hyderabad. I mentored a few of them as part of
their master’s research program. The following is the list of publications and patents in which I was
involved, collaborated with, and contributed to the research in software engineering, virtual reality, and
human-computer interaction.

Patents

1. Y Raghu Reddy, Raghav Mittal, Sai Anirudh Karre, System and method for generating a lim-
itless path in virtual reality environment for continuous locomotion, US11687154B2, IIIT
Hyderabad, 2022, https://patents.google.com/patent/US11687154B2/en [GRANTED]

2. Neeraj Mathur, Sai Anirudh Karre, Y Raghu Babu Reddy, System and method for evaluating
and facilitating customized guidelines using usability code pattern analysis, US11144430B2,
IIIT Hyderabad, 2019, https://patents.google.com/patent/US11144430B2/en [GRANTED]

Conference Publications

1. Dhiraj SM Varanasi, Sai Anirudh Karre, and Raghu Reddy. 2024. Software Development Waste
amidst COVID-19 Pandemic: An Industry Study. In Proceedings of the 17th Innovations in Soft-
ware Engineering Conference (ISEC ’24). Association for Computing Machinery, New York, NY,
USA, Article 13, 1–5. https://doi.org/10.1145/3641399.3641417

2. Sai Anirudh Karre, Mathur, N., and Raghu Reddy, Y., Assessing New Hires’ Programming Pro-
ductivity Through UMETRIX – An Industry Case Study, arXiv e-prints, 2023.
doi:10.48550/arXiv.2305.03332.

3. M. W. Wani, Y. P. Gururaj, V. P, Sai Anirudh Karre, R. Reddy and S. Azeemuddin, VelGmat: Low
Cost Gait Mat For Stance Phase Calculation, 2022 IEEE Sensors, Dallas, TX, USA, 2022, pp.
1-4, doi: 10.1109/SENSORS52175.2022.9967332.

4. Y. P. Gururaj, Sai Anirudh Karre, R. Mittal, Y. R. Reddy and S. Azeemuddin, Customizable
Head-mounted Device for Detection of Eye Disorders using Virtual Reality, 2022 35th Interna-

194

tional Conference on VLSI Design and 2022 21st International Conference on Embedded Systems
(VLSID), Bangalore, India, 2022, pp. 50-55, doi: 10.1109/VLSID2022.2022.00022.

5. Y. P. Gururaj, R. Mittal, Sai Anirudh Karre, Y. R. Reddy and S. Azeemuddin, Towards Conduct-
ing Effective Locomotion Through Hardware Transformation in Head-Mounted-Device - A
Review Study, 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and
Workshops (VRW), Christchurch, New Zealand, 2022, pp. 660-661,
doi: 10.1109/VRW55335.2022.00181.

6. Raghav Mittal, Sai Anirudh Karre, Y Pawan Kumar Gururaj, and Y Raghu Reddy. 2022. En-
hancing Configurable Limitless Paths in Virtual Reality Environments. In 15th Innovations
in Software Engineering Conference (ISEC 2022). Association for Computing Machinery, New
York, NY, USA, Article 24, 1–5. https://doi.org/10.1145/3511430.3511452

7. Mittal, R., Sai Anirudh Karre, Reddy, Y.R. (2021). Designing Limitless Path in Virtual Real-
ity Environment. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality.
HCII 2021. Lecture Notes in Computer Science(), vol 12770. Springer, Cham. https://doi.org/10.1007/978-
3-030-77599-5 7

8. Sai Anirudh Karre, Lalit Mohan Sanagavarapu, and Y. Raghu Reddy. 2021. Using project-based
approach to teach design patterns: An Experience Report. In 14th Innovations in Software En-
gineering Conference (formerly known as India Software Engineering Conference) (ISEC 2021).
Association for Computing Machinery, New York, NY, USA, Article 16, 1–5.
https://doi.org/10.1145/3452383.3452399

9. Sai Anirudh Karre, Abhinav Gupta, S Lalit Mohan, Y Raghu Reddy, 2021. Introducing Software
System Course to Engineering Undergraduate Students-An Experience Report, Proceedings of
4th Software Engineering Education Workshop (SEED 2021) co-located with APSEC 2021, 06-
Dec, 2021, Taipei, Taiwan, CEUR Workshop Proceedings, Vol-3062, pp: 1-7, ISSN 1613-0073

10. Shekhar, Shivang, Sai Anirudh Karre, Y. Raghu Reddy, and Rajat Kumar Gupta. Detecting Astig-
matism Condition in Human Eye using VR. (2020). EURO VR.

11. Shekar, S., Pesaladinne, P.R., Sai Anirudh Karre, Reddy, Y.R. (2020). VREye: Exploring Hu-
man Visual Acuity Test Using Virtual Reality. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual,
Augmented and Mixed Reality. Industrial and Everyday Life Applications. HCII 2020. Lecture
Notes in Computer Science(), vol 12191. Springer, Cham. https://doi.org/10.1007/978-3-030-
49698-2 28

12. Neeraj Mathur, Sai Anirudh Karre, Y. Raghu Reddy. 2019. Grouping Semantically Related
Change-Sets to Enhance Identification of Logical Coupling, The 31st International Conference
on Software Engineering and Knowledge Engineering, DOI: 10.18293/SEKE2019-166

13. Neeraj Mathur, Sai Anirudh Karre, Lalit S. Mohan, and Y. Raghu Reddy. 2018. Analysis of
FinTech Mobile App Usability for Geriatric Users in India. In Proceedings of the 4th Inter-
national Conference on Human-Computer Interaction and User Experience in Indonesia, CHI-

195

uXiD ’18 (CHIuXiD ’18). Association for Computing Machinery, New York, NY, USA, 1–11.
https://doi.org/10.1145/3205946.3205947

14. Neeraj Mathur, Sai Anirudh Karre, and Y. Raghu Reddy. 2018. Usability Evaluation Framework
for Mobile Apps using Code Analysis. In Proceedings of the 22nd International Conference on
Evaluation and Assessment in Software Engineering 2018 (EASE ’18). Association for Comput-
ing Machinery, New York, NY, USA, 187–192. https://doi.org/10.1145/3210459.3210480

196

Bibliography

[1] Iso/iec/ieee international standard - systems and software engineering–life cycle management–
part 5: Software development planning. ISO/IEC/IEEE 24748-5:2017(E), pages 1–48, June 2017.

[2] Market research report: Augmented/virtual reality report q2 2018. Digi-Capital, pages 1–234,
2018.

[3] Oculus developer program, 2018. Accessed: 2018-04-30.

[4] AframeJS Documentation. August, 2023.

[5] CRYENGINE Programming Documentation. Crytek Technologies, August, 2023.

[6] Lumberyard Documentation. Amazon Web Services, August, 2023.

[7] Unity3D Manual - Offline Documentation. UNITY Technologies, August, 2023.

[8] UnRealEngine 5 Documentation. EPIC Games Inc., August, 2023.

[9] P. F. d. Abreu, V. M. B. Werneck, R. M. E. M. d. Costa, and L. A. V. d. Carvalho. Employing
multi-agents in 3-d game for cognitive stimulation. In 2011 XIII Symposium on Virtual Reality,
pages 73–78, 2011.

[10] A. Achberger, F. Aust, D. Pohlandt, K. Vidackovic, and M. Sedlmair. Strive: String-based force
feedback for automotive engineering. In The 34th Annual ACM Symposium on User Interface
Software and Technology, UIST ’21, page 841–853, New York, NY, USA, 2021. Association for
Computing Machinery.

[11] N. Adamo-Villani and K. Wright. Smile: An immersive learning game for deaf and hearing
children. In ACM SIGGRAPH 2007 Educators Program, SIGGRAPH ’07, New York, NY, USA,
2007. ACM.

[12] S. Adolph, W. Hall, and P. Kruchten. Using grounded theory to study the experience of software
development. Empirical Software Engineering, 16(4):487–513, Aug 2011.

197

[13] F. J. Agbo, S. Sunday Oyelere, and N. Bouali. A uml approach for designing a vr-based smart
learning environment for programming education. In 2020 IEEE Frontiers in Education Confer-
ence (FIE), pages 1–5, 2020.

[14] J. I. Akpan and R. J. Brooks. Experimental investigation of the impacts of virtual reality on
discrete-event simulation. In Proceedings of the 37th Conference on Winter Simulation, WSC
’05, pages 1968–1975. Winter Simulation Conference, 2005.

[15] S. Aleem, L. F. Capretz, and F. Ahmed. Game development software engineering process life
cycle: a systematic review. Journal of Software Engineering Research and Development, 4(1):6,
Nov 2016.

[16] D. Alexandrovsky, G. Volkmar, M. Spliethöver, S. Finke, M. Herrlich, T. Döring, J. D. Smed-
dinck, and R. Malaka. Playful user-generated treatment: A novel game design approach for vr
exposure therapy. In Proceedings of the Annual Symposium on Computer-Human Interaction
in Play, CHI PLAY ’20, page 32–45, New York, NY, USA, 2020. Association for Computing
Machinery.

[17] M. Ali and R. E. Cardona-Rivera. Comparing gamepad and naturally-mapped controller effects
on perceived virtual reality experiences. In ACM Symposium on Applied Perception 2020, SAP
’20, New York, NY, USA, 2020. Association for Computing Machinery.

[18] S. Altarteer, V. Charissis, D. Harrison, and W. Chan. Interactive virtual reality shopping and the
impact in luxury brands. In R. Shumaker, editor, Virtual, Augmented and Mixed Reality. Systems
and Applications, pages 221–230, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[19] C. Antonya and D. Talaba. Design evaluation and modification of mechanical systems in virtual
environments. Virtual Reality, 11(4):275–285, 2007.

[20] A. Aristidou, E. Stavrakis, P. Charalambous, Y. Chrysanthou, and S. L. Himona. Folk dance
evaluation using laban movement analysis. J. Comput. Cult. Herit., 8(4):20:1–20:19, Aug. 2015.

[21] S. Aromaa, I. Aaltonen, E. Kaasinen, J. Elo, and I. Parkkinen. Use of wearable and augmented
reality technologies in industrial maintenance work. In Proceedings of the 20th International
Academic Mindtrek Conference, AcademicMindtrek ’16, pages 235–242, New York, NY, USA,
2016. ACM.

[22] J.-F. Auger. Sociology, 42(5):1032–1034, 2008.

[23] A. S. b. Azizo, F. b. Mohamed, C. V. Siang, and M. I. M. Isham. Virtual reality 360 utm campus
tour with voice commands. In 2020 6th International Conference on Interactive Digital Media
(ICIDM), pages 1–6, 2020.

198

[24] M. Azmandian, M. Hancock, H. Benko, E. Ofek, and A. D. Wilson. Haptic retargeting: Dynamic
repurposing of passive haptics for enhanced virtual reality experiences. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems, CHI ’16, pages 1968–1979,
New York, NY, USA, 2016. ACM.

[25] P. R. K. B, P. Oza, and U. Lahiri. Gaze-sensitive virtual reality based social communication
platform for individuals with autism. IEEE Transactions on Affective Computing, pages 1–1,
2018.

[26] O. Bamasak, R. Braik, H. Al-Tayari, S. Al-Harbi, G. Al-Semairi, and M. Abu-Hnaidi. Improving
autistic children’s social skills using virtual reality. In A. Marcus, editor, Design, User Experi-
ence, and Usability. Health, Learning, Playing, Cultural, and Cross-Cultural User Experience,
pages 342–351, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[27] C. Bao and B. Wang. A open source based general framework for virtual surgery simulation.
In 2008 International Conference on BioMedical Engineering and Informatics, volume 1, pages
575–579, 2008.

[28] J. Bardzell, T. Pace, and J. Terrell. Virtual fashion and avatar design: A survey of consumers
and designers. In Proceedings of the 6th Nordic Conference on Human-Computer Interaction:
Extending Boundaries, NordiCHI ’10, pages 599–602, New York, NY, USA, 2010. ACM.

[29] M. Barrett and J. Blackledge. Development and evaluation of a desktop vr system for electrical
services engineers. In Lecture Notes in Engineering and Computer Science, volume 2 LNECS,
pages 1102–1107, 2013.

[30] E. Bastug, M. Bennis, M. Médard, and M. Debbah. Toward interconnected virtual reality: Op-
portunities, challenges, and enablers. IEEE Communications Magazine, 55(6):110–117, 2017.

[31] J. W. Bay. Turning video gamers into software developers. IEEE Computer, 47(10):99–101,
2014.

[32] L. A. Belfore, P. V. Krishnan, and E. Baydogan. Common scene definition framework for con-
structing virtual worlds. In Proceedings of the 37th Conference on Winter Simulation, WSC ’05,
page 1985–1992. Winter Simulation Conference, 2005.

[33] B. Bell, S. Feiner, and T. Höllerer. View management for virtual and augmented reality. In
Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology,
UIST ’01, pages 101–110, New York, NY, USA, 2001. ACM.

[34] F. Bellalouna. Virtual-reality-based approach for cognitive design-review and fmea in the indus-
trial and manufacturing engineering. In 2019 10th IEEE International Conference on Cognitive
Infocommunications (CogInfoCom), pages 41–46, 2019.

199

[35] J. Bertrand, D. Brickler, S. Babu, K. Madathil, M. Zelaya, T. Wang, J. Wagner, A. Gramopadhye,
and J. Luo. The role of dimensional symmetry on bimanual psychomotor skills education in
immersive virtual environments. In 2015 IEEE Virtual Reality (VR), pages 3–10, March 2015.

[36] A. Bhimani and P. Spoletini. Empowering requirements elicitation for populations with special
needs by using virtual reality. In Proceedings of the SouthEast Conference, ACM SE ’17, pages
268–270, New York, NY, USA, 2017. ACM.

[37] Bin Zhang and Ye-sho Chen. Enhancing uml conceptual modeling through the use of virtual
reality. In Proceedings of the 38th Annual Hawaii International Conference on System Sciences,
pages 11b–11b, Jan 2005.

[38] A. D. Blaga, M. Frutos-Pascual, C. Creed, and I. Williams. Too hot to handle: An evaluation
of the effect of thermal visual representation on user grasping interaction in virtual reality. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20,
page 1–16, New York, NY, USA, 2020. Association for Computing Machinery.

[39] A. Boukerche, D. Duarte, R. Araujo, L. Andrade, and A. Zarrad. A novel solution for the develop-
ment of collaborative virtual environment simulations in large scale. In Ninth IEEE International
Symposium on Distributed Simulation and Real-Time Applications, pages 86–94, Oct 2005.

[40] D. R. S. Boyd, J. R. Gallop, K. E. V. Palmen, R. T. Platon, and C. D. Seelig. Vivre: User-
centred visualization. In P. Sloot, M. Bubak, A. Hoekstra, and B. Hertzberger, editors, High-
Performance Computing and Networking, pages 807–816, Berlin, Heidelberg, 1999. Springer
Berlin Heidelberg.

[41] E. Bozgeyikli, A. Raij, S. Katkoori, and R. Dubey. Locomotion in virtual reality for individuals
with autism spectrum disorder. In Proceedings of the 2016 Symposium on Spatial User Interac-
tion, SUI ’16, pages 33–42, New York, NY, USA, 2016. ACM.

[42] M. Brennesholtz. VR/AR Standards – Are We Confused Yet? 2017.

[43] J. Broekens, M. Harbers, W.-P. Brinkman, C. Jonker, K. Van den Bosch, and J.-J. Meyer. Validity
of a virtual negotiation training. In H. H. Vilhjálmsson, S. Kopp, S. Marsella, and K. R. Thórisson,
editors, Intelligent Virtual Agents, pages 435–436, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

[44] C. Buckl, I. Gaponova, M. Geisinger, A. Knoll, and E. A. Lee. Model-based specification of
timing requirements. In Proceedings of the Tenth ACM International Conference on Embedded
Software, EMSOFT ’10, page 239–248, New York, NY, USA, 2010. Association for Computing
Machinery.

200

[45] N. Bugalia, S. Kumar, P. Kalra, and S. Choudhary. Mixed reality based interaction system for
digital heritage. In Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality
Continuum and Its Applications in Industry - Volume 1, VRCAI ’16, page 31–37, New York, NY,
USA, 2016. Association for Computing Machinery.

[46] G. Burnett. Information exchange in virtual communities: a typology. Information research,
5(4), 2000.

[47] J. Buur and A. Soendergaard. Video card game: An augmented environment for user centred de-
sign discussions. In Proceedings of DARE 2000 on Designing Augmented Reality Environments,
DARE ’00, pages 63–69, New York, NY, USA, 2000. ACM.

[48] F. M. Caputo. Gestural interaction in virtual environments: User studies and applications. In
CEUR Workshop Proceedings, volume 1910, pages 78–89, 2017.

[49] C. Carvalheiro, R. Nóbrega, H. da Silva, and R. Rodrigues. User redirection and direct haptics in
virtual environments. In Proceedings of the 24th ACM International Conference on Multimedia,
MM ’16, pages 1146–1155, New York, NY, USA, 2016. ACM.

[50] R. Chabra, A. Ilie, N. Rewkowski, Y. Cha, and H. Fuchs. Optimizing placement of commodity
depth cameras for known 3d dynamic scene capture. In 2017 IEEE Virtual Reality (VR), pages
157–166, March 2017.

[51] S. Chen, Y. Zhang, Y. Li, Z. Chen, and Z. Wang. Spherical structural similarity index for objective
omnidirectional video quality assessment. In 2018 IEEE International Conference on Multimedia
and Expo (ICME), pages 1–6, July 2018.

[52] W. Chen. Design and analysis of an intelligent system for building virtual roaming. In 2018
International Conference on Virtual Reality and Intelligent Systems (ICVRIS), pages 26–29, Aug
2018.

[53] Y.-T. Chen, C.-H. Hsu, C.-H. Chung, Y.-S. Wang, and S. V. Babu. ivrnote: Design, creation and
evaluation of an interactive note-taking interface for study and reflection in vr learning environ-
ments. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages 172–180,
2019.

[54] S. Chimalakonda and K. V. Nori. On the nature of roles in software engineering. In Proceedings
of the 7th International Workshop on Cooperative and Human Aspects of Software Engineering,
CHASE 2014, pages 91–94, New York, NY, USA, 2014. ACM.

[55] O. H. Chimeremeze, S. Sulaiman, D. R. A. Rambli, and O. Foong. Multimodal interactions
in traditional foot reflexology. In 2014 International Conference on Computer and Information
Sciences (ICCOINS), pages 1–6, June 2014.

201

[56] M. Colley, M. Walch, J. Gugenheimer, A. Askari, and E. Rukzio. Towards inclusive external
communication of autonomous vehicles for pedestrians with vision impairments. In Proceedings
of the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20, page 1–14, New
York, NY, USA, 2020. Association for Computing Machinery.

[57] C. Colombo, N. D. Blas, I. Gkolias, P. L. Lanzi, D. Loiacono, and E. Stella. An educational
experience to raise awareness about space debris. IEEE Access, 8:85162–85178, 2020.

[58] C. G. Corrêa, F. de Lourdes dos Santos Nunes, and R. Tori. Virtual reality-based system for
training in dental anesthesia. In R. Shumaker and S. Lackey, editors, Virtual, Augmented and
Mixed Reality. Applications of Virtual and Augmented Reality, pages 267–276, Cham, 2014.
Springer International Publishing.

[59] D. S. Cruzes and T. Dyba. Recommended steps for thematic synthesis in software engineering.
In 2011 International Symposium on Empirical Software Engineering and Measurement, pages
275–284, 2011.

[60] A. C. C. d. Santos, M. E. Delamaro, and F. L. S. Nunes. The relationship between requirements
engineering and virtual reality systems: A systematic literature review. In 2013 XV Symposium
on Virtual and Augmented Reality, pages 53–62, May 2013.

[61] C. C. da Silva, B. G. M. de Alcantara, J. C. S. Olimpio, C. M. G. de Gusmao, A. G. da Silva
Filho, and W. P. dos Santos. Ilera-aiye: A virtual world for the development of serious games
for health education and promotion in the northeastern brazilian countryside. In 2014 IEEE 3nd
International Conference on Serious Games and Applications for Health (SeGAH), pages 1–8,
May 2014.

[62] L. Dammacco, R. Carli, V. Lazazzera, M. Fiorentino, and M. Dotoli. Designing complex manu-
facturing systems by virtual reality: A novel approach and its application to the virtual commis-
sioning of a production line. Computers in Industry, 143:103761, 2022.

[63] F. Danieau, P. Guillotel, O. Dumas, T. Lopez, B. Leroy, and N. Mollet. Hfx studio: Haptic
editor for full-body immersive experiences. In Proceedings of the 24th ACM Symposium on
Virtual Reality Software and Technology, VRST ’18, pages 37:1–37:9, New York, NY, USA,
2018. ACM.

[64] Darryl and Y. Bandung. Designing evaluation system for virtual class service in limited network
capacity using servqual methodology. In 2012 International Conference on Cloud Computing
and Social Networking (ICCCSN), pages 1–5, April 2012.

[65] J. A. Deutsch, J. A. Lewis, E. Whitworth, R. Boian, G. Burdea, and M. Tremaine. Formative
evaluation and preliminary findings of a virtual reality telerehabilitation system for the lower
extremity. Presence, 14(2):198–213, April 2005.

202

[66] R. Diniz, P. G. Freitas, and M. C. Q. Farias. Towards a point cloud quality assessment model
using local binary patterns. In 2020 Twelfth International Conference on Quality of Multimedia
Experience (QoMEX), pages 1–6, 2020.

[67] J. Du, Z. Zou, Y. Shi, and D. Zhao. Simultaneous data exchange between bim and vr for collab-
orative decision making. In Congress on Computing in Civil Engineering, Proceedings, volume
2017-June, pages 1–8, 2017. Cited By :1.

[68] J. Du, Z. Zou, Y. Shi, and D. Zhao. Zero latency: Real-time synchronization of bim data in virtual
reality for collaborative decision-making. Automation in Construction, 85:51–64, 2018. Cited
By :5.

[69] H. Duan, G. Zhai, X. Min, Y. Zhu, Y. Fang, and X. Yang. Perceptual quality assessment of om-
nidirectional images. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS),
pages 1–5, May 2018.

[70] E. Ebrahimi, A. Robb, L. S. Hartman, C. C. Pagano, and S. V. Babu. Effects of anthropomor-
phic fidelity of self-avatars on reach boundary estimation in immersive virtual environments. In
Proceedings of the 15th ACM Symposium on Applied Perception, SAP ’18, pages 2:1–2:8, New
York, NY, USA, 2018. ACM.

[71] D. Economou, W. L. Mitchell, and T. Boyle. Requirements elicitation for virtual actors in collab-
orative learning environments. Computers Education, 34(3):225 – 239, 2000.

[72] D. Ehmann and C. Wittenberg. The idea of virtual teach-in in the field of industrial robotics. In
2018 IEEE 14th International Conference on Control and Automation (ICCA), pages 680–685,
2018.

[73] M. El-Yamri, A. Romero-Hernandez, M. Gonzalez-Riojo, and B. Manero. Comunicarte: A public
speaking trainer in virtual reality. In Extended Abstracts of the 2019 CHI Conference on Human
Factors in Computing Systems, CHI EA ’19, pages VS05:1–VS05:2, New York, NY, USA, 2019.
ACM.

[74] S. R. Ellis. Development and history of head-mounted displays and viewers for virtual environ-
ments or augmented reality. 2014.

[75] S. Estupiñán, F. Rebelo, P. Noriega, C. Ferreira, and E. Duarte. Can virtual reality increase
emotional responses (arousal and valence)? a pilot study. In A. Marcus, editor, Design, User
Experience, and Usability. User Experience Design for Diverse Interaction Platforms and Envi-
ronments, pages 541–549, Cham, 2014. Springer International Publishing.

[76] K. et al. Sample srs documentation, requirement completeness checklist, submission guidelines
and evaluation rubric - https://github.com/vranonymous/srscomped. August 2022.

203

[77] A. C. F. Mattioli, D. Caetano and E. Lamounier. On the agile development of virtual reality
systems. Int’l Conf. Software Eng. Research and Practice, pages 10–16, 2015.

[78] D. L. Farias, R. F. de Souza, P. A. Nardi, and E. F. Damasceno. A motor rehabilitation’s mo-
tion range assessment with low-cost virtual reality serious game. In 2020 IEEE International
Conference on E-health Networking, Application Services (HEALTHCOM), pages 1–5, 2021.

[79] S. Faroque, B. Horan, M. Mortimer, and M. Pangestu. Large-scale virtual reality micro-robotic
cell injection training. In World Automation Congress Proceedings, volume 2016-October, 2016.

[80] S. Faroque, M. Mortimer, M. Pangestu, M. Seyedmahmoudian, and B. Horan. Evaluation of a
new virtual reality micro-robotic cell injection training system. Computers Electrical Engineer-
ing, 67:656–671, 2018.

[81] J. Feng, K. Chen, C. Zhang, and H. Li. A virtual reality-based training system for ankle rehabili-
tation. In 2018 IEEE International Conference on Progress in Informatics and Computing (PIC),
pages 255–259, 2018.

[82] P. Figueroa, M. Coral, P. Boulanger, J. Borda, E. Londoño, F. Vega, F. Prieto, and D. Restrepo.
Multi-modal exploration of small artifacts: An exhibition at the gold museum in bogota. In
Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology, VRST
’09, pages 67–74, New York, NY, USA, 2009. ACM.

[83] T. Finseth and C. C. Anderson. Re-engineering student thought processes using spaceflight oper-
ations. In AIAA Space and Astronautics Forum and Exposition, SPACE 2016, 2016.

[84] I. O. for Standardization and I. E. Commission. Software Engineering–Product Quality: Quality
model, volume 1. ISO/IEC, 2001.

[85] J. Françoise and F. Bevilacqua. Motion-sound mapping through interaction: An approach to user-
centered design of auditory feedback using machine learning. ACM Trans. Interact. Intell. Syst.,
8(2):16:1–16:30, June 2018.

[86] J. P. Freiwald, O. Ariza, O. Janeh, and F. Steinicke. Walking by cycling: A novel in-place
locomotion user interface for seated virtual reality experiences. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, CHI ’20, page 1–12, New York, NY, USA,
2020. Association for Computing Machinery.

[87] J. P. Freiwald, L. Diedrichsen, A. Baur, O. Manka, P. B. Jorshery, and F. Steinicke. Conveying
perspective in multi-user virtual reality collaborations. In Proceedings of the Conference on
Mensch Und Computer, MuC ’20, page 137–144, New York, NY, USA, 2020. Association for
Computing Machinery.

204

[88] J. P. Freiwald, Y. Göbel, F. Mostajeran, and F. Steinicke. The cybersickness susceptibility ques-
tionnaire: Predicting virtual reality tolerance. In Proceedings of the Conference on Mensch Und
Computer, MuC ’20, page 115–118, New York, NY, USA, 2020. Association for Computing
Machinery.

[89] A. Geiger, I. Bewersdorf, E. Brandenburg, and R. Stark. Visual feedback for grasping in virtual
reality environments for an interface to instruct digital human models, volume 607 of Advances
in Intelligent Systems and Computing. 2018. Cited By :1.

[90] C. George, P. Tamunjoh, and H. Hussmann. Invisible boundaries for vr: Auditory and haptic
signals as indicators for real world boundaries. IEEE Transactions on Visualization and Computer
Graphics, pages 1–1, 2020.

[91] M. L. Gernhardt, K. H. Beaton, S. P. Chappell, O. S. Bekdash, and A. F. J. Abercromby. De-
velopment of a ground test analysis protocol for nasa’s nextstep phase 2 habitation concepts. In
2018 IEEE Aerospace Conference, pages 1–27, March 2018.

[92] V. Gervasi and B. Nuseibeh. Lightweight validation of natural language requirements: a case
study. In Proceedings Fourth International Conference on Requirements Engineering. ICRE
2000. (Cat. No.98TB100219), pages 140–148, 2000.

[93] N. Ghrairi, S. Kpodjedo, A. Barrak, F. Petrillo, and F. Khomh. The state of practice on virtual
reality (vr) applications: An exploratory study on github and stack overflow. In 2018 IEEE
International Conference on Software Quality, Reliability and Security (QRS), pages 356–366,
July 2018.

[94] D. R. Glowacki, M. D. Wonnacott, R. Freire, B. R. Glowacki, E. M. Gale, J. E. Pike, T. de Haan,
M. Chatziapostolou, and O. Metatla. Isness: Using multi-person vr to design peak mystical type
experiences comparable to psychedelics. In Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, CHI ’20, page 1–14, New York, NY, USA, 2020. Association for
Computing Machinery.

[95] S. Göbel, C. Geiger, C. Heinze, and D. Marinos. Creating a virtual archery experience. In Pro-
ceedings of the International Conference on Advanced Visual Interfaces, AVI ’10, page 337–340,
New York, NY, USA, 2010. Association for Computing Machinery.

[96] M. Green. Human machine interaction research at the oecd halden reactor project. In 1999 Inter-
national Conference on Human Interfaces in Control Rooms, Cockpits and Command Centres,
pages 357–363, 1999.

[97] K. Group. The OpenXR Specification 1.0.24. 2019.

205

[98] K. Gu, V. Jakhetiya, J. Qiao, X. Li, W. Lin, and D. Thalmann. Model-based referenceless quality
metric of 3d synthesized images using local image description. IEEE Transactions on Image
Processing, 27(1):394–405, Jan 2018.

[99] N. Gu and K. London. Understanding and facilitating bim adoption in the aec industry. Automa-
tion in Construction, 19(8):988 – 999, 2010. The role of VR and BIM to manage the construction
and design processes.

[100] U. Gulec, M. Yilmaz, V. Isler, R. V. O’Connor, and P. Clarke. Adopting virtual reality as a
medium for software development process education. In Proceedings of the 2018 International
Conference on Software and System Process, ICSSP ’18, pages 71–75, New York, NY, USA,
2018. ACM.

[101] S. Gunkel, H. Stokking, M. Prins, O. Niamut, E. Siahaan, and P. Cesar. Experiencing virtual real-
ity together: Social vr use case study. In Proceedings of the 2018 ACM International Conference
on Interactive Experiences for TV and Online Video, TVX ’18, pages 233–238, New York, NY,
USA, 2018. ACM.

[102] H. Guo, R. Brown, and R. Rasmussen. A theoretical basis for using virtual worlds as a person-
alised process visualisation approach. In X. Franch and P. Soffer, editors, Advanced Information
Systems Engineering Workshops, pages 229–240, Berlin, Heidelberg, 2013. Springer Berlin Hei-
delberg.

[103] J. Guo, D. Weng, H. Fang, Z. Zhang, J. Ping, Y. Liu, and Y. Wang. Exploring the differences
of visual discomfort caused by long-term immersion between virtual environments and physical
environments. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages
443–452, 2020.

[104] V. Gómez, K. Peñaranda, and P. Figueroa. Lessons learned from requirements gathering for
virtual reality simulators. Virtual Reality Intelligent Hardware, 3(5):407–422, 2021.

[105] A. Hamam, A. E. Saddik, and J. Alja’am. A quality of experience model for haptic virtual
environments. ACM Trans. Multimedia Comput. Commun. Appl., 10(3):28:1–28:23, Apr. 2014.

[106] J. Hamid, N. H. Ubaidullah, K. A. Samsudin, and A. Saad. Designing a web based non-
immersive virtual environment application (wb-nivea) for diagnosing dyslexic children’ potential.
In 2015 Fifth International Conference on Digital Information Processing and Communications
(ICDIPC), pages 1–6, 2015.

[107] B. Han and J. Xie. Thesis: Practical experience: Adopt agile methodology combined with kanban
for virtual reality development. Dept of CS, University of Gothenburg Publications, pages 1–16,
2011.

206

[108] R. R. Hariadi and I. Kuswardayan. Design and implementation of virtual indonesian musical
instrument (vimi) application using leap motion controller. In 2016 International Conference on
Information Communication Technology and Systems (ICTS), pages 43–48, Oct 2016.

[109] L. Harley, S. Robertson, M. Gandy, S. Harbert, and D. Britton. The design of an interactive
stroke rehabilitation gaming system. In J. A. Jacko, editor, Human-Computer Interaction. Users
and Applications, pages 167–173, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[110] P. Harms. Automated usability evaluation of virtual reality applications. ACM Trans. Comput.-
Hum. Interact., 26(3):14:1–14:36, Apr. 2019.

[111] L. Hastings and B. E. Riecke. The influence of shading, display size and individual differences
on navigation in virtual reality. In Proceedings of the ACM Symposium on Applied Perception,
SAP 2014, pages 51–58, 2014.

[112] S.-P. He, Z. Qin, and X.-P. He. Artificial intelligence applications in the design of spe virtual re-
ality operation training system. In Proceedings of the 2003 International Conference on Machine
Learning and Cybernetics (IEEE Cat. No.03EX693), volume 4, pages 2324–2328 Vol.4, 2003.

[113] D. Herumurti, A. Yuniarti, P. Rimawan, and A. A. Yunanto. Overcoming glossophobia based on
virtual reality and heart rate sensors. In 2019 IEEE International Conference on Industry 4.0,
Artificial Intelligence, and Communications Technology (IAICT), pages 139–144, July 2019.

[114] R. Hoda. Socio-technical grounded theory for software engineering. IEEE Transactions on
Software Engineering, pages 1–1, 2021.

[115] Y. Hong, H. Zhen, P. Chen, S. Zheng, Y. Du, Z. Chen, and C. Gan. 3d-llm: Injecting the 3d world
into large language models, 2023.

[116] C.-F. Hsu, A. Chen, C.-H. Hsu, C.-Y. Huang, C.-L. Lei, and K.-T. Chen. Is foveated rendering
perceivable in virtual reality?: Exploring the efficiency and consistency of quality assessment
methods. In Proceedings of the 25th ACM International Conference on Multimedia, MM ’17,
pages 55–63, New York, NY, USA, 2017. ACM.

[117] C. . Huang, H. . Yien, Y. . Chen, Y. . Su, and Y. . Lin. Developing a bim-based visualization and
interactive system for healthcare design. In ISARC 2017 - Proceedings of the 34th International
Symposium on Automation and Robotics in Construction, pages 372–379, 2017.

[118] M.-H. Huang and S.-Y. Tsau. A flow experience analysis on the virtual reality artwork: La camera
insabbiata. In Proceedings of the International Conference on Machine Vision and Applications,
ICMVA 2018, pages 51–55, New York, NY, USA, 2018. ACM.

[119] G. Inc. COLLADA - Digital Asset and FX Exchange Schema. 2010.

207

[120] S. C. E. Inc. COLLADA - Digital Asset and FX Exchange Schema. Khronos Group, 2004.

[121] ISO. ISO 9241-11:1998 Ergonomic requirements for office work with visual display terminals
(VDTs) – Part 11: Guidance on usability. Technical report, International Organization for Stan-
dardization, 1998.

[122] L. Itzel, R. Suselbeck, G. Schiele, and C. Becker. Specifying consistency requirements for mas-
sively multi-user virtual environments. In 2011 IEEE International Workshop on Haptic Audio
Visual Environments and Games, pages 1–2, Oct 2011.

[123] G. Ivan, C. Pacheco, and M. Reyes. Requirements elicitation techniques: A systematic literature
review based on the maturity of the techniques. IET Software, 12:365–378, 04 2018.

[124] A. Jaramillo Franco. Requirements elicitation approaches: A systematic review. In 2015 IEEE
9th International Conference on Research Challenges in Information Science (RCIS), pages 520–
521, May 2015.

[125] H. Järvinen, U. Bernardet, and P. F. Verschure. Interaction mapping affects spatial memory and
the sense of presence when navigating in a virtual environment. In Proceedings of the Fifth
International Conference on Tangible, Embedded, and Embodied Interaction, TEI ’11, pages
321–324, New York, NY, USA, 2011. ACM.

[126] S. Jayaram, H. I. Connacher, and K. W. Lyons. Virtual assembly using virtual reality techniques.
Computer-Aided Design, 29(8):575–584, 1997.

[127] Ji-yi Xu, Bin Xie, and Jin-lin Zhai. The implementation method and improvement of media
piug-in in secondlife 3d platform. In Proceedings of 2011 International Conference on Computer
Science and Network Technology, volume 3, pages 1669–1673, Dec 2011.

[128] G. Jin and S. Nakayama. Virtual reality game for safety education. In 2014 International Con-
ference on Audio, Language and Image Processing, pages 95–100, July 2014.

[129] P. Jindal, V. Khemchandani, S. Chandra, and V. Pandey. A multiplayer shooting game based sim-
ulation for defence training. In 2021 International Conference on Computational Performance
Evaluation (ComPE), pages 592–597, 2021.

[130] B. John, P. Raiturkar, A. Banerjee, and E. Jain. An evaluation of pupillary light response models
for 2d screens and vr hmds. In Proceedings of the 24th ACM Symposium on Virtual Reality
Software and Technology, VRST ’18, pages 19:1–19:11, New York, NY, USA, 2018. ACM.

[131] J. A. Jones, J. E. Swan, II, G. Singh, E. Kolstad, and S. R. Ellis. The effects of virtual reality,
augmented reality, and motion parallax on egocentric depth perception. In Proceedings of the 5th
Symposium on Applied Perception in Graphics and Visualization, APGV ’08, pages 9–14, New
York, NY, USA, 2008. ACM.

208

[132] A. Juhana, R. Yusuf, A. S. Prihatmanto, and A. G. Abdullah. Basic electrical installation trainer
boards : Virtual reality based laboratory for electrical basic education. In 2020 6th International
Conference on Interactive Digital Media (ICIDM), pages 1–6, 2020.

[133] K. S. Kabir, A. Alsaleem, and J. Wiese. The impact of spinal cord injury on participation in
human-centered research. In Designing Interactive Systems Conference 2021, DIS ’21, page
1902–1914, New York, NY, USA, 2021. Association for Computing Machinery.

[134] K. Kandhari. Vr bowling alley game, 2023.

[135] S. A. Karre. Vreqst - online documentation for virtual reality requirement analysts, 2023.

[136] S. A. Karre. VReqST Sample Specifications, https://github.com/sai11101989/VReqST/tree/main/SampleSpec.
2023.

[137] S. A. Karre, N. Mathur, and Y. R. Reddy. Is virtual reality product development different?: An
empirical study on vr product development practices. In Proceedings of the 12th Innovations on
Software Engineering Conference (Formerly Known As India Software Engineering Conference),
ISEC’19, pages 3:1–3:11, New York, NY, USA, 2019. ACM.

[138] S. A. Karre, N. Mathur, and Y. R. Reddy. Is virtual reality product development different?: An
empirical study on VR product development practices. In Proceedings of the 12th Innovations on
Software Engineering Conference (formerly known as India Software Engineering Conference),
ISEC 2019, Pune, India, February 14-16, 2019, pages 3:1–3:11, 2019.

[139] S. A. Karre, N. Mathur, and Y. R. Reddy. Is virtual reality product development different?: An
empirical study on VR product development practices. In Proceedings of the 12th Innovations on
Software Engineering Conference (formerly known as India Software Engineering Conference),
ISEC 2019, Pune, India, February 14-16, 2019, pages 3:1–3:11. ACM, 2019.

[140] S. A. Karre, V. Pareek, R. Mittal, and Y. R. Reddy. A role based model template for specifying
virtual reality software. In In proceedings International Workshop on Virtual and Augmented
Reality Software Engineering, in conjucture with Automated Software Engineering (ASE 2022),
Oakland Center, Michigan, 2022. ACM.

[141] S. A. Karre, K. Vaidhyanathan, and Y. R. Reddy. A tool based experiment to teach elicita-
tion and specification of virtual reality product requirements. In V. Choppella, D. B. Phatak,
A. Luxton-Reilly, and M. Craig, editors, Proceedings of the ACM Conference on Global Com-
puting Education Vol 2, CompEd 2023, Hyderabad, India, December 5-9, 2023, page 195. ACM,
2023.

[142] M. Keckeisen, S. L. Stoev, M. Feurer, and W. Strasser. Interactive cloth simulation in virtual
environments. In Proceedings - IEEE Virtual Reality, volume 2003-January, pages 71–78, 2003.

209

[143] C. Keighrey, R. Flynn, S. Murray, S. Brennan, and N. Murray. Comparing user qoe via physi-
ological and interaction measurements of immersive ar and vr speech and language therapy ap-
plications. In Proceedings of the on Thematic Workshops of ACM Multimedia 2017, Thematic
Workshops ’17, pages 485–492, New York, NY, USA, 2017. ACM.

[144] C. Keighrey, R. Flynn, S. Murray, and N. Murray. A physiology-based qoe comparison of in-
teractive augmented reality, virtual reality and tablet-based applications. IEEE Transactions on
Multimedia, pages 1–1, 2020.

[145] D. Kim, R. B. France, S. Ghosh, and E. Song. A role-based metamodeling approach to specifying
design patterns. In 27th International Computer Software and Applications Conference (COMP-
SAC 2003): Design and Assessment of Trustworthy Software-Based Systems, 3-6 November 2003,
Dallas, TX, USA, Proceedings, page 452. IEEE Computer Society, 2003.

[146] H. G. Kim, W. J. Baddar, H.-t. Lim, H. Jeong, and Y. M. Ro. Measurement of exceptional
motion in vr video contents for vr sickness assessment using deep convolutional autoencoder. In
Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology, VRST
’17, pages 36:1–36:7, New York, NY, USA, 2017. ACM.

[147] S. Kim, G. C. Park, and S. Kim. Usability evaluation of humanoid-animation avatar with physi-
ological signals. In 2007 Frontiers in the Convergence of Bioscience and Information Technolo-
gies, pages 628–636, Oct 2007.

[148] T. Kim. Theoretical analysis of the physiologic mechanism for visual comfort in 3d virtual reality.
In 2017 IEEE International Conference on Consumer Electronics (ICCE), pages 302–305, Jan
2017.

[149] K. Kirchbach and C. Runde. Augmented reality for construction control. In 2012 16th Interna-
tional Conference on Information Visualisation, pages 440–444, July 2012.

[150] B. Kitchenham, P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. G. Linkman. Systematic lit-
erature reviews in software engineering - A systematic literature review. Information & Software
Technology, 51(1):7–15, 2009.

[151] R. Kneuper. Sixty years of software development life cycle models. IEEE Annals of the History
of Computing, 39(3):41–54, 2017.

[152] A. Krekhov, K. Emmerich, P. Bergmann, S. Cmentowski, and J. Krüger. Self-transforming con-
trollers for virtual reality first person shooters. In Proceedings of the Annual Symposium on
Computer-Human Interaction in Play, CHI PLAY ’17, page 517–529, New York, NY, USA,
2017. Association for Computing Machinery.

210

[153] B. Krogfoss, J. Duran, P. Perez, and J. Bouwen. Quantifying the value of 5g and edge cloud on
qoe for ar/vr. In 2020 Twelfth International Conference on Quality of Multimedia Experience
(QoMEX), pages 1–4, 2020.

[154] K. Lano, S. Kolahdouz-Rahimi, and S. Fang. Model transformation development using automated
requirements analysis, metamodel matching, and transformation by example. ACM Trans. Softw.
Eng. Methodol., 31(2), nov 2021.

[155] S. LaValle. Virtual reality. 2016.

[156] S. M. LaValle. Virtual Reality. Cambridge University Press, 2020.

[157] Y. Lee, J. Choi, S. Kim, S. Lee, and S. Jang. Social augmented reality for sensor visualization in
ubiquitous virtual reality. In R. Shumaker, editor, Virtual and Mixed Reality - New Trends, pages
69–75, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[158] Y. S. Lee and B. . Sohn. Immersive gesture interfaces for navigation of 3d maps in hmd-based
mobile virtual environments. Mobile Information Systems, 2018, 2018.

[159] J. R. Levy and H. Bjelland. Create Your Own Virtual Reality System. McGraw-Hill, Inc., USA,
1994.

[160] S. Li, Y. Chui, and P. Heng. Simulation of thermal damage to bone tissue during bone drilling.
In 2014 4th IEEE International Conference on Information Science and Technology, pages 569–
573, April 2014.

[161] Y. Li, T. Yue, S. Ali, and L. Zhang. Enabling automated requirements reuse and configuration. In
Proceedings of the 23rd International Systems and Software Product Line Conference - Volume
A, SPLC ’19, page 206, New York, NY, USA, 2019. Association for Computing Machinery.

[162] M. Lieze, V. C. Jelle, D. Benedicte, V. de Weghe Nico, M. Mario, and D. Van Dyck. Using
virtual reality to investigate physical environmental factors related to cycling in older adults: A
comparison between two methodologies. Journal of Transport Health, 19:100921, 2020.

[163] X. Liu, Y. Zhu, H. Huo, P. Wei, L. Wang, A. Sun, C. Hu, X. Yin, Z. Lv, and Y. Fan. Design of
virtual guiding tasks with haptic feedback for assessing the wrist motor function of patients with
upper motor neuron lesions. IEEE Transactions on Neural Systems and Rehabilitation Engineer-
ing, 27(5):984–994, May 2019.

[164] P. Loucopoulos and V. Karakostas. System Requirements Engineering. 01 1995.

[165] J. Lucas and W. Thabet. Implementation and evaluation of a vr task-based training tool for
conveyor belt safety training. Electronic Journal of Information Technology in Construction,
13:637–659, 2008.

211

[166] J.-L. Lugrin, M. Cavazza, F. Charles, M. Le Renard, J. Freeman, and J. Lessiter. Immersive
fps games: User experience and performance. In Proceedings of the 2013 ACM International
Workshop on Immersive Media Experiences, ImmersiveMe ’13, pages 7–12, New York, NY,
USA, 2013. ACM.

[167] D.-N. Ly, T.-T. La, K.-D. Le, C. Nguyen, M. Fjeld, T. N.-D. Tran, and M.-T. Tran. 360tour-
guiding: Towards virtual reality training for tour guiding. In Adjunct Publication of the 24th
International Conference on Human-Computer Interaction with Mobile Devices and Services,
MobileHCI ’22, New York, NY, USA, 2022. Association for Computing Machinery.

[168] O. López Chávez, L.-F. Rodrı́guez, and J. O. Gutierrez-Garcia. A comparative case study of 2d,
3d and immersive-virtual-reality applications for healthcare education. International Journal of
Medical Informatics, 141:104226, 2020.

[169] G. L. M.-L. Champel, R. Koenen and M. Budagavi. Working draft 0.4 of tr: Technical report on
architectures for immersive media., 2017.

[170] M. Ma, R. Proffitt, and M. Skubic. Quantitative assessment and validation of a stroke rehabili-
tation game. In Proceedings of the Second IEEE/ACM International Conference on Connected
Health: Applications, Systems and Engineering Technologies, CHASE ’17, pages 255–257, Pis-
cataway, NJ, USA, 2017. IEEE Press.

[171] T. Manninen. Contextual virtual interaction as part of ubiquitous game design and development.
Personal Ubiquitous Comput., 6(5–6):390–406, jan 2002.

[172] J. Mapar, K. Brown, J. Medina, K. Laskey, and C. Conaty. Nasa goddard space flight cen-
ter virtual system design environment. In 2001 IEEE Aerospace Conference Proceedings (Cat.
No.01TH8542), volume 7, pages 7–3580 vol.7, March 2001.

[173] C. Marañes, D. Gutierrez, and A. Serrano. Exploring the impact of 360° movie cuts in users’
attention. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages 73–
82, 2020.

[174] R. M. Marra, J. L. Moore, and A. K. Klimczak. Content analysis of online discussion forums: A
comparative analysis of protocols. Educational Technology Research and Development, 52(2):23,
Jun 2004.

[175] D. Martin, S. Malpica, D. Gutierrez, B. Masia, and A. Serrano. Multimodality in vr: A survey.
ACM Comput. Surv., 54(10s), sep 2022.

[176] N. Mathur and S. A. Karre. VR Empirical Study Supplementary Resources, URL:
https://goo.gl/iY7JuV. [Last Accessed]:07-15-2018, 2018.

212

[177] C. Mégard, F. Gosselin, S. Bouchigny, F. Ferlay, and F. Taha. User-centered design of a maxillo-
facial surgery training platform. In Proceedings of the 16th ACM Symposium on Virtual Reality
Software and Technology, VRST ’09, pages 265–266, New York, NY, USA, 2009. ACM.

[178] R. Mittal, S. A. Karre, Y. P. K. Gururaj, and Y. R. Reddy. Enhancing configurable limitless paths
in virtual reality environments. In 15th Innovations in Software Engineering Conference, ISEC
2022, New York, NY, USA, 2022. Association for Computing Machinery.

[179] M. Moehring and B. Froehlich. Pseudo-physical interaction with a virtual car interior in immer-
sive environments. In Proceedings of the 11th Eurographics Conference on Virtual Environments,
EGVE’05, pages 181–189, Aire-la-Ville, Switzerland, Switzerland, 2005. Eurographics Associ-
ation.

[180] N. D. Mohd Muhaiyuddin and D. R. Awang Rambli. Navigation in image-based virtual reality as
the factor to elicit spatial presence experience. In 2014 International Symposium on Technology
Management and Emerging Technologies, pages 349–354, May 2014.

[181] Y. R. R. Mohit Kuri, Sai Anirudh Karre. Slr suppliment data. Last Accessed - Sept 2020.

[182] A. N. Moraes, R. Flynn, A. Hines, and N. Murray. Evaluating the user in a sound localisation
task in a virtual reality application. In 2020 Twelfth International Conference on Quality of
Multimedia Experience (QoMEX), pages 1–6, 2020.

[183] J. Morse. Critical Issues in Qualitative Research Methods. SAGE Publications, 1994.

[184] S. E. Motlagh Tehrani, N. M. M. Zainuddin, and T. Takavar. Heuristic evaluation for virtual
museum on smartphone. In 2014 3rd International Conference on User Science and Engineering
(i-USEr), pages 227–231, Sep. 2014.

[185] M. A. Muhanna. Virtual reality and the cave: Taxonomy, interaction challenges and research
directions. Journal of King Saud University - Computer and Information Sciences, 27(3):344–
361, 2015.

[186] E. Murphy-Hill, T. Zimmermann, and N. Nagappan. Cowboys, ankle sprains, and keepers of
quality: How is video game development different from software development? In Proceedings
of the 36th International Conference on Software Engineering, ICSE 2014, pages 1–11, New
York, NY, USA, 2014. ACM.

[187] G. Narasimham, H. Adams, J. Rieser, and B. Bodenheimer. Encoding height: Egocentric spatial
memory of adults and teens in a virtual stairwell. In ACM Symposium on Applied Perception
2020, SAP ’20, New York, NY, USA, 2020. Association for Computing Machinery.

[188] M. Narbutt, S. O’Leary, A. Allen, J. Skoglund, and A. Hines. Streaming vr for immersion:
Quality aspects of compressed spatial audio. In 2017 23rd International Conference on Virtual
System Multimedia (VSMM), pages 1–6, Oct 2017.

213

[189] A. Nikitin, N. Reshetnikova, I. Sitnikov, and O. Karelova. Vr training for railway wagons main-
tenance: architecture and implementation. Procedia Computer Science, 176:622 – 631, 2020.
Knowledge-Based and Intelligent Information Engineering Systems: Proceedings of the 24th
International Conference KES2020.

[190] M. aaNebeling and M. Speicher. The trouble with augmented reality/virtual reality authoring
tools. In 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-
Adjunct), pages 333–337, 2018.

[191] R. abHorst, R. Naraghi-Taghi-Off, L. Rau, and R. Doerner. Authoring with virtual reality
nuggets—lessons learned. Frontiers in Virtual Reality, 3:17, 2022.

[192] T. Nukarinen, J. Kangas, J. Rantala, T. Pakkanen, and R. Raisamo. Hands-free vibrotactile feed-
back for object selection tasks in virtual reality. In Proceedings of the 24th ACM Symposium
on Virtual Reality Software and Technology, VRST ’18, pages 94:1–94:2, New York, NY, USA,
2018. ACM.

[193] F. Nusrat, F. Hassan, H. Zhong, and X. Wang. How developers optimize virtual reality applica-
tions: A study of optimization commits in open source unity projects. In Proceedings of the 43rd
International Conference on Software Engineering, ICSE ’21, page 473–485. IEEE Press, 2021.

[194] H. C. Okere, S. Sulaiman, D. R. A. Rambli, and O.-M. Foong. A multimodal interaction design
guidelines for vr foot reflexology therapy application. Int. J. Operat. Res. Inf. Syst., 7(3):74–91,
jul 2016.

[195] D. M. Oliveira, S. C. Cao, X. F. Hermida, and F. M. Rodriguez. Virtual reality system for in-
dustrial training. In 2007 IEEE International Symposium on Industrial Electronics, pages 1715–
1720, June 2007.

[196] Y. S. Pai, B. Outram, N. Vontin, and K. Kunze. Transparent reality: Using eye gaze focus depth as
interaction modality. In Proceedings of the 29th Annual Symposium on User Interface Software
and Technology, UIST ’16 Adjunct, pages 171–172, New York, NY, USA, 2016. ACM.

[197] I. Paliokas, A. Tsakiris, A. Vidalis, and D. Tzovaras. Sense of presence and metacognition en-
hancement in virtual reality exposure therapy in the treatment of social phobias and the fear of
flying. In R. Shumaker and S. Lackey, editors, Virtual, Augmented and Mixed Reality. Appli-
cations of Virtual and Augmented Reality, pages 316–328, Cham, 2014. Springer International
Publishing.

[198] V. Paneva, M. Bachynskyi, and J. Müller. Levitation simulator: Prototyping ultrasonic levitation
interfaces in virtual reality. In Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, CHI ’20, page 1–12, New York, NY, USA, 2020. Association for Computing
Machinery.

214

[199] R. Paris, M. Joshi, Q. He, G. Narasimham, T. P. McNamara, and B. Bodenheimer. Acquisition
of survey knowledge using walking in place and resetting methods in immersive virtual environ-
ments. In Proceedings of the ACM Symposium on Applied Perception, SAP ’17, pages 7:1–7:8,
New York, NY, USA, 2017. ACM.

[200] L. Pasquale, P. Spoletini, D. Pometto, F. Blasi, and T. Redaelli. Requirements engineering meets
physiotherapy: An experience with motion-based games. In J. Doerr and A. L. Opdahl, editors,
Requirements Engineering: Foundation for Software Quality, pages 315–330, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

[201] T. B. Pence, L. C. Dukes, L. F. Hodges, N. K. Meehan, and A. Johnson. An eye tracking eval-
uation of a virtual pediatric patient training system for nurses. In T. Bickmore, S. Marsella, and
C. Sidner, editors, Intelligent Virtual Agents, pages 329–338, Cham, 2014. Springer International
Publishing.

[202] X. Peng, J. Huang, A. Denisova, H. Chen, F. Tian, and H. Wang. A palette of deepened emotions:
Exploring emotional challenge in virtual reality games. In Proceedings of the 2020 CHI Confer-
ence on Human Factors in Computing Systems, CHI ’20, page 1–13, New York, NY, USA, 2020.
Association for Computing Machinery.

[203] M. Pérez, S. Casteleyn, I. Sanz, and M. J. Aramburu. Requirements gathering in a model-based
approach for the design of multi-similarity systems. In Proceedings of the First International
Workshop on Model Driven Service Engineering and Data Quality and Security, MoSE+DQS
’09, page 45–52, New York, NY, USA, 2009. Association for Computing Machinery.

[204] K. Petersen, S. Vakkalanka, and L. Kuzniarz. Guidelines for conducting systematic mapping
studies in software engineering: An update. Information and Software Technology, 64:1 – 18,
2015.

[205] J. Plouzeau, J. Chardonnet, and F. Merienne. Using cybersickness indicators to adapt naviga-
tion in virtual reality: A pre-study. In 2018 IEEE Conference on Virtual Reality and 3D User
Interfaces (VR), pages 661–662, March 2018.

[206] D. Pohlandt, B. Preim, and P. Saalfeld. Supporting anatomy education with a 3d puzzle in a
vr environment - results from a pilot study. In Proceedings of Mensch Und Computer 2019,
MuC’19, page 91–102, New York, NY, USA, 2019. Association for Computing Machinery.

[207] T. Poitschke, M. Ablaßmeier, S. Reifinger, and G. Rigoll. A multifunctional vr-simulator platform
for the evaluation of automotive user interfaces. In J. A. Jacko, editor, Human-Computer Interac-
tion. HCI Applications and Services, pages 1120–1129, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

215

[208] C. Pontonnier, A. Samani, M. Badawi, P. Madeleine, and G. Dumont. Assessing the ability
of a vr-based assembly task simulation to evaluate physicalrisk factors. IEEE Transactions on
Visualization and Computer Graphics, 20(5):664–674, May 2014.

[209] F. A. Purnomo, M. Purnawati, E. H. Pratisto, and T. N. Hidayat. Archery training simulation
based on virtual reality. In 2022 1st International Conference on Smart Technology, Applied
Informatics, and Engineering (APICS), pages 195–198, 2022.

[210] S. Putze, D. Alexandrovsky, F. Putze, S. Höffner, J. D. Smeddinck, and R. Malaka. Breaking
the experience: Effects of questionnaires in vr user studies. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, CHI ’20, page 1–15, New York, NY, USA,
2020. Association for Computing Machinery.

[211] P. Pyk, D. Wille, E. Chevrier, Y. Hauser, L. Holper, I. Fatton, R. Greipl, S. Schlegel, L. Ottiger,
B. Ruckriem, A. Pescatore, A. Meyer-Heim, D. Kiper, and K. Eng. A paediatric interactive
therapy system for arm and hand rehabilitation. In 2008 Virtual Rehabilitation, pages 127–132,
Aug 2008.

[212] J. Qiao, M. Liu, S. Li, Z. He, and Z. Yang. Highly efficient quality assessment of 3d-synthesized
views based on compression technology. IEEE Access, 6:42309–42318, 2018.

[213] F. Rabbi, T. Park, B. Fang, M. Zhang, and Y. Lee. When virtual reality meets internet of things in
the gym: Enabling immersive interactive machine exercises. Proc. ACM Interact. Mob. Wearable
Ubiquitous Technol., 2(2):78:1–78:21, July 2018.

[214] C. Ragkhitwetsagul, M. Choetkiertikul, A. Hoonlor, and M. Prachyabrued. Virtual reality for
software engineering presentations. In 2022 29th Asia-Pacific Software Engineering Conference
(APSEC), pages 507–516, 2022.

[215] F. Rahim, M. P. Queluz, and J. Ascenso. Objective assessment of line distortions in viewport
rendering of 360º images. In 2018 IEEE International Conference on Artificial Intelligence and
Virtual Reality (AIVR), pages 68–75, Dec 2018.

[216] P. Rajagopal, R. Lee, T. Ahlswede, Chia-Chu Chiang, and D. Karolak. A new approach for
software requirements elicitation. In Sixth International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing and First ACIS Interna-
tional Workshop on Self-Assembling Wireless Network, pages 32–42, May 2005.

[217] A. Rajan. Automated requirements-based test case generation. SIGSOFT Softw. Eng. Notes,
31(6):1–2, nov 2006.

[218] P. Rajeswaran, T. Kesavadas, P. Jani, and P. Kumar. Airwayvr: Virtual reality trainer for endo-
tracheal intubation-design considerations and challenges. In 2019 IEEE Conference on Virtual
Reality and 3D User Interfaces (VR), pages 1130–1131, 2019.

216

[219] R. Ramadan and Y. Widyani. Game development life cycle guidelines. In 2013 International
Conference on Advanced Computer Science and Information Systems (ICACSIS), pages 95–100,
Sept 2013.

[220] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text-conditional image
generation with clip latents, 2022.

[221] B. Randell. Software engineering in 1968. In Proceedings of the 4th International Conference
on Software Engineering, ICSE ’79, pages 1–10, Piscataway, NJ, USA, 1979. IEEE Press.

[222] A. Rankin, J. Field, R. Kovordanyi, M. Morin, J. Jenvald, and H. Eriksson. Training systems
design: Bridging the gap between users and developers using storyboards. In Proceedings of the
29th Annual European Conference on Cognitive Ergonomics, ECCE ’11, pages 205–212, New
York, NY, USA, 2011. ACM.

[223] A. Riegler, B. Aksoy, A. Riener, and C. Holzmann. Gaze-based interaction with windshield dis-
plays for automated driving: Impact of dwell time and feedback design on task performance and
subjective workload. In 12th International Conference on Automotive User Interfaces and In-
teractive Vehicular Applications, AutomotiveUI ’20, page 151–160, New York, NY, USA, 2020.
Association for Computing Machinery.

[224] S. Rings, S. Karaosmanoglu, L. Kruse, D. Apken, T. Picker, and F. Steinicke. Using exergames
to train patients with dementia to accomplish daily routines. In Extended Abstracts of the 2020
Annual Symposium on Computer-Human Interaction in Play, CHI PLAY ’20, page 345–349,
New York, NY, USA, 2020. Association for Computing Machinery.

[225] S. Rings, F. Steinicke, T. Picker, and C. Prasuhn. Enabling patients with neurological diseases to
perform motor-cognitive exergames under clinical supervision for everyday usage. In 2020 IEEE
Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pages
360–364, 2020.

[226] P. Rodrigues, H. Coelho, M. Melo, and M. Bessa. Virtual reality for training: A computer
assembly application. In 2022 International Conference on Graphics and Interaction (ICGI),
pages 1–6, 2022.

[227] K. Rogers, G. Ribeiro, R. R. Wehbe, M. Weber, and L. E. Nacke. Vanishing importance: Studying
immersive effects of game audio perception on player experiences in virtual reality. In Proceed-
ings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, pages
328:1–328:13, New York, NY, USA, 2018. ACM.

[228] R. A. Ruddle, E. Volkova, and H. H. Bülthoff. Learning to walk in virtual reality. ACM Trans.
Appl. Percept., 10(2):11:1–11:17, June 2013.

217

[229] D. P. Saha, L. Thomas Martin, and R. Benjamin Knapp. Towards defining a quality-metric for
affective feedback in an intelligent environment. In 2018 IEEE International Conference on
Pervasive Computing and Communications Workshops (PerCom Workshops), pages 609–614,
March 2018.

[230] M. N. b. Said, N. b. Senan, M. F. Othman, M. H. A. Wahab, and M. N. Derahman. Virtual kiosk:
Taman herba. In 2020 International Conference on Computer Science and Its Application in
Agriculture (ICOSICA), pages 1–8, 2020.

[231] K. Sakamoto, S. Shirai, J. Orlosky, H. Nagataki, N. Takemura, M. Alizadeh, and M. Ueda. Ex-
ploring pupillometry as a method to evaluate reading comprehension in vr-based educational
comics. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and
Workshops (VRW), pages 422–426, 2020.

[232] D. P. Salgado, F. R. Martins, T. B. Rodrigues, C. Keighrey, R. Flynn, E. L. M. Naves, and N. Mur-
ray. A qoe assessment method based on eda, heart rate and eeg of a virtual reality assistive tech-
nology system. In Proceedings of the 9th ACM Multimedia Systems Conference, MMSys ’18,
pages 517–520, New York, NY, USA, 2018. ACM.

[233] S. Sanders and A. Rolfe. The use of virtual reality for preparation and implementation of jet
remote handling operations. Fusion Engineering and Design, 69(1):157 – 161, 2003. 22nd
Symposium on Fusion Technology.

[234] F. Sanfilippo, P. B. T. Weustink, and K. Y. Pettersen. A coupling library for the force dimension
haptic devices and the 20-sim modelling and simulation environment. In IECON 2015 - 41st
Annual Conference of the IEEE Industrial Electronics Society, pages 168–173, 2015.

[235] K. Sanjaya, F. Henning, and K. R. Purba. 3d lidar city model application and marketing plan
development. In 2017 International Conference on Soft Computing, Intelligent System and Infor-
mation Technology (ICSIIT), pages 238–242, Sep. 2017.

[236] M. E. C. Santos, T. Taketomi, C. Sandor, J. Polvi, G. Yamamoto, and H. Kato. A usability scale
for handheld augmented reality. In Proceedings of the 20th ACM Symposium on Virtual Reality
Software and Technology, VRST ’14, pages 167–176, New York, NY, USA, 2014. ACM.

[237] P. Savioja, P. Järvinen, T. Karhela, P. Siltanen, and C. Woodward. Developing a mobile, service-
based augmented reality tool for modern maintenance work. In R. Shumaker, editor, Virtual
Reality, pages 554–563, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[238] D. Schouten, N. Smets, M. Driessen, M. Hanekamp, A. H. M. Cremers, and M. A. Neerincx.
User requirement analysis of social conventions learning applications for non-natives and low-
literates. In D. Harris, editor, Engineering Psychology and Cognitive Ergonomics. Understanding
Human Cognition, pages 354–363, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

218

[239] H. Schumann, S. Burtescu, and F. Siering. Applying augmented reality techniques in the field of
interactive collaborative design. In R. Koch and L. Van Gool, editors, 3D Structure from Multiple
Images of Large-Scale Environments, pages 290–303, Berlin, Heidelberg, 1998. Springer Berlin
Heidelberg.

[240] S. Schwarz and M. M. Hannuksela. Perceptual quality assessment of hevc main profile depth
map compression for six degrees of freedom virtual reality video. In 2017 IEEE International
Conference on Image Processing (ICIP), pages 181–185, Sep. 2017.

[241] V. Schwind, P. Knierim, N. Haas, and N. Henze. Using presence questionnaires in virtual reality.
In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19,
pages 360:1–360:12, New York, NY, USA, 2019. ACM.

[242] J. Seo and G. J. Kim. Teaching structured development of virtual reality systems using p-vot.
In K.-c. Hui, Z. Pan, R. C.-k. Chung, C. C. L. Wang, X. Jin, S. Göbel, and E. C.-L. Li, editors,
Technologies for E-Learning and Digital Entertainment, pages 69–80, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

[243] D. Shao, X. Liu, B. Cheng, O. Wang, and T. Hoang. Edge4real: A cost-effective edge computing
based human behaviour recognition system for human-centric software engineering. In Proceed-
ings of the 35th IEEE/ACM International Conference on Automated Software Engineering, ASE
’20, page 1287–1291, New York, NY, USA, 2020. Association for Computing Machinery.

[244] Q. Shen, J. Gausemeier, J. Bauch, and R. Radkowski. A cooperative virtual prototyping system
for mechatronic solution elements based assembly. Adv. Eng. Inform., 19(2):169–177, apr 2005.

[245] W. R. Sherman and A. B. Craig. Introduction to virtual reality systems. In W. R. Sherman and
A. B. Craig, editors, Understanding Virtual Reality, The Morgan Kaufmann Series in Computer
Graphics, pages 70–73. Morgan Kaufmann, San Francisco, 2003.

[246] E. Shihab. Practical software quality prediction. In 30th IEEE International Conference on
Software Maintenance and Evolution, Victoria, BC, Canada, September 29 - October 3, 2014,
pages 639–644, 2014.

[247] G. Shochat, S. Maoz, A. Stark-Inbar, B. Blumenfeld, D. Rand, S. Preminger, and Y. Sacher.
Motion-based virtual reality cognitive training targeting executive functions in acquired brain
injury community-dwelling individuals: A feasibility and initial efficacy pilot. In International
Conference on Virtual Rehabilitation, ICVR, volume 2017-June, 2017.

[248] N. Sidaty, P. Cabarat, W. Hamidouche, D. Menard, and O. Deforges. Performance and compu-
tational complexity of the future video coding. In 2018 IEEE International Workshop on Signal
Processing Systems (SiPS), pages 31–36, Oct 2018.

219

[249] A. Simon. First-person experience and usability of co-located interaction in a projection-based
virtual environment. In Proceedings of the ACM Symposium on Virtual Reality Software and
Technology, VRST ’05, pages 23–30, New York, NY, USA, 2005. ACM.

[250] T. M. Simon, R. T. Smith, B. Thomas, S. Von Itzstein, M. Smith, J. Park, and J. Park. Merg-
ing tangible buttons and spatial augmented reality to support ubiquitous prototype designs. In
Proceedings of the Thirteenth Australasian User Interface Conference - Volume 126, AUIC ’12,
pages 29–38, Darlinghurst, Australia, Australia, 2012. Australian Computer Society, Inc.

[251] S. P. Smith and S. Todd. Evaluating a haptic-based virtual environment for venepuncture training.
In Proceedings of the 2007 ACM Symposium on Virtual Reality Software and Technology, VRST
’07, pages 223–224, New York, NY, USA, 2007. ACM.

[252] B. N. Steele, M. T. Draney, J. P. Ku, and C. A. Taylor. Internet-based system for simulation-based
medical planning for cardiovascular disease. IEEE Transactions on Information Technology in
Biomedicine, 7(2):123–129, June 2003.

[253] E. Stefanidi, J. Schöning, S. S. Feger, P. Marshall, Y. Rogers, and J. Niess. Designing for care
ecosystems: A literature review of technologies for children with adhd. In Interaction Design
and Children, IDC ’22, page 13–25, New York, NY, USA, 2022. Association for Computing
Machinery.

[254] F. Steinicke and G. Bruder. A self-experimentation report about long-term use of fully-immersive
technology. In Proceedings of the 2Nd ACM Symposium on Spatial User Interaction, SUI ’14,
pages 66–69, New York, NY, USA, 2014. ACM.

[255] A. Strauss and J. Corbin. Discovery of grounded theory, 1967.

[256] A. Su, Y. Wang, and C.-H. Wu. Online visual communication and scene reconstruction of cruise
travel under the background of virtual reality. Wirel. Commun. Mob. Comput., 2022, jan 2022.

[257] M. Sufian, Z. Khan, S. Rehman, and W. Haider Butt. A systematic literature review: Software
requirements prioritization techniques. In 2018 International Conference on Frontiers of Infor-
mation Technology (FIT), pages 35–40, Dec 2018.

[258] W. Sun, K. Gu, G. Zhai, S. Ma, W. Lin, and P. Le Calle. Cviqd: Subjective quality evaluation of
compressed virtual reality images. In 2017 IEEE International Conference on Image Processing
(ICIP), pages 3450–3454, Sep. 2017.

[259] X. Tan, C. Chng, B. Duan, Y. Ho, R. Wen, X. Chen, K. Lim, and C. Chui. Design and im-
plementation of a patient-specific cognitive engine for robotic needle insertion. In 2016 IEEE
International Conference on Systems, Man, and Cybernetics (SMC), pages 000560–000565, Oct
2016.

220

[260] R. I. Tavares da Costa Filho, F. De Turck, and L. P. Gaspary. From 2d to next generation vr/ar
videos: Enabling efficient streaming via qoe-aware mobile networks. In NOMS 2020 - 2020
IEEE/IFIP Network Operations and Management Symposium, pages 1–6, 2020.

[261] E. Tikhonova, G. Efremova, and I. Terehina. Virtual reality as a tool for foreign students’ anti-
stress adaptation to a new educational environment. In 2020 The 4th International Conference
on Education and Multimedia Technology, ICEMT 2020, page 127–132, New York, NY, USA,
2020. Association for Computing Machinery.

[262] M. Tomlein and K. Grønbæk. Augmented reality supported modeling of industrial systems to
infer software configuration. Proc. ACM Hum.-Comput. Interact., 2(EICS):5:1–5:17, June 2018.

[263] Y. Tong, F. Xie, X. Zheng, and Y. Wei. Design and application of virtual training system for com-
puter hardware assembly. In Proceedings of the 2nd World Symposium on Software Engineering,
WSSE ’20, page 146–150, New York, NY, USA, 2020. Association for Computing Machinery.

[264] D. Triantafyllou, A. Antoniou, and G. Lepouras. Sound and kinesthesis in virtual environments:
Pilot experiment to compare physical and digital sound contradictions. In Proceedings of the 20th
Pan-Hellenic Conference on Informatics, PCI ’16, pages 55:1–55:4, New York, NY, USA, 2016.
ACM.

[265] Ulas, M. Yilmaz, and V. Isler. A literature survey: Is it necessary to develop a new software
development methodology for virtual reality projects? J. UCS, 23(8):725–754, 2017.

[266] S. Van Damme, M. T. Vega, and F. De Turck. Human-centric quality management of immersive
multimedia applications. In 2020 6th IEEE Conference on Network Softwarization (NetSoft),
pages 57–64, 2020.

[267] E. van Wyk and R. de Villiers. Usability context analysis for virtual reality training in south
african mines. In Proceedings of the 2008 Annual Research Conference of the South African
Institute of Computer Scientists and Information Technologists on IT Research in Developing
Countries: Riding the Wave of Technology, SAICSIT ’08, pages 276–285, New York, NY, USA,
2008. ACM.

[268] A. Vegendla, A. N. Duc, S. Gao, and G. Sindre. A systematic mapping study on requirements
engineering in software ecosystems. J. Inf. Technol. Res., 11(1):49–69, Jan. 2018.

[269] W3C. VRML Virtual Reality Modeling Language. Web3D Consortium, 1997.

[270] M. Walch, J. Frommel, K. Rogers, F. Schüssel, P. Hock, D. Dobbelstein, and M. Weber. Evaluat-
ing vr driving simulation from a player experience perspective. In Proceedings of the 2017 CHI
Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA ’17, pages
2982–2989, New York, NY, USA, 2017. ACM.

221

[271] B. Wan and J. Guo. Learning immersion assessment model based on multi-dimensional physio-
logical characteristics. In 2020 IEEE International Conference on Power, Intelligent Computing
and Systems (ICPICS), pages 87–90, 2020.

[272] S. N. Wan Shamsuddin, H. Ugail, V. Lesk, and E. Walters. Towards early diagnosis of dementia
using a virtual environment. In M. L. Gavrilova, C. J. K. Tan, and A. Kuijper, editors, Transac-
tions on Computational Science XVIII, pages 232–247, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[273] D. Wang, Y. Zhang, J. Hou, Y. Wang, P. Lv, Y. Chen, and H. Zhao. idental: A haptic-based dental
simulator and its preliminary user evaluation. IEEE Transactions on Haptics, 5(4):332–343,
Fourth 2012.

[274] H. Wang, L. Xu, and W. Chen. Design and implementation of visual inspection system handed
in tokamak flexible in-vessel robot. Fusion Engineering and Design, 106:21 – 28, 2016.

[275] M. W. Wani, Y. P. Gururaj, V. P, S. A. Karre, R. Reddy, and S. Azeemuddin. Velgmat: Low cost
gait mat for stance phase calculation. In 2022 IEEE Sensors, pages 1–4, 2022.

[276] S. Werrlich, P.-A. Nguyen, and G. Notni. Evaluating the training transfer of head-mounted display
based training for assembly tasks. In Proceedings of the 11th PErvasive Technologies Related
to Assistive Environments Conference, PETRA ’18, pages 297–302, New York, NY, USA, 2018.
ACM.

[277] T. Widiyaningtyas, D. D. Prasetya, and A. P. Wibawa. Adaptive campus virtual tour using
location-based services. In 2018 Electrical Power, Electronics, Communications, Controls and
Informatics Seminar (EECCIS), pages 419–423, Oct 2018.

[278] D. Wiebusch, M. Fischbach, M. E. Latoschik, and H. Tramberend. Evaluating scala, actors,
& ontologies for intelligent realtime interactive systems. In Proceedings of the 18th ACM
Symposium on Virtual Reality Software and Technology, VRST ’12, pages 153–160, New York,
NY, USA, 2012. ACM.

[279] F. Willicks, V. Stehling, A. Richert, and I. Isenhardt. The students’ perspective on mixed real-
ity in higher education: A status and requirement analysis. In 2018 IEEE Global Engineering
Education Conference (EDUCON), pages 656–660, April 2018.

[280] P. S. Windyga, R. Medina, and G. M. Onik. Augmented vision for minimally invasive abdominal
cancer surgery. In Proceedings of the 25th Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (IEEE Cat. No.03CH37439), volume 2, pages 1160–
1163 Vol.2, Sep. 2003.

222

[281] M. Wirth, S. Gradl, W. A. Mehringer, R. Kulpa, H. Rupprecht, D. Poimann, A. F. Laudanski,
and B. M. Eskofier. Assessing personality traits of team athletes in virtual reality. In 2020 IEEE
Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pages
101–108, 2020.

[282] M. Wirth, S. Gradl, J. Sembdner, S. Kuhrt, and B. M. Eskofier. Evaluation of interaction tech-
niques for a virtual reality reading room in diagnostic radiology. In Proceedings of the 31st
Annual ACM Symposium on User Interface Software and Technology, UIST ’18, pages 867–876,
New York, NY, USA, 2018. ACM.

[283] C. Wohlin, M. Höst, and K. Henningsson. Empirical Research Methods in Software Engineering,
pages 7–23. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[284] J. Wolfartsberger, J. Zenisek, C. Sievi, and M. Silmbroth. A virtual reality supported 3d environ-
ment for engineering design review. In 2017 23rd International Conference on Virtual System
Multimedia (VSMM), pages 1–8, 2017.

[285] X3D. Extensible 3D. Web3D Consortium.

[286] H. . Yang, Z. . Pan, Bing-Xu, and M. . Zhang. Machine learning-based intelligent recommenda-
tion in virtual mall. In Proceedings of 2004 International Conference on Machine Learning and
Cybernetics, volume 4, pages 2634–2639, 2004.

[287] H. Yang, Z. Shi, and Y. Zhong. The virtual campus system based on vr-platform. In 2011
International Conference on Multimedia Technology, pages 916–919, 2011.

[288] J. Yang, T. Liu, B. Jiang, H. Song, and W. Lu. 3d panoramic virtual reality video quality assess-
ment based on 3d convolutional neural networks. IEEE Access, 6:38669–38682, 2018.

[289] S. Yang, J. Zhao, T. Jiang, J. W. T. Rahim, B. Zhang, Z. Xu, and Z. Fei. An objective assessment
method based on multi-level factors for panoramic videos. In 2017 IEEE Visual Communications
and Image Processing (VCIP), pages 1–4, Dec 2017.

[290] U. Yang, D. Jo, and W. Son. Uvmode: Usability verification mixed reality system for mobile
devices. In CHI ’08 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’08,
pages 3573–3578, New York, NY, USA, 2008. ACM.

[291] U. Yang, G. A. Lee, Y. Kim, D. Jo, J. Choi, and K.-H. Kim. Virtual reality based welding training
simulator with 3d multimodal interaction. In 2010 International Conference on Cyberworlds,
pages 150–154, 2010.

[292] Y.-C. Yang. Role-play in virtual reality game for the senior. In Proceedings of the 2019 7th
International Conference on Information and Education Technology, ICIET 2019, pages 31–35,
New York, NY, USA, 2019. ACM.

223

[293] A. M. Yasin, F. H. Yusoff, M. A. M. Isa, and N. H. M. Zain. Avatar implementation in virtual
reality environment using situated learning for “sa’i” (muslim hajj ritual). In 2010 International
Conference on Educational and Information Technology, volume 2, pages V2–286–V2–290, Sept
2010.

[294] Ying Zhang, T. Fernando, R. Sotudeh, and Hannan Xiao. The use of visual and auditory feedback
for assembly task performance in a virtual environment. In Ninth International Conference on
Information Visualisation (IV’05), pages 779–784, July 2005.

[295] S. Yu, X. Fan, and Z. Liao. A study of the endoscopic surgery simulation training system based on
3d virtual reality. In 2009 International Conference on Computational Intelligence and Software
Engineering, pages 1–4, Dec 2009.

[296] A. Zare, A. Aminlou, and M. M. Hannuksela. Virtual reality content streaming: Viewport-
dependent projection and tile-based techniques. In 2017 IEEE International Conference on Image
Processing (ICIP), pages 1432–1436, Sep. 2017.

[297] H. Zhang, X. Zhang, and J. Huang. A demonstration system for the generation and interaction
of battlefield situation based on hololens. In 2019 2nd International Conference on Information
Systems and Computer Aided Education (ICISCAE), pages 293–296, 2019.

[298] Y. Zhang, Y. Wang, F. Liu, Z. Liu, Y. Li, D. Yang, and Z. Chen. Subjective panoramic video qual-
ity assessment database for coding applications. IEEE Transactions on Broadcasting, 64(2):461–
473, June 2018.

[299] L. Zhao, Y. Liu, D. Ye, Z. Ma, and W. Song. Implementation and evaluation of touch-based inter-
action using electrovibration haptic feedback in virtual environments. In 2020 IEEE Conference
on Virtual Reality and 3D User Interfaces (VR), pages 239–247, 2020.

[300] B. Zhou, Q. Jia, and Z. Chen. The research and development of the earthquake ruins computer
aided design system for rescue training. In 2017 4th International Conference on Information
Science and Control Engineering (ICISCE), pages 1303–1307, 2017.

[301] A. Zutshi and G. Sharma. A study of virtual environments for enterprise collaboration. In Pro-
ceedings of the 8th International Conference on Virtual Reality Continuum and Its Applications
in Industry, VRCAI ’09, pages 331–333, New York, NY, USA, 2009. ACM.

——————————————————–

224

	Introduction
	Motivation
	Problem Statement
	Research Journey
	Scope of our Research

	Contributions
	Outline of the Work

	Overview of Virtual Reality
	Background
	Modalities of Reality
	Key Concepts
	Virtual Reality Technology Stack
	Virtual Reality Software
	Virtual Reality Hardware

	Virtual Reality Community Ecosystem
	Is Virtual Reality Product Development Different?
	Survey with VR Community
	Focused Interviews with VR Practitioners
	VR Online Forum Study

	Observations from Empirical Studies on VR Community
	Insights from Survey
	Attributes from Interviews
	Themes from Online Forums

	Thurst Areas for Research to ease VR Product Development
	Conventional Software Products Vs VR Software Products

	Usability Practices in Virtual Reality Products
	Discussion on Usability Methods & Metrics for VR Products
	Sufficiency & Necessity of Usability Evaluation of VR Software

	Software Quality Metrics for Virtual Reality Products
	Discussion on Software Quality Metrics, Usage Trend across Field-of-Interests for VR Products

	Literature Review - Requirements Engineering for VR Product Development
	Mapping Study - RE for VR Software Products
	Requirement Elicitation Methods for VR Software Products
	Requirement Analysis Methods for VR Software Products
	Requirement Specification Methods for VR Software Products
	RE Methods with specific Field of Interest for VR Software Products
	RE Attributes to Capture VR Product Requirements

	Understanding Virtual Reality Domain through a Model Template
	Attributes for VR Software Requirement Specification
	Role Based Model Template for Specifying VR Software
	Virtual Reality Software System Meta Model
	Extending VR Meta-model to Domain-specific and Context-specific applications
	Implications of VR Model Template for VR Community

	Model Based Requirement Specification for Virtual Reality Software
	Authoring Tools vs Requirement Specification Tools
	VReqST - To specify VR Requirements
	Model Template and its Validator
	VReqST Overview
	VReqST Validation Workflow
	Fillable Model Template and Validator Files
	Understanding Behavior and State in VReqST
	VReqST Features

	Example Specifications

	Validation of VReqST Tool in Practice
	VR Community Adoption & Feedback
	VReqST Validation Study Setup
	VReqST Impact and Experience Survey
	Observations - Validation Study
	Observations - Impact and Experience Survey
	VReqST extensions in VR product development

	Requirement Specifications for Depression Detection Application using VR: a Proof of Concept

	Deploying and Configuring VReqST in Practice
	Hardware Requirements
	Software Requirements
	Deployment Steps
	Configuring Database

	Future Work: Model Driven Development for Virtual Reality Software
	Few Concepts
	MDD Pipleline for VR

	Bibliography

