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Abstract

The invention of Complementary Metal–Oxide–Semiconductor (CMOS) transistors marked a rev-
olutionary shift in the field of electronics, ushering in the era of semiconductor devices within the
Integrated Circuit (IC) industry. Since then, CMOS technology has dominated the realm of microelec-
tronics. The key to advancing ICs lies in transistor scaling, which boosts transistor density, switching
speed, and operational frequency, enabling the creation of higher-performing electronic circuits. How-
ever, the aggressive down-scaling of CMOS technology has posed challenges for device engineers while
opening up new opportunities. As transistor dimensions decrease, the complexity of the semiconductor
process increases. As we approach atomic scales, simple scaling reaches its limits. Despite their minute
size, devices can encounter various performance issues, including increased leakage, reduced gain, and
increased sensitivity to manufacturing process variations. The substantial rise in process variations sig-
nificantly impacts circuit operation, resulting in variable performance even in transistors of identical
size. This, in turn, affects the propagation delay of the circuit, which behaves as a stochastic random
variable, making timing-closure techniques more complex and exerting a substantial influence on chip
yield. FinFETs, which have superseded CMOS in the nanoscale IC designs, also face performance
deviations due to process variations despite demonstrating good resistance to Short Channel Effects
(SCE). Surging process variations in the nanometer regime significantly contribute to the degradation of
parametric yield.

Under such scenarios, the Process, Voltage, and Temperature (PVT) aware performance estimation
of VLSI circuits through traditional Electronic Computer Aided Design (E-CAD) tools is a complex en-
deavor. These tools often exhibit intricacies, heavily relying on specific circuit architectures and licens-
ing agreements, while demanding significant simulation times proportional to the design complexity.
Moreover, conventional tools tend to adhere rigidly to standardized processes and workflows, poten-
tially limiting their efficacy and stifling innovation by confining designers to predetermined method-
ologies. Furthermore, the traditional approaches employed for such tasks frequently involve manual
intervention, introducing time-sensitive and resource-intensive procedures that can contribute to delays
in the time-to-market. Additionally, upon receiving simulation results, designers may face challenges in
comprehending the underlying functionalities, including identifying the root causes of issues and imple-
menting necessary fixes. This can result in additional time consumption and impede the overall design
iteration process.

The objective of this research is to develop a rapid and efficient surrogate modeling framework to
precisely predict PVT-aware circuit performance within Very Large Scale Integration (VLSI) circuits,
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with a focus on overcoming the limitations of conventional modeling approaches. The framework is
designed to be versatile, platform-independent, and capable of modeling a wide range of digital, ana-
log, mixed-signal, and RF circuit applications. To accomplish these objectives, we integrate Artificial
Intelligence (AI) and Machine Learning (ML) based surrogate models into the framework to monitor
circuit performance under the influence of PVT variations. The framework encompasses several stages,
including PVT-aware simulation data generation, the development of a bank of AI/ML models em-
ploying supervised learning representing each circuit under consideration, and a high-level intelligent
entity responsible for identifying the most effective model. To demonstrate the methodology, our frame-
work incorporates 22 statistically aware standard digital logic circuits and various application-specific
datasets for analog circuits, considering the impacts of design, process, and environmental variations
across multiple technology nodes. Digital circuit modeling spans high-performance CMOS technology
nodes, namely 45nm, 32nm, 22nm, and 16nm, and FinFET technology nodes, such as 16nm, 10nm,
and 7nm. Analog, mixed-signal, and RF circuit modeling encompasses designs ranging from 180nm to
65nm and 28nm technology nodes.

Moreover, the framework utilizes an automated methodology for estimating the performances of
complex digital circuits, grounded in statistical variations within standard cells and facilitated by the
most accurate AI/ML model. This methodology is versatile and applicable to a broad spectrum of
digital circuits, eliminating the need for generating labor-intensive simulations tailored to individual
circuits. It offers a streamlined solution that can be readily adapted across various circuit designs,
saving considerable time and resources typically invested in customized simulation configurations for
each circuit type. Additionally, we expand the PVT-aware surrogate modeling approach to optimize
transistor sizing for improved yield, achieving a reduction of up to 64.6% in Power-Delay Product
(PDP) of ISCAS-74X and ISCAS-85 benchmark circuits.

Furthermore, the research delves into the computational hurdles entailed in generating a significant
volume of simulation samples for each targeted technology node, while considering diverse sources
of variation. Consequently, it introduces the concept of transfer learning to circuit modeling, entail-
ing a comprehensive exploration of relationships within CMOS/FinFET technologies across various
technology nodes. The objective is to furnish precise predictions of PVT-aware circuit performance at
advanced process nodes, thereby diminishing the considerable data requirements typically associated
with such modeling endeavors. This is accomplished by capitalizing on knowledge accumulated dur-
ing circuit modeling from one technology node to another. Additionally, the research concentrates on
extrapolating PVT-aware performance onto forthcoming/future nodes by leveraging insights obtained
from established nodes. It is noteworthy that this framework adopts a black-box approach, facilitating
the incorporation of any number of PVT variations in any desired technology node with minimal com-
putational complexity. This adaptive methodology not only enhances efficiency but also facilitates the
flexibility to accommodate diverse circuit designs and technological advancements.

In addition, this research integrates rapid sensitivity analysis methods alongside a systematic ap-
proach to pinpointing predominant parameters, leveraging extensive statistical datasets encompassing
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both digital and analog elements. The framework adeptly constructs models for analog and mixed-signal
circuits with precision using the dominant parameters. These developed analog models present practical
solutions for implementing self-adapting microelectronic circuits via appropriate digital control logic,
thereby alleviating performance discrepancies stemming from PVT variations. These models not only
enhance the adaptability and efficiency of circuit designs but also propel the microelectronics domain
forward by facilitating dynamic responses to fluctuating operational environments, ultimately fostering
innovation and advancement.



Contents

Chapter Page

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Challenges due to Transistor Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Challenges in Traditional Simulation Tools . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Need for Intelligent Modeling Framework . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Objective and Scope of the proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Surrogate models for Digital Circuit Modeling . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Surrogate models for Analog/Mixed-Signal/RF Circuit Modeling . . . . . . . . . . . . 12
2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Process Variability and Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 PVT Variations in Nanometer Technology Nodes and Challenges . . . . . . . . . . . . 15
3.2 Digital Circuit Performance Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Propagation Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Power-Delay Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Validation of PVT Variability on Circuit Performances . . . . . . . . . . . . . . . . . 23
3.4 Simulation Setup and Performance Modeling of Digital Circuits . . . . . . . . . . . . 27

3.4.1 Leakage Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Delay Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.3 Equivalent Capacitance Estimation . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Analog Circuit Modeling and Simulation Setup . . . . . . . . . . . . . . . . . . . . . 35
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 PVT-aware Surrogate Modeling of VLSI Circuits . . . . . . . . . . . . . . . . . . . . . . . 40
4.1 Design of Surrogate Modeling Framework . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Machine Learning Algorithms for Circuit Modeling . . . . . . . . . . . . . . . . . . . 43
4.3 PVT-aware Digital Circuit Surrogate Modeling . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1.1 Surrogate Modeling Metrics . . . . . . . . . . . . . . . . . . . . . . 49
4.3.1.2 Comprehensive Evaluation Criteria . . . . . . . . . . . . . . . . . . 50

4.3.2 Comparison with the State-of-the-art Works . . . . . . . . . . . . . . . . . . . 52

vii



viii CONTENTS

4.4 PVT-aware Analog Circuit Surrogate Modeling . . . . . . . . . . . . . . . . . . . . . 62
4.4.1 Training and Building Analog Surrogate Models . . . . . . . . . . . . . . . . 62

4.4.1.1 Regression algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.1.2 Classification algorithms . . . . . . . . . . . . . . . . . . . . . . . 63

4.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.2.1 Current Reference Generator . . . . . . . . . . . . . . . . . . . . . 65
4.4.2.2 Low Drop-out Regulator (LDO) . . . . . . . . . . . . . . . . . . . . 65
4.4.2.3 A Free-running Clock Generator (Osc) . . . . . . . . . . . . . . . . 67
4.4.2.4 Transmitter Driver (TxDr) . . . . . . . . . . . . . . . . . . . . . . . 70
4.4.2.5 Band-gap Reference (BGR) . . . . . . . . . . . . . . . . . . . . . . 73
4.4.2.6 Phase-Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . 75
4.4.2.7 Low-noise Amplifier (LNA) . . . . . . . . . . . . . . . . . . . . . . 79
4.4.2.8 High-Speed Low-noise Amplifier (HSLNA) . . . . . . . . . . . . . 79
4.4.2.9 Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.3 Unified Deep-Learning Neural Network Architecture (U-DNN) . . . . . . . . 84
4.4.3.1 Key Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.3.2 Unified Deep-Learning Neural Network Architecture Design . . . . 87
4.4.3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Sensitivity Analysis and Dominant Parameter Extraction . . . . . . . . . . . . . . . . . . . 91
5.1 Sensitivity Analysis using Feature Selection . . . . . . . . . . . . . . . . . . . . . . . 91

5.1.1 Pearson Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.1.2 Information Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Sensitivity Analysis on Digital Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3 Dominant Parameter Extraction in Analog/Mixed/RF Circuits . . . . . . . . . . . . . 98
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Circuit Performance Estimation Using Transfer-Learning Approach . . . . . . . . . . . . . . 102
6.1 Transfer Learning and its Application for Circuit Analysis . . . . . . . . . . . . . . . 102

6.1.1 Transfer Learning for Digital Circuit Analysis . . . . . . . . . . . . . . . . . . 103
6.2 Correlation in PVT-aware Behavior of Circuits across the Technology Nodes . . . . . 103
6.3 Transfer Learning Framework for Circuit Performance Estimation . . . . . . . . . . . 105

6.3.1 Dense Neural Networks for Statistical Circuit Performance Estimation . . . . . 105
6.3.1.1 Bayesian Optimization . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3.2 Transfer Learning enabled Statistical Circuit Performance Estimation . . . . . 108
6.4 Transfer Learning Framework for Performance Estimation at Future Nodes . . . . . . 110
6.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.5.1 Test Criteria for Performance Evaluation . . . . . . . . . . . . . . . . . . . . 112
6.5.2 Set of Experiments over Transfer Learning . . . . . . . . . . . . . . . . . . . 113

6.5.2.1 Single-node Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.5.2.2 Sequential Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.5.2.3 Skip-node Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.5.2.4 Reverse-node Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.5.2.5 Zero-shot Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



CONTENTS ix

7 Applications of Digital Circuit Surrogate Models . . . . . . . . . . . . . . . . . . . . . . . 121
7.1 PVT-aware Complex Cell Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1.1 Complex Cell Leakage Estimation . . . . . . . . . . . . . . . . . . . . . . . . 122
7.1.2 Complex Cell Delay estimation . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.1.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2 PVT-aware Sizing and Optimization Engine . . . . . . . . . . . . . . . . . . . . . . . 124
7.2.1 The Key Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.2 Machine Learning Algorithms for Circuit Optimization . . . . . . . . . . . . . 126

7.2.2.1 Decision Tree Regressor . . . . . . . . . . . . . . . . . . . . . . . . 126
7.2.2.2 Extra Tree Regressor . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2.2.3 Light Gradient Boosting Regressor . . . . . . . . . . . . . . . . . . 127
7.2.2.4 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . 127
7.2.2.5 Residual Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 128

7.2.3 Optimization Algorithms with Machine Learning for Transistor Sizing . . . . . 130
7.2.3.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2.3.2 Optimization Algorithms . . . . . . . . . . . . . . . . . . . . . . . 133

7.2.4 Performance Verification across PVT Variations . . . . . . . . . . . . . . . . . 137
7.2.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8 Application of Surrogate Analog Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.1 AI-driven Self-adapting Microelectronic circuits . . . . . . . . . . . . . . . . . . . . . 142
8.2 Comparison with the State-of-the-art Works . . . . . . . . . . . . . . . . . . . . . . . 144
8.3 DUT 1: Current Reference Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.4 DUT 2: Low Dropout Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.5 DUT 3: A Free-running Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.6 DUT 4: Phase Locked Loop - Kvco . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.7 DUT 5: Low Noise Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.8 DUT 6: High-Speed Low Noise Amplifier . . . . . . . . . . . . . . . . . . . . . . . . 150
8.9 DUT 7: Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159



List of Figures

Figure Page

1.1 Structure and technology innovation for MOSFETs [4] . . . . . . . . . . . . . . . . . 2

3.1 Types of circuit parameter variations . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Charging and discharging phases of a typical CMOS inverter with timing diagrams [66] 24
3.3 Temperature impact on 16nm CMOS/FinFET power and delay . . . . . . . . . . . . . 25
3.4 Supply voltage impact on 16nm CMOS/FinFET power and delay . . . . . . . . . . . . 26
3.5 Impact of load capacitance and slew time on CMOS/FinFET power and delay across

different technology nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 PVT parameter’s impact on leakage power in 16nm FinFET technology . . . . . . . . 28
3.7 PVT parameter’s impact on leakage power in 16nm CMOS technology . . . . . . . . . 29
3.8 PVT parameter’s impact on propagation delay in 16nm FinFET technology . . . . . . 30
3.9 Effect on leakage and delay due to 3σ PVT variations . . . . . . . . . . . . . . . . . . 31
3.10 PVT parameter’s impact on propagation delay in 16nm CMOS technology . . . . . . . 32
3.11 Equivalent load capacitance computation setup . . . . . . . . . . . . . . . . . . . . . 34
3.12 Training data generation of analog circuit under test . . . . . . . . . . . . . . . . . . . 36

4.1 Design of the PVT-aware intelligent surrogate modeling framework for circuit perfor-
mance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Features of AI/ML surrogate modeling framework Vs traditional modeling paradigm . 43
4.3 Impact of the number of training samples on delay model’s (LGBM) accuracy (a) 16nm

CMOS (b) 16nm FinFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Runtime comparison of LGBM delay model Vs SPICE simulations . . . . . . . . . . . 48
4.5 Comparison of prediction results of our (*) best performing (LGBM) model with State-

of-the-art works on Full adder standard cell over 500 random PVT conditions (a) Leak-
age (45nm CMOS) (b) Delay (10nm FinFET) . . . . . . . . . . . . . . . . . . . . . . 52

4.6 Correlation plot of current reference generator . . . . . . . . . . . . . . . . . . . . . . 66
4.7 Comparison of the ML models’ predicted output current Vs SPICE simulations of cur-

rent reference generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.8 A low-dropout regulator circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.9 Correlation plot of LDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.10 Comparison of the ML models’ predicted output voltage Vs SPICE simulations of LDO

with 5000 training samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.11 Scatter plot of SPICE simulations and ML models’ predicted output voltage of LDO

with 5000 training samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.12 A free-running oscillator circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

x



LIST OF FIGURES xi

4.13 Scatter plot of SPICE (actual) and ML models’ predicted clock frequency of oscillator
with 4750 training samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.14 Correlation plot of oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.15 Comparison of ML model’s predicted oscillator frequency Vs SPICE (actual) simulations 71
4.16 Comparison of accuracy on TxDr outputs - SPICE (actual) and ML models’ predictions

(a) Pull up resistance (b) Pull down resistance . . . . . . . . . . . . . . . . . . . . . . 72
4.17 Correlation plot of TxDr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.18 Classification models’ accuracy scores on training TxDr . . . . . . . . . . . . . . . . 74
4.19 Confusion matrix of TxDr showing 100% accuracy . . . . . . . . . . . . . . . . . . . 74
4.20 Correlation plot of bandgap reference . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.21 Comparison of ML model’s predicted BGR output voltage w.r.t SPICE simulations . . 76
4.22 Scatter plot of SPICE and ML models’ predicted output voltage of BGR . . . . . . . . 76
4.23 Classification accuracy scores on training BGR . . . . . . . . . . . . . . . . . . . . . 77
4.24 Phase-locked loop (a) Circuit diagram (b) Internal diagram . . . . . . . . . . . . . . . 77
4.25 Ring Oscillator structure to derive PMON frequencies . . . . . . . . . . . . . . . . . . 78
4.26 Distributions of PLL (a) PMON frequencies (b) Frequency (c) Kvco across different

corners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.27 Classification accuracy scores on training PLL . . . . . . . . . . . . . . . . . . . . . . 79
4.28 Low noise amplifier circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.29 Comparison of ML models’ predicted output gain of LNA Vs SPICE (actual) simulations 80
4.30 Scatter plot of SPICE and ML models’ predicted output gain of LNA . . . . . . . . . . 81
4.31 High-Speed low noise amplifier circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.32 Correlation plot of high-speed LNA . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.33 Distribution plot of high-speed LNA - Actual and ML predictions (a) Gain(dB) (b) Noise

figure(dB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.34 Performance comparison of SPICE (actual) and ML predictions (a) Conversion gain(dB)

(b) Integrated noise figure(dB) (c) Input Referred 1dB Compression Point(dBm) (d)
Input Referred IP3 Point(dBm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.35 (a) Comparison of the conventional neural network designing with the Unified Deep-
Learning Neural Network methodology (b) Workflow . . . . . . . . . . . . . . . . . . 86

4.36 Training results of U-DNN model with different hidden layers . . . . . . . . . . . . . 87
4.37 Trained U-DNN model predictions for the DUTs in comparison with SPICE values . . 88

5.1 Correlation coefficients of FinFET full adder logic cell’s leakage and delay . . . . . . 93
5.2 Analysis of process parameters’ impact on leakage power in 16nm CMOS Full adder

using heatmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3 Analysis of process parameters’ impact on propagation delay in 16nm CMOS Full adder

using heatmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4 Impact of the non-dominant FinFET process parameters on circuit performances in

16nm Full adder standard cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5 Impact of the non-dominant CMOS process parameters on circuit performances in 16nm

Full adder standard cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6 Correlation plot of a low dropout regulator . . . . . . . . . . . . . . . . . . . . . . . . 98
5.7 Pair plot of a current reference generator . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.8 Strong arm latch based comparator [102] . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.9 Dominant parameter extraction using Information gain . . . . . . . . . . . . . . . . . 100



xii LIST OF FIGURES

6.1 Correlation in statistical leakage and delay distributions due to PVT variations across
different FinFET technology nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Transfer Learning modeling paradigm for the statistical digital circuit performance esti-
mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Performance of DNN model with different hidden layers and ADAM optimizer w.r.t
SPICE simulations of 16nm FinFET Full adder . . . . . . . . . . . . . . . . . . . . . 107

6.4 Performance of sequential transfer learned models from 16nm→ 10nm→ 7nm . . . . 109
6.5 Performance of DNN model with different samples w.r.t SPICE leakage/delay . . . . . 113
6.6 Performance of CMOS high-performance 45 → 32nm → 22nm → 16nm sequential

transfer learned models w.r.t SPICE (actual) data. . . . . . . . . . . . . . . . . . . . . 114
6.7 Comparison of DNN training time with SPICE Simulation time on FinFET 10nm delay

with 5000 samples and TL training time with 500 samples. . . . . . . . . . . . . . . . 115
6.8 Performance of skip-node transfer learning model from 16→ 7nm . . . . . . . . . . . 116
6.9 Performance of sequential transfer learning models from lower to higher technology

nodes 7nm→ 10nm→ 16nm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.10 Performance of the leakage/delay of the proposed methodology for 7nm FinFET stan-

dard cells w.r.t SPICE simulations for 500 unseen test cases . . . . . . . . . . . . . . . 117

7.1 The comprehensive flow of the automated complex cell framework . . . . . . . . . . . 122
7.2 The PVT aware Pareto-optimal transistor sizing methodology . . . . . . . . . . . . . . 125
7.3 Residual neural network to model delays and leakages against variations in design and

PVT parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.4 Comparison of regression models w.r.t SPICE leakage and delay values . . . . . . . . 131
7.5 Comparison of LGBM and ResNN model leakage and delay predictions w.r.t SPICE . 131
7.6 Comparison of full adder cell optimization with different evolutionary algorithms (a)

Leakage (b) Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.7 Comparison of the OptiMo with State-of-the-art works in terms of %reductions in leak-

age and delay and computation time . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.8 Visualization of %reduction in leakage and delay of complex Cells with optimized tran-

sistor sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.9 Leakage and delay distributions across 10000 random PVT conditions before (Init.) and

after optimization (Opt.), verified with SPICE simulations. % reductions are against the
initial sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.10 Distribution Plot for leakage and delay across random 50 PVT (Line Plot) and 300 PVT
(Bar Plot) for (a) 4-bit RCA (b) 4-bit Multiplier. . . . . . . . . . . . . . . . . . . . . . 141

8.1 Block diagram of Self-adapting microelectronic circuit design . . . . . . . . . . . . . 143
8.2 Process monitor design (a) Ring oscillator (b) Ring oscillator with resistance (c) Ring

oscillator with nMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.3 Low voltage precise PVT tolerant current reference generator in 180nm process . . . . 147
8.4 Circuit implementation of LDO with ML adaptive control and results . . . . . . . . . 147
8.5 A free-running oscillator circuit with dominant variation sources . . . . . . . . . . . . 148
8.6 PLL control circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.7 PLL performances with temperature (a) Before self-adaptation (c) After self-adaptation 151
8.8 LNA circuit with self-adaptation control circuitry . . . . . . . . . . . . . . . . . . . . 152
8.9 High-speed LNA circuit with self-adaptation control circuitry . . . . . . . . . . . . . . 152



LIST OF FIGURES xiii

8.10 Comparison of ML models’ predicted fingers (decimal control codes) of LNA Vs actual
values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.11 Scatter plot of actual and ML models’ predicted fingers of LNA . . . . . . . . . . . . 153
8.12 Comparison of ML models’ predicted fingers (decimal control codes) of high-speed

LNA Vs actual values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.13 Pre-adaptation and Post-adaptation values over different PVT conditions (a) Gain (dB)

(b) Noise Figure (dB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.14 Mixer circuit with self-adaptation control circuitry . . . . . . . . . . . . . . . . . . . . 155
8.15 Comparison of ML models’ predicted fingers (decimal control codes) of Mixer Vs actual

values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



List of Tables

Table Page

3.1 CMOS Process, Voltage, Temperature parameters considered . . . . . . . . . . . . . . 33
3.2 FinFET Process, Voltage, Temperature parameters considered . . . . . . . . . . . . . 34
3.3 Equivalent load capacitance estimations of digital standard cells for CMOS high-performance

technology nodes 45nm, 32nm, 22nm, and 16nm and FinFET nodes 16nm, 10nm, and
7nm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 CMOS Process, Voltage and Temperature Variations considered across 45nm to 16nm
high-performance technology nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 FinFET Process, Voltage and Temperature Variations considered across 45nm to 16nm
high-performance technology nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 The final set of hyper-parameters of regression algorithms post-fine-tuning . . . . . . . 45
4.2 The performance metrics of CMOS high-performance ML Delay models from 45nm

and 32nm technology nodes (averaged across the training of all standard cells) . . . . . 50
4.3 The performance metrics of CMOS high-performance ML Delay models from 22nm

and 16nm technology nodes (averaged across the training of all standard cells) . . . . . 51
4.4 The performance metrics of FinFET high-performance ML Leakage models from 16nm,

10nm, and 7nm technology nodes (averaged across the training of all standard cells) . . 54
4.5 The performance metrics of FinFET high-performance ML Delay models from 16nm,

10nm, and 7nm technology nodes (averaged across the training of all standard cells) . . 55
4.6 Performance of the best-performing ML models of 16nm FinFET Leakage for all stan-

dard cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7 Performance of the best-performing ML models of 10nm FinFET Leakage for all stan-

dard cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.8 Performance of the best-performing ML models of 7nm FinFET Leakage for all stan-

dard cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.9 Performance of the best-performing ML models of 16nm FinFET Delay for all the stan-

dard cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.10 Performance of the best-performing ML models of 10nm FinFET Delay for all standard

cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.11 Performance of the best-performing ML models of 7nm FinFET Delay for all the stan-

dard cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.12 Training metrics of Current reference generator modeling . . . . . . . . . . . . . . . . 65
4.13 Training metrics of Low dropout regulator modeling . . . . . . . . . . . . . . . . . . 68
4.14 Training metrics of Free running oscillator modeling . . . . . . . . . . . . . . . . . . 68
4.15 Training metrics of Transmitter Driver modeling . . . . . . . . . . . . . . . . . . . . . 72

xiv



LIST OF TABLES xv

4.16 Training metrics of Bandgap reference modeling . . . . . . . . . . . . . . . . . . . . 76
4.17 Training metrics of Low noise amplifier modeling . . . . . . . . . . . . . . . . . . . . 80
4.18 Training metrics of Mixer modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.19 Training metrics of High-speed low noise amplifier modeling . . . . . . . . . . . . . . 84
4.20 The details of AMS circuits considered for U-DNN design and testing and U-DNN

training results after modeling each circuit . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1 Comparison of model performance with the dominant process . . . . . . . . . . . . . 104
6.2 Comparison of digital cell modeling and performance metrics with the State-of-the-art

works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3 Validation of sequential transfer learning framework with fine-tuning through Bayesian

Optimization for each standard cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.1 OptiMo PVT variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.2 Comparison of propagation delay estimations (ps) of DNN/TL model w.r.t SPICE sim-

ulations on Complex/multi-stage cells . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.3 Comparison of leakage power estimations (nw) of DNN/TL model w.r.t SPICE simula-

tions on Complex/multi-stage cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.4 LGBM model training metrics across all the PVT and Sizing-aware digital logic cells

for leakage and delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.5 ML model training metrics on training PVT and Sizing-aware Full adder logic cell for

leakage and delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.6 Optimized leakage estimations through OptiMo at extreme and nominal PVT for various

complex Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.7 Optimized delay estimations through OptiMo at extreme and nominal PVT for various

complex Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.1 Current reference performance improvement with Self-adaptation . . . . . . . . . . . 146
8.2 LDO performance improvement with Self-adaptation . . . . . . . . . . . . . . . . . . 148
8.3 Oscillator performance improvement with Self-adaptation . . . . . . . . . . . . . . . . 149
8.4 High-speed LNA performance improvement with Self-adaptation . . . . . . . . . . . . 153



Abbreviations

ABC Artificial Bee Colony
ADC Analog-to-digital converter
ADE Analog Design Environment
AI Artificial Intelligence
AMS Analog and Mixed-signal
ANN Artificial Neural Network
ASIC Application Specific Integrated Circuit
BGR Bandgap Reference
BI Bayesian Inference
BO Bayesian Optimization
BSIM Berkeley Short-channel IGFET Model
BSIM-CMG Berkeley Short-channel IGFET Model – Common Multi-Gate
BTBT Band-to-Band Tunneling
CART Classification and Regression Trees
CCD Complex Cell Delay
CCL Complex Cell Leakage
CMOS Complementary Metal–Oxide–Semiconductor
CUT Circuit Under Test
DAG Directed Acyclic Graph
DCA Dominant Component Analysis
DCM Design Circuits under Modeling
DIBL Drain-induced Barrier Lowering
DNN Dense Neural Networks
DT Decision Tree
DUT Design Under Test
E-CAD Electronic Computer Aided Design
EDA Electronic Design Automation
EHO Elephant Herd Optimization
ELC Cadence Encounter Library Characterizer

xvi



Abbreviations xvii

ER ElasticNet Regression
ET Extra Tree Regression
FDSOI Fully Depleted Silicon On Insulator
FSL Few Shot Learning
GA Genetic Algorithm
GBDT Gradient Boosting Decision Trees
GBM Gradient Boosting Machine
GBRT Gradient Boosted Regression Trees
GPR Gaussian Process Regression
HHO Harris Hawk Optimization
HP High Performance
IC Integrated Circuit
ICA Independent Component Analysis
IG Information Gain
KNN K-Nearest Neighbors
LAR Lasso Regression
LDO Low Drop-out Regulator
LER Line Edge Roughness
LGBM Light Gradient Boosting Machine
LNA Low-Noise Amplifier
LP Low Power
LR Linear Regression
LUT Look-Up Table
MAE Mean Absolute Error
MaPE Mean average Percentage Error
MC Monte Carlo
MGFET Multi-gate Field-Effect Transistor
ML Machine Learning
MLP Multi-Layer Perceptron
MOSFET Metal-Oxide Semiconductor Field Effect Transistor
MPR Multivariate Polynomial Regression
MSE Mean Squared Error
nFET n-channel FinFET
nMOS n-channel MOSFET
NN Neural Network
PDK Process Design Kit
PDP Power-Delay Product



xviii Abbreviations

PDSOI Partially Depleted Silicon On Insulator
pFET p-channel FinFET
PLL Phase Locked Loop
PMON Process Monitor
pMOS p-channel MOSFET
PR Polynomial Regression
PSO Particle Swarm Optimization
PTM predictive technology models
PVT Process, Voltage, and Temperature
RDF Random Dopant Fluctuation
ResNN Residual Neural Networks
RF Random Forest
RL Reinforcement Learning
RR Ridge Regression
RSM Response Surface Modeling
s-DoE Statistical Design of Experiment
SA Sensitivity Analysis
SCE Short Channel Effects
SOC Silicon On Chip
SOI Silicon On Insulator
SSTA Statistical Static Timing Analysis
SVM Support Vector Machines
TCAD Technology Computer-aided Design
TL Transfer Learning
TxDr Transmitter Driver
U-DNN Unified Deep-Learning Neural Network
URV Uniform Random Variations
VLSI Very Large Scale Integration
XGBM Xtreme Gradient Boosting Machine
ZSL Zero Shot Learning



Symbols

Vth Threshold voltage
VDD Supply voltage
IDS Drain-source current
Isub Sub-threshold leakage current
Vds Drain to source voltage
Vgs Gate to source voltage
L Channel length
W Channel width
tox Oxide thickness
Cox Gate oxide capacitance
tpLH Low-to-high propagation delay
tpHL High-to-low propagation delay
ILeak Leakage current
PLeak Leakage power
PLeak−Stat Statistical variation in leakage power
CL Load capacitance
ts Input slew time
Top Operating temperature
GDelay Propagation delay
GDelay−Stat Statistical variation in propagation delay
R2 Coefficient of determination
r Pearson’s correlation coefficient
%µE Mean error percentage
%σE Standard deviation error percentage

xix



List of Patents

[P1] Khanh M. Le, Koushik De, Deepthi Amuru, Zia Abbas, “AI-Driven Self Adaptive Microelec-
tronic Circuits”, US Patent no. 11416664, 2022,
https://patents.google.com/patent/US11416664B2/en [Granted]

[P2] Khanh M. Le, Koushik De, Deepthi Amuru, Zia Abbas, “Design and Fabrication Methods of
Runtime Self-tuning Analog Integrated Circuits using Machine Learning”, US Patent appli-
cation no. US20230153597A1, 2022, https://patents.google.com/patent/US20230153597A1/en
[Published]

[P3] Deepthi Amuru, Zia Abbas “System and Method To Estimate Circuit Performances At Fu-
ture Nodes Through Transfer Learning”, Indian Patent application no. 202241071268, 2022
[Published]

[P4] Zia Abbas, Khanh M. Le, Koushik De, Deepthi Amuru “Self-Adapting Analog Circuit Design
Method and System”, 2022 [US patent Filed]

[P5] Deepthi Amuru, Zia Abbas, Khanh Le “Method and System of Creating a Unified Deep
Learning Neural Network For Analog and Mixed-Signal Circuit Characterization”, US
Patent application no. US 63661535, 2024 [US patent Filed]

xx



List of Publications

[P1] Deepthi Amuru, R. Vechalapu, Zia Abbas, “Transfer Learning enabled Modeling Paradigm
with Bayesian Optimization for Statistical Circuit Performance Evaluation”, in ACM Trans-
actions on Design Automation of Electronic Systems. (Impact factor: 1.4) [Accepted]

[P2] Deepthi Amuru, R. Goswami, M. Akhtar, Zia Abbas, “OptiMo: Machine Learning Enabled
Rapid Optimization Engine for Digital VLSI Circuits”, in IEEE Transactions on Very Large
Scale Integration Systems. (Impact factor: 2.312) [Revised version submitted]

[P3] Deepthi Amuru, Amir Ahmad, Zia Abbas, “A Combination of Ensembles Approach to Im-
prove the Performance of Ensemble of Regression Models Approach for One-Class Classifi-
cation”, in Applied Soft Computing Journal, ScienceDirect. (Impact factor: 8.7) [Revised version
submitted]

[P4] N. Raghavendra, Deepthi Amuru, and Zia Abbas, “MetaCirc: A Meta-learning Approach
for Statistical Leakage Estimation Improvement in Digital Circuits”, in proceedings of 2024
IEEE International Symposium on Circuits and Systems (ISCAS), 2024

[P5] Deepthi Amuru, Zia Abbas, “AI-Assisted Circuit Design and Modeling”, chapter in book titled
AI-Enabled Electronic Circuit and System Design, 2023, Quality Electronic Design, Springer
Nature. [Accepted]

[P6] Deepthi Amuru, Andeel Zahra, H. Vudumula, P. Cherupally, S. Gurram, Amir Ahmad, Zia Ab-
bas, “AI/ML Algorithms and Applications in VLSI Design and Technology”, in Integration,
Elsevier, Volume 93, 2023, 102048, ISSN 0167-9260. https://doi.org/10.1016/j.vlsi.2023.06.002.
(Impact factor: 1.9)

[P7] K. Agarwal, A. Jain, D. Amuru and Z. Abbas, “Fast and efficient ResNN and Genetic op-
timization for PVT aware performance enhancement in digital circuits”, in proceedings of
2022 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), 2022, pp. 1-4,
doi: 10.1109/VLSI-DAT54769.2022.9768067. [Best paper nominee]

[P8] D. Amuru, M. S. Ahmed and Z. Abbas, “An Efficient Gradient Boosting Approach for PVT
Aware Estimation of Leakage Power and Propagation Delay in CMOS/FinFET Digital Cells”,

xxi



xxii Symbols

in proceedings of 2020 IEEE International Symposium on Circuits and Systems (ISCAS), 2020,
2020, pp. 1-5, doi: 10.1109/ISCAS45731.2020.9180600.

[P9] Amuru D., Zahra A., Abbas Z., “Statistical Variation Aware Leakage and Total Power Esti-
mation of 16 nm VLSI Digital Circuits Based on Regression Models”, in VLSI Design and
Test. VDAT 2019, 2019, Communications in Computer and Information Science, vol 1066.
Springer, Singapore, https://doi.org/10.1007/978-981-32-9767-8 47.

[P10] D. Amuru, A. Zahra, V. Karakuram and Z. Abbas, “Design of Approximate Full Adders for
Error Resilient Applications”, in proceedings of 2023 International Conference on Computer
and Applications (ICCA), Cairo, Egypt, 2023, pp. 1-6, doi: 10.1109/ICCA59364.2023.10401821.

[P11] M. S. Ahmed, D. Amuru and Z. Abbas, “ATM: Approximate Toom-Cook Multiplication for
Speech Processing Applications”, in proceedings of 2020 IEEE International Symposium on
Circuits and Systems (ISCAS), 2020, pp. 1-5, doi: 10.1109/ISCAS45731.2020.9181069.



Chapter 1

Introduction

The semiconductor industry, driven by the relentless pursuit of meeting the demands of the mi-
croelectronic industry, has achieved innumerable inconceivable milestones. The urging need for IoT-
enabled smart devices is increasing daily, which demands higher data rate transmission, higher storage,
retention, and faster data access from cloud databases [1]. The pace of the CMOS scaling is impelling
on par with the needs of the electronic industry, keeping Moore’s law intact. Transistor scaling, com-
plex design methodologies, and sophisticated fabrication techniques have paved the way for developing
promising system designs. As a result, microchips have become smaller yet more potent, capable of
handling intricate data processing and communication tasks. Nevertheless, transistor scaling poses a
multitude of problems in the nanometer regime. The increased chip density has increased susceptibility
to process variations, particularly in deeply scaled technology nodes. The physical variations in the
fabrication process lead to electrical performance deviations, inducing randomness in the circuit behav-
ior that manifests to the system level, causing significant deviations in performance from the intended
design specifications. Moreover, operating voltage fluctuations, ambient temperature variations during
chip operation, and the complex dependency of process on temperature and voltage variability create
challenges in accurately modeling the circuit performances in the sub-nanometer regime.

ICs are anticipated to operate continuously under diverse ambient conditions, electrical setups, and
customer environments. The performance of an IC, including measures like latency, throughput, power
dissipation, and other aspects, is influenced by changes in deviations in the semiconductor process
(P), fluctuations in supply voltage (V), and operating temperatures (T). This parameter variability has
emerged as a critical concern in advanced nodes, precipitating functional and electrical discrepancies
within IC circuits. Consequently, the leakage current escalates, the logical characteristics of the device
deteriorate, and the performance yield of logic circuits is adversely affected.

1.1 Challenges due to Transistor Scaling

Maintaining continuous scaling targets proves challenging, as each technological advancement brings
forth new hurdles. These obstacles encompass SCE stemming from reduced channel length, gate leak-
age due to quantum mechanical tunneling, velocity saturation, interconnect delays due to RC coupling,
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Figure 1.1: Structure and technology innovation for MOSFETs [4]

and amplified process variations leading to lithography difficulties. These factors impose practical
constraints on downsizing the dimensions of bulk Metal-Oxide Semiconductor Field Effect Transis-
tor (MOSFET)s below 20nm. Chief concerns for CMOS devices lie in the high sub-threshold and gate
dielectric leakage currents. The Voltage-Doping Transformation model gauges the impact of reducing
device parameters like gate length or drain voltage on electrical characteristics. While augmenting the
doping concentration in the channel region can mitigate the effects of SCE to a certain degree, exces-
sively high doping levels hinder proper device operation [2]. Gate dielectric scaling provides some
relief from SCEs, yet further reduction results in significant static leakage current and heightened power
consumption even in the device’s off state.

Silicon On Insulator (SOI) devices were introduced as an alternative to bulk MOSFETs, presenting
enhanced electrical characteristics [3]. There are two categories of SOI devices: Partially Depleted
Silicon On Insulator (PDSOI) and Fully Depleted Silicon On Insulator (FDSOI). PDSOI devices are
simpler to manufacture, exhibit reduced junction capacitance, are less susceptible to soft errors, and
demonstrate improved operational speed. However, they grapple with an unconventional ’floating body’
effect, which leads to hysteresis and instabilities. Conversely, FDSOI devices, characterized by a thinner
silicon thickness resulting in complete channel depletion, offer superior mitigation of SCEs. Neverthe-
less, the efficacy of SCEs in FDSOI, compared to bulk MOSFETs, hinges on various factors such as
silicon film thickness, buried oxide thickness, and doping concentrations. While FDSOI circumvents
the floating-body effect, it gives rise to heightened junction capacitance and body effect.

To push advancements beyond the sub-20nm regime, more efficient device configurations with
smaller gate lengths are imperative. Multi-gate Field-Effect Transistor (MGFET)s, notably FinFETs,
have emerged as viable alternatives to planar bulk/SOI CMOS devices at technology nodes below
20nm [5]. FinFETs have demonstrated superior electrostatic integrity, effectively mitigating perfor-
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mance degradation issues brought about by SCEs like threshold voltage roll-off, Drain-induced Bar-
rier Lowering (DIBL), and subthreshold leakage. This has improved performance metrics, including
a higher ION/IOFF ratio, lower output conductance, greater gain, enhanced overall performance, and
reduced variation due to lower doping concentrations. FinFETs have substantiated their effectiveness
as replacements for bulk CMOS devices, offering enhanced gate control, reduced sub-threshold and
gate dielectric leakage currents, and providing advantages in speed and transistor sizing, especially in
sub-threshold regions [6]. They offer a wider channel width within a compact footprint, making them
well-suited for driving large capacitive loads with lengthy interconnects. Double gate FinFETs essen-
tially function as planar SOI MOSFETs with a thin buried oxide. Threshold voltage, Vth tuning can
compensate for variability in IC manufacturing, whether from chip to chip or within the same chip from
circuit to circuit. This proves to be an effective method for managing power consumption and enhancing
IC speed. Fig 1.1 illustrates the structure of MOSFETs and technological advancements over the past
60 years.

FinFETs also demonstrate superior resilience to process variations when compared to complemen-
tary MOSFETs. This is attributed to the absence of channel dopants, which minimizes the impact of
Random Dopant Fluctuation (RDF). However, it’s important to note that process variations can still
influence the performance of FinFETs [7]. Notably, Line Edge Roughness (LER) is a prominent vari-
ation source. Unlike planar bulk MOSFETs, controlling the resulting Vth variation in FinFETs is more
challenging [8]. The fluctuations in Vth subsequently lead to variances in crucial transistor performance
parameters, including leakage current, static power, dynamic power, and propagation delay. In certain
cases, this can cause the performance to deviate significantly from its specified values. Therefore, it is
important to meticulously assess the impact of design, process, and environmental parameter variations
on the device during the IC design phase. This enables the implementation of suitable countermeasures
to compensate for these variations effectively.

1.2 Challenges in Traditional Simulation Tools

Given these circumstances, prioritizing variation-aware design, testing, and validating ICs is crucial
for ensuring reliable system designs. The effectiveness of VLSI circuit design and performance evalua-
tion hinges on the capabilities of E-CAD tools. These tools have undergone continuous development and
enhancement to accommodate the increasing complexity of designs across all stages of the VLSI design
process. Simulation tools forecast higher-level performance based on lower-level design descriptions,
while synthesis tools generate optimal lower-level design solutions to meet higher-level requirements.
However, current Electronic Design Automation (EDA)/E-CAD tools have notable limitations. They
are largely manual, time-consuming, and resource-intensive, lacking comprehensive knowledge-sharing
and reuse capabilities. While these methodologies are widely used, they are rigid and typically follow
fixed methodologies for conducting simulations which may not always be the most efficient approach
for all design scenarios. While standardization can promote consistency and interoperability, it also lim-
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its flexibility and innovation by constraining designers to predefined practices and approaches. Further,
these tools heavily lean on the expertise of individual design engineers, presenting challenges in meet-
ing stringent time-to-market constraints and production cost targets. The extensive simulation times of
these tools when analyzing circuit statistical variability further impact the chip’s turnaround time, which
scales up proportionally with transistor down-scaling and circuit complexity [9]. Embracing state-of-
the-art design methodologies and intelligent analysis tools is imperative to address these issues. These
advancements assist in estimating the range of variability that could potentially lead to circuit malfunc-
tions and chip failures. This, in turn, enables the implementation of appropriate countermeasures to
enhance performance and bolster chip yield.

1.3 Need for Intelligent Modeling Framework

VLSI CAD tools necessitate a paradigm shift towards novel technologies and methodologies, de-
parting from conventional event-driven or time-domain simulations. This shift is crucial for accurately
modeling the complex behavior of digital, analog, and mixed-signal circuits across current and future
technology nodes. A primary area of focus involves advancing methods for modeling and forecasting
outputs based on diverse inputs at various levels of the VLSI CAD hierarchy [10]. Additionally, there
is a significant emphasis on developing density estimation techniques to effectively capture variations
and uncertainties in VLSI systems stemming from PVT fluctuations. Given the immense volume of
data traversing billions of devices on a chip, there exists an opportunity to harness this information
for analyzing input-output relationships within and across different hierarchical levels. Integration of
simulation tools with design automation and optimization frameworks empowers designers to automate
repetitive tasks, expedite exploration of design alternatives, and fine-tune design parameters to achieve
performance objectives. This transition towards automation and optimization reduces dependency on
rigid, manual processes, fostering heightened innovation and adaptability in VLSI design practices.
Furthermore, the incorporation of AI/ML methodologies [11], [12] into E-CAD tools holds promise
for automating diverse processes, leading to swift convergence in identifying design solutions. Con-
sequently, this reduces the prolonged simulation times associated with traditional approaches while
enhancing overall time-to-market and manufacturing yield, thereby elevating accuracy levels in VLSI
design endeavors.

1.4 Objective and Scope of the proposal

Our primary objective is to create and refine a surrogate modeling framework capable of accom-
modating variations in process, voltage, and temperature to estimate the performance of VLSI circuits
in CMOS/FinFET technologies. This modeling framework should emphasize both speed and com-
putational efficiency while delivering performance predictions that are highly accurate compared to
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traditional simulation tools. It must be versatile enough to accommodate different circuit designs and
technology nodes, consistently delivering reliable results across all scenarios.

• Study and analyze the influence of PVT variations on circuit performance in CMOS/FinFET
nodes, gaining insight into their ramifications across different technology nodes.

• Understand the limitations associated with conventional circuit simulation tools.

• Formulate a methodology to comprehensively capture changes in circuit performances resulting
from variations in process parameters and operating conditions.

• Conduct an extensive sensitivity analysis to identify and extract the dominant variational param-
eters exerting the most significant influence on circuit performances.

• Design and construct a robust PVT-aware surrogate modeling framework tailored for estimating
the performance of digital/analog/mixed-signal/RF circuits under PVT variations. This frame-
work should demonstrate adaptability, enabling its broad application across various designs and
technology nodes.

• Design and develop an automated methodology for estimating the performance of complex digital
circuits using pre-characterized surrogate standard cell models without necessitating additional
simulations.

• Apply the surrogate modeling approach to construct a multi-objective optimization engine to iden-
tify the optimal transistor sizes to enhance chip yield.

• Devise a strategy to reduce the data dependency of the surrogate models and propose a suitable
modeling approach.

• Formulate surrogate modeling framework for implementing self-adaptive microelectronic cir-
cuits.

The scope of the research is spread across digital, analog, and mixed-signal design implementations.
It encompasses a diverse array of technology nodes, encompassing CMOS and FinFET transistors.
The designed surrogate models should exhibit versatility, re-usability, and applicability across a wide
spectrum of practical applications.

1.5 Contributions

The following are our technical contributions as part of the thesis:

• A methodology to comprehensively capture the variations due to the design, process, and operat-
ing conditions causing performance deviations in digital and analog circuits.
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• Development of statistically aware digital simulation datasets for 22 standard digital logic cells
accounting for the impacts of design, process, and environmental variations on key circuit perfor-
mance metrics, namely power and propagation delay. This comprehensive dataset generation will
cover CMOS high-performance technology nodes, including 45nm, 32nm, 22nm, and 16nm, and
FinFET technology nodes of 16nm, 10nm, and 7nm. A total of 308 digital cell datasets have been
meticulously generated, considering PVT-aware factors, ensuring their adaptability for various
applications.

• Development of variation aware datasets for analog circuits capturing their performance devia-
tions across different corners.

• Development of a rapid and efficient approach to perform sensitivity analysis on performance
simulations, considering variations, to identify and extract the most influential process parameters.

• Design and development of a fast, resilient, and platform-independent machine learning-based
surrogate modeling framework for PVT-informed standard cell characterization across various
CMOS (45nm, 32nm, 22nm, and 16nm nodes) and FinFET (16nm, 10nm, and 7nm nodes) tech-
nologies, aimed at forecasting propagation delay and leakage power. This adaptable framework
extends its capabilities to encompass analog/mixed-signal and RF circuit modeling, accommodat-
ing PVT and design parameter fluctuations.

• Development of an automated approach to estimate leakage and delay in complex digital circuits,
while accounting for PVT variations. This approach will employ pre-characterized ML surrogate
models of standard digital cells, eliminating the need for additional simulations.

• Development of a fast and efficient multi-objective optimization engine for finding the optimal
transistor sizing across a wide range of design, process, and environmental variations, enhancing
the performance and yield of digital circuits.

• Development of Transfer-Learning technique for surrogate modeling of circuit performance, min-
imizing the requirement for extensive training data by capturing the correlation between design
and PVT variations across different technology nodes for a circuit under test. This method en-
ables the estimation of the PVT-aware behavior of the circuit in upcoming or future nodes without
relying on training data.

• Design and development of Unified Deep-Learning Neural Network (U-DNN) architecture for
Analog and Mixed-signal (AMS) circuit modeling, that promotes a versatile and adaptable net-
work capable of generalizing across various designs.

• Development of a surrogate modeling framework for analog/mixed-signal circuits, enabling the
implementation of self-adaptive microelectronic circuits.
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1.6 Organization of the Thesis

The thesis is structured as follows: Chapter 2 offers an extensive review of the literature on PVT-
aware modeling in VLSI circuit designs. Chapter 3 explores process variability and modeling, covering
simulation setup and performance modeling of both digital and analog circuits. In Chapter 4, the design
and workflow of the PVT-aware Surrogate Modeling framework methodology are elucidated, including
a comprehensive analysis of ML algorithm design for circuit modeling, selection of optimal trained
models, results, and discussions. This chapter encompasses surrogate model development for digital,
analog, and mixed-signal circuits, and introduces the U-DNN design for analog circuit modeling. Chap-
ter 5 outlines the methodology for identifying the primary parameters influencing circuit specifications.
The transfer learning approach to reduce training data requirements of AI/ML algorithms is discussed in
Chapter 6, emphasizing knowledge transfer across successive technology nodes and performance esti-
mation at future/upcoming technology nodes. Chapters 7 and 8 showcase the applications of digital and
analog circuit surrogate models, respectively, towards PVT-aware complex circuit estimation, the design
of OptiMo: a statistically informed transistor sizing and optimization engine, and the development of
AI-driven self-adapting microelectronic circuits. Finally, Chapter 9 presents a conclusion and outlines
future scope.
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Chapter 2

Literature Survey

Simulation plays a crucial role in characterizing IC devices. With technology shrinking to the
nanometer scale, the complexity of evaluating circuit performance through simulations is increasing
due to rising process and environmental variabilities. Detecting discrepancies in functional and elec-
trical performance early in the design phase can significantly enhance IC yield, a parameter heavily
dependent on the capabilities of simulation tools [2, 13, 14]. Over time, a variety of physics-based and
empirical models have been employed for transistor device modeling. Designers utilize these models
to forecast the electrical behavior of transistors (such as I-V and C-V characteristics) and other devices
across different operational conditions. Physics-based models like the Berkeley Short-channel IGFET
Model (BSIM) and Berkeley Short-channel IGFET Model – Common Multi-Gate (BSIM-CMG) [15]
are known for their accuracy and generality, albeit requiring the solution of intricate nonlinear equations.
Empirical models, such as Look-Up Table (LUT) based models, rely on extensive SPICE simulations
and may encounter convergence challenges for larger circuits. These models are commonly integrated
into Process Design Kit (PDK) for IC design purposes. Nevertheless, as transistors scale down to
nanometer dimensions, addressing non-idealities becomes increasingly complex, making it challeng-
ing to derive closed-form solutions for device models. Furthermore, developing accurate physics-
based models for each rapidly evolving next-generation device or technology is a complex and time-
consuming task that demands a high level of expertise.

A promising frontier in VLSI design involves the integration of AI/ML algorithms into E-CAD tools
for circuit modeling. This innovative approach holds great potential to significantly enhance the pre-
cision and effectiveness of circuit modeling, particularly for advanced nanometer technologies, while
also reducing computational demands. AI-assisted models prioritize data-driven modeling methodolo-
gies, eliminating the necessity for extensive analysis of the device’s physical attributes and facilitating
the rapid development of accurate surrogate device models. These models exhibit the capability to
forecast the electrical behaviors of devices across diverse design and process parameter variations with
remarkable precision and efficiency, even in scenarios involving complex devices and operational set-
tings. Such advancements contribute to expediting turn-around times and strive to generate dependable
models that substantially augment computational efficiency. Consequently, this facilitates the swift in-
tegration of AI/ML techniques into emerging devices, enabling convenient and prompt assessments of
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transistor transfer characteristics and underlying impacts, even before a comprehensive understanding
of the underlying physics is established.

2.1 Surrogate models for Digital Circuit Modeling

Over the past twenty years, diverse methodologies have emerged within the literature to navigate
variability analysis concerning digital circuit performance. Their primary aim is to precisely gauge the
influence of PVT variations on circuit behavior. An approach for evaluating statistical parametric yield
was introduced [16] to measure the comprehensive parametric yield of MOSFET circuits. Alvarez et
al. and Young et al. introduced a statistical design analysis leveraging Response Surface Modeling
(RSM) for computer-aided VLSI device design [17, 18]. These proposed frameworks have been effec-
tively employed in optimizing BiCMOS transistor design. Khan et al. [19] recommended the adoption
of Multivariate Polynomial Regression (MPR) to estimate early voltage and MOSFET characteristics
during saturation. They utilized a curve-fitting technique employing the least-squares method in MPR
to streamline the complexity within BSIM3 and BSIM4 equations [15], leading to a more realistic com-
putation of MOSFET characteristics.

In subsequent advancements, RSM modeling gained popularity for assessing the impact of process
variations on circuit design. Mutlu et al. conducted an extensive investigation into RSMs to evaluate
their effectiveness in analyzing the effects of process variations on circuit design [20]. Basu et al.
[21] established a repository of statistical intra-gate variation-tolerant cells by developing RSM-based
gate-delay models with reduced dimensions. These optimized standard cells proved instrumental in
chip-level optimization efforts, to achieve critical path timing. In the studies by [22] and [23], RSM
learning models were formulated using a blend of Statistical Design of Experiment (s-DoE) and an
automated selection algorithm for Statistical Static Timing Analysis (SSTA) of gate-level library-cell
characterization in VLSI circuits. These models incorporated threshold voltage (Vth) and current gain
(β) as model parameters for compact transistor model characterization of power, delay, and output
transitions. The RSM and linear sensitivity methodologies proposed in [22] markedly enhanced analysis
speed by one and two orders of magnitude, respectively, compared to Monte Carlo (MC) simulations,
albeit with a marginal sacrifice in accuracy, up to 2% and 7%. In [23], the s-DoE approach exhibited
an error of 0.22% at the tails of the 3σ distribution, contrasting with the 10-fold error observed with
sensitivity analysis conducted by the Cadence Encounter Library Characterizer (ELC).

Miranda et al. [24] introduced a variation-aware s-DoE approach for predicting the parametric yield
of static random access memory circuits amidst process variability. Their methodology exhibited an
accuracy of approximately two orders of magnitude superior to sensitivity analysis in tail responses
under 3σ process variations, while requiring CPU time 10–100 times less than that of MC simulations.
The case studies outlined in their article demonstrated the advantage of s-DoE in selecting the region
of interest in the distribution, leading to improved accuracy while reducing the number of simulations.
Similarly, Chaudhuri et al. [25] devised precise RSM-based analytical leakage models tailored for 22nm

9



shorted-gate and independent-gate FinFETs, taking into account process variations. Employing a central
composite rotatable design, they estimated leakage current in FinFET standard cells. Their findings
closely aligned with quasi-MC simulations conducted in Technology Computer-aided Design (TCAD)
utilizing 2D cross-sections.

There has been longstanding interest in uncovering potential patterns within simulated data of VLSI
designs and leveraging this data across multiple phases of circuit design. Towards this objective, Cao et
al. [26] introduced a robust method employing table-lookup techniques to estimate leakage power and
switching energy at the gate-level for all possible states. This approach integrated Bayesian Inference
(BI) principles and Neural Network (NN)s. Their model utilized pattern recognition, categorizing po-
tential states based on average power consumption values utilizing NNs. The fundamental idea is to
leverage statistical insights gleaned from a circuit’s existing SPICE power data to establish the correla-
tion between state-transition patterns and power consumption values within the circuit. This correlated
pattern data is then utilized to predict power consumption for both observed and unforeseen state tran-
sitions across the entire spectrum of circuit state transitions. The estimation errors generated by NNs
consistently adhere to normal distributions, demonstrating significantly reduced variations compared to
benchmark curves. Furthermore, the estimation error diminishes with increasing numbers of clusters
and complexity of NNs, given appropriate feature extraction. Additionally, the time required for train-
ing and validating NNs is minimal compared to the computational time needed for generating statistical
distributions using the SPICE environment.

Over time, polynomial regression has emerged as a significant analytical modeling technique. In
their work, [27] introduced a statistical leakage estimation method employing polynomial regression.
Through experimentation on the MCNC benchmark [28], it was demonstrated that this approach is
five times more efficient than Wilkinson’s method [29], while maintaining mean estimation accuracy
and experiencing only approximately 1% loss in standard deviation. Moshrefi et al. [30] introduced
an accurate and cost-effective Burr distribution function for delay estimation. This method takes into
account threshold voltages within ±10% of the mean across samples generated at the 90, 45, and 22
nm technology nodes. Statistical data from MATLAB were employed in SPICE simulations to capture
delay variations, with the relationship between threshold voltage and delay variations expressed as a
fourth-order polynomial equation. Beyond mean and variance, maximum likelihood was considered
as the third parameter, forming a three-parameter probability density function. This proposed Burr
distribution offers an additional degree of freedom compared to the normal distribution [31], resulting
in a lower error distribution.

Kim et al. [32] devised a methodology to estimate propagation delay in digital circuits by transform-
ing any logic gate into an equivalent inverter, obviating the need for preliminary simulation. Although
this model entails a nominal 5% deviation from SPICE results. Kahng et al. [33] introduced a hybrid
surrogate model amalgamating Artificial Neural Network (ANN) and Support Vector Machines (SVM))
to predict the incremental delay attributed to signal integrity-aware path delay in a 28nm FDSOI tech-
nology. They demonstrated a maximum error of less than 10 ps. Janakiraman et al. [34] proposed an
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efficient ANN model for analyzing voltage- and temperature-aware statistical aspects of leakage power,
employing transistor-level stack models for leakage estimation. This model showcased a remarkable
100-fold enhancement in runtime while maintaining errors in the mean and standard deviation of MC
statistical leakage estimations below 1% and 2%, respectively. Its complexity is comparable to exist-
ing linear and quadratic models, with computational complexity rated as O(N). Xingsheng Wang et
al. [7] examined the statistical variability and reliability of FinFETs, scrutinizing various design and
process parameters, albeit without delving into their influence on leakage and delay. Garg et al. devised
SVM-based macro models to characterize transistor stacks of CMOS gates, yielding an average runtime
reduction of 17 times compared to SPICE computations for leakage power estimation [35]. Helms et
al. [36] proposed RT-level leakage macro models for gate-level leakage estimation, reporting discrep-
ancies of 2.1% (for 16nm Low Power (LP)) and 6.8% (for 65nm bulk) against SPICE simulations. Due
to complexity considerations, the paper limited process variations to 10 among 90000 training samples.
A robust power estimation method for CMOS VLSI circuits utilizing Random Forest (RF) was pre-
sented in [37], surpassing NNs in accuracy, as evidenced by its agreement with ISCAS’89 Benchmark
circuits [38].

The primary challenge in PVT-aware circuit modeling for advanced technology nodes lies in inte-
grating diverse sources of variation for analysis while minimizing computational overhead. It is imper-
ative to generate numerous simulation samples to effectively capture high-dimensional variation spaces
through ML algorithms. However, the generation of a substantial volume of training samples poses sig-
nificant computational burdens, particularly for complex modern digital circuits. Traditional methods
of performance modeling have fallen short in addressing this core issue.

A few studies have endeavored to confront this challenge. For instance, Yu et al. [39] introduced an
analytical timing model employing a BI framework to estimate delay and slew time under process varia-
tions. This approach showcased a 15x acceleration compared to conventional look-up table methods. It
entailed constructing a novel library with sparse training samples tailored to the target technology node
while leveraging insights from timing model coefficients of previous technology nodes. In the domain
of AMS circuits, approaches to performance modeling based on BI that span multiple corners were
proposed [40, 41]. These methods drew upon simulation data from early stages across different cor-
ners to facilitate performance modeling during the post-layout phase, thus mitigating the necessity for
extensive simulation samples. However, it’s noteworthy that in the context of digital circuit variability
analysis, a statistical approach typically takes precedence over corner-based methodologies [42]. Ad-
ditionally, it is important to acknowledge that BI may incur substantial computational costs as process
parameters scale. In an alternate methodology, the power-delay characteristics were investigated across
multiple CMOS and FinFET standard cells utilizing Polynomial regression and predictive technology
models (PTM) [43] for technology nodes from 180nm to 7nm [44]. Scaling coefficients were computed
to assess the effects of scaling across diverse technology nodes. However, this investigation was carried
out under typical operating conditions, without incorporating variations in PVT.
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2.2 Surrogate models for Analog/Mixed-Signal/RF Circuit Modeling

The unique challenges in designing analog circuits arise from their susceptibility to process varia-
tions, temperature shifts, and various environmental influences. Conventional design techniques typi-
cally require manual adjustments, extensive post-production fine-tuning, and significant design safety
margins to address these uncertainties. Nevertheless, conventional design methods are proving insuf-
ficient and ineffective with technology advancing to nanoscale dimensions and a growing need for en-
hanced performance. Furthermore, leading Application Specific Integrated Circuit (ASIC) manufactur-
ers frequently encounter errors stemming from altered, inaccurate, or incomplete specifications.

Leveraging AI/ML, self-adaptive microelectronic circuits possess the capability to autonomously
optimize their operational parameters and configurations, ensuring effective performance across vary-
ing conditions. offers numerous advantages, including heightened robustness, real-time adaptability,
and improved energy efficiency. Rapid and effective prototyping of analog/mixed-signal circuits plays
a crucial role in the development of self-adjusting circuits. Past studies have introduced NN-based
methodologies for analog circuit design, aiming to capture intricate circuit behaviors and furnish precise
models to address the inherently complex, nonlinear characteristics of analog circuit performance. The
utilization of NNs in automating analog circuit design has been suggested by previous research [45–47].
Notably, [48] advocates for the adoption of ANNs for analog circuit design automation. Furthermore,
it introduces a novel methodology employing the gm/Id technique for data acquisition, to expedite
the analysis process. Experimental results, conducted on a common source amplifier and a two-stage
single-ended Opamp, demonstrate that the ANN model utilizing the gm/Id technique offers superior
accuracy even with a reduced dataset, thereby streamlining the data collection process in terms of both
time and effort. Other research efforts on analog circuit modeling, design sizing, and optimization are
documented in [49–54]. These methodologies employ optimization algorithms instead of conventional
simulators to expedite the delivery of design solutions that are both efficient and accurate. An instance
of an ANN-based technology-independent circuit sizing model, as discussed in [55], demonstrated up
to 90% accuracy in predicting transistor sizes in a 0.18µm technology while satisfying multiple circuit
specifications. Notably, the ANN was trained using simulations from various technologies, including
1.5µm, 0.5µm, 0.35µm, and 0.25µm, with the 0.18µm technology being unfamiliar to it. For a more
comprehensive examination of the application and efficacy of ANNs in automating analog design siz-
ing, [56], provides detailed insights. To mitigate the data dependency of ML models and enhance circuit
yield, cluster-based approaches can be utilized, as proposed by [57].

In recent times, Reinforcement Learning (RL) techniques have been extensively utilized in enhancing
analog circuits, showcasing adaptability and refinement through continuous learning and optimization
based on feedback. Incorporating domain-specific expertise from previous experiences into the RL al-
gorithm workflow aims to explore and improve designs. An example of such an approach is AutoCkt,
a machine learning optimization framework trained using deep reinforcement learning. AutoCkt effi-
ciently identifies post-layout circuit parameters for a given target specification and comprehensively ex-
plores the design space using a sparse subsampling technique [58]. Results show that AutoCkt achieves
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convergence and meets target specifications 40 times faster than conventional genetic algorithms or the
current state-of-the-art approach, particularly in considering layout parasitic effects.

Bayesian techniques have gained recognition in electronic IC design for addressing various chal-
lenges, particularly amidst unpredictable process variations. These challenges encompass circuit perfor-
mance modeling, yield/failure rate estimation, and circuit optimization. For instance, in the paper [59],
a Bayesian Optimization (BO) method is introduced for analog circuit synthesis using neural networks.
It integrates Gaussian Process Regression (GPR) with a NN trained initially with a randomly generated
set. Model ensembles enhance prediction accuracy, while an acquisition function identifies new design
points for simulation and inclusion in the training set. This iterative process continues until convergence
or the simulation budget is exhausted. Experimental results indicate superior performance compared to
current algorithms, requiring fewer simulations. Moreover, the GPR model with NN scales linearly with
the number of observed data points (N), making it suitable for applications with numerous iterations.
Further insights into Bayesian methods in VLSI design are provided by [60].

Self-healing circuit designs autonomously compensate for various circuit variations, including static,
quasi-static, and dynamic changes [61]. They incorporate sensors to monitor these variations and tuning
knobs to adjust performance. A core self-healing algorithm determines the appropriate knob settings
based on measured conditions. ML techniques are employed [62, 63] to relate sensor values to cir-
cuit performance, enabling performance prediction solely based on sensor measurements. Developing
resource-efficient on-chip adaptive algorithms is challenging, requiring maintaining adaptation quality
without significant area cost increase, increasing adaptation speed without substantial power consump-
tion rise, and enabling on-chip characterization without additional power and area expenses.

2.3 Conclusion

In conclusion, the demand for an expedited, intelligent statistical process variability modeling ap-
proach, adept at accommodating diverse designs and technology nodes, is underscored in current liter-
ature. Such an approach must skillfully integrate varied sets of PVT variations, considering their corre-
lations across technology nodes, while minimizing reliance on extensive training data. However, recent
advancements reveal a gap in comprehensive modeling efforts, particularly in integrating digital circuit
parameters and extending this modeling to analog circuits. In light of this imperative, our proposed
solution presents a swift and effective surrogate modeling framework tailored to address the needs of
various circuit applications, spanning digital and AMS circuit domains. By offering a holistic approach
that bridges the gap between digital and analog realms, our framework holds promise for accelerating
the design process and enhancing overall circuit performance in increasingly complex semiconductor
ecosystems.
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Chapter 3

Process Variability and Modeling

Dynamic changes occur within the chip’s periphery during manufacturing. These alterations are
influenced by various factors such as temperature, pressure, non-uniform dopant concentrations, and
impurity diffusion, collectively leading to process variations. Typically, the dies located at the center of
fabrication tend to adhere more closely to the intended process values than those situated at the periph-
ery, which may deviate from the standard. These deviations in process values ultimately contribute to
inconsistencies in the fabrication process, resulting in deviations from the expected circuit performance
specifications.

Primary sources of process variation comprise:

• Fluctuations in UV light wavelength during lithography

• Defects in the manufacturing process

• Variances in oxide thickness

• Discrepancies in metal thickness

Consequently, significant repercussions of process variation encompass:

• Variability in oxide thickness

• Fluctuations in dopant concentration and mobility

• Variations in resistance and capacitance

• Irregularities in transistor dimensions, including channel length

• Variability in threshold voltage

• Alterations in source-to-body voltage

Variations in the lithographic process lead to fluctuations in sheet resistance, resulting in variations in
channel dimensions and transistor characteristics, such as threshold voltage. These variations translate
to reliability issues at the circuit level, differing across transistors within a die, between dice on a wafer,
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or even among different wafers. As a result, circuit performance deviates due to disparities in current
and latency.

Variations in manufacturing processes, combined with operating and environmental conditions, sig-
nificantly influence the performance characteristics of circuits. These factors contribute to the uncer-
tainties in how a chip operates under different conditions and throughout its lifespan, encompassing
variables such as temperature, voltage supply, longevity, and usage wear. The voltage supply across
a chip is inconsistent and is contingent upon the types of circuits present and their placements. Key
sources of voltage variations arise from factors like IR drop caused by resistance in supply lines, voltage
fluctuations due to parasitic inductance coupled with resistance and capacitance, and variations stem-
ming from voltage regulation mechanisms. At sub-nanometer scales, circuit performance experiences
nonlinear effects due to fluctuations in temperature. Temperature variations occur across the chip during
operation, primarily due to power dissipation. These lead to temperature shifts impacting transistors’
mobility, with mobility decreasing as temperatures rise, leading to longer propagation delays. Further-
more, higher temperatures correspond to a decrease in threshold voltage, resulting in increased current
flow and improved delay performance. This phenomenon is heavily influenced by the cell’s power sup-
ply, threshold voltage, load, and input characteristics. Generally, the impact of temperature on transistor
mobility tends to be the predominant factor.

Moreover, the process itself is affected by both supply voltage and temperature, further complicating
the combined effects of PVT variations, which are complex and non-linear. Consequently, there is a
need for the development of a comprehensive modeling strategy to depict these effects accurately.

3.1 PVT Variations in Nanometer Technology Nodes and Challenges

As we advance towards advanced technology nodes, the significance of random variations in the
fabrication process is growing. While process variability primarily affected analog designs in the recent
past, it has now emerged as a major concern for digital engineers too.

Parametric variations can be broadly categorized into design parameter variations, process varia-
tions, and environmental variations (see Fig. 3.1). Design parameter variations, alternatively referred to
as device geometry variations, stand as a primary source of variability. Lateral dimensions such as chan-
nel length and width are subject to influences such as variations in gate-oxide thickness, lithographic
proximity effects, and the effects of channel length. These variations directly impact the output perfor-
mance characteristics of the device. Process variations can be broadly classified into two primary types:
global and local variations. Global variations, also known as Die-to-die or Inter-die variations, such
as variances in oxide thickness and dopant concentrations, affect all transistors within a die uniformly.
Conversely, local variations, referred to as Within-die or Intra-die variations, are also known as mis-
match or random uncorrelated variations. These variations affect each transistor on the die differently.
Local variations can be further divided into spatially correlated and random variations. Spatially corre-
lated variations exhibit similar characteristics for devices in close proximity within the die, as opposed
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Figure 3.1: Types of circuit parameter variations

to those located farther apart. Random or independent variations demonstrate statistically independent
behavior from other device variations. Notable random variations include RDF and LER, which play
significant roles in deep sub-micron technology.

Fluctuations in the statistical distribution of random atoms give rise to Random Dopant Fluctuations
RDF, causing variations in the threshold voltage of a transistor. LER refers to localized variations along
the width of the polysilicon gate. Factors contributing to LER include fluctuations in incoming pho-
ton counts and the molecular composition of the resist. LER directly influences the standard deviation
of the threshold voltage. Variations in the Vth due to physical inconsistencies significantly impact cir-
cuit performance. These variations result in changes in leakage currents, propagation delay, dynamic,
and overall power dissipation in digital circuits. In analog circuits, they introduce variations in circuit
specifications such as output gain, phase margin, slew rate, and other parameters.

The increasing physical variations and their complexity emphasize the necessity for early-stage val-
idations in VLSI circuit design. Assessing the impact of random process variations, alongside device
and environmental parameter fluctuations, is pivotal during the design phase. This necessitates the ac-
cumulation of significant volumes of data. While conventional VLSI CAD tools such as SPICE and
PrimeTime can be utilized for PVT-aware data generation, direct analysis using these tools can prove
time-intensive [9]. Hence, we advocate for the adoption of PVT-aware ML models as proxies for swift
and accurate analysis of VLSI circuits.

To establish a precise surrogate modeling framework encompassing multiple technology nodes, it
is crucial to initially identify the principal performance metrics affected and the primary sources of
variations responsible for these effects. Subsequently, generating appropriate PVT-aware circuit per-
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formance data for various nodes becomes imperative. A major concern in diverse digital applications
is the divergence in power and delay induced by PVT variations. Consequently, our focus lies in the
PVT-aware modeling of power and delay in digital circuits designed across both CMOS and FinFET
technology nodes. Acknowledging the significant impact of PVT variations on the output specifications
of analog and mixed circuits, we also develop models that accommodate these discrepancies based on
the design requisites across different applications.

3.2 Digital Circuit Performance Measures

The growing demand for portable devices and wireless communication necessitates fast data pro-
cessing while minimizing power consumption. This highlights the crucial significance of power and
delay as primary considerations in the design of digital circuits. As ICs continue to decrease in size, the
power dissipation levels also increase. This necessitates larger cooling solutions, which in turn affect
the overall size of the chip. Moreover, the impact of process variation on power and delay becomes
more pronounced in nanometer nodes, presenting a significant challenge. Given these circumstances,
accurately predicting the variations in path delay and power consumption induced by PVT in digital
circuits is crucial. It requires a comprehensive framework for PVT-aware power and delay estimation
that spans both CMOS and FinFET nodes to effectively address the impact of shrinking transistor di-
mensions. With this objective, we propose the implementation of PVT-aware surrogate modeling for
power and delay in digital circuits.

Our approach involves a deep exploration of the intricacies among process, voltage, and temperature
dependencies on circuit delay and power, particularly focusing on their interconnections. This entails a
detailed examination of their fundamental associations with delay and power through basic equations,
followed by the derivation of PVT parameters for modeling, as elaborated below.

3.2.1 Power

Power dissipation is the rate at which energy is drawn from the power source VDD and transformed
into heat. Equ. 3.1 outlines the primary power components in CMOS/FinFET circuits.

P = P dynamic + P shortcircuit + P static (3.1)

where P is the total power, Pdynamic is the dynamic component of power with N switching activities,
Pshortcircuit is the short circuit power and Pstatic is the static power dissipation.

P dynamic =
N∑
i=1

αCLVDD
2f (3.2)

CL is the load capacitance, f is the operating clock frequency, and α is the node transition activity factor.
The dynamic power dissipation (equ. 3.2) was the dominant factor compared with other components of
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power dissipation in digital CMOS circuits for technologies up to 0.18µm, which is about 90% of total
circuit dissipation [64].

P shortcircuit = K(VDD − Vth)
3.τ.f (3.3)

where K is a constant that depends on the size of the transistor and the technology parameters, Vth is
the threshold voltage, τ is the rise or fall time of the input signal, and f is the clock frequency.

Pshortcircuit arises from the direct-path short-circuit current that conducts electricity directly from the
power supply to the ground when both the n-channel MOSFET (nMOS)/n-channel FinFET (nFET) and
p-channel MOSFET (pMOS)/p-channel FinFET (pFET) transistor networks are active simultaneously
(equ. 3.3). This short-circuit current only flows for a short interval of time. It constitutes less than 20%
of the overall dynamic switching power consumption if the sizing of the nMOS/nFET and pMOS/pFET
transistors is such that it balances the rise and fall signal slopes at input and output nodes [65]. Short-
circuit power and dynamic switching power are interconnected with the charging and discharging of
output capacitances, which cause transitions at the gate terminals. Consequently, they are collectively
referred to as dynamic power.

Static power dissipation concerns the current flow when the gate terminals remain unchanged (equa-
tion 3.4). In an ideal scenario, CMOS circuits should exhibit no static power dissipation in a stable state.
Nevertheless, practical systems often experience degraded voltage levels supplying CMOS gates. As a
result, a current flows from the power supply to ground nodes, leading to static current IStat.

P static =
M∑
j=1

(IStat)VDD (3.4)

Here, Pstatic arises from the static current IStat, with M representing the number of nodes. In ear-
lier technology nodes, the magnitude of Pstatic was typically minimal and often considered negligible.
However, as devices have undergone scaling over time to enhance density and performance, the conse-
quent rise in leakage current has considerably escalated static dissipation. Consequently, it has evolved
into a significant component of power dissipation in CMOS circuits. Beyond the 22nm threshold, the
dissipation of leakage power in digital circuits equals that of dynamic power dissipation.

The scaling of supply voltage across various technology nodes, coupled with the corresponding
decrease in Vth, reduction in oxide thickness, and higher substrate doping concentration, has resulted in
increased tunneling currents. These currents lead to significant leakage through the drain- and source-
to-substrate junctions, particularly under high reversed biasing conditions. Subthreshold leakage (Isub),
gate oxide leakage, and reverse-bias pn-junction leakage (Band-to-Band Tunneling (BTBT)) are the
primary contributors to this leakage current. Gate-induced drain leakage and punch-through current
also represent other leakage current mechanisms. Isub occurs between the drain and source when the
transistor operates in the weak inversion region, indicating that the gate voltage is lower than the Vth.
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Isub is mainly driven by diffusion current and demonstrates exponential dependence on the gate-to-
source and threshold voltage.

Considering the BSIM MOS transistor model [15], Isub for a MOSFET device can be expressed as
equ. 3.5.

Isub = I0e
Vgs−Vth

nVT

[
1− e

−Vds
VT

]
(3.5)

where, I0 =
Wµ0CoxV 2

T e1.8

L , VT = KT
q is the thermal voltage, Vth is the threshold voltage, Vds and

Vgs are the drain-to-source and gate-to-source voltages respectively. The effective transistor width and
length are W and L, respectively. Cox is the gate oxide capacitance, µ0 is the carrier mobility and n is
the subthreshold swing coefficient.

In devices featuring short channels, the extension of the depletion regions from the source and drain
into the channel region significantly influences the field and potential profile within. As a consequence
of the reduced channel length, a noticeable decline in the transistor’s threshold voltage, termed as Vth

roll-off, occurs, accompanied by an elevation in drain-induced barrier lowering. These SCEs collectively
contribute to the emergence of a substantial Isub in short-channel devices.

To mitigate the challenges posed by SCEs, a strategic reduction in the oxide layer’s thickness be-
comes imperative with each successive leap in technology generation. However, this aggressive scaling
of oxide thickness introduces a new hurdle in the form of heightened electric fields, consequently en-
gendering a notable direct-tunneling current across the transistor’s gate insulator. This intriguing phe-
nomenon, dubbed gate oxide tunneling current, involves the migration of electrons (or holes) from the
bulk and source/drain overlap region, surmounting the gate oxide’s potential barrier into the gate (or
vice versa) (equ. 3.6).

Gate leakage can be modeled as:

IGate = W · L ·A
(
VDD

tox

)2

exp

−B
(
1−

(
1− VDD

ϕox

)3/2)
VDD
tox

 (3.6)

where W and L are the effective transistor width and length, respectively, A = q3/16π2hϕox, B =

4π
√
2moxϕ

3/2
ox /3hq, mox is the effective mass of the tunneling particle, fox is the tunneling barrier

height, tox is the oxide thickness, h is 1/2p times Planck’s constant and q is the electron charge.

BTBT is the phenomenon in which electrons transition from the valence band of p-type material to
the conduction band of n-type material when a high electric field (greater than 106 V/cm) is applied
across the reverse-biased pn junction. This tunneling current can be mathematically represented as
follows (equ. 3.7).

IBTBT = Aα
EV

E
1/2
g

exp

(
−βE

3/2
g

E

)
(3.7)
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where A is the total area of the junction, α and β are constants, Eg is the bandgap voltage, and V is the
applied forward-bias voltage. The electric field along the junction at a reverse bias of V is as follows.

E =

√
2eNaNd (V + ϕ0)

εsi (Na +Nd)
(3.8)

High doping concentrations in deep sub-micron devices and sudden changes in doping profiles result in
a notable BTBT current flowing through the drain-well junction.

SCEs induce changes in the effective mobilities of electrons and holes within short-channel devices,
consequently impacting the transistor’s threshold voltage and current-voltage (I-V) characteristics. The
empirical formula representing effective mobility (µeff ) is articulated as follows:

µeff =
A

1 +
(
Enorm
B

) (3.9)

where A is 670 cm2/V ·s for electrons and 160 cm2/V ·s for holes, B is 6.6 x 105 V/cm for electrons
and 7 x105 V/cm for holes, and the factor Enorm can be calculated as follows.

Enorm =
Vgs + Vth

6tox
(3.10)

Further, the threshold voltage for an nMOS transistor can be defined as follows:

Vth = VFB + 2Φb +
Φdep

Cox
(3.11)

where, VFB is the flat band voltage due to oxide charge and work function difference given by VFB =

ΦGS − Qss

Cox
; Φb is the bulk potential given as Φb = KT

q lnNA
ni

, K is the Boltzmann constant, T is the
temperature and q is the electron charge; Φdep is the depletion charge per unit area given as Φdep =

qNAXdepα
1√
NA

; Cox is the gate oxide capacitance given as Cox = ϵox
tox

.

The drain current IDSsat is highly influenced by temperature, primarily because the threshold voltage
and mobility exhibit variations with temperature. Examine the nMOS current equation,

IDSsat =
1

2
µn

(
εox
tox

)(
Wn

Ln

)
(VGS − VTn)

2 (3.12)

The dependence of VTn (nMOS Vth) with temperature can be expressed as follows,

dVTn

dT
= − 1

T

(
Eg

2e
− |Φb|

)(
2 +

γ√
2 |Φb|

)
(3.13)

If | Φb <
Eg

2e , the threshold voltage decreases as the temperature rises, while it increases with temper-
ature under other conditions. The mobility also exhibits temperature dependence and can be described
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by,

µ(T ) = µ(T0)
T0

T

1.5

(3.14)

Therefore, the reduction of mobility with temperature can be expressed as,

dµ(T )

dT
= −1.5µ (T0)

(
T0

1.5

T 2.5

)
(3.15)

As temperature increases, both Vth and mobility undergo a decrease. According to the current equation,
the decline in Vth leads to an augmentation in IDSat, while the reduction in mobility yields a decrease
in drain current. In instances of low Vgs, alterations in VTn wield a dominant influence, causing the
drain current to escalate with temperature elevation. Conversely, at higher Vgs levels, mobility takes
precedence, resulting in a drain current decline with rising temperature. At specific values of Vgs, these
effects balance each other, yielding no net change in drain current with temperature. Within the sub-
threshold voltage region, the drain current rises with increasing temperatures due to the behavior of the
bipolar junction transistor. However, in the above-threshold region, the drain current decreases with
temperature ascent owing to the behavior of the MOSFET.

For long-channel devices,

• nMOS transistor

VTn = VT0n + γ
(√

2 |Φfp|+ VSB −
√

2 |Φfp|
)

IDS = µnCox

2

(
Wn
Ln

) [
2 (VGS − VTn)VDS − V 2

DS

]
for VGS ≥ VTn and VDS < VGS − VTn

IDSsat =
µnCox

2

(
Wn
Ln

)
(VGS − VTn)

2 (1 + λVDS) for VGS ≥ VTn and VDS ≥ VGS − VTn

(3.16)

• pMOS transistor

|VTp| = |VT0p|+ γ

(√
2 |Φfn|+ |VSB| −

√
2 |Φfn|

)
IDS =

µpCox

2

(
Wp

Lp

)[
2 (VSG − |VTp|)VSD − V 2

SD

]
for VSG ≥ |VTp| and VSD < VSG − |VTp|

)
IDSsat =

µpCox

2

(
Wp

Lp

)
(VSG − |VTp|)2 (1 + λVSD) for VSG ≥ |VTp| and VSD ≥ VSG − |VTp|

)
(3.17)
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For short-channel devices,

• nMOS transistor

VDSsat =
(VGS − VTn)EsatnLn

(VGS − VTn) + EsatnLn

IDS =
µeffnCox

2

(
Wn

Ln

)[
2 (VGS − VTn)VDS − V 2

DS

] 1

1 + VDS/EsatnLn

for VGS ≥ VTn and VDS < VDSsat

IDSsat = WnvsatCox (VGS − VTn − VDSsat) (1 + λVDS) for VGS ≥ VTn and VDS ≥ VDSsat

(3.18)

• pMOS transistor

VSD sat =
(VSG − |VTp|)Esatp Lp

(VSG − |VTp|) + Esatp Lp

IDS =
µeffnCox

2

(
Wp

Lp

)[
2 (VSG − |VTp|)VSD − V 2

SD

] 1

1 + VSD/Esatp Lp

for VSG ≥ |VTp| and VSD < VSD sat

IDSsat = WpvsatCox (VSG − |VTp| − VSD sat ) (1 + λVSD) for VSG ≥ |VTp| and VSD ≥ VSD

(3.19)

The saturation electric field Esat =
2υsat
µeff

, where υsat is the saturation velocity of an electron or a hole
in an electric field.

3.2.2 Propagation Delay

The propagation delay signifies the time required for a logic circuit to process its input signal and
produce a stable signal at its output. Typically, it is defined as the duration between 50% of the maximum
input change and 50% of the maximum output change. Since the output signal can transition either
from high to low or low to high, two propagation delays, labeled as tpHL and tpLH , are designated
accordingly. These propagation delays, tpHL and tpLH , can be articulated in relation to two output
voltage levels: the low-level output voltage (VOL) and the high-level output voltage (VOH ).

• tpLH is defined as the duration it takes for the output voltage to transition from VOL to V50% of
(VOH − VOL) in response to V50% of (VOH − VOL) of the input signal.

• tpHL refers to the time needed for the output voltage to shift from VOH to V50% of (VOH − VOL)
in response to V50% of (VOH − VOL) of the input signal.
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The propagation delay is the time the transistor takes to charge or discharge the load capacitance.

tpHL =
CL △ VHL

IHL(avg)
=

CL(VOH − V50%)

IHL(avg)
(3.20)

tpLH =
CL △ VLH

ILH(avg)
=

CL(V50% − VLH)

ILH(avg)
(3.21)

where the average current IHL(avg) and ILH(avg) can be calculated, respectively, as follows.

IHL(avg) =
1

2
[IDS(Vin = VOH , Vout = VOH) + IDS(Vin = VOH , Vout = V50%)] (3.22)

ILH(avg) =
1

2
[IDS(Vin = VOL, Vout = VOL) + IDS(Vin = VOL, Vout = V50%)] (3.23)

The input signal is assumed to be a step function with negligible rise and fall times. Depending on its
operational region, the IDS follows either a linear or saturation profile. In the discharging phase, the
nMOS transistor is activated to discharge the charge previously stored on the load capacitor, directing
it to the ground. Consequently, the output voltage (Vout) will gradually decrease from its initial value
(VOH ) towards VOL. The charge and discharge phases of a CMOS inverter are illustrated in Fig. 3.2.

Initially, the nMOS transistor operates in its saturation region and then transitions into its linear
region as the Vout falls below VOH , reaching approximately VT0n. Conversely, the charging phase
mirrors the discharging phase, with the nMOS and pMOS transistors reversed roles. During the charging
phase, the pMOS transistor begins in its saturation region due to the low output voltage (VOL), which is
typically lower than the absolute value of the pMOS threshold voltage (VT0p). This condition persists
until the output voltage rises to VOL + VT0p, at this point, the pMOS transistor transitions into its linear
operational region and remains there for the remainder of the relevant charging phase.

3.2.3 Power-Delay Product

The primary trade-off in most VLSI designs revolves around power consumption and delay. The
PDP is utilized to assess this trade-off. It quantifies the energy needed for a gate to execute a specific
operation, such as transitioning from a low to a high state or vice versa. To define the PDP more
precisely, let’s assume that the gate is switched at its highest possible rate of fmax = 1

2 tpd; where tpd

represents the propagation delay of the gate. In this context, the PDP can be formulated as follows.

PDP = Pavg.tpd = CLVDD
2f.

1

2f
=

1

2
CLVDD

2 (3.24)

3.3 Validation of PVT Variability on Circuit Performances

Tables 3.1 and 3.2 showcase the compilation of PVT parameters across both CMOS and FinFET
technologies as delineated in the proposed framework (chapter 4). The corresponding variations across
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Figure 3.2: Charging and discharging phases of a typical CMOS inverter with timing diagrams [66]

different nodes are detailed in tables 3.4 and 3.5. SPICE MC simulations were utilized to validate
the relationships in fundamental transistor equations (section 3.2). Our analysis of the temperature’s
impact on power and delay is depicted in Fig. 3.3, with the supply voltage held constant. There is an
exponential surge in leakage and power with rising temperature, which is particularly notable in FinFET
technology compared to CMOS (Fig. 3.3 (a), (c), (d), (f)). This effect is compounded by the increase
in supply voltage as depicted in these plots. We note that delay decreases non-linearly with temperature
in FinFET technologies while it increases in CMOS technologies (Fig. 3.3 (b), (e)). While keeping
the temperature constant, we varied the supply voltage and observed a non-linear relationship between
supply voltage, power, and delay. The observations are plotted in Fig. 3.4. At elevated temperatures, this
effect becomes more pronounced. Additionally, we can discern an inverse correlation between leakage
and delay as they vary with temperature and supply voltage.

Load capacitance strongly influences propagation delay and power. Both delay and power demon-
strate a linear increase with rising capacitive load, as illustrated in Fig. 3.5(a) for a full adder logic cell.
Input slew also plays a crucial role in determining delay. In both FinFET and CMOS technologies, delay
increases with increasing input slew, although the effect is more pronounced in FinFET and relatively
insignificant in CMOS (Fig. 3.5(b)).
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Figure 3.3: Temperature impact on 16nm CMOS/FinFET power and delay

Furthermore, we conducted simulations to visualize the influence of each process parameter on both
leakage and delay. The influence of PVT over leakage and delay in 16nm FinFET and CMOS are
plotted in Figs. 3.6, 3.7, 3.8, 3.10 with full adder standard cell. The resulting plots exhibit distributions
as outlined in Tables 3.5 and 3.4 across 100 simulations. We validated these derived relationships from
the simulations and the fundamental leakage and delay equations (3.5 to 3.7, 3.20 and 3.21).

In summary, our observations reveal that FinET leakage experiences an exponential rise with tem-
perature and fin thickness while decreasing exponentially with the physical oxide thickness of nFET.
Leakage demonstrates a linear increase with supply voltage, equivalent gate dielectric thickness, fin
height, conduction band density, and S/D doping concentration while decreasing with channel doping
concentration and intrinsic carrier concentration. Remarkably, we noted minimal fluctuations in leakage
concerning Nbody, Ni0sub, and Nsd and it remains constant with Toxpp.

The propagation delay in FinFETs displays a linear decrease with temperature, supply voltage, equiv-
alent gate dielectric thickness of pFET, physical oxide thickness, nFET fin height, thickness, and con-
duction band density. Conversely, it exhibits a linear increase with nFET gate dielectric thickness, pFET
fin height and thickness, and S/D doping concentration. Notably, intrinsic carrier and channel doping
concentrations do not exert any discernible influence on the delay.
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Figure 3.4: Supply voltage impact on 16nm CMOS/FinFET power and delay

Even slight variations in PVT conditions can yield notable disparities in circuit behavior, especially
concerning leakage and delay. Illustrated in Fig. 3.9, we showcase the impact of PVT variations, mea-
sured at 3σ deviations from nominal values, on leakage and delay using a standard 2-input AND FinFET
cell. µMax.dev in Fig. 3.9 is the maximum deviation in leakage/delay from the mean value (at nominal
PVT). The findings underscore a significant influence, with leakage displaying an average deviation
of approximately 150nW from the nominal value across FinFET technology nodes of 16nm, 10nm,
and 7nm. Similarly, the delay demonstrates an average statistical deviation of nearly 13ps across these
nodes. This highlights how even a seemingly simple AND cell can induce substantial deviations. Such
effects are magnified across all cells within an IC resulting in considerable deviations from specified
performance levels. Conducting PVT-aware performance analysis in the early stages of circuit design
enables the implementation of effective compensation techniques and unlocks avenues for enhancing
overall metrics.
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(a) (b)

Figure 3.5: Impact of load capacitance and slew time on CMOS/FinFET power and delay across
different technology nodes

3.4 Simulation Setup and Performance Modeling of Digital Circuits

We have generated crucial training data for PVT-aware surrogate modeling,, leveraging PTM rep-
resentations of both BSIM4 (CMOS) and BSIM-CMG (FinFETs) models [67], [68]. By scrutinizing
the electrical equations governing power and delay, we identified the process variables responsible for
introducing performance discrepancies in digital circuits. These variations were validated through sim-
ulations and subsequently incorporated into our modeling process. Notably, fluctuations in supply volt-
age, temperature, mobility, threshold voltage, and oxide thickness significantly affect a digital circuit’s
power and delay characteristics. Moreover, the threshold voltage is intricately tied to oxide thickness,
substrate doping concentration, and junction depth. Additionally, factors such as load capacitance, par-
asitic capacitances, and input slew time influence propagation delay, while dynamic power depends on
the switching factor, operating frequency, and process parameters. To model the primary performances
in sub-micro and nano nodes, namely leakage power and propagation delay, we comprehensively con-
sidered all process variables impacting power and delay. These variables are detailed in Tables 3.1 and
3.2.

Corner case analysis is the prevailing method for conducting reliability assessments to ascertain how
a device performs under varying PVT conditions. Each unique combination is referred to as a ’design
corner.’

• The worst-power or highest-speed corner combines the lowest temperature with the highest op-
erating voltage. This corner utilizes fast-n/fast-p parameters and defines the lowest permissible

27



Figure 3.6: PVT parameter’s impact on leakage power in 16nm FinFET technology

operating temperature and the maximum allowable supply voltage. Its objective is to evaluate
power dissipation and assess the hold time constraints of the circuit.

• The best-power or worst-speed corner, on the other hand, combines the highest temperature with
the lowest operating voltage. This corner employs slow-n/slow-p parameters and establishes the
highest permissible operating temperature and the minimum allowable supply voltage. It is em-
ployed to evaluate circuit speed and examine setup time constraints.

The behavior of digital circuits has become increasingly nonlinear and unpredictable due to the mul-
titude of process variations affecting them, particularly at advanced nodes. This renders corner case
analysis less effective [42]. For instance, a 7nm technology node involves over 100 process parameters.
Additionally, the combined impact of various process parameters, along with temperature and voltage
fluctuations, significantly impacts circuit behavior compared to nodes before 45nm. Therefore, vali-
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Figure 3.7: PVT parameter’s impact on leakage power in 16nm CMOS technology

dating the design across the entire spectrum of variations is imperative. To address this challenge, we
employ a statistical modeling approach, intermittently introducing PVT variations at each node under
consideration. The list of process parameters considered for modeling, along with their respective vari-
ations, is tabulated in Tables 3.1, 3.2, 3.4, and 3.5. We conducted modeling of leakage and power in
digital circuits across CMOS 45nm, 32nm, 22nm, and 16nm nodes, as well as FinFET 16nm, 10nm,
and 7nm high-performance technology nodes. However, the design of the surrogate framework is akin
to a black box model, facilitating easy extension to any technology node of interest.

The process variations are represented as a normal distribution with 3σ variations around the mean,
simulating the statistical variability in manufacturing processes. Since environmental uncertainty is
inherently random, it is modeled as uniform random variations. The statistical variations in the process
can be represented by an arbitrary function

−→
P stat = G(

−→
P ), where

−→
P represents {P1, P2, ...., PK} with

a set of random variations that has Gaussian distributions N(µPi , σPi
2) (say for ith process parameter)

and K represents the number of process parameters of interest. The uniform random distributions of
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Figure 3.8: PVT parameter’s impact on propagation delay in 16nm FinFET technology

operating temperature, supply voltage, and capacitive load can be represented as Top = f(T ), Vdd =

f(V ), and Cvar = f(CLoad).

We are prototyping the PVT-aware circuit behavior using gate-level surrogate modeling. The PVT
variations are introduced uniformly to each transistor in a standard logic cell, and the performance
deviations are measured and recorded through SPICE MC simulations. Such data with PVT-aware
standard cell simulations is employed to build a surrogate modeling framework.

3.4.1 Leakage Modeling

Leakage power is given by

PLeak =

N∑
i=1

(ILeak) · Vdd (3.25)
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Figure 3.9: Effect on leakage and delay due to 3σ PVT variations

where PLeak represents leakage power due to the ILeak(leakage current) at each node of the logic cell,
with N being the number of nodes. Then, the statistical variation in leakage power is given by

PLeak−Stat = PLeak|{∆−→
P stat,∆Top,∆Vdd}

(3.26)

where PLeak−Stat is the statistical variation in leakage power induced by the normalized deviations in
PVT from the nominal values represented as ∆

−→
P stat, ∆Vdd and ∆Top respectively.

3.4.2 Delay Modeling

In addition to statistical deviations in PVT, the propagation delay of a logic gate, denoted as GDelay,
is influenced by factors such as the input slew time ts and equivalent load capacitance CL. Estimated
CL is considered as explained earlier. However, for our analysis, we assumed a consistent slew time
of 10ps in this work. Nonetheless, we noticed a linear correlation between delay and input slew for a
specific CL, providing a straightforward means to extend the analysis through interpolation. The delay
dependencies on input slew and load capacitance are plotted in Fig. 3.5 (b).

GDelay = f(CL, VDD, ts) (3.27)

We generate uniform random distributions of CL within the prescribed range of load combinations,
encompassing the minimum load (inverter) and maximum load (Full adder). These values typically
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Figure 3.10: PVT parameter’s impact on propagation delay in 16nm CMOS technology

range from 0.01 to 5 fF (femto farads), and they are employed for delay estimation in conjunction with
PVT considerations. GDelay−Stat, the statistical delay of each standard cell acting as driver given by

GDelay−Stat = GDelay|{∆−→
P stat,∆Top,∆Vdd}

(3.28)

We derived a range of capacitive load values, ranging from the minimum load represented by an in-
verter to the maximum load represented by a full adder. Within this range, uniform random distributions
were computed and integrated into delay estimations, accounting for PVT considerations. A compre-
hensive explanation of load calculation is provided in section 3.4.3. Subsequently, we delve into the
formulation of equivalent capacitance estimation.

Simulation data sets for leakage and delay are generated through SPICE MC DC and transient anal-
ysis, respectively.
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Table 3.1: CMOS Process, Voltage, Temperature parameters considered

Process parameter Description Type of parameter

L Channel length Design
parametersW Channel width

Toxe
Electrical gate equivalent

oxide thickness

Process
parameters

Toxm Tox at which parameters are extracted

Toxref
Nominal gate oxide thickness

for the gate dielectric tunneling

Toxp Physical gate equivalent oxide thickness

Ndep
Channel doping concentration at the
depletion edge for the zero-body bias

Xj Source/drain junction depth

Temper Temperature Environmental
parametersPvdd Supply voltage

3.4.3 Equivalent Capacitance Estimation

The intrinsic capacitance of a cell undergoes variations due to input voltage transitions and inter-
actions between the driver and the load cell. These factors collectively contribute to the total input
capacitance. An accurate estimation of overall equivalent capacitance values for different combinations
of driver gates is crucial for precise delay estimations of complex cells based on standard cells. In our
research, we have compiled a comprehensive database containing estimated equivalent load capacitance
values for every possible combination of standard library cells at the specified technology node. We
determined a range of capacitive load values by employing an inverter as the load for the minimum
load condition and a full adder for the maximum load scenario. The fundamental concept involves ap-
proximating a load capacitance value by correlating the time needed to drive the cell and the time to
charge or discharge a known capacitance. This procedure is illustrated in Fig. 3.11, where we estimate
the propagation delay for a driver-driven cell combination in one configuration. In an alternative setup,
we replace the driven cell with a variable capacitor and estimate the time required for the capacitor’s
charge/discharge cycle. The capacitive load at which both delays closely align is approximated as the
input load presented to any preceding cell(s) in the circuit. This iterative process is applied to all stan-
dard cells acting as the load under nominal PVT conditions to establish the capacitance variation range
from minimum to maximum.
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Table 3.2: FinFET Process, Voltage, Temperature parameters considered

Process parameters Description Type of parameter

Lg Gate length
Design

parametersTfin Fin thickness

Hfin Fin height

Eot
SiO2 equivalent gate dielectric thickness

(including inversion layer thickness)

Process
parameters

Toxp Physical oxide thickness

Nbody Channel (body) doping concentration

Ni0sub
Intrinsic carrier concentration of

channel at 300.15K

Nc0sub
Conduction band density of states

at 300.15K

Nsd Source/Drain doping concentration

Temper Temperature Environmental
parametersPvdd Supply voltage

Figure 3.11: Equivalent load capacitance computation setup

Our investigation revealed that the Inverter cell, comprising only two transistors, serves as the min-
imum load, while a full adder cell, typically incorporating 28 transistors, represents the maximum load
among the standard cells considered in our study. Therefore, we determined the limits of capacitive load
variation by considering inverter-inverter and inverter-full adder as minimum and maximum driver-load
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combinations. We further extended the maximum CL variation value by considering a fanout of 4 over
the resultant inverter-full adder value and maintaining a small margin. Importantly, we observed that
the node where the load gate under examination is being driven, along with the type of other input
nodes, exerts a significant influence. These factors include internal and parasitic capacitances, which
vary based on the active transistor stacks for a given combination in a driver-driven standard cell [69].

Introducing the development of the equivalent capacitance matrix at the standard cell level, we es-
timated CL for all possible combinations of driver-driven cells using the aforementioned methodology
and then computed their average for the final value. The CL values for 13 standard cells in our setup
for each technology node are tabulated in Table 3.3. It is essential to emphasize that when estimating
propagation delay in the circuit’s critical path, one must consider a linear multiple of the capacitive load
value to accommodate any fanout considerations.

3.5 Analog Circuit Modeling and Simulation Setup

The intricacies and complexities abound in analog circuits, primarily due to the critical reliance
on transistor dimensions and passive components. These circuits are notably susceptible to the un-
predictable random variations of fabrication processes, temperature variations, and bias conditions. The
manifestation of PVT variations can precipitate substantial performance degradation, sometimes render-
ing the circuit non-functional. The strong dependency on the intuition, skills, and expertise of design-
ers, with a dearth of formalization, constricts the dissemination and reuse of knowledge in this domain.
Moreover, attempting to engineer solutions for complex circuits through conventional mathematical
modeling, with its inherent inability to foresee all scenarios and temporal changes, often leads to ex-
tended design cycles, time-to-market, and heightened production costs. In response to these challenges,
our research introduces automated circuit modeling, a paradigm shift that significantly accelerates the
design and development process while simultaneously enhancing performance.

Our core concept revolves around collecting input and output data points for the Circuit Under Test
(CUT), enabling the creation of a surrogate model that reliably replicates its statistical behavior. This
surrogate model, in turn, facilitates the rapid generation of solutions within shorter timeframes. To
establish our training datasets, we employ a meticulous approach, subjecting the CUT to thorough
biasing and simulating design and process parameters randomly across a predefined space, spanning
different corners. The ultimate objective is the formulation of an optimized multi-corner robust model
with a wide range of PVT and design parameter variations. This robust model(s) is employed for self-
adaptation of the microelectronic circuits.

Fig. 3.12 outlines the training data generation for analog circuit modeling. For a given analog circuit
under examination, a simulation dataset is generated to capture the variations in M output specifica-
tions, denoted as YM , where YM ∈ {Y1, Y2, ..., Ym}. These variations occur due to changes in PVT,
as well as diverse design parameters varied across the design space represented by XK , where XK ∈
{X1, X2, ..., XK}. For example, the value of the reference current, Iref (output) as a function of vari-
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Figure 3.12: Training data generation of analog circuit under test

ables P, V and T is calculated for each PVT combination in the current reference design. At first, the
schematic of the analog CUT is designed using Cadence Analog Design Environment (ADE). This is
succeeded by setting up biasing configurations, scrutinizing operating point margins, aligning the de-
sign to typical conditions, and subsequently generating its netlist from Spectre. The simulation dataset
is created, considering the circuit netlist and the PDK as inputs and sweeping the PVT and design pa-
rameters across the corners. The PDK serves as a comprehensive database provided by each silicon
foundry, tailored for a specific process technology. It encompasses all essential information and files
indispensable for the physical design of integrated circuits in that particular process. More precisely, the
design system employed in this context extracts the SPICE model parameters of the devices from the
PDK, enabling simulations to be executed.

3.6 Conclusion

In conclusion, digital and analog circuits are fraught with intricacies and complexities, largely stem-
ming from their heavy reliance on transistor dimensions and passive components. These circuits are
particularly vulnerable to the unpredictable variations inherent in fabrication processes, temperature
fluctuations, and bias conditions. The emergence of PVT variations can lead to significant performance
degradation, at times rendering the circuit non-functional. The heavy dependence on designers’ intu-
ition, skills, and expertise, coupled with a lack of formalization, hampers the dissemination and reuse of
knowledge in this domain. Conventional mathematical modeling struggles to address all scenarios and
temporal changes, resulting in prolonged design cycles, delayed time-to-market, and increased produc-
tion costs. In response, our research introduces automated circuit modeling, representing a paradigm
shift that accelerates the design and development process while simultaneously enhancing performance.
Central to our approach is the creation of surrogate models based on thorough data collection from the
CUT, which replicates its statistical behavior reliably. These surrogate models enable rapid solution
generation within shorter time frames. Through meticulous training dataset generation, incorporating
varied PVT and design parameter variations, we aim to develop optimized multi-corner robust mod-
els. The outlined process for training data generation, leveraging simulation datasets through PTM and
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Table 3.3: Equivalent load capacitance estimations of digital standard cells for CMOS
high-performance technology nodes 45nm, 32nm, 22nm, and 16nm and FinFET nodes 16nm, 10nm,

and 7nm

Standard Cell/
Technology node

CMOS FinFET

45nm 32nm 22nm 16nm 16nm 10nm 7nm

INVERTER 0.126 0.073 0.041 0.026 0.215 0.142 0.112

2-input NAND 0.193 0.117 0.068 0.044 0.278 0.183 0.140

2-input AND 0.193 0.117 0.068 0.044 0.278 0.183 0.140

2-input NOR 0.213 0.126 0.073 0.047 0.364 0.236 0.177

2-input OR 0.213 0.126 0.073 0.047 0.364 0.235 0.177

2-input XOR 0.425 0.252 0.146 0.093 0.616 0.398 0.319

2-input XNOR 0.643 0.361 0.201 0.12 0.892 0.584 0.456

3-input NAND 0.25 0.155 0.092 0.061 0.353 0.229 0.174

3-input AND 0.25 0.155 0.092 0.061 0.353 0.229 0.174

3-input NOR 0.301 0.18 0.105 0.068 0.512 0.329 0.263

2x1 MULTIPLEXER 0.443 0.321 0.211 0.135 0.467 0.307 0.245

FULL ADDER 1.367 0.834 0.492 0.276 2.006 1.279 0.987

AND-OR INVERT12 0.301 0.18 0.105 0.068 0.418 0.274 0.208

PDKs, highlights the systematic approach employed to navigate the complexities of digital and analog
circuit modeling and design.
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Chapter 4

PVT-aware Surrogate Modeling of VLSI Circuits

In the realm of nanometer-scale technology, it is crucial to accurately and efficiently predict the
performance of CMOS/FinFET devices in the presence of random variations in process, temperature,
and supply voltage before IC fabrication. Typically, methods like MC simulations from traditional tools
such as SPICE and Prime Time estimate leakage and delay properties [69] of digital and AMS circuits.
However, while providing precise results, SPICE MC simulations, come at the expense of extensive
computational time [32]. Given the current landscape of high-computing chips housing billions of
transistors, these prolonged simulation times are impractical in meeting chip turn-around deadlines,
rendering them unsuitable for assessing complex devices. One potential solution to circumvent lengthy
simulation runs is the development of surrogate models that approximate circuit performance based on
statistical parameters. These surrogate models can substitute the simulator in large MC simulations,
significantly reducing computational overhead.

We have designed and developed an efficient surrogate modeling framework for predicting circuit
performances under diverse PVT conditions across various digital/analog/mixed-signal design applica-
tions. Machine Learning algorithms power this framework, ensuring computational efficiency. Digital
circuit modeling encompasses the assessment of propagation delay and leakage power, both pivotal per-
formance metrics for digital circuits across a wide range of variations. Furthermore, the framework
relies on pre-characterized gate-level models for complex cell delay and leakage estimations in contrast
to the traditional circuit-specific time and resource-consuming simulations. This eliminates the need for
additional simulations.

We developed customized models for key components such as current references, Low Drop-out
Regulator (LDO), oscillators, Transmitter Driver (TxDr), Bandgap Reference (BGR), Phase Locked
Loop (PLL), Low-Noise Amplifier (LNA), and mixers. These models are designed to accommodate
variations in output specifications across diverse design configurations and under varying PVT con-
ditions. These components constitute the fundamental blocks of any complex analog circuit. Con-
sequently, the methodology centered around these standardized analog models can be seamlessly ex-
tended to more intricate circuit implementations. The results obtained from the surrogate model(s) are
subjected to comprehensive validation against precise simulations carried out using conventional tools.
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4.1 Design of Surrogate Modeling Framework

Our designed surrogate framework utilizes an intelligent configuration comprising a bank of super-
vised learning algorithms adept at precisely capturing PVT-informed circuit characteristics. The sub-
sequent sections explore the development, automation, and evaluation of this framework. As depicted
in Fig. 4.1, the surrogate modeling framework is designed to automate the generation of circuit perfor-
mance simulations under various operating conditions, design parameters, and process parameters. This
entails the utilization of tailored netlists and model files specific to the CUT, typically representing a
standard cell of interest.

• Simulation Setup and Performance Estimation: Simulation setup and performance estimation
process are as detailed in Chapter 3. Standard cell performance estimations are generated for
various PVT scenarios, serving as input datasets for subsequent modeling.

• Data Preprocessing and Sensitivity Analysis: An Intelligent-based modeling setup incorpo-
rates data preprocessing steps, including identifying and filtering erroneous entries and outlier
detection. Furthermore, a sensitivity analysis is conducted to estimate correlation coefficients and
identify non-contributing/non-dominant input variables (PVT), which are subsequently excluded
from the model development process. This optimization enhances modeling speed and efficiency.

• Supervised Learning Algorithms Bank: The framework employs a diverse array of supervised
learning algorithms tailored for both regression and classification applications. Regression-based
modeling is utilized in statistical analysis setups, such as digital circuit performance estimation,
while classification algorithms are employed in scenarios involving corner case analysis, such as
analog circuit modeling. Dominant parameters obtained from the sensitivity analysis guide the
model development process.

• Model training and selection: PVT variations serve as input data, while circuit performances
(e.g., leakage power, propagation delay) are the target variables. Multiple ML algorithms (from
the ML bank) are trained on PVT-aware simulations to generate a set of ML models. The choice
of the most suitable model is determined through careful analysis of a composite performance
metric.

• Model Validation and Verification: The resultant ML model’s accuracy is verified through
SPICE MC simulations, if necessary. However, it is worth noting that if the ML model meets the
specified complex performance metric, additional MC simulations are deemed optional. However,
they authenticate the generalization capabilities of the designed model by providing additional un-
seen test cases.

• Application in Circuit Performance Estimation: The surrogate ML models, representing sta-
tistically aware standard cell performances, facilitate their performance estimation as such and/or
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Figure 4.2: Features of AI/ML surrogate modeling framework Vs traditional modeling paradigm

can be extended to complex circuit performance estimation. For complex digital circuit estima-
tion, given a Verilog description of the circuit structure, surrogate standard cell ML models, ca-
pacitive load estimation in case of delay estimation, automated complex cell performance estima-
tions (e.g., leakage/delay in digital circuits) can be obtained over a wide range of PVT scenarios,
bypassing the need for further simulations.

Henceforth, the AI/ML surrogate modeling framework leverages a comprehensive setup of super-
vised ML algorithms to model PVT-aware behavior accurately. The features of the surrogate modeling
framework compared to the traditional modeling are highlighted in Fig. 4.2.

4.2 Machine Learning Algorithms for Circuit Modeling

Harnessing the automated learning capabilities offered by AI/ML algorithms in E-CAD tools has
the potential to boost chip performance, streamline design processes, and ultimately result in a more
efficient turnaround. The application of statistical learning techniques enables the analysis of inherent
patterns in circuit simulations, allowing for the resolution and design of solutions for a multitude of
problems and input-output relationships that conventionally pose challenges and demand significant
time investments.

Supervised learning algorithms prove highly effective in delineating input-output correlations within
intricate circuit designs and implementations through the analysis of simulation data [70]. Furthermore,
ML algorithms can facilitate the construction of surrogate models when provided with simulation data
incorporating output responses across diverse operating conditions and design parameter variations.
These models offer significantly accelerated estimations, surpassing the speed of traditional simulators
by several orders of magnitude. Early detection of functional and electrical performance discrepancies
in the design cycle can notably enhance IC yield, a metric contingent upon the capabilities of simulation
tools. The intricate interplay of inputs and outputs among components, processes, and diverse levels
of abstraction within each level can be systematically explored using AI/ML algorithms, leveraging
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insights gleaned from a spectrum of simulations and analyses. Integrating AI and ML in VLSI de-
sign streamlines the comprehension and processing of data across various levels of abstraction, thereby
economizing time and effort.

Our approach employs regression algorithms to meticulously analyze and model statistical data, with
a particular focus on digital/AMS standard cell modeling, as depicted in Fig. 4.1. Additionally, we ex-
plore classification techniques for corner-case analysis and to facilitate self-adaptation, as discussed in
section 4.4. In instances where it proves beneficial, we apply a regression algorithm to the data classi-
fied under specific corner cases of analog circuits. This approach lays the groundwork for developing
robust Classification and Regression Trees (CART) models. We incorporated 14 ML algorithms in our
framework for regression tasks. They are Linear Regression (LR), Ridge Regression (RR), Lasso Re-
gression (LAR), ElasticNet Regression (ER), Polynomial Regression (PR)2 (degree 2) and PR3 (degree
3), SVM, Decision Tree (DT), RF, Extra Tree Regression (ET), ensembles approach [71] such as Gra-
dient Boosting Machine (GBM), Xtreme Gradient Boosting Machine (XGBM) [72], Light Gradient
Boosting Machine (LGBM) [73], ANN (Multi-Layer Perceptron (MLP)) and Dense Neural Networks
(DNN) [74]. We employed Logistic Regression, DT, SVMs, K-Nearest Neighbors (KNN), and LGBM
for classification [12].

4.3 PVT-aware Digital Circuit Surrogate Modeling

In our research, we employ regression analysis to investigate the correlation between output vari-
ables, such as leakage/delay in digital cells, and a set of input parameters, specifically PVT variables.
Our main aim is to develop a model capable of accurately predicting variations in output based on ob-
served fluctuations in PVT conditions. To achieve this, we have conducted extensive experimentation
involving various regression algorithms, resulting in a comprehensive ensemble tailored specifically for
PVT-aware digital circuit performance, as detailed in Fig. 4.1. This ensemble comprises 14 algorithms,
resulting in 15 ML models (we employed polynomial regression of degree 2 and 3 making them 15
models) for each standard cell across every technology node under investigation. Each algorithm within
our ensemble offers unique advantages and operates within its performance constraints, primarily influ-
enced by the selection of hyperparameters. To identify a universally applicable set of hyperparameters
for each algorithm, compatible with all CMOS and FinFET digital standard cells across all technology
nodes, we conducted a rigorous hyperparameter search process. This process involved a combination
of manual experimentation, grid search, and BO [75, 76] to pinpoint optimal hyperparameters, includ-
ing the number of iterations for each algorithm. Grid search is a widely used technique for optimizing
hyperparameters in ML models [77]. On the other hand, BO is a sophisticated technique that employs
probabilistic models to guide the search process toward promising regions of the hyperparameter space
efficiently, particularly in complex and noisy data scenarios [78].

The procedural steps for modeling digital standard cells, as outlined in our investigation, are pre-
sented in Algorithm 1. It encompasses the sequential development of surrogate models employing all
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Table 4.1: The final set of hyper-parameters of regression algorithms post-fine-tuning

Algorithm Hyper-parameters after fine-tuning
LR Default parameters, , solver=’auto’
RR alpha = 2, solver=’auto’

LAR alpha = 0.0001, , solver=’auto’
ER alpha = 0.001, , solver=’auto’
PR Degree = 2 or 3, solver = ’auto’

SVM
Optimized via grid search using ’rbf’ kernel, C = 1000, gamma = 0.01,
epsilon = 0.1

DT
Optimized via grid search with max depth=3, max features=’auto’,
max leaf nodes=5, min samples leaf=3, min weight fraction leaf=0.1,
splitter=’best’

ET
Optimized via BO with n estimators=300, min samples split=2,
min samples leaf=1, bootstrap=True, n jobs=8, random state=5

RF
Optimized via BO with n estimators = 1000, min samples split=2,
max depth = 7, random state = 18

GBM

Optimized via gradient descent with learning rate=0.1, n estimators=500,
subsample=1.0, criterion=’friedman mse’, min samples split=2,
min samples leaf=1, max depth=3, alpha=0.9, max leaf nodes=5,
bagging fraction=0.1, tol=0.0001

XGBM
Optimized via ’dart’ booster with learning rate=0.1, max depth=4,
n estimators=500, n jobs=20, num parallel tree=5, predictor=’auto’,
random state=5, reg alpha=0.01

LGBM
Optimized via ’dart’ with learning rate=0.12, max depth=5, num leaves = 50,
bagging fraction= 1, feature fraction= 0.6, subsample = 0.8, bagging freq = 50,
num boost round = 3000, early stopping rounds = 200

ANN (MLP)
Optimized via BO, the network has 4 hidden layers with 200x150x100x50 neurons,
alpha = 0.01, max iter = 500, activation = ’relu’, Solver = ’ADAM’

DNN

Optimized via BO, the network has 4 hidden layers with neurons varying from
32 to 256 for each standard cell, learning rate between 0.001 to 0.0001,
activation = ’relu’, Solver = ’ADAM’, epochs = 200, validation split = 0.12,
early stopping with patience = 15
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the specified regression algorithms, alongside the necessary selection and fine-tuning of hyperparame-
ters. The final set of hyper-parameters of regression algorithms post-fine-tuning are tabulated in Table
4.1. These choices aim to strike a balance between model complexity and generalization, effectively
capturing the nonlinear relationship between input features and the target variable.

Our observations indicate that ET, LGBM, ANN, and DNN consistently outperform other algorithms
in estimating the performance of digital circuits across various technology nodes, even with smaller
datasets. Polynomial regression also demonstrates reliable performance in some cases, although se-
lecting a polynomial degree requires careful consideration based on the number of variables and their
distributions within the analog/digital CUT. Our analysis revealed that polynomial regressions of de-
grees 2 and 3 yielded satisfactory modeling results for the majority of the designs under examination.
However, we extended our experimentation to degree 5 for predictions involving digital cell power
modeling to achieve more precise estimations, albeit with the trade-off of increased training time [79].

Within our framework, we have developed an intelligent modeling setup with the goal of pinpointing
the key inputs that impact circuit performance. Subsequently, we employ ML algorithms trained on
these inputs, selecting the most effective model for each experiment. The process of identifying domi-
nant parameters entails estimating statistical correlations within the simulation dataset, as elaborated in
Chapter 5.

Ensuring precise estimations of complex cells necessitates thorough evaluation of the best-performing
surrogate model for each standard cell, given their pivotal role in predictions. Accurate predictions at
the standard cell level are indispensable for achieving precise estimations at the complex cell level.
During our regression algorithm training, we noted that some models excelled with training samples but
faltered with new, unseen PVT scenarios. Consequently, we’ve devised a comprehensive set of testing
criteria (highlighted in subsection 4.3.1.2) to identify the most effective machine learning model with
the optimal balance of training accuracy and generalization ability.

4.3.1 Results and Discussion

In this section, we scrutinize and deliberate on the outcomes of the regression models in our surro-
gate framework for estimating circuit performance. Across all experiments, we divided the datasets into
training and testing sets in an 80:20 ratio, reserving 20% of the training data for validation purposes.
We conducted experiments using varying sizes of simulation data to determine the optimal training set
at the source node. Our goal was to select a sufficient quantity of labeled data at the source node, as
this significantly impacts the effectiveness of knowledge transfer to other nodes. Notably, our experi-
mentation revealed that the optimal performance for leakage/delay estimation is attained with a training
dataset comprising 15,000 samples. The empirical findings of the LGBM regressor on 16nm CMOS and
FinFET concerning varied training sample sets (demonstrated on full adder standard cell), as illustrated
in Fig. 4.3, demonstrate that the most accurate modeling occurs when utilizing 15,000 samples as the
training data. Fig. 4.4 displays the computational time needed by SPICE and our model (LGBM regres-
sor) for modeling the full adder standard cell in 16nm CMOS and FinFET technologies. ML modeling
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Algorithm 1 Statistical Digital Standard Cell Performance Modeling

1: while i < N do ▷ N is the number of samples
2: while j < K do ▷ K is the number of PVT parameters
3: Xp ← Gaussian(±10% variations at 3σ of jth Process parameter) ▷ Gaussian process
4: end while
5: Xr ← Random(Temperature, ±10% variations of Supply voltage) ▷ Random distributions
6: Xl ← Random(CLoad) ▷ CLoad is the capacitive load for delay estimation
7: end while
8: Combine the PVT variations X =

∑N
i=1{Xr, Xt, Xp,1, Xp,2, ...Xp,k} with standard cell netlist.

9: Call SPICE tool()
10: for i < N do
11: Y ← target (X) ▷ Say, target is leakage or delay estimation
12: end for
13: Training data (X,Y ) = {(x1, y1), (x2, y2), ..., (xN , yN )}
14: Extract feature set X = {Xr, Xt, Xp}
15: Define target variable Y {target}
16: for j < K do
17: Calculate Pearson coefficient, r for all process
18: Perform Sensitivity analysis
19: end for
20: Determine effective feature set Xe = {Xre, Xte, Xpe} ▷ Dominant parameter extraction
21: Call bank of ML algorithms to train over the effective dataset (Xe, Y )
22: Calculate the defined ML metrics RMSE, MAE, R2Score
23: if R2Score < 0.99 & µE > 1% & σE > 1% then
24: Hyper-parameter fine-tuning
25: Retrain the respective ML model
26: Until R2Score > 0.99 & µE < 1% & σE < 1%
27: end if
28: return trained ML models
29: Call each ML model over (unseen test casesXU =

∑M
i=1{Xr, Xt, Xp})

30: return YU,Predicted, estimated target (leakage/delay) ∀XU

31: Estimate YU,Actual∀XU calling SPICE tool
32: Determine %Error(YU,Predicted, YU,Actual)
33: if %Error > 2% then
34: Perform grid-search on the respective ML model parameters
35: repeat
36: Repeat steps 21 to 32
37: until %Error < 2%
38: end if
39: save the finalized ML models
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(a) (b)

Figure 4.3: Impact of the number of training samples on delay model’s (LGBM) accuracy (a) 16nm
CMOS (b) 16nm FinFET

(a) (b)

Figure 4.4: Runtime comparison of LGBM delay model Vs SPICE simulations

achieves an outstanding speed-up of 104 times compared to SPICE MC simulations. It is worth noting
that our standard cell approach involves a one-time effort in model computation, whereas traditional
SPICE modeling requires repeated simulations across various PVT conditions for each circuit under
modeling.

Our goal is to develop surrogate models that match the performance of traditional simulation tools
across all levels. To achieve this, we conducted thorough validations by comparing their predictions
with those of a standard simulation tool, namely SPICE, at each level. The development and training
of ML models were carried out using Python 3.9, leveraging libraries such as Scikit-Learn [77], Keras,
PyTorch, TensorFlow [80], NumPy, and Pandas [81, 82]. These tasks were performed on a system
equipped with an i5 core CPU and 8GB of RAM. SPICE simulations were executed on a 12th Gen
Intel(R) Core(TM) i9 processor with 32GB RAM.
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4.3.1.1 Surrogate Modeling Metrics

When assessing the regression models, we utilized different metrics, including the R2Score or R2,
Mean Squared Error (MSE), Mean Absolute Error (MAE), %µE (mean error percentage) and %σE

(standard deviation error percentage) [12]. These metrics were computed based on a 20% split of test
samples from the simulation dataset, which were isolated during the training process.

The R2 statistic gauges how much of the dependent variable’s variance can be explained by the
independent variables, acting as an indicator of model fit (equ. 4.1). This metric ranges from 0 to
1, with higher values indicating a better fit, and a value of 1 indicating a perfect match. It provides
valuable insights into how well the model captures the variation in the data, facilitating the evaluation
and comparison of different regression models. MSE measures the average squared difference between
predicted and actual values, with an emphasis on larger errors (equ. 4.2). A lower MSE signifies a better
fit of the model to the data. MAE offers a straightforward and interpretable measure of model accuracy
in the original units of the data (equ. 4.3), and it is less sensitive to outliers compared to MSE. Both
MSE and MAE are crucial for evaluating and refining regression models to ensure accurate predictions.
We examined them for exceptionally low scores, below E−9 in magnitude.

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(4.1)

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4.2)

MAE =
1

n

n∑
i=1

|yi − ŷi| (4.3)

In addition to the standard regression metrics mentioned earlier, we employed %µE and %σE as
evaluation criteria to measure the trained model’s ability to predict statistical output distributions across
various PVT conditions. These criteria are defined as follows:

%µE =
µPredicted − µActual

µActual
∗ 100 (4.4)

%σE =
σPredicted − σActual

σActual
∗ 100 (4.5)

Here, ’Predicted’ refers to the predictions of the regression model for leakage/delay, while ’Actual’
pertains to the corresponding SPICE values.

We deliberately included another evaluation criterion, Mean average Percentage Error (MaPE), in
each experiment, which constitutes 500 unseen samples (referred to as N ) prediction and comparison
with SPICE simulations at each node (equ. 4.6). This thorough analysis assesses the models’ general-
ized capacity to apply acquired knowledge effectively. The close correspondence between predictions
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Table 4.2: The performance metrics of CMOS high-performance ML Delay models from 45nm and
32nm technology nodes (averaged across the training of all standard cells)

45nm 32nmML metrics/
model R2 MSE MAE µE σE R2 MSE MAE µE σE

LR 0.927 3.40E-19 3.01E-09 0.175 4.059 0.912 4.90E-17 1.37E-09 0.610 5.923

RR 0.927 5.45E-18 1.36E-09 0.175 4.059 0.912 4.97E-17 8.39E-10 0.610 5.924

LAR 0.927 1.10E-18 1.02E-08 0.175 4.060 0.912 1.64E-16 1.67E-09 0.610 5.925

ER 0.927 6.79E-17 1.36E-08 0.175 4.202 0.912 2.78E-16 1.02E-09 0.610 6.062

PR2 0.997 1.32E-17 3.40E-09 0.020 0.237 0.995 2.04E-16 2.46E-09 0.080 0.892

PR3 1 1.48E-17 1.67E-09 0.003 0.013 1 3.55E-16 1.51E-09 0.012 0.057

SVR 0.997 1.70E-16 1.43E-06 0.159 1.570 0.996 1.08E-15 2.41E-09 0.036 0.501

DT 0.744 6.19E-10 1.33E-05 0.200 13.508 0.725 1.28E-09 1.70E-05 0.641 16.394

RF 0.986 7.27E-17 3.22E-08 0.123 2.923 0.987 5.02E-16 1.68E-09 0.051 3.629

ET 0.963 1.24E-16 7.26E-09 0.008 4.785 0.961 1.55E-16 1.08E-09 0.222 5.820

GBM 0.995 6.90E-17 3.29E-09 0.051 1.056 0.994 5.28E-16 2.54E-09 0.064 1.494

XGB 0.997 5.87E-17 9.44E-09 0.015 0.875 0.996 1.61E-16 1.53E-09 0.003 1.022

LGBM 0.996 9.40E-17 7.61E-10 0.056 1.333 0.996 1.34E-16 4.54E-09 0.104 1.421

MLP 1 2.82E-17 8.84E-09 0.061 0.044 1 9.53E-16 4.25E-09 0.062 0.113

DNN 0.999 2.27E-17 3.45E-09 0.115 0.243 1 2.09E-16 9.23E-09 0.087 0.056

and actual simulations highlights the models’ robust capability.

MaPE =
N∑
i=1

∣∣∣Predicted−Actual

Actual

∣∣∣ ∗ 100 (4.6)

4.3.1.2 Comprehensive Evaluation Criteria

To thoroughly evaluate the performance of the trained ML models, we formulated a comprehensive
set of evaluation criteria. This set includes R2, %µE , %σE metrics for the test split data, as well as
MaPE for unseen PVT samples. Before undergoing additional testing with MaPE on 500 unseen test
samples to confirm its generalization capability, the model must meet predefined criteria in terms of R2,
%µE , %σE on the test split data. The comprehensive evaluation criteria are as follows: R2 ≤ 0.99,
%µE ,%σE ≤ 1%, and MaPE ≤ 2% for all standard cells across the CMOS/FinFET technology
nodes in each experiment. The best-performing model for a given standard cell under test is determined
based on its adherence to our composite test criteria. This selected model is then designated as the final
choice using an intelligent routine within our framework. These finalized models, established at each
technology node, are applicable in tasks such as estimating complex circuit performance and within
optimization engines. Further details are provided in Chapter 7.
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Table 4.3: The performance metrics of CMOS high-performance ML Delay models from 22nm and
16nm technology nodes (averaged across the training of all standard cells)

22nm 16nmML metrics/
model R2 MSE MAE µE σE R2 MSE MAE µE σE

LR 0.907 1.01E-17 1.39E-09 0.080 5.609 0.89 6.44E-17 1.17E-08 0.248 3.573

RR 0.907 5.77E-18 1.49E-09 0.080 5.610 0.89 5.45E-17 3.48E-09 0.248 3.574

LAR 0.907 8.52E-17 1.96E-09 0.080 5.611 0.89 1.78E-16 8.15E-09 0.248 3.575

ER 0.907 2.26E-16 2.20E-09 0.078 5.747 0.89 2.95E-16 5.81E-09 0.246 3.715

PR2 0.994 8.43E-17 2.09E-09 0.014 0.351 0.992 2.43E-16 1.99E-08 0.241 0.228

PR3 1 1.90E-16 2.24E-09 0.006 0.029 0.999 3.99E-16 1.15E-08 0.004 0.018

SVR 0.995 3.08E-16 5.33E-09 0.167 1.060 0.994 1.22E-15 2.76E-08 0.071 0.811

DT 0.713 2.04E-09 2.07E-05 0.237 14.441 0.706 1.34E-09 1.10E-05 1.056 16.437

RF 0.987 3.80E-16 2.10E-09 0.015 3.326 0.987 5.08E-16 8.99E-09 0.080 3.343

ET 0.958 1.49E-16 1.78E-09 0.396 5.377 0.959 1.61E-16 5.40E-09 0.457 5.755

GBM 0.994 2.68E-16 2.25E-09 0.003 1.342 0.993 5.73E-16 2.03E-08 0.073 1.149

XGB 0.996 1.13E-16 1.94E-09 0.019 0.947 0.996 1.88E-16 1.13E-08 0.013 0.864

LGBM 0.996 3.58E-16 5.42E-09 0.153 1.372 0.996 1.50E-15 2.73E-08 0.103 1.145

MLP 1 3.00E-16 6.10E-09 0.051 0.049 0.999 1.20E-15 6.66E-08 0.032 0.100

DNN 1 8.02E-17 2.95E-09 0.039 0.036 1 2.40E-16 1.51E-08 0.175 0.020

We have developed a total of 15 ML models for 22 digital standard cells. These cells encompass the
commonly used digital logic gates in various circuit implementations. Our framework is designed to
accommodate any number of such gates along similar lines easily.

The digital standard cells are categorized as follows:

• One input gates→ buffer (BUF), inverter (NOT)

• Two input gates→ nand (NAND2), nor (NOR2), and (AND2), or (OR2), ex-or (XOR2), ex-nor
(XNOR2)

• Three input gates→ nand (NAND3), nor (NOR3), and (AND3), or (OR3), 2x1 multiplexer
(MUX21), full adder (FA), and-or-invert (AOI12)

• Four input gates→ nand (NAND4), nor (NOR4), and (AND4), or (OR4), and-or-invert (AOI22,
AOI31, AOI112)

Tables 4.2, 4.3 present the training metrics for CMOS delay spanning from the 45nm to 16nm technol-
ogy nodes. The training outcomes for FinFET leakage and delay across the 16nm to 7nm technology
nodes are presented in tables 4.4, 4.5. These results were derived by averaging the metrics across all the
standard cells. From these training outcomes, we identified four models (ET, LGBM, MLP(ANN), and
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Figure 4.5: Comparison of prediction results of our (*) best performing (LGBM) model with
State-of-the-art works on Full adder standard cell over 500 random PVT conditions (a) Leakage (45nm

CMOS) (b) Delay (10nm FinFET)

DNN) that demonstrated equally strong performance in estimating both leakage and delay. Tables 4.6,
4.7, 4.8, 4.9, 4.10, 4.11 present the metrics of our test criteria along with the MaPE for 500 unseen test
samples (MPEU ) across all standard cells, focusing on FinFET leakage and delay estimations from
the 16nm to 7nm technology nodes. The best-performing model, the final model, is denoted in bold for
each standard cell. In FinFET delay training and testing, LGBM consistently exhibits the highest per-
formance. On the other hand, when it comes to leakage estimation, DNN takes the lead. Nevertheless,
in a few instances with specific standard cells, MLP and LGBM occasionally surpass DNN. ET seldom
outperforms LGBM, MLP, and DNN, particularly when predicting unseen test cases.

4.3.2 Comparison with the State-of-the-art Works

In Fig. 4.5, we compare the state-of-the-art surrogate models with those developed within our frame-
work. The surrogate ML models proposed in previous works [34,35,37,44] were trained using the Full
adder dataset, with each work employing specific numbers of training samples and hyperparameters.
While [34, 35, 37] focused on leakage estimation, [44] concentrated on power and delay estimation.
However, we trained our model to address both leakage and delay for a comprehensive comparison.

From the observations in Fig. 4.5, it becomes apparent that the LGBM model, representing the best
performance from our framework, accurately predicts both delay and leakage, aligning closely with
SPICE MC simulations. Conversely, the SVM [35] and RF [37] models exhibit significant deviations
from actual values, while PR [44] shows errors mainly at the distribution peaks. The ANN model [34]
agrees well with the LGBM model. It’s crucial to note that [44] proposed modeling delay and power
without considering process variations, a significant factor affecting circuit performance in an IC.

Regarding runtime, our LGBM-based model offers a 10,000-fold acceleration compared to SPICE,
whereas [34] and [35] report speed-ups of 100x and 17x, respectively, over SPICE. A detailed compar-
ison of literature works with our modeling framework is provided in Table 6.2.
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Our framework provides precise PVT-aware surrogate models with substantial computational accel-
eration across various technology nodes. It adeptly models both power and delay with equal proficiency
across CMOS and FinFET technologies. Additionally, it excels in sensitivity analysis, efficiently identi-
fying dominant parameters, as discussed in Chapter 5, ensuring high accuracy while minimizing training
time.
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4.4 PVT-aware Analog Circuit Surrogate Modeling

Analog circuit design encounters distinctive hurdles stemming from process variations, temperature
fluctuations, and environmental factors. Traditional approaches involve manual adjustments, extensive
fine-tuning post-fabrication, and large design buffers to accommodate uncertainties. However, these
methods lose efficacy as technology progresses towards smaller scales, with design errors increasingly
causing functional issues. Furthermore, specification issues like changes, inaccuracies, or incomplete-
ness are common among leading ASIC manufacturers. Surrogate machine-learning models offer a swift
and efficient solution, modeling analog circuits under diverse conditions, addressing modern VLSI chal-
lenges through rapid prototyping, reliability assessment, functional verification, and fault detection,
thereby enhancing energy efficiency and power conservation. Moreover, such modeling significantly
reduces the need for calibration and time, paving the way for self-adaptive analog design and minimiz-
ing ASIC failures while improving IC yield.

By harnessing the power of AI/ML, self-adaptive analog circuits can autonomously adjust their oper-
ating parameters and configurations to optimize performance across varying conditions. This paradigm
shift offers numerous benefits, including increased resilience, real-time adaptability, and heightened
power efficiency. Details regarding the implementation of self-adaptive analog designs are outlined in
Chapter 8.

In our analog circuit modeling strategy, regression algorithms were employed, as described in the
discussion on digital modeling and classification techniques [83,84], circuit’s operating mode by analyz-
ing variational data across different corners. This analysis considers design, process, and environmental
variables, aiming to categorize the circuit’s operating corner based on real-time PVT data acquired ran-
domly using onboard sensors. This enables the examination of necessary inputs for control circuitry,
allowing it to self-adjust to typical specifications. Regression models are developed to forecast circuit
outcomes, considering fluctuations in circuit-specific design characteristics alongside PVT variations.

4.4.1 Training and Building Analog Surrogate Models

Creating a reliable surrogate model relies on achieving PVT-aware statistical behavior across diverse
corners of AMS circuits. This model streamlines the rapid generation of solutions within compressed
time frames. Our approach involved leveraging a SPICE simulator on AMS circuits developed within
the ADE to build training datasets, as detailed in Section 3.5. This entailed conducting DC, AC, and tran-
sient simulations to calculate multiple PVT-aware standard performance metrics across various corners
over a wide temperature range from −40◦C to 125◦C and ±10% from the operating voltage. Careful
selection of each circuit’s input parameter (PVT) range ensured proper functionality of all MOSFETs
within their intended operational states.

Here, we present the results of modeling different AMS circuits using ML algorithms. The datasets
were generated within the ADE environment of Cadence, utilizing designated PDKs for 180nm, 65nm,
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and 28nm technologies. Each model was constructed by partitioning the datasets into 90% for training
and 10% for testing.

The choice between a classification or regression algorithm depends on the complex interplay be-
tween circuit specifications and Process Monitor (PMON)s. These process variations, obtained from the
PDK, are captured as frequency monitors known as PMONs, with ring oscillators employed to gener-
ate PMON frequencies. PMON frequency ranges typically vary from kHz to MHz, depending on the
circuit’s characteristics. However, circuits with PMON ranges that significantly overlap across different
corners pose challenges in developing precise regression algorithms and adapting them accordingly. In
such cases, classification algorithms are used to initially identify the corner corresponding to a given
PVT condition. Subsequently, a LUT based approach is employed to generate digital control codes for
circuit tuning. This approach facilitates accurate corner identification and enables efficient adjustment
of circuit parameters to optimize performance under varying operating conditions.

4.4.1.1 Regression algorithms

We utilize regression algorithms to unravel the intricate relationships between inputs and outputs in
analog VLSI circuits, crafting precise predictive models while tackling challenges related to variability
and performance enhancement. Techniques like MPR and the application of gradient boosting regressors
such as LGBM and XGBM are instrumental in calibrating AMS circuits. Through experimentation, we
have determined that third to seventh-order polynomials yield the most accurate circuit models. Similar
to digital circuit modeling, we employ a Gradient Descent optimizer with the L2 norm serving as the
loss function. Learning rates for LGBM and XGBM fall within the range of 0.01 to 0.15, while the
bagging fraction varies from 0.5 to 1. Additionally, parameters like maximum depth (2 to 5), number
of leaves (10 to 100), and the utilization of 1000 to 2000 estimators are fine-tuned using the Gradient
Boosted Regression Trees (GBRT) optimizer. The algorithms iterate until predefined stopping criteria
are met, determined by the goodness of fit, with an R2 surpassing 0.95 indicating accurate modeling.
Furthermore, model validation is conducted by evaluating the MaPE, which is expected to remain below
1%.

4.4.1.2 Classification algorithms

Employing classification algorithms proves effective in modeling the behavior of AMS circuits
across diverse corners. We utilize logistic regression, SVM, DT, LGBM, and KNN to classify the
PVT-aware behavior of analog circuits at different corners. Additionally, identifying suitable corners
amidst process variability assists in selecting appropriate digital codes from the control circuitry, which
are then applied to the analog circuit to optimize their performance to typical levels. This systematic
approach ensures the consistent performance of analog circuits under varying PVT conditions. The
hyper-parameters utilized for the classification of analog circuits are detailed below.
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• Multi-class classification is performed using logistic regression with a regularization parameter
of 0.1 and the ’Lbfgs’ solver until achieving the desired accuracy (r2 > 0.95) [85].

• The DT classifier utilizes the ’Gini’ criterion for splitting, with a maximum depth ranging from 3
to 5, a minimum sample split of 2 to 5, and a maximum leaf node count of 10 to 25.

• The SVM classifier [86] is set with a regularization parameter (C) of 50 and gamma set to 1,
influencing the decision boundary shape. Employing the radial basis function (rbf) kernel enables
capturing nonlinear decision boundaries effectively in high-dimensional spaces. The chosen value
of C emphasizes strong regularization to mitigate over-fitting risks.

• Utilizing scikit-learn, we deploy a KNN classifier with three neighbors and the ball tree algorithm.
The parameter p is set to 2, representing the L2 norm. Additionally, we explore the number of
jobs from 2 to 8 to optimize computational efficiency. The ’ball tree’ algorithm aids in identifying
nearest neighbors in high-dimensional spaces by organizing the training data into a tree structure.

• The LGBM classifier is configured with Gradient Boosting Decision Trees (GBDT) with a learn-
ing rate of 0.015, controlling the step size in weight updating during each boosting iteration to
balance convergence speed and accuracy. With 1000 estimators, the classifier iteratively im-
proves predictive capability by combining multiple weak learners. Furthermore, a maximum of
200 leaves per tree is allowed, balancing model complexity and generalization ability.

We utilized accuracy, recall, and F1 score metrics to assess the classification accuracy.

• Accuracy Score: This metric evaluates the proportion of correctly classified instances among all
instances. It is given by,

Accuracy Score =
Number of correct predictions
Total number of predictions

(4.7)

• Precision Score: Precision measures the accuracy of positive predictions by dividing the number
of true positive predictions by the total number of positive class predictions. It indicates the
relevance of selected instances.

• F1 Score: The F1 score represents the harmonic mean of precision and recall. It offers a balanced
measure of precision and recall, particularly valuable when dealing with imbalanced classes. It is
given by,

F1Score =
2 ∗ (precision ∗ recall)
precision+ recall

(4.8)

4.4.2 Results and Discussion

We constructed surrogate models for commonly utilized analog circuit macros, including the current
reference generator, voltage reference generator, free-running oscillator, low-dropout regulator, trans-
mission driver, phase-locked loop, band gap reference, low noise amplifier, and mixer. This section
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Table 4.12: Training metrics of Current reference generator modeling

Training dataset with 45996 samples

Regressor R2 RMSE MAE µE σE
Training time

(Sec)

LGBM 0.996 0.017 0.008 0.004 0.359 2.584

XGBM 0.993 0.021 0.010 0.006 0.251 0.262

Poly3 0.910 0.075 0.052 -0.007 3.319 1.768

elaborates on the outcomes of training these circuits. We utilized three regression algorithms — LGBM,
XGBM, and polynomial regression ranging from degrees 3 to 7 to develop regression models and iden-
tify the best-performing algorithm based on R2, %µE and %σE values derived from the trained models.
The inputs for modeling AMS circuits encompass process, supply voltage, and temperature variations,
while the outputs consist of the corresponding specifications.

4.4.2.1 Current Reference Generator

We designed a current reference circuit as described in [87], engineered using a standard 180nm
CMOS process. The core functional circuit is optimized for the specific requirements of the current
reference, which depend on the characteristics and variations of the MOS transistors and resistor R
across PVT conditions. The dataset includes four inputs representing variations in supply voltage (Sup-
ply(V)), temperature (Temp(C)), PMON frequencies (Freq1(Hz), and Freq2(Hz)), which influence the
output current (Current µA). The statistical correlation among their distributions in the dataset is illus-
trated in Fig. 4.6. We employed three regression techniques for circuit modeling: LGBM, XGBM, and
polynomial regression of degree 7. The training metrics are outlined in Table 4.12. The most effective
algorithm is LGBM, achieving an R2 value of 0.997. Additionally, MaPE and %σE between actual
simulations from Cadence ADE and model predictions are both less than 1%, affirming the model’s
capability in accurately representing the CUT.

Histograms displaying the distributions of actual simulations and predictions made by the LGBM
model for the 10% test subset of their corresponding training datasets are depicted in Fig. 4.7.

4.4.2.2 Low Drop-out Regulator (LDO)

We investigated another commonly utilized standard analog circuit, namely LDO [88] as illustrated
in Fig. 4.8, developed in 65nm technology. The crucial performance criterion for an LDO is its ability
to maintain a stable output voltage despite variations in load and line conditions. The input, denoted as
Vref , represents the reference voltage obtained from a low-power bandgap reference (BGR). The dataset
includes variations in Vref , temperature, supply voltage, process variations (represented through three
process frequencies), and induced fluctuations in load current and opamp output. In this context, the
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Figure 4.6: Correlation plot of current reference generator

Figure 4.7: Comparison of the ML models’ predicted output current Vs SPICE simulations of current
reference generator

pass transistor assumes a significant role as the primary component, employed in self-adaptive design
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Figure 4.8: A low-dropout regulator circuit

for control code generation. Fig. 4.9 illustrates the statistical correlation among different parameters in
the dataset, where PMON1, PMON2, and PMON3 represent process monitors.

Table 4.13 shows the training outcomes obtained with varying numbers of training samples. The
metrics indicate satisfactory performance for all three algorithms. Histograms in Figs. 4.10 and 4.11
illustrate the distribution of machine learning predictions compared to actual simulations from Cadence
ADE. Analysis of the regressor metrics distributions reveals that the LGBM model outperforms the
others, emerging as the top-performing model.

4.4.2.3 A Free-running Clock Generator (Osc)

We examined a free-running RC oscillator [89] for our modeling purposes. This oscillator consists
of two sub-blocks: a bias generator and an oscillator core, illustrated in Fig. 4.12. The biasing generator
provides the necessary gate bias for the NMOS [M4] in conjunction with the oscillator core. While the
biasing generator is designed to offer a supply-independent current reference in theory, there inevitably
exists some influence from fluctuations in power supply and temperature. Therefore, the dataset for the
oscillator covers a range of variations in biasing voltages, NMOS resistance bias, and PVT conditions.
Process monitors PMON1 to PMON3 are included. The performance of the developed LGBM, XGBM,
and MPR models in accurately predicting the oscillator frequency while considering all necessary design
and PVT variations is depicted in Fig. 4.15. The scatter plot showcasing different PVT conditions is
presented in Fig. 4.13. Remarkably, predictions from all three models closely align with the actual
simulations. The associated metrics, comparing the predicted distributions for the test split, are tabulated
in Table 4.14, where all models demonstrate %Error in mean, variance, and standard deviations < 1%.
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Table 4.13: Training metrics of Low dropout regulator modeling

5000 samples of training data

Voltage(V)/
ML metrics

Actual
simulations

LGBM XGB PR

Model
predictions %Error

Model
predictions %Error

Model
predictions %Error

Mean 1.8532 1.8532 2.90E-07 1.8532 0.0004 1.8532 7.19E-14

Variance 0.0011 0.0011 0.1948 0.0010 0.6207 0.0011 0.1923

Standard deviation 1.15E-06 1.15E-06 0.0974 1.08E-06 3.1535 1.15E-06 0.0962

7500 samples of training data

Mean 1.8530 1.85304 0.0000 1.8530 0.0003 1.8530 8.39E-13

Variance 0.0027 0.0027 0.1370 0.0027 2.9299 0.0027 0.1368

Standard deviation 7.27E-06 7.26E-06 0.0685 7.06E-06 1.4758 7.26E-06 0.0684

14000 samples of training data

Mean 1.8525 1.8525 1.13E-07 1.8525 0.0001 1.8525 1.02E-06

Variance 0.0047 0.0047 0.0694 0.0047 0.6276 0.0047 0.0872

Standard deviation 2.23E-05 2.22E-05 0.0347 2.21E-05 0.3143 2.22E-05 0.0436

Table 4.14: Training metrics of Free running oscillator modeling

4750 samples of training data

Clock frequency(Hz)/
ML metrics

Actual
simulations

LGBM XGB PR

Model
predictions %Error

Model
predictions %Error

Model
predictions %Error

Mean 45918.10 45918.10 0.00 45918.10 9.94E-06 45918.10 0.00

Variance 5071.31 5065.97 0.21 5065.97 0.21 5065.97 0.21

Standard deviation 2.57E+07 2.57E+07 0.11 2.57E+07 0.11 2.57E+07 0.11

8500 samples of training data

Mean 48751.10 48751.20 2.10E-05 48751.10 -1.49E-05 48751.10 3.91E-05

Variance 6263.39 6259.73 0.12 6259.73 0.12 6259.72 0.12

Standard deviation 3.92E+07 3.92E+07 0.06 3.92E+07 0.06 3.92E+07 0.06

68



Figure 4.9: Correlation plot of LDO

Figure 4.10: Comparison of the ML models’ predicted output voltage Vs SPICE simulations of LDO
with 5000 training samples
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Figure 4.11: Scatter plot of SPICE simulations and ML models’ predicted output voltage of LDO with
5000 training samples

Figure 4.12: A free-running oscillator circuit

Figure 4.13: Scatter plot of SPICE (actual) and ML models’ predicted clock frequency of oscillator
with 4750 training samples

4.4.2.4 Transmitter Driver (TxDr)

We designed a differential voltage mode driver TxDr [90] operating at a data rate of 6 Gb/s (gigabits
per second), engineered to propel high-speed differential signals with a voltage mode driver configu-
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Figure 4.14: Correlation plot of oscillator

Figure 4.15: Comparison of ML model’s predicted oscillator frequency Vs SPICE (actual) simulations
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(a) (b)

Figure 4.16: Comparison of accuracy on TxDr outputs - SPICE (actual) and ML models’ predictions
(a) Pull up resistance (b) Pull down resistance

Table 4.15: Training metrics of Transmitter Driver modeling

Training dataset with 16473 samples

Regressor R2 RMSE MAE µE σE
Training time

(Sec)

Pull up resistance modeling metrics

LGBM 0.999 0.133 0.097 0.004 0.123 2.770

XGBM 0.999 0.163 0.097 0.006 0.154 0.662

Poly3 1.000 0.029 0.022 0.002 0.026 0.060

Pull down resistance modeling metrics

LGBM 0.999 0.175 0.125 0.005 0.187 2.520

XGBM 0.999 0.234 0.120 0.003 0.222 0.870

Poly3 1.000 0.033 0.025 0.002 0.034 0.098

ration. This setup boasts reduced current consumption, occupies less area, and offers superior noise
immunity compared to current mode drivers. Additionally, it features independent control of the pre-
emphasis level. The capability to adjust pre-emphasis levels independently facilitates optimizing signal
integrity and compensating for channel losses. To capture process variations in CMOS and resistors, we
employed two process monitors (’PMON CMOS res’ and ’PMON res’). Fig. 4.17 illustrates that these
two PMONs are highly correlated, as are the pull-up and pull-down resistors. Such high correlation
between the PMONs and resistors suggests that one of them suffices for modeling the impact of PVT.
Consequently, we utilized variations in ’PMON CMOS res’, supply, and temperature to model the pull-
up and pull-down resistors separately, as depicted in Fig. 4.16. Both models proved accurate, leading to
the utilization of pull-up resistance predictions for self-adaptation at a later stage. Table 4.15 illustrates
that polynomial regression with a degree of 3 exhibits an advantage over gradient boosting models.
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Figure 4.17: Correlation plot of TxDr

We have additionally created classification models to discern the operational corner of the TxDr
concerning variations in PVT. The training samples across five corners - ’SS’, ’FF’, ’TT’, ’SF’, ’FS’
are generated and applied as imput to the classifiers. We conducted experiments with five classification
algorithms: Logistic regression, DT, SVM, KNN and LGBM with their accuracy scores post-training
depicted in Fig. 4.18. The accuracy of SVM, KNN and LGBM is recorded as 100%. The prediction
accuracy is also visualized thorough confusion matrix in Fig. 4.19. The predicted and actual corners are
exactly matching for 330 unseen test cases.

4.4.2.5 Band-gap Reference (BGR)

We configure a compact self-adaptive BGR with sub-threshold biased MOS devices capable of oper-
ating at a reduced power supply voltage level as low as 0.6V while meeting precision and system-level
integration requirements [91]. A significant challenge in BGR design is ensuring temperature stability,
thereby guaranteeing that the reference voltage remains consistent across a broad range of temperatures.
Tracking process variation is crucial in BGR design, a task that can be accomplished using the existing
process monitor module of the Silicon On Chip (SOC).
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Figure 4.18: Classification models’ accuracy scores on training TxDr

Figure 4.19: Confusion matrix of TxDr showing 100% accuracy

The dependency of the output voltage (Vbgr(V)) on the supply voltage (Vdd(V)) and the dominant
PMON frequency (’PMON RING CMOS’) is illustrated in Fig. 4.20. Temperature dependency is
observed in internal parameters of the BGR, such as ’PTAT current VR’ and ’Vinp VR(V)’ of the voltage
reference. ’Vinp VR(V)’ and ’Pbias VR(V)’ refer to the supply voltage and bias voltage of the voltage
reference, respectively. ’VR ref tran(V)’ signifies the transient behavior or response of the reference
voltage (VR ref) generated by the BGR circuit, indicating how rapidly the reference voltage settles to
its steady-state value when subjected to changes in operating or load conditions. ’PTAT current VR’
represents the Proportional-To-Absolute-Temperature (PTAT) current generated by the BGR circuit, a
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Figure 4.20: Correlation plot of bandgap reference

crucial element in band-gap reference circuits utilized to generate a temperature-dependent voltage that
compensates for variations in the base-emitter voltage of bipolar junction transistors.

The modeling metrics and comparisons with actual simulations from ADE are presented in Table
4.16 and Figs. 4.21 and 4.22, respectively. A comprehensive analysis of the results indicates that
LGBM comparatively outperforms other models.

Moreover, we developed classification models to identify the operational corner of the BGR con-
cerning variations in PVT. The classifier accuracy scores post-training are depicted in Fig. 4.23, where
SVM, KNN, and LGBM achieve an accuracy, recall and F1 score of 100%, surpassing the logistic
regressor and DT.

4.4.2.6 Phase-Locked Loop (PLL)

The Phase-Locked Loop functions as a closed-loop system with negative feedback, designed to
track the input signal. It serves the purpose of generating high-frequency signals from low voltage-
to-frequency Vth signals while maintaining the same phase as the input signal. Stability is paramount
in PLL operation due to its negative feedback mechanism. Variations in internal parameters induced
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Figure 4.21: Comparison of ML model’s predicted BGR output voltage w.r.t SPICE simulations

Table 4.16: Training metrics of Bandgap reference modeling

Training dataset with 18150 samples

Regressor R2 RMSE MAE µE σE
Training time

(Sec)

LGBM 0.9987 0.0006 0.0004 0.0016 0.3973 3.3461

XGBM 0.9975 0.0008 0.0005 0.0048 0.6588 1.1725

Poly3 0.9873 0.0018 0.0010 0.0143 -0.2264 0.0668

Figure 4.22: Scatter plot of SPICE and ML models’ predicted output voltage of BGR

by PVT can lead to instability. Maintaining stability in the PLL loop becomes challenging as the Kvco
(Voltage-Controlled Oscillator Gain) varies significantly, typically ranging from 2 to 3 times with re-
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Figure 4.23: Classification accuracy scores on training BGR

(a) (b)

Figure 4.24: Phase-locked loop (a) Circuit diagram (b) Internal diagram

spect to PVT variations. Transistor M1 is responsible for generating the Id current.

Id =
1

2
U0Cox(V ctrl − Vth)

2 (4.9)

Open loop transfer function of type II 3rd order PLL is given by,

H(s) =
Icp

2πCps

Kvco

s

1

N
(4.10)

where, Icp denotes the charge pump current, Cp represents the low-pass filter capacitor, Kvco stands for
the Voltage-Controlled Oscillator (VCO) gain, and N represents the divider ratio. Due to variations in
Vth and mobility with temperature, Kvco undergoes significant fluctuations, leading to stability issues.
To mitigate Kvco variation, we utilize a trained PVT-aware ML model. We determine the PMON
frequencies, which capture process variations, using the ring oscillator structure illustrated in Fig. 4.25.
Similar ring oscillators are employed for all circuits to capture the process variations.
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Figure 4.25: Ring Oscillator structure to derive PMON frequencies

(a) (b)

(c)

Figure 4.26: Distributions of PLL (a) PMON frequencies (b) Frequency (c) Kvco across different
corners

We observed a significant overlap between the distributions of PLL frequency and Kvco across var-
ious corners, including PMON frequencies, as depicted in Fig. 4.26. Therefore, for our modeling, and
particularly for self-adaptation, it becomes crucial to precisely identify the operational corner of the
circuit under given PVT conditions. To achieve this, we employed classifiers such as Logistic Regres-
sion, DT, SVM, KNN and LGBM. All these algorithms accurately predict the PLL corners under PVT
conditions, achieving a perfect accuracy score of 1.0 (100%). The accuracy scores of these classifiers
are illustrated in Fig. 4.27.
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Figure 4.27: Classification accuracy scores on training PLL

4.4.2.7 Low-noise Amplifier (LNA)

Low-noise amplifiers play a vital role in front-end receivers, although their performance can be sus-
ceptible to temperature variations. In this case study, ML-based self-adaptive biasing techniques are
utilized to dynamically adjust the LNA’s biasing conditions based on real-time temperature measure-
ments. The gain of LNAs is a critical specification directly impacting their performance across various
applications. Its reliance on MOSFET characteristics and sensitivity to PVT variations emphasize the
significance of calibration, ensuring reliable and consistent operation across diverse conditions and en-
vironments. The resistive feedback topology in LNA design plays a pivotal role in noise reduction. This
configuration, incorporating resistors in the feedback loop, contributes to minimizing unwanted noise in
the amplifier. The resistive feedback technique aids in achieving a balance between signal amplification
and noise figure, ensuring that the amplifier introduces as little noise as possible to the incoming signal.

The addition of a second stage common-source amplifier is aimed at increasing gain and maintaining
an output impedance of 50 Ohms. The LNA [92], as depicted in Fig. 4.28, is designed using a resistive
feedback technique, replacing inductors with resistors to achieve a smaller die area, better linearity, and
higher gain. The designed LNA achieves a gain greater than 14dB, a noise figure (NF) less than 3.21dB,
and a linearity of -13dB for the required frequency of 1GHz.

The modeling metrics of the LNA are presented in Table 4.17. Both LGBM and XGBM demonstrate
superior performance compared to MPR (degree 3), with an R2 value close to 1.

4.4.2.8 High-Speed Low-noise Amplifier (HSLNA)

The high-speed LNA (Fig. 4.31) is designed in a 28nm technology node, boasting a gain of 18dB, a
NF of 3dB, and a third-order intercept point (IIP3) of -15dB, functioning at 25GHz. The power dissi-
pation of the design is 7.8mW. Both gain and NF are adjusted concurrently, ensuring that IIP3 exceeds
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Figure 4.28: Low noise amplifier circuit

Table 4.17: Training metrics of Low noise amplifier modeling

Training dataset with 2000 samples

Regressor R2 RMSE MAE µE σE
Training time

(Sec)

LGBM 0.9999 0.0172 0.0106 0.0003 0.1936 0.2225

XGBM 1.0000 0.0104 0.0031 0.0096 0.2950 0.2438

Poly3 0.9992 0.0492 0.0370 -0.0118 0.2156 0.0095

Figure 4.29: Comparison of ML models’ predicted output gain of LNA Vs SPICE (actual) simulations

-20dB. The supply voltage is set at 0.9V. The common-source configuration with source degeneration is
adopted in the design to enhance matching and impedance transformation capabilities. This configura-
tion is advantageous for interfacing with subsequent stages in the RF signal chain, facilitating efficient
signal transfer and minimizing losses. Regarding biasing, the performance of the LNA is significantly
influenced by the bias current flowing through it. To achieve optimal performance across various con-
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Figure 4.30: Scatter plot of SPICE and ML models’ predicted output gain of LNA

ditions, a beta-multiplier circuit is employed to determine the bias current. Tuning the resistor of the
beta-multiplier circuit is crucial to attain optimal results and ensure the desired performance of the LNA.

The heatmap (Fig. 4.32) illustrates a strong correlation between PMON and the output specifications,
namely gain and noise figure. There is a notable correlation between supply voltage and temperature
with the output specifications. Gain and noise margin exhibit a strong inverse linear relationship. During
training, all three regression models developed consistently demonstrate performance in modeling gain
and noise figure, with polynomial regression holding a slight advantage.

4.4.2.9 Mixer

The Mixer plays a critical role in radio frequency receivers as a frequency translator, commonly
referred to as a heterodyne. Operating as a nonlinear circuit, it performs signal multiplication essen-
tial for generating both sum and difference frequencies, facilitating up and down conversion. With its
versatility, the mixer finds applications in phase detection, modulation, frequency multiplication, and
product detection, establishing itself as a fundamental component within the radio frequency receiver’s
front end. Parameters such as conversion gain, integrated noise margin, third-order input intercept point
(IIP3), and input-referred 1dB compression point are crucial for evaluating its performance. The Mixer
is designed in a 65nm technology node, boasting an IIP3 of -3.263 dBm and a P1dBm of -13.18 dBm at
an input frequency of 900 MHz, following the design principles outlined in [93].

The training results and metrics of the mixer outputs are depicted in Fig. 4.34 and Table 4.18,
respectively. As per modeling results, LGBM outperforms XGBM and MPR.

In all of these CUTs, the temperature range spans from −40◦C to 125◦C, with the supply voltage
varying within±10% from the nominal value and process variation extending up to 80% from the typical
value. For analog circuit modeling, we explored various regression techniques and advocate the use of
MPR and LGBM for efficiently calibrating analog circuits susceptible to PVT effects. Both algorithms
accurately capture dependencies within analog circuits, with LGBM consistently demonstrating robust
performance.
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Figure 4.31: High-Speed low noise amplifier circuit

Figure 4.32: Correlation plot of high-speed LNA
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(a) (b)

Figure 4.33: Distribution plot of high-speed LNA - Actual and ML predictions (a) Gain(dB) (b) Noise
figure(dB)

Table 4.18: Training metrics of Mixer modeling

Training dataset with 2000 samples

Regressor R2 RMSE MAE µE σE
Training time

(Sec)

Conversion Gain(dB)

LGBM 0.9985 0.0630 0.0467 0.1558 0.6348 0.6058

XGBM 0.9886 0.1757 0.0558 0.1727 1.3296 0.2074

Poly3 0.9970 0.0906 0.0651 -0.0109 0.1758 0.0113

Noise Figure(dB)

LGBM 0.9997 0.0153 0.0104 -0.0065 0.4462 0.5835

XGBM 0.9990 0.0280 0.0144 0.0151 0.2771 0.4319

Poly3 0.9993 0.0227 0.0161 0.0051 0.1459 0.0305

Input Referred 1dB Compression Point(dBm)

LGBM 0.9989 0.0409 0.0252 0.0070 0.1003 0.5844

XGBM 0.9983 0.0494 0.0295 0.0113 0.1700 0.1933

Poly3 0.9924 0.1058 0.0754 -0.0505 -0.3076 0.0149

Input Referred IP3 Point(dBm)

LGBM 0.9994 0.0319 0.0241 0.0203 0.2345 0.9329

XGBM 0.9988 0.0429 0.0284 0.1012 0.4600 0.5138

Poly3 0.9728 0.2071 0.1763 -0.0321 4.2215 0.0605
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Table 4.19: Training metrics of High-speed low noise amplifier modeling

Training dataset with 2000 samples

Regressor R2 RMSE MAE µE σE
Training time

(Sec)

Gain(dB)

LGBM 0.9995 0.0259 0.0188 0.0043 0.2473 0.2737

XGBM 0.9995 0.0259 0.0214 0.0005 0.4272 0.6978

Poly3 0.9998 0.0143 0.0109 0.0056 0.2559 0.0221

Noise Figure(dB)

LGBM 0.9996 0.0093 0.0071 -0.0140 0.3752 0.5601

XGBM 0.9991 0.0139 0.0108 -0.0814 0.6100 1.0943

Poly3 0.9998 0.0065 0.0050 -0.0047 0.2028 0.0200

Among classifiers, SVM and LGBM consistently perform well, achieving an accuracy score of 1.0
(100%).

4.4.3 Unified Deep-Learning Neural Network Architecture (U-DNN)

Machine Learning surrogate models have been increasingly replacing the traditional simulators due
to their computational advantages. NNs have attracted significant attention as a prominent AI/ML mod-
eling approach across various AMS applications [47]. They excel in capturing complex circuit behaviors
and providing precise models for analog circuit performances’ inherently high-dimensional, non-linear
nature. This has led many researchers to investigate NN implementations for tasks such as analog cir-
cuit modeling, design sizing, and optimization [49–54]. The exploration has extended to NN-based
transfer learning techniques, which enable reduced data requirements and the utilization of knowledge
from pre-existing models [94,95]. However, the researchers have typically developed distinct NN archi-
tectures for modeling the output performances of each specific circuit under examination. This means
that circuit-specific NN architectures have been the norm. While there have been instances of apply-
ing pre-trained NNs to various topologies of the same circuit [95], their suitability for entirely new
and diverse applications remains uncertain, i.e, these surrogate models are typically tailored to spe-
cific circuits, requiring significant design efforts and lacking re-usability across different designs and
topologies. Consequently, this necessitates a non-trivial design space exploration process to determine
a suitable NN architecture for each new class of AMS circuits. Our unified neural network architecture
addresses these challenges by offering versatility and computational efficiency. Our approach provides
a streamlined and effective method for modeling a wide range of analog circuits susceptible to PVT
variations. We conduct experimental trials on various analog circuits to demonstrate the applicability of
our proposed model across different CMOS technology nodes (180nm, 65nm, and 28nm).
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(a) (b)

(c) (d)

Figure 4.34: Performance comparison of SPICE (actual) and ML predictions (a) Conversion gain(dB)
(b) Integrated noise figure(dB) (c) Input Referred 1dB Compression Point(dBm) (d) Input Referred IP3

Point(dBm)

4.4.3.1 Key Idea

The core concept originates from critically examining the surrogate model generation techniques in
contemporary literature. These models exhibit limitations in their capacity to adapt the established NN
architecture from one circuit to simulate another. Rather than leveraging existing NN structures, they
require the construction of a surrogate model from scratch for each individual design. Consequently,
this approach mandates an exhaustive exploration of hyperparameters across a vast design space to
determine an optimal NN configuration for each application, consuming substantial time in parameter
search before model training. Furthermore, if the desired level of accuracy is not achieved, this cycle
necessitates repetition.

Driven by this significant drawback, we introduce the U-DNN approach, which addresses the need
for versatility, re-usability, and generality in AMS circuit characterization. Proficient in capturing PVT-
sensitive behavior across diverse circuits and technology nodes, the U-DNN simplifies the identification
of optimal neural network architectures, streamlining characterization processes. This saves valuable
time and reduces the effort required in model development. Thorough evaluations demonstrate its effi-
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(a) (b)

Figure 4.35: (a) Comparison of the conventional neural network designing with the Unified
Deep-Learning Neural Network methodology (b) Workflow

cacy in modeling parametric variability, minimizing characterization costs while maintaining reliability.
The designed U-DNN demonstrates remarkable performance even with a modest training dataset, typ-
ically starting with as few as 500 samples. Moreover, the U-DNN’s seamless integration into existing
frameworks ensures its broad applicability in analog circuit modeling without performance compromise.
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Figure 4.36: Training results of U-DNN model with different hidden layers

4.4.3.2 Unified Deep-Learning Neural Network Architecture Design

The traditional process of designing a NN typically involves stages such as preprocessing, model
development, training, and validation. This cycle must be repeated for each AMS circuit. While these
circuit-specific NNs can provide high accuracy for a particular circuit, they come at the expense of
increased design time, resources, and expertise needed for their development and maintenance. This
approach may not always be the most efficient or practical, especially in scenarios involving multi-
ple circuits or evolving design requirements. This lack of reusability can lead to duplicated efforts in
surrogate model development.

Our U-DNN architecture models multiple AMS circuits to address these challenges (Fig. 4.35(a)).
This approach offers a more efficient, adaptable, and cost-effective method for surrogate modeling com-
pared to designing separate NNs for each circuit. We specifically considered three AMS circuits (Design
Circuits under Modeling (DCM)s), namely a two-stage Opamp [96], a voltage regulator [97], and a low
noise amplifier [92], as the basis for designing our U-DNN (Table 4.20). These circuits operate in
different regions and across two distinct CMOS technology nodes (180nm and 65nm), with different
output specifications and unique relationships with PVT. Our objective is to create a deep neural net-
work architecture (including the number of hidden layers, neuron count in each layer, learning rate,
suitable optimizer, etc.) capable of effectively training these diverse variability-aware circuits, resulting
in a generalized architecture capable of modeling a wide range of AMS circuits. The aim is to balance
precision and generalization while utilizing minimal training data.

The U-DNN approach, as illustrated in Fig. 4.35(b), begins by creating PVT-aware statistical
datasets for AMS circuits operating in different corners, each initially containing 500 training sam-
ples, 90% employed for training (within that 10% allocated for validation) and 10% reserved for testing.
Hyper-parameter search starts with a NN structure featuring two hidden layers. However, manual trials
reveal a lack of generalization across all configurations, as depicted in Fig. 4.36 (with neuron counts
of 6x12 and 12x24), prompting the exploration of a novel architecture through optimization algorithms.
ReLU and ADAM optimizers were employed in U-DNN while training the DCMs, with MSE for val-
idation data and R2 and %σE for test data. The best performance is observed with five hidden layers,
with a learning rate of 0.0001. Training data consists of 500 samples in all the experiments except for
* marked case, which includes 2000 samples. We employed BO to efficiently identify globally optimal
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Table 4.20: The details of AMS circuits considered for U-DNN design and testing and U-DNN training
results after modeling each circuit

AMS Circuit Details (PVT analysis at all corners (SS, TT, FF, SF, FS) across a wide temperature range −40◦C to 125◦C) U-DNN Training Results

Circuit Tech.
Node (nm)

Supply
Range (V)

Training
Samples Output Specifications R2 σE %MaPE

U-DNN
Training time (Secs)

AMS Circuits for U-DNN Architecture Design (DMCs)

Two Stage Opamp [96] 180 1 - 1.4 500 Gain(dB), Phase margin(◦), GBW(Hz) 0.974 0.006 0.235 33.56

Voltage Reference* [97] 180 1 - 1.2 2000 Reference voltage (mV), Power(nW) 0.914 0.448 0.482 104.51

Low Noise Amplifier (LNA) 65 1 - 1.8 500 Gain(dB) 0.999 0.448 0.173 38.48

AMS Test Circuits for Validating U-DNN Architecture (DUTs)

Mixer [93] 65 1.62 - 1.98 500
Gain(dB), Noise figure(dB),

Compression point(dBm), IP3(dBm)
0.998 0.287 0.072 79.52

Current Reference*(CR) 180 0.8 - 2 2000
Ref. Current(nA), Power(nW),

Temperature Coefficient(ppm/◦C)
0.954 0.381 1.248 96.36

Band-gap Reference*(BGR)* [91] 28 0.8 - 0.99 4000 Reference Voltage (V) 0.952 0.986 0.575 122.19

High speed LNA*(HSLNA) 28 0.81 - 0.99 500 Gain(dB), Noise figure(dB) 0.999 0.067 0.015 27.42

Tx Driver (TxDr) [90] 28 0.9 - 1.1 500 nMOS Res.(Ω) , pMOS Res.(Ω) 0.999 0.377 0.982 78.42

The circuits marked with * operate in sub-threshold saturation region and the rest in saturation region.

Figure 4.37: Trained U-DNN model predictions for the DUTs in comparison with SPICE values

hyperparameters, particularly in complex and noisy data scenarios [78]. BO was executed on each DCM
for parameter search, ranging from 32 to 256 neurons per hidden layer and learning rates from 0.0001
to 0.1 with batch sizes of 32 and 64. Utilizing BO and varying hidden layers and training data size, we
devised the U-DNN architecture with five hidden layers (248x140x32x248x248 neurons) and a learning
rate of 0.0001. This network takes PVT as inputs and produces customizable outputs based on circuit
requirements.

4.4.3.3 Results and Discussion

The U-DNN architecture aims to achieve adaptability to circuit variations, conserve resources, en-
hance generalization, and streamline model management and integration, leading to significant time
savings in the overall design process. Experimental validation was conducted on five Design Under Test
(DUT)s, including test circuits from the 28nm technology node that were not part of the training process.
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The U-DNN demonstrated effectiveness in accurately modeling highly variable process-aware circuits
at the CMOS 28nm node, showcasing its versatility and robustness. Evaluation metrics, including R2,
MSE, MaPE [12], along with %µE and %σE (the percentage error between the mean and standard
deviation of the predicted circuit performances and SPICE values) were used to assess performance.
The finalized U-DNN architecture meets validation criteria set as R2 > 0.95, %µE %σE , MaPE below
1%, confirming its effectiveness and suitability for our application. Training results and ML metrics
are summarized in Table 4.20. On average, U-DNN’s training time is 50 seconds for 500 simulation
samples and 100 seconds for above 2000 samples.

The U-DNN’s prediction results of all circuits’ output specifications, for 20 unseen test cases after
verifying the training and testing accuracy as per the set test criteria were compared against SPICE
simulations and plotted in Fig. 4.37. Notably, all the DUTs report highly accurate training and validation
performance, with a MaPE of less than ≤ 1%. Nonetheless, the current reference circuit reports the
most significant discrepancy, reaching 3% in the prediction of the temperature coefficient. On average,
across all of its output specifications, the MaPE results in 1.2%. The network architecture facilitates
rapid convergence in the optimization process, particularly in instances of discrepancies, serving as an
advantageous starting point for adjustments.

We employed Tensorflow and Keras in Python 3.9 to implement the U-DNN [98]. All the experi-
ments were conducted on an i5 core CPU with 8GB of RAM.

The U-DNN architecture, developed through extensive exploration of circuit behavior under PVT
variations across three distinct DCMs, offers versatility in effectively training a wide range of AMS
circuits. This results in significant savings in computational time and resources. Comparison with con-
ventional approaches reveals that while it takes 7,896 seconds using BO to choose deep NN architecture
for three DCMs (Fig. 4.35(a)), our U-DNN architecture represents a one-time design effort applicable
across diverse applications, streamlining the modeling process and reducing computational overhead.
Moreover, we made efforts to minimize SPICE characterization costs. While a single SPICE simulation
takes roughly 3 seconds, generating a set of 500 samples requires 1500 seconds. In contrast, leveraging
the U-DNN approach entails approximately 2500 seconds for U-DNN architecture modeling (a one-
time effort) and an average training time of 50-100 seconds for each circuit. Predictions for test inputs
can be obtained in less than 5-10 seconds, showcasing the time-saving advantages of employing AI/ML
surrogate modeling in various scenarios. In traditional analog circuit characterization, this cost escalates
proportionally with the augmentation of MC simulations to meet design specifications.

4.5 Conclusion

This chapter outlines the training framework, procedures, and experimental results of PVT-aware
digital and analog circuits. Regression algorithms achieve R2 values of up to 0.999, indicating approxi-
mately 100% accuracy in training digital standard cells across multiple technology nodes of CMOS and
FinFET technologies. AMS circuit characterization across various designs demonstrates consistent per-
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formance, with an R2 exceeding 0.95 and µE , σE < 1% for the test split data, validating the accuracy of
the trained regression models. Similarly, classifier algorithms such as SVM, KNN and LGBM achieve
100% accuracy in predicting the operating corners of BGR, TxDr and PLL for given PVT conditions.

Remarkably, the knowledge encapsulated in the U-DNN architecture, acquired from modeling di-
verse AMS circuits in CMOS 180nm and 65nm technologies, translates into accurate modeling of AMS
circuits in CMOS 28nm. Our proposed architecture serves as a versatile platform for modeling vari-
ous AMS circuits for different applications, significantly reducing the extensive design exploration time
typically required to select appropriate NN structures.
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Chapter 5

Sensitivity Analysis and Dominant Parameter Extraction

Designing advanced, complex circuits and systems entails the concurrent measurement and estima-
tion of a multitude of parameters using fundamental circuit equations, a task that is known for its high
level of complexity. Sensitivity Analysis (SA) is a valuable tool for discerning which parameters exert
the most substantial influence on circuit performance. ML is gaining traction as a valuable tool for mod-
eling and optimizing intricate digital and analog circuits. In high-dimensional complex systems, where
conventional parameter estimation methods face challenges like computational complexity, uncertainty,
or accuracy, ML techniques prove especially beneficial. Another approach involves modeling com-
plex systems using continuous-time and spatial partial differential equations to capture the underlying
spatio-temporal dynamics. However, this method becomes increasingly time-consuming and intricate
with higher design complexity. Integrating machine learning in circuit sensitivity analysis enables engi-
neers to gain deeper insights into the impact of parameters, streamline the design process, and achieve
more robust and optimized circuit designs in a shorter time.

Dominant Component Analysis (DCA) is a ML technique for sensitivity analysis, dimensionality
reduction, and feature extraction. It is particularly valuable when dealing with high-dimensional data,
helping to identify and characterize the most significant components or features within a dataset. DCA
specifically focuses on identifying and extracting the dominant components, making it especially valu-
able for applications where understanding the most influential factors is crucial. DCA assists in identi-
fying the primary features that impact the circuit output specifications amidst shifting requirements or
variations in PVT conditions.

5.1 Sensitivity Analysis using Feature Selection

Feature selection seeks to extract a concise subset of pertinent features from the initial set, eliminat-
ing irrelevant, duplicative, or noisy attributes based on feature redundancy and relevance. This process
typically results in reduced over-fitting, improved learning performance, enhanced accuracy, reduced
computational overhead, and greater model interpretability [99]. Irrelevant features lack a statistical
relationship with other attributes and don’t contribute to accuracy. Redundant features, while weakly
relevant, can be replaced without affecting the target distribution. Strongly relevant features are crucial
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for an optimal feature subset and cannot be removed without impacting the prediction accuracy. Rel-
evance and redundancy are assessed differently: relevance is determined for individual features, while
redundancy is evaluated in multivariate cases.

Further, a regression model that is accurately specified with the most effective set of features provides
unbiased regression coefficients and precise predictions of the response variable. Conversely, an over-
specified regression equation that includes the entire feature set can result in problems like inflated
standard errors for the regression coefficients and increased computation time [100]. Moreover, the
issue of multicollinearity arises when two or more independent variables in a regression are highly
correlated, meaning they do not offer distinct or independent information to the regression analysis.

Feature selection strategies in supervised learning fall into three main categories: filter-based, wrapper-
based, and embedded approaches.

• Filter-Based Approach: This method evaluates features based on their intrinsic attributes like cor-
relation or statistical properties. It doesn’t consider a specific learning algorithm’s performance.
It is computationally efficient and can be used with various learning algorithms. Examples in-
clude Information Gain (IG), Pearson coefficient, chi-square test, Fisher’s score, and missing
value ratio. Information gain and person coefficient are best suited for regression and the rest for
classification.

• Wrapper-Based Approach: This approach involves methods like forward selection, backward
selection, and recursive feature elimination, which are sequential processes. They assess the
impact of each feature on model performance and iteratively add or eliminate features based on
their contribution.

• Embedded Approach: This approach integrates feature selection with the learning algorithm. It
includes techniques like regularization, which adds a penalty term to the loss function to prevent
overfitting. Regularization methods like Lasso (L1) and Ridge (L2) can be combined with feature
selection to emphasize the most relevant features.

Additionally, using ML algorithms such as RF, NNs with grid/random search, or optimization wrappers
is an effective technique under the embedded category. However, this process can be time-consuming
and provides a specific solution for each modeling algorithm.

In the context of dominant parameter analysis and selection for regression algorithms, we provide
generalized solutions to extract dominant parameters by analyzing the circuit simulation data using
statistical measures like Pearson coefficient and IG.

5.1.1 Pearson Coefficient

The strength of the relationship between two quantitative variables is assessed using a correlation
coefficient, commonly known as Pearson’s correlation coefficient, denoted by r (equation 5.1) [12]. This
is the most prevalent method for gauging a linear correlation. The correlation coefficient is measured
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Figure 5.1: Correlation coefficients of FinFET full adder logic cell’s leakage and delay

on a continuum ranging from +1 to 0 to –1. A perfect correlation between two variables is indicated by
either +1 or -1. When one variable increases alongside the other, the correlation is positive; conversely,
when one decreases while the other increases, it is negative. A complete absence of correlation is
denoted by 0. r serves as a descriptive statistic that encapsulates the characteristics of a dataset and
promptly assesses a significant relationship between two variables.

r =

∑n
i=1(ui − ū)(vi − v̄)√∑n
i=1(ui − ū)2(vi − v̄)2

(5.1)

Here, n denotes the number of samples in the dataset, ui and vi represent individual sample points of
two variables, and ū and v̄ denote the means of the sample variables, respectively. Fig 5.1illustrates
a series of correlations within the FinFET leakage and delay of a full adder logic cell. The Pearson
coefficient value, r is shown on top of each graph. A robust positive correlation is observed between
supply and leakage, dielectric oxide thickness, and delay. Conversely, a negative correlation can be
discerned between channel doping concentration and leakage. It’s worth noting that both delay and
leakage exhibit non-linear variations with respect to gate length. The Pearson coefficient of population,
r ≈ 0 for all the relationships, indicates a rejection of the null hypothesis, H0. r in addition to r specifies
the significance of a relationship w.r.t a confidence interval α, typically chosen as 0.05. If r < α, then
the relationship is significant; otherwise, it is not.

We employ the Pearson coefficient to assess the relationships between input variables and target
specifications derived from simulated data of digital/analog circuits. Given that the data distributions
are predominantly quantitative, typically adhering to a normal distribution and cleared of any outliers, r
emerges as the most appropriate statistical gauge. It assists in pinpointing the primary parameters that
impact the target specifications and screening out extraneous input data in a very quick time. Further-
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more, it facilitates examining both linear and non-linear relationships among the variables. Depending
on the level of non-linearity and the quantity of such variables, this information guides the selection
of appropriate machine learning algorithms. The knowledge and understanding of dominant parame-
ters aid in making imminent design trade-offs while building complex circuits from the standard cells.
It also benefits design verification and its dependencies in scrutinizing the patterns in simulated data.
Sensitivity analysis and dominant parameter extraction are feasible through statistical and visual data
exploration methods.

5.1.2 Information Gain

Information gain/entropy is a metric used to gauge diversity among several methods. It quantifies the
uncertainty in predicting the value of a target variable, serving as a measure of impurity. Information
Gain, on the other hand, assesses the reduction in entropy (uncertainty) for a particular feature when
the data is split based on that characteristic [101]. This metric is commonly employed in decision tree
algorithms and offers valuable insights. A higher IG associated with a feature indicates its greater utility
in the decision-making process. Less probable events convey more information, while more probable
events convey less information. Entropy measures the information contained in a random variable’s
probability distribution. A distribution with a bias towards certain events has low entropy, whereas a
distribution where events are equally likely exhibits higher entropy.

Consider a discrete random variable y with two potential outcomes. The binary entropy function,
denoted as H and expressed in the base 2 logarithm (also known as the Shannon unit), is defined as
follows:

H(y) = Plog2(P ) (5.2)

The conditional entropy of two events, X and Y , given that X takes on the value x, is defined as:

H(y|x) = −
∑
xϵX

∑
yϵY

pxy(x, y)log2py(y|x) (5.3)

As the degree of impurity diminishes, a class distribution tends to become skewed. In scenarios where
the class distribution is uniform, both entropy and misclassification error peak. The minimum entropy
is attained when all samples belong to a single class.

Mutual information quantifies the information gained about one random variable when the value
of another random variable is known. It is computed between two variables and indicates how much
uncertainty is reduced in one variable given knowledge of the other variable. Mathematically, it can be
defined as:

I(X;Y ) = H(X)−H(X|Y ) (5.4)

It is always non-negative, with higher values indicating a stronger relationship between the variables.
A value of zero implies independence. Mutual information is a versatile correlation measure showing
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Figure 5.2: Analysis of process parameters’ impact on leakage power in 16nm CMOS Full adder using
heatmaps

the dependence between random variables. It is also applied in ML algorithms, such as Independent
Component Analysis (ICA), which identifies statistically independent components in a dataset.

5.2 Sensitivity Analysis on Digital Circuits

We conducted a sensitivity analysis on statistical simulation data spanning various datasets across the
technology nodes. This was accomplished through exploratory data analysis as outlined in [99]. The aim
is to discern the influence of PVT parameters on leakage and delay in digital circuits. This approach
provides rapid insights into the pivotal factors that shape the electrical behavior of the circuit under
examination. It is also helpful in understanding the inter-relationships among the PVT distributions.

The key parameters were identified based on the values of Pearson’s coefficient (r), which are visu-
ally represented on the heatmaps. Heatmaps illustrate the statistical dependence between two parame-
ters, primarily a linear correlation. We exemplify this sensitivity analysis using the full adder dataset.
However, the observations presented encompass all datasets (refer to Fig. 5.2 for the heatmap illustrat-
ing 16nm FinFET leakage, and Fig. 5.3 for the heatmap depicting 10nm FinFET delay). Additionally,
the influence of various processes is annotated in these figures.

After scrutinizing the heatmaps (correlation coefficients) across all the targeted FinFET technology
nodes, we have gathered the following insights:

1. The influence pattern of the process on leakage remains consistent from 16nm to 7nm FinFET
technology nodes.
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Figure 5.3: Analysis of process parameters’ impact on propagation delay in 16nm CMOS Full adder
using heatmaps

2. Gate length (lg) and Fin thickness (tfin) emerge as the most dominant factors in leakage estima-
tion.

3. Negligible variations in leakage are observed due to changes in Intrinsic conduction of channel
(ni0sub), Channel doping concentration (nbody), and Source/Drain doping concentration (nsd).
Therefore, these factors are considered non-dominant and are omitted from the leakage modeling
process.

4. The process influence pattern exhibits minor differences in delay as we transition from 16nm to
7nm technology nodes.

5. FinFET delay is primarily governed by capacitive load (cqload) and is further influenced by gate
length (lg), Fin thickness (tfin), and fin height (hfin) across all technology nodes.

6. SiO2 equivalent gate dielectric thickness has a greater impact on delays at 10nm and 7nm nodes
than the 16nm node.

7. The processes ni0sub, nbody, and nsd have a minimal impact on delay across all three nodes. As
a result, they are deemed non-dominant and are excluded from the delay modeling process.

8. Operating temperature and supply voltage have fundamentally a strong influence on leakage and
delay. Hence, they are considered the dominant parameters and are included for modeling.

A similar examination of CMOS process nodes led to the identification of Toxref and Xj as non-dominant
parameters for both leakage and delay. Consequently, we excluded them from the DNN training (in
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Figure 5.4: Impact of the non-dominant FinFET process parameters on circuit performances in 16nm
Full adder standard cell

Figure 5.5: Impact of the non-dominant CMOS process parameters on circuit performances in 16nm
Full adder standard cell

Chapter 6). To validate the accuracy of the proposed dominant parameter extraction, we conducted a
thorough analysis involving SPICE MC simulations for each PVT scenario under consideration, and the
impact of excluded non-dominant parameters is pictured in Figs 5.4, 5.5. The results of this analysis
perfectly align, affirming the reliability and quality of our sensitivity analysis.

These findings align with the simulation-driven analysis detailed in chapter 3, where we examined the
inter-relationships between PVT factors and their effects on leakage and delay. As a result, we affirm that
employing statistical analysis through the Pearson coefficient followed by heatmap visualization offers
a swift means to discern the influence of different input and design parameters on target specifications.
This approach aims to circumvent the need for laborious and time-consuming simulated experiments.

Another crucial aspect to address in sensitivity analysis is the presence of multicollinearity among
the parameters under examination. Multicollinearity arises when two or more input variables are highly
correlated with each other, rendering them unable to offer independent information in the construction
of a regression model [12]. Such variables can exert an undue influence on the regression model and
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Figure 5.6: Correlation plot of a low dropout regulator

may result in inflated standard errors for the regression coefficients and extended computation time.
After evaluating the Pearson coefficient values, we have confirmed no evidence of multicollinearity in
the leakage/delay simulations across FinFET nodes from 16nm to 7nm and CMOS nodes from 45nm to
16nm.

5.3 Dominant Parameter Extraction in Analog/Mixed/RF Circuits

The idea is to delve into an emerging data-driven paradigm, wherein historical design data and simu-
lation outcomes are utilized to train machine learning models. These models can subsequently pinpoint
crucial design components, forecast circuit behaviors, and offer valuable insights for design adaptation.
This paradigm shift not only accelerates the design process but also enhances the designer’s ability to
innovate by exploring unconventional design alternatives that might have been overlooked using tradi-
tional methods. An analog designer often has a crucial interest in comprehending how various internal
electrical parameters affect the output of a circuit, which helps in making necessary design trade-offs.
By employing statistical and visual data exploration methods on simulation results, it becomes feasible
to extract the most influential parameters of an analog circuit and perform predictive analysis using ma-
chine learning techniques. We investigate the interrelationships among input and output parameters and
their collinearity by calculating correlation coefficients (equ. 5.1).

In complex analog circuits with multiple degrees of freedom, employing machine learning inference
on dominant parameters proves more effective than human design analysis. Based on these insights,
the analog designer can proceed with the necessary design changes that address the identified dominant
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Figure 5.7: Pair plot of a current reference generator

parameter. For high-complexity circuits, dimensionality reduction techniques such as principal com-
ponent analysis and auto-encoder [12] can reduce computational complexity. However, in our study,
dimensionality reduction does not significantly impact the demonstrated circuits.

Visualizing the data through scatter plots, pair plots [11], and other techniques aids in understanding
the patterns, complex structures, and relationships within the identified dominant parameters. Conse-
quently, it facilitates the identification of suitable machine-learning algorithms to model such data.

The dominant parameter extraction using a heat map is illustrated by analyzing simulated data of
an LDO [88]. The correlation matrix depicted in Fig. 5.6 highlights that variations in temperature and
manufacturing process play a pivotal role in influencing the output voltage (Vout) of the LDO. Addi-
tionally, it reveals a notable negative linear correlation between the frequencies (f2, f3) of the process
monitor (PMON) and temperature. The PMON frequencies are design representations for simulating
manufacturing process variations in this context.

A useful method for visualizing the relationships among input parameters and their impact on output
specifications is by employing a pair plot. Fig. 5.7 showing a pair plot of current reference design
proposed in [87] serves as an illustrative example of this approach.

Furthermore, parameter selection holds paramount importance in analog circuit design, necessitat-
ing thorough analysis, simulation, and validation to ensure optimal operation under varying conditions.
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Figure 5.8: Strong arm latch based comparator [102]

Figure 5.9: Dominant parameter extraction using Information gain

By meticulously choosing and optimizing these parameters, designers can attain desired specifications,
meet performance targets, and enhance the overall reliability and stability of analog circuits. For in-
stance, the selection of appropriate transistor sizes and biasing currents can directly influence ampli-
fiers’ gain, bandwidth, and linearity. Similarly, the choice of suitable resistor and capacitor values can
determine the circuit’s frequency response, filtering characteristics, and noise performance. Hence, to
identify the most influential parameter(s) in an analog circuit, we also utilize IG. An illustration of
extracting dominant parameters from a strong arm comparator (Fig. 5.8) is provided here.

The strong arm latch-based comparator assumes a crucial role in high-speed Analog-to-digital con-
verter (ADC)s and other precision analog circuits, pivotal for achieving accurate and efficient conver-
sion. The selection of transistor widths directly impacts the comparator’s performance, denoted as W1
to W5. Among these, W1 significantly influences the input offset voltage, crucial for ensuring ADC
accuracy. Meanwhile, W2 and W3 primarily affect the comparator’s speed and delay, essential for ap-
plications requiring high-speed operation. The switches (S1 to S4) in the comparator must pull their
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drain nodes to supply (VDD), ensuring proper functionality. W4’s width affects the comparator’s delay,
while W5’s width is vital for ensuring proper latch operation and reducing meta-stability, crucial for
reliable digital output. Additionally, W5’s width also affects the comparator’s power consumption. The
selection of dominant parameters is based on their effectiveness in impacting overall output parameters,
including delay, offset, power consumption, and meta-stability. The mapping of the choice of W1 to
W5 with respect to transistors M1 to M7 is as mentioned below.
W1←M1, M2
W2←M3, M4
W3←M5, M6
W4← S1, S2, S3, S4
W5←M7
Based on our analysis utilizing IG, W1 stands out as a dominant parameter, as variations in its width
notably impact all output specifications, scoring 2.509 compared to other design parameters (Fig. 5.9).
Therefore, the dominant design parameter W1 can be utilized to adjust the output specifications of a
strong arm latch-based comparator and further adapt to any variations in performance.

5.4 Conclusion

In summary, sensitivity analysis utilizing both Pearson coefficient and information gain emerges
as a potent methodology for comprehensively assessing the impact of design and PVT variations on
both digital and analog VLSI circuits. By employing the Pearson coefficient, we gain insights into the
linear relationship between input variations and circuit performance, facilitating targeted adjustments
to enhance robustness. Meanwhile, information gain provides a holistic view of the significance of
each parameter variation, aiding in effectively prioritizing mitigation strategies. By combining these
methodologies, designers attain a nuanced understanding of circuit performance across varied operating
conditions. This knowledge empowers informed decision-making, fostering the development of robust
VLSI designs capable of navigating PVT variations within the ever-evolving technological landscape.
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Chapter 6

Circuit Performance Estimation Using Transfer-Learning Approach

A significant limitation of traditional ML algorithms lies in their demanding training data require-
ments, posing challenges in domains like VLSI due to resource limitations, privacy considerations, and
the high cost of acquiring labeled data. To mitigate these challenges, we present a novel approach
for surrogate modeling of digital VLSI circuits using DNNs with a focus on Transfer Learning (TL).
TL enables the utilization of pre-trained models or knowledge from related tasks, effectively reducing
the necessity for extensive labeled data. Our methodology delves into the interdependencies within
CMOS/FinFET technologies across various nodes, facilitating precise estimations of PVT-aware circuit
performance at advanced process nodes. By leveraging TL, we significantly alleviate the substantial
data requirements typically associated with such modeling endeavors, thereby advancing the efficiency
and feasibility of VLSI circuit design and optimization.

6.1 Transfer Learning and its Application for Circuit Analysis

Transfer learning is an optimization technique harnessing knowledge obtained in one domain to
improve performance in a related domain. It proves especially beneficial when learning from limited
datasets, utilizing insights from pre-trained models of similar nature. Unlike many ML approaches,
which presuppose that training and test data share identical feature spaces and distributions, TL relaxes
this constraint. Consequently, the model in the target domain no longer requires full training from the
ground up, thereby mitigating the demand for extensive data. Moreover, TL yields a decrease in training
duration.

A domain, denoted as D is characterized by D = {χ, P (X)} , where χ represents the space of all
possible feature vectors, and P (X) stands for the marginal probability distribution. X constitutes a
learning sample with n features denoted as X = {x1, x2, ..., xn} ϵ χ, where xi signifies the ith feature
vector. Features serve as distinctive attributes upon which the output relies, and the feature space en-
compasses the potential values of a feature within a given dataset. In a specified domain D, a task T

is defined as T = {Y, f(.)}, where Y denotes the label space, and f(.) represents a predictive function
derived from pairs of feature vectors and labels {xi, yi}, with xi ϵ X, yi ϵ Y . With these domain and
task definitions, transfer learning is formally articulated below.
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Given a source domain, DS , along with its corresponding task, TS , as well as a target domain, DT ,
and a target task, TT , the primary aim of transfer learning is to facilitate the acquisition of the conditional
probability distribution P (YT |XT ) within DT , utilizing insights obtained from DS and TS , even in cases
where DS ̸= DT or TS ̸= TT [103, 104]. According to the TL definition, DS = {χS , P (XS)} and DT

= {χT , P (XT )}. The condition DS ̸= DT implies that χS ̸= χT and/or P (XS) ̸= P (XT ). In most
instances, the size of DS greatly surpasses that of DT , denoted as NS >> NT .

6.1.1 Transfer Learning for Digital Circuit Analysis

Transfer Learning emerges as a promising solution to face the data scarcity challenge of VLSI cir-
cuits at times of resource limitations. Our modeling paradigm enables the statistical characterization of
digital standard cells at a specific technology node (the source node) using DNNs. This knowledge can
then be efficiently transferred to other nodes utilizing the Transfer learning concept, incurring minimal
computational costs. Standard cell characterization becomes a one-time endeavor at the source tech-
nology node, backed by ample simulation data. Our proposed transfer learning approach significantly
diminishes the need for simulation data for standard cell characterization at related nodes, while still
ensuring accurate performance estimations. Furthermore, the modeling framework facilitates the esti-
mation of complex circuit performances without the necessity to individually model each circuit, thus
drastically reducing the computational simulations typically required by traditional tools. In this study,
we conduct a comprehensive analysis of transfer learning for leakage and delay estimation across var-
ious FinFET nodes (16nm, 10nm, and 7nm) and demonstrate its applicability to CMOS nodes (45nm,
32nm, 22nm, and 16nm). It is worth noting that our methodology is a versatile technique adaptable to
a wide range of nodes. The TL approach is analogous to the framework proposed in Chapter 4, with a
methodology to drastically reduce the data requirements as we move across the technology nodes.

6.2 Correlation in PVT-aware Behavior of Circuits across the Technol-
ogy Nodes

Conducting a comprehensive sensitivity analysis is crucial in comprehending the impact of PVT
variations on circuit performance across diverse technology nodes, while also revealing the inherent cor-
relations among them. The efficacy of transferred learning models hinges upon the meticulous selection
of input variables, particularly the PVT parameters. Hence, we identify the dominant and correlated
process parameters across various technology nodes within a specific technology, such as FinFET or
CMOS. This endeavor aims to bolster modeling accuracy and diminish the high-dimensional variation
space, thereby curtailing computational time, notably training time. Furthermore, it furnishes valu-
able insights into the pivotal factors influencing the electrical characteristics of the examined circuit.
Understanding these dominant parameters is instrumental in making informed design trade-offs when
constructing complex circuits from standard cells. Moreover, it facilitates design verification and its
associated dependencies by scrutinizing patterns in simulated data.

103



Table 6.1: Comparison of model performance with the dominant process

Standard
cell Parameter

All
process

Dominant
process

R2 σE R2 σE

2 input
And

Leakage 0.992 0.169 0.990 0.561

Delay 0.997 0.807 0.999 0.448

2x1
Multiplexer

Leakage 0.989 0.991 0.990 0.970

Delay 0.995 0.331 0.998 0.979

Full adder Leakage 0.998 0.982 0.992 0.512

Delay 0.997 0.200 0.994 0.224

Figure 6.1: Correlation in statistical leakage and delay distributions due to PVT variations across
different FinFET technology nodes

We conducted an extensive data exploration and statistical analysis to investigate the relationship be-
tween process variations and leakage as well as delay in digital standard cells. Correlation coefficients
between process variations and these parameters were estimated, with dominant parameters identified
based on Pearson’s coefficient values (r) and visually depicted using heatmaps. Detailed analysis is
provided in Chapter 5, specifically in sections 5.1.1 and 5.2. The examination revealed negligible vari-
ations in FinFET leakage and delay attributed to variations in Intrinsic conduction of channel (Ni0sub),
Channel doping concentration (Nbody), and Source/Drain doping concentration (Nsd). Similarly, an as-
sessment of CMOS process nodes led to the identification of gate oxide thickness (Toxref ) and junction
depth (Xj) as non-dominant parameters for both leakage and delay. Consequently, these factors were
deemed non-dominant and excluded from the modeling process. Subsequent investigation delved into
the ramifications of neglecting non-dominant processes during leakage and delay modeling. The results,
summarized in Table 6.1 for a sample of FinFET standard cells at the 16nm node, demonstrate a negli-
gible impact on accuracy when non-dominant processes are excluded from modeling. This observation
remains consistent across various technology nodes.
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We also illustrate the influence of PVT variations across different technology nodes in Fig. 6.1.
Here, * indicates the performance at nominal PVT. This visualization unveils correlations that facili-
tate generalized learning and knowledge transfer, thereby enhancing training efficiency and reducing
the necessity for extensive training data. Analyzing the variations from 16nm to 10nm to 7nm, we ob-
serve overlapping trends in leakage and power variability (Fig. 6.1), which offer valuable insights into
performance attributes and characteristics, consequently enhancing prediction accuracy. This indicates
that such insights can supplement data for upcoming nodes (e.g., 5nm and 3nm) even in the absence
of labeled performance data. Thus, we can gradually approach the problem as a zero-shot regression
learning task [105], employing a method that infers parameters for unobserved target nodes.

6.3 Transfer Learning Framework for Circuit Performance Estimation

In response to the challenge of devising a swift and precise surrogate modeling framework with sta-
tistical awareness for estimating circuit performance under the influence of PVT variations, we introduce
our Transfer Learning-enabled learning paradigm. The core aim of this proposed modeling approach
is to alleviate the computational load, reduce data prerequisites, and augment overall computational
efficiency. Our modeling paradigm is outlined in Fig 6.2. It involves three key steps:

1. Conduct a dominant parameter analysis on the datasets to identify the most influential and corre-
lated PVT factors affecting both leakage and delay across all technology nodes (as demonstrated
in section 6.2)

2. Accumulate a sufficient amount of simulation data to create precise PVT-aware models for each
standard cell at the source node and subsequently train DNNs.

3. Through transfer modeling, we conserve the observed PVT variant behavior in the cell at the
source node in the trained DNN structure and extend its application to another node (target node)
with a limited amount of simulation data.

We employ a hybrid framework that combines a comprehensive sensitivity analysis across different
nodes, the utilization of BO to construct DNNs for precise modeling of standard cells in the source
domain, and the effective transfer of knowledge to subsequent target nodes through meticulous fine-
tuning.

6.3.1 Dense Neural Networks for Statistical Circuit Performance Estimation

In this study, we leverage DNNs to construct efficient surrogate models for the prediction of leakage
and delay characteristics in standard cells, a crucial aspect in VLSI design. The architecture of these
neural networks is defined by fully connected layers, wherein connections are established between every
node in one layer and every other node in the subsequent layer. Our approach begins with a customized
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Figure 6.2: Transfer Learning modeling paradigm for the statistical digital circuit performance
estimation

Table 6.2: Comparison of digital cell modeling and performance metrics with the State-of-the-art
works

[79] [37] [106] [107] [108] [39] [44]
TL

model

Technology node (nm) 16 16 NS 45 - 7 22 45 - 14 180 - 7 45 - 7

Transistor type CMOS FinFET CMOS
CMOS/
FinFET

CMOS
CMOS/
FinFET

CMOS/
FinFET

CMOS/
FinFET

Performance measure
Leakage

&
total power

Leakage Power
Leakage

&
delay

Leakage
&

delay

Delay
&

slew time

Area, delay,
power &
energy

Leakage
&

delay

Sensitivity analysis
(dimensionality reduction)

Yes NA NA NA NA NA NA Yes

Sample count 50K NS NS 15K 50K NS NS
≤1.5K

(TL model)

Temperature variations (◦C) NA -55–125 NA -55–125 -55–125 NA NA -55–125

Voltage variations (V) NA 5% NA ±10% ±10% NA NA ±10%

Process variations Yes Yes NA Yes Yes Yes NA Yes

Modeling algorithm LR, PR PR, ANN RF GBM Residual Neural Networks (ResNN) BI PR
DNN
(TL)

Accuracy metric
R2

>0.99
R2

>0.99
R2

>0.99
R2

>0.99
R2

>0.99
Avg. error

4.3%
R2

>0.95
R2

>0.99

Speed improvement NS NS NS 10000x NA 15x NS 10000x

Knowledge transferability
to other technology nodes

NA NA NA NA NA Yes Yes Yes

*NS - not specified; NA - not applicable
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Figure 6.3: Performance of DNN model with different hidden layers and ADAM optimizer w.r.t SPICE
simulations of 16nm FinFET Full adder

initial hidden layer tailored to accommodate the input feature size, followed by a sequence of appropri-
ately sized hidden layers. The final layer incorporates an activation function that facilitates the mapping
of continuous output. Due to their layered architecture, DNNs proficiently encapsulate hierarchical
representations of features at various levels, thereby serving as a potent tool for capturing complex rela-
tionships within datasets. While widely recognized for their efficacy in classification tasks, DNNs also
demonstrate exceptional performance in modeling continuous data, a result of deliberate design and
experimentation [109]. We apply the DNNs to model the PVT-aware performance of digital circuits,
offering insights into their robustness and efficiency under varying PVT conditions.

In our work, the goal of the DNN with L layers is to minimize the loss function JR(θ) w.r.t the
parameters, θ over a set of network inputs D = {(x1, yi), ..., (xn, yn)}, where y1, ..., yn are labels in the
dataset and θ represents the parameter set {θ1, ..., θL}. The output of the DNN for a generic input x is
F (x; θ). Here, we chose L2norm (Mean squared error) as the loss function.

JR(θ) =
1

2
||y − F (x; θ)||2 (6.1)

Extensive experimentation was conducted on various configurations of DNNs modeling the digital
standard cells. Factors such as hidden layer architectures, activation functions, and fine-tuning hyperpa-
rameters were systematically varied to optimize both leakage and delay estimations while accommodat-
ing diverse PVT conditions. To attain globally optimized hyperparameters suitable for a wide array of
standard cells, BO was employed. Hyperparameter tuning, a critical aspect of network optimization, in-
volves searching for the most effective settings defining the network architecture, including parameters
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such as learning rate, epochs, and optimizer selection. The training process of the DNN with different
hidden layer configurations is shown in Fig. 6.3. MSE for validation data and R2 and %σE for test data
are employed for evaluation. Results indicate that a three-hidden-layer DNN, utilizing a learning rate of
E−4, incorporating L2 regularization and dropout layers, yielded optimal performance for both leakage
and delay estimation tasks. The Rectified Linear Unit (Relu) activation function coupled with the ADAM
optimizer was utilized. During the training process, BO suggested the optimal number of neurons within
each layer (ranging from 32 to 100 neurons), serving as an outer optimizer, while the ADAM optimizer
managed the inner optimization within the DNN, adjusting weights and biases throughout the fitting
process.

6.3.1.1 Bayesian Optimization

Bayesian optimization is one of the best approaches for globally optimizing black-box functions, f ,
denoted as f , which are often challenging to evaluate due to their computational expense. This method
adeptly handles stochastic noise in function assessments and operates as a sequential optimization al-
gorithm, iteratively seeking the optimal solution. The crux of the Bayesian optimization challenge
resembles that of finding the global minimum (or maximum) of an unknown function, f .

x∗ = argmin
x∈A

f(x) (6.2)

Where, A represents a d-dimensional simplex {xϵRd :
∑

i xi = 1} (typically d < 20), f(x) denotes the
objective function (L2norm in this case), and x∗ is the set of hyper-parameters that yield lowest value
of f(x).

BO utilizes GPR, a Bayesian statistical technique, to construct a probability model of the objective
function. This model, denoted as P (f), is characterized by a Gaussian process prior with mean µ and
covariance K, representing the underlying continuous function f . Mathematically, this prior belief can
be expressed as:

P (f) = GP (f ;µ,K) (6.3)

Where µ and K are the mean and covariance of the objective function, f . The model with this prior
belief is sequentially modified using Bayesian posterior updating for a maximum number of iterations to
produce an optimum solution [75]. Bayesian optimization chooses the optimal set of hyper-parameters
as it considers prior optimization history to evaluate the objective function in each iteration, resulting in
a quick and efficient solution.

6.3.2 Transfer Learning enabled Statistical Circuit Performance Estimation

Transfer learning emerges as a highly effective and efficient technique for enhancing circuit perfor-
mance estimation across diverse technology nodes, particularly in cases where ample simulated data
is scarce, costly, or time-intensive. In essence, TL extracts underlying features from abundant labeled
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Figure 6.4: Performance of sequential transfer learned models from 16nm→ 10nm→ 7nm

training data in one task (such as leakage/delay at a specific node) to bolster the generalization perfor-
mance in another related task (for instance, leakage/delay at the subsequent node). A transfer learning
task, defined by < DS , DT , TS , TT , ft(.) >, involves a deep learning network function fT (.) that em-
bodies a non-linear function within a deep learning framework [110]. The approach entails training the
base network in the source domain and transferring the network structure and parameters from selective
initial layers (L) to the target network. Further layers (T ) are then added to the target network, initial-
ized, and trained for the specific target task. Any errors are subsequently back-propagated from the new
task into the base model to fine-tune it for optimal performance in the new task. Our research focuses on
implementing knowledge transfer from a higher technology node (source node) to a lower node (target
node) via DNNs. This process involves incorporating selected top layers from the well-trained source
DNN, which remain fixed, and appending additional bottom layer(s) to construct a new neural network
trained on the target dataset, which typically contains a substantially smaller training sample. The cho-
sen top layers of the pre-trained source DNN encapsulate critical transferable information concerning
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PVT features relevant to the target node. We call this kind of modeling as Few Shot Learning (FSL) or
sequential transfer learning. The critical steps involved in our modeling paradigm are organized within
Algorithm 2.

Fine-tuning the transferred layers within the target DNN is crucial to ensure effective adjustment
when necessary. Bayesian optimization is also employed to fine-tune the transferred network, with the
entire process, including hyperparameter tuning and fine-tuning, being automated within the transfer
learning framework. This entails the option to freeze either the upper or lower network layers or unfreeze
the entire network for re-training if the specified test criteria (outlined in Section 6.5.1) are not satisfied.
The evaluation process relies on comprehensive test criteria to determine the optimal DNN model that
yields accurate leakage/delay predictions in the transferred or target nodes. The fine-tuning process
consists of four phases, as outlined in Table 6.3. Phase 1 precedes any fine-tuning, while phases 2 to
4 involve fine-tuning using Bayesian optimization. In Phase 2, the transferred top layers remain frozen
while only the bottom layers are fine-tuned to ascertain appropriate hyperparameters. Phase 3 maintains
the frozen bottom layers from Phase 2 while fine-tuning only the top layers. Phase 4 involves fine-
tuning all layers in the network using a very low learning rate. These fine-tuning phases are executed
sequentially based on the accuracy achieved in each phase, corresponding to Cases 1 to 4 in Fig. 6.4.
Here, Case 1 to Case 4 corresponds to the fine-tuning adapted via Bayesian optimization over the layers.
(Case 1: Freezing top and bottom layers, Case 2: Fine-tuning bottom layer(s), Case 3: Fine-tuning top
layer(s), Case 4: Fine-tuning all layers). The most effective model selected from these cases for each
standard cell is chosen for performance evaluation or potential further transfer learning. The complete
process of transfer learning and fine-tuning is automated using Python.

In summary, the proposed modeling paradigm unfolds in three distinct stages. The initial stage
focuses on crafting proficient DNN models at the source node, exemplified by 16nm FinFET. The sub-
sequent stage involves transferring knowledge from the source node to the subsequent node, such as
10nm, and subsequently evaluating its performance following automated hyperparameter tuning. The
ultimate stage revolves around fine-tuning the transferred model.

6.4 Transfer Learning Framework for Performance Estimation at Fu-
ture Nodes

Observing the statistical correlation in FinFET nodes due to PVT variations (as depicted in Fig.
6.1) suggests a promising avenue for extending this understanding to future nodes through a learning
network, potentially circumventing the dependency on simulation data. While it is recognized that
forthcoming nodes, such as 5nm and 3nm, may introduce additional influencing factors, the chosen PVT
parameters are meticulously selected from classical leakage and delay transistor equations, anticipated
to significantly impact upcoming nodes’ performance. This modeling approach is referred to as Zero
Shot Learning (ZSL).
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Algorithm 2 Proposed TL-Modeling algorithm

Require: DS and DT Source and Target datasets
Dominant Parameter Analysis
X ← {x1, ...xk}∀ PVT variations
Y ← target
for i← 1, k do

Compute ρ for Y |xi
if ρi > ρth in DS , DT then

Xe ← {xi} ▷ Effective feature set, Xe in DS , DT

end if
end for

DNN Training at the Source node
Require: Xe ← {x1, ...xm}∀ dominant PVT, Y

Define Search space for all hyper-parameters over JR(θ)
fs : Xe ← YS ▷ DNN model Ms to model YS |DS

Split DS as Dtrain, DV alidation, Dtest

Call BO [111] ∀ argmin
x∈X

fs(x) over Dtrain, DV alidation

Extract p∗ ▷ Optimal hyper-parameter set
Train Ms on Dtrain using p∗ [112]
Compute Es

∗|Ms on Dtest ▷ Test error set
if Es > Esc

∗ then ▷ Test error criteria
Hyper-parameter tuning
Re-train Ms

end if
Save Ms

Transfer Learning to the Target node
Require: Xe ∈ DT , YT ,Ms

ft : Xe ← YT ▷ Transferred model Mt to model YT |DT

L← frozen layers of Ms

T ← additional trainable layers of Mt

α← α|Ms ▷ α - Case 1 learning rate
Split DT as Dtrain, DV alidation, Dtest

Train Mt on Dtrain

Compute Es
∗|Mt on Dtest ▷ Test error set

if Es > Est
∗ then

Case 2: Call BO, extract P ∗, retrain Mt

Case 3: Fine-tune top layers of Mt using BO
Case 4: Fine-tune all layers of Mt using BO

end if
Save the best performing Mt

* - Es, Esc are a composite set of test errors, and its criteria - R2 > 0.95, {%µE ,%σE} ≤ 1% and MPE - Mean Percentage
Error for 500 unseen test samples ≤ 2%. Est is same as Esc except for 1% additional tolerance in error(s) at the target node.
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To validate ZSL, experiments were undertaken to forecast circuit performances at the 7nm node
utilizing knowledge derived from DNN and transferred models at 16nm and 10nm, respectively. The
trained DNN models of standard cells, utilized during knowledge transfer from 16nm to 10nm nodes
as discussed in the preceding sections, are leveraged for predicting PVT-aware leakage and delay at a
subsequent future node, specifically the 7nm node in this context, without the need for any training data
at the 7nm node. The results of ZSL are demonstrated in section 6.5.2.5.

6.5 Results and Discussion

We scrutinize and deliberate on the outcomes of DNN training and TL concerning circuit perfor-
mance estimation in this section. Throughout all experiments, the datasets were partitioned in an 80:20
ratio for training and testing, reserving 20% of the training data for validation purposes. We conducted
experiments with varying sizes of simulation data to ascertain the optimal training set at the source node.
was to identify a sufficient quantity of labeled data at the source node, as this significantly impacts the
effectiveness of knowledge transfer to other nodes. Notably, through experimentation, we observed that
the most favorable performance for delay estimation was achieved with 5,000 training samples and for
leakage with 15,000 samples (refer to Fig. 6.5). Furthermore, we selected a subset comprising 10% of
the training samples from the target node for the transfer learning process, validating its accuracy by
comparing it with the baseline performance (see Fig. 6.5). The results are demonstrated with 2-input
And probability density; 5K and 15K samples (Baseline models) show good performance for 16nm Fin-
FET delay and leakage modeling; 500 and 1.5K samples with transfer learning show good agreement
with baseline models (marked as 5K) at 10 and 7nm nodes. The best-performance set is {5K, 500}
for delay and {15K, 1.5K} for leakage while modeling at source and transferred nodes, respectively.
The necessity for a larger simulation dataset in leakage estimation can be attributed to the substantial
deviation from its mean, primarily due to PVT variations (refer to Fig. 3.9). All the experiments were
implemented in Python 3.9 utilizing the Keras and the Tensorflow deep learning library on a computer
with an i5 core CPU and 8GB of RAM.

We constructed DNN models for all 12 standard cells (listed in Table 6.3) at the specified source
node (say, 16nm in FinFET and 45nm in CMOS) to predict both leakage and delay, utilizing a mini-
mum of 5000 samples for each cell. While achieving such precise modeling in alternative technology
nodes is indeed possible, as evidenced by various existing surrogate methodologies, it often involves
resource-intensive simulations and lengthy training durations. In contrast, our approach leverages TL to
effectively train digital cells across diverse technology nodes.

6.5.1 Test Criteria for Performance Evaluation

For a comprehensive performance assessment, we have opted for a composite set of evaluation cri-
teria. This includes a combination of R2, %µE , %σE , and MaPE for the testing data as discussed in
Chapter 4. We utilize the MaPE for 500 unseen test samples (referred to as N ). Once the model success-
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Figure 6.5: Performance of DNN model with different samples w.r.t SPICE leakage/delay

fully meets the predefined test criteria on the test split data w.r.t R2, %µE , %σE , it undergoes further
testing in terms of MaPE for these 500 unseen test samples to confirm model’s generalization capability.

By carefully selecting and tuning hyperparameters, we attained an error of less than 1% error in
%µE , %σE and < 2% in MPE for estimations at the source node for all the 12 CMOS/FinFET standard
cells. This high level of accuracy was also achieved at the target node through TL facilitated by BO.
On average, %µE and %σE were both less than 1% and MaPE was below 3% at the target node with
only 10% of the samples compared to what was required at the source node. We showcase detailed
results about FinFET cells and illustrate the applicability of our proposed modeling framework to CMOS
technology.

6.5.2 Set of Experiments over Transfer Learning

We formulated five distinct experiments to evaluate the effectiveness of the proposed TL methodol-
ogy for estimating statistically variable circuit performance across different nodes, as outlined below.

6.5.2.1 Single-node Transfer

With a focus on accommodating the broad need for variability analysis, we aim to transfer knowl-
edge from higher to the consecutive lower/advanced technology nodes. The outcomes of experiments
conducted on FinFET 16nm to 10nm standard cells, as detailed in Table 6.3, exhibit highly favorable
accuracy in comparison to SPICE simulations. These results report an R2 greater than 0.99 and an av-
erage mean percentage error of 2% for the unseen test samples under consideration. Fig 6.6 provides a
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Figure 6.6: Performance of CMOS high-performance 45→ 32nm→ 22nm→ 16nm sequential
transfer learned models w.r.t SPICE (actual) data.

parallel investigation on CMOS technology nodes 45nm to 32nm. The distribution of actual simulations
of leakage and delay at 45nm from SPICE perfectly aligns with the DNN source model predictions, de-
liberately showcasing the efficacy of the devised neural network model. Furthermore, the overlapping
distributions of SPICE and the transfer-learned model’s leakage and delay at 32nm demonstrate the ac-
curacy of the transfer-learned network. Additionally, we evaluate the performance of baseline models
(trained with 5,000 and 15,000 samples) for FinFET alongside SPICE and transfer models in Fig. 6.5.
The results indicate a negligible level of error. In Fig 6.7, a comparison is presented between SPICE
simulation time and the training times of DNN and TL models, encompassing the prediction times of
the trained models. The trained DNN models require only 0.03 seconds to predict leakages and delays
for 5,000 random PVT conditions. This showcases the significant enhancement in computational speed
brought about by the proposed methodology.

In each experiment, we intentionally incorporated MaPE assessment using unseen samples at ev-
ery node. This was done to meticulously examine the designed models’ ability to generalize and to
scrutinize for any negative transfer effects thoroughly. The precise alignment between the predictions
and actual simulations strongly suggests the absence of negative transfer. This underscores that the
transfer-learned models have been finalized undergoing comprehensive experimentation.

6.5.2.2 Sequential Transfer

We introduce a method of sequential transfer learning for PVT-aware circuit analysis across multiple
technology nodes, exemplified by the 16nm to 10nm transferred model serving as the source node
to model 7nm leakage/delay (16nm → 10nm → 7nm). The numerical outcomes of this experiment,
conducted on FinFET nodes ranging from 16nm to 7nm, are detailed in Table 6.3. The most proficient
model among the four fine-tuning cases is highlighted in bold and designated as the final model. The
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Figure 6.7: Comparison of DNN training time with SPICE Simulation time on FinFET 10nm delay
with 5000 samples and TL training time with 500 samples.

results of the transfer-learned network exhibit an R2 greater than 0.98, with an average variation of %µE

and %σE less than 1% in all standard cell estimations, along with MaPE of 2%. These findings are in
alignment with the outcomes of single-node transfer. Notably, in sequential transfer, the training data
for the second node (7nm) has been reduced by an additional 10%, comprising only 400 samples for
delay and 1350 samples for leakage. The congruence between SPICE simulations and predictions from
the sequential transfer model at 7nm across all standard cells underscores the precision of the modeling
process (Fig. 6.4). The figure also provides comparative insights into the results of different fine-tuning
phases.

Similar experiments have been extended to CMOS technology. The results for CMOS 45nm →
32nm → 22nm → 16nm are illustrated using a 2x1 multiplexer cell (Fig. 6.6). Average R2 is 0.98,
%µE < 1%, %σE < 2% and 3% MaPE are the reported metrics. These results demonstrate accurate
estimations of leakage and delay, even at the transferred leaf nodes, i.e., FinFET 7nm and CMOS 16nm.
Our comprehensive experiments on CMOS/FinFET cells substantiate that sequential transfer learning
facilitates precise circuit estimation, further reducing training requirements.

6.5.2.3 Skip-node Transfer

We have also investigated TL towards a lower technology node, bypassing one intermediary node.
For instance, taking FinFET 16nm as the source node and 7nm as the target node, bypassing the 10nm
technology node. We name it Skip-node transfer. The findings reveal that, across all cells, the average
%σE amounts to 1% for delay and 3% for leakage, with MaPE values of 2% and 5% respectively. In
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Figure 6.8: Performance of skip-node transfer learning model from 16→ 7nm

Fig. 6.8, the SPICE and TL predictions for a 2-input AND cell are depicted. The ML metrics reported
are %σE is 1% and 3%; MaPE is 2% and 5% for delay and leakage, respectively, on an average across
all the cells. The outcomes demonstrate exceptional accuracy in delay estimation; however, there is a
slight deviation in leakage estimation.

6.5.2.4 Reverse-node Transfer

Additionally, we perform experiments on reverse-node transfer learning, addressing scenarios where
a trained model from a lower technology, such as 7nm, is employed to model the performance of a
higher technology node, for example, 10nm. The conducted experiments, visualized in Fig 6.9 (using
2-input AND cell), yield encouraging outcomes for the delay, achieving a %σE of approximately 1%,
though for leakage, it slightly increases to 3%.

6.5.2.5 Zero-shot Learning

We demonstrate the ZSL implementation for futuristic performance prediction on 7nm statistical
library cells. This relies solely on prior knowledge from the 10nm node (Case 3: 10nm → 7nm) and
both the 16nm and 10nm nodes (multi-node as in Case 4: 16nm → 10nm → 7nm). No training data
from the 7nm node is utilized in these estimations. The experimental outcomes are plotted in Fig. 6.10.
Comparisons are made with predictions from a DNN model trained with 5,000 data samples at the 7nm
node (Case 1: DNN model) and a TL (FSL) model constructed using only 500 data samples (Case 2:
10nm → 7nm, with limited training samples at 7nm). The close alignment of zero-shot (Cases 3 and 4),
transfer-learned (Case 2), and DNN (Case 1) leakage/delay predictions at the 7nm node with SPICE MC
simulations underscores the accuracy and potential of our ZSL model and tailored DNN architecture,
showcasing its modeling capabilities and enhanced generalization.
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Figure 6.9: Performance of sequential transfer learning models from lower to higher technology nodes
7nm→ 10nm→ 16nm

Figure 6.10: Performance of the leakage/delay of the proposed methodology for 7nm FinFET standard
cells w.r.t SPICE simulations for 500 unseen test cases
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6.6 Conclusion

This chapter presents a rapid, precise, and computationally efficient surrogate modeling approach
for characterizing PVT-aware digital circuit performance. The method involves developing highly ef-
ficient DNN models, which are subsequently utilized for TL across diverse technology nodes, thereby
minimizing data requirements. The proposed TL framework effectively integrates information from
dominant PVT conditions, the DNN at the source node, and a limited set of samples from the target
node. Additionally, in another configuration of ZSL, accurate modeling is achieved with zero model-
ing complexity and without the need for any simulation data, making it a valuable tool for preliminary
analysis of circuit variability for future nodes.

This facilitates the implementation of effective countermeasures to ensure reliable and optimal de-
signs. The experimental results, both before and after fine-tuning via Bayesian optimization, showcase
enhanced performance of the transfer-learned DNN. Through comprehensive demonstrations across
various digital standard cells, our proposed methodology achieves a speed-up of 104 times compared to
SPICE and up to 10x cost reduction compared to other state-of-the-art modeling techniques, all while
maintaining heightened model accuracy. Moreover, the estimated leakage and delay of complex cir-
cuits, obtained through the modeled standard cells, closely align with simulation results, eliminating the
need for additional computations. It’s worth emphasizing that the proposed framework functions as a
black-box model, indicating its equal applicability to modeling any set of performances at any desired
technology node, provided with associated performances for modeling.
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Table 6.3: Validation of sequential transfer learning framework with fine-tuning through Bayesian
Optimization for each standard cell

Standard
cell Performance 16nm Fine-Tuned 10nm 7nm

R2 %µE %σE MPE Upper
layer

Lower
layer R2 %µE %σE MPE R2 %µE %σE MPE

Inverter

Leakage

0.993 0.503 0.127 1.475 False False 0.974 1.667 3.725 5.472 0.990 0.693 0.217 4.122

False True 0.987 0.708 1.752 3.514 0.986 0.297 1.241 3.265

True False 0.990 0.110 1.506 3.418 0.981 0.114 3.321 3.646

True True 0.992 0.157 0.368 2.772 0.977 0.561 0.605 3.349

Delay

0.999 0.186 0.381 0.871 False False 0.994 0.513 0.179 2.567 0.996 0.093 1.418 2.728

False True 0.995 0.513 1.177 2.411 0.995 0.396 0.202 2.783

True False 0.998 0.689 1.206 1.563 0.996 1.054 2.548 2.255

True True 0.998 0.301 0.659 1.266 0.998 0.170 0.897 1.532

2 input Nand

Leakage

0.993 0.638 0.851 2.055 False False 0.969 0.665 4.661 6.244 0.974 0.742 4.044 5.579

False True 0.988 0.176 3.463 4.201 0.987 0.197 2.413 4.133

True False 0.989 0.495 2.100 4.117 0.984 0.129 2.453 3.113

True True 0.986 0.283 1.303 4.084 0.982 0.270 1.075 3.277

Delay

0.999 0.365 0.428 0.993 False False 0.995 0.002 0.293 2.699 0.993 0.883 3.919 3.477

False True 0.994 0.559 0.961 2.491 0.993 0.123 0.831 3.568

True False 0.999 0.122 0.107 0.974 0.999 0.045 0.199 1.685

True True 0.999 0.453 2.621 1.179 0.999 0.066 2.313 1.551

2 input Nor

Leakage

0.993 0.319 1.012 2.063 False False 0.962 2.034 4.742 6.743 0.952 2.231 10.006 4.252

False True 0.988 0.239 0.920 3.862 0.975 0.975 5.260 3.420

True False 0.988 0.606 2.640 4.217 0.990 0.688 0.340 2.975

True True 0.991 0.086 1.093 3.305 0.987 0.812 3.613 4.226

Delay

0.999 0.144 0.303 0.805 False False 0.994 1.906 2.308 3.043 0.994 0.381 1.178 3.121

False True 0.996 0.835 0.276 2.282 0.993 0.177 2.116 3.360

True False 0.997 0.279 2.280 1.577 0.999 1.193 3.287 2.107

True True 0.999 0.573 0.467 1.475 0.998 0.616 0.848 1.295

2 input And

Leakage

0.994 0.223 1.004 2.026 False False 0.968 2.012 2.217 5.967 0.966 0.049 3.591 4.027

False True 0.985 0.958 2.325 3.317 0.978 0.948 1.717 3.433

True False 0.986 0.664 2.025 3.182 0.991 0.350 0.252 3.363

True True 0.987 0.359 1.080 3.085 0.982 0.245 0.648 3.632

Delay

0.999 0.335 0.176 0.706 False False 0.995 0.545 0.390 2.194 0.992 0.702 2.861 3.462

False True 0.993 0.949 1.009 2.244 0.992 0.328 0.385 3.345

True False 0.998 0.231 2.328 0.863 0.998 0.337 0.731 1.991

True True 0.999 0.005 0.127 0.936 0.998 0.197 0.548 1.479

2 input Or

Leakage

0.993 0.323 0.155 1.967 False False 0.967 1.146 3.065 4.458 0.966 0.227 5.918 3.814

False True 0.987 0.556 2.393 2.899 0.968 1.351 4.646 3.083

True False 0.990 0.756 2.875 3.455 0.977 0.354 1.257 2.366

True True 0.993 0.697 0.651 3.432 0.985 0.481 0.143 2.291

Delay

0.999 0.645 0.438 1.07 False False 0.992 1.151 4.068 2.278 0.995 0.703 0.041 2.473

False True 0.992 0.763 3.230 2.407 0.991 0.496 1.192 2.362

True False 0.998 0.419 1.461 1.092 0.999 0.907 3.707 1.514

True True 0.999 0.454 0.956 1.025 0.997 0.578 0.255 1.836

2 input Xor

Leakage

0.992 0.560 0.701 2.075 False False 0.971 0.506 3.958 5.977 0.967 1.890 2.838 4.906

False True 0.984 0.413 2.159 4.023 0.972 0.108 2.642 4.908

True False 0.985 0.077 1.341 3.658 0.981 0.993 4.418 3.872

True True 0.986 0.596 3.939 4.851 0.982 0.507 0.001 3.573

Delay

0.999 0.091 0.752 0.604 False False 0.996 0.069 0.357 1.788 0.993 1.012 0.247 2.875

False True 0.997 0.195 1.781 1.796 0.995 0.183 0.881 2.631

True False 0.999 0.205 0.021 1.128 0.999 0.042 0.792 1.612

True True 0.999 0.435 1.713 0.968 0.999 0.004 0.772 1.495
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Standard
cell Performance 16nm Fine-Tuned 10nm 7nm

R2 %µE %σE MPE Upper
layer

Lower
layer R2 %µE %σE MPE R2 %µE %σE MPE

2 input Xnor

Leakage

0.992 1.065 1.095 2.097 False False 0.9633 0.527 6.337 5.215 0.976 0.065 2.880 4.738

False True 0.988 0.182 1.473 3.262 0.982 0.934 2.745 3.438

True False 0.989 0.259 2.216 3.031 0.965 2.099 5.321 3.268

True True 0.991 0.992 1.387 2.025 0.980 0.960 1.771 3.722

Delay

0.999 0.389 0.275 1.09 False False 0.997 0.129 1.486 1.676 0.992 0.271 3.616 3.771

False True 0.999 0.017 0.641 1.571 0.991 0.253 0.505 3.808

True False 0.999 0.100 0.299 1.583 0.997 0.077 0.477 2.517

True True 0.999 0.490 0.338 1.602 0.997 0.229 0.142 2.163

3 input Nand

Leakage

0.991 1.025 1.095 1.719 False False 0.978 1.597 0.852 3.565 0.986 0.335 0.502 2.277

False True 0.992 0.179 1.865 2.692 0.987 0.483 1.838 2.703

True False 0.994 0.007 0.949 1.692 0.994 0.229 0.366 1.466

True True 0.994 0.103 2.252 2.619 0.9808 0.041 1.112 2.429

Delay

0.999 0.182 0.798 0.604 False False 0.992 0.630 3.888 2.258 0.994 1.544 2.266 2.818

False True 0.994 0.406 0.512 2.022 0.994 0.367 2.467 2.623

True False 0.996 0.848 3.830 1.120 0.998 0.141 1.152 1.930

True True 0.999 0.152 0.666 1.064 0.999 0.118 0.114 1.458

3 input Nor

Leakage

0.989 1.022 1.088 1.231 False False 0.957 0.765 4.866 5.754 0.955 0.383 0.605 5.953

False True 0.966 0.328 3.453 4.127 0.990 0.688 0.340 2.975

True False 0.981 0.001 1.809 3.650 0.982 0.304 2.986 4.005

True True 0.975 0.919 3.686 4.304 0.975 0.158 1.654 3.099

Delay

0.999 0.032 0.409 0.646 False False 0.990 0.972 4.636 2.564 0.995 0.167 3.479 2.298

False True 0.991 0.417 4.303 2.494 0.994 0.251 2.853 2.239

True False 0.999 0.530 4.246 1.003 0.996 0.458 3.672 1.094

True True 0.999 0.213 0.138 0.820 0.999 0.643 0.036 1.020

2x1 Multiplexer

Leakage

0.993 0.189 0.030 2.089 False False 0.962 0.369 4.510 6.96 0.985 0.693 4.712 3.382

False True 0.991 1.499 4.087 4.019 0.986 0.084 0.062 3.879

True False 0.986 0.270 2.691 3.735 0.986 0.449 1.822 3.490

True True 0.985 0.635 1.283 3.202 0.977 0.927 0.035 3.077

Delay

0.999 0.042 1.080 0.334 False False 0.996 0.198 1.995 0.456 0.976 0.062 6.67 2.652

False True 0.997 0.077 0.032 0.369 0.953 0.106 7.292 2.552

True False 0.994 0.364 1.810 0.456 0.964 0.277 9.658 1.935

True True 0.995 0.128 1.441 0.421 0.995 0.278 1.375 1.702

Full adder

Leakage

0.995 0.589 1.041 0.845 False False 0.949 0.464 3.630 6.347 0.971 1.405 8.762 6.164

False True 0.977 1.895 2.181 3.795 0.968 0.192 3.353 3.746

True False 0.989 0.153 1.743 3.217 0.977 0.723 1.953 3.213

True True 0.989 0.858 2.262 4.347 0.955 0.495 1.975 4.463

Delay

0.997 0.969 1.192 1.285 False False 0.989 2.374 1.472 2.453 0.966 0.462 1.739 3.871

False True 0.967 4.305 3.912 4.649 0.979 2.112 3.075 3.686

True False 0.993 1.609 2.824 2.320 0.996 0.627 1.566 1.267

True True 0.992 0.760 1.071 2.184 0.994 0.780 2.075 1.071

AOI12

Leakage

0.992 1.074 0.442 1.874 False False 0.962 1.964 4.726 5.705 0.977 0.098 3.486 5.596

False True 0.987 1.999 0.939 4.553 0.963 1.547 0.325 6.736

True False 0.988 1.225 1.442 3.869 0.988 0.364 2.217 5.642

True True 0.990 0.505 1.382 2.805 0.975 0.493 1.952 3.668

Delay

0.999 0.126 0.906 0.807 False False 0.996 0.335 2.753 1.877 0.992 0.655 2.863 3.693

False True 0.996 0.121 0.294 1.699 0.986 0.553 5.007 3.808

True False 0.999 0.158 2.058 0.981 0.998 0.017 1.549 1.522

True True 0.999 0.182 2.216 1.566 0.999 0.011 0.024 1.403
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Chapter 7

Applications of Digital Circuit Surrogate Models

Digital standard cell characterization is a crucial step in IC design, involving the assessment of stan-
dard cell behavior under various conditions. Our PVT-aware standard cell library, featuring 22 com-
monly used digital cells, serves diverse purposes in the design process, from performance enhancement
to ensuring reliability in diverse environments. This includes:

• Variability Analysis: Characterization offers insights into how standard cells respond to process
variations, supply fluctuations, and temperature changes. This aids in assessing their resilience to
variations and reliability in different settings.

• Timing Parameter Estimation: It facilitates the estimation of crucial timing parameters like
propagation delay, ensuring the digital circuit meets timing specifications.

• PVT-aware Power Estimation: Enables the evaluation of power consumption, particularly crit-
ical for assessing leakage power, a dominant source in sub-nanometer technology.

• Optimization Library Creation - OptiMo: PVT-characterized models are used to build a library
of optimized standard cells, considering factors like power and performance. These can then be
effectively utilized by designers in specific applications.

7.1 PVT-aware Complex Cell Estimation

Our aim is to expedite and enhance the evaluation of intricate digital circuit performance across di-
verse PVT conditions using pre-characterized standard cells. Our approach facilitates precise estimation
of leakage and delay in complex digital cells by exclusively utilizing surrogate models constructed from
standard digital cells. These models offer both accuracy and computational efficiency, eliminating the
need for additional simulations, a common practice in traditional methods for each complex cell. We
have developed estimators for complex cell leakage and delay, seamlessly integrating them into our
framework to streamline performance estimation.

The process of estimating the performance of complex cells, outlined in Fig. 7.1, begins by inputting
the circuit’s Verilog structural model. It then proceeds with a structural mapping of the Verilog de-
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Figure 7.1: The comprehensive flow of the automated complex cell framework

scription to the digital library cells. Next, the estimator calls upon the trained ML power/delay models
selected by the user and predicts the overall circuit power/delay. Our approach simplifies the assessment
of complex cell performance, enhancing accessibility and efficiency for digital designers.

7.1.1 Complex Cell Leakage Estimation

We have designed a top-level model for estimating complex cell leakage across the PVT, denoted
as the Complex Cell Leakage (CCL) estimator. The leakage of the complex cell relies on the statistical
leakage estimations of the individual cells that comprise it.

CCLLeak =
M∑
i=1

(PLeak−Stat) (7.1)

Here, CCLLeak represents the leakage of a complex cell for a specific input combination, with M

denoting the number of distinct standard cells within it. Our estimator initiates by decomposing the
complex cell into a collection of standard cells, associating the corresponding PLeak−Stat values with
the relevant inputs obtained from the primary inputs of the complex circuit. This structural information
is systematically organized into a Python dictionary [113], with gates serving as keys and their respec-
tive inputs as values. Following this dictionary structure, commencing from standard cells linked to the
primary inputs, surrogate leakage models (trained ML models) of standard cells are utilized to evaluate
PLeak−Stat for a given PVT and input(s). This iterative process extends to all dictionary elements, con-
cluding at gates connected to the primary outputs. Subsequently, a leakage calculator function computes
the total leakage power of the complex cell by aggregating individual leakages.
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In essence, our methodology entails the methodical arrangement of complex cell components, lever-
aging a dictionary structure for streamlined processing, and employing ML models to predict PVT-
aware leakage for each cell within the circuit, culminating in the computation of the overall leakage.

7.1.2 Complex Cell Delay estimation

The delay of a complex cell is contingent upon the critical delay of the circuit. To identify the critical
path in a complex circuit, we transform the circuit into a Directed Acyclic Graph (DAG) [114] by con-
sidering the circuit inputs, outputs, gates, and their connections. In this representation, nodes correspond
to inputs, outputs, and gates, while edges depict directed connections between the gates. Initially, all
edges are assigned equal weights, typically set to 1. Identifying critical paths involves extracting paths
with the highest weights, resulting in a list of critical paths. We evaluate the delay of more than one crit-
ical path to ensure maximum delay estimation, accounting for potential variations resulting from PVT
effects. Each critical path is deconstructed into a pair of driver-driven cells. By determining the standard
cell type serving as the load, and obtaining its associated CL from the capacitive load matrix (section
3.4.3), the Complex Cell Delay (CCD) estimator leverages surrogate delay models within each critical
path, considering PVT conditions and CL as inputs to determine the statistical delay of the driver. The
overall circuit delay is then computed as the linear combination of all driver cell delays, given by:

CDelay−Stat =

K∑
i=1

(GDelay−Stat) (7.2)

Here, CDelay−Stat signifies the delay of a complex cell, and K denotes the count of standard cells in
the critical path. This process iterates for each cell within the critical path, updating the weights of the
edges along the way. Following this, critical path extraction and maximum delay calculation functions
are employed to derive the critical path and its associated maximum delay from the list of identified
critical paths.

7.1.3 Results and Discussion

The CCL and CCD estimators yield the final leakage and delay values of the complex cell for a
specific PVT condition in seconds. The outcomes of the estimations in FinFET technology nodes for
a randomly selected PVT test case across different complex cells/circuits, with the transfer learning
methodology (Chapter 6) are outlined in Tables 7.2 and 7.3. The percentage error, as defined by equ.
7.3, is used to gauge the accuracy of the estimations with the SPICE simulations.

%Error =
MODELPrediction − SPICEvalue

SPICEV alue
∗ 100 (7.3)

The results demonstrate an average error of less than 1% for all complex circuits regarding leakage and
delay estimations compared to SPICE simulations, with estimations running several orders of magni-
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Table 7.1: OptiMo PVT variations

Process Parameter Variations (Gaussian distributions ±3σ from mean) Uniform Random Variations (URV) Design Parameters (URV)
Toxe
(nm)

Toxm
(nm)

Toxref
(nm)

Toxp
(nm)

Xj
(nm)

Ndep
(E+17/cmˆ3)

Top

(◦C)
Vdd

(V)
L

(nm)
W

(nm)
0.65 0.67 0.67 0.4 7.2 120 -55 to 125 0.8 ±10% 22 to 26 22 to 440

tude faster. This improvement is even more pronounced for complex cells, due to the utilization of
pre-characterized standard cell characteristics, abstaining from any further simulations. In traditional
E-CAD tools, the complexity of complex cell PVT analysis increases linearly, potentially affecting op-
erating speed and accuracy. However, in our framework, this aspect remains unaffected, ensuring that
speed and accuracy remain at their peak regardless of circuit complexity.

7.2 PVT-aware Sizing and Optimization Engine

Our digital standard cell characterization finds another valuable application in creating a swift and ef-
fective optimization engine. Our optimization framework constitutes a composite structure comprising
a series of multi-objective Pareto-optimal algorithms that operate in conjunction with a set of ML algo-
rithms. We name it as ”OptiMo”. The primary objective is to achieve rapid and efficient optimization
for the sizing of standard digital logic cells. Embracing a bottom-up approach, the methodology begins
with leaf cells representing optimized digital logic cells that exhibit resilience across a broad spectrum
of PVT variations. These cells are designed to meet power and delay constraints under nominal con-
ditions as well as within the range of ±10% of PVT variations from nominal values. Subsequently,
an automated complex circuit performance estimator (CCL and CCD) leverages these optimized cells
contributing to the power-delay optimization at the circuit level. OptiMo addresses the computational
demand of the traditional optimization processes that rely heavily on simulators. The distinctive aspect
of our work lies in integrating state-of-the-art optimization algorithms on top of the accurately trained
ML models, resulting in a substantial improvement in computational speed compared to simulator-
dependent approaches.

The methodology begins with the generation of training data, incorporating Gaussian variations in
the manufacturing process and Uniform Random Variations (URV) in temperature, supply voltage, and
transistor design parameters (channel length and width). The nominal process values and URV ranges
are detailed in Table 7.1. Logic cell netlists, integrating the generated statistical variations and tech-
nology library files, undergo simulation using SPICE to estimate leakage and delay variation data. The
generation of training dataset goes inline with the methodology discussed in Chapter 3 (section 3.4), in
addition we include design parameter variations for each transistor in the logic cell in this context. Fur-
ther, the circuit performances modeled include leakage power and propagation delay. This PVT-aware
simulation data serves as the training dataset for generating surrogate ML models. It’s noteworthy that
generating such datasets is a one-time requirement for developing surrogate ML models, applicable
across a wide spectrum of digital circuit designs.
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Figure 7.2: The PVT aware Pareto-optimal transistor sizing methodology

7.2.1 The Key Idea

A bank of ML algorithms is trained on the selected statistical training data and the best-performing
algorithm is identified and applied to all the standard digital cells. The accurate ML models are profi-
cient in prototyping the SPICE simulations at a significantly accelerated pace. Subsequently, a set of
optimization algorithms is deployed to operate over the trained ML models, to size optimization of the
logic cell to minimize power and delay while adhering to the bounds on minimum sizing leakage and
delay at extreme PVT values (±10% from the mean). The robustness of the obtained sizing is tested
over 10000 randomly generated PVT values. The optimal combination of the optimization algorithm
and the ML model is determined through a defined composite criterion, and this combination is then
applied to model all other cells. The optimized sizing is subsequently employed in an automated routine
for complex circuit power-delay optimization.

Fig. 7.2 shows the PVT aware Pareto-optimal transistor sizing methodology with ResNN model and
Genetic Algorithm (GA) as an example. The consecutive stages involve training a ResNN model using
the standard cells database to accurately predict delay and leakage values for a given PVT variation.
Subsequently, a GA-based optimization engine is constructed on top of the ResNN model to determine
the Pareto-optimal point with minimum delays and leakages by adjusting each transistor gate’s dimen-
sions (L and W). Estimations for leakage and delay are then conducted for the optimized gate dimensions
across the PVT spectrum, validating the nominal bounds under standard operating conditions
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Table 7.2: Comparison of propagation delay estimations (ps) of DNN/TL model w.r.t SPICE
simulations on Complex/multi-stage cells

Technology node 16nm 10nm 7nm

Complex cell HSPICE MODEL %Error HSPICE Base
MODEL %Error TL

MODEL %Error HSPICE Base
MODEL %Error TL

MODEL %Error

2NOT Inverter chain 25.87 25.87 0.00 22.81 22.83 -0.09 22.82 -0.04 20.48 20.51 -0.15 20.61 -0.63

4NOT Inverter chain 51.74 51.74 0.00 41.98 41.95 0.07 42.42 -1.05 41.26 41.42 -0.39 41.71 -1.09

2NAND 2-input nand chanin 24.6 24.45 0.61 22.9 22.72 0.79 22.91 -0.04 24.5 24.75 -1.02 24.3 0.82

4NAND 2-input nand chanin 49.2 48.89 0.63 55.2 54.97 0.42 54.92 0.51 42.67 42.4 0.63 42.57 0.23

4PARITY 4-bit Parity generator 20.35 20.3 0.25 32.77 32.73 0.12 32.69 0.24 35.3 35.15 0.42 35.33 -0.08

8PARITY 8-bit Parity generator 27.7 27.61 0.32 44.68 44.64 0.09 44.63 0.11 48.3 48.22 0.17 48.34 -0.08

2MULT 2-bit multiplier 41.2 41.3 -0.24 39.39 39.29 0.25 39.76 -0.94 34.53 34.8 -0.78 35.01 -1.39

4MULT 4-bit multiplier 149.7 149.87 -0.11 130.4 131.2 -0.61 128.69 1.31 108.58 108.48 0.09 107.97 0.56

4FA 4-bit adder 87.5 86.7 0.91 78.6 78.86 -0.33 77.59 1.28 78.23 78.35 -0.15 77.48 0.96

8FA 8-bit adder 174.4 173.2 0.69 147.4 147.81 -0.28 145.47 1.31 151.33 150.56 0.51 150.01 0.87

16FA 16-bit adder 333.7 332.1 0.48 303 304.6 -0.53 298.53 1.48 364.2 363.52 0.19 360.55 1.00

32FA 32-bit adder 639.2 634.6 0.72 544.8 548.5 -0.68 538.2 1.21 645.3 643.09 0.34 641.17 0.64

Table 7.3: Comparison of leakage power estimations (nw) of DNN/TL model w.r.t SPICE simulations
on Complex/multi-stage cells

Technology node 16nm 10nm 7nm

Complex cell Input combination(s) HSPICE MODEL %Error HSPICE Base
MODEL %Error TL

MODEL %Error HSPICE Base
MODEL %Error TL

MODEL %Error

2NOT 1’D0 5.09 5.05 0.79 8.6 8.68 -0.93 8.62 -0.70 3.16 3.18 -0.63 3.16 0.00

4NOT 1’D1 16.05 15.82 1.43 13.09 13.19 -0.76 12.99 -1.54 6.69 6.73 -0.60 6.61 1.20

2NAND 2’D2 10.69 10.54 1.40 22.69 22.81 -0.53 22.37 -1.97 7.93 7.92 0.13 7.91 0.25

4NAND 2’D3 14.66 14.52 0.95 23.77 23.9 -0.55 23.47 -1.83 9.57 9.56 0.10 9.56 0.10

4PARITY 4’D11 48.55 47.58 2.00 56.11 56.26 -0.27 55.81 -0.81 34.46 34.45 0.03 35.06 -1.74

8PARITY 8D’20 235.1 233.94 0.49 213.22 212.46 0.36 213.07 0.29 130.88 130.85 0.02 128.81 1.58

2MULT {2’D1,2’D3} 86.3 86.6 -0.35 79.35 78.99 0.45 79.47 0.60 89.64 90.29 -0.73 89.81 -0.19

4MULT {4’D12,4’D10} 954.43 951.64 0.29 837.2 838.5 -0.16 813.56 -3.07 594.57 595.15 -0.10 599.73 -0.87

4FA {4’D2,4’D15} 226.7 226.03 0.30 146.2 143.61 1.77 146.21 1.78 143.1 146.59 -2.44 147.51 -3.08

8FA {8’D15,16’D128} 535.1 528.3 1.27 508.4 507.77 0.12 504.67 -0.61 477.7 481.43 -0.78 489.8 -2.53

16FA {16’D19840,16’D45327} 1125.7 1121.4 0.38 895.2 882.59 1.41 892.83 1.15 661.4 667.71 -0.95 675.56 -2.14

32FA {32’D7359872,32’D15577359} 2045.6 2047.5 -0.09 1619.3 1594.5 1.53 1577.5 -1.08 1234 1232.1 0.15 1250.2 -1.31

7.2.2 Machine Learning Algorithms for Circuit Optimization

Within our framework, we strategically integrate a varied array of regression algorithms adept at
analyzing and modeling PVT-aware leakage and delay phenomena. These algorithms encompass deci-
sion trees, extra trees, light gradient boosting regressors, artificial neural networks, and residual neural
networks. Each algorithm is meticulously applied with suitable scaling functions using one or more
datasets to identify the most effective one, streamlining its subsequent efficient utilization by optimiza-
tion algorithms. Below is a concise overview of these algorithms.

7.2.2.1 Decision Tree Regressor

The DT regressor constructs a predictive model resembling a tree structure based on input features,
where nodes represent features and thresholds recursively divide the data [115]. Specific predictions
are provided at terminal nodes, and the model highlights the importance of features. DT is known for
its ability to capture non-linear patterns in the data. We utilized the L2 norm (mean-squared error)
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for optimal feature and threshold selection. The regressor generates continuous predictions, effectively
capturing nonlinear relationships. Nonetheless, to mitigate the risk of over-fitting, we implemented
pre-pruning measures to restrain excessive complexity and ensure improved generalization on unseen
data. Balancing model complexity and regularization, hyperparameter tuning was conducted using grid
search, a commonly used technique for optimizing hyperparameters in machine learning models [77].
This process yielded a configuration with a maximum depth of 3, a maximum of 5 leaf nodes, a mini-
mum of 3 samples per leaf, and a minimum weight fraction of 0.1, selected based on the best split.

7.2.2.2 Extra Tree Regressor

ET, an advancement of the Random Forest algorithm tailored for regression tasks, harnesses ensem-
ble learning principles [116]. Distinguished by its randomized tree construction process, ET enhances
robustness and mitigates over-fitting risks. To optimize its hyperparameters effectively, we employed
BO [75, 76], a sophisticated technique that utilizes probabilistic models to guide the search process to-
ward promising regions of the hyperparameter space. This process yielded a model configuration with
100 estimators, a minimum sample leaf of 2, a minimum of 4 samples necessary for node splitting, and
parallelization across eight jobs.

7.2.2.3 Light Gradient Boosting Regressor

LGBM is an ensemble learning algorithm that has shown exceptional performance in terms of both
speed and accuracy [107,117]. Its unique tree construction algorithm adopts a leaf-wise growth strategy,
resulting in faster training and reduced memory consumption. This characteristic ensures efficiency, par-
ticularly with large datasets and high-dimensional features. LGBM has been selected for its proficiency
in enhancing the predictive capability of surrogate models. After hyperparameter tuning using BO, the
final settings comprise a learning rate of 0.025, a maximum depth of 8, a bagging fraction of 1, a bagging
frequency of 50, a feature fraction of 0.6, a sub-sample of 0.8, 100 leaves, employing 2000 boosting
rounds, with early stopping enforced after 200 rounds to alleviate concerns regarding over-fitting.

7.2.2.4 Artificial Neural Network

ANNs are versatile models well-known for their ability to capture complex data relationships [12].
Leveraging ANN, we uncover and exploit the nuanced, non-linear dependencies present in PVT-aware
leakage and delay data.The chosen architecture, determined through experimentation and trials, consists
of five hidden layers with configurations of 320x250x100x50x50 neurons. Additionally, we utilize a
learning rate of 0.05, employ the ReLU activation function, utilize the ADAM solver, and limit the
maximum iterations to 500. To fine-tune these hyperparameters and optimize the model’s performance,
we employed grid search than BO to reduce the computational overhead.
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Figure 7.3: Residual neural network to model delays and leakages against variations in design and PVT
parameters

7.2.2.5 Residual Neural Networks

Inspired by ResNet’s architecture, engineered to mitigate vanishing gradient challenges in deep neu-
ral networks, ResNN [118] are adopted to capture subtle intricacies in PVT-aware characteristics of
leakage and delay. Utilizing ResNet’s residual blocks, we designate x as input parameters, f as the
learned function, and y as output parameters. In ResNN, the output and gradients are derived through
y = f(x) + x, fostering a more seamless gradient flow and augmenting learning speed and accuracy by
assimilating residuals.

y = f(x) + x =⇒ dy
dx = df(x)

dx + 1

Here, f(x) = y−x represents the function aimed at learning the residual. Our ResNN architecture con-
sists of stacked linear and ReLU layers, with hyperparameters such as ’block size’ dictating the number
of layers per skip connection and ’num blocks’ indicating the total skip connections. Specifically, we
configure ’block size’ to three, resulting in skip connections composed of three stacked Linear + ReLU
blocks, and ’num blocks’ to two, yielding two skip connections as shown in Fig. 7.3. The optimizer
employed is ADAM with a fixed learning rate of 0.001. During training, we employ cross-validation
and early-stopping techniques to mitigate the risk of over-fitting [119] and under-fitting. Additionally,
we utilize grid search and BO methods to identify optimal hyperparameters, systematically ensuring
superior model performance.

The performance assessment of the ML algorithms is depicted in Table 7.5 and Fig. 7.4. According to
the ML metrics (R2, %µE %σE , MaPE), LGBM and ResNN emerge as the top-performing algorithms,
meeting the criteria Ec delineated in Algorithm 3. This observation is visually apparent in Fig. 7.4,
where the predictions of LGBM and ResNN closely match the actual (SPICE) leakage and delay values
across 500 randomly chosen unseen test cases. A detailed comparison of the predictions generated by
the LGBM and ResNN models is presented in Fig. 7.5 over 500 random PVT scenarios. Both models
exhibit strong alignment with SPICE simulations, although LGBM demonstrates a slight advantage in
generalization, particularly in predicting the leakage and delay of unseen PVT scenarios (Table 7.5).
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Algorithm 3 OptiMo-ML Modeling

Require: D, a PVT-aware standard cell training data
Split D as Dtrain, DV alidation, Dtest ▷ 60,20, 20 Split
Define X ← {x1, ...xm} ∀ PVT, Y ← power/delay
Training the bank of ML algorithms
for bank of ML algorithms do

Initialize the hyper-parameters, p
f : X 7→ Y ▷ ML model M to model Y |X
Train M on Dtrain using p
Compute E∗|M on DV alidation,Dtest ▷ Test error set
if Es > Ec

∗ then ▷ Test error criteria
Hyper-parameter tuning
Re-train M
Repeat tuning for N iterations
Choose the optimal hyperparameter set p∗

end if
save M

end for
Best ML algorithm← EcMin

* - E, Ec are a composite set of test errors, and its criteria - R2 > 0.95, {%µE ,%σE} ≤ 1% and MPE - Mean Percentage
Error for 500 unseen test samples ≤ 5%

Consequently, LGBM is identified as the superior algorithm, and surrogate ML models utilizing it
are developed for all standard cells. The performance metrics of these models are provided in Table
7.4, showcasing accurate results across all standard cell models. ML and optimization algorithms, and
SPICE simulations are executed on the 12th Gen Intel(R) Core(TM) i9 processor with 32GB RAM,
while the training of ResNN is conducted on a standalone GPU core featuring 4GB of VRAM, utilizing
an RTX 2080 Ti graphics card. Libraries such as Scikit-learn [77] and PyTorch [120] are utilized for
training ML algorithms, with Scikit-learn being employed for DT, ET, LGBM, ANN and PyTorch for
ResNN.

7.2.3 Optimization Algorithms with Machine Learning for Transistor Sizing

In IC design, adhering to standard gate sizing, typically guided by Logical Effort principles, en-
sures a balanced distribution of pull-down and pull-up resistances, mirroring the behavior of a refer-
ence CMOS inverter unit. This conventional approach effectively addresses concerns related to drive
strength and mobility. However, deviations from this standard sizing serve as a starting point for sys-
tematic exploration in optimizing transistor width and length [121], with the ultimate goal of identifying
configurations that surpass the reference based on predefined metrics.

The utilization of meta-heuristic algorithms proves indispensable for navigating multidimensional
search spaces during optimization tasks [122]. Traditional techniques like Direct Search or Gradient-
based approaches become impractical when confronted with high-dimensional vectors [123] [124], a
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Figure 7.4: Comparison of regression models w.r.t SPICE leakage and delay values

Figure 7.5: Comparison of LGBM and ResNN model leakage and delay predictions w.r.t SPICE

Table 7.5: ML model training metrics on training PVT and Sizing-aware Full adder logic cell for
leakage and delay

Model/
Metrics

Training and
Validation Testing Unseen

testcases
R2 Runtime R2 MSE %µE %σE MPE Runtime

Leakage
DT 0.572 3.77 0.571 1.4E-06 0.15 24.51 68.85 0.22
ET 0.994 1182.07 0.963 7.1E-07 0.10 4.66 29.40 0.05
LGBM 0.998 716.75 0.998 2.5E-07 0.02 0.93 4.56 0.12
ANN 0.998 516.91 0.995 2.8E-07 0.96 1.73 6.42 0.01
ResNN 0.999 869.91 0.997 8.2E-16 0.08 0.37 5.02 0.19

Delay
DT 0.529 0.34 0.524 7.4E-07 0.11 27.56 43.30 0.00
ET 0.994 11.23 0.958 6.9E-08 0.30 5.08 10.79 0.02
LGBM 1.000 18.72 0.992 5.2E-24 0.08 0.99 2.74 0.06
ANN 0.992 210.56 0.975 9.3E-08 0.64 3.11 5.17 0.02
ResNN 0.995 192.68 0.984 6.4E-11 0.98 2.13 3.98 0.09
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scenario frequently encountered in endeavors such as full adder cell optimization, where complexity
escalates due to numerous transistor configurations. Furthermore, the execution of SPICE simulations
for leakage and delay computations exacerbates the challenge, demanding significant computational re-
sources and time. To illustrate, optimizing a single full adder cell encompassing 28 transistors (resulting
in 58 dimensions) typically consumes around 30 to 300 minutes [125] [126] [127].

To surmount these hurdles, the employment of ML models presents a promising avenue for expe-
diting the evaluation process, circumventing the need for intricate SPICE simulations. Nonetheless, the
selection of an efficient algorithm is paramount to circumvent the risk of becoming ensnared in local
optima. Nature-inspired meta-heuristic algorithms, renowned for their simplicity and adaptability to
NP-hard problems, emerge as compelling solutions to these challenges. The OptiMo framework seam-
lessly integrates ML models with meta-heuristic optimization algorithms using a multi-output objective
function. This fusion results in a remarkable acceleration of the optimization process, achieving the
completion of full adder cell optimization in approximately 2 minutes, representing a significant ad-
vancement over conventional methodologies. Moreover, extending this approach to the circuit level
promises even more substantial speed enhancements.

This research implements five evolutionary algorithms: GA [128], Particle Swarm Optimization
(PSO) [129], Artificial Bee Colony (ABC) [130], Elephant Herd Optimization (EHO) [131], and Harris
Hawk Optimization (HHO) [132], tailored for transistor sizing. These algorithms operate in conjunction
with the most effective trained ML model—namely, the LGBM model—associated with each standard
cell. Additionally, we comprehensively evaluate the performance of various optimization algorithms
concerning the power-delay trade-off. The most effective algorithm is then chosen for optimizing com-
plex digital circuits, with further elaboration on these methodologies provided subsequently.

Algorithm 4 Objective Function

Require: Design parameters (width, length) vector: x
1: wd ← delay weight vector
2: wl ← leakage weight vector
3: l, d← Calc Leakage Delay(x)
4: Compute leakage fitness: fl =

∑
i li · wli

5: Compute delay fitness: fd =
∑

i di · wdi

6: Return (Leakage fitness fl, Delay fitness fd) vector
7: CALC LEAKAGE DELAY(x)
8: Concatenate input: input = [vin(i/p), x, pvt, CLoad]

9: Predict leakage: leak ← Leak ML Model(input)

10: Predict delay: delay ← Delay ML Model(input)

11: Return: leak, delay
12: End
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7.2.3.1 Objective Function

Meta-heuristic algorithms rely on objective functions to navigate optimization landscapes, serving
as mathematical guides directing searches toward solutions aligned with specific problem goals. Craft-
ing effective objective functions necessitates careful consideration of problem attributes, computational
efficiency, and desired solution structure. The choice of an appropriate objective function is crucial
as it determines the algorithm’s ability to efficiently discover optimal solutions, making it pivotal in
optimization success. Typically represented as a real number indicating cost or fitness, the objective
function assesses the quality of a candidate solution. In this context, the function is tailored to minimize
a performance metric involving leakage power and propagation delay. Through iterative evaluation and
prioritization based on objective values, meta-heuristic algorithms navigate the search space to converge
upon solutions optimizing the objective for the sizing problem.

Algorithm 4 outlines the objective function tailored for optimizing channel length and width with
power-delay trade-off using meta-heuristic algorithms. By utilizing the design parameter values(x),
PVT conditions (pvt), input combinations (vin(i/p)) (for leakage estimation) and CLoad (for delay es-
timation), the CALC LEAKAGE DELAY () function invokes trained ML models to compute leak-
age (leak) and delay (delay) measures. Weight assignment (wd&wl) is customized to meet problem
specifications, with the flexibility to prioritize leakage reduction or delay reduction as required. The
fitness function, aggregating the output (fl&fd), sums weighted values for leakage (li) and delay (di),
guiding optimization algorithms toward optimal solutions. The attained solution adheres to power-delay
reduction bounds under extreme and nominal PVT variations. Notably, unlike previous approaches that
prioritized either leakage or delay reduction, our method employs uniform weights, ensuring a balanced
reduction of both metrics across various triggers and inputs.

7.2.3.2 Optimization Algorithms

All the algorithms initiate by assessing performance parameters based on initial standard gate sizing,
presuming it to be the optimal solution (Fig. 7.6). In the figure, ’a’ represents the starting point for
optimization is based on Logical Effort initial standard gate sizings. Simultaneous Leakage and De-
lay Optimization are performed at every Iteration. The plot follows the performance metric of the best
fittest individual in the population search space, corresponding to each algorithm. During optimization,
algorithms tend to prioritize optimization of one metric (’b’ represents delay@7th iteration) and (’c’
represents leakage@11th iteration) ignoring the other, unlike GA which can balance the trade-off bet-
ter. The optimization converges at ’d’ at which optimal gate sizings are extracted. During initialization
within a population of 100, 99 additional members are introduced throughout the entire search space.
Among these algorithms, PSO and EHO, incorporate mechanisms for members to track the best solution
among peers, adjusting positions based on past performance and the current best member. In PSO, main-
tains personal best (pbest) and global best (gbest) positions, inspired by swarm intelligence in nature.
Conversely, EHO mimics the herd behavior of elephants, with members updating positions based on the
matriarch and clan leader. Upon reaching a suitable local optimum, a member becomes the new best
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member, subsequently influencing the entire population. HHO implements a dynamic learning process
with multiple reference points, emphasizing exploration, fine-tuning positions, and soft besiege maneu-
vers. ABC relies on a probabilistic dance language where employed bees communicate promising food
sources to onlooker bees without explicitly revealing locations. Despite their effectiveness in navigating
complex spaces, these algorithms commonly demonstrate a slight sensitivity to local optima. On the
other hand, GA, employing principles of ’natural selection,’ eliminates unfit members, thereby prevent-
ing the spread of undesirable traits and facilitating the efficient propagation of promising features. The
’crossover’ and ’mutation’ features within GA aid in exploring diverse niche regions. Convergence in
GA occurs when the best gene remains unchanged for several generations.

Algorithm 5 Genetic Algorithm

Require: ℓ: Gene length, N : Population size, e: Elite count, c: Cross-count, F : Fitness function, I:
Initial population, S: Selection operator, C: Crossover operator,M: Mutation operator, E : Elitism
selection, x0: Gene Seed;

Ensure: xf : (Global Best Fitness, Best individual);
1: xf ← (F(x0),x0)
2: P ← I()
3: while convergence do
4: Pfit ← ∅
5: for i = 1, . . . , N do
6: if FP [i] ≤ xf [0] then
7: Pfit ∪ P[i]
8: end if
9: end for

10: if Pfit ̸= ∅ then
11: xf ← (min(FP ), argmin(FP ))
12: Pselect ← S(Pfit)
13: Pcross ← C(Pselect, c)
14: Pelite ← E(Pfit, e)
15: P ←M(Pcross) ∪ Pelite
16: converge count, cc ← 0
17: else
18: cc ← cc + 1
19: Pselect ← S(P)
20: Pcross ← C(Pselect, c)
21: Pelite ← E(P, e)
22: P ←M(Pcross) ∪ Pelite
23: end if
24: generation← generation+ 1
25: end while

Initial experimentation is focused on the full adder standard cell due to its complex structure, con-
sisting of 28 transistors compared to other digital cells. The primary objective was to ensure that at least
one algorithm could optimize the gate under worst-case PVT scenarios. Upper bound references for
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Figure 7.6: Comparison of full adder cell optimization with different evolutionary algorithms (a)
Leakage (b) Delay

leakage and delay were determined based on worst-case PVT conditions, where the process and voltage
were within 10% of nominal, and the temperature ranged from −55 ◦ C to 125 ◦ C. Evaluation of
algorithms was based on their computational time and their ability to effectively balance the trade-off
between leakage and delay reduction. This evaluation is visually depicted in Fig. 7.6 which illustrates
the average leakage and delay measures of the best-fit individual or population member at each itera-
tion. We can observe the aggregated convergence behavior of these algorithms in Fig. 7.6. Notably,
GA exhibited superior performance, achieving faster convergence time and effectively managing the
trade-off between leakage and delay reduction compared to other algorithms, as illustrated in ’b’ and
’c’. In these plots, attempting to decrease one parameter led to an increase in the other. Consequently,
GA was selected as the optimal algorithm for optimization and subsequently applied to all other cells.

We present the operating details of GA in Algorithm 5. To incorporate a multi-objective approach,
fit genes were selectively introduced into the fit population (Pfit) based on their demonstrated reduc-
tions in both leakage and delay compared to the reference value. The fittest gene in the next generation
becomes the new upper bound. Within the population, a mutation step was implemented, assigning ran-
dom numbers within the ranges of [−2, 2]nm for length (L) and [−3, 3]nm for width (W ). Despite the
broader range of W spanning from 22 nm to 440 nm, this mutation step was deemed optimal through ex-
tensive experimentation for traversing the search space without overlooking optimal solutions or risking
entrapment within sub-optimal regions. Within Pfit, the top 20% were classified as elite and exempted
from mutation, while the remaining 80% underwent selection (S) and gene crossover (C) operations,
followed by mutation. In each mutation iteration, gene values were rounded to the nearest integral value
within the nanometer range, aligning with the ML model’s constraint of utilizing only integral values. If
the fittest gene remains unchanged, indicating a lack of improvement and resulting in an empty Pfit, the
fit population nears convergence. These steps collectively refine the optimization process, enabling the
discovery of solutions that simultaneously address both leakage and delay reduction objectives while
adhering to the constraints of the ML model. In our training process, a significant accomplishment was

135



Figure 7.7: Comparison of the OptiMo with State-of-the-art works in terms of %reductions in leakage
and delay and computation time

achieving nominal channel length (L) values of 22 nm after optimization, despite initially considering
variations in channel length to enhance the search space. This achievement is particularly noteworthy
considering the constraints associated with increasing channel length in a specific technology, which
often leads to disadvantages such as increased transistor size and diminished performance metrics.

We concentrate on the dual objective of reducing both leakage and delay, recognizing the trade-
off between these metrics. The algorithm is customizable, enabling adjustments to the threshold and
termination criteria based on achieving desired levels of leakage or delay reduction. This flexibility
accommodates various user preferences in IC design.

Following the optimization process where optimal width (W ) values were derived from the best per-
forming algorithm (GA), a comprehensive evaluation was conducted across 10,000 random PVT vari-
ations, as illustrated in Fig 7.9. This evaluation involved comparing the resulting performance metrics
with the initial user-provided metric aimed to be minimized across the entire PVT range. The resulting
histogram plots visually demonstrate a significant shift in numerous distributions towards lower metric
values, particularly around nominal conditions (Table 7.1). Under extreme PVT conditions (±10% from
nominal for voltage, process, and [−55◦C, 125◦C] for temperature), metrics deviate notably from their
initial values, as observed from the tail-ends in Fig. 7.9. The reduction in metric values is proportional
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Figure 7.8: Visualization of %reduction in leakage and delay of complex Cells with optimized
transistor sizing

to the number of transistors present in a standard cell due to the larger dimension of the search space pro-
vided. Consequently, compared to the FA, XNOR2 cells in Fig. 7.9, other gates exhibit relatively lower
reduction values. Smaller gates (BUF, NAND, NOR) often experience reductions in either leakage or
delay, with simultaneous reductions proving challenging.

The optimized gate sizing(s) obtained, as presented in Tables within Fig. 7.9 for corresponding
standard cells, serve as the foundation for constructing various complex cells within the Complex Cell
Framework. This establishes a comprehensive workflow for optimizing complex cells, eliminating the
necessity of tedious netlist generation and intensive simulations for every design being modeled. Conse-
quently, our approach ensures the universality of optimization, irrespective of the specific complexity of
the circuit under consideration. Moreover, our ML-model-based optimization methodology is designed
to be technology-agnostic, suiting any process technology.

7.2.4 Performance Verification across PVT Variations

During the execution of the genetic algorithm, all PVT parameters were maintained at their nomi-
nal values. To verify that the determined gate dimensions were indeed PVT-aware, we compared the
initial gate dimensions (estimated under nominal PVT) across 1000 iterations. In each iteration, temper-
ature, and voltage values were randomly selected from a uniform distribution within specified ranges,
while process parameter variations were sampled from a Gaussian distribution with a variance of ±3σ.
Subsequently, we compared the delay and leakage values for the initially sized and optimized gates.

7.2.5 Results and Discussion

We have meticulously demonstrated the outcomes of digital standard cell optimization and the ap-
plication of ML models in sections 7.2.3 and 7.2.2. This section presents the results obtained from eval-
uating the performance of complex circuits using the optimized standard cells. The sizing of standard
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Figure 7.9: Leakage and delay distributions across 10000 random PVT conditions before (Init.) and
after optimization (Opt.), verified with SPICE simulations. % reductions are against the initial sizing
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cells, optimized through the best-performing algorithm (GA), is applied in optimizing complex circuits.
These circuits undergo evaluation using our systematically devised automated procedure to generate
estimations for leakage and delay based on the pre-characterized PVT-aware standard cells. Utilizing
standard cells for estimating complex circuits offers the advantage of significantly reducing the exten-
sive simulations typically required across PVT variations, as demanded by traditional estimation tools.
Traditional surrogate methodologies described in the literature model complex circuit performances by
depending on PVT-aware datasets, requiring the creation of such datasets for every circuit of interest.
Conversely, our innovative approach advocates for the reuse of standard cell PVT-aware characteriza-
tions for estimating a wide array of complex cells. Moreover, the integration of trained ML models leads
to a substantial acceleration, resulting in speed-ups of several orders. Furthermore, our methodology is
automated, substantially decreasing the manual effort and time needed. This automation yields effi-
ciency gains that surpass those achievable through traditional methods by several orders of magnitude.

Table 7.6: Optimized leakage estimations through OptiMo at extreme and nominal PVT for various
complex Cells

S.No Complex Cell Extreme PVT (10%) Nominal PVT
Predicted

Leak-
age

(Initial)
(µW)

Predicted
Leak-

age
(Op-
tim.)
(µW)

% Re-
duction

Predicted
Leak-

age
(Initial)

(µW)

Predicted
Leak-

age
(Op-
tim.)
(µW)

% Re-
duction

1 8-bit Parity Generator 5.38 4.28 20.44 1.10 0.73 33.63
2 4-bit RCA 7.82 5.98 23.53 1.84 1.36 26.09
3 8-bit RCA 17.89 13.55 24.26 4.23 3.16 25.30
4 32-bit RCA 71.55 54.2 24.25 16.91 12.66 25.13
5 1-bit ALU 8.62 6.82 20.88 3.86 1.79 53.63
6 4-bit Multiplier 28.83 21.87 24.14 6.06 4.22 30.36
7 8-bit 74283 17.92 14.36 19.87 3.53 2.58 26.91
8 8-bit 74181 32.32 28.02 13.30 6.31 5.13 18.70
9 8-bit 74182 11.18 9.35 16.37 1.99 1.55 22.11

10 8-bit 74L85 16.51 14.29 13.45 2.94 2.43 17.35
11 c432 53.64 45.6 14.99 10.91 8.58 21.36
12 c499 106.94 99.73 6.74 20.19 18.12 10.25
13 8-bit CSA 46.56 36.24 22.16 12.21 8.15 33.25
14 8-bit CSkipA 26.35 21.94 16.74 5.68 4.61 18.84
15 s27 10.43 6.98 33.08 8.48 5.83 31.25

Fig. 7.7 shows the comparison of the proposed methodology with Previous Works in terms of %re-
ductions in leakage and delay and computation time. LP and High Performance (HP) specify low power
and high performance respectively for sub-45nm or 22nm CMOS technology.
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Table 7.7: Optimized delay estimations through OptiMo at extreme and nominal PVT for various
complex Cells

S.No Complex Cell Extreme PVT (10%) Nominal PVT
Predicted

Delay
(Initial)

(ps)

Predicted
Delay
(Op-
tim.)
(ps)

% Re-
duction

Predicted
Delay

(Initial)
(ps)

Predicted
Delay
(Op-
tim.)
(ps)

% Re-
duction

1 8-bit Parity Generator 27.99 12.45 55.51 28.66 21.53 24.88
2 4-bit RCA 38.71 31.33 19.06 45.37 36.84 18.80
3 8-bit RCA 79.11 64.10 18.97 92.39 75.15 18.66
4 32-bit RCA 326.39 263.32 19.32 381.28 308.92 18.98
5 1-bit ALU 19.95 18.28 8.37 24.84 22.46 9.58
6 4-bit Multiplier 68.35 56.54 17.28 80.58 67.03 16.82
7 8-bit 74283 45.63 35.16 22.95 58.72 48.07 18.14
8 8-bit 74181 79.50 63.58 20.03 96.53 80.83 16.26
9 8-bit 74182 35.40 25.15 28.95 42.63 32.46 23.86

10 8-bit 74L85 38.98 37.27 4.39 51.88 50.09 3.45
11 c432 119.16 106.14 10.93 161.26 148.08 8.17
12 c499 88.31 78.40 11.22 108.28 98.15 9.36
13 8-bit CSA 85.20 71.26 16.36 100.14 84.35 15.77
14 8-bit CSkipA 87.53 72.93 16.68 103.87 87.05 16.19
15 s27 148.88 138.68 6.85 239.11 225.61 5.65

We rigorously validated our automated framework by scrutinizing the leakage and delay of 14 dis-
tinct complex circuits, encompassing both the ISCAS-74X and ISCAS-85 series. We examined two
scenarios: one with nominal PVT conditions and another with extreme PVT variations (±10% from
nominal). For both scenarios, we assessed the circuits using initial (W/L) sizing (pre-optimized sizing)
and optimized (W/L) sizing. The results, compared against SPICE simulations, are meticulously pre-
sented in Tables 7.6 and 7.7. The consistent reductions in both leakage and delay across all cells under
nominal and extreme PVT conditions vividly underscore the efficacy of our optimized transistor sizing.
The results report maximum delay and leakage reduction of 55.51% and 20.44%; 24.88% and 33.63% at
extreme and nominal PVT respectively in the 8-bit parity generator. The average reductions of leakage
and delay across 14 complex circuits report 16.2% and 19.28%; 25.92% and 15.63% at extreme and
nominal PVT respectively.

We visualized the percentage reductions in leakage and delay for both nominal and optimized PVT
conditions in Fig. 7.8, which affirm the substantial impact of our approach. Moreover, we showcase
the transformative effect of optimization with optimized W values for each standard cell under various
PVT conditions, in Fig. 7.10 for by the 4-bit RCA and 4-bit multiplier. Notably, the optimized sizing
yields reductions in leakage and delay across all 300 random PVT variations, unequivocally validating
the effectiveness of our proposed OptiMo approach.
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Figure 7.10: Distribution Plot for leakage and delay across random 50 PVT (Line Plot) and 300 PVT
(Bar Plot) for (a) 4-bit RCA (b) 4-bit Multiplier.

7.3 Conclusion

By leveraging efficiently trained ML models of standard digital logic cells, we calculate leakage
and delay estimations for various complex cells through a meticulously designed automated procedure.
Furthermore, through the utilization of multi-objective and multi-directional optimization algorithms
on these trained ML models, we achieve a significant enhancement in computational efficiency com-
pared to conventional simulators, all while maintaining accuracy. Our approach intelligently selects
the optimal combination of ML and optimization algorithms tailored to each circuit, ensuring optimal
outcomes. Moreover, our methodology, operating as a black-box approach, is adaptable to any tech-
nology node with appropriate modeling. Experimental validation conducted on 22nm CMOS High-K
technology complex digital circuits demonstrates substantial reductions of up to 55.51% in delay and
20.44% in leakage, alongside consistent area reduction. Our optimization engine, OptiMo, offers a fast,
reliable, and accurate solution for a diverse range of intricate circuits through an automated approach.
Application results on ISCAS-74X and ISCAS-85 benchmark circuits showcase remarkable reductions
of up to 64.6% in power-delay-product (PDP).
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Chapter 8

Application of Surrogate Analog Models

The unique challenges posed by process variations, temperature fluctuations, and other environmen-
tal factors make the design of analog circuits particularly complex. Conventional design methods often
entail manual adjustments, extensive post-production fine-tuning, and generous design margins to ac-
count for these uncertainties. However, as technology shrinks to nano-meter scales and the demand for
heightened performance grows, traditional approaches are proving increasingly inadequate and ineffi-
cient. By combining profound expertise in the analog domain with the scalability and effectiveness of
machine learning, self-adaptive analog design opens up new avenues for advancement in the realm of
analog electronics.

8.1 AI-driven Self-adapting Microelectronic circuits

We designed a novel Artificial Intelligence based solution to implement a wide range of microelec-
tronic circuits that can adapt by themselves to varying usage conditions, manufacturing discrepancies,
or defects such as process variations, device parameter mismatches, inaccuracies in device models, as
well as environmental conditions (e.g., voltage and temperature) to mitigate their impact on the circuit
performance characteristics [133]. This involves utilizing an ML model that encapsulates the micro-
electronic circuit’s response to alterations in operational conditions. Derived from simulation-generated
data, this ML model deduces appropriate internal modifications to circuit components (e.g., sizes, func-
tionalities, connections) to counteract the effects on circuit performance characteristics stemming from
condition changes. The self-adaptive microelectronic circuit is equipped with supplementary hardware,
including sensors for process, voltage, and temperature, to monitor environmental conditions. It also
incorporates control circuits to execute adjustments, as the ML model advises.

Fig. 8.1 provides an illustrative representation of the self-adapting approach, employing a block
diagram featuring multiple components and their implementation. This methodology encompasses
the initial step of training a ML model offline, utilizing statistical characterization data from off-chip
analog/mixed-signal/RF circuits. This training covers a range of operating and environmental conditions
following application specifications. Subsequently, the ML model can predict circuit performances for
any parameter variations (PVT). In simpler setups, the ML model that prototypes the microelectronic
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Figure 8.1: Block diagram of Self-adapting microelectronic circuit design

circuit is stored in the local memory of the CPU. However, in more complex implementations involving
extensive simulation data and training, the data is stored in a remote configuration, and the trained ML
model is stored in the cloud. Computational tasks may also be executed in the cloud if necessary.

The microelectronic circuit receives real-time electrical signals from the PVT sensors, which are
integrated during the design phase as an integral part of the chip. These sensed PVT conditions are
then relayed to the trained ML model to obtain corresponding circuit performance data. By comparing
the ML-predicted circuit performances with the desired specifications stored in the on-chip memory,
AI generates change control codes. Consequently, the self-adapting microelectronic chip generates an
appropriate output signal through the change control register driven by the co-located microcontroller,
effecting alterations to the functional section of the circuit. These functional modifications can span
from straightforward adjustments like device size changes to more complex additions such as gates,
data bits, or supplementary functions like amplifier stages and current sources. The core microelectronic
circuit may be simple, while the adoptable add-on circuitry makes the desired adaptations based on the
current operating conditions.

A repository of add-ons or a collection of adaptable base circuits can be established to streamline and
generalize the self-adapting process. This AI-powered self-adapting methodology thereby guarantees
that intricate microelectronic circuits autonomously adjust to variations in environmental conditions
while upholding their originally specified functionality.

The benefits of self-adapting microelectronic circuit design are outlined below:

• Introduces a novel design approach for microelectronic circuits utilizing machine Learning mod-
els based on electronic signals, usage patterns, and environmental conditions.

• Enables microelectronic circuits to autonomously adjust to usage conditions while preserving
their initially specified functionality.
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• Employs an artificial intelligence engine, essentially an inference engine, to deduce necessary
modifications to the microelectronic circuits based on specific inputs.

• Attains significantly more precise circuit specifications across various operating conditions.

• Offers the potential for extending this design methodology to encompass all types of complex
functions (such as memories, processor cores, etc.), subsystems, and system-on-chip configura-
tions.

The concept of self-adaptive design is demonstrated by modeling fundamental analog components,
as outlined in Chapter 4. These circuits find widespread application and are selected as illustrative exam-
ples to underscore the effectiveness of our approach. In our setup, integrating change control switches
within the analog design is pivotal in enabling the circuit to self-adapt, receiving pertinent inputs or
change control codes from the AI engine. While incorporating the control circuit may introduce ad-
ditional complexity, it’s crucial to recognize that, to achieve comparable precision specifications under
PVT variations, a traditional analog circuit would necessitate intricate designs and supplementary cal-
ibration circuitry, sometimes even external components off-chip. These alternatives would lead to a
larger chip footprint and increased cost implications.

8.2 Comparison with the State-of-the-art Works

In the literature, techniques for addressing variations are categorized based on the nature of variations
considered [61] as follows:

1. Self-calibration: These methods aim to compensate for static variations exclusively, such as man-
ufacturing discrepancies or defects.

2. Self-healing: Capable of addressing both static and quasi-static variations, self-healing techniques
tackle challenges such as aging or stress-induced variations.

3. Self-adaptation: These approaches offer the broadest scope, addressing static, quasi-static, and
dynamic variations. They excel at handling dynamic operating conditions and channel impair-
ments, providing robust compensation across a wide range of scenarios.

An on-chip self-calibrating die using ML is proposed in [62]. A LNA was designed and fabricated
in IBM’s 130 nm radio frequency CMOS process, and a training set for ML modeling was generated
after fabrication with a substantial sample count of 444,528 samples, which is time-consuming. [63]
presents a one-shot off-chip self-calibration method that identifies the best combination of tuning knobs
with a unique test iteration using ML, including both process and tuning variations. The technique was
demonstrated on a 65nm radio frequency power Amplifier. Since the calibration is post-fabrication, test
pattern generation would take more time. The calibration approach may fail in the presence of defects
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within the circuit as they use non-intrusive sensors. [134] proposes an analog/radio-frequency interfer-
ence cancellation technique that can autonomously adapt itself to time-varying interference channels
using a Least-mean square adaptive loop. This technique has been prototyped on a 0.5-to-2.5-GHz full-
duplex multi-input multi-output receiver, designed and fabricated in a 65nm CMOS process. Although
the above technique has advantages over ML optimization techniques in terms of time and power, it
is limited to a specific architecture. These works are confined to self-calibration, dealing with process
variation alone.

Our methodology presents a novel self-adaptation approach considering dynamic operating con-
ditions across a wide range of operating voltages, temperatures, and processes, aiming for minimal
implementation cost and power requirements. We design fast and accurate ML models with as few as
2000 training samples and employ them in our adaptation methodology. Through self-adaptation, we
enhance the performance of analog circuits and adjust circuit variations to typical values within seconds.
Moreover, our methodology does not introduce additional pins for adaptation, which is a necessity in
traditional self-calibration techniques [61].

8.3 DUT 1: Current Reference Generator

In our implementation (depicted in Fig. 8.3), the current-defining resistor serves as a key component
for controlling changes. It consists of a series of unit resistor cells, resembling an n-bit resistor chain
commonly found in digital-to-analog converters. Resistor variations contribute to approximately 90% of
process variations, underscoring the importance of process monitors for passive resistance tracking. Two
ring oscillators illustrated in Figs. 8.2(a) and 8.2(b) represent PMON frequencies f1 and f2, respectively.
While f1 is influenced by both nMOS and pMOS process corners, f2 depends on resistance, nMOS, and
pMOS process corners, exhibiting higher sensitivity towards resistance. The chosen resistance values
are specifically tailored to amplify resistance sensitivity and reduce sensitivity to nMOS and pMOS
variations in f2. Furthermore, the disparity between f2 and f1 helps offset the impact of other variations,
resulting in a resistance-exclusive process.

During the self-adaptation process, the ML model (specifically LGBM) utilizes input data from
sensors monitoring PVT conditions to predict the relevant output specification, such as current. The
resulting output is then compared with the typical (desired) specification to measure the deviation. Sub-
sequently, an appropriate code is generated to nullify this deviation, which is transmitted via a LUT
method by the AI engine to the control circuitry. In this process, digital code activates the necessary
switches for resistance adjustment. Consequently, the performance of the current reference (specifically
the current) affected by PVT is corrected to its typical specifications through a self-adaptive process,
as illustrated in Fig. 8.3. The enhancements achieved in various specifications with our self-adaptation
methodology compared to traditional designs are summarized in Table 8.1. The 50% spread of current
due to PVT is reduced to 3%, accuracy is improved by a factor of 21, line sensitivity is 16 times lower,
PSSR is better by 23dB, and power consumption is also reduced by 2.5 times.
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(a)

(b)

(c)

Figure 8.2: Process monitor design (a) Ring oscillator (b) Ring oscillator with resistance (c) Ring
oscillator with nMOS

Table 8.1: Current reference performance improvement with Self-adaptation

Specifications Traditional design With Self-adaptation Improvements
Min Typ Max Min Typ Max

Iref (uA) 8 10 13 9.8 10 10.1 50% spread reduced to 2-3%

Accuracy (ppm) 6.13 10.25 221.7 10.1 10.25 10.24 21x improvement

Line Sensitivity (%/V) 0.06 0.07 0.16 0.01 0.01 0.01 16x reduction

PSRR (dB) -68 -91 -93 -90 -91 -91 Better by 23dB

Power (uW) 18.82 54.2 140.2 54 55 55 2.5x reduction

8.4 DUT 2: Low Dropout Regulator

The second DUT corresponds to the modeled LDO detailed in Chapter 4. In the LDO circuit, the pass
transistor assumes a critical role as the primary component. Approximately 90% of process variations
originate from the resistor and power FET, necessitating process monitors for nMOS and passive resis-
tance tracking. As illustrated in Fig 8.4, numerous pass transistor multipliers are interconnected with
series switches, controlled by codes derived from a control register through machine learning models. In
this context, three PMON frequencies are under consideration. While frequencies f1 and f2 align with
those mentioned for DUT 1, frequency f3 exhibits a stronger dependence on nMOS characteristics. Re-
sistance values are strategically chosen to heighten resistance sensitivity and diminish nMOS and pMOS
sensitivity in f2. Similarly, for f3, nMOS aspect ratio is adjusted to augment its sensitivity and reduce
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Figure 8.3: Low voltage precise PVT tolerant current reference generator in 180nm process

Figure 8.4: Circuit implementation of LDO with ML adaptive control and results

pMOS sensitivity. Ultimately, the differences between f2, f1, and f3, f1 further counteract the influence
of other variations, resulting in process monitors exclusive to resistance and nMOS characteristics.

Similar to DUT 1, the voltage regulator’s specifications are significantly improved through the self-
adaptation process. Table 8.2 outlines the traditional design specifications of the LDO, along with
the enhancements achieved through self-adaptation. The sensitivity plots depicting the status of the
specifications before and after adaptation are illustrated in Fig. 8.4.
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Table 8.2: LDO performance improvement with Self-adaptation

Specifications Traditional design Improvements
with Self-adaptationMin Typ Max

Vout (V) 1.6 1.853 2.145 Spread reduced by 50%

Temperature Stability (ppm) 4.6 15.2 105 200x lowered

Line Sensitivity (%/V) 0.005 0.0045 0.103 18x lowered

PSRR (dB) -44.6 -57.4 -71.4 Better by 23dB

Power (mW) 0.28 0.62 1.5 Worst case reduced by 2.4x

Load Sensitivity 0.008 0.013 0.095 Maintains the same

Phase margin (◦) 59 75 85 Maintains the same

Figure 8.5: A free-running oscillator circuit with dominant variation sources

8.5 DUT 3: A Free-running Oscillator

In the free-running RC oscillator detailed in Chapter 4, the oscillation frequency is primarily influ-
enced by the active resistor M4 and capacitor C1 (as shown in Fig. 8.5). Consequently, the selected
PMONs are designed to monitor the properties of these dominant components. The control circuit,
employing parallel current sources (pMOS) and sinks (nMOS), injects or withdraws trimming current
to the core as necessary, guided by ML-generated codes obtained during the self-adaptation process.
Throughout PVT variations, , the performance specifications of the oscillator have been finely adjusted
to closely match its typical specification, leveraging inferred control codes from an ML-based model.
The substantial enhancements made to the oscillator’s performance metrics are summarized in Table
8.3.
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Table 8.3: Oscillator performance improvement with Self-adaptation

Specifications Traditional design Improvements
with Self-adaptationMin Typ Max

Frequency (kHz) 31.6 43.3 70.5 80% spread reduced by 2%

Temperature coefficient (ppm/C) 1900 2037 2360 4.6x lowered

Line sensitivity (kHz/V) 3 10 14 20x lowered

Power (mW) 0.25 0.268 0.28 Maintains the same

8.6 DUT 4: Phase Locked Loop - Kvco

The methodology for modeling PLL-Kvco using classification to identify the operating corner is de-
tailed in section 4.4.2.6. Following the identification of the operating corner via our precise classifier
(SVM), an automated control routine accesses the control codes through a designed LUT approach for
tuning the PLL via control switches. The control circuitry design illustrated in Fig. 8.6 comprises a
series of pass transistor switches that attempt to adjust the size of the transistor controlling the control
voltage input (Vctrl) to bring the Vctrl value back near to its typical value. By varying the voltage
applied to the Vctrl input, we generate control switch codes from different operating temperatures and
corners and store them as an LUT, from which the automated routine post-classification provides the
control codes. In the FF corner, typically, we reduce the transistor size so that 1 GHz (operating fre-
quency) can generate the necessary Vctrl to tune the circuit back to its typical state, whereas we increase
the transistor size in the case of the SS corner. The self-adaptation results are depicted in Fig. 8.7. Fig.
8.7(a) illustrates a scenario with a fixed Vctrl node voltage of 610 mV with frequency variation of 1
GHz (from 3.5 GHz to 4.45 GHz) and Kvco variation from 5.8 GHz/V to 7.3 GHz/V for temperatures
ranging from -40◦C to 125◦C. With the self-adaptation process described earlier, the same conditions
are improved, as shown in Fig. 8.7(b). Now, the frequency varies only by 400 MHz (from 3.8 GHz to
4.28 GHz) and Kvco varies from 6.3 GHz/V to 6.99 GHz/V across the same temperature range.

8.7 DUT 5: Low Noise Amplifier

In this particular investigation, we utilize ML-driven self-adjusting biasing methods to dynamically
regulate the biasing conditions of the LNA based on real-time temperature readings. The designed LNA
achieves a gain exceeding 14 dB, a noise figure below 3.21 dB, and a linearity of -13 dB for the specified
frequency of 1 GHz. Illustrated in Fig. 8.8, the LNA circuit incorporates additional control circuitry
for tuning the MOSFET at the common-source amplifier. This configuration offers the advantage of
adjusting the gain with minimal effort and without impacting other parameters. The control circuit is
equipped with a 6-bit tuning mechanism for the MOSFET multiplier.
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Figure 8.6: PLL control circuitry

Here, we utilize two regression models to facilitate dynamic self-adaptation, which offers flexibil-
ity not constrained by predefined conditions, as seen in LUT-based approaches. Initially, we employ
a trained MPR with a degree of 3 to forecast gain across varying PVT conditions, serving as our first
model. Subsequently, the second regression model is trained using PVT variations and their correspond-
ing gain values as inputs, aiming to capture the changing finger values (the decimal representations of
digital control codes). This second regression model is then employed to gauge the impact of PVT in
conjunction with gain, allowing us to estimate the requisite control codes for adjusting the circuit’s per-
formance to typical levels through the control circuitry. The effectiveness of the first regression model
is illustrated in the LNA section of Chapter 4.

The performance of the second regression model is depicted in Figs. 8.10 and 8.11. Among the
three algorithms—LGBM, XGBM, and MPR—used for training fingers over PVT and gain, LGBM
exhibits superior performance, boasting an R2 value of 0.99 and an MaPE of less than 1%. The training
duration of the LGBM model amounts to approximately 2 minutes, involving 1953 training samples.
Our ML-based self-adaptation method has successfully reduced the PVT spread of gain from ± 20

8.8 DUT 6: High-Speed Low Noise Amplifier

The high-speed LNA, as depicted in Fig. 4.31, is designed to operate at 25GHz in a 28nm tech-
nology node, with specifications outlined in Table 8.4. This table also showcases the enhancements
in performance achieved through self-adaptation. Operating at a nominal supply voltage of 0.9V, the
design consumes 7.8mW of power. The design ensures that both gain and noise figure are tuned simul-
taneously, ensuring a third-order intercept point greater than -20dB. Fig. 8.9 illustrates the high-speed
LNA circuit alongside the control circuitry.

Similar to the previous section on the LNA, this case also involves the utilization of two regression
models. The ML training outcomes for gain and noise figure are visualized in Fig. 8.12. The final model,
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(a)

(b)

Figure 8.7: PLL performances with temperature (a) Before self-adaptation (c) After self-adaptation

LGBM, is deployed for prediction. It takes PVT, gain, and noise margin as inputs and forecasts the
fingers as outputs. These finger values are then converted into their binary equivalents to be applied to
the control circuitry as digital control codes for circuit tuning. The comparison between pre-adaptation
and post-adaptation gain and noise figure values across varying PVT conditions is illustrated in Fig.
8.13.
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Figure 8.8: LNA circuit with self-adaptation control circuitry

Figure 8.9: High-speed LNA circuit with self-adaptation control circuitry

8.9 DUT 7: Mixer

The Mixer, designed in a 65nm technology node with a 900MHz input frequency, features control
circuitry for self-adaptation, as depicted in Fig. 8.14. Similar to the LNA circuits, the second regression
model, which takes as inputs the predicted outputs from the first regression models along with PVT data
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Figure 8.10: Comparison of ML models’ predicted fingers (decimal control codes) of LNA Vs actual
values

Figure 8.11: Scatter plot of actual and ML models’ predicted fingers of LNA

Table 8.4: High-speed LNA performance improvement with Self-adaptation

Specifications Traditional design Improvements
with Self-adaptationMin Typ Max

Gain (dB) 15.443 18 19.542 21% spread reduced by 7.8%

Noise figure (dB) 1.015 3 2.484 59% spread reduced by 25%

Third order intercept point (dBm) -19.23 -15 -8.005 < -20
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Figure 8.12: Comparison of ML models’ predicted fingers (decimal control codes) of high-speed LNA
Vs actual values

(a) (b)

Figure 8.13: Pre-adaptation and Post-adaptation values over different PVT conditions (a) Gain (dB) (b)
Noise Figure (dB)

(as shown in Chapter 4), forecasts the decimal control codes (fingers). The performance comparison
after training is visualized in Fig. 8.15.

The design boasts a third-order intercept point (IIP3) of -3.263dBm and an input-referred 1dB com-
pression point (P1dB) of -13.18dBm. Its variation across PVT corners was noted to be between -2.2dBm
to 8dBm for IIP3 and -19.28dBm to -12.56dBm for P1dB. Post-adaptation, the variation is constrained
to -3.66dBm to -3.33dBm for IIP3 and -14.38dBm to -11.33dBm for P1dB.

8.10 Conclusion

As evidenced by the various analog designs tested, our self-adaptation methodology has effectively
fine-tuned performance attributes to closely match their typical specifications across diverse PVT con-
ditions, utilizing inferred control codes derived from trained ML models. We have demonstrated two
approaches: Firstly, the LUT approach utilizes fixed conditions to cover all operating conditions and
processes, accessed through an automated routine following classification model predictions. Secondly,
a dynamic approach employs a regression model to predict the decimal equivalent of control codes,
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Figure 8.14: Mixer circuit with self-adaptation control circuitry

Figure 8.15: Comparison of ML models’ predicted fingers (decimal control codes) of Mixer Vs actual
values

subsequently converted into binary for application to digital switches. This dynamic method effectively
spans all operating regions of the analog circuits. Both approaches yield highly accurate circuit tuning
to typical conditions within a very short computation time (within few seconds). The precision of ML
modeling and predictions, tailored for specific PVT conditions, underlies these accurate outcomes. It is
crucial to underscore that generating the dataset for ML model training and determining dominant com-
ponents for an analog functional circuit is a one-time endeavor integrated into the self-adaptive design
library. Furthermore, self-adaptation markedly enhances circuit performance compared to traditional
methodologies, improving it by several orders of magnitude.
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Chapter 9

Conclusion

The thorough analysis of the impact of design, process, and environmental variations on digital and
analog VLSI circuits reveals their vulnerability to unpredictable variations during fabrication processes,
temperature fluctuations, and bias conditions. The emergence of PVT variations can lead to significant
performance degradation, sometimes making the circuit non-functional. This underscores the need for
comprehensive worst-case analysis before fabrication and the implementation of appropriate counter-
measures during the design phase. Conventional mathematical modeling and simulation tools struggle
to address all scenarios and temporal changes, resulting in prolonged design cycles, delayed time-to-
market, and increased production costs. Moreover, the heavy dependence on designers’ intuition, skills,
and expertise, coupled with a lack of formalization, hampers the dissemination and reuse of knowledge
in this domain.

In response, our research introduces automated circuit modeling, representing a paradigm shift that
accelerates design and development processes while enhancing performance. We develop a rapid and
efficient surrogate modeling framework for accurately estimating PVT-aware circuit performance in
VLSI circuits. This framework, versatile and platform-independent, leverages AI/ML algorithms to cre-
ate surrogate models capable of accurately capturing the effects of design, process, and environmental
variations across multiple technology nodes. Through meticulous training dataset generation, incor-
porating varied PVT and design parameter variations, the regression and classification algorithms in
framework builds application-specific surrogate models considering the effects of design, process, and
environmental variations across multiple technology nodes. Digital circuit modeling encompasses high-
performance CMOS technology nodes, namely 45nm, 32nm, 22nm, and 16nm, and FinFET technology
nodes, such as 16nm, 10nm, and 7nm. Analog, mixed-signal, and radio-frequency circuit modeling
ranges from 180nm to 65nm, then progresses to 28nm designs. Through our composite test criteria, we
determined LGBM algorithm as the best performer, both in the case of regression and classification in
modeling digital and AMS circuits. Polynomial regression, dense neural networks for regression and
support vector machine for classification are the other notable well-trained models. Across all our ex-
periments in various technology nodes, the best performing regression models achieve a very high R2

of > 0.99 for digital circuits and more than 0.95 in the case of AMS circuits. Further, we report µE , σE

< 1% and an average MaPE < 1% for the test split data in all the designs, validating the accuracy of
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the trained regression models. Remarkably, the classification models report 100% accuracy in multiple
analog designs.

Our research also introduces the Unified Deep-learning Neural Network (U-DNN) architecture for
the reuse of its architecture acquired through modeling of PVT-aware AMS circuits in CMOS 180nm
and 65nm technologies, enabling accurate modeling at other technology nodes such as CMOS 28nm.
The U-DNN serves as a versatile platform for modeling various AMS circuits for different applications,
significantly reducing the extensive design exploration time typically required to select appropriate NN
structures.

Furthermore, our research introduces the novel implementation of transfer learning for data-efficient
circuit modeling, effectively investigating the relationships of PVT and leakage and delay of standard
digital cells within CMOS/FinFET technologies across different nodes. The experimental outcomes,
both before and after fine-tuning via Bayesian optimization, demonstrate an enhanced performance
of the transfer-learned DNN. Through comprehensive demonstrations of the different digital standard
cells, our proposed methodology attains a speed-up of 104 times than SPICE and up to 10x cost re-
duction compared to other cutting-edge modeling techniques, all while achieving heightened model
accuracy. Additionally, in another configuration of Zero-Shot Learning, accurate modeling is achieved
with zero modeling complexity and without the need for any simulation data, making it a valuable tool
for preliminary analysis of circuit variability for future nodes.

Further, the research accelerates and improves the estimation of PVT-aware performance for complex
digital circuits. It achieves this by utilizing predictions from surrogate standard cell models in an auto-
mated manner. The experimental results exhibit a remarkably close alignment with simulation results,
obviating the need for additional computations. Moreover, through the utilization of multi-objective
and multi-directional optimization algorithms on these trained ML models, we achieve a significant
enhancement in computational efficiency compared to conventional simulators, all while maintaining
accuracy. Our approach intelligently selects the optimal combination of ML and optimization algo-
rithms tailored to each circuit, ensuring optimal outcomes. Experimental validation conducted on 22nm
CMOS High-K technology complex digital circuits demonstrates substantial reductions of up to 55.51%
in delay and 20.44% in leakage, alongside consistent area reduction. Our optimization engine, OptiMo,
offers a fast, reliable, and accurate solution for a diverse range of intricate circuits through an automated
approach. Application results on ISCAS-74X and ISCAS-85 benchmark circuits showcase remarkable
reductions of up to 64.6% in PDP.

In addition, this research integrates a rapid sensitivity analysis and a methodology for identifying
dominant parameters using the Pearson coefficient and Information gain for both digital and analog
components. Moreover, the innovative self-adaptation approach has successfully optimized the perfor-
mance characteristics of AMS circuits to closely align with their typical specifications across a wide
range of PVT conditions, leveraging inferred control codes derived from trained ML models. Both the
LUT approach, which maintains fixed conditions across all operating scenarios and processes, and the
dynamic approach, which employs a regression model to predict the decimal equivalent of digital con-
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trol codes, demonstrate highly accurate circuit tuning to typical conditions within a brief computation
time. The precision of ML modeling and predictions, customized for specific PVT conditions, underpins
the accuracy of these outcomes. It is imperative to emphasize that generating the dataset for ML model
training and identifying dominant components for an analog functional circuit is a one-time effort inte-
grated into the self-adaptive design library. Furthermore, self-adaptation significantly enhances circuit
performance compared to traditional methodologies, improving it by several orders of magnitude.

By offering a holistic PVT-aware surrogate modeling approach that bridges the gap between digital
and analog realms, our framework holds promise for accelerating the design process and enhancing
overall circuit performance in increasingly complex semiconductor ecosystems. In the future, imple-
menting the surrogate methodologies on silicon and verifying the speed and accuracy of the developed
AI/ML models would be our focus.

158



Bibliography

[1] A. Jacob, R. Xie, M. Sung, W. LiebmannLars, R. Lee, and B. Taylor, “Scaling Challenges for Ad-
vanced CMOS Devices,” International Journal of High Speed Electronics and Systems, vol. 26,
p. 1740001, 2017.

[2] A. Zjajo, Stochastic Process Variation in Deep-Submicron CMOS. Springer, 2016.

[3] K. Kuhn, “Chapter 1 - CMOS and Beyond CMOS: Scaling Challenges,” in High Mobility
Materials for CMOS Applications, ser. Woodhead Publishing Series in Electronic and Optical
Materials, N. Collaert, Ed. Woodhead Publishing, 2018, pp. 1–44. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B978008102061600001X

[4] H. Iwai, “Technology roadmap for 22nm and beyond,” in 2009 2nd International Workshop on
Electron Devices and Semiconductor Technology, 2009, pp. 1–4.

[5] J.-A. Carballo, W.-T. J. Chan, P. A. Gargini, A. B. Kahng, and S. Nath, “Itrs 2.0: Toward a
re-framing of the Semiconductor Technology Roadmap,” in 2014 IEEE 32nd International Con-
ference on Computer Design (ICCD). IEEE, 2014, pp. 139–146.

[6] D. Bhattacharya and N. K. Jha, “FinFETs: From Devices to Architectures,” Advances in Elec-
tronics, vol. 2014, 2014.

[7] X. Wang, A. R. Brown, B. Cheng, and A. Asenov, “Statistical variability and reliability in
nanoscale FinFETs,” in 2011 International Electron Devices Meeting. IEEE, 2011, pp. 5–4.

[8] B. Vincent, R. Hathwar, M. Kamon, J. Ervin, T. Schram, T. Chiarella, S. Demuynck, S. Baudot,
Y. K. Siew, S. Kubicek, E. D. Litta, S. Chew, and J. Mitard, “Process Variation Analysis of Device
Performance Using Virtual Fabrication: Methodology Demonstrated on a CMOS 14-nm Finfet
Vehicle,” IEEE Transactions on Electron Devices, vol. 67, no. 12, pp. 5374–5380, 2020.

[9] Z. Abbas, A. Zahra, M. Olivieri, and A. Mastrandrea, “Geometry Scaling Impact on Leakage Cur-
rents in Finfet Standard Cells Based on a Logic-Level Leakage Estimation Technique,” in Micro-
electronics, Electromagnetics and Telecommunications, J. Anguera, S. C. Satapathy, V. Bhateja,
and K. Sunitha, Eds. Singapore: Springer Singapore, 2018, pp. 283–294.

159

https://www.sciencedirect.com/science/article/pii/B978008102061600001X


[10] D. S. Boning, I. A. M. Elfadel, and X. Li, “A Preliminary Taxonomy for Machine Learning in
VLSI CAD,” in Machine Learning in VLSI Computer-Aided Design. Springer, 2019, pp. 1–16.

[11] T. Hastie, R. Tibshirani, and J. Friedman, “The Elements of Statistical Learning – Data Mining,
Inference, and Prediction.”

[12] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.
deeplearningbook.org.

[13] S. Shukla, S. S. Gill, N. Kaur, H. Jatana, and V. Nehru, “Comparative Simulation Analysis of
Process Parameter Variations in 20 nm Triangular FinFET,” Active and Passive Electronic Com-
ponents, vol. 2017, 2017.

[14] Z. Abbas and M. Olivieri, “Impact of technology scaling on leakage power in nano-scale bulk
CMOS digital standard cells,” Microelectronics Journal, vol. 45, no. 2, pp. 179–195, 2014.

[15] Y. S. Chauhan, S. Venugopalan, M. A. Karim, S. Khandelwal, N. Paydavosi, P. Thakur, A. M.
Niknejad, and C. C. Hu, “BSIM — Industry standard compact MOSFET models,” in 2012 Pro-
ceedings of the ESSCIRC (ESSCIRC), 2012, pp. 30–33.

[16] P. Cox, Ping Yang, S. S. Mahant-Shetti, and P. Chatterjee, “Statistical modeling for efficient
parametric yield estimation of MOS VLSI circuits,” IEEE Transactions on Electron Devices,
vol. 32, no. 2, pp. 471–478, 1985.

[17] A. R. Alvarez, B. L. Abdi, D. L. Young, H. D. Weed, J. Teplik, and E. R. Herald, “Application
of statistical design and response surface methods to computer-aided VLSI device design,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 7, no. 2, pp.
272–288, 1988.

[18] D. L. Young, J. Teplik, H. D. Weed, N. T. Tracht, and A. R. Alvarez, “Application of statisti-
cal design and response surface methods to computer-aided VLSI device design II. desirability
functions and Taguchi methods,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 10, no. 1, pp. 103–115, 1991.

[19] M. A. H. Khan, A. S. M. Z. Rahman, T. Muntasir, U. K. Acharjee, and M. A. Layek, “Multiple
polynomial regression for modeling a MOSFET in saturation to validate the Early voltage,” in
2011 IEEE Symposium on Industrial Electronics and Applications, 2011, pp. 261–266.

[20] A. A. Mutlu and M. Rahman, “Statistical methods for the estimation of process variation effects
on circuit operation,” IEEE Transactions on Electronics Packaging Manufacturing, vol. 28, no. 4,
pp. 364–375, 2005.

[21] S. Basu, P. Thakore, and R. Vemuri, “Process Variation Tolerant Standard Cell Library Devel-
opment Using Reduced Dimension Statistical Modeling and Optimization Techniques,” in 8th
International Symposium on Quality Electronic Design (ISQED’07), 2007, pp. 814–820.

160

http://www.deeplearningbook.org
http://www.deeplearningbook.org


[22] L. Brusamarello, G. I. Wirth, P. Roussel, and M. Miranda, “Fast and accurate statistical
characterization of standard cell libraries,” Microelectronics Reliability, vol. 51, no. 12,
pp. 2341–2350, 2011. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0026271411001879

[23] M. Miranda, P. Roussel, L. Brusamarello, and G. Wirth, “Statistical characterization of
standard cells using design of experiments with response surface modeling,” in 2011 48th
ACM/EDAC/IEEE Design Automation Conference (DAC), 2011, pp. 77–82.
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