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Abstract

In today’s sedentary lifestyle, a person spends a substantial amount of time in a sitting position.
Having a poor sitting posture can put more stress on specific muscles and joints, forcing them to be
overworked and causing them to fatigue, which results in back pains. “Health is Wealth” and when
we are talking about a healthy body, posture is as important as eating in the right way and regular
exercising. Hence, it is very important for us to sit in the correct posture. Incorrect sitting posture leads
to widespread chronic back pain and other health-related issues, particularly in young adults.

We developed a flexible pressure-sensor-array-based smart chair that analyses sitting posture using
machine learning algorithms. This is an add-on feature that can be installed on any existing chair or
can be integrated into chairs by manufacturers. The solution is completely flexible, requires very low
power, and is low-cost. The smart chair works by mapping the body pressure at the seat and the backrest.
Machine learning algorithms are used for the training and classification of different postures for posture
recognition.

To fabricate a flexible pressure sensor, we presented the synthesis of an organic polymer-polypyrrole
used as a piezoresistive conductive material that was synthesized using in-situ chemical oxidative liquid
polymerization. The sensor showed high sensitivity at low-pressure ranges and can measure pressure in
the range of 160 Pa to 16 kPa. We then presented the design of a smaller sensor array mat (4 × 4) using
a carbon-impregnated conductive polymer named velostat, and performed various tests to ensure that it
could be effectively used for posture recognition applications.

We presented the mechanical reliability of a velostat-based pressure sensor. We reported the bending
response by examining its reliability when subjected to repeated mechanical stress for 150 bending
cycles. We presented for the first time ever, the long-term reliability of velostat by testing it for 210
days. From the results, we observed that the particles of the velostat settle after a particular amount
of time on repeated load applications. Once that happens, the change in the resistance of the velostat
becomes practically invariant with time. We have observed that the decay ratio is closer to 1 after 210
days. This implies that we can expect reliable and repeatable results from the velostat sensor after the
application of load 15 times with a load range from 1 to 12 kg. The relative error is also drastically
reduced, and there is an overall error reduction by 53 percentage points in 210 days.

A novel data acquisition circuit design with flexibility to read out both capacitive and resistive types
of sensors has been presented. It requires less area and is more cost-effective compared to separate
single-sensor read-out circuits. We finally present the design of a smart chair system. We tested different
machine learning models for the classification of seven different postures and achieved the best accuracy
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of 95.89% using the Support Vector Machine (SVM) model and 95.61% using the Neural Network (NN).
Though the training time for NN is longer compared to SVM, the prediction speed is almost double that
of SVM.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, people are more conscious of the value of investing in their own well-being, thanks to
recent developments in the medical and health sciences as well as the accessibility of information about
healthy living. However, because of stress and our contemporary way of life, we probably neglect our
health. In particular, the problems of a lazy lifestyle and bad sitting posture have worsened due to the
rise in desk-bound work and the usage of electronics like smartphones and tablets [1]. Incorrect sitting
postures have been linked to a variety of physical and mental health problems. It has been estimated that
we spend between fifty and eighty percent of our days sitting down due to the rise in desk-bound work
and widespread usage of mobile devices [2]. People with sedentary employment sit for an average of
9.95 hours during working days and 8.07 hours during non-working days [3]. Slouching, hunching, or
slumping are examples of poor posture that cause misalignment along the spinal column and affect all
of the major musculoskeletal system components. One of the most vital components of the body is the
spine. Any region of the body can become immobile if damage is done to the spinal cord. The body’s
weight or stress is rearranged due to a misaligned spine, which puts a great deal of strain on the joints.
It has been reported that the point, annual, and lifetime prevalence rate of lower back pain in the Indian
population (66%) is higher compared to global and other ethnic populations, especially among women,
the rural population, and elementary workers [4]. When this back pain extends for over 12 weeks or
more, it becomes chronic back pain. It is reported in 2023 that chronic lower back pain is a prevalent
issue worldwide, affecting about 1.71 billion people, with a significant proportion being women. It is
also a major health concern in India, particularly among women, which is reported to be 80% of women
between 20 to 50 years of age [5].

The choice of this research problem was also influenced by a personal motivational story. When my
brother was doing his internship after his medical studies, he once told me the story of his patient, who
was a truck driver and suffered from terrible back pain. The doctors can only prescribe physiotherapy
and painkillers to such patients. Some people avoid doing physiotherapy because they can’t afford it,
and painkillers are just temporary solutions. My brother said that there are almost 10 to 15 such cases
that come regularly. It is a critical problem that has to be solved to save the young generation from
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Figure 1.1 Architecture of the smart chair system

chronic back pain. This was a turning point and my motivation for doing this research. Preventing such
pains is crucial because there is not a permanent solution outside of physiotherapy. In the words of the
well-known proverb, ”Prevention is better than cure,” I started looking into how to avoid experiencing
these kinds of pains. Approximately 80 percent of individuals experience persistent back discomfort. It
ranks as the third most typical reason for visiting the doctor. An estimated 50 billion dollars are spent
annually on back pain treatment only in the United States [6]. Therefore, maintaining good posture
when sitting is crucial.

1.2 Smart Chair System

Maintaining good sitting posture is as important as eating a balanced diet and doing regular ex-
ercise to have a healthy body. In order for the muscles and joints to function more consistently and
effectively, the bones must be positioned correctly. This is known as correct posture. In a number of
disciplines, including biomedical engineering and public health services, the study of sitting behavior is
becoming popular. We must sit with proper posture because we spend the majority of our waking hours
seated. Real-time monitoring and adjustment of sitting postures is one of the main issues that need to
be addressed using the newest advancements in sensor technologies and Artificial Intelligence (AI) and
Machine Learning (ML) to lower the risk of issues associated with improper posture.

A simple architecture to design a smart chair system using a pressure sensing array is shown in
Fig. 1.1. The pressure sensing unit includes designing a pressure sensing mat that can sense the pressure
data of the seat and the backrest. After sensing the data, we need a readout circuit to read the data from
the sensors. The readout or data acquisition circuit includes a microcontroller or an analog-to-digital
converter (ADC). The next step is designing a posture recognition system. The posture recognition
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subsystem includes data collection, analysis, and classification using ML algorithms and do performance
analysis to select the best model. The application service layer is developed on top of the posture
recognition subsystem and can display the sensing results, perform activity level assessment, and alert
the user to incorrect postures.

The smart chair system has various advantages for maintaining our health, too. By analyzing pres-
sure distribution, it can monitor sitting habits over time, alert users to prolonged periods of sedentary
behavior, which can contribute to health issues like obesity, cardiovascular problems, and diabetes. It
can detect poor posture and provide real-time feedback to users, helping them maintain proper posture
and reduce the risk of musculoskeletal issues. Furthermore, it can collect data on chair usage patterns,
helping organizations optimize workspace layouts and improve ergonomic design. In addition to this,
it can help in managing energy efficiently in smart office environments. It can integrate with build-
ing management systems to optimize heating, ventilation, and air conditioning based on occupancy
patterns, contributing to energy savings. By promoting better posture and comfort, it can potentially
enhance productivity by reducing discomfort and fatigue associated with prolonged sitting.

Since it is based on a detachable flexible pressure sensor mat, it can be attached to any chair, like a
gaming chair, an office chair, wheelchairs, or even chairs in automobiles. For individuals with mobility
impairments, it can provide assistance by detecting when they need to change positions or providing
alerts if they remain seated for too long. In healthcare settings, smart wheelchairs can enable remote
monitoring of patients’ sitting behavior, allowing caregivers to intervene if necessary and preventing
pressure ulcers or discomfort. Overall, a pressure sensor-based smart chair system offers a range of
benefits that contribute to improved health, comfort, productivity, and safety in various environments.

1.3 Contributions of this Thesis

• We presented the synthesis of an organic conducting polymer-polypyrrole using in-situ chemical
oxidative liquid polymerization. A flexible pressure sensor was fabricated using polypyrrole-
coated cotton (PCC) as a piezoresistive conducting material .

• We presented the design and fabrication of a 4 × 4 flexible pressure sensor array that works on
the principle of piezoresistivity. We have developed a novel AI based algorithm to determine the
accuracy of positioning of load by the stroke patients and compared it with mathematical analysis.

• The mechanical reliability of a velostat-based pressure sensor is reported by examining its relia-
bility when subjected to repeated mechanical stress for 150 bending cycles.

• We reported for the first time ever, the reliability of a flexible velostat-based pressure sensing
system under long-term and repeated loading. Tests were performed every fortnight for 210 days.

• We presented a novel interface circuit with the flexibility to read out both capacitive and resistive
types of sensors known as resistance and capacitance to a digital converter (RCDC). It requires
less area and is more cost-effective than separate single-sensor read-out circuits.
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• We presented the design of a smart chair system and the different machine learning algorithms
used for the training and classification of seven different postures.

1.4 Thesis Outline

Figure 1.2 Outline of work done

In this doctoral thesis, we described the design and construction of a flexible pressure sensor array-
based smart chair that uses ML algorithms to analyze the user’s sitting postures. This is an add-on
function that manufacturers can incorporate into their chairs or install on any existing chair. The solution
is inexpensive, easy to make, breathable, totally flexible, and power-efficient. The way the smart chair
functions is by using body pressure mapping at the backrest and seat. Different ML algorithms were
used, and performance analysis was done to select the best ML model for training and classification of
seven different postures. Fig. 1.2 shows the flow of work that was done. For better understanding, the
thesis chapters are arranged in a different arrangement compared to the flow of work done. The pressure
sensing system and the posture recognition system make up the two main components of the smart chair
system. In Chapter 2, we presented the synthesis of an organic conducting polymer- polypyrrole, and
the design of a piezoresistive pressure sensor using polypyrrole. We talked about the construction and
design of a pressure sensor system in Chapter 3. A detailed discussion is held regarding the cross-talk,
reliability, mechanical reliability, calibration, static, and dynamic features in Chapter 4. The design
and development of the data acquisition circuit is covered in Chapter 5. We have manufactured the
integrated circuit and designed a resistance and capacitance-to-digital converter in cadence. We talked
about the posture recognition system in Chapter 6. We showcased the machine learning methods we
have employed together with the model that yielded the highest accuracy. Chapter 7 concludes this
thesis by summarizing the results obtained thus far. It provides an overview of the work conducted and
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presents the future work. The major achievements and challenges in this doctoral thesis are reviewed
and summarized.

5



Chapter 2

Synthesis of conducting polymer for pressure sensing

2.1 Publication History

This chapter contains excerpts from the following publications: [7, 8]

• Anis Fatema, S. Chauhan, M. Datta, A. M. Hussain “Polypyrrole-based Cotton Flexible Pressure
Sensor using In-situ Chemical Oxidative Polymerization”, in proceedings of 2023 IEEE Interna-
tional Conference on Flexible and Printable Sensors and Systems (FLEPS), 2023.

• S.B Mishra, A. Fatema, D. Niteesh, A. M. Hussain, “Development of Conductive Surface on
Polyurethane Foam using in-situ Polymerization of Pyrrole for Capacitive Pressure Sensing”, in
IEEE Sensors Letters.
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2.2 Introduction

To design and fabricate a flexible pressure sensor array as a complete hand-made in-lab sensor, we
synthesized our own conducting polymer- Polypyrrole (pPy). This chapter presents the synthesis of
polypyrrole using in-situ chemical oxidative liquid polymerization and the design of a pressure sensor
using polypyrrole-coated cotton. The fabrication of a capacitive pressure sensor using polypyrrole is
also presented.

Organic conductive polymer composites (CPCs) are becoming increasingly important because of
their capacity to withstand high temperatures and chemical reactions, strong electrical conductivity, af-
fordability, and ability to charge quickly. These properties are a result of the presence of conjugated
π-bonds within the CPCs [9]. Electronic conduction in organic polymers is facilitated by the interaction
and delocalization of π-electrons in a conjugated carbon chain [10]. The diverse range of preparation
procedures and surface deposition techniques enable us to utilize them in several applications. pPy is
a widely studied electrically conductive organic polymer due to its simple synthesis, high conductivity,
strong environmental stability, and low toxicity at low doses [11]. Due to its excellent bio-compatibility,
it has been utilized to connect electrical components and tissues within the human body for the pur-
pose of recording or stimulation [12]. Additional applications documented in the literature encompass
chemical sensors utilized for the identification of volatile organic compounds (VOCs) [9, 13], the ad-
vancement of wearable sensors [14], electronic skins (E-skins) [15], soft robotics [16], bio-medical
applications [17], and the creation of tactile sensors [18]. The mechanical tolerance threshold of pPy
makes it very suitable for the design and production of flexible and elastic sensors.

Flexible and stretchable electronics have various application areas, including soft robotics [19, 20],
healthcare, and implantable devices in the context of the internet of things (IoT) [21], internet of ev-
erything (IoE) [22], and embedded electronics applications [23]. Wearable electronics heavily rely on
flexible pressure sensors, which are primarily constructed utilizing techniques such as piezoresistive
sensors, [24–26], piezoelectric sensors [27], and capacitive sensors [28]. Piezoresistive sensors have
emerged as the leading category in pressure sensing due to their easy manufacturing, affordability, un-
complicated signal processing circuitry, and standardized data collecting technique [29].

When combined with a stretchable substrate or matrix, pPy exhibits a piezoresistive phenomena.
Various synthesis techniques have been investigated to enhance the conductivity of the pPy. A poly-
meric thin film is produced using a multi-phase reaction process to create a hollow sphere structure of
the polymer, allowing it to undergo elastic deformation and regain its original shape when pressure is
applied [30]. Nanosheets of a pPy thin film have been produced on a graphene oxide layer utilizing
solution-based patterning with regulated pore diameters [31]. Fan et al. conducted the synthesis of
pPy by performing in-situ polymerization of pyrrole monomer on carbon nanotubes (CNTs) [32]. Their
examination revealed the absence of a chemical interaction between the carbon nanotubes (CNTs) and
pPy. The CNTs solely serve as a framework for the polymerization of pPy. Shukla et al. conducted
a study where they synthesized a copolymer called polypyrrole-grafted-cellulose (pPy-g-Cellu) using a
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Figure 2.1 Aqueous solutions of FeCl3 with varying molarities (0.3 M, 0.5 M, 0.7 M, 0.8 M).

chemical process. This copolymer showed potential as a material for sensing humidity, with a response
time of 25 s and stability for 40 days [33].

pPy was synthesized by performing an in-situ chemical oxidative liquid polymerization of pyrrole
monomer on cotton pads. In-situ polymerization enables the seamless incorporation of polymer com-
posites into the desired surface or substance. A flexible, foldable, and stretchable pressure sensor was
created by placing the synthesized polypyrrole coated cotton between the copper electrodes, which were
then covered with protective layers of paper. The sensor based on pPy demonstrated excellent repeata-
bility and minimal hysteresis.

2.3 Polypyrrole Synthesis and Sensor Design

The process of synthesizing pPy involved the in-situ growth of the material on cotton fiber using liq-
uid chemical oxidative polymerization of pyrrole monomer. The oxidizing agent ferric chloride (FeCl3)
was employed to facilitate the polymerization of pyrrole. During the process of chemical oxidative
polymerization, the occurrence of propagation, nucleation, and growth of polymer molecules is ob-
served when pyrrole molecules come into contact with FeCl3. FeCl3 acts as an oxidizing agent and
plays a role in shaping the micro and/or nanostructure and influencing the electrochemical behavior
during the creation of pPy. Prior to usage, a cotton pad and a cotton fabric measuring 5 mm × 5 mm
× 1 mm were properly cleansed with distilled water and subsequently dried at a temperature of 60◦C.
Aqueous solutions of FeCl3 with varying molarities (0.3 M, 0.5 M, 0.7 M, 0.8 M) were made by dis-
solving the compound in distilled water under magnetic stirring until full dissolution. Fig. 2.1 shows the
pPy dipped in various molarities of FeCl3.

The pyrrole solution was produced with a concentration of 0.4 M using magnetic stirring. The
cotton pads and fabric were immersed in a pyrrole solution for a duration of five minutes, followed
by immersion in a FeCl3 solution for one hour at ambient temperature. After one hour, they were
extracted and rinsed with distilled water to eliminate FeCl3 and any unreacted pyrrole. The sample was
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Figure 2.2 Overnight drying of samples under normal environmental conditions

Figure 2.3 Testing the conductivity of the synthesised PCC

subjected to a drying process at a temperature of 60◦C, followed by an overnight drying period under
normal environmental circumstances. Fig. 2.2 shows all the samples being dried overnight under normal
environmental conditions.

The conductivity of all the polypyrrole-coated cotton (PCCs) was assessed, and it was found that the
cotton pad immersed in a 0.8M FeCl3 solution exhibited the maximum conductivity. Fig. 2.4 depicts
the process of pPy production. In order to create a strain sensor and assess its conductivity, the PCC
material was divided into square pieces of 2.5 cm × 2.5 cm. These pieces were then placed between
two copper electrodes that were attached to a sheet of paper.
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Figure 2.4 Illustration of the process of polypyrrole synthesis on a cotton pad.

2.4 Measurements

2.4.1 UV-visible Spectoscropy

Before using the pyrrole monomer for synthesis, we performed Ultraviolet–visible (UV-VIS) spec-
troscopy using Jasco V-770 Spectrophotometer of pyrrole and pPy. Fig. 2.5 shows the UV-VIS spectra
of pyrrole and the synthesized polypyrrole. We can observe that the absorption peak of pyrrole is 236.5
nm and that of polypyrrole is 496.5 nm which lies in their typical absorption range.

2.4.2 Scanning Electron Microscopy

The morphology of the polypyrrole synthesized using in-situ polymerization can be observed in
Fig. 2.5 which shows the Field Emission Scanning Electron Microscope (FE-SEM) images of the PCC
under 5K (Fig. 2.5b) and 50K (Fig. 2.5c) magnification. We can observe that the cotton fibers were
coated with uniform granular particles of pPy. The strands of cotton fiber are also clearly visible in the
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Figure 2.5 (a) UV-visible spectroscopy of pyrrole and polypyrrole shows peaks as expected from their
absorption spectra. (b) and (c) Scanning electron microscopy (SEM) images of the cotton fabric after
polypyrrole synthesis. Scale bars in (b) and (c) are 2 µm and 200 nm respectively.

image. This confirmed that pyrrole had polymerized on the surface of the cotton pad, and the pPy is
uniformly distributed on the cotton strands.

2.4.3 Electrical Property Evaluation

The resistivity of pPy samples was measured using a four-point probe method, using a 2450 Sourceme-
ter (Keithley Instruments Inc). The four-point probe method is the most common technique to measure
sheet resistance due to its low demand for sample preparation and high accuracy. It was observed that
the sheet resistance of the cotton pad was 28.09 Ω, and the sheet resistance of the piece of cotton fabric
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Figure 2.6 Polypyrrole based sensor design

was 5.89 kΩ. We can observe more conductivity in the cotton pad compared to the fabric because the
cotton fabric has a natural hollow fibrous structure providing more surface area for the adsorption and
polymerization of pyrrole [34].

2.5 Sensor Design and Testing

Following the preparation of the PCCs, the polymer’s conductivity was assessed using both a straight-
forward LED illuminating technique and the more precise four-point probe approach. To evaluate the
piezoresistive sensing mechanism of the polymer, a sensor was created by placing the PCC material
between the copper electrodes (Fig. 2.6). A 1 kΩ bias resistance was employed to construct a voltage
divider circuit, and the output was measured using a microcontroller. Fig. 2.8a displays the force re-
sistance and force-conductance curves of the sensor. For the subsequent trial, we assessed the sensor’s
capacity to produce consistent results. Pressure sensors, especially those used in commercial and indus-
trial applications, consider it an important metric. The sensor’s repeatability was assessed by subjecting
it to 1000 loading-unloading cycles with a force of 2 N applied. The sensor had a consistent response,
as depicted in Fig. 2.8b. The response time of the sensor was calculated to be 463 ms (10% to 90% rise).

The sensor’s response was evaluated when subjected to compressive strain. In order to precisely
apply the strain, we positioned the sensor within the jaws of a screw gauge and proceeded to compress
it. Our observation revealed an increase in strain and a decrease in resistance. The variation in resistance
during compression and expansion (loading and unloading cycle) is seen in Fig. 2.9. The resistance of
the sensor decreases from 1.8 kΩ at the initial state to 1.2 kΩ at 99.6% strain. Thus, we report the gauge
factor of the sensor to be 0.32 in the large strain range of 0% to 99.6%. Such a large compressive strain
range can be achieved with cotton-based sensors because of the fibrous nature of the material.
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Figure 2.7 Experimental setup for testing the strain response of the polypyrrole-based sensor.

2.6 Fabrication of Capacitive Pressure Sensor using Polypyrrole

In the era of consumer electronics, one of the main study areas is affordable electronics. Although
semiconductor fabrication technology has many benefits, it also necessitates expensive equipment and
certain materials, which drives up the cost of the devices. Consequently, simple fabrication methods with
common household components and fewer fabrication stages have been introduced in recent years [35].
However, appropriate sensitivity, high spatial resolution, and thermo-electromechanical stability should
all be features of inexpensive electrical and robotic component development [36–40].

One significant class of materials for the production of inexpensive electronic devices is conductive
polymers. These materials must be adjustable both mechanically and chemically. Since different types
of pPy can be produced during polymerization in terms of crystallinity, solubility, conductivity, and
thermomechanical properties by varying the dopant, oxidant molarities, surfactants, pH values, and
temperature, polypyrrole (pPy) is a widely studied conductive polymer with adjustable chemistry. [41,
42]. The conductivity of pPy comes from its π-π conjugated backbone, which is made up of alternating
single and double bonded sp2 carbon atoms [43–45].
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Figure 2.8 (a) The force-resistance and force-conductance characteristic for the sensor with 1 kΩ bias
resistance (b) Response of the sensor for repeated application of load shows repeatable results.

Regarding mechanical sensitivity, dependability, low power consumption, and temperature insensi-
tivity, capacitive pressure sensors show great promise [36,38]. Due to their high stress tolerance, foams
have been investigated as dielectric materials for capacitive pressure sensors. [46–48]. The design and
sensitivity of a capacitive pressure sensor depend upon the properties of the electrode material as well
as the dielectric. To increase the sensitivity of capacitive pressure sensors many structured dielectrics
such as plateau, pyramids, micropillars, matrix arrays and so on have been studied [49–51]. Typically
used materials include polymeric foams, porous PDMS, ecoflex, PET, and polymer gel [52, 53].

2.6.1 Sensor Design of polypyrrole based capacitive sensor

Polyurethane foam served as the foundation for the sensor’s construction, and two parallel electrodes
made of pPy thin film were created on it. The rectangular cuboid foam that was used has dimensions of
2 cm 2 cm 0.5 cm. When in compression within a suitable stress range, this material exhibits linear
elastic behavior; at low pressure variations, it displays substantial deformation [54]. FeCl3 was used

14



Figure 2.9 Response of a sensor under compressive strain during loading and unloading. The increase
in LED intensity indicates the decreased resistance because of strain. Initial length (L0) = 25 mm.

as the oxidant in an in-situ liquid chemical oxidative technique to prepare the pPy layer on the foam’s
top and bottom. A heterocyclic aromatic organic chemical with the formula C4H4NH and a molecular
structure of a five-membered ring, pyrrole is the monomer. By precipitating an amorphous suspension
in the majority of the polymerization solution, pPy is produced using this approach.

After properly cleaning the foam with distilled water, hot air was used to dry it. Sample 1: 0.6 M
and 0.4 M, Sample 2: 0.6 M and 0.6 M, Sample 3: 0.6 M and 0.8 M, Sample 4: 0.4 M and 0.6 M, and
Sample 5: 0.8 M and 0.6 M were the five samples made with varying molarities of pyrrole and FeCl3,
diluted in water. We laid the foam on top of the pyrrole solution that had turned yellow after it had dried.
We put it in FeCl3 after it had absorbed the pyrrole solution for five minutes. After around 60 minutes,
we could see the beginning, growth, and saturation of polymerization (black color).
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Figure 2.10 Process of polypyrrole surface foam synthesis on both sides of a polyurethane foam piece.
Scale bar is 5 mm.

Figure 2.11 Optical microscopy image shows the penetration depth of the pyrrole at the foam surface
(roughly 600 µm).

2.6.2 Characterization of the capacitive pressure sensor

The response of the sensor was characterized by applying known pressure onto the foam and measur-
ing the capacitance (using Keysight E4980AL precision LCR meter). To apply pressure on the foam, we
first put a transparent, thin, and lightweight acrylic sheet on the sensor to avoid proximity effects while
placing the weights and for uniform distribution of pressure. The change in capacitance concerning the
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Figure 2.12 Response of various pressure sensor samples for applied pressure.

Figure 2.13 Photos of PU foam based capacitive sensor synthesized using different concentrations

initial capacitance ((C − C0)/C0) was noted for applied pressures. The response for all five samples is
shown in Fig. 2.12.

Sensitivity is defined as the change in output for a given change in input stimulation. For a capacitive
pressure sensor,

S =
δ( (C−C0)

C0
)

δP
(2.1)

where, C is the output capacitance for an applied pressure P , and C0 is the initial capacitance of the
sensor. Out of the five samples, sample 2 had the highest sensitivity, with a molar ratio of one for the
monomer and oxidant. For 25 kPa pressure, we report the sensitivity as follows: 1.01 kPa−1, 0.94 kPa−1,
0.77 kPa−1, 0.59 kPa−1, and 0.43 kPa−1 for samples 2, 5, 3, 1, and 4. The results given here indicate
that electrode qualities like conductivity also influence the sensitivity of a capacitive pressure sensor,
even though the dielectric mechanical properties (stress-strain curves) have a considerable impact.

In Fig. 2.14, the sensitivities for each of the five samples are displayed. Sample 2 has the highest
average sensitivity, although its value changes over the measurement range, as we have shown. Since
sensitivity is a measure of the linearity of the sensor response, an ideal sensor should have a consis-
tent value across its whole range. In our situation, sample 3 displayed the lowest sensitivity standard
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Figure 2.14 Sensitivity of the capacitive pressure sensor for all the five samples. Sample 2 has the
highest sensitivity, whereas sample 3 has the most consistent value over the range of measurement.

Figure 2.15 Repeatability plot for the sensor after several cycles shows constant output capacitance for
the same applied pressure.

deviation of all the samples, although having a slightly larger FeCl3 concentration. As a result, the
preparation technique can be used to adjust the capacitive pressure sensor properties. The particular use
case for the sensor will determine the trade-off between linearity and sensitivity.
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Figure 2.16 Simulation of capacitive pressure sensor (a) Deformation, (b) Space charge density (c)
Capacitance vs Pressure compared with experimental results.

We repeatedly loaded and unloaded the sensor with a predetermined weight (in this case, sample 2
with a load of 12.5 kPa) in order to assess the repeatability of the sensor (Fig. 2.15). As may be expected
from a repeatable sensor, the oscillation between two capacitance values was seen in the sensor’s output.
Additionally, it was noted that when the sensor is empty, its reaction spikes. This can be explained by
the impact of the user’s hand being close by during unloading.

2.6.3 Results and Discussion

It was noted that the foam’s length increased in the directions lateral to the applied pressure in the
FEM simulations. This was observed throughout the experiment as well. As a result, our practical
findings and the deformation results from the FEM simulation agreed quite well as observed in Fig.
2.16. Nonetheless, the simulation’s capacitance values were lower than the empirically measured values.
The measuring setup and the capacitance added by the test leads are to blame for this. The capacitance
values’ trend matched the experimental findings. Consequently, capacitive pressure sensors of different
dimensions and forms can be simulated using this model. Our research revealed that proximity to
the user or other electrically charged surfaces is a crucial factor to take into account when assessing
a sensor’s capacitance. This is especially true for capacitive sensors that are big and have relatively
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tiny capacitance variations. When taking measurements, it is important to correctly account for the
capacitance of the contact leads by employing open and short circuit compensation.

2.7 Summary

In this chapter, we presented the design of a piezoresistive conducting polymer-polypyrrole. We
explored the feasibility and characteristics of a low-cost, flexible, and stretchable pressure sensor on
a cotton fabric substrate based on polypyrrole. The in-situ liquid chemical oxidative polymerization
method was used to ensure that the pyrrole can polymerize on the cotton fibers uniformly so that the
PCC has stable electrical properties. We can also synthesize pPy using other oxidants and surfactants to
explore improvements in the stability and conductivity of the polymer. We observed that the conductiv-
ity of the cotton pad is better than that of a piece of cotton fabric, possibly because of better adsorption
of pyrrole in the pad. Because of the high compressibility of the cotton pad, the sensor can monitor the
pressure in a large range, from 160 Pa to 16 kPa. The sensor has a reasonably fast response time of 463
ms. It can be used in various biomedical applications, tactile sensors, and wearable electronics. Though
it shows good characteristics, we can’t use it in the design of our sensor mat because of the sensing
range. So, we used our carbon-impregnated polymer composite- velostat for designing our sensor mat.

We also presented a low-cost, highly sensitive capacitive pressure sensor. The electrodes were made
of conductive polymer layers, while the dielectric used in the fabrication of the sensor was polyurethane
foam. Pyrrole was polymerized in-situ while FeCl3 was present as a chemical oxidant to create the pPy
layers. Using a precision LCR meter, the capacitance was measured for a range of applied pressures
following the manufacturing of the sensor. It was noted that the sensor exhibits high sensitivity for a
particular molarity of FeCl3 and pyrrole. Applications needing flexible sensor systems, like wearable
technology, biomemetic systems, and soft robots, can use this kind of sensor.
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Chapter 3

Pressure Sensing System

3.1 Publication History

This chapter contains excerpts from the following publications: [29, 55, 56]

• Anis Fatema, S. Poondla, R. B. Mishra, A. M. Hussain, “A Low-Cost Pressure Sensor Matrix for
Activity Monitoring in Stroke Patients Using Artificial Intelligence”, in IEEE Sensors Journal,
vol. 21, no. 7, pp 9546-9552, 2021.

• Anis Fatema, S. Chauhan, M. Datta, Aftab M. Hussain, “Investigation of the Long-term Relia-
bility of a Velostat-based Flexible Pressure Sensor Array for 210 Days”, in IEEE Transactions on
Device and Materials Reliability, 2023.

• Anis Fatema, I. Kuriakose, R. Gupta, A. M. Hussain, “Analysis of Interpolation Techniques for a
Flexible Sensor Mat for Plantar Pressure Measurement”, in Proceedings of IEEE Applied Sensing
Conference 2023, pp 1-3,2023.
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3.2 Introduction

The most important thing for recognizing the posture of the person is to have an accurate pressure-
sensing device from which we can get the pressure maps of the different types of sitting postures of
the person sitting on it. In the past decade, different types of sensing materials have been studied to
develop high-performance flexible pressure sensors for pressure mapping. There are also commercially
available pressure sensors for posture recognition. A sensing chair equipped with a commercially avail-
able pressure distribution sensor called the body pressure measurement system (BPMS) manufactured
by Teckscan was presented in [57]. It was selected for the flexibility of the sensor sheets and high reso-
lution so they can take the shape of a chair. The sensor sheet had an array of 42-by-48 pressure-sensing
elements. Each sensing element gave an 8-bit digital output value that is proportional to the pressure
applied. Another commercially available flexible body pressure measurement system (FBPM) manu-
factured by Teckscan, which was composed of two matrices for the seat and the backrest was presented
in [58, 59]. Each matrix contained 16 × 16 force sensing resistors (FSR). However, these pressure
mats are very expensive and require their own software setup, and their properties cannot be changed
according to our use. To avoid these difficulties, researchers prefer to make their own pressure sensing
mat using low-cost materials that are simple to use, portable, reliable, and can give real-time outputs.
The most common pressure sensors that are used in the smart chair system are piezoelectric sensors,
capacitive sensors, and piezoresistive sensors.

3.3 Types of Pressure Sensors

3.3.1 Piezoelectric Pressure Sensors

Piezoelectric pressure sensors utilize the piezoelectric effect to measure pressure. Piezoelectric ma-
terials generate an electric charge in response to mechanical stress, offering high sensitivity and accurate
pressure measurements. They have a rapid response time, making them suitable for dynamic pressure
measurements and fast-changing environments. They are typically robust and durable, able to with-
stand harsh environmental conditions such as high temperatures, vibrations, and mechanical shocks.
Depending on the specific design and configuration, piezoelectric pressure sensors can measure a wide
range of pressures, from very low pressures to high pressures. They can be used in various applica-
tions, such as automotive [60], robotic [61] aerospace [62], medical devices [63, 64], and consumer
electronics [65, 66].

Piezoelectric sensors are those that transform changes in force or pressure into electrical charge
by using the piezoelectric effect [67–69]. Lead zirconium titanate (PZT) ceramic, aluminum nitride
(AlN), etc. are examples of frequently used piezoelectric materials [70]. The use of piezoelectric
sensors is limited by the complicated structure of the electronic interface that needs to be built and the
advanced fabrication tools required [71, 72]. This is because a charge amplifier is needed to convert
the high-impedance charge output to a voltage signal. Although they are sensitive to temperature and
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bending, piezoelectric thin films of polyvinylidene fluoride (PVDF) [73] and piezoelectric zinc oxide
(ZnO) [74] can be employed as flexible sensors. However, installing piezoelectric sensors may require
careful mounting and calibration procedures to ensure accurate pressure measurement, especially in
applications with non-uniform pressure distributions or dynamic loading conditions.

3.3.2 Capacitive Pressure Sensors

When pressure is applied, a diaphragm moves, which causes a change in electrical capacitance,
which is measured by capacitive pressure sensors. They offer good measurement repeatability, can
measure a wide range of pressures from vacuum to high pressures, and can be operated over a large
temperature range. Normal, transition, touch, and saturation modes are what define them [75, 76]. De-
spite these advantages, capacitive pressure sensors also have some limitations. For example, designing
capacitive pressure sensors with high sensitivity and accuracy can be complex, requiring precise man-
ufacturing processes and calibration procedures. Capacitive sensors may be sensitive to environmental
factors such as humidity, temperature, and electromagnetic interference, which can affect their perfor-
mance and reliability. While capacitive sensors can measure a wide range of pressures, they may have
limitations in extreme pressure conditions or very high-pressure applications. Furthermore, high-quality,
high-performance capacitive pressure sensors may be relatively expensive compared to other types of
pressure sensors, particularly for specialized or high-precision applications. Although, flexible materials
can also be used to create capacitive sensors, their application is limited by parasitic capacitance [77,78].

3.3.3 Peizoresistive Pressure Sensors

Anytime pressure or mechanical strain is applied to a piezoresistive sensor, it changes resistance.
Due to their various benefits, including their straightforward design, affordability, robustness, high res-
olution, and output linearity, these kinds of sensors are frequently employed [79, 80]. Piezoresistive
sensors offer high sensitivity, allowing them to detect small changes in pressure accurately. They can
measure a wide range of pressures, from very low pressures to high pressures, depending on the specific
design and configuration. Furthermore, piezoresistive sensors can be designed to have good temperature
stability, reducing the need for temperature compensation techniques and ensuring accurate measure-
ments over a wide temperature range. They also have a rapid response time, enabling them to detect
pressure changes quickly in dynamic environments. They are often compact and lightweight, making
them suitable for integration into small and space-constrained systems. They generally have low power
consumption, making them suitable for battery-powered or portable devices. They are also robust and
durable, capable of withstanding mechanical shocks, vibrations, and harsh environmental conditions.
They may exhibit low drift in their electrical properties over time, maintaining calibration and accuracy
over long periods without frequent recalibration.

The advantages of piezoresistive materials and force sensing resistors also include their ability to
be produced using flexible materials, their resilience to noise, and their straightforward conditioning
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electronics (bias resistors) [81]. Force Sensing Resistor (FSR) is one of the most popular piezoresis-
tive sensors that can be purchased commercially. It’s a conducting polymer that responds to force by
altering its resistance. Particles that carry electricity and those that do not make up the sensing film
are arranged in a matrix. Particles on the sensing film’s surface come into contact with the conducting
electrodes when force is applied, altering the film’s resistance. Using the FSR sensor design results,
specifications, and signal conditioning designs in accordance with the application needs, numerous re-
searchers have performed measurements of pressure and posture analysis [82]. Velostat was also the
subject of numerous experiments in which pressure sensors were created and applied to a variety of
applications, including wearable sensors [83], real-time tracking systems in music [84], footprint pres-
sure system [85], finger gesture recognition [86], smart chairs [87], in-socket pressure sensing [88], and
many more.

3.4 Velostat Material

Velostat, which is also known as linqstat, is a conductive polymer that was initially used as a pack-
aging material to protect and avoid damage from electrostatic discharge. It is now being extensively
explored due to its electrical properties and is being showcased in mechatronics and biomedical ap-
plications [77, 89, 90]. It is a low-cost flexible material with piezoresistive properties, making it an
attractive option for flexible sensing applications. It is an opaque conductive film made of a polyolefin
matrix impregnated with carbon particles. The entrapped carbon particles turn the initially dielectric
polymer matrix into electrically conducting composite material [91]. The piezoresistivity of velostat
is due to the reduction in the distance between the conductive carbon particles due to the compression
of the material [92]. Velostat is typically thin and flexible, allowing it to conform to curved surfaces
and bend without losing its electrical properties. This flexibility makes it suitable for embedding into
wearable electronics or conformable sensor systems. It is relatively inexpensive compared to other
conductive materials, making it an affordable option for prototyping, experimentation, and low-cost
electronic projects. It can be easily cut, shaped, and manipulated, making it versatile for various DIY
and maker projects. It can be integrated into textiles, paper, or other materials to create custom sensors
or electronic interfaces. While primarily used for its pressure-sensitive properties, velostat can also pro-
vide some degree of electromagnetic interference (EMI) shielding when grounded, making it useful in
electronic enclosures or as a protective layer for sensitive components. However, velostat’s conductiv-
ity can be affected by environmental factors such as temperature, humidity, and exposure to moisture,
which may need to be considered in certain applications. Overall, velostat offers a unique combination
of electrical conductivity, pressure sensitivity, flexibility, and affordability, making it a versatile material
for a wide range of electronic applications.

The sensitivity of velostat to the application of pressure is defined by two physical phenomena:
quantum tunneling and percolation [93]. Quantum tunneling uses the tunnel effect that affects the
conductivity of the composite material when the distance between conductive particles inside polymeric
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Figure 3.1 Velostat

materials varies due to the applied pressure, which deforms the material. Percolation is a function of
geometrical features. It is linked to a change of conductivity between the isolating and conductive state
of a composite material caused by the change in volume fraction of the conductive particles [94]. Thus,
velostat changes its electrical resistivity upon application of pressure, strain, or mechanical bending due
to the effects described above.

When pressure is applied to the velostat, the higher the pressure applied, the higher the change in
conductivity. However, extremely high pressure can damage the velostat and lead to loss of conductivity
or shortening of the measurement circuit [91]. In a comparison between fresh and used velostat, the
resistance of the new material is higher. This is due to the fact that the applied load causes a permanent
reorientation and “settling” of the carbon particles (hysteresis) [91]. The electrical properties of velostat
also change with material aging [93]. Velostat-based sensors are highly sensitive to bending, stretching,
creasing, and large pressures that can damage the material. It is essential to handle the material in a
specific way to maintain its reliability.

3.5 Related work

Under the design and fabrication of piezoresistive pressure sensors, velostat has been extensively
explored due to its low cost and flexibility. The use of velostat has been studied in the literature in
various applications such as human motion monitoring [77, 95], pressure distribution in insoles [96],
posture recognition [97], quantification of hand forces [98], finger gesture recognition [99], in-socket
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Figure 3.2 Photograph of the first single sensor

Figure 3.3 Photograph of the FXR sensor

pressure sensor [86], in vivo recordings in the gut [100], assessment of psychomotor development in
children [101], neonatal monitoring [87], and many more.

In [77], a force-sensing resistor based on velostat was developed. For the electrodes, they used
printed conductive ink on a polyethylene terephthalate (PET) substrate. It measured pressure in the
range 0-2.7 kPa. Velostat was also used with different conducting materials for testing in human motion
monitoring as presented in [95]. In one design, the velostat layer was sandwiched between two layers
of conducting fabric sensors made from medical grade elastic fiber (76% Ag plated and 24% nylon).
In another design, they replaced the conducting fabric with conducting thread composed of the same
medical-grade elastic fiber. In the last type, the electrodes were made by stitching conductive thread

26



Figure 3.4 Circuit design to read the response of sensor from FXR

into neoprene strips to make the electrodes. After conducting experiments on the three types of sensors,
they concluded that a small density of electrodes resulted in higher resistance change. Hence, we can
conclude that the electrode configuration and composition affect the sensor performance. In [96], they
designed a velostat-based pressure sensor using PVC as a protective material along with a pneumatic
actuator for pressure sensing in insoles. In [97], a velostat-based pressure sensor was developed using
aluminum foil as the conducting electrode. They developed 16 such sensors and placed them on the seat
and backrest for posture recognition. In [86], they developed a wearable pressure-sensing glove using
velostat and conductive yarn as electrode, used for finger-gesture recognition.

3.6 Design and Fabrication of Sensor Array

3.6.1 Introduction

In order to design a large sensor array, it is important to design a smaller matrix array first, i.e.,
a prototype model, and perform the characterization to ensure that the larger sensor matrix will work
effectively. We started designing the prototype of the pressure sensor by first designing and fabricating
a single sensor, as shown in Fig. 3.2. The working of this sensor is similar to the commercially available
sensor FSR. After testing the first sensor as the proof of concept (PoC), we designed a better version of
the sensor and named it FXR, as shown in Fig. 3.3.

The FXR is a square flexible force sensing resistor. It has a sensing area of 50 mm × 50 mm.
Its thickness is 0.4 mm and dimensions 70 mm × 70 mm. The FXR sensors exhibit a decrease in
resistance with an increase in force applied to the sensor. They can be characterized for human-machine
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Figure 3.5 Sensor response of FXR

Table 3.1 Sensor Characteristics of FXR

Characteristics Value
Force range 0.1 N - 40 N
Voltage range 1.8 V - 5 V
Rise time 0.2
Delay time 0.13
Drift ≤ 3% for 1 kg load 1 day
Operating temperature -400C to 600C
Electromagnetic Interference Generates no EMI
Electrostatic discharge Not ESD Sensitive

interface applications with a typical force range from 0.1 N to 40 N. The sensing range can be varied
according to your requirement by varying the value of the bias resistor of the read-out circuit. The
sensor characteristics are shown in the Table 3.1.

The entire sensing area of FXR is a single contact point. Hence, the applied load should be distributed
evenly across the sensing area to get an accurate and repeatable response. The sensor must be loaded
consistently or in the same way, each time to get repeatable readings. Readings may vary if the load
distribution changes. If the load is bigger than the sensing area, then we have to use a lightweight, rigid
material with the same dimensions as the sensing area and then place the load on top of it. The circuit
connection to read the sensor response is shown in Fig. 3.4, which is a voltage divider circuit. Fig. 3.5
shows the response of FXR.
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Figure 3.6 2 × 2 sensor array

Sensor resistance was measured after 10 s of applying load. The force was applied using a push-pull
force gauge. Conditioning of sensors is essential for achieving accurate results. To condition a sensor,
place a test weight on the sensor for some time and allow it to stabilize. The steps were repeated for
four to five times before using it for actual sensing.

After designing the FXR, then we designed the first sensor matrix of size 2 × 2 as shown in Fig. 3.6.
We designed it in a small area with sensor pixel dimensions of 10 mm × 10 mm and a pitch of 10 mm.
We used the raster scanning method for reading the sensor response. After getting good results, we
moved to another array of size 4 × 4.

In the next section, we will discuss the design and fabrication of a 4 × 4 sensor matrix and its static
and dynamic characteristics. We will also present the application in which it can be used. Then, we will
present the evolution of the sensor matrix from 4 × 4 to a 32 × 32 sensor matrix and the reason for
selecting the above dimensions.

3.6.2 Design of a small (4 x 4) sensor array

As illustrated in Fig. 3.7, a sandwich structure consisting of three layers was used to fabricate a 4 × 4
pressure sensor matrix. Papers with copper electrodes arranged vertically and horizontally are layers 1
and 3, respectively. Due to their high conductivity, copper tapes were chosen as the electrode material.
Aluminum tapes are another option, although the conductivity is less than copper. The velostat sheet
with a thickness of 106 ± 2 µm made up Layer 2. It was seen that each paper had a thickness of 99 ±
1 µm (Mitutoyo micrometer). As a result, the pressure sensor matrix’s overall thickness was roughly
304 ± 1µm, giving it a significant degree of flexibility. The copper electrodes had a width of 1 cm and a
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Figure 3.7 (a) Design of the flexible pressure sensor matrix with three layers. Layer 1 and layer 3 are
paper with copper electrode strips, while layer 2 is a conductive foam (velostat); (b) Photograph of the
fabricated pressure sensor matrix; (c) Design and dimensions of the 4 × 4 sensor matrix with a sensor
pixel of 1 cm × 1 cm size, and pitch of 6 cm; (d) Photograph of the completed sensor matrix. Scale bars
in (b) and (d) are 5 cm.

pitch of 6 cm between them. Each layer of paper had four of these copper strips attached to it. Thus, the
individual sensor pixel is of size 1 cm × 1 cm with a pitch of 6 cm, as shown in Fig. 3.7 (c). Cables were
soldered onto copper tapes, and all the sides of the pressure sensor were sealed with adhesive cellophane
(scotch tape). When a force is applied to the pixel, its resistance changes, which can be sensed through
the copper electrodes.
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Figure 3.8 The change in bias resistance can affect the range and sensitivity of the system. A higher
range is obtained for low values of bias resistance (1 kΩ), while higher sensitivity (at a lower range) is
obtained for high values of bias resistance (100 kΩ).

Each sensor paired with the bias resistor was connected to the microcontroller’s analog input, while
the vertical copper electrodes were connected to the digital pins. The voltage at this pin was read as
the output voltage for the particular sensor line. To read the output of a specific pixel, the particular
horizontal line was energized by providing a stable DC input voltage, while the output signal was read
through the vertical line. Each sensor value was measured at the rate of 0.1 s. It was observed that
when no pressure was applied on the pressure sensor, the output voltage was zero, and as the pressure
increased, the output voltage increased from 0 V to 5 V. For testing of the system, calibrated weights
with constant surface area were used, varying from 0.1 kg to 10 kg, and the response of the system due
to variation of weights was recorded. The output voltage for the system is given by:

Vo = Vin

(
Rb

Rb +Rsens

)
(3.1)

where Vo is the output voltage, Rsens is the resistance of the velostat, and Vin is the input voltage.
The response curves for a range of bias resistance values, from 1 kΩ to 100 kΩ, were recorded in order
to choose an appropriate value for the bias resistor, as the output voltage is dependent upon it. Since
the sensor matrix thickness is not strictly uniform, the sensor matrix was put on a level surface for this
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Figure 3.9 The force-conductance characteristic for an individual sensor pixel with 1 kΩ bias resistance
shows approximately a liner increase in conductance with applied force.

experiment. A non-conductive, level block measuring 4 cm by 4 cm was positioned between the weight
and the sensor to ensure uniform force distribution on each individual sensor. In order to ensure that the
voltage was in a stable state, the output voltage was measured 10 s after the load application. Fig. 3.8
displays the output voltage vs applied force characteristic for four distinct values of bias resistance.

We can observe from the graph that when the bias resistance is increased, the sensor gets saturated at
lower weights. At bias resistance of 100 kΩ, pressure greater than 20 kPa saturates the system. Hence,
in order to cover a large range of pressures up to 60 kPa, a bias resistor of 1 kΩ was selected. A value
lower than 1 kΩ would have caused excessive current through the system because the readout circuit was
in a simple voltage divider configuration. It should be noted that the sensitivity of the sensor is higher
for larger values of bias resistance, particularly for lower loads. This can be helpful in applications
where higher sensitivity is required.

3.6.2.1 Static and Dynamic Characteristics of the Sensor

The sensor response for weights varying from 0.1 kg to 10 kg is shown in Fig. 3.9. We have given
some relaxation time while changing the weights so that the sensor gives a stable value. The output
voltage corresponding to the applied pressure is calculated by taking the mean of the values obtained
in that particular period. In Fig. 3.9, we can see that the sensor resistance has more likely a power-
equation relation in the force-resistance response and a relatively linear-equation relation in the force-
conductance response.
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Figure 3.10 Response of a sensor pixel for repeated application of load shows repeatable results. The
rise time is calculated to be 0.3 s.

To ascertain the repeatability of the sensor response, a sensor pixel was repeatedly subjected to a
load of 500 g. The output voltage with respect to time is shown in Fig. 3.10. We can clearly observe
that the response for a given load is uniform and repeatable. A similar true value (TV) of 2.55 V is
observed for the output voltage. Further, the rise time for the sensor pixel is obtained as 0.3 s and the
time constant of the sensor is 0.52 s, which is extremely fast for a sensor matrix primarily designed for
human interactions. There are some variations in the response of different sensors in the sensor matrix
due to the properties of the conducting material. The static and dynamic characteristics of a single
sensor pixel are listed in Table 3.2.

Given the non-linear response of the sensor, the sensitivity has been calculated for applied pressure
above 25 kPa for a bias resistance of 1 kΩ. The sensitivity of the sensor is much higher for lower values
of load pressure, as seen in Fig. 3.8. The values of sensitivity and resolution have been calculated for
the applied load above 25 kPa. All values reported are with a bias resistance of 1 kΩ.
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Table 3.2 Characteristics of a Sensor Pixel

Characteristics Value Unit
Sensitivity 0.01 V/kPa
Resolution 0.488 kPa
Range 0-60 kPa
Rise time 0.3 s
Delay time 0.23 s
Fall time 0.17 s
Percentage Overshoot 1.6 %

3.6.2.2 Application

Typically, stroke victims are instructed to engage in exercises that include lifting and positioning a
weight at a certain location. This facilitates the synchronized motion of muscles. Our device prompts
an individual to position a weight in a specified location. For instance, when instructed to position the
load on sensor 6, we may determine from the readings of sensor 6 and other surrounding sensors if the
load was positioned with precision. For enhanced clarity, Fig. 3.11 displays heat maps that indicate
the precise location of the object positioned on the pressure sensor matrix. The hue of the heat map
corresponds to the magnitude of the output voltage. The experiment involved the placement of a weight
weighing 0.5 kg, which took the form of a cuboidal box of 5 cm × 5 cm × 10 cm. The sensor matrix’s
response is unaffected by the shape of the item. The outcome is solely determined by the mass of the
load. The sensor matrix has the capability to detect a load ranging from 0.02 kg to 10 kg, making it
suitable for various activities, including the pressure sensor mat for patients. Additionally, by analyzing
the temporal response, we can determine the duration it takes for an individual to both position and
transport the load between two locations. In this approach, we can simply evaluate the activity of the
patients and estimate their recuperation. Exercises can also be conducted and evaluated by instructing
the individual to move an object along a designated path on a sensor. By analyzing the sensor’s output
values, we can determine whether the patient has accurately followed the prescribed path.

We developed a NN model and conducted training to accurately identify the location of the load
on a sensor matrix. We utilized the NN to oversee the individual’s reaction due to its simplicity, user-
friendliness, and autonomous learning capabilities. The neural network assists us in verifying the accu-
racy of the load’s placement by providing us with its coordinates. Additionally, it has the capability to
acquire knowledge from an individual’s reactions and behaviors over an extended duration. The neural
network was provided with a training dataset consisting of 40 load points out of a total of 60, along with
their corresponding output voltages. A total of twenty samples were employed for the purpose of vali-
dation. The architecture had an input layer, a hidden layer, and an output layer. The system consisted of
16 input channels that captured the output voltages from the sensor pixels, and two output channels that
provided the x and y coordinates of the load. We conducted an analysis of the performance of several
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Figure 3.11 The heat map for a load (shown using a dotted square) placed on the sensor matrix clearly
indicates the position of the load, which shows that the output of the sensor system can be used to predict
load position. The color scale is in volts.

Table 3.3 Comparison of Network Architectures and Training Functions based on MSE
Network Architecture Training Functions Training Data Validation Data
Feed Forward Levenberg Marquardt 0.0924 0.8695

Gradient Descent with Adaptive learn rate 1.0297 2.2401
Gradient Descent 2.7847 3.4108

Cascade Forward Levenberg Marquardt 0.9321 1.6851
Gradient Descent with Adaptive learn rate 1.5108 2.1896
Gradient Descent 2.9422 4.4556

training functions and their corresponding network designs. In each case, we estimated the mean square
error (MSE), which is presented in Table 3.3.

From the table, we can see that the least MSE is given by the Levenberg-Marquardt (LM) training
algorithm in feed-forward network architecture. LM training algorithm is suitable to use when the
dataset is less in number. It gives the highest speed compared to other training functions, and thus, it
was selected for training and testing.

We compared the results of the neural network with a mathematical model (MM) used to estimate
the coordinates of the load. We calculated the weighted average of the coordinates of the sensors as
follows:
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Figure 3.12 The position of the load as predicted by the trained neural network (stars) and the mathe-
matical model (circles) compared to the actual position of the load (squares) indicates the accuracy of
the neural network. The black dotted lines indicate the position of copper electrodes, while the blue
hashed squares are the individual sensor pixel. Corresponding values are represented using the same
color.

x =

16∑
i=1

CiVi

16∑
i=1

Vi

(3.2)

where Ci represents the vector coordinates of the location of sensors, and Vi denotes the correspond-
ing output voltage. By performing the mathematical analysis, we found the position of the load and
calculated the mean distance error. The mathematical analysis gives a mean error of 0.704 cm, and the
NN gives a mean error of 0.103 cm for the validation data. The mathematical analysis is effective for
ideal sensors; however, it cannot handle the non-idealities present in a practical sensor system. On the
other hand, the NN handles the non-idealities present in the sensor, learns from the inputs, and also
helps in predicting future outcomes. The true position of the load, the position predicted by the neural
network and, the position predicted by the mathematical analysis are shown in Fig. 3.12. We presented
only 5 out of 20 positions of validation data on the graph for clear visualization. We can see that when
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Figure 3.13 Scatter of error values for all the 20 data points in the validation set, for neural network (NN)
and the mathematical model (MM) indicates the superior performance of the trained neural network at
predicting the load position. The dotted lines indicate the mean error, while whiskers indicate standard
deviation.

compared to analytically obtained load positions, NN’s predictions are closer to the true value. Fig.3.13
shows the error scatter plot that represents the frequency of errors using neural networks and mathemat-
ical modeling. From the graph, we can conclude that the results obtained using neural networks have
fewer errors and are more reliable.

3.6.3 Evolution of pressure sensor mats from 4 x 4 array

The design of the sensor array has evolved significantly, transitioning from a single pressure sensor
to a 4 × 4 sensor configuration to a 32 × 32 sensor array design. The initial 4 × 4 sensor array was
constructed with paper as the upper and lower layers. While this technology has its uses in specific con-
texts, it is not suitable for creating a large-scale sensor matrix. Subsequently, we conducted trials using
various materials to determine the optimal protective upper and lower layers for the sensor array. Ini-
tially, we experimented with pliable polypropylene sheets. The surfaces of the seats were coarse, which
could cause discomfort for individuals when seated. Subsequently, we endeavored to create the sensor
array utilizing translucent plastic sheets. The issue arose from the visibility of the underlying electrode
layers through the translucent sheets, which were aesthetically displeasing. Finally, we experimented
with polyvinyl chloride (PVC) sheets, which proved to be an ideal pliable material for constructing the

37



Figure 3.14 Evolution of the design of the sensor array (a) and (c) 4 × 4 sensor array using polypropy-
lene (b) 4 × 4 sensor array using transparent plastic sheets

sensor array. We tested all these materials by designing a 4 × 4 sensor configuration with the same
specifications as discussed in the previous section.

Following the material selection, we proceeded to create a sensor array of 16 × 16. Each sensor
pixel has dimensions of 10 mm × 10 mm, with a pitch of 10 mm. The sensor array dimensions were
insufficient to accurately perceive the individual’s body position. Since the microcontroller will not
have so many input and output pins, we used multiplexers to read the sensor response of each pixel. We
used two multiplexers/demultiplexers, one for the horizontal set of copper electrodes and another for the
vertical set of copper electrodes. The vertical set of copper electrodes are connected to a demultiplexer,
and the horizontal set of electrodes are connected to the multiplexer. The demultiplexer was connected
such that it would select the line to be on high voltage, and the multiplexer reads all the 16 sensor pixels
on that particular line (which is on high voltage). This is called raster scanning.

After testing with the breadboard, we designed a PCB to get reliable and accurate response. The
PCB was connected at the top and right side of the sensor mat (Fig. 3.16).
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Figure 3.15 Evolution of the design of the sensor array (a) 16 × 16 sensor array (b) 32 × 32 sensor
array

To make our sensor mat completely designed by the PCB manufacturers we designed our complete
sensor design on Altium for PCB fabrication as shown in Fig. 3.17. This design didn’t work as the
thickness of the sensor pad was very less, and we couldn’t get right pressure distribution

Subsequently, we enhanced the resolution and devised a sensor array measuring 32 × 32 by hand
following our previous procedure. When we designed a 32 × 32 sensor array, we selected the sensor
pixel of size 5 mm and a pitch of 4 mm. The sensing area of the mat was 28.4 cm × 28.4 cm. The
dimensions of the overall mat were not enough for a person to stand on it comfortably, so we designed
another prototype with larger dimensions.

Fig. 3.14, Fig. 3.15, Fig. 3.18 shows the pictures of the evolution of the design from a 4 × 4 to 32 ×
32 sensor array. Fig. 3.14a and c shows the 4 × 4 sensor array designed using polypropylene as the top
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Figure 3.16 PCBs designed for the 32 × 32 sensor mat (a) connected on the top of the mat (b) Connected
on the right side of the mat

Figure 3.17 Printed 32 × 32 sensor mat

and bottom protective layer. Fig. 3.14b shows the 4 × 4 sensor array designed using translucent plastic
sheets as the top and bottom protective layer. Fig. 3.15a shows the 16 × 16 sensor array designed using
translucent plastic sheets as the top and bottom protective layer. Fig. 3.15 (b) shows the 32 × 32 sensor
array designed using PVC sheets as the top and bottom protective layer. Fig. 3.18 shows the 32 × 32
sensor array with the PCB inside the mat.

We observed good results related to pressure distribution in 32 × 32 sensor array. In this prototype
model of the sensor mat, since the rigid PCB is inside the sensor mat, it will be uncomfortable for the
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Figure 3.18 32 × 32 sensor array using rigid PCBs

user to sit on the chair. In the final version, we designed the sensor mat using a flexible PCB such that
the complete data acquisition circuit is outside the sensor mat in a box that can be attached at the back
or below the chair. The final design of the sensor mat for the smart chair is discussed in Chapter 6.

The next section presents the sensor mat design of a 32 × 32 sensor array for designing a podia
scanner or foot pressure monitoring system.

3.6.4 Design of a large (32 x 32) sensor array

3.6.4.1 Sensor Design and Fabrication

The pressure sensor mat comprises three layers, as depicted in Fig. 3.20a. The upper and lower
layers consist of sheets made of Polyvinyl chloride (PVC) with copper electrodes arranged horizontally
and vertically, respectively, creating a crossbar structure as depicted in Figure 2.11.b. The intermediate
stratum consists of a piezoresistive polymer called velostat. It has a thickness of 106±1 µm, while the
PVC sheets have a thickness of 169±1 µm. This gives a combined thickness of approximately 444 ±
1µm, as measured using a Mitutoyo micrometer. This makes the structure incredibly flexible. We have
constructed a 32 × 32 sensor array resulting in 1024 sensor pixels.

We have observed that the minimum granularity or the distance between the two sensor pixels should
be one more than the thickness of the dimension of the sensor pixel. If the dimension of the copper tape
(that makes the sensor pixel) is x mm, then the spatial resolution or the distance between the copper
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Figure 3.19 Final design of a 32 × 32 sensor array using flexible PCBs and the data acquisition circuit
in a black box

tapes must be greater than or equal to x+1 mm. In our case, we have taken the width of copper tape
as 6 mm, which makes the sensor pixel of size 6 mm × 6 mm, and the distance between the sensor
pixels is 7 mm. We have conducted an experiment by designing a 2 × 2 pressure sensor with different
spatial resolutions of 4 mm, 5 mm, 6 mm, 7 mm, and 8 mm and observed that if we apply pressure to
one sensor pixel, we can observe a noticeable change in the other sensor pixels surrounding the pixel
under test due to crosstalk. This crosstalk was negligible for 7 mm and 8 mm spatial resolutions. Hence,
we concluded that the distance between the sensor pixels must be greater than or equal to x+1 mm and
selected 7 mm as our spatial resolution.

The image of the entire pressure sensor mat is shown in Fig. 3.19. The operating concept of the sensor
pixel is based on the variation of resistance of the polymer composite due to the applied pressure. The
fabrication technique of the mat includes gluing the copper electrodes on the PVC sheets and attaching
them to the planned PCB. Next, the velostat is positioned between the PVC sheets, and the three layers
are then securely bonded. The entire fabrication process can be expedited and does not require any clean
room facilities.

3.6.4.2 Application: Foot Pressure Monitoring using Sensor Mat

Plantar pressure analysis is a primary method used in biomedical assessment to evaluate posture,
walking, and other activities. An analysis of the distribution and intensity of pressure might yield
valuable insights for diagnosing or predicting the likelihood of foot illnesses or impairments. Plantar
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Table 3.4 Specifications of the sensor array for podiascanner

Technology Piezoresistive
Number of Sensor pixels 1024
Sensor area 28.8 cm × 28.8 cm
Total Area 30 cm × 30 cm
Spatial resolution 4 mm
Thickness 0.5 mm
Material PVC
Connectivity Wired
Weight Range 40-120 kg

Figure 3.20 (a) Design of the flexible pressure sensor matrix with three layers, (b) Photograph of the
fabricated pressure sensor matrix showing the three flexible layers. Scale bar in (b) is 3 cm.

pressure refers to the force exerted between the foot and the surface it is in contact with during regular
activities including movement. [102]. Extensive study and development have been conducted in the
field of plantar pressure measuring in recent decades. The development of pressure sensing technology
has been significantly shaped by a desire to understand the pressure exerted by the feet during human
movement [103]. Foot diseases can have a detrimental impact on foot function, which in turn can
alter the way a person walks, significantly affecting their overall quality of life [104]. An analysis of
an individual’s pressure distribution data can help identify potential issues that, if left addressed, may
increase the risk of developing or exacerbating a plantar surface injury caused by excessive pressure
in specific parts of the footc [105, 106]. Information from these measurements have provided essential
support in the assessment of various foot pathologies and disorders, including rheumatoid arthritis [107–
109], Parkinson’s disease [110–113], diabetic ulcers [114–117], plantar fasciitis [118, 119], identifying
flat foot patients [120], prescribing customized footwear design [121–123], and in analyzing sport bio-
mechanics [124], for injury prevention and other applications.
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Table 3.5 Specifications of the sensor array for smart chair

Technology Piezoresistive
Number of Sensor pixels 1024
Sensor area 41.5 cm × 41.5
Total Area 50 cm × 50 cm
Spatial resolution 7 mm
Thickness 0.5 mm
Material PVC
Connectivity Wired
Weight Range 40-120 kg

Figure 3.21 Heat map showing the foot pressure distribution of a healthy subject of weight 72 kg.

The pressure sensor array, consisting of 1024 sensors, is linked to a microcontroller that has a built-in
analog-to-digital converter (ADC) for the purpose of acquiring and processing data. The microcontroller
applies a high voltage to the row input and successively measures the voltage across the bias resistors
for all 32 columns. The process is replicated for each of the 32 rows in order to acquire the entire
1024-pixel analog data. In order to minimize the need for a large number of analog input pins on the
microcontroller, we have employed multiplexers to retrieve the voltage readings. The data can be shown
using a heat map that displays the output voltage of each sensor. This voltage has been measured and
divided into 1024 levels (210) using a 10-bit ADC in the microcontroller.
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Figure 3.22 (a) Original foot pressure distribution of 32 × 32 array. Interpolated images of 100 ×
100 pixels using (b) Nearest Neighbour Interpolation Technique (c) Bilinear Interpolation Technique
(d) Bicubic Interpolation Technique. The linear scale for the pixels is kept the same to show the image
enlarging.

Fig. 3.21 shows the pressure distribution of the foot of the person standing on it. The subject has
a weight of 72 kg and a height of 176 cm. The person has a normal plantar distribution with no foot
problems. In Fig. 3.21, we can see that the image of the footprint is not smooth. To provide a more
detailed representation of the pressure distribution data of the foot, we are employing proven interpola-
tion algorithms to increase the pixel count. Interpolation is a technique employed to enhance the pixel
density of an image by calculating the missing values between the known pixel values.

Various interpolation algorithms can be utilized for image improvement. The primary categories of
non-adaptive interpolation techniques include nearest neighbor, linear, and cubic interpolation. Using
interpolation, we have transformed the data from a 32 × 32 sensor array into a 100 × 100 image
representing pressure distribution.

In the nearest neighbor interpolation procedure, we assign the unknown pixel with the value of the
nearest known pixel [125]. The Bi-Linear interpolation algorithm utilizes linear interpolation in two
dimensions by calculating weighted averages of the adjacent pixels [125]. The procedure is straight-
forward and yields a more polished outcome, although it may not be optimal for achieving sharp
transitions [125]. Bi-cubic interpolation is frequently preferred over bi-linear or nearest-neighbor in-
terpolation for image re-sampling. The improved image quality is achieved by utilizing a polynomial
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Figure 3.23 Average computation time versus iterations of different interpolation algorithms show that
bicubic interpolation takes the longest time.

interpolation of 16 pixels (4×4), as opposed to the bilinear interpolation technique which only examines
linear interpolation of the nearest 4 pixels (2×2) to calculate the values of unknown pixels. They have
conducted a comprehensive analysis and comparison of various adaptive and non-adaptive image inter-
polation methods, focusing on their primary performance metric, namely Peak Signal-to-Noise Ratio
(PSNR). They observed that bicubic interpolation outperformed other non-adaptive interpolation tech-
niques in terms of PSNR [125]. Figure 3.22a illustrates the distribution of foot pressure in a normal feet
using a 32 × 32 array of pixels. Fig. 3.22b, 3.22c and 3.22d display the distribution of foot pressure
following the use of nearest neighbor, bilinear, and bicubic interpolation approaches, respectively. The
linear pixel scale remains unchanged to demonstrate the impact of image enhancement and enlargement
using interpolation. An objective assessment of the photographs indicates that the image contour for
the nearest neighbor interpolated image is indistinct. The image obtained using bilinear interpolation
exhibits improved clarity, albeit it lacks sharpness. On the other hand, the image resulting from bicubic
interpolation has sharper edges, reduced pixelation, and superior image quality in comparison to the
other methods.

In order to determine the processing time employed by various interpolation strategies, we executed
the algorithm a total of 10 million times. The extensive repetition was necessary to mitigate interference
from concurrent background processes associated with the computation, such as file read/write opera-
tions. Fig 3.23 displays the mean duration required to process the image following n iterations. It is
evident that when we increase the number of iterations, the average processing time for a single con-
version is approaching a stable value. The mean processing times were 20.89 µs, 21.61 µs, and 38.38
µs for the nearest neighbor, bilinear, and bicubic interpolation approaches, respectively. Because the
refresh rate, i.e, the rate at which the data on heat map is changing dynamically is 195 ± 25 ms, the
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adoption of an interpolation technique, with such a small computation time, does not impact the overall
timing of the device considerably. Despite the increased processing time, we have noticed that bicubic
interpolation yields superior image quality.

3.7 Summary

In this Chapter, we discussed about the very important part of the smart chair system i.e. the design
and fabrication of a pressure sensing system. We first discussed about the types of pressure sensors
and the reason for selecting a piezoresistive pressure sensor for our system. Secondly, We explored the
feasibility of fabricating a smaller (4 × 4) flexible pressure sensor matrix using paper as a structural ma-
terial and developed a paper-based piezoresistive pressure sensor. The major advantage of using paper
is its low cost, ease of fabrication and high flexibility. We have also presented the static and dynamic
characteristics of the sensor. Though, there is a variation in response of different sensors in the sensor
matrix due to the properties of the conducting material, it can be effectively used in applications for rec-
ognizing activity and assessing the recovery of the stroke patients by performing various exercises on
the pressure sensor mat. We also analyzed the performance of the sensor matrix by training a neural net-
work to detect the position of a load based on the individual sensor values. The load position predicted
by the neural network was compared to a mathematical model and was found to be more accurate.

In the next part, we discussed about the evolution of our design from 4 × 4 to a 32 × 32 sensor
matrix. We also presented the application of using the sensor mat for foot pressure monitoring. We have
implemented an interpolation method for deriving an extended pressure map which provides us with
a more detailed understanding of the plantar pressure distribution. The piezoresistive flexible pressure
sensor (FLEPS) mat with 1024 pixels covers a total area of 1089 cm2 and sensing area of 806.56 cm2.
It can measure upto a maximum pressure of 100 kPa and cover a weight range of 10-100 kg. It also
provides dynamic pressure distribution of the feet when the person walks over it thus providing us with
useful gait information. By increasing the size of the mat, it can be used in hospital beds for preventing
the risk of getting bedsores which will be very beneficial for bed-ridden patients.
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Chapter 4

Characterization of the Pressure Sensing System

4.1 Publication History

This chapter contains excerpts from the following publications: [55, 72, 126, 127]

• Anis Fatema, I. Kuriakose, D. Devendra, A. M. Hussain, “Investigation of the Mechanical Reli-
ability of a Velostat-Based Flexible Pressure Sensor,” in proceedings of 2022 IEEE International
Conference on Flexible and Printable Sensors and Systems (FLEPS) pp. 1-4, 2022.

• Anis Fatema, S. Chauhan, M. Datta, Aftab M. Hussain, “Investigation of the Long-term Re-
liability of a Velostat-based Flexible Pressure Sensor Array for 210 Days”, submitted in IEEE
Transactions on Device and Materials Reliability, 2023.

• S. Chauhan, Ivin Kuriakose, Anis Fatema, A. M. Hussain, “Efficient Calibration Of Velostat-
Based Flexible Pressure Sensor Matrix”, in proceedings of 2023 IEEE International Conference
on Flexible and Printable Sensors and Systems (FLEPS), 2023.

• M. Datta, L. Lakhmanan, Anis Fatema, A. M. Hussain, “Characterisation and Quantification
of Crosstalk on a Velostat-based Flexible Pressure Sensing Matrix”, 2023 IEEE International
Conference on Flexible and Printable Sensors and Systems (FLEPS), 2023.
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4.2 Introduction

Prior to implementing sensors in real-time applications, it is crucial to conduct several experiments
and examine the sensor’s distinct properties. In the preceding chapter, we developed the pressure-
sensing array. In the current chapter, we will discuss various studies and experiments conducted on the
mat to verify its ability to produce an effective output. Firstly, we will be covering the crucial aspect
of sensor design, which is calibration. Next, we will show the various studies conducted, including
the cross-talk analysis, mechanical reliability assessment, and long-term reliability testing spanning a
duration of 210 days.

4.3 Calibration

Calibration is an essential aspect for ensuring that any sensor generates accurate, dependable, and
consistent outcomes. Prolonged application of pressure can cause deformation in the microstructure of
velostat, leading to a time-dependent change in sensor response and rendering the sensor unreliable.
Therefore, it is crucial to calibrate the sensor based on velostat in order to ensure its reliability. The
mathematical model proposed by Zhang et al. [128] describes the time-dependent relative resistance of
conductive polymer composite materials as:

Rt

R0
= f(σ,D, θ, φ, ε0, ψ, n) (4.1)

where Rt is the instantaneous resistance at the applied time, R0 is the original resistance, σ is the
applied pressure, D is the nominal diameter of the filler particles, θ is the filler volume fraction, φ is the
potential barrier height, ε0 is the original strain, ψ, and n are constants related to the creep behaviors
in the material [128]. In a given velostat thin film, since D, θ, φ, ε0, ψ, and n are fixed, the relative
resistance will be related only to the pressure applied, i.e., σ. Then, the resistance of the velostat material
at any given time t can be given as follows:

Rt

R0
= f(σ) (4.2)

We have seen that the resistance of velostat approximately follows an inverse exponential relationship
with respect to applied weight.

Rt =
a

W b
(4.3)

where a and b are constants and W is the applied weight. To calibrate the sensors, we need to find
the two parameters, a and b, for every sensor pixel. For sensor systems that are subjected to static
or dynamic flexing, it is essential to determine the variation of these parameters during and also after
bending. For the reliability of sensors, it is expected that the values of a and b remain constant or vary
predictably with usage.
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Hence, the output voltage can be written as

Vo =

(
Rb

Rb +
a

W b

)
Vin (4.4)

The calibration of this sensor configuration presents three major calibration challenges. First, 1024
sensors require 2048 parameters (a and b for each sensor), which are calculated after making 1024 ×
12 = 12, 288 measurements for calibration, which is impractical for even a small-scale product. Second,
accurate placement of weights on a single sensor without distributing the weight to any other sensor is a
very painstaking process. We noticed that even 1 mm of shifting of the load-bearing area affects results
significantly. Third, the obvious approach of using a large flat surface to uniformly distribute weight
on the sensor matrix and reading values from individual sensors does not yield accurate calibration
characteristics as there is directional crosstalk, i.e., crosstalk between columns but not between rows
[126].

4.4 Characterization of the Sensor Array

4.4.1 Cross Talk Analysis

Due to the multidirectional conductivity, i.e., the normal and transversal conductivity exhibited by
velostat, the application of these materials in sensor arrays becomes complicated [91]. When pressure
is applied to one sensor pixel of the array, not only is there a change in resistance at that point but also
at some adjacent points or sensor pixels. This phenomenon is known as crosstalk, which is particularly
high for continuous thin films of velostat and for electrodes in crossbar architecture. It originates from
the electrical and mechanical responses of the sensor [129]. The mechanical cross-talk occurs due to
the non-ideal force diffusion of the velostat on the application of pressure [130]. The electrical cross-
talk is due to the fact that the current flows not only through the target sensor pixel but also into the
adjacent sensor pixels. In order to eliminate or reduce the effect of crosstalk, it is important to quantify
it. We designed an algorithm to characterize the crosstalk and calculate their mean. We only consider
the adjacent sensor pixels of the center pixel under test (PUT). We weigh the output of each of the
neighboring pixels (laterally and diagonally) according to their distance from the PUT. Thus, we have
defined the crosstalk value at each pixel as the normalized sum of the pressure reading at neighboring
pixels weighted by their distance [131].

CT =

∑
i∈n−{s}

dipi

p0
∑

i∈n−{s}

di
(4.5)

where p0 is the pressure value of the PUT, and pi and di are the pressure value and distance of the
neighboring pixels. As the neighboring pixel readings will always be less than that of p0, this parameter
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Figure 4.1 The mean crosstalk decreases as the pitch length increases. The error bars shows the standard
deviation in the crosstalk values. The diagrams at the top are to scale in terms of electrode width and
pitch.

will be a dimensionless value between 0 and 1. This equation can be used for any size of the matrix and
considering any size for the neighborhood of the pixels, allowing the general structure of the measure
to remain consistent.

An examination of crosstalk is crucial in determining the pitch length throughout the sensor array
design process. The pitch length refers to the spatial separation between the individual sensor pixels.
The experiment was conducted by creating a 3 × 3 sensor matrix, where each pixel had dimensions of
1 cm × 1 cm. We have sliced a rectangular acrylic block of 1 cm × 1 cm with a thickness of 2 mm. This
block is intended to be positioned over the sensing area of an individual sensor pixel in order to exert
pressure on it. We applied a load of 1 kg to each individual sensor pixel and documented the reaction of
all 9 sensor pixels. We analyzed the output response 10 s after applying the weight in order to obtain a
consistent and steady output. The experiment was replicated using pitch lengths of 1 cm, 2 cm, 3 cm, 4
cm, and 5 cm. Our observation confirms that there is a decrease in crosstalk as the pitch length increases,
as anticipated. Fig. 4.1 illustrates the variation in the average crosstalk as the pitch distance increases.
The average crosstalk values for the pitch lengths of 1 cm, 2 cm, 3 cm, 4 cm, and 5 cm were 0.21±0.02,
0.19±0.01, 0.17±0.03, 0.16±0.06, and 0.00100±0.00008, respectively. We observe that the standard
deviation from 1 cm to 4 cm varies and drops suddenly for 5 cm pitch length. This may be because the
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Figure 4.2 (a) Design of a sensor using a sheet of velostat sandwiched between two sheets made of
plastic with cross-bar copper electrodes, (b) Photograph of a fabricated sensor showing its flexibility.
(c) Experimental setup showing measurement of force applied on pressure sensor with the help of a
push-pull force gauge, when placed on a curved surface.

sensor array includes both mechanical and electrical crosstalk, and for pitch lengths of 1 cm to 4 cm,
both factors have an effect on it variably. However, when the pitch length increases to 5 cm, the electrical
crosstalk drops greatly compared to mechanical crosstalk, and hence, we can observe an overall drop
in the standard deviation. Therefore, we chose a pitch distance of 5 cm to conduct reliability testing on
the sensor matrix. We opted for a larger pitch to mitigate the potential interference of crosstalk on the
sensor’s response during reliability testing. Alternatively, it is possible to create sensor arrays with a
reduced pitch gap. However, this would necessitate precise calibration of the sensor array under various
settings, as well as the utilization of sophisticated algorithms for data analysis and processing [132].
Addressing these challenges will expand the potential uses of velostat, particularly in the fields of bio
medicine and healthcare.

4.4.2 Mechanical Reliability

In this section, we present a systematic study to understand the influence of repeated mechanical
stress on the characteristics of a velostat-based resistive pressure sensor. We present the effect on the
response of the sensor after being subjected to 150 bending cycles for up to 16 hours. This will help
us understand whether it can be used on chairs with cushions since the sensor array will be bending
in particular areas. The velostat-based pressure sensor was fabricated by sandwiching a velostat sheet
between two plastic sheets along with top and bottom layers of copper electrodes in a crossbar architec-
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Figure 4.3 Output voltage for a sensor pixel for different applied loads, at various bending radii.

Figure 4.4 Variation of parameters a and b with different bending radii.

ture, as shown in Fig. 4.2a. The sensor pixel dimensions were 10 mm × 10 mm. In order to determine
the influence of pressure on the velostat resistance, a setup with push-pull force gauge (maximum load
- 200 N) was designed as shown in Fig. 4.2c. We made 4 samples of pressure sensor for testing it with
different bending radii of 15 mm, 20 mm, 25 mm, and 30 mm. For the third experiment, we made 4 new
samples to test the dynamic response for different bending radii. We made another sample of pressure
sensor for repeatability testing. Hence, 9 samples of pressure sensors were fabricated for the complete
testing of mechanical reliability.

The initial trial involved recording the sensor’s reaction on a level surface. The sensor responses
were recorded on curved surfaces with varying bending radii of 15 mm, 20 mm, 25 mm, and 30 mm.
The purpose of designing 3D printed blocks was to regulate the degree of bending and the number of
bending repetitions. The measurements’ findings are displayed in Fig. 4.3. It is evident that when the
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Figure 4.5 Sensor response for various (a) bending cycles, and (b) bending times. Load applied is 0.5
kg.

bending radius grows, the output voltage also increases for a constant weight due to the deformation
of velostat’s shape. This is deemed unacceptable as it will compromise the reliability of the sensor.
Nevertheless, the variation in sensor response due to bending radius can be represented by adjusting the
parameters a and b in order to accurately forecast the appropriate response for a specific bending radius.
In order to analyze the variation in the sensor’s output for a specific bending radius, we determined the
values of a and b using the bending depicted in Fig. 4.4. If we are utilizing the sensor to detect pressure
on a curved surface, it is imperative that we take this modification into consideration.
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Figure 4.6 Sensor response for repeated application of load for as-fabricated sensor, and after 200
bending cycles. Only few out of the 50 loading cycles are shown in the figure.

Figure 4.7 Response of first five sensors on the application of a load of 1 kg every fortnight for a duration
of 210 days.

In the second experiment, we exposed the sensor to many bending cycles at various bending radii.
Subsequently, we evaluated the sensor’s reaction by placing it on a level surface while applying a con-
sistent weight of 0.5 kg. This experiment aimed to assess if the sensor’s reaction is affected by rolling,
folding, or bending, especially in scenarios that involve dynamic flexing. The results are displayed in
Fig. 4.5a. The output voltage is not monotonic with bending radius because of the internal structure
of the velostat. The non-uniform distribution of the carbon particles in velostat affects the response of
the sensor; hence, we observe a slight change in the sensor’s response over multiple cycles of bending.
The graph indicates a minimal alteration in the sensor’s response over multiple cycles of bending. The
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Figure 4.8 Change in resistance of the sensor pixel with the application of pressure from day 90 to day
210.

variation in output voltage was determined to be 0.95%, 0.95%, 0.97%, and 2.2% for bending radii of
15 mm, 20 mm, 25 mm, and 30 mm, respectively, following 150 cycles of bending. The sensor output
was consistently measured in a horizontal position in all instances.

In the third experiment, we tested the dynamic response of the sensor for various bending radii. The
results shown in Fig. 4.5b convey that there is a negligible change in the sensor’s response which shows
the reliability of the sensor. With respect to the output voltage, at t = 0, there is a deviation of 1.63%,
1.17%, 0.82%, 1.09%, and 2.5% for flat surface, 15 mm, 20 mm, 25 mm, and 30 mm bending radii
respectively, after 16 hours of continuous operation.

In the final experiment, we tested the repeatability of the sensor response without bending and after
bending it for 200 cycles. The sensor response was measured for 50 loading cycles, of which, results
are shown for a few cycles in Fig. 4.6. Even after subjecting the sensor to 200 bending cycles, it
shows reproducible results for rise and fall times. Repeatability is calculated as the difference in output
produced when the sensor is loaded with the same weight for many cycles. The output voltages for a 0.5
kg load were found to be 3.54 ± 0.06 V for the as-fabricated sensor and 3.8 ± 0.1 after V 200 bending
cycles, while the rise and fall times were found to be 1.22 s and 1.34 s for both cases.

Experimental results show the possibility of using it as a reliable device given rigorous calibration.
It opens a broad perspective of using velostat as a force sensor. Hence, the sensor array can be used in
any type of chair, with or without cushion.
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Figure 4.9 Variation of the calibration constants a and b for 150 days.

4.4.3 Long-term Reliability Analysis for 210 Days

Pressure sensors are subjected to continual force and stress that may damage the operation of the
sensor in the long run. When designing and constructing any sensor, it is essential to consider reliability
as a critical element. Evaluating the reliability of the entire product necessitates conducting tests on
the sensor’s substance. We have documented the enduring dependability of a pliable pressure sensor
mat. Our main goal is to analyze the performance of a flexible pressure sensor array when subjected to
prolonged and repetitive loading.

To perform the reliability study of the velostat-based pressure sensor, we conducted various experi-
ments for a period of 210 days. In the first experiment, we tested the sensor’s response every fortnight
by applying a load of 1 kg to all sixteen sensors. As a representative sample, the output response for
the first five sensors is shown in Fig. 4.7. We can observe that as time progresses, there is a change in
the response of the sensor due to the changes in the characteristics of the velostat thin film. Hence, each
sensor has to be calibrated. The average deviations in the sensor values for a load of 1 kg, as shown
in the figure, are 0.03 V, 0.06 V, 0.07 V, 0.11 V, and 0.10 V for sensor 1 to sensor 5, respectively, in
210 days. The total average deviation in the sensor’s response to placing a load of 1 kg on all sixteen
sensor pixels is 0.32 V. We can observe that the deviation is very low and hence it can be used durably
for non-critical sensing applications.

To test the sensor response to the application of higher pressure, we recorded the sensor’s response
by applying weights in a range of 1-12 kg every fortnight from day 90 on all sixteen sensors. Fig. 4.8
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Figure 4.10 Decay ratio of the sensor’s response in two different periods during the 210 day testing.

shows the change in resistance of the first sensor pixel from day 90 to day 210. Other sensor pixels show
similar sensor responses. From the figure, we can understand that as the molecules in the velostat start
settling, the resistance shows more gradation during the later days, i.e., from day 165 to day 210, and is
closer to the mean graph. The mean graph was calculated by selecting constant values of the calibration
constants a and b. The constants can also be varied to fit the individual curves. Fig. 4.9 shows the
variation of the constants a and b over time from day 90 to day 210. We can observe that the constant b
is starting to stabilize after day 150. We need to account for this change when calibrating the sensor to
use it for commercial applications.

In order to determine the time needed for velostat to stabilize and produce consistent and replicable
outcomes, we computed the decay ratio in the sensor’s reaction. Fig. 4.10 illustrates the rate of change in
values between day 90 and day 210. From day 150 to day 210, the sensor’s repone closely approximates
to 1, while from day 90 to day 150, it deviates significantly from 1. After a period of 150 days, the
decay ratio of the pressure, which initially started at 10 kPa and decreased to 120 kPa, approaches a
value closer to 1. This demonstrates that after a period of 150 days, velostat begins to exhibit consistent
behavior. Over a period of 210 days, we conducted the test every two weeks, resulting in a total of 15
instances of loading on the sensor array. The weight range varied from 1 to 12 kg. In summary, our
proposal suggests utilizing velostat, a thin film material, for designing a sensor array. However, instead
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Figure 4.11 Variation in the relative error of the sensor pixel for 120 days from day 90 to day 210 shows
reduction in error as the sensor ages.

of employing an unused or artificially created velostat film, we recommend loading it with various
weights for a specific duration. This approach aims to yield more dependable and consistent outcomes.

The sensor pixel’s relative error is computed over a span of 120 days, specifically from day 90 to day
210. The estimated error over a specific time period provides insights into the minimum time needed to
achieve the lowest error and the long-term accuracy of the sensor. The calculation involved determining
the absolute discrepancy between the estimated weight and the actual weight. The estimated weight
was determined by applying the calibration constants of the ideal response (consistent values for all
computations). The relative error is given by:

Er =
We −Wa

Wa
(4.6)

where We is the estimated weight by the sensor pixel and Wa is the actual weight placed on the
sensor pixel. The We is calculated by:

We = (
a

Rsens
)
1
b (4.7)
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Figure 4.12 Variation in the temporal stability of the sensor’s response over the period of the testing
shows more stable sensor at the later stages of testing.

Fig. 4.11 shows the error for different loads from 1-12 kg. We can observe that the error for all the
loads decreases drastically after 150 days. When we consider the error with respect to the load applied
on the sensor pixel, we can observe that it is minimal for weights from 1 to 6 kg. This implies that the
velostat-based sensors can be used reliably with repeatable responses till a maximum of 6 kg load. The
error was reduced by 17.49, 61.43, 71.87, 44.82, 55.26, 44.57, 74.67, 54.34 percentage points for 1 kg,
2 kg, 3 kg, 4 kg, 6 kg, 8 kg, 10 kg and 12 kg respectively.

Finally, we conducted an experiment to calculate the time required by the sensor to reach a stable
value. A load of 2 kg was placed on the same sensor pixel for a period of 20 minutes, every fortnight
from day 105 to day 210. It was observed that as the load was placed for more amount of time, the
output voltage of the sensor pixel increased. We also observed that the deviation in the sensor’s response
decreased every fortnight and is minimal on day 210 as observed in Fig. 4.12. The deviation on day 105
was 12.3% while the deviation on day 210 was 5.2%. This implies that even after using a used or aged
velostat, we should always wait for at least 30 to 50 secs before taking the output response of the sensor
pixel so that we get stable values.

To summarize the reliability study, in Fig. 4.13, we can visualize the change in sensor response over
210 days with the help of the heat maps showing the sensor response for a weight of 6 kg placed on
every sensor pixel. This change in response is because of a change in the mechanical characteristics
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Figure 4.13 Heat map representing the response of all the sensor pixels on the sensor mat on various
days of testing.

of the velostat across the mat. It can be seen that the response on earlier days (90 and 120) has more
variations (difference between dark and light pixels), as compared to the response on later days. Further,
the response stabilizes after a certain number of days, with minimal difference between the response at
day 165 and day 210. The spatial variations can then be remedied using calibration.

4.5 Summary

In this chapter, we introduced our innovative methodology for calibrating the sensor. We introduced
a new method to measure the interference between sensors in a matrix, which can be applied to any type
of array and employed in many technologies. We conducted a comprehensive analysis of three flexi-
ble pressure sensing matrices utilizing a crossbar design employing Velostat material. In addition, we
employed various weights to examine the patterns associated with fluctuating pressure values. We intro-
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duced the sensor’s mechanical reliability for the first time. We have demonstrated the sensor’s reaction
when applied to curved surfaces with varying bending radii, as well as its response after subjecting it
to multiple cycles of bending to assess its mechanical properties. We introduced a mathematical model
to quantify the parameters of the sensor calibration curve. We additionally showcased the sensor’s
durability through extensive long-term reliability testing. Upon repeated application of load, we have
discovered that the particles of the velostat eventually settle after a specific duration of time. Once this
occurs, the resistance of the velostat undergoes a shift that remains constant over time. After a period of
210 days, we have noticed that the decay ratio is approaching a value of 1. Consequently, we can antici-
pate consistent and replicable outcomes from the velostat sensor following the implementation of force
15 times, within a load spectrum ranging from 1 to 12 kg. After 210 days, the relative error experiences
a significant decrease, resulting in an overall reduction in error of 53 percentage points. Overall, after
conducting a 210-day analysis on the dependability of velostat-based sensors, we observe promising
indications for their utilization in a range of applications beyond just identifying and correcting sitting
posture.
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Chapter 5

Data Acquisition Circuit Design

5.1 Publication History

This chapter contains excerpts from the following publications: [26]

• Anis Fatema, A. Navnit, D. Devendra, A. M. Hussain, “A Combined Capacitance and Resistance
Read-out circuit for Sensory Nodes,” IEEE Sensors Conference 2021, pp 1-4.
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5.2 Introduction

A data acquisition circuit is a circuit designed to retrieve data from a sensor. Designing an efficient
data-collecting circuit is crucial for retrieving data from the sensor. Due to the presence of 1024 sensor
pixels, it is necessary for us to have a readout circuit that provides a more rapid output. The preced-
ing chapter covered the design and creation of the flexible pressure sensor array. The reading circuit
included a microcontroller, multiplexers, resistors, and 16-pin connectors. The microcontroller primar-
ily executed the task of converting analog signals to digital signals and provided us with the resulting
output. Instead of utilizing a pre-made microcontroller, we opted to create our own custom read-out
circuit. We have developed a circuit capable of converting capacitance and resistance into a digital out-
put. A sensing system that can sense multiple environmental variables is an important block in Internet
of Things (IoT) devices. Such a sensing system consists of different types of sensors based on their
applications. Most of the sensors are designed based on the variation of capacitance or the resistance
of a circuit entity. Capacitive sensing is used in a wide range of applications such as tactile sensing
pressure sensing, humidity sensing and many more. Resistive sensors are also popular for the measure-
ment of physical variables such as strain, displacement, and pressure. So, here we propose a combined
capacitive-sensor and resistive-sensor interface circuit.

Many capacitive-sensor and resistive-sensor interfacing circuits have been proposed so far but very
few circuits proposed the combined interface circuit. In [133], a period modulation approach was used.
The capacitance was converted to time, followed by a time to digital conversion. In this case, a high fre-
quency signal was required to perform time to digital conversion, resulting in increased power consump-
tion. In [134], a Sigma-Delta Successive Approximation Register (SAR) topology was used, resulting
in good resolution, however, the power consumption was very high. In [135], a hybrid SAR-VCO-
based Sigma-Delta Capacitance to Digital Converter (CDC) was implemented to achieve high resolu-
tion with good energy efficiency. However, it could measure capacitance for a limited range of 0-5 pF.
In [136], the interface circuit was implemented using two matched RC oscillators and a counter-based
programmable digital converter that was independent of supply voltage and temperature. However, the
designing of matched oscillators and programmable converter employed complex circuitry. The re-
sistance to frequency converter proposed in [137] had a significant non-linearity in the output due to
switching delays. A resistance to time period or pulse-width converter was presented in [138], but it re-
quired an additional interface unit to convert the quasi-digital output to digital. In [139], a Direct Digital
Converter was proposed. The resistance was converted to analog voltage using Wheatstone bridge and
then to digital data using dual-slope technique that comprises a complex circuitry of timing and control
logic. A combined RCDC circuit was proposed in [140], which contained a sensor oscillator and a refer-
ence oscillator that were configured to read out the capacitive sensor or resistive sensors by selecting an
appropriate tri-state buffer. However, it covered a limited range and consumed a high amount of power.

This chapter introduces a merged RCDC that utilizes SAR-ADC. A high gain operational amplifier
(op-amp) has been utilized in the design of the capacitance to voltage converter to enhance linearity and
minimize gain and offset error. The Wheatstone bridge is employed for converting resistance to voltage,
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Figure 5.1 Architecture of a complete sensor system showing the component developed in this work.

as an alternative to a basic voltage divider circuit, in order to minimize power usage and vulnerability to
temperature and supply voltage variations.

5.3 Circuit Design and Implementation

5.3.1 Proposed Architecture

An architecture of a complete sensor system is shown in Fig. 5.1. We present a combined resistance
and capacitance to digital converter, which consists of separate resistance-to-voltage and capacitance-to-
voltage converters. The analog output of these blocks is fed to a common Analog to Digital Converter
(ADC).The user determines whether to read a resistive or capacitive sensor by utilizing an input pin.
The SAR-ADC circuit converts the analog voltage to a 12-bit digital data, depending on the chosen
operation.

5.3.2 Circuit Implementation

5.3.2.1 Capacitance to Voltage Converter

Fig. 5.2(a) shows the designed Capacitance to Voltage Converter (CVC) circuit. Cs and Cr represent
sensor capacitance and reference capacitance, respectively. Vr represents the DC reference voltage. The
circuit operation is performed by non-overlapping two-phase clocks. When ϕ = 1, Cs is charged to
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Figure 5.2 Circuit diagram of the (a) Capacitance to Voltage Converter, and (b) Resistance to Voltage
Converter.

Vr, and Cr is discharged, then in the next phase when ϕ = 1, the charge present in the capacitor Cs is
transferred to Cr. The output voltage V0 is given by,

V0 =

(
Cs

Cs + Cr

)
Vr (5.1)

The use of a low-gain amplifier will produce a gain error in capacitance to voltage conversion [141].
Hence, a two-stage PMOS-input operational amplifier was implemented. The DC gain, unity gain
frequency, and phase margin of the op-amp were found to be 75 dB, 83.9 MHz, and 72.8◦ respectively.
A high reference capacitance of Cr = 500 pF was selected, to reduce the non-linearity in the output.

5.3.2.2 Resistance to Voltage Converter

Fig. 5.2(b) shows the designed Resistance to Voltage Converter (RVC) circuit. The resistors are con-
nected in the form of a Wheatstone bridge because it provides good linearity, increased sensitivity, and
automatic temperature compensation [142]. R1=10 kΩ, R2=50 kΩ and R3=100 Ω are fixed resistors,
and Rs is the sensed resistor. High values of R1 and R2 are selected to reduce the current flow and
a low value of R3 is chosen to meet the low range requirements of the sensed resistor. Vr is the DC
reference voltage. The switches S1 and S2 are controlled by the reset signal, hence, the resistance to
voltage conversion occurs only when the reset signal is high. When the reset signal goes low, the analog
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Figure 5.3 Architecture of SAR-ADC with binary weighted charge redistribution DAC.

voltage corresponding to the sensor resistance is converted to digital data. B1 and B2 are the analog
buffers that are connected to avoid loading at the output. The voltages at the points c and d will be same
as Va and Vb. B3 is an instrumentation amplifier whose output V0 is given by:

V0 =

(
R2

R1 +R2
− Rs

R3 +Rsens

)
Vr (5.2)

5.3.2.3 Analog to Digital converter

The main building blocks of SAR-ADC are sample and hold circuit, comparator, SAR logic, and
DAC. The sample and hold circuit samples the signal during reset phase and holds it during the conver-
sion phase. A dynamic latch comparator is used, as it is low power, high speed, high input impedance,
and gives a full swing output. The designed comparator has delay, resolution, and power consumption
of 8.8 ns, 0.01 V, and 0.47 mW respectively.

The SAR-ADC was preferred because it gives high accuracy and speed and is the lowest power-
consuming type of ADC [143]. It has less number of analog components and has a novel switching
scheme [144]. A binary-weighted capacitive DAC (CDAC) was chosen because it has fewer non-
linearities compared to a split CDAC, however, it occupies a large layout area because the capacitance of
each bit doubles in size [145]. The 12-bit binary-weighted DAC consists of 12 capacitors with values of
C, 2C, 4C up to 2048C plus one extra non-charging branch with capacitance C. The unit capacitance
C was chosen to be 40 fF.

5.4 Results

The layout of the designed RCDC circuit is shown in Fig. 5.4. The circuit was designed and imple-
mented in TSMC 0.18 µm IP6M CMOS technology. Assura verification tool was used for the Design
Rule Check (DRC), Layout Vs Schematic (LVS) and extraction of parasitics in the layout. The capaci-
tors used in the layout design are MIMcaps (metal insulator metal capacitors) with capacitance per unit
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Figure 5.4 Layout of the RCDC circuit, with functional block diagrams. The abbreviation ’MUX’
shown in the layout stands for multiplexer, ’COMP’ for comparator and ’S & H’ for sample and hold.
The scale bar is 0.25 mm.

Figure 5.5 The complete circuit design in cadence.

area of 2 fF/µm2. The complete circuit design is shown in Fig. 5.5. The post-extraction active area
was 3.2 mm2. Fig. 5.6 shows the simulation results of the timing and operation of the circuit. The
circuit uses capacitive charge/discharge timing to internally generate a 1.2 MHz clock. The ‘select’
signal decides whether the capacitance or the resistance will be converted to digital data. When End
of Conversion (EOC) goes high, the parallel output data from SAR is converted into serial output. The
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Figure 5.6 Output response of the interface circuit with sensor capacitance 50 pF and sensor resistance
20 ohms.

Table 5.1 Performance summary

Architecture SAR
Output format 12-bit Digital code
Technology 0.18 µm
Supply Voltage 2.5 V to 4.2 V
Conversion time 20 µs
Range of CDC 30 pF to 100 pF
Range of RDC 1 Ω to 30 Ω

Temperature Range -40 to 1250C
Resolution of CDC 17fF
Resolution of RDC 7 mΩ

Power consumption of CDC 117 mW
Power consumption of RDC 126 mW
Nonlinearity of CDC 0.66%
Nonlinearity of RDC 0.57%

operation is divided into two phases: reset phase and the conversion phase. In the reset phase, the ‘reset’
signal will be high, and the capacitance and the resistance are converted into the analog voltage. In the
conversion phase, the reset signal will be low, and the conversion of analog voltage into digital data
is performed. To evaluate the performance of the circuit, the sensor capacitance is varied from 30 pF
to 100 pF and the sensor resistance is varied from 1 Ω to 30 Ω and their digital output (reported after
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Figure 5.7 The 12-bit digital output (represented as a decimal number) versus sensor capacitance and
sensor resistance.

Table 5.2 Performance comparison with commercially available ICs

Parameters Our circuit PCAP04 AD7745 PS081 MAX31865
Manufacturers - ScioSens Analog devices Analog devices Analog devices
Circuit RCDC CDC CDC RDC RDC
Digital output 12 bit 20 bit 7 bit 24 bit 15 bit
Supply Voltage 2.5 V to 4.2 V 2.1 V to 3.6 V 2.7 V to 5.25 V 2.1 V to 3.6 V 0.3 V to 4 V
Range of CDC 30 pF to 100 pF 1 pF to 100 nF 4 pF to 17 pF - -
Range of RDC 1 Ω to 30 Ω - - 1 Ω to 10 Ω 100 Ω to 1 KΩ

Operating Temp. -40 to 1250C -40 to 1250C -40 to 1250C -40 to 1250C -40 to 1250C

conversion to decimal) is recorded as shown in Fig. 5.7. The resolution of CDC and RDC is 17 fF and
7 mΩ respectively. The non-linearity shown by CDC and RDC is 0.66% and 0.57%, respectively. The
final top layout with pads is shown in Fig. 5.8

The table 5.1 shows the performance summary of the circuit design. All the internal circuits operate
at 1.8 V and 3.3 V. We have also designed the complete layout with pads and sent for fabrication to Muse
semiconductors. The performance of the designed circuit was also compared with the commercially
available sensor ICs as shown in the table 5.2
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Figure 5.8 The final top level chip design with pads sent for fabrication

5.5 Summary

An interface circuit with flexibility to read out both capacitive and resistive types of sensors has been
presented in this chapter. It requires less area and is more cost-effective than separate single-sensor
read-out circuits. The designed SAR-RCDC circuit is implemented in TSMC 0.18 µm IP6M CMOS
technology, with an active area of 3.2 mm2. It converts the resistance or capacitance to 12-bit digital data
with a conversion time of 20 µs at a 1.8 V power supply. It consumes 117 mW and 126 mW of power
at full-scale input capacitance and resistance, respectively. The 12-bit output data is communicated as a
serial output with synchronization achieved using the system clock output. The novelty of the design is
its performance and designing a combined read-out circuit. This read-out circuit can be used with single
resistive or capacitive sensors but has limitations when used with the sensor array.

71



Chapter 6

Posture Recognition System

6.1 Publication History

• Anis Fatema, B. Kokad. M. Hussain, “Development of Flexible Pressure Sensor System for Pos-
ture Recognition in Smart Chair using Machine Learning,” to be submitted in Scientific Reports,
2024.
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6.2 Introduction

Long periods of time spent sitting with bad posture can result in a number of health problems, such
as cervical, lower, and upper back pain. It’s critical for people to maintain good posture when working
or studying. The existing pressure sensor-based systems that have been proposed to recognize sitting
postures are limited by the number of sensors, number of postures detected, and accuracy, leaving room
for improvement. Nowadays, most people work or study for extended periods of time while seated
in chairs. Most students and office workers spend more than 8 to 9 hours a day seated. Due to an
increase in persons working from home during and after the COVID-19 epidemic, the issue has got
worse. Research indicates that sitting incorrectly for longer than six hours can harm the body and raise
health risks [146]. For example, it may increase the risk of long-term conditions like diabetes, heart
disease, stroke, and metabolic syndrome. Inadequate sitting positions can also lead to issues with the
spine, including unequal shoulders, leg length disparity, pelvic tucking, and neck pain [147–149].

Figure 6.1 Prevalance of lower back pain in adults

Numerous techniques have been put forth to identify sitting positions. We can broadly classify them
into three categories. The first method is to use wearable sensors [150–154]. In [150], a method for
continuously monitoring of head posture was presented. Forward head posture (FHP) is a common
musculoskeletal disorder that is correlated with neck pain. It affects a large percentage of the popula-
tion. It is seen in situations such as slouching while sitting or standing. They used accelerometer-based
wireless inertial body sensors to monitor FHP. In another research, through the use of mobile devices
affixed to specific human spinal sites (thoracic, thoraco-lumbar, and lumbar), [151] built models to iden-
tify correct or incorrect sitting postures. It also discovered the connections between appropriate sitting
positions and human body frames. The models were created by leveraging the data gathered from 49
students with varying body frames to train several well-known classifiers, including KNN, SVM, MLP,
and Decision Tree. The Decision Tree classifier showed the most promising performance, with a kappa
of 0.921 and an accuracy of 96.13%. The findings also indicated a connection between posture and
body frame. In another wearable sensor based posture recognition system, [152] presented the recog-
nition and categorization of various sitting and standing postures. Classification accuracies employing
three triaxial accelerometers and gyroscope sensors are shown to be higher than those obtained with just
one or two sensors. The collected characteristics’ principal component analysis (PCA) demonstrates
a considerable degree of differentiation between the postures under consideration. The study included
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four distinct classifiers: random forest (RF), decision tree, multi-layer perceptron, and support vector
machine (SVM). Of these, SVM yielded the highest accuracy. An average classification accuracy of
95.68% is obtained by the RF classifier for 9 distinct body postures (5 seated postures and 4 standing
postures) executed by 7 participants. In [153], a wearable strain gauge sensor was designed to measure
the recognition of sitting posture and was positioned at the lower back. The low-cost tool that was
developed has a number of benefits, such as its high precision, straightforward design, low power con-
sumption, and easy installation. In order to optimize and integrate these innovative sensors into a sitting
posture monitoring application, the volume fractions of the nickel nanostrands (NiNs) and nickel coated
carbon fibers (NCCF) were selected. In another work, to get the required information regarding the
sitting posture of the person, Sangyong Ma et al. [154] employed a three-axis accelerometer. Support
vector machine (SVM) and K-means algorithms were used to identify a sitting position after the data
had been standardized. Nonetheless, wearing a three-axis accelerometer or any other wearable device
for posture monitoring for an extended amount of time is inconvenient for the user. Hence, we didn’t
select this category for designing a posture recognition system.

The second category is to use camera for posture recognition. Initially, a camera was positioned in
front of or next to a seat to record sitting positions. Subsequently, sitting postures were classified using
an image recognition technique [155–159]. For instance, Lan Mu et al. [159] recognized seated postures
using a Webcam. Initially, the sitting posture profile is extracted; Second, pattern matching based on
Hausdorff distance is used to further extract the profile features, including the size and placement of the
face. Lastly, the surveillance system would advise the user to adjust their sitting position by contrast-
ing the standard profile characteristics with the real-time profile features. The Hausdorff distance was
chosen as the method for identifying body and facial postures. However, their method is restricted to
identifying the sitting posture of the upper body. The lower body cannot be identified. Furthermore,
the results of this process might not be reliable if someone passes in front of the camera and the camera
records them.

Methods based on pressure sensors make up the third category. We have also selected this method.
To identify sitting postures, flexible pressure sensors or a matrix sensor mat were placed on the chair.
Two ultrasonic sensors were placed on a chair’s back by Haeyoon Cho et al. [160], together with multiple
pressure sensors on the cushion. Data was collected using both the ultrasonic sensor and the pressure
sensors. In order to gather pressure data, they placed 25 pressure sensors throughout the chair’s hip area.
The regions of the chair surface that best represent important aspects of sitting postures were found
using the data that have been gathered. Subsequently, they employ diverse machine learning techniques
to identify ten typical sitting positions and assess their effectiveness. Support vector machine (SVM), k-
nearest neighbors (KNN), decision tree, random forest, and logistic regression are some of the machine
learning techniques employed in the evaluation.

Apart from the three categories mentioned above, [161] presented the first sitting posture identifica-
tion system that just uses radio frequency wave (SitR), requiring no wearable sensors on the human body
or jeopardizing privacy. They demonstrated that SitR can identify seven common sitting postures with
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just three inexpensive, lightweight RFID tags applied to the user’s back. The solution takes advantage
of the relationship between sitting postures and the phase change of RFID tags. Using ten volunteers,
SitR’s performance was assessed in two distinct circumstances. Numerous tests demonstrated that SitR
can accurately identify seven sitting positions in a variety of settings and circumstances. It can further
detect the abnormal respiration, stand up, and sit down and provide sitting posture history for sedentary
people. The fundamental concept involves an antenna positioned on the chair’s back and three tags ad-
hered to the user’s back. Under various sitting positions, the distance between each tag and the antenna
varies. Secondly, the phase of the received signal at the reader fluctuates in accordance with changes
in the tag-to-antenna distance and angle. As each sitting posture has a distinct phase variation, it helps
in identifying different sitting postures. However, it is difficult to use the tags to accurately identify
sitting postures without making the user uncomfortable and decide how to produce a noticeable phase-
changing pattern in the face of hardware noise, and the multipath effect presents the second challenge.
In addition to this, RFID tags might also have problems when multiple individuals are sitting in the
same room.

6.3 Related Work

In recent years, numerous pressure sensor-based techniques have been put forth. The basic concept
is to attach pressure sensors to a chair’s back and hip areas to record signals related to sitting positions.
Six pressure sensors were first mounted on a chair’s hips, armrests, and back sections by Qisong Hu
et al. [162] in order to gather pressure readings. They then constructed an Artificial Neural Network
(ANN) model for classification using a look-up table. Their findings revealed a 9 ns processing time
and a 97.8% accuracy rate. A technique to categorize sitting positions was proposed by Wenyao Xu
et al. [163] using an electronic textile (eTextile) pressure sensor on the seat cushion. The conductive
polymer-coated fibers in the eTextile are equipped with strain and pressure sensors. While a user was
seated on the cushion, the device recorded pressure signals. Dynamic Time Warping (DTW), which
filters out background noise, was used to categorize postures. The accuracy rate obtained was 85.9%.
90 pressure sensors were mounted on the back of the chair, and 81 pressure sensors were positioned on
the hip by Jianquan Wang et al. [164]. They achieved an accuracy rate of 88.52% in the classification
of sitting postures using the Spiking Neural Network (Spiking-NN). Their approach involved sensor
readings from the back of the seat. A wide range of pressure pads on the hip region were employed by
Zhe Fan, Qilong Wan, Xu Ran, and colleagues [54, 165, 166] to gather user hip pressure signals, which
were then transformed into a pressure map. This pressure map was utilized to construct a classification
neural network model. Despite the fact that this technique can accurately recognize sitting postures, the
hardware is expensive—it can cost up to 300 USD. The recognition results were displayed on an Android
phone. Although the system achieved an accuracy rate of up to 96%, it required 18 sensors, resulting
in relatively high hardware costs. A hybrid sensor system with six pressure sensors and six distance
sensors mounted on a chair was proposed by Haeseok Jeong et al. [167]. A K-nearest neighbors (KNN)
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model for posture classification was trained using the gathered pressure and distance measurements.
Their findings demonstrated an accuracy as high as 92%. Nevertheless, this approach necessitated the
installation of distance sensors on the back of the seat, and the height and size of the user may have
an impact on the accuracy. A system including 16 pressure sensors and two ultrasonic sensors was
created by Haeyoon Cho et al. [168]. An Arduino board was utilized to process the gathered signals
before sending them to the Naver Cloud Platform for posture categorization using Convolutional Neural
Network (CNN) and Lower-Balanced Check Network (LBCNet).

6.4 Posture Recognition Methods

Upon a person’s sitting, we gauge the pressure they apply and utilize this information to ascertain
their posture. We examine each pressure map to determine whether the individual is maintaining a
favorable or unfavorable body position. In order to accomplish this, we employ diverse machine learning
algorithms to categorize and identify distinct postures by analyzing their respective pressure maps.

Data is gathered from a pressure sensor pad that is linked to both the seat and backrest. The sensor
consists of a combined total of 2048 pixels, with 1024 located on the seat and 1024 on the backrest.
These pixels are utilized to accurately track and record an individual’s body position. The provided data
is utilized for categorizing various seating positions. In order to identify these postures, five distinct
algorithms were employed and will be examined in this section. The subsequent section will provide a
comprehensive account of the outcomes and precision of each method.

6.4.1 Support Vector Machine

The SVM is a highly popular and effective supervised learning algorithm utilized for classification
and regression tasks [169]. This method establishes the decision boundary for different datasets on
sitting posture and optimizes it by transforming it into a hyperplane for classification [170]. The number
of sitting posture data points, denoted as N, can be expressed as X = (xij , yi), where xij represents the
j-th pressure sensor value of the i-th sitting posture data, and yi represents the corresponding sitting
posture category. The formula shown in Equation 6.1 and 6.2 represents the good sitting posture (yi =
1) and the hunchback posture (yi=− 1) in SVM. In this formula, ω denotes the weight vector, and b
represents the bias used to separate the hyperplane. [170] The simplified formula is shown in equation
6.3. It allows for the differentiation of distinct limits for each individual session.

ωTxij + b ≥ 1 (6.1)

ωTxij + b ≤ −1 (6.2)

yi(ω
Txij + b) ≥ 1 (6.3)
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6.4.2 K Nearest Neighbour

The KNN algorithm entails the identification of analogous coordinates in a vector space, which
serves as a measure of the distance between two data points representing sitting postures. [171]. The
Euclidean Distance is employed to compute the distance between distinct sitting posture data. Assume
that there are two sitting posture data points in the training set, denoted as n, where xi represents the
known sitting posture data: xi = [x1, x2, · · · , x13], and xj represents the unknown sitting posture data:
xj = [x1, x2, · · · , x13]. The Euclidean Distance between them is expressed in Equation 6.4.

d(xi, xj) =

√√√√ n∑
k=1

(xik − xjk)
2 (6.4)

In order to determine the distance, it is necessary to specify the value of k, which denotes the quantity
of closest neighbors to be taken into account. For instance, when k is equal to 3, the algorithm will detect
the three coordinates with the smallest distance and determine the sitting position based on these three
coordinates. The predominant sitting posture among these neighbors is regarded as the superior class.
In order to get a comprehensive classification of the 10 sitting postures, it is customary to select k as an
odd number to prevent any instances of ties. When the value of k is excessively big, it may lead to the
inclusion of unnecessary coordinates, hence reducing the accuracy of the classification. Conversely, if
the value of k is too little, there is a risk of overfitting. This study employed the attributes of the KNN
model, which entails placing a substantial quantity of sitting posture coordinates in a multi-dimensional
space. The KNN method can categorize sitting postures based on the high similarity of coordinates in
the vector space when the sitting posture features are comparable.

6.4.3 Decision Tree

The decision tree algorithm is a hierarchical algorithm that acquires and deduces decision rules for
forecasting results based on characteristics of the data [172]. It is frequently employed in regression
and classification tasks. The Gini coefficient is used to identify the root node and build the model in a
recursive top-down approach until the dataset is fully divided. The Gini coefficient quantifies the level of
impurity in a given sample. The dataset representing the sitting posture, labeled as N, can be expressed
as X = (xij , yi).

In this context, S denotes the number of labels, whereas xij indicates the likelihood of category yi
being in the dataset X. A lower Gini coefficient signifies reduced impurity within the dataset. Given
the nature of our study, which deals with an issue involving several classifications, we employ the
calculation of 10 Gini coefficients for various sitting postures in order to carry out the division.

Gini(X) = 1−
S∑

yi=1

(x2ij) (6.5)
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The decision tree algorithm partitions the features and their respective values to identify the optimal
branches for identifying sitting postures. The depth of the tree is indicative of the intricacy of the
decision rules, and a greater depth generally captures more complicated patterns, resulting in a model
that is more closely aligned with actual sitting positions. Nevertheless, an abundance of noise in the data
or an excessively complex tree can result in overfitting problems. In order to tackle this issue, we made
modifications to the parameters associated with the depth of the trees. This was done to find a suitable
equilibrium between collecting significant patterns and avoiding overfitting.

6.4.4 Logistic Regression

Logistic regression is a statistical model that is derived from the principles of linear regression. The
classification model primarily computes a decision boundary to partition the data [173]. It can also
be referred to as a linear regression model for classification, primarily utilizing the sigmoid function
for classification as demonstrated in equation 6.6. In equation 6.6, the N sitting posture data can be
represented as X = (xij , yi). The e is a Euler’s number which is a mathematical constant. The sitting
postures are classified according to a threshold.

g(X) =
1

1 + e−z
(6.6)

However, logistic regression is usually used for binary classification. In our study, it generates K
binary classifiers. When predicting, the sitting posture data will be put into the K classifiers, and the
classifier with the highest prediction score wins.

6.4.5 Artificial Neural networks

Artificial Neural Networks (ANN) are a valuable tool that draws inspiration from biological neural
networks. They can be employed to estimate unknown functions using known inputs. The architecture
of an Artificial Neural Network (ANN) consists of three layers: the input layer (u), the hidden layer
(h), and the output layer (y). The input layer is represented by u = u1, u2, . . . , uM , the hidden layer
is represented by h = h1, h2, . . . , hL, and the output layer is represented by y = y1, y2, . . . , yN . M, L,
and N represent the number of data points in the input layer, the number of neurons in the hidden layer,
and the number of approximated outputs, respectively. The benefits of ANN classifiers encompass, but
are not restricted to, exceptional classification accuracy; formidable capability for parallel distributed
processing, distributed storage, and learning; substantial resilience, tolerance to noise, and ability to
approximate nonlinear relationships [174].

6.4.6 Principal Component Analysis

In a PCA-based approach, the most important thing is to find the principal components of the dis-
tribution of pressure maps, or more generally, the eigenvectors of the covariance matrix of a set of
training pressure maps. Our PCA-based posture classification algorithm involves two separate steps:

78



Figure 6.2 The heat maps of the sensor mat on the seat and the backrest as obtained from four different
users sitting in Posture 1 are shown in (a–d). The weights of the subjects are 60 kg, 70 kg, 80 kg, and
110 kg, respectively. (e) Graph showing repeatability of the sensor with subjects of different weights of
50 kg, 60 kg, 70 kg, 80 kg, and 110 kg. (f) Graph showing the relationship of testing accuracy of the
NN model with respect to the weight of the person

training and posture classification. In the first step, training data for a set of predefined static postures
are collected. Pressure maps corresponding to the same posture are used to calculate the eigenvectors
that best represent the variations among them. Each of the total training pressure maps is raster-scanned
to form a vector of 2048 elements. The mean-adjusted vectors are then used to compute the covari-
ance matrix, from which a set of eigenvectors are calculated so that their corresponding eigenvalues
decrease monotonically. These eigenvectors can be thought of as forming an n-dimensional eigen pos-
ture space where a 2048-element pressure map can be represented by the weights of its projection onto
this eigenspace [175].
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6.5 Methodology

6.5.1 Experiment Details

The flexible pressure sensing mat of size 42 cm × 42 cm is placed on the seat and the backrest of the
chair. It is a low-cost, automated sensor mat providing high accuracy. It is a 32 × 32 pressure sensing
array with each sensing pixel of size 0.6 cm × 0.6 cm. The read-out circuit box is fixed at the back
side of the chair. It is connected to the laptop using a USB cable, and the posture recognition app is run
on the screen. We can observe the change in the posture of the user in real-time. When the algorithm
detects a wrong posture for more than 10 minutes, it alerts the user with a beep. The system architecture
includes data collection from the sensor mat, data processing by the user interface and data display that
includes showing the posture is good or bad.

6.5.2 Data Collection and Analysis

To verify the accuracy of the model, we conducted a data collection process involving two stages. In
the first stage, we collected data to train the model and evaluate its accuracy. In the second stage, we
collected additional data to test the model’s classification performance and assess the usability of the
system. It’s important to note that our experiment has received ethics approval from the Institute Review
Board (IRB) of the International Institute of Information Technology Hyderabad. Each participant in
the study was provided with detailed information about the experimental procedures and goals, and they
voluntarily signed a research participant consent form.

A total of 15 volunteers participated in the study. The characteristics of the volunteers are as follows:
The age distribution was between 20 and 28 years old, the weight distribution was between 60 and 107
kg, and the height distribution was between 156 and 182 cm. During the experiment, the participants
were instructed to perform seven different sitting postures: straight, slouch, leaning forward, leaning
left, leaning right, leaning left leg crossed, and leaning right leg crossed.

For each sitting posture, the subjects consecutively maintained the position for 2 minutes, resulting
in a total test duration of 14 minutes. The data sampling rate is one sample per second, resulting in
a total of 840 posture data points. Each data point includes the sensor readings of the 2048 pressure
sensing pixels, that includes 1024 pixels on the seat and 1024 pixels on the backrest. Since we have 15
participants, there were 12,600 data points used to establish models. We used the data of 12 participants
for training and then the data of the remaining 3 participants to test the algorithm’s accuracy.

Figure 6.2(a-d) shows the heat maps of the pressure sensor mat on the seat and the backrest of four
users of different weights of 60 kg, 70 kg, 80 kg, and 110 kg, respectively. Figure 6.2e shows the
repeatability of the sensor. We have conducted the experiment with the same users whose heatmaps are
shown in Figure 6.2(a-d). The users were asked to sit on the mat for 60 seconds, stand for 30 seconds,
and repeat six times. We took the average sensor output of the 1024 sensor pixels of the sensor mat
on the seat and observed repeatable results for all users. In order to test the dependency of weight on
the testing accuracy for all postures, we trained the NN model and tested the data of users of different
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Figure 6.3 Illustration of seven different sitting postures with pressure maps of seat and backrest: (a)
sitting upright, (b) slouching, (c) leaning forward, (d) leaning left, (e) leaning right, (f) leaning left leg
crossed, and (g) leaning right leg crossed.

weights of 50 kg, 60 kg, 70 kg, 80 kg, and 110 kg, as shown in Figure 6.2e. We can observe that the
average accuracy from 50-70 kg weight is 98.2%, and the accuracy until 90 kg is 95.2%, and it reduces
to 93.9% beyond 110 kg. Hence, in this approach, users with weights of 40 to 110 kg can use the smart
chair without any need for weight calibration. While maintaining the recognition accuracy above 95%,
the weight limit can be considered as 110 kg.

6.6 Results and Discussion

6.6.1 Support Vector Machine

The SVM model was trained for different kernel functions. The parameters of the Kernel Function
can be categorized into linear parameters and nonlinear parameters. We have trained and tested our
model using linear, quadratic, cubic, and gaussian SVM models. The accuracy of the SVM model using
different Kernel Functions is summarized in Table 6.1. The SVM model exhibits varying performance
with different Kernel Functions. The gaussian SVM model has achieved the highest accuracy rate of
99.88% for validation and 95.89% for testing. Figure 6.4 shows the confusion matrix for all the models.

6.6.2 K- Nearest Neighbour

We have tested KNN algorithm for different K values and different distances. Since the K value
directly influences the performance of KNN, it is crucial to compare different K values to determine
the one with the highest accuracy. We tested the algorithm using Euclidean, Minkowski, and Cosine
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Figure 6.4 Confusion matrix of SVM models. Starting from left (a) linear (b) quadratic (c) cubic (d)
gaussian

Table 6.1 Comparison of SVM models

Name Training time Validation Accuracy Testing Accuracy
SVM linear model 503.59 s 99.6% 93%
SVM quadratic model 477.36 s 99.8% 95.2%
SVM cubic model 496.72 s 99.9% 91.6%
SVM gaussian model 94.27 s 99.88% 95.89%

distance. Table 6.2 shows the comparison of accuracies achieved using different methods. We obtained
the best hyperparameters for the KNN by observing the Minimum Classification Error (MCE). Table
6.2 shows that the K value of 1 with Minkowski distance yields the best validation accuracy of 99.84%,
testing accuracy of 92.71%, and an F1 score of 0.93.
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Figure 6.5 Confusion matrix of KNN models. Starting from left (a) k=3, Euclidean distance (b)k=1,
Minkowski distance (c) k=1, Euclidean distance (d) k=10, Euclidean distance (e) k=100, Euclidean
distance (f) k=10, cosine distance
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Table 6.2 Comparison of k-NN models

Name Training time Validation Accuracy Testing Accuracy
k=3, Euclidean distance 683.88 s 99.8% 91.5%
k=1, Minkowski distance 1942.6 s 99.84% 92.71%
k=1, Euclidean distance 1851.9 s 99.9% 91.4%
k=10, Euclidean distance 1943.2 s 99.6% 91.3%
k=10, Euclidean distance 1900.2 s 96.6% 88.9%
k=100, Euclidean distance 2117 s 99.7% 91.3%

Figure 6.6 Confusion matrix of decision tree with n=425

Figure 6.7 Confusion matrix of Logistic Regression model

6.6.3 Decision Tree

We observed the MCE plot for the Decision Tree (DT) model trained for variable number of splits
and split criteria. The best hyperparameter point yeilds number of splits as 425, and Twoing rule as the
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Figure 6.8 Confusion matrix of Neural Network models

split criterion. We proceed with testing and we obtain validation accuracy achieved of 98.79%, testing
accuracy of 80.75%, and an F1 score of 0.82. Though the accuracy is much less compared to other
models, it has the least training time of 15.13 seconds and highest prediction speed of 11000 obs/sec.
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6.6.4 Logistic Regression

Logistic regression calculates the probability of each classification based on probability theory and
selects the class with the highest probability as the result. The training time for the model is 72.19 sec.
The validation accuracy achieved is 95.36%, the testing accuracy of 80.47%, and an F1 score of 0.83.

6.6.5 Neural Network

We observed the MCE plot for neural network trained for variable number of hidden layers, and
variable size of hidden layers. From the MCE graph, we obtain the best hyperparameters as tanh activa-
tion function, and 1 fully connected layer with 189 neurons, it yields a validation accuracy of 99.86%.
Upon testing, we obtain a testing accuracy of 95.61% and an F1 score of 0.96. It gives the best accuracy
compared to other models (along with SVM) but takes the highest training time of 12,446 seconds. We
conclude this model to be the best for our application due to it’s high testing accuracy and prediction
speed. Moreover, neural networks have great tolerance to noise, and ability to approximate nonlinear
relationships [174].

Table 6.3 Comparison of Neural Network models

Name Training time Validation Accuracy Testing Accuracy
1 hidden layer of size=10 505.2 s 99.9% 88%
1 hidden layer of size=25 303.41 s 99.8% 89.4%
1 hidden layer of size=189 12446 s 99.86% 95.61%
2 hidden layer of size=10 each 517.93 s 99.8% 89.7%
3 hidden layer of size=10 each 707.54 s 99.8% 91.7%

6.6.6 Comparison of Algorithms

The confusion matrices of the classification test results for each classifier selected with their best
hyperparameters are shown in Figure 6.9. These confusion matrices show the true positive rates and false
negative rates. A row-normalized row summary displays the percentages of correctly and incorrectly
classified observations for each true class. In the confusion matrix of the NN model in Figure 6.8e, we
can observe that the true positive rate(TPR) is 100% for five of the seven postures. The false negative
rate (FNR) is limited to 21.5% for the leaning left leg cross posture label, where it is confused with
leaning left posture for 16.2% and slouching for 5.2%. The TPR of the leaning right leg cross posture
is 95.7%, where it is confused with the leaning right posture for 4.3%. All the remaining postures have
100% accuracy. Similarly, in the SVM model, we have observed 100% test accuracy in five out of seven
postures. The TPR of leaning forward is 96.5% with FNR of 3.5% as it is confused with leaning right
posture. The TPR of leaning left leg cross posture is 79.1% with FNR of 20.9% contributed by confusion
due to leaning left and slouching posture. From the confusion matrices, we can observe the next best
model is KNN, having four out of seven postures with 100% accuracy. The least TPR in KNN is for
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Name Training time Predic. speed Val. Acc. Test. Acc. F1 score
SVM Gaussian model 94.27 s 3500 obs/sec 99.88% 95.89% 0.96
KNN, k=1, Minkowski distance 1942.6 s 22 obs/sec 99.84% 92.71% 0.93
Efficient logistic Regression 72.19 s 6200 obs/sec 95.36% 80.47% 0.83
Decision tree (n=425) 15.13 s 11000 obs/sec 98.79% 80.75% 0.82
NN, with tanh activation function 12446 s 7800 obs/sec 99.86% 95.61% 0.96

Table 6.4 Comparison of all machine learning models

Figure 6.9 Confusion matrix of the classification results for each classifier selected with their best accu-
racy condition (a) Support Vector Machine (Gaussian kernel) (b) k-Nearest neighbor (k=1, Minkowski
distance) (c) Logistic regression (d) Decision tree (maximum splits=425)

leaning right posture as it is confused with leaning right leg cross. Logistic regression and decision tree
have the lowest accuracy of 80.47% and 80.75%, respectively, compared to other ML models. However,
the decision tree model have the lowest training time of 15.13 seconds and a prediction speed of 11000
obs/sec. Table 6.4 shows the overview of the results of all the ML models used for testing.

6.6.7 Dimension reduction using t-distributed Stochastic Neighbor Embedding

We have used a dimensionality reduction technique called as t-distributed Stochastic Neighbor Em-
bedding (t-SNE), which is commonly used for visualizing high-dimensional data in lower dimensions,

87



Figure 6.10 (a) Graph showing the minimum classification error for 20 iterations indicating the best
hyperparameters for neural network model. (b) Graph showing the class-wise recall, precision and F1
score on testing the neural network.

Figure 6.11 (a) t-SNE plot for the data collected for one person for different postures (b) Feature im-
portance scores using relief feature selection (reliefF) algorithm

like 2D in this case. It does so using stochastic measures and the axes in the final plot do not have any
units or physical significance, hence, they are mentioned as feature 1 and feature 2 of t-SNE. The t-SNE
plot being nicely clustered shows that points that are close to each other in the t-SNE plot are likely to
be similar or have similar features. This can be an indication that instances with similar characteristics
or behavior are grouped together. Secondly, clear and separated clusters on the t-SNE plot may suggest
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Figure 6.12 Feature importance score for the seat and the backrest

the presence of distinct classes or clusters in the data. This can be particularly useful in tasks such as
unsupervised learning or clustering, where the goal is to identify natural groupings within the data.

6.6.8 Minimum Redundancy Maximum Relevance (mRMR) algorithm

The mRMR algorithm has been used to present the feature importance scores ranked for the 2048
sensors, each treated as a feature. In both the results, we can see that the importance of sensors does not
fall very rapidly, this means that there are many dominant sensors. Instead, multiple features (sensors)
contribute roughly equally to the predictions. Thus, it justifies the need for so many sensors throughout
the mats.

6.6.9 Comparison with Previous Work

Table 6.5 shows the comparison of our work with prior work. In [168], pressure sensors and ultra-
sonic sensors were used for posture recognition. The sensors were pasted on the seat and the backrest.
Users can improve their sitting posture by watching instructional films provided by the system that
demonstrate how to stretch different body parts. [177] created a low-power sitting posture recognition
system using commercially available flex sensors that were placed on the seat and the back. It detected
8 different postures. The accuracy achieved by the system was 97.7% using ANN algorithm. In [176],
force-sensitive resistors (FSRs), multiplexers, and analog-to-digital converters (ADCs) make up each
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Table 6.5 Comparison with previous work
References Sensor Position of sensor Method Accuracy No.
Cho, et. al. [168] 2019 Pressure and Ultrasonic sensor Seat and back LBC Net 96% 7
Wang, et. al. [176] 2020 Pressure sensor Seat and back ANN 88.5% 8
Hu, et. al. [177] 2020 Pressure sensor Seat, armrests, back ANN 97.7% 6
Fan, et. al. [165] 2022 Pressure sensor matrix Seat CNN 99.1% 5
Wan, et. al. [178] 2021 Pressure sensor matrix Seat SVM 89.6% 4
Ran, et. al. [166] 2021 Pressure sensor matrix Seat RF 96.2% 7
Jeong, et. al. [179] 2021 Pressure and distance sensor Seat and back KNN 92% 6
Psai, et. al. [170] 2023 Pressure sensor Seat SVM 99.18% 4
Our work, et. al. 2023 Pressure sensor matrix Seat and back SVM 95.2% 7

sensor unit. For the chair’s backrest (10 × 9) and seat pan (9 × 9), two FSR sheets were created. A new
model named as spiking neural network was used for classification and identification of sitting postures.
The accuracy obtained is 88.5%.

In [165], a commercially available pressure sensor mat of matrix 44 × 52 was used. The mat was
placed on the seat of the chair. It was able to identify 5 postures with 99.1% accuracy using CNN
model. [179] used pressure sensors and distance sensors for posture recognition. They were able to
identify 6 pressure sensors with 92% accuracy using KNN model. In [166], a sensor array of dimensions
11 × 13 was designed for seat. Random Forest algorithm realized gave the classification accuracy of
96.26 %. The final system prediction time is 19 us on the Raspberry Pi, which could satisfy the practical
application requirement on the embedded platform.

6.7 Summary

In this chapter, we presented the high resolution large-area array-based piezoresistive flexible pres-
sure sensor for posture recognition of seven different postures using machine learning algorithms. We
collected the sitting posture data from 15 participants, which was used as the dataset for our research,
and trained them using different models like SVM, KNN, decision tree, logistic regression, and NN. We
achieved an accuracy of 95.89% using the SVM model with Gaussian kernel and an accuracy of 95.61%
using the NN. The SVM and NN turn out to be the best fits in terms of testing accuracy and f1 score,
though the difference between them is negligible. We perform subsequent tests using the NN because
of it’s higher testing speed, moreover, NN shall be a better choice when the data is high-dimensional as
they are capable of learning the relevant features from the data. We have also seen the feature impor-
tance score of all sensors using reliefF algorithm that justifies the need for a pressure sensor array for
posture detection.
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Chapter 7

Conclusion

7.1 Applications and Impact of Work

A pressure sensor-based intelligent sensing chair system has various applications in different fields.
It can be used to make a smart wheelchair that can record the posture of the patient and help in fall
detection. If the patient is sitting in the same position for a long time, the caretakers can monitor
the patient and suggest they change their posture to avoid ulcers. Similarly, in the case of bedridden
patients, we can design a bigger mat in the future for fall detection and prevention of bed sores. In
future applications, smart chairs can be equipped with sensors to monitor vital signs such as heart rate,
respiratory rate, along with posture. This data can be invaluable for healthcare professionals in tracking
patients’ health status remotely or for individuals to monitor their own health.

In office environments, smart chairs can be used to optimize workplace ergonomics. By collecting
data on employees’ sitting habits and posture, employers can identify areas for improvement and make
adjustments to prevent discomfort and reduce the risk of musculoskeletal injuries. They can also assist
individuals with mobility impairments by providing features such as automatic seat adjustment, built-in
lifts, and remote control operation. These features can enhance independence and improve the quality
of life for people with disabilities.

Gaming chairs with pressure sensing systems along with smart features such as built-in speakers,
vibration feedback, and customizable seating positions can enhance the gaming experience and provide
immersive gameplay. They can also be used in educational settings to promote better posture habits
among students. They can also be integrated into virtual reality (VR) training simulations to provide a
more realistic and immersive experience. Hence, they have the potential to revolutionize various aspects
of daily life by providing comfort, convenience, and valuable health insights.

The integration of smart technology into everyday objects like chairs may influence social norms
and behavior. For example, individuals may become more conscious of their posture and sitting habits
in public spaces where smart chairs are prevalent, leading to cultural shifts in how people interact with
their environment. The adoption of smart chairs could have economic implications for industries such as
healthcare, manufacturing, and retail. The widespread adoption of smart chairs would have the potential
to impact various aspects of society, from health and accessibility to privacy and the economy.
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7.2 Major Achievements

In this doctoral thesis, we have developed a flexible pressure sensor-based system for posture recog-
nition and correction in chairs. The designed flexible pressure sensor mat is a detachable system that
can be integrated into any type of chair like an office chair, gaming chair, wheelchair, and even in driver
eats of automobiles. Some of the major achievements of the work are listed as follows:

• We presented a flexible pressure sensor designed using polypyrrole-coated cotton (PCC) that was
synthesized using in-situ chemical oxidative liquid polymerization. The sensor showed high sen-
sitivity at low-pressure ranges and can measure pressures in the range of 160 Pa to 16 kPa.

• We presented the design and fabrication of a flexible pressure sensor array that works on the prin-
ciple of piezoresistivity. We designed a 4 × 4 pressure sensor matrix to quantify the performance
and progress of a patient undergoing physiotherapy. We have also developed an AI based algo-
rithm to determine the accuracy of positioning by the patients and compared it with mathematical
analysis. With this system, a patient can be asked to move a weight to a particular location (as
part of regular physiotherapy), and the pressure sensor matrix can be used to calculate errors in
positioning along with the time taken to complete the task.

• We presented, for the first time in the world, the mechanical reliability of a velostat-based pressure
sensor. We reported the bending response by examining its reliability when subjected to repeated
mechanical stress for 150 bending cycles.

• We presented, for the first time ever, the analysis of the performance of a flexible pressure sensor
array under long-term and repeated loading. Tests were performed every fortnight for 210 days.
We have observed that the material characteristics of the velostat material change on repeated
application of pressure up to a certain time frame.

• We presented and developed the novel design of an interface circuit with flexibility to read out both
capacitive and resistive type of sensors known as resistance and capacitance to digital converter.
It requires less area and is more cost-effective than separate single-sensor read-out circuits.

• We finally presented the design of a smart chair system and the different machine learning algo-
rithms used for the training and classification of seven different postures.

7.3 Future Work

This doctoral work has mainly focused on the development of flexible pressure sensors for posture
recognition to develop smart chairs. Several major achievements have been presented, however, we
believe there is a great prospect for further work in this field. The designed smart chair system is wired.
This is one of the limitations of the designed smart chair system. To solve this, in future work, we can
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work on making it a wireless system with the smartphone application for easy access to our posture data.
We can also design a more simplified circuit and incorporate low-power microcontrollers to minimize
battery charging time. Another limitation is that the flexible pressure sensing mat is fixed on the chair;
in our future work, we can incorporate the sensor mat inside the cushion of the chair to provide a more
comfortable experience to the user.

In terms of AI, we can develop a system such that by utilizing the user’s sitting posture data, the
system could analyze the presence of conditions such as scoliosis or other spinal diseases, providing
users with insights into their spinal health. Furthermore, users could share their historical data with
healthcare professionals, enabling them to gain a better understanding of the user’s past sitting posture
and spinal health information. We can also train the system such that the chair can identify the person
sitting on it using the sitting postures data. With the huge innovation in AI and increased demand in
healthcare; I believe in the future, every chair will be a smart chair.
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Arduino code for reading sensor response of FXR

1 int a;

void setup() {

3 // put your setup code here, to run once:

Serial.begin(9600);

5 pinMode(2, OUTPUT);

Serial.println(",Res");

7 }

9 void loop() {

// put your main code here, to run repeatedly:

11 digitalWrite(2,HIGH);

a=analogRead(A0);

13 float v = ((float) a) / 1024.0 * 5.0;

float z1=1.5*(5.0-v) / v;

15 Serial.print(",");

Serial.print(z1);

17 Serial.println(" ");

delay(1000);

19 }
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Arduino code to get the sensor response of 2 × 2 array

1 int a0, a1;

3 void setup() {

// put your setup code here, to run once:

5 pinMode(4, OUTPUT);

pinMode(5, OUTPUT);

7 pinMode(A0, INPUT);

pinMode(A1, INPUT);

9 Serial.begin(9600);

}

11
void loop() {

13 // put your main code here, to run repeatedly:

digitalWrite(4,HIGH);

15 {

digitalWrite(5,LOW);

17 {

delay(100);

19 a0=analogRead(A0);

a1=analogRead(A1);

21 if (a0>400 && a0<600)

{

23 if(a0>a1){

Serial.print("Sensor 1 has low pressure with value:" );

25 Serial.println(a0);

}

27 else

if( a1>400 && a1<600){

29 Serial.print("Sensor 2 has low pressure with value:");

Serial.println(a1);

31 }

}

33
if (a0>600 && a0<900)

35 {

if(a0>a1) {

37 Serial.print("Sensor 1 has medium pressure with value: ");

Serial.println(a0);

39 }

else

41 if(a1>600 || a1<900){

Serial.print("Sensor 2 has medium pressure with value: ");

43 Serial.println(a1);

}

45 }
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47 if (a0>900 || a1>900)

{

49 if(a0>a1){

Serial.print("Sensor 1 has high pressure with value: ");

51 Serial.println(a0);

}

53 else

Serial.print("Sensor 2 has high pressure with value: ");

55 Serial.println(a1);

}

57 }

}

59 digitalWrite(5,HIGH);

{

61 digitalWrite(4,LOW);

{

63 delay(100);

a0=analogRead(A0);

65 a1=analogRead(A1);

if (a0>400 && a0<600)

67 {

if(a0>a1){

69 Serial.print("Sensor 3 has low pressure with value: ");

Serial.println(a0);

71 }

else

73 if( a1>400 && a1<600){

Serial.print("Sensor 4 has low pressure with value: ");

75 Serial.println(a1);

}

77 }

79 if (a0>600 && a0<900)

{

81 if(a0>a1) {

Serial.print("Sensor 3 has medium pressure with value: ");

83 Serial.println(a0);

}

85 else

if(a1>600 || a1<900){

87 Serial.print("Sensor 4 has medium pressure with value: ");

Serial.println(a1);

89 }

}

91
if (a0>900 || a1>900)
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93 {

if(a0>a1)

95 {

Serial.print("Sensor 3 has high pressure with value: ");

97 Serial.println(a0);

}

99 else

Serial.print("Sensor 4 has high pressure with value: ");

101 Serial.println(a1);

}

103 }

}

105 }
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Arduino code to get the sensor response of 4 × 4 array

1 int a1, a2, a3, a4; float z1,z2,z3,z4;

3 void setup() {

// put your setup code here, to run once:

5 pinMode(2, OUTPUT);

pinMode(3, OUTPUT);

7 pinMode(4, OUTPUT);

pinMode(5, OUTPUT);

9 pinMode(A1, INPUT);

pinMode(A2, INPUT);

11 pinMode(A3, INPUT);

pinMode(A4, INPUT);

13 Serial.begin(9600);

Serial.println(",S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,S14,S15,S16");

15 }

17 void loop()

{

19 delay(100);

digitalWrite(2,HIGH);

21 {

digitalWrite(3,LOW);

23 digitalWrite(4,LOW);

digitalWrite(5,LOW);

25 {

a1=analogRead(A1);

27 a2=analogRead(A2);

a3=analogRead(A3);

29 a4=analogRead(A4);

31 z1=(5.0/1024)*a1;

Serial.print(",");

33 Serial.print(z1);

Serial.print(",");

35
z2=(5.0/1024)*a2;

37 Serial.print(z2);

Serial.print(",");

39
z3=(5.0/1024)*a3;

41 Serial.print(z3);

Serial.print(",");

43
z4=(5.0/1024)*a4;

45 Serial.print(z4);
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Serial.print(",");

47
}

49 }

digitalWrite(3,HIGH);

51 {

digitalWrite(2,LOW);

53 digitalWrite(4,LOW);

digitalWrite(5,LOW);

55 {

//delay(1000);

57 a1=analogRead(A1);

a2=analogRead(A2);

59 a3=analogRead(A3);

a4=analogRead(A4);

61
z1=(5.0/1024)*a1;

63
Serial.print(z1);

65 Serial.print(",");

67 z2=(5.0/1024)*a2;

Serial.print(z2);

69 Serial.print(",");

71 z3=(5.0/1024)*a3;

Serial.print(z3);

73 Serial.print(",");

75 z4=(5.0/1024)*a4;

Serial.print(z4);

77 Serial.print(",");

79 }

}

81 digitalWrite(4,HIGH);

{

83 digitalWrite(2,LOW);

digitalWrite(3,LOW);

85 digitalWrite(5,LOW);

{

87 //delay(1000);

a1=analogRead(A1);

89 a2=analogRead(A2);

a3=analogRead(A3);

91 a4=analogRead(A4);

z1=(5.0/1024)*a1;

116



93
Serial.print(z1);

95 Serial.print(",");

97 z2=(5.0/1024)*a2;

Serial.print(z2);

99 Serial.print(",");

101 z3=(5.0/1024)*a3;

Serial.print(z3);

103 Serial.print(",");

105 z4=(5.0/1024)*a4;

Serial.print(z4);

107 Serial.print(",");

}

109 }

digitalWrite(5,HIGH);

111 {

digitalWrite(2,LOW);

113 digitalWrite(3,LOW);

digitalWrite(4,LOW);

115 {

//delay(1000);

117 a1=analogRead(A1);

a2=analogRead(A2);

119 a3=analogRead(A3);

a4=analogRead(A4);

121 z1=(5.0/1024)*a1;

123 Serial.print(z1);

Serial.print(",");

125
z2=(5.0/1024)*a2;

127 Serial.print(z2);

Serial.print(",");

129
z3=(5.0/1024)*a3;

131 Serial.print(z3);

Serial.print(",");

133
z4=(5.0/1024)*a4;

135 Serial.print(z4);

137 }

}

139 Serial.println(" ");
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141 }
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Matlab code for reading data from Arduino and displaying the heat map for 4 × 4 array

clc

2 clear all;

global b;

4 if ˜isempty(instrfind);

fclose(instrfind);

6 delete(instrfind);

end\\

8
b=serialport("COM7",9600);

10 interv=1000;

inittime=1;

12
while(inittime<interv)

14
write(b,'D5',1);

16 writeDigitalPin(b,'D6',0);

writeDigitalPin(b,'D9',0);

18 writeDigitalPin(b,'D10',0);

20 c=readVoltage(b, 'A1');

d=readVoltage(b, 'A2');

22 e=readVoltage(b, 'A3');

f=readVoltage(b, 'A4');

24
writeDigitalPin(b,'D5',0);

26 writeDigitalPin(b,'D6',1);

writeDigitalPin(b,'D9',0);

28 writeDigitalPin(b,'D10',0);

30 g=readVoltage(b, 'A1');

h=readVoltage(b, 'A2');

32 i=readVoltage(b, 'A3');

j=readVoltage(b, 'A4');

34
writeDigitalPin(b,'D5',0);

36 writeDigitalPin(b,'D6',0);

writeDigitalPin(b,'D9',1);
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38 writeDigitalPin(b,'D10',0);

40 k=readVoltage(b, 'A1');

l=readVoltage(b, 'A2');

42 m=readVoltage(b, 'A3');

n=readVoltage(b, 'A4');

44
writeDigitalPin(b,'D5',0);

46 writeDigitalPin(b,'D6',0);

writeDigitalPin(b,'D9',0);

48 writeDigitalPin(b,'D10',1);

50 p=readVoltage(b, 'A1');

q=readVoltage(b, 'A2');

52 r=readVoltage(b, 'A3');

s=readVoltage(b, 'A4');

54

56 Z=[c d e f; g h i j; k l m n; p q r s];

58

60 heatmap(Z);

caxis([0,5]);

62 colormap(gca,jet);

64
grid ON;

66 inittime=inittime+1;

drawnow

68 end
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Matlab code for NN analysis

2 clc

clear all;

4 input=xlsread(completedata.xlsx','Sheet1');

output=xlsread(completedata.xlsx','Sheet2');

6 x = input.';

y = output.';

8 net = feedforwardnet(10);

net = train(net,x,y);

10 view(net)

a = net(x);

12 new=net

([0.002097;0.104516;0.071452;0.050968;3.062258;0.589839;0;0;0])

perf = perform(net,a,y)
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Arduino code for 16 × 16 pressure sensor array

#define muxpinAS0 2

2 #define muxpinAS1 3

#define muxpinAS2 4

4 #define muxpinAS3 5

#define muxpinBS0 6

6 #define muxpinBS1 7

#define muxpinBS2 8

8 #define muxpinBS3 9

#define sigA 10

10 #define sigB A1

12 int i,j;

void setup()

14 {

Serial.begin(9600);

16 pinMode(muxpinAS0, OUTPUT);

pinMode(muxpinAS1, OUTPUT);

18 pinMode(muxpinAS2, OUTPUT);

pinMode(muxpinAS3, OUTPUT);

20 pinMode(muxpinBS0, OUTPUT);

pinMode(muxpinBS1, OUTPUT);

22 pinMode(muxpinBS2, OUTPUT);

pinMode(muxpinBS3, OUTPUT);

24 pinMode(sigA,OUTPUT);

digitalWrite(sigA, HIGH);

26 pinMode(sigB, INPUT);

}

28 void loop()

{

30 for(i=0;i<16;i++)

{

32 digitalWrite(muxpinAS0, bitRead(i, 0));

digitalWrite(muxpinAS1, bitRead(i, 1));

34 digitalWrite(muxpinAS2, bitRead(i, 2));

digitalWrite(muxpinAS3, bitRead(i, 3));

36
for(j=0;j<16;j++)

38 {

digitalWrite(muxpinBS0, bitRead(j, 0));

40 digitalWrite(muxpinBS1, bitRead(j, 1));

digitalWrite(muxpinBS2, bitRead(j, 2));

42 digitalWrite(muxpinBS3, bitRead(j, 3));

int sensorValue = analogRead(sigB);

44 float voltage = ((float) sensorValue) / 1024.0 * 3.3;

Serial.print(voltage);
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46 Serial.print(",");

}

48 Serial.println(" ");

}

50 Serial.println("****************");

delay(1000);

52 }
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Arduino code for 32 × 32 pressure sensor array

#define muxpinAS0 2

2 #define muxpinAS1 3

#define muxpinAS2 4

4 #define muxpinAS3 5

#define muxpinBS0 6

6 #define muxpinBS1 7

#define muxpinBS2 8

8 #define muxpinBS3 9

#define sigA A0

10 #define sigB A1

#define enableA1 10

12 #define enableA2 11

#define enableB1 12

14 #define enableB2 13

int i,j;

16 void setup()

{

18 Serial.begin(115200);

pinMode(muxpinAS0, OUTPUT);

20 pinMode(muxpinAS1, OUTPUT);

pinMode(muxpinAS2, OUTPUT);

22 pinMode(muxpinAS3, OUTPUT);

pinMode(muxpinBS0, OUTPUT);

24 pinMode(muxpinBS1, OUTPUT);

pinMode(muxpinBS2, OUTPUT);

26 pinMode(muxpinBS3, OUTPUT);

pinMode(enableA1, OUTPUT);

28 pinMode(enableA2, OUTPUT);

pinMode(enableB1, OUTPUT);

30 pinMode(enableB2, OUTPUT);

pinMode(sigA,INPUT);

32 pinMode(sigB, INPUT);

}

34 void loop()

{

36 for(i=0;i<16;i++)

{

38 digitalWrite(enableA1, LOW);

digitalWrite(enableA2, HIGH);

40 digitalWrite(muxpinAS0, bitRead(i, 0));

digitalWrite(muxpinAS1, bitRead(i, 1));

42 digitalWrite(muxpinAS2, bitRead(i, 2));

digitalWrite(muxpinAS3, bitRead(i, 3));

44 for(j=0;j<16;j++)

{
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46 digitalWrite(enableB1, LOW);

digitalWrite(enableB2, HIGH);

48 digitalWrite(muxpinBS0, bitRead(j, 0));

digitalWrite(muxpinBS1, bitRead(j, 1));

50 digitalWrite(muxpinBS2, bitRead(j, 2));

digitalWrite(muxpinBS3, bitRead(j, 3));

52 int sensorValue = analogRead(sigA);

//float voltage = ((float) sensorValue) / 1024.0 * 3.3;

54
Serial.print(sensorValue);

56 Serial.print(",");

}

58 for(j=0;j<16;j++)

{

60 digitalWrite(enableB1, HIGH);

digitalWrite(enableB2, LOW);

62 digitalWrite(muxpinBS0, bitRead(j, 0));

digitalWrite(muxpinBS1, bitRead(j, 1));

64 digitalWrite(muxpinBS2, bitRead(j, 2));

digitalWrite(muxpinBS3, bitRead(j, 3));

66 int sensorValue = analogRead(sigB);

//float voltage = ((float) sensorValue) / 1024.0 * 3.3;

68
Serial.print(sensorValue);

70 Serial.print(",");

}

72 //Serial.println(" ");

}

74 for(i=0;i<16;i++)

{

76 digitalWrite(enableA1, HIGH);

digitalWrite(enableA2, LOW);

78 digitalWrite(muxpinAS0, bitRead(i, 0));

digitalWrite(muxpinAS1, bitRead(i, 1));

80 digitalWrite(muxpinAS2, bitRead(i, 2));

digitalWrite(muxpinAS3, bitRead(i, 3));

82 for(j=0;j<16;j++)

{

84 digitalWrite(enableB1, LOW);

digitalWrite(enableB2, HIGH);

86 digitalWrite(muxpinBS0, bitRead(j, 0));

digitalWrite(muxpinBS1, bitRead(j, 1));

88 digitalWrite(muxpinBS2, bitRead(j, 2));

digitalWrite(muxpinBS3, bitRead(j, 3));

90 int sensorValue = analogRead(sigA);

//float voltage = ((float) sensorValue) / 1024.0 * 3.3;

92
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Serial.print(sensorValue);

94 Serial.print(",");

}

96 for(j=0;j<16;j++)

{

98 digitalWrite(enableB1, HIGH);

digitalWrite(enableB2, LOW);

100 digitalWrite(muxpinBS0, bitRead(j, 0));

digitalWrite(muxpinBS1, bitRead(j, 1));

102 digitalWrite(muxpinBS2, bitRead(j, 2));

digitalWrite(muxpinBS3, bitRead(j, 3));

104 int sensorValue = analogRead(sigB);

//float voltage = ((float) sensorValue) / 1024.0 * 3.3;

106
Serial.print(sensorValue);

108 Serial.print(",");

}

110
}

112 Serial.println(" ");

//Serial.println("****************");

114 //delay(100);

}
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Matlab code for reading data from Arduino and displaying the heat map
for 16 × 16 array.

1 clc

clear all;

3 global b;

if ˜isempty(instrfind);

5 fclose(instrfind);

delete(instrfind);

7 end

b=arduino;

9 interv=100;

inittime=1;

11
while(inittime<interv)

13 writeDigitalPin(b,'D10',1);

15 for i=0:15

17 p=bitget(i, 1);

q=bitget(i, 2);

19 r=bitget(i, 3);

s=bitget(i, 4);

21 writeDigitalPin(b, 'D2', p);

writeDigitalPin(b, 'D3', q);

23 writeDigitalPin(b, 'D4', r);

writeDigitalPin(b, 'D5', s);

25

27 for j=0:15

29 a=bitget(j, 1);

c=bitget(j, 2);

31 d=bitget(j, 3);

e=bitget(j, 4);

33 writeDigitalPin(b, 'D6', a);

writeDigitalPin(b, 'D7', c);

35 writeDigitalPin(b, 'D8', d);
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writeDigitalPin(b, 'D9', e);

37
sensorvalue(i+1,j+1) = readVoltage(b, 'A1');

39
end

41 end

Z= [sensorvalue(1,1) sensorvalue(1,2) sensorvalue(1,3) sensorvalue

(1,4) sensorvalue(1,5) sensorvalue(1,6) sensorvalue(1,7)

sensorvalue(1,8) sensorvalue(1,9) sensorvalue(1,10) sensorvalue

(1,11) sensorvalue(1,12) sensorvalue(1,13) sensorvalue(1,14)

sensorvalue(1,15) sensorvalue(1,16);

43 sensorvalue(2,1) sensorvalue(2,2) sensorvalue(2,3) sensorvalue

(2,4) sensorvalue(2,5) sensorvalue(2,6) sensorvalue(2,7)

sensorvalue(2,8) sensorvalue(2,9) sensorvalue(2,10) sensorvalue

(2,11) sensorvalue(2,12) sensorvalue(2,13) sensorvalue(2,14)

sensorvalue(2,15) sensorvalue(2,16);

sensorvalue(3,1) sensorvalue(3,2) sensorvalue(3,3) sensorvalue

(3,4) sensorvalue(3,5) sensorvalue(3,6) sensorvalue(3,7)

sensorvalue(3,8) sensorvalue(3,9) sensorvalue(3,10) sensorvalue

(3,11) sensorvalue(3,12) sensorvalue(3,13) sensorvalue(3,14)

sensorvalue(3,15) sensorvalue(3,16);

45 sensorvalue(4,1) sensorvalue(4,2) sensorvalue(4,3) sensorvalue

(4,4) sensorvalue(4,5) sensorvalue(4,6) sensorvalue(4,7)

sensorvalue(4,8) sensorvalue(4,9) sensorvalue(4,10) sensorvalue

(4,11) sensorvalue(4,12) sensorvalue(4,13) sensorvalue(4,14)

sensorvalue(4,15) sensorvalue(4,16);

sensorvalue(5,1) sensorvalue(5,2) sensorvalue(5,3) sensorvalue

(5,4) sensorvalue(5,5) sensorvalue(5,6) sensorvalue(5,7)

sensorvalue(5,8) sensorvalue(5,9) sensorvalue(5,10) sensorvalue

(5,11) sensorvalue(5,12) sensorvalue(5,13) sensorvalue(5,14)

sensorvalue(5,15) sensorvalue(5,16);

47 sensorvalue(6,1) sensorvalue(6,2) sensorvalue(6,3) sensorvalue

(6,4) sensorvalue(6,5) sensorvalue(6,6) sensorvalue(6,7)

sensorvalue(6,8) sensorvalue(6,9) sensorvalue(6,10) sensorvalue

(6,11) sensorvalue(6,12) sensorvalue(6,13) sensorvalue(6,14)

sensorvalue(6,15) sensorvalue(6,16);

sensorvalue(7,1) sensorvalue(7,2) sensorvalue(7,3) sensorvalue

(7,4) sensorvalue(7,5) sensorvalue(7,6) sensorvalue(7,7)
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sensorvalue(7,8) sensorvalue(7,9) sensorvalue(7,10) sensorvalue

(7,11) sensorvalue(7,12) sensorvalue(7,13) sensorvalue(7,14)

sensorvalue(7,15) sensorvalue(7,16);

49 sensorvalue(8,1) sensorvalue(8,2) sensorvalue(8,3) sensorvalue

(8,4) sensorvalue(8,5) sensorvalue(8,6) sensorvalue(8,7)

sensorvalue(8,8) sensorvalue(8,9) sensorvalue(8,10) sensorvalue

(8,11) sensorvalue(8,12) sensorvalue(8,13) sensorvalue(8,14)

sensorvalue(8,15) sensorvalue(8,16);

sensorvalue(9,1) sensorvalue(9,2) sensorvalue(9,3) sensorvalue

(9,4) sensorvalue(9,5) sensorvalue(9,6) sensorvalue(9,7)

sensorvalue(9,8) sensorvalue(9,9) sensorvalue(9,10) sensorvalue

(9,11) sensorvalue(9,12) sensorvalue(9,13) sensorvalue(9,14)

sensorvalue(9,15) sensorvalue(9,16);

51 sensorvalue(10,1) sensorvalue(10,2) sensorvalue(10,3)

sensorvalue(10,4) sensorvalue(10,5) sensorvalue(10,6) sensorvalue

(10,7) sensorvalue(10,8) sensorvalue(10,9) sensorvalue(10,10)

sensorvalue(10,11) sensorvalue(10,12) sensorvalue(10,13)

sensorvalue(10,14) sensorvalue(10,15) sensorvalue(10,16);

sensorvalue(11,1) sensorvalue(11,2) sensorvalue(11,3)

sensorvalue(11,4) sensorvalue(11,5) sensorvalue(11,6) sensorvalue

(11,7) sensorvalue(11,8) sensorvalue(11,9) sensorvalue(11,10)

sensorvalue(11,11) sensorvalue(11,12) sensorvalue(11,13)

sensorvalue(11,14) sensorvalue(11,15) sensorvalue(11,16);

53 sensorvalue(12,1) sensorvalue(12,2) sensorvalue(12,3)

sensorvalue(12,4) sensorvalue(12,5) sensorvalue(12,6) sensorvalue

(12,7) sensorvalue(12,8) sensorvalue(12,9) sensorvalue(12,10)

sensorvalue(12,11) sensorvalue(12,12) sensorvalue(12,13)

sensorvalue(12,14) sensorvalue(12,15) sensorvalue(12,16);

sensorvalue(13,1) sensorvalue(13,2) sensorvalue(13,3)

sensorvalue(13,4) sensorvalue(13,5) sensorvalue(13,6) sensorvalue

(13,7) sensorvalue(13,8) sensorvalue(13,9) sensorvalue(13,10)

sensorvalue(13,11) sensorvalue(13,12) sensorvalue(13,13)

sensorvalue(13,14) sensorvalue(13,15) sensorvalue(13,16);

55 sensorvalue(14,1) sensorvalue(14,2) sensorvalue(14,3)

sensorvalue(14,4) sensorvalue(14,5) sensorvalue(14,6) sensorvalue

(14,7) sensorvalue(14,8) sensorvalue(14,9) sensorvalue(14,10)

sensorvalue(14,11) sensorvalue(14,12) sensorvalue(14,13)

sensorvalue(14,14) sensorvalue(14,15) sensorvalue(14,16);
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sensorvalue(15,1) sensorvalue(15,2) sensorvalue(15,3)

sensorvalue(15,4) sensorvalue(15,5) sensorvalue(15,6) sensorvalue

(15,7) sensorvalue(15,8) sensorvalue(15,9) sensorvalue(15,10)

sensorvalue(15,11) sensorvalue(15,12) sensorvalue(15,13)

sensorvalue(15,14) sensorvalue(15,15) sensorvalue(15,16);

57 sensorvalue(16,1) sensorvalue(16,2) sensorvalue(16,3)

sensorvalue(16,4) sensorvalue(16,5) sensorvalue(16,6) sensorvalue

(16,7) sensorvalue(16,8) sensorvalue(16,9) sensorvalue(16,10)

sensorvalue(16,11) sensorvalue(16,12) sensorvalue(16,13)

sensorvalue(16,14) sensorvalue(16,15) sensorvalue(16,16)];

59 heatmap(Z);

caxis([0,5]);

61 colormap(gca,jet);

63 grid ON;

inittime=inittime+1;

65 drawnow

end
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Matlab code for reading data from Arduino and displaying the heat map
for 32 × 32 array.

clc

2 clear

s = serialport("COM6",115200);

4 s1 = serialport("COM27",115200);

configureTerminator(s,"LF");

6 configureTerminator(s1,"LF");

flush(s);

8 flush(s1);

while(1)

10 flush(s);

flush(s1);

12 data=readline(s);

data=readline(s);

14 data1=readline(s1);

data1=readline(s1);

16 X=strsplit(data,",");

X1=strsplit(data1,",");

18 Y=X(1:1024);

Y1=X1(1:1024);

20 Z=reshape(Y,[32,32]);

Z1=reshape(Y1,[32,32]);

22 B=str2double(Z);

B1=str2double(Z1);

24 C=rot90(B);

C1=rot90(B1);

26 subplot(2,1,2);

contourf(C)

28 %color=load("CustomColormap1.mat");

colormap("jet")

30 colorbar()

subplot(2,1,1);

32 contourf(C1)

colormap("jet")

34 colorbar()
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36 % Append Y1 to the right of Y to create a matrix with 2048

columns

mergedData = [str2double(Y), str2double(Y1)];

38
% Write the merged data to a single CSV file

40 mergedFilename = 'D:\My data\Projects\Smart chair\Test Data\

Saurabh\leaning left leg cross.csv';

writematrix(mergedData, mergedFilename, 'WriteMode', 'Append');

42 end
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