
 

Systems-level investigation of liver transcriptome 

in physiology and pathology 

 

Thesis submitted in partial fulfilment of the requirements for the degree of 

Doctor of Philosophy in 

BIOINFORMATICS 

by  

MANISRI PORUKALA 

20162147 

manisri.porukala@research.iiit.ac.in 

 

  

International Institute of Information Technology, Hyderabad 

(Deemed to be University) 

Hyderabad - 500 032, INDIA 

MAY, 2024  

mailto:manisri.porukala@research.iiit.ac.in


ii 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © MANISRI PORUKALA, 2024 

All Rights Reserved 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

 

 

International Institute of Information Technology 

Hyderabad, India 

 

 

 

 

CERTIFICATE 

It is certified that the work contained in this thesis, titled "Systems-level 

investigation of liver transcriptome in physiology and pathology" by Manisri 

Porukala (Roll no: 20162147), has been carried out under my supervision and is not 

submitted elsewhere for a degree. 

 

 

Date 

  

Adviser: Dr. Vinod P. K.  
 

 

 

 

 

 

 

 

 



iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To Amma, Daddy, chelli  

 

 

 

 

 

 

 

 

 

 

 



v 

 

 

 

ACKNOWLEDGMENTS 

My journey of PhD is a contribution of many people. It's my mother, Ramadevi and my 

supervisor, Dr. Vinod P. K., who stood by me every single day and helped me pull myself 

together. I am grateful to my father, Ravinder, who imbibed discipline in me and constantly 

supported me in pursuing higher education. My special thanks to my younger sister, Kranthi 

Sree, who kept me motivated and supported me through thick and thin. I am thankful to my 

schoolteachers, Siddhi Kolarkar, Indira, Kranthi Deshpande and Grace Wilson, who laid 

the foundation for my career. 

I express my deepest gratitude to my guide, Dr. Vinod P. K., who taught me what research 

truly means. He helped me recognize my potential to pursue research. His timely 

suggestions and valuable insights streamlined my problem-solving ability. His dedication 

and patience in detailed and thoughtful discussions led to new ideas and shaped the thesis 

work. I am thankful to him for introducing me and allowing me to explore research areas 

beyond the thesis work. His personality qualities of discipline, composure, and respect 

towards elders have undoubtedly set an example for me to become a better person.  

I thank my thesis examiners, Prof. K. V. Venkatesh, Dr. Gopalakrishnan Bulusu, Dr. Ram 

Rup Sarkar, and Prof. Shekhar Mande for their critical reviews and suggestions. I thank the 

faculty of the Centre for Computational Natural Sciences and Bioinformatics for their 

guidance and for fostering the research environment. I thank the Dept. of Biotechnology, 

Govt. of India, and International Institute of Information Technology, Hyderabad, for 

providing financial support during my PhD. I thank my interview panel members, Dr Nita 

Parekh and Prof. Deva Priya Kumar, for approving my selection and providing an 

opportunity to be a part of IIIT-Hyderabad. I am extremely thankful to doctoral committee 

member Dr Nita Parekh for defending my inconsistent progress when required, which 

allowed me to demonstrate my potential towards the closing of my PhD. I thank Dr. 

Semparithi Aravindan for his technical assistance. I am thankful to the administration staff 

of IIIT-Hyderabad for their official assistance.  

I strongly feel my PhD is an outcome of the long-term collective efforts of my late grannies 

Savitri and Dr C. N. Sunandha, who inculcated the importance of education in my mother. 



vi 

 

 

I thank my group members of the Computational Systems Biology Lab, Dr Nishtha Pandey, 

Rami, Akansha and Ramya, for providing a pleasant work environment. Nishtha has been 

a great wall of support personally and professionally throughout my journey at IIIT-

Hyderabad. I am lucky to have fellow PhD students Prashanthi, Ramya, Sanchari and Broto 

for their guidance when I was going through a rough patch. My evening walking partner, 

Sri Lakshmi, has been a great source of joy. Antarip, Sohini, Navneet, Mohan, Shruti, 

Subba, Shwetha, Tanashri, Vijay, Rohit, Pradeep, Aravind, Cyrin, and Vishal for creating a 

positive lab environment. I am fortunate to have decade-old friendships with Mansa, 

Meghana, Hemanth, Akhil, Sreenu, Pankaj, Krishnakanth, Srinath, Yashaswi, and Dr Sai 

Kiran, who stood by my side.  

Needless to mention the Prof. C.R. Rao Road that I take pride in quoting “The Road Taken”. 

I am privileged to have been a part of this road for 14 years, right from my Bachelor’s days 

(August - 2010) to PhD (June - 2024) covering three different institutes: University of 

Hyderabad (I. M. Sc. Systems Biology, 2010 - 2015), C.R.Rao Advanced Institute of 

Mathematics, Statistics and Computer Science (AIMSCS) (Junior Research Fellow, 2015 - 

2016), and International Institute of Information Technology (PhD Bioinformatics, 2017 -

2024) on its way. 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

 

 

List of publications 

 

Journal Publications 

1. Porukala M, Vinod P. K., Gene expression signatures of stepwise 

progression of Hepatocellular Carcinoma, PLoS ONE, 18(12): e0296454, 

(2023) 

 

2. Porukala M, Vinod P. K., Network-level analysis of ageing and its 

relationship with diseases and tissue regeneration in the mouse liver, 

Scientific Reports (13), 4632 (2023) 

 

3. Porukala M, Vinod P. K., Systems-level analysis of transcriptome 

reorganization during liver regeneration, Molecular Omics, (18), 315-327 

(2022) 

 

 

Poster presentations 

1. "Mathematical modelling of transcriptional network of liver regeneration", 

Manisri Porukala, Vinod P. K., at Society for Mathematical Biology (SMB) 

2021 Annual Meeting (Virtual), University of California Riverside (UCR), 

June 13-17, 2021. 

 

2. "Rewiring of liver tissue network with ageing and its crosstalk with 

associated liver pathologies and regeneration", Manisri Porukala, Vinod P. 

K., at 21st International Conference on Bioinformatics (InCoB) (Virtual), 

King Abdullah University of Science and Technology (KAUST), November 

21 - 23, 2022. 

 

3. "Molecular insights into the progression of precancerous to cancer state in 

Hepatocellular carcinoma using gene co-expression network analysis", 

Manisri Porukala, Vinod P. K., at 42nd Annual Conference of the Indian 

Association of Cancer Research, Tata Memorial Centre, Navi-Mumbai, India, 

January 12 – 16, 2023. 

 



viii 

 

 

Abstract 

Metabolism is an integral part of cellular physiology, with the liver as the central organ for 

a wide range of metabolic functions and homeostasis. The liver, unlike other organs, has a 

remarkable capacity to regenerate after partial loss of its mass, thus maintaining a constant 

liver-to-body weight ratio to preserve homeostasis. In an injury-free liver, the turnover of 

regeneration is very slow, but in the presence of an injury or perturbation, the regenerative 

response is triggered as a reparative strategy. Perturbations interfering with liver functions 

and disturbing the homeostatic state have serious repercussions leading to metabolic 

disorders like hepatic steatosis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic 

steatohepatitis (NASH) and hepatocellular carcinoma (HCC). Ageing is one risk factor that 

increases the susceptibility to these diseases. The regenerative ability of the liver has been 

used to treat these diseases in the form of liver transplantation and partial liver resection, 

but recurrence of the disease is often observed after a few years. Understanding the 

molecular network that controls liver function and its regenerative ability in health and 

disease is crucial for developing clinical applications. The emergence of high throughput 

omics technologies provides a scope to develop a systems-level understanding of the 

disease. In this direction, we attempt to understand the pathophysiology of the liver by 

adopting systems biology approach for omics data interpretation. 

Tissue homeostasis and regeneration depend on the reversible transitions between 

quiescence (G0) and cell proliferation. During regeneration, the liver needs to maintain the 

essential metabolic tasks along with the fulfilment of metabolic requirements for hepatocyte 

growth and division. To understand the regulatory mechanisms involved in balancing the 

liver function and proliferation demand after injury or resection, we analyzed RNA 

sequencing temporal data of liver regeneration after two-thirds partial hepatectomy (PH) 

using network inference and mathematical modelling approaches. The reconstruction of the 

dynamic regulatory network revealed the overall temporal coordination of metabolism, 

RNA splicing and cell cycle during liver regeneration. A temporal shift in the gene 

expression pattern corresponding to increased hepatocyte proliferation and decreased 

hepatocyte function is observed with HNF4A as a key transcriptional activator. Based on 

these key observations, we developed a mathematical model of the HNF4A regulatory 

circuit, which showed the emergence of different states corresponding to compensatory 
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metabolism, proliferation, and epithelial-to-mesenchymal transition. We showed that a 

mutually exclusive behaviour emerges due to the bistable inactivation of HNF4A, which 

controls the initiation and termination of liver regeneration and different population-level 

behaviour. Through our approach of modelling a regulatory circuit from high-throughput 

gene expression data, we proposed a mechanistic explanation of different states observed 

in single-cell RNA sequencing data of liver regeneration. 

The functional impairment of the liver with ageing reduces its regenerative capability and 

predisposes it to NAFLD and HCC. Mapping the molecular network of the liver 

encompassing these physiological (ageing) and pathological conditions may help to 

understand the crosstalk of ageing with different liver diseases. We performed network-

level analyses by integrating mouse transcriptomic data with protein-protein interaction 

(PPI) network. A sample-wise analysis using network entropy measure was performed, 

which showed an increasing trend with ageing and helped to identify ageing genes based 

on local entropy changes. To gain further insights, we also integrated the differentially 

expressed genes (DEGs) between young and different age groups with the PPI network and 

identified core modules and nodes associated with ageing. Finally, we computed the 

network proximity of the ageing network with different networks of liver diseases and 

regeneration to quantify the effect of ageing. Our analysis revealed the complex interplay 

of immune, cancer signalling, and metabolic genes in the ageing liver. We found significant 

network proximities between ageing and NAFLD, HCC, liver damage conditions, and the 

early phase of liver regeneration with common nodes, including NLRP12, TRP53, GSK3B, 

CTNNB1, MAT1 and FASN. A common theme involving pathways in cancers connects 

ageing, regeneration and liver diseases. Overall, our study maps the network-level changes 

of ageing and their interconnections with the physiology and pathology of the liver.  

While the regulated process of liver regeneration is crucial for damage-induced repair, its 

dysregulation may lead to HCC, the most common type of liver cancer. Understanding the 

molecular pathogenesis of HCC sequentially from precancerous state to cancer may 

improve prognosis and treatment strategies. In this direction, we studied the transcriptomics 

data of tumour samples and their adjacent normal samples in different premalignant states 

from HCC patients undergoing transplantation or partial hepatectomy. A hierarchical 

approach was adopted to identify modules, pathways, and genes relevant to the prediction 

of disease-free survival (DFS). Modules of co-expressed genes were identified from (a) 
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only tumour samples, (b) premalignant and tumour samples collectively (premalignant-to-

tumour), and (c) all normal and premalignant samples and their association to patient 

clinical characteristics was studied. Modules and genes related to the cell cycle, immune 

system, ribosome, and liver metabolic pathways served as good predictors for DFS using 

tumour samples. DFS modules were also associated with treatment (transplantation and 

resection) given to patients. An overall decrease in liver function and immune pathways but 

an increase in cell cycle activity was observed. The progression from premalignant to 

tumour is accompanied by variations in the extent of downregulation of liver function and 

immune system and an increase in cell cycle activity, bringing about variability in patient 

outcomes. Interestingly, we showed that modules and genes based on normal and 

premalignant samples also serve as good predictors of DFS. An increase in immune and 

cell cycle activity was observed in premalignant conditions, which suggests that tumour-

matched normal samples already contain multiple signatures relevant to predict the DFS.  

This analysis revealed a shift in immune activity from premalignant to tumour state. THBD, 

a classical marker for dendritic cells, is a good predictor of DFS at the premalignant stage. 

Further, cell cycle genes related to microtubules, kinetochores, and centromere are altered 

in the premalignant stage, which are DFS genes in tumour samples. This study captured the 

dynamic changes in gene expression of various biological processes in the stepwise 

progression of HCC. 

Although liver regeneration capacity has been applied as a clinical intervention tool in the 

form of liver transplantation, its functional stability determines the post-treatment outcome. 

Understanding the molecular mechanisms driving long-term stability (normal) or rejection 

of the transplanted graft may play an important role in improving the post-transplantation 

outcome. This may help identify molecular markers to predict post-operative rejection. We 

performed differential gene coexpression analysis of transcriptomic data from post-

operative liver biopsies of normal and rejection patients. This analysis revealed the rewiring 

of gene coexpression patterns pertaining to liver function, immune pathways and cell cycle. 

The modules of immune and cell cycle genes showed intact within-module coexpression in 

rejection samples compared to normal samples. We identified EGR2, MTHFD2, CD52, and 

CD38 from immune module and RRM2, TOP2A, ZWINT, TYMS, MAD2L1, ANLN, 

PRC1, and CDKN3 from cell cycle module as novel features distinguishing normal and 

rejection samples which require further validation. 



xi 

 

 

 

Overall, this thesis attempts to generate systems-level insights into liver physiology and 

pathology that may have implications in clinical settings. The pathophysiology of the liver 

is studied using transcriptome data from experimental mouse models to data from HCC 

patients. The work on liver regeneration provided insights into regulatory mechanisms 

governing the balance between liver function and proliferation. The network-level analysis 

of liver ageing, regeneration and pathological conditions showed the network-level 

influence of ageing on different liver-associated conditions and helped to identify key 

candidate pathways and genes commonly dysregulated across these conditions. Further, the 

work on HCC patients helped to characterise the different trajectories for progression from 

premalignant to tumour state and predict DFS based on both premalignant and tumour 

samples. This provides a scope for early detection and prognostication of HCC patients. We 

also analysed the liver transplantation dataset to identify features distinguishing normal and 

rejection samples. 
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Chapter 1 Introduction 

1.1 Background 

Metabolism is an integral part of cellular physiology, with the liver being a major metabolic 

organ performing various functions. The liver also has a remarkable ability to regenerate 

after a partial loss of its tissue or toxin-induced chemical insult instead of scar formation. 

This regenerative capacity may play a crucial role in host survival in all cases of liver 

damage. Perturbations that interfere with liver functions or its regenerative capacity 

following an injury may lead to serious metabolic disorders. Therefore, it is crucial to 

understand the molecular mechanisms of the liver’s regenerative capacity and metabolism 

to reduce the impact of metabolic disorders. 

1.2 Functions of the liver 

The liver performs a wide variety of functions that are broadly categorized into three 

classes: biotransformation, storage, and synthesis1 (Figure 1.1). Major functions of the liver 

include the production of hormones, bile acids and vitamins, clearance of toxins, 

decomposition of erythrocytes and synthesis of plasma proteins2. It also regulates blood 

volume, endocrine signalling pathways and macronutrient metabolism. The liver efficiently 

maintains post and pre-prandial blood glucose levels by ensuring a proper balance between 

the storage and synthesis of glucose3. It is a major site for the synthesis of cholesterol that 

is converted to bile acids. The active secretion of bile acids by the liver into the intestine is 

essential for the absorption of dietary lipids and fat-soluble vitamins4. The liver is unique 

in its capacity to dispose of nitrogenous waste from the body through the urea cycle since 

it is the only organ that harbours all the required enzymes5. 

The liver is the first tissue to get directly exposed to gut-absorbed products via the portal 

blood due to its strategic location between the intestinal tract and the rest of the body, hence 

making it crucial for the clearance of toxins or ingested drugs4,6. In addition, there is a 

constant influx of nutrients from the intestinal tract into the liver. The anatomical location 

of visceral adipose tissue (VAT) in the mesentery connects it directly to the liver, forming 

the adipose tissue-liver axis of communication7. This axis forms the key metabolic circuit 

handling macronutrient uptake, processing, transport, and storage. The “Cori cycle” 

operating between the liver and skeletal muscle is an adaptation mechanism that recycles 

lactate produced during anaerobic glycolysis in muscles to glucose in the liver by the action 
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of gluconeogenic enzymes8. Tissue-to-tissue crosstalk occurs between the liver and 

pancreas (β-cells), both these tissues being involved in glucose homeostasis and lipid 

metabolism9. Thus, crosstalk between the liver and other organs helps maintain homeostasis 

and energy balance, the derailing of which leads to multiple pathologies. 

 

Figure 1.1: Major functions of the liver in the body1. 

1.3 The microarchitecture of liver 

The microarchitecture of the liver consists of repeated hexagonal units called lobules 

ranging between 0.5 mm in diameter in mice and 1 mm in humans10,11. Each lobule has a 

central vein and hepatocyte cords radiating from it towards the portal triads consisting of 

the portal vein, hepatic artery, and bile duct (Figure 1.2). Hepatocyte cords comprise 

hepatocytes (parenchymal cells), the major cell type in the liver, that are arranged in a single 

layer spanning the radial lobule axis and interspersed with sinusoids, which carry blood 

from hepatocyte cords to the central vein (Figure 1.2). Oxygenated blood received via the 

hepatic artery mixes with deoxygenated blood from the portal vein.  The sinusoids 

connecting the hepatic artery and portal vein with the central vein can be divided into 

different metabolic zones: periportal zone (zone 1), intermediate zone (zone 2) and 

perivenous/pericentral zone (zone 3). As blood moves through, the oxygen concentration 

decreases, and it is lowest in the perivenous zone. Other non-parenchymal cell types in the 

liver include endothelial cells, stellate cells, and Kupffer cells. Endothelial cells are present 

in the sinusoids. Kupffer cells are macrophages present within the lumen of the liver 

sinusoids. Stellate cells are present between the region of hepatocytes and sinusoidal 

endothelial cells called the Space of Disse. 
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A 

 

B C 

 

Figure 1.2: (A) Structural organization in adult liver12. (B) The functional unit of the 

liver lobule consists of a central vein (CV), portal triad, biliary duct and hepatic 

artery13. (C) Organization of liver cell types within the lobule13.  

 

1.4 Liver regeneration 

Tissue regeneration involves repeated cellular renewal occurring during normal ageing 

(tissue homeostasis) and the restoration of damaged tissue after injury or disease (reparative 

regeneration)14. The homeostatic renewal in adult organs can be driven by different 

processes, including differentiation of recruited or resident stem cells and progenitor cells, 

cell proliferation and transdifferentiation of existing cells. The liver has the innate ability to 

regenerate after injury, allowing it to restore the original liver size. The homeostatic process 

in the absence of injury can be viewed as maintaining the normal liver size. The regenerative 

capacity of the liver has long been recognized both in animals and humans15. In the normal 

liver, less than 2% of hepatocytes proliferate at a given moment, and it is a very slow 

process16.  
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The regenerative capacity of the liver plays a crucial role in host survival to liver insult by 

toxins or viruses14. Despite being terminally differentiated, parenchymal cells in the 

residual liver tissue quit the G0 phase of the cell cycle and undergo a transition from 

quiescence to proliferation17. Partial hepatectomy (PH) of rodent livers is frequently used 

to study liver regeneration mechanisms18. The liver can use distinct mechanisms for repair 

depending on the mode of injury14,19. Deciphering the source of cells for liver regeneration 

using novel lineage tagging of hepatic cells and single-cell RNA transcriptomics has 

received considerable attention, and there is a debate about the source of new cells in the 

liver20,21. Different regions of the liver lobule exhibit differences in hepatocyte turnover. 

Recent studies indicate that zone 2 has the highest proliferative activity and is a primary 

source of new hepatocytes during homeostasis and regeneration22.  

1.4.1 Different models of liver regeneration 

The animal models of liver regeneration are continuously evolving and are helping advance 

clinical practice (Figure 1.3). Hepatotoxins such as CCl4, D-galactosamine, and 

acetaminophen are usually employed to study drug-induced liver regeneration23. Exposure 

of the liver to hepatotoxin results in a necrotic injury that mimics certain liver diseases24. 

Administration of CCl4 is the widely used animal model to understand liver injury, repair 

and regenerative response. A single dose of CCl4 causes hepatotoxicity mediated by the 

action of Cyp2e1, resulting in oxidative damage to DNA, proteins, lipids, and 

carbohydrates. A peak of parenchymal necrosis rises 24 hours after CCl4 exposure, followed 

by regeneration. Long-term exposure to CCl4 activates quiescent hepatic stellate cells 

(HSC) and impairs hepatocyte proliferation, leading to fibrosis. D-galactosamine is a potent 

hepatotoxin that depletes UTP, inhibiting RNA and protein synthesis. It causes diffuse 

inflammation and necrosis of liver cells, as seen in viral hepatitis. Spotty necrosis and 

lymphocyte infiltration are observed 6-24 hours after exposure, followed by a recovery 

phase at 72 hours. The regenerative capacity is weaker than that of the CCl4 model. 

Acetaminophen, a commonly used antipyretic and analgesic, causes acute liver failure upon 

overdosage due to the accumulation of free radicals and Kupffer cells (KC) activation. Cell 

proliferation is observed between 12-48 hours after its overdose. TAA is a hepatocarcinogen 

known to induce perivenous necrosis followed by regeneration. Ethanol is another 

hepatotoxin used to investigate liver regeneration. 
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In addition to drug-induced liver regeneration, 2/3rd PH is also known for its remarkable 

capacity to regenerate into a functional organ. It is a model of acute liver injury25. Unlike 

the drug-induced models, the PH model is an ideal case of regeneration process that 

proceeds in a disease-free environment with less chance of post-operative liver failure24. 

The multi-lobar structure of the liver makes the surgical resection amenable26. Apart from 

this, liver regeneration post-PH is characterized by a definite starting point (the time of 

resection), synchronized cell cycle, less injury and low infiltration of inflammatory cells27. 

Although pharmacological models are clinically relevant in mimicking liver diseases, they 

require dose standardization for better reproducibility24. While drug-induced liver injury 

provides a wealth of information on aberrant liver regeneration under diseased conditions, 

the PH model sets the stage for normal liver regeneration. Understanding the differences 

between these two models of regeneration may have implications for developing healthy 

regeneration and remodelling strategies in chronic liver disease28. For the present study, we 

investigated the mode of liver regeneration using the PH model.  

 

Figure 1.3: Different models of regeneration23 

 

1.5 Partial hepatectomy model of liver regeneration 

The landmark event showcasing the regenerative potential of the liver dates back to the year 

1931 when the model of liver resection was carried out by Higgins and Anderson18. The 
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first model of 2/3rd PH of liver lobes was performed on white rats, which showed that 

remnant liver stimulates a synchronous hepatocyte proliferation to gradually restore the lost 

mass. This classic rat model of 70% PH involved the removal of two anterior lobes - the 

median lobe, ML and the left lateral lobe, LLL (Figure 1.4).  

The remnant rat liver, after 2/3rd PH, increases its weight to 45% of the original weight 

within 24 hours. It takes another 48 hours to attain 70% of the original liver weight. After 

this quick response, the rate of increase slows down, reaching the preoperative liver weight 

1-2 weeks after PH15,29 (Figure 1.5). An important characteristic feature of liver re-

generation post partial resection is 1) the resected lobes do not grow back; instead, the 

remaining lobes take up the responsibility of restoring the lost mass, and 2) the remnant 

liver can also respond to repeated PHs. Therefore, liver regeneration is regarded as a process 

of compensatory growth to restore function rather than attaining the form15. In addition to 

70% PH, other models of 90, 95 and 97% PH are also used to study liver regeneration and 

acute liver failure. The pace of liver regeneration is proportional to the amount of hepatic 

tissue removed. However, it is not uniform within different ranges of resection. In rats, 

resection ranging between 40-80% mounts a sharp response in DNA replication with 

synchronized cell proliferation, while too large (>85%) or too small (<30%) PH models 

show delayed and unsynchronized cell proliferation.  

 

Figure 1.4: Rodent model of liver resection. The classical model of 70% partial 

hepatectomy with the removal of the median lobe (ML) and left lateral lobe (LLL)24. 

Continuous labelling experiments in weanling rats showed that hepatocytes enter the cell 

cycle after PH in weanling rats with two peaks of hepatocyte replication 20 and 35 hours 

post-PH30. In young adult rats, the peak of proliferation is 24 hours after PH31, while in 

mice, it is attained between 36 and 40 hours15,32. The process of liver regeneration is 

characterized by three phases: priming, proliferative and termination phases. PH performed 
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on genetically modified animals provides a wealth of information on the molecular 

underpinnings spanning these three phases of liver regeneration. 

 

Figure 1.5: Temporal dynamics of liver regeneration after 2/3rd PH. (A) Rate of liver 

regeneration (in %) after 2/3rd PH in the rat33. (B) & (C) Liver-to-body weight ratio 

after 2/3rd PH in rat34 and mouse35 respectively. POD – Post-operative day. 

1.5.1 The priming phase 

After PH, hepatocytes are the first of the cell types to quit the quiescent G0 phase and enter 

the cell cycle. The loss of 2/3 of the liver tissue with PH alters the portal supply, resulting 

in an increase in portal blood pressure per unit of tissue on the remnant 1/3 of the tissue24. 

This marks the beginning of the priming phase by increased activity of uPA in the 

endothelial cells within 5 minutes of PH. Activated uPA triggers a fibrinolytic cascade 

mediated by MMPs and plasmin to degrade the extracellular matrix (ECM). The 

complement cascade proteins of innate immunity also send out early signals that bind to 

their receptors on Kupffer cells (KC). This activates the NFKB signalling within KC to 

alleviate the inhibiting effect of IKB on NFKB36,37, thus enabling NFKB to translocate to 

the nucleus and turn on transcription of its target genes TNFα, IL6 and Cyclin D138. TNFα 
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and IL6 are important proinflammatory cytokines in liver regeneration. TNFα triggers an 

autocrine signal on KC to amplify NFKB signalling while it acts on hepatocytes in a 

paracrine fashion39. TNFα in hepatocytes activates the JNK pathway and immediate early 

genes40. Likewise, the binding of IL6 to its receptor activates STAT3 and ERK pathways to 

target the activation of Cyclin D1 and p21. This sequence of events takes place within 30 

minutes to 1 hour of PH, culminating in the expression of about a hundred genes that are 

otherwise dormant in the normal liver37,38,41. Although these initial signals push hepatocytes 

from G0 to the G1 phase, cells cannot move past “the restriction point” in G1 and proceed 

further in the cell cycle. Moving beyond the restriction point is brought by growth factors42. 

Therefore, the priming phase is reversible, which by itself is incapable of triggering DNA 

replication and thus sensitizes hepatocytes to proliferation signals so that they move further 

in the cell cycle. 

1.5.2 The replicative phase 

The proliferative phase of liver regeneration begins 5 hours after PH once hepatocytes cross 

the restriction point43. Parenchymal hepatocytes respond to hepatocyte growth factor (HGF) 

secreted by non-parenchymal cells44. HGF adhered to ECM is released due to matrix 

remodelling and is activated by uPA. Activated HGF binds to its receptor c-Met on 

hepatocytes after 1 hour of PH, subsequently inducing the downstream pathways 

PI3/Akt/mTOR, Ras-Raf-MEK-ERK45. This ultimately leads to the activation of cyclins 

and CDKs required for DNA synthesis. At the same time, EGFR is stimulated by EGF24. 

There is also crosstalk between these two activation pathways, with c-Met augmenting 

EGFR activity. Combined disruption of these two signalling pathways completely abolishes 

liver regeneration46.  

Apart from proinflammatory cytokines and growth-factor mediated proliferation, other 

signalling pathways essential for successful liver regeneration include Wnt/β-catenin 

pathways, Notch, and Hippo signalling pathways. Notch signalling is activated as early as 

15-30 minutes after PH and brought by cell-cell interaction since Notch receptors couple 

with membrane-bound ligands. This interaction culminates in the transcription of 

proliferative response genes Myc, and Cyclin D138. Wnt signalling is activated 1-3 hours 

post-PH with ligand Wnt synthesized by KC in response to TNFα and activates downstream 

signalling when it binds to the receptor on hepatocytes38,47. This liberates the β-catenin from 

its inhibitory complex, and finally, activated β-catenin triggers the transcription of target 
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genes. The Hippo signalling pathway has both proliferative and anti-proliferative roles in 

liver regeneration48. The Hippo pathway is a repertoire of kinases that, in the absence of 

injury/PH, inhibits Yap from inducing transcription of proliferation-related target genes.   

1.5.3 The termination phase 

Restoration of normal liver-to-body mass ratio of ~2.5% three days post-PH marks the 

beginning of the termination phase35,49. Within a week after PH, the proliferation ceases50. 

About 85% of the liver-to-body mass ratio is attained by 14 days of resection18,46. While 

the first two phases are dedicated to recovering the lost liver mass, the termination phase 

acts as a brake to arrest cell proliferation when the remnant liver reaches the “required size”. 

Unlike other organs, the liver has an inbuilt tracker, “hepatostat”, that always adjusts its 

size to 100%, which is required to maintain homeostasis51. Moreover, the termination phase 

ensures that the regeneration process is in the right direction, preventing the onset of 

cancer52. TGFβ is the main regulator of the termination phase and is secreted by KCs and 

HSCs. Its levels peak around 72 hours post-PH, and it binds to TGFR on hepatocytes to 

phosphorylate R-Smad proteins, which stimulate the transcription of cell cycle inhibitors 

that inhibit CDK activity52,53. Another layer of regulation aiding termination is brought by 

the negative feedback loop imposed by SOCS3 on STAT354–56. In the early stage, activation 

of YAP with concomitant downregulation of Mst1/2 and Lats1/2 was shown to support 

proliferation, while the opposite trend is seen towards the termination phase. YAP mRNA 

levels peak around 32-48 hours post-PH, coinciding with S and M phase peaks along with 

its targets57. Therefore, the Hippo signalling pathway plays an important role in controlling 

the liver size post-PH. Detailed mechanisms pertaining to the termination phase are still 

under the active investigation stage. 

1.5.4 Mathematical model of liver regeneration 

The information on different phases of the liver regeneration process was used to develop 

the mathematical models. The model proposed for rat liver regeneration incorporates the 

regulation by cytokines, growth factor and ECM and reproduces the known 

phenomenology58 (Furchtgott et al., 2009). Modifications of this model consider cell 

growth, bone marrow cells, species-specific differences, liver repair scenarios and non-

parenchymal cell states59–62 (Cook et al., 2018; Cook et al., 2015; Pedone et al., 2017; 

Young and Periwal, 2016). However, the functional relationships between metabolism and 

liver regeneration remain unexplored at the systems level63. These models mostly 
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considered data from transgenic and gene-knock studies in rodents. In recent years, efforts 

have been made to comprehensively study the liver regeneration process using high-

throughput omics technology to obtain mechanistic insights into liver regeneration. 

1.6 Clinical and translational relevance of liver regeneration 

The experimental regeneration model of 2/3rd PH has an important clinical application. 

Rodents accomplish the restoration of full functional liver mass post-PH within 7 – 10 days, 

while in humans, it takes about 60 – 90 days32,64. Liver resection is a choice of intervention 

for HCC and benign liver disease65. In HCC patients, resection of the liver mass containing 

tumours is widely used62. The unique regenerative ability of the liver tissue post-PH also 

showed the road ahead for organ transplantation. Patients affected with liver diseases such 

as cirrhosis can be treated using the transplantation of partial liver tissue from a live donor, 

which is followed by regeneration in both the donor and recipient62 (Figure 1.6). However, 

the dynamics of normal recovery may be impaired under the conditions of acute liver 

failure, pre-existing fibrotic condition or if the transplanted organ or the remnant liver post-

resection is too small28,66. Transplantation from deceased donors is also prevalent.  

 

Figure 1.6: Clinical application of liver regeneration. Partial resection following 

identification of a tumour (top) and live liver transplantation (bottom) from donor to 

recipient67.  

The regenerative capacity of the remnant liver determines outcomes ranging from normal 

restoration of the tissue to impaired restoration or liver failure68. Deviation in the ability of 
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the post-operated liver to perform its functions and maintain homeostasis results in post-

hepatectomy liver failure (PHLF)69. Patient’s clinical history, such as weight, diabetes, and 

age, contribute to PHLF70,71. The fraction of the remnant liver and its functional capacity 

plays a key role in determining PHLF. Therefore, candidates for surgery are meticulously 

chosen to minimize PHLF in patients (recipient) and avoid detrimental outcomes in living 

donors. On the other hand, the donor’s liver is carefully scrutinized to ensure it is free from 

liver diseases prior to transplantation. 

Studies on human liver regeneration are mostly based on non-invasive techniques of whole-

organ imaging and serum analysis, which attempt to associate clinical outcomes with pre-

operative markers. The inability to readily access liver tissue from human subjects limited 

the study of molecular mechanisms of liver regeneration mostly to animal models. To be 

able to fill the void between in vivo models and clinical realism, constant refinement of 

animal models based on feedback from human studies is required28.  

1.7 Liver ageing and diseases 

The liver’s ability to maintain homeostasis and capacity to regenerate declines 

progressively with ageing. A decrease in liver function with ageing disturbs metabolic 

homeostasis, leading to lipid accumulation and increased prevalence of steatosis in old age7. 

This can lead to a spectrum of liver damage conditions called non-alcoholic fatty liver 

disease (NAFLD), which ranges from benign form steatosis (NAFL) to more aggressive 

form, non-alcoholic steatohepatitis (NASH)72. NAFLD is linked to multiple factors, 

including obesity, insulin resistance and Type 2 diabetes (T2D). NASH is characterized by 

lobular inflammation and hepatocellular ballooning in the presence or absence of fibrosis73. 

NASH can progress into progressive fibrosis and cirrhosis, which can increase the risk of 

HCC. Persistent inflammation can scar the tissue around the liver, leading to fibrosis. 

Cirrhosis occurs after years of inflammation, and the liver gets permanently scarred and 

lumpy, which is irreversible and can lead to liver failure (Figure 1.7).  HCC is the most 

common type of liver cancer, and the main risk factors for its development include infection 

by hepatitis B virus (HBV) and hepatitis C virus (HCV). NAFLD is also becoming a more 

frequent risk factor for the development of HCC74. 

The early stage of chronic liver diseases remains undetected until they emerge in a 

symptomatic state where the liver is sufficiently damaged, impacting the function. At this 

stage, the treatment that is available is often limited to liver transplantation72. Currently, 
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there are no FDA-approved drugs due to limited knowledge of mechanisms that drive the 

progression from steatosis to HCC. 

 

Figure 1.7: Spectrum of liver damage conditions75 

 

1.8 Omics data to understand the genome-wide changes in diseases 

Model organisms such as Mus musculus and Rattus norvegicus have been used as surrogates 

in translational research to study human diseases. While most of the studies deciphered 

underlying mechanisms from knockout studies, the emergence of high throughput omics 

technologies provides a scope to develop a systems-level understanding of the disease. The 

genome-wide changes can be mapped at different levels, including genomics, epigenomics, 

transcriptomics, proteomics and metabolomics at tissue and single-cell levels (Figure 1.8). 

The variation in DNA sequence can be mapped to obtain insights into the contribution of 

genetic variants to a particular disease. The non-genetic (DNA methylation, histone 

modification and chromatin organization) contribution to the phenotype can also be 

explored using epigenomics. These genetic and epigenetic variations can impact the gene 

expression that can be quantified using transcriptomics, which measures mRNA level 

changes occurring in the cells. Proteomics measures protein expression levels and different 

types of posttranslational modifications. The various biological functions are regulated by 

proteome, which is also targeted by drugs. Metabolomics quantifies the changes in 

metabolites due to changes at the expression level of enzymes that catalyze various 

biochemical reactions. 
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Figure 1.8: Integration of omics technologies at different levels to provide a complete 

model of the biological system under study76.  

 

1.8.1 Transcriptome data 

Quantifying the transcript levels bridges the gap between the genome and functional 

molecules that regulate the cells77.  Transcriptome data of different liver-associated 

conditions obtained using Microarrays and RNA sequencing (RNA-Seq) techniques from 

mouse models and patients are widely available compared to proteomic data, the other 

product of the genome.   

Microarray 

This technology is based on the principle of hybridization between each strand of DNA 

from a tissue or cell line, referred to as ‘target’, and its corresponding complementary DNA 

sequences immobilized on a solid surface. This solid surface is an ordered array of 

microscopic DNA spots, each containing thousands of copies of a specific DNA sequence, 

usually corresponding to a short segment of a gene. The arrayed material is equivalent to 

the probe used in a typical Northern blot analysis and hence generally called a ‘probe’. The 

array platforms fall into categories, namely, printed cDNA microarray and in situ 

synthesized oligonucleotide microarray. Probes of cDNA microarray are amplified products 
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of polymerase chain reaction, while oligonucleotide probes are synthesized by 

photolithography78.   

A microarray experiment begins with the extraction of mRNA or amplified cDNA from the 

tissue or cell samples to be analyzed. This is followed by fluorescent labelling and 

hybridization onto the DNA array, leaving it for incubation overnight. Non-specific hybrids 

are removed by washing. Laser illumination of fluorescent-tagged hybrids causes excitation 

that is detected by a confocal scanner. The digital image generated by the scanner is 

processed by specialized software to convert each spot intensity to a numerical reading. The 

scanner first locates each spot by its shape, then integrates the intensities inside and finally 

estimates the surrounding background noise. This gives an integer-valued reading as the 

readout of the concentration of the target sequence in the sample to which the probe is 

spotted79.  

The dual-channel assay is the widely employed experimental design for microarray to 

compare the relative abundances of mRNA between two different samples, for example, 

control and test (Figure 1.9). Two different target samples are labelled with different colour 

dyes (Cy3 and Cy5) and co-hybridized to the same array, resulting in competitive binding 

of the target to the arrayed probes. The reading obtained from image scanning is 

transformed to a ratio of relative abundance of the target sequence from the test sample with 

respect to the reference (control) sample. In a single-channel assay, both samples are 

labelled with the same dye and hybridized to different arrays. The intensity data for each 

probe indicates the relative abundance with respect to the labelled target (Figure 1.9). The 

co-hybridization of target samples in dual-channel allows direct comparison of gene 

abundance between two samples, minimizing the error due to variability in manufacturing 

of multiple arrays. The advantage of one-channel microarray lies in its design simplicity 

and flexibility, facilitating comparison across samples and between groups of samples. Due 

to single-sample hybridization per array, the effect of the aberrant sample affecting the data 

derived from other samples is minimized in a one-channel assay. The comparison of data 

generated from arrays of different experiments is possible in a one-channel assay. The 

variability in array processing is the main source of error due to variability in one-channel 

assay, which can be reduced by introducing sufficient biological and technical replicates80.  
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Figure 1.9: Expression analysis by two- and one-colour microarray: Two-colour 

microarray uses two different fluorescent dyes hybridized on a single chip, while one-

colour microarray uses a single dye and two chips to generate expression profiles81. 

 

RNA-seq 

It is a sequence-based approach to quantifying and studying the transcriptome of a sample. 

The total RNA is extracted from the tissue of interest and converted to a library of 

fragmented cDNA (200-500 base pairs). Sequencing adapters are ligated to both ends of 

cDNA. This is followed by an amplification step, and the fragments are sequenced either 

from one end or both ends, resulting in single-end or paired-end reads, respectively. These 

reads range between 30-400 base pairs (bp) in length, depending on the technology. With 

the data obtained in the form of sequenced reads, the computationally intense sequence 

analysis follows (Figure 1.10). The reads can be mapped to reference genome or undergo 

de novo assembly. De novo assembly of reads is useful to identify a genome-scale 

transcription map that gives information on transcriptional structure as well as gene 

expression levels82.  
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Figure 1.10: Outline of a typical RNA-seq experiment82. 

The quality of RNA extracted is verified using RNA Integration Number (RIN > 8) to 

minimize errors in the downstream steps. Prior to cDNA library construction, several 

manipulations are performed before proceeding with further steps. In order to catalogue 

different types of small RNAs (miRNA, piRNA, siRNA), the sequencing step can directly 

follow after the ligation of adapters. To enrich mRNA from rRNA, the fact that mature 

mRNA carries a poly(A) tail is used and captured by hybridizing to oligo dT beads. Larger 

RNA molecules must be fragmented into smaller pieces ranging between 200 and 500 bp 

to make them amenable to sequencing, which is important for accurate transcript 

assembly83.  

Comparing transcriptomic technologies  
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Microarray transcript detection is based on molecular hybridization, while RNA-seq 

captures the transcripts in samples by directly sequencing them. The level of gene 

expression corresponding to a transcript is given as a measure of continuous probe 

intensities in microarray as opposed to discrete digital sequence read counts provided by 

RNA-seq. This facilitates unlimited dynamic range giving a near true abundance of readouts 

of transcripts within cells and quantification of subtle changes in gene expression important 

for biological processes. The manufacturing of arrays (probes) for microarray requires prior 

knowledge of genome sequence. Moreover, standard microarray probes can cover only 20% 

of a gene on average.  

RNA-seq enables quantification of expression from previously unannotated regions of the 

genome, unlike microarrays and helps discover novel transcripts. Although this limitation 

of microarray can be overcome by designing probes with overlapping regions of the 

genome, as in tiling arrays, it lacks full genome coverage. The single-base resolution of 

RNA-seq has given a revised view of known gene annotation by identifying gene 

boundaries and introns, new isoforms of the genes, and splicing events. In addition, isoform 

abundances can also be obtained. Splicing arrays designed for this purpose, on the other 

hand, requires prior information on genes and their known isoforms.  

The advantage microarrays provide over RNA-seq is the low cost of implementation. 

Nevertheless, the cost of sequencing is decreasing. An important concern with RNA-seq is 

the depth of sequencing, which is defined as the average number of times a nucleotide base 

is measured in the pool of random raw sequences84. It gives an estimate of how many times 

a sample must be sequenced. Highly expressed transcripts can be detected at low 

sequencing depth, while moderate and rarely expressed transcripts require much higher 

depth. Another concern is the humongous amount of data generated by RNA-seq compared 

to that of microarrays85. Despite these differences, both platforms show a good correlation 

of gene expression profiles86 with more DEGs being identified by RNA-seq87.  

1.9 Network-level analysis of transcriptome 

Biological networks are widely used in systems-level analysis. They provide a framework 

for integrating omics data and extracting the underlying mechanism in physiology and 

pathology.  In biological networks, nodes are represented by components such as genes, 

proteins etc, and edges define the relationship between nodes. These networks are reported 

to exhibit graph topological properties such as a scale-free topology, where few nodes have 
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a number of connections (degree k) that follow a power-law distribution. This means that 

there are only a few nodes that act as “hubs” with many connections, which are 

hypothesized to be important. Betweenness is another topological measure which 

characterizes the nodes based on the shortest path. Nodes with high betweenness are 

considered to be “bottleneck hubs” since they bridge a high number of shortest paths with 

other nodes. Thus, graph theoretical measures can potentially help to identify disease 

biomarkers and novel drug targets. The biological network analysis also aims to understand 

network organization into functional modules and their constituent genes88, which can 

inform the biological mechanism related to the disease. Different biological networks 

include protein-protein interaction networks, gene regulatory networks, metabolic 

networks, and integrated networks. The integrated view of the biological network is given 

below (Figure 1.11). 

 

Figure 1.11: Integration of biological networks to understand the underlying 

mechanisms of biological functions89. 

1.9.1 Protein-protein interaction network 

Many biological functions and disease-state may not be explained solely by considering 

individual genes or proteins. Differential gene expression analysis, to some extent, helps 

identify genes involved in a molecular mechanism but provides little insight into how they 

collectively work towards a physiological state. The underlying complex relationship 

among genes is not obvious from analysis based on single genes. Under the contexts where 

disruption of a process results from slight insignificant changes in the expression of 

numerous genes, it is necessary to look at the interactions90. A protein-protein interaction 
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(PPI) network encompasses the associations between two or more proteins that may be 

either due to physical interaction or participation within a common pathway91.  

Human PPI networks have been constructed into databases such as STRING, BioGRID, 

Database of Interacting Proteins (DIP) etc89. These PPINs have been used to sieve potential 

drug targets. Graph theoretical network measures such as degree have been applied to 

identify essential proteins. The PPINs provide general static interactome built from multiple 

contexts, of which only a subset may be relevant for a particular condition at a given time. 

Therefore, PPINs can be integrated with gene expression to obtain a dynamic picture of the 

interactome.   

1.9.2 Metabolic networks 

Cellular metabolism provides the cell with the energy required for survival and cell growth. 

For its functions, a cell takes up essential small molecules which are metabolized by cellular 

reactions either spontaneously or with the help of enzyme catalysis. These small molecules 

are interconverted from one form to another in a cascade of reactions called metabolic 

pathways. The ability of small molecules to participate in different reactions and the non-

specificity of enzymes catalyzing multiple small molecules brings nonlinearity in metabolic 

pathways. This ultimately leads to strongly interwoven metabolic pathways, and the 

interplay between them forms a metabolic network. Therefore, a metabolic network is made 

up of all the biochemical reactions describing the relationship between metabolites and 

catalytic enzymes92.  

Graphically, the metabolic network of a cell can be represented by a bipartite graph of two 

node sets corresponding to metabolites and enzymes with edges connecting a metabolite 

node to an enzyme node if they participate in the same biochemical reactions. In a bipartite 

metabolic network, no two enzymes or no two metabolites are directly connected to each 

other. A metabolic network can also be represented by a unipartite enzyme (or rection) 

interaction graph (Figure 1.12). The nodes of this network are enzymes, and an edge 

connects two enzymes if they share a common substrate/metabolite in the corresponding 

reactions93.  

The central focus of building networks for cellular metabolism is to understand network 

function from its structure using topological analysis. The degree distribution (probability 

distributions of edges per node) of the network was used to show the existence of scale-free 
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topology in metabolic networks as its global structural organization. Further, to capture the 

dynamic properties of the metabolic network, stoichiometric and kinetic modelling has been 

applied. These dynamical models help investigate fluxes of metabolites within metabolic 

pathways. Flux balance analysis (FBA), a constraint-based analysis of metabolic networks, 

is widely used and is based on the principle of conservation of mass. In FBA analysis, 

optimal reaction rates are calculated at a steady state under the constraint of maximizing 

biomass.  

 

 

Figure 1.12: Transformation of a bipartite metabolic network (a) to a metabolite-

centric unipartite network (b) and an enzyme-centric unipartite network (c)94. Below 

is an illustration of a metabolic and enzyme interaction graph depicting three enzymes 

and one metabolite of glycolysis93.    

1.9.3 Co-expression network 

The high-throughput genome-wide expression techniques have undoubtedly laid the 

foundation stones for acquiring systems-level knowledge but pose a challenge to deriving 

the system structure from its components. The accumulation of large amounts of 
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transcriptomic data using microarray and RNA-seq techniques led to the reconstruction of 

the gene co-expression network (GCN) in different biological conditions. GCN gives an 

overview of the similarity between expression profiles of genes from a particular group of 

biological samples. The edge relationship is not determined in GCN, which contrasts with 

the gene regulatory network (GRN) that includes directed edges representing the causal 

relationships, including biochemical interactions and activation/inactivation95. However, 

co-expression modules are of biological interest since genes of a module can be regulated 

by the same transcriptional program, functionally related or map to the same pathway or 

protein complex.  

Different methods have been developed for the construction of GCN. The following steps 

are involved in the construction of GCN from gene expression data. After initial 

preprocessing and filtering of genes, a similarity matrix (every pair of genes) is built by 

selecting suitable co-expression measures, followed by thresholding and network 

construction, identifying modules using clustering techniques and finally downstream 

analysis for biological insights (Figure 1.13). Commonly used coexpression measures are 

Pearson correlation, Spearman’s rank correlation, mutual information, and Euclidean 

distance91. 

 

Figure 1.13: Step-by-step procedure for building gene co-expression networks from 

gene expression data96. 

After choosing a correlation measure, the GCN is built based on 𝑚 ×𝑚 similarity matrix 

𝑆 with entries 𝑠𝑖𝑗 = | 𝑐𝑜𝑟(𝑖, 𝑗) | , the correlation between two genes i and j scaled between 

0 and 1. Such a similarity matrix based on absolute correlation is “unsigned”. For a signed 
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similarity matrix   𝑠𝑖𝑗 = 
1+ 𝑐𝑜𝑟(𝑖,𝑗) 

2
  with  𝑠𝑖𝑗  < 0.5 meaning negative correlation and 𝑠𝑖𝑗  ≥

0.5 meaning positive correlation. The similarity matrix is transformed to an adjacency 

matrix using an adjacency function. The choice of adjacency function gives an unweighted 

or weighted network, respectively, depending on whether hard thresholding or soft 

thresholding is used. Unweighted network using hard threshold τ with 𝑎𝑖𝑗  ∈ {0,1} is given 

as 

𝑎𝑖𝑗 = {
1, 𝑠𝑖𝑗 ≥  𝜏

0, 𝑠𝑖𝑗 < 𝜏
 (1.1) 

and weighted network using power-law-based soft threshold β with 𝑎𝑖𝑗  ∈ [0,1] is given as 

𝑎𝑖𝑗 = |𝑠𝑖𝑗|
𝛽 (1.2) 

Soft thresholding reduces noisy correlations and emphasizes the disparity between strong 

and weak correlations.  

The primary goal of GCN is to identify a subset of tightly connected nodes (modules). 

Topological overlap dissimilarity measure that quantifies interconnectedness between 

nodes was found to identify functionally relevant modules97. The topological overlap of 

two nodes is a reflection of their interconnectedness. It is given by 

𝑡𝑖𝑗 = 
𝑙𝑖𝑗 + 𝑎𝑖𝑗

𝑚𝑖𝑛{𝑘𝑖, 𝑘𝑗} + 1 − 𝑎𝑖𝑗
 (1.3) 

where 𝑙𝑖𝑗 = ∑ 𝑎𝑖𝑝𝑎𝑝𝑗𝑝  , which gathers all the shared neighbours between nodes i and j and 

sums up to zero if there are no shared neighbours, 𝑘𝑖 = ∑ 𝑎𝑖𝑝𝑝  is the node connectivity of 

node i. Since 𝑙𝑖𝑗  ≤ min (∑ 𝑎𝑖𝑝,𝑝≠𝑗 ∑ 𝑎𝑝𝑗𝑝≠𝑖 ), it implies that 𝑙𝑖𝑗  ≤ min(𝑘𝑖, 𝑘𝑗) − 𝑎𝑖𝑗, 

finally rendering 0 ≤ 𝑡𝑖𝑗 ≤ 1 like 0 ≤ 𝑎𝑖𝑗 ≤ 1. If two nodes are connected, and the node 

with fewer links shares the same neighbours as the other node, then 𝑡𝑖𝑗 = 1. If the two nodes 

are not connected and do not share any neighbours 𝑡𝑖𝑗 = 0. Therefore, 𝑎𝑖𝑗 which is simply 

based on the correlation between nodes i and j is transformed into 𝑡𝑖𝑗 which also 

accommodates their connection strength with common neighbouring nodes. A toy example 

of a network with 11 nodes and the corresponding topological overlap matrix (TOM) is 

shown in Figure 1.14. This depicts how nodes with similar expression patterns can be 

clustered together. If two genes have a strong connection strength with the same set of 
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genes, they have a high TOM score. To apply TOM for extracting modules, the similarity 

matrix 𝑡𝑖𝑗 is converted to dissimilarity matrix 𝑑𝑖𝑗
𝑡 = 1 − 𝑡𝑖𝑗. 

 

 

Figure 1.14: The underlying modularity of a complex network. (A) Topological 

overlap of a small hypothetical network. The edge weights represent TOM between 

every pair of nodes, and the parenthesis next to each node corresponds to the 

clustering coefficient97. (B) Clustering of the heatmap of TOM for the network shown 

in (A). The tree structure in the dendrogram shows three distinct modules. The 

module ‘EFG’ is topologically closer to the module ‘HIJK’ than to the module ‘ABC’. 

(C)An illustration of TOM highlighting low and high-scoring TOM regions98. 

1.9.4 Gene-regulatory (GRN) network 

Transcriptional regulation is at the core of shaping organismal complexity and diversity99.  

Transcription factors (TF) govern the activity of genes in the nucleus, which in turn guide 

protein synthesis from the ribosomal machinery in the cytoplasm, the prime location for 

biochemical reactions within the cell. These sequences of events eventually influence the 

activity of the cell. Some of the proteins themselves act as TF and return to the nucleus to 
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control several other genes(s) by binding to the regulatory elements. A plethora of 

transcription factors (trans inputs) can bind to the regulatory sequences (cis inputs) of the 

target gene, with the final expression (output) being determined by the combination of 

bound TFs100. The amounts of gene products and their temporal order of synthesis are 

crucial for the functioning of the cell101. This complex process of controlling gene 

expression is represented as a gene regulatory network102, which is a collection of molecular 

species and their interactions101. 

The advancement of powerful experimental techniques targeting gene regulation studies 

has led to an unmet demand to model gene regulatory networks. Models have been built in 

this direction, defining the biological system at different levels of abstraction to answer 

relevant questions pertaining to a) the behaviour of a system under different conditions, b) 

the dynamics of the system under the loss/change of its component(s), c) robustness of the 

system under extreme circumstances101. A wide variety of methods like Boolean networks, 

probabilistic Boolean networks, Petri nets, Bayesian networks, and non-linear ordinary 

differential equations have been developed for modelling gene regulation103 (Figure 1.15). 

1.9.4.1 Boolean network 

These are the simplest models of GRN construction where a single gene is represented by 

a binary/Boolean variable ON (1) or OFF (0), depending on whether it is active or inactive, 

respectively. A Boolean network is a directed acyclic graph (DAG). It is represented as a 

tuple G(V, F) where 𝑉 = (𝑌1, 𝑌2, … . . , 𝑌𝑛) 𝜖 {1,0}
𝑛 is a vector of Boolean variables, F is a 

set of Boolean functions 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑛}, 𝑓𝑖: {0,1}
𝑛 ↦ {0,1}. Each node 𝑌𝑖, 𝑖 ∈

{1,2, … , 𝑛} corresponds to a gene in the network and is individually associated with a 

Boolean function 𝑓𝑖 = 𝑓𝑖(𝑌𝑖1 , 𝑌𝑖2 , … . , 𝑌𝑖𝑘)  ∈ 𝐹 = {𝑓1, 𝑓2, … . , 𝑓𝑛}. Parent nodes 

𝑌𝑖1 , 𝑌𝑖2 , … , 𝑌𝑖𝑘  of each node  𝑌𝑖, serves as the input to the corresponding Boolean function 

𝑓𝑖. Boolean operations on the genes are based on “AND”, “OR”, and “NOT” logical gates, 

which show the regulatory action of TF on the target genes (Figure 1.16). At a given time 

t, the state of the Boolean network is defined as 𝑆(𝑡) = (𝑌1(𝑡), 𝑌2(𝑡), … . , 𝑌𝑛(𝑡)) , which is 

a 0-1 vector describing levels of all genes called the global state. This state S(t) is updated 

to S(t+1) in the next time step t+1 based on Boolean functions F. The level of every gene 

𝑌𝑖 at time t+1 is updated as 𝑆𝑡+1(𝑌𝑖) =  𝑓𝑖(𝑆𝑡(𝑌𝑖1), …… , 𝑆𝑡(𝑌𝑖𝑘)). The global state changes 

synchronously in discrete and equally spaced time steps, with states of all genes being 

updated simultaneously depending on the levels of their regulators in the previous time step. 
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Thus, updates are deterministic in nature. This transition state is represented by wiring 

diagram G`(V`, F`) by adding an additional node 𝑉`𝑖 for every node 𝑉𝑖 and linking the parent  

 

Figure 1.15: Different models for Gene regulatory networks. (A) A gene-regulation 

function describing the action of inputs elements TF, regulatory sequences (I) to 

generate output (O), i.e. mRNA expression level of the gene. (B) i) Thermodynamic 

equilibrium-based TF-binding models using Hill functions, for example, ii) Linear 

models with output as a linear combination of input variables, iii) Bayesian networks 

providing the probability distribution of output given the input, and iv) Logical or 

Boolean models with output based on logical operations between input variables104. 

nodes 𝑉𝑖𝑗(1 ≤ j ≤ k) to 𝑉`𝑖 resulting in the network with 𝑉` = {𝑉1, … . . , 𝑉𝑛, 𝑉`1, … . . , 𝑉`𝑛}. 

The state of the additional node set {𝑉`1, … . . , 𝑉`𝑛} follows from 𝑉`𝑖 = 𝑓𝑖(𝑉𝑖1 , … . , 𝑉𝑖𝑘) for 

every i ϵ {1,…,n} treating {𝑉1, … , 𝑉𝑛} as the input and {𝑉`𝑖 , … , 𝑉`𝑛} as the output. The states 

obtained at every time step are considered as dynamic sequence of system states which are 

compared with biological evidence to arrive at the final successful model105,106. 
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Figure 1.16: A toy model of the Boolean network. (A) A Boolean network G(V,F). (B) 

The wiring diagram for the Boolean network in (A). (C) The logical operations and 

state transition table106.  

Most models focus on the behaviour of a single pathway or an outcome. Briefly, model 

construction begins with the compilation of nodes (relevant to the question) and their 

interacting partners based on previous experimental literature. Boolean functions for each 

node are laid based on its incoming nodes (activation or inactivation excluding the actual 

concentration levels). The initial state of each node is defined by its pre-stimulus or resting 

state (steady states will be used for validation). Having defined these above steps, the model 

is simulated, and its state change over time is evaluated. The steady-state obtained is 

compared with the biological information, and the model is revised in case of qualitative 

differences. A good consensus between biological knowledge and the model has important 

applications for a higher degree of understanding. Subsequently, the revised model can be 

used, for instance, to analyze the effect of node perturbations107.  

Due to the ease of implementation, Boolean models are an attractive choice for inferring 

gene regulation. Despite their crude simplification of the system, Boolean networks are 

likely to reproduce qualitative behaviour. They have been fruitful in capturing qualitative 

biological phenomena such as switch-like behaviour, oscillations, hysteresis, 

multistationarity etc108. Limitations of Boolean networks arise due to the strict assumption 

of genes to be either in on or off-state and synchronous nature, which is not true for 

biological systems.  

While discrete models provide insights into the essential qualitative behaviour of the 

system, they seldom offer information on systems that evolve continuously in time and 

space. To model such scenarios, nonlinear ordinary differential equations (ODEs) are 

applied. Typically, the lack of information on mechanistic intricacies of regulatory networks 

and the unavailability of reaction rate constant creates a roadblock for modelling gene 
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regulation using ODE-based continuous models109. To overcome these shortcomings in 

discrete and continuous models, Reinitz and colleagues proposed an intermediate modelling 

strategy110.  

1.9.4.2 Bayesian network 

Intuitive inferences from studies investigating individual components of pathways under 

various conditions play a crucial role in mapping signalling pathways. Further, to account 

for the underlying complexities of the system, a global multivariate approach is required.  

Bayesian networks are typically probabilistic graphical models that provide a suitable 

environment to model complex systems, helpful in inferring the dependence of pathway 

components on each other111.  

A Bayesian network is represented by a directed acyclic graph G (X, B) with vertices 𝑋 =

{𝑋1, 𝑋2, … . , 𝑋𝑛} corresponding to variables, directed edge set B represents probabilistic 

dependence relations between the variables. Each node is attached with probabilities that 

define the chance of finding it in a particular state. Conditional probabilities are used to 

define the dependence of the state of a node on the state of another. These dependencies 

translate throughout the network, influencing the probabilities of other nodes. Graph G 

follows the Markov property, so each node 𝑋𝑖 , is independent of its non-descendants given 

its parents105,106,108. The joint distribution of nodes is given by applying the chain rule of 

probability and conditional independence as: 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛)

=∏𝑃(𝑋𝑖 | 𝑝𝑎𝑟𝑒𝑛𝑡{𝑋𝑖})

𝑛

𝑖=1

 , 𝑝𝑎𝑟𝑒𝑛𝑡{𝑋𝑖} 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 𝑜𝑓 𝑋𝑖 𝑖𝑛 𝐺 
(1.4) 

The dependence structure between multiple interacting nodes gives the global network 

probability. For the Bayesian network in Figure 1.17A, the joint probability distribution of 

the network is 𝑃(𝐴, 𝐵, 𝐶, 𝐷, 𝐸) = 𝑃(𝐴)𝑃(𝐵|𝐴)𝑃(𝐶|𝐵)𝑃(𝐷|𝐴, 𝐸)𝑃(𝐸).  

Inferring regulatory network from experimental data (transcriptomics data) involves two 

steps. Structure learning and parameter estimation are two major steps involved in Bayesian 

network modelling. The structural component is represented by a DAG G(V, E) consisting 

of causal relationships of regulations (set of edges E) among set of genes V. An edge exists 
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Figure 1.17: The graphical representation of Bayesian and Dynamic Bayesian 

network. (A) An example of a Bayesian network showing the joint probability 

distribution of network. (B) Dynamic Bayesian Network showing static and dynamic 

representations allowing cyclic structures106. 

from node 𝑋𝑖 to node 𝑋𝑗  if and only 𝑋𝑖 directly regulates 𝑋𝑗. The parameter component θ 

accommodates the conditional probability distribution of each node given its parents. The 

network structure that best describes the expression data is obtained by choosing the 

appropriate parameter set θ that renders the highest posterior probability given the data, i.e. 

𝑃(𝐺|𝐷). The output of the Bayesian modelling on expression data is a hierarchical graph 

revealing the most plausible causal regulations between genes.   

Bayesian modelling is an attractive choice for studying gene regulation due to its 

probabilistic nature that can account for inherent noise in biological systems111. It can 

efficiently describe direct molecular interactions and indirect influences and thus help in 

discovering previously unknown mechanisms. Arriving at an optimal Bayesian network is 

computationally expensive that can be handled by using experimentally validated 

predefined regulations as a prior to reducing the search space. The main drawback is its 

inability to decompose joint probability due to its acyclic nature and, hence cannot explain 

dynamical aspects like feedback regulation and oscillations.  

To tackle the above shortcoming, a Dynamic Bayesian Network (DBN) was developed by 

duplicating nodes in the network to introduce the concept of time incorporating the temporal 

(and cyclic) regulation of dependencies between genes105,106 (Figure 1.17B). The 

probability distribution in DBN is given by a two-time-slice BN (2TBN) consisting of 

variables 𝑋𝑡 with parents from 𝑋𝑡−1 and/or 𝑋𝑡 as: 

𝑃(𝑋𝑡|𝑋𝑡−1) =∏𝑃(𝑋𝑖,𝑡|𝑝𝑎𝑟𝑒𝑛𝑡(𝑋𝑖,𝑡)) 

𝑛

𝑖=1

 (1.5) 



29 

 

A DBN supports both intra-slice and inter-slice edges. DBNs incorporate the ordering of 

time, giving improved insights into temporal transcriptional regulation and have been 

applied to model time-series gene expression data. 

Methods utilizing TF-gene interactions (static interaction such as those from ChIP-chip 

data) with expression data have been shown to be relatively more insightful than 

expression-only methods. There is a growing need to develop strategies that allow explicit 

integration of TF-gene interactions with expression data. Luscombe et al., (2004) proposed 

a method to integrate time series gene expression data with static ChIP-chip data based on 

differential expression of genes and mapping the ordered sequence of static regulatory 

graphs using trace-back algorithm112. Another group used Input-output Hidden Markov 

Model (IOHMM) to model gene expression patterns as a series of bifurcation events and 

identify the time when a TF(s) imposes its influence on these events113 (Figure 1.18). 

 

Figure 1.18: Inferring gene regulatory network by integration of transcriptomics with 

TF-gene interaction data. (A) Plots of time-series gene expression data. (B) Static TF-

gene interaction data. (C) Gene regulatory network inferred from dynamic gene 

expression profiles and static TF-gene interaction data113.  

1.9.4.3 Input-output Hidden Markov Models (IOHMM) 

An HMM is a simple example of DBN with one hidden state and one observed state in each 

time-slice114–116. It is a probabilistic model used to define a sequence of observed events 

that depend on internal factors that are not directly observed. HMMs are widely used for 
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DNA sequence analysis117. An HMM can be represented as a system undergoing 

probabilistic transitions from one state to another while emitting a symbol/character from 

each state (Figure 1.19A). If 𝒙 =  𝑥1𝑥2……𝑥𝐿 is observed output sequence from an 

underlying hidden state sequence 𝝅 =  𝜋1𝜋2… . 𝜋𝐿, where each 𝑥𝑛 can take finite number 

of possible values from a set of observations 𝑂 = {𝑂1, 𝑂2, … , 𝑂𝑁} and each state 𝜋𝑛 can 

take values from a set of states 𝑆 = {1,2, … . ,𝑀}, then the probability that HMM generates 

the output sequence 𝒙 =  𝑥1𝑥2……𝑥𝐿 from unobserved state sequence 𝝅 =  𝜋1𝜋2… . 𝜋𝐿 is 

given by  

𝑃(𝑥1, … . , 𝑥𝐿 , 𝜋1, … . , 𝜋𝐿)
= 𝑎(𝜋1)𝑒(𝑥1|𝜋1)𝑡(𝜋2|𝜋1)𝑒(𝑥2|𝜋2)… . 𝑡(𝜋𝐿|𝜋𝐿−1)𝑒(𝑥𝐿|𝜋𝐿) 

(1.6) 

 

𝑎(𝑖) is the initial state probability 𝑃{𝜋1 = 𝑖}, 𝑒(𝑥|𝑖) is the probability of emitting a symbol 

x from state i, 𝑡(𝑗|𝑖) is the probability of transition from state i to state j.  

 

Figure 1.19: Hidden Markov Model and Input-Output Hidden Markov Model. (A) 

State transition and emission symbol between two consecutive steps in HMM. (B) 

State transition, emission symbol and input state between two consecutive steps in 

IOHMM. (C) IOHMM with hidden state set S = {A, B, C, D, E}, binary input U = {1,0} 

and output observations O = {r1, r2, r3}. (D) Initial probabilities of IOHMM. (E) 

Transition probabilities of IOHMM. (F) Emission probabilities of IOHMM118. 
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IOHMM, like HMM, has states, transitions, emissions, and an additional sequence of inputs 

{𝑢1, 𝑢2, … , 𝑢𝐿} (Figure 1.19B). The transitions and emissions depend on these inputs and 

are given as118 

 

𝑃(𝑥1, … . , 𝑥𝐿 , 𝜋1, … . , 𝜋𝐿|𝑢1, 𝑢2, … , 𝑢𝐿)
= 𝑎(𝜋1|𝑢1)𝑒(𝑥1|𝜋1, 𝑢1)𝑡(𝜋2|𝜋1, 𝑢2)𝑒(𝑥2|𝜋2, 𝑢2)… . 𝑡(𝜋𝐿|𝜋𝐿−1, 𝑢𝐿)𝑒(𝑥𝐿|𝜋𝐿 , 𝑢𝐿) 

(1.7) 

 

IOHMM framework has been adopted to track dynamic regulatory events by integrating 

TF-gene association data with time series gene expression data (Figure 1.20).  

 

Figure 1.20: Integration of transcriptomics with TF-gene interaction data using the 

IOHMM framework. The observations (black nodes) correspond to gene expression 

at different time points given as input. The hidden states (blue nodes) are split nodes 

where genes diverge into different paths. The input states (green nodes) correspond to 

TF-gene interaction data. (A) IOHMM with all hidden nodes connected to one static 

input node. (B) IOHMM with time-dependent dynamic input nodes. (C) IOHMM with 

a mix of static and dynamic input nodes119.  

 

1.10 Structure of the thesis 

The focus of the thesis is to understand the systems-level changes of the liver transcriptome 

in physiology and pathology. This includes mapping the temporal regulation of liver 

regeneration and ageing in mouse models, followed by an understanding of the 

dysregulation of liver regeneration in the clinical setting (patients). Chapter 2 presents a 

comprehensive picture of liver regeneration dynamics by applying probabilistic graphical 

modelling and gene co-expression network analysis pipeline to the time series gene 

expression data of mice. A discrete-continuous modelling framework was employed to 

model the circuit proposed to regulate the balance between liver function and proliferation 
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during regeneration. Chapter 3 maps the ageing-induced network-level changes in the liver 

and explores the crosstalk of ageing with regeneration and liver disease conditions NAFLD 

and HCC in the mouse liver. The change in statistical and topological properties of the 

ageing network is presented. The proximity of the ageing network to different liver 

condition-specific networks is studied to identify molecular players influencing 

regeneration and diseases with ageing. In Chapter 4, we addressed the scenario of impaired 

regeneration leading to the development of HCC. A detailed co-expression network analysis 

of HCC from normal to tumour through different premalignant states is presented. We also 

reported a molecular basis for disease-free survival prediction post-treatment by 

transplantation or partial hepatectomy. Liver regeneration after transplantation to treat liver 

disease provides a scope to study liver regeneration in humans. We analysed liver 

transplantation datasets to generate systems-level insights into rejection or tolerance 

(chapter 5).  In the last chapter, we will present major conclusions and the future scope of 

the thesis. 
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Chapter 2 Systems-level analysis of transcriptome 

reorganization during liver regeneration 

2.1 Introduction 

The liver is bestowed with an impeccable capacity to restore its lost mass following an 

injury or partial resection by coordinated cell growth (hypertrophy) and proliferation 

(hyperplasia). The ability to maintain and recover the original liver-to-body mass ratio is 

inferred as the thermostat-like regulator “Hepatostat”120. Different studies have used the 

surgical procedure of two-thirds partial hepatectomy (PH) in rodents (Mus musculus, Rattus 

norvegicus) to understand liver regeneration50. These studies have revealed the sources of 

regenerated liver mass and described the three phases of liver regeneration (priming, 

proliferation, and termination). The liver is the metabolically active organ and is at a 

crossroads of lipid and carbohydrate metabolism. The regenerating liver not only needs to 

maintain the essential metabolic function but also needs to meet the metabolic requirement 

of hepatocyte growth and division.  

Liver regeneration depends on the control mechanisms regulating the reversible transition 

between quiescence and proliferation. Hepatocytes shift from quiescent to primed state with 

the expression of immediate-early (IE) genes in response to cytokines (IL6 and TNFα) 

derived from non-parenchymal cells36,50,121,122. The second phase of regeneration involves 

the activation of growth factor signalling. Non-parenchymal cells synthesize and release 

growth factors and promote the release of extracellular matrix (ECM)-bound reservoir of 

growth factors. These include growth factors HGF and EGF, which activate c-met and 

EGFR receptors, respectively44,123. The last step involves cessation of proliferation by 

integrin signalling that promotes communication between ECM and epithelial cells124,125. 

The liver-to-body mass ratio is maintained by controlling the rate of cell division and 

apoptosis. After two-thirds PH, the hepatocytes also increase in size, followed by cellular 

division. An increase in the hepatocyte size alone is sufficient to recover the lost mass after 

PH in Cdk1 knockout126. A significant decrease in NADH concentration and mitochondrial 

function is observed. This kind of compensatory mechanism is not without consequences 

since there is an increase in liver damage markers.  

In addition to cytokines and growth factors, metabolic signals play a role in liver 

regeneration127,128.  The change in metabolic demand under liver regeneration leads to 
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systemic reorganization of metabolism. Animals subjected to PH display hypoglycemia in 

the initial phase since the liver plays a major role in maintaining systemic glucose levels129. 

There is an increase in the systemic influx of lipids and triglycerides from extrahepatic 

adipose tissue after PH, leading to transient steatosis, which provides the energy currency 

required for regeneration128,130,131. Other systemic cues include increased bile acid (BA) 

levels since the remnant liver cannot handle the BA returning via portal flow132. Blocking 

these metabolic alterations is shown to impair regeneration. Thus, regeneration is tightly 

intertwined with alterations in systemic metabolism. 

Whole transcriptomic studies using microarray and RNA sequencing have mapped the gene 

expression pattern and transcriptional regulation in different liver regeneration models of 

rodents126,133–141. Metabolic genes are shown to be repressed, while the cell cycle genes are 

upregulated during liver regeneration. This raises the question of how the liver maintains 

metabolic homeostasis during liver regeneration. A division of metabolism into oxidative 

and biosynthesis phases has been proposed during liver regeneration142. It is not clear how 

the liver achieves the dynamic balance between various cellular processes, including 

metabolism and cell cycle. Since the hepatocytes in the liver lobule are exposed to different 

microenvironments, there is a zonation (spatial heterogeneity) of gene expression. The liver 

lobule is metabolically partitioned to periportal, mid-lobular, and pericentral zones, with 

different zones exhibiting differences in proliferative capability143–145. Recently, single-cell 

RNA sequencing (scRNA-seq) studies have started to reveal the division of labour with one 

population of hepatocytes activating early-postnatal-like gene expression and other 

compensating for metabolic function during liver regeneration146,147. In response to PH, a 

wave of hepatocyte proliferation starting from zone 1 to zone 3 has been observed, with 

midzone 2 representing the primary source of new hepatocytes during liver homeostasis 

and regeneration148,149. 

In this study, we modelled the temporal reorganization of the transcriptome of liver 

regeneration after PH to understand the coordination of liver function and regeneration 

using a schema outlined in Figure 2.1. The inference of dynamic regulatory network from 

RNA-seq data was performed, which shows the interplay of different cellular processes at 

different time points during liver regeneration. The co-expression pattern of genes reveals 

the coordination of metabolism and the cell cycle. We also developed a mathematical model 

of the integrated circuit of liver regeneration, which accounts for the dynamic balance 
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between requirements of liver function and regeneration as observed in scRNA-seq studies 

of liver regeneration. 

 

Figure 2.1: The workflow used to study the temporal reorganization of the 

transcriptome during liver regeneration. The workflow is divided into three parts. 

Gene co-expression analysis of temporal RNA-seq data of liver regeneration to 

identify co-expressed modules. Probabilistic modelling of temporal gene expression to 

extract different trajectories of genes and associated TFs. Mathematical modelling 

based on trajectories, TF-gene association, single-cell studies to explain the qualitative 

behaviour of emergent properties of liver regeneration. 

 

2.2 Methods 

2.2.1 Transcriptomics data 

We used the publicly available high-resolution temporal RNA-seq data (Illumina HISeq 

2000) of liver regeneration after PH from Gene Expression Omnibus (with accession 
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number GSE95135)139. The samples in the dataset correspond to PH operated 12- to 14-

week-old male C57/BL6 mice entrained with 12 hours light-dark, fasting-feeding cycles. 

PH samples include time points 0, 1, 4, 10, 20, 28, 36, 44, 48, 72, 168 and 672 hours. 

Log2(RPKM +1) values were used for the downstream analysis. We also verified our 

findings using another RNA-seq data of liver regeneration (with accession number 

GSE125007)140. PH samples include time points 0, 24, 30, 40, 48, 96, 168 and 672 hours.  

2.2.2 Reconstruction of the co-expression network of liver regeneration  

The co-expression network of liver regeneration was constructed using the weighted gene 

co-expression network analysis (WGCNA) package in R150. Top 5000 varying genes across 

time points were selected (using rowVars function in R) to construct the correlation 

(Pearson) matrix for WGCNA.  

A soft power adjacency function, aij = sij
β, was used to construct an adjacency matrix. We 

used the scale-free topology criterion to choose power β. This was obtained by computing 

the square of the correlation (R2) between log(p(k)) and log(k), where p(k) is the frequency 

distribution of the connectivity k. A plot of R2 and β, which shows a saturation 

characteristic, was used to choose the β value of 15. This corresponds to the point where 

the saturation is reached with mean connectivity ≥100. A topological overlap matrix (TOM) 

was constructed from the adjacency matrix, and 1-TOM was used to construct the 

dendrogram151. The modules were identified using the dynamic tree cut algorithm with a 

minimum module size of 100. The module eigengene (ME) expression was obtained by 

singular value decomposition (SVD). Enrichr was used to identify GO terms and KEGG 

pathways associated with each module152. The co-expression network was visualized using 

Cytoscape153. 

2.2.3 Probabilistic graphical modelling  

We further reconstructed the dynamic regulatory network using the DREM method119, to 

integrate time-series gene expression data with the transcription factor (TF)-gene 

association data. This approach clusters patterns of gene expression into paths and 

bifurcation points. Each bifurcation point represents a divergence in the expression of co-

expressed genes under TF(s) influence. Log2fold change in the expression of genes at every 

time point with respect to the reference time point (0 hours) was used as an input. We used 

the generated TF-gene association available for mouse119. The following parameters were 
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used: a) Minimum log2 fold change of 1, b) The expression scaling weight set to 0.5, and 

c) TFs associated with a bifurcation point in the model were chosen with a hypergeometric 

distribution score less than 0.001. We also used ChEA and 

ENCODE_and_ChEA_consensus libraries from Enrichr152 to identify TFs significantly 

(adjusted p-value < 0.05) associated with the clusters. ChEA (ChIP-x Enrichment analysis) 

database is a collection of putative TF-gene association data extracted from TF-binding 

studies (ChIP-chip, ChIP-seq, etc). ChIP-seq data from ENCODE (Encyclopedia of DNA 

Elements) project is also used for the TFs identification. The target genes and TFs from 

ChEA and ENCODE databases are used for consensus TFs. 

The DREM method proposed by Schulz et al., (2012) to integrate time-series gene 

expression data with TF-gene association data is based on Input Output Hidden Markov 

Model (IOHMM).  The hidden states of IOHMM are used to group the genes into paths. 

Each of these paths pass through the hidden states over time. Transitions among the hidden 

states are constrained to obtain the tree-like structure resulting in the bifurcation points. 

Many possible tree-like structures are searched and scored to select the best one. 

The DREM model M is a tuple (H, E, , ϴ, n, ), where n corresponds to the number of 

discrete time points, H is the set of hidden states ‘h’ such that every h is characterized by a 

Gaussian output distribution fh and is associated with one time point. ϴ is the set of 

parameters (μh, h) corresponding to the Gaussian distribution of each hidden state. Every 

hidden state ht with t < n can have at most  child nodes (hidden states of H in the next time 

point). E is the set of directed edges between ha and hb s.t a + 1 = b, reflecting the transitions 

among the hidden states (i.e. hidden states of the consecutive time points are connected).  

consists of parameters controlling the transition probabilities between the hidden states (and 

their child nodes). h for every hidden state h is a vector of parameters for logistic 

regression classifier which makes use of TF-gene association information. Let Ig be the 

vector defining TF-gene association for gene g and all its regulating TFs (1 for activating, 

-1 for inhibiting, 0 for no regulation). If gene g is in the hidden state ha at time t-1 and has 

hb and hc as child states at time t, then the probability that g undergoes a transition from ha 

to hb (or hc) is given by logistic function with intercept INT as follows: 

1

1 + 𝑒−ℎ.𝐼𝑁𝑇 − ∑  𝑥 ℎ𝑥 .  𝐼𝑔𝑥
 (2.1) 
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The expression level of TF is also incorporated to influence the learning of the classifier 

using the shifted version of the logistic function as follows 

𝑓𝑤
∗(𝑥)  =  𝑠𝑖𝑔𝑛(𝑥)(

2

1 + 𝑒−𝑥𝑤
 −  1) (2.2) 

where x is the expression ratio of a TF between two time points, w is the expression 

scaling weight that controls the steepness of the function. To incorporate the efficiency of 

TF, it is selected based on the minimum threshold  

𝑠𝑒𝑙𝑒𝑐𝑡(𝑥) = {
𝑓𝑤
∗(𝑥),                                   𝑖𝑓 𝑎𝑏𝑠(𝑓𝑤

∗(𝑥)) ≥ 𝑚𝑖𝑛𝐸𝑥𝑝𝑇𝐹,
𝑠𝑖𝑔𝑛(𝑥).𝑚𝑖𝑛𝐸𝑥𝑝𝑇𝐹,                                                   𝑒𝑙𝑠𝑒

 (2.3) 

Therefore, pairwise binding information of a TF t to gene g (Bg Є {-1, 1, 0}) is now 

transformed to 

𝐵𝑔
′  =  𝑠𝑒𝑙𝑒𝑐𝑡(𝑥𝑡) . 𝐵𝑔 (2.4) 

If the vector Og = (og(1), og(2),….,og(n-1)) denotes the log ratio of expression values for a 

gene g at time points 1 to n-1 with respect to zeroth time point, with Ig as its TF-gene 

association mapping vector and Hi is its hidden state variable at time t, then the probability 

it is in state hb at time t given that it is in state ha at time t-1 is given by P(Ht = hb|Ht-1 = ha, 

Ig). This probability is 0 if hb is not the child of ha and 1 if it is the only child. If number of 

child nodes is greater than or equal to 2, then the transitions are probabilistic and are based 

on the vector Ig.  

The likelihood density r, for a set of genes G for the model, is given by 

𝑟(𝐺|𝑀)

= ∑ 𝑙𝑜𝑔

𝑔 Є 𝐺⏟    
𝑎𝑙𝑙 𝑔𝑒𝑛𝑒𝑠

 ∑  

𝑞 Є 𝑄⏟
𝑎𝑙𝑙 𝑝𝑎𝑡ℎ𝑠

 ∏𝑓𝑞(𝑡)(𝑜𝑔(𝑡))

𝑛−1

𝑡=1⏟          
𝑜𝑢𝑡𝑝𝑢𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠

 ∏𝑃(𝐻𝑡 =  𝑞(𝑡)|𝐻𝑡−1  =  𝑞(𝑡 − 1), 𝐼𝑔)

𝑛−1

𝑡=1⏟                        
𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

 (2.5) 

where, Q is the set of all paths of hidden states of length n beginning from the root with 

non-zero probability. For a path q Є Q, q(i) is the hidden state of the path at time point i. 

The first product corresponds to the product of output densities for the expression values 

and a given sequence of hidden states. Given a tree structure determined by H and E, the 

parameters that maximize the likelihood density ‘r’ are estimated using Baum-Welch 

algorithm. 
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To build the dynamic regulatory map, the algorithm begins with a search over structures of 

trees. Parameters of Gaussian distribution and the classifiers corresponding to a tree 

structure are learnt by randomly selecting the subset of genes as the training set using a 

version of the Baum-Welch algorithm. The remaining genes are used as test set to assign 

scores to various tree structures considered. The best scoring tree structure is selected, and 

all genes are used to train the parameters and arrive at a final model. 

2.2.4 Mathematical Modelling 

A simple regulatory circuit controlling significant TFs associated with clusters was 

constructed to model the transition between hepatocyte function and proliferation states. 

Since DREM analysis was carried out using only the TF-gene association data, we also 

considered interactions that control TFs from the literature. We studied the functional 

bifurcation of hepatocytes into different states characterized by single-cell transcriptomic 

studies of liver regeneration146. We adopted the framework proposed by Reinitz and 

colleagues to model the regulatory circuit109,110. This framework combines the best features 

of discrete and continuous approaches to simplify the complexity of the interactions in the 

network. We formulated a set of non-linear Ordinary differential equations (ODEs) of the 

form: 

𝑑𝑌𝑖
𝑑𝑡
=  𝛽𝑖[𝐹(𝛿𝑖𝑊𝑖) − 𝑌𝑖], 𝑊𝑖 = 𝑤𝑖0 + ∑𝑤𝑖𝑗𝑌𝑗 ,    𝑖 = 1,… ,𝑁

𝑁

𝑗=1

 (2.6) 

Yi is expression level of the gene (0 ≤ Yi ≤ 1),  𝐹(𝛿𝑊) = 1/(1 + 𝑒−𝛿𝑊) is “soft-

Heaviside” function that varies from 0 (W << -1/δ) to 1 (W >>1/δ), δ determines the 

steepness of the function and Wi is the net effect on gene i of all genes in the network. The 

steepness in biological terms can be related to sensitivity of the response to an input signal. 

The coefficient ωij can take values less than 0 (genej inhibits the genei), more than 0 (genej 

activates genei) or equal to 0 (no effect of genej on genei). This equation also behaves like 

a discrete boolean for a large value of δi’s (Figure 2.2A). For δi values greater than 1, Yi 

flips between 0 and 1 on a timescale ≈ βi
-1. For larger δ values, the system shows 

ultrasensitive behaviour with threshold for turning ON/OFF the response with input 

stimuli. Ultrasensitivity is of biological significance in cell signalling network154.  

Consider a circuit with two components, Y1 and Y2, with input signal S activating on Y1 
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and further Y1, inhibiting Y2. The wiring diagram describing this system is 𝑆 → 𝑌1 ⊣ 𝑌2. 

The equations describing the dynamics of Y1 and Y2 are as follows: 

𝑑𝑌1
𝑑𝑡

=  𝛽1 [
1

1 + 𝑒−𝛿1(𝑆+ 𝑤10)
− 𝑌1] (2.7) 

 

𝑑𝑌2
𝑑𝑡

=  𝛽2 [
1

1 + 𝑒−𝛿2( 𝑤20+ 𝑤21𝑌1)
− 𝑌2] (2.8) 

The above two differential equations can be solved with parameter values assigned to 

arrive at the solutions Y1(t) and Y2(t), which can be further visualised to study their 

dynamics as a function of time t. The dynamics of the system can also be studied by steady-

state analysis, a state where 
𝑑𝑌1

𝑑𝑡
= 0 and 

𝑑𝑌2

𝑑𝑡
= 0. By plugging the parameter values, the 

steady-state values of Y1 and Y2 can be obtained by using the condition 
𝑑𝑌1

𝑑𝑡
= 0 and 

𝑑𝑌2

𝑑𝑡
=

0. This gives steady-state value of Y1 as  𝑌1
∗ = 

1

1+ 𝑒−𝛿1(𝑆+ 𝑤10)
 and subsequently this value 

can be used to obtain steady-state value of Y2 as  𝑌2
∗ = 

1

1+ 𝑒−𝛿2(𝑤20+ 𝑤21𝑌1
∗ )

 . The dynamics 

of the system can be seen in Figure 2.2B. 

 

A B 

  

Figure 2.2: Discrete-continuous ODE framework. A) Graph depicting how 𝑭(𝜹𝑾) =

 
𝟏

𝟏+𝒆−𝜹𝑾
  varies from 0  to 1 as a function of W, and δ determines the steepness. B) 

Dynamics of the system 𝑺 → 𝒀𝟏 ⊣ 𝒀𝟐. The simulation is shown for the parameter 

values: β1 = β2 = 1, δ1 = δ2 = 7, w10 = -0.3, w20 = 0.5, w21 = -1. Since S activates Y1, the 

value of Y1 rises as the input signal is increased. Simultaneously, levels of Y2 drop due 

to the inhibitory effect from Y1. The opposite is seen when the signal is removed. The 

activation/inactivation of Y1 and Y2 are sharp due to the high δ values. 

The values of the parameter β and δ in the above equations can be varied to study the effect 

on the response (sensitivity analysis) or to study how the qualitative behaviour of the 
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system changes from one state to the other state (bifurcation analysis). We focused on 

studying how the qualitative behaviour (steady state) of the system changes with respect 

to parameter changes by performing phase plane and bifurcation analyses using XPPAUT 

(available from http://www.math.pitt.edu/~bard/xpp/xpp.html). The emergent properties 

of the liver regeneration circuit were analyzed to understand the emergence of different 

states and their transitions during liver regeneration. 

 

2.3 Results 

2.3.1 Dynamic regulatory network of liver regeneration 

We first constructed the dynamic co-expression network of liver regeneration to study the 

transcriptome organization into functional modules using time-series expression data. We 

performed WGCNA and identified modules related to liver regeneration after PH. The 

modular organization of the co-expression network is shown in Figure 2.3A. Modules blue 

(M1), green (M2), red (M3), pink (M4), and purple (M5) that are clustered together show 

a positive correlation with pre-and post-PH stages (Figure 2.3B). On the other hand, 

modules black (M6), yellow (M7), brown (M8) and magenta (M9) that are clustered 

together show a negative correlation with stages. However, the correlation of most modules  

A B 

  

Figure 2.3: Co-expression network of liver regeneration. (A) Modular organization of 

transcriptome of liver regeneration. Modules M1 – M9 identified by WGNCA are 

indicated by different colours. (B) Correlation of module eigen (ME) gene expression 

of modules M1 – M9 with stages (pre-and post-PH) and different time points. *** 

indicates p-value < 0.001, ** indicates 0.001 ≤ p-value < 0.01, * indicates 0.01 ≤ p-value 

< 0.05. 

http://www.math.pitt.edu/~bard/xpp/xpp.html
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with different time points of liver regeneration decreases. The eigengene expression of each 

module shows the transient nature of gene expression with a change in direction occurring 

at different time points and recovery to the pre-PH condition in the termination phase of 

liver regeneration (Figure 2.4). The eigengene expression of M4 and M5 modules increases 

between 1 and 4 hours, and of M2 and M3 modules increases between 4 and 10 hours post-

PH (priming phase). The eigengene expression of the M1 module increases between 28 and 

36 hours post-PH (proliferative phase). The M5 module shows early recovery between 36 

and 44 hours compared to other modules. The M8 and M9 modules are downregulated 

between 1 and 4 hours, while the M6 module is downregulated between 4 and 10 hours. 

We also identified the biological processes and KEGG pathways associated with each 

module (Table A1). In the upregulated modules, the M1 module is associated with the cell 

cycle, DNA replication, and p53 signalling pathway; the M3 module is associated with 

protein processing in ER and protein export; the M2 module is associated with complement 

and coagulation cascades, and the M4 module is associated with TNF signalling and 

ribosome biogenesis. The M1 module captures the proliferative response of hepatocytes 

that peaks after 36 hours, while the M3 module captures the role of endoplasmic reticulum 

(ER) stress. The upregulated modules also show a link with metabolic pathways: 

glutathione metabolism (M1), arginine and proline metabolism (M1), amino sugar, and 

nucleotide sugar metabolism (M3, M1), fatty acid degradation (M5 and M2), PPAR 

signalling pathway and peroxisome (M5).  

The downregulated modules are primarily associated with metabolism (Table A1). The M6 

module is associated with cholesterol metabolism, steroid hormone biosynthesis, bile acid 

biosynthesis, bile secretion, and PPAR signalling pathway. The M8 and M9 modules are 

associated with retinol and amino acid metabolism (branched-chain amino acids; glycine, 

serine, and threonine; tryptophan; cysteine and methionine; histidine). We also found 

glutathione metabolism, folate metabolism, pentose and glucuronate interconversions, 

glycoxylate and dicarboxylate metabolism, and arachidonic acid metabolism as part of the 

downregulated modules. WGCNA revealed the global organization of liver transcriptome 

into modules, which are obtained based on the scale-free topology criteria. 

To further generate insights into the dynamic organization and regulatory mechanism of 

liver regeneration, we performed probabilistic modelling of gene expression (section 2.2.3). 

This dynamic modelling approach revealed three core clusters that are upregulated  
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Figure 2.4: Eigengene expression profile of individual modules with respect to 

different time points of liver regeneration. 
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immediately (cluster 1 - Figure 2.5A), upregulated after 28 hours (cluster 2 - Figure 2.6A), 

and downregulated immediately (cluster 3 - Figure 2.7A) post-PH and their bifurcation into 

17 sub-clusters (named paths A to Q). We identified transcription factors (TFs) associated 

with the three core clusters.  

TFs regulating cluster 1 include FOS, JUN, CEBPB, NFKB, and STATs (Table 2.1). These 

TFs are known to be involved during the priming phase of liver regeneration. Other TFs 

include HNF4A, XBP1, LEF1, USF1, GATA4, EGR1, ESR1, and NFATCs. LEF1 is a 

Table 2.1: Transcription factors (TFs) associated with DREM core clusters. Significant 

TFs (adj p-value < 0.05) are identified based on different databases for transcription 

factor enrichment analysis. DREM results are based on the generated TF-gene 

association for the mouse (score < 0.001). * represents uncorrected p-value. 

 

Cluster 

 

ChEA 

 

ENCODE and 

ChEA 

 

DREM 

DREM, 

ENCODE  

and  

ChEA/ChEA 

1 RXR(1.35e-12), 

LXR(2.21e-12), 

PPARA(4.7e-07) 

RELA(2.62e-06),  

CEBPB (1.4e-04), 

CLOCK (3.8e-03)  

HNF4A(7e-03), 

STAT3(6e-03), 

GATA1(2e-03),  

EGR1(0.04), 

ESR1(0.01), 

FOSL2(0.04), 

FOS*(0.01),  

USF1*(0.02), 

CEBPB (2.6e-06), 

XBP1(1.3e-04),   NFATCs(5.41e-

06), STATs(4.74e-04), 

GATA4(1.44e-04), JUN(1.35e-

05), JUND(1.83e-05), 

NFKB1(7.82e-04), LEF1(6.3e-

04), NFE2L1(1.31e-04), 

FOS(1.83e-05), FOSL2(6.44e-05) 

CEBPB, FOS, 

FOSL2 

2 E2F1 (5.75e-06), 

E2F4 (4.5e-

17),MYC (3.44e-

05), FOXM1(4.19e-

20) 

E2F1(1.05e-19),  

E2F4(1.55e-

38),FOXM1(4.07e-

25), MYC(2.27e-

05), IRF3(3e-04), 

NFYA(3.65e-17), 

NFYB(1.75e-06), 

NRF1(1.72e-05) 

E2F1(3.3e-07),  

E2F4(1.29e-07), TFDP1 (3.14e-

07), TFDP2 (8.1e-06), NFYA 

(1.35e-07), NFYB(1.75e-06), 

NRF1(1.74e-04) 

E2Fs, NRF1, 

NFYA, NFYB 

3 RXR(4.01e-08) 

LXR(1.94e-05), 

PPARA(5.14e-15), 

EGR1(2.2e-09), 

ESR1(1.85e-05), 

FOXO1(5e-06) 

HNF4A(3e-02), 

EGR1(3e-03), 

ESR1(4e-03)* 
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downstream effector of the Wnt pathway important for hepatic periportal gene 

expression155, and XBP1 is a regulator of unfolded protein response (UPR). Further, six 

sub-clusters (paths A to F) come under cluster 1 (Figure 2.5A). Paths A, B, C, and E are  

A 

 

B 

 

Figure 2.5: The regulatory paths of the set of co-expressed genes in the cluster 1 of 

liver regeneration. A) The x-axis represents the time points of sample collection, and 

the y-axis represents the mean log2 fold change (log2FC) in mRNA expression post-

PH for each path. B) A path is split into multiple paths (split nodes) based on the 
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divergence in gene expression. Sankey plot showing the significant KEGG pathways 

(dark blue: adj p-value < 0.05; light blue: p-value < 0.05; thickness represents 

−𝒍𝒐𝒈𝟏𝟎(𝒂𝒅𝒋 𝒑 − 𝒗𝒂𝒍𝒖𝒆)) associated with different paths of cluster 1 (A to F). 

upregulated throughout the regeneration period up to 1-week post-PH and return to the 

baseline at 4 weeks. Path A is enriched for complement and coagulation cascade, HIF and 

TNF signalling pathways (Figure 2.5B). Path B captures pathways related to protein 

processing in ER, amino sugar and nucleotide sugar metabolism, and protein export, which 

may play an essential role during the initial response soon after the resection. Path E is 

significantly upregulated post-10 hours and is enriched for fatty acid degradation, p53 

signalling, and DNA replication. Path D shows an initial rise in gene expression, which 

returns to baseline 36 hours post-PH (Figure 2.5A) and is enriched for metabolic pathways 

related to fatty acid and amino acid metabolism (Figure 2.5B). Path F initially shows an 

increasing trend in gene expression but gets downregulated from 4 hours throughout the 

regeneration period, which makes it different from other paths in cluster 1. This path is 

enriched in steroid hormone biosynthesis and bile acid biosynthesis. The enrichment of 

paths D, E, and F suggests alterations in lipid metabolism in the priming phase. 

TFs regulating cluster 2 include E2Fs, FOXM1, MYC, NRF1, IRF3, NFYA, NYFB, and 

TFDP1/2 (Table 2.1). The gene expression of cluster 2 is relatively uniform compared to 

the other two core clusters. There are 4 paths (G to J) that come under cluster 2, showing 

an increasing trend post 28 hours (Figure 2.6A). Path G continues to increase until 48 hours 

and returns to baseline at 4 weeks. Paths G, H, and J of this cluster are significantly enriched 

for cell cycle events, spliceosome, and DNA damage repair pathways (Figure 2.6B). Path 

I is associated with neutrophil degranulation.  

Cluster 3 shows both transient and sustained downregulation (paths K to Q) throughout the 

regeneration period, returning to baseline after 1 week (Figure 2.7A). TFs regulating this 

cluster include HNF4A, RXR, LXR, EGR1, and ESR1 (Table 2.1). The paths of this cluster 

are mainly enriched for metabolic pathways (Figure 2.7B). Paths K, L, and M show 

transient downregulation at 4 hours; however, path K further rises during the proliferative 

phase. Path L is associated with negative regulation of JAK-STAT and cell size. Paths Q 

and P are downregulated throughout liver regeneration. Paths K, M, P, and Q are associated 

with the lipid and amino acid metabolism, with path K and P also associated with the 

glutathione metabolism. Paths N and O also show transient downregulation at 4 hours and 

are associated with amino acid metabolism and ribosome, respectively. 
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A 

 

B 

 

Figure 2.6: The regulatory paths of the set of co-expressed genes in the cluster 2 of 

liver regeneration. A) The x-axis represents the time points of sample collection, and 

the y-axis represents the mean log2 fold change (log2FC) in mRNA expression post-

PH for each path. B) A path is split into multiple paths (split nodes) based on the 

divergence in gene expression. Sankey plot showing the significant KEGG pathways 

(dark blue: adj p-value < 0.05; light blue: p-value < 0.05; thickness represents 

−𝒍𝒐𝒈𝟏𝟎(𝒂𝒅𝒋 𝒑 − 𝒗𝒂𝒍𝒖𝒆)) associated with different paths of cluster 2 (G to J). 
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A 

 

B 

 

Figure 2.7: The regulatory paths of the set of co-expressed genes in the cluster 3 of 

liver regeneration. A) The x-axis represents the time points of sample collection, and 

the y-axis represents the mean log2 fold change (log2FC) in mRNA expression post-

PH for each path. B) A path is split into multiple paths (split nodes) based on the 

divergence in gene expression. Sankey plot showing the significant KEGG pathways 

(dark blue: adj p-value < 0.05; light blue: p-value < 0.05; thickness represents 

−𝒍𝒐𝒈𝟏𝟎(𝒂𝒅𝒋 𝒑 − 𝒗𝒂𝒍𝒖𝒆)) associated with different paths of cluster 3 (K to Q). 
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Further, we analyzed another recent RNA-seq data (dataset 2 – validation dataset) of liver 

regeneration using probabilistic modelling to confirm our findings. Although this dataset 

has a starting time point of 24 hours, we consistently observed the organization of the 

transcriptome into three core clusters pertaining to cell cycle, immune response, and 

metabolism with a similar set of transcriptional factors capturing the events of liver 

regeneration (Figure 2.8 and Table A2). The changes related to the immune response are 

a continuum from the priming phase, as observed in Figure 2.5. We also found pathways 

related to RNA transport and spliceosome upregulated in both datasets, while ER stress 

pathway is not enriched (Table A2). Lipid and glutathione metabolism are downregulated  

 

  

 

Figure 2.8: The regulatory paths of the set of co-expressed genes in the three core 

clusters of liver regeneration (validation dataset). The x-axis represents the time 

points of sample collection, and the y-axis represents the log2 fold change (log2FC) in 

mRNA exp expression post-PH. A path is split into multiple paths (split nodes) based 

on the divergence in gene expression. 

and co-cluster in a single path in both datasets (paths P and L in datasets 1 and 2, 

respectively). Downregulated steroid hormone biosynthesis and 

glycolysis/gluconeogenesis (cluster 3, paths L and N) are reset to the baseline by 96 hours. 
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Cysteine and methionine metabolism and one-carbon folate pool are upregulated in the 

validation dataset. 

2.3.2 Co-expression pattern of lipid metabolism genes shows further rise during the 

proliferative phase 

We further analyzed the co-expression pattern of metabolic pathway genes. In path K, we 

observed that genes related to the de novo lipogenesis pathway (SREBF1, FASN, ACACA, 

ACLY, ACSL3) and hydrolysis of fat (LPL) are further upregulated by 72 hours (Figure 

A1) after initial downregulation. Path K also includes genes of cholesterol metabolism 

(HMGCR, SQLE, and LDLR) that are initially downregulated (Figure A2).  The initial 

phase of lipid metabolism downregulation coincides with the cell growth phase 

(hypertrophy before the initiation of the proliferative phase) observed after PH. A negative 

correlation between lipid metabolism and cell size has been reported156. Further, the RNAi 

of SREBs that are involved in lipid metabolism results in cell size increase. 

On the other hand, genes that control β-oxidation follow the inverse profile to de novo 

lipogenesis pathway, with its expression returning to baseline during the proliferative phase 

(cluster 1, path D) (Figure A3). PDK4, a key regulator coordinating lipid metabolism with 

liver growth157, is upregulated (cluster 1, path D) (Figure A4). UCP2 that controls 

proliferation by inhibiting the switch from fatty acid oxidation to pyruvate utilization, is 

also upregulated (cluster 1, path A)158. This is accompanied by the upregulation of LDHA 

(cluster 1, path A) that can promote pyruvate utilization.  

2.3.3 Gene expression pattern affecting the levels of GSH, NAD and SAH 

Genes of glutathione metabolism are also transiently downregulated (paths P and L) 

(Figure 2.9). These include GCLC and GCLM involved in de novo synthesis of GSH, 

which plays an important role in scavenging reactive oxygen species and maintaining the 

redox balance. GCLC and GCLM encode the catalytic and modifier subunits of glutamate 

cysteine ligase (GCL), respectively. GCL catalyzes the rate-limiting step involved in the 

generation of γ-glutamyl cysteine (γ-GC) from glutamate and cystine. γ-GC and GSH levels 

are known to be regulated by inflammatory signalling159. However, glutathione S-

transferases (GSTM1, GSTM2, GSTM3, GSTM4, GSTM6, and GSTM7) are transiently 

downregulated in 10 hours. Increased GSH levels are reported in HCC and during liver 

regeneration160. GSH deficiency interferes with liver regeneration after PH161. In the NAD  
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B 

 

Figure 2.9: (A) Expression profile of genes affecting GSH, NAD, and SAM. The blue 

line represents the baseline (0 hours), and the red line represents a two-fold change 

with respect to the baseline. (B) Mapping of gene expression to metabolites. The arrow 

indicates the direction of change in gene expression over the period of regeneration. 
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salvage pathway, we observed that NNMT is upregulated (cluster 1, path E) during liver 

regeneration, while NAMPT levels fluctuate with downregulation at 4 and 28 hours (cluster 

3, path L) (Figure 2.9A). However, NAMPT is upregulated at 36 hours, as shown 

previously126. Deletion of NAMPT is shown to affect cell proliferation during liver 

regeneration162.  NNMT knockdown leads to an increase in lipogenic gene expression and 

a decrease in gluconeogenic gene expression. Both NAMPT and NNMT control lipid, 

cholesterol, and glucose metabolism by stabilizing SIRTs163. NNMT is at the crossroads of 

metabolism and epigenetic regulation, but it is not the major methyltransferase in the liver 

to maintain S-adenosyl-methionine (SAM) to S-adenosyl homocysteine (SAH) ratio164. 

However, NNMT overexpression can decrease NAD levels, reduce methylation capacity, 

and promote liver steatosis and fibrosis165. 

We observed that the expression of main methyltransferases of the liver (GNMT, GAMT) 

involved in the conversion of SAM to SAH is downregulated (cluster 3, path P), and genes 

of methionine catabolism (MAT1A and MAT2A) involved in the production of SAM are 

upregulated (cluster 1, paths B and E). This shows that SAM levels may increase during 

regeneration and contribute to epigenetic control. This is further supported by the 

upregulation of genes involved in DNA methylation (DNMT1 and UHRF1) (cluster 2, path 

H) (Figure 2.9A), which is consistent with the observation by Wang et al., (2019)140. Both 

these genes are co-expressed with cell cycle genes in the mid-phase, while genes involved 

in SAM production are upregulated very early on. The expression of MTHFR involved in 

the generation of methionine fluctuates with an increase at 20 hours and decrease at 36 

hours. Overall, our analysis captures the systems-level changes in gene expression affecting 

the GSH, NAD and SAH levels (Figure 2.9B).  

2.3.4 The role of alternative splicing in liver regeneration 

Genes related to the mRNA cleavage and polyadenylation are co-expressed with cell cycle 

genes in clusters 1 and 2. PTBP1 and RBMX involved in the regulating alternate splicing 

events are co-expressed with the cell cycle genes, and fetal liver gene AFP (cluster 2, path 

J) (Figure 2.10). The path J also includes genes encoding the components of the 

spliceosome complex and the factors involved in its assembly (EFTUD2, SNRPD1, 

SNRPA1, LSM2/3, PPIL1, PPIH). On the other hand, splicing factor genes SRSF3 and 

SRSF7 are co-expressed and immediately upregulated (cluster 1, path B) post-PH compared 

to PTBP1 and RBMX. SRSF3 and SRSF7 are also involved in alternate polyadenylation of   
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Figure 2.10: Expression profile of genes involved in the RNA splicing. The blue line 

represents the baseline (0 hours), and the red line represents a two-fold change with 

respect to the baseline. 

mRNA precursors166. SRSF3 is known to promote metabolic homeostasis and limit cell 

proliferation167.  A decrease in SRSF3 expression is observed in mouse models of NAFLD 
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and NASH168. A global change in alternate splicing machinery is also observed in HCC and 

NAFLD169,170. 

2.3.5 A model of balance between liver identity and proliferation during liver 

regeneration 

Our results indicate that metabolic functions such as cholesterol biosynthesis, bile 

biosynthesis, and lipogenesis are downregulated, while proliferation markers are 

upregulated. These results suggest that a transient decrease in hepatic metabolism may 

counterbalance hepatocyte function vs. hepatocyte growth and proliferation. The 

transcription factor enrichment analysis showed HNF4A as a TF governing cluster 1 and 3 

(Table 2.1). The staining for HNF6 (Onecut1) and HNF4A, two key hepatocyte TFs, show 

a decrease in replicating cells171. Deletion of HNF4A in mice leads to an increase in 

proliferation172. We observed that liver identity genes (223 out of 622 identified genes)173 

overlap with immediately upregulated cluster 1 and downregulated cluster 3. On the other 

hand, there is no overlap with cluster 2, the upregulated cell cycle cluster activated post 28 

hours. We also observed that there is less overlap between liver identity genes and cell cycle 

clusters in the validation dataset. This pattern of gene expression may be due to the 

heterogeneity in the hepatocyte functions. Single-cell transcriptomic data of liver 

regeneration has shown that there is a functional bifurcation of hepatocytes into 

proliferative and non-proliferative cells146. The hepatic function genes are upregulated 

predominately in non-proliferating cells, while these genes are downregulated in dividing 

cells. 

A mathematical model of a simple HNF4A regulatory circuit (Table A3) was developed to 

demonstrate how the division of labour occurs. We hypothesize that a mutually exclusive 

behaviour between liver function and cell division can be established by the feedback loop 

regulation between these processes during liver regeneration. The regulatory circuit 

connecting HNF4A and cell cycle was established based on the literature174–177. This 

includes mutual antagonism between CCND1 (CYCLIN D) and HNF4A (Figure 2.11A). 

Deletion of HNF4A results in increased expression of MYC and CYCLIN D, while 

CYCLIN D represses the transcriptional activity of HNF4A. This double negative feedback 

loop circuit can be regulated by a plethora of signals (local and in circulation) activated 

during the priming phase of liver regeneration. The PH can alter the balance between  
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Figure 2.11: A model of balance between liver function and regeneration. (A) A core 

regulatory circuit of mutual antagonism between CYCLIN D and HNF4A controlled 

by inhibitory input stimuli S is shown. The activation is shown in green, and inhibition 

in red. (B) Phase plane showing the nullclines of HNF4A (blue) and CYCLIN D (red) 

for S=0.2. (C) Bistable inactivation of HNF4A with an increase in input stimuli S. (D) 

Irreversible inactivation of HNF4A with an increase in feedback loop strength 

(wHNF4A_CycD= -1.5). The solid circle represents the stable steady state, and the open 

circle represents the unstable steady state. 

mitogen and mitoinhibitors by matrix remodelling, induce secretion of ligands and 

cytokines and change the circulating levels of metabolites in plasma. Further, the underlying 
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mechanism of control of this core double negative circuit can vary since hepatocytes 

express different genes depending on their location in the hepatic lobule along the 

periportal-pericentral axis. We propose two kinds of inputs: proliferative and compensation 

signals that can act on the core circuit in a context-dependent manner in different 

hepatocytes to bring about different outcomes. The proliferative input suppresses HNF4A 

and activates CYCLIN D expression, while compensation signals promote HNF4A 

activation. 

The HNF4A circuit was translated into a discrete-continuous model with parameter values 

chosen to yield two distinct attractor states corresponding to hepatocyte function and 

proliferation. The phase plane of the model shows that the nullclines of HNF4A and 

CYCLIN D can intersect at three points creating two stable and one unstable steady states 

(Figure 2.11B) for the parameter values given in Table 2.2 (Model 1). This circuit exhibits 

bistable characteristics depending on the strength of the proliferation signal S (Figure 

2.11C). Bistability depends on the higher δ values that make the sigmoidal function sharp 

(Table 2.2). The two stable states correspond to hepatocytes in proliferative (high CYCLIN 

D) and differentiated (high HNF4A) states. At the intermediate signal strength, two 

populations of hepatocytes (differentiated and proliferation states) co-exist. The flipping of 

HNF4A and CYCLIN D occurs on the timescale of 1/β. It takes about 10 time units (S = 

0.3) for the system to go to a new steady state, which approximately coincides with the 

experimental gene expression profile of CCND1 and the targets of HNF4A (Figure 2.12). 

Trajectories in cluster 1 and cluster 2 correspond to the proliferative state, while trajectories 

in cluster 3 correspond to hepatocyte function state. Cell cycle genes in cluster 1 (CYCLIN 

D) are required to activate transcription factor E2F corresponding to cluster 2. CYCLIN D 

is co-expressed with Cdk inhibitor (CDKN1A); their ratio controls the passage through the 

restriction point and E2F activation. 

The liver regeneration program after PH can be viewed as changes occurring around the 

bistable switch. This leads to transient loss of hepatocyte identity which is characterized by 

a transient increase in the expression of CYCLIN D (CCND1) and a decrease in HNF4A 

targets. Time-series gene expression data show an immediate rise in Cyclin D (cluster 1, 

path E) and a decrease in HNF4A targets: GJB1, IVD (cluster 3, path P) and CYP2C37, 

ALAS2 (cluster 3, path Q) (Figure 2.12). The re-activation of HNF4A with the decrease in 

the input signal (due to repair) becomes essential for the termination of liver regeneration  
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Table 2.2: Parameter values used for the phase plane and bifurcation analyses. Model 

1 corresponds to Figure 2.11A, and Model 2 corresponds to Figure 2.15A. The input S 

(proliferative) and M (compensatory) are varied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(shown by an arrow in Figure 2.11C), which is characterized by downregulation of 

CYCLIN D and upregulation of HNF4A targets. The threshold for inactivation and re-

activation (saddle nodes – SN1 and SN2) of HNF4A is less sensitive to variations in each 

parameter values (for a 10% increase or decrease from default parameter values) (Figure 

2.13). The proposed mechanism is minimalistic and may involve additional feedback loops 

that can further contribute to the robustness of the model. The development of HCC can be 

explained by the shift in re-activation threshold to a negative regime with the change in 

feedback loop strength, making the transition irreversible (Figure 2.11D). On the other 

hand, the compensation signal shifts the HNF4A nullcline up resulting in one stable steady 

state corresponding to hyperactivation of HNF4A as observed by Chembazhi et al., (2021) 

(Figure 2.14). 

 

Parameter Description Model 1 Model 2 

βHNF4A Time scale for rate of change of HNF4A 1 1 

δHNF4A Steepness of soft-Heaviside function for HNF4A 8 8 

wHNF4A_0 Basal coefficient for HNF4A  0.3 0.5 

wHNF4A_CycD Coefficient for HNF4A inhibition by CYCLIN D -1.2 -1.2 

wHNF4A_SNAIL Coefficient for HNF4A inhibition by SNAIL - -0.2 

βCycD Time scale for rate of change of CYCLIN D 1 1 

δCycD Steepness of soft-Heaviside function for CYCLIN D 8 8 

wCycD_0 Basal coefficient for CYCLIN D -0.5 -0.5 

wCycD_Myc Coefficient for activation of CYCLIN D by MYC 1.1 1.1 

δMyc Steepness of soft-Heaviside function 8 8 

wMyc_HNF4A Coefficient for MYC inhibition by HNF4A -0.5 -0.5 

βSNAIL Time scale for rate of change of SNAIL - 1 

δSNAIL Steepness of soft-Heaviside function - 8 

wSNAIL_0 Basal coefficient for SNAIL - -0.1 

wSNAIL_HNF4A Coefficient for SNAIL inhibition by HNF4A - -1 

wSNAIL_SNAIL Coefficient for self-activation of SNAIL - 1.3 

wS_HNF4A Coefficient for HNF4A inhibition by S (input) -1 

wM_HNF4A Coefficient for HNF4A activation by M (input) 1 
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Figure 2.12: Transient activation of CYCLIN D (CCND1) and inactivation of HNF4A 

(IVD, GJB1, ALAS2 and CYP2C37) targets during liver regeneration. The blue line 

represents the baseline (0 hours), and the red line represents a two-fold change with 

respect to the baseline. 

 

A B 

  

Figure 2.13: Effect of parameters on the HNF4A bistable response. A) The fold change 

in threshold for inactivation (saddle node, SN1) and B) re-activation (saddle node, 

SN2) of HNF4A in Figure 2.11C with respect to variations in each parameter values is 

shown. The parameter values were varied in the range 10% from default parameters 

values (as given in Table S3). Green and orange represent the increase and decrease 

in the corresponding parameter value. The fold change is SN (new)/SN (default). 
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Figure 2.14: Phase plane showing the hyperactivation of Hnf4a during liver 

regeneration. The nullcline of HNF4A (blue) shifts above (arrow) in the presence of 

activatory stimuli (M=0.5). Nullclines of CYCLIN D (red) and HNF4A (light blue) for 

inhibitor stimuli S=0.2 are given for reference. The solid circle represents the stable 

steady state, and the open circle represents the unstable steady state. 

The single-cell omics study of liver regeneration has also shown the existence of a hybrid 

cluster enriched for epithelial and hepatocyte-specific features and markers of 

mesenchymal cells146. The repression of the mesenchymal program is also required to 

maintain liver identity178. HNF4A and epithelial-to-mesenchymal transition (EMT) master 

regulatory gene SNAIL form a mutual inhibition circuit, which controls the balance 

between liver differentiation and mesenchymal program (Figure 2.15). EMT control 

network involves SNAIL-induced self-activation of ZEB1179. An inhibition of HNF4A by 

proliferative signal can activate EMT in some hepatocytes. The phase plane analysis of this 

control circuit (Table A4) shows tristability (co-existence of three stable steady states) 

depending on the strength of proliferation signal S (Figure 2.15 B - D) for the parameter 

values given in Table 2.2. These states correspond to (1) high HNF4A with low 

SNAIL/ZEB1, (2) low HNF4A with high SNAIL/ZEB1, and (3) high HNF4 and 

SNAIL/ZEB1 (hybrid state). The auto-activation loop on SNAIL/ZEB1 helps in generating 

an intermediate hybrid state by making the nullcline of SNAIL/ZEB1 bistable (Figure 

2.15). The proposed regulatory circuit accounts for the cellular plasticity during liver 

regeneration. Multistable characteristics may be relevant to understand the emergence of 

different states and their transitions during liver regeneration. 
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Figure 2.15: Multistability of the underlying circuit of liver regeneration. (A) The 

regulatory circuit controlling the balance between liver function and EMT during 

liver regeneration is shown. Activation is shown in green and inhibition in red. 

Nullclines of HNF4A (blue) and SNAIL/ZEB1(red) are shown for different input 

stimuli (B) S=0, (C) S=0.2, and (D) S=0.5. The solid circle represents the stable steady 

state, and the open circle represents the unstable steady state. 
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2.4 Discussion 

The liver balances its function and proliferation demand after injury or resection. Recent 

advancement in high throughput techniques is helping to understand further the regulatory 

mechanisms involved in the regulation of liver regeneration. In this work, we performed a 

comprehensive analysis of how the transcriptome is reorganized into modules/trajectories 

and reported co-regulation of different biological processes using bulk RNA-Seq data of 

liver regeneration after PH. We also analysed the results obtained based on scRNA-seq data 

of liver regeneration. The dynamic network reconstruction revealed the trajectories of major 

pathways that are upregulated and downregulated (transient vs. sustained) during liver 

regeneration (Figure 2.4 to Figure 2.7). We found three clusters specific to liver 

metabolism, cell cycle and immune response. This is consistent with the original study139 

that showed genes involved in liver function decrease in expression post-PH, whereas cell 

cycle, RNA metabolism, and protein modification genes display higher expression levels. 

The clustering also mirrors the reported difference in recruitment of RNA polymerase and 

histone modifications found in the early and proliferation phases. Our analysis supports the 

model of mutual antagonism between liver function and proliferation in liver regeneration. 

We show multistability of the underlying network of liver regeneration. 

While overall metabolic downregulation suggests a decrease in liver function, the dynamics 

of metabolic pathways suggest that maintaining the levels of specific metabolites is required 

for liver regeneration. We observed that fine-tuning of SAM levels might be required for 

the methyltransferase reactions in liver regeneration (Figure 2.9). This is supported further 

by the downregulation of major liver methyltransferases. The co-expression pattern of cell 

cycle and DNA methylation genes highlights the scenario for crosstalk between cell cycle 

and chromatin regulatory proteins. Genes of NAD, glutathione, and lipid metabolic 

pathway decreased and reappeared immediately in the priming phase of liver regeneration. 

This suggests a possible requirement of these pathways for the cell cycle progression. 

Although NNMT expression correlates with adiposity, its expression during liver 

regeneration may be beneficial. Hepatic steatosis is shown to alter the demand for NAD 

and GSH180. Lipid metabolic genes are also further upregulated at 36 to 72 hours, 

respectively, coinciding with the proliferative phase (Figure A1). Along with a decrease in 

the liver’s metabolic function, our analysis also captures the dynamic changes in 

metabolism that may indicate the shift from growth to proliferative phase during liver 

regeneration.  
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Another pathway that is upregulated during liver regeneration is protein processing in ER 

and protein transport (Figure 2.5B and Table A1). ER stress plays a role in liver 

metabolism, damage, and inflammation181. The knockdown of XBP1 results in liver injury 

and impairment of liver regeneration182. Loss of IRE1, an upstream activator of XBP1, 

impairs liver regeneration with activation of STAT3 affected183. ER stress is also shown to 

suppress the liver identity genes in the damaged liver173. On the other hand, an increase in 

ER stress under HFD conditions can impair liver regeneration184. We also observed 

ribosome biogenesis and RNA processing as important features of liver regeneration. 

Ribosome biogenesis is known to increase during cell growth and proliferation185. Liver 

maturation and dedifferentiation are associated with alternative splicing mechanisms167,170. 

3,5 diethoxicarbonyl-1,4 dihydrocollidine (DDC) treatment leads to liver regeneration and 

a switch to a fetal splicing program138. These observations suggest that mRNA cleavage and 

polyadenylation may also control gene expression during liver regeneration after PH in 

addition to epigenetic regulation. 

The co-expression pattern of genes suggests a mutually exclusive behaviour of the cell cycle 

and liver identity genes during liver regeneration. Few liver identity genes were upregulated 

and were co-expressed with Cdk inhibitor (CDKN1A) and activator (CCND1) (cluster 1). 

An increase in Cdk inhibitor level may provide a window of opportunity for hepatocytes to 

grow before dividing. Alternatively, the co-expression of liver identity genes with Cdk 

inhibitor may suppress the cell division and maintain liver function186. On the other hand, 

CYCLIN D expression alone influences the transcriptional regulation of liver 

metabolism175. Distinguishing these effects requires single-cell level quantification. 

Mathematical modelling showed that interaction between regulators of cell cycle and liver 

function could make the system bistable (Figure 2.11), which accounts for the co-existence 

of two populations of hepatocytes, with one undergoing cell division while the other helping 

to maintain liver function146,147. The bistable switch accounts for transient inactivation of 

HNF4A with dynamic change in input signals during liver regeneration. We highlighted 

that the transition from liver function to proliferation could become irreversible with a 

change in the feedback loop strength. In this picture, the termination of liver regeneration 

depends on the re-activation of HNF4A, which is consistent with Huck et al., (2019)187. 

Different studies have reported HNF4A inactivation in HCC188–190. We also showed that 

multistability emerges by coupling the HNF4A feedback loop with the EMT circuit (Figure 

2.15). The EMT circuit is also known to exhibit tristability in cancer progression191. 
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We propose an integrated circuit of liver regeneration by extending the core circuit (Figure 

2.16). The cell cycle and EMT control during liver regeneration may involve the 

YAP1/Hippo and Wnt/β-catenin signalling pathways converging on HNF4A inactivation. 

YAP1, a mechanical rheostat acting downstream of the Hippo signalling pathway, has a 

direct role in hepatocyte differentiation by inhibiting HNF4A and activating SNAIL192. 

Reciprocal control of YAP1 by SNAIL (activating) and HNF4A (inhibiting) has been 

shown, resulting in a complex circuit of multiple feedback loops controlling liver identity. 

The ectopic activation of YAP1 is sufficient to de-differentiate hepatocytes into cells with 

stem cell-like characteristics193. The early phase of liver regeneration is accompanied by 

YAP1 activation and nuclear location48. YAP1 also cooperates with MYC in the control of 

proliferation194. This mechanism explains the existence of proliferative hepatocytes 

undergoing EMT during liver regeneration146. 

Wnt/β-catenin signalling pathway is also induced in response to liver regeneration under 

PH47,195. WNT can also control the same circuit of HNF4A and EMT. It is known that WNT 

and HNF4A mutually inhibit each other, and WNT activates SNAIL to control the EMT196. 

MYC and β-catenin cooperate in liver carcinogenesis with YAP1 as a mediator197. It is also 

shown that sinusoidal endothelial cell Wnts drive proliferation, while macrophage Wnts 

drive functional compensation186. This integrated circuit of liver regeneration controlled by 

YAP1 and WNT may provide underlying features of proliferation, compensatory 

metabolism, and EMT states as observed in single-cell studies. Thus, simultaneous control 

of HNF4A may drive the bifurcation of hepatocytes into different activity states. On the 

other hand, both WNT and YAP1 have opposing functions to establish liver zonation47. 

Wnt/β-catenin signalling is active in pericentral hepatocytes, while YAP1 is expressed in 

the periportal region. It will be interesting to study further the factors that control the dual 

role of YAP1 and WNT in liver regeneration and zonation. Overall, our study provides a 

systems-level view of liver regeneration post-PH. The underlying gene modules identified 

here can be connected to the phenomenological model of liver regeneration58 to obtain the 

dynamical characteristics of entry and exit from liver regeneration. 
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Figure 2.16: The proposed integrated circuit of liver regeneration controlled by YAP1 

and WNT. Activation is shown in green, and inhibition in red. EC-endothelial cell, M-

macrophage. Circular arrow represents autoregulation. 

 

 

 

 

 

 

 



65 

 

Chapter 3 Network-level analysis of ageing and its relationship 

with diseases and tissue regeneration in the mouse liver 

3.1 Introduction 

Ageing is an inevitable complex process altering a multitude of cellular processes. Several 

studies employing animal models across different organs have outlined the general 

hallmarks of ageing related to epigenetic modifications, cellular senescence, altered 

intercellular communication, telomere shortening, nutrient sensing deregulation, 

mitochondrial dysfunction, stem cell exhaustion, loss of proteostasis, genomic instability, 

which culminate in the loss of tissue homeostasis198. The complexity of the ageing process 

is further heightened by the interconnected features of some of these processes199. Different 

factors are suggested to cause or contribute to ageing, including DNA damage, free radical 

accumulation and metabolic dysfunction200. The oxidative theory of ageing proposes 

macromolecular damage by the products of metabolism and inefficient repair. 

Molecular pathways involving IGF1/GH and mTOR have been implicated in the ageing 

process201,202. Caloric restriction and mTOR inhibition by rapamycin slow down many age-

dependent processes and extend lifespan203,204. With the advent of high-throughput 

techniques, biological processes underlying the initiation and progression of ageing can be 

unfolded at the systems level. However, most studies focused on identifying DEGs and 

patterns of gene expression in ageing to characterize the transcriptomic changes205–207. The 

upregulation of inflammatory, immune and stress response genes has been reported in 

different microarray and RNA-seq experiments of ageing in mice208,209. The inflammaging 

theory postulates ageing accrues inflammation210. Tissue-wise transcriptomics study across 

multiple age groups in mice shows distinct gene expression signatures in different organs, 

with the liver undergoing extensive changes over time compared to other tissues206. The 

liver is an important metabolic organ that plays a vital role in synthesizing plasma proteins, 

clotting factors, triglycerides, cholesterol, glycogen, and detoxification2,211. Therefore, 

understanding how ageing rewires the regulatory network of the liver is crucial.    

The impairment of structure and function of liver tissue with ageing exacerbates the risk of 

liver diseases and affects its regeneration potential after damage135. Non-alcoholic fatty 

liver disease (NAFLD) is the commonly seen pathological condition of the liver that 

evolves into non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma 
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(HCC). The progression of NAFLD to NASH and further to HCC is favoured by increased 

inflammation in old age210. Interwinding nature of liver ageing and age-related diseases 

may create a futile cycle of each fuelling the other, leading to a transition from 

chronological ageing to pathological ageing.  In addition to increasing the disease risks, 

ageing also delays regeneration after partial hepatectomy135. Most of the studies designed 

to understand liver diseases were dealt independent of each other and without involving the 

intrinsic process of ageing212. Delineating the shared mechanisms inherent to the ageing 

process and age-related diseases shows a road ahead, thereby suggesting therapeutics for 

liver diseases that are influenced by age. 

Network-based approaches can be applied to understand the dynamic changes in gene 

expression patterns with lifespan and to study the crosstalk between ageing and ageing-

related diseases. This provides a systems-level understanding and helps to map dynamical 

changes. The PPI network provides a scaffold to integrate gene expression data and study 

the statistical and topological properties of the network in the context of liver ageing and 

its related diseases. The usage of the PPI network helps to distinguish direct and indirect 

control compared to the correlation-based co-expression network.  

In this work, we studied how the statistical properties of the liver network change with 

ageing by integrating the PPI network and mRNA expression profiles of mouse liver 

samples across ten different age groups available from Tabula Muris Consortium207. 

Network entropy quantifying randomness offers a new perspective for studying ageing and 

diseases. We show that entropy of the liver network increases with ageing, indicating the 

increase in randomness due to network disruption by genomic alterations. We computed the 

local entropy measure to identify genes and pathways associated with ageing. The genomic 

alterations in ageing may either increase or decrease the randomness of the local 

connectivity patterns (change the probability of interactions)213–215. A decrease in entropy 

signifies specific signalling interactions with higher weights, while an increase in entropy 

signifies the unpredictable nature of interactions. To gain further insights, we integrated the 

DEGs between young and different age groups with the PPI network to identify core 

modules and nodes that show changes in local and global topological network measures 

with ageing. Finally, we computed the network proximity of the ageing network with 

different networks of liver diseases and regeneration to study the effect of ageing. The 

workflow of the study is shown in Figure 3.1. 
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Figure 3.1: The workflow to study the network-level changes of ageing and its 

association with tissue regeneration and diseases in the mouse liver. The workflow is 

divided into three parts. Network entropy analysis was performed for each sample by 

integrating the mouse protein-protein (PPI) interaction network with liver ageing 

gene expression data. Topological analysis was performed by integrating differentially 

expressed genes (between two age groups) with PPI network. Network proximity 

analyses of ageing with different pathophysiological conditions (regeneration, 

NAFLD, HCC, acute and chronic damage)were performed using differentially 

expressed genes in each condition. The individual nodes were identified based on 

different network measures and enrichment of functional pathways performed. 

 

3.2 Methods 

3.2.1 Network entropy-based approach to analyze liver ageing 

Transcriptomics data (bulk RNA-seq) of mouse liver tissue with age groups 3, 6, 9, 12, 15, 

18, 21, 24, and 27 months was obtained from GEO with accession number GSE132040 

(Tabula Muris Consortium). Each age group has 3-4 replicate samples. The raw count data 

was normalized using variance stabilizing transformation (VST)216.  An entropy-based 

approach was used to integrate the gene expression data with the PPI network. Mouse-

specific STRING PPI network (10596 nodes and 86074 edges) with interaction confidence-

score cut-off ≥ 0.9 was used as the initial PPI network. A network characterised by a specific 

number of nodes, edges and edge weights is considered an instance in an ensemble of large 

number of networks with similar features. This system has two sets of observables related 

to degree sequence and distribution of edge weights. The entropy metric of a network is 
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given by calculating the maximum entropy of the ensemble satisfying the given constraints 

(with the identical topological and spatial structure of the network) rather than the original 

network (section 3.2.1.1)215. For the integration of gene expression and PPI network, nodes 

in the PPI network are assigned their corresponding gene expression values specific to a 

particular sample. The edges connecting nodes are weighted as the distance between gene 

expression values. The edge weights are converted to a distribution by partitioning them 

into number of bins equal to the square root of number of nodes in the network. While 

building the network, nodes with zero gene expression value are removed from the network. 

Hence, the final network, which is subjected to entropy maximization, differs from the 

original PPI network and is sample-specific. Therefore, the static PPI network evolves when 

it is integrated with sample-specific gene expression.  

3.2.1.1 Entropy calculation by integration of PPI with transcriptomics data 

In the case of PPI network integration with transcriptomics, a system is a network with N 

nodes forming an adjacency matrix A = {aij} Ɐ i, j ϵ 1,2,….,N, weights dij as edge weights. 

This system has two sets of observables related to topology and distribution of edge 

weights. Topology is an N-dimensional vector {ki} Ɐ i ϵ 1,2,….,N, called as degree sequence 

with number of  connections of each node. Distribution of edge weights is related to the 

partitioning of distance between nodes into Nb bins, where 𝑁𝑏 = √𝑁. Distance between 

nodes i and j of a sample a is given as the Euclidean distance of the gene expression (g) 

values i.e., 

𝑑𝑖𝑗   =  √(𝑔𝑖
𝑎  − 𝑔𝑗

𝑎)
2
=  |𝑔𝑖

𝑎 − 𝑔𝑗
𝑎| (3.1) 

where a corresponds to the sample identity in the dataset and i runs through all the nodes 

of a network. Each of the distance bin Nb takes a value corresponding to number of links 

whose associated edge weights fall inside its boundaries. A network ensemble is imposed 

to have topological constraint similar to the degree sequence of the sample-specific network 

and the spatial constraint to have same average value of links per bin. Therefore, topological 

and spatial constraints based on the expression profile are specific to each sample and hence 

the entropy values. The entropy of the network ensemble is defined as 

𝑆  = −∑ 𝑝𝑖𝑗 𝑙𝑜𝑔 𝑝𝑖𝑗

 

 𝑖 < 𝑗

  − ∑(1 − 𝑝𝑖𝑗) 𝑙𝑜𝑔(1 − 𝑝𝑖𝑗)

 

 𝑖 < 𝑗

 (3.2) 
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where pij is the probability of finding a link between nodes i and node j. As with the 

canonical entropy, the members of an ensemble on an average satisfy the constraints.  

The constraints on the degree sequence ki and link distribution Bl are defined as follows: 

𝑘𝑖  = ∑𝑝𝑖𝑗

𝑁

𝑗

;   𝑖 = 1,2, … . , 𝑁 (3.3) 

𝐵𝑙  = ∑ 𝜒𝑙(𝑑𝑖𝑗)𝑝𝑖𝑗

𝑁

𝑖 < 𝑗

;    𝑙  = 1,2, … ,𝑁𝑏, (3.4) 

𝜒𝑙 is the characteristic function of each bin of width (Δd)l such that 

(∆𝑑)𝑙 :  𝜒𝑙(𝑥)  = 1 𝑖𝑓 𝑥 𝜖 [𝑑𝑙 ,  𝑑𝑙  +  (∆𝑑)𝑙],  𝜒𝑙 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3.5) 

The probability matrix {pij} is obtained by constrained maximisation of entropy function 

as: 

𝜕

𝜕𝑝𝑖𝑗
{𝑆  +  ∑𝜆𝑖 (𝑘𝑖 −∑𝑝𝑖𝑗

 

𝑗

)

𝑁

𝑖

+∑𝑔𝑙 (𝐵𝑙 −∑𝜒𝑙(𝑑𝑖𝑗)𝑝𝑖𝑗

𝑁

𝑖 < 𝑗

)

𝑁𝑏

𝑙

}   = 0 (3.6) 

where λi and gl are the Lagrangian multipliers related to the constraints. For each pair of i 

and j, the marginal probability is given as 

𝑝𝑖𝑗  =  ∑𝜒𝑙(𝑑𝑖𝑗)
𝑒−(𝜆𝑖+𝜆𝑗+𝑔𝑙)

1  +  𝑒−(𝜆𝑖+𝜆𝑗+𝑔𝑙)

𝑁𝑏

𝑙

=∑𝜒𝑙(𝑑𝑖𝑗)
𝑧𝑖𝑧𝑗𝑊𝑙

1 + 𝑧𝑖𝑧𝑗𝑊𝑙

 𝑁𝑏

𝑙

 (3.7) 

where,  𝑧𝑖 = 𝑒
−𝜆𝑖 and 𝑊𝑙 = 𝑒

−𝑔𝑙 are functions of the Lagrangian multipliers λi  and gl . 

3.2.1.2 Estimating single node entropy 

The link probabilities pij obtained from the full PPI network of a sample can be further used 

to derive the entropy associated with a single node i that takes the form of Shannon entropy. 

This is valid since pij > 0, Ɐ i = 1,2,….,N and ∑ 𝑝𝑖𝑗
 
𝑗 = 𝑘𝑖, the degree of node i. Single-node 

entropy Si  of i-th node is given as:  

𝑆𝑖  =   −∑𝑝𝑖𝑗
′

 

𝑗

  𝑙𝑜𝑔 𝑝𝑖𝑗
′ ;     𝑝𝑖𝑗

′ =
𝑝𝑖𝑗

𝑘𝑖
 (3.8) 

The Wilcoxon rank sum test was applied to identify nodes showing significant differences 

(FDR < 0.05) in entropy between groups of samples at the single-node level. This analysis 

was performed by considering samples of 3-6 months old mice as the younger age group 
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and samples of 24-27 months old mice as the older age group. The pathway enrichment 

analysis of nodes that display significant differences in single-node was performed using 

Enrichr152 to obtain significantly affected pathways (adjusted p-value < 0.05).   

3.2.2 Graph theoretical analysis of ageing PPI network 

Unlike the previous approach, which integrates sample-specific gene expression with the 

PPI network for entropy calculation, we alternatively constructed the age group-wise 

networks to compare the local and global network measure changes with ageing. For this, 

DEGs comparing 3 months old mice with 18, 24 and 27 months old were used for building 

individual PPI networks. DEGs identified using the DESeq2 pipeline were integrated with 

STRING PPI (confidence-score cut-off ≥ 0.9) to build individual networks for comparison. 

Each PPI network was further expanded by including the first neighbours of DEGs, and this 

network was considered for all the downstream analyses. 

Each PPI network was analyzed using the CytoHubba plugin in Cytoscape 3.9.0153. A PPI 

network is assumed to be an undirected network G = (V, E) with V as a set of nodes and E 

as a set of edges connecting the nodes. CytoHubba identifies essential hub nodes and 

subnetworks within the PPI network using various local and global metrics217. Each of these 

metrics is associated with a function F, which assigns every node v a numeric value F(v). A 

node u is awarded a higher rank compared to another node v if F(u) > F(v). A local ranking 

method only considers the relationship between the node and its direct neighbours to 

calculate the score. On the other hand, a global ranking method assigns a score to a node 

based on its relationship with the entire network.   

For local measure, we used Maximal Clique Centrality (MCC), which is based on the 

concept of a clique that emphasizes the highly connected clusters within a network. A clique 

C in a network is a subset of nodes (C ⊆ V) such that every pair of nodes is connected. 

Further, if such a clique cannot be extended by adding one or more other nodes (for any x ϵ 

V\C, C∪ {x} is not a clique), it becomes a maximal clique. MCC score for a node v is given 

as 

𝑀𝐶𝐶(𝑣) =  ∑ (|𝐶| − 1) !

𝐶 𝜖 𝑆(𝑣)

 (3.9) 
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where S(v) is the collection of maximal cliques C, which contains v, and (|C|-1)! is the 

product of all positive integers less than |C|. Therefore, a node with a higher MCC score 

implies that it is part of larger cliques or, many smaller cliques or both.  

In addition to the connectivity of a node, its spatial position in the network also influences 

communication among other nodes. To capture the nodes that regulate the information flow 

within the network, we used two shortest path-based global measures, Bottleneck centrality 

(BN) and Betweenness centrality (BW), for each node. Bottlenecks are considered to act as 

bridges holding crucial functional and dynamic properties in the network218. While the 

BN(v) score of node v is based on the shortest path trees of all other nodes in the network, 

BW(v) is based on the number of shortest paths between every pair of nodes traversing the 

node v. Scoring of BN(v) for a node v begins with the construction of tree Ts of shortest 

paths from a node s to all other nodes in the network, followed by enumeration of the 

number of these shortest paths going through node v. This process is iterated for all s ϵ V. A 

node v in the shortest path tree Ts is considered as a bottleneck if more than  
|𝑉(𝑇𝑠)|

4
 of the 

paths in the tree cross it219, where |V(Ts)| is the number of nodes in the tree. Finally, BN(v) 

of node v is scored as the number of such shortest path trees where it is considered as a 

bottleneck and is given by  

𝐵𝑁(𝑣) =  ∑ 𝑝𝑠(𝑣)

𝑠 𝜖 𝑉

 (3.10) 

where 𝑝𝑠(𝑣) = {
1, 𝑖𝑓 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝑠 𝑡𝑜 𝑉(𝑇𝑠)\𝑣 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑣 >

|𝑉(𝑇𝑠)|

4

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Betweenness centrality BW(v) of node v in the connected component C(v) containing v is 

the sum of the fraction of shortest paths between every pair of nodes s and t traversing 

through v, σst(v), to the total number of shortest paths between every pair of nodes s and t, 

σst, and is given by  

𝐵𝑊(𝑣) =  ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡𝑠 ≠ 𝑡 ≠ 𝑣 𝜖 𝐶(𝑣)
 (3.11) 

 

Further, the densely connected components of the network that are likely to form molecular 

complexes were identified using the Molecular Complex Detection (MCODE)220 program’s 

default settings in Cytoscape. MCODE clusters with scores ≥ 5 were further analysed by 

using Enrichr for pathway enrichment.  
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3.2.3 Network-based proximity analysis 

Gaining insights into the interconnectedness of disease genes with ageing within the PPI 

network helps to understand the risk of ageing. If disease modules in an interactome overlap 

or are significantly closer to ageing modules, then perturbations due to ageing may affect 

pathways in the disease or drive its progression. Proximity analysis was performed to study 

the associations between the ageing liver and each of the perturbed liver conditions (liver 

regeneration post-PH, NAFLD, HCC, acute liver damage by CCl4 and chronic liver damage 

by CCl4). The association between two conditions was quantified using a network proximity 

metric221: 

< 𝑑𝐴𝐵
𝐶 > =

1

||𝐴|| + ||𝐵||
(∑𝑚𝑖𝑛𝑏∈𝐵𝑑(𝑎, 𝑏)  + ∑𝑚𝑖𝑛𝑎∈𝐴𝑑(𝑎, 𝑏)

𝑏∈𝐵𝑎∈𝐴

)  (3.12) 

where d(a, b) represents the shortest path length between gene a from condition A and gene 

b from condition B in the interactome. The significance of this distance metric was 

evaluated using the Z-score of the permutation test by randomly selecting nodes from the 

whole network with degree distributions similar to that of the nodes in the two sets. Z-

scores were calculated by permutation tests of 1,000 repetitions as follows: 

𝑍𝑑𝐴𝐵  =  
𝑑𝐴𝐵 − 𝑑𝑚 

𝜎𝑚
 (3.13) 

where dm and σm   are the mean and standard deviation of the permutation test.  

Candidate gene lists for ageing and other conditions were selected from different studies 

with similar mouse strains (Table 3.1). DEGs between 3- and 27-months old mice were 

considered as signatures of ageing for proximity analysis. We also performed proximity 

analysis using DEGs from different age groups, including 12, 18 and 21 months, for 

comparison. Candidates for different phases of liver regeneration were considered by taking 

the union of DEGs of early-phase (1, 4, 10h post-PH compared to pre-PH), mid-phase (36, 

44, 48h post-PH compared to pre-PH), and late-phase (1- and 4-weeks post-PH compared 

to pre-PH). We also included DEGs of sham-operated control samples at different phases, 

i.e., early-phase (1, 4, 10h post sham surgery) and mid-phase (48h post sham surgery). 

Candidate genes for NAFLD and HCC (DEGs between healthy control and disease) were 

pooled from their respective studies (Table 3.1). The proximity analysis was performed 

using the high confidence mouse-specific STRING PPI network (confidence score ≥ 0.9). 
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Two conditions with Z-score < − 1.5 and FDR < 0.05 were considered significantly 

proximal. To infer the biological significance of proximity of ageing signatures with  

Table 3.1: Datasets used to define the list of candidate genes for different liver-

associated conditions. 

Liver 

condition 

(Accession 

no.) 

Accession 

no. 

Experimental mouse model 

(Age of mice during sample collection) 

Strain 

Ageing GSE132040 Age group spanning 3 – 27 months 

(3, 6, 9, 12, 15, 18, 21, 24, 27 months old) 

C57/BL6J 

Regeneration, 

sham-operated 

control 

 

GSE95135 12-14 weeks old mice (3 months old) C57/BL6J 

NAFLD GSE148080 Normal diet beginning at 8 weeks followed by 8-

16 weeks of normal diet/high sucrose diet (8 

months old) 

C57/BL6J 

GSE184019 Normal diet at 8 weeks followed by 3 weeks of 

normal diet/high sucrose diet. Samples collected 

at 11 weeks. 

(3 months old) 

C57/BL6J 

HCC 

 

GSE132728 Single dose of DEN at 2 weeks followed by 

weekly dose of CCl4 from 8 weeks to 24 weeks 

(6 months old) 

C57/BL6J 

GSE89689 Single dose of DEN at 2 weeks followed by first 

dose of CCl4 dose 4 weeks later. Further weekly 

dose of CCL4 for 15 weeks. Final samples were 

collected 10 weeks after the last dose of CCl4 (8 

months old) 

C57/BL6J 

Acute damage 

(CCl4) 

 

GSE167033 8-10 weeks old mice were administered with 

CCl4. Samples were collected 2 and 8 hours post 

treatment, 1, 2, 4, 8, 16 days post treatment (2-3 

months old) 

C57/BL6/N 

Chronic 

damage (CCl4) 

 

GSE167216 8-10 weeks old mice were treated with CCl4 

twice a week for 2, 6, 12 months (4, 8, 12 months 

old) 

C57/BL6/N 
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other conditions, the shortest path connecting each pair of DEG sets was identified as 

depicted in Figure 3.2. 

 

Figure 3.2: The flowchart to identify proximity genes between two conditions A and 

B. The shortest path connecting each pair of DEGs in condition A and B was identified. 

The nodes (A1, A2…An and B1, B2…Bm) can be directly connected or through an 

intermediate node. C represents common nodes between two conditions. 

 

3.3 Results 

3.3.1 Alteration in network entropy with ageing in the mouse liver 

We used the network entropy measure to study ageing. The sample-wise gene expression 

was integrated with the PPI network. The estimation of network entropy from the liver gene 

expression data shows that entropy increases in old age (18-21 months) compared to the 

young (3-6 months) mice (Figure 3.3). This is in agreement with other studies that used a 

similar approach to study the progression of ageing in the context of skeletal muscle and T-

lymphocytes215,222. The 18-21 months is a tipping point, after which entropy slightly 

decreases in the oldest age group (24-27 months). This reveals that the liver tissue 

undergoes network disorganization with ageing, increasing the disorderness or randomness. 

We also performed local differential entropy analysis between young and old age groups to 

identify nodes showing a significant increase in randomness. We identified 684 nodes with 

significantly differing single node entropies (Wilcoxon Rank sum test q-value < 0.05, 

absolute difference in median > 0.03) between young (3m-6m age) and oldest age (24m-

27m) groups. The pathway enrichment of these genes revealed that complement and 
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coagulation cascades, cytokine-cytokine receptor interaction, xenobiotics metabolism, 

steroid hormone biosynthesis, NFKβ signalling pathway, PI3-AKT signalling pathway, and 

MAPK signalling are significantly affected (Table 3.2). The entropy-based approach 

captures relevant pathways associated with ageing. 

 

Figure 3.3: Network entropy-based analysis of liver ageing network. Boxplot showing 

the change in network entropy across different age groups. Sample-wise entropy is 

calculated and is normalized by number of nodes in its corresponding network. 

Table 3.2: KEGG Pathway enrichment using Enrichr with genes showing significant 

change in single node entropy b/w young (3-6 months) and old (24-27 months) mice 

with FDR < 0.05 and absolute difference in the median between 2 groups > 0.03. 

S. no 

KEGG Pathway Overlap p-value 

Adjusted 

p-value 

1 Complement and coagulation cascades 18/88 8.46E-10 2.42E-07 

2 Cytokine-cytokine receptor interaction 30/292 8.91E-08 1.27E-05 

3 Primary immunodeficiency 10/36 2.33E-07 2.15E-05 

4 Metabolism of xenobiotics by 

cytochrome P450 13/66 3.01E-07 2.15E-05 

5 Chemical carcinogenesis 15/94 6.66E-07 3.81E-05 

6 Steroid hormone biosynthesis 14/89 1.87E-06 8.88E-05 

7 PI3K-Akt signalling pathway 31/357 2.17E-06 8.88E-05 

8 Pathways in cancer 39/535 8.15E-06 0.000291 

9 Pentose and glucuronate 

interconversions 8/34 1.48E-05 0.000471 

10 MAPK signalling pathway 25/294 2.93E-05 0.000796 

11 Cholinergic synapse 14/113 3.16E-05 0.000796 

12 Drug metabolism 14/114 3.49E-05 0.000796 

13 Th1 and Th2 cell differentiation 12/87 3.94E-05 0.000796 

14 T cell receptor signalling pathway 13/101 4.01E-05 0.000796 

15 Fatty acid degradation 9/50 4.33E-05 0.000796 
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The top-ranking nodes based on increase in entropy belong to the cytochrome P450 

superfamily (CYP7B1, CYP2D9, CYP2F2, CYP2C29) and UDP-glucuronosyltransferases 

(UGT2B5, UGT2B36 and UGT2B1), which are linked to drug metabolism and steroid 

hormone synthesis (Figure 3.4). The entropy increase is observed with FGG, FGB and 

VTN, which are associated with ECM and wound healing. VTN encodes for a secreted 

protein vitronectin that inhibits the membrane-damaging effect of the terminal cytolytic 

complement pathway (endothelial cells)223. TDO2 shows an increase in entropy and is 

linked to changes in tryptophan and kynurenine (Kyn). Tryptophan metabolism controls the 

inflammation-associated decline in age-related tissue homeostasis (inflammaging)224.  

Fatty acid oxidation genes ACSL1, ACADVL, ETFDH, ACOX2, HADHA, HSD17B4 and 

fatty acid transport gene SLC27A2 show an increase in entropy. The involvement of 

mitochondrial and peroxisome genes linked to fatty acid oxidation suggests an interplay 

between peroxisome-mitochondria in liver ageing225. CREB3L3, which cooperates with 

PPARA to regulate the expression of genes involved in fatty acid metabolism, also shows 

an increase in entropy (Figure 3.4). On the other hand, the entropy of lipid synthesis genes 

FASN, SREBF1, FADS1 and AACS and lipid transport gene LDLR decrease with ageing. 

Interestingly, the entropy of PGRMC1 and INSIG2 that regulate hepatic de novo lipogenesis     

via SREBF1 increases. Similarly, PLIN2, a gene associated with the metabolism of 

intracellular lipid droplets (LDs), also shows an increase with ageing.  

Further, genes of glutathione metabolism show a change in entropy with ageing. 

Glutathione S-transferase (GSTs) GSTP1 shows an increase in entropy, while GSTM1 

shows a decrease in entropy. GSTs are the Phase-II enzymes that protect the cells against 

damage induced by electrophiles and products of oxidative stress. They are shown to have 

anti-ageing effect226. GPTX1, which catalyzes the reduction of hydrogen peroxide (H2O2) 

by GSH, also shows an increase in entropy along with GCLC, an essential gene for GSH 

synthesis. RARRES2, which encodes a chemoattractant protein (Chemerin) secreted by the 

liver, shows a decrease in entropy with ageing. Chemerin is a modulator of immune 

response by promoting the chemotaxis of numerous immune cell types and it has a role in 

pathophysiological conditions, including HCC and NAFLD227. 

The overlap of entropy-based genes with DEGs between 3- and 27-months old mice shows 

only a few overlaps, indicating that genes identified based on statistical properties of the  



77 

 

 

 

 F
ig

u
re

 3
.4

: 
N

et
w

o
rk

 e
n

tr
o
p

y
-b

a
se

d
 a

n
a
ly

si
s 

o
f 

th
e 

li
v
er

 a
g
ei

n
g
 n

et
w

o
rk

. 
N

et
w

o
rk

 o
f 

to
p

 5
0
 n

o
d

es
 w

it
h

 s
ig

n
if

ic
a
n

t 
ch

a
n

g
e 

in
 l

o
ca

l 
en

tr
o
p

y
 a

n
d

 t
h

ei
r 

n
ei

g
h

b
o
u

rs
. 

T
o
p

 n
o
d

es
 a

re
 s

h
o
w

n
 a

s 
(♦

) 
in

 r
ed

 f
o
n

t,
 a

n
d

 t
h

e 
ed

g
es

 c
o
n

n
ec

ti
n

g
 t

h
em

 a
re

 s
h

o
w

n
 

w
it

h
 r

ed
 d

a
sh

ed
 l

in
es

. 
E

d
g
es

 b
et

w
ee

n
 n

ei
g
h

b
o
u

rs
 a

re
 n

o
t 

sh
o
w

n
. 

 

 



78 

 

underlying network are unique (Figure 3.5A).  We also compared the entropy-based 

candidate genes with the curated mouse immune genes228 (Figure 3.5B). The entropy-based 

analysis also identifies distinct immune-ageing genes compared to DEG analysis with a 

small overlap. 

This suggests that ageing is characterized by global changes in the immune system. Non-

overlapping 454 genes also include genes related to neurodegeneration (DNAHs) and 

protein digestion and absorption (Collagens). Immune markers unique to entropy-based 

analysis include genes VTN, FGB and FGG.     

 

A 

 

B 

 

Figure 3.5: Venn diagrams showing the overlap of entropy-based candidates, ageing 

DEGs and immune signatures. 
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3.3.2 Core gene expression modules associated with ageing 

We also alternatively explored the ageing gene expression changes at the network level by 

integrating DEGs and the PPI network. We expanded the network to include the first 

neighbours of DEGs. The PPI network built from DEGs comparing extreme age groups (3 

and 27 months) and their first neighbours resulted in 38764 edges connecting 3770 nodes. 

Similarly, we also constructed an ageing network for other age groups (18, 21 and 24 

months) for comparative analysis. We first clustered genes based on network topology to 

identify densely connected regions using MCODE.                              

The modular analysis of the liver ageing network (3 and 27 months) shows that genes 

corresponding to pathways such as ribosome, proteasome and oxidative phosphorylation 

are associated with top-scoring clusters (Figure 3.6). These pathways are also found in the 

18- and 24-months old mice ageing network (Table B1 and Table B2). Signalling pathways 

(mainly Wnts) regulating the pluripotency of stem cells emerged as a significant pathway 

in the oldest 27-month age group. The clusters from 18 to 24-month networks are also 

associated with cell cycle, DNA repair, p53 signalling pathway and senescence. The 

enrichment of top clusters shows the relationship to NAFLD, basal cell carcinoma, 

neurodegenerative diseases, and viral infection.  

We also identified critical nodes based on local and global network measures. Topological 

analysis of the ageing network based on local (MCC) and global (Bottleneck and 

Betweenness) metrics shows that RPS27A and TRP53 are critical nodes in the network 

(Table 3.3). Other nodes of global importance in the network include AKT1, SRC, 

CTNNB1, and EGFR, while genes associated with proteosome (PSMB2, PSMA6, PSMB4, 

PSMA1, PSMB1, PSMA3, PSMD12, PSMC1, PSMD3, PSMA4, PSMD4) are locally 

important. It is also observed that RPS27A and TRP53 are not only the nodes of global and 

local importance nodes in the extreme age group but also form the early signs of ageing 

(Table 3.3).  
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Table 3.3: Hub nodes based on cytoHubba metrics in the PPI network of DEGs 

comparing different age groups and their first neighbours. 

Network measure 18 vs 3 months 24 vs 3 months 27 vs 3 months 

MCC  

NDUFB7, 

NDUFB9, 

NDUFAB1, 

NDUFB8, 

NDUFA5, 

NDUFA6, 

NDUFV2, 

NDUFB10, 

NDUFA12, 

NDUFB5, 

NDUFA8, NDUFS8, 

NDUFS7, NDUFA9, 

NDUFA10, 

NDUFV1, NDUFS1, 

NDUFS3,  

UQCRFS1, 

NDUFS2, UQCRC1, 

UQCRC2, COPS3, 

COPS4, COPS2, 

COPS5 

 

 

PSMD1, PSMC3, 

PSMC6, PSMD11, 

PSMC5, PSMD12, 

PSMC1, PSMD3, 

PSMB7, PSMA5, 

PSMB5, PSMA2, 

PSMD6, PSMA1, 

PSMB3, PSMB2, 

PSMB10, PSMA3, 

PSMA6, PSMA4, 

PSMA7, PSMB4 

PSMB6, PSMB1, 

PSMD4, PSMB8, 

PSMA8, PSMB9, 

CDC6 RELA, 

CCND1, UBA52, 

UBC, UBB, 

RPS27A, TRP53, 

CCNB1, CDK1 

 

 

PSMB2, PSMA6, 

PSMB4, PSMA1, 

PSMA3, PSMD12, 

PSMC1, PSMD3, 

PSMA4, PSMD4,  

PTEN, RELA, UBB,  

UBC, UBA52,  

RPS27A, CDK1, 

TRP53 

 

Bottleneck  

AKT1, SRC, EGFR, 

CTNNB1, TRP53, 

RAC1, JUN  

 

TRP53, ESR1, 

AKT1, CTNNB1  

 

PTEN, UBA52, 

RPS27A, TRP53, 

AKT1, SRC, 

CTNNB1, ESR1 

 

Betweenness AKT1, SRC, EGFR, 

CTNNB1, TRP53, 

ESR1, RAC1 

RPS27A, TRP53, 

ESR1, AKT1, 

CTNNB1, KRAS, 

SRC, RHOA 

RPS27A, TRP53, 

AKT1, SRC, 

CTNNB1, EGFR, 

ESR1 
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3.3.3 Relationship between ageing and pathways associated with liver diseases and 

regeneration  

Ageing can increase the susceptibility to liver diseases like HCC and NAFLD and affect 

the ability of the liver to regenerate after damage. We hypothesized that this might arise due 

to shared or related pathways associated with liver diseases and regeneration. We performed 

network proximity analysis using condition-specific DEGs to study the relationship 

between ageing and perturbations that influence liver function. The network distance was 

quantified using the mouse PPI network. We found significant proximities between ageing 

and liver-related pathologies such as NAFLD, HCC and acute and chronic damage by CCl4 

by integrating DEGs and mouse PPI network (Figure 3.7). The proximity distance 

decreases with an increase in the age of mice. 

 

 

Figure 3.7: Network proximity of ageing with different liver-associated conditions: 

early (Regen_early), mid (Regen_mid) and late (Regen_late) phases of liver 

regeneration, early and mid-phases of sham-operated control, NAFLD, HCC, acute 

and chronic liver damages. The proximity is explored for different age groups (12, 18, 

21 and 27 months). Text in the tiles represents proximity distance. *Indicates 

FDR < 0.05 and Z-score < − 1.5. 
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Proximity analysis between ageing and the early phase of liver regeneration (1, 4, and 10 

hours post-PH) shows that older age groups are significantly proximal to the liver 

regeneration module. This proximity may influence the liver regeneration process in ageing. 

Ageing is shown to delay liver regeneration post-PH. However, the mid and late phases of 

liver regeneration associated with cell cycle and termination phases, respectively, are not 

significantly proximal to the ageing module (Figure 3.7). Therefore, proximity analysis 

captures and quantifies the impact imposed by ageing on regeneration at the network level. 

The early phase of sham-operated control is also proximal to the older age compared to the 

young age. This is consistent with the observation that the early phase of sham-operated 

control and liver regeneration is similar139. Further, the proximity of the mid-phase of sham-

operated control to the ageing network increases compared to the early phase.  

To probe the qualitative picture of proximity analysis, we identified nodes falling in the 

shortest path between every ageing gene and all candidate genes of other conditions (Figure 

3.2). This resulted in 2101, 2112, 1791, 2075 and 2322 nodes in the pairwise comparisons: 

ageing and regeneration, ageing and NAFLD, ageing and HCC, ageing and acute damage, 

ageing and chronic damage, respectively. Nodes from each comparison were collectively 

projected onto the PPI network (Figure 3.8A). The connectivity pattern suggests that ageing 

is connected to different conditions through intermediate nodes between condition-specific 

DEGs. We observed a common theme of 926 proximal molecular players connecting ageing 

with different liver conditions emerges (Figure 3.8B). This converges on important KEGG 

pathways such as pathways in cancer, proteoglycans in cancer, Epstein-Barr virus infection, 

PI3K-Akt signalling pathway and MAPK signalling pathway (Figure 3.9). GRB2, SOS, 

RAS, RAF and ERK1/2, are the important molecular players present in the top pathways 

associated with the common theme. GSK3B is another interesting candidate gene common 

across ageing, NAFLD and HCC (Figure 3.10). It is upregulated in NAFLD and 

downregulated in HCC. GSK3B connects different conditions via CTNNB1. TRP53 

signalling pathway also connects ageing to liver-associated conditions. This may control 

cell cycle entry by regulating genes such as CCND1, CDKN1A and GADD45A (Figure 

3.11). GSK3B and TRP53 interaction is also a part of the common theme. The overlap of 

926 genes with curated mouse-specific immune genes shows that 366 genes are common 

(Figure 3.12), with NFKβ as a key transcriptional factor. NFKβ regulates innate and 

adaptive immunity and is the master regulator of inflammatory responses229. We also 

identified NLRP12 as a common candidate gene that plays the role of a mitigator of 
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inflammation. It is upregulated in the early phase of liver regeneration while downregulated 

in ageing, NAFLD, and acute and chronic liver damage. 

A 

 

B 

 

Figure 3.8: Overlap of proximity nodes obtained in the pairwise comparison of ageing 

and different liver-associated conditions. (A) Crosstalk (interactions) between nodes 

of different liver-associated conditions are shown using the PPI network. The common 

theme comprises nodes that are present in all comparisons. Nodes that are neither 

part of the common theme nor specific to a condition are shown in grey. A node that 

is a DEG in at least one condition is shown by a triangle, and the first neighbour (FN) 

of DEG is shown by a circle. (B) Venn diagram showing the number of nodes 

overlapping between different pairwise comparisons. 
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Figure 3.9:  The KEGG pathway enrichment of 926 genes in the common theme of 

proximity nodes obtained in the pairwise comparison of ageing and different liver- 

associated conditions. 

 

In addition to the immune system, we also explored other common relationships between 

ageing and different liver conditions. Lipid (FASN, HMGCR, SREBF1) and bile acid 

synthesis (CYP27A1) genes are differentially expressed in ageing and liver regeneration. 

FASN, HMGCR and SREBF1 are upregulated in ageing. Mitochondrial fatty acid β-

oxidation (FADS1, HADHA, HADHB, ACSL1, ACADVL, CPT2, ECI2) also shows this 

differential pattern. CREB3L3 is differentially expressed across conditions. It is 

upregulated in liver regeneration and downregulated in ageing. PCSK9, which plays a role 

in cholesterol homeostasis, is downregulated in the early phase of regeneration and 

upregulated in ageing and NAFLD. It protects the liver against steatosis and liver injury. 

On the other hand, ANGPTL4, which facilitates the accumulation of TAG by inhibiting 

LPL, is downregulated in ageing while it is upregulated in liver regeneration.   
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Figure 3.10: Interacting partners of candidate gene, GSK3β, present in the common 

theme 

 

Ageing also influences amino acid metabolism. Genes of one-carbon metabolism (DHFR, 

MTHFD1, BHMT, SHMT1/2, MAT1A, MTR, TYMS) are affected across conditions. S-

adenosyl-methionine (SAM) metabolism controlled by MAT1 is significantly upregulated 

in liver regeneration compared to ageing and is downregulated in HCC. MAT1 regulates 

the production of SAM from methionine, which is required for methylation reactions inside 

the cell. In NAD metabolism, NAMPT is upregulated in ageing, while NNMT is 

upregulated in regeneration and downregulated in NAFLD and HCC. Genes involved in 

BCAA catabolism, glutamine catabolism (GLS2), aspartate synthesis (ASS1), and 

Tryptophan metabolism (TDO2) are also affected across different liver conditions. 
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Figure 3.12: Venn diagram showing the immune signatures in common theme shared 

by different pathological conditions 

 

3.4 Discussion 

Ageing can lead to functional impairment of liver and predisposes the liver to NAFLD and 

HCC. The liver has a unique ability to regenerate itself post-injury and help in whole-body 

metabolic homeostasis and compound detoxification. Mapping the molecular changes of 

the liver with ageing may help to understand how ageing influences liver function and 

predisposes the liver to different pathological conditions. A systems-level analysis of the 

ageing-induced liver changes and its crosstalk with the pathology of liver diseases is 

lacking. In the present study, we performed a network-level analysis of liver ageing using 

transcriptomic data of ageing and the PPI network. We used network entropy measure to 

identify nodes and pathways that show significant entropy changes in ageing. Further, we 

also performed the topological analysis of the ageing network by considering the nodes 

differentially expressed in ageing and their first neighbours to identify the core modules of 

ageing. This framework was also used to study the proximity of the ageing network with 

liver regeneration and disease networks. We showed proximity measure provides insights 

into the interconnection between ageing and liver-associated conditions. 

We observed an increase in entropy with ageing liver with the subtle difference between 

old and oldest groups (Figure 3.3). The entropy-based approach captured the relevant 

pathway-level changes linked to ageing and helped identify novel candidate genes. The 
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entropy change is driven by the selected group of genes belonging to the immune, 

complement and coagulation cascade, lipid metabolism, cytochrome P450 and UDP-

glucuronosyltransferases. Immune and lipid metabolism-related changes have been 

reported in ageing135,209. The candidate genes were filtered based on entropy changes. We 

provide experimental evidence available from the literature for the involvement of 

candidate genes in ageing or its related liver diseases. Top novel candidate genes with high 

entropy values include VTN, FGB and FGG, which are associated with changes observed 

in fibrosis under chronic liver damage condition230. We hypothesize that transcriptional 

remodelling of the liver during ageing can affect the integrity of the membrane and increase 

the susceptibility to fibrosis. Ageing is shown to increase the susceptibility to fibrosis in 

response to high-fat diet feeding231. We also found genes of the complement system (C6, 

C8, C8A, C8B) that are part of the membrane attack complex changing with ageing (Figure 

3.4). There is increasing evidence that complement systems may play a role in ageing232. 

Our analysis also revealed the PGRMC1-INSIGs-SREBF1 axis in controlling the lipid 

levels in ageing (Figure 3.4). PGRMC1 knockout leads to the buildup of fatty acids and 

predisposes mice to NAFLD233. PGRMC1 forms a complex with INSIG1 and is associated 

with the cleavage of SREBF1 via SCAP233,234. Deletion of INSIG2 also results in the 

activation of SREBF1 and de novo lipid synthesis235. Age-induced hepatic steatosis is 

alleviated in INSIG2 elevated condition236. Another candidate gene, PLIN2, also controls 

the activation of SREBP-1 and SREBP-2237. Its expression is shown to be altered in age-

related diseases, including fatty liver238,239. Fat accumulation is negatively correlated with 

the decrease in mitochondrial mass with ageing240. Further, ageing is shown to affect lipid 

homeostasis by controlling the phosphorylation of CEBPα/β241 and changing the 

nucleosome occupancy at the foci of PPAR targets242. We found that PPARA can also be 

affected through CREB3L3, the knockout of which results in severe fatty liver243. CEBPβ 

is implicated in the activation of SREBF1 transcription in liver244. RARRES2 (Chemerin) 

is another candidate ageing gene, which is also induced in NAFLD and Hepatitis B-related 

HCC. These observations suggest that ageing may increase susceptibility to liver diseases.  

The network topology-based analysis of the ageing network revealed the involvement of 

ribosomes and proteasomes, which reflects the changes in the proteostasis capacity of cells 

with ageing245. The module associated with oxidative phosphorylation in the ageing 

network (Figure 3.6) reflects the change in mitochondrial metabolism with ageing200. We 
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found Wnt pathway as an ageing module, which controls cell renewal, tissue regeneration 

and the development of HCC246. Further, TRP53 was identified as a critical node based on 

local and global graph theoretical measures. It has relevance in ageing as it can promote 

repair, survival, or elimination of damaged cells247. TRP53 optimally balances tumour 

suppression and longevity248. The decline in the function of TRP53 is observed in various 

tissues of the mouse with ageing, which can contribute to increased mutation frequency and 

tumorigenesis249. Similarly, RPS27A was also found to be a critical node in the ageing 

network, which clustered with other ribosome machinery genes in MCODE cluster 1 

(Figure 3.6) and is directly connected to TRP53. RPS27A is involved in the activation of 

p53250,251. The ribosome machinery genes RPS5 and RPS11 directly connected to RPS27A 

in the ageing network are shown to be repressed with ageing in mouse liver252. Other critical 

nodes include AKT1, SRC, CTNNB1 and EGFR, which are related to cancer signalling. 

CTNNB1 encodes a β-catenin protein responsible for controlling gene expression in the 

Wnt signalling pathway. EGFR also shows an increase in entropy, and its expression is 

correlated with liver steatosis in mice and humans253. 

The PPI network analysis of ageing and different liver conditions also shows the proximity 

of ageing genes to different liver conditions, including NAFLD, HCC, liver damage and 

repair (Figure 3.7). The common theme shared between conditions maps to immune-related 

pathways, pathways in cancer and metabolic changes. MAPK, PI3K-AKT, Ras, Wnt and 

NFκB signalling are common pathways across conditions (Figure 3.9). Studies on extended 

lifespan by pharmacological intervention suggested that anti-ageing effects are mediated by 

targeting the canonical MAPK pathway254. With ageing, there is an upregulation of MEK1, 

which triggers translation by phosphorylating its downstream target eIF4E254. Increased 

activity of eIF4E has been shown to promote tumorigenesis, thus implicating ageing effects 

on cancer255. GSK3β is a common node across conditions. Ageing is shown to inhibit 

GSK3β function256 , and this, in turn, affects the liver regeneration potential257. Inhibition 

of GSK3β acts as a protective role against lipid accumulation in NAFLD. GSK3β can 

regulate cell proliferation by controlling the growth-inhibitory activity of CEBPα and 

negatively regulates many oncogenic signalling pathways, such as the Wnt/β-catenin 

pathway258. We found GSK3B-CTNBB1 interaction as part of the common theme (Figure 

3.10), which is linked to HCC development and NAFLD. There is also a mechanistic link 

between inflammation and the development of HCC mediated by NFKβ signalling259. 

NASH condition exhibits morphological conditions related to infiltration of lymphocytes 



91 

 

and neutrophils, hepatocyte death and activation of liver resident macrophages Kupffer 

cells, creating an environment favourable for compensatory hepatocyte proliferation that 

further drives hepatocarcinogenesis260. Further, the priming phase of liver regeneration after 

PH depends on the activation of NFKβ261.  

 

We observed lipid metabolism as a common theme across ageing and liver-associated 

conditions. Induced alteration in lipid metabolic genes in ageing may increase susceptibility  

to NAFLD and affect liver regeneration. Both lipid overloading and deficiency can affect 

liver regeneration ability. Fine-tuning lipid levels by transport, biosynthesis, and oxidation 

is crucial for liver regeneration262. A high-fat diet impairs liver regeneration through IKKβ 

overexpression and subsequent NFKβ inhibition263. The aberrant activation of FASN plays 

a major role in the development of HCC, and its level is also shown to increase during the 

induction of senescence264.   

In amino acid metabolism, one-carbon metabolism is altered across conditions, and it plays 

a crucial role in maintaining tissue homeostasis and longevity265,266. It generates various 

metabolites that are building blocks of nucleotide synthesis, methylation, and redox 

reactions. Oncogenic signalling hijacks the one-carbon metabolism to support proliferation 

and survival267. Genetic disruption of MAT1 inhibits liver regeneration127. MAT1 

expression is reduced in different liver pathologies, including NAFLD and HCC. Hepatic 

methionine is depleted in mice that developed NAFLD, and administration of methionine 

and choline-deficient diet led to alterations in the expression of lipid metabolism 

genes268,269. Metabolomics analysis of ageing shows the levels of serine and methionine 

decrease in liver270. These highlight the importance of one-carbon metabolism in liver 

function and pathology. Further, BCAA is altered across conditions, and loss of BCAA 

catabolism promotes HCC development and progression271. However, this is not suppressed 

in liver regeneration127. BCAA metabolites are also altered in aged liver200. 

In summary, our study maps the network-level changes of ageing and dissects the crosstalk 

between different conditions, including regeneration and diseases in the mouse liver. We 

uncovered the local and global changes in immune response, cancer signalling and 

metabolism with ageing and identified novel candidate genes. We showed the proximity of 

the liver ageing network to liver-condition-specific networks and identified the 

interconnections through common pathways. This explains how ageing increases 
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susceptibility to different disease conditions and affects the capacity of the liver to 

regenerate. 

As an initial study, we used the bulk sequencing data to generate a liver tissue-specific PPI 

network in different contexts for comparison. The bulk changes can be due to cell 

composition changes or alterations in the gene expression of each cell in the population. 

The single-cell data will further help to refine the interactions in a cell-type-specific manner. 

Nevertheless, our study provides the initial framework for single-cell network analysis of 

liver ageing and its related diseases. Our study is based on RNA-seq data of mouse liver 

available across different age groups and pathophysiological conditions from similar 

strains. Further, it will be useful to extend our analysis pipeline to human context to account 

for human specific regulation272 and mouse-to-human translation. 
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Chapter 4 Gene expression signatures of stepwise progression of 

Hepatocellular Carcinoma 

4.1 Introduction 

HCC is the common form of primary liver tumour and the third-most leading cause of 

cancer-related deaths globally273,274. Major risk factors leading to HCC include viral 

infections (Hepatitis B - HBV and Hepatitis C - HCV), excessive alcohol and tobacco 

consumption, exposure to fungal toxins, and NAFLD, with 90% of cases arising from the 

underlying chronic liver disease275. While HBV-driven HCC is prevalent in East Asia and 

Africa, HCV infections are most common in the US and Europe. NAFLD is emerging as 

the leading risk factor of HCC, especially in the West, owing to the rise in obesity and 

diabetes276. Despite continuous advances and management strategies designed to mitigate 

the incidence of HCC, its mortality rates have been rising over the last two decades. The 

major caveat in reducing the incidence of HCC is the detection at an early stage since more 

than 50% of HCC cases are diagnosed at advanced stages277. Therefore, a better 

understanding of HCC pathogenesis and its molecular underpinnings will help reduce the 

rising cases. 

Most HCC cases develop in the background of unresolved chronic inflammation278, which 

triggers a persistent healing response279. The unbalanced healing response disturbs the 

architecture of the liver, leading to fibrosis, followed by cirrhosis. The regenerating nodules 

produced during cirrhosis fuel the transformation of hepatocytes to premalignant lesions 

called dysplastic nodules. These premalignant lesions develop into early HCC (eHCC) and 

progressive HCC (pHCC). Although this stepwise progression from chronic liver disease 

to tumour state is widely prevalent in HCC, about 20% of cases arise from a non-cirrhotic 

background280. While most non-cirrhotic HCCs develop from metabolic syndrome281, HBV 

or HCV infection can also lead to HCC from accelerated fibrosis without cirrhosis280,282. 

Hence, it is crucial to consider the existence of multiple trajectories to HCC when 

developing diagnostic markers. 

Due to the inherently complex nature of HCC development, managing patients is also quite 

challenging. Surgical resection is the primary treatment for HCC patients with preserved 

liver function but is prone to recurrence in about 70% of the cases within a few years277. 

Liver transplantation is another option for patients not eligible for resection but is limited 
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by the availability of donors283. Under the circumstances where resection or liver 

transplantation is not amenable, liver-directed medication fails, or recurrence is seen post-

resection, systemic therapy is chosen277. Systemic therapy in the form of tyrosine kinase 

inhibitors and immunotherapy targeting immune checkpoints have been developed for 

treating advanced-stage HCC284. Further, treatment strategies must also consider underlying 

liver disease along with tumour stage285,286, which may account for differences in the risk 

of HCC recurrence among patients287. 

The advancement in the high throughput techniques (next-generation sequencing) is 

helping to map the molecular changes of HCC at genomic, transcriptomic, and epigenetic 

levels278,288.  This information provides insights into the various signalling pathways 

involved in hepatocarcinogenesis. These include differentiation and development pathways 

(Wnt/β-catenin, Notch Hedgehog signalling), genomic stability and cell cycle (TP53, RB1), 

telomerase (TERT), growth and cell proliferation (PI3K/AKT/mTOR, RAS/MAPK, 

EGF/EGFR), angiogenesis (VEGF/VEGFR, PDGF/PDFGR) and chromatin remodelling 

(ARID1A/ARID1B/ARID2 and MLL signalling)278,289. However, the current 

understanding of the interplay of various signalling pathways in HCC is far from complete. 

Molecular profiling distinguishes diverse subgroups of HCC that are otherwise 

indistinguishable by conventional histological methods290. Gene expression changes in 

tumour samples are used to predict recurrence and stratify patients into high and low-risk 

groups291.  In liver cancer, genes that show a fold change in expression between the normal 

and tumour samples are a better predictor of survival than considering candidates based on 

tumour samples alone292. Gene expression profile of tumour-adjacent normal tissue is also 

reported to predict HCC recurrence293. Prediction models proposed in these studies are 

based on differentially expressed genes in tumours or pre-defined gene signatures.  

A recent study on a comprehensive analysis of tumour samples, tumour-adjacent normal 

samples, and normal healthy samples showed that tumour-adjacent normal samples 

represent an intermediate transcriptomic state between the other two294. Therefore, there is 

a need to explore the multi-step progression of HCC through different trajectories to gain 

further insights into the molecular mechanisms and develop predictive models. Network-

based approaches provide a suitable platform to extract meaningful information from omics 

data, hypothesis generation, stratification of disease classes, and discovery of 

biomarkers295. In the present work, we aim to understand the molecular pathogenesis of 
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HCC sequentially from normal to tumour through different premalignant stages. A network-

level analysis of the transcriptomic profile of tumour samples and tumour-adjacent normal 

samples in different liver damage conditions was performed to obtain insights into the 

transition from normal to precancerous to cancer state. The hierarchical changes: modules, 

pathways, and genes related to HCC progression and survival prediction were identified. 

4.2 Methods 

4.2.1 Dataset(s) description 

Bulk RNA-seq transcriptomics data of HCC progression was obtained from GEO with 

accession number GSE148355. The dataset consists of tumour and non-tumour samples 

from HCC patients or patients with the chronic liver disease treated with either total 

hepatectomy (TH) or partial hepatectomy (PH) at Seoul National University Hospital. 

Clinical information is available for 54 tumour samples (35 are from TH patients and 19 

from PH patients). The dataset also comprises 47 premalignant and 15 normal samples. The 

normal samples were from patients with metastatic cancer/polycystic liver disease/or 

cholangiocarcinoma. All non-tumour liver tissues have no evidence of hepatic fibrosis or 

viral hepatitis. Out of these 47 premalignant samples, 24 are tumour-adjacent normal 

samples. The premalignant stages include Fibrosis Low (FL) – 10 samples, Fibrosis High 

(FH) -10 samples, Cirrhosis (CS) – 10, Dysplastic nodule low grade (DL) – 10 samples, 

and Dysplastic nodule high grade (DH) – 7 samples. All samples were collected after 

receiving written informed consent from the patients, and the original study was approved 

by the Institutional Review Board of Seoul National University Hospital. This dataset is 

referred to as the Korean cohort. The plot summarising clinicopathological features of 

tumour samples is given in Figure 4.1. 

In addition, we used HCC datasets from TCGA (TCGA-LIHC) and GEO (GSE14520) with 

available clinical information. TCGA gene expression data and clinical data were obtained 

from UCSC Xena (https://xena.ucsc.edu/). TCGA-LIHC comprises 316 tumour samples 

with clinical information, and 39 of them have paired normal samples. GSE14520 is a 

microarray-based (GPL3921 platform) gene expression profiling from HCC patients treated 

with surgical resection. The dataset includes gene expression data of 210 tumour and 210 

adjacent normal samples with associated clinical information and is referred to as the 

Chinese cohort. 
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Figure 4.1: Clinicopathological features of tumour samples in the Korean cohort. This 

includes the surgery type (TH/PH), disease free (Yes/No), whether the tumour sample 

has an adjacent normal sample (Paired), the premalignant stage of the tumour-

adjacent normal, and the risk factor (HBV, HCV, Alcoholic, None, NASH). 

4.2.2 Workflow 

A systems-level analysis was designed to study the pathogenesis of HCC at multiple levels: 

modules, pathways, and genes (Figure 4.2). The analysis pipeline was applied to three 

groups of samples: (a) only tumour samples, (b) adjacent normal and tumour samples, and 

(c) all normal and premalignant samples. To identify modules, the co-expression network 

was constructed from gene expression data of the Korean cohort using weighted gene co-

expression network analysis (WGCNA) in R150,151. FPKM values were transformed to 

log2(FPKM + 1), and the top varying genes were selected using the rowVars function to 

construct the correlation (Pearson) matrix sij for WGCNA. A signed network was built by 

transforming the correlation matrix to an adjacency matrix (aij) using the power adjacency 

function and soft thresholding (aij = sβ
ij). Scale-free topology criteria was used to choose 

the power β. Subsequently, a Topological Overlap Matrix (TOM) was computed from the 

adjacency matrix, followed by dendrogram construction using 1 – TOM. Modules were 

identified from the dendrogram using the dynamic cut tree algorithm, and module 

eigengene expression (ME) for each module was calculated using singular value 

decomposition (SVD). 
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Figure 4.2: The workflow to study progression from normal to precancerous to cancer state 

in HCC. Gene co-expression analysis was performed on (a) only tumour samples, (b) adjacent 

normal and tumour samples, and (c) all normal and premalignant samples to identify 

modules, genes and pathways associated with HCC pathogenesis and survival. 

Modules significantly correlating with disease-free survival (DFS) and other clinical traits 

were identified. Categorical traits such as surgery/treatment (TH and PH) and premalignant 

state were converted into continuous numerical values to compute correlation with different 

modules. For surgery, PH and TH were binarized as 1 and 2, respectively. The premalignant 

states were converted to numerical with 1, 2, 3, 4, 5, and 6 indicating normal, FL, FH, CS, 

DL, and DH, respectively. Hub genes from modules were extracted based on module 

membership (MM > 0.8) and intramodular connectivity. 

Candidate genes were selected for univariate survival analysis based on the modules that 

correlated with DFS under each condition. Samples were dichotomised into two groups 

based on the median gene expression profile of candidate genes, and survival analysis was 

performed using the survival R package296. Further, module preservation analysis297 was 

carried out using TCGA data as the test set to access the biological relevance of modules 

identified from the Korean cohort. The Zsummary statistics was used to evaluate whether the 

module is preserved between the reference set (Korean cohort) and test set (TCGA) as: 

𝑚𝑜𝑑𝑢𝑙𝑒 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑍𝑠𝑢𝑚𝑚𝑎𝑟𝑦) = {
𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 2 < 𝑍𝑠𝑢𝑚𝑚𝑎𝑟𝑦 < 10

𝑠𝑡𝑟𝑜𝑛𝑔, 𝑍𝑠𝑢𝑚𝑚𝑎𝑟𝑦 ≥ 10
 (4.1) 
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4.2.3 Pathway enrichment analysis 

The enrichment analysis of module genes was performed using Enrichr152 to identify 

dysregulated pathways. The ClueGO Cyctoscape plugin was used with default settings to 

visualise the interrelations of the GO biological terms associated with modules298. 

4.3 Results 

4.3.1 Co-expressed modules of tumour samples 

The co-expression pattern of genes within tumour samples (Korean cohort) was studied 

using top-varying genes. We found five modules (T1, T2, T3, T8, and T9) that significantly 

correlated with DFS (Figure 4.3). Coincidentally, T1 and T9 modules are significantly 

correlated with the surgery/treatment (i.e., PH or TH) as well. An increase in DFS is 

associated with TH as the treatment. This is in agreement with the original study299, which 

shows TH group has better DFS compared to patients undergoing PH treatment, although 

there were no differences in grade/stage of tumour in these two groups. 

 

Figure 4.3: Module-trait correlations of tumour samples. DFS representing disease-

free survival is a continuous variable. Surgery (treatment) is a binary variable with 

partial hepatectomy (PH) represented as 1 and total hepatectomy (TH) as 2. *** 

indicates p-value < 0.001, ** indicates 0.001 ≤ p-value < 0.01, * indicates 0.01 ≤ p-value 

< 0.05.  

KEGG pathway enrichment of the T9 module showed that cell cycle-related pathways play 

an important role in governing the survival of a patient post-treatment (Figure 4.4). The  



99 

 

 

Figure 4.4: KEGG pathway enrichment of tumour modules. For each module, 15 most 

significant pathways sorted according to adjusted p-value are displayed (bottom to top within 

each module). *** indicates adjusted p-value < 0.001, ** indicates 0.001 ≤ adjusted p-value < 

0.01, * indicates 0.01 ≤ adjusted p-value < 0.05. To the right of each bar, the number of 

overlapping genes and the total number of genes of a pathway are shown. 
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eigengene expression pattern of this module shows that DFS decreases with an increase in 

cell cycle activity. The T1 module includes cancer-related genes and pathways relevant for 

DFS prediction post-treatment. The T2 module that is positively correlated with DFS is 

enriched for amino acid metabolism, fatty acid degradation, and xenobiotic metabolism, 

indicating the capability of the liver to carry out its basic functions post-treatment, thus 

improving survival. It is also associated with complement and coagulation cascades. The 

T3 module is negatively correlated with DFS and is associated with ribosomes. T4 and T5 

modules are associated with the treatment and are related to ECM and regulation of the Wnt 

signalling pathway, respectively. 

Since some modules showed a significant correlation with DFS, we checked if their 

respective eigengene expression could be used to identify differences in survival probability 

(Figure 4.5). We observed that the corresponding eigengene expression of DFS modules 

(median) also performs well in predicting the survival probability. Further, the hub genes 

of these modules also predicted the differences in survival probability and helped us to 

identify biomarkers. Table 4.1 shows the list of hub genes in the T1 module and their 

association with the DFS of patients. The low expression of the macrophage scavenger 

receptor gene MARCO is associated with poor DFS in HCC patients. The evaluation of  

 
 

Figure 4.5: Survival analysis based on eigengene expression of tumour modules. 

Samples are classified into high and low-expression groups based on the median of 

eigengene expression of each module. ‘p’ indicates the p-value of survival analysis. 

MACRO protein expression by immunostaining in HCC shows that its level decreases as 

the disease condition worsens300. CELC1B is a platelet-related gene, and its expression is 

related to immune cell infiltration301. CFP regulates the complement pathway, and its 

expression correlates with the infiltration of immune cells302. Genes related to the lectin 

pathway of complement activation (COLEC10, FCN2, FCN3) are also DFS hub genes of  
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Table 4.1: Survival analysis of hub genes of module T1 on Korean cohort tumour 

samples.  

Gene p-value Hazard ratio 

CLEC1B 0.00037 0.17 

COLEC10 0.00044 0.18 

MARCO 0.00044 0.18 

CRHBP 0.00044 0.18 

CFP 0.00060 0.18 

HHIP 0.00064 0.18 

FCN2 0.00220 0.23 

FCN3 0.00330 0.25 

DNASE1L3 0.00360 0.25 

GDF2 0.00370 0.25 

BMP10 0.00370 0.25 

PLAC8 0.02000 0.34 

STAB2 0.02300 0.35 

CLEC4G 0.02300 0.35 

 

 

 

Figure 4.6: Module preservation statistics of Korean cohort tumour modules in TCGA 

tumour samples. Each point in the plots represents a module. (A) Median rank 

statistic as a function of module size. Low numbers on the y-axis indicate high 

preservation. (B) Zsummary statistic as a function of module size. Thresholds for 

moderate (Z = 2) and high (Z = 10) preservation are shown as blue and green lines. 

the T1 module. The expression of CRHBP, which mediates the reaction between the 

corticotropin-releasing hormone and its receptor, is also a predictor of DFS in HCC. The 

hub genes of the T2 module are related to metabolic processes, including TAT, a tumour 

suppressor gene. MTHDF1, involved in the interconversion of 1-carbon derivatives of THF, 

is also a DFS hub gene. Hub genes associated with microtubules and chromosomes from 
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the T9 module are also good predictors of DFS in HCC. The modules identified from 

tumour samples of the Korean cohort are also preserved in tumour samples of TCGA 

(Figure 4.6). Further, the genes from the above modules also show significant survival 

differences in TCGA tumour samples (Table C1). 

4.3.2 Progression from precancerous to cancerous state in TH and PH samples 

Module-trait correlation with tumour samples revealed that modules significantly 

correlated with DFS also captured the differences in surgery a patient has undergone. Based 

on these observations, we hypothesised that there could be differences in the mechanism of 

precancerous to cancerous progression between two groups of patients undergoing either 

TH or PH. Therefore, we investigated the differences in the progression by identifying co-

expression modules in each group from both tumour and tumour-adjacent normal samples 

and correlating them with disease conditions (Figure 4.7). 

 

 

Figure 4.7: Module-trait correlations of precancerous-cancer samples in (A) TH and 

(B) PH treatment groups. Tissue type is a binary variable with the precancerous state 

as 1 and cancer state as 2. *** indicates p-value < 0.001, ** indicates 0.001 ≤ p-value 

< 0.01, * indicates 0.01 ≤ p-value < 0.05.  

The progression from precancerous to cancerous state in both groups shows that liver 

function is affected in tumour samples. Tumour samples show a decrease in liver function 

(TH1 module in TH group, PH5 module in PH group) and compromised immune-related 

pathways (TH4 module in TH group, PH4 module in PH group) (Figure 4.8). The  
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Figure 4.8: KEGG pathway enrichment of precancerous to cancer modules. For each module, 

15 most significant pathways sorted according to adjusted p-value are displayed (bottom to 

top within each module). *** indicates adjusted p-value < 0.001, ** indicates 0.001 ≤ adjusted 

p-value < 0.01, * indicates 0.01 ≤ adjusted p-value < 0.05. To the right of each bar, the number 

of overlapping genes and the total number of genes of a pathway are shown. 
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transcription factor enrichment of TH1 and PH5 modules based on ENCODE data shows 

HNF4A as an associated transcription factor. Modules capturing cell cycle changes in both 

groups (TH3 module in TH, PH2 module in PH) show a positive correlation in tumour 

samples. We observed significant correlations to these biological processes in PH compared 

to TH (Figure 4.7). PH4 module shows a higher negative correlation compared to the TH4 

module with respect to tumour samples, suggesting that immune response genes are 

significantly downregulated in PH compared to TH. Another feature difference in the 

precancerous to cancer progression is that the cell cycle module shows a very high positive 

correlation in PH samples (PH2 module) compared to TH samples (TH3 module). A 

comparison of these modules in both groups shows some overlap, but the majority of genes 

are unique to a particular module in a group (Figure 4.9). These sets of unique genes may 

account for the difference in the precancerous to cancer progression.  This analysis gives a 

global picture of precancerous to cancer progression in both TH and PH groups fuelled by 

deviations in liver function, cell cycle, and immune response. 

A B 

  

Figure 4.9: Comparison of precancerous to cancer progression in TH and PH 

treatment groups. (A) Venn diagram comparing precancerous-cancer modules in TH 

and PH. (B) Venn diagrams showing DEGs between cancer versus precancerous 

samples in TH and PH groups. Red and blue colour text indicates up and down-

regulated DEGs.  

In addition to these observations, DEGs comparing tumour versus adjacent normal in both 

the groups also supports this stark difference in cell cycle and immune response genes 

between the two groups (Figure 4.10). Further, we also observed that oxidative 

phosphorylation genes are downregulated in the TH group, while genes of choline 

metabolism in cancer and arginine biosynthesis are upregulated in PH. Genes of Th1 and  
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Figure 4.10: KEGG pathway enrichment of up and down regulated DEGs in different 

categories (TH only, PH only, Common to TH and PH). In each category, pathways with p-

value < 0.05 within the top 15 pathways are shown. X-axis represents % of overlapping DEGs 

genes in each pathway. For down regulated pathways, negative value of % overlap is plotted. 

*** indicates adjusted p-value < 0.001, ** indicates 0.001 ≤ adjusted p-value < 0.01, * indicates 

0.01 ≤ adjusted p-value < 0.05. 
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Th2 cell differentiation, Th17 differentiation, and complement and coagulation cascades 

are downregulated in the PH group. We also performed module preservation analysis using 

TCGA samples (Figure 4.11). The modules from the PH and TH groups show medium to 

high preservation in TCGA samples. 

 

Figure 4.11: Module preservation statistics of Korean cohort precancerous-cancer 

modules in TCGA tumour and adjacent normal samples. Each point in the plot 

represents a module. (A), (C) Median rank statistic as a function of module size. Low 

numbers on the y-axis indicate high preservation. (B), (D) Zsummary statistic as a 

function of module size. Thresholds for moderate (Z = 2) and high (Z = 10) 

preservation are shown as blue and green lines. 

4.3.3 Co-expressed modules of normal and premalignant samples 

The premalignant condition (47 samples) in the dataset ranges from fibrosis (low and high 

grade) to cirrhosis and dysplastic nodule (low and high). We also included 15 normal 
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samples to capture the changes from normal to premalignant lesions sequentially based on 

co-expression analysis. We found seven modules significantly correlating with 

premalignant stages (Figure 4.12A). The N5 module showed a significantly high 

correlation to premalignant stages with low expression in normal and FL stages and high 

expression in FH, CS, DL, and DH stages (Figure 4.13). This module is associated with 

cellular response to type 1 interferon, cytokine-mediated signalling, and defense response 

to the virus (Table C2). The N7 module is related to neutrophil-mediated immunity and 

inflammatory response. The N10 module is also positively correlated to premalignant 

stages, capturing the changes in gene expression that occurred early in the FL stage. These 

early changes are associated with the complement coagulation cascade, ribosome 

machinery, and lipid metabolic process. The N11 module showed a gene expression pattern 

similar to the N10 module and is associated with mitochondrial oxidative phosphorylation. 

A B 

 

 

Figure 4.12: (A) Module-trait correlations of premalignant samples. Stage represents 

different premalignant conditions (N, FL, FH, CS, DL, DH). (B) Venn diagram 

showing the intersection of module N3 genes and genomic predictors of recurrence303. 

The N2 module is negatively correlated with the premalignant stage and is enriched for 

metabolic pathways linked to liver function and HNF4 transcriptional activity. The 

eigengene expression shows that liver function is compromised in the late premalignant 

stages (Figure 4.13). Intriguingly, the N4 module that is positively correlated with  
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Figure 4.13: Eigengene plots for individual premalignant modules showing 

correlation with premalignant stage. *** indicates p-value < 0.001, ** indicates 0.001 

≤ p-value < 0.01, * indicates 0.01 ≤ p-value < 0.05. 
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premalignant stages is associated with cell cycle pathways, showing the onset of the 

tumourigenesis process. 

A previous study on HCC showed that hepatic injury and regeneration (HIR) signature (233 

genes) is a good predictor of DFS using premalignant samples from the Chinese cohort303. 

We verified the overlap of the HIR signature with premalignant modules identified through 

our analysis. We observed that only the N3 module, which is not associated with 

premalignant states, showed a significant overlap of 61 genes with the HIR signature 

(Figure 4.12B). The N3 module is associated with immune pathways and cellular 

senescence.  

We also tested the ability of individual modules to predict the DFS. For this purpose, the 

Chinese cohort was chosen due to the large sample size with clinical information compared 

to the Korean cohort. For each module (N1 – N11) identified in the Korean cohort, we 

calculated the corresponding eigengene from paired normal samples of the Chinese cohort, 

followed by survival analysis based on eigengene expression.  The eigengene expression of 

the N3 module predicts DFS (p-value=0.004) with a high expression value associated with 

poor survival (Figure 4.14). It was observed that 29 out of the 61 intersecting genes 

between the N3 module and the HIR signature performed well in predicting the DFS in 

univariate Cox regression analysis. These include genes, PLK2, ODC1, WWC1, MYC, 

DDX21, SOCS3 (Table C3). The high expression of these genes is associated with poor 

survival. 13 genes out of 96 non-intersecting genes also showed good predictability of DFS. 

Interestingly, we also observed that eigengene expression of modules associated with 

premalignant stages (N10, N7 and N5) predicted DFS based on normal/premalignant 

samples (Figure 4.14). The N5 module yielded the best p-value of 0.0022 in the DFS 

analysis. THBD (p-value=0.00035) and BCL2L1 (p-value=0.0007) are top candidate DFS 

genes from the N7 module (Table C3). THBD is a classical marker for dendritic cells 

(DCs). Increased DCs are associated with early relapse of HCC304. BCL2L1 promotes 

invasion and inhibits apoptosis of liver cancer cells305. High expression of FOS (p-

value=0.005) and JUN (p-value=0.0015) in the N5 module are also associated with poor 

DFS (Table C3). Thus, by extracting modules of co-expressed genes from premalignant 

samples, we identified biomarkers for DFS prediction. 
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Figure 4.14: Eigengene-based survival analysis of tumour-adjacent normal samples in 

the Chinese cohort. For each of the premalignant modules from the Korean cohort 

that showed a significant correlation to the premalignant state, the corresponding 

eigengene was calculated in the Chinese cohort tumour-adjacent normal samples. 

Samples are classified into high and low-expression groups based on the median of 

eigengene expression of each module. ‘p’ indicates the p-value of survival analysis. 

4.3.4 Cell cycle related pathways change in progression from normal to precancer to 

HCC 

It was observed that cell cycle-related pathways were enriched in premalignant samples 

(N4 module). Similarly, TH3 and PH2 modules from the precancerous to the cancer stage 

of TH and PH samples were also associated with the cell cycle. The overlap of these module 



111 

 

genes with the cell cycle-related genes obtained from the GO term showed that 55 genes 

are common and found in precancerous stages (Figure 4.15). We observed an increase in 

cell cycle-related genes with progression from precancer to cancer in TH3 and PH2 

modules, having 222 and 365 genes, respectively. There are 169 cell cycle genes unique to 

the PH2 module. 

To gain further insights into the cell cycle processes, genes of the individual modules (N4, 

TH3, PH2) overlapping with cell cycle genes (56, 222, 365 genes, respectively) were 

visualised using GO biological processes with ClueGO Cytoscape plugin. The 55 common 

genes map to biological processes related to the kinetochore, microtubule and chromosome 

(Figure 4.16). GO terms unique to TH3 and PH2 modules suggest the progression 

differences from precancerous to cancer state between TH and PH conditions. Checkpoint 

signalling, negative regulation of the cell cycle process, DNA repair process, and regulation 

of exit from mitosis are observed in the TH3 module but not in the PH2 module (Figure 

4.17 and Figure 4.18). On the other hand, the PH2 module shows positive regulation of 

cell cycle, proliferation, cell division, and cytokinesis, along with positive regulation of 

protein metabolic processes. There is an increase in the number of genes related to 

microtubule spindle organization compared to N4 and TH3 modules. Further, DFS cell 

cycle genes related to microtubules, kinetochores, and centromere also overlap with genes 

of the N4 module, suggesting some of these changes are associated with premalignant 

stages. 

 

Figure 4.15: Venn diagram showing the overlap of cell cycle genes with modules 

significantly enriched for cell cycle related pathways. 
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4.4 Discussion 

Understanding the molecular mechanisms involved in the progression of HCC through 

multiple trajectories is crucial for improved diagnosis, prognosis, and treatment. In this 

direction, we investigated publicly available transcriptomics data of HCC patients 

undergoing liver transplantation or resection treatment. Gene co-expression network-based 

framework was employed to get molecular insights from the transcriptomics data of tumour 

samples, tumour-adjacent normal samples in different premalignant states, and normal 

samples. This approach identified modules of co-expressed genes, pathways, and genes that 

characterize different trajectories and predict DFS based on premalignant and tumour 

samples.   

Modules and genes related to the cell cycle, immune system, ribosome, and liver metabolic 

pathways were good predictors for DFS using tumour samples (Figure 4.5 and Table C1). 

An increase in the ribosome and cell cycle activity and a decrease in the expression of 

immune (complement system) and liver metabolic genes are associated with poor DFS. 

Liver function and proliferation are shown to be mutually exclusive, and the transition to 

proliferation occurs with the inhibition of liver function306. HCC occurrence and 

progression are related to the interaction between viruses and ribosomes307. A decrease in 

the complement system also indicates a change in the immune infiltration patterns. DFS 

modules were also associated with the treatment (surgery) given to patients: PH and TH 

(Figure 4.3). In addition, we also found a tumour module (T4) linked to ECM to be 

associated with treatment (Figure 4.4). 

The network analysis of patients who have undergone PH and TH was performed 

independently, including the tumour and corresponding tumour-adjacent normal samples, 

to understand the differences in progression. We observed that the same biological 

processes are affected to a different extent in TH and PH groups. Both groups show a 

decrease in liver function and immune system and an increase in cell cycle activity. 

However, the tumour samples in the PH group show a very high correlation to these 

biological processes (Figure 4.7 and Figure 4.8). This indicates that the extent of immune 

suppression and decrease in liver function is related to cell cycle activity in tumour samples, 

bringing about the variability in the outcomes. This view contrasts with our observations 

from modules identified from normal and premalignant samples. We observed an increase 

in immune activity and cell cycle gene expression and a decrease in liver function. An 
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increase in immune activity may be associated with the antiviral mechanism (most patients 

have HBV infection) by interferon signalling. Genes of immune modules (N5, N7, N10) 

show some overlap with downregulated immune modules (TH4 and PH4) specific to 

tumour samples. FOS and JUN are part of the upregulated module in premalignant samples 

and downregulated modules in tumour samples. This suggests a shift in immune activity 

from a premalignant state to tumour state. Pro-inflammatory M1 marker CCL2 decreases 

in tumour modules TH4 and PH4 but increases in the premalignant state. The expression of 

fibrotic genes EGR1, JUND, KLF2 and TAGLN also decreases in tumour samples (PH4 

module). 

On the other hand, genes related to liver function decrease in premalignant and tumour 

samples. HNF4A, which controls liver function, is known to be inhibited by increased 

inflammation (immune activity) in liver fibrosis308,309. The expression of HNF4A leads to 

the restoration of metabolic function and reversing (attenuation) of liver fibrosis and 

cirrhosis via controlling macrophages and hepatic stellate cells310. HNF4 drives the 

transition of macrophages to the M2 phenotype. We hypothesise that the mutual antagonism 

between HNF4A and immune activity plays a role in HCC progression. An increase in 

inflammation may result in the inhibition of HNF4A with an increase in cell cycle activity. 

A progressive loss of HNF4A activity is observed in liver diseases (NAFLD and NASH) 

compared to HCC311. We observed that the transition from normal to premalignant to 

tumour state is also characterised by an increase in cell cycle activity.  Genes related to 

mitotic spindle organisation are present in the premalignant state, and some of them are also 

DFS genes in tumour samples. An increase in the expression of genes involved in the 

maintenance of genomic integrity is associated with chromosomal instability (CIN), which 

is a prognostic factor in multiple cancers312,313. There is also an emerging link between CIN 

and tumour immunity. 

We observed that multiple (N3, N7, N5, N10) modules from premalignant samples are good 

predictors of DFS (Figure 4.14). The N3 module showed some overlap with the HIR 

signature, which was earlier proposed for DFS prediction. However, we identified three 

more modules that can be used for the prognostic task. These modules are associated with 

the immune system. We obtained the best performance (p value=0.0022) with the eigengene 

expression of the N5 module (Figure 4.14D). These modules are associated with 

premalignant conditions (fibrosis, cirrhosis), and an increase in the eigengene expression is 
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associated with poor survival. This suggests that early relapse can also be predicted based 

on tumour-adjacent normal immune environment. Most studies on HCC relapse are based 

on immune cell recruitment in tumour samples. Early-relapse HCC cases have increased 

recruitment of dendritic cells (DC) and CD8+ T cells compared with primary tumours299,304. 

However, our study showed that the gene expression of tumour-adjacent normal samples of 

HCC patients contains multiple signatures relevant to predicting DFS.  
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Chapter 5 Transcriptomic network analysis of liver 

transplantation: from rodent to human model of liver 

regeneration 

5.1 Introduction  

The incredible ability of the liver to acquire its lost mass (due to injury or partial resection) 

has been extensively investigated using rodent models. Investigation of liver regeneration 

in recent times has shifted to understanding the cellular processes that lead to restoration of 

liver mass post-transplantation or resection in humans67. In rodents, 2/3rd partial liver 

resection or a 30% partial liver graft restores to a size of 100% within 7-10 days and in 

humans, it takes around three months to restore liver mass after hepatectomy314. Despite 

enormous differences in the time scales, a study by Young and Periwal (2016) showed that 

the phenomenological model of rat liver regeneration could be adapted to humans with 

changes in parameters characterising metabolic load per hepatocyte. It is a theoretical 

measure of metabolic demand on the liver normalised to liver mass315. 

Animal models of liver regeneration have created hope of extrapolating the findings to 

translational impact on human health. The phylogenetic similarity between species argues 

for a unifying principle. However, a detailed understanding of the molecular mechanisms 

after liver donation or resection in the human liver regeneration context would be vital for 

clinical application. The major goal of the adult-to-adult donor liver transplantation cohort 

studies is to understand the clinical manifestations of liver regeneration. This involves 

characterising the growth pattern in donors and recipients and their final outcomes316. 

The transplantation procedure consists of three main stages: 1) donor surgery, 2) backbench 

preparation of the liver graft and 3) recipient surgery. Liver transplantation can be either 

from a deceased or live donor (Figure 5.1). In the case of a live donor, a partial liver graft 

is removed, and the blood vessels are flushed with a storage solution to prevent thrombosis 

and maintain its functionality. During the backbench preparation, the graft is stored in a 

cold preservation solution until implantation. In the case of cadaveric liver transplantation, 

the donor’s liver is resected with an adequate length of blood vessels, which are later 

connected to the blood vessels in the recipient317. During transplantation, the time from the 

perfusion of the donor’s liver with storage solution to its removal from cold storage is 

defined as cold ischemia time. The time from the removal of the donor’s liver from cold 



119 

 

storage to the implantation of the graft into the recipient (reperfusion) is called warm 

ischemia time. The restoration of circulation in the recipient via the portal vein and arterial 

anastomosis is called reperfusion317,318. The graft from a living donor helps to reduce 

dependency on dead donors’ availability and reduces the wait time for liver transplantation. 

 

 

Figure 5.1: The process of liver transplantation from a donor to a recipient.  

The regeneration from graft involves competition between cellular processes to restore the 

mass vs. the metabolic function of the liver, which can impact the graft function. The graft 

also undergoes cellular damage due to cold and warm ischemia, surgical stress, and 

implantation. In the case of deceased donors, grafts can also undergo damage due to brain 

death. Ischemia/reperfusion injury (IRI) occur during the restoration of blood flow after a 

period of ischemia. The early stage of IRI is characterised by energy depletion and 

metabolic stress followed by neutrophile and macrophage accumulation after 

reperfusion319. Complications arising due to IRI culminate in early allograft dysfunction 

(EAD) and impaired regeneration, leading to poor post-transplantation outcomes. 

Apart from IRI affecting the outcome post-transplantation, the immune system poses 

challenges that may sometimes lead to graft rejection. Graft rejection is mostly seen within 

1-2 weeks of organ transplantation unless the donor and recipient are identical twins or the 

recipient is supported by immunosuppressive therapy320. Unlike other organs, the liver is 

immunologically privileged due to its anatomical location, specialised dual-flow perfusion 

system and lobular microarchitecture, thereby rendering spontaneous acceptance of the 

grafts post-transplantation. Liver grafts have been shown to withstand rejection despite the 

absence of immunosuppression therapy, showing the tolerogenicity of the human liver321. 

An interplay between alloimmunity and inherent immune tolerance poses a challenge for 

clinicians. Dissecting the molecular mechanisms underlying the induction and maintenance 

of liver graft tolerance post-transplantation will be beneficial to identify biomarkers for 
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reliable prediction of tolerance or rejection and the safe window to withdraw 

immunosuppression (Figure 5.2). 

 

Figure 5.2: Identification of biomarkers for tolerance and rejection post-liver 

transplantation (LT) using transcriptomic data. 

Employing the transcriptional biomarkers from liver biopsies is anticipated to be 

prognostically accurate compared to blood-based biomarkers in predicting the outcome of 

immunosuppression withdrawal322. Gene expression profiling has also been applied to 

investigate the role of IRI and correlate it to the clinical outcome of graft dysfunction323. 

Another study324 analysed the gene expression profiles in the early hours of pre and post-

reperfusion and reported the impact of graft type (living donor - LD, deceased donor - DD) 

on regeneration. These early transcriptome profiling-based studies laid the groundwork to 

address key issues in liver transplantation by harnessing the power of omics technology. 

In the current chapter, we performed a comparison of liver regeneration in rodent models 

with the human transplantation model to understand cross-species differences/similarities. 

We also performed the differential coexpression analysis of liver post-transplantation 

biopsies to study the differences between patients with long-term stability (normal) and 

rejection. 

5.2 Methods 

5.2.1 Transcriptomic data 

5.2.1.1 Different models of liver regeneration 

For the mouse model of liver regeneration, we used the publicly available temporal RNA 

seq gene expression data (GSE95135), spanning ten different time-points post-PH (0, 1, 4, 

10, 20, 28, 36, 44, 72, 168, and 672h). 3-4 replicates were available for each time point 
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(detailed description of the dataset in section 2.2.1). Based on temporal clusters found in 

mouse liver regeneration transcriptome (Figure 2.5 and Figure 2.6), 1, 4, and 10 h post-

PH were considered early phase time points, and 36, 44, and 48 h post-PH mid-phase time 

points. Differential gene expression analysis was performed using the limma R package, 

comparing every time point with 0 hours as the reference. For the gene expression of human 

liver transplantation, we used the microarray profiles of liver biopsies from HCC patients 

undergoing liver transplantation from the GEO database (GSE12720). Liver biopsies were 

collected at serial time points of graft procurement (no manipulation), cold preservation 

(backbench) and 1-hour post-reperfusion from 13 patients. Post-reperfusion samples were 

compared with baseline samples (no manipulation) for differential gene expression. As 

another model of liver regeneration, we analysed the gene expression pattern of tumour 

samples from patients undergoing PH/TH for HCC treatment (GSE148355 – detailed 

description of the dataset in section 4.2.1). Further, differential gene expression analysis 

was carried out between tumour and normal samples. 

5.2.1.2 Post-transplantation liver failure or success 

To study the gene expression profile of post-transplantation liver biopsies and understand 

the differences between normal and rejection patients, we analysed the publicly available 

INTERLIVER study cohort with GEO accession number GSE145780. This is a microarray 

dataset with 235 biopsy samples collected from 217 liver transplantation patients. All 

biopsy samples were procured after transplantation with a median time of 962 days post-

transplant and ranging between 0-11,676 days. The original INTERLIVER study325 

classified the samples into four different categories: normal (N = 129), T-cell mediated 

rejection (TCMR) (N = 37), early injury (N = 61), and fibrosis (N = 8) based on previously 

identified candidate genes known as rejection associated transcripts (RATs)326. Here, we 

attempt to compare the normal and TCMR (rejected) groups using differential coexpression 

networks.  

5.2.2 Cross-species analysis of liver regeneration 

To identify genes that are consistently deregulated in mouse and human models of liver 

regeneration, we performed the GSEA (Gene Set Enrichment Analysis) using fgsea R 

package327. GSEA is primarily used to interpret the expression pattern between two 

conditions/treatments and provide biological insights. Given a ranked list of genes L based 

on a differential expression test and a prior set of genes S, the goal of GSEA is to determine 
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if the members of a geneset S are overrepresented in the top or bottom of the ranked gene 

list L or are randomly distributed328. This behaviour is quantitively captured by the 

enrichment score (ES), which is calculated by moving down the ranked list L. Iteratively, 

the ES at every position ‘i ‘is given by 

𝐸𝑆𝑖 = 

{
 
 

 
 

0 𝑖𝑓 𝑖 = 0,

𝐸𝑆𝑖−1 + 
|𝑟𝑗|

𝑝

𝑁𝑅
  𝑖𝑓 1 ≤ 𝑖 ≤ 𝑁 𝑎𝑛𝑑 𝑖 ∈ 𝑆

𝐸𝑆𝑖−1 + 
1

𝑁 − 𝑁𝐻
 𝑖𝑓 1 ≤ 𝑖 ≤ 𝑁 𝑎𝑛𝑑 𝑖 ∉ 𝑆

 

 

(5.1) 

The final ES is evaluated as 

𝐸𝑆 =  𝐸𝑆𝑖∗ , 𝑤ℎ𝑒𝑟𝑒 𝑖
∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑖 |𝐸𝑆𝑖| (5.2) 

i.e. ES is calculated by considering positively and negatively scoring gene sets separately 

(ES+ and ES- respectively), and finally, ES = ES+ if |ES+| > |ES-| otherwise, ES = ES-. The 

core members of S contributing to the enrichment signal are extracted based on ES score. 

These constitute the subset of genes in S that are positioned in L at or before the running 

sum shoots its maximum deviation from zero and are called leading edges. 

The top 500 upregulated genes (differential expression analysis) based on log fold change 

from each of the human models (transplantation and HCC) were enriched in different time 

points (1h vs 0h, 4h vs 0h, 10h vs 0h - early phase, 36h vs 0h, 44h vs 0h, 48h vs 0h - mid-

phase) of mouse regeneration signatures. Similarly, enrichment scores were calculated for 

the top 500 downregulated genes. Leading edge genes were extracted from each of the 

enrichment analyses if the enrichment scores met the significance criteria of FDR < 0.05. 

Further, the sign of significant enrichment scores was used to identify whether the direction 

of gene regulation between two species is consistent or not. The upregulated genes from 

human signatures are consistently enriched in upregulated genes of mouse if the final 

enrichment score ES = ES+ and vice versa for downregulated genes.  

5.2.3 Differential gene co-expression analysis (DGCA) 

Molecular mechanisms driving disease progression arise due to abnormalities in gene co-

regulation. Not all changes in gene co-regulation are reflected as the up or down-regulation 

of individual genes. For instance, a group of genes exhibiting identical average expression 

in two different conditions may differ in the co-expression pattern between two groups329. 
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DCGA captures such differences in co-expression patterns and provides a clue into the 

rewiring of transcriptional networks. To extract differential co-expression patterns between 

normal and rejected samples, we applied the DiffCoEx approach, which is based on 

WGCNA330. DiffCoEx identifies modules of differential co-expression by applying 

WGCNA on the adjacency matrix derived from correlation changes between conditions. 

This is followed by the calculation of the TOM matrix and module extraction, which are 

similar to WGCNA (discussed in section 2.2.2). In this way, the method clusters two genes 

together if they show correlation changes to the same sets of genes between different 

conditions. 

Signed adjacency matrices with soft threshold power equal to 12 were separately calculated 

for normal and rejected samples based on 10,000 top varying genes (using rowVars function 

in R). The topological overlap matrix was derived from the absolute differences of powered 

adjacency matrices. Differentially co-expressed modules were extracted by average 

hierarchical clustering with the dynamic tree cut algorithm. 

The statistical significance of differentially co-expressed modules was evaluated using 

dispersion statistic based on 1000 permutation tests331. If G is a differentially co-expressed 

module with g genes, then the dispersion statistic is given by 

𝐷(𝜌𝐺
𝑆1 , 𝜌𝐺

𝑆2) =  √
1

𝜌𝑔
∑(𝜌𝑚

𝑆1 − 𝜌𝑚
𝑆2)2

𝜌𝑔

𝑚=1

 (5.3) 

where 𝜌𝑚
𝑆1 and  𝜌𝑚

𝑆2 represent correlations between genes in a gene pair m in two conditions, 

S1 and S2. The summation runs over all the possible gene pairs within a gene set G of size 

g, given as 𝜌𝑔 = (
𝑔
2
). The P-value is calculated from the null distribution of dispersion 

statistic generated by permuting the samples in two groups. Modules showing significant 

p-values were further considered for downstream analysis. 

5.3 Results and discussion 

5.3.1 Concordance pattern of gene expression profile in different models of liver 

regeneration 

The cross-species analysis between mouse and human models of liver regeneration was 

performed using GSEA and leading edges. The GSEA of transplantation gene signatures 

with the early phase of mouse regeneration shows a consistent transcriptome profile in up- 
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and down-regulated directions (Figure 5.3A). The pathway enrichment of leading edges 

contributing to significant enrichment scores is associated with TNF signalling, JAK-STAT 

signalling, NFKB signalling, MAPK signalling and metabolic pathways (Figure 5.3B). 

This gene expression pattern and related biological pathways align with the transient 

downregulation of metabolism and upregulation of immune pathways during liver 

regeneration (see Figure 2.5). In contrast to the transplantation model, the transcriptomic 

responses in the HCC model depict opposite behaviour with genes in JAK-STAT, IL-17, 

NFKB signalling pathways downregulated. This can be seen as a significant but positive 

enrichment score of downregulated genes in HCC (Figure 5.3A).  

Although the cell cycle pathway is not significantly enriched in the above comparisons 

between mouse and human regeneration models, cell cycle inhibitor CDKN1A is found in 

the set of leading edges. CDKN1A is upregulated in transplantation and between 1 and 4h 

post-PH in mouse regeneration, thus providing temporal separation between the preparatory 

and proliferation phases (Figure 5.3C). Contrary to this, CDKN1A is downregulated in 

HCC, confirming that this regeneration model is already in the proliferative phase. 

We also compared the human regeneration models with the mid-phase of mouse 

regeneration (36, 44, and 48 h post-PH). With the mid-phase of mouse regeneration, both 

transplantation and HCC regeneration models showed consistent upregulation of gene 

expression (Figure 5.4A). The consistency in transcriptome upregulation between HCC 

and mouse regeneration is more pronounced than that of the transplantation. The leading 

edges between transplantation and mid-phase mouse regeneration are associated with 

immune signalling pathways (TNF and JAK-STAT), ribosome biogenesis, protein 

processing and PD-1 checkpoint (Figure 5.4B). The core genes exhibiting concordant 

upregulation between HCC and mid-phase mouse regeneration are related to the cell cycle 

(Figure 5.4C). Downregulated gene signatures of the HCC model also lead to significant 

enrichment with mid-phase mouse regeneration but in the opposite direction. Interesting 

candidate genes include GADD45 family of genes, which are tumour suppressors. 

Overall, the early-phase of mouse regeneration (priming or preparatory phase) and human 

transplantation show consistent up regulation of TNF signalling, NFKB signalling, JAK-

STAT signalling and consistent down regulation of metabolic pathways. The mid-phase of 

mouse liver regeneration (proliferatory phase) is upregulated in cell cycle pathways similar 

to HCC. 
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Figure 5.3: Cross-species analysis of transcriptome between human and mouse model (early 

phase) of regeneration. LT stands for liver transplantation. (A) GSEA showing enrichment 

score (ES) and the significance of enrichment. Text in the tile indicates the number of leading 

edges.*** indicates adjusted p-value < 0.001, ** indicates 0.001 ≤ adjusted p-value < 0.01, * 

indicates 0.01 ≤ adjusted p-value < 0.05. (B) KEGG pathway enrichment of leading edges 

showing 15 most significant pathways sorted according to adjusted p-value (bottom to top 

within each category). To the right of each bar, the number of overlapping genes and the total 
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number of genes of a pathway are shown. (C) Heatmap of top 100 candidates from the union 

of leading edges (edges with significant ES and consistent direction are only considered). 

A C 

 

 

B 

 

Figure 5.4:Cross-species analysis of transcriptome between human and mouse model (mid-

phase) of regeneration. LT stands for liver transplantation. (A) GSEA showing enrichment 

score (ES) and the significance of enrichment. Text in the tile indicates the number of leading 
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edges.*** indicates adjusted p-value < 0.001, ** indicates 0.001 ≤ adjusted p-value < 0.01, * 

indicates 0.01 ≤ adjusted p-value < 0.05. (B) KEGG pathway enrichment of leading edges 

showing 15 most significant pathways sorted according to adjusted p-value are displayed 

(bottom to top within each category). To the right of each bar, the number of overlapping 

genes and the total number of genes of a pathway are shown. (C) Heatmap of top 100 

candidates from the union of leading edges (edges with significant ES and consistent direction 

are only considered). 

5.3.2 Gene co-expression differences between normal and rejection samples in post-

transplantation 

DGCA between normal and rejection samples identified eight modules of size ranging 

between 498 and 16 genes. Permutation test showed that modules D4, D7 and D8 are 

significantly rewired in their co-expression pattern. Visualisation of adjacency matrices 

revealed how different modules change their co-expression pattern in normal and rejection 

conditions (Figure 5.5).  

 

Figure 5.5:Differential gene co-expression analysis of normal and rejection samples. 

The heatmap showing adjacency matrices of rejection and normal conditions in the 

upper and lower triangle matrix, respectively. 
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The genes of modules D7 and D8 are coexpressed under rejection conditions, but their 

correlation strengths are weak in normal samples. The D4 module shows exactly the 

opposite behaviour. Pathway analysis of the D4 module shows that it is enriched for 

pathways specific to amino acid metabolism, complement coagulation cascade, and protein 

processing (Figure 5.6A). This intact coexpression pattern may be attributed to the long-

term stability of normal samples. The D7 module, being the largest and highly coexpressed 

in rejection samples, is associated with multiple immune pathways such as T-cell receptor 

signalling, B-cell receptor signalling, and PD-1 checkpoint pathway in cancer. This module 

comprises a few genes related to allograft rejection (CD86, IFNG, PRF1, GZMB, FASLG 

and TNF). The D8 module is enriched for cell cycle and DNA replication pathways. 

A B 

 

 

Figure 5.6: Biological pathways of differentially coexpressed modules. (A) KEGG pathway 

enrichment of modules D4, D7, and D8 genes showing 15 most significant pathways sorted 

according to adjusted p-value(bottom to top within each module).*** indicates adjusted p-

value < 0.001, ** indicates 0.001 ≤ adjusted p-value < 0.01, * indicates 0.01 ≤ adjusted p-value 

< 0.05. To the right of each bar, the number of overlapping genes and the total number of 
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genes of a pathway are shown. (B) Histogram of log fold changes of genes in each of the three 

modules: D4, D7, and D8. 

The genes of modules D7 and D8 are not only highly coexpressed in rejection samples but 

are also highly expressed under rejection conditions (Figure 5.6B). Most genes exhibit 

large log fold changes greater than 0.6 between two conditions. All the genes in these two 

modules show positive log fold change. Unlike the other two modules, the D4 module is 

composed of genes with both positive and negative log fold changes between normal and 

rejection samples. The D4 module does not show a large difference in expression between 

normal and rejection samples. 

The marked differences in the coexpression pattern of D7 and D8 modules between normal 

and rejection samples suggest a rewiring of gene expression between the two groups of 

samples. To confirm if these modules can segregate normal and rejection samples, we 

applied t-distributed Stochastic Neighbor Embedding (t-SNE) based on the gene expression 

of the top 20 features (ranked by log fold change) from each module separately. The t-SNE 

plots show that modules D7 (Figure 5.7A) and D8 (Figure 5.7B) harbour candidate genes 

that can distinguish between normal and rejection samples. We also compared how well 

these two modules overlap with the RATs, previously used marker genes to distinguish 

different groups of samples325. The D7 module shows good overlap with RATs, while the 

D8 module is unique (Figure 5.7C and Figure 5.7D).  

The top 20 features of the D7 module include CXCL11, FCGR1A, ANKRAD22, GBP5, 

GBP1, BCL2A1 and LILRB2, which are part of the previously reported RATs. In addition 

to these genes, our analysis identified new features EGR2, MTHFD2, CD52, and CD38 

from the D7 module associated with graft rejection. CXCL11 and GBP5 are well-known 

TCMR-associated genes that are IFNG-induced. CXCL11 is expressed in Th1 effector cells, 

and it acts against foreign antigens332. LILRB2 is known to play a role in immune 

tolerance333. EGR2 acts as a negative regulator of T-cell activation334 and MTHFD2 is 

involved in T-cell exhaustion335. On the other hand, CD52 and CD38 are glycoproteins 

expressed on the surface of immune cells and are involved in T cell proliferation and 

activation336,337. Alemtuzumab, an anti-CD52 mAb, is widely used for the treatment of 

patients undergoing organ transplantation338. T cell exhaustion can be due to persistent T 

cell signalling in rejection cases. We also identified RRM2, TOP2A, CDK1 and CDKN3 as 

top features from the D8 module associated with TCMR. The cell cycle changes may be 

related to clonal expansion required for TCMR. We also tested if the combined features of  
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Figure 5.7: Clustering of normal and rejection samples. (A) & (B) t-SNE plot of 

normal and rejection samples based on the top 20 features of the D7 and D8 modules, 

respectively. (C) & (D) Venn diagram showing the intersection of RATs with D7 and 
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D8 modules, respectively. (E) t-SNE plot of normal and rejection samples based on the 

top 20 combined features of D7 and D8 modules. 

the D7 and D8 modules can separate normal and rejection samples. The top 20 combined 

features comprising CXCL11, FCGR1A, ANKRD22, GBP5, GBP1, BCL2A1, EGR2, 

MTHFD2, CD52, CSF2RB, LILRB2, and TFEC from D7 module and RRM2, TOP2A, 

ZWINT, TYMS, MAD2L1, ANLN, PRC1, and CDKN3 from D8 module cluster normal 

and rejection samples with less overlap (Figure 5.7E). 

Overall, the detailed analysis of liver transplantation transcriptomic data provided insights 

into the cross-species overlap in liver regeneration and also helped to identify features 

relevant to understanding the difference between normal and rejection samples post-

transplantation. We identified combined features of immune and cell cycle modules that 

can distinguish normal and rejection samples. The efficiency of combined immune and cell 

cycle features in classifying normal and rejection samples needs to be further validated in 

future. 
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Chapter 6 Conclusion 

 

A systems-level investigation of a biological system provides novel insights into how 

interactions between molecular players coordinate to determine the phenotypic response. 

The identification of the liver’s remarkable regenerative capacity has led to its clinical 

application as an intervention strategy in the form of partial resection or liver transplantation 

for hepatocellular carcinoma and other liver diseases. However, the major challenges 

impeding successful clinical intervention are normal regeneration and physiological 

function post-treatment. Translating the knowledge gained from molecular mechanisms to 

liver mass recovery may provide an opportunity to minimise post-treatment failure. This 

requires a detailed understanding of the molecular pathways and their interactions at the 

systems level. While successful liver regeneration is the key to attaining normal 

physiological function following resection or transplantation, the regenerative ability of the 

liver plays a crucial role in repairing the damage caused by acute or chronic damage under 

pathological conditions. Further, ageing also impairs the regenerative capacity of the liver 

and increases the susceptibility to pathological conditions. The work presented in the 

current thesis attempts to generate systems-level insights into the pathophysiology of the 

liver using transcriptomic data from experimental mouse models and data from HCC 

patients. 

6.1 Major contributions 

We explored how the liver achieves the dynamic balance between various cellular 

processes, including metabolism and cell cycle during liver regeneration, using mouse liver 

regeneration transcriptomic data (chapter 2). We showed that the transcriptome is 

reorganised into three core clusters capturing transient and sustained changes, categorised 

into specific biological pathways, including immune, cell cycle and metabolic pathways. 

While the dynamic reconstruction showed an overall downregulation of metabolic 

trajectories, temporal fine-tuning of specific metabolites such as SAM, GSH and NAD is 

essential for successful liver regeneration. The temporal expression pattern of main 

methyltransferases of the liver (GNMT, GAMT) and genes of methionine catabolism 

(MAT1A and MAT2A) may contribute to an increase in SAM levels in the early phase. This 

is followed by an upregulation of DNA methylation genes (DNMT1 and UHFR1) in the 

mid-phase that use SAM as a substrate for epigenetic modifications. Interestingly, DNMT1 

and UHRF1 are coexpressed along with cell cycle genes. The temporal separation between 
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SAM accumulation in the early phase and its utilisation in the mid-phase may lead to 

crosstalk between the cell cycle and epigenetic regulation during liver regeneration. In 

addition to DNA methylation genes, PTBP1 and RBMX regulating alternative splicing are 

also coexpressed with cell cycle genes. 

The proposed model of mutual antagonism between regulators of the cell cycle (CYCLIN 

D) and liver function (HNF4A) provided a mechanistic explanation for changes occurring 

during liver regeneration. We showed that the liver regeneration program can be seen as 

changes occurring around the bistable switch accounting for the co-existence of two 

populations of hepatocytes and the division of labour between them. While one population 

undergoes active cell division (high CYCLIN D), the other helps maintain liver function 

(high HNF4A). The model showed the transient inactivation of HNF4A with the dynamic 

change in the input signal and its reactivation upon successful termination of liver 

regeneration. The model also showed the condition for an irreversible transition from liver 

function to proliferation, accounting for the development of HCC. Further, coupling 

HNF4A with the EMT circuit also showed the emergence of tristability during liver 

regeneration, which explains the existence of a hybrid cluster of epithelial and 

mesenchymal cells. We also proposed an integrated circuit of liver regeneration by 

extending the core HNF4A-CYCLIN D circuit with interactions involving YAP1 and WNT. 

This extended circuit with additional regulators acting on HNF4A and CYCLIN D may 

provide underlying features of proliferation, compensatory metabolism and EMT states as 

observed in single-cell studies.  

Chapter 3 showed the ageing-related changes and the crosstalk with liver regeneration and 

pathological conditions by integrating transcriptomics data from mouse models with the 

PPI network. The global network entropy analysis of the liver network showed an overall 

increase in network entropy with ageing. The nodes showing significant changes in local 

entropy with ageing are associated with complement and coagulation cascade, cytokine–

cytokine receptor interaction, membrane remodelling and pathways in cancer. RARRES2 

(Chemerin), a gene induced in NAFLD and HBV-related HCC, is captured as the top 

candidate gene by local entropy analysis. The local entropy analysis also revealed the 

PGRMC1-INSIGs-SREBF1 axis controlling the lipid levels in ageing. This network 

entropy analysis provided insights connecting ageing with pathological conditions of 

fibrosis, NAFLD and HCC. Further, the topological analysis of the ageing network revealed 
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TRP53, AKT1, SRC, CTNNB1, and EGFR related to cancer signalling as crucial nodes 

based on their connectivity. 

The network proximity analysis was performed to obtain a quantitative picture (distance-

based) of the crosstalk between liver ageing and its pathophysiological conditions (liver 

regeneration, NAFLD, HCC, acute and chronic liver damage). This analysis showed that 

the older age group is more proximal to pathophysiological conditions than the younger age 

group. The early phase of liver regeneration is significantly more proximal to the ageing 

network than the mid-phase, which explains delayed regeneration in ageing. The proximity 

analysis also revealed a common theme of molecular players connecting ageing and other 

pathophysiological conditions. This common theme maps to immune-related pathways and 

MAPK, PI3K-AKT, Ras, Wnt and NFKB signalling pathways. Interesting candidate genes 

in the common theme include GSK3B and TRP53. The common theme also includes the 

lipid metabolism genes central to the crosstalk between ageing and related 

pathophysiological conditions. In summary, our analysis showed that a network-based 

methodological framework could be used to map system-level changes in liver ageing and 

dissect the crosstalk between different liver-associated conditions, including regeneration. 

To extend the liver regeneration scenario from mouse models to human models, we 

addressed the molecular pathogenesis of HCC development from the clinical data of 

patients. Gene coexpression network analysis was performed on tumour samples, tumour-

adjacent normal samples (different premalignant stages) and normal samples. Our analysis 

revealed differences in progression from precancerous to cancer state between two groups 

of patients undergoing PH and TH (treatment) by targeting the same biological pathways 

related to cell cycle, immune and metabolism to a different extent. Both groups exhibited a 

decrease in liver function and immune system and an increase in cell cycle activity in the 

transition from precancerous to a cancer state, with the PH group showing a higher 

correlation compared to the TH group. The characterisation of cell cycle genes highlighted 

the presence of checkpoint signalling, negative regulation of cell cycle processes, and DNA 

repair processes in the TH group. On the contrary, these cell cycle pathways are not 

observed in the PH group, which showed positive regulation of cell cycle, cytokinesis, and 

protein metabolic processes. We also identified modules and genes related to DFS from 

tumour and premalignant samples. Gene coexpression network analysis of tumour samples 

showed that upregulation of ribosomal and cell cycle related gene expression and 
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downregulation of immune and metabolic processes are linked to poor patient survival. We 

also found multiple modules from premalignant stages predict DFS. Modules associated 

with cytokine signalling and defence response to virus yielded the best performance in 

predicting DFS. An increase in the expression of THBD, BCL2L1, FOS and JUN at the 

premalignant stage is significantly associated with DFS. Overall, our study showed that 

tumour-matched normal samples contain multiple signatures related to DFS that can be 

used for early diagnosis. 

We also analysed the gene expression profile from patient biopsy samples collected post-

liver transplantation, which serves as a human regeneration model. In this context, we 

performed cross-species analysis and showed the overlap in gene expression profiles 

between different regeneration models. To further explore the clinical aspect of liver 

regeneration, we used the transplantation gene expression profile to understand the 

differences between normal and T-cell-mediated rejection. Differential coexpression 

analysis showed intact coexpression of immune and cell cycle genes relating to T cell 

activation, proliferation and exhaustion in rejection samples, which is absent in normal 

samples. On the other hand, the liver metabolic genes are highly coexpressed in normal 

samples compared to rejection samples. We also showed that the top features of immune 

and cell cycle modules are capable of distinguishing normal and rejection samples. Few of 

these features from the immune module overlapped with rejection-associated transcripts 

from the heart and kidney. In addition, we identified a few novel candidate genes which 

need to be further studied and validated. 

6.2 Future scope and directions 

The work presented in this thesis showed the potential role of systems-level analysis in 

understanding the interplay of molecular pathways underlying liver regeneration, ageing 

and other pathological conditions. The conclusions drawn from the study are currently 

based on transcriptomics data that can be further refined by integrating with multi-omics 

data. Using the data-driven approach, we reconstructed pathways that formed the basis for 

proposing the minimalistic circuit to explain the changes occurring during liver 

regeneration. The model presented in the thesis showed the steady state changes in HNF4A 

with the regeneration input signal. The HNF4A-CYCLIN D circuit can be extended to build 

a detailed mechanistic model to capture the dynamics of other players in liver regeneration. 

Our analysis of HCC transcriptomic data showed co-regulation of various biological 
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processes: cell cycle, immune and metabolism. A dynamic gene regulatory network to 

depict the transition from precancerous to cancerous stage in HCC can be developed. This 

requires understanding the interconnections among the coregulated pathways. Based on 

existing literature, we proposed a minimalistic explanation of mutual antagonism between 

HNF4A and immune activity as a molecular mechanism for HCC progression, which needs 

to be further expanded. With single-cell data becoming increasingly available, the cell-type 

specific network can also be constructed to understand the heterogeneity at the cellular 

level. The analysis of HCC presented here is mostly based on the data from the HCC cohort 

driven by HBV infection. This analysis can be further carried out in NAFLD-driven HCC, 

given its growing incidence. Our analysis also showed that tumour modules from one cohort 

are preserved in another cohort of different ethnicities. The data analysed comes from 

mostly male samples in the old age group and does not have BMI information. 

Understanding the impact of ethnicity, age, gender, and BMI on liver pathophysiology is 

important. Further, identifying the molecular features that characterise the differences 

between normal and rejection in liver transplantation is crucial for developing predictive 

models. We identified novel features based on differential coexpression, separating the 

normal and T-cell-mediated rejected samples. Similarly, exploring the effect of ischemic 

reperfusion injury on post-transplantation liver failure is also clinically relevant. Machine 

learning approaches can be used for feature extraction and model development to predict 

liver failure post-transplantation. A validation of such models on multiple datasets is 

required for clinical application. 
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Appendix A  
 

Table A1: Significant KEGG pathways and biological processes (adj p-value < 0.05) 

associated with WGCNA modules. * represents uncorrected p-value. 

Modules KEGG pathways Biological processes 

Blue 

(M1) 

DNA replication (6.02e-24), Cell cycle (1.02e-

24), Homologous recombination (8.12e-11), 

Mismatch repair (2.26e-01), Cellular 

senescence (2.2e-07), Spliceosome (3.7e-07), 

Nucleotide excision repair (4.2e-06), p53 

signaling pathway (8.7e-06), Pyrimidine 

metabolism (0.001), RNA transport (0.001), 

Glutathione metabolism (0.008), Steroid 

biosynthesis (0.01), Amino sugar and 

nucleotide sugar metabolism (0.01), Arginine 

and proline metabolism (0.01), Protein 

processing in endoplasmic reticulum (0.02) 

DNA metabolic process (1.7e-31), mitotic cell cycle 

phase transition (1.85e-25), DNA replication (2.1e-23), 

G1/S transition of mitotic cell cycle (1.2e-17), DNA 

repair (2.1e-17), cellular response to DNA damage 

stimulus (8.2e-13), tRNA export from nucleus (6.8e-

07), RNA splicing, via transesterification reactions with 

bulged adenosine as nucleophile (7.9e-07) 

Green 

(M2) 

Complement and coagulation cascades* (4e-

04), Fatty acid degradation* (5e-03), Protein 

export* (0.002), PPAR signaling pathway* 

(0.008) 

Platelet degranulation (5.2e-04), acute inflammatory 

response(0.001), positive regulation of protein secretion 

(0.01), cargo loading into COPII-coated vesicle (0.01), 

homotypic cell-cell adhesion (0.02), Golgi vesicle 

transport (0.02), fatty acid beta-oxidation* (0.003) 

Red 

(M3) 

Protein processing in endoplasmic reticulum 

(1.8e-17), Protein export (1.3e-06), N-Glycan 

biosynthesis (1e-04), Amino sugar and 

nucleotide sugar metabolism (0.01) 

IRE1-mediated unfolded protein response (5.7e-13), 

protein N-linked glycosylation (3.7e-10), ERAD 

pathway (9.4e-06), ubiquitin-dependent ERAD 

pathway (6.9e-05), ATF6-mediated unfolded protein 

response (0.03) 

Pink 

(M4) 

TNF signaling pathway (0.01), Ribosome 

biogenesis in eukaryotes* (3e-04), JAK-STAT 

signaling pathway* (0.01) 

Ribosome biogenesis (4.1e-07), rRNA processing 

(3.7e-04), maturation of 5.8S rRNA(0.001), protein 

localization to nucleus (0.001), ribosome assembly 

(0.001), response to cytokine (0.02), interleukin-6-

mediated signaling pathway* (0.001) 

Purple 

(M5) 

PPAR signaling pathway (4.03e-08), Fatty acid 

degradation (1e-04), Peroxisome (0.001), 

Biosynthesis of unsaturated fatty acids* 

(0.001), TGF-beta signaling pathway* (0.002) 

Regulation of lipid metabolic process (5.65e-07), fatty 

acid beta-oxidation (0.002), positive regulation of 

pathway-restricted SMAD protein phosphorylation* 

(0.003), peroxisomal membrane transport* (0.03) 

Black 

(M6) 

Steroid hormone biosynthesis (8.8e-12), PPAR 

signaling pathway (7.1e-09), Biosynthesis of 

unsaturated fatty acids (2.4e-05), Primary bile 

acid biosynthesis (1.4e-04), Arachidonic acid 

metabolism (3.6e-04), Cholesterol metabolism 

(3.2e-04), Retinol metabolism (3.1e-04), 

Tryptophan metabolism (0.002), Glutathione 

metabolism (0.01), Bile secretion (0.01), Fatty 

acid degradation (0.01), Complement and 

coagulation cascades (0.03), Arginine 

biosynthesis (0.04) 

Alpha-amino acid catabolic process (8.3e-06), aromatic 

amino acid family catabolic process (2.7e-04), 

tryptophan metabolic process (0.002), tryptophan 

catabolic process (0.002), cholesterol homeostasis 

(0.004), sterol metabolic process (0.004), valine 

metabolic process (0.01) 

Brown 

(M8) 

Chemical carcinogenesis (2.2e-15), Steroid 

hormone biosynthesis (5.7e-14), Retinol 

metabolism (6.3e-14), Glutathione metabolism 

(2.2e-05), Pentose and glucuronate 

interconversions (6.03e-05), Tryptophan 

metabolism (9.1e-05), Glycine, serine and 

threonine metabolism (1.6e-04), Valine, leucine 

and isoleucine degradation (0.001), Glyoxylate 

and dicarboxylate metabolism (0.002), 

Histidine metabolism (0.005), Cysteine and 

methionine metabolism (0.02), Arachidonic 

acid metabolism (0.02), Phenylalanine 

metabolism (0.03), Tyrosine metabolism (0.04) 

Alpha-amino acid catabolic process (3.8e-06), 

glutathione metabolic process (0.001), branched-chain 

amino acid metabolic process (0.002), histidine 

metabolic process (0.003) 
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Magenta 

(M9) 

Retinol metabolism (2.3e-04), Glyoxylate and 

dicarboxylate metabolism (7e-04), Glycine, 

serine and threonine metabolism (0.03), One 

carbon pool by folate (0.02), Tryptophan 

metabolism (0.03), Complement and 

coagulation cascades (0.03), Terpenoid 

backbone biosynthesis (0.03), Folate 

biosynthesis (0.03) 

Response to sterol (0.02), regulation of cholesterol 

biosynthetic process (0.02), serine family amino acid 

metabolic process (0.02), coenzyme metabolic 

process*(0.001)  
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Table A2: Significant KEGG pathways and biological processes (adj p-value < 0.05) 

associated with different paths in validation dataset. * represents uncorrected p-value. 

 

 

Path KEGG pathway Biological processes 
A Cell cycle (4.5e-14), p53 signaling pathway (0.006), 

Cellular senescence (0.006), DNA replication, 

Homologous recombination(0.007), Base excision 

repair*(0.01), FoxO signaling pathway (0.04)* 

Mitotic cell cycle phase transition (2.5e-11), 

DNA metabolic process (3.9e-11), cellular 

response to DNA damage stimulus(2.1e-06) 

B Circadian rhythm (0.005)*, Steroid hormone biosynthesis 

(0.04) * 

Acute-phase response* (0.002), neutrophil 

degranulation* (0.002) 

C Cell cycle (2.7e-11), DNA replication (5.1e-06), 

Homologous recombination (1.1e-05), Base excision 

repair (0.03) 

DNA metabolic process (5.2e-15), regulation 

of transcription involved in G1/S and G2/M 

transition of mitotic cell cycle (9e-07), signal 

transduction by p53 class mediator (0.02) 

D DNA replication (1.58e-10), Homologous recombination 

(3.38e-05), Mismatch repair (2.5e-04), Cell cycle (2.5e-

03), Nucleotide excision repair (3.2e-03), Base excision 

repair (0.01), Cellular senescence* (0.005), One carbon 

pool by folate*(0.01) 

DNA repair (6e-09), DNA replication (3.5e-

10), tRNA export from nucleus (0.01) 

 

E Glycerophospholipid metabolism (0.001)*, Complement 

and coagulation cascades*(0.002), TNF signaling 

pathway*(0.002), Glycerolipid metabolism*(0.005), NF-

kappa B signaling pathway*(0.005) 

Cellular response to cytokine stimulus (2e-04), 

inflammatory response (0.003) 

F DNA replication*(0.001), RNA degradation*(0.005), 

RNA transport*(0.01), Pyrimidine metabolism*(0.01), 

Mismatch repair*(0.01), Spliceosome*(0.02), Nucleotide 

excision repair *(0.02) 

DNA metabolic process* (1.6e-04), protein 

import* (5.1e-04), nucleobase-containing small 

molecule interconversion* (0.007) 

G p53 signaling pathway*(0.002), Non-homologous end-

joining*(0.01), Homologous recombination*(0.01), One 

carbon pool by folate*(0.02), Cysteine and methionine 

metabolism*(0.02) 

DNA recombination* (7e-04), DNA damage 

induced protein phosphorylation* (0.004) 

H Spliceosome (1.5e-05), Cell cycle (0.01), p53 signaling 

pathway (0.01), Protein processing in endoplasmic 

reticulum* (0.004), Amino sugar and nucleotide sugar 

metabolism* (0.01), Purine metabolism* (0.01), RNA 

transport* (0.02). 

RNA splicing (1.9e-07), protein N-linked 

glycosylation (0.001), RNA transport (0.003) 

 

I NF-kappa B signaling pathway (2.6e-04), Platelet 

activation (0.005), TNF signaling pathway (0.02) 

Cellular defense response (1.48e-06), 

inflammatory response (0.0001) 

J Fatty acid degradation* (0.001), Wnt signaling pathway* 

(0.01), PPAR signaling pathway* (0.02), Bile secretion* 

(0.03), Valine, leucine and isoleucine degradation* (0.03), 

Taurine and hypotaurine metabolism* (0.04) 

Fatty acid beta-oxidation (0.02), regulation of 

canonical Wnt signaling pathway* (0.01) 

K Steroid hormone biosynthesis* (0.004), ECM-receptor 

interaction* (0.01), Metabolism of xenobiotics by 

cytochrome P450* (0.04) 

Positive regulation of cytokine biosynthetic 

process* (0.001) 

L Steroid hormone biosynthesis (3.8e-07), Metabolism of 

xenobiotics by cytochrome P450 (1.57e-05), Chemical 

carcinogenesis (1.57e-05), Drug metabolism (2.2e-05), 

PPAR signaling pathway (7e-04), Primary bile acid 

biosynthesis (0.001), Retinol metabolism (0.005), 

Cholesterol metabolism (0.008), Glutathione metabolism 

(0.03), Tryptophan metabolism (0.03), Arachidonic acid 

metabolism (0.04)  

Steroid biosynthetic process (3.1e-04),  

bile acid biosynthetic process* (5e-04) 

M TGF-beta signaling pathway* (0.01), Primary bile acid 

biosynthesis*(0.02), Glycine, serine and threonine 

metabolism* (0.02), Bile secretion*(0.03) 

Bile acid metabolic process* (0.001) 

  N Drug metabolism (0.04), Steroid hormone biosynthesis* 

(0.006), Glycolysis / Gluconeogenesis*(0.01), 

Biosynthesis of unsaturated fatty acids* (0.02), PPAR 

signaling pathway* (0.02) 

Regulation of biosynthetic process* (0.001), 

regulation of gluconeogenesis* (0.01) 
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Figure A1: Expression profile of genes in lipid biosynthesis pathway. The blue line 

represents the baseline (0 hours), and the red line represents a two-fold change with 

respect to the baseline. 

 

   

Figure A2: Expression profile of genes in cholesterol metabolism pathway. The blue 

line represents the baseline (0 hours), and the red line represents a two-fold change 

with respect to the baseline. 

 

 



163 

 

   

   

Figure A3: Expression profile of genes in β oxidation pathway. The blue line 

represents the baseline (0 hours), and the red line represents a two-fold change with 

respect to the baseline. 

 

   

Figure A4: Expression profile of genes involved in the regulation of glucose and lipid 

metabolism and anaerobic glycolysis. The blue line represents the baseline (0 hours), 

and the red line represents a two-fold change with respect to the baseline. 
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Table A3: Discrete-continuous framework describing HNF4A regulatory circuit 

during liver regeneration 

𝑑[𝐻𝑁𝐹4𝐴]

𝑑𝑡
=  𝛽𝐻𝑁𝐹4𝐴 [

1

1 + 𝑒−𝛿𝐻𝑁𝐹4𝐴𝑊𝐻𝑁𝐹4𝐴    
− 𝐻𝑁𝐹4𝐴] (A-1) 

𝑑[𝐶𝑌𝐶𝐿𝐼𝑁𝐷]

𝑑𝑡
=  𝛽𝐶𝑦𝑐𝐷 [

1

1 + 𝑒−𝛿𝐶𝑦𝑐𝐷𝑊𝐶𝑦𝑐𝐷   
− 𝐶𝑌𝐶𝐿𝐼𝑁𝐷] (A-2) 

𝑊𝐻𝑁𝐹4𝐴 = 𝑤𝐻𝑁𝐹4𝐴_0 + 𝑤𝑆_𝐻𝑁𝐹4𝐴 . 𝑆 + 𝑤𝐻𝑁𝐹4𝐴_𝐶𝑦𝑐𝐷 . 𝐶𝑌𝐶𝐿𝐼𝑁𝐷

+ 𝑤𝑀_𝐻𝑁𝐹4𝐴 . 𝑀 
(A-3) 

𝑊𝐶𝑦𝑐𝐷 = 𝑤𝐶𝑦𝑐𝐷_0 + 𝑤𝐶𝑦𝑐𝐷_𝑀𝑦𝑐  . 𝑀𝑌𝐶 (A-4) 

𝑀𝑌𝐶 = 
1

1 + 𝑒−𝛿𝑀𝑦𝑐(𝑤𝑀𝑦𝑐 _𝐻𝑁𝐹4𝐴 .  𝐻𝑁𝐹4𝐴)
 (A-5) 

 

Table A4: Discrete-continuous framework describing the balance between liver 

function and EMT during liver regeneration 

𝑑[𝐻𝑁𝐹4𝐴]

𝑑𝑡
=  𝛽𝐻𝑁𝐹4𝐴 [

1

1 + 𝑒−𝛿𝐻𝑁𝐹4𝐴𝑊𝐻𝑁𝐹4𝐴    
− 𝐻𝑁𝐹4𝐴] (A-6) 

𝑑[𝑆𝑁𝐴𝐼𝐿]

𝑑𝑡
=  𝛽𝑆𝑁𝐴𝐼𝐿 [

1

1 + 𝑒−𝛿𝑆𝑁𝐴𝐼𝐿𝑊𝑆𝑁𝐴𝐼𝐿   
− 𝑆𝑁𝐴𝐼𝐿] (A-7) 

𝑊𝐻𝑁𝐹4𝐴 = 𝑤𝐻𝑁𝐹4𝐴_0 + 𝑤𝑆_𝐻𝑁𝐹4𝐴 . 𝑆 + 𝑤𝐻𝑁𝐹4𝐴_𝐶𝑦𝑐𝐷 . 𝐶𝑌𝐶𝐿𝐼𝑁𝐷

+ 𝑤𝐻𝑁𝐹4𝐴_𝑆𝑁𝐴𝐼𝐿 . 𝑆𝑁𝐴𝐼𝐿 
(A-8) 

𝑊𝑆𝑁𝐴𝐼𝐿 = 𝑤𝑆𝑁𝐴𝐼𝐿_0 + 𝑤𝑆𝑁𝐴𝐼𝐿_𝑆𝑁𝐴𝐼𝐿 . 𝑆𝑁𝐴𝐼𝐿 + 𝑤𝑆𝑁𝐴𝐼𝐿_𝐻𝑁𝐹4𝐴 . 𝐻𝑁𝐹4𝐴 (A-9) 

𝑀𝑌𝐶 =  
1

1 + 𝑒−𝛿𝑀𝑦𝑐(𝑤𝑀𝑦𝑐_𝐻𝑁𝐹4𝐴 .  𝐻𝑁𝐹4𝐴)
 (A-10) 

𝐶𝑌𝐶𝐿𝐼𝑁𝐷 =  
1

1 + 𝑒−𝛿𝐶𝑦𝑐𝐷(𝑤𝐶𝑦𝑐𝐷_0 +𝑤𝐶𝑦𝑐𝐷_𝑀𝑦𝑐 .  𝑀𝑌𝐶)
 (A-11) 
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Appendix B  
 

Table B1: KEGG pathway enrichment using Enrichr for top 3 MCODE clusters of 

PPI network of DEGs comparing 18 months old mice with 3 months old mice 

Cluster Nodes Edges Score KEGG Pathway Overlap 
Adjusted p-

value 

1 52 1240 48.627 

Oxidative 

phosphorylation 
45/134 3.66e-93 

Parkinson disease 45/144 8.99e-92 

Non-alcoholic fatty liver 

disease (NAFLD) 
45/151 7.57e-91 

Alzheimer disease 45/175 1.30e-87 

Huntington disease 45/192 1.23e-85 

2 55 710 26.296 

Cell cycle 8/123 2.80e-08 

Progesterone-mediated 

oocyte maturation 
7/90 4.52e-08 

Oocyte meiosis 6/116 4.61e-06 

p53 signaling pathway 3/71 4.43e-03 

Cellular senescence 4/185 6.02e-03 

3 28 342 25.333 Ribosome 17/170 5.5e-29 
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Table B2: KEGG pathway enrichment using EnrichR for top 5 MCODE clusters of 

PPI network of DEGs comparing 24 months old mice with 3 months old mice 

Cluster Nodes Edges Score KEGG Pathway Overlap 
Adjusted p-

value 

1 87 2875 66.860 

Proteasome 40/46 8.08e-91 

Epstein-Barr virus 

infection 
28/229 1.31e-31 

Basal cell carcinoma 5/63 2.83e-04 

Human T-cell leukemia 

virus 1 infection 
8/245 2.83e-04 

p53 signaling pathway 5/71 2.83e-04 

2 32 481 31.032 
Thyroid hormone 

signaling pathway 
11/115 1.62e-17 

3 52 572 22.431 

DNA replication 13/35 2.33e-24 

Cell cycle 16/123 2.23e-22 

Nucleotide excision 

repair 
6/43 1.47e-08 

Ubiquitin mediated 

proteolysis 
6/138 1.29e-05 

Circadian rhythm 3/30 4.35e-04 

4 62 632 20.721 

Collecting duct acid 

secretion 
16/27 5.24e-33 

Synaptic vesicle cycle 18/77 1.54e-28 

Rheumatoid arthritis 18/84 5.89e-28 

Oxidative 

phosphorylation 
18/134 3.84e-24 

Phagosome 18/180 7.76e-22 

5 17 135 16.875 Peroxisome 12/84 1.13e-24 
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Appendix C  

 

Table C1: Survival analysis of genes from modules T1, T2 and T9 on tumour samples 

of the Korean cohort and their validation on TCGA tumour samples. Genes with p-

value ≤ 0.01 are shown. 

 

Gene 

Korean TCGA 

p-value Hazard ratio p-value Hazard ratio 

M
o

d
u

le
 T

1
 

COLEC10 4.4e-04 0.18 4.2e-03 0.62 

CRHBP 4.4e-04 0.18 4.1e-04 0.55 

CFP 6.0e-04 0.18 3.3e-04 0.55 

CETP 1.8e-03 0.23 1.7e-03 0.59 

CD5L 1.8e-03 0.23 2.4e-03 0.60 

TIMD4 2.5e-03 0.24 1.1e-03 0.58 

FCN3 3.3e-03 0.25 5.0e-03 0.62 

ANKRD55 3.5e-03 0.25 1.2e-03 0.58 

DNASE1L3 3.6e-03 0.25 5.0e-05 0.51 

M
o

d
u

le
 T

2
 LPA 7.0e-04 0.21 4.4e-04 0.56 

ABCA9 1.4e-03 0.22 1.8e-04 0.53 

CFHR4 5.3e-03 0.28 3.4e-03 0.61 

HPX 7.4e-03 0.29 8.3e-03 0.64 

BDH1 7.7e-03 0.30 4.2e-03 0.62 

ASGR2 9.4e-03 0.30 4.8e-03 0.62 

M
o

d
u

le
 T

9
 

CCNA2 1.3e-05 9.50 1.1e-03 1.70 

RAD51C 2.6e-04 6.00 4.7e-03 1.60 

DEPDC1B 8.0e-04 4.80 9.6e-03 1.50 

STMN1 9.3e-04 4.70 6.6e-04 1.80 

UBE2C 9.3e-04 4.70 8.4e-05 1.90 

UBE2S 9.3e-04 4.70 3.3e-04 1.80 

MCM3 9.3e-04 4.70 5.4e-03 1.60 

BIRC5 9.3e-04 4.70 7.8e-05 1.90 

STIL 9.3e-04 4.70 7.1e-03 1.60 

CENPM 9.3e-04 4.70 1.1e-03 1.70 

CHEK1 9.3e-04 4.70 4.6e-04 1.80 

CDK16 9.3e-04 4.70 5.1e-03 1.60 

ANGPT2 9.3e-04 4.70 9.7e-04 1.70 

MCM6 1.0e-03 4.70 1.9e-03 1.70 

TK1 1.2e-03 4.60 2.5e-04 1.80 

CDKN2C 1.2e-03 4.60 2.7e-03 1.70 

DLGAP5 1.2e-03 4.60 8.3e-03 1.60 

PLK4 1.2e-03 4.60 7.5e-04 1.80 

CDC20 1.5e-03 4.50 8.7e-03 1.60 

CDCA5 1.5e-03 4.50 2.6e-04 1.80 

MKI67 1.5e-03 4.40 1.6e-03 1.70 

FANCI 1.5e-03 4.40 7.8e-03 1.60 

KIF11 1.5e-03 4.40 5.0e-03 1.60 

TACC3 1.5e-03 4.40 8.1e-03 1.60 

CENPH 1.5e-03 4.40 2.8e-04 1.80 

MAD2L1 1.6e-03 4.40 5.2e-03 1.60 

PRKCA 2.2e-03 4.20 4.4e-03 1.60 

TTK 2.3e-03 4.20 2.1e-03 1.70 

KIF20A 2.3e-03 4.20 2.2e-03 1.70 

EFNA4 2.4e-03 4.20 3.2e-03 1.60 

EHMT2 2.4e-03 4.20 1.6e-03 1.70 

CDK1 5.1e-03 3.60 4.5e-03 1.60 

KIF2C 5.1e-03 3.60 6.6e-05 1.90 

SHCBP1 5.1e-03 3.60 5.7e-03 1.60 

NUP85 5.2e-03 3.60 3.7e-03 1.60 

CBX1 5.6e-03 3.50 4.7e-03 1.60 

CDK4 6.0e-03 3.50 3.1e-04 1.80 

WDR76 6.4e-03 3.50 1.1e-03 1.70 



168 

 

Table C2: Significant KEGG Pathways and GO Biological processes of premalignant 

modules 

Module KEGG Pathways GO Biological Processes 

N2 

Glycine, serine and threonine metabolism 

(3.4e-07); Drug metabolism (7.4e-07); 

Tryptophan metabolism (1.7e-04); 

Complement and coagulation cascades 

(2.5e-04); Cysteine and methionine 

metabolism (2.5e-05); PPAR signaling 

pathway (0.001); Primary bile acid 

biosynthesis (0.002); Bile secretion (0.002); 

Steroid biosynthesis (0.002); Chemical 

carcinogenesis (0.005); Retinol metabolism 

(0.01); Metabolism of xenobiotics by 

cytochrome P450 (0.01); Tyrosine 

metabolism (0.01); Arginine and proline 

metabolism (0.02); Cholesterol metabolism 

(0.02); Steroid hormone biosynthesis 

(0.03); One carbon pool by folate (0.04); 

Purine metabolism (0.04) 

cellular amino acid catabolic process (3.9e-

08); steroid metabolic process (2.9e-05); fatty 

acid metabolic process (9.2e-05); 

epoxygenase P450 pathway (5e-04); 

cholesterol metabolic process (6e-04); drug 

catabolic process (8e-04); regulation of 

complement activation (8e-04); purine 

ribonucleoside monophosphate catabolic 

process (8e-04); regulation of immune 

effector process (0.001); regulation of 

humoral immune response (0.001); 

monocarboxylic acid metabolic process 

(0.001); dicarboxylic acid metabolic process 

(0.001) 

N4 

Cell cycle (1.4e-14); Oocyte meiosis (6.5e-

06); Progesterone-mediated oocyte 

maturation (1.7e-05); Human T-cell 

leukemia virus 1 infection (1e-04); p53 

signaling pathway (1e-04); Cellular 

senescence (0.01); DNA replication (0.03) 

mitotic spindle organization (3.2e-27); 

microtubule cytoskeleton organization 

involved in mitosis (6.1e-24); mitotic sister 

chromatid segregation (7.9e-17); mitotic 

cytokinesis (8.5e-12); spindle assembly 

checkpoint signaling (3.2e-11); negative 

regulation of mitotic metaphase/anaphase 

transition (4.1e-11); cytoskeleton-dependent 

cytokinesis; mitotic nuclear division (6.1e-

10); mitotic chromosome condensation (1.4e-

08); kinetochore organization (1.8e-08); 

regulation of exit from mitosis (1.1e-07); 

regulation of G2/M transition of mitotic cell 

cycle (8.4e-07); cell cycle G2/M phase 

transition (5.5e-06); regulation of cyclin-

dependent protein serine/threonine kinase 

activity (6e-06); anaphase-promoting 

complex-dependent catabolic process (6.7e-

06) 

N5 

Protein processing in endoplasmic 

reticulum (5.1e-05); Hepatitis C (7.7e-05 ); 

Th17 cell differentiation(7.8e-05); IL-17 

signaling pathway (1e-04); PPAR signaling 

pathway (1e-04); Antigen processing and 

presentation (0.001); Cytokine-cytokine 

receptor interaction (0.003 ); Th1 and Th2 

cell differentiation(0.003); Biosynthesis of 

unsaturated fatty acids (0.005); Bile 

secretion (0.01 ); Viral protein interaction 

with cytokine and cytokine receptor(0.02); 

Arginine biosynthesis (0.02); TNF 

signaling pathway (0.04); Cholesterol 

metabolism (0.03 ); B cell receptor 

signaling pathway; Epstein-Barr virus 

infection(0.04); MAPK signaling pathway 

(0.04); PD-L1 expression and PD-1 

checkpoint pathway in cancer (0.04) 

cellular response to type I interferon (4.6e-

16); cytokine-mediated signaling pathway 

(3.4e-14); defense response to virus (1.2e-10); 

negative regulation of viral process (3.6e-09); 

receptor-mediated endocytosis (2.7e-06); 

regulation of viral genome replication (5.6e-

06 ); cellular response to interferon-gamma 

(2.2e-05); regulation of ribonuclease activity 

(3.2e-05); regulation of nuclease activity 

(8.9e-05); interleukin-27-mediated signaling 

pathway (2e-04); interferon-gamma-mediated 

signaling pathway (6e-04); response to 

unfolded protein (6e-04) 

N7 
Phagosome (4.6e-06); Complement and 

coagulation cascades (6.5e-05); Fructose 

inflammatory response (2.2e-07); neutrophil 

degranulation (2.6e-07); neutrophil activation 
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and mannose metabolism (1e-04); HIF-1 

signaling pathway (2e-04); Viral protein 

interaction with cytokine and cytokine 

receptor (0.001); Human T-cell leukemia 

virus 1 infection (0.002); Cell adhesion 

molecules (0.002); Chemokine signaling 

pathway (0.003); Natural killer cell 

mediated cytotoxicity (0.004); PPAR 

signaling pathway (0.005); Antigen 

processing and presentation (0.01 ); 

Leukocyte transendothelial 

migration(0.01); Galactose 

metabolism(0.01) 

involved in immune response (2.6e-07); 

neutrophil-mediated immunity (2.6e-07); 

cytokine-mediated signaling pathway (1.3e-

06); regulation of T cell proliferation (7.8e-

06); regulation of immune response (1.6e-05); 

chemokine-mediated signaling pathway (6e-

04); negative regulation of lymphocyte 

activation (6e-04); positive regulation of 

MAPK cascade (7e-04); cellular response to 

chemokine (7e-04); dendritic cell 

differentiation (8e-04); positive regulation of 

ERK1 and ERK2 cascade (8e-04) 

N10 

Complement and coagulation cascades 

(0.02); Bladder cancer (0.02) 
nuclear-transcribed mRNA catabolic process 

,nonsense-mediated decay (0.008); cellular 

protein metabolic process (0.01); SRP-

dependent cotranslational protein targeting to 

membrane (0.01); regulation of lipid 

metabolic process (0.01); protein targeting to 

ER (0.02); regulation of apoptotic process 

(0.02); response to interferon-gamma (0.02); 

glutamate metabolic process (0.02); 

regulation of actin cytoskeleton organization 

(0.03); cytoplasmic translation; peptide 

biosynthetic process (0.03); regulation of 

ERK1 and ERK2 cascade (0.04) 

N11 

Huntington disease (0.003); Prion disease 

(0.003); Ribosome (0.003); Oxidative 

phosphorylation (0.01); Non-alcoholic fatty 

liver diseas (0.01)e; Alzheimer disease 

(0.01); Parkinson disease (0.03); RNA 

polymerase (0.03) 

mitochondrial translational elongation (7.9e-

05); mitochondrial translational termination 

(7.9e-05); peptide biosynthetic process (8.5e-

05 ); mitochondrial translation(1e-04); 

cellular macromolecule biosynthetic process 

(2e-04); aerobic electron transport chain (5e-

04); mitochondrial ATP synthesis coupled 

electron transport (5e-04); translation (5e-04); 

cellular protein metabolic process (0.002); 

purine nucleotide metabolic process (0.005); 

lipoprotein catabolic process (0.01) 
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Table C3: Survival analysis of genes from premalignant modules N3, N10, N7, and N5 

on Chinese cohort tumour-adjacent paired normal samples. Hub genes with p-value ≤ 

0.01 are shown. 

 Gene p-value Hazard ratio 

M
o

d
u

le
 N

3
 

PLK2 8.5e-07 2.50 

PLSCR1 8.2e-04 1.90 

ODC1 1.4e-03 1.80 

WWC1 1.6e-03 1.80 

RANGAP1 3.2e-03 1.70 

MYC 4.0e-03 1.70 

AVPR1A 4.1e-03 0.58 

DDX21 4.5e-03 1.70 

MCL1 5.3e-03 1.70 

BAG3 5.6e-03 1.70 

PHLDA1 6.1e-03 1.70 

PPRC1 6.5e-03 1.70 

B4GALT5 7.2e-03 1.70 

CDC37L1 7.3e-03 1.70 

SPRY2 8.1e-03 1.60 

RAB20 9.4e-03 1.60 

M
o

d
u

le
 N

1
0
 

CDC42EP1 0.00086 1.90 

GGT1 0.00150 1.80 

TAGLN2 0.00180 1.80 

SDF2L1 0.00250 1.80 

DUSP5 0.00270 1.80 

GDF15 0.00360 1.70 

WDR13 0.00410 1.70 

TSPAN4 0.00450 0.59 

CKS2 0.00570 1.70 

IER3 0.00600 1.70 

ID3 0.00800 1.60 

PCNA 0.00830 1.60 

GNB2 0.00830 1.60 

CTSA 0.00850 1.60 

IFITM2 0.00980 1.60 

M
o

d
u

le
 N

7
 

THBD 0.00035 2.00 

NUCB2 0.00045 1.90 

BCL2L1 0.00072 1.90 

MVP 0.00130 1.80 

PFKFB3 0.00210 1.80 

EPS8L3 0.00260 0.57 

CD59 0.00290 1.80 

GPX3 0.00290 1.70 

RBPMS 0.00310 1.70 

MYH4 0.00390 0.58 

ME1 0.00400 0.58 

ALDOA 0.00470 1.70 

BIRC3 0.00630 1.70 

NCKAP1L 0.00930 1.60 

ASCC3 0.00960 1.60 

M
o

d
u

le
 N

5
 

GABBR2 0.00044 0.52 

JUN 0.00150 1.80 

SPINK1 0.00250 1.80 

AKAP12 0.00290 1.70 

TIPARP 0.00460 1.70 

FOS 0.00470 1.70 

EGR2 0.00580 1.70 

HSP90AA1 0.00580 1.70 

CPD 0.00760 1.60 

ERBB3 0.00900 0.61 

CPT1A 0.00940 1.60 

EPO 0.00950 0.62 
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