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ABSTRACT 

The impact of climate change on water quality variables is an essential topic for sustainable 

river water quality management in a warming environment and is a great environmental 

concern worldwide. River Water Quality (RWQ) models aim to simulate the behavior of 

various water quality variables in response to pollutants, land use changes, and climate 

change. However, these water quality models suffer from sparse data leading to data 

uncertainty. In the past decades, different models have been successfully used for RWQ 

modeling under different spatial and temporal scales. To simulate RWQ variables, physically 

based water quality models can be used, but they require large amounts of site-specific 

detailed data, including stream geometry, meteorological variables, and hydraulic properties 

of the river, which are unavailable for many river systems globally. However, unlike process-

based models, statistical models possess many advantages. Additionally, statistical models do 

not require a large number of input variables, which are unavailable for many ungauged river 

systems. However, accurately describing the nonlinear characteristics of a data series is a 

significant shortcoming of this approach. To overcome such limitations, artificial intelligence 

algorithms, i.e., Machine Learning (ML) techniques, are widely used to address a range of 

nonlinear prediction problems. Such models are suited for information extraction from 

sequential data in RWQ modeling, and they serve functionalities to build models using a 

reduced number of variables with more accurate simulation. 

Machine Learning (ML) has been increasingly adopted due to its ability to model 

complex and nonlinearities between river water quality (RWQ) variables and their predictors 

(e.g., Air Temperature, AT, streamflow). To simulate RWQ parameters using data-driven 

algorithms, more input variables are required, which are unavailable for many ungauged river 

systems. Climatic variables that are readily available are the maximum, minimum, and 

average AT to build RWQ models with more accurate simulation and higher computational 

efficiency. In this context, most of these ML approaches have been applied without any 

detailed sensitivity analysis to identify the most influencing variables to be considered in the 

prediction of RWQ variables. Furthermore, the development of systematic models combined 

with ML under minimum data input variables has not been intensively studied in predicting 

RWQ variables. To address these, the present study first demonstrates how new ML 

approaches, such as Ridge regression (RR), K-nearest neighbors (KNN) regressor, Random 



vii 
 

Forest (RF) regressor, and Support Vector Regression (SVR), can be coupled with Sobol’ 

global sensitivity analysis (GSA) to predict accurate RWQ variables estimates. Air 

Temperature (AT) changes can affect River Water Temperature (RWT) under anthropogenic 

climate change, the primary variable that influences water quality. Therefore, the present 

study selected RWT as a water quality variable prediction with a tropical river system of 

India, Tunga-Bhadra River, as a case study. Further, the proposed ML approaches have been 

combined with the Ensemble Kalman Filter (EnKF) data assimilation (DA) technique to 

improve the predicted values based on the measured data. Overall, the study concluded that 

the SVR has been noted as the most robust ML model when coupled with a global sensitivity 

algorithm and DA techniques to predict RWT at a monthly time scale compared to daily and 

seasonal. Also, the study concluded that the SVR model is a strong choice for smaller 

datasets and is less sensitive to outliers in the data compared to some other models. The SVR 

is generally less computationally expensive than the ML models.   

Another data uncertainty is the lack of availability of long-time series data to capture 

interannual variability and consistent water quality measurement datasets in RWQ modeling. 

Generally, RWQ data availability is on a monthly scale and is burdened with a large number 

of missing values with limited durations. In this context, the selection of appropriate model 

inputs, development of models under limited data, processing of non-stationary data, 

seasonality scenarios, and different potentially influenced relevant lags of variables have not 

been intensively investigated in the literature, especially in the case of estimation of RWQ 

variables. Given the missing, limited, and non-stationary data scenarios, the present thesis 

developed hybrid models for RWQ variables prediction using Long Short-Term Memory 

(LSTM), integrated with (i) k-nearest neighbor (k-NN) bootstrap resampling algorithms 

(kNN-LSTM) to address the data-limitations and (ii) discrete wavelet transform (WT) 

approach (WT-LSTM) to address the time-frequency localized features. To demonstrate the 

prediction of RWQ variables and to assess the impact of climate change on the river water 

quality parameters, this study considered the two most important water quality variables, i.e., 

River Water Temperature (RWT) and saturated Dissolved Oxygen (DO) concentrations, and 

AT and lag variables as predictors. When WT and k-NN bootstrap resampling algorithms 

were included, LSTM outperformed the conventional models; hence these hybrid models are 

the new promising frameworks for RWQ prediction under data-sparse regions. Bayesian 
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optimization is applied to optimize the hyperparameters of all applied ML models. The 

hybrid kNN-LSTM has effectively predicted RWT for five catchment sites (i.e., Narmada, 

Cauvery, Musi, Godavari, and Ganga) out of seven catchment sites (i.e., Narmada, Cauvery, 

Sabarmati, Tunga-Bhadra, Musi, Godavari, and Ganga) at monthly time scales under data 

limitations and outperformed the standalone LSTM, WT-LSTM, and hybrid 3-parameter 

version of Air2Stream models (physical based RWT prediction model). Also, this thesis 

presents the combined effects of streamflow and AT in the prediction of RWT using the 

kNN-LSTM model, LSTM model, a modified nonlinear regression model, and an 8-

parameter version of Air2Stream when applied to three major river systems of India (Tunga-

Bhadra, Musi, and Ganga). Results revealed that the kNN-LSTM model could predict RWT 

more accurately than the LSTM model, a modified nonlinear regression model, and an 8-

parameter version of the Air2Stream model for all three catchment sites. Overall, the study 

concluded that hybrid models consistently outperformed standalone models in addressing 

uncertainty due to data sparsity. 

The study assessed the climate change impacts on river water quality variables using 

an Ensemble of National Aeronautics Space Administration (NASA) Earth Exchange Global 

Daily Downscaled Projections (NEX-GDDP) with Representative Concentration Pathways 

(RCP) scenarios 4.5 and 8.5 for seven major polluted river catchments of India. For this 

assessment, the best performance hybrid kNN-LSTM model has been used for future 

predictions. The RWT increase for Tunga-Bhadra, Musi, Ganga, and Narmada basins are 

predicted as 3.0, 4.0, 4.6, and 4.7 oC, respectively for 2071-2100. Overall, RWT over Indian 

catchments is likely to rise by more than 3.0 °C for 2071-2100. 

While river water temperatures (RWTs) are increasing under climate change signals, 

how climate change affects DO saturation levels in response to RWT has not been 

intensively studied. This thesis examined the direct effect of rising RWTs on saturated DO 

concentrations for seven major polluted river catchments of India at a monthly scale. The 

RWT reaches close to 35 oC, and decreases DO saturation capacity by 2%–12% for 2071–

2100. Also, in this thesis evaluated the effect of climate change on DO saturation levels with 

respect to RWT and streamflow using the kNN-LSTM model forced with nine hypothetical 

climate change scenarios for three polluted catchments of India (Tunga-Bhadra, Musi, and 

Ganga). The largest DO decreases (13.22 %) were found in the Ganga catchment for selected 
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climate change scenarios relative to the historical values. Overall, for every 1 oC RWT 

increase, there will be about 2.3 % decrease in DO saturation level concentrations over 

Indian catchments under climate signals.  

Overall, the study demonstrates how hybrid ML methods can be coupled with a 

global sensitivity algorithm, DA techniques, bootstrapping algorithms, and wavelets to 

generate accurate RWQ variables prediction under data uncertainties. Although the focus of 

our study has been limited to climate change impacts on RWT and DO saturations, the 

proposed hybrid ML modeling frameworks are generic and have the potential to incorporate 

other water quality parameters as well to make better decisions towards river water quality 

management. 
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Chapter 1 
INTRODUCTION 

 

1.1. General 

The surface of our planet contains freshwater bodies such as rivers, lakes, and ponds that are 

suitable for human consumption (Dugan 1972). The development of major human 

civilizations was largely dependent on freshwater sources like rivers and lakes (Lundqvist 

2009). It may be noted that man’s early habitation and civilization sprang up along the banks 

of rivers (Dugan 1972; Webb 1992). For several centuries, these water bodies have been 

supplying fresh water to several household, agricultural, and industrial purposes (Paily et al. 

1974; Mohseni et al. 1998; van Vliet et al. 2011). So, the survival of human society is largely 

dependent on the availability of clean freshwater resources like rivers and lakes, and 

freshwater resources have, therefore, become increasingly crucial to our society (Penchev 

1972; Tennant 1976; Shiklomanov 1993). River water quality is a great environmental 

concern worldwide, and the evaluation of water quality is fundamental to the study and use 

of water for various purposes such as drinking water supply, Irrigation, ecosystem health, 

Industrial purposes, etc. (Chapra 1998). 

Water quality models are important tools in analyzing the spatiotemporal extent of 

pollutants and identifying the state of the environment (Thomann and Mueller 1987; van 

Vliet et al. 2021). River Water Quality (RWQ) models aim to simulate the behavior of 

various water quality variables in response to pollutants, land use changes, and climate 

change (Edinger et al. 1968). The input data and information that would be needed for water 

quality modeling to simulate RWQ variables include initial and boundary concentrations, 

source of pollutants, baseline conditions, flow characteristics, meteorological and flow data, 

and the geometry of the modeled waterbodies. In the past decades, different models have 

been successfully used for RWQ modeling under different spatial and temporal scales 

(Mohseni et al. 1998; van Vliet et al. 2013; Piccolroaz et al. 2016; Feigl et al. 2021). In 

general, the model selection depends not only on the study requirements, namely the output 

timescale but also on the availability and quality of the input data (Almeida and Coelho 

2022). In this context, process-based models are strongly rooted in scientific theory (Hilborn 
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and Mangel 1997), which represent physical processes controlling RWQ variables (Feigl et 

al. 2021), and their implementation based on the heat exchange dynamics between the water 

body and the surrounding environments (Sinokrot and Stefan 1993; Du et al. 2018). To 

simulate RWQ variables, physically based water quality models (e.g., Delft3D model, Soil 

and Water Assessment Tool (SWAT) model, QUAL2K, dynamical surface water quality 

model (DynQual), etc.), statistical models (e.g., Air2Stream model) were most widely used 

(Piccolroaz et al. 2016; van Vliet et al. 2021; Shrestha and Pesklevits 2022; Wang et al. 

2022). As opposed to statistical models relying heavily on observed water quality data, 

physical models simulate the emission and transport of pollutant loadings along the river 

network based on site-specific detailed data, including stream geometry, meteorological and 

hydraulic properties of the river (Piccolroaz et al. 2016). However, these water quality 

models suffer from sparse data leading to data uncertainty (Pohle et al. 2019). In many 

regions of the world the monitoring and the information collected on water quality variables 

are limited, primarily due to the shortage of financial resources (Tabari and Hosseinzadeh 

Talaee 2015; Jackson et al. 2017). Furthermore, most of the river systems are burdened with 

data limitations and form a significant challenge for implementing process-based RWQ 

models at various spatial and temporal scales (Read et al. 2019; Pohle et al. 2019). Although 

process-based models could give very accurate results, they require large amounts of site-

specific detailed data, including stream geometry, a complete set of meteorological variables, 

and the hydraulic properties of the river, that are unavailable for many river systems, along 

with in-depth knowledge of the field (Piccolroaz et al. 2016). However, given a large amount 

of data and complex algorithms, process-based models are always time-consuming (Jackson 

et al. 2018; Piotrowski and Napiorkowski 2019). According to Dugdale et al. (2017), these 

models first calculate energy fluxes to or from the river and then determine the changes in 

RWQ variables. Furthermore, these models sometimes have complex practical 

implementation issues in the large spatial domain of interest (Feigl et al., 2021; Rehana, 

2019). Another data uncertainty is the lack of availability of long-time series data to capture 

interannual variability and consistent water quality measurement datasets in RWQ modeling. 

Consequently, measurement errors or discontinuity might lead to noisy data (Graf et al. 2019; 

Virro et al. 2021). The loss of data can have different causes, both instrumental and 

administrative. Sensors collecting data in situ are susceptible to technical errors, failing to 
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record observations and/or anomalies, and, therefore, data gaps (Kermorvant et al. 2021). 

Sparse and often irregular sampling of RWQ data makes the statistical analyses (such as 

trend analysis) problematic (Hirsch et al. 2015; Shrestha et al. 2019). Incorporating erroneous 

values into RWQ models could result in wrong conclusions that might be costly to the 

environment or humans (Rangeti et al. 2015). The lack of water quality data in rivers can 

make it difficult to manage river ecosystems, particularly in reference to biodiversity, oxygen 

conditions (and consequently for their self-cleaning capacity), and finally, their quality 

(Sojka and Ptak 2022). 

In contrast to process-based models, statistical models cannot inform about energy 

transfer mechanisms within a river (Dugdale et al. 2017). However, unlike process-based 

models, statistical models possess many advantages, including simplification of the complex 

relations between water quality indicators and the identification of similar temporal and 

spatial characteristics patterns among water quality variables. Additionally, statistical models 

do not require a large number of input variables, which are unavailable for many ungauged 

river systems. However, accurately describing the nonlinear characteristics of a data series is 

a significant shortcoming of the approach because the statistical models are usually based on 

temporal linear correlations within the modeled dataset (Wang et al. 2020). To overcome this 

shortage, artificial intelligence algorithms, i.e., Machine Learning (ML) techniques are 

widely used to address a range of nonlinear prediction problems. Especially these ML 

techniques are suited for information extraction from sequential data in RWQ modeling, and 

they serves functionalities to build models using reduced number of variables with more 

accurate simulation, higher computational efficiency, greater representativeness of the 

indices, and reduced requirements for human involvement and expertise (Shen 2018; Qiu et 

al. 2020; Zhu and Piotrowski 2020). These advances contribute to improving the prediction 

of water quality variables, thus seeking to obtain one that represents the various phenomena 

that occur in river water basins more rapidly and coherently with the reality and social 

context of water resources. 

Recently, to simulate RWQ variables, the Air2Stream model (Shrestha and Pesklevits 

2022; Zhu et al. 2022), Temperature Duration Curve (TDC) (Ouarda et al. 2022), Process-

based models (e.g., Delft3D model, Soil and Water Assessment Tool (SWAT) model, etc.), 

have been used (Wang et al., 2022). However, such approaches require large amounts of site-
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specific detailed data at daily time scales, including stream geometry and meteorological and 

hydraulic properties of the river (Piccolroaz et al. 2016). However, globally, RWQ data 

availability is on a monthly scale and is burdened with a large number of missing values with 

limited durations. The use of data-driven algorithms, such as ML models using minimum 

data inputs (such as AT), can be robust in addressing data sparsity in simulating RWQ 

models. Therefore, this study tries to address the data sparsity and uncertainties using data-

driven algorithms to predict RWQ variables. 

1.2. Climate Change Impact on River Water Quality 
 

Climate change will affect river hydrologic and thermal regimes, directly impacting 

freshwater ecosystems and human water use (van Vliet et al. 2013). Increased evaporation, 

resulting from higher temperatures, together with regional changes in precipitation 

characteristics, has the potential to affect the runoff, frequency, and intensity of floods and 

droughts, soil moisture, water quality, and water demands (Intergovernmental Panel on 

Climate Change (IPCC) 2001; Cunderlik and Simonovic 2005). Many studies (Rajagopalan 

et al., 2019; Yang et al., 2017) have investigated the impacts of regional and global climate 

change and variabilities on river water quantity, but relatively very less attention has been 

given to river water quality. River water quality parameters are directly affected by changes 

in climate under anthropogenic greenhouse gases in the atmosphere, which in turn increases 

the risk of deterioration of the river ecosystem in terms of decreased Dissolved Oxygen (DO) 

levels under the decrease of stream flows and increase in River Water Temperature (RWT) 

(Rehana and Dhanya 2018). Climate change has adversely impacted RWQ under 

intensification and alterations in various hydro-climatic variables (e.g., AT, precipitation, 

streamflow, etc.) (Stefan & Sinokrot, 1993; van Vliet et al., 2013; Webb et al., 2003). RWT 

is the critical RWQ variable, which is intensified under various climatological variables such 

as AT under anthropogenic climate change effects (Mohseni et al. 1999; van Vliet et al. 

2011) and due to net changes of heat flux at the air-water interface. The pronounced increase 

in RWT drives the rates of biological and chemical processes, affecting the reaction kinetics. 

Intensification of RWT will have adverse impacts in terms of a decrease in river DO 

saturation levels, directly affecting the river system self-purification capacity. Another 

dominant factor affecting the RWQ is streamflow, which defines the pollutant transport and 

dilution of nutrients and pollutant loads. Changes in streamflow directly affect the dilution 
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capacity of a river receiving pollutants. Furthermore, stream flow, which is a smoothened 

force caused by rainfall, also play a vital role in RWQ (van Vliet et al. 2011; Zhu et al. 

2019f; Feigl et al. 2021), especially in Indian rivers impacted by low flows during summer 

seasons, leading to water quality deterioration. Therefore, the major RWQ parameters are 

RWT, DO, and turbidity, which are directly affected under climate changes, which further 

increases the risk of deterioration of the river ecosystem (Webb and Walling 1993; Mohseni 

et al. 1998; van Vliet et al. 2011). Higher RWTs and changes in extremes, including floods 

and droughts in the future, are projected to influence water quality and intensify many forms 

of water pollution (Bates et al. 2008).  

In this context, assessment of climate change impacts on river water quality is vital in 

terms of assessing the variability of various RWQ parameters such as RWT, DO, Turbidity, 

etc. (Rehana & Mujumdar, 2011; van Vliet et al., 2011). To this end, various methods for 

estimating the impacts of climate change on hydrological behavior, as implemented in a 

number of earlier studies, are (1) using high resolution Regional Climate Models (RCMs) 

(e.g., Malmaeus et al. (2006)); (2) using General Circulation Models (GCMs) through 

statistical downscaling techniques (e.g., Wilby & Wigley (1997)); and (3) using hypothetical 

scenarios as input to hydrologic models (e.g., Jiang et al. (2007)) and river water quality 

models (Rehana & Mujumdar, 2014). 

The preferred climate scenarios are usually those derived from the GCMs, which 

consider the natural and anthropogenic greenhouse gas emissions in the atmosphere. GCMs 

are developed to evaluate the plausible responses of the climate system to the changes in the 

behavior of natural and human systems, either separately or together (Houghton et al. 1996). 

GCMs can simulate Earth’s climate with different climate variables, initial and boundary 

conditions, and structure. GCMs are increasingly being employed to solve or assess 

regional/local issues. GCMs are formulated on the principles of movement of energy, the 

momentum of a particle, and conservation of mass (Wilby et al. 2009). Forecasting future 

climate projections will be helpful for efficient planning in order to mitigate and adapt to 

changing climate. GCMs are widely used for impact assessment under climate change, but 

the common practice is to employ the output of a single GCM or single scenario, which 

ultimately results in various uncertainties (Srinivasa Raju and Nagesh Kumar 2018). The 

accuracy of GCMs, developed for coarse grid resolution, decreases with an increase in finer 
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spatial and temporal scales, rendering them unable to replicate sub-grid scale features. 

However, features at the sub-grid scale are important to hydrologists and water resources 

planners (Wang et al. 2004; Mujumdar and Nagesh Kumar 2012). GCMs are climate models 

designed to simulate a time series of climate variables globally, accounting for the 

greenhouse gases in the atmosphere in current and future scenarios (Rehana, 2019). 

Downscaling models are the statistical techniques to bridge the spatial and temporal 

resolution gaps between the GCMs and impact assessment studies. The study aimed to 

include such climate change projections in predicting river water quality variables. The 

limitations of the prediction models include difficulty in interpreting, accuracy heavily 

relying on the quality and quantity of the data, and overfitting. Such models carry 

assumptions that input features are independent features, models might identify correlations 

between features and the target variable, but they may not represent true causal relationships, 

and many models assume stationarity data.  

 

1.3. Water Quality Variables 
 

There are certain quality standards set up by international organizations like the World 

Health Organization (WHO) and the Environmental Protection Agency (EPA), which serve 

as a benchmark for determining the quality of water. In its document “Parameters of Water 

Quality”, EPA mentions a total of 101 parameters that affect water quality in one way or 

another. The critical water quality parameters are Temperature, Dissolved Oxygen (DO), 

Biochemical oxygen demand (BOD), Ammonia, Nitrite, Nitrate, and pH, and important 

water quality parameters are Alkalinity/Hardness, Salinity, CO2, and Solids (Loucks and van 

Beek 2017a). Out of all RWQ parameters, many of the physical, biological, and chemical 

characteristics of river water and its life cycle depend on the RWT, and that reduces the 

saturation concentration for DO. Fish and other aquatic organisms have not evolved the 

ability to adapt to rapid temperature fluctuation. Also, RWT is the first variable directly 

impacted by the intensification of air temperature due to climate change. Additionally, the 

RWT is involved in the self-purification capacity of the river in response to the pollutants 

and climate. So, it is evident that the RWT is a significant water quality parameter. The RWT 

exerts a major influence on biological activity and growth, affects water chemistry, can 

influence water quantity measurements, and governs the types of organisms that live in water 
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bodies (United States Geological Survey (USGS) 2018a). Another critical water quality 

parameter is DO, which measures the quantity of oxygen in milligrams per liter of water - the 

amount of oxygen available to living aquatic organisms can reveal a lot about water quality. 

A small amount of oxygen, up to about ten oxygen molecules per million of water, is 

dissolved in water. This dissolved oxygen is breathed by fish and zooplankton and is needed 

by them to survive (United States Geological Survey (USGS) 2018b). All forms of aquatic 

life use DO in river water; therefore, this constituent is typically measured to assess the 

health of rivers. Wastewater from human activities, decaying aquatic vegetation, polluted 

stormwater discharges, sewage effluent, and decaying aquatic vegetation all lower DO levels 

as they are decomposed by micro-organisms present in river water. There are two main 

routes for oxygen input in surface waters: transfer of oxygen directly from the atmosphere (a 

process called reaeration), and from plants as a result of photosynthesis (Federal Interagency 

Stream Restoration Working Group (FISRWG) 2014). Therefore, the study focused on two 

critical river water quality variables, i.e., RWT and DO, and assessed the impacts of these 

two variables on river water quality management under climate change. There are standards 

set by the Bureau of Indian Standards (BIS) (BIS10500:1991) and Central Pollution Control 

Board (CPCB) Standards for river water quality variables. According to BIS10500:1991, for 

example, RWT’s acceptable range is 25 °C maximum, and the minimum tolerance limit of 

DO is 6 mg/l. 

1.4. River Water Temperature Heat Transfer Process 
 

The RWT is formed under the influences of various hydrometeorological, topographical, and 

geophysical factors operating over any drainage area. Among the factors, one should include 

solar radiation, the temperature of the air (Penchev 1972; Tsachev et al. 1982; Marinov 

1990), convective heat exchange between the free water surface and the atmosphere 

(Dingman 1972), the intensity and duration of sunshine (Arnell 1996), the character of river 

feeding, etc. (Webb, 1992). Several other natural factors influence river water temperature, 

such as geological structures, presence of karst or deep artesian water, type, and state of soil-

vegetation cover, altitude, afforestation and position of the watershed, etc. (Edinger et al. 

1968; Gu and Li 2002; Nelson and Palmer 2007). The diverse anthropogenic activities in the 

watersheds also exert their effect, causing sharp and permanent changes in water temperature 
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(Webb, 1992). Usually, RWT samples collected 30 cm below the water surface from the 

point of interest (Central Water Commission 2018). 

Different heat transfer processes are the principal contributors to the total surface heat 

exchange: (1) the net short-wave radiation hitting the water; (2) the net long-wave radiation 

leaving the water; (3) evaporation; (4) conduction and (5) melting of snow (Figure 1.1). The 

melting heat of water is abnormally high at about - 333.7 kiloJoule (KJ). Paily et al. (1974) 

have given a detailed description of the different components of the heat transfer processes, 

shown in Figure 1.1. 

 

Figure 1.1. River Water Temperature Contributing Factors. 

 

1.4.1. Air Temperature 

 

Air temperature is the main factor affecting the river water temperature (Arnell 1996). The 

river water temperature (Tw) constantly seeks to achieve equilibrium with the surrounding air 

(Ta) at a rate that is proportional to the difference between the two temperatures. The heat 

transfer is determined by the equation: 

 𝑄 = 𝑞(𝑇𝑤 − 𝑇𝑎)      (1.1) 

where 𝑄 = rate of heat loss from the surface in calories per square cm day 

𝑞 = energy exchange coefficient in calories/square cm day oC. 

Equilibrium temperature (𝑇𝑒) of the water surface is a state at which the net energy 
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exchange with the atmosphere stops (Dingman 1972). The heat is gained by the body of 

water when the temperature of the water surface (𝑇𝑤𝑠) is smaller than 𝑇𝑎 and is lost when 

𝑇𝑤𝑠 > 𝑇𝑒. 

Temperature can further be defined as a measurement of the average thermal energy of a 

substance. Thermal energy is the kinetic energy of atoms and molecules, so the temperature 

in turn, measures the average kinetic energy of the atoms and molecules. This energy can be 

transferred between substances as the flow of heat. Heat transfer, whether from the air, 

sunlight, another water source, or thermal pollution, can change the temperature of water 

(Dingman 1972; Paily et al. 1974; Tsachev et al. 1982). 

1.4.2. Stream Flow 

 

For a given level of solar radiation or heat, stream temperature is inversely proportional to 

stream discharge. This relationship is illustrated in Brown (1972) prediction equation: 

∆𝑇 =
𝐴𝑁

𝑄
× 0.000167     (1.2) 

according to it the expected change in stream temperature ∆𝑇 (°C) increases with stream 

surface area 𝐴 (m2) and net radiation load 𝑁 (cal cm-2 min-1), inversely with stream flow 𝑄 

(m3 s-1). 

The discharge 𝑄 is an important factor (agent) in the thermal feature of river water 

temperature because the lower the discharge is, the lower the capacity of the stream for heat 

storage. Thus, the temperature of small streams typical for headwater regions may increase 

significantly in summer by any rise in the air temperature. 

1.4.3. Depth of the Water 

 

Shallow waters are usually warmer than deep-water courses because they require less time to 

warm up. The temperature also changes from the surface to the bottom of the water column. 

The water column in deep lakes and other stagnant water is usually stratified because in 

summer, the water at the surface can get very warm from the sunshine and low thermal 

conductivity of water, while at the bottom, it remains cold (Arnell 1996). 
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1.4.4. Other Factors 

 

There are several other factors that have a direct impact on RWT, such as Solar radiation, 

that have the greatest impact because they determine the heat exchange and fluxes taking 

place at the surface of the river (Sahoo et al. 2009), Flow regulation and construction of 

reservoirs  (Webb and Walling 1993; Lowney 2000; Qiu et al. 2021), River geometry (Gu 

and Li 2002), and canopy cover (DeWeber and Wagner 2014). Land use characteristics that 

are directly or indirectly related to water temperature and useful in geographically diverse 

basins and over large spatial extents for better modeling. Especially for identifying the 

relationships between water temperature and each land cover type, local riparian forest cover, 

as several studies have shown the importance of shade from riparian vegetation on nearby 

temperatures (Nelson and Palmer 2007; DeWeber and Wagner 2014). Thermal pollution is 

any discharge that will dramatically alter the temperature of a natural water source and 

commonly comes from municipal or industrial effluents (Edinger et al. 1968; Webb and 

Nobilis 2007). 

1.5. Prediction of Water Quality Variables 
 

River water quality parameters such as RWT, DO, BOD, Total Dissolved Solids (TDS), 

Electrical Conductivity (EC), etc., form vital signs for defining the health of a river water 

body’s ecosystem (Chapra et al. 2021). Accurate water quality prediction has an essential 

role in improving water management and pollution control (Nouraki et al. 2021). Water 

quality modeling studies demonstrated using various parameters, namely BOD, Chemical 

Oxygen Demand (COD), DO, Electrical Conductivity (EC), Nitrate-Nitrogen (NO3 -N), 

Nitrite-Nitrogen (NO2 -N), Phosphate (PO43-), the potential for Hydrogen (pH), Sodium 

(Na), Temperature, Total Dissolved Solids (TDS), and Turbidity (TUR) for various basins 

globally (Asadollah et al., 2021; Azad et al., 2019; Danladi Bello et al., 2017; Du et al., 2019; 

Ficklin et al., 2013; Heddam et al., 2022; Nouraki et al., 2021; Rehana & Mujumdar, 2012, 

2011; Santy et al., 2020; Ubah et al., 2021). Such studies modeled based on regression 

models (Santy et al. 2020) and process-based models such as QUAL2K (Ficklin et al. 2012, 

2013; Du et al. 2019), and ML-based models(Azad et al. 2019; Nouraki et al. 2021; Heddam 

et al. 2022). In this study, the water quality parameters to demonstrate the RWQ modeling 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/chemical-oxygen-demand
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/chemical-oxygen-demand
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/turbidity


11 
 

were RWT and DO saturation levels. Below sections are the brief discussion about RWT and 

DO saturation levels estimation: 

1.5.1. River Water Temperature Prediction 

 

For many environmental, hydrology, and ecology applications, accurate prediction and 

assessment of RWT have become the key problem (Zhu et al. 2019e, a). RWT is a complex 

process to predict hydro climatological and river morphological parameters (Zhu and 

Piotrowski 2020). In this context, modeling RWT under different spatial and temporal scales 

is based on conceptual processes created on thermal advection-dispersion models (Sinokrot 

and Stefan 1993), equilibrium temperature-based models (Mohseni et al. 1999), statistical or 

machine learning (ML) models (Feigl et al., 2021; Isaak et al., 2017; Pike et al., 2013; Heinz 

G. Stefan & Preud’homme, 1993) and hybrid models (Toffolon and Piccolroaz 2015). Due to 

the simplicity of implementation, regression models have been improved using the 

relationship between air and water temperatures (e.g., Erickson Troy R. & Stefan Heinz G., 

2000; Neumann David W. et al., 2003; Pilgrim et al., 1998; Rehana & Mujumdar, 2011; 

Heinz G. Stefan & Preud’homme, 1993). Deterministic models apply energy budget 

approaches to predict RWT (Sinokrot and Stefan 1993; Du et al. 2018; Zhu et al. 2019b), 

while statistical and ML models are grouped into parametric approaches, including 

regression (Mohseni et al. 1999; van Vliet et al. 2012) and stochastic (Ahmadi‐Nedushan et 

al., 2007; Caissie, 2006; Mohseni et al., 1999; Rabi et al., 2015; Heinz G. Stefan & 

Preud’homme, 1993; Webb et al., 2003), and non-parametric approaches based on ML 

algorithms (Feigl et al. 2021). Unlike process-based models, ML models do not require many 

input variables, which are unavailable for many ungauged river systems and have been 

widely used in RWT modeling in recent years (Zhu and Piotrowski 2020). Particularly, river 

water quality management models which can predict RWT accounting for the hydroclimate 

and ambient meteorological variables of rivers based on such data-driven algorithms are 

prominent for river water quality control. 

Artificial Neural Networks (ANN), which belong to the statistical group, gained 

much attention in the literature due to their ability to capture and represent complex nonlinear 

relationships between air and water temperature (Chenard and Caissie 2008; Sahoo et al. 

2009). ANN has proven to be a promising mathematical tool for predicting the nonlinear 
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relationships and their applications in RWT predictions (Chenard and Caissie 2008; Sahoo et 

al. 2009; Hadzima-Nyarko et al. 2014; DeWeber and Wagner 2014; Rabi et al. 2015; 

Piotrowski et al. 2015; Temizyurek and Dadaser-Celik 2018; Zhu et al. 2018, 2019d, c; Qiu 

et al. 2020). Toffolon & Piccolroaz (2015) developed the air2stream hybrid model for RWT 

prediction. The air2stream model has been used in a variety of hydrological research over a 

variety of catchment sites, and results were usually better than ML models (Piccolroaz et al. 

2016; Yang and Peterson 2017; Piotrowski and Napiorkowski 2018, 2019; Zhu et al. 2019f; 

Tavares et al. 2020). 

The linear and non-linear regression models, as well as traditional ML models for 

RWT prediction, have some limitations, i.e., large modeling errors, particularly when it 

comes to non-stationary data processing (Graf et al. 2019). Because air temperature (AT) is 

an ecosystem “master variable”, denoising the AT data could translate directly into improved 

prediction results (Magnuson et al. 1979). In this regard, wavelet transform (WT), a time-

frequency localization method that can extract periodicities and trends, has frequently been 

coupled with ML methods due to their complementarity and can yield better performances 

compared to conventional forecasting models in various hydrological applications (Zhu et al. 

2019c). Some studies have also demonstrated that hybrid techniques, which incorporate 

various ML techniques in different stages of the model construction, can be better than 

standalone ML since specific patterns in the time series ( e.g., transients or trends) can be 

well encapsulated by various methods (Zhu et al. 2019c; Graf et al. 2019; Stajkowski et al. 

2020). WT has been extensively applied in hydrology (Ebrahimi and Rajaee 2017; Sang et al. 

2018; Roushangar et al. 2018; Honorato et al. 2018; Shoaib et al. 2019), their applications for 

the prediction of RWT have been very limited (Piotrowski et al. 2015; Zhu et al. 2019c; Graf 

et al. 2019). 

ANNs have a large number of free parameters and thus require vast data sets, and 

therefore face slow training issues (Shen 2018). The rapid growth of data and advances in 

computation have led to powerful empirical tools such as deep learning (DL) (LeCun et al. 

2015; Shen 2018). In contrast to ANN, one of the state-of-the-art deep learning architectures, 

the Recurrent neural network (RNN) (Rumelhart et al. 1986) is a neural network family for 

processing sequential data. This is achieved by having internal (hidden) states. The RNNs 

possess important features over ANN, namely, events from the past that can be retained and 
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used in current computations (Nagesh Kumar et al. 2004). The most widely known RNN is 

Long short-term memory (LSTM) (Hochreiter and Schmidhuber 1997). LSTMs have 

recently been applied in a wide range of hydrological studies and showed promising results 

for time-series prediction tasks (Nagesh Kumar et al. 2004; Kratzert et al. 2018; Zhang et al. 

2019; Kratzert et al. 2019; Xiang et al. 2020; Li et al. 2020b). RNNs also set accuracy 

records in multiple applications related to RWT prediction (Stajkowski et al. 2020; Feigl et 

al. 2021; Qiu et al. 2021). 

Overall, RWT is the basic river water quality variable that has direct impacts under 

climate change due to alterations in hydro-climatic variables (e.g., air temperature, 

precipitation, streamflow, etc.). Further, RWT predictions have the direct implementation to 

assess the fish aquatic habitat (Centre for Climate Change Research (CCCR) 2017), to assess 

the deterioration of freshwater ecosystems and human water use (e.g., thermoelectric power 

and drinking water production, fisheries, and recreation) (van Vliet et al. 2013), and to assess 

saturated DO concentrations with respect to RWT (Ficklin et al. 2013). To this end, the 

assessment of RWT is of much relevance for Indian river systems due to minimum flows and 

higher temperatures during non-monsoon seasons, which is crucial for river water quality 

management. Furthermore, the considerable lack of measuring water quality data is a 

significant issue in many parts of the world and most Indian river systems for implementing 

process-based RWT models.  There are only a few studies on the prediction of RWT for 

Indian river case studies, which are mainly on linear regression models (Chaudhary et al., 

2019; Rehana & Mujumdar, 2011; Santy et al., 2020),  Support Vector Regression (SVR) 

(Rehana, 2019). 

 

1.5.2. Dissolved Oxygen (DO) Prediction 

 

Global warming climates have also shown an adverse impact on RWT under intensification 

of various climatological defining variables, majorly Air Temperature (AT) (Stefan & 

Sinokrot, 1993; van Vliet et al., 2013; Webb et al., 2003). Intensification of RWT will have 

adverse impacts in terms of a decrease in river DO saturation levels, where most of the river 

water quality standards are defined based on such saturation levels (van Vliet et al. 2013). 

Precisely, saturation DO is a prominent indicator of river water quality and is considered a 

standard measure to define the pollutant extent (Central Water Commission 2019). The 
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influence of climate change on DO in relation to RWT can lead to water quality degradation 

and ecological distortion (Null et al. 2013; El-Jabi et al. 2014; Bayram et al. 2015; Lee and 

Cho 2015; Svendsen et al. 2016; Danladi Bello et al. 2017). RWT is inversely related to DO 

concentration that every change in RWT affects the river's ability to self-purify by lowering 

the amount of oxygen that can be dissolved and utilized for biodegradation 

(Intergovernmental Panel on Climate Change 2007; Khani and Rajaee 2017; Kauffman 

2018). Hence, climate change impacts on RWT and saturation oxygen content are prominent 

to understanding the projected river water quality and possible alterations in quality standards 

under climate change warming signals. To this end, the assessment of DO saturation rates 

with respect to RWT is relevant for Indian river systems due to minimum flows and higher 

temperatures during non-monsoon seasons. 

 

1.6. Significance of Study  
 

Studying RWQ variables under climate change has become crucial for many environmental 

and hydrology applications (Feigl et al. 2021). The following implications and applications 

emphasize the significance of studying and predicting RWQ variables under climate change: 

Ecosystem Health: Rivers and their associated ecosystems depend on water quality for their 

health and functionality. Changes in AT, precipitation, and runoff due to climate change can 

influence RWQ parameters such as RWT, DO, pH, nutrients, etc. For instance, the rate of 

chemical reactions generally increases at higher RWT under pronounced AT. The increased 

RWT may decrease DO levels and subsequently can interrupt aquatic habitats. Furthermore, 

RWT is a prominent variable for RWQ and aquatic habitat affecting DO concentrations, algal 

metabolism, fish growth, and production in aquatic systems (Wilby and Johnson 2020). The 

knowledge of RWT is of great scientific and practical importance for determining 

evaporation losses (Marinov 1990). Besides, the RWT is a prominent variable in the context 

of climate change as it is a function of climatic variables such as AT, humidity, solar 

radiation, and wind speed. For example, temperature fluctuations affect water density and 

hence water transport (Thomann and Mueller 1987). Also, RWQ variables are involved in 

the self-purification capacity of the river in response to pollutants and climate. 

Public Health: RWQ and public health are closely related, especially when it comes to 

sources of drinking water and recreational activities. It is imperative to predict the potential 
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effects of climate change on waterborne diseases, algal blooms, and pollution levels in order 

to protect public health. 

Industry and Agriculture: River water is frequently used in industry and agriculture for a 

variety of purposes, including irrigation and cooling. Stakeholders can adjust their practices 

to ensure sustainable use by anticipating changes in RWQ. 

Scientific Research: Researching the connections between RWQ variables and climate 

change advances our knowledge of intricate environmental systems. This information can 

help interdisciplinary collaborations and direct future research. 

To summarize, the ability to anticipate RWQ variables in the context of climate change is 

essential for risk management, ecological protection, public health, and scientific 

research(Chapra 1998). 

 

1.7. Research Questions 
 

Understanding the riverine pollution extent and impact assessment under climate and 

anthropogenic influences is challenging due to sparse spatiotemporal river water quality data 

(Read et al. 2019). Most of the studies evaluate water quality modeling with spatially dense 

data globally, but the development of systematic models combined with ML under data 

uncertainties context has not been intensively studied for the prediction of RWQ variables 

(Zhu et al. 2018; Isaak et al. 2020; Zhu and Piotrowski 2020).  

To simulate RWQ parameters using data-driven algorithms, more input variables are 

required, which are unavailable for many ungauged river systems. For example, in RWT 

simulation, influencing variables are groundwater flow, snowmelt, through flow, solar 

radiation, heat transfer, river geometries, and discharge. However, this physical data may not 

be available for many ungauged basins. Climatic variables which are readily available, are 

the maximum, minimum, and average AT to build RWQ models with more accurate 

simulation and higher computational efficiency. In this context, most ML approaches have 

been applied without any detailed sensitivity analysis.  

 

Therefore, our first question is: 

Q1: “How can sensitivity analysis reveal a deeper understanding of the underlying 

processes governing water quality in the river systems? How can a sensitivity analysis be 
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coupled with ML approaches to select the most suitable and effective variables for 

predicting river water quality variables? How can we assimilate theory-driven 

understanding of rich processes with data-driven approaches to improve the predicted 

values based on the measurement data?” 

To answer this, the global Sobol global sensitivity analysis (GSA) was performed to consider 

the most sensitive variables for given river water quality variable to be predicted. This study 

demonstrates how ML methods can be coupled with sensitivity analysis to predict RWT. Due 

to data availability, only three parameters (maximum, minimum, and average of AT) were 

considered, and tried to identify which one is more sensitive. Further, it is shown how ML 

methods can be coupled with data assimilation (DA) techniques to generate accurate RWT. 

Another sort of data uncertainty is the lack of availability of long-time series data and 

consistent water quality measurement datasets in RWQ modeling. Generally, RWQ data 

availability is at monthly scales and is burdened with a large number of missing values with 

limited durations. Given the missing, limited, and non-stationary data scenarios, the present 

thesis proposes, the following second question as: 

Q2: “How to infer the relationships between river water quality indicators and 

hydroclimatic variables (e.g., Air Temperature (AT), streamflow)? How do different 

potentially influence lagged variables as additional predictive power features in river 

water quality modeling to improve the model performance under sparse, non-stationary 

data, and seasonality scenarios?” 

The river water quality data time series should be long enough to capture interannual 

variability, but there might be measurement errors, which leads to noisy data. To overcome 

the limited data scenarios, processing of non-stationary, and the noisiness of river water 

quality data, a methodology was developed using bootstrap resampling algorithms and 

wavelet approaches to predict river water quality variables. To demonstrate, the hybrid ML 

models were developed in this study to predict RWT under data uncertainties. Also, validated 

whether one variable time series at time t-lag provides important information helping to 

predict values of another variable time series at time t by using Granger Causality Analysis 

test. 

However, global warming climate has shown an impact on river water quality 

variables in terms of changes in RWT and river flows. The present study aims to study the 
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climate change impact on RWQ parameters using the developed hybrid data-driven 

algorithm with the following third question as:  

Q3: “How do the climate change variables (e.g., temperature, precipitation) impact key 

physical processes within a river system (e.g., biological activities, dilution), ultimately 

influencing river water quality variables?” 

Climate change caused by anthropogenic greenhouse gases in the atmosphere directly 

impacts the quality of river water, which raises the possibility of the river ecosystem 

degrading in terms of decreased DO saturation levels under the decrease of stream flows and 

increase in RWT. For this reason, it is crucial to research how climate change will affect the 

thermal processes (e.g., RWT) and other self-purification capacity defining variables such as 

DO of river system. To demonstrate, this study assessed the climate change impacts on RWT 

and DO saturation levels. Furthermore, RWT and DO are the basic river water quality 

variables that directly impact under climate change due to alterations in hydro-climatic 

variables (e.g., air temperature, precipitation, streamflow, etc.). The projected changes in 

RWT and DO saturation levels are quantified using an ensemble of the NEX-GDDP dataset 

with RCP 4.5 and 8.5 experiments for 2071–2100, and hypothetical climate change 

scenarios. 

 

1.8. Objectives 
 

Based on the questions identified in the above discussion, the following objectives have been 

considered for the present research: 

1. To apply various classical ML models (RR, KNN, RF, SVR) coupling with the 

sensitivity analysis for river water quality variables prediction. 

2. To develop hybrid ML modeling framework for the prediction of river water quality 

variables under the limited and non-stationary data scenarios of given river water 

quality data. 

3. To assess the climate change impacts on river water quality variables using an 

ensemble of the NEX-GDDP dataset with RCP 4.5 and 8.5 experiments for 2071–

2100, and hypothetical climate change scenarios using hybrid data driven models. 
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1.9. Contributions of the Thesis 
 

In this thesis, the hybrid ML models are proposed for RWQ predictions under data 

uncertainty scenarios by considering the RWT and DO saturation levels as explanatory 

variables for demonstration in order to answer questions Q1, Q2, Q3, and Q4 and accomplish 

the above objectives. The reason for choosing the RWT and DO is that out of all RWQ 

parameters, RWT is directly impacted by AT under climate change, which affects the 

characteristics of river water and its life cycle, and DO can reveal a lot about the health of 

rivers. The following contributions are made in each chapter, specifically: 

• Presented literature on predicting RWQ variables, i.e., RWT and DO saturation 

levels, using various techniques, process-based deterministic models, regression-

based models, and ML models. The chapter concludes with the robust and hybrid ML 

approaches to RWQ modeling under data uncertainties required, as an accurate 

simulation of RWQ variables plays an important role in water quality management 

(Chapter 2). 

• Demonstrated how new ML approaches, such as RR, KNN regressor, RF regressor, 

and SVR, can be coupled with Sobol’ GSA to predict accurate RWT estimates with 

the most appropriate form of AT (e.g., maximum, minimum, and average) in cases 

when there is a lack of data. The chapter is concluded with the hybrid models are the 

new promising frameworks by coupling with a global sensitivity algorithm for 

accurate RWT predictions under lack of data scenarios and may deserve further study 

in the field of hydrology and water resources (Chapter 3). 

• Demonstrated hybrid models using LSTM, integrated with (i) kNN bootstrap 

resampling algorithm (kNN-LSTM) to address the lack of availability of long-time 

series data of RWT prediction, (ii) WT approach (WT-LSTM) to address the time-

frequency localized features of RWT prediction under data uncertainties. Compared 

the performance results of hybrid models with LSTM, air2stream. Assessed the 

climate change impacts on RWT using an ensemble of the NEX-GDDP GCM dataset 

under RCP scenarios 4.5 and 8.5 for seven major polluted river catchments of India at 

monthly time scale. It is concluded that the hybrid models yielded better performance 

results than standalone LSTM and air2stream forecasting models at a monthly scale 

under data uncertainties, i.e., when WT and k-NN bootstrap resampling algorithms 
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were included. Also used the Granger Causality Analysis test to assess whether one 

variable at time t-lag causes another variable at time t. (Chapter 4). 

• Demonstrated (i) the combined effects of streamflow and AT in ML models for 

prediction of RWT variables under sparse data scenarios, (ii) compared the 

performance results of the kNN-LSTM model with standalone LSTM, nonlinear 

regression model,  and 8-parameter version Air2Stream in the prediction of RWT, 

(iii) the assessment of climate change impacts on the rate of change of oxygen 

saturation with respect to RWT, and streamflow using an ensemble of the NEX-

GDDP GCM dataset and hypothetical climate change scenarios. The chapter is 

concluded with the assessment of the individual contribution of RWT rise on 

depletion of saturated DO levels (Chapter 5). 

• Presented the review of the results of this thesis, discussed some limitations, and 

suggested a number of future directions that would further improve the methodology 

of this thesis (Chapter 6). 
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Chapter 2 

LITERATURE REVIEW 

 

2.1. Introduction 
 

This chapter presents a brief review of the literature related to past research on climate 

change impacts on river water quality variables and prediction of river water quality 

variables, i.e., RWT and DO saturation levels using the process based, regression based, 

hybrid, and ML based models. Few conclusions are drawn from the literature on the 

prediction of river water quality variables. These conclusions provide relevance to the current 

research. In the following section, a detailed review of relevant literature has been included. 

2.2. River Water Quality Modeling and Prediction 
 

River water quality modeling and predictions are useful for monitoring of current and 

assessment of future water quality scenarios resulting from different management strategies 

(Loucks and van Beek 2017b). Water quality predictive models include both mathematical 

expressions and expert scientific judgment. They include process-based (mechanistic) models 

and data-based (statistical) models. River water quality parameters are directly affected by 

any changes in climate, which in turn increases the risk of deterioration of the river 

ecosystem (Rehana and Dhanya 2018). Many previous water quality modeling studies have 

been carried out to assess the impact of climate change on river water quality, i.e., increased 

air temperatures and reduced summer flows may further exacerbate water temperature 

increases  (Chapra et al., 2021; Chaudhary et al., 2019; Du et al., 2019; Ficklin et al., 2013; 

Isaak et al., 2012; Daniel J. Isaak et al., 2010; Nelson & Palmer, 2007; Rehana & Mujumdar, 

2012; Santy et al., 2020; van Vliet et al., 2013; van Vliet & Zwolsman, 2008). Rehana & 

Mujumdar (2012) used an empirical joint probability distribution of monthly average 

streamflow and river water temperatures to estimate the risk of low water quality for a given 

DO threshold. Ficklin et al. (2013) assessed the impacts of climate change on water quality 

variables using SWAT and observed that 10% decrease in DO by 2100 at Sierra Nevada in 

California, USA. van Vliet et al. (2013) assessed the global daily simulations of river flow 

and RWT under climate change based on a physically based hydrological-water temperature 

modeling framework and concluded that the impact of discharge changes generally increases 

during dry warm periods when rivers have a lower thermal capacity. Chaudhary et al. (2019) 
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assessed the impacts of climate change and dry seasons on water quality indicators, i.e., DO, 

BOD using QUAL2K water quality model for the Yamuna and Bhadra rivers in India. The 

research findings of the study show that current river flow conditions are ineffective at 

maintaining acceptable water quality criteria and proposed possible scenarios for Eflows to 

improve the water quality standards. Santy et al. (2020) assessed the impacts of climate 

change and land cover change on water quality indicators, i.e., DO, BOD, etc., using the 

QUAL2K water quality model for the heavily industrialized stretch of the Ganga River in 

India and found that DO of the critical points is reduced with RWT increase due to increased 

reaction kinetics at higher temperature in the climate change scenarios, while RWT is 

modelled using linear regression. Heddam et al. (2022) studied the river nitrate concertation 

predictions using ML models with different water quality variables namely, RWT, DO, 

specific conductance, water turbidity, water pH, and river discharge, a case study of 

Willamette River at Portland, Oregon, USA, and concluded that water quality variables 

contribute significantly for the improvement of the performances of ML models in accurate 

prediction of nitrate concentrations. Ubah et al. (2021) forecasted the water quality 

parameters namely pH, Total Dissolved Solids (TDS), Electrical Conductivity (EC), and 

Sodium (Na) using artificial neural network, a case study of Ele River, Anambra State for 

irrigation purposes, and showed that TDS, EC and Na were above the permissible standard 

for irrigation during dry seasons while the pH was normal all through the season. Nouraki et 

al. (2021) predicted the water quality parameters namely TDS, sodium absorption ratio 

(SAR) and total hardness (TH) using ML models, a case study of the Karun River, Iran and 

showed that ML models could satisfactorily estimate the TDS, SAR and TH for all stations. 

Azad et al. (2019) forecasted the EC, TDS, SAR, carbonate hardness (CH), and TH water 

quality parameters using Artificial intelligence models, a case study of the Zayandehrood 

River, in Iran and showed that adaptive neuro fuzzy inference system is the best ML model 

for different water quality parameters prediction. Asadollah et al. (2021) used the monthly 

input water quality data including BOD, COD, DO, EC, Nitrate-Nitrogen (NO3 -N), Nitrite-

Nitrogen (NO2 -N), Phosphate (PO43-), potential for Hydrogen (pH), Temperature 

and Turbidity (TUR) for building the water quality prediction models, a case study of Lam 

Tsuen River in Hong Kong and showed that Extra Tree Regression model performed best for 

water quality prediction. 

https://www.sciencedirect.com/topics/engineering/carbonate-hardness
https://www.sciencedirect.com/topics/engineering/fuzzy-inference-system
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/turbidity
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Recently, to simulate RWQ variables, such as RWT, the Air2Stream model (Shrestha 

and Pesklevits 2022; Zhu et al. 2022), Temperature Duration Curve (TDC) (Ouarda et al. 

2022), Process-based models (e.g., Delft3D model, Soil and Water Assessment Tool 

(SWAT) model, etc.), have been used (Wang et al., 2022). However, such approaches require 

large amounts of site-specific detailed data at various time scales, including stream geometry 

and meteorological and hydraulic properties of the river (Piccolroaz et al. 2016). 

This thesis demonstrates the importance of climate-driven changes in hydrology as 

fundamental to understanding changes in the local water quality. In particular, the focus on 

changes in RWT, and DO saturation levels. In the following sections, a detailed review of 

RWT and DO saturation levels literature has been included. 

2.2.1. Review of Studies on River Water Temperature Prediction 

2.2.1.1. Process based Deterministic Models 

For many environmental, hydrology, and ecology applications, accurate prediction, and 

assessment of RWT has become the key problem (Zhu et al. 2019e, a). In this context, 

process-based RWT models have been evolved based on heat advection-dispersion transport 

equations (Stefan and Sinokrot 1993) and net heat transfer processes at the surface based on 

thermal equilibrium concepts (Mohseni et al., 1999; Rehana & Mujumdar, 2012). 

 United States Environmental Protection Agency (USEPA) developed the QUAL2K 

modeling framework to simulate water quality indicators (Chapra and Pelletier, 2003). In the 

QUAL2K model, the river is divided into reaches and each reach is further divided into a 

series of equally spaced elements. The governing equations of QUAL2K model are the 

advection-dispersion-reaction equations with external sources and sinks. The model permits 

the input of wastewater discharges, tributary flows, incremental flows and withdrawals. 

QUAL2K can simulate total 24 water quality constitutes including RWT, DO, BOD, pH, etc. 

The drawback of QUAL2K model includes its one-dimensionality and high input data 

requirements. 

 Ficklin et al. (2012) developed the hydroclimatological stream temperature model 

within the SWAT model to consider hydrology and air temperature's impact in simulating the 

water-air heat transfer process. In this new model, RWT is determined as a function of three 

components (i) temperature and amount of local water within the subbasin (snowmelt 

contribution, groundwater contribution, surface runoff, lateral soil flow), (ii) temperature and 
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inflow volume from upstream subbasins(s) (iii) air-water temperature transfer during the 

streamflow travel time in the subbasin. Du et al. (2018) modified the hydroclimatological 

model (Ficklin et al. 2012) by including the equilibrium temperature approach to model heat 

transfer processes at the water-air interface, which reflects the influences of air temperature, 

solar radiation, wind speed, and streamflow conditions on the heat transfer process. It is a 

computationally expensive model for large-scale simulations. 

 Toffolon & Piccolroaz (2015) developed the Air2Stream model for predicting RWT, 

which combines a physical based structure with a stochastic parameter calibration. 

Air2stream uses the inputs AT and streamflow and was derived from simplified physical 

relationships expressed as ordinary differential equations for heat budged processes. 

Overall, process-based models are mathematical representation of the underlying 

physics, and it provides exact results. However, such process-based models are complex in 

nature and large amount of detailed and computationally intensive data is required. 

2.2.1.2. Regression based Models 

Although such process-based models give exact results, a large amount of detailed and 

computationally intensive data is required. Due to the simplicity of implementation, 

regression models have been improved using the relationship between air and water 

temperatures (e.g., Stefan & Preud’homme 1993; Pilgrim et al. 1998; Erickson Troy R. & 

Stefan Heinz G. 2000; Neumann David W. et al. 2003; Rehana & Mujumdar 2011). The 

usual illustrations are linear regression models (Morrill et al. 2005; Krider et al. 2013), 

nonlinear regression models (Mohseni et al. 1998; van Vliet et al. 2012), stochastic 

regression models (Ahmadi‐Nedushan et al. 2007; Rabi et al. 2015), and hybrid statistical–

physical-based models (Gallice et al. 2015; Toffolon and Piccolroaz 2015; Piccolroaz et al. 

2016) have been developed successfully for data relating to different time scales in the past 

years. 

 van Vliet et al. (2013) assessed the global daily simulations of river flow (Q) and 

water temperature (Tw) under climate change based on a physically based hydrological-water 

temperature modeling framework. The basic idea is to assess the impact of climate change on 

daily river discharge and water temperature on a global scale using a physically based 

hydrological and water temperature modeling framework forced with an ensemble of daily 

bias-corrected GCM output. 
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 Islam et al. (2019) investigated the impact of both air temperature and streamflow 

changes on river water temperatures using the Air2Stream model on Canada’s Fraser River 

Basin (FRB). The basic idea is the quantification of climate change impacts on the thermal 

regimes of rivers in British Columbia (BC) using the Air2Stream model. Implement and 

evaluate a hybrid water temperature model at 17 river sites in the FRB. 

 

2.2.1.3. Machine Learning based Models 

ANN has proven to be a promising mathematical tool for predicting nonlinear relationships 

and their applications in RWT predictions (Chenard and Caissie 2008; Sahoo et al. 2009; 

Hadzima-Nyarko et al. 2014; DeWeber and Wagner 2014; Rabi et al. 2015; Piotrowski et al. 

2015; Temizyurek and Dadaser-Celik 2018; Zhu et al. 2018, 2019d, c). In recent years Zhu et 

al. (2018, 2019a, b) and Graf et al. (2019) developed the Wavelet Neural Networks (WT-

ANN), Decision Tree (DT), feedforward neural network (FFNN), Gaussian Process 

Regression (GPR), and Extreme learning machine (ELM) based models to estimate RWT 

and these models are very effective to a linear model and nonlinear model. However, Support 

vector regression (SVR), which is based on structural risk minimization to avoid overfitting 

(Vapnik et al. 1996), has been adopted over ANN for RWT predictions due to the uniqueness 

and globalization of the solution (Heddam & Kisi, 2018; F. Huang et al., 2017; Komasi et al., 

2018; Rasouli et al., 2012; Rehana, 2019; W. Wang et al., 2013). Random Forest (RF) 

models have been used extensively in hydrology (Balk and Elder 2000; Tehrany et al. 2013; 

Li et al. 2020a) and few researchers have applied for RWT modeling (Lu and Ma 2020). The 

K-nearest neighbors (KNN) approach has been used in many hydrology applications (Souza 

and Lall 2003; Beersma and Buishand 2004; Leander et al. 2005) and can be a proper choice 

for RWT predictions (Muluye 2012; Antunes et al. 2018; Gavahi et al. 2019).  

Few studies have tried to model RWT by considering multiple factors, such as river 

flow discharge (Webb et al. 2003; Laanaya et al. 2017), solar radiation (Sahoo et al. 2009), 

riparian shade (Johnson et al. 2014), landform attributes, and forested land cover (DeWeber 

and Wagner 2014). However, the inclusion of air temperature (AT) as the sole variable in 

predicting RWT has gained much popularity in the research community due to the ready 

availability of temperature variables (e.g., Caissie, 2006; Rehana and Mujumdar, 2011). To 

this end, many studies have used average AT as the promising variable in RWT estimation 
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using data-driven algorithms and hybrid algorithms due to the direct and linear relationship 

between average air and water temperatures (Piccolroaz et al. 2016; Rehana and Dhanya 

2018; Zhu et al. 2018, 2019a; Rehana 2019; Graf et al. 2019). However, at maximum air 

temperatures, which are prevailing under seasonal temperature variations, the atmosphere's 

moisture-holding capacity increases, and the rate of evaporative cooling also increases, and 

therefore the RWT no longer increases linearly with average AT (Mohseni et al. 1998; Bogan 

et al. 2003). Therefore, a thorough sensitivity analysis must be performed to identify the most 

influencing AT variable (average, maximum, and minimum) to predict the RWT before 

applying any data-driven algorithm. Given that several studies focused on average AT as the 

only variable to predict RWT using various ML algorithms, selecting appropriate AT 

variables (average, maximum, and minimum) has not been intensively studied in the 

literature. To our knowledge, none of the studies applied sensitivity analysis to select the best 

suitable and effective AT variable among maximum, minimum, and average and tested 

various ML models in the prediction of RWT. 

Most Indian River systems are burdened with data limitations and form a significant 

challenge for implementing process based RWT models. There are only a few studies on the 

prediction of RWT for Indian river case studies, which are mainly on linear regression 

models (Chaudhary et al., 2019; Rehana & Mujumdar, 2011; Santy et al., 2020),  Support 

Vector Regression (SVR) (Rehana, 2019). Therefore, given the limitations over data 

availability for Indian river systems, developing hybrid models of DL is the viable solution to 

produce more accurate results. In this context, ANN, a statistical group, has proven to be a 

viable technique for RWT forecasting (Chenard and Caissie 2008; Sahoo et al. 2009; 

Hadzima-Nyarko et al. 2014; DeWeber and Wagner 2014; Rabi et al. 2015; Zhu et al. 2018, 

2019d, c; Qiu et al. 2020). However, ANNs have many free parameters, and they require a 

significant amount of data and are therefore burdened with slow training issues (Shen 2018). 

In contrast to ANN, one of the state-of-the-art DL architectures, Recurrent neural network 

(RNN) (Rumelhart et al. 1986), which possesses important features over ANN, namely, 

events from the past can be retained and used in current computations (Nagesh Kumar et al. 

2004). The most well-known RNN is Long short-term memory (LSTM) (Hochreiter and 

Schmidhuber 1997). Recently, LSTM has been successfully used in hydrological modeling 

applications and exhibited promising results (Li et al., 2020; Nagesh Kumar et al., 2004; 
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Xiang et al., 2020; Zhang et al., 2019). RNNs also set accuracy records in multiple 

applications related to RWT prediction (Stajkowski et al. 2020; Feigl et al. 2021; Qiu et al. 

2021).  

 Feigl et al., (2021) propose a novel six different machine learning models: stepwise 

linear regression, Random Forest, eXtreme Gradient Boosting (XGBoost), Feedforward 

neural networks (FNN), and two types of Recurrent neural networks (RNN) to improve the 

performance of RWT prediction. To make the results comparable to previous studies, two 

widely used benchmark models have been applied additionally: linear regression and 

air2stream. The basic idea is most studies mainly use air temperature and discharge as inputs 

for water temperature prediction. The evaluated input data sets include combinations of daily 

means of air temperature, runoff, precipitation, and global radiation. The applied data 

preprocessing consists of feature engineering (i.e., deriving new features from existing 

inputs) with lags of all variables for the four previous days are computed and used as 

additional features. Machine learning models are generally parameterized by a set of 

hyperparameters that have to be chosen by the user to maximize the performance of the 

model. Depending on the model, hyperparameters can have a large impact on model 

performance. To optimize the hyperparameters of nearly all machine learning models in this 

study with the Bayesian optimization method. 

 Zhu, Nyarko, Hadzima-Nyarko, et al. (2019) proposes a different versions of 

feedforward neural network (FFNN), Gaussian process regression (GPR), and decision tree 

(DT) models were developed to estimate daily river water temperature using air temperature 

(Ta), flow discharge (Q), and the day of the year (DOY) as predictors. Modeling results were 

compared with the air2stream model. The Basic idea is in this research, ANN, GPR, and DT 

models were developed for eight river stations characterized by different hydrological 

conditions using Ta, flow discharge (Q), and day of the year (DOY) as predictors. When the 

day of the year was included as model input, the performances of the three ML models 

dramatically improved. Including flow discharge instead of the day of the year as an 

additional predictor, provided a lower gain in model accuracy, thereby showing the relatively 

minor role of flow discharge in RWT prediction. However, an increase in the relative 

importance of flow discharge was noticed for stations with high altitude catchments which 

are influenced by cold water releases from hydropower or snow melting, suggesting the 
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dependence of the role of flow discharge on the hydrological characteristics of such rivers.  

 Zhu et al. (2018) propose the air-water temperature relationship of the Missouri River 

is investigated by developing three different machine learning models (ANN, Gaussian 

Process Regression (GPR), and Bootstrap Aggregated Decision Trees (BA-DT)). The basic 

idea is although many factors influence the prediction of river water temperature, the 

objective of this study was to estimate the daily water temperature of the Missouri River with 

the aid of only the mean air temperature. 

 Rehana (2019) adopted Support Vector Machine (SVR) to analyze the predictability 

performance of RWT. The proposed machine learning algorithm of SVR is applied with air 

temperature and streamflow as predictors to estimate the RWT at the Shimoga river water 

quality checkpoint along Tunga-Bhadra, a tributary of Krishna River, India. The future RWT 

projections were analyzed using trained and tested models with the downscaled projections 

of air temperature and streamflow. In this context, there are limited studies for testing the 

predictability of RWT with SVR in the literature. This study revealed that the SVR model 

had been identified as the best prediction performance compared to linear regression models. 

 Graf et al. (2019) propose a hybrid model that couples discrete wavelet transforms 

(WT) and ANN for forecasting water temperature. Four mother wavelets, including 

Daubechies, Symlet, discrete Meyer, and Haar, were considered to develop the WT-ANN 

hybrid model and examined the importance of the choice of decomposition level. The basic 

idea is traditional ANN models for river water temperature modeling frequently have 

limitations, especially in the processing of non-stationary data, which most hydrological 

time-series datasets. In this regard, wavelet transform, as a good pre-processing method for 

non-stationary data, can be a potential complement to traditional methods to improve 

performance. Choices of the appropriate mother wavelet and the decomposition level are the 

two main issues in the applications of DWT. In this paper, a hybrid model based on coupling 

discrete WT and ANN for daily river water temperature forecasting was proposed. Compared 

with previous studies, four widely used mother wavelets were evaluated: Daubechies (Db), 

Symlet (Sym), discrete Meyer (dMey), and Haar. This study revealed that model 

performances improved with an increase in the decomposition level in the wavelet transform, 

and the discrete Meyer (dMEY) mother wavelet performed the best. 

 Qiu et al. (2021) explored the potential of a long short-term neural network (LSTM), 
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a type of deep learning method, to forecast daily river water temperatures and quantify 

temporal variations in thermal regimes induced by changes in climate and by dam 

construction. The basic idea is data-driven methods have not explored fully the extent to 

which river WT forecasting can be improved through the application of deep learning 

methods. This study evaluated the forecasting performance of an LSTM model to predict 

mean daily river temperatures. To evaluate the influence of the dam on water temperatures. 

The construction of the reservoir strongly influenced water temperature variations, producing 

the strongest cooling effect from mid-April to mid-May when it produced cooling of about 4 

◦C and the greatest warming effect in late December and early January when it produced a 

warming of about the same amount. 

 Stajkowski et al. (2020) adopted a genetic algorithm (GA)-optimized LSTM 

technique to predict river water temperature (WT). The basic idea is an LSTM model 

consists of several parameters, such as the number of hidden layers, number of epochs, batch 

size, learning rate, number of units, and window size (previous time steps). In LSTM, the 

largest difficulty arises due to the selection of the window size and the number of units. 

Therefore, this research investigated this problem through a genetic search. The optimal 

window size and the number of units based on the lowest RMSE was determined in this 

search using a genetic algorithm, and the best window size and the number of units were fed 

into an LSTM model. 

The robustness of any DL-based forecasting algorithms, i.e., ANN or RNN, depends on 

the extensive input data. These models can extract time characteristic information with long 

time series data without errors and missing data points. But the availability of hydrological 

data in India is limited, with small temporal resolutions. 

One of the major limitations of ML algorithms includes the difficulty of incorporating 

existing physical knowledge (Boukabara et al. 2020). The most appropriate way forward is to 

combine the best of the two approaches: theory-driven, understanding-rich processes with 

data-driven discovery processes (Babovic 2005). Recent progress in ML inspires the idea of 

learning DA models directly from real observations – these are uncertain, sparsely sampled, 

and only indirectly sensitive to the processes of interest (Geer 2020). DA is a methodology 

that uses observational data and combines it with (or assimilates it into) numerical models 

(Babovic 2005). The DA method can be categorized into four groups (WMO 1992; Babovic 
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2005): (a) updating input parameters; (b) updating model parameters; (c) updating state 

variables, and (d) updating output variables. The fourth type updates output directly, and the 

possibility of forecasting these errors and superimposing them to the simulation model 

forecasts usually gives a good performance (Babovic 2005). DA has been used to enhance 

simulation accuracy in many engineering applications. One of the most efficient and 

sequential DA methods is the Kalman filter (KF) developed by Kalman (1960), and its 

applications in hydrology are also very impressive (Li et al., 2013; Liu et al., 2010; 

Mehrparvar & Asghari, 2018; Wang et al., 2016, 2017; X. Wang & Babovic, 2016). In RWT 

forecasting, only a few studies addressed the use of DA (Morrison and Foreman 2005; 

Yearsley 2009; Pike et al. 2013; Ouellet-Proulx et al. 2017). 

Overall, a visual illustration of RWT prediction model milestones is shown below: 

 

Figure 2.1. River Water Temperature model milestones 

 

2.2.2. Review of Studies on Dissolved Oxygen Saturation Levels Prediction 

 

Water quality modeling studies predicted depletion of DO under streamflow, RWT, and land 

use changes for various basins globally (Chapra et al., 2021; Cox & Whitehead, 2009; 

Danladi Bello et al., 2017; Du et al., 2019; Ficklin et al., 2013; Harvey et al., 2011; Rehana & 

Mujumdar, 2012, 2011; Santy et al., 2020). Harvey et al. (2011) assessed the influence of AT 

on RWT and the Concentration of DO in Newfoundland Rivers in Canada using regression 

models and determined that the exponential model was found to be better suited to modeling 

low DO concentrations at higher RWTs in a temperate climate. Ficklin et al. (2013) assessed 

the effects of climate change on RWT, DO, and sediment concentration in the eastern and 

western watersheds of the Sierra Nevada Mountain range in California, USA using the Soil 



30 
 

and Water Assessment Tool (SWAT) with a newly developed stream temperature model, 

which simulates RWT and associated water quality parameters based on AT and the effects 

of local hydrology (Ficklin et al. 2012). Results show that RWT increases by up to 6 oC for 

summer, reaching close to 30 oC in the lower-elevation reaches, decreases DO by 2%–12%, 

and overall decreases in sediment concentrations. Danladi Bello et al. (2017) predicted the 

impact of climate change on RWT and DO in tropical rivers in the Skudai Watershed located 

in the southern part of the Malaysia peninsular using the Hydrological Simulation Program 

FORTRAN (HSPF) model. Results show that an increase in AT will have little effect on 

RWT and DO concentrations. Also concluded that high to moderate stream flows lower 

RWT and increase the DO concentration. Du et al. (2019) assessed climate change impacts 

on RWT in the Athabasca River Basin, Canada using the SWAT equilibrium temperature 

model, and findings show that annual RWT is expected to increase by 1.6 to 3.1 °C and DO 

concentrations on the basin average scale will decrease by 0.72 mgO2/L under RCP 8.5 

scenario for 2061-2100. Chapra et al. (2021) assessed how river oxygen levels will be 

influenced by rising RWTs due to global warming, and findings shows that freshwater 

saturation concentrations at 5 °C increments between 20 and 35 °C are indicated because this 

range would encompass the present and future summer RWT’s in most of the world’s rivers 

over the next 50 years. In India, most river systems are burdened with data limitations and 

form a significant challenge for implementing process based RWT models to predict DO. 

Only a few studies used the regression models to assess DO variations for Indian river case 

studies (Chaudhary et al., 2019; Rehana & Mujumdar, 2011; Santy et al., 2020). Chaudhary 

et al. (2019) assessed the impacts of climate change and the dry seasons on water quality 

indicators, i.e., DO, BOD using the QUAL2K water quality model for the Yamuna and 

Bhadra rivers in India, and the findings show that current river flow conditions are 

ineffective at maintaining acceptable water quality criteria. To assess this, average monthly 

RWT data were obtained from the CPCB for the Yamuna stretch, and the linear regression 

equation developed by Rehana & Mujumdar (2011) was adopted for the Bhadra stretch.  

Santy et al. (2020) assessed the impacts of climate change and land cover change on water 

quality indicators, i.e., DO, BOD, etc. under hypothetical scenarios using QUAL2K water 

quality model and RWT is modeled using linear regression. Results show that DO of the 

critical points is reduced with RWT increase due to increased reaction kinetics at higher 
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temperature in the climate change scenarios. However, such studies are basin or river stretch 

specific, data intensive, and limits application for data sparse and ungauged locations with an 

emphasis on simulated DO levels in response to streamflow, RWT, and land use (Ficklin et 

al., 2013; Rehana & Mujumdar, 2012, 2011; Santy et al., 2020). However, DO saturation 

level, which serves as a baseline to measure oxygen-based water quality by determining the 

oxygen concentration of unpolluted water depending on RWT, salinity, and oxygen partial 

pressure (Chapra et al. 2021) and prominent in defining the maximum permissible limits and 

standards for various river usages (CPCB, 2019; Rehana & Mujumdar, 2009), has not been 

assessed under climate change. Specifically, while some recent studies have looked at how 

climate change affects RWTs, the question of how climate change affects saturation DO has 

yet to be answered. More specifically, the direct integration of RWT predictions in the 

assessment of DO saturation concentration levels under climate change signals has not been 

quantified. 

2.3. Summary of Literature 
 

Most of the studies assessed water quality modeling with spatially dense data globally, 

however, the development of systematic models paired with ML models under the context of 

data uncertainties has not been intensively examined for the prediction of RWQ variables 

(Zhu et al. 2018; Isaak et al. 2020; Zhu and Piotrowski 2020). 

To simulate RWT, the Air2Stream model (Shrestha & Pesklevits, 2022; Zhu et al., 

2022), Temperature Duration Curve (TDC) (Ouarda et al., 2022), Process-based models (e.g., 

Delft3D model, Soil and Water Assessment Tool (SWAT) model, etc.), have been used 

(Wang et al., 2022). However, such approaches require large amounts of site-specific 

detailed data at daily time scales, including stream geometry, meteorological and hydraulic 

properties of the river (Piccolroaz et al., 2016). However, globally, RWT data availability is 

at monthly scales and is burdened with large number of missing values with limited 

durations. Most of the ML studies (van Vliet et al. 2013; Zhu et al. 2018; Zhang et al. 2019; 

Graf et al. 2019; Stajkowski et al. 2020; Feigl et al. 2021; Qiu et al. 2021; Ouarda et al. 2022) 

assessed water quality modeling with spatially dense data at daily time scale. The Air and 

water temperature series should be long enough to capture interannual variability but the 

availability of hydrological data in India is limited with small temporal resolutions, hence we 

are unable to apply these models to rivers in India. 
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To simulate RWQ parameters using data-driven algorithms, more input variables are 

needed, which are not available for many ungauged river systems. For example, in RWT 

simulation, influencing variables are discharge, groundwater flow, snowmelt, through flow, 

solar radiation, heat transfer, river geometries, and wind speed. However, this physical data 

may not be available for many ungauged basins. Climatic variables which are readily 

available, are the maximum, minimum, and average AT to build RWT models with more 

accurate simulation and higher computational efficiency. In this context, most ML 

approaches have been applied without a detailed sensitivity analysis.  

Another data uncertainty is the lack of availability of long-time series data and 

consistent water quality measurement datasets in RWQ modeling. Generally, RWQ data 

availability is at monthly scales as most of the measurement/sampling time intervals are 

monthly, which are further burdened with a large number of missing values with limited 

durations. In this context, the selection of appropriate model inputs, development of models 

under limited data, processing of non-stationary data, seasonality scenarios, and relevant lags 

of variables have not been intensively investigated in the literature, especially in the case of 

estimation of RWT. 

The most influencing RWQ variable affecting under increased RWT is Saturated DO, 

defining the self-purification capacity and forming a basis for the standards or permissible 

limits (CPCB, 2019; Rehana & Mujumdar, 2009). Furthermore, it is essential to quantify the 

climate change impacts on thermal processes (e.g., RWT) and other self-purification capacity 

defining variables such as the DO of the river system. In this context, how climate change 

affects saturation DO with respect to the RWT has yet to be answered.  

RWT is directly influenced by multiple parameters, including streamflow, solar 

radiation, wind speed, river geometry, groundwater inputs, slope, water depth, etc., which are 

not considered as inputs in the ML models for RWT prediction. In this context, building ML 

model with multiple input variables and validating these results with conceptual models are 

yet to be explored. Finally, the usefulness of machine learning models in RWQ modeling 

needs to be validated. Given the limitations over data uncertainties for Indian river systems, 

hybrid models need to be developed to produce more accurate results. 
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Chapter 3 

PREDICTION OF RIVER WATER QUALITY VARIABLES USING CLASSICAL 

MACHINE LEARNING ALGORITHMS BY INTEGRATING THE SENSITIVITY  

ANALYSIS 

3.1. Introduction 
 

The majority of the river systems are burdened with data limitations, which make it difficult 

to implement process-based RWQ models at various spatial and temporal scales (Read et al. 

2019; Pohle et al. 2019). Though process-based models have the potential to produce 

accurate results, they also require extensive amounts of site-specific detailed data (Piccolroaz 

et al. 2016). Statistical models have numerous benefits over process-based models, such as 

simplifying the complex relations between water quality indicators and the identifying 

patterns of comparable temporal and spatial characteristics among water quality variables. 

However, a major limitation of the statistical approach is its inability to accurately describe 

the nonlinear characteristics of a data series. To overcome this shortage, Machine Learning 

(ML) techniques are widely used to address a range of nonlinear prediction problems. To 

simulate RWQ parameters using ML algorithms, more input variables are required. For 

example, in RWT simulation, influencing variables are solar radiation, snowmelt, discharge, 

etc. However, this physical data may not be available for many ungauged basins (Zhu and 

Piotrowski 2020). The use of ML models using minimum data inputs (such as AT) can be 

robust in addressing data sparsity when simulating RWQ models. In this context, most ML 

approaches have been applied without any detailed sensitivity analysis. 

 For RWT modeling, in most studies, more than a single model is used to assess model 

performance (Zhu and Piotrowski, 2020). The Support vector regression (SVR) model, which 

is based on structural risk minimization to avoid overfitting (Vapnik et al. 1996), has been 

widely used in hydrology (Heddam and Kisi, 2018; Huang et al., 2017; Komasi et al., 2018; 

Rasouli et al., 2012). As per Zhu and Piotrowski (2020) only two studies have applied SVR 

models for river temperature prediction (e.g., Lu and Ma, 2020; Rehana, 2019). Random 

Forest (RF) is a variant of the bagging ensemble technique, which has been frequently used 

in hydrology (Balk and Elder, 2000; Li et al., 2020; Tehrany et al., 2013) and has been 

applied by few researchers in water temperature modeling (Lu and Ma, 2020). The KNN 

approach has been used in many hydrology applications (Beersma and Buishand, 2004; 
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Leander et al., 2005; Souza and Lall, 2003) and can be a proper choice for RWT predictions 

(Muluye 2012; Antunes et al. 2018; Gavahi et al. 2019). Hence, for uniqueness, globalization 

of the solution, working with less data, being less computationally expensive, and avoiding 

overfitting, the current work focused on SVR, RF, KNN, and Ridge regression. Therefore, 

the study considered these four ML models along with sensitivity and data assimilation 

algorithms to demonstrate how RWT model performances can be improved. 

The present study proposed a Global Sensitivity Algorithm variance based on Sobol’ 

method (Sobol 1990; Sobol′ 2001) to predict more influencing AT variable by selecting 

highly sensitive features in the prediction of RWT. Although the Sobol’ method has been 

used in many fields of science and engineering, it has been very limited in hydrology 

applications (Tang et al. 2006; Cloke et al. 2008; Pappenberger et al. 2008; van Werkhoven 

et al. 2009; Cibin et al. 2010; Yang 2011). This study proposed an integrated modeling 

framework with ML, GSA and DA approach to improving the predicted values based on the 

measurement data. Changes in AT can affect RWT, the primary variable that influences 

water quality. Therefore, to demonstrate in this study, the RWT has been selected as water 

quality variable for prediction. Due to data availability, only three parameters (maximum, 

minimum, and average of AT) were considered, and tried to identify which one is more 

sensitive. The proposed algorithm has been demonstrated with a river gauging station daily 

temperature data of Shimoga station along Tunga River, a tributary of Tunga-Bhadra River, a 

major tributary of Krishna River, India.  

In summary, the objectives of the this chapter are to (i) identify the most influencing AT 

variable by GSA algorithm (ii) apply various classical ML models (Ridge regression (RR), 

K-nearest neighbors (KNN) regressor, Random Forest (RF) regressor, Support Vector 

Regression (SVR)) with the best selected AT for RWT prediction (iii) applying Ensemble 

Kalman Filter  (EnKF) with each ML model (iv) compare the performance of four advanced 

ML algorithms by coupling the GSA and EnKF algorithms when applied on a tropical river 

system of India. 

 

3.2. Methodology 
 

The overview of the proposed modelling framework is shown in Figure 3.1 and 3.2. The first 

step is to apply sensitivity analysis to select the most appropriate form of AT variable to 
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predict the RWT. Various ML approaches such as RR, KNN, RF and SVR were applied to 

the study location to predict RWT at a daily timescale. Figure 3.1 shows the architectural 

flow diagram proposed for the prediction of RWT using sensitivity and ML. Figure 3.2 

shows the ML model and EnKF data assimilation method's architectural flow diagram to 

improve the ML model's efficiency in each simulation step. 

 

Figure 3.1. Architectural flow diagram for ML regression models. 

 

3.2.1. Sensitivity Analysis 

 

Sensitivity Analysis (SA), which is often used as a powerful technique to measure the 

strength of relationships between model inputs and outputs, is an important assessment of 
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any modelling, including environmental modelling (Nossent et al. 2011). SA is crucial in 

hydrologic and water quality models due to various aspects involved in modelling processes, 

such as spatiotemporal scales and complexity, requiring an assessment of parameters 

influence on the model’s prediction (Yuan et al. 2015). In recent years, various Sensitivity 

analysis environmental models are available in the literature (Saltelli et al. 2010; Yang 2011), 

based on variance decomposition. The variance-based Sobol’ method is a sensitivity analysis 

method that is very common in many fields (Sobol 1990). In general, SA methods aim to 

measure the amount of variance that each parameter adds to the unconditional variance of the 

model output, these amounts are expressed as (Sobol’) sensitivity indices (SI’s).  

 

3.2.2. Sobol’ Sensitivity Analysis Method 

 

The method of Sobol’ is an advanced, global, model-independent sensitivity analysis method 

that is based on variance decomposition. It can handle nonlinear and non-monotonic 

functions and models. Considering a mathematical model, 𝑌 = 𝑓(𝑋), delivering the outputs 

of a physical system that presumably depends on M-uncertain input parameters 𝑋 =

(𝑋1, … … . , 𝑋𝑀). For further developments, 𝑓𝑋𝑖(𝑥𝑖) and 𝑓𝑥 = Π𝑖=1
𝑀 𝑓𝑋𝑖(𝑥𝑖) refer to their 

marginal probability density function (PDF) and the corresponding joint PDF of a given set. 

The sensitivity model can be defined as: 

 

  𝑌 = 𝑓(𝑋) = 𝑓(𝑋1, … … . , 𝑋𝑀)       (3.1) 

 

where Y is the objective function and 𝑋 = (𝑋1, … … . , 𝑋𝑀) is the input parameter set. Sobol’ 

proposed the decomposition of the function f into sums of increasing dimensionality: 

 

𝑓(𝑋1, … … . , 𝑋𝑀) = 𝑓0 + ∑ 𝑓𝑖(𝑋𝑖
𝑀
𝑖=1 ) + ∑ ∑ 𝑓𝑖𝑗(𝑋𝑖, 𝑋𝑗) + ⋯ + 𝑓1,….,𝑀(𝑋1, … , 𝑋𝑀)𝑀

𝑗=𝑖+1
𝑀
𝑖=1  (3.2) 

 

If the input factors are independent of each term in equation (Equation 3.2) is chosen with 

zero average and is square-integrable, then 𝑓0 is a constant, equal to the output expectation 

value, and the quantities are mutually orthogonal. The total unconditional variance can be 

described as  
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𝑉(𝑌) = ∫ 𝑓2(𝑋)𝑑𝑋 − 𝑓0
2

Ω𝑀         (3.3) 

 

With Ω𝑀 representing the M-dimensional unit hyperspace (i.e., The ranges of parameters are 

scaled between 0 and 1). The partial variances, which are the components of the total 

variance decomposition, are computed from each of the terms in Equation (3.2) as  

 

𝑉𝑖1…..𝑖𝑠
= ∫ … ∫ 𝑓𝑖1…𝑖𝑠

2 (𝑋𝑖1
, … . , 𝑋𝑖𝑠

)𝑑𝑋𝑖1

1

0

1

0
… . 𝑑𝑋𝑖𝑠

     (3.4) 

Where 1 ≤ 𝑖1 ≤ ⋯ ≤ 𝑖𝑠 ≤ M and 𝑠 = 1, … , 𝑀 . Assuming that the parameters are mutually 

orthogonal, Equation (3.5) results for the variance decomposition. 

  

𝑉(𝑌) = ∑ 𝑉𝑖
𝑀
𝑖=1 + ∑ ∑ 𝑉𝑖𝑗 + ⋯ + 𝑉1,….,𝑀

𝑀
𝑗=𝑖+1

𝑀−1
𝑖=1      (3.5) 

 

In this way, the variance contributions to the total output variance of individual parameters 

and parameter interactions can be determined. These contributions are characterized by the 

ration of partial variance to the total variance, the Sobol’ sensitivity indices: 

First-order SI:  𝑆𝑖 =
𝑉𝑖

𝑉
         (3.6) 

Second order SI:   𝑆𝑖𝑗 =
𝑉𝑖𝑗

𝑉
        (3.7)  

Total SI:    𝑆𝑇𝑖 = 𝑆𝑖 + ∑ 𝑆𝑖𝑗 + ⋯𝑗≠𝑖        (3.8) 

The first order index, 𝑆𝑖, is a measure for the variance contribution of the individual 

parameter  𝑋𝑖 to the total model variance. The partial variance  𝑉𝑖 in Equation (3.6) is given 

by the variance of the conditional expectation  𝑉𝑖 = 𝑉[𝐸(𝑌|𝑋𝑖)] and is also called the ‘main 

effect’ of  𝑋𝑖 on  𝑌. It can be defined as the fraction of the model output variance that would 

disappear on average when  𝑋𝑖 would be fixed to a value in its range (because  𝑉(𝑌) =

𝐸[𝑉(𝑌|𝑋𝑖)] +  𝑉[𝐸(𝑌|𝑋𝑖)]). The effect on the model output variance of the interaction 

between parameters  𝑋𝑖 and  𝑋𝑗 is given by  𝑆𝑖𝑗 and  𝑆𝑇𝑖 is the result of the main effect of  𝑋𝑖 

and all its interactions with the other parameters (up to the  𝑀𝑡ℎ order). 

The calculation of  𝑆𝑇𝑖 can be base on variance  𝑉~𝑖that results from the variation of all 

parameters, except  𝑋𝑖(Homma and Saltelli 1996). 
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𝑆𝑇𝑖 = 1 −
𝑉~𝑖

𝑉
          (3.9) 

 

For additive models and assuming orthogonal input factors, 𝑆𝑇𝑖 and  𝑆𝑖 are equal and the sum 

of all  𝑆𝑖 (and thus all  𝑆𝑇𝑖) is 1. For non-additive model’s interactions exist: 𝑆𝑇𝑖 is greater 

than  𝑆𝑖 and the sum of all  𝑆𝑖 is less than 1. On the other hand, the sum of all 𝑆𝑇𝑖 is greater 

than 1. By analyzing the difference between 𝑆𝑇𝑖 and 𝑆𝑖, the effect of interactions between 

parameter  𝑋𝑖 and the other parameters can be calculated. 

To compute the variances to obtain the sensitivity measures, Sobol’ proposed a shortcut 

in the calculations, based on the assumption of mutually orthogonal summands in the 

decomposition. The shortcut is attained by transforming the double-loop integral of Equation 

(3.4) into an integral of the product of 𝑓(𝑋𝑗1
, … . , 𝑋𝑗

𝑘−𝑠′ 𝑋𝑖1
, … . 𝑋𝑖𝑠

) and 

𝑓(𝑋𝑗1

′ , … . , X𝑗
𝑘−𝑠′

′ 𝑋𝑖1
, … . , 𝑋𝑖𝑠

). Because environmental models are mostly complex and 

nonlinear, it is almost impossible to calculate the variances using analytical integrals. The 

SI’s can be calculated by performing Monte-Carlo simulations. 

  

3.2.3. The Evaluation of the Sensitivity Analysis 

Due to its advantageous properties and the drawbacks of the qualitative results of the one-

factor-at-a-time (OAT) (Yang, 2011) sensitive analysis approach, in this study, an attempt 

has been made to identify the most sensitive parameters using Sobol’ method. To analyze 

sensible parameters, maximum, minimum, and average air temperature parameters are 

selected for the Sobol’ sensitivity analysis of the model. One thousand independent samples 

of the parameter sets are generated from the Sobol sequence using the SALib module 

(Herman and Usher 2017) to assess the second-order sensitivity indices and total sensitivity 

effects. For the second-order effect, the Saltelli (Saltelli et al. 2008) method of cross-

sampling scheme creates a total of N * (2D + 2) parameter sets, where D is the number of 

input parameters, N is the number of independent samples of the parameter sets. Since no 

prior knowledge is available on the parameters, the SA's input parameter values were 

sampled from a uniform distribution (Sobol 1990). The different parameter ranges were 

scaled between 0 and 1 with normalization. Mean from ± 10% changes of air temperature 
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parameters as the input values to compare the shift in mean response and changes in the 

entire range of simulated river temperatures. For assessment and comparison purposes, 

sensitivity indices can be ranked into the four classes found in Table 3.1 as defined by 

Lenhart et al. (2002). Normalized Sensitivity Indices for RWT model inputs parameters are 

listed in Table 3.4. 

Table 3.1. Sensitivity Index Categories (Lenhart et al. 2002). 

Index Sensitivity 

0.00 ≤ | 𝐼𝑛𝑑𝑒𝑥 | < 0.05 Small to negligible 

0.05 ≤ | 𝐼𝑛𝑑𝑒𝑥 | < 0.20 Medium 

0.20 ≤ | 𝐼𝑛𝑑𝑒𝑥 | < 1.00 High 

| 𝐼𝑛𝑑𝑒𝑥 |  ≥ 1.00 Very high 

 

3.2.4. Ridge Regression 

 

The method of ridge regression proposed by Hoerl & Kennard (1970). Ridge regression is a 

linear regression extension where the loss function is modified to minimize the model's 

complexity (Equation 3.11). This adjustment is done by adding a penalty parameter 

equivalent to the square of the magnitude of the coefficients (2-norm or L2 norm (squared)) 

to avoid overfitting. Equation (3.10) represents the 2- norm or L2 norm. 

 

‖𝑤‖2 = (𝑤1
2 + 𝑤2

2 + ⋯ + 𝑤𝑁
2 )

1

2     (3.10) 

 

In this study, a Ridge regression model is developed on a daily scale to predict the RWT for 

Tunga-Bhadra River with minimum and maximum air temperature as predictor variables. 

Ridge regression optimizes the following: 

 

Objective = RSS (Residual Sum of Squares) + λ * (sum of the square of coefficients) 

 

𝐿𝑜𝑠𝑠 = 𝐸𝑟𝑟𝑜𝑟(𝑦, 𝑦̂ ) +  𝜆 ∑ 𝑤𝑖
2𝑁

𝑖=1         (3.11) 

 

3.2.5. K-nearest Neighbors (KNN) Regressor 

 

KNN is a simple algorithm (Cover and Hart 1967), and the input consists of the k closest 

training samples in the feature space. KNN is to calculate the average of the numerical target 

of the K nearest neighbors:  



40 
 

  𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑘
𝑖=1     (3.12) 

In this study, the KNN model is developed on a daily scale to predict the RWT with 

minimum and maximum air temperature as predictor variables. The tuning parameter choices 

were five neighbors to fit the model. 

3.2.6. Support Vector Regression (SVR) 

 

Dibike et al. (2001) firstly applied the support vector machines (SVM) approach for accurate 

simulation of rainfall-runoff processes in hydrology. The Support Vector Machine (SVM) is 

a kernel function learning machine, which follows the structural risk principle (Vapnik et al. 

1996). When the training data of {(𝑥1, 𝑦1), … … . . (𝑥𝑛, 𝑦𝑛)} with n patterns, a function 𝑓(𝑥) 

will be identified with the consideration of the deviation from the actually observed target 

variables 𝑦𝑖 for all the training data (Lima et al. 2012). The input variables, X will be mapped 

into a higher dimensional feature space using a nonlinear mapping function φ.  

      𝑓(𝑥; 𝑤) =< 𝑊, 𝜑(𝑥) > +𝑏  (3.13) 

 

where < , > denotes the inner product, and W and b are the regression coefficients, which can 

be estimated by minimizing the error between 𝑓(𝑥) and the observed values of y. SVR uses 

the ∈-insensitive error to measure the error between 𝑓(𝑥) and the observed values of 𝑦. 

Where ∈ is the hyper-parameter. 

|𝑓(𝑥; 𝑤) − 𝑦|∈ = {
0,        𝑖𝑓|𝑓(𝑥; 𝑤) − 𝑦| < ∈

|𝑓(𝑥; 𝑤) − 𝑦|− ∈,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 (3.14) 

 

Using the training data of (𝑥𝑖, 𝑦𝑖) the values of w and b are estimated by minimizing the 

objective function: 

              𝐹 =
𝐶

𝑁
∑ |𝑓(𝑥𝑖

𝑛

𝑖=1
, 𝑤) − 𝑦𝑖|∈ +

1

2
||𝑤||2    (3.15) 

 

Where C and ∈ are the hyper-parameters. The minimization of the objective function, F, uses 

the Lagrange multiplier method, and the final regression equation with kernel function 

𝐾(𝑋, 𝑋′) can be in the form:  

                         𝑓(𝑋) =  ∑ 𝐾(𝑋, 𝑋𝑖) + 𝑏𝑖       (3.16) 
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Based on previous studies (Dibike et al., 2001;Rehana, 2019), RBF was chosen as the kernel 

function to measure the performance of the model for the RWT. A detailed introduction to 

the SVR method may be found in Dibike et al. (2001). 

 

 

3.2.7. Random Forest (RF) Regressor 

 

RF is designed to produce output by majority vote (for classification) and the average of the 

single-tree method (for regression) (Breiman 2001). Each tree creates a set of response 

predictor values associated with a group of independent values. After that, each independent 

variable data is splitting into several split points. And the Sum of Squared Error (SSE) has 

been calculated for each split point between the actual values and the predicted values. This 

process will recursively continue until the entire data is being covered. There is no 

interaction between these trees while building the trees. The trees in RFs are run in parallel.  

The model can be written as:  

 

     𝑓(𝑥) = 𝑓0(𝑥) + 𝑓1(𝑥) + 𝑓2(𝑥) + ⋯     (3.17) 

 

Where the final model f is the sum of simple base models fi. Where each base regressor 

portion is the simple decision tree. 

 

3.2.8. Ensemble Kalman Filter (EnKF) 

 

The Kalman filter (KF) (Kalman 1960) technique is one of the data assimilation methods 

rooted from the Monte-Carlo and Bayesian approaches. EnKF is a variant of KF that can be 

used for the nonlinear filtering problem. The EnKF process is a sequentially based data 

assimilation method from recent land data assimilation research (Evensen 1994). The 

mathematics involved in EnKF are as follows: 𝑋𝑡
𝑏stands for the prior state estimate ensemble 

{𝑋𝑡,1
𝑏 , 𝑋𝑡,2

𝑏 , … , 𝑋𝑡,𝑛
𝑏 } at time t; 𝑋𝑡

𝑎stands for the posterior state estimate ensemble 

{𝑋𝑡,1
𝑎 , 𝑋𝑡,2

𝑎 , … , 𝑋𝑡,𝑛
𝑎 } at time t; and n is the ensemble size. The nonlinear process and 

measurement are expressed as: 

 

𝑋𝑡+1 = 𝐹(𝑋𝑡) + 𝑊𝑡(𝑁(0, 𝑄))     (3.18) 
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𝑌𝑡 = 𝐻(𝑋𝑡) + 𝑉𝑡(𝑁(0, 𝑅))      (3.19) 

 

Where F is a nonlinear function that related state 𝑋𝑡 at time t to state 𝑋𝑡+1at time t+1; H is 

the measurement function that converts state to observation; 𝑊𝑡(𝑁(0, 𝑄)) and 𝑉𝑡(𝑁(0, 𝑅)) 

represent process and measurement noise, respectively; 𝑊𝑡 and 𝑉𝑡 are assumed to be 

independent white noise and white noise with normal probability distributions, and Q and R 

are processed noise covariance and observation noise covariance matrices, respectively, and 

are assumed to be constant. 

The EnKF algorithm includes two steps: predicting and updating. The prior state 

estimate is calculated from the posterior estimation in the previous time step in the predicting 

step. Based on this, the state prior mean and covariance can be calculated: 

 

𝑋𝑡+1
𝑏 = 𝐹(𝑋𝑡

𝑎) + 𝑊𝑡       (3.20) 

 

𝑃𝑡+1
𝑏 = 𝐸[(𝑋𝑡+1

𝑏 − 𝑋̅𝑡+1
𝑏 )(𝑋𝑡+1

𝑏 − 𝑋̅𝑡+1
𝑏 )𝑇]    (3.21) 

 

Where 𝑃𝑡+1
𝑏  represents the prior estimate of covariance, 𝑋̅𝑡+1

𝑏 represents the state ensemble 

mean, T represents matrix transposition, and E is the expectation operator. 𝑋̅𝑡+1
𝑏  is used as the 

best initial estimate as in Equation (3.21), and the error covariance is the directly calculated 

error covariance of the best estimate.  

In the updating step, the field observations are treated as a random variable. In order 

to do this, a sample of observations is generated from a distribution with the mean equal to 

the field observation and the variance equal to the observation variance R. Using D to stand 

for the measurement sample matrix, the equations are - 

 

𝑋𝑡+1
𝑎 = 𝑋𝑡+1

𝑏 + 𝐾(𝐷 − 𝐻𝑋𝑡+1
𝑏 )     (3.22) 

 

𝑃𝑡+1
𝑎 = 𝐸[(𝑋𝑡+1

𝑎 − 𝑋̅𝑡+1
𝑎 )(𝑋𝑡+1

𝑎 − 𝑋̅𝑡+1
𝑎 )𝑇]    (3.23) 

 

𝐾 = 𝑃𝑡+1
𝑏 𝐻𝑇(𝐻𝑃𝑡+1

𝑏 𝐻𝑇 + 𝑅)−1     (3.24) 
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where (𝐷 − 𝐻𝑋𝑡+1
𝑏 ) is called the residual or measurement innovation. The Kalman gain K in 

Equation (3.24) defines the weight to be applied to the actual measurements. In this study, X 

refers to the temperature parameters, F is the ML model, and D means the water temperature 

measurements. Measurement error covariance R is determined by the observed data set D and 

H as the observation operator. 

3.2.9. Ensemble Kalman Filter (EnKF) Model Development 

 

In this study, EnKF as a data assimilation technique is implemented to improve the efficiency 

of ML models in each simulation step. The proposed approach is presented to enhance the 

performance of the integration of the ML model and EnKF. For developing the ML model to 

predict or simulate RWT, EnKF is implemented to update and optimize ML model 

predictions. Figure 3.2 shows the ML and DA architectural flow diagram. 

 

 

Figure 3.2. Architectural flow diagram of ML model and EnKF data assimilation 

method. 

 

In Figure 3.2, Yp is the results of ML model prediction, YF is the data blended by updating the 

ML model prediction results with the RWT observations Ym using the EnKF technique. The 

steps of this model as follows: 
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1) The ML model is trained with the observed data at t-1 to form the model. 

2) The subsequent observations are used to predict the RWT at t. 

3) This step updates the predicted data Yp with the available RWT measurements Ym 

using the EnKF technique, and then the updated data YF are used as inputs to update 

the ML model if the error is less than the previous simulation step. The process then 

returns to step (1) for the next prediction until there are no new data. 

 

3.3. Study Area and Data 
 

The river location considered for the RWQ modelling is Shimoga along the Tunga River, 

which confluences with Bhadra river to form the Tunga-Bhadra River, a major tributary of 

Krishna River basin, India (Figure 3.3). A storage dam is situated about 15 km upstream 

from Shimoga at Gajanur across the river Tunga. The monthly mean discharge at the 

Shimoga station is about 166.95 m3/sec. The variables used to fit a ML model are AT and 

RWT. Therefore, in this study, AT, and RWT are selected for the data analysis. The observed 

minimum, maximum and average air (water) temperature mean was noted as 19.66 oC, 29.74 

oC, and 24.78 oC (27.54 oC) and standard deviation as 3.48 oC, 3.47 oC, and 2.77 oC (2.66 oC) 

respectively. A significant decrease of discharge has been noted about 3.1% at Shimoga 

along the Tunga river compared from 1971–1991 to 1992–2006 (Rehana & Mujumdar, 

2011). The Tunga River location receives the waste load from Shimoga city municipal 

effluent. The daily average RWT data and average, maximum and minimum air temperature 

data from 1st January 1989 to 1st January 2004 recorded at Shimoga station was obtained 

from Central Water Commission (CWC), Bangalore, Karnataka, India, and Advanced Centre 

for Integrated Water Resources Management (ACIWRM), Karnataka, India. The frequency 

of water quality data collection, i.e., water temperature, is ten times a day. The measurement 

of water temperature data is mean daily of ten samples (Central Water Commission 2018). 

To create a complete-time series dataset, the na.interp() function within the R's forecast 

package was used to interpolate data between missing time series values (Hyndman et al. 

2018). For seasonal data, na.interp uses STL (Seasonal and Trend decomposition using 

Loess) for this interpolation.  
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Figure 3.3. Location map of Tunga-Bhadra River and Shimoga station, India. 
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3.4. Model Evaluation 
 

The accuracy of the applied ML models was evaluated using various good-ness of fit 

measures such as (Chadalawada and Babovic 2017): The coefficient of determination (R2) 

(Equation 3.25), the mean squared error (MSE) (Equation 3.26), the root mean squared error 

(RMSE) (Equation 3.26), RMSE-observations standard deviation ratio (RSR) (Equation 

3.27) (Moriasi et al. 2007), Nash-Sutcliffe efficiency (NSE) (Equation 3.28) (Nash and 

Sutcliffe 1970), the mean absolute error (MAE) (Equation 3.29), and Kling–Gupta efficiency 

(KGE) (Equation 3.30) (Kling et al. 2012). For assessment and comparison purposes, RSR 

and NSE can be ranked into the four classes found in Table 3.2 as defined by Moriasi et al. 

(2007). 

 

 𝑅2 =  1 − 
∑(𝑇𝑤𝑝𝑟𝑒𝑑

−𝑇𝑤𝑜𝑏𝑗
)2

∑(𝑇𝑤𝑝𝑟𝑒𝑑
−𝑇𝑤𝑚𝑒𝑎𝑛)2      (3.25) 

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
∑ (𝑇𝑤𝑝𝑟𝑒𝑑

−𝑇𝑤𝑜𝑏𝑗
)2𝑛

𝑖=1

𝑛
    (3.26) 

 

𝑅𝑆𝑅 =
𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉𝑜𝑏𝑗
=

[√∑ (𝑇𝑤𝑜𝑏𝑗
−𝑇𝑤𝑝𝑟𝑒𝑑

)2𝑛
𝑖=1 ]

[√∑ (𝑇𝑤𝑜𝑏𝑗
−𝑇𝑤𝑚𝑒𝑎𝑛)2𝑛

𝑖=1 ]

      (3.27) 

 

𝑁𝑆𝐸 = 1 − [
∑ (𝑇𝑤𝑜𝑏𝑗

−𝑇𝑤𝑝𝑟𝑒𝑑
)2𝑛

𝑖=1

∑ (𝑇𝑤𝑜𝑏𝑗
−𝑇𝑤𝑚𝑒𝑎𝑛)2𝑛

𝑖=1

]      (3.28) 

 

  𝑀𝐴𝐸 =  
1

𝑁
∑ (𝑛

𝑖=1 𝑇𝑤𝑝𝑟𝑒𝑑
− 𝑇𝑤𝑜𝑏𝑗

)     (3.29) 

  
 

𝐾𝐺𝐸 = 1 − √(1 − 𝑟)2 + (𝛾 − 1)2 + (𝛽 − 1)2   (3.30) 

 

𝛽 =
𝜇𝑠

𝜇0
  

 

𝛾 = (
𝜎𝑠

𝜇𝑠
/

𝜎0

𝜇0
)  

    



47 
 

where 𝑇𝑤𝑝𝑟𝑒𝑑
 is the predicted daily river water temperature at time step i in °C; 𝑇𝑤𝑜𝑏𝑗

 is the 

observed daily river water temperature at time step i in °C; 𝑇𝑤𝑚𝑒𝑎𝑛
 is the average daily river 

water temperature at time step i in °C; 𝑆𝑇𝐷𝐸𝑉𝑂𝑏𝑗 is the standard deviation of the observed 

daily river water temperature; r is the correlation coefficient between simulated and observed 

water temperature; 𝛽 is the bias ratio (the ratio between simulated mean and observed mean), 

𝛾 is the variability ratio (the ratio between simulated variance and observed variance), 𝜇 is 

the mean; 𝜎 is the standard deviation; n is the number of data pairs in comparison. 

Table 3.2. RSR and NSE performance ratings (Moriasi et al. 2007) 

Performance Rating RSR NSE 

Very good 0.00 ≤ RSR ≤ 0.50 0.75 < NSE ≤ 1.00 

Good 0.50 < RSR ≤ 0.60 0.65 < NSE ≤ 0.75 

Satisfactory 0.60 < RSR ≤ 0.70 0.50 < NSE ≤ 0.65 

Unsatisfactory RSR > 0.70 𝑁𝑆𝐸 ≤ 0.50 

 

3.5. Results 
 

The data used in this study consist of daily water temperature and corresponding daily 

minimum, maximum, and mean air temperature for the period from 1st January 1989 to 1st 

January 2004. The observed minimum, maximum and average air (water) temperature mean 

was noted as 19.66 oC, 29.74 oC, and 24.78 oC (27.54 oC) and standard deviation as 3.48 oC, 

3.47 oC, and 2.77 oC (2.66 oC) respectively. To study the statistical dependency between 

various air and water temperature variables, Spearman’s correlation coefficients have been 

estimated from 1st January 1989 to 1st January 2004. Spearman’s correlation coefficients 

between RWT and maximum, minimum and average air temperatures were calculated. It is 

observed that RWT is highly significant with maximum, minimum, and average air 

temperatures (p-value < 0.001) (Table 3.3). Based on the statistical dependency measures, the 

maximum air temperature was positively correlated with daily RWT for the case study. 
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Table 3.3. Seasonal period Spearman’s correlation coefficients between various air and 

water temperature variables 

 Season 
RWT - 

maximum AT 

RWT - 

minimum AT 

RWT - 

average AT 

Monsoon (June- September) 0.90 0.18 0.71 

Post monsoon (October – November) 0.77 0.26 0.59 

Winter (December - February) 0.84 0.20 0.62 

Summer (March - May) 0.77 0.55 0.76 

Annual 0.84 0.31 0.70 

 

Furthermore, based on the SA (Table 3.4), it is observed that the maximum air 

temperature is highly sensitive, with a sensitivity index of 0.95 in the prediction of RWT 

compared to minimum and average air temperatures. The SA also supports the use of 

maximum air temperature as the most important independent variable to be considered in the 

prediction of RWT. To show the variability of maximum air temperature with RWT, the 

daily data from 1st January 1989 to 1st January 2004 has been compared, as shown in Figure 

3.4. Most of the earlier studies considered average air temperature as the independent 

variable in RWT prediction. For example, Rehana and Mujumdar (2011) evaluated the 

average air temperature to predict the RWT for the Tunga-Bhadra river at Shimoga station 

with the coefficient of determination (R2) value as 0.53 with discharge as another 

independent variable. As the present study's main objective is to select an appropriate air 

temperature among average, maximum, and minimum to model RWT, the study has not used 

river discharge in the RWT prediction. 

Furthermore, the improved performance in the prediction of RWT with consideration of 

maximum air temperature and the average air temperature was compared with the linear 

regression model. The resulting R2 value in RWT prediction was obtained as 0.58 and 0.83 

with average and maximum air temperatures, respectively. Such improved performance of 

the RWT prediction model was convincing with an earlier study by Rehana and Mujumdar 

(2011), which used average air temperature as the predictor variable in RWT modelling.  

 

Table 3.4. Normalized Sensitivity Indices for RWT model input parameters. 

Input Parameter Sensitivity Indices 

Minimum air temperature 0.05 

Maximum air temperature 0.95 

Average air temperature 0.00 
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Figure 3.4. Time series of daily maximum air temperatures, water temperatures [1989-2004] 

of Tunga-Bhadra River at Shimoga station, India. 

 

To understand the variability of air and water temperature changes for long term periods, 

the study estimated the linear trends of both variables (Figure 3.7(a), 3.7(b)). As can be 

observed, the long-term maximum air temperature and the RWT are varied during the period 

from 1989 to 2004 (Figure 3.5). The monthly seasonal dynamics of RWT and maximum air 

temperature based on 15 years averages at Shimoga station [1989-2004] are presented in 

Figure 3.6. It is shown that RWT and maximum air temperature give a strong seasonal 

pattern with larger values in summer and lower values in winter. As shown in Figure 3.7, the 

long-term air temperature and the water temperature increased during the period 1989-2004 

at Shimoga station. Air temperature has been increased about 0.077 oC year–1, while RWT 

increased about 0.062 oC year–1. Such increasing trends of RWT has been investigated in 

many parts of the world. For example, the observed RWT has shown a growing trend of 

about 0.029 – 0.046 oC year–1 over China (Chen et al., 2016), over the USA of about 0.009–

0.077 oC year–1 (Isaak et al., 2012; Rice & Jastram, 2015; van Vliet et al., 2013) and Europe 

as 0.006–0.18 oC year–1 (Albek and Albek 2009; Orr et al. 2015; Hardenbicker et al. 2017).  

Air temperature increased by 1.0 °C over the 15-year interval from the plot, while the water 

temperature increased by 0.8 °C. Such increasing air and water temperature trends agreed 

with the case study's earlier research findings (Rehana & Mujumdar, 2011). Furthermore, 

there is strong evidence of climate change's impact on the river water quality due to the 
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increase of river water temperatures and decrease of stream flows for the river of interest 

(e.g., Rehana and Mujumdar 2012; Rehana and Dhanya 2018).  

 

 

Figure 3.5. Time series of monthly mean maximum air temperature and water temperature 

for the period 1989-2004. 

 

 

 

Figure 3.6. Monthly mean maximum air temperature and water temperature based on 15 

years average at Shimoga station [1989-2004]. 
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Figure 3.7. Time series of annual average (a) maximum air temperatures and (b) water 

temperatures for 1989-2004. 

 

3.5.1. ML Model Performance 

The next step in the prediction of RWT is to use appropriate ML, which can work accurately 

in terms of calibration and validation with a comparison of acceptable performance 

measures, as shown in Figure 3.1. To utilize the data better, assessing the effectiveness of the 

model and avoid overfitting, the Cross-Validation (CV) technique was applied. When dealing 

with time-series data, traditional cross-validation (like k-fold) cannot be used since the 

adjacent data points are often highly dependent, so standard cross-validation will fail.  To 

overcome these issues, the time-series splits cross-validation technique was used in the 

present study (Pedregosa et al. 2011; Scavuzzo et al. 2018). This cross-validation was 

performed chronologically, started with a small subset of data for training purposes, 

estimated the last data points, and then checked the accuracy for the calculated data points. 

The same estimated data points are then included as part of the next training dataset, and 

subsequent data points were estimated. This cross-validation procedure provides an almost 

unbiased estimate of the true error (Varma and Simon 2006). The error on each split is 
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averaged in order to compute a robust estimate of model error, as shown in Figure 3.1. While 

fitting a model on a dataset, all the possible combinations of parameter values are evaluated 

using the GridSearchCV python library module (Pedregosa et al. 2011), and the best 

combination is taken to make the model performant. 

The results of the ML approaches (Ridge, KNN, RF, and SVR) for the prediction of 

RWT were evaluated using several goodnesses of fit statistics (MSE, MAE, RMSE, RSR, 

NSE, and R2), and graphical tools (seasonal plots, and box plots). The experiment results 

showed a good trade-off between training and validation performance, confirming the stable 

generalization capacity of ML approaches. The developed models were able to predict RWT 

using AT as input successfully. Figure 3.8 show the box plot for observed and predicted 

RWT using Ridge, KNN, RF, and SVR models, and it is observed that the minimum RWT is 

21 °C and max RWT is 31 °C for the observed data while the lower and quartile range 

between 24 °C and 28 °C with median RWT of 26 °C. According to Figure 3.8, all the four 

models performed almost comparable predictions with a difference of 1 °C based on the 

median, and there is a clear resemblance between the observed RWT and the predicted value, 

in addition the lower and the upper quartile ranges predicted using these models were 

marginally varied compared to the observed data.  

 
 

Figure 3.8. Box plots of observed and calculated river water temperature (°C) in the 

validation phase with the four ML models. 

 

The performance of the Ridge, KNN, RF, and SVR models for daily data at Shimoga 

station is provided in Table 3.5 and Figure 3.9. Results showed that the seasonal variations of 

predicted RWT is almost synchronous and comparable with the observed values (Figure 3.9), 

but the Ridge model performed poor with overestimated values in high water temperature 
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period and performance statistics (R2, MSE, RMSE RSR, NSE, and MAE) can be found in 

Table 3.5. From Table 3.5, SVR (R2 = 0.84, KGE = 0.86, MSE = 0.99, RMSE = 0.99, RSR = 

0.40, NSE = 0.84, and MAE = 0.77)  model has performed slightly better than KNN (R2 = 

0.82, KGE = 0.87, MSE = 1.11, RMSE = 1.05, RSR = 0.42, NSE = 0.82, and MAE = 0.84), 

RF (R2 = 0.83, KGE = 0.87, MSE = 1.05, RMSE = 1.03, RSR = 0.41, NSE = 0.83, and MAE 

= 0.81) and Ridge (R2 = 0.76, KGE = 0.87, MSE = 1.44, RMSE = 1.01, RSR = 0.31, NSE = 

0.76, and MAE = 0.90) for daily time scale. The accuracy for the ML approaches showed 

excellent performance in terms of NSE (NSE > 0.75) and RSR (RSR < 0.50) (Moriasi et al. 

2007) (Table 3.2) with lower values of MSE and RMSE.  The relationship between daily 

RWT and maximum AT at Shimoga station has a relatively strong correlated value for all 

four models (R2 values). Based on RSR and NSE performance ratings (Moriasi et al. 2007) 

(Table 3.2), the best performing model was noted as the SVR (NSE = 0.84; KGE = 0.86; R2 

= 0.84; RSR < 0.50) for RWT prediction based on the performance measures (Table 3.5) for 

daily time scale.  

 

Table 3.5. Performances of different models in the prediction of RWT for the period of 

1989-2004. 

 

Data Model R2    KGE MSE   RMSE   RSR   NSE  MAE 

Daily 

Ridge 0.76 0.87 1.44 1.01 0.31 0.76 0.90 

KNN  0.82 0.87 1.11 1.05 0.42 0.82 0.84 

RF 0.83 0.87 1.05 1.03 0.41 0.83 0.81 

SVR  0.84 0.86 0.99 0.99 0.40 0.84 0.77 

Monthly 

Ridge 0.79 0.87 1.02 1.00 0.35 0.79 0.74 

KNN  0.85 0.85 0.87 0.93 0.38 0.84 0.74 

RF 0.87 0.94 0.71 0.84 0.39 0.87 0.67 

SVR  0.88 0.88 0.61 0.78 0.39 0.88 0.57 

Season 

(Jan - 

Apr) 

Ridge 0.64 0.72 1.93 1.38 0.30 0.64 1.06 

KNN  0.76 0.90 1.42 1.19 0.35 0.76 0.97 

RF 0.80 0.89 1.15 1.07 0.36 0.80 0.86 

SVR  0.82 0.92 1.00 1.00 0.36 0.82 0.80 

Season 

(May - 

Aug) 

Ridge 0.84 0.88 1.42 1.19 0.27 0.84 0.88 

KNN  0.86 0.89 1.30 1.14 0.28 0.85 0.86 

RF 0.87 0.86 1.17 1.08 0.28 0.87 0.82 

SVR  0.87 0.95 1.18 1.08 0.28 0.86 0.76 

Season 

(Sep - 

Dec) 

Ridge 0.52 0.86 0.71 0.84 0.56 0.52 0.68 

KNN  0.50 0.70 0.77 0.88 0.53 0.49 0.69 

RF 0.53 0.72 0.73 0.85 0.53 0.52 0.68 

SVR  0.61 0.74 0.61 0.78 0.58 0.60 0.60 
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Figure 3.9. Comparison between the daily predicted values and observed values of river 

water temperature (°C) in the validation phase, with the four ML models. 

 

A summary of the Ridge, KNN, RF and SVR model performances for monthly data was 

illustrated in Table 3.5 and Figure 3.10. ML results showed that the seasonal variations of 

predicted RWT is almost synchronous and comparable with the observed values (Figure 

3.10), but the Ridge model performed poor with overestimated values in high water 

temperature period and performance statistics are given in Table 3.5. Compared to the four 

ML models, SVR (R2 = 0.88, KGE = 0.88, MSE = 0.61, RMSE = 0.78, RSR = 0.39, NSE = 

0.88,  and MAE = 0.57)  model performed slightly better than KNN (R2 = 0.85, KGE = 0.85, 

MSE = 0.87, RMSE = 0.93, RSR = 0.38, NSE = 0.84, and MAE = 0.74), RF (R2 = 0.87, 

KGE = 0.94, MSE = 0.71, RMSE = 0.84, RSR = 0.39, NSE = 0.87, and MAE = 0.67) and 

Ridge (R2 = 0.79, KGE = 0.87, MSE = 1.02, RMSE = 1.00, RSR = 0.35, NSE = 0.79, and 

MAE = 0.74) for monthly time scale. It can be noticed that performance coefficients of 

monthly time scale were improved in terms of higher R2, NSE and lower RMSE and MAE 

values when compared to daily time scale (Table 3.5). The ML model accuracy has been 

increased with monthly data for RWT predictions compared with daily data, with SVR (RSR 

= 0.39; NSE = 0.88), RF (RSR = 0.39; NSE = 0.87), KNN (RSR = 0.38; NSE = 0.84) and 

Ridge (RSR = 0.35; NSE = 0.79) showed very good performance based on RSR and NSE 

performance ratings (Moriasi et al. 2007) (Table 3.2). 
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Figure 3.10. Comparison between the monthly predicted values and observed values of river 

water temperature (°C) in the validation phase, with the four ML models. 

 

The performance of the Ridge, KNN, RF, and SVR models for seasonal data ([Jan-Apr], 

[May-Aug] and [Sep-Dec]) (Laizé et al. 2017; Zhu et al. 2019a) is shown in Figure 3.11. 

Results showed that the seasonal variations of predicted RWT are almost in agreement with 

the observed values (Figure 3.11), but the Ridge model performed poorly with overestimated 

values in high water temperature periods and performance statistics are given in Table 3.5. 

From Table 3.5, the SVR model performed slightly better than KNN, RF and Ridge in all 

three seasons ([Jan-Apr], [May-Aug], and [Sep-Dec]). It can be noticed that NSE and RSR 

values were poor for the season [Sep-Dec] when compared to the other two seasons, daily 

time scale and monthly time scale values.  
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Figure 3.11. Comparison between the (a) Jan - Apr months (b) May - Aug months (c) Sep-

Dec months seasonal predicted values and observed values of river water temperature (°C) in 

the validation phase, with the four ML models. 

 

3.5.2. ML - EnKF Model Performance 

In the next step in the prediction of RWT, the EnKF data assimilation technique is 

implemented to improve the efficiency of ML models in each simulation step. Table 3.6 

shows the results of the ML-EnKF model at different simulation steps with the assimilated 

data. Table 3.6 shows that the blended data show the improved results from simulation-1 (1st 

January 2001 to 1st January 2002) to simulation-2 (1st January 2002 to 1st January 2003). 

These results demonstrate that the blended data are best. It can be concluded that the ML-

EnKF model can do a better job with assimilated data in RWT prediction. It dramatically 

enhances the direct ML models. If the simulation steps continue, the ML-EnKF model is 

improved and the simulation results are significantly improved, according to Table 3.6.  
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Table 3.6. Performances of different models with assimilated data in the prediction of RWT. 

Data Model R2   
 

KGE MSE  
 

RMSE  
 

RSR  
 

NSE 
 

MAE 

Simulation -1 

[1/1/2001 to 

1/1/2002] 

Ridge 0.829 0.807 0.829 0.910 0.413 0.829 0.759 

KNN  0.855 0.925 0.699 0.836 0.379 0.855 0.667 

RF 0.860 0.934 0.676 0.822 0.373 0.860 0.656 

SVR  0.886 0.915 0.555 0.745 0.338 0.885 0.593 

Simulation -2 

[1/1/2002 to 

1/1/2003] 

Ridge 0.867 0.843 0.841 0.917 0.363 0.867 0.710 

KNN  0.855 0.883 0.921 0.959 0.379 0.856 0.764 

RF 0.865 0.880 0.898 0.947 0.375 0.859 0.741 

SVR  0.911 0.921 0.564 0.741 0.303 0.908 0.573 

 

 

3.6. Discussion 
 

This chapter presents new intuitions on the assessment of performance of a suite of ML 

models for RWQ variables prediction, such as RWT for the Tunga-Bhadra River, India, with 

the aid of the minimum and maximum air temperature at daily, monthly and seasonal time 

scales. The relationship between daily RWT and maximum AT at Shimoga station has a 

relatively strong correlated value for all four models (R2 values). The RMSE values for the 

Shimoga station range from 0.99 to 1.05 for all the four ML models (Table 3.5) for daily 

data, which are reasonable compared with Jackson et al. (2018) (1.57) and Sohrabi et al. 

(2017) (1.25), and far better than that of Temizyurek and Dadaser-Celik (2018) (2.10–2.64). 

Based on RSR and NSE performance ratings (Moriasi et al. 2007) (Table 3.2), the best 

performing model was noted as the SVR (NSE = 0.84; KGE = 0.86; R2 = 0.84; RSR < 0.50) 

for RWT prediction based on the performance measures (Table 3.5) for daily time scale. The 

superiority of SVR in the prediction of RWT as revealed in the present study was found to 

agree with the study of Rehana (2019) for the same case study. However, it can be noted that 

the study by Rehana (2019) used average AT as the independent variable without testing for 

the most influencing AT variables in the prediction of RWT, as demonstrated in the present 

study. Furthermore, it can also be noted that the model performance has improved using SVR 

with maximum AT (NSE: 0.84 and RMSE: 0.99) as an independent variable compared to 

average AT (NSE: 0.61 and RMSE:1.69) (Rehana, 2019) for the same case study at daily 
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time scale. Table 3.5 shows that the four models constructed in this study may learn the RWT 

variation rules from the historical data and reproduce the seasonal dynamics of RWT. It can 

be noted that the improved ML model accuracy with monthly data compared to daily data is 

due to taking the daily values into monthly averages (i.e., averaging all the daily values, the 

errors will be distributed and get better results) and less data variability involved in the 

prediction. This case study demonstrates that integrating the scientific knowledge into ML 

tools promises to improve many important environmental variables predictions. 

It can also be concluded that the ML-EnKF model can do a better job with assimilated 

data in RWQ variables prediction. It dramatically enhances the direct ML models. If the 

simulation steps continue, the ML-EnKF model is improved and the simulation results are 

significantly improved, according to Table 3.6. As section 3.2.9 states, the ML-EnKF model 

is designed to improve the ML model performance by a combination of both ML models and 

a data-assimilation approach to enhance the predicted values based on the measurement data. 

Generally, the assimilation method is just considered to bring model predictions close to the 

observations rather than improve the model structure. Here, as the updated data are used to 

train the ML model for the next prediction, it does enhance the model and makes the model 

more practical in hydrologic applications.  

The present study demonstrated how a data-driven modelling framework could be scaled 

up and used for the prediction of RWQ variables. The data assimilation methods can also 

combine with ML models to improve the predicted values based on the measurement data. 

Overall data-driven modelling framework presented in the chapter indicated that all ML 

models were proven to be effective in RWQ variables prediction. This case study 

demonstrates that integrating scientific knowledge into ML tools for improving predictions 

of many important environmental variables and the applicability of data-driven models in the 

field of the water sector. Simultaneously, ML models architecture and the law of parameter 

setting demonstrated in the present study can be valuable for river water quality management 

problems. 

Despite the robustness of the modelling frameworks as presented in the study, it has some 

caveats. One of the major limitations of the study is consideration of the data for the period 

from 1989 to 2004, which is the only long period of data available along the river stretch 

with minimal missing and erroneous data. The proposed modelling framework of RWQ 
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variables prediction can always be implemented with newly updated data as demonstrated in 

the present study, which can be extended to other stations and other variables based on data 

availability. In this study, all the models proposed typically provide a single-point prediction, 

neglecting the inherent variability present in the data and the model itself. It was observed 

that inherent uncertainties from each of the ML models can accumulate and affect the final 

performance measures. These uncertainties can originate from different sources, such as 

noise, covariates considered, temporal discontinuity present in the original water quality 

sampled observations to the model parameters, type of ML algorithm used to predict RWT, 

and non-stationarity assumptions related to forecasting model parameters (Beven 2016). To 

estimate such model uncertainties originating from various ML models, techniques like 

bootstrap aggregation (bagging) and Monte Carlo methods can be adopted. Developing an 

ensemble model using a robust weighted voting regressor (VR) method to quantify 

forecasting uncertainty and to improve the model performance can be further research 

(Rajesh et al. 2022). By employing a lag-1 time series model as the null model, comparing 

skill scores of different ML models with various covariate sets are presented in the Chapter 4 

by considering the seven majorly polluted catchments of India (CPCB 2015; National River 

Conservation Directorate (NRCD) 2018).   

 

3.7. Chapter Summary  

ML techniques represent a potentially disruptive force for many scientific disciplines. The 

purpose of this study was to assess the performance of a suite of ML models for RWQ 

variables prediction under limited data input variables. To demonstrate, RWT was selected as 

water quality variable and predicted with the aid of the minimum and maximum AT at daily, 

monthly and seasonal time scales for the Tunga-Bhadra River, India. In this chapter, an 

attempt has been made to identify the most sensitive AT variable (average, maximum and 

minimum) using Sobol’ sensitivity analysis method described in Section 3.2.2, which can 

serve as an input variable in the prediction of RWT. Furthermore, each model's configurable 

variable is optimized, and the performances of various ML models are analyzed to test the 

applicability of the data-driven models in the RWT being investigated. Further, the EnKF 

algorithm was described in Section 3.2.9, which is integrated with ML approaches to 

improve the predicted values based on the measurement data. Finally, this chapter was 

concluded with the following conclusions: 
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1. The results indicated that the maximum AT was the most important variable in the 

prediction of RWT for the river location of interest. In general, it can be concluded 

that the Sobol’ sensitivity analysis can be successfully applied for input variable 

fixing and prioritization of any RWT model. Therefore, the Sobol’ sensitivity analysis 

method can be considered as a robust and powerful method for RWQ variables 

prediction modelling.  

2. The study revealed that ML model performance coefficients are improved in monthly 

data compared to the daily time scale. The seasonal time scale RWT prediction 

models also performed poorly compared to daily and monthly time scale data. 

Overall, the monthly time scale RWT prediction ML models have performed better 

than daily and seasonal for interest study location.  

3. The SVR has been noted as the most robust ML model to predict RWT. The SVR 

model is a strong choice for smaller datasets and is less sensitive to outliers in the 

data compared to some other models. The SVR is generally less computationally 

expensive than the ML models. However, for highly complex relationships or very 

large datasets, ANN or DL architectures might be more suitable, considering their 

computational resources and potential for even higher accuracy. 

4. The ML-EnKF model update of the prediction data with the observed data using the 

data assimilation method shows a better result. If the simulation steps continue, the 

ML-EnKF model is improved, and the simulation results are significantly improved. 

Overall, this chapter demonstrated the prediction of RWQ variables using classical ML 

algorithms by integrating the sensitivity analysis and data assimilation techniques to improve 

the performance under limited data input variables. The proposed methods, demonstrated 

methodologies, frameworks in this chapter are generic, and can be implementable for any 

given RWQ variable.  Further research into the robust and hybrid ML approaches is required 

and were presented in the next chapter to predict the RWQ variables under sparse, non-

stationary data scenarios, as an accurate simulation of RWQ variables, which plays an 

important role in water quality management under data sparsity uncertainties. 
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Chapter 4 
PREDICTION OF RIVER WATER QUALITY VARIABLES WITH SPARSE DATA  

USING HYBRID DEEP LEARNING METHODS 

 

4.1. Introduction 
 

The ML models presented in Chapter 3 is able to address limited data variables scenarios in 

predicting RWQ variables by integrating sensitivity analysis using minimal data inputs (such 

as AT). The present chapter addresses another sort of data uncertainty, namely the lack of 

availability of long-time series data to capture interannual variability and consistent water 

quality measurement datasets in RWQ modeling. Generally, RWQ data availability is at 

monthly scales and is burdened with a large number of missing values with limited durations. 

In this context, the selection of appropriate model inputs, development of models under 

limited data, processing of non-stationary data, seasonality scenarios, and relevant lags of 

variables have not been intensively investigated in the literature, especially in the case of 

estimation of RWQ variables. 

To simulate RWQ variables, process-based models (e.g., Delft3D model, Soil and 

Water Assessment Tool (SWAT) model, etc.) are commonly used but such approaches 

require large amounts of site-specific detailed data at daily time scales, including stream 

geometry and meteorological and hydraulic properties of the river (Piccolroaz et al. 2016). 

The use of data-driven algorithms, such as DL models using minimum data inputs (such as 

AT), can be robust in addressing data sparsity in simulating RWQ models. However, the 

robustness of any DL-based forecasting algorithms, i.e., ANN or RNN, depends on the 

extensive input data to learn the dynamics of complex systems (Read et al. 2019). At the 

same time, RWQ datasets exhibit complex interrelationships among RWQ variables, serial 

dependence, data-limited context, stochastic nature, and seasonality (Rabi et al. 2015; Zhu et 

al. 2019f). Stochastic modeling approaches have been well developed in hydrology and 

hydro climatology to address these scenarios (Raseman et al. 2020). In literature, multiple 

simulation models have been implemented, and the most widely used approach is the k-NN 

bootstrap resampling simulation technique which is well suited to generate synthetic data 

(Lall and Sharma 1996; Rajagopalan and Lall 1999). The present study used the k-NN 
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algorithm to generate RWQ data, as high temporal resolution datasets are rarely available for 

Indian case studies. 

In this chapter, developed hybrid models for RWQ variables predictions using Long 

Short-Term Memory (LSTM), integrated with (i) k-nearest neighbor (k-NN) bootstrap 

resampling algorithm (kNN-LSTM) to address the data-limitations, (ii) discrete wavelet 

transform (WT) approach (WT-LSTM) to address the time-frequency localized features. To 

build the kNN-LSTM model, the k-NN algorithm was adopted, which is described by 

Raseman et al. (2020) to create synthetic time-series data with realistic scenarios for 

predicting the RWQ variables. In water quality, RWT is a key element that affects the health 

of a freshwater ecosystem. Changes in AT can affect RWT, the primary variable that 

influences water quality. Therefore, to demonstrate the proposed hybrid models, the RWT 

has been considered as the water quality variable for prediction by using AT and lag 

variables as predictors. To study the pertinence of the k-NN algorithm and wavelets, the 

seven major Indian catchments were utilized with monthly datasets of air and water 

temperatures to simulate time-series data. One of the reasons for choosing the monthly time 

scale is most of the Central Pollution Control Board (CPCB), and Central Water Commission 

(CWC) samplings are at monthly time scales for RWQ monitoring (Central Water 

Commission 2018; CPCB 2020). Furthermore, the study compared the proposed WT-LSTM 

and kNN-LSTM monthly models with standalone LSTM, air2stream models (Toffolon and 

Piccolroaz 2015; Piccolroaz et al. 2016). 

Furthermore, the study evaluated the effect of climate change on RWTs using 

Representative Concentration Pathways (RCP) scenarios 4.5 and 8.5 dataset outputs 

downscaled from the National Aeronautics Space Administration (NASA) Earth Exchange 

Global Daily Downscaled Projections (NEX-GDDP) dataset. Also, validated the causal 

linkages between the time series of data using Granger Causality Analysis (GCA) test to 

check if the results would be improved by the addition of lagged variables. 

In summary, the objectives of this chapter are to (i)  coupling the k-NN bootstrap 

resampling technique with the LSTM model (kNN-LSTM) to overcome the limited data 

scenarios of river water quality data, (ii) coupling the WT with the LSTM model (WT-

LSTM) to yield better performance by overcoming both processing of non-stationary and the 

noisiness in data for RWQ variables prediction at monthly scale, (iii) compare the 
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performance results of WT-LSTM and kNN-LSTM models with LSTM, 3-parameter version 

air2stream in the prediction of RWQ variables when applied on seven major river systems of 

India, (iv) calculating the impacts of climate change on the rivers thermal processes in India 

and possible variability in RWT by using the kNN-LSTM model forced with an ensemble of 

21 GCMs using the NEX-GDDP dataset under RCP scenarios 4.5 and 8.5 dataset output. 

4.2. Model Development 
 

The proposed model combines pre-processing data methods such as feature engineering, 

handling missing data, WT (see Sect. 4.2.1 for further information about WT), and an 

ensemble of simulated data by using k-NN bootstrap resampling algorithm and LSTM model 

with sufficient tests of performance measures of models at monthly timescale (Figure 4.1). In 

this study, WT was implemented to de-noise the historical data, and the k-NN algorithm was 

implemented to simulate the data from historical data for better performance of the LSTM 

models. In Figure 4.1a, yellow, blue, and green colored arrows represent the data workflows 

for LSTM, WT-LSTM, and kNN-LSTM models, respectively, for monthly water 

temperatures prediction at the seven catchment sites of India. The detailed flow charts of 

WT-LSTM and kNN-LSTM models in Figures 4.1b, and 4.1c. For comparison, the 3-

parameter version air2stream model was used as a benchmark model with the original time 

series of ATs as predictor variables. For future RWT projections, RCP scenarios 4.5 and 8.5 

down-scaled projections of AT data were fed into the kNN-LSTM monthly prediction model. 
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Figure 4.1. Overview diagram (a) the deep learning methodological framework of the proposed river water temperature 

forecasting models. Yellow, blue, and green colored arrows represent the data workflows for LSTM, WT-LSTM, and kNN-LSTM 

models, respectively, (b) the detailed flow diagram showing the steps of coupling Wavelet Transform (WT) and Long Short-Term 

Memory (LSTM) model (WT-LSTM), (c) the detailed flow diagram showing the steps of coupling k-NN bootstrap resampling 

algorithm, and Long Short-Term Memory (LSTM) model (kNN-LSTM). Ta is the average air temperature, and Tw is the water 

temperature.
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4.2.1. Wavelet Transform (WT) 

 

Wavelets transform is used in many scientific disciplines as a data pre-processing approach. 

Understanding the variability of hydrological processes is an essential and important 

scientific topic in hydrology studies, but it is also a difficult problem due to the complex 

stochastic nature of hydrological processes (Shoaib et al. 2014). Most of the hydrologic data 

are non-stationary in nature (Milly et al. 2008). Such a non-stationary time series consists of 

various components (e.g., seasonal, trend and abrupt components) occurring for varying 

durations which can be determined through time segmentation. Mathematically, time series 

(𝑦𝑡) is stationary if, for all t (Huang et al., 1998). 

 

𝐸(𝑦𝑡) = 𝐸[(𝑦𝑡−1)] = 𝜇       (4.1) 

   

𝑉𝑎𝑟(𝑦𝑡) = 𝛾0 < ∞        (4.2) 

   

𝐶𝑜𝑣(𝑦𝑡, 𝑦𝑡−𝑘) = 𝑦𝑡        (4.3) 

  

 

where E(.) is the expected value defined as the ensemble average of the quantity, and Var(.) 

and Cov(.) are, respectively, the variance and the covariance functions. If these constraint 

conditions are violated, the time series would exhibit non-stationary characteristics, which is 

a major challenge for several fields (e.g., remote sensing, engineering, and hydrology). For 

this reason, several approaches are developed to analyze the non-stationary characteristics. 

However, the observed hydrologic series are usually complex and show non-stationary and 

multi-temporal scale characteristics in daily, monthly, annual, inter-annual, decadal and 

larger scales (Labat 2005; Sang et al. 2009, 2011). To deal with this problem, the WT has 

been frequently applied in hydrology as it has the superiority of addressing non-stationary 

variability of hydrological processes and identifying the significant level shifts, etc., in time-

series data (Sang et al. 2015; Rahman et al. 2020). 

Compared with the Fourier Transform (FT), WT has the advantage of simultaneously 

obtaining information on the time, location, and frequency of a signal, while the FT can only 

provide the frequency information of a signal (Daubechies 1990). WT has been widely used 
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to reveal information (signal) both over time and on a domain scale (frequency). It is thus a 

more powerful transformation for time-frequency analysis. To our knowledge, the present 

applications such as forecasting cannot be made using WT alone. Hybrid approaches, which 

combine DL with WT, currently offer the highest performance for time series analysis due to 

their complementarity (Wang et al., 2018). As a result, several researchers used the coupling 

of WT with ANN (Tan and Perkowski 2015; Komasi et al. 2018; Graf et al. 2019). WT has 

the benefit over the Fourier Transform (FT) in that it can collect information both over 

frequency and time, whereas the FT can only give the frequency data (Daubechies 1990). 

WTs are mainly parted into Continuous wavelet transforms (CWT) and Discrete wavelet 

transforms (DWT). Although the CWT can identify the complex characteristics of a time 

series under multitemporal scale, there is much repeated information (called data 

redundancy) in the continuous wavelet results of a time series, and the results get more 

affected by the boundary effects. These factors would affect the stability of the wavelet 

modeling structure and consequently increase uncertainty (Sang et al. 2016). In this work, 

DWT was utilised to decompose the original raw ATs and RWTs data into approximation 

part (A) and details (D) (Figure 4.1b and 4.7) since prior researchers have demonstrated that 

DWT has advanced efficacy and is easier to use (Montalvo and García-Berrocal 2015). Then, 

the transformed forms of the AT and RWT data were used as model inputs in the LSTM 

training and testing. 

The most important considerations in DWT are picking the suitable wavelet 

decomposition level (L) and mother wavelet. There are multiple mother wavelets, i.e., 

Daubechies (Db), Haar, discrete Meyer, Symlet, etc. In this study, a Db wavelet was 

employed. The L can be calculated by the below approach (Nourani et al. 2009): 

𝐿 = 𝑖𝑛𝑡[log(𝑁)]              (4.4) 

Where 𝑁 represents the length of data. 

 

4.2.2. Long Short-term Memory (LSTM) 

 

The LSTM is a variant of RNN where the previous step's output is fed as input to the present 

step (Hochreiter and Schmidhuber 1997). The RNN is preferred over ANN as it can represent 

time series data, allowing each sample to be presumed to rely on the prior one. To overcome 

gradient vanishing and exploding problems, RNNs can be improved using the gated RNN 
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architectures such as LSTM (Hochreiter and Schmidhuber 1997) and GRU (Cho et al. 2014). 

The current work considered the most widely known RNN architecture of LSTM to predict 

the RWT due to the superiority of using backpropagation through time and overcome the 

vanishing gradient problem and capable of learning long-term dependencies (Hochreiter and 

Schmidhuber 1997; Hochreiter 1998; Hochreiter et al. 2001; Greff et al. 2017). The LSTM 

consists of different memory blocks called cells (Figure 4.2). Each memory cell has an input 

gate, an output gate, and an internal state that feeds back into itself unaffected over time 

steps, which learns when it’s time to forget about prior hidden states (ℎ𝑡−1), when to update 

hidden states given new data and be used to learn complex temporal sequences. The LSTM 

architecture avoids the problem of vanishing gradients by introducing error gating 

(Hochreiter 1998). The following are the LSTM equations (Equations 4.5-4.10) (Olah 2015): 

 

𝑓𝑡 = 𝜎(𝑥𝑡𝑊𝑥𝑓 + ℎ𝑡−1𝑊ℎ𝑓 + 𝑏𝑓)       (4.5) 

𝑖𝑡 = 𝜎(𝑥𝑡𝑊𝑥𝑖 + ℎ𝑡−1𝑊ℎ𝑖 + 𝑏𝑖)       (4.6) 

𝑜𝑡 = 𝜎(𝑥𝑡𝑊𝑥𝑜 + ℎ𝑡−1𝑊ℎ𝑜 + 𝑏𝑜)       (4.7) 

𝑠̂𝑡 = 𝑡𝑎𝑛ℎ(𝑥𝑡𝑊𝑥𝑔 + ℎ𝑡−1𝑊ℎ𝑔 + 𝑏𝑔)       (4.8) 

𝑠𝑡 = 𝑓𝑡 ⊙ 𝑠𝑡−1 + 𝑖𝑡 ⊙ 𝑠̂𝑡        (4.9) 

  

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑠𝑡)         (4.10) 

 

where h is the hidden units, 𝑓𝑡, 𝑖𝑡, 𝑎𝑛𝑑 𝑜𝑡 denotes the forget, input, output gates, respectively, 

𝑠̂𝑡 denotes candidate of cell state, 𝑠𝑡, ℎ𝑡 denotes cell, hidden states, respectively, and 𝑊𝑥 , 

𝑊ℎ, 𝑏 are trainable weights. 𝜎 is the sigmoid function, ⊙ is the element-wise multiplication, 

𝑥𝑡 is a vector of d input features, and 𝑡𝑎𝑛ℎ is the hyperbolic tangent activation function. 
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Figure 4.2. Overview diagram of Long short-term memory neural network (LSTM). 

Where 𝑓, 𝑖, and 𝑜 denotes the forget gate, input gate, and output gate, ℎ𝑡 denotes hidden 

state, 𝑠𝑡 denotes cell state, 𝜎 is the sigmoid function, tanh is the hyperbolic tangent activation 

function.     

 

4.2.3. k-NN Bootstrap Resampling Algorithm 

 

The k-NN bootstrap resampling algorithm was used for generating simulated time-series data 

from historical data based on Sharif and Burn (2007) and Raseman et al. (2020). The 1st 

month of simulated data is the user-defined month (e.g., January) and randomly chosen year. 

The steps for the subsequent months are listed below: 

• Feature vector: Define a 𝑋𝑡 ‘‘feature vector’’, dimension d = qL, where q and L are the 

variables and numbers of lags considered in the model, respectively. In this study, a lag-1 

dependence or L = 1 was discovered and q = 2 has been used, i.e., AT and RWT variables 

to simulate the values. 

• Calculate Mahalanobis distance and determine the nearby neighbors: For the present 

time step, i, the feature vector, 𝑋𝑖, is created. To identify which neighbors are nearby to 

𝑋𝑖, the Mahalanobis distance (Mahalanobis 1936) (Equation 4.11) is used (Sharma and 

O’Neill 2002; Yates et al. 2003): 
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𝑑𝑖 = √(𝑋𝑡 − 𝑋𝑖)𝑇𝐶−1(𝑋𝑡 − 𝑋𝑖)       (4.11) 

 

where C is a q x q matrix which defines the covariance between 𝑋𝑖 and 𝑋𝑡, 𝑑𝑖 represents 

the N-dimensional distance vector. N denotes the total number of years. 

• Rank nearby neighbors and choose k neighbors: The nearby k neighbors are then 

selected from the ascending order list, and the successor is selected from among them. In 

this study, used 𝑘 = √𝑁 , which is recommended by Lall and Sharma (1996). 

• Select successor: To choose neighbors among the k nearby neighbors in a probabilistic 

manner, 𝑋𝑡
𝑘𝑁𝑁 (2 x k matrix, a subset of 𝑋𝑡), the discrete kernel K is used to define a 

weighting function, defined in Lall and Sharma (1996). 

• Random innovations to successor: This step of the algorithm is divided into (1) create 

modified successors, (2) bound variables, and (3) check the bounds, and if bounded, 

repeat steps 1 and 2 until they produce a non-negative value. 

After simulating the modified successor, 𝑥̃𝑖, it calculates the new current timestep’s new 

value. The above steps are repeated for the next months till the simulated values match the 

historical record in length. Detailed information on the k-NN algorithm may be found in 

Raseman et al. (2020). A detailed flow diagram showing the steps of coupling the k-NN 

bootstrap resampling algorithm and LSTM model (kNN-LSTM) is provided in Figure 4.1c. 

 

4.2.4. Air2stream 

 

The air2stream is a hybrid model which combines a physically based structure with a 

stochastic parameter calibration used for RWT prediction developed with a limited 

computational complexity by Toffolon & Piccolroaz (2015). The air2stream model is based 

on a single ordinary differential equation linearly dependent on discharge, air, and water 

temperature. The 8-parameter version equation (Equation 4.12) for the air2stream model is 

given as follows: 

 

𝑑𝑇𝑤

𝑑𝑡
=

1

𝜃𝑎4
[𝑎1 + 𝑎2𝑇𝑎 − 𝑎3𝑇𝑤 + 𝜃(𝑎5 + 𝑎6 cos (2𝜋 (

𝑡

𝑡𝑦
− 𝑎7)) − 𝑎8𝑇𝑤)] (4.12) 

 

where 𝜃 is the dimensionless flow discharge; 𝑡 is the time; 𝑡𝑦 is the number of time steps 
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over a year; 𝑎1 − 𝑎8 are model parameters; 𝑇𝑤 is the water temperature (◦C); 𝑇𝑎 is the air 

temperature (◦C). 

 

A further form of the model can be found by simplifying Equation (4.12), also imposing  

𝜃 = 1, and putting the constant and proportional terms together to 𝑇𝑤, a 5-parameter model is 

given as follows (Toffolon and Piccolroaz 2015): 

 

𝑑𝑇𝑤

𝑑𝑡
= 𝑎1 + 𝑎2𝑇𝑎 − 𝑎3𝑇𝑤 + 𝑎6 cos (2𝜋 (

𝑡

𝑡𝑦
− 𝑎7))    (4.13) 

 

A further form of the model can be found by ignoring the 2nd term from the Equation (4.12) 

and imposing that the 𝜃 impact may be approximated with a constant value, a 3-parameter 

model form is given as follows (Toffolon and Piccolroaz 2015): 

 
𝑑𝑇𝑤

𝑑𝑡
= 𝑎1 + 𝑎2𝑇𝑎 − 𝑎3𝑇𝑤        (4.14) 

 

The original air2stream concept relies on a 20-year old inefficient method named 

Particle Swarm Optimization with inertia weight. This work used the updated 3-parameter 

air2stream version, which uses the covariance bimodal differential evolution (CoBiDE) 

optimization method developed by Piotrowski and Napiorkowski (2018). The source code of 

the original air2stream can be obtained from https://github.com/spiccolroaz/air2stream. On 

the Journal of Hydrology web page, the air2stream model’s MATLAB code and the selected 

calibration process (CoBiDE) are available as Supplementary Material (Piotrowski and 

Napiorkowski 2018). 

 

4.2.5. Climate Change Scenarios 

 

Using the historical and simulated time-series data of AT and RWTs, the k-NN bootstrap 

resampling algorithm has been developed. The kNN-LSTM model was trained with the 

current AT and lag variables (AT [t-1] and RWT [t-1]) assessed from partial autocorrelation 

plots (Figure 4.6) and then forced with bias-corrected monthly outputs of NEX-GDDP 

downscaled projections of AT data from RCP scenarios 4.5 and 8.5 to produce predictions of 

monthly RWT for the 21st century. The first month’s water temperature is calculated based on 

the catchment mean from the historical record which serves as the input for the next month’s 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/swarms
https://github.com/spiccolroaz/air2stream
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prediction. The prediction of subsequent months proceeds as follows:  

 

𝑇𝑡+1
𝑤 = 𝑓(𝑇𝑡+1

𝑎 ,   𝑇𝑡
𝑎,   𝑇𝑡

𝑤)        (4.15) 

 

Where 𝑇𝑡+1
𝑤  is the future RWT prediction at time t+1 month; f is a non-linear function which 

is generated by the kNN-LSTM monthly model; 𝑇𝑡+1
𝑎 is the future AT at time t+1 month; 

  𝑇𝑡
𝑎 is future AT at time t month;   𝑇𝑡

𝑤is the predicted water temperature value at time t 

month.  

For the analyses, the catchment’s observed data periods were focused (Table 4.1) and future 

periods 2021-2050 and 2071–2100, followed the 30 years for a climatological standard 

normal (WMO 1989). 

 

4.2.6. Granger Causality 

 

The notion of Granger causality was introduced by Granger (1969) and soon found 

application in many fields (e.g., economics, and hydrology) because of its simplicity and 

robustness. Granger causality relates to a situation where the data concerning past values of 

one time series provide important information helping to predict values of another series not 

included in the information about its past values (Graf 2018). Granger causality assesses 

whether one variable at time t-lag causes another variable at time t. In this study, first order 

Granger Causality Analysis (GCA) was used to validate the time sequence of the causal 

linkages between the time series of data (i.e., whether cause precedes the effect relations for 

“water–air” and “air–water” directions of influence at a monthly scale) when applied on 

seven major river systems of India. Granger causality tries to answer the question of how 

much of the current variable can be explained by the past values of different values and 

whether adding lagged values can improve such an explanation (Kirchgässner et al. 2013). In 

the current research question is the time series AT Granger-causes time series RWT? Are the 

patterns in AT are approximately repeated in RWT after some time lag? In another words, 

the ability to predict the future values of a RWT time series using prior values of AT time 

series needs to be validated. One main assumption to test Granger causality is the stationarity 

of the time series. Granger causality between two stationary time series (X and Y) is 

formulated as follows: 
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𝑌𝑡 = ∑ 𝑎𝑡
𝑚
𝑗=1 𝑌𝑡−𝑗 + ∑ 𝑏𝑗

𝑚
𝑗=1 𝑋𝑡−𝑗 + 𝜀𝑡    (4.16) 

where a and b are coefficient (b ≠ 0) and ϵ is white noise. In this case, variable X Granger 

causes variable Y.   

Granger causality between two stationary time series (AT and RWT) is formulated as follows: 

𝑅𝑊𝑇𝑡 = ∑ 𝑎𝑡
𝑚
𝑗=1 𝑅𝑊𝑇𝑡−𝑗 + ∑ 𝑏𝑗

𝑚
𝑗=1 𝐴𝑇𝑡−𝑗 + 𝜀𝑡   (4.17) 

In this case, variable AT Granger causes variable RWT. 

4.3. Study Area and Data Setting 

4.3.1. Study Area 

 

For this study, seven majorly polluted catchments of India (CPCB 2015; National River 

Conservation Directorate (NRCD) 2018) were selected to predict RWQ variables with 

various physiographic features and studied the impact of climate change on water quality. To 

assess the pertinence and efficacy of the presented models, selected study sites with diverse 

properties. The seven river gauging stations are situated in India and are shown in Figure 4.3, 

and their main characteristics with training and testing periods are outlined in Table 4.1. Two 

data sources were used to compile the models, with one being global, one regional. The data 

from Global Freshwater Quality Database (GEMSTAT) were used for Narmada, Cauvery, 

Sabarmati, and Godavari catchments. The data from CWC, India were used for Tunga-

Bhadra, Musi, and Ganga catchments. The Global Freshwater Quality Database GEMStat 

(Färber et al. 2018) is hosted by the International Centre for Water Resources and Global 

Change (ICWRGC) and provides inland water quality data within the framework of the 

GEMS/Water Programme of the United Nations Environment Programme (UNEP). 

Approximately 500 water quality parameters were available in the global GEMSTAT 

database, out of which water temperature was used in this study for Narmada, Cauvery, 

Sabarmati, Godavari catchments when compiling models. The gauging stations are run by the 

CWC, India, and measure water temperature (Tw) over a period of time (monthly mean of ten 

samples) (Central Water Commission 2018). The meteorological data used in this work are 

monthly minimum (Tmin), and maximum (Tmax) air temperatures. Tmin, Tmax was available 

from the India Meteorological Department (IMD) data on a 1o Latitude x 1o Longitude grids 

spatial resolution from 1951 to 2018. Using linear interpolation, the AT observations have 
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been spatially interpolated to the RWT gauging locations. To get the monthly mean AT as 

widely used literature (Yang & Peterson, 2017), Tmin and Tmax were averaged. Table 4.1 

shows the catchment means for all variables. 

This study used the subset of the National Aeronautics Space Administration (NASA) 

Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset to assess the 

impact of climate change on RWTs for seven catchments of India. The NEX-GDDP is made 

up of downscaled climate scenarios for the entire world produced from the GCM runs 

undertaken as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5) and 

spanning two of the four greenhouse gas emissions scenarios known as Representative 

Concentration Pathways (RCPs) (Centre for Climate Change Research (CCCR) 2017). The 

NEX-GDDP dataset was created using the Bias-Correction Spatial Disaggregation (BCSD) 

technique, a statistical downscaling algorithm specifically developed to address the issue of 

regionally biased statistical characteristics (i.e., mean, variance, etc.) in global GCM outputs 

(Wood et al. 2002; Maurer and Hidalgo 2008; Thrasher et al. 2012). The ensemble mean of 

the NEX-GDDP dataset contains RCP 4.5 and RCP 8.5 downscaled projections from the 21 

GCMs models and scenarios, and each climate projection has daily maximum temperature, 

minimum temperature, and precipitation for 1950 through 2100. The dataset has a spatial 

resolution of 0.25 degrees (~25 km x 25 km). This study retrieved the daily Tmin and Tmax 

values, converted them into a monthly scale, and averaging them to obtain the monthly mean 

AT for future RWT predictions. To perform the local scale validation, the historical AT 

values were compared with NEX-GDDP dataset RCP 4.5 values for Jan-2006 to Dec-2008. 

Results revealed that the RCP 4.5 projections are synchronous and equivalent to historical 

AT time series (Figure 4.4), and they have good statistical metrics (NSE: 0.92, RMSE: 1.57).  
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Figure 4.3. Location map of study sites in India. All catchments and gauging station 

information are summarized in Table 4.1.
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Figure 4.4. Comparison of the monthly historical and NEX-GDDP with RCP 4.5 air 

temperatures for the year Jan 2006 – Dec 2008. 

 

4.3.2. Data Pre-processing 

 

In this study, no observations were omitted from the time series for all seven catchments of 

India as outliers and uncertainties in observation data help troubleshoot potential issues at the 

modeling stage. It is also observed that the majority of the time series retrieved from the 

source datasets (GEMSTAT and CWC) are discontinuous. To perform both LSTM 

algorithms and k-NN bootstrap resampling algorithm simulation, a complete dataset is 

necessary. To build an entire data record (Figure 4.5), the na.interp() method in R's forecast 

library was utilized to interpolate the missing observations using the STL (Seasonal and 

Trend decomposition using Loess) decomposition (Hyndman et al. 2018). The applied data 

pre-processing consists of aggregating multiple data sources data and feature engineering. 

ML model's performance can be significantly improved by computing new features from a 

specified data and thus having more data representation (Bengio et al. 2013). Earlier research 

by Webb et al. (2003) demonstrated that lag information has a significant relationship with 

water temperature over time and can help models perform better. The data's autocorrelation 

and partial autocorrelation functions (ACF and PACF) were examined to account for the 

time-lag information. These functions suggest that the one-month time lag is significant in 

the observed record (Figure 4.6). The autocorrelation functions measure the strength of the 

linear relationship between successive values of a time series depending on the time lag 

between them. Thus, the lags of both AT and RWT variables for the one last month (AT[t-1], 
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RWT [t-1]) are calculated and used as additional features (inputs) for RWT predictions at 

time t. 

 

  Traditional ML and DL models for RWT modeling commonly have limitations, 

particularly when dealing with non-stationary data. At the same time, there might be 

measurement errors, which leads to noisy data.  This study used the WT as a data pre-

processing method to de-noise the time series data into its subcomponents to address these 

issues. WT transformed monthly average ATs and RWTs into approximation parts (A) and 

details (D). Then, the transformed forms of the monthly average ATs and RWTs were then 

used as model input in the LSTM model for training and testing (Figure 4.1b).  
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Table 4.1. Summary of study catchment information characteristics, catchment means of water temperature (Tw), air temperature 

(Ta), available data periods, training, and testing periods.  

Catchment Gauging 

Station 

Catchment 

area (km2) 

Time 

Period 

Training 

Period 

Testing 

Period 

(Lat, Long) Tw 

(oC) 

Ta 

(oC) 

Narmada Hoshangabad  97,410 1985-2008 1985-2003 2004-2008 22.76, 77.74 24.68 25.09 

Cauvery Musiri 81,155 1985-1999 1985-1995 1996-1999 10.94, 78.44 30.34 28.81 

Sabarmati Ahmadabad 21,674 1980-2008 1980-2004 2005-2008 23.08, 72.63 28.08 26.72 

Tunga-Bhadra Badravathi 2,58,948 2006-2017 2006-2014 2015-2017 15.27, 76.35 26.34 24.24 

Musi Dhamaracherla 11,212 1991-2005 1991-2002 2003-2005 16.74, 79.67 27.97 28.13 

Godavari Polavaram 3,12,812 1980-2008 1980-2004 2005-2008 17.25, 81.66 28.17 27.48 

Ganga Pratappur 8,61,404 2000-2015 2000-2011 2012-2015 25.37, 81.67 25.64 25.71 
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 Figure 4.5. Monthly catchment sites time series data, red color represent missing values that were filled in using time series 

interpolation
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Figure 4.6. Partial autocorrelation function (PACF) for the monthly river water temperature 

time series at Narmada Catchment station. 

 

4.3.3. Parameterization and Settings 

 

The data sets were divided into two parts to compare all applied models objectively: the first 

80% of the time-series data were utilized for training and the last 20% for testing. Overfitting 

is a significant issue with ML methods. For classical ML algorithms (SVR, RF, etc.), 

overfitting can be avoided by using the Cross-Validation (CV), and regularization 

techniques. A careful selection of a set of hyperparameters and early stopping is required for 

the DL algorithms to avoid overfitting (Feigl et al. 2021). Manual, grid search, random 

search, and Bayesian optimization (BO) are the standard methods of hyperparameter 

optimization for ML and DL to increase efficiency. Unlike random or grid search, BO is a 

global optimization method for Blackbox functions that keeps track of previous evaluation 

results. Kushner (1964) and Mockus (1989) originated the BO, which was later demonstrated 
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by Jones et al. (1998). After Snoek et al. (2012) research, it became notably well recognized 

for optimizing ML hyperparameters. To summarize, BO builds a surrogate model by 

employing a Gaussian process model to identify an appropriate next point at each iteration 

during optimization. In this study, while training a standalone LSTM, kNN-LSTM, and WT-

LSTM model on a time series, all the possible combinations of LSTM hyperparameter sets 

(the number of LSTM hidden layers: 1-3, the total number of units per layer: 5-100, 

timesteps:1-12, the dropout ratio: 0-0.4, epochs: 50-100, and the batch size: 2-64) are 

evaluated using an emerging state-of-the-art BO approach to optimize the hyperparameters, 

and the topmost group is chosen to improve the model’s performance. For hyper parameter 

optimization for all LSTM models was done by using a training split with 60 % data for 

training and 20 % data for validation. In this study, Daubechies wavelet of order 5 (DB5), 

which has been used at level 3, was chosen to train the WT-LSTM model as it is well-known 

in the literature, and its wavelet coefficients can capture the maximum amount of signal 

energy (Seo et al. 2015). The adoption of this approach in the current study resulted in a 

decomposition level of 3 for the seven Indian catchments. The decomposition level can be 

determined using the method provided by Nourani et al. (2009). Consequently, D1, D2, and 

D3 were detail time series, and A3 was the approximation time series (Figure 4.7). However, 

advances in the model performances slowed down when the decomposition level was greater 

than 3. This demonstrated that the WT-LSTM model might achieve significant accuracy by 

employing a decomposition level of 3. 
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Figure 4.7. (a) Original and decomposed Air Temperature time series (A3, D1, D2, and D3) 

(b) Original and decomposed Water Temperature time series (A3, D1, D2, and D3) using db5 

wavelet for the Ganga catchment station. A3 is the decomposed approximation part, and D1, 

D2, and D3 are the decomposed details. 
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In the k-NN bootstrap resampling algorithm, “one simulation” is defined as a set of 

simulated values with a length equal to the observed dataset and chosen to generate 50 

simulations. Following that, a comparison study of monthly statistics (maximum, minimum, 

mean, and standard deviation) was performed for both the historical and simulated ensemble 

records. Also, the lag-1 autocorrelation of the k-NN simulated RWT and AT was compared 

(Figure 4.8). The comparison (Figure 4.8) has revealed that the algorithm produced the 

applicable distributional statistics of the observed dataset, implying that the algorithm 

generates accurate and diverse conditions. The lag-1 autocorrelation represents the 

relationship between two consecutive time steps (e.g., xt and xt-1). When the lag-1 

autocorrelation of the historical and simulated record is compared (Figure 4.8), the lag-1 

autocorrelation’s seasonality is frequently reproduced. Then, the simulated values of the 

monthly average ATs and RWTs were then used as model input in the LSTM model (Figure 

4.1c). 

This study implemented the LSTM networks in Python using the Keras DL library to 

solve the RWT time-series prediction problem. Keras wraps the Theano and TensorFlow 

libraries to build DL models with less number of lines. These models will run on CPU and 

GPU; hence computation is speedy. All programming was done in Python, R, and MATLAB. 
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Figure 4.8. Observed (red points) and k-NN simulated (white box plots) lag-1 (i.e., month-

to-month) autocorrelation for water temperature, and air temperature for seven catchments 

(a) Narmada (b) Cauvery (c) Sabarmati (d) Tunga-Bhadra (e) Musi (f) Godavari (g) Ganga. 

 

4.3.4. Model Evaluation Metrics 

 

To mathematically quantify the predictive performances of DL models, five statistical 

measures are calculated, such as the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe 

1970), Kling–Gupta efficiency (KGE) (Kling et al. 2012), RMSE-observations standard 

deviation ratio (RSR) (Moriasi et al. 2007), the root mean squared error (RMSE), and the 

mean absolute error (MAE). Detailed descriptions of these metrics can be found in section 

3.4, chapter 3.  

 

4.4. Results 
 

The data used in this work comprises monthly average AT and the corresponding RWT for 

seven catchments of India. The seasons were defined by meteorological definitions as 

follows: monsoon=June, July, August, September; post-monsoon=October, November; 

winter = December, January, February; and summer = March, April, May (IMD 2021). The 

catchment means of RWT, AT for all seven catchments ranged between 24.68 oC, 30.34 oC, 

and 24.24 oC, 28.81 oC, respectively (Table 4.1). Spearman’s correlation coefficients (SCC) 

for seven catchments were estimated to examine the statistical dependency between AT and 

RWT variables. According to the metrics from Table 4.2, the RWT was positively correlated 

with AT for the selected catchments on the annual scale. RWT was weakly correlated with 

AT during the winter months (December-February) for Tunga-Bhadra and Ganga catchments 

but positively correlated in other seasons (Table 4.2). All the catchments are positively 

correlated in the summer months except the Cauvery catchment. 

To examine the variability of annually averaged AT and RWT changes, the study 

calculated the linear trends for seven catchments of India (Figure 4.9). The AT and the RWT 

increased during the studied period for all catchments except Cauvery, Godavari, and Ganga 

catchments (Figure 4.9). The RWT increasing rates are lower than those of AT in general. 

Air temperature shows a rising trend except for Cauvery (-0.01 ◦C/year) catchment, 
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and the rising rates range from 0.002 to 0.380 ◦C/year. RWT shows a rising trend except for 

Cauvery (-0.06 ◦C/year), Godavari (-0.03 ◦C/year), and Ganga (-0.07 ◦C/year) catchments, 

and the rising rates vary between 0.01 and 0.17 ◦C/year. Such RWT rising patterns have been 

explored in several locations throughout the world. The RWT, for instance, has been a rising 

trend vary between 0.009–0.077 oC year–1 over the USA (Isaak et al., 2012; K. C. Rice & 

Jastram, 2015; van Vliet et al., 2013), over the China of about 0.029–0.046 oC year–1 (Chen 

et al., 2016), British Columbia as ~0.036 oC year–1 (Islam et al. 2019), and Europe as 0.006–

0.180 oC year–1 (Orr et al. 2015; Hardenbicker et al. 2017). Generally, RWT and AT follow 

similar variability, i.e., RWT increases are directly related to AT increases. However, for the 

Godavari and Ganga catchment, the water temperature has a decreasing trend (-0.03 ◦C/year 

and -0.07 ◦C/year respectively) with an increasing trend of AT (0.01 ◦C/year and 0.08 ◦C/year, 

respectively), which specifies that the temporal shifts of RWT may not be explained AT 

alone. RWT is directly influenced by multiple parameters, including streamflow (Sohrabi et 

al. 2017), river geometry, groundwater inputs, slope, water depth, etc. (Gu and Li 2002). 

 

Table 4.2. Seasonal period Spearman’s correlation coefficients between air and water 

temperature variables at different catchment areas 

Catchment 

Correlation Coefficient (RWT - AT) 

Summer 

(March-

May) 

Monsoon 

(June – 

September) 

Post-monsoon 

(October – 

November) 

Winter 

(December – 

February) 

Annual 

Narmada 0.44 0.34 0.43 0.38 0.56 

Cauvery 0.01 0.22 0.23 0.17 0.28 

Sabarmati 0.29 0.39 0.39 0.18 0.56 

Tunga-Bhadra 0.47 0.32 0.25 0.01 0.43 

Musi 0.67 0.38 0.57 0.40 0.63 

Godavari 0.38 0.16 0.21 0.18 0.42 

Ganga 0.87 0.19 0.66 0.06 0.66 

 

 

4.4.1. Seasonality Trends 

 

Seasonality dynamics in RWTs in India were varied throughout the time and between 
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catchments, with no consistent temporal patterns among the locations (Figures 4.9, 4.10 and 

4.11). Narmada, Sabarmati, Tunga-Bhadra, and Musi catchments had increasing winter 

RWTs (0.08, 0.12, 0.11, and 0.16 ◦C/year, respectively) over the years (Figures 4.5a, 4.5c, 

4.5d, and 4.5e). Several catchments, e.g., Cauvery, Godavari, and Ganga, had decreasing 

trends (-0.04, -0.02, and -0.24 ◦C/year, respectively) in winter RWTs over the years (Figures 

4.5b, 4.5f and 4.5g). Musi had the highest increasing winter RWT trend (0.16 ◦C/year), and 

Ganga had the highest decreasing winter RWT trend (-0.24 ◦C/year) compared to seven 

catchments of India. Narmada, Sabarmati, Tunga-Bhadra, and Musi catchments had 

increasing summer RWTs (0.13, 0.06, 0.35, and 0.22 ◦C/year, respectively) over the years 

(Figures 4.5a, 4.5c, 4.5d, and 4.5e). Other catchments, Cauvery, Godavari, and Ganga had 

decreasing trends (-0.15, -0.03, and -0.05 ◦C/year, respectively) in summer water 

temperatures over the years (Figures 4.5b, 4.5f, and 4.5g). Tunga-Bhadra and Musi had the 

highest increasing summer RWT trend (0.35, 0.22 ◦C/year respectively) compared to all the 

catchments, and Cauvery had the highest decreasing summer RWT trend (-0.15 ◦C/year). 

These patterns give some indication of the recent warming of RWTs during the summer 

seasons. A consistent seasonal trend in RWT was observed for the monsoon and post-

monsoon seasons (Figure 4.11). Except for Sabarmati and Godavari catchments, RWTs are 

similar for monsoon and post-monsoon seasons (see Figure 4.11). In this work, Morlet CWT 

is used to show the wavelet power spectra to examine the long-term variability of 

temperature time series data from 2000 to 2015 for the Ganga catchment station. It has been 

examined if the CWTs could successfully identify variability in the annual scale. The local 

wavelet power spectrum measures the variance distribution of the time series according to 

time and periodicity; high variability is represented by red color, whereas blue indicates weak 

variability. The wavelet power spectrum showed that (Figure 4.12) displayed a consistent 1-

year periodicity from 2000-2015. Air Temperature and Water Temperature showed stable 1-

year periodicities for the whole duration of the time series and displayed a recurrent annual 

pattern. This steady behavior means that the system’s complexity has not deteriorated so that 

the seasonality of this process has not perceptibly changed over time. The continuous wavelet 

analysis results, as demonstrated in this work, were found to agree with Alcocer et al. (2022), 

where the author performed the CWTs to examine the variability of water quality variables 

and concluded that the water quality variables display a recurrent annual cycle. 
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Figure 4.9. Seasonal, temporal variations of the mean annual air temperature (red), water temperature (light blue), summer water 

temperature (purple), and winter water temperature (blue) of the seven catchment stations (a) Narmada (b) Cauvery (c) Sabarmati 

(d) Tunga-Bhadra (e) Musi (f) Godavari (g) Ganga. Linear regressions of the time series are represented by trend lines, and the 

slope parameters are trend estimations.
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Figure 4.10. Temporal trends in summer and winter river water temperatures for catchments 

are located in India. The values are averages across seasonal months per point. 
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Figure 4.11. Temporal trends in monsoon and post-monsoon river water temperature for 

catchments are located in India. The values are averages across seasonal months per point. 
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Figure 4.12. (a) Continuous wavelet power spectra of historical (2000-2015) Air temperature 

and (b) Continuous wavelet power spectra of the historical (2000-2015) water temperature 

show the periodicity of the Ganga catchment station; the blue color demonstrates the lower 

power spectra and the red color the higher, and the dotted line is the cone of influence.  

 

4.4.2. Deep Learning Model Performance 

 

The LSTM, WT-LSTM, kNN-LSTM, and 3-parameter version air2stream approaches were 

assessed using statistical measures (R2, KGE, NSE, RSR, RMSE, and MAE) and visual 

comparisons. The experiment outcomes revealed a matching of observed against predicted 

values, indicating that hybrid LSTM techniques have robust generalization capacity. The DL 

model’s performance results were generated for monthly data for all seven catchments using 

AT and lag variables as inputs, as provided in Table 4.4 and Figure 4.13. The performance of 
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the proposed methods was assessed by comparing them with those obtained from algorithms 

based on only AT as an input variable (Table 4.3). Results confirm that the developed models 

could predict RWT more accurately than AT as an input variable by utilizing AT and lag 

variables as input. Results also revealed that the RWT predictions are nearly synchronous 

and equivalent to observed time series (Figure 4.13). However, the air2stream model 

generated unsatisfactory results, and statistical measures can be found in Table 4.4. 

The relationship between monthly RWT and AT at seven catchments is relatively 

strongly correlated for all models except the air2stream model (NSE values). The RMSE 

metrics for all the catchments vary from 1.199 to 3.294 for all the models for monthly data 

(Table 4.4). The WT-LSTM hybrid models used in RWT prediction indicated a high 

resemblance in all the seven catchments (Table 4.4, Figure 4.14). The predicted results were 

superior to those obtained from the standalone LSTM models, including the air2stream, as 

evidently shown in Figure 4.13 and Figure 4.14. Comparing the WT-LSTM and the 

standalone LSTM model, in terms of individual time series matching of observed against 

predicted values, it can be concluded that the combining of WT and LSTM produced 

improved results than the traditional LSTM model for RWT prediction. The NSE values for 

all the catchments range from 0.329 to 0.920 for the WT-LSTM model (Table 4.4) for 

monthly data. The NSE value for the Ganga catchment is obtained as 0.920 for the WT-

LSTM model, which is reasonable compared with earlier standalone LSTM models by 

Stajkowski et al. (2020) (NSE: 0.913) and Qiu et al. (2021) (NSE: 0.74 – 0.99 °C). However, 

Stajkowski et al. (2020) used AT values as input for hourly data in their analysis, Qiu et al. 

(2021) used AT and discharge as input for daily data in RWT predictions, and the current 

study is dedicated to monthly timescales. 

 The simulated samples from k-NN bootstrap resampling algorithm given as input to 

the kNN-LSTM hybrid model to predict the RWT for all the seven catchments of India. The 

results were superior to those obtained from the LSTM, WT-LSTM models, including the 

air2stream, as evidently shown in Table 4.4, Figure 4.13, and Figure 4.14. In this study, the 

k-NN bootstrap resampling algorithm is experimented with discrete wavelet components, i.e., 

decomposed time series are used to simulate the values from the k-NN bootstrap resampling 

algorithm instead of the original time series data. From the testing results (Table 4.5), it was 

observed that the WT-kNN-LSTM was giving not good performant results like the kNN-
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LSTM model. Comparing the kNN-LSTM hybrid model with the WT-LSTM model, LSTM 

model, and air2stream model, in terms of individual time series matching of observed against 

predicted values (Figure 4.13), according to the results, the kNN-LSTM model outperformed 

three other models (WT-LSTM, standalone LSTM, and air2stream) to predict the RWT. In 

this study, the kNN-LSTM model is tested using various monthly data points (Table 4.6) to 

see how the model performed for Musi and Ganga catchment stations with data limitations. It 

was observed that the kNN-LSTM was still producing good results with fewer monthly data 

time series values. 

Based on RSR, KGE, and NSE performance values (Table 4.4 and Figure 4.14), the 

WT-LSTM model is the best performant model for Sabarmati and Tunga-Bhadra catchments 

(Table 4.4). These results are superior to those obtained from the standalone LSTM, 

air2stream model (Table 4.4 and Figure 4.14). The calibration and validation metrics of the 

air2stream model are shown in Table 4.7, and it observed that the air2stream model 

performed better in the calibration phase, however in the validation phase, its performance 

slightly decreased. In general, the performances of the air2stream model on a monthly scale 

were not satisfactory (Figure 4.14, Table 4.7). The performance of the LSTM model (NSE= 

0.132 – 0.886, KGE = 0.131 – 0.818, RMSE=1.849 – 2.950, RSR = 0.336 – 0.932, and MAE 

= 1.215 – 2.467) was much superior to that of the air2stream. Overall, the kNN-LSTM model 

statistical metrics are reasonably within the range for all the catchment locations providing 

confidence that the developed model performs effectively. 
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Table 4.3. Overview of deep learning models performances for seven catchments with only 

air temperature as an input variable. The shown values all refer to the test time. 

Catchment Model NSE   KGE  RMSE  RSR  MAE 

Narmada 

LSTM 0.232 0.323 2.597 0.876 1.866 

WT-LSTM  0.243 0.336 2.580 0.870 1.844 

kNN-LSTM 0.289 0.334 2.697 0.842 2.004 

Cauvery 
 

LSTM 0.095 0.018 3.016 0.951 2.597 

WT-LSTM  0.099 0.012 3.008 0.948 2.606 

kNN-LSTM 0.253 0.246 2.526 0.864 1.748 

Sabarmati 

LSTM 0.248 0.358 2.488 0.867 1.652 

WT-LSTM  0.266 0.367 2.457 0.856 1.627 

kNN-LSTM 0.344 0.434 2.835 0.809 2.084 

Tunga-Bhadra 

LSTM 0.298 0.551 2.251 0.837 1.745 

WT-LSTM  0.302 0.580 2.245 0.835 1.710 

kNN-LSTM 0.236 0.242 1.699 0.873 1.103 

Musi 
 

LSTM 0.256 0.332 2.139 0.862 1.616 

WT-LSTM 0.255 0.319 2.142 0.863 1.600 

kNN-LSTM 0.501 0.565 1.425 0.706 1.021 

Godavari 

LSTM 0.207 0.368 1.784 0.890 1.369 

WT-LSTM 0.183 0.356 1.810 0.903 1.405 

kNN-LSTM 0.350 0.450 1.887 0.806 1.367 

Ganga 

LSTM 0.811 0.757 2.393 0.435 1.841 

WT-LSTM 0.812 0.772 2.379 0.432 1.827 

kNN-LSTM 0.896 0.910 1.458 0.322 1.047 
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Table 4.4. Overview of deep learning models performances for seven catchments based on 

air temperature (AT[t]), including time-lag effects of air and water temperatures (AT[t-1], 

RWT[t-1]) as input variables. The air2stream performances are based on air temperature 

(AT[t]) as an input variable. The values displayed all referred to the testing period. 

Catchment Model NSE   KGE  RMSE  RSR  MAE 

Narmada 

LSTM 0.473 0.542 2.150 0.725 1.548 

WT-LSTM  0.601 0.675 1.730 0.631 1.218 

kNN-LSTM 0.728 0.715 1.547 0.522 1.198 

air2stream 0.324 0.359 2.523 0.812 1.925 

Cauvery 
 

LSTM 0.132 0.131 2.950 0.932 2.467 

WT-LSTM  0.329 0.386 2.328 0.819 1.860 

kNN-LSTM 0.446 0.378 2.361 0.744 1.872 

air2stream 0.010 0.001 3.294 0.991 2.679 

Sabarmati 

LSTM 0.271 0.388 2.449 0.853 1.676 

WT-LSTM  0.630 0.616 1.429 0.608 1.063 

kNN-LSTM 0.579 0.668 1.861 0.648 1.300 

air2stream 0.072 0.335 2.601 0.958 1.946 

Tunga-Bhadra 

LSTM 0.501 0.636 1.899 0.706 1.579 

WT-LSTM  0.586 0.790 1.474 0.643 1.126 

kNN-LSTM 0.552 0.609 1.797 0.668 1.522 

air2stream 0.064 0.090 2.109 0.952 1.791 

Musi 
 

LSTM 0.434 0.524 1.865 0.751 1.215 

WT-LSTM 0.545 0.629 1.503 0.674 0.965 

kNN-LSTM 0.735 0.701 1.277 0.514 0.802 

air2stream 0.227 0.339 2.162 0.866 1.575 

Godavari 

LSTM 0.311 0.488 1.662 0.829 1.278 

WT-LSTM 0.563 0.676 1.199 0.660 0.937 

kNN-LSTM 0.600 0.643 1.266 0.631 1.038 

air2stream 0.107 0.325 2.432 1.183 1.943 

Ganga 

LSTM 0.886 0.818 1.849 0.336 1.431 

WT-LSTM 0.920 0.828 1.537 0.281 1.148 

kNN-LSTM 0.920 0.868 1.557 0.283 1.201 

air2stream 0.715 0.741 2.941 0.528 2.208 
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Table 4.5. Overview of deep learning models performances for seven catchments based on 

air temperature (AT[t]), including time-lag effects of air and water temperatures (AT[t-1], 

RWT[t-1]) as input variables. The air2stream performances are based on air temperature 

(AT[t]) as an input variable. The values displayed all referred to the testing period. 

Catchment Model NSE   KGE  RMSE  RSR  MAE 

Narmada 

LSTM 0.473 0.542 2.150 0.725 1.548 

WT-LSTM  0.601 0.675 1.730 0.631 1.218 

WT-kNN-LSTM 0.555 0.591 1.975 0.666 1.531 

kNN-LSTM 0.728 0.715 1.547 0.522 1.198 

air2stream 0.324 0.359 2.523 0.812 1.925 

Cauvery 
 

LSTM 0.132 0.131 2.950 0.932 2.467 

WT-LSTM  0.329 0.386 2.328 0.819 1.860 

WT-kNN-LSTM 0.360 0.400 2.526 0.799 1.904 

kNN-LSTM 0.446 0.378 2.361 0.744 1.872 

air2stream 0.010 0.001 3.294 0.991 2.679 

Sabarmati 

LSTM 0.271 0.388 2.449 0.853 1.676 

WT-LSTM  0.630 0.616 1.429 0.608 1.063 

WT-kNN-LSTM 0.412 0.625 2.200 0.766 1.633 

kNN-LSTM 0.579 0.668 1.861 0.648 1.300 

air2stream 0.072 0.335 2.601 0.958 1.946 

Tunga-Bhadra 

LSTM 0.501 0.636 1.899 0.706 1.579 

WT-LSTM  0.586 0.790 1.474 0.643 1.126 

WT-kNN-LSTM 0.532 0.589 1.851 0.683 1.673 

kNN-LSTM 0.552 0.609 1.797 0.668 1.522 

air2stream 0.064 0.090 2.109 0.952 1.791 

Musi 
 

LSTM 0.434 0.524 1.865 0.751 1.215 

WT-LSTM 0.545 0.629 1.503 0.674 0.965 

WT-kNN-LSTM 0.683 0.737 1.396 0.562 0.920 

kNN-LSTM 0.735 0.701 1.277 0.514 0.802 

air2stream 0.227 0.339 2.162 0.866 1.575 
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Godavari 

LSTM 0.311 0.488 1.662 0.829 1.278 

WT-LSTM 0.563 0.676 1.199 0.660 0.937 

WT-kNN-LSTM 0.338 0.454 1.631 0.814 1.233 

kNN-LSTM 0.600 0.643 1.266 0.631 1.038 

air2stream 0.107 0.325 2.432 1.183 1.943 

Ganga 

LSTM 0.886 0.818 1.849 0.336 1.431 

WT-LSTM 0.920 0.828 1.537 0.281 1.148 

WT-kNN-LSTM 0.895 0.842 1.466 0.322 1.053 

kNN-LSTM 0.920 0.868 1.557 0.283 1.201 

air2stream 0.715 0.741 2.941 0.528 2.208 

 

 

Table 4.6. Overview of the kNN-LSTM model performance with different monthly data 

points (values in parenthesis indicate the number of monthly data points used for 

simulations) for Musi and Ganga catchment stations based on air temperature (AT[t]), 

including time-lag effects of air and water temperatures (AT[t-1], RWT[t-1]) as input 

variables. The values displayed all referred to the testing period. 

Catchment Model NSE   KGE  RMSE  RSR  MAE 

Musi 

kNN-LSTM (176) 0.735 0.701 1.277 0.514 0.802 

kNN-LSTM (152) 0.742 0.806 0.919 0.507 0.648 

kNN-LSTM (140) 0.737 0.835 0.944 0.512 0.659 

Ganga 

kNN-LSTM (180) 0.920 0.868 1.557 0.283 1.201 

kNN-LSTM (156) 0.940 0.974 1.004 0.225 0.726 

kNN-LSTM (144) 0.937 0.963 1.117 0.249 0.772 
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Figure 4.13. Comparison of the monthly observed values and LSTM, WT-LSTM, kNN-

LSTM, and air2stream models predicted values of river water temperature (°C) for the seven 

catchments (a) Narmada (b) Cauvery (c) Sabarmati (d) Tunga-Bhadra (e) Musi (f) Godavari 

(g) Ganga during the testing phase. 

Table 4.7. Overview of the air2stream reference model performances for each catchment. 

The shown values all refer to calibration and validation period. 

Catchment 

Calibration Validation 

NSE   KGE  RMSE  RSR  MAE NSE  KGE  RMSE  RSR  MAE 

Narmada 0.433 0.576 2.197 0.776 1.536 0.324 0.359 2.523 0.812 1.925 

Cauvery 
 

0.093 0.112 2.036 0.851 2.296 0.010 0.001 3.294 0.991 2.679 

Sabarmati 0.428 0.654 2.088 0.757 1.612 0.072 0.335 2.601 0.958 1.946 

Tunga-Bhadra 0.099 0.230 1.653 0.918 1.087 0.064 0.090 2.109 0.952 1.791 

Musi 
 

0.547 0.674 1.352 0.671 1.028 0.227 0.339 2.162 0.866 1.575 

Godavari 0.244 0.453 2.108 0.867 1.609 0.107 0.325 2.432 1.183 1.943 

Ganga 0.887 0.893 1.507 0.335 1.181 0.715 0.741 2.941 0.528 2.208 
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Figure 4.14. Boxplots of the NSE, KGE, RSR, RMSE, and MAE were based on seven 

catchments for the LSTM, WT-LSTM, kNN-LSTM, and air2stream models during the 

testing period. 

 

Seasonality Aspects of Prediction: 

The efficacy of the kNN-LSTM model with the seasonal month's data (summer, monsoon, 

and post-monsoon, and winter) (Laizé et al. 2017; Zhu et al. 2019a) experiments for seven 

catchments of India and experimental evidence produced that the kNN-LSTM model has 

performed poorly with the monsoon, post-monsoon, and winter seasonal aspects and shows 

good efficacy in predicting variability in summer RWTs for most of the catchment locations 

(Table 4.8). It can be noticed that R2, KGE, RMSE, RSR, NSE and MAE values were poor 

for the monsoon, post-monsoon and winter for seven catchments when compared to the 

summer season (NSE = 0.183 – 0.801, KGE=0.221 – 0.876, RMSE=0.819 – 2.997, 

RSR=0.379 - 0.903, and MAE=0.605 – 2.515). These seasonal predictions followed 

the historical data trend (Table 4.2), i.e., most of the catchments had positively correlated in 

the summer months. This study used the Autoregressive Integrated Moving Average Model 
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(ARIMA) model to measure the RWT performance under seasonal variations for seven 

catchments based on the previous lag value to validate the seasonality. First, the RWT data's 

autocorrelation and partial autocorrelation functions (ACF and PACF) were examined to 

account for the time-lag information. These functions suggest that the one-month lag is 

significant in the observed RWT record. In an ARIMA model, the first component was the 

autoregressive (AR) term, the second component was the integration (I) term, which was 

responsible for making the data stationary, and the third component was the moving average 

(MA) term of the forecast errors. A standard notation is used in ARIMA (p, d, q), where the 

parameters are substituted with integer values. The parameters of the ARIMA model are 

defined as follows: 

• p: The number of lag observations included in the model, also called the lag order. 

• d: The number of times the raw observations are differenced, also called the degree of 

difference. 

• q: The size of the moving average window, also called the order of moving average. 

The present study used order as ARIMA (1,1,0). The ARIMA model programming was done 

in Python. 

From the ARIMA model validation results (Table 4.9), it is observed that the ARIMA 

model performed poorly for all seasons for seven catchments of India.  Overall, results from 

Table 4.8 revealed that the kNN-LSTM yielded improved results in the summer season for 

most of the catchment sites than the other three seasons. It can be noted that accurate summer 

water temperature predictions are more relevant for Indian river systems due to extremely 

low water quality levels under minimum stream flows because of non-monsoon seasons 

(Rehana and Dhanya 2018). 

 

Climate Change Signals: 

Figure 4.15 displays the box plots projected RWT (◦C) values that show a range of increases 

under the RCP 8.5 scenario compared to RCP 4.5 for 2021-2050 and 2071–2100. Figure 4.16 

displays the box plots of the ensemble mean RCP 4.5 and 8.5 experiments projected RWT 

(◦C) values for the period of 2021-2050 and 2071–2100 with respect to historical values for 

seven catchments of India. According to Figures 4.15, and 4.16, RWT increases for the 

periods 2021-2050 and 2071–2100 due to an increase in AT (Table 4.10). Projected mean 

RWT changes for the periods 2071–2100 relative to mean observed values were calculated 
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using RCP 4.5 and 8.5 output data (Table 4.11) and observed that results vary between the 

different catchments. The magnitude of RWT increases is higher for Narmada, Musi, and 

Ganga catchment sites and variations in mean water temperatures (dTwmean) for 2071–2100 

relative to the observed mean values noted 4.7, 4.0, and 4.6 ◦C, respectively (Table 4.11). For 

Narmada, Musi, and Ganga catchments, the RWT rises were discovered in high magnitudes 

(95th percentile in monthly distribution; dTw95) for 2071–2100 relative to observed high (95th 

percentile) values noted as 4.0, 3.4, and 4.3 ◦C, respectively. Moderate dTwmean for 2071–

2100 are projected for catchments in the southern parts of India relative to the observed 

mean, noted as 0.8 ◦C for Cauvery and 1.8 ◦C for Godavari (Table 4.11). Overall, results 

indicated that water temperatures over Indian catchments would likely to rise by more than 

3.0 °C (0.8 – 4.7 °C) for 2071-2100 (Table 4.11).  

 

Table 4.8. Overview of kNN-LSTM models performance under seasonal variations for seven 

catchments based on air temperature, including time-lag effects as an input variable. The 

shown values all refer to the testing phase. 

Catchment Season NSE   KGE  RMSE  RSR  MAE 

Narmada 

Summer 0.677 0.753 1.736 0.567 1.349 

Monsoon  0.456 0.521 1.616 0.737 1.245 

Post-monsoon 0.537 0.397 1.615 0.680 1.242 

Winter 0.547 0.578 1.208 0.672 1.002 

Cauvery 
 

Summer 0.183 0.221 2.997 0.903 2.515 

Monsoon  0.446 0.469 1.915 0.744 1.608 

Post-monsoon 0.316 0.399 1.234 0.826 0.956 

Winter 0.394 0.306 2.752 0.778 2.219 

Sabarmati 

Summer 0.675 0.608 1.805 0.569 1.473 

Monsoon  0.359 0.529 1.634 0.800 1.169 

Post-monsoon 0.012 0.582 1.532 0.978 1.150 

Winter 0.587 0.504 2.372 0.641 1.421 

Tunga-Bhadra 

Summer 0.339 0.839 2.099 0.812 1.840 

Monsoon  0.215 0.197 1.848 0.885 1.658 

Post-monsoon 0.039 0.017 1.298 0.855 1.237 

Winter 0.083 0.055 1.864 0.940 1.416 
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Musi 
 

Summer 0.855 0.696 0.819 0.379 0.605 

Monsoon  0.864 0.744 0.668 0.369 0.569 

Post-monsoon 0.825 0.870 0.634 0.411 0.577 

Winter 0.355 0.293 2.327 0.802 1.542 

Godavari 

Summer 0.609 0.733 1.020 0.633 0.843 

Monsoon  0.238 0.531 1.446 0.877 1.112 

Post-monsoon 0.576 0.554 1.671 0.650 1.440 

Winter 0.541 0.564 1.065 0.677 0.881 

Ganga 

Summer 0.801 0.876 1.642 0.445 1.311 

Monsoon  0.400 0.407 1.546 0.774 1.275 

Post-monsoon 0.628 0.596 2.392 0.610 1.804 

Winter 0.765 0.660 2.235 0.484 1.815 

 

Table 4.9. Overview of Autoregressive Integrated Moving Average Model (ARIMA) model 

performance under seasonal variations for seven catchments based on the previous one-

month lag value. The shown values all refer to the testing phase. 

Catchment Season NSE   KGE  RMSE  RSR  MAE 

Narmada 

Summer -0.821 0.368 4.121 1.346 2.964 

Monsoon  -0.732 0.301 2.884 1.315 1.712 

Post-monsoon 0. 190 0.487 2.136 0.899 1.626 

Winter -0.018 0.347 2.126 1.009 1.674 

Cauvery 
 

Summer 0.370 0.566 2.631 0.791 2.394 

Monsoon  -0.509 0.518 3.162 1.225 2.261 

Post-monsoon -0.624 -0.159 1.902 1.274 1.057 

Winter -0.189 0.126 3.711 1.090 2.589 

Sabarmati 

Summer 0.185 0.637 2.859 0.902 2.403 

Monsoon  -0.191 0.492 2.229 1.091 1.818 

Post-monsoon -0.402 -0.092 1.542 1.184 1.204 

Winter 0.251 0.272 3.063 0.865 2.137 

Tunga-Bhadra 

Summer 0.308 0.667 2.200 0.831 1.939 

Monsoon  -1.422 0.282 3.247 1.556 2.275 

Post-monsoon -0.508 -0.072 1.357 1.228 0.978 
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Winter -0.791 0.019 2.397 1.338 2.144 

Musi 
 

Summer -1.473 -0.164 3.385 1.572 2.191 

Monsoon  0.638 0.847 1.088 0.600 0.670 

Post-monsoon 0.420 0.698 1.163 0.761 0.744 

Winter -0.374 -0.099 3.206 1.172 2.409 

Godavari 

Summer -0.205 0.543 1.755 1.097 1.487 

Monsoon  -0.179 0.530 1.800 1.086 1.345 

Post-monsoon 0.364 0.719 2.048 0.797 1.844 

Winter 0.082 0.575 1.638 0.958 1.217 

Ganga 

Summer 0.009 0.508 3.672 0.995 2.914 

Monsoon  0.028 0.566 1.969 0.985 1.372 

Post-monsoon 0.842 0.859 1.558 0.395 1.231 

Winter 0.521 0.664 3.059 0.691 2.554 

 

Table 4.10. Projected changes in the mean air temperatures for 2071–2100 with mean of 

Representative Concentration Pathway (RCP) 4.5 and 8.5 experiments for seven catchments 

relative to historical values. 

Catchment 
AT (historical) 

(°C) 

AT (2071-2100)  

(°C) 

Changes in AT 

(°C) 

Narmada 25.09 29.56 4.5 

Cauvery  28.81 31.20 2.4 

Sabarmati 26.72 30.85 4.1 

Tunga-Bhadra 24.24 30.03 5.8 

Musi  28.13 31.71 3.6 

Godavari 27.48 30.65 3.1 

Ganga 25.71 29.76 4.1 
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Figure 4.15. Boxplots represent the Representative Concentration Pathway (RCP) 4.5 and 8.5 experiments projected river water 

temperature (°C) values for the periods 2021-2050 and 2071–2100 with respect to historical values for seven Indian catchments.   
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Figure 4.16. Boxplots represent the ensemble mean of Representative Concentration Pathway (RCP) 4.5 and 8.5 experiments 

projected river water temperature (°C) values for the period 2021-2050, and 2071–2100 with respect to historical values for seven 

Indian catchments. Triangle sizes represent the magnitude of the river water temperature increase (°C) for 2071-2100.
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Table 4.11. Projected changes in the annual mean (dTwmean) and high (95th percentile; dTw95) river water temperatures for 2071–

2100 with Representative Concentration Pathway (RCP) 8.5 experiments for seven catchments relative to observed values. Values 

in parenthesis indicate RCP 4.5 experiments. 

Catchment 
Twmean  

(Observed 

mean) (°C)  

Twmean  

(2071-2100) 

(°C)   

dTwmean 

(°C) 

dTwmean (°C) 

(Mean of RCP4.5 

& RCP8.5) 

Tw95  

(Observed 

high) (°C) 

Tw95  

(2071-2100) 

(°C) 

dTw95 

(°C) 

dTw95 (°C) 

(Mean of RCP4.5 

& RCP8.5) 

Narmada 24.7 30.6 (28.2) 5.9 (3.5) 4.7 26.3 31.6 (28.9) 5.3 (2.6) 4.0 

Cauvery 
 

30.3 31.7 (30.4) 1.4 (0.1) 0.8 31.4 32.1 (31.5) 0.7 (0.1) 0.4 

Sabarmati 28.2 31.1 (29.8) 2.9 (1.6) 2.3 30.1 32.2 (30.2) 2.1 (0.1) 1.1 

Tunga-Bhadra 26.3 29.9 (28.6) 3.6 (2.3) 3.0 28.9 30.6 (29.0) 1.7 (0.1) 0.9 

Musi 
 

27.9 33.1 (30.6) 5.2 (2.7) 4.0 29.2 34.1 (31.1) 4.9 (1.9) 3.4 

Godavari 28.2 30.5 (29.5) 2.3 (1.3) 1.8 29.8 31.1 (29.9) 1.3 (0.1) 0.7 

Ganga 25.7 31.8 (28.8) 6.1 (3.1) 4.6 26.9 32.9 (29.4) 6.0 (2.5) 4.3 
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4.4.3. Granger Causality Results 

 

The present chapter used lag-1 time series data of AT as input to fit the LSTM models. It was 

confirmed that predicting the RWT from changes in AT yields better results when done 

based on lag-1 data (Table 4.4). To validate these results, this study used the GCA to 

measure the causal linkages (Table 4.12). The Granger causality test is performed on one of 

the water quality indicators (RWT), which is considered the effects, and the meteorological 

variables (AT) are considered as possible causes. The null hypothesis is defined as follows: 

there is no Granger causality between the cause and effect. Thus, lower p-values correspond 

to stronger causality and vice versa. The results unambiguously show uni-directional causal 

linkages between AT and RWT for all the catchments (i.e., AT causes RWT), and bi-

directional linkage was noted for the Ganga catchment (i.e., both AT causes RWT, and vice 

versa also) (Table 4.12, values that are significant at 95% confidence level are in boldface). 

Specifically, it is confirmed that the former, especially AT, is the main causal driver of rising 

temperatures. Table 4.12 shows p-values for the Granger causality test when RWT is 

considered the effect. If a given p-value is less than significance level (0.05), for example, 

take the value 0.00 in (Narmada: row 2, column 1), the null hypothesis can be rejected (i.e., 

AT does not Granger-cause RWT is accepted if and only if no lagged values of AT are 

retained in the regression equation) and conclude that AT Granger causes RWT. Likewise, 

the 0.69 in (Narmada: row 1, column 2) refers to the insignificant relationship of RWT 

causes AT. For AT and RWT, the Granger causality relationship is significant for basins. 

After analyzing the scenarios, it is concluded that the strongest relationships (i.e., smallest p-

values, AT causes RWT) are observed for all basins. 
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Table 4.12. The Granger causality test p-values among the air temperature and water 

temperature. The values that are significant at 95% confidence level are in boldface (lower p-

values correspond to stronger causality and vice versa). 

Catchment Dependent variables 
Source of causality 

Air temperature  Water temperature  

Narmada 
Air temperature 1.00 0.69 

Water temperature  0.00 1.00 

Cauvery 
 

Air temperature 1.00 0.27 

Water temperature  0.07 1.00 

Sabarmati 
Air temperature 1.00 0.28 

Water temperature  0.00 1.00 

Tunga-Bhadra 
Air temperature 1.00 0.16 

Water temperature  0.01 1.00 

Musi 
 

Air temperature 1.00 0.47 

Water temperature  0.00 1.00 

Godavari 
Air temperature 1.00 0.75 

Water temperature  0.00 1.00 

Ganga 
Air temperature 1.00 0.00 

Water temperature  0.00 1.00 

 

4.5. Discussion 
 

This chapter presents new intuitions on the assessment of RWQ variables prediction and the 

impact of climate change on water quality. As RWT is a primary variable that influence 

water quality, in this chapter RWT variable was selected for prediction based on AT, 

including time-lag effects for seven different catchment sites across India in different 

physiographic settings using LSTM, WT-LSTM, kNN-LSTM, and air2stream models, 

demonstrates the improved forecasting accuracy with hybrid kNN-LSTM model. The 

monthly NSE scores ranged between 0.132–0.920, KGE scores ranged between 0.131–0.868, 

RSR scores ranged between 0.281–0.744, and RMSE scores were ≤ 3 °C during the testing 

periods, revealing high model reliability. The predicted RWT variability matched 

observations well; thereby, the DL model’s output can be trusted. All the developed model 
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statistical metrics covered the range of model reliability described in the literature. The 

RMSE scores for all the catchments ranged between 1.199 - 3.294 °C pertaining to all DL 

models (Table 4.4) for monthly data, which are reasonable in comparison to earlier models of 

the Spatio-temporal approach by Jackson et al. (2018) (1.570 °C); Bayesian regression 

approach by Sohrabi et al. (2017) (1.250 °C); random forest (RF), ANN, RNN by Feigl et al. 

(2021) (0.422 – 0.815 °C); Wavelets-ANN by Graf et al. (2019) (0.981-1.434 °C); LSTM by 

Stajkowski et al. (2020) (0.755 °C); LSTM by Qiu et al. (2021) (0.500 – 2.700 °C); and ANN 

by Temizyurek and Dadaser-Celik (2018) (2.100 – 2.640 °C); River Assessment for 

Forecasting Temperature (RAFT) model by Pike et al. (2013) (0.500 °C);  and NorWeST 

Summer Stream Temperature model by Isaak et al. (2017) (1.100 °C). The MAE values for 

all the catchments range from 0.802 to 2.467 °C pertaining to all DL models (Table 4.4) for 

monthly data, which are reasonable in comparison to earlier models of RF, ANN, RNN by 

Feigl et al. (2021) (0.329 – 0.675 °C); Wavelets-ANN by Graf et al. (2019) (0.781-1.286 °C); 

and LSTM by Qiu et al. (2021) (0.39 – 2.15 °C). The KGE values for Narmada (0.715), 

Tunga-Bhadra (0.790), Musi (0.701), and Ganga (0.868)  catchments pertaining to all DL 

models for monthly data (Table 4.4), which are in comparison to the earlier model of LSTM 

by Stajkowski et al. (2020) (0.923). The NSE values for Narmada (0.728), Musi (0.735), and 

Ganga (0.920) catchments pertaining to all DL models for monthly data (Table 4.4), which 

are sensible in comparison with the earlier model of LSTM by Qiu et al. (2021) (0.74 - 0.99).  

The superiority of LSTM in RWT prediction, as demonstrated in this work, was found to 

agree with Feigl et al. (2021), Qiu et al. (2021), and Stajkowski et al. (2020). The input and 

output of LSTM are considered as a two-time-series sequence, which is why LSTM 

outperforms the other ML models (Qiu et al. 2021). However, it can be noted that the study 

was conducted by Feigl et al. (2021) used AT, runoff, precipitation, and global radiation 

values as input in the RWT prediction for daily data, and the study by Qiu et al. (2021) used 

daily AT and discharge as input in RWT prediction. As demonstrated in this work, the 

superiority of hybrid LSTM models in RWT prediction was found to agree with the analysis 

of Stajkowski et al. (2020) where the author has adopted a hybrid approach i.e., genetic-

algorithm (GA)-optimized LSTM technique (GA-LSTM) to improve the model performance. 

However, it can be noted that the study by Stajkowski et al. (2020) used AT values as input 

in RWT prediction for hourly data. Besides the similar studies that have been done for the 
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prediction of RWT (Stajkowski et al. 2020; Feigl et al. 2021; Qiu et al. 2021), this study 

showed that the recent advent of so-called hybrid models, which entails combining WT, k-

NN bootstrap resampling algorithm with DL methods could be applied for RWT prediction 

under data noisy and limited data scenarios. During this study, the WT-LSTM and kNN-

LSTM model’s performance was better when modeling monthly data, demonstrating that 

coupling with WT and k-NN bootstrap resampling algorithm would yield more precise 

results and guaranteed results to outperform standalone models (Table 4.4, Figure 4.14).  

The reason why the WT-LSTM combination performed better might be that the WT 

method offered useful decompositions of the original AT and RWT time series, and the 

transformed data improved the performance of the WT-LSTM model by analysing useful 

information on various decomposition levels. The reason why the kNN-LSTM combination 

performed better might be that the kNN method simulates extreme events beyond those 

observed in the short length of the historical record in the data-sparse regions. In order to 

extract temporal characteristic information from long time series data, the kNN-LSTM model 

is trained using a large amount of simulated data. This might be another factor in the superior 

performance of the kNN-LSTM model. 

This chapter confirmed that the lag variables had a strong relationship with RWT and 

improved the model performance (Tables 4.3, and 4.4). This chapter also confirmed that the 

kNN-LSTM model yielded improved results in the summer season for most of the catchment 

sites than the other three seasons when compared to Autoregressive Model (AR) model. The 

3-parameter version air2stream model delivered the lowest monthly performance for almost 

every case (Table 4.4, Figure 4.13). It can be noted that the performance of air2stream 

depends on the time scale and data points used in the calibration and validation. Most of the 

earlier studies successfully applied the air2stream in a wide range of hydrological studies 

over a range of catchments with dense data at daily time scale and generally had an improved 

performance compared to ML models (Piccolroaz et al. 2016; Yang and Peterson 2017; 

Piotrowski and Napiorkowski 2018, 2019; Zhu et al. 2019f; Tavares et al. 2020), whereas the 

present study emphasized on sparse and discontinued data at monthly time scale. These are 

some reasons why the 3-parameter version air2stream model performed poorly. 

This study also showed that using decomposed time series data instead of original 

time series data to simulate the values from the k-NN bootstrap resampling algorithm was not 
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producing good performant results like the kNN-LSTM model (Table 4.5). As demonstrated 

in this work, the wavelet power spectrum (Figure 4.12) displayed a consistent 1-year 

periodicity for the whole duration of the time series and it was found to agree with the 

analysis of Alcocer et al. (2022) where the author performed the Continuous wavelet analysis 

to examine the variability of water quality variables and concluded that the water quality 

variables display a recurrent annual cycle. This steady behavior means that the system’s 

complexity has not deteriorated so that the seasonality of this process has not perceptibly 

changed over time. In this study, the hybrid WT- LSTM and kNN-LSTM models were 

shown to be a solution for improved predictions of RWT for most of the catchments, i.e., 

Sabarmati, Tunga-Bhadra, Musi, Godavari, and Ganga. Overall, the kNN-LSTM model 

produced more accurate results for the prediction of RWT. Also observed that the Ganga 

catchment site (Pratappur) exhibits dampened warming trends of RWT comparative to other 

catchment sites, probably because of the influence of Himalayan mountains glacier-melt 

water that modulates downstream RWTs in this system (Islam et al. 2019). Such a hypothesis 

was found to agree with the investigation of Zhu et al. (2019), i.e., flow discharge with high 

altitude catchment sites influenced by cold water releases from snow melting or hydropower 

significantly impacts the RWT dynamics. It can also be noted that the Tunga-Bhadra and 

Musi rivers are the Southern Indian rain-fed River basins dominated by a semi-arid climate 

with hot summers and temperate winters with more pronounced summer RWT. The 

prediction of RWT can consider variables such as flow discharge, wind speed, radiation, etc. 

to analyze the variation in water temperatures in different rivers with varied climatological 

conditions (van Vliet et al. 2013; Cole et al. 2014; Feigl et al. 2021). Consideration of various 

hydroclimatic covariates in the RWT predictions can lead to variations in the RWT 

predictions for different rivers. For example, for snow-fed rivers, the flow discharge will be 

prominent covariate since snowmelt flow dominates RWT predictions, with more the snow-

fed discharges less the RWT. Radiation and evaporation will be important covariates in the 

case of semi-arid climate rivers as the sun heats the water much faster as the water depth is 

lower due to frequent low flow events under evaporation (Arnell 1996). 

 It was also observed that inherent uncertainties from each of the DL models can 

accumulate and can affect the final performance measures.  Such uncertainties can originate 

from various sources, starting from the noise, covariates considered, temporal discontinuity 
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present in the original water quality sampled observations to the model parameters, type of 

DL algorithm used to predict RWT, and non-stationarity assumptions related to forecasting 

model parameters (Beven 2016). Furthermore, each DL model can predict unique RWT, 

leading to model uncertainty. To address such model uncertainties originating from various 

DL, the ensemble of DL models, stacking algorithms, etc. (Song et al. 2020; Piotrowski et al. 

2021) can be adopted which can combine RWT predictions from various DL models. 

Furthermore, such ensemble/stacking algorithms allow the decision makers to choose the 

best possible prediction within a range of predictions (Rehana & Mujumdar, 2014). 

 

Assessment of Projected Changes in Monthly River Water Temperature: 

Forcing the kNN-LSTM hybrid model with monthly RCP 4.5 and 8.5 output provides for 

calculating probable monthly RWT changes over the whole probability range, rather than 

mean values. These projected change patterns are most consistent with earlier hydrological 

model studies (Döll & Zhang, 2010; Rehana, 2019; van Vliet et al., 2013). van Vliet et al. 

(2013) found the highest increase in mean RWT projected for river basins in Australia, 

Europe, Southeast Asia, South Africa, and the United States. Rehana (2019) evaluated a 

statistical downscaling model based on Canonical Correlation Analysis (CCA) for future 

RWT projections along the Tunga-Bhadra River, India, and found that the river’s annual 

RWT increase from 2020–2040 to 2081–2100 is predicted to be 3.2 °C. In this study, overall, 

for all seven catchments, the increases in mean (95th percentile) water temperature are 0.1–

3.5 (0.1–2.6) oC for RCP 4.5, and 1.4–6.1 (0.7–6.0) oC for RCP 8.5 for plausible future 

(2071–2100) relative to observed mean (95th percentile) water temperatures (Table 4.11). 

This increase appears to be modest in comparison to projected rise of mean AT of 2.4-5.8 oC 

for the RCP 4.5 and 8.5 scenarios over seven Indian catchments (Table 4.10). Such 

projections are in convincing with the global mean AT of 3.0–4.9 oC for the chosen GCM 

experiments done by van Vliet et al. (2013) and the annual mean temperatures of 1.8 and 3.2 

°C for the RCP 4.5 and 8.5 scenarios over Southeast Asia done by Raghavan et al. (2018). 

RCP 8.5, which is generally taken as the basis for worst-case climate change scenarios (i.e., 

high CO2 concentrations with radiative forcing greater than 8.5 W m-2 by 2100). 

Though the hybrid kNN-LSTM model performed well, further research is needed to 

improve it. Despite the effectiveness of the modeling frameworks, as demonstrated in work, 
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it has some limitations. Based on earlier research, rainfall is an important covariate in RWT 

predictions (Cole et al. 2014; Feigl et al. 2021). In this study, RWT was weakly correlated 

with precipitation for most of the catchment stations; hence precipitation has not been 

considered in the present study. Flow discharge, which is a smoothened force caused by 

rainfall, may play a vital role in RWT predictions (van Vliet et al. 2011; Zhu et al. 2019f; 

Feigl et al. 2021), especially in Indian rivers impacted by low flows during summer seasons. 

However, flow discharge was not examined in this work due to a lack of complete 

streamflow data. Therefore, the hybrid modeling framework in future research will be 

enhanced by integrating flow discharge as model input for rivers. RWT is directly influenced 

by multiple parameters, including streamflow (Toffolon and Piccolroaz 2015; Sohrabi et al. 

2017; Islam et al. 2019), river geometry, groundwater inputs, slope, water depth, etc. (Gu and 

Li 2002), which are not considered in the present study.  

Further enhancement of RWT prediction can be examined by using other types of WT 

coupled with DL algorithms. Lastly, though seven catchments with diverse geographical 

features were evaluated in the current work, they were all located in India. Therefore, 

presenting broad conclusions about the efficacy of hybrid WT-LSTM, kNN-LSTM models, 

as well as their superiority over standalone LSTM and air2stream models for any river 

around the world, is not possible. Despite this, the research offers vital intuitions about the 

historical and projected thermal states of seven Indian river catchment locations, which may 

be beneficial in creating future water management plans that may impact aquatic resources. 

 

4.6. Chapter Summary  
 

This chapter proposed a suite of LSTM models by coupling with WT and k-NN bootstrap 

resampling algorithms to predict the RWQ variables under data uncertainties for the Indian 

catchments. To demonstrate this framework, RWT is taken as water quality variable for 

prediction with the aid of current AT and lag variables as predictors at a monthly timescale. 

In this study, LSTM, WT-LSTM, and kNN-LSTM models were proposed to better predict 

water quality variables.  The developed model’s robustness was compared with the 

traditional air2stream model for RWQ variables prediction at seven river gauging stations 

located in Indian catchments characterized by different hydrological conditions. The impacts 

of climate change on RWQ variables were evaluated over Indian catchments using the kNN-
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LSTM monthly model forced by an ensemble of RCP scenarios 4.5 and 8.5 down-scaled 

projections of AT data from NEX-GDDP. Also, validated whether one variable time series at 

time t-lag provides important information helping to predict values of another variable time 

series at time t by using the Granger Causality Analysis test.  The results lead to the 

following conclusions: 

1. When WT and k-NN bootstrap resampling algorithms were included, LSTM 

outperformed the conventional models; hence these hybrid models are the new 

promising frameworks for RWT prediction under data-sparse regions and may 

deserve further research in the area of water resources. 

2. The hybrid kNN-LSTM models yielded better performance results for five catchment 

sites (i.e., Narmada, Cauvery, Musi, Godavari, and Ganga) out of seven catchment 

sites than LSTM, WT-LSTM, and air2stream forecasting models at a monthly scale. 

This study confirmed that WT-based models consistently outperformed standalone 

models and demonstrated that lag variables are significantly related to RWT and 

improved the model performance. 

3. The widely used process-based model air2stream is used to validate the proposed ML 

models and to make the results comparable to previous studies. It was found that the 

3-parameter version of air2stream mainly delivered the lowest performance compared 

to LSTM, WT-LSTM, and kNN-LSTM models for almost every basin. 

4. Validated the time sequence of the causal linkages between the time series of data 

(i.e., whether cause precedes the effect relations for “water–air” and “air–water” 

directions of influence at a monthly scale). And observed that strongest “air–water” 

relationships (i.e., smallest p-values, AT causes RWT) for all basins. 

5. Higher RWTs were predicted for the Ganga catchment, where climate change will 

decrease glacial ice in the Himalayan mountains, the source of the Ganga; this will 

result in even lower water levels in the river over time. 

6. Also observed that the Ganga catchment site (Pratappur) exhibits dampened warming 

trends of RWT compared to other catchment sites. This is probably because of the 

influence of the Himalayan mountain's glacier-melt water, which modulates the 

downstream RWT in this system. 
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7. Overall, RWT over Indian catchments is likely to rise by more than 3.0 °C for 2071-

2100. 

 

In summary, in this chapter developed a suite of LSTM models by coupling with WT and k-

NN bootstrap resampling to predict accurate RWQ variables under sparse and non-stationary 

data scenarios. Further assessed the climate change impacts on RWT by using RCP scenarios 

4.5 and 8.5 scenarios from the NEX-GDDP dataset. The proposed methods, demonstrated 

methodologies, and frameworks presented in this chapter are generic and can be 

implementable for any river water quality variables.  Further research is required to assess 

the impact of climate change on DO saturation levels with respect to RWT and streamflow 

under sparse river water quality data scenarios and were presented in the following chapter. 
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Chapter 5 

IMPACT OF CLIMATE CHANGE ON SATURATED DISSOLVED OXYGEN OVER 

MAJOR INDIAN RIVER BASINS 

5.1. Introduction 
 

Studies on regional and global climate change, variability, and their impacts on water 

resources have received a lot of attention recently, but few studies concentrated on the 

expected changes in river water quality that will occur as a result of climate change. The 

relationship between the climate and freshwater systems is strong, and numerous climatic 

variables, including AT and RWT, precipitation, and the frequency of extreme events, have 

an impact on river water quality. The RWT and river flow, which are the main factors 

influencing RWQ, can be affected under the increase of AT and changes in rainfall 

variability, respectively. Climate change caused by anthropogenic greenhouse gases in the 

atmosphere directly impacts the quality of river water, which raises the possibility of the 

river ecosystem degrading in terms of decreased DO saturation levels under the decrease of 

stream flows and increase in RWT. Therefore, it is crucial to research how climate change 

will affect the thermal processes (e.g., RWT) and other self-purification capacity defining 

variables, such as the saturated DO of the river system. The literature related to the 

assessment of water quality impacts due to climate change is reviewed in Chapter 2. The 

review reveals that relatively very less attention has been given to assessing the impacts of 

regional and global climate change and variabilities on river water quality. 

The present chapter aims to assess the climate change impacts on the thermal regimes 

of rivers in India and possible variability in DO saturation levels under RWT projections 

using the state-of-the-art GCM projections and hypothetical climate change scenarios. 

Saturation DO is generally considered as a desirable level of DO by the Pollution Control 

Boards (PCBs) in Waste Load Allocation Models (WLAM) for river water quality 

management (Mujumdar and Subbarao Vemula 2004). Therefore, the study of climate 

change impacts on saturation DO levels under climate change can provide prominent insights 

for defining/altering the quality standards under climate change. Climate change has been 

demonstrated to have an impact on the relationship between RWT and DO concentrations in 

tropical rivers (Danladi Bello et al. 2017). Tropical rivers receive more solar radiation and 

have higher RWTs (Taniwaki et al. 2017). For example, Indian tropical river systems 
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experience the highest RWTs during low flow periods of non-monsoon and summer months 

(Rehana & Dhanya, 2018a; Santy et al., 2020). Seasonality plays a vital role in the Indian 

river systems as maintaining flows in the summer season is a challenge leading to water 

quality deteriorations.  

Recently, several studies have assessed the impact of climate change on RWQ 

variables using process-based models (e.g., CEQUEAU model, QUAL2K model, SWAT 

model, Air2Stream model etc.) (Ficklin et al., 2013; Islam et al., 2019; Khorsandi et al., 

2023; Rehana & Mujumdar, 2011; van Vliet et al., 2011), regression based models (Santy et 

al. 2020), and ML models (Rehana, 2019; Zhu, Nyarko, et al., 2019). A better RWT model, 

instead of the regression models or process-based models used, is likely to give more 

accurate results (Santy et al. 2020). However, there hasn't been much research done on how 

climate change affects DO saturation levels with respective to RWT under sparse data, and 

the role of streamflow in ML models has seldom been investigated (Rabi et al. 2015; Zhu et 

al. 2019d). To this end, the assessment of DO saturation rates with respect to RWT is of 

much relevance for Indian river systems due to minimum flows and higher temperatures 

during non-monsoon seasons.  

The present chapter aims to predict the RWQ variables and further quantify the 

climate change impact on water quality for major Indian catchments under data limitations. 

As the hybrid kNN-LSTM model based on AT performed well to predict RWT in Chapter 4, 

this chapter studied the pertinence of the k-NN algorithm under sparse data scenarios to 

predict the RWT by including streamflow time-series data in addition to AT, and time lag 

was adopted. The study compared this extended hybrid kNN-LSTM monthly model with 

standalone LSTM, a modified nonlinear regression model proposed by van Vliet et al. 

(2011), and an 8-parameter version air2stream model (Toffolon and Piccolroaz 2015; 

Piccolroaz et al. 2016). Air2stream is a hybrid model for predicting RWT, with AT and 

streamflow data used as model inputs. Air2stream was widely applied in multiple studies 

over a range of catchments (Toffolon and Piccolroaz 2015; Piotrowski and Napiorkowski 

2019; Islam et al. 2019; Feigl et al. 2021; Yang et al. 2022; Shrestha and Pesklevits 2023). 

Furthermore, the study evaluated the effect of climate change on DO saturation levels with 

respect to RWT and streamflow using the kNN-LSTM model forced with climate change 

scenarios. 
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In summary, the objectives of this chapter are to (i) assess the combined effects of 

streamflow and AT in ML models for prediction of RWT variables under sparse data 

scenarios, (ii) compare the performance results of the kNN-LSTM model with standalone 

LSTM, a modified nonlinear regression model proposed by van Vliet et al. (2011),  and 8-

parameter version air2stream in the prediction of RWT variables when applied on major river 

systems of India, (iii) to calculate the impacts of climate change on riverine thermal 

processes and possible variability in DO saturation levels with respect to RWT by using the 

kNN-LSTM model addressing sparse spatiotemporal RWT data forced with both RCP 8.5 

scenario dataset output downscaled from NEX-GDDP dataset projections, and nine 

hypothetical climate change scenarios. 

 

5.2. Model Development 
 

This chapter extended the kNN-LSTM model, which performed well to predict RWT in 

Chapter 4 by including streamflow time-series data in addition to AT. The study compared 

the extended hybrid kNN-LSTM monthly model with standalone LSTM, a modified 

nonlinear regression model proposed by van Vliet et al. (2011) (see Sect. 5.2.2 for further 

information about the nonlinear regression model), and 8-parameter version air2stream 

model discussed in section 4.2.4, Chapter 4 (Toffolon and Piccolroaz 2015; Piccolroaz et al. 

2016). Detailed information on the k-NN algorithm, LSTM model, and air2stream model 

may be found in Chapter 4. Air temperature (AT[t]), streamflow (Q[t]), and time-lag effects 

of streamflow, air and water temperatures (Q[t-1], AT[t-1], RWT[t-1]) are used as input 

variables in the prediction of RWT for ML models. In the case of the modified nonlinear 

regression model, the 8-parameter air2stream model, air temperature (AT[t]), and streamflow 

(Q[t]) are used as input variables in the prediction of RWT. For future DO saturation levels 

projections with respect to RWT, this study used (i) RCP scenarios 8.5 downscaled 

projections of AT data were fed into the kNN-LSTM monthly prediction model which 

developed in Chapter 4 based on AT (Figure 5.1), and (ii) used the nine hypothetical 

scenarios of changes in AT and streamflow, which were fed into kNN-LSTM monthly 

prediction model (Figure 5.1).  
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Figure 5.1. Schematic representation of the ML modeling framework with selected GCMs 

(i.e., NEXGDDP (RCP 8.5 scenarios)), and nine hypothetical climate change scenarios 

(Table 5.5) with observed dataset. The observed data was used to train the kNN-LSTM 

models. The climate change scenarios data was used to force the ML based modeling 

framework (kNN-LSTM), resulting in monthly simulations of water temperature (Tw) and 

dissolved oxygen (DO) saturation levels under future climate. 

5.2.1. Oxygen Saturation 

Waters with concentrations below saturation are called “deficit” whereas those with 

concentrations exceeding saturation are called “supersaturated”. As a result, the oxygen 

saturation concentration serves as the baseline for any endeavor to measure oxygen-based 

water quality by determining the oxygen concentration of unpolluted water (Chapra et al. 

2021). The saturated DO concentration depends on the temperature, salinity of water, and 

oxygen partial pressure. Saturated DO concentration is influenced by these elements, as 

indicated by (Rice et al., 2017)                                    

𝑜𝑠 = 𝜔𝑘 .  𝜔𝑠 .  𝑒ln 𝑜𝑠𝑓(𝑇)       (5.1) 

 

where 𝑜𝑠 = saturated DO concentration (mgO2/L), 𝜔𝑘,  𝜔𝑠  = elevation above sea level 

(dimensionless), and salinity (dimensionless) respectively, and 𝑜𝑠𝑓 = the saturated DO 

concentration of sea-level freshwater (mgO2/L). The following are the individual impacts of 

temperature, salinity, and elevation. 

Temperature, T (◦C): The saturated oxygen of fresh water at sea level is estimated by 

evaluating the exponent of the exponential function of Equation (5.1) with (Rice et al., 2017) 
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ln 𝑜𝑠𝑓 (𝑇) = −139.34411 +
1.575701 × 105

𝑇𝑎𝑏𝑠
−

6.642308 × 107

𝑇𝑎𝑏𝑠
2    

 +
1.243800 × 1010

𝑇𝑎𝑏𝑠
3  −  

8.621949 × 1011

𝑇𝑎𝑏𝑠
4  (5.2) 

 

where 𝑇𝑎𝑏𝑠 = absolute temperature in kelvin. 

 

Salinity, S (ppt): The oxygen saturation of seawater is calculated by multiplying the sea-

level freshwater saturation by (Rice et al., 2017) 

𝜔𝑠 = 𝑒
−𝑆(1.7674×10−2+

10.754

𝑇𝑎𝑏𝑠
 −  

2140.7

𝑇𝑎𝑏𝑠
2 )

      (5.3) 

 

Elevation, k (km): The influence of atmospheric pressure on gas saturation at elevation is 

based on the standard atmosphere as described by the cubic polynomial (Rice et al., 2017) 

 

𝜔𝑘 = 1 − 0.11988 𝑘 + 6.10834 ×  10−3𝑘2 − 1.60747 × 10−4𝑘3 (5.4) 

 

Additional insight of DO can be obtained by computing the rate of change of saturation by 

differentiating Equation (5.1) with respect to temperature. Although functions like Equation 

(5.1) can sometimes be differentiated analytically, the results are cumbersome and typically 

provide no insight. Numerical differentiation provides an alternative means to obtain the 

same results with the centered divided difference (Chapra and Clough 2021) 

 

ℎ′(𝑥) =
ℎ(𝑥+𝜆)−ℎ(𝑥−𝜆)

2𝜆
        (5.5) 

 

where x = the value of the independent variable, ℎ′(𝑥) = the function’s first derivative with 

respect to x evaluated at x, and 𝜆 = a very small perturbation of x. For the present case, with x 

= T and ℎ(𝑥) = 𝑜𝑠(𝑇), the result is 𝑑𝑜𝑠(𝑇) 𝑑𝑇⁄  with units of (mgO2/L)/oC. 
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5.2.2. Nonlinear Regression Model 

 

To compare the ML model results, the modified regression model developed by van Vliet et 

al. (2011)  is used in this study, which was based on the approach of Mohseni et al. (1998), 

who developed a nonlinear regression model representing the S-shaped function between AT 

and RWT to calculate stream temperature for monitoring stations in the United States. To 

generate RWT, the below equation is proposed by Mohseni et al. (1998): 

𝑇𝑤 = 𝜇 +
𝛼−𝜇

1+𝑒𝛾(𝛽−𝑇𝑎)       (5.6) 

           𝜸 =
𝟒 𝑡𝑎𝑛 𝜽

𝜶−𝝁
        (5.7) 

Where 𝜶 is the upper bound of RWT (oC), 𝜇 is the lower bound of RWT (oC), 𝛾 is the 

measure of the slope at the inflection point of the function (oC-1),  𝛽 is the AT at the 

inflections point (oC),  𝑡𝑎𝑛𝜃  is the slope at the inflection point (-). Figure 5.2 shows the 

meaning of parameters in Equation 5.6 (Mohseni et al. 1998). 

Modifications to the above regression model have been made to include streamflow as a 

variable in addition to AT to include the effects of changes in river flow conditions on RWT 

and to apply the model on a monthly time step. Hence, the modified nonlinear regression 

model used in our study is: 

𝑇𝑤 = 𝜇 +
𝛼−𝜇

1+𝑒𝛾(𝛽−𝑇𝑎) +
𝜂

𝑄
+ 𝜀     (5.8) 

Where 𝜂 is the fitting parameter oC m3 s-1); 𝑄 is streamflow (m3 s-1); 𝜀 is the error term (oC). 

 

5.3. Study Area and Data 

For this study, seven majorly polluted catchments of India (CPCB 2015; National River 

Conservation Directorate (NRCD) 2018) were selected to analyze climate change impacts on 

DO with respect to RWT with various physiographic features as discussed in Section 4.3.1, 

chapter 4. In this study, Equation 5.1 is used to simulate the saturated DO concentration 

which depends on the water temperature, salinity of water, and elevation. Further, to examine 

the combined effects of streamflow and AT in the prediction of RWQ variables and 

subsequent future DO saturation levels, three polluted catchments of India (Tunga-Bhadra, 

Musi, and Ganga) where the continuous streamflow data is available were selected. 
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Figure 5.2. Schematic representation of the logistic function parameters (Equation 5.6). 𝛼 is 

the upper bound of Tw (oC), 𝜇 is the lower bound of Tw (oC), 𝛾 is the measure of the slope at 

the inflection point of the function (oC-1),  𝛽 is the Ta at the inflections point (oC) (Mohseni et 

al. 1998). 

 

5.4.  Results 

To examine the variability of annually averaged AT, RWT, and DO changes, the study 

calculated the linear trends using the observed data for seven catchments of India (Figure 

5.3). The AT and RWT increased and observed DO has decreased during the studied period 

for all catchments except Cauvery, Godavari, and Ganga catchments (Figure 5.3). The RWT 

rising rates are lower than those of AT in general. Air temperature has shown a rising trend 

except for Cauvery (-0.01 ◦C/year) catchment, and the rising rates range from 0.002 to 0.380 

◦C/year. RWT shows a rising trend except for Cauvery (-0.06 ◦C/year), Godavari (-0.03 

◦C/year), and Ganga (-0.07 ◦C/year) catchments, and the rising rates vary between 0.01 and 

0.17 ◦C/year.  

DO shows a decreasing trend except for Cauvery (0.01 (mgO2/L)/year), Godavari 

(0.004 (mgO2/L)/year), and Ganga (0.01 (mgO2/L)/year) catchments (where there is a 

significant decreasing trend of AT and RWT has been noted), and the decreasing rates vary 
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between -0.01 and -0.003 (mgO2/L)/year. Such DO decrease patterns have been explored in 

several locations throughout the world. The DO, for instance, has been a seasonal DO 

variation, low (DO < 10  mgO2/L) and high (DO > 14  mgO2/L) over Clackamas River near 

Oregon City, OR, USA (Khani and Rajaee 2017), and rising RWTs in the Delaware River, 

the USA by 2 oC to peak summer levels of 30 oC, based on saturation, DO  levels will decline 

by about 0.2 mgO2/L (Kauffman 2018). Generally, RWT and AT are directly correlated, but 

RWT and DO are inversely correlated (Ficklin et al. 2013; Khani and Rajaee 2017). 

However, for the Godavari and Ganga catchment, the water temperature has shown 

decreasing trend (-0.03 ◦C/year and -0.07 ◦C/year respectively) with an increasing trend of 

AT (0.01 ◦C/year and 0.08 ◦C/year, respectively), which specifies that the temporal shifts of 

RWT may not be explained AT alone. RWT is directly influenced by multiple parameters, 

including streamflow (Sohrabi et al. 2017), river geometry, groundwater inputs, slope, water 

depth, etc. (Gu and Li 2002). Time series of monthly DO concentration (mgO2/L) and river 

water temperature (oC) for the period 2001-2015 at Ganga catchment is shown in Figure 5.4a, 

and monthly mean DO concentration (mgO2/L) and river water temperature (oC) based on 14 

years average at Ganga catchment for the period 2001-2015 is shown in Figure 5.4b. 

 

Model performances: 

To study the role of streamflow and AT in ML models for prediction of RWT under sparse 

data scenarios, this chapter extended the kNN-LSTM model to predict RWT by integrating 

streamflow in addition to AT as model input for three majorly polluted river locations in 

India. The catchment monthly average streamflow for the Tunga-Bhadra, Musi, and Ganga 

catchments is 82.51 m3/sec, 16.70 m3/sec, and 949.68 m3/sec, respectively. Spearman’s 

correlation coefficients (SCC) for three catchments were estimated to examine the statistical 

dependency between AT, Q, and RWT variables. According to the metrics from Table 5.1, 

the RWT was positively correlated with AT and negatively correlated with Q for all three 

catchments on the annual scale. Overall, it was observed that RWT was weakly correlated 

with Q but strongly correlated with AT. To show the variability of AT, Q with RWT, the 

monthly data for three catchments has been compared, as shown in Figure 5.5. 

The kNN-LSTM, LSTM, modified nonlinear regression model and 8-parameter 

version air2stream approaches were assessed using statistical measures (NSE, KGE, RSR, 
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RMSE, and MAE). Generated the kNN-LSTM, LSTM, modified nonlinear regression model, 

and air2stream model’s performance results for monthly data for all three catchments using 

AT and Q variables as inputs, as provided in Table 5.2. For kNN-LSTM and LSTM models, 

included the time-lag effects of streamflow, air, and water temperatures (Q[t-1], AT[t-1], 

RWT[t-1]) as additional input variables. Results confirm that the developed models could 

predict RWT more accurately with Q as an input variable. Results also revealed that the 

kNN-LSTM model could predict RWT more accurately than the LSTM model by utilizing Q, 

AT, and lag variables as input. However, the air2stream model generated unsatisfactory 

results, and statistical measures can be found in Table 5.2.  

The simulated samples from the k-NN bootstrap resampling algorithm (described in 

Chapter 4) are given as input to the kNN-LSTM hybrid model to predict the RWT for all 

three catchments of India. The relationship between monthly RWT, Q, and AT is relatively 

strongly correlated for the kNN-LSTM model (NSE values). The results were superior to 

those obtained from the LSTM, modified nonlinear regression model, including the 

air2stream model. The RMSE metrics for all the catchments vary from 1.00 to 1.74 for the 

kNN-LSTM model for monthly data (Table 5.2). The NSE value for the Ganga catchment is 

obtained as 0.94 for the kNN-LSTM model, which is reasonable compared with kNN-LSTM 

results generated in Chapter 4 (NSE: 0.446 – 0.920 °C). Based on RSR, KGE, and NSE 

performance values (Table 5.2), the LSTM and modified nonlinear regression model results 

are superior to those obtained from the air2stream model (Table 5.2). The performance of the 

LSTM model (NSE = 0.27 – 0.85, KGE = 0.38 – 0.81, RMSE=1.95 – 2.13, RSR = 0.39 – 

0.78, and MAE = 1.35 – 1.70) was much superior to that of the modified nonlinear regression 

model (NSE = 0.25 – 0.60, KGE = 0.29 – 0.67, RMSE=1.57 – 3.08, RSR = 0.64 – 0.86, and 

MAE = 1.19 – 2.41) and the air2stream model (NSE = 0.04 – 0.70, KGE = 0.08 – 0.73, 

RMSE=2.12 – 3.03, RSR = 0.54 – 0.96, and MAE = 1.62 – 2.24). In general, the 

performance of the air2stream model on a monthly scale was not satisfactory. Overall, the 

extended kNN-LSTM model statistical metrics are reasonably within the range for all three 

catchment locations, and which agrees with the kNN-LSTM model results generated in 

Chapter 4 studies, providing confidence that the developed model performs effectively under 

data uncertainties scenarios. The following analyses concentrate on how RWT affects the DO 

saturation levels under both RCP experiments and hypothetical scenarios. 
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Oxygen Saturation and Oxygen Concentration under RCP experiments: 

Figure 5.6 displays the box plots of RCP 8.5 experiments air temperature (°C) values; 

projected RWT (°C) and DO (mgO2/L) values of historical, 2021-2050, and 2071–2100 for 

seven catchments of India. According to Figure 5.6, due to the increase of AT, the saturated 

DO concentrations are decreased mainly due to the increases of RWT for the periods 2021-

2050, 2071-2100. Table 5.3 listed the rate of change of DO saturation levels under minimum, 

maximum, and average river water temperatures 𝑑𝑜𝑠(𝑇) 𝑑𝑇⁄  ((mgO2/L)/°C) for observed and 

projected (2071-2100) for seven Indian catchments. Projected mean RWT changes for the 

periods 2071–2100 relative to mean observed values were calculated using RCP 8.5 output 

data and observed that results vary between the different catchments. The magnitude of DO 

decrease with respect to average RWT increase is higher for Narmada, Musi, and Ganga 

catchments, and variations in the rate of change of oxygen saturation for 2071–2100 relative 

to the historical values were noted as a drop of about 0.024, 0.018, and 0.025 (mgO2/L)/°C, 

respectively (Table 5.3). Moderate DO decreases with respect to mean RWT for 2071–2100 

are projected for catchments in the southern parts of India relative to the historical values, 

noted as a drop of about 0.005 (mgO2/L)/°C for Cauvery and 0.009 (mgO2/L)/°C for 

Godavari (Table 5.3). The magnitude of DO decrease with respect to minimum RWT 

increase is higher for Narmada, Sabarmati, Godavari, and Ganga catchments, and with 

respect to maximum RWT increase is higher for Narmada, Musi, and Ganga catchments 

(Table 5.3). Overall, results indicated that DO with respect to RWT over Indian catchments 

would likely drop by more than 0.02 (mgO2/L)/°C for 2071-2100 (Table 5.3). Figure 5.7a 

shows the rate of change of DO saturation levels under mean river water 

temperature 𝑑𝑜𝑠(𝑇) 𝑑𝑇⁄  ((mgO2/L)/°C) for observed and projected (2071-2100) data for 

seven Indian catchments. The vertical dotted lines indicate the mean of historical (Twhist °C) 

and projected (2071-2100) (Twproj °C) water temperatures. As depicted in Figure 5.7a, 

projected (2071-2100) (Twproj °C) water temperatures increase is higher for Narmada, Tunga-

Bhadra, Musi, and Ganga catchments compared to historical (Twhist °C), which leads to a 

higher drop in the rate of change of oxygen saturation for these catchments. For Cauvery 

catchment, projected (2071-2100) (Twproj °C) water temperatures increase is low compared 

to historical (Twhist °C), which leads to a minimal drop of the rate of change of oxygen 

saturation. 
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The specification of a DO water-quality standard, owq (mgO2/L), is used to evaluate 

oxygen assimilative capacity. Figure 5.7b shows the DO concentration (mgO2/L) scale with 

respect to the observed (blue color) and projected (2071-2100) (maroon color) minimum, 

maximum and average water temperature (°C) levels of seven Indian catchments. From 

Figure 5.7b, observed that 10.3, 6.6, and 7.9 mgO2/L, and 9.1, 6.3, and 7.3 mgO2/L DO 

concentrations with respect to historical and projected (2071-2100) minimum, maximum and 

average water temperatures (°C) respectively of seven Indian catchments. DO concentration 

(mgO2/L) scale scores dropped from 7.9 to 7.3 mgO2/L respective to the observed and 

projected (2071-2100) mean RWT levels of seven catchments (Figure 5.7b). Table 5.4 listed 

the DO concentrations and DO decrease percentage with respect to monthly average summer 

and winter RWTs for historical and projected (2071-2100) with RCP 8.5 experiments for 

seven Indian catchments. The summer RWT increase for Tunga-Bhadra, Sabarmati, Musi, 

and Ganga basins are predicted as 3.1, 3.8, 5.8, 7.3 oC, respectively, with a more pronounced 

increase of 7.8 oC for the Narmada River for 2071-2100. The magnitude of DO 

concentrations decreases with respect to summer RWT increases is higher for Narmada, 

Musi, and Ganga catchment sites, and the percentage of DO decreases for 2071–2100 

relative to the historical values noted 12.4, 9.3, and 11.9 %, respectively (Table 5.4). The low 

DO concentrations decrease observed for Cauvery and Godavari, and the percentage of DO 

decrease noted as 1.0 and 3.3 %, respectively (Table 5.4). Overall, the summer displayed 

larger percent decreases in DO compared to the winter season, and the largest DO decreases 

were found in the Narmada catchment (Table 5.4).  

 

Oxygen Saturation and Oxygen Concentration under hypothetical climate change 

scenarios: 

For investigating the potential changes in RWQ in the future, nine hypothetical climate 

change scenarios are considered. T2Q0, T2Q10, T2Q20, T3Q0, T3Q10, T3Q20, T4Q0, 

T4Q10, and T4Q20 are the climate change scenarios considered for this study (Table 5.5) 

(Santy et al. 2020), where the number followed by ‘T’ indicates the °C rise in AT and the 

number followed by ‘Q’ indicates the percentage reduction in the hydrological variable, 

streamflow. These scenarios are based on the projected rise of mean AT of 2.4-5.8 oC for the 

RCP 4.5 and 8.5 scenarios over seven Indian catchments (Table 4.10, Chapter 4). Such 
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projections are convincing with the global mean AT of 3.0–4.9 oC for the chosen GCM 

experiments done by van Vliet et al. (2013), the annual mean temperatures of 1.8 and 3.2 °C 

for the RCP 4.5 and 8.5 scenarios over Southeast Asia done by Raghavan et al. (2018), and 

AT of 0.0-2.0 oC, and streamflow of 0.0-20.0% reduction (i.e., T0FLOW10, T0FLOW20, 

T1FLOW0, T1FLOW10, T1FLOW20, T2FLOW0, T2FLOW10 and T2FLOW20 climate 

change scenarios) considered by Santy et al. (2020). In this study, based on the literature and 

evidence of changes, these nine hypothetical climate change scenarios are considered.   

The chosen climate change scenarios offer a range of possibilities for future 

temperature increases and streamflow reductions, allowing us to assess the potential impacts 

on RWQ under various levels of severity. The scenarios range from T2 (°C), which 

represents a moderate increase, to T4 (°C), which signifies a more significant rise in AT. 

Recent climate change reports suggest that the global average AT has already risen by 

roughly 1°C compared to historical levels (IPCC 2023). The scenarios explore potential 

future increases beyond this current trend. All scenarios include a "Q" value, indicating a 

percentage reduction in streamflow. This reflects concerns about potential changes in 

precipitation patterns due to climate change. The scenarios range from Q0 (no reduction) to 

Q20 (20% reduction). Recent observations in some regions already show signs of altered 

precipitation patterns, with both increased flooding and drought events (e.g., Chennai floods). 

These scenarios explore potential future changes in streamflow severity. 

Table 5.6 shows that the RWT (◦C) values increase, and the percentage of DO 

decreases with nine representative hypothetical climate change scenarios for three 

catchments with respect to historical values. The magnitude of RWT increases is higher for 

Musi and Ganga catchment sites and variations in RWT relative to the observed mean values 

noted 5.00, 4.30 ◦C, respectively (Table 5.6). Moderate variations in RWT are projected 

relative to the observed mean, noted as 3.00 ◦C for Tunga-Bhadra (Table 5.6). 

 Table 5.6 listed the DO decrease percentage with respect to monthly RWTs for 

historical and projected with nine hypothetical scenarios for three Indian catchments. 

According to Table 5.6, due to the increase of AT, and RWT, the DO percentages decreased 

for all the climate change scenarios. The magnitude of DO concentrations decreases with 

respect to RWT increases is higher for Musi and Ganga catchment sites, and the percentage 

of DO decreases for selected climate change scenarios relative to the historical values noted 
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9.07 and 13.22 %, respectively (Table 5.6). The low DO concentrations decrease observed 

for Tunga-Bhadra, and the percentage of DO decrease was noted as 4.64 % (Table 5.6). It is 

also found that RWT increase and DO decrease is not much influenced when the streamflow 

is reduced for all three catchments (Table 5.6). It may be noted that for scenarios of increased 

AT and reduced streamflow, DO is low for all three catchments. And DO is the lowest for 

scenario T4Q0. Therefore, scenario T4Q0 can be considered as the critical climate change 

scenario for all three catchments. Overall, the largest DO decreases were found in the Ganga 

catchment (Table 5.6). 

Table 5.7 listed the rate of change of DO saturation levels under a average river water 

temperatures 𝑑𝑜𝑠(𝑇) 𝑑𝑇⁄  ((mgO2/L)/°C) for observed and future climate change scenarios 

(T4Q0, T4Q10, T4Q20) for three Indian catchments. The magnitude of DO decrease with 

respect to average RWT increase is higher for Musi, and Ganga catchments, and variations in 

the rate of change of oxygen saturation for T4Q0 scenario relative to the historical values 

were noted as a drop of about 0.013, 0.018, and 0.019 (mgO2/L)/°C, respectively (Table 5.7). 

Overall, results indicated that DO with respect to RWT over three Indian catchments would 

likely drop by more than 0.016 (mgO2/L)/°C for future climate change scenarios (T4Q0, 

T4Q10, T4Q20) (Table 5.7). 
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Figure 5.3. Seasonal, temporal variations of the mean annual air temperature (red), water temperature (light blue), and dissolved 

oxygen (blue) of the seven catchment stations (a) Narmada (b) Cauvery (c) Sabarmati (d) Tunga-Bhadra (e) Musi (f) Godavari (g) 

Ganga. Linear regressions of the time series are represented by trend lines, and the slope parameters are trend estimations.   
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Figure 5.4. (a) time series of monthly dissolved oxygen concentration (mgO2/L) and river 

water temperature (oC) for the period 2001-2015 at Ganga catchment, and (b) monthly mean 

dissolved oxygen concentration (mgO2/L) and river water temperature (oC) based on 14 years 

average at Ganga catchment for the period 2001-2015. 
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Figure 5.5. Time series plot of monthly air temperature (oC) (blue), water temperature (oC) 

(red), and streamflow (m3/sec) (green) of the three catchment stations (a) Musi (b) Tunga-

Bhadra (c) Ganga. 
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Table 5.1. Seasonal period Spearman’s correlation coefficients between air and water 

temperature variables at different catchment areas. Values in parenthesis indicate correlation 

coefficients between streamflow and water temperature variables. 

Catchment 

Correlation Coefficient (RWT- AT) (RWT - Q) 

Summer 

(March-

May) 

Monsoon (June 

– September) 

Post-monsoon 

(October – 

November) 

Winter 

(December – 

February) 

Annual 

Tunga-Bhadra 0.47(-0.58) 0.32(-0.30) 0.25(-0.21) 0.01(-0.07) 0.43(-0.15) 

Musi 0.67(-0.44) 0.38(-0.08) 0.57(-0.34) 0.40(-0.38) 0.63(-0.28) 

Ganga 0.87(-0.12) 0.19(-0.04) 0.66(-0.41) 0.06(-0.09) 0.66(-0.33) 

 

Table 5.2. Overview of kNN-LSTM, LSTM, modified nonlinear regression model (van Vliet 

et al. 2011), and air2stream model performances based on streamflow (Q[t]), air temperature 

(AT[t]) as input variables for Tunga-Bhadra, Musi, and Ganga catchments. The values 

displayed all referred to the testing period. For LSTM and kNN-LSTM model, included the 

time-lag effects of streamflow, air, and water temperatures (Q[t-1], AT[t-1], RWT[t-1]) as 

additional input variables. 

Catchment Model NSE   KGE  RMSE  RSR  MAE 

Tunga-

Bhadra 

 

kNN_LSTM 0.46 0.53 1.74 0.74 1.05 

LSTM 0.27 0.38 1.98 0.85 1.59 

van Vliet 0.25 0.29 1.89 0.86 1.34 

air2stream 0.04 0.08 2.12 0.96 1.89 

Musi 

kNN_LSTM 0.75 0.82 1.00 0.51 0.71 

LSTM 0.38 0.45 1.95 0.78 1.35 

van Vliet 0.45 0.53 1.57 0.74 1.19 

air2stream 0.21 0.32 2.19 0.88 1.62 

Ganga 

kNN_LSTM 0.94 0.96 1.15 0.25 0.79 

LSTM 0.85 0.81 2.13 0.39 1.70 

van Vliet 0.60 0.67 3.08 0.64 2.41 

air2stream  0.70 0.73 3.03 0.54 2.24 
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Figure 5.6. Boxplots represent the Representative Concentration Pathway (RCP) 8.5 experiments air temperature (°C) values; 

projected water temperature (°C) and dissolved oxygen (mgO2/L) values of historical, 2021-2050, and 2071–2100 for seven 

catchments.   
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Figure 5.7. (a) The rate of change of oxygen saturation under mean river water 

temperature 𝑑𝑜𝑠(𝑇) 𝑑𝑇⁄  ((mgO2/L)/°C) for historical and projected (2071-2100) data for 

seven Indian catchments. The vertical dotted lines indicate the mean of historical (Twhist °C) 

and projected (2071-2100) (Twproj °C) water temperatures, and (b) the DO concentration 

(mgO2/L) scale with respect to the observed (blue color) and projected (2071-2100) (maroon 

color) minimum, maximum and mean water temperature (°C) levels of seven Indian 

catchments.  
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Table 5.3. The rate of change of oxygen saturation levels under a minimum, maximum, and average river water temperatures (in 

parentheses) (𝑑𝑜𝑠(𝑇) 𝑑𝑇⁄  ((mgO2/L)/°C)) for historical and projected (2071-2100) at respective elevations for seven Indian catchments. Set 

the Salinity (S) value for seven river catchments to zero. 

Catchment 
 Elevation 

(k) in km 

Historical data Projected data (2071-2100) 𝒅𝒐𝒔(𝑻) 𝒅𝑻⁄  variation  

𝑑𝑜𝑠(𝑇) 𝑑𝑇⁄  

(Twmin (°C)) 

(1) 

𝑑𝑜𝑠(𝑇) 𝑑𝑇⁄  

(Twmax (°C)) 

(2) 

𝑑𝑜𝑠(𝑇) 𝑑𝑇⁄  

(Twmean (°C)) 

(3)   

𝑑𝑜𝑠(𝑇) 𝑑𝑇⁄  

((Twmin °C)) 

(4) 

𝑑𝑜𝑠(𝑇) 𝑑𝑇⁄  

(Twmax (°C)) 

(5) 

𝑑𝑜𝑠(𝑇) 𝑑𝑇⁄  

(Twmean (°C)) 

(6)   

(1) – (4) (2) – (5) (3) – (6) 

Narmada 0.30 -0.191 (17.5) -0.110 (35.0) -0.148 (24.7) -0.156 (23.2) -0.098 (39.8) -0.124 (30.6) -0.035 -0.012 -0.024 

Cauvery 
 

0.08 -0.151 (25.0) -0.103 (38.0) -0.128 (30.4) -0.139 (27.7) -0.106 (37.5) -0.123 (31.7) -0.012 -0.003 -0.005 

Sabarmati 0.05 -0.216 (15.0) -0.105 (38.0) -0.137 (28.1) -0.160 (23.4) -0.109 (36.6) -0.126 (31.1) -0.056 0.004 -0.011 

Tunga-Bhadra 0.50 -0.153 (23.0) -0.107 (35.0) -0.137 (26.4) -0.137 (26.5) -0.105 (35.9) -0.123 (30.0) -0.016 -0.002 -0.014 

Musi 
 

0.09 -0.182 (19.5) -0.113 (35.0) -0.137 (27.9) -0.164 (22.4) -0.103 (38.6) -0.119 (33.0) -0.018 -0.010 -0.018 

Godavari 0.02 -0.180 (20.0) -0.114 (35.0) -0.137 (28.2) -0.148 (25.8) -0.117 (34.0) -0.128 (30.5) -0.032 0.003 -0.009 

Ganga 0.10 -0.228 (13.5) -0.113 (34.9) -0.148 (25.6) -0.182 (19.4) -0.100 (40.2) -0.123 (31.8) -0.046 -0.013 -0.025 
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Table 5.4. The DO concentrations and percentage of DO decrease with respect to monthly average summer and winter (in 

parentheses) water temperatures for historical and projected (2071-2100) with Representative Concentration Pathway (RCP) 8.5 

experiments for seven Indian catchments. 

Catchment 
Historical data Projected data (2071-2100) RWT  

(°C increase) 

DO 

(%decrease) 

Twmean (°C) DO (mgO2/L)   Twmean (°C) DO (mgO2/L)    

Narmada 26.14 (22.42) 7.80 (8.37) 33.90 (27.08) 6.83 (7.68) 7.76 (4.66) 12.44 (8.24) 

Cauvery 32.19 (29.78) 7.22 (7.52) 32.68 (30.43) 7.15 (7.43) 0.49 (0.65) 0.97 (1.20) 

Sabarmati 28.60 (24.85) 7.70 (8.24) 32.39 (27.13) 7.21 (7.90) 3.79 (2.28) 6.36 (4.13) 

Tunga-Bhadra 27.60 (25.78) 7.43 (7.67) 30.66 (28.62) 7.04 (7.29) 3.06 (2.84) 5.25 (4.95) 

Musi 29.03 (25.82) 7.60 (8.05) 34.80 (29.37) 6.89 (7.56) 5.77 (3.55) 9.34 (6.09) 

Godavari 29.12 (26.59) 7.66 (8.01) 30.94 (27.88) 7.41 (7.82) 1.82 (1.29) 3.26 (2.37) 

Ganga 25.04 (19.44) 8.15 (9.09) 32.34 (26.40) 7.18 (7.96) 7.30 (6.96) 11.90 (12.43) 
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    Table 5.5.  Climate change scenarios considered. 

Scenario No. Name Description 

1 T2Q0 Air temperature increase by 2°C with no change in streamflow 

2 T2Q10 Air temperature increase by 2°C & streamflow reduce by 10% 

3 T2Q20 Air temperature increase by 2°C & streamflow reduce by 20% 

4 T3Q0 Air temperature increase by 3°C with no change in streamflow 

5 T3Q10 Air temperature increase by 3°C & streamflow reduce by 10% 

6 T3Q20 Air temperature increase by 3°C & streamflow reduce by 20% 

7 T4Q0 Air temperature increase by 4°C with no change in streamflow 

8 T4Q10 Air temperature increase by 4°C & streamflow reduce by 10% 

9 T4Q20 Air temperature increase by 4°C & streamflow reduce by 20% 
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Table 5.6. River water temperatures (Tw) increase and the percentage of DO decreases with nine representative hypothetical climate 

change scenarios for three catchments. Values in parenthesis indicate the percentage of DO decrease. 

Catchment  

Observed catchment mean Projected Tw (oC) increase, and respective percentage DO saturation levels decrease 

for below Scenarios 

Ta 

(°C)  

Tw 

(°C)   

Q 

(m3/sec) 

DO 

(mgO2/L) 

T2Q0 

(1) 

T2Q10 

(2) 

T2Q20 

(3) 

T3Q0 

(4) 

T3Q10 

(5) 

T3Q20 

(6) 

T4Q0 

(7) 

T4Q10 

(8) 

T4Q20 

(9) 

Tunga-

Bhadra 

24.20 26.30 82.50  7.55 1.90 

(2.78) 

1.87 

(2.78) 

1.82 

(2.65) 

2.40 

(3.58) 

2.40 

(3.58) 

2.40 

(3.58) 

3.00 

(4.64) 

2.97 

(4.64) 

2.93 

(4.50) 

Musi  
28.10 28.00 16.70  7.82 2.41 

(5.12) 

2.41 

(5.12) 

2.41 

(5.12) 

3.73 

(7.28) 

3.73 

(7.28) 

3.73 

(7.28) 

5.00 

(9.21) 

4.92 

(9.07) 

4.92 

(9.07) 

Ganga 
25.70 25.60 949.68  8.62 2.74 

(10.79) 

2.72 

(10.79) 

2.69 

(10.79) 

3.54 

(12.06) 

3.51 

(12.06) 

3.48 

(11.95) 

4.30 

(13.22) 

4.28 

(13.22) 

4.22 

(13.11) 

 

 

Table 5.7. The rate of change of oxygen saturation levels under an average river water temperatures (in parentheses) (𝑑𝑜𝑠(𝑇) 𝑑𝑇⁄  

((mgO2/L)/°C)) for historical and future climate change scenarios (T4Q0, T4Q10, T4Q20) at respective elevations for three Indian 

catchments. Set the Salinity (S) value for three river catchments to zero. 

Catchment 
 Elevation 

(k) in km 

Historical 

data 
Projected hypothetical scenario 𝒅𝒐𝒔(𝑻) 𝒅𝑻⁄  variation  

𝑑𝑜𝑠(𝑇) 𝑑𝑇⁄  

(Twmean (°C)) 

(1)   

𝑑𝑜𝑠(𝑇) 𝑑𝑇⁄  

(T4Q0) 

(2) 

𝑑𝑜𝑠(𝑇) 𝑑𝑇⁄  

(T4Q10) 

(3) 

𝑑𝑜𝑠(𝑇) 𝑑𝑇⁄  

(T4Q20) 

(4)   
(1) – (2) (1) – (3) (1) – (4) 

Tunga-Bhadra 0.50 -0.138 (26.3) -0.125 (29.3) -0.126 (29.27) -0.126 (29.23) -0.013 -0.012 -0.012 

Musi 
 

0.09 -0.137 (28.0) -0.119 (33.0) -0.119 (32.92) -0.119 (32.92) -0.018 -0.018 -0.018 

Ganga 0.10 -0.148 (25.6) -0.129 (29.9) -0.129 (29.88) -0.130 (29.82) -0.019 -0.019 -0.018 
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5.5. Discussion 
 

This chapter presents new intuitions on the assessment of climate change impacts on 

saturated DO concentrations with respect to RWT for seven different catchment sites across 

India in different physiographic settings. For this, using the monthly kNN-LSTM prediction 

model, which was developed in Chapter 4, based on AT, including time-lag effects, forced 

with GCM based RCP scenarios (Figure 5.1), demonstrates rising RWTs will reduce a river's 

assimilative capacity by affecting its oxygen metabolism, in addition to lowering saturation. 

This chapter also presents the combined effects of streamflow and AT in prediction of RWT 

using the kNN-LSTM model, LSTM model, a modified nonlinear regression model, and an 

8-parameter version air2stream when applied to three major river systems of India. Further 

quantified the climate change impact DO saturation levels using the kNN-LSTM model 

forced with nine hypothetical climate change scenarios (Figure 5.1).  

The monthly NSE scores ranged between 0.04–0.94, KGE scores ranged between 

0.08–0.96, RSR scores ranged between 0.25–0.96, and RMSE scores were ≤ 3 °C during the 

testing periods, revealing high model reliability. All the developed model statistical metrics 

covered the range of model reliability described in the literature. The RMSE scores for all 

three catchments ranged between 1.00 - 2.13 °C pertaining to all DL models (Table 5.2) for 

monthly data, which are reasonable in comparison to DL models developed in Chapter 4 

(1.199 - 3.294 °C). The NSE values for Musi (0.75), and Ganga (0.94) catchments pertaining 

to all DL models for monthly data (Table 5.2), which are sensible in comparison with models 

developed in Chapter 4 (Musi (0.735), and Ganga (0.920)) and the earlier model of LSTM by 

Qiu et al. (2021) (0.74 - 0.99). Overall, in this study, the kNN-LSTM model’s performance 

was better when modeling monthly data by including streamflow as an additional input 

variable, demonstrating that coupling with the k-NN bootstrap resampling algorithm would 

yield more precise results, which agrees with the Chapter 4 studies based on AT and 

guaranteed results to outperform standalone DL models, nonlinear regression models and 

air2stream models (Table 5.2). 
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Assessment of Projected Changes in RWT and DO Saturation Levels under RCP 

scenarios: 

The RWT increases up to 7 oC for summer, reaching close to 35 oC, decreases DO by 

2%–12%, thus decreasing the saturation capacity for DO for 2071–2100. DO concentration 

(mgO2/L) scale scores dropped from 7.9 to 7.3 mgO2/L respective to the observed and 

projected (2071-2100) mean RWT levels of seven catchments.  These scores reveal that DO 

concentration (mgO2/L) values are dropping for projected years as RWTs rise. The RWT 

increases of up to7 oC for summer, demonstrated in this work, were found to agree with 

Chapra et al. (2021) (5 oC increments in summer RWTs in most of the world’s rivers over the 

next 50 years). The DO concentration (mgO2/L) scale scores, as demonstrated in this work, 

were found to agree with Du et al. (2019) (DO concentrations on the basin average scale will 

decrease by 0.72 mgO2/L under RCP 8.5 scenario for 2061-2100) and Chapra et al. (2021) 

(DO oxygen concentrations are 9.0 and 6.8 mgO2/L for freshwater temperatures 20 and 35 

°C, respectively).  

The percentage of DO decrease with respect to summer RWTs is higher for Narmada, 

Musi, and Ganga catchment sites for 2071–2100 relative to the historical values noted as 

12.4, 9.3, and 11.9 %, respectively, probably because of the influence of disposal of 

untreated sewage and industrial wastewater along with due to increased reaction kinetics at a 

higher temperature under climate change scenarios (Table 5.4). In this study, overall, for all 

seven catchments, the decrease in DO is 8% for the plausible future (2071–2100) (Figure 

5.7b and Table 5.4). These projected change patterns are most consistent with earlier 

hydrological model studies by Ficklin et al. (2013) (10% decreases in DO by 2100 at Sierra 

Nevada in California, USA) and by Du et al. (2019) (DO decrease on the basin average scale 

by 0.72 mgO2/L under RCP 8.5 scenario for 2061-2100 in the Athabasca River Basin, 

Canada).  

 

Assessment of Projected Changes in RWT and DO Saturation Levels under 

Hypothetical Scenarios: 

This section presents the discussion about the assessment of climate change impacts on 

saturated DO concentrations with respect to RWT for three different catchment sites across 

India. For this, forcing the monthly kNN-LSTM prediction model with hypothetical climate 
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change scenarios demonstrates rising RWTs will reduce a river's assimilative capacity by 

affecting its oxygen metabolism, in addition to lowering saturation. The RWT increases up to 

5 oC, and decreases DO by 4.64%–13.22%, thus decreasing the saturation capacity for DO 

for the selected climate change scenarios. The percentage of DO decrease with respect to 

RWTs is higher for Musi and Ganga catchment sites for the T4Q0 climate change scenario 

relative to the historical values noted as 9.21, and 13.22 %, respectively (Table 5.6). Based 

on the results from the nine hypothetical scenarios, it was observed that streamflow played a 

minor role in explaining the RWT, which agrees with the earlier studies (Zhu et al. 2019f; 

Drainas et al. 2023). In this study, overall, for all three catchments, the decrease in DO is 9% 

for the plausible climate change scenarios (T4Q0) (Table 5.6). These projected change 

patterns are most consistent with RCP results discussed in Section 5.4 (8% decrease in DO 

by 2100 for Indian catchments (Table 5.4)). 

Overall, this study demonstrated how river oxygen levels would be influenced by 

rising RWT due to climate change using the kNN-LSTM model for the Indian riverine 

system under sparse data. The rising RWTs will reduce river assimilative capacity by 

affecting its oxygen metabolism, in addition to lowering saturation, and necessitates 

redefining/alterations of the river water quality standards under climate change. 

Furthermore, the DO simulated by Equation (5.1) is the saturated oxygen 

concentration, which is the total amount of DO that can be dissolved within the streamflow 

volume, and thus, it can be expected that the DO concentrations presented in this study 

represent the ceiling of potential DO levels. Though the performant hybrid kNN-LSTM 

model is used in this chapter, further research is needed for better RWT model to estimate 

accurate DO saturation levels. This study uses highly idealized hypothetical scenarios for 

inferring the impacts of streamflow, AT effect on the water quality of the catchments 

considered. Projections of future climate change from GCMs will provide more realistic 

insight into the problem. This study set the Salinity (S) value for seven river catchments to 

zero because most rivers and streams had minimal salinity (Chapra et al. 2021). Overall, this 

research offers vital intuitions about the historical and projected RWT and DO states of 

major Indian river catchment locations, which may be beneficial in creating future water 

management plans that may impact aquatic resources. 
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5.6. Chapter Summary  

This chapter demonstrates the climate change impacts on saturated DO concentrations with 

respect to RWT for the seven major polluted Indian catchments at a monthly timescale. First, 

the hybrid kNN-LSTM model was used, which was implemented in Chapter 4 to predict the 

RWT addressing sparse spatiotemporal RWT data. Further assessed the climate change 

impacts on DO concentrations with respect to RWT using a forced by an ensemble of RCP 

8.5 scenario downscaled projections of AT data from the NEX-GDDP dataset. Further, 

demonstrates the climate change impacts on water quality indicators such as RWT, and 

saturated DO concentrations under nine highly hypothetical climate change scenarios of AT 

and streamflow for the three major polluted Indian catchments at a monthly timescale. For 

this, the hybrid kNN-LSTM model (Chapter 4) is extended by including streamflow as an 

additional input variable to predict the RWT.  The results lead to the following conclusions: 

1. The hybrid kNN-LSTM model outperforms the standalone LSTM model, nonlinear 

regression model, and air2stream model under limited data scenarios for the 

prediction of RWT when including discharge as feature variable in addition to AT, 

which agrees with the Chapter 4 studies. 

2. An increase in AT will have an effect on RWTs, and saturated DO concentrations. 

The latter will trigger higher RWT and lower DO concentration. These changes 

appear especially significant for the summer seasons and include RWT increases of 

up to7 oC for summer, reaching close to 35 oC, decreases of DO by 2%–12%, thus 

decreasing the saturation capacity for DO.  

3. The percentage of decrease of DO saturation levels with respect to summer RWTs is 

higher for Narmada, Musi, and Ganga catchment sites for 2071–2100 relative to the 

historical values noted as 12.4, 9.3, and 11.9 %, respectively.  

4. DO concentration (mgO2/L) scale scores dropped from 7.9 to 7.3 mgO2/L respective 

to the observed and projected (2071-2100) mean RWT levels of seven catchments. 

5. In hypothetical scenarios, RWT increases by 5 oC, and decreases DO by 4.8%–

13.2%, thus decreasing the saturation capacity for DO. The percentage of decrease of 

DO saturation levels with respect to increase of RWTs is higher for Musi and Ganga 

catchment sites for the selected climate change scenarios relative to the historical 

values noted as 9.21, and 13.22 %, respectively. 
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6. Additionally, it was found that streamflow played a minimal role in ML models for 

RWT predictions for the selected catchments in India. 

7. Overall, saturated DO concentration (mgO2/L) levels are dropping by 8% under the 

rise of summer RWT by more than 4.3 °C for 2071-2100. That is, for every 1 oC 

RWT increase, there will be about a 2.3 % decrease in DO saturation level 

concentrations over Indian catchments under climate signals. 

8. The study provides an assessment of the individual contribution of RWT rise on 

depletion of saturated DO levels, which is helpful for the policymakers and pollution 

control authorities for sustainable river water quality management in future climate 

change scenarios. 

 

Overall, the present chapter demonstrated the climate change impacts on DO saturation 

levels with respective RWT under data uncertainties. 
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Chapter 6 

CONCLUSIONS AND FUTURE DIRECTIONS 

6.1. Conclusions 
 

The research reported in this thesis contributes to developing methodologies for RWQ 

modeling. The data sparseness is the problem of sampling which leads to a lack of complete 

data. Data sparseness comes from the frequency of measurements, if the frequency is high no 

data sparseness. In this thesis na.interp() method in R's forecast library was utilized to 

interpolate the missing observations using the STL (Seasonal and Trend decomposition using 

Loess) decomposition (Hyndman et al. 2018). In the introduction to this thesis, several 

questions were posed regarding the ability of ML approaches to predict RWQ variables in 

scenarios with minimum input variables, a lack of long-time series data, non-stationary data, 

and moreover how climate change impacts RWQ variables. In order to tackle these 

questions, new methods were proposed and evaluated them for Indian river systems by 

considering the two most important water quality variables, i.e., RWT and DO saturation 

concentration levels. The summary of the research findings from this study is presented here. 

Q1: “How can sensitivity analysis reveal a deeper understanding of the underlying 

processes governing water quality in the river systems? How a sensitivity analysis 

can be coupled with ML approaches to select the best suitable and effective variables 

in predicting river water quality variables? How to assimilate theory-driven, 

understanding rich processes with data-driven approaches to improve the predicted 

values based on the measurement data?” 

The present study made efforts to identify the most sensitive AT variable (average, 

maximum and minimum) using Sobol’ sensitivity analysis method described in 

Section 3.2.2. Further The present study demonstrates how new ML approaches, such 

as Ridge regression (RR), K-nearest neighbors (KNN), Random Forest (RF), and 

Support Vector Regression (SVR), can be coupled with Sobol’ global sensitivity 

analysis (GSA) to predict accurate RWQ variables estimates with minimum data 

inputs. The results lead to the following conclusions: 

1. The results indicated that the maximum AT was the most sensitive variable in 

the prediction of RWT among average, minimum, and maximum AT 
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for Tunga Bhadra River system. 

2. The SVR has been noted as the most robust ML model to predict RWT at a 

monthly time scale compared to daily and seasonal. 

3. The study revealed that hybrid ML models, i.e., EnKF data assimilation 

algorithm with ML approaches improves the predicted values based on the 

measurement data in RWQ modeling. 

Overall, the study demonstrates how ML methods can be coupled with sensitivity 

analysis and DA techniques to generate accurate RWQ variables prediction under 

minimum data inputs (such as AT).  

 

Q2: “How to infer the relationships between river water quality indicators and 

hydroclimatic variables (e.g., Air Temperature (AT), streamflow)? How do different 

potentially influence lagged variables as additional predictive power features in river 

water quality modeling to improve the model performance under sparse, non-

stationary data, and seasonality scenarios?” 

In water quality modeling, long time series data is required to extract time 

characteristic information. To address these issues, the k-NN bootstrap resampling 

algorithm was used for generating simulated time-series data from historical data. To 

overcome both processing of limited data, and non-stationary in river water quality 

data, in this thesis the kNN-LSTM, and WT-LSTM hybrid ML models were 

developed to predict RWT under data uncertainties (Section 4.2). The results lead to 

the following conclusions: 

1. When WT and k-NN bootstrap resampling algorithms were included, LSTM 

outperformed the conventional models. 

2. The hybrid kNN-LSTM model yielded better performance results for five 

catchment sites (i.e., Narmada, Cauvery, Musi, Godavari, and Ganga) out of 

seven catchment sites than LSTM, WT-LSTM, and air2stream prediction 

models at a monthly scale. 

3. The widely used process-based model air2stream is used to validate the 

proposed ML models and to make the results comparable to previous studies. 

It was found that the 3-parameter version of air2stream mainly delivered the 
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lowest performance compared to LSTM, WT-LSTM, and kNN-LSTM models 

for almost every basin. 

4. Performed the continuous wavelet analysis to examine the variability of water 

quality variables and concluded that the water quality variables showed stable 

1-year periodicities for the whole duration of the time series and displayed a 

recurrent annual pattern. 

5. In this study, the kNN-LSTM model was tested using various monthly data 

points to see how the model performed for Musi and Ganga catchment 

stations with data limitations. It was observed that the kNN-LSTM was still 

producing good results with fewer monthly data time series values. 

 

Q3: “How do the climate change variables (e.g., temperature, precipitation) impact 

key physical processes within a river system (e.g., biological activities, dilution), 

ultimately influencing river water quality variables?” 

In this thesis, quantified the climate change impacts on the thermal regimes of rivers 

in India and possible variability in RWQ variables, i.e., RWT and DO saturation 

levels by using the best performance hybrid kNN-LSTM model forced with an 

ensemble of RCP 4.5, and 8.5 scenarios, and nine hypothetical climate change 

scenarios. The results lead to the following conclusions: 

1. The RWT increase for Tunga-Bhadra, Musi, Ganga, and Narmada basins are 

predicted as 3.0, 4.0, 4.6, and 4.7 oC, respectively for 2071-2100. 

2. Overall, RWT over Indian catchments is likely to rise by more than 3.0 °C for 

2071-2100. 

3. In summer seasons, the RWT reaching close to 35 oC, decreases DO by 2%–

12%, thus decreasing the saturation capacity for DO for 2071-2100. 

4. The percentage of decrease of DO saturation levels with respect to summer 

RWTs is higher for Narmada, Musi, and Ganga catchment sites for 2071–

2100 relative to the historical values noted as 12.4, 9.3, and 11.9 %, 

respectively. 

5. DO concentration (mgO2/L) scale scores dropped from 7.9 to 7.3 mgO2/L 

respective to the observed and projected (2071-2100) mean RWT levels of 
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seven catchments. 

6. In this study, the hybrid kNN-LSTM model (Chapter 4) is extended by 

including streamflow as feature variable in addition to AT to predict the 

RWT and compared the results with standalone LSTM, a modified nonlinear 

regression model, and 8-parameter version Air2Stream (Section 5.4). It was 

observed that kNN-LSTM was still producing good results, which agrees 

with the Chapter 4 studies. 

7. In hypothetical climate change scenarios, RWT increases by 5 oC, and 

decreases DO by 4.8%–13.2%, thus lowering the DO’s saturation capacity. 

The percentage of decrease of DO saturation levels with respect to increase of 

RWTs is higher for Musi and Ganga catchment sites for the selected climate 

change scenarios relative to the historical values noted as 9.21, and 13.22 %, 

respectively. 

8. Additionally, it was found that streamflow played a minimal role in ML 

models for RWT predictions for the selected catchments in India. 

9. Overall, for every 1 oC RWT increase, there will be about 2.3 % decrease in 

DO saturation level concentrations over Indian catchments under climate 

signals. 

 

Overall, the thesis describes methodologies for prediction of RWQ variables under data 

uncertainties using the hybrid ML algorithms and further assessed the climate change 

impacts on RWQ variables. The proposed methods, demonstrated methodologies, 

frameworks are generic and can be implementable for any given river water quality variables 

for river water quality management.  

 

 

6.2. Limitations and Future Work 
 

The methods described in this thesis are generic, can be extended and further improved to 

handle different types of data and tasks. Also, the results of this thesis suggest a number of 

interesting research avenues for future work. Discussed some methodological improvements 

and potential new directions here. 
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1. The methodologies described in Chapter 3 and Chapter 4 are considered AT alone 

as the input variable, and in Chapter 5 is considered streamflow as feature 

variable in addition to AT to predict the water quality variables. However, other 

feature variables such as radiation, wind speed, etc., were not examined in this 

work due to a lack of complete data. Therefore, the hybrid modeling framework 

can be developed by integrating solar radiation, wind speed, etc., as model inputs 

which is potential future research. 

2. The methodologies described in Chapter 4 are considered the kNN bootstrap 

resampling algorithm to simulate the water quality data by feeding the limited 

number of observational water quality data. As part of surrogate modeling, use 

process-based model component to simulate the water quality data and use these 

data points as training samples for the data-driven component forms another 

potential future research. 

3. The methodologies described in Chapter 4 is considered the Daubechies wavelet 

of order 5 (DB5), was chosen to train the WT-LSTM model. Using different types 

of DWTs to train the WT-LSTM model and assess the model performances leads 

to potential future research.  

4. It can be observed that inherent uncertainties from each of the DL models can 

accumulate and can affect the final performance measures. Furthermore, each DL 

model can predict unique water quality value, leading to model uncertainty. 

Furthermore, to address such model uncertainties originating from various DL, 

the ensemble of DL models, stacking algorithms, etc. (Song et al. 2020; 

Piotrowski et al. 2021) can be adopted as an extension to current methodology, 

which can combine water quality variable predictions from various DL models. 

5. Lastly, throughout the thesis the proposed modeling framework is demonstrated 

with the RWT and DO saturation levels as the river water quality variables for 

seven majorly polluted catchments of India. However, the methodologies 

developed in this thesis are generic and are applicable for other water quality 

variables. 
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