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Abstract

In the healthcare domain, medical and patient interactions are crucial for diagnosis. Initially, AI
models developed for healthcare centered only on monolingual data. However, such models do not
cater to the multilingual regions, where most conversations are Code-Mixed. Our thesis concentrates on
developing the Code-Mixed Medical Task-Oriented Dialog System. This task-oriented dialog system
aims to help the user consult a medical specialist based on their symptoms. We train the dialog system
on the code-mixed task-oriented dialog dataset ‘Su-Vaid’. The dataset contains 3005 Telugu-English
Code-Mixed dialogues between patients and doctors with 29k utterances covering ten specializations
with an average code-mixing index (CMI) of 33.3%.

The major components of our dialog system are Natural Language Understanding (NLU), Dialog
Manager (DM), and Natural Language Generation (NLG) modules. We manually annotated the con-
versational dataset with intent and slot labels. We also present baselines to establish benchmarks on the
dataset using existing state-of-the-art Natural Language Understanding (NLU) models. We improved
the existing baselines using contextual ground truth intent labels and processing the slots as chunks. We
have used Rule-based Dialog Manager and template-based NLG module in our Dialog System.

While interacting with the system, the user may fail to mention a few symptoms. In such a case,
the dialog system must remind the user by suggesting relevant symptoms. We have incorporated a
suggestion system into our dialog system. Apart from interacting with the user to recommend the
medical specialist, the dialog system needs to be more human-like (empathetic). Also, human-human
conversations in the healthcare domain are mostly empathetic. To achieve human-like behavior, we have
included empathy via language accommodation in our dialog system.

Also, interactions between patients and medical practitioners can sometimes be challenging. Health
care workers are at greater risk of workplace abuse than most other workers, with nurses and family
physicians rated as most at risk of abusive encounters with patients. Types of abusive encounters range
in severity, from verbal threats to more extreme encounters, such as stalking and physical assault. Hate
speech and physical abuse must be strongly condemned for a better function of health care. Such
conversations must be identified by the system so that the system can take necessary action on such
users. So we have included hate speech detection in our dialog system.

Finally, we have evaluated all the major components of our dialog system using state-of-the-art
baselines and classification metrics and we chose the top performing models to integrated them into the
final version of the system.
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Chapter 1

Introduction

Giving machines the ability to communicate with humans has been one of the fundamental objectives
in the field of natural language processing. As compelling as it is challenging, developing dialogue
systems capable of satisfying the end-user on a par with human-human interaction remains an elusive
target. Narrower in scope than general-purpose conversational assistants, task-oriented dialogue (ToD)1

systems have attracted interest in research and business communities.
New milestones are reached across natural language applications with the growing viability of deep

learning techniques that have recently catalyzed dialogue-oriented research [184]. With the improve-
ment of Neural Network methods in dialogs, there has been a surge in the development of task-oriented
dialog systems in various domains such as ticket booking [99], online shopping [176] and restaurant
searching [166]. Conversational systems that focus on doctor-patient interactions are a significant con-
tribution to the health domain [182, 97, 161].

Over the last decade, it was evident that the dialog systems have shown a significant benefit for
health-related purposes [97]. Use of personal conversational agents for healthcare has shown significant
improvements in improving the mental health of patients [162, 37], improvements in physical activity
[103], improvement in balanced diet [7], and accessibility to online health information [14]. Most of the
research on healthcare conversational systems was focused on the monolingual data [97] with a majority
of the corpus in the English language. However, in several multilingual regions of the world, it is natural
for speakers to produce utterances and responses which are Code-Mixed.

1.1 Code-Mixing Phenomenon

The use of Code-Mixed (CM) utterances is observed in healthcare conversations in a multilingual
community. It is observed that physicians often use their language accommodation skills, such as code-
mixing, to communicate with their patients in an ethical and supportive manner [170]. The use of
code-mixed utterances allows the patient to express their medical condition freely [158]. In the western
states, the physicians used African American English (AAE) to connect with the patient when discussing

1Task-oriented dialog systems can solve a particular task by conversing with the users.
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S Utterance

p good evening sir.

p sir ixi 2 days back vaccAnu sir.

(I came 2 days before.)

d A.

(Ok.)

p spray koVttukunna waruvAwa oVka nasal block avuwuMxi sir, oVka nasal free

avuwuMxi sir.

(After using spray, I am experiencing blockage in one nostril and another nos-

tril is free.)

d A.

(Ok.)

p day by day itla avuwuMxi.

(This is happening daily.)

d A.

(Ok.)

p koVMcaM breathing, 80 percent sneezing wakva ayiMxi.

(Slightly breathing problem and 80 percent sneezing has decreased.)

d A axi kUdA sakkagA ayiwaxi.

(It will also reduce.)

p A

(Ok.)

d meVllagA slowgA ayiwaxi.

(Gradually, slowly, it will decrease.)

Table 1.1 A Code-Mixed Telugu-English doctor-patient conversation. S, d, p refers to speaker, doctor,

and patient, respectively. The Telugu script is written in wx format and italicized. Translations are given

in brackets.

personal matters and Standard American English (SAE) to professionally communicate and elicit infor-
mation regarding medical issues [170]. The Telugu-English Code-Mixed conversation is prevalent in
doctor-patient television shows where the doctor interacts with the patient via telecommunications to
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give diagnostic advice. Such television shows are LifeLine-TV92 and Dr. ETV3. Table 1.1 shows an
example of the code-mixed doctor-patient interaction obtained from our corpus. When engaging in such
conversations, we can see that it is very natural for such speakers to use code-mixed utterances, mixing
their native language with English.

CM Sentence: day by day itla avuwuMxi

Language: EN EN EN TE TE

Gloss: day by day this happens

Translation: This happens day by day

Table 1.2 A CM Telugu-English Utterance, with EN being English and TE being Telugu languages.

In multilingual real-life conversations, it is natural for humans to transition between different lan-
guages while still maintaining coherent contexts. This transitioning of languages is termed Code-
Mixing. Code-Mixing is a well-studied linguistic phenomenon in the field of bilingual and multilin-
gual speech communities. According to [65], Code-Mixing is a “juxtaposition within the same speech
exchange of passages of speech belonging to two different grammatical systems or sub-systems. Ac-
cording to [115], Code-Mixing refers to the embedding of linguistic units such as phrases, words, and
morphemes of one language into an utterance of another language. An example of CM Telugu-English
utterance is given in Table 1.2, “day by day itla avuwuMxi”. The initial part of the sentence “day by
day” is in English, and the end of the sentence, i.e., the italicized part, is in Telugu.

Code-Mixing poses a significant challenge for language technologies due to the intricate fusion of
both the languages. Also, one would need to use both syntactic and semantic language processing
methods for both the languages simultaneously [8].

Linguists such as [66, 143, 74, 77] theorized that people code-mix/switch for a certain purpose. i.e.,

1. Show oneness with another person’s community

2. Show-off

3. Emphasize

4. Clarify a particular topic

5. Repeat in another code to re-emphasize

6. Be fluent
2https://www.youtube.com/watch?v=-4NQ8AEtXdE&list=PLlRkq6AzK4ZTPyFBOKNVc6GqD_

HzZjHtE
3https:/hhhh/www.youtube.com/watch?v=8-fg-VG-el8&list=PLN5na6FPUL3nta_

1KdsieSiCnr-FHlcFR
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7. Maintain a wider vocabulary

According to [147, 114, 65, 58, 12], Code-Mixing often depends on:

1. Languages involved - the proficiency, familiarity, and cultural significance of the languages for
the speakers involved can influence the frequency and extent of code-mixing.

2. Geographical locations - The geographical location where code-mixing takes place can have an
impact. In regions with multilingual communities or areas where different languages coexist,
code-mixing is more likely to occur.

3. The difference in language interaction - code-mixing may be more prevalent in bilingual commu-
nities where both languages are used interchangeably in different domains, such as at home, at
work, or in social gatherings. Additionally, the purpose and formality of the interaction can also
affect the degree of code-mixing.

4. Social context - The social context in which language is used can impact code-mixing. Different
social situations, such as formal or informal settings, family gatherings, workplace environments,
or online interactions, may encourage or discourage code-mixing. Social factors like age, educa-
tion level, social status, and group dynamics can also play a role in determining the occurrence
and extent of code-mixing.

5. Language proficiency - Speakers who are more fluent and comfortable in one language may code-
mix to compensate for gaps in vocabulary or express complex ideas. In contrast, speakers with
high proficiency in multiple languages may code-mix as a form of linguistic creativity or as a way
to signal identity or group membership.

6. Language dominance - In communities where one language is considered prestigious or associ-
ated with higher status, code-mixing may occur as a way to incorporate or align with that dominant
language while still maintaining elements of the native or heritage language.

7. Inter-generational transmission - In families or communities where different generations have
varying levels of language proficiency, code-mixing can occur as a means of communication
and bridging generational gaps. Younger generations may mix languages to accommodate older
family members who are more comfortable in their heritage language, while also incorporating
elements of the dominant language.

8. Language policy - Language policies implemented by governments or educational institutions
can impact code-mixing. Policies that promote bilingualism or multilingualism may encourage
code-mixing as individuals navigate between different languages.

So far, most of the research in code-mixing focused on POS tagging and Language Identification
[159, 11, 104], identifying the code-switched points [148, 179]. discourse analysis [149], sentiment
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analysis [23, 24] and hate speech detection [15, 25, 29], named entity recognition [2, 124]. A major
limitation in the computational processing of code-mixed text is the lack of end-to-end user applications
that interact directly with the users in multilingual communities.

A few conversational datasets are proposed to promote work on multilingual and code-mixed di-
alogs. They are Code-Mixed DSTC2 dataset [10], MultiATIS++ [175], FMTOD datasets [142], A
task-oriented Dravidian dataset [86]. Code-Mixed DSTC2 dataset is obtained from the original DSTC2
restaurant conversational corpus [73]. Every utterance from the DSTC2 restaurant reservation dataset is
converted to a code-mixed utterance using crowd sourcing, thereby indicating that the data wasn’t ob-
tained from real-time code-mixed conversations. Similarly, the ATIS corpus [72] is translated into var-
ious languages to construct the Multi ATIS++ corpus. Even the task-oriented Dravidian dialog dataset
used English utterances and converted them to multilingual Malayalam and Tamil utterances [86]. Face-
book’s FMTOD dataset [142] is constructed from real-life utterances but lacks multi-turn conversations.
Therefore, there was still a need to develop datasets that focus on real-life code-mixed conversations
that support multi-turn scenarios.

In the context of code-mixed healthcare, [147] pointed out that understanding how patients feel if
they are open will help to give better care, enable better communication, and better uptake of preventa-
tive care. Thus, it motivates us to create datasets containing multilingual and code-mixed conversations
and thus facilitate the development of code-mixed conversation systems in the medical domain.

Therefore, we created a code-mixed task-oriented dialog dataset that captured conversations between
doctors and patients in Telugu and Dakhini. Telugu and Dakhini are spoken in Telangana and Andhra
Pradesh, the two states of South India. The matrix language used in the CM dialog dataset is either in
Telugu language or Dakhini. Telugu is the regional language spoken in Telangana and Andhra Pradesh,
the two states of South India. Telugu ranks fourth among the Indian languages with the highest number
of native speakers in India, with nearly 82 million speakers4. It is also the 15th most spoken mother
language in the world5. It is the most widely spoken member of the Dravidian language family. Dakhini
is spoken natively in South India. Dakhini, spoken in the Telangana region, is often heavily influenced
by Telugu and Urdu [145]. The contact of these languages with English led to the emergence of code-
mixed languages known as Telugu-English and Dakhini-English.

Our CM task-oriented dialog dataset has over 3k medical conversations with intents and slot annota-
tions. The dataset supports code-mixing at inter-sentential, intra-sentential, and even at morphological
levels. The conversations in the dataset are multi-turn doctor-patient interactions that are task-oriented,
where the task is to diagnose the patient’s condition.

4https://www.censusindia.gov.in/Census_Data_2001/Census_Data_Online/Language/

Statement1.htm
5https://www.thenewsminute.com/article/making-telugu-compulsory-mother-tongues-_

last-stronghold-against-hindi-imposition-73014
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1.2 Task-Oriented Dialog System

We observe that now-a-days with the increase in types of medical problems, the specializations in the
medical field are increasing. However, it is becoming a difficult task for an ordinary man to determine
which doctor to visit based on their symptoms.

Let us understand it with the help of an example: Consider a kid having a medical condition, “rhini-
tis”, a.k.a “common cold”. As the child has a common cold, the child’s parent might prefer to consult
a doctor who specializes in “common cold,” i.e., the ENT specialist. It might seem logically correct to
consult an ENT doctor for a common cold. However, is it the right choice? Often, there will be a situ-
ation that the child cannot express their symptoms. In such a scenario, it is essential to consult a doctor
specializing in children’s medical care, a.k.a pediatrician. Also, the knowledge about new and updated
medication concerning the children is available with the pediatrician. The above example suggests that
although the patient knows little about the specialist, their choice was vague. Such scenarios will lead
to additional hospital visits and delay in treatment. We can minimize this if we develop a system that
can direct patients to a specialist who is well-versed in treating their medical condition. In other words,
a system that serves as a medical assistant and guides the patient to a specialist based on the patient’s
symptoms and demographics. To achieve this, a conversation between a human and a computer sys-
tem must occur where the patient expresses their symptoms, and the system should output the specialist
based on those symptoms. Thus, it becomes essential to build a healthcare dialog system. To be specific,
we have concentrated on text-based task-oriented healthcare dialog system where the task is to find a
specialist based on the patient’s demographics and symptoms.

Figure 1.1 Modular Task-Oriented Dialog System Architecture

The modular approach to Task-oriented Dialog (ToD) addresses the complexity of goal-oriented
dialogue by breaking it down into sub-tasks. The solution is a pipeline of independently trained and
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executed modules (components): the output of each serves as the input to the next. Our dialogue
system can read input text and generate output text. The three core components are natural language
understanding (NLU), dialogue manager (DM), and natural language generation (NLG). We have also
added a few additional features to our dialog system, such as Hate Speech Detection, Suggestion System,
and the Medical Specialist Classification. The architecture of the dialog system is given in Figure 1.1.
The components are described below.

1.2.1 Natural Language Understanding

In task-oriented dialog systems, natural language understanding (NLU) is the primary module. NLU
identifies the main goals expressed in the user’s utterances. It usually encompasses two sub-tasks,
namely intent classification and slot filling. Intent classification can be visualized as a classification task
to predict the intent behind a speaker’s utterance. Slot filling can be seen as a token classification or a
sequence labeling task to extract the relevant slots by predicting each token’s slot label in an utterance.
To build an NLU model, we annotated the utterances with intents and slots. The intent and slot anno-
tation helps to understand the conversation and enables the researchers to develop reliable task-oriented
dialog systems.

We then test our corpus on the benchmark Natural language understanding (NLU) models via intent
classification (IC) and slot filling (SF) subtasks. The dialogs in the dataset are multi-turn, indicating a
conversational flow in a dialog. The intent of the previous utterance may depend on the current utterance.
We incorporated contextual information into the intent classification model to address this conditional
dependence. The contextual IC model uses contextual signals along with the previous utterances to
predict the intent. Also, as the slots can be visualized as chunks in an utterance [172], we contemplate
the slot-filling task as a chunk identification problem instead of a sequence-to-sequence task. We train
the slot-tag model to predict the coarse-grained slots in the first phase and the complete slot chunks in
the second phase.

1.2.2 Hate Speech Detection

Healthcare workers are at greater risk of workplace abuse than most other workers, with nurses and
family physicians rated as most at risk of abusive encounters with patients [45]. Types of abusive en-
counters range in severity from verbal threats to more extreme encounters, such as stalking and physical
assault. Such hate speech and physical abuse must be strongly condemned for a better function of health
care.

In April 2021, a doctor in a government hospital in Madhya Pradesh resigned on Saturday after some
leaders allegedly yelled at him following the death of a COVID patient. A video of the incident, which
has since gone viral, shows a group of leaders yelling at a doctor who was in-charge of the COVID ward

7



at the Government JP Hospital in Bhopal 6. The incident was sparked by the death of a COVID patient,
who was admitted to the trauma ward in a critical condition and died during the treatment.

Statistics show that over 75% of doctors across the country have faced at least some form of violence
and that 68.33% of the violence was committed by the patient’s attenders /escorts 7. But these numbers
are an underestimate as all the cases of violence are not reported. The violence includes verbal abuse,
telephonic threats, physical assault, murder, and arson. The Indian Medical Association (IMA) said
the effects of such violent episodes extend longer than the experience itself, where most doctors report
having faced insomnia, depression, anxiety, and an inability to see their patients without any fear of
violence. The IMA said it had constantly been requesting the government to enact a central law with an
IPC section, fixing the responsible officers to investigate, the time frame for investigation, and punish-
ments to the culprits, as early as possible, without the option for bail. The Government of India enacted
the Hospital Protection Ordinance under the epidemic Disease Act 18978 to prevent violence against
doctors, hospitals and healthcare workers in the last year with the efforts of the Hon’ble Home Minister.
Similarly, the Hospitals and Healthcare Prevention Act were enacted and practiced in 19 states.

Medical Community save lives. They play a central and critical role in improving access to and
quality health care for the population. They provide essential services that promote health, prevent
diseases, and deliver health care services to individuals, families, and communities based on the primary
health care approach. Thus, they must be treated with the utmost respect. To decrease the abuse in the
healthcare community, we included a hate speech detection module in our dialog system.

Automatic detection of hate speech is crucial in conversations. Often, modern dialog systems are de-
signed to process and train the models even during the simulation of the conversation. If the hate speech
is not addressed in the dialog system, the dialog system will process the hate speech conversations, sim-
ulate them, and respond to the users in an offensive manner. This scenario was observed in the Tay bot
released by Microsoft. Tay was an artificial intelligence chatbot that Microsoft Corporation released via
Twitter on March 23, 2016; it caused subsequent controversy when the bot began to post inflammatory
and offensive tweets through its Twitter account, forcing Microsoft to shut down the service only 16
hours after its launch9.

In order to prioritize respectful dialogue and combat hate speech, we have implemented an automated
hate speech detection module in our dialog system. The automatic detection of hate speech is achieved
by the machine learning and deep learning models that were trained on monolingual, multilingual, and
code-mixed texts [141, 122, 55]. We took such pre-trained hate speech detection models and used zero-

6https://indianexpress.com/article/india/mp-doctor-resignation-cong-mla-covid-_

7268600/
7https://timesofindia.indiatimes.com/india/over-75-of-doctors-have-faced-_

violence-at-work-study-finds/articleshow/47143806.cms
8https://rajyasabha.nic.in/rsnew/Committee_site/Committee_File/ReportFile/15/161/

236_2022_1_12.pdf
9https://www.bbc.com/news/technology-35890188
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shot transfer learning to identify hate speech and abusive content in each user’s utterance. If the user’s
utterance has hate speech, then necessary action is taken by terminating the session.

During the interaction, our dialog system continuously monitors detect hate speech and abusive
content. If, at any point, the hate speech detection module identifies the use of hate speech in a user’s
utterance, the necessary action is taken to terminate the session immediately.

By incorporating this hate speech detection module, we aim to create a safe and inclusive environ-
ment where users can engage in constructive and respectful conversations. This proactive approach helps
prevent the dialog system from processing and responding to hate speech, thus ensuring that offensive
and harmful content is not perpetuated.

It is crucial to address hate speech in AI systems, as demonstrated by past incidents like the Tay bot
released by Microsoft. By actively detecting and addressing hate speech, we strive to maintain a respon-
sible and ethical dialog system that promotes positive interactions and fosters a respectful atmosphere
for all users.

1.2.3 Dialog Manager

Modern research systems for task-based dialogue are based on a more sophisticated version of the
frame-based architecture called the dialogue-state architecture [5, 83]. In the dialog manager, we keep
track of what the user has conveyed and what information is required from the user. The dialogue man-
ager maintains the dialogue’s current state (which includes the user’s most recent intent and the entire
set of slot-filler constraints the user has expressed so far). Using the dialog’s state, the dialog manager
decides what the system should do or say next for the task to be completed. In our proposed system, we
use a simpler frame-based approach to implement the dialog manager. The dialog manager keeps track
of the information obtained from the NLU module and uses this information to ask relevant questions
to the user until all the required information is obtained. This approach is effective for our system’s
specific use case, which involves gathering medical information from the user to determine the appro-
priate medical specialist to consult. Thus, the dialog manager plays a crucial role in the success of the
dialog system by effectively managing the conversation and ensuring that all the required information
is obtained to achieve the task’s goals.

1.2.4 Suggestion System

During doctor-patient conversations, we observed that the user might forget to mention some symp-
toms. However, collecting all the symptoms in the medical domain is crucial to get reliable results.
Even if the user forgets to mention some symptoms, the system must be designed in such a way that
it should get all the necessary input from the user. In other words, a suggestion system should suggest
the relevant symptoms to the patient/user, allowing them to input all the symptoms. In our work, the
suggestion system provides relevant symptoms for a user by collecting symptoms from similar users
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(collaborating). This technique is mostly used in recommender systems, also known as collaborative
filtering [131].

1.2.5 Medical Specialist Classification

The medical specialist classification module is an essential component of the dialogue system as it
helps patients to find the right medical specialist. It is the final action performed by the dialog manager
of our dialogue system. The dialog manager uses the information collected from the user to determine
which medical specialist the patient should visit. This process involves analyzing the symptoms, de-
mographics, and other medical information provided by the patient to make an informed prediction. To
achieve this, we integrated a medical specialist classification model in the dialog manager. The classifi-
cation model is trained on the code-mixed dataset. The training process involves feeding the model with
user data along with their corresponding medical specialist labels. The model then learns to identify
patterns in the input data that are associated with each medical specialty. Once the model is trained, it
can be used to predict the medical specialist.

1.2.6 Natural Language Generation

The NLG interacts with the user in the natural language to extract information from the user or to
convey information to the user. Once the dialog manager decides on the following sequence of action,
we need to generate a textual response to the user. Natural language generation (NLG) takes information
from the dialog manager and generates a textual representation for the user.

Now the question arises on how to convert the dialog manager’s decision into a textual format. Again,
we take advantage of the dataset, and we use delexicalization [116] to mask the symptoms/slots from
the original dataset and extract the templates. We can use those templates while interacting with the
user.

In our dialog system, the information interacted with the user can be in monolingual or code-mixed
format. But the system should decide the language to respond with the user. We use the Markov rule
to see the user’s last interaction, predict the language the user spoke, and replicate the response in the
expected language.

1.3 Motivation

The following reasons explain the motivation behind creating a code-mixed task-oriented dataset and
the dialog system:

1. Code-Mixing is a conversational phenomenon in multilingual communities. Thus, conversational
systems must understand code-mixing in critical domains. The analysis of code-mixed dialog
data and the creation of datasets will aid in developing better code-mixed systems.
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2. Analyzing the doctor-patient code-mixed data to understand the user’s intentions and communi-
cating with them by accommodating to their language will help in better communication with the
patients and provide improved care.

3. Most dialog datasets are monolingual. Even the recent multilingual datasets are created from the
monolingual data [10, 86, 175]. Most of them focus on single utterances [175, 142]. Ours is the
only code-mixed dialog dataset for the medical domain taken from real-life conversations. The
real-life dialog datasets can be used to build practical applications, and the models developed on
them can handle real-life conversations effectively.

4. Nowadays, it has become increasingly popular for patients to seek advice from online resources
before consulting a doctor. The typical online resources where people seek advice are Google,
healthcare websites, and chatbots on hospital websites. These online resources, healthcare web-
sites, and chatbots provide detailed information about the symptoms given by the user and diag-
nose their medical condition using artificial intelligence algorithms. Such online resources offer
more than relevant information to the user. Online resources, if used extensively, might lead to a
form of medical anxiety in the user. In our view, visiting a medical specialist is most important
rather than relying on online resources. We focussed on developing a dialog system that provides
information on a specialist based on the patient’s symptoms and demographics.

1.4 Challenges of Data collection and Annotation

The challenges of dataset collection and annotation are explained below.

1. Even though code-mixed doctor-patient interactions are common in day-to-day life, collecting
the data is a strenuous task as it requires approval from both the doctors and patients. There were
situations where the doctor or the patient was hesitant to approve the data collection.

2. Initially, the conversations were in audio format. To maintain the anonymity of conversations, we
opted for speech-to-text processing. The speech-to-text translation was challenging as the Telugu
tokens in our corpus were based on the “Telangana” dialect. In contrast, ASR10 ( automatic
speech recognition) systems were trained on the “Andhra” dialect. Due to dialectal variations and
regional variations in spoken utterances, ASR was not possible on the data. We ought to resort
to manual speech-to-text processing followed by a vigorous method of correcting speech-to-text
errors.

3. Selecting intent annotations that optimally tag the data based on tagging schema developed for
both medical and conversational data was a difficult task. We first opted for tagging based on
syntactic and semantic information from the intent. However, the number of intents has increased

10https://cloud.google.com/speech-to-text
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exponentially. So we opted for tagging the intent of the utterance based on its purpose and role in
the dialog.

4. There were lots of medical terms in the dataset. We consulted doctors to understand the medical
terms and selected the optimal slot tagset based on various medical entities.

1.5 Major Contributions

The major contributions of this work are:

1. We built a Code-Mixed Medical Task-Oriented Dialog Dataset ‘Su-Vaid’. It is the first corpus
containing code-mixed medical conversations in Telugu-English and Dakhini-English languages.
The dataset contains 3005 Telugu-English Code-Mixed dialogues between patients and doctors
with 29k utterances covering ten specializations with an average code-mixing index (CMI) of
33.3%.

2. We have annotated the dataset with intents and slot labels. A set of 19 intents and 34 slot labels,
are used for annotating the data.

3. The dataset supports inter-sentential and intra-sentential code-mixing. As shown in 2nd, 4th and
6th utterances in Table 1.1. code-mixing happens even at the morphological level.

4. We analyzed the code-mixed dataset by comparing the medical conversations with the established
medical-conversational theories, conversational analysis, and code-mixed linguistic theories.

5. We developed a dialog system that predicts the medical specialist based on the patient’s symp-
toms. The dialog system uses a modular approach by breaking down the system into subparts
viz. NLU, Hate Speech Detection, DM, Suggestion System, Medical Specialist Classification
and NLG.

(a) The NLU uses contextual ground truth labels for intent classification and chunk identifica-
tion for slot filling.

(b) A Hate Speech Detection module that is trained on BERT ensembles and meta embeddings
is used for detecting abusive comments from the user.

(c) Dialog manager uses dialog state to track the current intent and slots, and the dialog manager
decides the next sequence of action.

(d) We have also implemented a Suggestion System to extract more information from the user.

(e) The medical specialist classification provides patients with an appropriate referral to a med-
ical specialist.

(f) We used delexicalization to extract templates for the NLG module. We also used style
accommodation to accommodate the user’s language.
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1.6 Organization of the thesis

The thesis is organized as follows:

1. Chapter 1 introduces the research statement. It presents the aim of the thesis and puts forth the
components of the dialog system. It also elaborates on the motivation, major contributions and
challenges of our research.

2. Chapter 2 provides a comprehensive review of the existing literature related to code-mixed datasets
and code-mixed hate speech detection. The chapter also summarizes the state-of-the-art tech-
niques and methods developed for the individual components, i.e., NLU, DM, NLG, Hate Speech
Detection, Suggestion System, and Medical Specialist Classification present in our task-oriented
dialog system.

3. Chapter 3 provides a detailed description of the proposed code-mixed dataset with annotation
schema used for the dataset. The chapter also presents the analysis of data across various medical,
conversational, and linguistic theories.

4. Chapter 4 explains the proposed Natural Language Understanding (NLU) component of the di-
alog system. It uses a neural network-based approach to perform intent classification and slot
filling. The proposed contextual NLU model is evaluated on the code-mixed dataset and achieves
promising results.

5. Chapter 5 of the thesis provides a comprehensive explanation of the proposed Hate Speech De-
tection modules, their implementation, and evaluation on the code-mixed dataset. The modules
are designed to address the challenge of detecting hate speech in code-mixed data and provide a
crucial component for creating a safe and inclusive environment for all users.

6. Chapter 6 explains the frame-based dialog manager and the suggestion system that provides ad-
ditional symptoms to the user. The dialog manager uses a structured approach to handle the
conversation flow. While, the suggestion system is developed using content-based collaborative
filtering.

7. Chapter 7 presents the medical classification system that takes all the input from the data and
predicts the specialist. The system uses mBERT with a sequence classification head. The mBERT
is finetuned on the available code-mixed dataset. The system achieves high accuracy and F1 score,
making it an effective model for users to find the right specialist for their medical condition.

8. Chapter 8 presents the Natural Language Generation (NLG) Module. The module uses pre-
defined response templates and incorporates style accommodation too while generating responses.
The NLG module produces responses that are fluent, coherent, and relevant to the user’s input.
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9. Chapter 9 presents the integrated dialog system. The system is developed using the independent
units mentioned above. The graphical user interface for the dialog system is also presented. We
further compare the performance of the model with ChatGPT.

10. Finally, Chapter 10 summarizes the thesis and presents the future scope of this work.
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Chapter 2

Literature Survey

This chapter lists the task-oriented dialog datasets. We present the work accomplished in the con-
text of the code-mixed datasets and code-mixed hate speech detection. We also summarize multiple
SOTA methods developed for the individual components, i.e., NLU, DM, NLG, Hate Speech Detection,
Suggestion System, and Medical Specialist Classification present in our task-oriented dialog system.

2.1 Dialog Datasets

Several large annotated corpora exist for generic conversations and specific tasks. We mention a few
notable ToD corpora in this section. They are ATIS [72], an airline travel planning corpus, SNIPS [43],
an IoT dialog corpus. Some corpora are designed to span across various domains, such as MultiWOZ 2.0
[20] and CrossWOZ [185]. The datasets mentioned above were available mostly in English. Recently
there has been increased attention towards expanding the datasets in multilingual and code-mixed do-
mains. Such as Facebook Multilingual Task-oriented corpus (FMTOD) [142] that spans three languages
English, Spanish, and Thai. The original ATIS dataset has been translated into several languages known
as MultiATIS++ [175]. It covers nine languages in four different language families, including Indo-
European (English, Spanish, German, French, Portuguese, and Hindi), Sino-Tibetan (Chinese), Japonic
(Japanese), and Altaic (Turkish). Also, [10] expanded the DSTC2 restaurant reservation dataset to facil-
itate the understanding and development of code-mixed dialog systems. Due to its promising potential,
research about task-oriented dialog systems has attracted increasing attention in the medical domain.
[161] constructed a dataset collected from the pediatric department in a Chinese online healthcare com-
munity. To our knowledge, we found no annotated multi-turn datasets that support code-mixing in the
healthcare domain.

2.2 Code-Mixing in Natural Language Processing

Code-mixing is a phenomenon that has attracted significant attention in linguistics. It refers to using
two or more languages or language varieties within a single communication event. This phenomenon is
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often observed in multilingual communities and has become increasingly common in today’s globalized
world.

Research articles have been published on code-mixing, exploring its linguistic, sociolinguistic, and
psycholinguistic aspects. One such paper is “A Survey of Code-switching: Linguistic and Social Per-
spectives for Language Technologies”[47]. This paper focuses on the challenges of identifying the
languages used in code-mixing scenarios, which is essential for natural language processing applica-
tions. This paper also highlights the research conducted on code-switching (C-S) in India, highlighting
the multilingual nature of the country and the influences of various languages on Indian languages. The
studies cover a range of contexts, including daily life interactions, movies, TV shows, advertising, and
immigrant contexts. The studies show how C-S is used to establish identity, social dynamics between
characters, and the socio-cultural context of the movie. The research also emphasizes the importance of
studying C-S in multilingual contexts and how small sets of data collected through personal interactions
can provide crucial information about a region’s social and cultural dynamics.

The paper [147] provides an overview of the challenges and techniques involved in processing code-
switched speech and language, such as the lack of labeled data, the complexity of linguistic structures,
and the variability in code-switching patterns. The paper also provides an overview of existing code-
switched speech and language processing techniques, including rule-based and data-driven approaches.
Furthermore, the paper discusses various applications of code-switched speech and language processing,
such as speech recognition, machine translation, and sentiment analysis. Finally, the paper concludes
with future research directions and the potential impact of code-switched speech and language process-
ing on multilingual communities. Overall, the paper provides a comprehensive survey of code-switched
speech and language processing, highlighting the challenges, techniques, and applications in this rapidly
growing field.

There has been significant interest in building language technologies for code-switched languages
over the last few years, spanning a diverse range of tasks. Such as,

1. Language Identification: Code-switching poses a challenge for language identification systems
as they need to determine the language of each word in a code-mixed sentence. The research
included using a language model and token classification methods to assign a word to a particular
language [104, 109, 54].

2. Part of Speech Tagging: Code-switching can affect the accuracy of part of speech tagging, as
different languages may have different tagging schemes. Some approaches use language-specific
taggers for each language and then combine the results. At the same time, others used a single
model that handles code-switching. Other researchers studied joint learning and deep learning
models to address language identification and POS tagging in CS tasks [4, 9, 54].

3. Sentiment Analysis: Sentiment analysis of the code-switched text is challenging as sentiment
words and phrases may not exist in both languages. Some approaches combine the results with
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language-specific sentiment lexicons, while others use multilingual embeddings to represent sen-
timent across languages [49, 51, 30, 28, 31, 22, 70].

4. Hate Speech Detection: Code-switched text can also pose challenges for hate speech detection,
as hate speech is often implicit and/or sarcastic. Most of the HSD research used language-
independent models that can handle code-switching [30, 70, 29].

5. Named Entity Recognition: Code-switching can also affect named entity recognition, as named
entities may exist in one language but not in the other. Some approaches use bilingual or multilin-
gual resources, while others use cross-lingual transfer learning to improve performance[124, 168].

6. Code-mixing presents a challenge in machine translation as well. Machine translation systems
often assume that the source and target languages are distinct and have different rules and struc-
tures. However, this assumption is often violated in code-mixing scenarios, making it challenging
to train machine translation models. The primarily used approach is to treat code-mixed data as
a separate language and train machine translation models for this language. This approach has
been used for specific code-mixed varieties such as Hinglish (a mixture of Hindi and English),
Spanglish (a mixture of Spanish and English)[50, 150]. [34] presents the findings on machine
translation for code-mixed data.

7. Dialog Systems: Code-switching is often regarded as a conversational phenomenon in multilin-
gual dialog systems. This domain is relatively new and has yet to be researched to a great extent.
The current approaches use deep learning language models that can handle multiple languages at
once [10, 86, 68].

The papers [89] and [3] proposed the first evaluation benchmarks for code-switching that spans
multiple tasks in multiple language pairs. The GLUECoS benchmark [89] consists of the following
code-mixing tasks in Spanglish and Hinglish for Language Identification (LID), Part of Speech (POS)
tagging, Named Entity Recognition (NER) , Sentiment Analysis, Question Answering and Natural Lan-
guage Inference (NLI) tasks. The LINCE benchmark [3] covers Language Identification, Named Entity
Recognition, Part-of-Speech Tagging and Sentiment Analysis in four language pairs: Spanglish, Nepali-
English, Hinglish, and Modern Standard Arabic-Egyptian Arabic.

In the Indian language context, Hindi-English is the most widely studied language pair for com-
putational processing, with some recent work on Telugu-English, Tamil-English, Malayalam-English,
Kannada-English, Bengali-English, and Gujarati-English. However, language technologies lack con-
versational applications that interact directly with users in multilingual/code-mixed communities. Our
work is the first attempt to computationally understand the code-mixed real-life medical utterances in a
multi-turn scenario.

17



2.3 Code-Mixed Hate Speech Detection

The paper [128] conducted a comparative study of different state-of-the-art hate speech detection
methods in Hindi-English code-mixed data. The authors have collected the Hindi-English code-mixed
datasets from the HASOC 2019 shared task [106] and from papers [16, 93]. It was the first survey on
Hindi-English code-mixed data sets. The dataset contains posts/tweets written in both the Roman and
the native Devanagari script. They analyzed the performance of the dataset on five different baseline
classifiers.

The paper [55] surveyed recent neural-based models that are implemented for hate speech detection
in the context of code-mixed datasets. We examined seven code-mixed datasets developed in 4 Indian
code-mixed languages Hindi-English, Tamil-English, Malayalam-English, and Kannada-English. The
deep learning methods used in the survey consisted of Bi-LSTM (Bi-directional Long Short Term Mem-
ory), Attention-Based Bi-LSTM, Convolutional Neural Networks, Transformers, and pre-trained BERT
models and their cross-lingual variants. A few methods used pre-processing steps on the code-mixed
dataset. And a few models used hate speech lexicon sources. The models tailored to processing the
code-mixed data and hate speech lexicon sources performed relatively better than the others. Empiri-
cal results have shown that pre-trained multilingual transformer models with selective translation and
transliteration achieved the best results compared to other models.

Shared tasks such as Dravidian Code-Mix [31], and DravidianLangTech [26] were organized to iden-
tify the offensive language from comments/posts in code-mixed Dravidian Languages (Tamil-English,
Kannada-English, and Malayalam-English) collected from social media. Each comment/post is anno-
tated with the offensive language label at the comment/post level. The data has been collected from
YouTube comments and Tweets. The top models used deep learning models like LSTM, CNN, and
BERT [53, 52] for hate speech and offensive content detection on the given Dravidian data.

2.4 Natural Language Understanding

There has been much progress towards building task-oriented NLU systems over the past two decades
[163, 101]. The traditional approaches for intent classification used machine learning classifiers such
as support vector machines (SVM), and logistic regression (LR) models [69, 32]. Whereas the Hid-
den Markov models (HMM) [160] and conditional random fields (CRF) [129] were used for slot-filling
tasks. With the advances in deep learning, NN models have achieved state-of-the-art performance for
a wide range of NLP tasks. Various architectures include Elman Recurrent Neural Networks (RNN)
[177], Convolutional Neural Networks (CNN) [174], Encoder-Decoder models with attention mecha-
nism [100] and transformer models [33] for NLU tasks.

The most recent approaches viewed that intents and slots in an utterance are correlated. Thus, the
joint NN architectures were developed to capture the correlations between the two tasks [100, 63, 33,
172]. [13] investigated the importance of context in task-oriented dialogs for NLU tasks using HMM’s
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and CRF models and proved that modeling contextual information improved the model’s performance
for the intent prediction task.

Later on, the work progressed towards the use of NN models in contextual modeling, and the
attention-based contextual models were developed to model long-term knowledge transfer for multi-
turn dialogs [35, 185]. One such contextual model used previous intent and slot-tagged information as
contextual signals to predict the intent and slot labels for the current turn [67]. The paper proved that
adding such contextual cues improved the accuracy of the intent classification tasks.

On the other hand, cross-lingual transfer learning models [175] and cross-lingual contextual word
representations [142] investigated multilingualism in utterances. The authors [175] have presented
that multilingual BERT substantially improves multilingual training and cross-lingual transfer tasks.
Whereas cross-lingual embeddings have shown a competitive performance w.r.t transfer learning mul-
tilingual models. However, the multilingual scenario is analyzed only for single-turn utterances. The
paper also presents a transfer learning NN with contextual modeling and slot chunk detection of multi-
turn code-mixed dialogs. So far, no work has been done toward computationally understanding the
real-life code-mixed multi-turn utterances via contextual intent classification and slot-filling subtasks.

2.5 Dialog Management

Dialog management is the process of tracking and controlling the conversion to direct the user toward
a specific task. Dialog is the major component of a spoken dialog system. It interacts with various
components in the dialog system and external knowledge sources. It generally controls the dialogue
flow and directs the user toward the task.

The dialog manager can be viewed as two main tasks:

1. Dialog state, it tracks the state of the dialog

2. Dialog control makes decisions about the next system action.

The dialog state stores a record of what has been said so far in the dialog. It provides the information
used for dialog control. Dialog control describes the information to be gathered in the dialog. It holds
the information about one or more slots to be filled with values provided in the course of the dialogue.

There are two types of dialog managers: rule-based and Statistical dialog managers.
Rule-based dialogue management is still the most popular solution for industrial task-oriented dia-

logue systems for their interpretability. Finite-state (FS)-based DM [62, 110], one of the typical rule-
based DM, is the simplest and most widely-used method to date. FS-based DM component converts
the finite state automata (FSA) based on the output of the NLU and generates dialog act based on this
output; such is achieved by manually designing an FSA to analyze a conversation scenario. The [185]1

uses Rule-Based Dialog state tracking, RuleDST takes as input the previous system state, and the last
user dialogue acts. Then, the system state is updated according to hand-crafted rules.

1The first large-scale Chinese Cross-Domain Wizard-of-Oz task-oriented dataset
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In recent years, statistical dialog managers that are data driven, have been proposed for task-oriented
dialogue. The most representative traditional DM is the neural belief tracker (NBT) proposed by schol-
ars from Cambridge University in 2017 [113]. NBT uses neural networks to track the state of complex
dialogs in a single domain. By using representation learning, NBT encodes system actions in the pre-
vious round, user statements in the current round, and candidate slot-value pairs to calculate semantic
similarity in a high dimensional space and detect the slot value output by the user in the current round.
Therefore, NBT can identify slot values that are not in the training set but semantically similar to those
in the set by using the word vector expression of the slot-value pair. The other data-driver approaches
for dialog managers used end-to-end architectures. These models simulated the working of dialog man-
agers implicitly. [171] propose a task-oriented dialogue BERT (ToD-BERT), which is trained on 9
English task-oriented datasets across over 60 domains and achieves good performance on four dialogue
subtasks. The data-driven dialogue systems, usually with end-to-end structures, are easier to deal with
complex conversations. Still, such methods require plenty of training data, and the behaviors are less
interpretable.

As the statistical approaches often require plenty of training data and deep annotation for the dialog
manager. Also, Their behavior is less interpretable. So we opted for a more reliable and robust frame-
based dialog manager.

2.6 Recommender System

Our suggestion system, which suggests symptoms to the patients by comparing the symptoms of
similar patients, is based on recommender systems. Recommender systems (RS) use different sources
of information to provide users with predictions and recommendations of items. Recommender Sys-
tems collects information on the user’s preferences for a set of items (e.g., user’s rating on movies,
songs, books, jokes, gadgets, applications, websites, travel destinations, and e-learning material). The
information can be acquired explicitly (by collecting users’ ratings) or implicitly (by monitoring users’
behavior, such as movies or videos watched, songs liked/heard, applications downloaded, websites vis-
ited, and books read). Recommender systems may use demographic features of users (like age, nation-
ality, and gender). Also, Social information, like followers, influencers followed, tweets, comments,
and posts. There is a growing trend toward the use of information from the Internet of things (e.g., GPS
locations, RFID, real-time health signals)

The internal functions for RS are characterized by the filtering algorithm. The most widely used clas-
sification divides the filtering algorithms into (a) collaborative filtering and (c) content-based filtering
among others. Content-based filtering [96], extracts features from the input text and makes recommen-
dations based on the choices made by the user in the past. Collaborative filtering [17] is based on the
assumption that people who agreed in the past will agree in the future. Thus, we can make recom-
mendations to each user based on information provided by those users we consider to have the most in
common with them. Of all the methods, collaborative filtering is the most frequently used algorithm
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for recommender systems. Collaborative filtering provides strong predictive power for recommender
systems and requires the least information at the same time. This model can be classified into Memory-
Based and Model-Based Collaborative Filtering methods. Memory-Based Collaborative Filtering [1]
can be further divided into User-Based and Item-Based Collaborative Filtering methods. User-Based
Collaborative Filtering compares similarities between users and recommends a list of top N items based
on the rating of each item of a similar user group. Item-Based Collaborative Filtering predicts an item
by using the similarity between the item and the item selected by the user. Memory-Based Collaborative
Filtering uses technologies such as Vector Cosine Correlation, and KNN to create similar groups among
users and recommend items to users within the same group. Model-based methods [1] use recommender
system information to create a model that generates the recommendations. The most widely used mod-
els for the model-based recommender system are Bayesian classifiers [118], neural networks [183], and
Latent Semantic Indexing (via singular value decomposition (SVD)), among others.

Because of the importance of prediction in different genres (such as music, games, videos, and online
inventory), there has been huge research on recommender systems. A few notable models are presented
here.

The most widely used algorithm for collaborative filtering is the k Nearest Neighbors (kNN) [1].
In the user-to-user version, kNN executes the following three tasks to generate recommendations for
an active user: (1) determine k users neighbors (neighborhood) for the active user a; (2) implement an
aggregation approach with the ratings for the neighborhood in items not rated by a; and (3) then select
the top N recommendations.

The Singular Value Decomposition (SVD) has been generally used as a dimensionality reduction
technique in machine learning. In the context of the recommender system, the SVD is used as a col-
laborative filtering technique. The paper [138] talks about using the SVD for collaborative filtering.
The paper presents that the mapping facilitated a clear representation of relationships between users and
items.

The paper [183] presented the survey of deep learning techniques for recommender systems. The
neural networks covered in the model are MLP, RNNs, CNNs, Auto Encoder, Attention Models, Re-
stricted Boltzmann Machine (RBM), Neural Autoregressive Distribution Estimation (NADE), and Neu-
ral Autoregressive Distribution Estimation (NADE). The paper pointed out that, Contrary to linear mod-
els, deep neural networks are capable of modeling the non-linearity in data with nonlinear activations
such as ReLU, sigmoid, tanh, etc. This property makes it possible to capture complex and intricate
user-item interaction patterns. They covered topics of Hashtags recommendation, news articles rec-
ommendation, Review text recommendation, and quote recommendations in their survey on text-based
recommender systems.

The deep bidirectional self-attention-based transformer architecture has achieved tremendous suc-
cess in the field of language understanding. In the paper [155], the authors introduce a deep bidi-
rectional sequential model called BERT4Rec for the sequential recommendation. They introduced the
Cloze task for model training, which predicts the masked items using both left and right contexts. Exten-

21



sive experimental results on four real-world datasets show that the model outperforms several NN-based
state-of-the-art baselines.

2.7 Medical Specialist Classification

The medical specialist classification model tries to automatically predict the appropriate specialty
based on the symptoms and medical information that is given by the patients. [107] presents a meta
embedding based classification model. The dataset consisted of more than 40,000 items, including eight
departments, such as Otorhinolaryngology, Pediatrics, and other common departments. The experiment
results show that the model achieves more than 93.5% accuracy and has a high generalization capacity
when compared to machine learning approaches.

The paper [102] has studied doctor recommendations in online health forums. They have trained
a BERT model to learn the relationship between doctor and patient embeddings and used a series of
encoders and multi-layer perceptrons (MLP) to recommend the correct doctor based on the patient’s
symptoms.

The paper [130] work provides a predictive model for selecting the most appropriate medical spe-
cialists to diagnose a patient. The models used were logistic regression (LR), decision trees, and MLPs.
The dataset consists of 58177 patients consulted by 11 different medical specialists. The top-performing
LR model achieved 88% accuracy in predicting the specialists.

2.8 Natural Language Generation

Natural language generation transforms a structured dialogue act into a natural language sentence.
The following are recent works in the field of NLG.

The paper [185] provided a template-based model (named TemplateNLG) for natural language gen-
eration. For TemplateNLG, they extracted templates from the training set and manually added some
templates for infrequent dialogue acts.

Encoder decoder models generally do the mapping from frames to delexicalized sentences [164,
165], trained on large hand-labeled corpora of task-oriented dialogue.

The paper [48], presents a survey on natural language generation. This survey gives the latest syn-
thesis of deep learning research on the NLG core tasks, as well as the architectures adopted in the
field. The survey concentrates on Recurrent Neural Networks (RNN), Convolutional Neural Networks
(CNN), transformers, Graph Adversarial Networks (GAN), and Copy and Pointing Mechanisms, Mem-
ory Networks, and Graph Neural Networks (GNN). They analyzed the datasets developed for Text
Summarization, Question Generation, Response Generation, and Distractor Generation.
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2.9 Summary

In this chapter, we presented the literature survey on the creation of dialog datasets and the related
work in the field of code-mixing for natural language processing and hate speech detection. We also
presented multiple SOTA methods developed for the individual components, i.e., NLU, DM, NLG, Hate
Speech Detection, Suggestion System, and Medical Specialist Classification present in our task-oriented
dialog system.
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Chapter 3

A Code-Mixed Task-Oriented Dialog Dataset for Medical Domain

In this chapter, we present the data acquisition of Su-Vaid. The transcription of the Su-Vaid dataset
from speech to text. The percentage of code-mixing in the dataset. The analysis of dataset w.r.t various
medical, conversational, and linguistic theories And intent, and slot annotation of data for NLU task and
annotation analysis.

3.1 Data Collection

To enable the research and development of multilingual and code-mixed dialog systems in the health-
care domain, we provide a code-mixed medical task-oriented dialog dataset. The process of data collec-
tion, data conversion, data annotation, data analysis, and modeling is given in Figure 3.1

Real-Life 
Doctor Pa�ent

CM Conversa�ons

Recorded
Dialog Data Speech to Text

Manual
for Intent and

Slot annota�on

Annotated 
Dialog Dataset

Neural Network
Models

NLU labelled 
Output

Data Analysis

Figure 3.1 Stages of data collection, data annotation, data analysis, data modeling, and final predictions.

Our dataset contains 3005 code-mixed dialogs (consultations) between patients and doctors. The
number of specializations considered is 10. The total number of utterances is 29294. Most consultations

24



#doctors 10

#dialogs 3005

#utterances 29294

#tokens 121475

Avg # of utterances in a dialog 9.77

Max # of utterances in a dialog 68

Min # of utterances in a dialog 2

Avg # of tokens in an utterance 4.14

Max # of tokens in an utterance 71

Min # of tokens in an utterance 1

Table 3.1 Statistics of our dataset

Figure 3.2 The distribution of dialogs with respect to medical specialists in the dataset.

start with greetings, and a narration of the patient’s medical condition, followed by a multi-turn conver-
sation between the patient and doctor. The doctor tries to gather information regarding the duration of
the current disease, medical history, medications, and attributes required for the medical diagnosis from
the patient. Optionally, at the end of the consult, the doctor makes a diagnosis and treatment suggestions
to the patient.
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Data acquisition occurred at various medical consultation centers in Warangal, Telangana, India.
Specialists belonging to Dermatology, General Surgery, Otolaryngology, Paediatrics, Urology, General
Medicine, Gynaecology, Orthopaedics, and Opthalmology, and thousands of patients have volunteered
for the data collection. The doctor-patient privileges are maintained during data collection. Manual
pseudonymization is followed. In manual pseudonymization, pseudonyms replace a personally identi-
fiable doctor and patient information fields within a conversation record. This feature prevents hackers
from knowing that the data belongs to a particular patient (separating data from real attributes). We have
manually replaced the named entities related to doctors and patients and their personal information with
pseudonyms during speech-to-text transcription.

Our doctor-patient interactions contain audio recordings in code-mixed Telugu-English and Dakhini-
English languages. Most conversations were in Telugu and Dakhini (regional languages used in the
area). The other languages that the speakers are familiar with are Hindi and English.

Proportion of languages in corpus

At dialog level

Telugu-English code-mixed dialogs 85.1%

Telugu-Dakhini-English code-mixed dialogs 11.4%

Dakhini-English code-mixed dialogs 3.5%

At utterance level

Telugu-English code-mixed utterances 47.2%

Telugu utterances 29.1%

English utterances 16.5%

Dakhini utterances 4.3%

Dakhini-English code-mixed utterances 2.3%

Telugu-Dakhini code-mixed utterances 0.5%

Telugu-Dakhini-English code-mixed utterances 0.2%

At word/token level

Telugu tokens 65.2%

English tokens 25.8%

Dakhini tokens 6.9%

Table 3.2 The proportion of languages in the corpus at dialog, utterance, and word/token levels.
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3.2 Data Conversion

After data collection, we manually converted the data from audio to text format, where all the data is
scripted in their respective languages.

We transcribed the data from speech to text to ensure the anonymization of doctor and patient con-
versations. During the speech to text translation, we have manually altered the personally identifiable
information (PII) from the patient data to ensure the privacy. The PII includes the elements of patient
data that can reveal the patient’s identity such as names, addresses, phone numbers, personal id’s etc.
When the PII’s are manually identified, we have replaced it with pseudonyms. For example, we have
removed the surnames/last names and altered first names. The specific address of the patient are left out
from the conversation, and only the district/city names are considered, this makes the data less specific.
The patient id’s and other information is left out from the conversation. Only the altered first name of
the patient, city/district names as address and age of the patient is used in our dataset thus safeguarding
the patient’s data.

Initially, we used Google cloud’s Speech-to-Text1 for automated transcription in 2019. We have
tested the speech-to-Text application and observed that for a 5min interaction, it could only generate
10% of data with a lot of inaccurate information. The other 90% of the data was completely missing.
The observation made from the faulty transcription is: (i). The ASR does not capture code-mixing.
(ii). The speech-to-text translation was challenging as the corpus was based on the” Telangana” dialect.
In contrast, ASR ( automatic speech recognition) systems were trained in the” Andhra” dialect. Due
to dialectal variations and regional variations in spoken utterances, we could rely on the ASR for data
transcription.

While transcribing from speech to text, the Brahmi script is used if the audio is present in the Telugu
language. For Dakhini, Devanagari script is used, and for English, Roman script is used. We have
selected a few proficient Telugu-English and Hindi-English bilinguals to transcribe the data. During the
speech-to-text conversion, we followed the transcript 1 format2. The silences, such as data pause, gap,
and lapse, were considered for turn construction. In the turn-taking mechanism, the pause is a period
of silence within a speaker’s turn, the gap is a period of silence between turns, and lapse is a period of
silence when no sequence is in progress, i.e., the current speaker stops talking [83]. We have identified
the utterance as an uninterrupted chain of spoken language, while in transcription, each new line consists
of a single utterance. Thus, following the above constraints, all the vocal data is converted to the textual
format. The dataset details are given in Tables 3.1 and 3.2. The distribution of specialists in each dialog
is given in figure 3.2.

To our best knowledge, this is the first code-mixed medical dialog dataset. The dataset has the
following advantages.

1. It has 29k utterances with 3k dialogs and covers ten specializations.

1https://cloud.google.com/speech-to-text
2https://learn.lboro.ac.uk/ludata/cx/ca-tutorials/trans1.htm
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2. Code-mixing is practiced in three languages. Telugu, Dakhini, and English. There are instances
in the dataset where all speakers use three languages in a single utterance.

3. We have considered patients belonging to different ages, from small children to the elderly, gender
(male and female), occupation, and education for our data collection.

4. Nearly half of the utterances in the given dataset are Telugu-English code-mixed, followed by
Telugu and English utterances. This denotes the level of the code-mixing present in our corpus.

5. Based on the proportion of words in our dataset, the Telugu words are of high frequency in our
dataset, which denotes the inclination of our dataset toward the regional language.

3.3 Code-Mixing Index

When analyzing the code-mixed dataset, it is important to quantify the level of code-mixing between
languages. At the utterance level, the code-mixing index(CMI) [60] is given by,

CMI(u) =

∑n
i=1wi −max

Li∈L
(wLi)∑n

i=1wi
× 100 (3.1)

Where u is an utterance in the corpus, L is the set of all languages in the corpus, wLi is the number
of tokens in a language Li in an utterance. max

Li∈L
(wLi) is the maximum number of tokens of a language

Li in an utterance, and
∑n

i=1wi is the number of tokens in an utterance (excluding named entities as
they are language independent). The formula max

Li∈L
(wLi) is inclined towards counting the number of

tokens in the matrix language3. Thus, Equation 3.1 gives the percentage of foreign language tokens in
an utterance. For monolingual utterances, we will get CMI = 0 as max(wLi) will be equal to

∑n
i=1wi.

Code-mixing on the dataset is calculated by taking the average of the CMI across all sentences in the
dataset. Given by

CMIavg =
1

N

N∑
i=1

CMI(ui) (3.2)

N is the total number of utterances in our data. Our dataset’s average code-mixing index (CMIavg)
is 33.3%. Our dataset has a relatively high amount of code-mixing compared to the code-mixed datasets
given in [60].

3.4 Data Analysis

We analyzed our data by comparing our corpus with the relevant medical, conversational, and lin-
guistic theories.

3The dominant language in the code-mixed utterance, into which elements of the second language are embedded.
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1. Comparing our corpus w.r.t medical conversational theories will help analyze our data’s relative-
ness to the medical sector.

2. The conversational analysis will help in building effective dialog-oriented applications.

3. Code-mixed linguistic analysis helps in language understanding and promotes ease of natural
language processing from a multilingual perspective.

3.4.1 Medical Conceptual Analysis

S Utterance

d eVMwa vayasu?

(How old are you?)

p 45.

d emEMxi?

(what happened?)

p muKaM gokudu ayiwuMxi sir. cewula mIxa, kAlYla mIxa, meVda mIxa, bAgA avasWa

ayiwuMxi.

(There is itching on face, sir. On legs, on the neck, it is troublesome.)

d eVMdalo wiruguwavA?

(Do you roam when it is sunny?)

p avunu sir.

(yes sir)

Table 3.3 A doctor-patient conversation

This section analyzes our corpus with the hypothesis established on medical conversations.
The survey on doctor-patient conversations by [75] has uncovered some of the crucial work in this

field. They have pointed out that most of the medical conversations were doctor-centered. We have
observed the same pattern in our data where the doctor directed the flow of conversation. An example
is shown in Table 3.3.

In some of the patient and doctor conversations, a few doctors exhibited patient-centered care. In
patient-centered care, the doctors have shown keen listening and compassion toward patients’ conversa-
tions. Such interest in the patient improved the patient’s condition psychologically and physiologically.
Such patients were more interested in revisiting the same doctor if there was any need for further medical
consultations and treatments. In our corpus, most of the statements are followed by acknowledgments
from doctors. It can be seen in the conversations in Tables 3.3, 3.4, and 3.5.
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S Utterance

p Doctor gAru oVka kaMtiki glaucoma vaswe maro kaMtiki vacce avakASAlu unnAyA?

(Doctor, is it possible to get glaucoma from one eye to the other?)

d Glaucoma anexi bilateral disease.

(Glaucoma is bilateral disease.)

d Bilateral disease aMte reVMdu prakkalaki vacce jabbu.

(Bilateral disease is a disease that affects both sides.)

d kAnI by nature reVMdu kalYlYaki oVkesAri rAxu axi oVka rakaMgA blessing in disguise

ani anukovaccu manaM.

(But by nature, it does not come to both eyes at once, we can think of it as a kind of a

blessing in disguise.)

Table 3.4 A doctor-patient conversation

We observed that the patient inquired about the medical condition, and the doctor explained it to him
as given in the conversations in Table 3.4. The related studies by [18, 151] showed that eliciting the
patient’s view of the illness increased understanding and commitment to following the doctor’s advice.

In some conversations, the patients could not speak about their medical condition because of modest
feelings [154]. Nevertheless, when the doctor explained the problem using medical terminology and
medical investigations, it helped the patient look at the problem from a medical perspective, and they
spoke more about the medical condition.

[167] showed that most of the patients asked fewer questions than physicians and were less likely to
receive answers to them than physicians were. This scenario was observed in our interactions. The doc-
tors just remained calm instead of replying to the patient’s inquiries. However, the patients participated
in communication whenever the doctor asked questions.

3.4.2 Conversational Analysis

This section analyzes our corpus based on the existing conversational theories.

We can view doctor-patient interactions as a domain-dependent task-oriented conversation with the
domain being medical and the task being diagnosis and treatment.

Doctor-patient interactions begin with an opening sequence, progressing through problem presenta-
tion, history taking, physical examination, diagnosis, and treatment recommendations, and then on to
a closing sequence [21, 75, 132]. (Other types of medical visits-follow-up, routine maintenance, and
physical check-ups have distinctive but equally patterned structures.). From the doctor’s point of view,
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this structure is taught in medical school, and patients are repeatedly trained by exposure to it from
childhood [152].

We have witnessed that the CA studies of ordinary conversation, such as turn-taking [135] and repair
mechanisms [139] are largely followed in our clinical interactions.

Grounding

It is important for the participants to establish what they both agree on, called the common ground.
Speakers do this by grounding each other’s utterances. Grounding means acknowledging that the hearer
has understood the speaker. Grounding is also observed in doctor-patient utterances. The doctors con-
stantly ground each other’s utterances by explicitly saying ”ok” or repeating what the patient said. It
can be seen in doctor-patient conversations in Table 3.5.

Sub dialogues and Dialogue Structure

Medical conversations have a structure. A few examples are shown in Table 3.5. We can see that
the doctor’s question is often followed by an answer from the patient. The medical statements from
patients are mostly followed by acknowledgments from the doctors. The doctor’s query related to any
symptoms is followed by either confirmation or rejection from the patient. The patient’s query about
the medical condition is mostly followed by a medical explanation from the doctor. Compliments from
doctors often gave rise to downplaying from patients or vice-versa. These pairs in the conversational
analysis are called adjacency pairs. These adjacency pairs help to develop a better predictive analysis in
goal-oriented dialog systems.

Sub Dialogs S Utterance Intent
1 (Paediatrics) d emannA medicines vAdArA ammA I 3, 4

yearslo bAbuki?
INFO REQUEST

(Did you use any medications for the boy?)
p lexaMdI. ANSWER

(No.)

2 (Otolaryngology) d eVnni rojula nuMci? INFO REQUEST
(Since how many days?)

p 15, 20 days ayiwAMxi. ANSWER
(Its been 15, 20 days.)

3 (Dermatology) d blood test emEnA ceyiMcArA aMdi? INFO REQUEST
(Did you do any blood test?)

p A ceyiMcAnu aMdi oVkasAri. ANSWER
(Yes, i had done it one time.)

4 (Opthalmology) d emEMxi ceVppammA? INFO REQUEST
(Let me know what happened?)
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Sub Dialogs S Utterance Intent
p eVdama kannu xuraxa peVduwuMxi. ANSWER

(Left eye is itchy.)

5 (Gynecology) d Periods regular levA ? INFO REQUEST
(Are periods not regular?)

p levu — ANSWER
(No.)

5 (Dermatology) p hair fall uMxi madam. STATEMENT
(I have hair fall.)

d ok. ACK

6 (Otolaryngology) p sir nenu narAla balahInawa tabletlu eVp-
patikI vesukuMtA sir.

STATEMENT

( I always use nerve weakness tablets (a.k.a
multivitamins)).

d ok. ACK

7 (General Medicine) p TSH vaccesi 5.95 uMxi. STATEMENT
(TSH is 5.95.)

d hmm. ACK

8 (General Surgeon) p bAgA constipation vaswuMxi, bAgA bleeding
avuwuMxi.

STATEMENT

(I am having heavy constipation and heavy
bleeding.)

d ok. ACK

9 (Urology) d malYlYi scan wIswe weVluswaxi kidney
stones uMxo lexo ani.

STATEMENT

(We will get to know if kidney stones are
present or not after the scan is done.)

p sare sir. ACK
(Ok sir.)

Table 3.5 Sub dialogs in the dataset. S refers to the speaker of the data, d refers to the doctor’s utterance

and p refers to the patient’s utterance.

Initiative

In the doctor and patient interaction, the doctor mostly controls the conversation as the doctor is
responsible for the diagnosis and treatment of the patient. If the patient has questions regarding the
diagnosis, treatment, or medication, the patient has the initiative. We observed that the doctor took the
primary initiative in most of the conversations.
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Implicature

It is the action of implying a meaning beyond the literal sense of what is explicitly stated. We
observed the following implicatures in all the doctor and patient specializations. In dermatology, the
utterance ”sUxi guccinatlu noVppi uMxA? (Is there piercing pain?)” is implied to measure the degree of
the patient’s pain in the affected area. In ophthalmology, the utterance ”paper caxuvoVswuMxA? (Are
you able to read the newspaper?)” implied that ”Is your near vision correct?”

3.5 Role of code-mixing in our dataset

Linguists like [66, 143, 74, 77] theorized that people code-mix/switch for a certain purpose. i.e.,

1. Show oneness with another person’s community

2. Show-off

3. Emphasize

4. Clarify a particular topic

5. Repeat in another code to re-emphasize

6. Be fluent

7. Maintain a wider vocabulary

In doctor-patient interactions, we observed the following factors that motivated the speakers to use
code-mixed utterances. They are

1. The doctors used code-mixing for fluency, conversational flow, grounding, and to express empa-
thy.

2. Code-mixing helped the patients to emphasize their medical condition/symptoms.

3. The presence of a wide vocabulary helped doctors and patients to communicate fluently.

Consider an utterance from our dataset. For the utterance ”day by day itla avuwuMxi”, there also
exists the monolingual counterpart, which is also used in formal and informal conversations, ”prawi
roju ilA avuwuMxi”(English translation: ”It happens daily”), Even though the monolingual sentence
is trivial but the speakers didn’t use it in during their conversation. We also cite some code-mixed
utterances and their monolingual counterparts from our corpus in Table 3.6.

From the utterances given in Table 3.6, We can see that the speakers preferred code-mixing instead
of these trivial monolingual sentences. As mentioned above, the factors such as fluency, emphasis,
maintaining a conversational flow, and easy understanding motivated the speaker to use code-mixed text
in our doctor-patient interactions.
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code-mixed utterances Monolingual Counterparts English Translation

hair fall bAgA ayiwuMxi juttu bAgA rAluwuMxi Heavy hair fall

ilA face mIxa nallati maccalu

vaswunnAyi

ilA muKaM mIxa nallati mac-

calu vaswunnAyi

I am having black spots

on my face

morning ayiwuMxA? night ayi-

wuMxA?

poVxxuna avuwuMxA? rAwri

avuwuMxA?

Will it be in the morning?

Will it be at night?

neck pain vaswoMxi sir meVda noVppi vaswoMxi sir I am having neck pain sir

actualgA nA age vaccesi 25 vAswavAniki nA vayassu 25 Actually my age is 25

I was having like, oVka 4 years

kiMxa nAku varicose veins prob-

lem uMde

nAku 4 saMvawsarAla kriwaM

anArogya siralu uMdevi

I had varicose veins prob-

lem 4 years ago

Table 3.6 Examples of code-mixed utterances taken from the corpus with their monolingual counter-

parts.

Linguistic Analysis

A few decades ago, linguists established rules to identify the nature of code-mixing in the text [123,
81, 114, 84]. They also put forth rules we must follow when processing or generating the code-mixed
dataset. These rules help to build better dialog systems on the code-mixed data. A few of the notable
constraints are presented in the linguistic analysis.

1. Most speakers who use code-mixing for communication are equally fluent in both languages.
Speaker believes that the mixed sentences are fairly acceptable to the listener.

2. During the interaction, the code-mixed utterances are spoken without hesitation.

3. Speakers and hearers usually know the dominant language from which the mixed utterance origi-
nated. The dominant language is known as Matrix Language, and the other language is known as
Embedded language.

4. The native language of the group is generally the dominant language. Here the native language is
Telugu, and the embedded language is English.

5. The medical terms used in the code-mixed conversations are mostly in English.

We analyzed the code-mixed nature of our corpus by comparing it with the constraints established
by [114, 81, 123, 84].
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1. The paper [114] presented a Matrix language-frame model. The MLF model posits a Matrix and
Embedded Language in a code-mixed sentence. In this case, elements of the embedded language
are inserted into the morphosyntactic frame of the matrix language. A matrix language can be the
speaker’s first language or the language in which morphemes or words are more frequently used
in speech. By analyzing the sentence’s grammatical structure, we have observed that Telugu is
the matrix language used in our utterances, and English is the embedded language.

2. The paper [81] presented a constraint that the root node of matrix language cannot be switched.
The grammar of the code-mixed utterance must be the grammar obtained from the matrix lan-
guage.

• For example, in the code-mixed utterance where Telugu is a matrix language and English,
is the embedded language, ”fever vacciMxi (fever came)” is considered as the correct for-
mation of code-mixed utterance. In contrast, the vice-versa ”jvaraM came (fever came)” is
considered incorrect. Furthermore, during data analysis and transcription, we observed that
utterances such as ”fever vacciMxi” had a bi-gram co-occurrence rate of 25%, whereas we
did not observe any instances of ”jvaraM came”.

3. According to [81], closed class items (e.g., determiners, quantifiers, prepositions, possessives,
aux, tense, helping verbs, etc.) cannot be switched.

• For example in the utterance taken from the corpus: ”bAgA stomach pain vaswuMxi” is
considered as the correct code-mixed utterance as the quantifier ”bAgA (heavy)” and tense
”vaswuMxi (coming)” is present in the matrix language, whereas the vice versa is considered
as an incorrect sentence. Most of the code-mixed sentences followed this pattern.

4. The paper[123], presented a constraint that intra-word switching occurs in code-mixed sentences.
We have observed the instances that satisfy the constraint, such as redgA, yellow colorlo, sideki
where -lo, -ki are Telugu case-markers and -gA adverbial marker.

5. The paper [123] states that code-mixing occurs at a point where the mixing of two languages
doesn’t violate the surface syntactic structure of either languages. Examples are,

• day by day itla avuwuMxi

• malYlYi scan wIswe weVluswaxi kidney stones uMxo lexo ani.

The outcomes of the above analysis are,

1. According to [114], Matrix language-frame model suggested using the multilingual BERT model
or the pre-trained Telugu and English fastText embeddings while processing the text.

2. The paper [123] on intra-word switching implied us to opt for sub-word tokenization or sub-word
level embeddings. So that the morphologically altered words will be tokenized and we can extract
more useful embeddings.
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Figure 3.3 Intents and their distribution in the corpus

3.6 Annotation

In this section, we present the annotation of the dataset. The dataset is annotated with intents and
slot tags. The annotation helps the NLU module interpret the utterance’s intent and extract relevant slots
from the utterance.

3.6.1 Intents

The notion of intent starts from the idea that the utterances can be assigned to a small set of Dialog
Acts [153]. Recently, the intents have been adopted to identify a task or an action that the system can
execute in a certain domain. Intents may cater to specific needs of the user (such as patient’s complaints,
doctor’s responses) or to general needs (such as greeting, acknowledgments) [101]. We have used the
DAMSL annotation schema [40] and annotation schema developed for medical dialogs [78, 133] to tag
our utterances with their respective intent. We have chosen most of the DAMSL tags for our tagset as
they are well suited for two-agent task-oriented dialogs, in which the participants collaborate to solve
some problem. Our intent tags record the utterance’s purpose and its role in the dialog. The intents,
their definition, and distribution in the corpus are given in Table A.1 and in Figure 3.3. Table 3.7 gives
an example of the intent annotated corpus.

36



Figure 3.4 Top 15 slots and their distribution in the corpus

3.6.2 Slots

In a doctor-patient conversation, we need to identify all the units of information that will help the
dialog system solve a particular task, such as automated diagnosis or medical entity extraction. These
relevant units or phrases of information are known as slots. Labeling the tokens with relevant slots is
called slot annotation. Slot annotation will enable us to gather the information needed from an utterance.

Before slot annotation, we interacted with doctors to decide on the slot entities necessary to iden-
tify the relevant information in doctor-patient interaction. The slot list is then finalized by exploring
the semantic information of our corpus’s medical terminologies. We have also used WordNet’s hyper-
nym relation to understand the semantic information of the medical terminologies. Our slot entities are
obtained from the medical terminologies from the top hierarchy introduced in MeSH(Medical Subject
Headings)4 [57] and SNOMED CT (Systemized Nomenclature of Medicine - Clinical Terms)5 [42].
MeSH and SNOMED CT are the controlled medical vocabularies that store a collection of medical
terms in human and veterinary medicine. They contain medical terms with synonyms and definitions
covering anatomy, diseases, symptoms, procedures, microorganisms, substances, etc. These vocabu-

4https://en.wikipedia.org/wiki/Medical_Subject_Headings
5https://en.wikipedia.org/wiki/Systematized_Nomenclature_of_Medicine
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Utterance/word Annotated tags

intent d: xaggu xammu uMxA? INFO REQUEST

(Is cough asthma present?)

slot

xaggu (cough) B-symptom

xammu (asthma) B-medical condition

uMxA? (is present?) O

intent p: xammu lexu sir xaggu. ANSWER

(No asthma, only cough)

slot

xammu (asthma) B-medical condition

lexu (no) B-negative

sir O

xaggu. (cough.) B-symptom

intent p: xagge sir, xaggu naMju vaswuMxi xaggu wone STATEMENT

(Only cough is present sir, mucus is coming due to cough.)

slot

xagge (only cough) B-symptom

sir, O

xaggu (cough) B-symptom

naMju (mucus) B-body substance

vaswuMxi (coming) B-symptom

xaggu (cough) B-symptom

wone (due to) I-symptom

Table 3.7 Intent and slot annotation in our dataset

laries are considered the standard medical vocabularies used to index medical journals and electronic
health records for research purposes. In addition to the medical slot entities obtained from the medical
vocabularies, we have included a few slot entities that provide more semantic information that can be
used by a dialog system when parsing the sentence, such as the ”time period” of the medical condition
or symptom, ”intensity” of suffering, etc. During slot annotation, we have also used positive or negative
slot tags to indicate if the patient suffers from the symptom or not. A detailed list of slot entities with
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their definition attributes and their distribution in the corpus is given in Table A.2. Top 15 slots are given
in figure 3.4. After deciding the slot entities, we then followed the BIO (begin-in-out) schema [127] for
slot annotation.

3.6.3 Annotation Analysis

We have created annotation guidelines with intent, slot names, and descriptions to facilitate proper
annotation. Then the utterances were annotated by student research assistants in sequential order. The
annotators assigned a DA tag to each utterance and slot tags for all the tokens in the utterance. At least
two annotators annotate each dialog. The third annotator judges any further inconsistency.

We use Fleiss’s kappa κ [59] to measure the inter-annotator agreement. For intent annotation, the
utterance level agreement (κ) between the annotators is 0.79. For the slot annotation, the token level
agreement between the annotators is 0.71, indicating a substantial agreement between the annotations
and proving that our annotated data is reliable for further computation.

In the intent tagset, we can see that STATEMENT is the most frequent tag in the corpora, which
agrees with the doctor-patient scenario, where the patients explain their medical condition to the doctor.
The second-most frequent tag is INFO REQUEST, where the doctor questions the patient to understand
their medical condition or later seeks more information about their medical condition. Then comes the
ANSWER utterance following the antecedent, i.e., INFO REQUEST utterance. The doctor provides
implicit acknowledgments (ACK) to notify their active participation in the conversation. The top 4 tags
account for over 82% of the total corpus, suggesting imbalanced tag distribution.

During slot annotation, only explicit mentions of symptoms, body parts, disease duration, etc., are
annotated as ’symptom’, ’body part’, and ’time period’. After annotation, we observed that the patient
used explicit mentions of symptoms when the interaction started, followed by implicit mentions of
symptoms. All of such implicit mentions are annotated as ’Outside” tags. The implicit conversations
are relatively more than the beginning interactions, resulting in many ”Outside” tags in our data. An
example of intent and slot annotated sub dialog is given in Table 3.7

3.6.4 Should we do Over-sampling and Under-sampling to handle the imbalanced data?

A dialog is an interaction in natural language between two or more agents. In a task-oriented dialog,
the participants(doctor/patient - in our context) collaborate to solve a problem. In our task-oriented
dialog, we see more questions (a.k.a INFO REQUEST), answers, and acknowledgments compared to
the other tags. It is because the participants want to progress towards a task by sharing information via
questions, answers, and acknowledgments (a.k.a ACK). The same repeats for every dialog, thus making
the dataset imbalanced. By nature, every task-oriented dialog data is imbalanced.

There are some notable approaches to balance the dataset. They are oversampling and undersam-
pling.
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• Oversampling involves increasing the instances of the minority class to balance the dataset w.r.t
the majority class.

• Undersampling involves deleting some examples in the majority class to balance the dataset w.r.t
the minority class.

The oversampling and undersampling are performed by various algorithms such as Imblearn’s6

SMOTE(for oversampling) and undersampler(for undersampling) the data. There are multiple reasons
why oversampling and undersampling should not be performed on the task-oriented dataset.

• If we use undersampling of the dataset, we should remove utterances related to INFO-REQUEST
and ANSWER tags from the dataset. But these are the basis of information in our task-oriented
dataset. By removing them, the dialog loses its purpose.

• If we perform oversampling, we create the copies of minority classes such as GREETINGS, AP-
PRECIATE, SNU (signal not understood), SU (signal understood), CONV CLOSE (conversation
close, a.k.a end-of-conversation) on the above dataset. The disadvantage is that appending these
instances to the data doesn’t provide any information related to the task to the dataset. It may
increase the likelihood of overfitting. It also increases the computational effort on the dataset.

Given the crucial medical domain, deleting the information via undersampling leads to losing critical
medical information. Also, increasing the unnecessary information leads to overfitting the tags on the
unnecessary information. Thus it leads to increased computational effort. Also, overfitting leads to a
decrease in the classifier’s performance.

Another question arises - Why don’t we remove the tags of unnecessary information for better data
balance? Removing low-frequency data tags won’t affect the information present in the dataset for
now. But when we encounter the utterances corresponding to these tags in a real-time dialog system.
We may mistag the conversation, thus leading to a loss of information (present in tags such as RE-
PEAT REPHRASE, CORRECT), and it will also lead to a disturbance in the flow of conversation.

Thus, we do not use any oversampling and undersampling methods for data imbalance. We rely on
advanced machine learning algorithms to handle the data. Without altering the data, we preserve the
integrity and relevance of the dataset for the task-oriented dialog.

Also, there exist imbalances w.r.t each speciality in our dataset. Our dataset consists of more dialogs
from the pediatrician, ophthalmologist, and otolaryngologist when compared to the other medical spe-
cialists. The dataset that we have collected depends upon the time period granted to us to collect the
conversations and the number of patients visited during the time of data collection. But this did not
impact the intent recognition and slot tagging on our dataset.

6https://imbalanced-learn.org/stable/index.html

40



3.7 Summary

In this chapter, we present the creation of our code-mixed dialog dataset ‘Su-Vaid’. The dataset
covers ten medical specializations, with more than 3k conversations and 29k utterances, and has a code-
mixing index of 33%. The dataset is analyzed by various medical, conversational, and linguistic theories.
Finally, The dataset is annotated with intent and slots for natural language understanding.
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Chapter 4

Natural Language Understanding

This chapter talks about the natural language understanding module. NLU is the primary component
of the dialog system. It usually encompasses two sub-tasks, namely intent classification (IC) and slot
filling (SF). We present the baselines proposed for the both models. Later on we establish baselines
using the SOTA NLU models and present an improvement over the baselines.

In ToD systems, natural language understanding (NLU) consists of identifying the main goals and
information expressed in the user’s utterances. It usually encompasses two sub-tasks, namely intent
classification (also known as dialogue act classification) and slot filling (also known as slot labeling
or slot tagging). Intent classification is a single-label or multi-label classification task where one or
more intent labels must be assigned to the whole utterance of a user. The slot filling requires loading in
predefined slots of information by extracting values from the content of the utterance.

4.1 NLU models

The NLU Baselines used can be broadly classified into 4 categories. Independent Models, Joint
Models, and Contextual Models. Their description is given below.

4.1.1 Independent Models

Independent models treat IC and SF tasks separately. We have applied various RNN, CNN, and
BERT architectures for IC and SF tasks on our dataset. As our data is multilingual, we have used
multilingual pre-trained fastText embeddings [64], and BERT multilingual pre-trained embeddings [46].
The pre-trained embeddings capture a better semantic representation of the word when compared to the
embeddings directly learned on the corpus [64, 46]. We have also learned the embeddings directly from
our corpus using the Roberta Language model. Further details are given in section 4.1.1.

• RNN: The bi-directional Jordan RNN [80] is used for the IC and SF tasks. The representation
of the last hidden layer is used for IC. Whereas the encoded information obtained from all the
hidden units in the last layer is used for SF. [111].
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• CNN: A sequence learning-based convolutional neural network (CNN) is used to extract features
[61]. Here, each filter will slide across the sequence, from beginning to end, looking at all three
consecutive tokens at a time. The embeddings are passed through convolutional blocks with
a special activation function called Gated Linear Units (GLU). For the SF task, the convolved
representation is given to a feed-forward unit to obtain the slot tag for each token in the sequence.
Finally, the Max-pooling is applied to get the word representation before passing it to the output
layer for the IC task.

• Code-Mixed BERT: We have trained1 the language model from scratch using Roberta Trans-
former and BPE Tokenizer on our dataset. The BERT model is obtained from the transformers
library 2. Further, we fine-tuned the model for the SF and IC tasks.

• mBERT: It is a bidirectional transformer encoder model with pre-trained multilingual word em-
beddings [46]. It is a transformer-based self multi-headed attention model pre-trained on a huge
data collection. This transfer learning is very successful when we learn a classifier from a dataset
using pre-trained embeddings. We used the smaller version of the pre-trained multilingual BERT
model called bert-base-multilingual-cased obtained from the transformers library. The accepted
pre-trained model is fine-tuned for our intent and slot-tagged dataset.

• IndicBERT: A multilingual ALBERT model trained on a large-scale corpus, covering 12 Indian
languages [85]. The model is fine-tuned on our dataset for IC and SF tasks.

• Clinical-BERT: Clinical-BERT is a BERTbase model trained on clinical notes to obtain embed-
dings specific to medical data [6]. The model is fine-tuned on our dataset for IC and SF tasks.

4.1.2 Joint Models

The NLU model needs both IC and SF tasks to capture the semantic frames in an utterance. Thus,
it is intuitive to think that these tasks are correlated and benefit each other when trained jointly. Most
joint modeling approaches use parameter sharing to capture the relationship between SF and IC. Using
a joint model for the two NLU tasks simplifies the dialog system, as only one model needs to be trained
and deployed.

• Joint RNN model: [100] use a neural sequence to sequence (encoder-decoder) model with an
attention mechanism. The shared encoder is a Bi-LSTM (Bi-directional Long Short Term Mem-
ory), and the decoder then uses the last hidden state of the encoder to generate a sequence of slot
labels. At the same time, there is a separate decoder for the IC. The attention mechanism is used
to learn alignments between the slot labels in the decoder and the words in the encoder. We have
used fastText pre-trained embeddings.

1https://huggingface.co/blog/how-to-train
2https://huggingface.co/transformers/

43



• Slot Gated RNN: A slot-gated mechanism is introduced to capture explicit relations between the
intent and the slots [63]. The Bi-LSTM-based attention model [100] is used along with the slot
gate. The slot-gated model allows the slot filling to be conditioned on the learned intent result to
achieve better joint slot filling and intent detection.

• Joint BERT: [33] used joint modeling with BERT as the underlying architecture for the joint
modeling of SF and IC tasks. The encoded information obtained at [CLS] (a.k.a classification
token) is given to the feed-forward network for intent detection. The encoded representations
obtained from the other tokens of the utterances are given to the feed-forward network for slot
tagging.

• SlotRefine [172]: The transformer architecture is used to construct a two-pass iteration mecha-
nism to handle the problem of the uncoordinated slots caused by conditional independence of the
non-autoregressive model.

4.1.3 Contextual models

A multiturn dialog exhibits a flow of conversation. Such sequential flow exhibits long-term depen-
dencies in utterances. The manipulation of such flow helps the model capture long-term dependencies
and improves the performance of NLU. Such models that encode previous knowledge are generally
known as Contextual NLUs.

• CASA-NLU [67]: It is a context-aware self-attentive NLU (CASA-NLU) model. In addition to
the current user utterance, the model uses previous utterances with their dialog acts, intents, and
slot tags as contextual signals over a variable context window. The model also uses a directional
self-attention-based encoder (DISAN) [144]. DISAN adds absolute position embedding of the
previous and current utterances. The model obtains a one-hot representation of intent and slot
ground truth labels of the previous utterances. The intent and slot one hot embedding are concate-
nated with their corresponding previous utterances. The attention mechanism is used to extract
relevant components of the previous utterances. It is known as a contextual vector. The contextual
vector and the current utterance are used for predicting the intent and the slot labels for the current
utterance.

• BERTNLU-Context3 [185]: In this model, the last three utterances are given to the BERT model
to incorporate the contextual information. The discrete set of previous utterances is separated with
[SEP ] tokens, and a [CLS] token is inserted initially. Then, it is passed through the MLP(Multi-
Layer Perceptron) to predict the intent and the slot tags, respectively. We have considered two
contextual models,

3This model was initially tuned on the chinese dataset thus we cannot use it. So we have used mBERT- i.e., bert-base-

multilingual-cased as the underlying BERT model, instead of the BERT model suggested in the paper [185].
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1. Memory(I) considers IC and SF tasks to be Independent.

2. Memory(J) considers the correlation between IC and SF tasks and uses the Joint modeling
method.

4.2 Experimental Settings

The experiments and evaluations were run on NVIDIA GeForce RTX 2010 with GPU driver version
457.51, and CUDA version: 10.1 with 8 GB GPU memory. We used PyTorch and torch-text libraries to
implement the RNN and CNN models. The training, validation, and testing data split was 75%, 6.25%,
and 18.75%.

We used the default parameter settings mentioned in their original papers for the baseline models.
We used 300-dimensional FastText and 768-dimensional BERT word embeddings for baseline models
using pre-trained word embeddings.

The hyperparameters used to fine-tune the huggingface transformer models are, maximum sentence
length = 232, batch size = 32, learning rate = 2e-5, epsilon = 1e-8, number of epochs = 10 and dropout
= 0.1.

4.3 Performance of Multilingual Models

The performance of the baseline models on our dataset is given in Table 4.1.
For the independent models, given the intent classification task, we observed that the RNN model

misclassified the STATEMENT and ANSWER, ANSWER, and ACK (ACKNOWLEDGEMENT) la-
bels. One perception is that all these utterances can be visualized as statements that the patient or doctor
utters during the conversation. The SOTA transformer architecture and pre-trained embeddings of the
BERT model gave a better representation of our data, benefiting the slot-filling task.

The joint models have seen a decline in performance. It is because the intent tags are domain-
independent, and the slot tags are domain-dependent. This inconsistency of domain dependence and
independence affected the performance of the model. The slot-gate NN model [63] gave better results
on the dataset. In the slot gate model, the value of the gate determines the flow of intent information to
the slot. We have observed that the gate value is very low, signifying a low correlation between the slot
and the intent for a given utterance. For further analysis, we have also appended the slot gate to the joint
mBERT model and observed that the gate value is very low, thus proving a low correlation between the
intent and the slot models.

Using contextual information while fine-tuning the BERT model improved the model’s performance.
The encoded knowledge obtained from the previous utterances helped the contextual model distinguish
between the STATEMENT, ANSWER, and ACK tags, thus improving the model’s performance.

The Memory(I) model performed better for the IC and SF tasks when compared to the Joint memory
model. As mentioned above, this is due to the poor correlation between IC and SF tasks.
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IC SF

Models P R F1 Acc P R F1 Acc

I Jordan RNN + FastText Embed 0.35 0.37 0.33 0.67 0.29 0.29 0.29 0.76

Jordan RNN + BERT Embed 0.36 0.37 0.34 0.68 0.29 0.30 0.29 0.77

CNN + FastText Embed 0.24 0.19 0.21 0.47 0.44 0.33 0.37 0.82

CNN + BERT Embed 0.24 0.19 0.21 0.48 0.44 0.33 0.37 0.81

Code-Mixed BERT 0.38 0.42 0.40 0.72 0.44 0.48 0.46 0.85

mBERT 0.42 0.46 0.44 0.73 0.52 0.58 0.54 0.94

IndicBERT 0.33 0.37 0.34 0.70 0.31 0.37 0.31 0.86

clinical-BERT 0.31 0.36 0.33 0.67 0.22 0.31 0.23 0.80

J Joint RNN model + FastText Embed 0.30 0.37 0.33 0.67 0.27 0.31 0.29 0.74

Joint RNN model + BERT Embed 0.30 0.37 0.33 0.67 0.27 0.31 0.29 0.75

Slot Gated RNN + FastText Embed 0.38 0.41 0.39 0.72 0.43 0.49 0.46 0.84

Slot Gated RNN + BERT Embed 0.38 0.41 0.39 0.72 0.43 0.49 0.46 0.84

Slot Refine + FastText Embed 0.36 0.40 0.38 0.70 0.32 0.38 0.36 0.75

Slot Refine + BERT Embed 0.36 0.40 0.38 0.71 0.31 0.39 0.36 0.75

Joint BERT 0.36 0.41 0.38 0.69 0.39 0.40 0.38 0.72

M(I) BERTNLU-context 0.54 0.58 0.56 0.87 0.52 0.58 0.54 0.95

M(J) CASA-NLU 0.37 0.42 0.39 0.71 0.39 0.41 0.40 0.72

BERTNLU-context 0.39 0.43 0.41 0.75 0.39 0.41 0.40 0.73

Table 4.1 Performance of Baseline models on our dataset, Where I refers to Independent Model, J refers

to Joint Model, M refers to Memory Model, IC refers to Intent Classification, SF refers to slot Filling

and P, R, F1, A stands for macro-Precision, macro-Recall and macro-F1 measure, and accuracy

The slot tagging showed no improvement in performance when previous utterances were used. It
denotes that only current utterance is essential for slot filling on our dataset.

In medical documents, false negatives should be avoided since they can affect the patient’s diagnosis.
Thus, recall value should be more than precision when analyzing medical data. Our models also exhib-
ited a similar behavior by delivering better recall values when compared to the precision. It suggests
that our fine-tuned models minimized the false negatives in the dataset.
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4.4 Cross-lingual XLMR Models

IC SF

Models P R F1 Acc P R F1 Acc

I Jordan RNN + MUSE Embed 0.35 0.37 0.33 0.67 0.29 0.29 0.29 0.76

Jordan RNN + XLM-R Embed 0.35 0.37 0.33 0.67 0.29 0.29 0.29 0.75

CNN + MUSE Embed 0.24 0.19 0.21 0.47 0.35 0.33 0.34 0.80

CNN + XLM-R Embed 0.24 0.19 0.21 0.48 0.35 0.33 0.34 0.80

XLM-R 0.42 0.46 0.44 0.73 0.52 0.57 0.53 0.93

J Joint RNN model + MUSE Embed 0.30 0.37 0.33 0.65 0.27 0.31 0.29 0.73

Joint RNN model + XLM-R Embed 0.30 0.37 0.33 0.67 0.27 0.31 0.29 0.75

Slot Gated RNN + MUSE Embed 0.36 0.38 0.37 0.70 0.43 0.49 0.46 0.83

Slot Gated RNN + XLM-R Embed 0.36 0.38 0.37 0.71 0.43 0.49 0.46 0.84

Slot Refine + MUSE Embed 0.36 0.40 0.38 0.69 0.32 0.38 0.35 0.72

Slot Refine + XLM-R Embed 0.36 0.40 0.38 0.70 0.32 0.38 0.35 0.72

Joint XLM-R 0.36 0.40 0.38 0.69 0.32 0.38 0.35 0.72

M(I) XLM-R-NLU-context 0.54 0.58 0.54 0.84 0.52 0.55 0.53 0.93

M(J) XLM-R-NLU-context 0.36 0.41 0.38 0.69 0.35 0.40 0.37 0.73

Table 4.2 Performance of Cross-lingual Baseline models on our dataset. Where I stands for Independent

Models, J stands for Joint Models, and M stands for Memory Models. P, R, F1, A stands for macro-

Precision, macro-Recall, and macro-F1 measure, and accuracy.

As mentioned above, we have utterances with bilingual words in our data. Logically, such words
should have the same embeddings when dealing with cross-lingual datasets. Cross-lingual word em-
beddings (CLWEs) can be used to align the embeddings of bilingual and tri-lingual words. CLWEs are
the same as monolingual word embeddings, but it captures words from multiple languages into one em-
bedding space. CLWEs use monolingual corpora, dictionaries, and parallel corpora to do the projection
or alignment [134].

We used MUSE, a python library for multilingual unsupervised and supervised embeddings [39,
95] to obtain the cross-lingual word embeddings. We opted for a supervised model that uses seed
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dictionaries to learn cross-lingual mapping. The cross-lingual mappings are learned between Telugu
and English languages with Telugu-English4 seed dictionaries.

We have also used XLM-R, a multilingual transformer model that achieved strong performance on
cross-lingual understanding tasks. It relies on the Masked Language Model’s objective and can process
text from 100 separate languages. The XLMR model is trained on 2.5TB of cleaned CommonCrawl
data. XLM-Roberta uses the one large shared Sentence Piece model. XLM-R’s training routine is the
same as the monolingual Roberta model. We have obtained the pre-trained XLM-R model known as
”xlm-roberta-base”5 from the transformers library and used it to fine-tune our dataset.

Table 4.2 shows our dataset’s performance of cross-lingual baselines.

4.5 Performance of Cross-lingual NN models

The models with cross-lingual embeddings have shown no improvement in performance when com-
pared to the baseline monolingual models.

Even the XLM-R model has shown no improvement in accuracy compared to the mBERT model.
Similar to the BERT model, XLM-R misclassified the STATEMENT and ANSWER labels.

We have seen no improvement in performance when cross-lingual embeddings are used on the joint
models because of the independence between the intent and slot tags.

When cross-lingual embeddings are used, the memory models have shown a decrease in classification
accuracy for DA tagging and slot tagging tasks.

The XLMR models did not perform better when compared to the mBERT model on our dataset.
The results prove that further research and more training data are necessary to capture the cross-lingual
information in multilingual and code-mixed datasets.

4.6 Contextual Signals and Chunk Identification for NLU

We improved the performance of the traditional mBERT model by augmenting it with contextual
signals for intent classification and by projecting the slot-filling task as a chunk identification problem.

4.6.1 mBERT with Contextual Signal for IC

Figure 4.1 presents the architecture of the IC model on the dataset. For the IC task, the model takes
a discrete set of previous utterances with their ground truth labels and the current utterance and encodes
them using an mBERT model. The utterances are ordered as current to previous k utterances, and they
are separated with [SEP ] token. We insert a [CLS] token at the beginning for intent classification. The

4https://te.wikipedia.org/wiki
5https://huggingface.co/transformers/model_doc/xlmroberta.html
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Figure 4.1 mBERT with contextual signal for Intent Classification

encoded information of the BERT model is given to the multi-layer perceptron (MLP) to capture the
intent.

In the test phase, each predicted previous intent tag in a dialog is stored and given as a contextual
signal while predicting the intent of the current utterance.

4.6.2 Chunk Identification - SF Model

[172] argues that identifying the slot chunks and dependencies among slot chunks is enough. We
used the same approach to identify token dependencies in slot chunks. The architecture of the slot
tagging model is given in Figure 4.2.

We extend the mBERT model to construct the two-pass mechanism. The mBERT and vanilla trans-
former models extract the coarse-grained slot tags (without BIO-tag information) in the first pass. In
the second pass, the predicted slot tags are passed along with the token embedding of the utterance to
predict the fine-grained slot tags (i.e., slot tags with BIO-tag information). In detail,

1. In the first pass,

(a) The initial slot tags are set to (Outside) O-tag.
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Figure 4.2 Bourndary aware Slot Filling Model using 2 phase mechanism. tp, s, and pos refer to

time period, statement, and positive tags, respectively.

(b) The O-tag and token embeddings are given to the mBERT model and the vanilla transformer
model to predict the coarse-grained slot tags.

2. In the second pass,

(a) The coarse-grained slot tag and the token embeddings are given to the model.

(b) The model has to predict the slot-tag boundaries, i.e., the BIO tags for the given slot tags.

This two-pass mechanism forces the model to learn the fine-grained slot tags (i.e., slot tags with
BIO information). Thus, the predicted slot labels become more consistent with identifying the
chunks.

These two iterations share the model and require no extra parameters. Intuitively, in doing so, the
model initially generates a draft of coarse-grained slot tags in the first pass. In the second pass, the
model is forced to learn the consistent BIO tags by adding coarse-grained slot tag information along
with the tokens in an utterance. Thus, the predicted slot labels become more consistent with the help of
boundaries. Thus, explicitly modeling the coarse-grained slot tags in the first pass and fine-grained slot
tags in the second pass helps the model tag the qualitative information related to the slots and simplifies
the slot tagging in the next pass.
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4.6.3 Evaluation of our approach

Table 4.3 Performance of our IC and SF models on the dataset

Model macro-P macro-R macro-F1 Acc

IC mBERT with contextual signal 0.63 0.68 0.66 0.96

SF Chunk Identification - SF Model 0.52 0.58 0.55 0.97

Figure 4.3 Comparision between BERTNLU-context and mBERT with the contextual signal on the

dataset

Table 4.3 shows the performance of mBERT with the contextual signal on our dataset. During the
test phase, the batch size is kept as ”1”, and the utterances are modeled sequentially so that the previous
utterance’s intent is considered for predicting the intent of the current utterance. The contextual window
considered is 3 (This value is considered after observing the conversational flow during the annotation
process). We observed that adding intent ground truth labels during training and considering previous
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Figure 4.4 Confusion matrix - BERTNLU-context for intent tagging.

intent during the test phase helped the utterance establish a well-determined context and improved its
classification accuracy.

The performance of BERTNLU-context and the mBERT with the contextual signal is shown in
Figure 4.3. As expected, contextual signals improved IC performance for most labels compared to the
BERTNLU-Context. The improvement in accuracy for most of the labels shows the impact of contextual
signals on the multi-turn conversational dataset.
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Figure 4.5 Confusion matrix - mBERT with contextual signal for intent tagging.

Figures 4.4 and 4.5 present the confusion matrices of BERTNLU-context and mBERT with the
contextual signal on the given dataset. The BERTNLU-context model misclassified ANSWER and ACK
as STATEMENT labels on our dataset, whereas the enhanced approach performed better. It proves that
ground truth intent labels improve the intent prediction on our dataset.

The performance of naive mBERT and chunk identification SF models for each label is given in
Figure 4.6, and for each epoch is given in Figure 4.7. As the chunk carries most of the slot-related infor-
mation in the dataset, balancing the model with a 2 phase mechanism reduced the number of incorrectly
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Figure 4.6 Performance of naive mBERT and chunk identification SF models on the dataset for each

slot label (Only a few slots were used for clear observation)

classified tags. We can see the improvement in most intermediate(I) chunks because of the model’s 2
phase chunk identification mechanism. It improved the performance of the dataset by 3%. Thus proving
that our model achieves better chunk identification when compared to the naive mBERT model.

4.6.4 Adapter-Transformers

The transformer model achieves better results for intent and slot tagging, But the problem with
this deep learning model is it involves downloading and fine-tuning pre-trained models consisting of
hundreds of parameters. Training such large pre-trained models is expensive, slow, and time-consuming
on the dataset. [119] developed Adapters, a.k.a small bottleneck layers, inserted within each layer of a
pre-trained model to alleviate this issue by avoiding full fine-tuning of the entire model. The adapter
framework uses the steps mentioned below to introduce adapters in the transformers.

1. Adding new adapter configuration and weights to the pre-trained transformer.

2. Freezing the pre-trained weights and only fine-tuning the adapter weights for a specific task.

3. Loading and storing the adapter weights for the future.
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Figure 4.7 Overall accuracy performance per epoch for naive mBERT and chunk identification SF

models on the dataset

They also proposed a framework that allows a dynamic mix-in of pre-trained adapters for different
tasks and languages known as AdapterHub [120]. The framework built on top of the popular Hugging-
Face Transformers library enables extremely easy and quick adaptations of state-of-the-art pre-trained
models (e.g., BERT, RoBERTa, XLM-R) across tasks and languages.

Experimental Settings - Adapters

We have implemented the intent classification and slot tagging models by considering the adapter
transformers. We have used the adapter-transformers library6 that is built over the hugging-face trans-
formers library for testing the adapter models. We used the BertAdapter model, which contains adapter
modules for the BERT models. We used the ”bert-base-multilingual-cased” pre-trained checkpoint from
the hugging-face transformers library. We added classification or tagging head to the adapter model for
intent and slot tagging. We use the default ‘Pfeiffer’ configuration [119] in the adapter models.

Analysis of Adapters

The pre-trained models used by our dataset consisted of 117 million parameters, and our model took
30 minutes to complete a single iteration on the dataset. Only 0.2 million parameters are added to the

6https://docs.adapterhub.ml/index.html
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IC SF

Models P R F1 Acc P R F1 Acc

I mBERT with adapters 0.34 0.33 0.33 0.71 0.52 0.56 0.52 0.92

XLM-R with adapters 0.32 0.33 0.32 0.70 0.52 0.56 0.52 0.91

J Joint BERT with adapters 0.31 0.35 0.32 0.70 0.39 0.40 0.38 0.72

Joint XLM-R with adapters 0.31 0.34 0.31 0.69 0.32 0.38 0.35 0.72

M(I) BERTNLU-context with

adapters

0.38 0.36 0.37 0.74 0.52 0.53 0.52 0.92

XLM-R-NLU-context with

adapters

0.38 0.36 0.36 0.72 0.51 0.53 0.51 0.92

M(J) BERTNLU-context with

adapters

0.28 0.32 0.29 0.73 0.39 0.41 0.40 0.73

XLM-R-NLU-context with

adapters

0.28 0.31 0.28 0.71 0.39 0.41 0.40 0.73

* mBERT with contextual signal

for IC and Chunk identification

for SF with adapters

0.31 0.39 0.32 0.74 0.52 0.58 0.52 0.92

Table 4.4 performance of adapter-transformers on our dataset. Where I stands for Independent Models,

J stands for Joint Models, M stands for Memory Models, * refers to our approach, and P, R, F1, and Acc

refer to macro-Precision, macro-Recall, and macro-F1 score and Accuracy score, respectively.

model when adapter models are used. As the pre-trained transformer weights were frozen during fine-
tuning, we saw a huge decrease in the time taken for each epoch. The model took less than 15 minutes
for each epoch for the intent classification task and less than 10 minutes for each epoch for the slot-
filling task. I.e., the time taken is decreased by more than half for each epoch using adapters. However,
we saw a decrease in the classification metrics, as shown in Table 4.4.

Our code-mixed data is varied at the morphological level. The transformer models are trained on
monolingual tasks. It would be difficult for the pre-trained transformer models to capture the seman-
tic information of the code-mixed words. Thus the pre-trained model needs to be fine-tuned on the
given codemixed dataset. But as the adapters freeze the learning of pre-trained models, the essential
information captured by attention heads while fine-tuning the models is missing. It led to a decreased
performance in the classification metrics. Also, the model should be highly reliable in critical domains
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like medicine. Therefore, given the code-mixing in the medical domain, we should fine-tune the models
on the relevant training data before deploying them.

4.7 Summary

In this chapter, we briefly described the NLU and its subtasks. We presented SOTA NLU baselines
on our dataset. As our data is code-mixed, we considered both multilingual and cross-lingual models for
establishing baselines on our dataset. We also improved the performance of the NLU models by adding
contextual signals for intent classification, and we presented the slot-filling task as a chunk identification
problem.
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Chapter 5

Hate Speech Detection

This chapter presents our work on hate speech detection on code-mixed datasets.

Hate speech is defined as any communication that disparages a person or a group on the basis of
some characteristic such as race, color, ethnicity, gender, sexual orientation, nationality, and religion
[140].

Healthcare workers are at greater risk of workplace abuse than most other workers, with nurses and
family physicians rated as most at risk of abusive encounters with patients [45]. Statistics show that
over 75% of doctors across the country have faced at least some form of violence and that 68.33% of
the violence was committed by the patient’s attenders /escorts. The doctors have witnessed hate speech
when conversing with the patients too. This scenario was observed when the patients insulted other
doctors due to the delay in treatment or if the patient was given incorrect treatment.

A few examples of patients using hate speech towards doctors are presented in Table 5.1.

With the increase in social media access, Offensive content, and hateful material on the internet has
increased in the recent past. The internet harbors a variety of hateful and offensive statements, and
nowadays, social media is a hotbed of such conversations. Recently, countries across the world have
already begun to address hate speech and offensive content and how it affects society’s functioning.
Research and technologies worldwide are utilizing natural language and machine learning tools to detect
and curb the use of offensive content on social media [29].

Automatic detection of Hate speech is crucial in conversations. Modern dialog systems are often
designed to process and train the models even during the conversation simulation. If the hate speech
is not addressed in the dialog system, the dialog system will process the hate speech conversations and
simulate them and respond to the users offensively. This scenario was observed in the TAY bot released
by Microsoft. Tay was an artificial intelligence chatbot that Microsoft Corporation released via Twitter
on March 23, 2016; it caused subsequent controversy when the bot began to post inflammatory and
offensive tweets through its Twitter account, causing Microsoft to shut down the service only 16 hours
after its launch.

Our data collection found no data related to hate speech in doctor-patient interactions. So we trained
the hate speech detection module by considering the current code-mixed datasets. We also evaluate the
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Figure 5.1 patient’s using hate speech on doctors

performance of the hate speech detection modules on those datasets. These datasets are available in
Telugu, Tamil, Malayalam, Kannada, and Hindi code-mixed languages. The model that is fine-tuned on
the Telugu corpus [137] is used in our dialog system.

5.1 Proposed Models for Code-Mixed Hate Speech Detection

In this section, we present our proposed models for hate speech detection.

5.1.1 Transformers with the Class Balanced Loss for Offensive Language Identification

in Dravidian Code-Mixed text.

In the paper [53], we used multilingual pre-trained BERT with the class-balanced loss for code-
mixed hate speech detection. The Class-Balanced Loss assigns weights to the loss based on the effective
number of samples in the given data [44]. We used a re-weighting scheme that uses sufficient samples
for each class to re-balance the loss, thereby yielding a class-balanced loss. We also pre-process the
code-mixed dataset to extract reliable information. We begin the model by primarily pre-processing the
data.
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Pre-processing

The given code-mixed dataset depicts real-time scenarios of variations in the spelling, script changes,
and use of hashtags, mentions, and emoticons in the text and has imbalance problems. So pre-processing
is necessary for such a dataset. During pre-processing,

• To resolve the ambiguities resulting from the script change, we back-transliterated the script to the
native language. As the data has Dravidian and English comments, we used the NLTK1 English
word corpus to detect if the word is in English or not. Later we back-transliterated the word to its
native script. We applied linguistic rules not to transliterate the tweet/comment “not-Kannada/not-
Tamil/not-Malayalam” as they are not in the intended language.

• We removed all the punctuations, URLs, mentions, unwanted numbers, and emoticons from the
given dataset. We accepted repetitions of characters up to a length of 2 and removed others.

Class balanced loss to handle dataset imbalance

While handling an imbalanced dataset (one with most of the samples belonging to very few classes
and many other classes with very few instances), loss calculation can be tricky. The most common
approach to balancing the loss is assigning weights to the loss. The weights are calculated as the inverse
of the number of class instances or the inverse of the square root of the number of class instances. This
weighing scheme creates the problem by shifting focus entirely to the classes with very few instances.

To handle the shift, the authors [44] proposed a Class-Balanced Loss based on the Effective Number
of Samples. The effective number of samples is defined as the volume of samples. It can be calculated
by a simple formula (1− bn)/(1− b), where n is the number of samples and b is a hyper-parameter, and
it takes values between [0,1]. The authors designed a re-weighting scheme that uses sufficient samples
for each class to re-balance the loss, thereby yielding a class-balanced loss.

CB(p, y) =
1

Eny

L(p, y) = 1− β

1− βny
L(p, y) (5.1)

Here, L(p, y) can be any loss function.ny is the number of estimated samples for each labels y.

5.1.2 Using BERT and multilingual BERT models for hate speech detection (with data

augmentation)

We [52] used pre-trained bi-directional encoder representations using transformers (BERT) and mul-
tilingualBERT for hate speech and offensive content detection for English, German, and Hindi lan-
guages. We leveraged the datasets from the shared task [106] while fine-tuning our classifier. Such
data-augmented learning helped BERT learn better representations, thereby improving the model’s per-
formance.

1https://www.nltk.org/
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5.1.3 Hate Speech Detection on Code-Mixed Dataset Using a Fusion of Custom and Pre-

trained Models with Profanity Vector Augmentation

We [56] implemented a fusion model that takes advantage of a code-mixed model trained explicitly
on the code-mixed dataset and a pre-trained multilingual model. This fusion helps the model learn
a better semantic representation of the code-mixed data. Our method also includes a profanity word
list collection and profanity vector augmentation. Intuitively, a custom code-mixed model provides a
fine-tuned supervision of downstream tasks, while multilingual models are employed for knowledge
transfer across languages. The profanity vector helps improve the language modeling of the data by
emphasizing the profane words used in each comment. Along with model training and fine-tuning, we
initially pre-process the code-mixed data to deal with variations in spelling and transliteration.

A detailed description is presented below.

Pre-processing

This section presents the steps performed for transliterating the code switched data to its respective
languages.

The given code-mixed dataset depicts the real-time scenario of variations in spelling, transliterations,
script changes, emoticons, URLs, hashtags, and mentions. So pre-processing is necessary for such a
dataset. During pre-processing,

1. To resolve the transliteration variations resulting from the script change, we back-transliterated
the script to the native language. We have analyzed that the code-mixed data has the matrix
and embedded languages, where the embedded language is mostly English. Firstly, we used
the NLTK2 English word corpus to detect if the word is in English or not. If the word is not
from the English language, we assume it’s a foreign word/native word. We used google trans
API3 to detect the word’s language id. Later, we back-transliterated the non-English word to its
native script4. Of course, this won’t correctly capture the correct native word because code-mixed
languages have a lot of variations in spelling. But as we use sub-word tokenization, we expect
the BERT model to capture accurate semantic information. We also applied linguistic rules not to
transliterate the tweet/comment “not-Kannada/not-Tamil/not-Malayalam” as they are not in the
intended language.

2. To resolve spelling variations in the roman words, we used the google trans API to detect the
language of the word. We used symspellpy5, a python library, to correct the spelling mistakes in
the English corpus.

2https://www.nltk.org/
3https://pypi.org/project/googletrans/
4If the source and target languages are kept the same in the API, the google trans API works as a transliterator. i.e., it

transliterates the given text to the one specified by the source/target language.
5https://pypi.org/project/symspellpy/

61



Figure 5.2 Training the code-mixed model from scratch on the code-mixed dataset

3. Using regex codes, we removed all the URLs, mentions, hashtags, emoticons, unnecessary punc-
tuations, unwanted numbers, and emoticons from the dataset. In addition, we accepted repetitions
of characters up to a length of 2 and removed others.

Custom Code-mixed model: Training a Model From Scratch

The BERT models are trained on the monolingual corpus. They won’t cater to the needs of code-
mixed data. So we trained a Roberta model from scratch by using code-mixed training data. We used
a byte-level Byte-pair encoding tokenizer to tokenize the comments or posts. The tokenizer extracted
vocabulary from the code-mixed data. Then we trained a Roberta language model on the code-mixed
data. Figure 5.2 gives the training of the code-mixed model from scratch. The process of tokenizing and
training the language model using the hugging face-transformers library is available here6.

Multilingual BERT

Multilingual BERT [46] is a transformer model [157] that is trained on Wikipedia text across 104
languages. It uses a non-regressive model. It analyzes the meaning of a term depending on its context.
As the model is pre-trained on a large corpus, the semantic and syntactic information is well modeled,
and it can be directly fine-tuned for a specific task. The transformer part in the BERT works like an
attention mechanism capable of learning the contextual relationships between the terms in a sentence.
The BERT uses the [CLS] token, also known as the classification token, to indicate the beginning of the
sentence. The last hidden state of this token is used to classify the given sentence. Embeddings from

6https://huggingface.co/blog/how-to-train
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BERTbase have 768 hidden units. The BERT configuration model takes a sequence of words/tokens at
a maximum length of 512, producing an encoded representation of dimensionality 768.

Profanity Vector

The profanity vector was first introduced in the hate speech detection model proposed by [36]. The
model considers the profanity dataset obtained from the paper [108]. But it is not scalable to all the
datasets as the code-mixed hateful words are dependent only on [108]. So we have proposed a new
method of finding the profanity words and augmenting the profanity vector to the given model.

1. Finding the profanity words

(a) Initially, we took a list of unique words for transliterated datasets.

(b) We translated the non-English words to the English language using googletrans API.

(c) We know that hateful words have a negative polarity. We have used sentiment intensity.
analyzer7 from the NLTK library to get the polarity of each word.

(d) We also take the list of hateful words from the CMU Offensive/Profane Word List8.

(e) We identify the polarity of each unique word using the sentiment polarity analyzer, and we
also verify if the word is present in the hate database. If the word is of negative polarity or
the word is present in the hate database, we consider that word as the hate word.

(f) For each dataset, we maintain a profanity words list

2. The profanity word vector.

(a) The profanity word list is used to construct the profanity word vector.

(b) We used the same approach as given in [36] to construct the profanity vector. For each tweet,
we add a corresponding 1 that indicates the presence of a hate word. In contrast, its absence
is indicated by 0 to emphasize the absence of a contextually subjective profane word.

Method

In this section, we fine-tune the code-mixed and pre-trained BERT models using the hate speech and
offensive language training datasets. The proposed method is shown in figure 5.3

We consider the code-mixed training data and its labels to fine-tune a code-mixed classification
model from the given language model. The code-mixed model learns the task-specific knowledge since
it is trained and fine-tuned on code-mixed data. Further, the pre-trained BERT model is fine-tuned on
the code-mixed data. The pre-trained models are effective on unseen test data as they are trained on

7https://www.nltk.org/api/nltk.sentiment.html
8https://www.cs.cmu.edu/˜biglou/resources/bad-words.txt
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Figure 5.3 The proposed method
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Table 5.1 Dataset Statistics

Dataset No. of comments Labels

Dravidian Languages-EACL

2021 Malayalam-English

dataset [27]

20,010 Not Offensive, Offensive Untargeted, Offen-

sive Targeted Individual, Offensive Targeted

Group, Offensive Targeted Other, Not Malay-

alam.

HASOC-DravidianCodeMix

Malayalam-English dataset [31]

5,000 Not Offensive, Offensive

Dravidian Languages-EACL

2021 Tamil-English dataset[27]

43919 Not Offensive, Offensive Untargeted, Offen-

sive Targeted Individual, Offensive Targeted

Group, Offensive Targeted Other, Not Tamil.

HASOC-DravidianCodeMix

Tamil-English dataset [31]

4,000 Not Offensive, Offensive

Dravidian Languages-EACL

2021 Kannada-English dataset

[71]

7772 Not Offensive, Offensive Untargeted, Offen-

sive Targeted Individual, Offensive Targeted

Group, Offensive Targeted Other, Not Kan-

nada.

Bohra Hindi-English Code-

Mixed dataset [16]

4575 no, yes

HEOT (Hindi-English Offensive

Tweet) dataset [108]

3679 nonoffensive, abusive, hate-speech

large corpora. The concatenation of the last hidden states of the code-mixed classification model, pre-
trained BERT model, predicted probabilities and profanity vector is provided to fine-tune a feed-forward
network. This feed-forward network learns the attention-specific weights given to the models. Then the
model is fine-tuned further to predict the correct labels.

5.2 Datasets

This section lists available hate speech detection datasets where each comment or post is assigned to
a label.
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Malayalam-English

This dataset is obtained from 2 shared tasks: Offensive Language Identification in Dravidian Languages-
EACL 2021 [27], and HASOC-DravidianCodeMix [31]. These tasks aim to identify offensive language
from a code-mixed dataset of comments/posts on social media. The dataset contains all types of code-
mixing, such as inter-and intra-sentential. The mixing even happens at the script level, where some
comments are written in Malayalam script, and others are in roman script. The details of the dataset are
given in table 5.1.

Tamil-English

This dataset is obtained from the shared task: Offensive Language Identification in Dravidian Languages-
EACL 2021 [27], and HASOC-DravidianCodeMix [31]. The Tamil-English code-mixed dataset was
collected from tweets and comments. This dataset has comments/posts in roman characters. The statis-
tics of the dataset are given in table 5.1.

Kannada-English

The dataset is obtained from the paper “KanCMD: Kannada CodeMixed Dataset for Sentiment Anal-
ysis and Offensive Language Detection”. [71]. The dataset is collected from 18 youtube videos on
different topics ranging from movie trailers, current trends about the ban on mobile apps in India, the
India-China border issue, Mahabharata, and Transgenders. The data was collected between February
2020 and August 2020. The statistics of the dataset are given in table 5.1.

Bohra Hindi-English

The paper [16] created a corpus on hate-speech Hindi-English Code-mixed data. For each word, a
language identification tag was assigned. The tags were ’eng’, ’hin’, and ’other’. ’eng’, and ’hin’ tag
was assigned to words that are present in the English language and the Hindi languages, respectively.
The ’other’ is assigned to symbols, emoticons, hashtags, punctuations, named entities, and URLs. The
data statistics are given in table 5.1.

HEOT Hindi-English

The paper [108] introduced a novel tweet dataset, Hindi-English Offensive Tweet (HEOT) dataset.
It consists of tweets in Hindi-English code switched language split into three classes. The data statistics
are given in table 5.1.
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Telugu-English

The paper [137] created code-mixed Telugu-English corpus consists of 3361 Tweets. Each one of
the tweets is manually annotated with one of the following tags: Overtly Aggressive (OAG), Covertly
Aggressive (CAG), and Not Aggressive (NAG). Each token is annotated with a language tag. One of the
following tags is assigned for language: eng, tel, and other, where eng stands for English, tel for Telugu,
and ’other’ for punctuation marks, emoticons, named entities, URLs, hashtags, etc. ’eng’ is assigned to
English words such as cold, good, etc., and ’tel’ is assigned to Telugu words transliterated in English
such as nenu, enduku’, etc.

5.3 Experimental settings

In this section, we outline the experimental settings used in each of the models in the experiment.

We evaluated our model on a held-out test dataset for all experiments. We evaluate the baseline
models on the following metrics: macro-F1, weighted-F1, and accuracy. In comparison, we evaluated
the shared task models on the weighted-F19. We chose macro-F1 because they take the imbalanced data
into consideration and give an idea of whether the model is fine-tuned toward the labels with more data
points. The macro-F1 method can be used to know how the system performs overall across the sets of
tags in the dataset. In weighted F1, the F1 Scores are calculated for each label, and then their average is
weighted by the number of true instances for each label. It is used to emphasize the importance of some
samples. Accuracy-score helps to determine how accurate the model is while predicting the results.

During pre-processing, we have used a deep transliteration tool known as ai4bharat-transliteration10

library. The multilingual pre-trained BERT is obtained from the transformers library [169] and is fine-
tuned for the hate speech and offensive language detection task. The optimizer used is weighted Adam
with the learning rate of 2e − 5 and epsilon value equal to 1e − 8. The loss function used is a cross-
entropy loss. The number of epochs used for training the model is 30 with batch size set to 128.

For training the CM RoBERTa model, The maximum truncation length is kept as 512. The min frequency
of words for the tokenizer is 1. The learning rate is 1e−5, the number of train epochs is 5, and the GPU
training batch size is 8.

5.4 Baselines

In this section, we describe the baselines that we explore in the context of hate speech detection
code-mixed text.

9As all the models from the shared task are evaluated using the weighted-F1 score
10https://pypi.org/project/ai4bharat-transliteration/
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5.4.1 Support Vector Machines

We chose Support Vector Machines (SVM) [41] for hate speech and offensive content detection. The
SVM is a max-margin classifier that segregates two classes with a hyperplane.

5.4.2 FastText

The code-mixed text contains a primary language called the matrix language, as well as a secondary
language, i.e., the embedded language. In order to represent code-switching text, the straightforward
idea is to train the model with word embeddings. We used the FastText model [64] to train the word
embeddings. FastText has a subword-level word representation feature. Therefore, we utilized subword-
level embeddings from FastText to solve variational representations of spellings and translations. Fi-
nally, we used the fastText classifier to detect hate speech and offensive language in the given code-
mixed data.

5.4.3 CNN

[90] This convolutional neural network-based text classifier is trained by considering pre-trained
word vectors.

5.4.4 Bi-LSTM

[76] A two-layer, bi-directional LSTM text classifier with pre-trained word embeddings [64] as input
was considered for the task of text classification.

5.4.5 Multilingual BERT (mBERT)

Multilingual BERT [46], is pre-trained on Wikipedia text across 104 languages. The pre-trained
model uses the Transformer architecture [157]. It has shown a surprising multilingual ability to out-
perform existing strong models, either multilingual or code-mixed/code-switched on multiple zero-shot
cross-lingual tasks [121, 173].

5.4.6 XLM-RoBERTa (XLMR)

[38] is a multilingual language model. It is pre-trained in 100 languages. It obtained a state-of-
the-art performance on cross-lingual classification, sequence labeling, and question answering. XLM-
ROBERTa improves upon BERT, such as training on a larger dataset, dynamically masking out tokens
compared to the original static masking, and using a Byte-Pair-Encoding as the pre-processing technique
and a dual-language training mechanism with BERT in order to learn better relations between words in
different languages.
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5.4.7 Genetic Algorithm

[136] presented a genetic algorithm technique by ensembling CNN, XLMR-Base, and a custom-pre-
trained XLM-Roberta-Base Classifier. The genetic algorithm performed the best on the given Dravidian
code-mixed Tamil and Malayalam datasets.

5.4.8 AWD-LSTM with mBERT + XLMR

[87] presented an ensemble of an AWD-LSTM-based model along with multilingual BERT and
XLM-RoBERTa. Their work also incorporates additional training data obtained from the monolingual
English Offensive Language Identification Dataset (OLID) [180] used in the SemEval-2019 Task 6
(OffensEval) [181].

5.5 Performance

Table 5.2 shows the experimental results in terms of weighted f1 obtained on the code-mixed hate
speech datasets. We observe that the proposed approach of converting code-switched data into respective
high-resource languages outperform the baselines significantly. A hate speech dataset with more training
instances, i.e., the Tamil-English and Telugu-English dataset, performed better on the proposed approach
than the other datasets.

On the original dataset, the models SVM, Bi-LSTM, FastText, and CNN didn’t show much improve-
ment, whereas the transformer models have vastly improved because of their pre-trained embeddings.
The SVM didn’t perform well on the dataset because it considers only the syntactic information to ex-
tract features from the words. The naive neural network models such as Bi-LSTM, FastText, and CNN
didn’t perform better. A reason might be the model’s ineffectiveness in capturing the semantics of the
words in their embeddings. On the other hand, the multilingual BERT model performed better than
the baselines due to its state-of-the-art transformer architecture, its effectiveness in capturing better pre-
trained embeddings, and its state-of-the-art sub-word tokenization technique. The XLMR model gave a
competitive performance to the mBERT model on all the datasets.

As shown in table 5.2, our model performed better when compared to the baselines because of its
fusion learning of code-mixed and mBERT models. In this fusion learning approach, if a data point’s tag
depends on the semantic representation of the pre-trained embeddings, then the feed-forward network
selects the mBERT model. On the other hand, when the pre-trained embeddings didn’t satisfy the given
data point, the feed-forward network was inclined towards the custom code-mixed model.

We have seen that including the profanity vector improved the performance of the HEOT Hi-En[108]
dataset. Because in the HEOT Hi-En dataset, the hate speech words are manually listed. Whereas for
other datasets, we have seen a slight decrease or no-change scenarios in classification metrics. The
reasons are as follows.

69



Data/Model (Weighted-

F1)

Bohra Hi-En HEOT Hi-En Ml-En Ta-En Kn-En Te-En

SVM 62.8 84.5 88.3 72.7 48.4 69.1

SVM + PV 62.7 85.2 87.8 71.9 47.8 69.7

FastText 63.1 84.6 89.7 73.3 49.5 86.5

FastText + PV 63.1 84.8 89.5 73.1 49.5 86.3

CNN 63.2 83.1 89.9 73.5 70.1 91.9

CNN + PV 63.1 83.5 89.4 72.5 69.7 91.5

Bi-LSTM 64.5 84.7 88.6 73.1 49.4 92.4

Bi-LSTM + PV 63.8 85.1 88.3 72.9 49.1 92.1

mBERT 67.1 86.2 97.2 74.5 73.1 95.5

mBERT + PV 66.2 86.2 96.4 74.0 72.5 95.1

XLMR 66.8 85.3 95.3 74.1 71.8 94.9

XLMR + PV 65.9 85.5 94.8 73.1 71.5 93.6

Genetic Algorithm [136] 68.9 86.1 97.3 78.3 74.1 96.1

AWD-LSTM with

mBERT + XLMR [87]

68.5 86.2 97.0 77.4 72.3 95.6

Our Approach -

mBERT with data

augmentation

67.5 85.4 95.0 74.7 71.2 95.5

Our Approach -

mBERT with class

balanced loss [53]

67.3 86.1 96.3 74.9 64.8 95.5

Our Approach - Fusion

Model [56]

68.7 86.2 97.2 77.4 74.1 96.1

Table 5.2 Weighted-F1 score on the baselines without and with profanity vector (PV) when compared

to our approaches on the hate speech datasets

1. The change of spelling and script in the code-mixed datasets and the presence of homo-graphic
words did attribute to incorrect translation. Such words were either unidentified or misclassified
as hate words during profanity word identification.
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2. The translators are not perfect. The imperfections in translations resulted in unidentified/misclassified
hate words.

3. The profanity word identification works at the word level. But there might be phrasal-level hate
speech words that were not identified by our method.

4. The negative sarcasm words are not identified by our method.

5. The complexity of the models and the attention mechanisms used in the models already helped the
supervised models to capture the related hate words/phrases, which helped the model for better
hate speech detection even without profanity vector identification.

Given the code-mixed dataset, Profanity word identification is a difficult task due to script changes
and translation issues, some misclassified and unidentified hate words might decrease the model’s per-
formance. However, correctly identifying all hate speech words is beneficial to the model, as seen in the
HEOT Hi-En dataset.

We know that emoticons have implicit meaning in hate speech detection. We have used the python
emoji11 library to identify the emoticons and convert them to text. But this conversion did not improve
the results on these datasets. Because of the following reasons.

1. We have observed that the text already has hate-inducing words followed by emoticons.

2. There was no substantial text that was hate-inducing because of emoticons.

The conversion of emoticons might help in other datasets with a substantial amount of hate-induced data
due to emoticons.

5.5.1 Ablation study

We have conducted an ablation study of our approach on the given datasets. In the ablation study, we
have removed individual components from the model to determine our model’s dominant component
and verify whether our model supports graceful degradation. First, we have removed the profanity vector
augmentation from the proposed method. Second, we have removed pre-processing step to determine
the effect of transliteration and correction of variations in spellings on the model. Third, We have
removed the mBERT model to assess the impact of pre-trained embeddings on our model. Finally, we
have removed the CM model to determine the effectiveness of including the CM language model in our
method. The details of the Ablation study are given in Table 5.3.

We can see that the mBERT model was the more dominant model in our method, and removing the
mBERT model has shown a great decrease in accuracy. Further degradation in the accuracy is shown by
removing both the pre-processing step and the mBERT model. It is because the transliteration helped
obtain better embeddings for the mBERT model, which boosted the model’s accuracy.

11https://pypi.org/project/emoji/
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Ablation Study Bohra Hi-En HEOT Hi-En Ml-En Ta-En Kn-En Te-En

Our Approach 69.1 86.1 96.8 78.9 75.6 96.1

Our Approach w/o pro-

fanity vector

69.1 86.1 96.8 78.9 75.6 96.1

Our Approach w/o pre-

processing

67.9 85.7 96.5 77.9 73.2 95.9

Our Approach w/o

mBERT

66.4 84.8 96.4 78.0 71.9 91.6

Our Approach w/o CM

model

68.5 85.2 96.5 78.5 74.6 93.7

Our Approach w/o

pre-processing and w/o

mBERT

64.5* 84.6* 96.2* 77.6* 70.5* 89.5*

Model w/o pre-

processing and w/o

CM model

68.0 84.9 96.5 78.3 73.8 93.7

Table 5.3 The ablation study of our model by using “accuracy score” as the investigation metric on the

code-mixed hate speech datasets.

The removal of the profanity vector didn’t disturb the model’s accuracy because of the state-of-the-
art learning mechanism of the vanilla transformer model that can learn the semantics of the words while
fine-tuning the dataset. However, the profanity vector gives the benefit of early loss minimization, which
will be described in detail in section 5.5.3.

We know that code-mixed languages are of low resource. Low-resource languages often suffer from
a lack of labeled data for training hate speech detection models. Building a comprehensive dataset
for such languages can be challenging. However, profane word lists can provide a starting point for
identifying offensive language in the absence of extensive training data. By using a profane word list
as a baseline, you can establish a basic framework for detecting explicit profanity, even with limited
labeled examples. This work presents the first approach for automated profane word list identification.
This word list contains false positive profane words. The use of advanced algorithms for identifying
profane words will benefit the performance of model and is left for future scope.
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(a) mBERT on Bohra Hi-En (b) Our approach on Bohra Hi-En

(c) mBERT on HEOT Hi-En (d) Our approach on HEOT Hi-En

(e) mBERT on Te-En (f) Our approach on Te-En

Figure 5.4 Comparison of mBERT baseline and Our Approach on Hindi-English datasets

5.5.2 Confusion matrix

The confusion matrix is a tabulated layout that allows better visualization of the performance of a
supervised model to get a better idea of the model performance. We can see whether the system is
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(a) mBERT on Kannada-English (b) Our approach on Kannada-English

(c) mBERT on Tamil-English (d) Our approach on Tamil-English

(e) mBERT on Malayalam-English (f) Our approach on Malayalam-English

Figure 5.5 Comparison of mBERT baseline and Our approach on Dravidian datasets
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mislabeling the classes in the given classification dataset through the confusion matrix. In our matrix,
each row represents the instances in an actual class, while each column represents the instances in a
predicted class.

From the table 5.2, we can see that the baseline model “mBERT” gave a competitive performance to
the proposed model. So we deeply investigated the two models in terms of their prediction based on the
confusion matrices. The matrices are given in the figures 5.4 and 5.5.

From the figures, our model shows an improvement in the hate speech labels compared to the
mBERT model. Our approach didn’t overfit itself to the highly labeled datasets. Our model made a
balanced decision to get the correct labels across most of the classification label instances. This sce-
nario can be seen in the Dravidian datasets (Tamil-English, Kannada-English, and Malayalam-English).
The model also tried to predict the scarcely tagged labels (Offensive Targeted Insult Individual, Not-
{Tamil/Kannada/malayalam}, Offensive Targeted Insult Group, Offensive Untargetede) in the Dra-
vidian datasets and achieved a better accuracy when compared to the mBERT model. This shows the
efficiency of our approach when compared to the mBERT model. It proves that our model helps better
detect hate speech when compared to the current state-of-the-art baselines.

5.5.3 Training Loss

Loss is the penalty for a bad prediction. Training loss is the error in the training set of data. The
training loss helps us determine the model’s tuning toward the datasets. If the fine-tuning is good,
then the model is said to perform better on the given test set too. The training loss on the proposed
model(which includes profanity vector), our model without profanity vector) and its closest competitor,
the mBERT model, is given in Figure 5.6. We can see the proposed approach has shown a better
decrease in loss when compared to the mBERT model. It is due to using a custom code-mixed model in
combination with the mBERT model. The profanity vector has also added additional linguistic modeling
of data helping the model to perform better on the given training dataset. Using the profanity vector, the
proposed model obtained a minimized loss during the initial epochs compared to the mBERT model.
However, all the approaches reached a similar optimum due to the dominance of the mBERT model.
After reaching local optima, we observed a minute decrease in training loss for the given datasets. Out
of all the datasets, our model has shown a better fine-tuning capability on the Tamil-English dataset. The
number of instances in the Tamil-English dataset helped the code-mixed language model to fine-tune the
data better. On the other hand, the Malayalam-English dataset has shown us a low deviation in training
loss between the mBERT and the proposed approach. It is because the dataset is highly inclined towards
Not offensive tags. This imbalance credited the model as even the baselines performed better on that
dataset.
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(a) Loss on Bohra Hi-En dataset (b) Loss on HEOT Hi-En dataset

(c) Loss on Kannada-English dataset (d) Loss on Malayalam-English Dataset

(e) Loss on Tamil-English dataset

Figure 5.6 Comparison of Training loss of our approach (with or without profanity vector) and the

mBERT model on the hate speech datasets
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5.6 HSD in Dialog System

We used the proposed HSD model trained on the Telugu-English code-mixed hate speech dataset for
automated hate speech detection in our dialog system.

During the interaction, our task-oriented dialog system continuously monitors each utterance that
the user has entered to identify/detect hate speech and abusive content. If such hateful comments are
identified, the session is immediately terminated.

By incorporating this hate speech detection module, we aim to create a safe and inclusive environ-
ment where users can engage in constructive and respectful conversations. This proactive approach
helps prevent the dialog system from processing and responding to hate speech, thus ensuring that of-
fensive and harmful content is not perpetuated. By actively detecting and addressing hate speech, we
strive to maintain a responsible and ethical dialog system that promotes positive interactions and fosters
a respectful atmosphere for all users.

5.7 Summary

In this chapter, we presented our work on code-mixed hate speech detection. In our work, we devel-
oped deep learning models using BERT encoders for classifying code-mixed hate speech in Dravidian
languages. We also addressed the imbalance in the data using class-balanced loss, and we proposed a
better code-mixed model using a fusion of two models with profanity vector augmentation.
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Chapter 6

Dialog Manager and Suggestion System

In this chapter, we present our work on Dialog manager and Suggestion system1. These 2 modules
play a significant role in the overall dialog flow between the patient and the system.

6.1 Dialog Manager

Dialog management is the process of tracking and controlling the conversion to direct the user to-
ward a specific task. It is accomplished by the dialog manager. The dialogue manager is the major
component of a spoken dialogue system. It accepts the interpreted input from the NLU. It interacts with
external knowledge sources. It helps produce the necessary output for the user and generally controls
the dialogue flow.

The dialog manager can be viewed as having two main tasks:

1. Dialog state, it tracks the state of the dialog

2. Dialog control makes decisions about the next system action.

The dialog state stores a record of what has been said so far in the dialog. It provides the information
used for dialog control. Dialog control describes the information to be gathered in the dialog. It holds
the information about one or more slots to be filled with values provided in the course of the dialogue.

The Dialog Manager module can be implemented in several ways using

1. Dialogue scripts

2. Frames and slot filling

3. Statistical dialog manager

1Suggestion system was published in the WiML 2022 workshop NeurIPS and is supported by “Touchstone” KCIS Enabler

Grant Project, IIIT Hyderabad
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Dialogue scripts define the actions that can be taken at each point (or state) of the dialogue. This
method is also known as finite-state dialogue control. The predicted dialog states and the transitions
between them can be depicted in a graph, which can be represented diagrammatically. This approach is
used for system-directed dialogues.

Frame-based dialogue Manager is more flexible. Frames consist of slots that are filled with values
elicited from the user. The aim is to fill these slots by gathering user values and retrieving records
from a database that satisfies the user’s constraints. This type of dialogue has also been referred to as
form-filling. Even though it looks similar to dialog script, the added value of frame-based control is
that it supports more flexible dialogues by allowing the user to fill in the slots in different orders and
combinations. For example, if the user responds to the system’s initial prompt with more than one
value, all the respective slots obtained from the user’s response are filled, and the system can then ask
for values for any slots that remain open. Thus the flow of the dialogue is not predetermined but depends
on the information the user provides in response to the system’s prompts.

Statistical dialog Manager: This approach uses statistical models, such as machine learning algo-
rithms, to learn patterns in the user’s input and generate appropriate responses. This approach requires
a large amount of training data and can be more flexible than rule-based systems.

Figure 6.1 Patient’s frame to be tracked and updated by the dialog system via user interaction.
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A Frame-Based Dialog Manager for Task-Oriented Dialog

Generally, the choice of dialogue management strategy is determined by the application. Task-based
dialogue systems are usually implemented using a form-filling approach. A dialog model is a form with
slots to be filled, and the dialogue control is mostly system-directed.

The dialog scripts require careful design of rules, strategies, and dialogue models. However, the
major problem is that it is difficult to design all the necessary rules to cover all aspects of dialogue
management, particularly when considering the uncertainties that pervade at every level of dialogue.
An alternative is to use a data-driven method involving statistical machine learning, such as supervised
learning.

Supervised learning can be used when there is a vast corpus of examples of the optimal decisions to
make in dialogue. From such a labeled corpus, a stochastic/probabilistic dialogue model can be learned
(or estimated). Then, it can be applied to new dialogues similar to those recorded in the corpus.

But given our limited task-oriented corpus and its complexity in doctor-patient interactions, we chose
to use a frame-based dialog manager by writing handcrafted rules to track and update the frame. Our
frame looks similar to a patient’s profile given in figure 6.1. The dialog manager will ask a series of
questions until the given frame is completely full.

The frame-based approach has several advantages over other dialog management techniques. First,
it allows for a more flexible and adaptable system, as the frame can be updated dynamically based on
the user’s input. Second, it allows for a more natural and intuitive conversation, as the system can take
into account the user’s goals and preferences when generating responses.

6.2 Suggestion System

When the user enters the patient’s information, it might be possible that the user fails to mention
a few symptoms. So there must be a suggestion system to remind the user if they have any relevant
symptoms. An example of the doctor suggesting symptoms to a patient during an interaction is given in
Figure 6.2.

The input data available to the suggestion system are the user’s symptoms and clinical data. So
the suggestion system must use clinical data and the user’s symptoms to suggest the most relevant
symptoms. Figure 6.3 presents an abstract representation of the suggestion system module.

The underlying assumption is that the functionality of the human body is similar in most people.
Therefore, the symptoms exhibited for a medical condition will also be similar. By obtaining similarities
between the symptoms, we can suggest the relevant symptom(s) to the user.

This phenomenon of suggesting the most likely symptoms to the user by collaborating the symptoms
from similar-patients2 in the clinical data is called collaborative filtering (CF). To be specific, it comes
under content-based collaborative filtering.

2The patients who have exhibited similar symptoms entered by the user.
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Figure 6.2 Doctor suggesting symptoms to a patient during an interaction.

Figure 6.3 Suggestion System Model.

Content-based user collaborative filtering is a recommendation system approach that combines the
ideas of content-based filtering and collaborative filtering. In this approach, the system uses the user’s
past symptoms to generate a user profile and uses this profile to recommend symptoms by collaborating
the symptoms from similar patients.
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Table 6.1 Symptoms selected from four interactions in the clinical data

User symptoms list

U1: [fever, cold]

U2: [fever, cold, cough]

U3: [blister, skin]

U4: [rash, skin]

For content-based collaborative filtering, we need efficient models to extract features for each con-
versation from the raw conversational data. So we relied on various feature extraction models to get
features. The SOTA models considered for feature extraction are TF-IDF, SVD, RNN, CNN, mBERT.
Later on, we used user-based and item-based collaborative filtering to suggest relevant symptoms to the
current user.

User-based collaborative filtering uses the behavior and preferences of similar users to generate rec-
ommendations for the current user. To implement user-based collaborative filtering, the system typically
creates a user-symptom matrix, where the users are the rows of the matrix and symptoms are the fea-
tures/columns of the matrix. It then calculates the cosine similarity between the target user and other
users w.r.t their symptoms. Once the system has identified the most similar users to the target user, it
uses the information from similar users to generate suggestions.

Item-based collaborative filtering uses the similarity between items to generate recommendations
for a given user. To implement item-based collaborative filtering, the system typically creates a user-
symptom matrix, where the users are the rows of the matrix and symptoms are the features/columns
of the matrix. Later on, the system typically creates an item-item matrix that contains the similarity
between all pairs of symptoms. It then uses the symptoms that the user already has and finds the most
similar symptoms based on the item-item matrix. Finally, It recommends similar symptoms to the user.

An example that puts forth the behavior of suggestion is provided below.

Table 6.1 shows symptoms selected from 4 conversations in clinical data (where Un refers to a user
conversation).

The one-hot vector space model of the example data provided in table 6.1 is represented in the user-
item matrix 6.1.


symptom/U blister cold cough fever rash skin

U1 0 1 0 1 0 0

U2 0 1 1 1 0 0

U3 1 0 0 0 0 1

U4 0 0 0 0 1 1

 (6.1)

The TF-IDF vector will be of the form as represented here in the user-item matrix 6.2.
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symptom/U blister cold cough fever rash skin

U1 0 0.7 0 0.7 0 0

U2 0 0.5 0.6 0.5 0 0

U3 0.7 0 0 0 0 0.6

U4 0 0 0 0 0.7 0.6

 (6.2)

Item-based similarity finds the similarity between the items, is represented in the matrix 6.3.

item/item blister cold cough fever rash skin

blister 1 0 0 0 0 0.7

cold 0 1 0.6 1 0 0

cough 0 0.6 1 0.6 0 0

fever 0 1 0.6 1 0 0

rash 0 0 0 0 1 0.7

skin 0.7 0 0 0 0.7 1


(6.3)

As we don’t want to recommend the same symptoms, we subtract the Identity matrix from item-item
matrics.

When the current user (Uc) in an interaction enters “I have a fever and cold”, the suggestion system
considers both the symptom vectors of “fever”, “cold” and aggregates them to suggest the relevant
symptoms. (

item/item blister cold cough fever rash skin

cold+ fever 0 1 1.19 1 0 0

)
(6.4)

The suggestion system takes the topmost symptom. In our case, the suggestion system suggests
“cough”.

If the user (U2) enters “I have skin problems”, the suggestion system suggests “blister”, “rash”.

For user-based similarity, the Uc constructs the user item matrix of the form,(
item/item blister cold cough fever rash skin

Uc 0 1 0 1 0 0

)
(6.5)

Then, we calculate the cosine similarity between the current users and all the other users in the
dataset. The obtained cosine similarity between the users is(

U/U U1 U2 U3 U4

Uc 1 0.8 0 0

)
(6.6)

We can see that U1 and U2 have a high similarity with the current user Uc. Thus, we extract all
the symptoms from the users U1 and U2 such as fever, cough, and cold. As we need to suggest new
symptoms, we ask if the user has “cough”.
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6.3 Content Based Collaborative Filtering Models

6.3.1 TF-IDF based collaborative Filtering

TF-IDF based collaborative filtering [117] is a recommendation system approach that combines the
concepts of TF-IDF (Term Frequency-Inverse Document Frequency) and collaborative filtering. In this
approach, the system uses the TF-IDF algorithm to construct a user-item matrix where the rows are
each user’s conversations and items are symptoms/medical conditions. Then, it uses user-based and
item-based collaborative filtering to recommend the most similar symptoms to the user.

6.3.2 SVD-based Collaborative Filtering

SVD has been studied a lot in recommendation systems. [138] used latent semantic analysis based
SVD approach to extract similarity between two or more symptoms. It uses a matrix structure where
each row represents a user, and each column represents an item. This matrix’s elements are the ratings
given to items by users. A = USV T . Where A is a utility matrix, U is an orthogonal left singular
matrix, which represents the relationship between users and latent factors, S is a diagonal matrix, which
describes the strength of each latent factor, and V is a diagonal right singular matrix, which indicates the
similarity between items and latent factors. The latent factors here are the characteristics of the items.
The SVD decreases the dimension of the utility matrix A by extracting its latent factors. It maps each
user and each item into an r-dimensional latent space. This mapping facilitates a clear representation of
relationships between users and items.

But the problem with the above approach is that they capture only linear representations. They won’t
work if the data has a complex or deep relationship between two symptoms. So we move on to deep
learning models to extract the relationship between the symptoms.

6.3.3 Collaborative filtering using Deep Learning Methods

We have used the Feed Forward Networks, RNNs, CNN’s, and transformer Models to extract a
more fine-grained relationship between two symptoms. The masked language model is portrayed as a
recommendation system. Here, we have used the masked language modeling technique and trained the
NN model language model to predict the masked symptom. By fine-tuning the model on the task of
masked language modeling, the model will learn to predict the correct recommendation based on the
given input.

6.4 Evaluation of Suggestion system

Table 6.2 shows the performance of the five different models (TF-IDF, SVD, RNN, CNN, and
mBERT) on a content-based recommendation system with collaborative filtering on a dataset using
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Models User Based Item Based

MAR@10 MAP@10 F1-score MAR@10 MAR@10 F1-score

TF IDF 0.17 0.01 0.03 0.40 0.18 0.24

SVD 0.19 0.02 0.04 0.35 0.17 0.22

RNN 0.12 0.01 0.02 0.30 0.16 0.20

CNN 0.17 0.02 0.03 0.42 0.19 0.25

mBERT 0.16 0.03 0.05 0.65 0.23 0.29

Table 6.2 Performance of the content-based recommendation systems with collaborative filtering on our

dataset.

user-based and item-based approaches. The evaluation is based on two metrics: mean average recall
(MAR) and mean average precision (MAP) at 10 recommendations.

For the user-based collaborative filtering approach, we can see that SVD has the highest MAR@10
score of 0.19, indicating that on average, 19% of the relevant recommendations are included in the top
10 recommendations. However, for MAP@10, mBERT has the highest score of 0.03, indicating that,
on average, the relevant recommendations are ranked higher in the top 10 recommendations.

For the item-based collaborative filtering approach, the table shows that mBERT outperforms the
other models in both MAR@10 and MAP@10, with scores of 0.65 and 0.23, respectively. This indicates
that mBERT is able to recommend a higher percentage of relevant items in the top 10 recommendations
and also rank them higher on average compared to the other models.

We can say that the deep learning-based suggestion systems gave better performance when compared
to the other methods. Deep neural networks are capable of modeling the non-linearity in data with
nonlinear activations. This property makes it possible to capture the complex and intricate user item
or item-item interaction patterns when compared to linear models such as matrix factorization, cosine
similarity, and kNN models.

Even though we performed an elaborate study on content-based recommendation systems using var-
ious SOTA models and collaborative filtering approaches, we found that the results were still low on
various models. Because a single symptom is expressed differently, i.e., using various suffixes and
prefixes in the Indian language.

Compound agglutinative Indian languages present unique challenges in computational processing
due to their complex morphology and syntax. Telugu, in particular, has a rich inventory of inflectional
and derivational suffixes that can be added to words to convey a wide range of meanings. This leads
to an explosion in the number of possible word forms, making the computational processing of Telugu
more challenging than other languages with simpler morphological systems. This can be explained
using a simple example 6.3.
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Symptom Different variations of same symptom

hair fall

muMxara hair aMwA loss ayipoyiMxi. (hair loss on the front)

hair fall

hair loss

hair problem uMxi (hair problem is present)

hair lightgA rAlipowA uMxi.(light hair fall)

hair damage uMxi lightgA (light hair damage)

unnaxi UdipowuMxi (what is present, is going away)

hair damage uMxi. (hair damage is present)

hair fall ayipowuMxi (hair fall)

koVMcaM hair fall (slight hair fall)

hair loss avuwuMxi (hair fall)

hair fall avuwuMxi (hair fall)

winnAgA rAlipoVwuMxi (slightly falling)

rAlipowuMxi. (falling)

80 nuMci 100 veVMtrukalu UdipovadaM (80 to 100 count hair fall)

eVkkuva hair fall (high hair fall)

hair fall uMxi (hair fall is present)

hair fall, juttu rAlipoVvadaM anexi waggadaM lexu (hair fall is not decreasing)

juttu powaxi (hair fall)

hair fall, hair rAlipoVwuMxi. (hair fall)

hair loss, hair fall

Table 6.3 Variations of single symptom

The above example in Table 6.3 shows that a single symptom is expressed in different formats. And
we have only shown a single example of the above symptom. But there are thousands of such symptoms,
having implicit meanings in the dataset. Writing rules and using machine translation won’t work in such
scenarios. This explosion of variations makes the computational processing of the Telugu language a
very difficult task. Thus it is difficult to normalize such symptoms to one. Such scenarios resulted in
reduced performance of the recommendation system.
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6.5 Summary

This chapter elaborates on dialog management and suggestion system. The dialog manager is consid-
ered the heart of the dialog system, which directs the user toward a specific task. We used a frame-based
dialog manager for our task-oriented dialog system. We then present our work about the suggestion
system, which reminds the user if they have any relevant symptoms. We used collaborative filtering
methods for the suggestion system.
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Chapter 7

Medical Specialist Classification

In this chapter, we present our work on medical specialist classification, i.e., to predict the medical
specialist based on the data entered by the user. 1.

Medical diagnosis involves a complex process of analyzing patient symptoms and medical history
to arrive at a correct diagnosis. This task is usually performed by a medical specialist who has a deep
understanding of the specific medical condition. In recent years, there has been a growing interest in
using machine learning techniques to aid medical diagnosis and prediction tasks. The task-oriented
dialog systems that can classify the appropriate medical specialist based on a patient’s symptoms and
medical history are promising applications of such techniques [107, 101].

Several studies have been conducted on task-oriented dialog systems in healthcare. In [88], a con-
versational system was developed to assist seniors with their medication. In [105], a conversational
system was developed to assist in the early detection of Parkinson’s disease. In [112], a conversational
system was developed to assist in the management of diabetes. However, to the best of our knowledge,
no studies use code-mixed datasets for medical specialist classification.

7.1 Classification Models

In this chapter, we use a deep learning classifier for predicting the right specialist based on the
obtained medical information from the user and our code-mixed TOD dataset. As discussed in the
earlier chapters, we have already gone through the methods that were used to interact with the user to
obtain medical information such as symptoms, medical history, and other relevant information. The
dialog system finally uses this information to predict the appropriate medical specialist to consult.

Therefore, in order to predict the correct medical specialist, a trained classifier is required. Also,
We know that each interaction in our dataset is labeled with the appropriate medical specialist. We
utilize the labeled conversations in the dataset to train a classification model. Also, we know that all the
conversations are pretty long and contain unnecessary information. However, as mentioned in our slot-
filling model, our slot-tagging model extracts the necessary medical information required for specialist

1This work is supported by “Touchstone” KCIS Enabler Grant Project, IIIT Hyderabad
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classification. Thus we used the slot tagging model to extract the necessary medical information and
used it to classify the specialist.

We explored several state-of-the-art text classification models such as Extra Trees Classifier (ETC),
CNN, Bi-LSTM, fastText, and mBERT and its variants for medical specialist classification. The goal
was to identify the best-performing model for predicting the appropriate medical specialist. We selected
the ETC machine learning model as it recorded the best performance compared to all the machine
learning classifiers for the given dataset.

The state-of-the-art classification models considered are,

7.1.1 Extra Trees Classifier(ETC)

ETC is a machine learning algorithm that belongs to the family of decision tree-based ensemble
methods. ETC builds an ensemble of decision trees using a random subset of features and training
samples at each node, resulting in a forest of decision trees that are independently grown and combined
to make the final classification decision. Unlike a Random Forest Classifier, which selects the best split
among a set of randomly selected features, ETC selects the split point randomly, which can lead to faster
training times and better generalization performance. Another advantage of ETC is that it can handle
imbalanced datasets well. It can give more weight to minority classes in the training process, leading to
better classification results for rare classes. ETC is also computationally efficient and can handle large
datasets with high-dimensional feature spaces.

7.1.2 CNN

[91] In this paper, the author introduced a model called the ”Convolutional Neural Network for
Sentence Classification” (CNN-S). The model takes a sentence as input and uses a one-dimensional
convolutional layer with multiple filter sizes (3,4,5) and max-pooling to capture the local features of the
sentence. The output of the convolutional layer is then fed to a fully connected layer, followed by a
softmax activation function for text classification.

7.1.3 Bi-LSTM

[79] In this paper, the authors proposed a new model for sentence classification that uses a BiLSTM
to capture the contextual information of a sentence. The model takes a sentence as input and feeds it
through a BiLSTM layer that processes the sentence in both forward and backward directions. The
output of the BiLSTM layer is then fed to a fully connected layer followed by a softmax activation
function for text classification.
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7.1.4 fastText

[82] This is a simple, efficient, and fastest text classification method. It treats the average of word/n-
grams embeddings as document embeddings, then feeds document embeddings into a linear classifier.
The paper presents several modifications to the traditional bag-of-words model, including the use of
subword information, character-level features, and the hashing trick, which were proven very beneficial
for text classification on utf-8 encoded languages.

7.1.5 Text GCN

[178] Builds a heterogeneous word document graph for a whole corpus and turns document classi-
fication into a node classification problem. The approach involves representing a sentence as a graph,
where each word is represented as a node, and the relationships between words are represented as edges.
The GCNs are then used to perform convolution operations on the graph, allowing the model to capture
the dependencies and interactions between words in the sentence. It uses GCN [92] to learn the word
and document embeddings. One of the key contributions of this paper was the introduction of the use
of GCNs for text classification, which allowed the model to capture the dependencies and interactions
between words in a sentence and improve its performance on text classification tasks.

7.1.6 mBERT

The BERT model [46] The mBERT is based on transformer architecture [157] It uses a series of mul-
tiheaded attention and feedforward networks. It has been pre-trained on a large corpus in 104 languages,
including low-resource languages. The model is based on the Transformer architecture and is trained
using a masked language modeling objective, where a certain percentage of the words in the input text
are randomly replaced with a special mask token, and the model is trained to predict the original words.
We have also considered IndicBERT [85] and Clinical-BERT [6] model. With IndicBERT being trained
on a large-scale corpus, covering 12 Indian languages and Clinical-BERT model is trained on clinical
notes to obtain embeddings specific to medical data respectively.

7.1.7 XLM-R

It is a transformer-based language model and is pre-trained on large amounts of monolingual and
parallel corpora in over 100 languages and can effectively transfer knowledge from high-resource lan-
guages to low-resource ones. The embeddings produced by XLM-R have been shown to be effective
for a wide range of cross-lingual transfer learning tasks, such as cross-lingual text classification, cross-
lingual named entity recognition, and cross-lingual question answering. One notable feature of XLM-R
is its ability to handle code-switching, which is common in multilingual text. XLM-R can process text
with mixed languages and provide effective embeddings for downstream tasks.
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Model Precision Recall F1-score Accuracy

ETC 0.85 0.88 0.86 0.86

CNN (with FastText embed) 0.87 0.88 0.87 0.88

CNN (with BERT embed) 0.87 0.88 0.87 0.88

Bi-LSTM (with FastText embed) 0.89 0.90 0.89 0.89

Bi-LSTM (with BERT embed) 0.89 0.90 0.89 0.89

FastText 0.88 0.89 0.88 0.89

Text GCN 0.88 0.89 0.88 0.89

Clinical-BERT 0.89 0.90 0.89 0.89

indic-BERT 0.92 0.91 0.92 0.92

mBERT 0.93 0.92 0.92 0.93

XLM-R 0.92 0.92 0.92 0.92

Table 7.1 Performance of text classification models on the code-mixed medical dataset.

Figure 7.1 F1-score for each specialist label when mBERT classifier is used.

7.2 Experimental settings

We implemented neural network models using the Pytorch library. The huggingface-transformers
library is used to obtain pre-trained BERT models. We used multilingual fastText embeddings [64]
of dimensionality 300 for CNN, Bi-LSTM, fastText, and TextGCN models. We used default parameter
settings as in their original papers for implementations. The train validation and test splits are achieved at
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Figure 7.2 Confusion matrix for specialist classification task - mBERT

70%, 10%, and 20%. We evaluated the classifier using the weighted-F1, precision, recall, and accuracy
classification metrics.

7.3 Performance

The performance of the baselines for the medical specialist classification on our dataset is given in
Table 7.1. The models are evaluated based on precision, recall, F1-score, and accuracy metrics.

From the table 7.1, we can see that all the methods performed well for the classification task. This
behavior is attributed to the NLU’s slot-filling task. The NLU’s slot-filling model performed well in
extracting the slots related to the symptoms. This in-turn, benefited the classifier in getting essential
information and thus associated with improved accuracy.
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The best-performing model among all the models is mBERT, which achieved the highest precision,
recall, F1-score, and accuracy metrics of 0.93, 0.92, 0.92, and 0.93, respectively. indic-BERT and
XLMR also performed well and achieved high F1 scores of 0.92.

The results suggest that pre-trained language models such as mBERT, indic-BERT, and XLMR are
effective in handling code-mixed medical text classification tasks. Bi-LSTM with BERT embeddings
and Clinical-BERT also performed well but slightly lower than the best models. The results also sug-
gest that using pre-trained embeddings such as FastText and BERT can improve the performance of
CNN and Bi-LSTM models for text classification. Overall, the results demonstrate that deep learning
models can effectively handle code-mixed text classification tasks, and pre-trained language models can
significantly improve their performance.

Based on figure 7.1 The top performing specializations are Orthopaedist and Ophthalmologist, both
with a weighted f1-score of 0.98. On the other hand, the lowest performing specialization is General
Physician, with a weighted f1-score of 0.75. The mBERT model is evaluated using the confusion matrix,
too, as shown in figure 7.2. From the confusion matrix, we can see that the model performed well on
the dataset. The lowest performing specialization, ”general physician”, is often misclassified with other
specializations. It is a typical phenomenon because some patients prefer consulting a physician before
proceeding with other medical specialists.

7.4 Summary

This chapter presents our work on the medical specialist classification model. We trained various
models on our code-mixed corpus and chose the best among them. As the conversations were pretty
long, we used slot tagging to extract relevant information from the dataset. The extracted information
is then used to train the classifier. We have seen that mBERT model gave better performance when
compared to other models for this task.
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Chapter 8

Natural Language Generation

In this chapter, we present our work on Natural Language Generation1. The Natural Language
Generation (NLG) module plays a crucial role in a typical task-oriented dialog system. It converts
a system action into a final response in natural language. The generated response should adequately
represent semantic dialog actions and it should be fluent in engaging the user’s attention. It acts as the
ultimate interface to interact with users and significantly impacts the user’s experience.

8.1 Input to NLG

The input to the NLG module is the dialog state that contains the intent and the slot information
given by the dialog manager module, through which a system response in natural language is generated.
Specifically, dialog state is defined as intent I and slot-value pairs.

A = [ I︸︷︷︸
Intent

, (s1, v1) , · · · , (sP , vP )︸ ︷︷ ︸
Slot-value pairs

] (8.1)

Also, our analysis of clinical data revealed a style accommodation phenomenon at the language
level, wherein the doctor would adapt their language to match that of the patient by switching between
code-mixed, Telugu, or English. To accommodate such language preferences in our dialog system, we
introduced a language identification token in the dialog state. The language identification token tracks
whether the previous user response was in code-mixed, Telugu, or English. Below is the updated dialog
state with the language identification token:

A = [ I︸︷︷︸
Intent

, ID︸︷︷︸
lang ID

(s1, v1) , · · · , (sP , vP )︸ ︷︷ ︸
Slot-value pairs

] (8.2)

NLG aims to translate the dialog state A into a natural language response x = [x1, ...., xT ], where T
is the sequence length.

1This work was published in WiML 2022 workshop NeurIPS and is supported by “Touchstone” KCIS Enabler Grant

Project, IIIT Hyderabad
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8.2 NLG Models

NLG is a vastly studied research area. The most common types of NLG models are, Template-Based
NLG and Machine learning - Based NLG.

1. Template-Based NLG involves creating pre-defined templates that can be filled in with specific
data to generate text.

2. Machine learning - Based NLG (such as an encoder-decoder model) uses machine learning mod-
els to generate a textual response. The models are trained on large amounts of data and learn to
generate text based on patterns in the data. Machine learning-based NLG is particularly effective
for generating personalized and creative texts by learning from massive datasets.

8.2.1 Template-Based NLG

Template-based natural language generation (NLG) is a technique used to generate human-like text
by filling in pre-defined templates with relevant information.

The template-extraction process consists of

1. Preprocessing the dataset to remove irrelevant information from the dataset

2. Identify the most common patterns and structures in the preprocessed dataset.

3. Group similar patterns together and create templates based on them. Templates should include
placeholders for variables that can be filled in with specific information based on the current
dialogue context.

4. Validate the templates by manually reviewing them and testing them on a small sample of dia-
logues to ensure they are accurate and effective.

Delexicalization to extract templates

One of the common phenomena of extracting the templates is delexicalization. Delexicalization
replaces specific words in the training set representing slot values with a generic placeholder token
representing the slot. So we created the training dataset by delexicalizing the symptoms. Table 8.1
shows a glimpse of the delexicalized data. After delexicalization, we carefully selected the top most
templates and we used these templates for response generation.

8.2.2 Machine Learning-Based NLG.

One of the limitation of the template based NLG is that templates are static and inflexible, meaning
that they can’t easily be adapted to new situations or changes in the data. So we have considered
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Figure 8.1 Delexicalization for NLG data generation.

Machine Learning for response generation. Given training data of N samples containing dialog states
and response tuples D = {(A1, x1), (A2, x2), ....(An, xn)....(AN , xN )}, our goal is to build a statistical
model parameterized by θ to characterize pθ(x|A). To leverage the sequential structure of the response,
one may further decompose the joint probability of x using the chain rule as follows

pθ(x|A) =
T∏
t=1

pθ(xt|(x1, x2..., xt−1,A) (8.3)

Learning θ is performed via maximizing the loglikelihood (MLE) of the conditional probabilities in the
equation 8.3 over the entire training dataset. It is given as,

Lθ(D) =

|D|∑
n=1

Tn∑
t=1

log pθ (xt | (x1, x2..., xt−1,An) (8.4)

Encoder-decoder models generally do the mapping from the dialog state to sentences. We used
various encoder-decoder models to implement the statistical NLG module. The SOTA baseline models
used for natural language generation are listed here.

8.3 Baseline Models

8.3.1 TemplateNLG

[185] provided a template-based model (named TemplateNLG) for natural language generation. For
TemplateNLG, they extracted templates from the training set and manually added some templates for
infrequent dialogue acts.
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8.3.2 LSTM for language Generation

The paper [156] uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence
to a vector of fixed dimensionality and then another deep LSTM to decode the target sequence from the
vector.

8.3.3 Convolutional Seq2seq model

The paper [61] introduced an architecture based entirely on convolutional neural networks. The
encoder and decoder models are both CNN blocks with an attention mechanism between them. Com-
pared to recurrent models, computations over all elements can be fully parallelized during training, and
optimization is easier since the number of non-linearities is fixed and independent of the input length.

8.3.4 Transformer model

Vanilla Transformer [157] model is based solely on attention mechanisms and introduces Multi-
Head Attention. The encoder and decoder are made of multiple layers, with each layer consisting of
Multi-Head Attention and Position-wise Feed-forward sub-layers. This model is currently used in many
state-of-the-art sequence-to-sequence and transfer learning tasks.

8.3.5 XLM

XLM [94] is pre-trained on a cross-lingual language modeling task. The model is trained to predict
masked tokens in a sentence, considering the context of words from different languages. This task en-
courages the model to learn representations that can transfer across languages. XLM also includes a
cross-lingual alignment module, which learns to project the representations of words in different lan-
guages into a shared space. It allows for effective cross-lingual transfer, where the model can transfer
knowledge from high-resource to low-resource languages. XLM has achieved state-of-the-art results on
a range of cross-lingual NLP tasks

8.3.6 mBART

mBART [98] is a multilingual sequence-to-sequence model. It is an encoder-decoder model and can
be used for various NLG tasks. mBART is pre-trained on a large corpus of text from 25 languages,
including low-resource languages, by training a masked language model (MLM) and a denoising au-
toencoder (DAE) on parallel data. The MLM predicts missing words in a sentence, while the DAE
learns to reconstruct the original sentence from a corrupted version. During pre-training, mBART uses
a shared vocabulary across all languages and incorporates language-specific token embeddings to han-
dle language-specific syntax and semantics. It also uses a language identification token to indicate the
language of each sentence.
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8.3.7 T5

T5 (Text-to-Text Transfer Transformer) [126] is a language model based on the Transformer archi-
tecture that uses a text-to-text approach, where the input and output are both text sequences, and the
model learns to transform one sequence into another. This approach allows T5 to handle various tasks
without requiring separate training. T5 is pre-trained on a large corpus of text data using a denoising au-
toencoder approach, where the model is trained to reconstruct the original text from a corrupted version
of the text. The pre-training process helps T5 learn general language patterns and enables the model to
generate high-quality text.

8.3.8 GPT 2

GPT 2(Generative Pre-trained Transformer 2) [125] is a large-scale pre-trained language model.
GPT-2 is trained on a large corpus of text data using a self-supervised learning method called unsuper-
vised multitasking. This approach involves training the model to perform multiple language tasks si-
multaneously, including predicting masked tokens in a sentence, predicting the next word in a sequence,
and predicting the likelihood of a given sentence. mGPT-2 [146] (multilingual GPT-2) is a variant of
the GPT-2 language model that is pre-trained on text from multiple languages. Like the original GPT-2
model, mGPT-2 is based on the Transformer architecture and uses self-attention mechanisms to capture
long-range dependencies in text. mGPT-2 is trained on a large corpus of text from 25 languages [146].

8.4 Experimental setup

We have used the learning rate of around 1e-4, maximum sequence length of 128, dropout = 0.5,
batch size = 4, maximum epochs = 10 to run the baseline NLG models.

We used the following evaluation metrics for our NLG model. They are BLEU scores and slot
error rate (SER). BLEU score evaluates how natural the generated utterance is when compared to the
original sentence. SER measures the exact matching of the slot tokens in the candidate utterances.
SER = (p+ q)/M . Where M is the total number of slots in the dialog state, and p,q is the number of
missing and redundant slots in the given NLG output. The SER takes values from [0,maximum sequence
length=128].

Table 8.1 shows the performance of various natural language generation (NLG) models on a task,
with two evaluation metrics: BLEU and SER. BLEU is a measure of how similar the generated text is
to the reference text, while SER (slot error rate) measures the rate of errors in filling the slots (variables)
in the generated text.

The first row of the table shows the performance of a template-based NLG model on the task, with a
BLEU score of 0.35 and a SER of 31.6. This model likely uses pre-defined templates with placeholders
for variables, which are filled in based on the dialogue context.
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Models BLEU SER

TemplateNLG [185] 0.35 0.05

Encoder - decoder LSTM [156] 0.36 4.80

CNN seq2seq [61] 0.38 4.71

Transformer Encoder - decoder [157] 0.41 4.28

mBART [98] 0.51 3.39

XLM [94] 0.52 3.72

T5 [126] 0.51 3.29

GPT2 [125] 0.6 2.57

Table 8.1 Performance of NLG module

GPT2 gave a better rendering of the utterance and a reduced ERR rate compared to other NN models.
But, the generated utterances suffer from accurate slot rendering. It reveals the complexity of the dataset
and the performance of a pre-trained transformer model for NLG when only limited utterances are
available for fine-tuning.

But the deep learning-based NLG was giving simple errors, such as the intent slot value pair, i.e.,
STATEMENT, (AGE, 24yrs) was transformed as, The age is 25 yrs by the GPT model Even though
LLMs are used, deep learning models generate simple errors, and it might impact the system’s perfor-
mance. So we shifted to template-based NLG in the dialog system instead of deep learning models.

8.5 Summary

This chapter talks about the natural language generation unit in our dialog system. The input to
our NLG module is the dialog state that contains the intent and the slot-value information given by the
dialog manager. The output of the NLG module is the system response in natural language. We used
template-based and machine learning-based NLG models to generate the response from dialog states.
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Chapter 9

The Code-Mixed Task Oriented Dialog System

In this final chapter, we present the code-mixed task-oriented dialog system. Our dialog system is
designed to help users recommend a specialist based on the user’s inputs.1. We will also compare our
model with ChatGPT (ChatGPT March 14, 2023 Version) 2.

Figure 9.1 Delexicalization for NLG data generation.

9.1 A Glimpse about the system

The graphical user interface (GUI) of our dialog system is built using tkinter3. Tkinter is a popu-
lar Python library for creating graphical user interfaces. We have used the models that achieved top
performance to build the dialog system. The architecture of the dialog system is given in Figure 9.1.

1This work is supported by “Touchstone” KCIS Enabler Grant Project, IIIT Hyderabad
2https://chat.openai.com/chat
3https://docs.python.org/3/library/tkinter.html
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As mentioned before, our dialog system consists of NLU, dialog manager, and NLG modules. The
NLU component of your dialog system is responsible for understanding the user’s intent and extracting
relevant slots from the user’s input. We have used the intent classifier that uses contextual signals to
predict the intent of the utterance 4.6.1, and the slot tagging module is the chunk-based module that
follows 2 phase mechanism to identify the slots in the utterance 4.6.2.

The underlying frame-based dialog manager is responsible for managing the flow of the conversation
and keeping track of the current state of the dialog 6.1.

The template-based NLG (Natural Language Generation) 8.1 is responsible for generating responses
based on the user’s input and the current state of the dialog. The NLG extracted the pre-defined tem-
plates from the code-mixed dialog dataset and used them to generate appropriate responses for the given
context.

Our dialog system supports both code-mixed Telugu-English interactions and monolingual interac-
tions. It means that users can switch between Telugu and English during the conversation. It is a helpful
feature for multilingual users who are more comfortable expressing themselves in one language or the
other or need to use specific technical terms or jargon only available in one language.

Our dialog system supports style accommodation. It is another impressive feature of our dialog sys-
tem. Style accommodation is a technique that helps the dialog system to understand and adapt to the
user’s communication style. By adapting to the user’s style, the system can provide a more personal-
ized and engaging experience, improving user satisfaction and the system’s overall effectiveness. For
example, if a user switches from code-mixed to Telugu during the conversation, the dialog system can
change its response style to match the user’s language preference. This feature ensures that the system’s
responses are more natural and appropriate. The ability to support style accommodation is a significant
advantage, as it allows the system to adjust its response style based on the user’s input style. This feature
makes the conversation more natural and comfortable for the user.

We went beyond the typical dialog system and included the recommendation system in our dia-
log dataset. The recommendation system analyzes the user’s input and suggests additional symptoms
that the user may not have mentioned. We have used content-based collaborative filtering to build our
recommendation system 6.2.

Detecting hate speech is essential for any conversational system interacting with users in real time.
Hate speech is any form of communication that attacks or dehumanizes individuals or groups based on
ethnicity, religion, gender, sexual orientation, or other personal characteristics. Our dialog system uses
BERT-based hate speech detection models to detect hate speech in multilingual and code-mixed text, al-
lowing it to flag potentially offensive or harmful messages and respond by terminating the conversation.

Finally, the model takes the list of symptoms, medical conditions, demographics, and so forth from
the user and suggests a medical specialist 7.1. For example, if the user mentions symptoms related to
an opthalmologist, mBERT can identify this and classify the user as wanting to visit an opthalmologist.
We have trained a deep-learning model on a dataset of medical utterances, where each utterance is
labeled with the corresponding medical specialist. The model can then learn to recognize patterns in the
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Figure 9.2 An interaction with the dialog system with focus on code-mixing

input associated with each specialist and make accurate predictions. We put forth a few conversations
obtained from the dialog system.

102



Figure 9.3 An interaction with the dialog system with focus on the English language

Figure 9.2 illustrates a conversation between a user and a chatbot. The bot introduces itself in the first
conversation and collects relevant information from the user. It analyzes the user’s input using natural
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Figure 9.4 An interaction with the dialog system with focus on the Telugu language

language understanding (NLU). The system tracks the state of the dialog system using the frame-based
dialog manager and asks for relevant inputs from the user. The system finally recommends a medical
specialist for consultation. The system follows style accommodation, responding in the same language
as the user, be it code-mixing or Telugu/English. The bot’s eighth conversation shows the workings of
the recommender system, which suggested symptoms similar to those expressed by the user, helping the
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user identify overlooked symptoms. The bot also follows the doctor-patient interaction protocol, asking
if the user wants to provide more details and suggesting a specialist.

Figure 9.5 An interaction with the dialog system for hate speech detection

However, the recommender system’s performance has a few issues in this conversation. The system
recommended a vague symptom, ”pain” (in Telugu), and the symptom ”cold” was repeated in Telugu
and Hindi languages. This situation highlights the limitations of the multilingual dataset and suggests
that a larger dataset would help LLMs learn cross-lingual mappings and infer translations more accu-
rately.

Figure 9.3 shows an English-dominated conversation where the bot accommodates the user’s lan-
guage preferences and successfully recommends a specialist. The recommender system works well, but
the recommended symptoms are of mixed languages, reflecting the nature of the multilingual dataset.
Even though the dataset is code-mixed, and English language is the embedded(second) language in the
dataset. Nevertheless, this conversation showcases the chatbot’s ability to process monolingual English
input and provide relevant recommendations.

Similarly, in Figure 9.4, we can see the system conversing with the user in the Telugu language.
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Figure 9.6 An interaction with the dialog system where all information is given at once.

As mentioned before, a dialog system must identify hate speech and take necessary action. Figure
9.5 depicts our system identifying the hate speech in the dialog and stops the conversation 4

In the conversation depicted in Figure 9.6, we can see the importance of a frame-based dialog control
system. The user inputs their demographics, symptoms, and medical conditions in a single utterance,
and the system responds with the next course of action. The system is flexible enough to fill all necessary
frames and identify the next set of slots to be provided by the user.

Table 9.1 provides an overview of the conversation’s inner workings, which can be useful in under-
standing how the frame-based dialog control system operates. The table shows the various frames used
in the conversation, such as ”Age,” ”gender,” ”Symptoms,” and ”Medical Conditions.” It also shows
the individual slots within each frame, such as ”sugar levels are increasing” and ”eyesight is disturbed”
under ”Symptoms,” and demographics such as name, age, and gender as independent slots.

4The swear words are used only for the system’s demonstration
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The table also demonstrates how the system updates the dialog state based on the user’s input. For
example, when the user provides their age, the system fills the ”Age” slot and then moves on to the next
frame to be filled. Similarly, when the user provides their symptoms, the system fills the corresponding
slots under the ”Symptoms” frame and determines the appropriate action based on the user’s input.

The system then passes the collected information to a recommendation system, which returns a list
of symptoms and medical conditions likely to be associated with the user’s condition. The system asks
the user if they are experiencing any of these symptoms or conditions. The user responds that they
have high fluctuations in their sugar levels and their eyesight is disturbed. These symptoms are further
identified as slots.

Finally, the system confirms with the user if any other symptoms or conditions have been missed,
to which the user responds negatively. The system then identifies the specialist to be consulted based
on the collected information. It passes the information to the medical specialist classification module,
which predicts that a general physician is an appropriate specialist. The system informs the user that
they need to consult a general physician.

This type of dialog control system can be especially useful in healthcare-related conversations, where
accurate and comprehensive information is critical. By organizing the conversation into frames and
slots, the system can efficiently collect all necessary information and provide appropriate recommenda-
tions or actions.

System namaskAraM, nenu oVka Medical Assistant. nenu mI symptomsni
batti mimmalni oVka specialistni meet avvadAniki help ceswAnu (Hi,
I’m a medical assistant. I can help you visit an expert, based on your
symptoms.)

User Hi my name is pravalika, age is 26, female, i have type 1 diabetes,
my eye sight is disturbed and my sugar levels are increasing since
past 2 days

Slots

identified

name: Pravalika, age: 24 years, gender:

female, medical condition: type 1 diabetes,

symptoms: eye sight is disturbed. sugar

levels are increasing, time period: past 2

days

Dialog state name: Pravalika, age: 24 years, gender:

female, medical condition: type 1 diabetes,

symptoms: eye sight is disturbed. sugar

levels are increasing, time period: past 2

days

System Any medical tests performed before
User yes, i took the sugar test
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Slots

identified

m test: sugar test

Dialog state name: Pravalika, age: 24 years, gender:

female, medical condition: type 1 diabetes,

symptoms: eye sight is disturbed. sugar

levels are increasing, time period: past 2

days, m test: sugar test

System Did you use any medicine or pills
User yes, i take insulin
Slots

identified

medicine: insulin

Dialog state name: Pravalika, age: 24 years, gender:

female, medical condition: type 1 diabetes,

symptoms: eye sight is disturbed. sugar

levels are increasing, time period: past 2

days, m test: sugar test, medicine: insulin

Recommendation
system

type 1 diabetes, diabetic, minus power, diabetes, fluctuations, dia-
betesnu, insulin dependent diabetes, sugar test, kallaku minus power,
attack, sugar

System Are you experiencing any symptoms/conditions such as: type 1 di-
abetes, diabetic, minus power, diabetes, fluctuations, diabetesnu, in-
sulin dependent diabetes, sugar test, kallaku minus power, attack,
sugar

User yes, i have high fluctuatios in my sugar levels and my eye sight is
disturbed.

Slots

identified

symptom: high fluctuations,

medical condition: sugar levels, symptom:

eye sight is distrubed

Dialog state name: Pravalika, age: 24 years, gender:

female, medical condition: type 1 diabetes,

sugar levels, symptoms: eye sight is

disturbed. sugar levels are increasing,

high fluctuations, eye sight is disturbed,

time period: past 2 days, m test: sugar

test, medicine: insulin

System Please let me know if you have missed any.
User nope
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Slots

identified

[]

Dialog state name: Pravalika, age: 24 years, gender:

female, medical condition: type 1 diabetes,

sugar levels, symptoms: eye sight is

disturbed. sugar levels are increasing,

high fluctuations, eye sight is disturbed,

time period: past 2 days, m test: sugar

test, medicine: insulin

Medical specialist
classification

‘label’: ‘general physician’, ‘score’:

0.6102713942527771

System The doctor to be consulted is “general physician”

Table 9.1 A detailed working of the dialog system

9.2 Comparing our system with ChatGPT

In this section, we compare the performance of our modular dialog system with ChatGPT. ChatGPT5

is a large language model created by OpenAI, based on the GPT-3.5 architecture [19]. The GPT-3.5
architecture is built using a transformer-based neural network that has a deep hierarchy of attention
mechanisms. This architecture is a state-of-the-art language model that uses unsupervised learning to
pre-train on massive amounts of text data and then fine-tune on specific tasks such as language transla-
tion or question-answering. Its purpose is to provide human-like interactions with users through natural
language processing.

The largest version of the model, GPT-3, has 175 billion parameters. It was trained on a massive
dataset of text from the internet and other sources. The training corpus for GPT-3 consisted of over 45
terabytes of text data, which is equivalent to approximately 570,000 years of spoken language. The large
size and diversity of the training corpus for GPT-3 allows the model to capture a wide range of patterns
and relationships in natural language, resulting in highly accurate and sophisticated language generation
capabilities. The model is contextual and it is trained to reject inappropriate requests. However, it has
limited knowledge of the world facts after year 2021.

5https://chat.openai.com/chat
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User Input (Code-Mixed) ’hi I am manvi, nA baby age vaccesi 26 months, f , pApaku bAgA xaggu,

fever uMxi , nenu calpol veSAnu pApaku, goVMwu noVppi iMkA jalubu

kUdA unnAyi, rashes unnAyi body mIxa aMwA. nenu e doctor ni saM-

praxiMcAli?’

Translation hi am manvi, my baby age is 26 months, f , baby has bad cough, fever,

i gave calpol to baby, sore throat and also cold, there are rashes all over

body.

ChatGPT Response hAy mAnvi, mI bAbIki unna jalubu, goVMwu noVppi mariyu rARt un-

natlayiwe, axi maMci dAktar cUdAli. mIru mI pillavAriki e dAktarnu

kaMtakt ceyAlo weVlusukovaccu. praXama pAwralo, mIru pEru mariyu

bAylo sagaM waginaMwa gamaniMcAli. koVnni sAmAnya kuxiMpulu

mariyu jalubula pE sUcanalu anusariMci, mIru pAwraparulo koVnni

paxArWAlu ivvadaM valla peVxxa mattigA kuxiMpu waguluwuMxi.

mIru dAktarku kAl ceswe, pillavAri jalubu mariyu goVMwu noVppini

peVMcukovadaM pAtiMcukovac

Observations ChatGPT told to consult a doctor but didn’t specify the correct med-

ical specialist that the patient must consult. The whole interaction is

monolingual, i.e., no style accommodation, such as interacting with the

user in the same code-mixed language. The ChatGPT didn’t give any

suggestions asking for the symptoms.

Our Dialog system Our dialog system accommodated to the user’s style. It provided sug-

gestions based on the user’s symptoms so that the user could give in-

formation about missing symptoms. Our dialog system told the user to

consult a Paediatrician

Table 9.2 Comparing the performance of chatGPT based on our input given in Figure 9.2

110



User Input (Telugu) nA peru lakRmI, 47, swrI, oVka 2 neVlala nuMci nadumu noVppi,

naduswuMte kAlYlYa noVppulu unnAyi, 4 rojula kiMxa jvaraM kUdA

vacciMxi. I nadumu noVppi bAgA uMxi. nenu e doctor ni saMpraxiM-

cAli?

Translation My name is Lakshmi, 47, female, back pain since 2 months, pain in legs

while walking, also fever since 4 days. This lower back pain is good.

Which doctor should I consult?

ChatGPT Response mIru Arogya lakRaNAlu praxarSiMcinA nijayina vExyudunu saMprax-

iMcadaM sarikAxu. mI prAraMBa ceVMxina lakRaNAlu pramANiM-

cadAniki, mIru oVka vExyudunu saMpraxiMci salahA poVMxavaccu.

koVnni kesullo prAraMBa ceVMxina lakRaNAlu sAXAraNaMgA gAne

uMtAyi, kAnI anya samasyalu unnavi kUdA uMtAyi. aMxuvalla,

mIru vExyudunu saMpraxiMci pUrwi parIkRaNanu sUciMcAli mariyu

parIkRala prakriyalu pUrwi ceyAli. mIru pariSIliMcabadina saMxar-

BaMlo kAni lakRaNAlanu AXAraMgA mIru nirNayaM ceyavac

Observations ChatGPT told to consult a doctor but didn’t specify the specialization.

ChatGPT’s accommodated to the user’s input. It recognized the input

is in Telugu and responded, respectively. The ChatGPT didn’t give any

suggestions asking for the symptoms.

Our Dialog system Our system accommodated the user’s input and responded respectively

in the Telugu language. It provided suggestions based on the user’s

symptoms so that the user could give information about missing symp-

toms. It told the user to consult a Gynaecologist

Table 9.3 Comparing the performance of chatGPT based on our input given in Figure 9.3
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User Input (English) hi its Mohan, 27, m, hair fall and dandruff, i take multivitamins, its been

more than a year, i have lots of hair fall and its increasing day by day.

Which doctor should i visit?

ChatGPT Response Hello Mohan, Based on your concerns regarding hair fall and dandruff,

you may want to consider seeing a dermatologist. Dermatologists spe-

cialize in the diagnosis and treatment of skin, hair, and nail conditions,

and they can help you determine the underlying cause of your hair fall

and provide treatment options. In addition to seeing a dermatologist, it’s

also a good idea to evaluate your diet and lifestyle habits that may con-

tribute to hair fall and dandruff. Stress, lack of sleep, and poor nutrition

can all impact the health of your hair. I hope this information helps, and

I wish you the best of luck in finding a solution to your hair concerns!

Observations ChatGPT told to consult a dermatologist based on the symptoms. It

is expected because, ChatGPT was trained on over a 45 terabytes of

English text, which means that it has a greater familiarity with the struc-

ture and patterns of the English language. And has seen a large medical

dataset when compared to ours for the English dataset. It also gave treat-

ment options for the user to manage their condition. Cons: It didn’t give

any recommendations about the symptoms.

Our Dialog system Our dialog system accommodated to the user’s style and responded to

the input in English even though it has been trained on lots of code-

mixed data. It interacted with the user by providing symptom sugges-

tions. It told the user to consult a Dermatologist.

Table 9.4 Comparing the performance of chatGPT based on our input given in Figure 9.6
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Our Dialog System Chat GPT

Our dialog system offers greater control over the

conversation flow and responses. Each module is

specifically designed to handle a particular task,

such as natural language understanding or response

generation, which can help ensure the conversation

stays on track and produces appropriate responses.

ChatGPT is a generative language model. It uses a

deep neural network to generate text similar to the

input text it was trained on. Given a prompt or a

sequence of words, ChatGPT can generate a new se-

quence of words that are likely to follow the given

prompt based on the patterns it has learned from the

training data. This makes ChatGPT useful for tasks

such as text completion, summarization, translation,

etc.

Our dialog system is built using specific modules

with known functions, so it can be easier to under-

stand how the system makes decisions and generates

responses

ChatGPT’s responses may be less transparent be-

cause a complex neural network generates them.

It can function with even small data. It cannot function with small data. That’s why it

could not generate the correct specialist for the given

Telugu dataset.

Easier to maintain and track the errors. It is a huge neural network, and it is very difficult

to correct the error. The model is data-hungry and

huge amounts of data are needed to correct the error.

Cost-effective and computationally effective Expensive to deploy and maintain

Easier to integrate new models such as recommen-

dation systems, hate speech detection, and style ac-

commodation.

Doesn’t support recommendation and style accom-

modation

Does support code-mixing Doesn’t support code-mixing

It can be made adaptable to various domains ChatGPT is a generative model. It can learn from

any dataset making it more flexible than a system

that is designed for a specific task.

It is reliable for critical domains such as medical ChatGPT is generic. It is built on various data

sources.

Table 9.5 Differences between our system and ChatGPT
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Chapter 10

Conclusion and Future Work

10.1 Summary

To facilitate the research and development of real-time multilingual medical dialogue systems that
can potentially handle code-mixing and assist in telemedicine, we created a dataset containing code-
mixed doctor and patient conversations called ‘Su-Vaid’. The dataset has 3k dialogs with over 29k
utterances and includes ten clinical specializations with diverse patients. The dataset contains 3004
Telugu-English doctor-patient conversations. The data has a code-mixing index of 33.3%. Code-mixed
utterances are the most spoken utterances in our dataset, followed by Telugu utterances. Our dataset has
Telugu as the matrix language and English as the embedded language. The data is annotated with 19
intents and 34 slots.

We have built a task-oriented dialog system that takes the user’s utterances on his medical condition
and points him to a specialist. We have followed a modular approach to the task-oriented dialog system
by implementing the dialog system with the help of its subcomponents, i.e., NLU, DM, and NLG.
To address hate speech and abusive comments during the interaction, we have added a hate speech
detection module in the dialog system. We have also included a suggestion system to check if the user
overlooks any symptoms. We also analyzed the performance of the dataset on several benchmark NLU,
DM, Suggestion system, and NLG models. We have also evaluated the performance of the hate speech
detection module on its respective datasets. To the best of our knowledge, it is the first work to explore
the real-life doctor-patient interactions in the code-mixed domain for the languages Telugu and Dakhini.

10.2 Future Work

As the data is taken from real-life conversations, we have observed that the patients explicitly men-
tion the symptoms only during the start of the conversation and use anaphors while referring to the
symptoms throughout the entire conversation. It introduced lots of anaphors in the data. We believe that
additional tagging for anaphora resolution will improve the NLU model’s performance, thereby enhanc-
ing the performance of the downstream tasks. Similarly, ellipses are another challenging and common

114



phenomenon in conversations. Using advanced NLP techniques, we can infer the missing words from
the ellipses, which will help in more understanding of conversations. As mentioned above, Telugu is
the dominant language in the dataset. The Telugu language has rich morphology. So any morphological
analysis will help in further simplifying the dataset.

Also, during recommendations, there exist different variations of the same symptom. We have to
normalize the symptom to deal with such variations. Normalizing a symptom means converting different
variations of the same symptom into a standardized format to ensure consistency in the analysis and
processing of the data. Normalizing such data will help boost the performance of the modules such
as NLU, recommendation systems, and medical specialist classification and further improve the dialog
systems’ accuracy.

End-to-end dialog systems are popular in the current NLP applications. They only require a single
model (mostly a generation model or encoder-decoder model) that interacts with the user to perform a
specific task. But the disadvantage of such models is that they require a lot of data. We can increase our
dataset by transcribing the LifeLine-Tv9 and Dr. ETV doctor-patient conversations. We can even con-
struct larger datasets by extending the corpus to other languages. The current dialog system focuses only
on textual input and output. We can also extend the dialog system for spoken languages by integrating
Automatic speech recognition (ASR) and Text-to-speech (TTS) modules, given that these modules can
process code-mixed datasets.

Also, When dealing with code-mixing, which refers to mixing two or more languages in a single
utterance or conversation, typological differences can play an important role in how code-mixing occurs
and is processed. For example, languages with different word orders may require speakers to adjust
the word order when mixing the languages in a sentence, or they may lead to word order errors or
ambiguous structures. Other typological differences that can affect code-mixing include differences
in the grammatical categories and inflectional morphology used in different languages, affecting how
words are marked for tense or agreement. Understanding the typological differences between languages
can help researchers and language processing models to predict better and explain patterns of code-
mixing, as well as to develop strategies for handling code-mixed data in natural language processing
and language technology applications.

The tasks such as dealing with the anaphors and ellipses, normalizing the symptoms in the dataset,
and understanding the typological differences of the languages while dealing with code-mixing, in-
creasing the dataset for building more robust systems, collecting hate speech datasets on doctor-patient
interactions, and using the dataset for any downstream tasks such as medical text summarization are left
as future scope.
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A.1 Intent and Slot Tables

Intent Definition %
STATEMENT Utterances that make assertions or claims about the medical con-

dition.
24.9%

INFO REQUEST Information Request, Utterances that contains questions. 21.1%
ANSWER Utterances that respond to INFO REQUEST action in the an-

tecedent.
18.4%

ACK Acknowledge, Utterances that include understanding during the
conversations.

17.8%

MEDICAL EX-
PLANATION

Utterances that the doctor provides while explaining about the
medical condition.

5.2%

ACTION DIR Action Directive, Utterances that suggest a course of action in-
future to the listener.

5.0%

GREETING Utterances that indicate the start of the conversation 1.7%
DIAGNOSIS Utterance where the doctor provides diagnosis to the patient’s

medical condition
1.1%

REPEAT
REPHRASE

Utterances that repeat or paraphrase what was just said to make
the listener understand.

1.0%

COMMIT Utterances that explicitly commit the speaker to some future
course of action.

0.9%

SNU Signal Not Understood, Utterances that indicate a problem in un-
derstanding the antecedent.

0.8%

HOLD Utterances where the communication is broken and is continued
in the succeeding ones.

0.5%

CONV OPEN Conversation Open, Uttterances that are conventionally used to
start the conversation.

0.3%

SU Signal Understood, Utterances that are used as a conventional
phrase to indicate that the communication is being understood
by both parties

0.3%

APPRECIATE Utterance that indicate applauds from the speaker 0.1%
CORRECT Utterance that the speaker uses to correct preceding information. 0.1%
CONV CLOSE Conversation Close, Utterances that indicate end the conversation <0.1%
UNINTERPRET Meaning-full information cannot be interpreted in these utter-

ances because of exterior noise.
<0.1%

ABANDONED Utterances with no response. <0.1%

Table A.1 Intent and their percentage in our corpus
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Slot Definition % Examples
symptom change in bodily function that is ex-

perienced by a patient and is associ-
ated with a particular disease

16.94% fever, cholecystitis,
heart attack, xaggu

time period duration of a symptom or medical
condition

16.75% sunday, 2 hours, 3
days, saMvastarAlu

body part Any part or any organ of human
body

8.69% eyes, nose, mouth,
hands, elbow, skin,
caMkalo

medical condition a medical state of disrepair 7.46% hypertension, diabetes,
bp, sugar, asthma,
jalubu

bodily process an organic process that takes place in
the body

5.48% sleeping, walking,
breathing, nixralo

intensity The amount or degree of strength 4.00% high, more, heavy,
bAgA, eVkkuva

location the position of symptom/disease 3.67% up, down, side, beside,
lower, upper, kiMxa,
pEna

age patient’s age 3.56% 23, 31, 32, 47, 1
negative patient expressing negativity for

symptom or disease or any bodily
process

3.41% no, lEdu

medicine drug prescribed or under use by pa-
tient

3.25% cholestron, digestron,
dewax

normal patient expressing that his symptom
or medical condition has subsided

2.49% bAnE undi, waggiMxi

body substance the substance of the body 2.41% AMH, cholesterol, c-
peptide

name patient’s name (after pseudonymisa-
tion)

2.32% patient’s name

mtest name of the medical test 2.25% APTT, CBP, CUE, CT-
scan, MRI-scan, ECG

food substance any substance that can be metabo-
lized by an animal

2.11% rice, dal, pulses, sweet,
water, idli, KicadZI

frequency the number of occurrences within a
given time period

2.02% 2 times, 3 sArlu

treatment care or medical procedure provided
to improve the patient’s situation

1.98% dialysis, lasik
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Slot Definition % Examples
mtest value value obtained for a medical test 1.59% 13.5 (for hemoglobin),

170/80 (for blood pres-
sure)

positive patient expressing positive answer
for symptom or disease or any bod-
ily process

1.58% undi, yes, avnu

medical professional One who provides health care treat-
ment and advice based on formal
training and experience

1.36% dentist, cardiologist,
orthopaedist

person a sick person 1.17% patient
familial speaker’s relationship with the pa-

tient
1.08% brother, sister, father,

mother, mother-in-law
gender patient’s gender 0.80% male, female
place patient’s consultation place 0.62% Hyderabad, Warangal,

Vijayawada
color symptom’s attributes 0.61% red, yellow, white
profession patient’s profession (as profession is

linked to some symptoms)
0.42% software engineer, pan

shop,
bm body mass 0.40% 35 kgs, 3.2kgs
habit day-to-day habits that deteriorate a

person’s health
0.35% drinking, smoking

medicine dose the quantity of medicine consumed
by the patient

0.32% 250mg, 500mg,
6000IU

marital status is the patient married or not 0.27% married, single
hospital name the hospital that the patient has con-

sulted or referred
0.21% Warangal Hospital, Vi-

jaya Hospital,
trauma the patient has been involved in an

accident
0.15% accident, burn

medical apparatus a physical injury occurred to the pa-
tient

0.11% laser

organism foreign body diagnosed in the pa-
tient.

0.06% bacteria, fungus, bug

Table A.2 Slots with their definitions, examples and its percentage in the corpus.
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