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Abstract

Individual differences, encompassing a wide array of physical, cognitive, and emotional character-
istics such as age, gender, personality, musical expertise, and empathy, play a pivotal role in shaping
our interactions with the world around us. These differences, stable over time and across situations, not
only influence our end goals but also the processes through which we perceive and interact with them.
Recent research in neuroscience has brought to light that each individual possesses unique and funda-
mentally stable functional brain connections. These connections remain consistent, irrespective of the
task at hand, suggesting that functional brain networks could potentially be employed as a measure of
stable individual traits. Such an approach could revolutionize personalized medicine, offering tailored
therapeutic interventions based on an individual’s unique brain signature.

In the context of music, distinct patterns in functional brain networks related to individual differences
become crucial. Music, as a continuous task, offers a naturalistic paradigm to explore these patterns.
This study aims to bridge the gap in the existing literature by examining how brain responses to music
may vary based on individual characteristics, such as gender and musical expertise. Furthermore, pre-
vious studies have predominantly focused on Pearson correlation, which captures linear relationships
but may not encapsulate the full complexity of functional brain networks. Therefore, our study explores
various functional connectivity (FC) measures. By comparing these measures, we aim to understand
which ones are most suitable for a given study, ensuring that the chosen measures capture the intricacies
of FC effectively.

The study utilized data from the ”Tunteet” project, which involved multiple fMRI scans and be-
havioral tests. A total of 36 participants underwent fMRI scanning while listening to three distinct
8-minute-long musical pieces representing different musical styles. Their responses were analyzed us-
ing various temporal and spectral FC measures. The aim was to compare these FC measures to identify
the one that captured the most variation associated with gender and musical expertise. Subsequently, a
binary Support Vector Machine (SVM) was employed to classify distinct population groupings.

Our results align with previous research, suggesting that musical preferences can indeed be con-
sidered as a distinct personality trait. This was particularly evident in the differences in liking ratings
specific to gender and musical expertise. We also found that Coherence, a spectral-domain FC measure,
captured the maximum variation for musical stimuli. However, when classifying individuals based on
gender and musical expertise, a composite measure, which combined all measures obtained by concate-
nation followed by a feature selection procedure, outperformed any single measure. This composite
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measure consistently achieved better results, suggesting that each FC measure captures different aspects
of the relationship between brain regions.

In summary, our research offers a fresh perspective on the interplay between musical preferences,
gender, musical expertise, and brain responses. By leveraging diverse functional connectivity measures,
we’ve shed light on the complexities of functional brain networks, paving the way for future research in
this domain.
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Chapter 1

Introduction

Individual differences include physical, cognitive, and emotional characteristics like age, gender,
personality, musical expertise and training, and empathy. These differences are stable over time and
across situations and influence not only our end goals but also the process of how we perceive them
[1]. Recent research by Gratton et al. (2018) suggests that functional brain networks are dominated
by common principles and unique features independent of the tasks and stable across task states. The
study concluded that functional networks could be used to measure stable individual traits, which can
be used in personalized medicine [2]. Therefore, exploring whether this unique brain signature can be
leveraged to discern distinct patterns in fMRI data becomes crucial. Such an approach could facilitate
the identification of specific individuals within a group, thereby enhancing our understanding of the
variations that exist. Moreover, the potential to eliminate these unique brain signatures could lead to
more reliable results in group-level studies.

Despite this approach’s significance, more research needs to be focused on discerning distinct pat-
terns in functional brain networks that relate to individual differences, particularly in a naturalistic
paradigm where subjects are engaged in continuous tasks, such as listening to music. This study aims
to address this gap by examining how brain responses to music may vary based on individual character-
istics, such as gender and musical expertise.

While exploring distinct patterns in functional brain networks related to individual differences is cru-
cial, it is also important to consider the limitations of certain measures used in this context. For example,
the study by Gratton et al. (2018) focused on the Pearson correlation, which captures linear relationships
but may not fully capture the complexity of functional brain networks. In contrast, the study by Mo-
hanty et al. (2020) compared different functional connectivity measures and found that these measures
capture different aspects of functional connectivity. Their findings suggest that FC patterns depend on
the measure used to define them. Therefore, looking at various functional connectivity measures and
comparing them is crucial to understanding which ones are most suitable for a given study.
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1.1 Musical Preferences and Individual Differences

Past studies suggest that musical preferences reflect explicit characteristics such as age, gender, per-
sonality, musical expertise, and empathy [3, 4, 5, 6, 7]. For example, young people listen to music
more often than middle-aged adults. They also listen to music in various contexts, whereas adults listen
primarily in private contexts. Greenberg (2015) found in their study that people who are type E (bias
towards empathizing) preferred music on the Mellow dimension (R&B/soul, adult contemporary, soft
rock genres) compared to type S (bias towards systemizing) who preferred music on the Intense dimen-
sion (punk, heavy metal, and hard rock). Similarly, people who are open to new experiences tend to
prefer music from the blues, jazz, classical, and folk genres, and people who are extraverted and agree-
able tend to prefer music from the pop, soundtrack, religious, soul, funk, electronic, and dance genres
[6].

In this thesis research, we focus on gender and musical expertise differences. We further discuss
them in greater detail.

1.1.1 Gender

Several studies have explored differences due to gender in the brain that could underlie behavioral
differences. Research has shown inherent structural differences between male and female brains. For
instance, males have been found to have a higher proportion of white matter, while females have a
higher proportion of gray matter which leads to larger brain volume in males and thicker cortex in
females [8]. The corpus callosum, which connects the brain’s two hemispheres, is larger and has more
microstructural integrity in females [9]. The hippocampus, which is involved in memory, is larger in
females, while the amygdala, which is involved in emotion processing, is larger in males [10]. These
structural differences, which arise at a young age, translate to functional differences in adulthood. These
differences have been observed in various cognitive tasks and sensory processing. Females show greater
activation in the amygdala and hippocampus when processing emotional stimuli, which suggests that
females are more attuned to emotional cues [11]. Studies have shown that male brains are better at
intrahemispheric communication, while female brains are better at interhemispheric communication
[12]. When listening to music, females show more bilateral activation in the auditory cortex than males,
which is related to the structural differences in the corpus callosum [13].

Few behavioral studies have looked into gender as a critical factor in determining musical preferences
[5, 3]. Evidence suggests that women prefer “softer” musical types like mainstream pop, while males
prefer “harder” styles like rock [14]. This implies that such differences can manifest as differences in
brain connectivity patterns during music listening. However, whether these gender differences can be
predicted from brain responses to continuous music listening is yet to be shown.
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1.1.2 Musical Expertise

Musical expertise is also known to cause structural and functional changes in the brain[15, 16, 7].
Musicians have been found to have increased gray matter volume in several brain areas, including the
auditory cortex, motor regions, and areas involved in visuospatial processing [17]. Additionally, changes
in white matter have been observed, which correlate with the onset and intensity of musical training
[18]. Musicians also show structural differences in the cerebellum, which is involved in movement
coordination – an essential aspect of playing an instrument [19].

Several studies have identified differences in functional connectivity due to musical expertise during
continuous music listening [7, 20, 21]. Musicians exhibit enhanced auditory processing and are more
sensitive to various elements of music such as pitch, timbre, and rhythm [22, 7]. Musical expertise has
been associated with differences in functional connectivity during continuous music listening [20, 7].
This refers to the synchronization of neural activity between different brain regions, indicating that they
are functioning in an integrated manner.

The structural and functional changes associated with musical expertise influences musical prefer-
ences. Gold et al. (2013) investigate how individual differences, including musical training, affect the
ability to learn from pleasurable music, suggesting that musical training can influence musical pref-
erences. To date, only one study by Saari et al. (2018) demonstrated the possibility of classifying
individuals into musicians and non-musicians based on neural activations during naturalistic music lis-
tening. The study computed different low-level (timbre) and high-level (rhythm and tonality) musical
features, representing different aspects of music perception from the acoustic signals. These features
and the parcellated fMRI time series were then used to classify individuals into musicians and non-
musicians. However, their approach did not focus on functional brain connections or how brain regions
functioned in an integrated manner.

1.2 Introduction to Neuroimaging

Neuroimaging uses quantitative techniques to study the structure and function of the central nervous
system (CNS), developed as an objective way of scientifically studying the healthy human brain in a
non-invasive manner. It is being increasingly used for studies of brain disease and psychiatric illness.
Neuroimaging technology provides accurate spatial (Structural) and temporal (Functional) characteri-
zation of cortical and subcortical regions and their activity. Structural Imaging is used to quantify brain
structure. It is a modality that provides critical brain measurements such as cortical thickness, gray
matter volume, and surface area. Functional Imaging is used to study brain function, using techniques
like Electroencephalography (EEG), Positron Emission Tomography (PET), and Magnetic Resonance
Imaging (MRI). MRI is the most modern and widely used of the three techniques. Although MRI is
a new addition to functional imaging procedures, structural MRI has long been a standard method for
diagnosing brain injuries and other associated disorders. Functional MRI (fMRI) came into existence
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when BOLD (blood oxygen level-dependent) signals were initially proposed by Seiji Ogawa [23] in
1990.

In our research, we will mainly focus on fMRI as a neuroimaging technique to understand the dy-
namic functioning of the human brain.

1.2.1 Functional Magnetic Resonance Imaging (fMRI)

fMRI is a non-invasive brain imaging technique that indirectly measures brain function by measuring
the hemodynamic response (changes in blood flow) resulting from neural activity. The main idea behind
this is that of coupling between neural activation and blood flow, i.e., increased neural activity in some
brain areas is linked to increased blood flow to those regions. fMRI tracks changes in blood flow by
measuring the concentrations of oxyhemoglobin (Hb) and deoxyhemoglobin (dHb). Hemoglobin is
an essential protein complex in the blood responsible for transporting oxygen to tissues on demand.
Oxyhemoglobin refers to hemoglobin when it is attached to an oxygen molecule, and deoxyhemoglobin
is hemoglobin without the attached oxygen molecule. When neurons in specific regions get activated,
there is an increased demand for oxygenation, which is fulfilled by an increase in the local cerebral blood
flow, replacing deoxygenated blood containing dHb with oxygenated blood containing Hb. Hb and dHb
differ in their magnetic properties, with the former being diamagnetic and the latter being paramagnetic.
Under the influence of the fMRI-induced magnetic field, dHb is attracted to the external field, thereby
distorting it. This distortion, termed as Blood Oxygen Level Dependent (BOLD) signal, is picked up by
the MRI scanner [24]. The MRI apparatus scans the BOLD response in slices, which are then quantized
into three-dimensional homogenous units known as “voxels.” The resolution of these voxels depends
on the magnetic strength of the MRI apparatus, with 2mm being a popular resolution in neuroimaging
studies. Each voxel has an associated time series capturing the temporal changes in the BOLD response
of the region covered by that voxel.

fMRI data can be used to perform several analyses like functional connectivity analysis, graph
theory-based brain network analysis, ROI-based analysis, seed-based analysis, and network-based anal-
ysis.

1.2.2 Traditional Task-based and Resting-state Paradigm

Traditional fMRI analysis tried identifying brain voxels with significant activations correlated with
the presented stimulus or activity. These activations can be monitored by looking for variations in the
BOLD response caused by changes in local cerebral blood flow. It is therefore critical to construct fMRI
trials so that variations in the BOLD response reflect changes in the phenomenon under investigation
rather than being caused by random noise or other secondary effects. As a result, most experimental
designs predominantly employ a controlled paradigm with block and event-related designs. The primary
notion in these situations is to divide the experimental condition/stimuli into intervals or blocks and then
calculate the differential activity between the blocks and the resting/baseline condition. For example, in
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an fMRI experiment designed to discover the neural basis of motor skill in guitarists, the BOLD response
would be compared between the Task, in which participants move their fingers in a predetermined
coordinated manner, and the Baseline, in which participants do not move their fingers. Such a paradigm
excels at a segregated analysis, where various local regions specialized in processing the task in question
are identified. This segregation allows for more straightforward interpretability of results as most other
variations are controlled for, making this the most popular approach in neuroscience studies. However,
this segregated approach combined with the controlled setting fails to identify large-scale networks that
span the whole brain.

Resting-state fMRI (rs-fMRI) has been developed as an alternative to task-based fMRI, mapping
brain processes by examining brain signals during rest. This method was first demonstrated in 1995
when it was shown that brain activations in the resting state could have similar brain region correlations
as activations in the task state [25]. rs-fMRI examines the brain in a resting or task-negative state
rather than the BOLD contrast between a task and a baseline (where participants do not perform explicit
tasks). This design is based on a knowledge of intrinsic brain activity, meaning that differences in the
BOLD response persist even when no external tasks are present. Researchers have explored functional
connectivity patterns and the presence of large-scale networks in the brain using these rs-fMRI signals,
which have very low amplitude variations and are often continuous, resting mostly within the 0.01 to
0.1 Hz range [26].

Past studies have used rs-fMRI data to classify schizophrenia, bipolar and healthy subjects based on
their functional connectivity features [27, 28].

1.2.3 Naturalistic Task-based Paradigm

It was an intuitive shift toward a naturalistic task-based paradigm, given the shortcomings of tradi-
tional paradigms. In this paradigm, participants are presented with real-world (generally longer dura-
tion) stimuli such as movies or music without asking them to perform other tasks. The fMRI data from
this paradigm tends to be continuous and very similar to the kind gathered in rs-fMRI experiments,
presenting different challenges in its analysis compared to more traditional experiment designs.

Data from the block/event-related experiments assume that “the brain processes the various tasks/
events in isolation and that these independent processing events are characterized by a short, stereo-
typed burst of activity” [29]. This controlled paradigm lacks ecological validity since there is a vast
difference between laboratory stimuli and most real-world stimuli. According to Zaki and Ochsner
[30, 31], real-world information differs from lab stimuli in that it is generally multimodal, dynamic (in-
volving information presented both serially and parallelly), and contextually embedded. Studies using
visual stimuli have also found differences between brain responses in controlled and real-world settings
[32], with real-world stimuli eliciting more widespread activations across various non-visual regions
such as the motor cortex, which were absent in experiments performed in controlled settings. These
differences become more pronounced when higher-order cognitive functions such as empathy or per-
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sonality are examined due to the integrative nature of these processes [30]. These assumptions become
invalid under the naturalistic setting.

Moreover, these uni-variate analysis techniques fail to capture the intrinsic connectivity patterns
in the human brain accurately. This has led researchers to look into various multi-variate analysis
techniques such as functional connectivity. In the analysis of neuroimaging time series, functional
connectivity is defined as the statistical dependencies among spatially remote neurophysiologic events.
It provides a simple characterization of functional interactions. It is further discussed in the next section.

1.3 Introduction to Functional Connectivity

Functional connectivity (FC) refers to the statistical dependencies among spatially remote neuro-
physiological events, providing a simple characterization of functional interactions [33]. The human
brain is composed of functionally connected, spatially distributed areas that constantly exchange infor-
mation among themselves. These connections between brain areas, known as brain networks, are the
focus of functional connectivity studies. FC is the temporal dependence of the brain’s physically disso-
ciated neural activity patterns. Measurement of the coactivation level of fMRI time-series data between
various brain regions has become a popular method for many studies to explore functional connectivity
in recent years [34].

1.3.1 Why use different FC measures?

Conventionally, FC is defined by comparing the similarities between brain signals from two separate
brain regions. Signals from two physically distinct brain regions may look associated under a conven-
tional idea of similarity like Pearson’s correlation, indicating that the regions are functionally connected
in the brain [35, 36, 37]. A strong correlation between two regions does not necessarily guarantee a
functional connection of the underlying neurons. Similarly, a low correlation value does not imply they
have no dependence. It means that there is no linear relationship between them.

Although the ideas of similarity and dissimilarity seem straightforward, mathematical formulations
show otherwise. Statistical relationships between two signals can develop in a variety of ways. It is
possible that two distinct similarity measurements do not compare similarity in the same manner. A
similarity and dissimilarity measure may not have a clear, straight inverse connection. Therefore, we
need other measures which capture different aspects of statistical dependence between BOLD signals
such as time-, frequency- and wavelet-domain information and linear, non-linear dependencies. These
measures were then compared across various stimuli to examine the consistency of information offered
by the FC measures and their utility in determining individual differences.
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1.4 Thesis Objectives

• Explore whether unique functional brain networks can be used to identify individuals based on
differences such as gender and musical expertise.

• Measure participants’ fMRI responses while they are engaged in a continuous task like listening
to music.

• Investigate different FC measures beyond the traditional Pearson’s Correlation and understand
how they capture interactions between different brain regions.

• Compare the effectiveness of different FC measures in classifying distinct population groups such
as males-females, musicians-nonmusicians, and combined population groups.

1.5 Thesis Overview

The thesis is divided into a total of 5 chapters. Chapter 2 provides the details regarding the dataset we
used in our study. In Section 2.1, we provide the participants’ demographics of the fMRI music listening
experiment and discuss the musical stimuli. Section 2.2 describe the steps followed in acquiring fMRI
data and its pre-processing.

Chapter 3 describes the various methods and tools used to analyze the data. Section 3.2 describes in
detail the different types of Functional Connectivity (FC) measures used in the study. In Section 3.4, we
describe the supervised machine learning-based classification, feature selection, and feature importance
used in our study.

In Chapter 4, we discuss how different FC measures are compared to one another and what informa-
tion each of them captures. In Section 4.3 we provide and discuss the results and outcome of our study’s
various classification, feature selection, and feature importance approaches.

We finally conclude, discuss the limitations of our study, and discuss potential future work in Chap-
ter 5.
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Chapter 2

Data Acquisition - Principles and Methods

The dataset used is part of a broader ”Tunteet” project involving multiple fMRI scans and behavioral
tests. This project was initiated and coordinated by Dr. Elvira Brattico and was approved by the Coordi-
nating Ethics Committee of the hospital district of Helsinki and Uusimaa, Finland. The dataset consists
of 77 participants with no prior neurological or psychological disorders who listen to music in a natu-
ralistic paradigm while undergoing fMRI scanning. The participants were screened for inclusion before
admission to the experiment (no ferromagnetic material in their body; no tattoo or recent permanent
coloring; no pregnancy or breastfeeding; no chronic pharmacological medication; no claustrophobia).
This dataset has been selected as it is a well-established dataset and has been previously used in multiple
studies [20, 7, 38, 39, 40].

2.1 Participants and Musical Stimuli

2.1.1 Musical Stimuli

We used three western instrumental musical pieces from different genres of music. Each piece was
about 8 minutes long. We did not choose lyrical music pieces to avoid the confounding effects of
semantics. The music pieces were presented to the participants through MR-compatible in-ear head-
phones. After the fMRI scanning, the participants were asked to rate their liking for each piece and their
familiarity with them on a 5-point Likert scale. The three pieces are as follows:

1. Astor Piazzolla’s Adios Nonino (Genre: Tango Nuevo, further referred to as Piazzolla)

2. Igor Stravinsky’s First Three Dances of the Rite of Spring (Genre: Modern Classical, further
referred to as Stravinsky)

3. DreamTheater’s Stream of Consciousness (Genre: Progressive Rock, further referred to as DreamThe-
ater)

8



2.1.2 77 Participants, 1 Stimulus

Seventy-Seven participants’ fMRI responses were measured while listening to Astor Piazzolla’s
Adios Nonino. Participants had no record of neurological or psychological disorders. The pool con-
sisted of 26 musically trained and 51 untrained participants. Table 2.1 shows the demographics. Those
labeled as musicians were required to have had at least five years of training and earned a degree in
music or earned money for playing. The musicians were homogeneous in the time spent on active
instrument playing and the duration of their musical training.

Groups Musicians Non-Musicians

N 26 51

Age 29.03 ± 8.1 29.84 ± 9.34

Gender 12F 31F

Hand 25R 47R

Active Listening (hrs/week) 10 ± 9 5 ± 5

Passive Listening (hrs/week) 14 ± 11 13 ± 11

Instruments

Keyboard: 9

String: 9

Wind: 3

Percussion: 2

Mixed: 3

-

Instrument Starting Age 7.96 ± 4.81 -

Instrument Playing (years) 19.5 ± 7.79 -

Instrument Practising (hrs/week) 15.02 ± 11.89 -

Musical Training (years) 16.03 ± 7.58 -

Table 2.1: 77 Participants’ Demographic Information.

2.1.3 36 Participants, 3 Stimuli

Eighteen musicians and eighteen non-musicians were then selected (based on the availability of
behavioral measures) to form a pool of thirty-six participants. These participants’ fMRI responses
were measured for all three musical pieces. The three pieces were presented to the participants in a
counterbalanced order. Both groups of participants were comparable in gender, age, cognitive measures
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(WAIS-WMS III Scores of Processing Speed and Working Memory Index), and socioeconomic status
(according to Hollingshead’s Four-Factor Index). Table 2.2 shows the demographics for 36 participants.

Groups Musicians Non-Musicians

N 18 18

Age 28.2 ± 7.8 29.2 ± 10.7

Gender 9F 10F

Hand 18R 17R

Socio-Economic Status 43.6 35.4

WAIS-III Processing Speed Index 116.3 115.7

Active Listening (hrs/week) 7.5 ± 5.8 5.3 ± 4.8

Passive Listening (hrs/week) 10.6 ± 7.5 7.1 ± 3.9

Instruments

Keyboard: 8

String: 6

Wind: 2

-

Instrument Starting Age 8.6 ± 5.5 -

Instrument Playing (years) 21.2 ± 7.8 -

Instrument Practising (hrs/week) 16.6 ± 11 -

Musical Training (years) 16 ± 5.7 -

Style

Classical: 12

Jazz: 5

Pop-Rock: 1

-

Table 2.2: 36 Participants’ Demographic Information.

2.2 fMRI Data Acquisition and Pre-Processing

The fMRI readings of the participants were acquired while they listened to the musical stimulus. Dur-
ing the scanning, participants were instructed to open their eyes and fix their gaze on their screen. The
only task they had was to listen attentively to the music delivered through high-quality MR-compatible
insert earphones. The music was played at a comfortable, audible volume. A 3T MAGNETOM Skyra
whole-body scanner (Siemens Healthcare, Erlangen, Germany) and a standard 32-channel head-neck
coil were used for the scanning conducted at the Advanced Magnetic Imaging (AMI) Centre (Aalto
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University, Espoo, Finland). Thirty-three oblique slices (FoV = 192 x 192 mm; 64 x 64 matrix; slice
thickness = 4 mm, interslice skip = 0 mm; flip angle = 75 degrees; echo time = 32 ms; voxel size: 2 x 2
x 2 mm3) were acquired every 2 sec, using a single-shot gradient echo-planar imaging (EPI) sequence,
providing whole-brain coverage for each participant.

Realignment of Head Motion

Correction for Slice Timing

Temporal Filtering

Registration and Normalization

Segmentation

Spatial Smoothing

Figure 2.1: fMRI Data Preprocessing Steps

These fMRI images were preprocessed using SPM8 (Statistical Parametric Mapping), VBM5 (Voxel-
Based Morphometry; Welcome Department of Imaging Neuroscience, London, UK), and custom scripts
developed by us on the MATLAB platform. Preprocessing steps included:

1. Correction for Slice Timing: fMRI data is gathered via 2D MRI acquisition which involves
acquiring data in slices. These slices take time to acquire and are either ascending (bottom to top)
or descending (top to bottom) order. We model the data at each voxel, assuming that all of the
slices were acquired simultaneously. For this assumption to be valid, the time series for each slice
needs to be shifted back in time by the duration it took to acquire that slice. For studies with longer
TRs (2s or longer), particularly in the dorsal areas of the brain, Sladky et al. (2011) demonstrated
that slice-timing correction could lead to considerable gains in statistical power [41].

2. Realignment of Head Motion: Head movement causes many inaccuracies. To correct these
unwanted movements, low-resolution images were realigned on six dimensions using rigid body
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transformations (translation and rotation corrections were limited to 2 mm and 2 degrees, respec-
tively).

3. Registration and Normalization: The images are registered to the corresponding high-resolution
segmented T1-weighted structural images. Then normalized to the standard MNI 152 template
(Montreal Neurological Institute) using 12-parameter affine transformations [42].

4. Temporal Filtering: fMRI data always has noise due to moderate drifting of the baseline signal
over time. Removing this noise is called detrending of the data and is done using two methods:
low pass and high pass filtering. Low pass filtering is used to remove signals with high peaks.

5. Spatial Smoothing: Spatial smoothing is done to eliminate the noise from the data. It reduces
the spatial resolution but improves the signal-to-noise ratio (SNR). 8mm FWHM (full-width-at-
half-maximum) Gaussian filter was used to perform spatial smoothing.

6. Segmentation: The image is then segmented into Grey Matter(GM), White Matter(WM), and
Cerebrospinal Fluid(CSF).

The process resulted in 91 × 109 × 91 voxels for each time point, which, when linearized, resulted in a
matrix of 228453 voxels × 240 time-points for Piazzolla. Similarly, 228453 voxels × 230 time-points
matrix for Stravinsky and 228453 voxels × 232 time-points matrices for DreamTheater. 4-time points
were removed from each stimulus data for HRF delay.
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Chapter 3

Methods

3.1 Parcellation

The human brain is typically divided(or parcellated) into several anatomically and functionally dis-
tinct geographically contiguous regions to better comprehend the brain’s functional architecture since
neuroimaging data, particularly fMRI, has an unusually high spatial dimension. Accurate parcellations
facilitate exact representations at multiple scales of whole-brain activity and efficiently compare results
from different studies. Specifically, some functional connectivity (FC) based parcellation strategies di-
vide a particular region of interest (ROI) into smaller, functionally specialized parcels by maximizing
regions’ functional homogeneity, which is typically measured with its functional coupling with other
areas, or intra-area functional topographic organization [43].

Along with that, parcellating the brain data into smaller regions of interest also helps in ease of
computation as a voxel size of 2 × 2 × 2 mm results in a data dimension of 91 × 109 × 91 at every
time-point. Various diverse approaches have thus led to a variety of parcellation schemes, known as
atlases, that provide a mapping of brain voxels to regions of interest. The atlas used in our study is the
Willard Functional Atlas [?].

3.1.1 Willard Functional Atlas

Structure-based parcellations such as the AAL (Automated Anatomical Labeling) often comprise
multiple, functionally independent regions. These independent regions have proven inferior to function-
ally defined regions in the classification of cognitive states [37] and in temporal and spatial clustering
of brain regions [44]. Thus, we used a cortex-wide parcellation based on functional connectivity. More
precisely, the Willard functional atlas, which consists of 499 functional ROIs (fROIs), generated by
Bernard Ng [45] and derived from the 90 fROIs originally generated by William Shirer [37]. These 499
fROIs are further divided into three groups as per their overlap with the 90 fROIs atlas: a) 357 fROIs
which have no significant overlap, b) 141 fROIs that significantly overlap, and c) 1 fROI which has
modest overlap. For our analysis, we use 141 fROIs. To convert voxel data into 141 fROIs, the average
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time series values across all the voxels within each region are calculated. This results in a time series of
141 fROIs × t time-points for every dataset participant.

3.2 Functional Connectivity Measures

We use various temporal, spectral and graph based measures to capture different statistical depen-
dence aspects between two BOLD signals. These measures capture time-, frequency- and wavelet-
domain information, linear and non-linear dependencies, and similarity and dissimilarity measures.
These measures were then compared across various stimuli to examine the consistency of information
offered by the FC measures and their utility in determining individual differences.

We use eight temporal-based, two spectral-based, and one graph-based measure. For each FC mea-
sure, we obtain a symmetrical functional connectivity matrix of size 141 x 141 for each stimulus for each
individual. Each entry in the matrix represents FC between the corresponding pair of brain regions. All
the FC analyses were performed using MATLAB.

Variables x and y would represent time series from any pairs of distinct regions with each x, y ϵ Rt.
Pairwise FC, measuring the statistical dependence between all possible pairs in a given network would
yield a matrix of size n × n. This would generate a symmetric matrix and can be reduced to n(n-1) unique
coefficients(from either the upper or lower triangle of the matrix). The following defines and character-
izes each identified measure quantifying FC, a summary of which is presented in Supplementary Table
2.

3.2.1 Temporal-Based

1. Cityblock distance: Cityblock (Manhattan) distance is a distance metric between two points in
a N dimensional vector space. It is the sum of the lengths of the projections of the line segment
between the points onto the coordinate axes. It is given by:

dcityblock =
n∑

j=1

|xsj − xij | , (3.1)

where xs and xt are vectors from an m-by-n matrix, which is treated as m (1-by-n) row vectors
x1, x2, ..., xm. It was implemented using pdist function in Matlab with distance=cityblock.

Cityblock can decompose the contributions made by each variable of the signal in terms of the
difference in their absolute values. As with euclidean, the measure cityblock is bounded below
by 0, is not bounded above and scale-variant. Values closer to 0 are more desirable to claim lower
dissimilarity between vectors. Unlike euclidean, which squares the difference in amplitudes and
amplifies the deviation, the larger differences in cityblock are not amplified.
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2. Cross Correlation: Cross-correlation is an extended version of Pearson’s correlation as it calcu-
lates the linear correlation between all possible shifted versions of a signal relative to the other
signal as follows:

where y∗i represents the complex conjugate of yi. Index m is the displacement between the two
signals and is called a lag or lead depending on whether it assumes a positive or negative value.

Cross-corr ranges from -1 to 1, since it computes the correlation between displaces versions of
two signals. A single similarity measure is produced by the correlation of two signals, whereas the
cross-correlation of two signals produces a vector of similarity measures for any value of m. For a
specific m, the vector’s greatest value can be used as a feature in subsequent analysis. This could
be helpful in identifying brain regions that might not be functionally connected simultaneously
but become connected after a lag time. It was implemented using xcorr function in Matlab and
maximum value across all possible shifts was used to measure FC.

3. Dynamic Time Warping (DTW): DTW produces a distance metric between two input time se-
ries. Through non-linear warping of the time axis, it evaluates dissimilarity and aligns the signals.
This metric is based on building a lattice and computing a local cost of similarity between each
feasible pair of dimensions between two signals. The signals are positioned to have the greatest
possible overall overlap based on this lattice (or minimum cost in the optimization framework).
These are the steps involved:

For two signals, x and y, let dij be the Euclidean distance between ith-dimension of x and jth-
dimension of y. All pairwise distances dij are arranged into a lattice Ci,j(x, y) of size t ∗ t. Then
ddtw searches through the lattice for a path parameterized by two sequences of the same length
such that ∑

Ci,j(x, y) (3.2)

is minimum. Without skipping any dimensions or repeating any signal dimensions, the chosen
path aligns both signals. Here, all non-linear variations in the temporal domain are considered.
Dynamic temporal warping is unbounded above and has a lower bound of 0 because it is a dis-
similarity measure. Although the duration of the signals in the case of BOLD signals is the same,
it is scale-variant and applies to the general scenario when signals are of different lengths in time.
It was implemented using dtw function in Matlab with metric=euclidean.

4. Earth Mover’s Distance: The Earth Mover’s Distance (EMD) is a method to evaluate dissimilar-
ity between two multi-dimensional distributions in some feature space where a distance measure
between single features, which we call the ground distance is given. The EMD ’lifts’ this distance
from individual features to full distributions. Intuitively, given two distributions, one can be seen
as a mass of earth properly spread in space, the other as a collection of holes in that same space.
Then, the EMD measures the least amount of work needed to fill the holes with earth. Here, a
unit of work corresponds to transporting a unit of earth by a unit of ground distance.
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Treating x and y as probability distributions with:

x = {(tx1 , x1), (tx2 , x2)...(txm , xm)} (3.3)

and
y = {(ty1 , y1), (ty2 , y2)...(tyn , yn)} (3.4)

where each xi is a cluster (=amplitude) of the signal x at time-point txi and each yj is a cluster
(=amplitude) of signal y at time-point tyj . EMD can be computed with different values of m and
n, in case of BOLD signals, they can be considered to be the same for a given individual and
determined by the scan length. Then the ground distance between clusters at pi and qj can be
encoded in the matrix

D = [di,j ] (3.5)

with a flow between clusters at pi and qj represented by the matrix

F = [fi,j ] (3.6)

The objective is to minimize the overall cost

min
m∑
i=1

n∑
j=1

fi,jdi,j (3.7)

while satisfying the following constraints:

fi,j ≥ 0 for 1 ≤ i ≤ m, 1 ≤ j ≤ n (3.8)

n∑
j=1

fi,j ≤ txi for 1 ≤ i ≤ m (3.9)

m∑
i=1

fi,j ≤ tyj for 1 ≤ j ≤ n (3.10)

m∑
i=1

n∑
j=1

fi,j = min{
m∑
i=1

txi ,

n∑
j=1

tyj} (3.11)

Earth mover’s distance can then be defined as the amount of work needed to transform distribution
x to distribution y, normalized by the total flow

demd(x, y) =

∑m
i=1

∑n
j=1 fi,jdi,j∑m

i=1

∑n
j=1 fi,j

(3.12)

Similar to DTW, EMD also considers non-linear interactions between signals and is scale-variant
and applicable to general signals of unequal length. This measure is scale-bounded below by the
distance between the centroids of the distributions or signals, and values closest to it represent
more significant similarity. It was implemented using custom Matlab function emd which can be
found here.
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5. Euclidean Distance: Euclidean distance is a dissimilarity measure and it measures the geometric
distance between two points. This can be computed by the following:

d2euclidean = (xs − xt)(xs − xt)
′, (3.13)

where xs and xt are vectors from an m-by-n matrix, which is treated as m (1-by-n) row vectors
x1, x2, ..., xm. The difference terms serve as the measure of similarity. deuclidean is dependent
on the magnitude of individual points of the vectors. While it is bounded below by 0 indicating
low dissimilarity, there is no upper bound. However, it can be rescaled to range between 0 and 1
for interpretability. Euclidean distance is not invariant to the scale of the data. It must be applied
once the data has been appropriately scaled. It was implemented using pdist function in Matlab
with distance=euclidean.

6. Mutual Information: Mutual Information between two random variables measures non-linear
relations between them. Besides, it indicates how much information can be obtained from a ran-
dom variable by observing another random variable. The following formula shows the calculation
of the mutual information for two discrete random variables x and y over the space X x Y .

I(x; y) =
∑
y∈Y

∑
x∈X

p(x, y) · log
(

p(x, y)

p(x)p(y)

)
, (3.14)

where px and py are the marginal probability density functions and pxy the joint probability
density function. Essentially, mutual information captures the information that is shared between
x and y, i.e., it measures how much knowing one of them reduces uncertainty about the other. It
can assume non-negative values only. On one hand, if I(x; y) = 0, then knowledge of x does
not offer any knowledge of y and vice-versa. On the other hand, if there exists a deterministic
relationship between x and y, then knowledge of x is also shared with y and vice-versa. In this
case, I(X;Y ) is equivalent to the entropy of each x as well as y which represents the expected
information stored by each random variable. It was implemented using custom Matlab function
mutualinfo which can be found here.

7. Pearson’s Correlation: Pearson’s linear correlation coefficient is the most commonly used linear
correlation coefficient. For column Xa in matrix X and column Yb in matrix Y, having means
X̄a =

∑n
i=1(Xa,i)/n, and Ȳb =

∑n
j=1(Xb,j)/n, Pearson’s linear correlation coefficient ρ(a, b)

is defined as:

rho(a, b) =

∑n
i=1(Xa,i − X̄a)(Yb,i − Ȳb)

{
∑n

i=1(Xa,i − X̄a)2
∑n

j=1(Yb,j − Ȳb)2}
, (3.15)

where n is the length of each column. Values of the correlation coefficient can range from –1 to +1.
A value of –1 indicates perfect negative correlation, while a value of +1 indicates perfect positive
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correlation. A value of 0 indicates no correlation between the columns. It was implemented using
corr function in Matlab with Type=Pearson.

8. Spearman’s Correlation: Spearman’s rho is equivalent to Pearson’s Linear Correlation Coef-
ficient applied to the rankings of the columns Xa and Yb. If all the ranks in each column are
distinct, the equation simplifies to:

rho(a, b) = 1−
6
∑

d2

n(n2 − 1)
, (3.16)

where d is the difference between the ranks of the two columns, and n is the length of each column.
It essentially measures the strength of a monotonic relationship between two variables with the
same scaling as the Pearson correlation. It was implemented using corr function in Matlab with
Type=Spearman.

3.2.2 Spectral-Based

1. Coherence: The spectral coherence estimate is a function of frequency with values between 0 and
1. These values indicate how well x corresponds to y at each frequency. The magnitude-squared
coherence is a function of the power spectral densities, Pxx(f) and Pyy(f), and the cross power
spectral density, Pxy(f), of x and y:

Cxy (f) =
|Pxy(f)|2

Pxx(f)Pyy(f)
(3.17)

Coherence value of 0 indicates no coherence between the signals and 1 indicates strong coherence
between the signals. It can be considered to reflect the phase consistency between two signals at
a given frequency. On one hand, a weaker coherence is the case when the signals share a random
phase relationship and on the other hand, stronger coherence results when the phase relationship
is almost constant between the signals. It was implemented using mscohere function in Matlab
and maximum value across all possible frequencies was used to measure FC.

3.2.3 Spectro-Temporal-Based

1. Wavelet Coherence: Wavelet coherence captures similarity and quantifies how time signals from
two sources are related in the time-frequency-domain. It is based on computing the cross-wavelet
power which reveals the parts of the signals that share high common power. Wavelet coherence
measures the coherence of the cross wavelet transform in time-frequency-domain and is given by:

WC(x, y) =
|S(C∗

x(a, b)Cy(a, b))|2

S |Cx(a, b)|2 · S |Cy(a, b)|2
(3.18)
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Cx(a, b) and Cy(a, b) denote the continuous wavelet transforms of x and y at scales a and po-
sitions b. The superscript ∗ is the complex conjugate and S is a smoothing operator in time and
scale. For real-valued time series, the wavelet coherence is real-valued if you use a real-valued
analyzing wavelet, and complex-valued if you use a complex-valued analyzing wavelet. It was
implemented using wcoherence function in Matlab and average value over the instances (top half
only) showing highest similarity was used to measure FC.

2. Instantaneous Phase Synchrony (IPS): IPS measures the phase similarities between signals at
each timepoint. The phase refers to the angle of the signal when it is resonating between 0 to 360

degrees or −π to π degrees. When two signals line up in phase their angular difference becomes
zero. The angles can be calculated through the hilbert transform of the signal. Phase coherence
can be quantified by subtracting the angular difference from 1. Let Y be a 2-dimensional matrix
of size R × T (regions x time points). In the following equations, zm1 [t] and zm2 [t] are supposed
to be the analytical representations of ym1 [t] and ym2 [t], that are the rows in Y:

zm1 [t] = ym1 [t] + jỹm1 [t] = am1 [t]e
jϕm1 [t]

zm1 [t] = ym1 [t] + jỹm1 [t] = am1 [t]e
jϕm1 [t]

(3.19)

where j =
√
−1, ỹ is the Hilbert transform of y, am1 [t] and am2 [t] are the instantaneous am-

plitudes, and ϕm1 [t] and ϕm2 [t] are instantaneous phases of ym1 [t] and ym2 [t]. The two signals
ym1 [t] and ym2 [t] are said to be phase-locked of order 1:1 when:

abs(ϕm1 [t]− ϕm2 [t]) ≈ 0 (3.20)

We then quantified the instantaneous phase similarity between the two signal pairs ϕm1 [t] and
ϕm2 [t] for all pairs of rows in the Z matrix as:

IPSm1,m2 [t] = abs(cos(ϕm1 [t]− ϕm2 [t])) (3.21)

The IPS measure is a great way to compute moment-to-moment synchrony between two signals
without arbitrarily deciding the window size as done in rolling window correlations. It was com-
puted using custom Matlab scripts.

3.2.4 Graph-Based

For each participant, the functional connectivity matrix was generated by computing the Pearson
correlation of the fMRI time series between every pair of voxels. This matrix was then made non-
negative by incrementing each entry by 1. A power-iteration method was used to compute the first
eigenvector for each participant’s FC matrix. The result was a voxel-wise EC map for each participant
(Refer to Eq. 1)(Fig. 1).
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xi =
1

λ

∑
k

FCk,ixk, (3.22)

where, xi is centrality of ith node and k denotes all voxels, FCk,i denotes the FC matrix value
between nodes k and i.

3.3 Sørensen–Dice Similarity Coefficient

The Sørensen–Dice coefficient is a statistic used to gauge the similarity of two samples. It was
independently developed by the botanists Thorvald Sørensen[46] and Lee Raymond Dice[47] in 1948
and 1945, respectively. The similarity coefficient of two sets A and B can be expressed as:

dice(A,B) =
2|A ∩B|
|A|+ |B|

(3.23)

where |X| and |Y | are the cardinalities of the two sets (i.e., the number of elements in each set), and
∩ represents the intersection of two sets (elements common to both sets).

Each FC matrix was thresholded for our analysis to obtain a binary adjacency matrix. We used
two thresholding methods: a) standard deviation higher and lower than the overall mean (mean ± c*std,
where c = 1 and 2) [48], and b) average degree thresholding(S = 2.5 and S = 4) [49, 50, 51]. We observed
similarities between different stimuli, groups, and FC measures.

• Similarities across stimuli: The similarity coefficient for each subject was calculated between
all possible stimulus pairs(1 vs. 2, 2 vs. 3, and 1 vs. 3). These values were then pooled across all
subjects, musicians, non-musicians, males and females to study group differences.

• Similarities across groups: Similarity coefficient was calculated for each stimulus between all
possible subject pairs(males vs. females, musicians vs. non-musicians). The mean value for each
stimulus was then calculated to compare different groups.

• Similarities across FC measures: FC matrices were averaged across all stimuli and subjects to
generate mean FC matrices. Each element in the mean FC matrix was obtained by computing the
mean of FC values in the cell of each of the corresponding individual matrices in the group. As
mentioned earlier, binary adjacency matrices were subsequently obtained using threshold meth-
ods, and a similarity coefficient was calculated between all possible measure pairs.

Figure 3.1 shows the overview of our similarity pipeline.

3.4 Classification

Classification is a supervised machine learning technique used to identify the category of new ob-
servations based on training data. In classification, the algorithm learns from the given dataset and then
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Figure 3.1: An overview of our similarity pipeline

classifies new(or unseen) observations into different classes or groups. The algorithm which implements
the classification on a dataset is known as a classifier. There are two types of classification problems:

1. Binary Classification: It involves classifying data into only two classes.

2. Multi-Class Classification: It involves classifying data into three or more classes.

In neuroscience, machine learning is used for two purposes, encoding, and decoding. Encoding is
the process of predicting or generating brain responses from external stimuli, while decoding is the
method of understanding, analyzing, and deciphering neural responses in the brain. Our study pertains
to decoding brain networks to identify the unique brain signatures in individuals. In order to identify
gender and musical expertise from brain responses, we use a support vector machine (SVM) classifier.

For the training data, we utilized only the upper triangular matrix (of size n(n−1)
2 , where n = 141

regions) due to the symmetry in the generated FC matrices. These vectors were then combined across
subjects (feature vector size = 36 x n(n−1)

2 ) to form the training data. We used a leave-one-out strategy
to maximize the size of the training dataset. We then performed feature selection on training data to
reduce redundant features and noise. We used a Random Forest Regressor (RFR)[52, 53], an ensemble
of individual decision trees, to reduce the feature set. It also provides feature importance in terms
of weights that can be used to find crucial region-pair connectivity necessary to identify individuals.
RFR was performed with the default number of trees in the forest (n estimators = 100) as well as
with variable numbers ranging from 10 to 1000, implemented using python’s scikit-learn toolbox[54].
A meta-transformer (SelectFromModel) was followed, selecting features based on feature importance
weights implemented using the same toolbox. Mean weight was used as the threshold value for feature
selection.

3.4.1 Linear Support Vector Machine (SVM) Classifier

The SVM is a classifier that represents the training data as points in space separated into categories
by a gap as wide as possible. New points are then added to space by predicting which category they fall
into and which space they will belong to.

21



Figure 3.2: An overview of our classification pipeline

In the scikit-learn package, the Linear Support Vector Machine Classifier is implemented in the
class LinearSVC, present in the sklearn.svm API package ??. It is implemented in terms of liblinear,
which provides it more flexibility in the choice of loss functions and penalties and makes it easier to
scale to a large number of samples instead of just using the SVC class from the same package with the
hyperparameter kernel=’linear’, which uses libsvm. As LinearSVC is inherently a binary classification
model, the model uses a one-vs-rest scheme for multi-class classification support.

Figure 3.3: Example showing SVM classifier
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Chapter 4

Results and Discussion

4.1 Statistical Results - Liking Ratings

As mentioned in methods, we first examine differences in liking ratings specific to gender and mu-
sical expertise. To this end, we perform a non-parametric alternative to a two-way ANOVA called
the permuted Wald-type statistic (WTP)[55], on the liking ratings wherein one factor represents gender
while the other represents musical expertise. WTP was used because the liking ratings violated paramet-
ric ANOVA’s normality and homogeneity of variance assumptions. WTP analysis revealed a significant
main effect of musical expertise across all three stimuli (QN=5.877 for stimulus 1, QN=4.89 for stimu-
lus 2, QN=5.699 for stimulus 3, all p < 0.05), Figure 4.1. As shown in Figure 4.1a, a significant effect
of gender (QN=10.622, p=0.0026) is observed, and a borderline interaction (QN=3.813, p=0.059) with
musical expertise for Stimulus 1. No significant effect of gender or interaction between gender and
musical expertise is found in Stimulus 2 and 3.

4.2 Similarity Analysis

4.2.1 Similarities between different stimuli

The similarity coefficient was calculated between all possible stimulus pairs(S1 vs. S2, S2 vs. S3,
and S1 vs. S3) for each subject to observe similarities between different stimuli. These values were
then averaged across all subjects and different groups(18 musicians, 18 non-musicians, 17 males, and
19 females.

Overall, the results were highly similar between the different threshold methods. We report results
for one standard deviation higher and lower than the overall mean value. As can be seen in Table 4.1,
the spectral measure, Coherence, captures maximum variation, as evidenced by the low Sørensen-Dice
coefficient. In contrast, the temporal measures show more significant overlap. Additionally, it was noted
that IPS followed Coherence and then Wavelet Coherence regarding the level of similarity observed
across different threshold methods. The results are similar across different groups of musicians, non-
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musicians, males, and females. It can also be observed that the similarity is slightly high for non-
musicians when compared to musicians. This may be due to non-musicians having more significant
variability than musicians since musicians are trained in a specific instrument or genre of music, while
non-musicians have more passive listening.

Musicians Non Musicians

Total Subjects: 36 (Stimulus 1)
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(b) Stimulus 2
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Figure 4.1: Point plots for liking ratings grouped by musical expertise and gender.

4.2.2 Similarities between different groups

The similarity coefficient was calculated for each stimulus between all possible subject pairs(17
males x 19 females and 18 musicians x 18 non-musicians) to observe similarities between different
groups. The mean value across all pairs for each stimulus was then calculated to compare different
groups.
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All Subjects Musicians NonMusicians
FC Measure

S1 vs S2 S2 vs S3 S1 vs S3 S1 vs S2 S2 vs S3 S1 vs S3 S1 vs S2 S2 vs S3 S1 vs S3

Cityblock Distance 0.6311 0.6427 0.6305 0.6221 0.6459 0.6087 0.6400 0.6394 0.6522

Coherence 0.3936 0.3927 0.3948 0.3934 0.3945 0.3923 0.3938 0.3909 0.3973

Cross Correlation 0.5262 0.5136 0.5055 0.5275 0.5198 0.4972 0.5250 0.5074 0.5138

DTW 0.6066 0.6191 0.6001 0.5952 0.6115 0.5707 0.6179 0.6266 0.6295

EMD 0.6016 0.6182 0.6033 0.5958 0.6236 0.5808 0.6074 0.6127 0.6259

Euclidean Distance 0.6353 0.6489 0.6353 0.6279 0.6522 0.6144 0.6428 0.6456 0.6562

IPS 0.4624 0.4650 0.4614 0.4537 0.4606 0.4542 0.4711 0.4695 0.4687

Mutual Information 0.4679 0.4652 0.4723 0.4639 0.4699 0.4546 0.4718 0.4605 0.4900

Pearson Correlation 0.4947 0.5009 0.5030 0.4913 0.5054 0.4856 0.4981 0.4964 0.5204

Spearman Correlation 0.4898 0.4908 0.4940 0.4840 0.4919 0.4763 0.4956 0.4896 0.5117

Wavelet Coherence 0.4133 0.4089 0.4124 0.4192 0.4198 0.4070 0.4074 0.3980 0.4179

(a) All Subjects, Musicians and NonMusicians

Males Females
FC Measure

S1 vs S2 S2 vs S3 S1 vs S3 S1 vs S2 S2 vs S3 S1 vs S3

Cityblock Distance 0.6169 0.6461 0.6245 0.6437 0.6395 0.6358

Coherence 0.3905 0.3858 0.3924 0.3964 0.3989 0.3970

Cross Correlation 0.5091 0.4899 0.4845 0.5416 0.5348 0.5243

DTW 0.5926 0.6230 0.5985 0.6190 0.6155 0.6016

EMD 0.5845 0.6225 0.5974 0.6169 0.6143 0.6086

Euclidean Distance 0.6199 0.6532 0.6283 0.6491 0.6451 0.6416

IPS 0.4648 0.4673 0.4647 0.4602 0.4630 0.4585

Mutual Information 0.4434 0.4429 0.4479 0.4898 0.4851 0.4941

Pearson Correlation 0.4746 0.4851 0.4916 0.5127 0.5150 0.5132

Spearman Correlation 0.4681 0.4735 0.4815 0.5092 0.5062 0.5052

Wavelet Coherence 0.4025 0.4062 0.4094 0.4229 0.4113 0.4152

(b) Males and Females

Table 4.1: Similarities measured by Sørensen-Dice similarity coefficient between different stimuli.
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Musicians vs Non-Musicians Males vs Females
FC Measure

Piazolla (S1) DreamTheater (S2) Rite of Spring (S3) Piazolla (S1) DreamTheater (S2) Rite of Spring (S3)

Cityblock Distance 0.8050 0.8136 0.7632 0.8026 0.7774 0.7795

Coherence 0.5962 0.5867 0.5715 0.5914 0.5884 0.5734

Cross Correlation 0.8172 0.7875 0.7507 0.7710 0.7071 0.7506

DTW 0.7559 0.7906 0.7132 0.7412 0.7014 0.7014

EMD 0.8005 0.8006 0.7599 0.7992 0.7691 0.7715

Euclidean Distance 0.8081 0.8121 0.7648 0.8074 0.7698 0.7858

IPS 0.7340 0.7322 0.7028 0.7114 0.7173 0.7193

Mutual Information 0.8040 0.7504 0.7609 0.7911 0.7476 0.7690

Pearson Correlation 0.7333 0.7155 0.7226 0.6892 0.7266 0.7350

Spearman Correlation 0.7309 0.7148 0.7175 0.6920 0.7283 0.7302

Wavelet Coherence 0.6915 0.6617 0.6519 0.6721 0.6714 0.6802

Table 4.2: Similarities measured by Sørensen-Dice similarity coefficient between different groups.

We can observe similar results from Table 4.2. Coherence is the least similarity-capturing measure,
followed by Wavelet Coherence.

4.2.3 Similarities between different FC Measures

A group-level mean FC matrix was generated by averaging across all stimuli and subjects to observe
similarities between different FC measures. A single mean FC matrix was obtained for each measure,
which was subsequently thresholded to obtain binary adjacency matrices. The similarity coefficient was
calculated between all possible FC measure pairs.

Figure 4.2 shows a high similarity between Cityblock Distance, Earth Mover’s Distance (EMD), and
Euclidean Distance. They all are dissimilarity measures and calculate distances between two points,
with EMD being an exception since it represents the minimum cost of converting one distribution into
the other. There is a high similarity between Pearson’s and Spearman’s Correlation. In addition, the
spectral measure, Coherence, demonstrates high similarity with these two most commonly used tempo-
ral measures of FC.

4.3 Classification Results

Figure 4.3 shows the classification results. As can be seen, Pearson’s correlation does not always
stand out while differentiating the musicians from the non-musicians or males from females. Comparing
performances of other measures, no one single FC measure particularly performed consistently better
than the rest. Importantly, when we concatenate all these measures of FC, the composite measure almost
always performs better. This could be due to thpoe contribution of other FC measures which potentially
augment the discriminatory power of Pearson’s correlation.
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Figure 4.2: Similarities measured by Sørensen-Dice similarity coefficient between FC measures aver-
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(a) Classification based on Musical Expertise
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(b) Classification based on Gender

Figure 4.3: Classification accuracy for all three stimuli and FC measures.
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Chapter 5

Conclusions

Our study has made notable strides in understanding the relationship between musical preferences,
gender, and musical expertise. The results align with previous research, indicating that musical pref-
erences are indeed a personality trait. This was observed in the differences in liking ratings specific to
gender and musical expertise. Females were found to prefer the tango and modern classical pieces over
males, while males preferred the progressive rock piece. This is consistent with previous studies that
found that females prefer more “mellow” musical styles with negative emotions and greater emotional
depth, while males tend to prefer “harder” or “intense” styles.

The spectral measure, Coherence, consistently exhibited the least similarity and showed the highest
variation across stimuli and groups compared to the temporal measures. This implies that different
measures capture distinct information that may vary depending on the task or activity being performed
and how they capture brain responses. This discovery holds particular importance as it offers a fresh
perspective on utilizing diverse measures to capture a range of information effectively.

The comparison of all functional connectivity (FC) measures in classifying individuals based on
gender and musical expertise aligns with the findings of Mohanty et al. (2020). There was no single
FC measure that consistently outperformed others. However, a composite measure - a combination of
all measures obtained by concatenation followed by a feature selection procedure was relatively more
consistent and, in most cases, performed better than the rest of the measures. The study suggests that
for analyses at a group level, temporal measures provide a more reliable and robust characterization of
the FC patterns. These measures can be used in further studies to minimize the impact of individual
variations and highlight the significant features that define the group.

The study achieved comparable results to the non-FC-based approach on the same dataset in Saari
et al. (2018), which reported a classification accuracy of 77%. Using functional connectome during
continuous music listening to classify gender and musical expertise is a novel approach as it leverages
the functional connectivity measures to capture different statistical dependencies between two BOLD
signals, including linear and non-linear dependencies.

However, the study acknowledges a few limitations. One such limitation is that the research was
conducted using a relatively small dataset of 36 participants, which may have contributed to the low
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accuracy results observed in the binary SVM-based classification. This constraint suggests that future
studies could significantly benefit from larger sample sizes to enhance the accuracy of classification and
increase the generalizability of the findings. Moreover, the observed low accuracy could be attributed
to the features used in the analysis not being representative enough to adequately capture the individual
differences. Additionally, the choice of the classifier used (SVM-based classification) may also have
influenced the outcomes. Future investigations could explore alternative feature representations and
classifiers to further refine the identification of individual differences based on brain responses to music.

The study used several functional connectivity (FC) measures, revealing novel insights. However,
it suggests that future research could benefit from combining spectral and temporal measures to obtain
a more comprehensive understanding of the underlying functional connectivity. This combination may
provide a more complete picture of functional connectivity dynamics.

The research can be expanded in the future to investigate which regions contribute to classification.
This would shed light on the essential functional connections related to musical expertise and gender.
Understanding these connections could provide more detailed insights into how these factors influence
musical preferences.

The study’s findings are explained in the context of earlier research, and the results have been pub-
lished in related publications. This study has not only contributed to the existing body of knowledge
but also opened up new avenues for future research. The insights gained from this study are expected
to have significant implications for the understanding of the relationship between music, gender, and
musical expertise.
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