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Abstract

Safety-critical real-time systems demand meticulous attention to both temporal requirements

and fault tolerance mechanisms. This thesis addresses critical challenges in analyzing and

optimizing system performance under the influence of transient faults and thermal constraints.

Our first work introduces an analytical framework for evaluating data age in real-time task

chains augmented with checkpointing mechanisms. Transient faults pose significant threats

to system predictability, and conventional fault tolerance methods such as checkpointing can

exacerbate data age dynamics. Our framework offers a systematic approach to quantifying data

age in both single-core and multi-core platforms, validated through extensive simulations. The

results demonstrate that the data age bounds achieved are comparable to those of existing

techniques, while the computational overhead remains minimal in relation to traditional methods.

This balance enhances the predictability and reliability of safety-critical systems, ensuring efficient

performance without sacrificing accuracy or increasing resource consumption significantly.

The second work focuses on the analysis to incorporate thermal constraints alongside data

age considerations in task scheduling for safety-critical applications. By introducing a thermal-

aware data age analysis framework, this work addresses the pressing need for simultaneous

optimization of task periods to ensure both data age and processor thermal safety. Through

systematic evaluations, we establish the efficacy of our approach in deriving schedulable task

periods, thus mitigating risks associated with invalid data consumption and thermal violations

in safety-critical systems. Results underscore the effectiveness of our framework in achieving

optimal task scheduling while meeting stringent safety and thermal requirements.

Together, these contributions provide essential insights and methodologies to enhance the

resilience and performance predictability of safety-critical real-time systems.
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Chapter 1

Introduction

Real-time systems underpin critical operations, from self-driving cars to medical devices.

These systems rely on fresh data for accurate decision-making. However, ensuring the validity of

data faces challenges like thermal constraints on processors and the influence of fault tolerance

mechanisms.

This thesis investigates the interplay between these factors and data age. It explores how

thermal thresholds in resource-constrained processors and the delays introduced by checkpointing

(a fault tolerance technique) can impact data age. By analyzing these influences, the research

aims to develop a novel data-age analysis framework for real-time systems. This framework will

contribute to designing more robust systems that operate within acceptable data age boundaries,

ultimately enhancing reliability and safety in critical applications.

1.1 Scope of the Problem

Real-time systems underpin a wide range of safety-critical applications, hence they require

deterministic and timely data processing to guarantee correct functionality and ensure safety.

Data age, a metric reflecting how long a data is in system from it’s production time to last

consumption by any job, plays a vital role in ensuring data validity within these systems. A vaild

data is a data whose data age is under provided threshold or data age limit. Using outdated

data can lead to erroneous decisions with potentially catastrophic consequences.

Traditional worst-case execution time (WCET) analysis, while crucial for ensuring system

stability, can be overly conservative, leading to inefficiencies in real-time system design. As
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real-time systems become increasingly complex, efficient data-age management strategies are

crucial for guaranteeing data validity under various operating conditions.

Existing research on data age analysis primarily focuses on minimizing the end-to-end age of

data within task chains, a pipeline of tasks which will be consuming the data. However, these

methods often overlook additional factors that can significantly impact data validity. Here, we

identify two key challenges that this thesis aims to address:

Fault Tolerance Mechanisms: Fault tolerance mechanisms, like checkpointing, are essential

for ensuring system reliability in the face of potential hardware or software failures. However,

these mechanisms can introduce additional delays into the system. For instance, checkpointing

involves periodically saving the state of a task, which can add overhead and potentially increase

data age. Existing data-age analysis approaches may not adequately account for the impact of

fault tolerance mechanisms on data age.

Thermal Constraints: Processors in resource-constrained real-time systems have limitations

in terms of heat dissipation. When thermal thresholds are reached, processors may throttle or

slow down to manage heat. This performance degradation can directly impact task execution

times, potentially increasing data age beyond acceptable limits. Traditional data age analysis

methods often don’t consider these thermal constraints, leading to potentially inaccurate age

estimations.

This thesis aims to bridge the gap in existing research by proposing two novel data-age analysis

frameworks that considers thermal constraints and the impact of fault tolerance mechanisms

individually. This comprehensive approach can lead to more accurate data-age estimations,

enabling the design of real-time systems that operate within acceptable data age boundaries

while ensuring system reliability and performance.

1.2 Motivation

Real-time systems are the backbone of modern infrastructure, silently orchestrating critical

tasks across diverse domains. From the self-driving cars navigating our streets to the intricate

control systems within nuclear power plants, these systems demand guaranteed performance and

utmost reliability. At the heart of this reliability lies data age, an important metric to define

validity of data.
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While crucial for ensuring system stability, WCET analysis can be overly conservative, leading

to inefficiencies. As real-time systems become increasingly complex, with intricate task chains

and stringent deadlines, there’s a growing need for sophisticated data-age management strategies.

”Data age”, a metric reflecting the time elapsed since data generation, provides a more nuanced

understanding of data validity compared to the binary ”fresh” or ”stale” classification imposed

by using WCET during data age calculation.

Frameworks to calculate data age play a pivotal role in addressing the necessity of precision

posed by real-time systems. These frameworks provide structured methodologies and tools that

facilitate systematic analysis and optimization of system performance under diverse conditions.

In scenarios where thermal constraints are in play, frameworks enable the precise calculation

of data age, allowing system designers to strike an optimal balance between performance and

thermal management. Similarly, in the presence of fault tolerance mechanisms, frameworks

provide a structured approach for evaluating the effectiveness of these mechanisms in preserving

system integrity and functionality. By formalizing the analysis process and providing guidelines

for decision-making, frameworks empower engineers to make informed choices and design robust

systems that can withstand unforeseen challenges. Without such frameworks, the ability to

proactively manage data age and system resilience is severely compromised, potentially exposing

critical systems to unforeseen vulnerabilities.

This thesis delves into two critical aspects that impact data validity in real-time systems:

thermal constraints and the influence of fault tolerance mechanisms.

The first research work explores the relationship between data age and fault tolerance

mechanisms. Imagine a high-frequency trading platform relying on real-time market data to

make split-second investment decisions. Even a slightly older data past its data age limit can

result in significant financial losses. To ensure system reliability and prevent errors in transactions,

fault tolerance mechanisms like data replication are often employed. Data replication involves

storing copies of critical data across multiple servers. While this approach enhances system

robustness, it introduces additional processing overhead to maintain data consistency across

replicas. These delays can potentially increase data age, causing the trading platform to

base investment decisions on slightly outdated market information. Existing data-age analysis

approaches may not adequately account for the impact of data replication on data age, potentially

leading to suboptimal system design for high-frequency trading applications.
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The second research work in this thesis focuses on the impact of thermal constraints on

data age. Consider the scenario of an autonomous car relying on real-time sensor data for

navigation. These sensors generate a constant stream of data on surrounding obstacles, traffic

lights, and road conditions. The car’s onboard computer needs to process this data swiftly and

accurately to make critical decisions. However, processors in resource-constrained systems like

autonomous vehicles have limitations in heat dissipation. During periods of intense processing or

high ambient temperatures, processors may throttle or slow down to manage heat build-up. This

thermal throttling directly impacts task execution times, potentially causing delays that can

significantly increase data age. Existing data-age analysis methods often don’t consider these

thermal constraints, leading to inaccurate data-age estimations and potentially compromising

the safety of autonomous vehicles.

By addressing both thermal constraints and fault tolerance mechanisms in data-age analysis,

this thesis aims to bridge the gap in existing research. This comprehensive approach can

lead to more accurate data-age estimations and enable the design of real-time systems that

operate within acceptable data age boundaries, guaranteeing system reliability, performance,

and ultimately, safety in critical real-world applications.

1.3 Scope of Thesis

Real-time systems are basis for a diverse range of safety-critical applications where consistent

performance and high reliability are paramount. One of the principal challenges in these systems

is maintaining the reliability of data, which is crucial for decision-making processes and system

stability. Traditional approaches, such as ones using the worst-case execution time (WCET)

analysis for data age calculation, often adopt overly conservative estimates that can compromise

the efficiency of data age management.

This thesis aims to explore two of many factors that significantly impact data age: thermal

constraints and fault tolerance mechanisms. Current methodologies lack a comprehensive

framework that can accurately calculate data age while accounting for these factors.

This work aims to optimize system performance and enhance reliability without the unnecessary

conservatism that characterizes existing approaches. Through this research, we seek to contribute
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to the advancement of real-time system designs, enabling them to meet the rigorous demands of

safety-critical applications more effectively.

1.3.1 Objectives of the Thesis

The primary objective of this thesis encompasses the development of a more precise and

adaptable model to calculate data age, considering the dynamic effect on system due to thermal

conditions and fault tolerance strategies. By providing more accurate estimations of data age

within real-time systems, this framework will empower the design of systems that operate within

acceptable data validity boundaries.

1.3.2 Specific Areas Covered

To achieve this objective, the thesis will explore the following key areas:

• Fault Tolerance Mechanisms and Data Age: In chapter 3, the thesis analyzes

different fault tolerance mechanisms, such as checkpointing and re-execution. We explore

how these mechanisms introduce delays that can potentially compromise data freshness

by increasing data age.

• Interference from Checkpointing: In chapter 3, we investigate cases where checkpointing,

as a fault tolerance strategy, introduces interference and delays in task execution. This

exploration considers the resultant effects on data freshness and system reliability, particularly

in environments with stringent real-time requirements.

• Thermal Modeling: In chapter 2, we delve into various thermal models for resource-

constrained processors commonly used in real-time systems. This analysis provides a

deeper understanding of how processor temperature, as well as ambient temperature,

impacts performance.

• Task Splitting for Thermal Management: In chapter 4, an exhaustive examination

is conducted on the use of task splitting techniques to manage thermal constraints. This

area focuses on case studies where task splitting has been applied to maintain optimal

processor temperatures, thereby minimizing thermal impacts on system performance and

data age.
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• Comprehensive Data-Age Analysis Framework: Leveraging the insights gained

from thermal modeling and fault tolerance analysis, we develop a comprehensive data-age

analysis framework. This framework incorporates the impact of both thermal constraints

and fault tolerance mechanisms for more accurate data age estimations.

• Framework Validation: The proposed data-age analysis framework is rigorously

validated through simulations. This validation process assesses the accuracy and effectiveness

of the framework.

1.3.3 Approach

To tackle the challenge of maintaining data validity in real-time systems amidst thermal

constraints and fault tolerance mechanisms, this thesis adopts a structured, multi-faceted

methodology:

• Literature review: To lay the groundwork for this study, a comprehensive literature

review was conducted. This review encompasses existing theories and empirical studies

related to thermal modeling, data-age analysis limitations (focusing on thermal and fault

tolerance), and fault tolerance mechanisms’ impact on data age. The purpose is to identify

gaps in current knowledge and to understand the broader context within which data age

is impacted. This comprehensive review will inform the development of our novel data-age

analysis framework.

• Leveraging Existing Research: Building on the established research in thermal

modeling of processors, fault and fault tolerance models, and data-age analysis in real-time

systems, this thesis will enhance and adapt these foundational insights to develop our own

analytical framework.

• Modeling and Analysis: We will analyze the working of existing models, particularly

their capacity to maintain safe operational parameters within set thermal thresholds and

fault tolerance mechanisms. This analysis will help us understand the width impact on

data age, laying the groundwork for refining and proposing targeted enhancements.

• Framework Development: Drawing on the insights gained from thermal-aware scheduling

and fault tolerance analysis, we will develop a comprehensive data-age analysis framework.
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This framework will incorporate the influence of techniques, such as checkpointing for

fault tolerance and task splitting to manage thermal loads, quantifying their impact on

data latency.

• Framework Validation: The proposed data-age analysis framework will be rigorously

validated through simulations. Simulations will allow us to evaluate the framework’s

accuracy and effectiveness in estimating data age under diverse operating conditions,

including varying thermal scenarios and different fault tolerance configurations.

This approach ensures a deep and nuanced understanding of the variables affecting data

age, facilitating the development of a robust framework suitable for optimizing data validity

in real-time systems.

1.3.4 Limitations

This research, while detailed, recognizes certain limitations in its design and scope. Initially,

the development of the data age framework for fault-tolerant systems is targeted at single-

core and multi-core processor architectures. However, for systems that require thermal-aware

considerations, the focus will be specifically on single-core processors. This delineation suggests

a need for future adaptations of the proposed framework to include comprehensive support for

various scheduling techniques, which are critical for optimizing both fault tolerance and thermal

management in heterogeneous multi-core system.

Additionally, while the framework will incorporate certain thermal-aware resource management

strategies, it may require further refinement to fully integrate an expanded array of such

techniques, particularly for multi-core systems. The study will also consider a popular fault

tolerance mechanism. Although this method is expected to cover broad number of applications of

fault resilience, there exists a broader spectrum of fault tolerance strategies- like load balancing,

sharding; that could impact system performance and data age. Subsequent investigations might

need to explore these additional techniques to broaden the framework’s applicability and enhance

its efficacy in diverse real-time system environments.

7



1.4 Thesis Layout

The remaining chapters of this thesis will build upon the foundation laid out in this

introduction.

• Chapter 2: Theoretical Framework and Literature Review: This chapter will

delve deeper into existing research on data-age analysis, thermal modeling, and fault

tolerance mechanisms in real-time systems. We will critically evaluate existing approaches

and identify the gaps that this thesis aims to address.

• Chapter 3: Checkpoint aware data age analysis of task chains: this chapter

focuses on modeling the overhead introduced by checkpointing, a crucial fault tolerance

mechanism, and how it impacts data age calculations in real-time systems. It will explore

methods for estimating checkpoint size and execution time based on task characteristics,

and then integrate this information into the framework to account for the increased data

age due to checkpointing intervals. The chapter also include results based on use of

benchmark tasksets for automotive systems, representing real-world use case to analyze

the impact of checkpointing on data age and draw insights for system design.

• Chapter 4: Thermal aware data age analysis of task chains: This chapter delves

into the critical issue of thermal constraints and their influence on data-age estimations. It

will work on specific thermal model for this research and how this model is integrated into

the data-age analysis framework. The chapter will detail how the framework incorporates

processor temperature and ambient temperature as an input parameter and utilizes the

thermal model to predict potential throttling scenarios. It will then describe how these

situations are controlled and how the framework adjusts task execution times based on

predicted throttling frequencies and duration. Finally, the chapter will discuss the process

of validating the thermal-aware data age analysis framework through simulations.

• Chapter 5: Conclusion and Future Work: This chapter will summarize the

key findings of the thesis, discuss the limitations of the research, and propose potential

directions for future work.

This structure ensures a logical flow of information, guiding the reader through the problem,

the proposed solution, and the evaluation process. By addressing both thermal constraints
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and fault tolerance mechanisms, this thesis aims to significantly advance the field of data-age

analysis for real-time systems.
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Chapter 2

Literature Review

2.1 Introduction

To lay the groundwork for this study, a comprehensive literature review was conducted which

encapsulates the breadth of existing theories and studies related to data age, data freshness,

and the intricate interplay of thermal and fault models within real-time systems. The objective

of this review is twofold: to pinpoint gaps in current understanding and to contextualize the

landscape within which data age analysis unfolds. In addition to synthesizing existing knowledge,

this stage entails a meticulous examination of the factors influencing delays attributed to thermal

thresholds and fault tolerance mechanisms. By laying this comprehensive groundwork, we set

the stage for a nuanced exploration of data age dynamics in real-time systems, with implications

for system reliability and performance optimization.

2.2 Data Age Analysis of Real-Time Systems

Data age serves as a pivotal metric for assessing data quality in various systems, including

Web Servers [38] and Real-Time Databases [49, 29]. Notable studies such as [11, 42] provide

comprehensive frameworks for understanding data age as a quality metric and its associated

analysis. Feiertag et al. [17] were pioneers in defining end-to-end latency semantics, including

data age, but their approach lacked consideration for the timing variations in task releases and

execution times. Building on this, Dürr et al. [16] found that the maximum data age is bounded

by the maximum reaction time, providing valuable insights into data age constraints. However,

Davare et al. [15] and Kloda et al. [31] offered upper bounds for maximum data age, although
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their estimates tended to be overly conservative. Kloda et al.’s analysis, in particular, relied

on synchronous task releases and necessitated knowledge of worst-case response times, which

limited its applicability. Günzel et al. [23] took a different approach by proposing an analysis

that assumed tasks always execute at their worst-case times, thereby allowing them to derive

bounds on reaction latency and data age for distributed systems. However, this method might

not perform well in scenarios with task release jitter or execution-time variations.

Becker et al. [7] introduced a schedule-agnostic data age analysis, which, although inherently

pessimistic as it didn’t account for scheduling policy and task response times, marked a step

forward. They later extended their approach to compute data age bounds with greater knowledge

about the system, including response times and even the exact schedule[8]. More recently, Gohari

et al. [22] contributed to this research landscape by providing an analysis for determining the

maximum data age under non-preemptive scheduling. They employed a schedule abstraction

graph, offering an alternative perspective on data age calculations.

In [49], the authors investigate the impact of update policies on data age in distributed

real-time databases, proposing a novel update policy. Conversely, works like [9] and [50] explore

preemptive scheduling policies and deferrable algorithms, respectively, to optimize data age,

throughput, and delay performance. However, none of these studies address the modeling of

real-time tasks or derive task period parameters to meet target data age requirements.

This subsection has provided an overview of existing research on data age analysis in real-time

systems. The following sections will delve deeper into specific limitations and how our proposed

framework addresses them.

2.3 Fault Tolerance Mechanisms in Real-Time Systems

Achieving fault tolerance in real-time systems is paramount, especially for safety-critical

applications. For reliability of real-time systems, various efforts have been made to reduce error

frequency at a circuit and architectural design level[48], but they cannot entirely eliminate

errors, especially in Commercial Off-The-Shelf (COTS) processors commonly used in embedded

systems. Our research can target transient errors that evade mechanisms like logic masking,

temporal masking, and architectural masking. These faults can manifest as application crashes,

control flow violations, or silent data corruption. Online error detection techniques are commonly
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classified into two categories, as seen in [21]- (a) Embedded Error Detection (EED): These

techniques encompass error detection methods that do not rely on redundant execution, such as

watchdog time control flow checking and instruction signature checking. EED often introduces

a performance overhead that can vary depending on the implementation and application. (b)

Explicit Output Comparison (EOC): EOC relies on explicit redundancy by executing the

same task multiple times and comparing their outputs, either through classic triple modular

redundancy (TMR) or some simplified versions.

Researchers have explored ways to increase system reliability without adding expensive

hardware. They’ve used techniques like checkpointing, which periodically saves the system’s

state to recover from errors [44]. Error recovery techniques, like checkpointing [45], are crucial

for bringing systems back to an error-free state with minimal extra work. Rollback error recovery,

especially common in embedded systems, helps restore the processor state with low overhead

[40]. Some studies, like the one by Huang et al. [27], looked at redundancy in time-triggered

systems, while others, like Pinello et al. [43], focused on replication in controlled environments.

Burns et al. [40] delved into priority assignment and scheduling for fault-tolerant systems. Kim

et al. [30] categorized tasks based on their fault tolerance needs and used replication strategies.

More recent works addressed fault burst models [25], which deal with multiple transient faults

occurring in a short time.

2.3.1 Limitations of Existing Work in Checkpointing and Data Age Analysis

The limitations of current research predominantly revolve around the inadequate consideration

of dynamic conditions such as variability in task release and execution times. Methods like

those proposed by Feiertag et al. [17] and Dürr et al. [16] do not adequately adapt to these

factors, leading to inflexible and sometimes inaccurate management of data age. Moreover,

the conservative estimates provided by Davare et al. [15] and Kloda et al. [31] often result in

suboptimal system utilization. Additionally, approaches that disregard the effects of different

scheduling policies, as seen in Becker et al. [7], fail to capture true system behavior, limiting the

effectiveness of data age optimization efforts.

12



2.3.2 Our Contribution

Addressing some of the limitations, our research introduces a framework that incorporates

a more granular analysis of task variability and system dynamics, providing a more accurate

and less conservative assessment of data age. We propose a model that not only considers task

release and execution time variations but also integrates these factors with checkpointing policies

to better reflect the real operational conditions of fault tolerant embedded systems.

Following are the contributions detailed in Chapter 3:

• To the best of our knowledge, the work conducts the first comprehensive data age analysis

for cause-effect chains in scenarios where data age and checkpointing as fault tolerance

mechanisms coexist.

• Applied this analysis to multirate tasks, extending the understanding of fault tolerance in

a broader range of real-time systems.

• Investigated both single-core and multi-core platforms, contributing insights into the

performance implications of our approach across different computing environments.

• Introduced a calculation method for interference due to checkpoints, accounting for task

execution possibilities both before and after their scheduled execution time.

2.4 Real-Time Systems and Thermal Constraints

Effective thermal management is paramount in advanced embedded real-time systems, such

as vehicle controls and smartphones, which are built on high-performance computing platforms

that exhibit rapidly growing power densities. Elevated temperatures on these platforms can

substantially reduce their operational lifespan, undermine performance, and compromise safety,

potentially leading to vehicle malfunctions or smartphone incidents. It is essential to maintain

the processor’s temperature beneath a critical maximum threshold while also adhering to all

required timing constraints for applications.

Embedded real-time systems face two primary thermal management challenges: 1) the

ambient temperature that can change dynamically, and 2) the power dissipation at the task level.

These fluctuations in temperature present considerable obstacles in adhering to the necessary
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timing constraints for applications. Specifically, the maximum computation power available

fluctuates with changes in ambient temperature because a processor’s temperature is influenced

by its surroundings. Under such circumstances, a processor might breach its thermal limits

if it undertakes a task that has an average power dissipation above a predefined threshold.

Measures like reducing processor activity or decreasing its speed can be implemented to manage

temperature, but these actions may result in missed deadlines for tasks or jobs, thereby breaching

application timing requirements. This necessitates a flexible resource management strategy that

accounts for the dynamic changes in ambient temperature and task-specific power dissipation to

satisfy both thermal and timing constraints.

2.4.1 Thermal Management in Real-Time Systems

Extensive research has been conducted on thermal-aware scheduling in real-time environments

[33]. Traditional methods often include techniques like DVFS scheduling [14, 18], idle-time

scheduling [35, 5], and task scheduling [12] to reduce maximum temperatures while ensuring

timing requirements are met. Approaches for worst-case temperature analysis [37, 46] have

been developed to provide offline assurances that thermal constraints will be maintained. The

notion of thermal utilization [1] has been introduced to quantify the thermal effects of periodic

real-time tasks on processors. However, many of these solutions assume either a constant

ambient temperature or uniform power dissipation that does not vary with the task. Though

real-time thermal controllers that adjust task utilization [19] or frequency [20] to maintain a

desired temperature have been developed, their effectiveness is often limited when it comes to

preventing temperature spikes.

Research into thermal-aware real-time scheduling continues to evolve, focusing on balancing

thermal and timing constraints in static conditions. DVFS scheduling adjusts a processor’s

voltage and frequency to optimize power consumption [4, 52], and manage peak temperatures

while meeting set timing constraints on single-core systems [14, 47, 13].

Additionally, strategies that account for variations in task-level power dissipation aim to

minimize temperature peaks [28, 2] or maximize operational throughput [51, 26] by alternating

between tasks with higher and lower heat outputs. Such strategies are crucial for defining peak

temperature thresholds that adhere to thermal constraints [37].
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2.4.2 Limitations of Existing Works

While thermal management techniques exist for real-time systems, they primarily focus on

schedulability and task deadline. These approaches often neglect the crucial aspect of data

age. Integrating thermal considerations into data age analysis is essential for ensuring that

real-time systems operate within acceptable data age boundaries, ultimately guaranteeing system

reliability, safety, and performance. Despite advancements in thermal management for real-time

systems, a gap exists in the context of data age analysis.

2.4.3 Our Contribution

To meet the need for reliable thermal aware real time systems, we first verify the significance of

these factors using benchmark tasksets, then develop and validate a data age analysis framework

that considers individual tasks’ different power dissipation. Building upon the task-level thermal

model, and using task splitting mechanism as thermal-aware resource management scheme

we propose a novel data age calculation framework which can assist developing more reliable

systems where scheduled tasks to meet both thermal and timing constraints.

Following are our contributions detailed in Chapter 4:

• Formulation of the 2 − task scenario and the associated optimization problem to derive

task periods under both end-to-end data freshness and thermal constraints.

• Extension of our formulation to accommodate an n− task scenario, allowing for scalability

and applicability to real-world systems.

• Evaluation of our theoretical framework using task chains derived from the MiBench

automotive benchmark. Through this evaluation, we demonstrate variations in schedulability

percentages under varying thermal and freshness constraints, providing insights into the

practical implications of our approach.

2.5 Conclusion

This comprehensive literature review has explored the intricate dimensions of data age, data

freshness, and their interdependencies with thermal and fault models within real-time systems.

Our examination revealed significant gaps in the existing methodologies, particularly in terms
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of accommodating dynamic system conditions and optimizing data age within the constraints

of real-time operational demands. While substantial work has been done to understand and

improve data age through various scheduling and fault tolerance mechanisms, there remains

a pressing need for models that integrate more dynamic task handling and less conservative

assumptions to better mirror actual system behaviors.

The synthesis of research on data age highlights its critical role in assessing system performance

and emphasizes the need for more refined and adaptable strategies. Similarly, our review of fault

tolerance mechanisms underscores the importance of robust error management in maintaining

system reliability, particularly in safety-critical applications using COTS processors. The studies

reviewed have laid a strong foundation for our research, which aims to address these gaps by

introducing innovative approaches that more accurately reflect and enhance the real-time system

operations.

In conclusion, this review not only encapsulates the current state of knowledge but also sets the

stage for our subsequent contributions, which aspire to refine these models and propose solutions

that are both practical and effective for real-time systems facing contemporary challenges. Our

work will build on this foundation, aiming to advance the understanding of how data age can be

optimized across various system configurations to improve overall reliability and performance.
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Chapter 3

Checkpointing-Aware Data Age Analysis of Task Chains

In automotive systems, standards have been established to enable independent development,

improve software compatibility, and meet reliability requirements in case of subsystem failures[16],

e.g. AUTOSAR[3]. This approach allows tasks to access up-to-date data independently without

coordination with other tasks. However, it introduces challenges related to system reliability,

performance, and safety. One crucial metric that aids in navigating these challenges is data age.

Data age refers to the amount of time that input data within a system influences the output

value of that chain. In other words, when a specific output is generated, data age indicates how

old the input data was for that output.

In complex systems, overlooking maximum data age can potentially lead to catastrophic

outcomes. Moreover, the presence of faults and fault tolerance mechanisms can cause fluctuations

in data age. Faults manifest in various forms – permanent, intermittent, and transient. Our

research specifically considers transient faults or soft errors. These faults, induced by factors

like electromagnetic radiation, temperature fluctuations, and electrical noise, potentially disrupt

embedded systems [6][48].

Achieving fault tolerance in computer systems entails employing redundancy either in space

or time[34]. In particular, for tolerating transient faults, the use of time redundancy is a

cost-efficient means to achieve fault tolerance[34]. In case of time redundancy, whenever a fault

leads to an error, and the error is detected, the faulty task is re-executed. A widely adopted

technique is checkpointing [45]. This involves periodically saving the system’s state to enable

recovery and resume execution from a known fault-free state. However, introduction of fault

detection and tolerance techniques comes with significant timing overhead, which can affect
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deadlines and the data age. Consequently, it becomes crucial to model the impact of fault

tolerance mechanisms on data age to ensure the safety and effectiveness of the system.

Figure 3.1 Effect of checkpointing on a three-task task chain when no fault is detected

To understand the impact of checkpointing, acting like an interrupt, consider a system with

three data-dependent tasks, as shown in Fig. 3.1, denoted as τ1, τ2, τ3, which are scheduled on a

non-preemptive fixed-priority scheduler running on a single-core processor. Task τ1 holds the

highest priority, while τ3 has the lowest. The tasks have execution times and periods as follows:

τ1 (1, 5), τ2 (0.75, 6), and τ3 (1.75, 4). These tasks form a task chain, where the output of

the first job of τ1 feeds into the first job of τ2, and from τ2 to the first and second job of τ3.

Similarly, the data produced by the third job of τ1 is consumed by the third job of τ3. Here,

there is no release time delay for the jobs within the hyperperiod. The checkpointing period is

set to 5 time units, with an overhead of 0.4 time units. We observed that checkpointing can

significantly influence data age. For example, the data age for the first job of τ1 increased from

6.25 to 7.05 time units. Moreover, the third job of τ3 missed its deadline due to these changes.

In this chapter we describe our system model in Section 3.1. Section 3.2 discusses the data

age analysis framework without checkpointing, forming our research’s foundation. Moving on to

Section 3.3, we analyze the impact of checkpoints and faults on the reachability of tasks in task

chains. We then dive into the discussion of interference resulting from checkpointing in Section

3.4. Section 3.5 extends our framework to multi-core setups with shared global buffer. Finally,

in Section 3.6, we present comprehensive experimental results that demonstrate the effects of

fault tolerance on data age, while utilizing the proposed re-execution strategy.

18



3.1 System Model

In this work, we focus on a standard automotive application, denoted as S, which comprises

a set of periodic tasks. The application may be mapped onto a single-core or homogeneous

multi-core platform. We assume task scheduling follows a task-level fixed-priority (TLFP) policy

and that jobs execute using run-to-completion semantics. Our work begins by establishing a

data age calculation framework on a single-core platform. This framework lays the groundwork

for our research as it involves understanding and predicting how fault tolerance mechanisms

affect the data age. We then extend our framework for analyzing end-to-end data age on a

multi-core platform.

3.1.1 Application model

The application is modeled as a set of n data-dependent periodic tasks, denoted as Γ =

{τ1, τ2, τ3, ..., τn}. Each task, τi, is described by the tuple {Ci, Ti, Di, ψi}, representing worst-case

execution time(WCET) Ci, period Ti, deadline Di, and optional offset ψi. τ1 has the highest

priority, and τn has the lowest. All tasks have implicit deadlines, i.e., Ti = Di. The jth job of

task τi is denoted as τi,j . The hyperperiod (THP ) is defined as the least common multiple of all

task periods in Γ, i.e., THP = LCM(Ti, ∀ τi ∈ Γ). Consequently, task τi can execute multiple

jobs within one hyperperiod.

This application is represented by a directed acyclic graph (DAG) called the data propagation

graph (DPG). The graph, denoted as G(Γ, E), consists of nodes in set Γ, representing tasks, and

edges in set E, representing data dependencies between tasks. An edge from τa to τb signifies

that τa produces output data which gets consumed by τb, making τa a ‘data producer ’ and τb a

‘data consumer ’ of τa. As seen in Fig. 3.2, a system can have multiple producers and consumers.

Figure 3.2 Representation of cause-effect chains as Directed Acyclic Graphs(DAG)
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For a given task set Γ, we define a set of cause-effect chains Π, which may include forks and

joins. To simplify our analysis, we break down these cause-effect chains with forks and joins

into distinct sequential chains, called task chains. This set of task chains is denoted by A. In

Figure 3.2, each possible path from the root to a leaf node represents a task chain, Ai, in set

‘A’. A chain instance, denoted by αj , refers to a partial order of jobs that appear in a schedule

and follow the same execution order of tasks as task chain, Ai. Our analysis focuses on a single

Observation Window OW , which is defined as the smallest time interval after which the task

chains’ pattern recurs. Additionally, OW must be an integer multiple of the hyperperiod THP .

Note that multiple chain instances can exist over an OW . For a chain instance of αi, the first

data producer job will be called source and last consumer job, sink .

3.1.2 Data communication model

In this work, we assume the implicit communication model of AUTOSAR[3], which employs

the read-execute-write semantics to enhance determinism. In implicit communication model,

tasks retrieve all necessary inputs upon initiation and store local copies in their buffer memory.

During execution, tasks access these local copies, and after execution, outputs are transferred to

global shared data buffers, making them available for dependent tasks. Essentially, input and

output values are read and written at deterministic points in time. The time required to safely

access these shared buffers has been accounted for in the tasks’ WCET. It is to be noted that

the implicit communication model does not impose synchronization between data consumers

and producers.

3.1.3 Fault and fault-tolerance model

3.1.3.1 Fault model

In this study, the fault model focuses on transient faults. These faults are short-lived and

do not cause permanent damage. The study assumes a maximum of K faults occurring within

a duration THP , and can randomly impact any core within the system. The most commonly

used fault distribution model assumes these transient faults follow a Poisson distribution with a

mean arrival rate λ representing their frequency [41].

P (N(t) = K) = (λ)K e−λ

K! (3.1)

20



Here, Eqn. (3.1) provides the probability of a fault occurring during any given time interval

t, where N(t) represents the expected number of faults occurring during the interval THP , here

equal to K.

3.1.3.2 Fault detection model

For single-core systems, the employed fault detection mechanisms primarily revolve around

error detection codes and checksum verification. Error-correcting codes (ECC) in memory,

parity checks, and checksums computed on critical system data structures aid in detecting faults.

Deviations from expected checksum values or parity errors indicate potential faults.

In the context of homogeneous multi-core systems, each core is assumed to be identical and

runs tasks in sync time. Tasks are statically pre-assigned to specific cores, meaning that once a

task is assigned to a core, it does not migrate to other cores during runtime. All cores share a

global shared memory, facilitating communication and coordination among tasks.

Fault detection in this multi-core environment involves inter-core consistency checks. This

includes comparing checkpoints and error detection codes across all cores. The assumption of

homogeneity ensures that the same fault-detection mechanisms are applied uniformly across all

cores. Any inconsistencies detected during these inter-core checks indicate potential transient

faults affecting the shared global memory or the execution state of tasks on individual cores.

3.1.3.3 Fault tolerance model

The fault tolerance strategy employed in this study relies on a checkpointing system that acts

as an interrupt within a non-preemptive scheduled taskset. Periodic checkpoint creation captures

the system state to recover from faults. To implement checkpointing, tasks are periodically

interrupted at defined checkpoints, ensuring a consistent system state for recovery purposes.

The implementation of checkpointing within the non-preemptive scheduling scheme introduces

certain trade-offs and overheads. While providing enhanced fault tolerance, it might introduce

increased latency or interruptions during task execution due to the need for checkpoint creation

at specific intervals. For this work we only re-execute the job which got interrupted.

To illustrate this, consider the system shown in Fig. 3.5: after a fault is detected, τ2,3 is

re-executed, taking the necessary input from the previous successful checkpoint. However, as

part of our approach, the jobs τ2,2, τ3,2, and τ1,2 are not reexecuted. This design decision
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optimizes the system’s performance by avoiding the reexecution of jobs that may not have been

affected by the detected faults, consequently reducing the overall computational overhead.

3.2 Data age calculation

In this section, we recapitulate the calculations of data propagation paths for systems with

TLFP scheduling which provides a deterministic timing behavior. In such schedule, in the

absence of faults, we can find the order of job execution during the design time. On the other

hand, for dynamically scheduled systems it is often possible to compute the Worst-Case Response

Time (WCRT), but the exact times when the tasks will be executed are not known. However,

the earliest and latest time a task can be executing is known [7].

Figure 3.3 Read interval (RI) and Data interval (DI) when WCRT is known

Schedule agnostic reachability framework: The notions of read interval and data interval

are key in deciding the valid span of communication between the jobs. For a job τi,j the read

interval, RIi,j , is defined as the interval starting from the earliest time a job can potentially read

its input data, Rmin(τi,j), until the latest possible time a job can do so without violating its

timing constraints, Rmax(τi,j). Similarly, the data interval, DIi,j , is defined as the interval from

the earliest time the output data of a job can be available, Dmin(τi,j), up to the latest time a

successor job of the same task overwrites the data, Dmax(τi,j). Hence,the read interval RIi,j

is the interval [Rmin(τi,j), Rmax(τi,j)], and the data interval is [Dmin(τi,j), Dmax(τi,j)]. These

concepts are depicted in Fig. 3.3 for jobs of a task τi. The expressions of RI and DI for different

levels of known information are shown in Table 3.1 rows 2 to 4, as explained in Becker et al. [7].

Note that RI and DI are properties of a job subject to their schedule. For example, if tasks
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Rmin(τi,j) Rmax(τi,j) Dmin(τi,j) Dmam(τi,j)

No Knowledge ψi + (j − 1) · Ti j · Ti − Ci Rmin(τi,j) + Ci Rmax(τi,j+1) + Ci

Exact Schedule starti,j Rmin(τi,j) endi,j endi,j+1

Known WCRT ψi + (j − 1)Ci Rmin(τi,j) +WCRTi − Ci Rmin(τi,j) + Ci Rmax(τi,j+1) + Ci

Successful checkpoint

Partial overlap starti,j + δ starti,j + ∆ − δ Rmin(τi,j) + Ci Rmax(τi,j+1) + Ci

Full overlap starti,j starti,j + ∆ Rmin(τi,j) + Ci + ∆ Rmax(τi,j+1) + Ci

Fault occurrence

Partial overlap starti,j + δ starti,j + ∆ − δ Rmin(τi,j) + Ci Rmax(τi,j+1) + Ci

Full overlap starti,j + δ + ∆ starti,j + Ci − δ + ∆ Rmin(τi,j) + Ci Rmax(τi,j+1) + Ci

Table 3.1 Rmin, Rmax, Dmin and Dmax expressions for data age calculation with different

timing information

from same taskchain are scheduled on different cores, then RI and DI will be determined based

on schedule these tasks will have on the cores they are mapped to.

Checking for reachability between jobs: As mentioned in [7], in order for a job τk,l to consume

data of a job τi,j , the data interval of τi,j must intersect with the read interval of τk,l. If there is

an overlap, the function follows(τi,j , τk,l) is defined to return true, irrespective of number of

core(s):

follows(τi,j, τk,l) =


true, if RIk,l ∩ DIi,j ̸= ϕ

false, otherwise
(3.2)

3.2.1 Determining plausible chain instances

A recursive function is used to calculate all possible chain instances of a task chain in the

observation window, OW . This function takes in a job from the source node and finds the

path(s) till it reaches a job of the sink node. Consequently, this needs to be done for all jobs

of a source node of the task chain and of all task chains, within the OW . The function starts

at the first (source) node of the task chain; for the initial job, all jobs of the second task of

the chain are considered where follows() returns true. To these nodes, a logical data path is
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created from the initial job. The same principle is applied from each level of these nodes to

find the plausible jobs of the next level node of the task chain. Once the last (sink) node is

reached function returns and all paths that reached the sink node. These paths are plausible

chain instances. A detailed explanation of the method is presented in [7].

3.2.2 Maximum Data age calculation

For a given chain instance, αi, the maximum end-to-end delay and thus the data age can be

computed as follows, where τsource is a job of the source task of the chain instance, and τsink is

a job of the sink task:

AgeMax(αi) = (Rmax(τsink) + Csink) − Rmin(τsource) (3.3)

To compute the maximum data age for all possible paths in the system, AgeMax() must be

computed for all computed chain instances of all task chains. The maximum of these values is

the maximum data age of the cause-effect chain.

3.3 Checkpoint-centric reachability framework

Adding checkpointing as an interrupt to TLFP scheduling brings a dynamic element into

the usually predictable system. In this setup, task priorities stay the same, but checkpointing

briefly interrupts tasks to save the system’s state, causing a time overhead. With periodic

interruptions for checkpointing, the WCET of tasks can grow because of the extra time needed

and potential delays in task resumption after a fault. Therefore, introducing checkpointing

in a system requires a careful analysis to understand how it affects worst-case response times,

ensuring that timing requirements and system reliability are maintained. In this section, we

explore the effects of checkpointing solely on the interrupted job in two scenarios: when a fault

is detected during checkpointing and when no fault is detected. Later, in Section 3.4, we’ll

examine its effects on other jobs.

Our analysis begins by analyzing the schedule using both, the best-case execution time

(BCET) and WCET, providing the earliest start time and worst finish times, starti,j and endi,j

respectively, for each τi,j in the task set. Using this information, we adjust the RI and DI for

the schedule-centric reachability framework (refer to the‘Exact schedule’ row in Table 3.1). Note
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that this method is less pessimistic than the one that factors in checkpoint overhead in the

WCET of all jobs.

Checkpointing instances can interact with the existing task schedule in three primary scenarios:

no overlap, partial overlap, and full overlap, as illustrated in Fig. 3.4. Here, ∆ represents the

checkpoint overhead. In the partial overlap scenario, the checkpointing task initiates before the

job and overlaps with its start time, requiring that the difference in start times between the

checkpoint task and the job remains less than ∆.

Figure 3.4 Checkpoint interrupt conditions

3.3.0.1 Reachability with no faults detected

When no faults are detected, a successful checkpoint is created. As illustrated in Fig. 3.4,

only partial overlap and full overlap affect the RI and DI of the interrupted job. As seen in

Table 3.1, for partial overlap case, the shift in RI can range from δ to ∆ − δ, δ represents a very

small amount of time. For the full overlap case, there is no change in the earliest read time, and

the maximum shift in read time can be ∆. DI adjusts accordingly.

3.3.0.2 Reachability with faults detected

As observed from Table 3.1, a partially overlapping checkpoint interrupt behaves identically

whether a fault is detected or not. In this case, the checkpoint can delay the start of job

execution by a minimum of δ and a maximum of ∆.

For a checkpoint to cause full overlap, it has to start after the job begins executing, it can

be at minimum δ and maximum Ci − δ from starti,j . When a fault is detected, immediate job

re-execution is triggered, incurring an additional overhead of ∆ on the RI of the re-executed
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task. It is essential to note that these updated read and data intervals do not account for

interference caused by checkpoints.

3.4 Checkpointing interference

Using checkpointing mechanisms for fault tolerance or data backup introduces interference,

which affects the interrupted job and subsequent jobs. Interference can be defined as variation

in the schedule of a job due to the presence of an interrupt, such as a checkpoint. It can lead

to disruptions in the system’s data age. Fig. 3.5 provides an example of such interference. To

address this, we propose a method to calculate the interference caused by checkpoint instances

or similar events, like periodic interrupts.

Figure 3.5 τ1, τ2, and τ3 forms a task chain. (a) τ3,3 is executing after its scheduled start time

(b) τ1,3 is executing before its scheduled start time (c) τ2,3 is re-executing due to fault detection.

It is now taking data from τ1,1, instead of τ1,2. Due to this, there is an increase in the data age

of the task chain

In a fixed priority scheduling system, interference quantifies the impact of a checkpointing

task on the execution of subsequent jobs. Based on this we determine changes in the RI and DI

of jobs. The effect of each checkpoint instance is evaluated individually to assess its influence

on the system’s overall schedule. After updating the RI and DI of the interrupted job from

Table 3.1, we calculate interference factors for all the subsequent jobs that get affected due to

the change in the interval of the interrupted job, considering both the upper and lower bounds

of the RI (Rmin and Rmax) and update the corresponding DI (Dmin and Dmax) accordingly.
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3.4.1 Updating Rmax

In the system, prior to the introduction of checkpoints, the calculation of Rmax for all jobs

was performed, as detailed in Section 3.3. However, the incorporation of checkpoints necessitates

an examination to determine if the Rmax values should be updated. This process individually

involves going through each job scheduled on the core to compute their respective Rmax values.

The Rmax calculation follows an iterative approach. For each job, an initial value of Rmax is

established, as outlined in Section 3.3. Subsequently, the maximum delay in RI is computed

using Delay function and ReExecution function, as explained below. If the calculated Rmax for

a job is less than its previously assigned value, no update is made, and the process concludes.

However, if it exceeds the previous value, the Rmax is updated, and the verification process

is reiterated, as shown in Algorithm 1 (RmaxCalculator). This step is crucial as the updated

Rmax may result in new instances of checkpoints and re-executions in between. For instance, as

depicted in Figure 3.1, subsequent to the alteration in RI for τ3,2 due to the first checkpoint,

further adjustments are necessary to accommodate second checkpoint.

Definition 3.4.1. The duration gap denotes the duration between the release of a job and its

Rmax. ”gap” is a function of Rmax.

gap = Rmax(τi,j) − ReleaseT ime(τi,j) (3.4)

For each job, the calculation involves determining the maximum possible delay it might

encounter from its release until it begins execution. This delay comprises the cumulative effects

of:

1. Being blocked by a lower-priority job

2. Awaiting the completion of higher-priority job

3. The presence of checkpoint instances during the gap period

4. Re-executions due to fault detection

The Delay function addresses factors 1, 2, and 3, while the ReExecution function handles factor

4. Further clarification of these functions is provided below.
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Delay function: Delay(τi,j) analytically calculates the sum of delay because of worst-case

blocking due to lower priority jobs, the delay due to execution of higher priority jobs released

during gap and the overhead due to the number of checkpoints released, as shown in Eqn. 3.5.

Here, the checkpointing period is Tch, ‘l’ represents tasks of lower priority, i.e. n ≥ l > i, and ‘h’

denote tasks of higher priority, i.e. 1 ≤ h < i.

Delay(τi,j) = max
{i<l≤n}

(Cl) +
i−1∑
h=1

Ch

⌈
gap

Th

⌉
+ ∆

⌈
gap

Tch

⌉
(3.5)

Algorithm 1 Rmax calculator

Data: ReleaseT ime(τi,j), Rmax(τi,j)

Result: delay or updated Rmax(τi,j)

k = 0;

gapk = Rmax(τi,j) −ReleaseT ime(τi,j);

ReExecution(τi,j , k){ Returns re-execution delay};

while true do

if Rmax(τi,j) + Ci > Di then
return Timing constraint violated;

end

delay = Delay(τi,j , k) + ReExecution(τi,j , k);

if delay < gapk then
return Rmax(τi,j);

else
gapk+1 = delay;

end

Rmax(τi,j) = ReleaseRime(τi,j) + gapk+1;

k = k + 1;
end

ReExecution function: This function computes the worst-case delay for a job attributed to

re-executions. For a job, the maximum number of re-executions that can occur within its gap

is equivalent to the number of checkpoints within that interval, denoted by n in eqn.(3.6). To

determine the worst-case execution time of these re-executions, we compile a list of jobs released

during the gap and identify those with the highest WCET. By focusing on these jobs, it is

28



ensured that any other potential re-executions won’t take longer than these selected ones. The

number of selected jobs matches the number of checkpoints within the gap. By considering

re-executions at all checkpoints with jobs possessing the highest possible execution time within

the gap, we effectively estimate the worst-case delay due to re-execution.

ReExecutionDelay =
n∑

i=1
(REi), where,

RE =
{
Ci

∣∣∣∣ Release(τi,j) ∈ gap, sorted by Ci in descending order, n =
⌈gap
Tch

⌉}
[: n]

(3.6)

In Algorithm 1, we add the outputs fromDelay() andReExecution() functions toReleaseT ime(τi,j)

to get the updated Rmax for each job. After each calculation, we check if Rmax has been updated.

If it has, we go through another iteration of verification. Note that this approach considers worst

case for reexecutions. Using this approach for systems that define a maximum number of faults

in a hyperperiod or minimum time interval between faults, we can determine less pessimistic RI

and DI.

3.4.2 Updating Rmin

In Fig.3.5, we can see that the introduction of checkpointing can sometimes result in job

execution starting earlier than expected. To account for this, we go through each checkpoint

instance, as given in for loop of Algorithm 2 (RminCalculator), to determine if Rmin needs to

be updated for the interrupted job and subsequently affected jobs. When a job gets interrupted

by a checkpoint, it can either resume its execution or start a re-execution process. We begin by

creating a list of higher-priority jobs, JRLs, that are released between the start and finish times

of the interrupted job. As these are the jobs that will be in the queue when the current executing

task finishes. We then iterate through this list from the job of highest priority to lowest, since

the highest priority job will start executing once the interrupted job finishes execution. For the

highest-priority job in this list, we update its Rmin to the finish time of the current job being

examined. This updated job becomes the new “current job”, and the process repeats recursively

to identify any additional jobs that could be released during the execution of the current job,

provided they have higher priority than the interrupted job. These newly identified jobs are

added to the list, and the process continues until the list is empty.
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Algorithm 2 RminCalculator

Data: τi,j , Si,j , Fi,j , JRls[ ]

//Rmin(τi,j) is Rmin before checkpoint interrupt

// Si,j & Fi,j : Start and Finish time of τi,j

Result: fin -Finish time of last affected job

// ‘i’ is also the priority of τi,j

Rmin(τi,j) = min(Rmin(τi,j), Si,j));

fin = Fi,j ;

forall τp,q released between Si,j & Fi,j do

if p < i then
//p is of higher priority

insert τp,q to the sorted JRls[ ];

if JRls[] is not empty then
//call the ‘RminCalculator’ for the highest priority job in JRls- Say τa,b

fin = RminCalculator(τa,b, fin, fin+ Ca, JRls);
end

end

end

return fin

3.5 Multi-core CPU platform

In the previous sections, we established a theoretical framework to analyze how checkpointing

affects TLFP scheduling in single-core real-time systems. We now extend our framework to

multicore platforms.

3.5.0.1 Task mapping

In our research, we focus on a homogeneous multi-core CPU platform. Tasks are statically

allocated to the cores, and they remain fixed without migration. This distribution is done

randomly and WCET is obtained considering the distribution.

30



3.5.0.2 Communication model

Tasks across cores share a global memory buffer. Multi-core systems often rely on locks and

semaphore techniques for synchronization. Having multiple cores accessing a single shared buffer

system increases the memory access overhead. This extra overhead is assumed to be a constant

γ. We get a total memory access overhead during checkpointing in multicore platform, ∆MC

as:

∆MC = ∆ + γ (3.7)

3.5.0.3 Fault model

In our study, we assume that faults are independently distributed among the cores of the

system. To maintain synchronization, checkpointing is carried out simultaneously across all cores.

We also consider a flexible fault detection model that accommodates various fault detection

techniques. However, it’s important to note that the recovery process exclusively occurs during

checkpoint instances, ensuring synchronization across all cores. During the checkpointing process,

if a fault is detected in any of the cores, a specific protocol is followed. The global shared

memory is rolled back to the state captured by the previous checkpoint. Additionally, all the

jobs that were interrupted at the time of the fault detection are re-executed. This rollback

mechanism is employed because a fault occurring in one core or memory element can propagate

to other cores due to the shared memory resource.

3.5.0.4 Interference

The calculation of RI and DI remains consistent for the multicore platform, as these

properties are inherent to each job and depend on the scheduling on the core to which the job is

assigned. Therefore, the algorithm used to calculate interference, which relies on these RI and

DI values, also remains unchanged in this context. Note that the checkpointing overhead may

vary in a multicore environment due to factors such as synchronization across cores.

3.6 Evaluation

In this section, we comprehensively evaluate our proposed approach for analyzing the end-

to-end delay of a fault-tolerant system under varying levels of system information availability.
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Our experiments focus on (a) demonstrating the importance and reliability of the proposed

framework, (b) assessing the accuracy of derived bounds of RI and DI, and (c) measuring the

computation time of the framework in presence of faults. We conducted experiments on an Intel

i5-11300H processor with 8GB of RAM, performing sequential computations without parallel

processing.

Experimental Setup: This comprehensive application of our approach encompasses both

real-world automotive benchmarks[3] and synthetically generated tasksets, providing a robust

evaluation across diverse contexts. All tasks are periodic tasks with implicit deadlines, and their

priorities are decided based on the rate monotonic (RM) scheduling policy. For tasksets generated

using [3], the periods of all tasks are automotive-specific, and they are drawn at random from

the set {1, 2, 5, 10, 20, 50, 100, 200, 1000} with an associated probability mentioned in [3]. These

periods are semi-harmonic in nature, that means while there is a harmonic relationship between

task periods, it might not follow a strictly regular harmonic sequence, there could be deviations

in the periods that do not strictly adhere to the harmonic progression. The WCET Ci of each

task τi in the task set is deduced based on its period Ti and utilization Ui generated by the

UUniFast approach from [10]. Although our framework considers release time offset, we assume

zero offsets for experimental simplicity. The OW for data propagation paths is set to six times

the hyperperiod, i.e. 6 ∗ THP . The average-case execution time (ACET), and the WCET for τi

is generated according to [3].

To create random data-propagation graphs, we assign edges from each task to other tasks,

ensuring no cycles are formed. We limit the maximum branching from the node and the

maximum number of inputs into the nodes to 3. The maximum depth of the task graph (i.e.

task chain length) is set to 8.

In subsequent sections and figures, the term ‘proposed analysis’ refers to a system implementing

our proposed solution and calculating data age through our approach. On the other hand, ‘actual

data age’ signifies the real-time duration taken by data, starting from its initial consumption to

the conclusion of the job where it is last utilized. This distinction clarifies the specific contexts

and metrics employed throughout our analysis.
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3.6.1 Single core processor

Experiment 1 (Fault Rate Variation): In this experiment, we delve into the impact of

checkpointing periods on data age within a real-time system across varying fault rates. Our

system comprises 14 tasks, with task chain lengths spanning from 3 to 8.

(a) Synthetic taskset with varying fault rates (b) AUTOSAR taskset with 25 faults/second

(c) AUTOSAR taskset with 50 faults/second (d) AUTOSAR taskset with 75 faults/second

Figure 3.6 Variation of maximum data age with checkpointing period under varying fault rates

for single-core processor

Figure 3.6(a) illustrates the fluctuation in data age concerning different checkpoint frequencies

for a synthetic task set. Notably, in this task set, periods are non-harmonic. Conversely, Figures

3.6(b), 3.6(c), and 3.6(d) showcase the maximum data age for an automotive benchmark task
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set characterized by semi-harmonic periods. It is observed that, even with higher fault rates,

the data age in benchmark taskset remains lower than synthetic tasksets.

We’ve observed that higher fault rates result in increased data age. This underscores the

need for dataage calculation techniques in understanding the adverse impact of faults on data

age in real-time systems.

Experiment 2 (Varying task chain length): In this experimental study, we investigate

the influence of varying task chain length on data age in a real-time system, considering different

checkpointing frequencies and system utilization. The task chain lengths are explored in the

range from 3 to 8 while maintaining a fault rate of 5 faults per second for a synthetic taskset

and 50 faults per second for a benchmark taskset. As we can see in Fig. 3.7, dataage of system

increases with an increase in task chain length.

(a) Synthetic taskset with 5 faults/second (b) AUTOSAR taskset with 50 faults/second

Figure 3.7 Variation of maximum data age with task chain length under varying utilization for

single core processor

3.6.2 Multi core processor

Experiment 1 (Checkpoint period variation): For this experiment, we focus on the

impact of checkpointing periods on data age on a dual-core platform for a fault rate of 50 faults

per second. Our system comprises 14 tasks, with task chain lengths spanning from 3 to 8. In

Fig. 3.8, for benchmark tasksets we observe a dip in data age between 0.012 second and 0.014

second checkpoint this signifies a local optimal checkpoint period in the experimented range.
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Figure 3.8 Variation of maximum data age with increasing checkpointing period with 0.8

utilization and 50 faults per second

Experiment 2 (Varying task chain length): In this experiment, conducted on a

dual-core platform, we observed a trend, as the task chain length and utilization increase, the

data age exhibits a corresponding upward trajectory. Fig. 3.9 suggests a direct correlation

between the distribution of tasks of taskchain and memory access overhead incurred.

3.6.3 Computation time analysis

The objective of this experiment was to assess the CPU runtime necessary for computing

data age under the specified parameters. Fig. 3.10 displays the time required to determine the

maximum data age of the system using simulations when only one of the potential cause-effect

chain scenarios occurred. Meanwhile, in Fig. 3.11, the total simulation time is presented,

considering a substantial portion of the potential paths. It’s worth noting that there might be

additional paths beyond what is depicted. This calculation of the number of data propagation

paths is adapted from [7].

The computational time for estimating the maximum data age, considering all potential

chain instances, utilizing our proposed method approximates 1e2 seconds. Nonetheless, when

we venture into the simulation of the possible number of instances[7], aimed at calculating the

maximum data age in the presence of faults, we encounter a substantial increase in computational
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Figure 3.9 Variation of maximum data age with task chain length under varying utilization for

multicore processor. Fault rate is 50 per second

time, scaling to approximately 1e6 seconds. This notable escalation in processing duration can

be attributed to the exponential surge in potential scenarios, particularly when dealing with

higher number of node task chains or heightened system utilization, as shown in Fig. 3.11.

Note that computation time depends on the taskset chosen and the observation window. Such

scenarios demand an extensive amount of computational resources to explore comprehensively,

hence contributing to the observed increase in computational time.
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Figure 3.10 Time needed to calculate maximum data age of the system with 4 faults per

second. The proposed method finds the maximum data age for all possible chain instances in a

cause-effect chain while the simulation is for just one of the possible scenarios

Figure 3.11 Time needed to calculate maximum data age of the system with 5 faults per second.

Both, the proposed method and simulation, find the maximum data age of the cause-effect chain

in all possible scenarios
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Chapter 4

Thermal-Aware Data age Analysis of Task Chains

4.1 Problem Formulation

4.1.1 Task Model

The application is modeled as a set of n data-dependent periodic tasks, denoted as Γ =

{τ1, τ2, τ3, ..., τn}. A task τj is represented as a tuple (Pj , e
max
j , emin

j , Dj), where Pj denotes

the period, emin
j indicates the best-case execution time (BCET), emax

j signifies the worst-case

execution time (WCET), and Dj denotes the relative deadline of τj . The ith job of task τj is

denoted as τj,i, and the execution time of τj,i is denoted as ei
j . Implicit deadlines are assumed for

this study, where Dj = Pj , although the proposed method can be readily extended to cases where

Dj ̸= Pj . A task is classified as a producer when it generates data for another task to process

and consume. The receiving task is termed the consumer. The hyperperiod (HP ) is defined as

the least common multiple of all task periods in the task set, i.e., HP = LCM(Pi, ∀ τi ϵ Γ).

Consequently, τi can execute multiple jobs within one HP .

Task Chains: Within this set of tasks, a subset of tasks can be organized into specific

sequences called task chains. A task chain represents a series of data-dependent tasks where

the output data generated by a task serves as the input data for the subsequent task in the

sequence. There can be multiple task chains within an application, and a single task might

participate in multiple chains depending on the data flow.

Context Switch Time: The additional delay incurred due to context switching, within the

range denoted as [ctmin, ctmax] can be considered as part of the execution time. Thus, the total

execution time range for task τj becomes [emin
j + ctmin, emax

j + ctmax]. Consequently, the entire
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proof discussed in subsequent sections remains valid even if a context switch or any similar delay

is taken into account, as it can be accommodated within the execution time.

4.1.2 System Model

This work focuses on a single-core processing platform for executing task chains [32]. Each

task communicates via a globally shared register, a common feature in task chains. Tasks

retrieve necessary inputs upon initiation and store local copies in their buffer memory. During

execution, tasks access these local copies, and upon completion, outputs are transferred to global

shared memory, becoming available for dependent tasks. Notably, input and output operations

occur at deterministic points in time, ensuring the deterministic behavior of the system.

4.1.3 Thermal Model

If the processor’s average power is Pproc(t) and ambient temperature is Tamb(t), then the

processor’s instantaneous temperature is modeled as follows-

T (t) = T (0) · e−t/RC + (Tamb(t) + Pproc(t) · R) · (1 − e−t/RC) (4.1)

where t is the time instant, R and C are the thermal resistance and capacitance, respectively,

and T (0) is the initial temperature of the processor[39]. The peak temperature that a processor

should not exceed is denoted by Tmax.

The thermal management mechanism used in this work is based on the insertion of idle times.

The idle times can be inserted as one chunk before the task (as shown in the top half of Fig. 4.1)

or the task can be split into multiple chunks and an idle time can be inserted before each chunk

(as shown in the bottom half of Fig. 4.1). The idle time required to cool the processor is derived

based on the following two cases -

• The temperature at the start time of another task is Tmax

• The temperature at the start time of the task is less than Tmax but the execution of the

fraction of the task leads to the increase in the temperature to Tmax, which requires an

idle time for the processor to cool off.

In this work, we follow the task splitting mechanism[39], which is described next.
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Figure 4.1 Non Splitting vs Splitting Mechanism - The first case (top figure) denotes the

non-splitting and the second case (bottom figure) denotes the splitting mechanism. Red lines

denote all the cases of temperature, T = Tmax while considering splitting

Task Splitting: Consider a situation where the temperature at the start of a task is Tmax,

thereby having the need to insert idle time to reduce the processor’s temperature. As illustrated

in the Fig. 4.1, there are two ways of insertion of idle times -

• Insert the idle time to lower the temperature such that the whole task τA can run without

reaching Tmax in between.

• Split task τA into m parts such that after the execution of every part, the temperature

rises to Tmax. ”m” is chosen optimally such that the preemption overhead cost never

outweighs the benefit of splitting.

Theorem 4.1.1. The total idle time required when the task splitting technique is followed is

always lesser than the original non-splitting mechanism.

Our work builds upon Theorem 4.1.1 proven by Pratyush et al. in [36]. However, Lee et

al. in [39] demonstrated that the splitting mechanism can be less effective when preemption
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overhead outweighs its benefits. Despite this, we focus on the splitting mechanism for this work.

Let’s consider a job execution where idle time is inserted at time t. Denote the system

temperature at this time as T (t). We define the execution time of the job’s split fraction as

ei,f
j . Here, the superscript i denotes the job instance and f represents the fraction of the

job that is remaining after the split. i.e., ei,1
j means no portion of job is finished, while ei,0

j

means job execution is complete.

Based on these parameters, we define the idle time function Tidle(T (t), ei,f
j ). This function

expresses the duration of idle time inserted strategically within a task chain. The rationale is to

manage thermal conditions for the given job by considering:

(a) The temperature, T (t), at the time the idle period is inserted.

(b) The remaining execution time, ei,f
j . Where, The fraction, f , denotes execution that’s left

to be completed

Furthermore, we denote the fraction of the job τj that has already been executed by τ f
j,i.

Here, i again refers to the job instance and f indicates the remaining portion of the job.

4.2 Two Task Result

In analyzing the dynamics of the two-task scenario, a comprehensive understanding of the

intricate interactions between task jobs is crucial for gaining insights into the broader system

behavior. Within this system, we have two key players: τA, the producer, and τB, the consumer.

Our objective is to explore all potential job combinations and formulate worst-case data age

scenarios for each. Specifically, we focus on observing the behavior over two consecutive periods

of τA, during which τB,1 receives input from τA,1. Additionally, we assume τB holds higher

priority, preempting τA,2 and necessitating the retrieval of output from τA,1.

In this two-task system, the initial temperature significantly shapes its dynamics. Notably,

when task splitting occurs, it indicates that the system tends to reach its peak

temperature during job execution, i.e. Tproc → Tmax. In this section, to ensure the

maximum data age, we systematically explore different job execution sequences, considering

whether the initial temperature prompts job splitting or not-

41



1. τA,1 Splitting Scenarios:

(a) Scenario 1: τA,2 Executes Before τB,1:

• Exploring sub-scenarios where τA,2 may or may not further split.

– τB,1 may also split.

(b) Scenario 2: τB,1 Executes Before τA,2:

• Here, we investigate distinct outcomes based on τB,1’s splitting behavior.

2. τA,1 Non-Splitting Scenario:

• With derived information, we provide insights into the system dynamics when τA,2

executes before τB,1, and vice versa, while τA,1 remains unsplit.

3. Designing parameters for τA

• Formulating period

• Formulating initial temperature

Figure 4.2 Generic scenario when τA,1 splits

Let’s delve into each of these scenarios individually in upcoming subsections.
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Figure 4.3 Scenario for τB,1 executes after start time of τA,2 when τA,2 didn’t split

4.2.1 τA,1 Splitting Scenarios -

The idle time insertion for τA,1 is illustrated in Fig.4.2. In this case, e1
A + Tidle(T0, eA) ≤ PA

must follow, as τA,1 has to meet its deadline for maintaining the schedulability. Now there are 2

possibilities either τA,2 executes first or τB,1.

4.2.1.1 Scenario 1 (τA,2 executes before τB,1)

In this scenario, let’s assume the processor gets some time t = δ before τA,2 executes. Even

in such a situation τA,2 may reach peak temperature during execution and has task splitting.

4.2.1.1.1 τA,2 does not split

Figure 4.3 illustrates how inserting idle time can influence processor temperature. As you can see,

after executing task τA,1, the processor has some idle time equal to t = PA+δ−(e1
A+Tidle(T0, eA))

. This allows the processor to cool down before starting task A2, meaning the temperature at

the beginning of τA,2 is not necessarily Tmax (the maximum safe temperature).

It’s important to remember that while the overall theory is independent of the task schedule

before the job begins, it does depend on the initial temperature at the job start. Here, we’ll

explore two scenarios:
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τB,1 splits: In this case, take T (t = PA + δ + e2,1−f
A ) = Tmax − α, such that α > 0. Here,

f is the fraction of the job that’s remaining to be executed, so 1 − f is the fraction that has

been executed. τB,1 execution happens at time instant defined as ϵ before the finish time of τA,2

where ϵ → 0, this also means that f → 0.

Figure 4.4 Maximum data age scenario when τA,2 never splits

Theorem 4.2.1. When temperature T (t = PA + δ + e2,f
A ) < Tmax, the maximum data age for

τB,2 can be given as-

DAmax = 2PA − (e1
A + Tidle(T0, eA)) − (e1,f

B /m) (4.2)

Proof. The execution of τB,1 may rise to Tmax in between. As illustrated in Fig.4.4, if τB,1 splits,

then the data generated by τA,1 should be consumable till the last part of τB,1 as no task can

generate its local copy, thereby concluding that every part of the task τB,1 should be able to

consume the data generated by τA,1. There is no need to include the last part’s execution in the

data age calculation, as no further data is being consumed by τB,1.

Assuming, from the splitting policy, m is the optimal number of parts of τB,1 is split into

after it first tends to reach Tmax-

DA =PA + δ − (e1
A + Tidle(T0, eA)) + (e2

A − ϵ) − (e1,f
B /m)

+ (e1
B + Tidle(Tmax − α, e1,1−f

B ))
(4.3)
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where f fraction of τB,1 is that is left and e1,f
B is the execution time left for τB,1 to execute,

reaching Tmax in between.

Maintaining the strict thermal constraint and obtaining the maximum data age, also requires

the schedulability to be met by the task set. So, imposing the condition, we get-

PA + δ + e2
A + (e1

B + Tidle(Tmax − α, e1,f
B )) ≤ 2PA (4.4)

To find DAmax we can state that the Eq.4.4 can be used with the equality operation otherwise

it won’t be the worst case.

Using the Eq.4.3 and Eq.4.4 i.e. substituting, the variable δ, we obtain

DAmax = 2PA − (e1
A + Tidle(T0, eA)) − (e1,f

B /m) (4.5)

assuming ϵ → 0 and m chosen optimally for obtaining the minimum total idle time.

τB,1 does not split: We now see the impact on data age when τA,2 does not cause τB,1 to

reach Tmax

Lemma 4.2.2. DAmax remains the same even when τB,1 doesn’t split, when τB,1 executes after

the start time of τA,2.

Proof. Unlike depicted in Fig. 4.4, the maximum data age in the case where the τB,1 doesn’t

split, will be considered only till the start of τB,1. This would result in a difference of eB − eB/m

(Assuming m is the number of parts of τB,1 derived from the splitting policy) in the data age,

thereby reducing the data age, hence making no difference in DAmax.

4.2.1.1.2 τA,2 splits

In Fig.4.5 we can see the case where τA,2 reaches peak temperature while execution and τB,1

executes after τA,2.

Theorem 4.2.3. When temperature at t = PA + δ + e2
A is Tmax, maximum data age for τB,2

can be given as-

DAmax = 2PA − (e1
A + Tidle(T0, eA)) − (eB/m) (4.6)
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Figure 4.5 Maximum data age scenario for τB,1 to consume data when τA,2 splits.

Proof. Consider, the temperature at t = PA +δ as Tstart. Also, the temperature at the beginning

of τB’s execution is considered ≈ Tmax as ϵ → 0.

DA = (PA − e1
A − Tidle(T0, eA)) + δ + (e2

A + Tidle(Tstart, e
2,f
A ) − ϵ)

+ (e1
B + Tidle(Tmax, eB)) − (e1

B/m) (4.7)

where e2,f
A is the execution time left for τA,2 after reaching Tmax in between. Here, the

schedulability is defined as-

PA + δ + e2
A + Tidle(Tstart, e

2,f
A ) + e1

B + Tidle(Tmax, eB) ≤ 2PA (4.8)

To find DAmax we can state that the Eq. 4.8 can be used with the equality operation making

it the worst case. Using the Eq. 4.7 and Eq. 4.8, i.e. substituting δ, we get the final equation as-

DAmax = 2PA − (e1
A + Tidle(T0, eA)) − (eB/m) (4.9)

assuming ϵ → 0 and m is chosen optimally for obtaining the minimum total idle time.
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Notice that in Eq. 4.5 and Eq. 4.9, m are two different values. By the theory of approximation,

if we assume α to be very small quantity then we can say that e1,f
B /m2 ≈ eB/m1. This

approximation helps us maintain a stricter thermal constraint.

4.2.1.2 Scenario 2 (τB,1 executes before τA,2)

Consider Fig. 4.2 as the starting point for this scenario too. Assume that δ time units post

e1
A + Tidle(T0, eA), B1 starts its execution, such that δ ≥ 0. Here also, we can see two sub-cases -

τB,1 executes and never reaches Tmax and another one where it reaches Tmax in between.

4.2.1.2.1 τB,1 splits

In Fig.4.6 we can see the case where τB,1 reaches peak temperature during execution. As τA,2

executes later, it does not have any effect on the data age of τB,1

Figure 4.6 Maximum data age scenario when τB,1 splits

Theorem 4.2.4. The maximum data age when τB,1 reaches T (t = e1
A +Tidle(T0, eA)+δ+e1,f

B ) =

Tmax in between its execution can be calculated as-

DAmax = 2PA − (eA + Tidle(T∆, eA) + ∆) − (e1,f
B /m) − (eA + Tidle(T0, eA)) (4.10)

where, ∆ represents the time difference between the finish of τB,1 and the start of τA,2, and the

temperature at the start of τA,2 is T∆
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Proof. Here, take a general case where the temperature at the start time of τB,1 is Tstart and

during execution temperature T (t) reaches Tmax. As shown in Fig. 4.6,

DA = δ + e1
B + Tidle(Tstart, e

1,f
B ) − (e1,f

B /m) (4.11)

where e1,f
B is the execution time of τB,1 left after it reaches Tmax in between and e1,f

B /m is the

execution time of last fraction of τB,1. Here, the schedulability condition is stated as follows-

e1
A + Tidle(T0, eA) + δ + e1

B + Tidle(Tstart, e
1,f
B ) + ∆ + e2

A + Tidle(T∆, eA) ≤ 2PA (4.12)

For data age to be maximum, δ needs to be maximized and it is possible when the Eq.4.12

follows the equality as when it becomes equal, δ reaches its peak. Using Eq.4.11 and Eq.4.12,

substituting δ, we get-

DAmax = 2PA − (eA + Tidle(T0, eA)) − δ − (eA + Tidle(Tδ, eA)) − (e1,f
B /m) (4.13)

4.2.1.2.2 τB,1 does not split

In this case, temperature at t, T (t = e1
A + Tidle(Tmax, eA) + δ + eB) < Tmax As shown in Fig.

4.6 and Fig. 4.7, we can say that the data age, in this case, will be less, implying that the

maximum data age for the system remains unaffected.

4.2.2 Designing parameters for τA

4.2.2.1 Formulating the period (PA)

Let DAA→B denote the upper bound on data age for data produced by task τA and consumed

by task τB.

Theorem 4.2.5. If the first instance of τA splits, the period of task τA would be-

PA ≤ 1
2[DAA→B + eA + Tidle(T0, eA)) + (eB/m)] (4.14)

Proof. From Eq.4.5, Eq.4.9 and Eq.4.13, we can deduce that the maximum data age is,

DAmax = 2PA − (e1
A + Tidle(T0, eA)) − (eB/m) (4.15)
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Figure 4.7 Maximum data age Scenario when the first instance of B never splits

Therefore,

DAA→B ≥ 2PA − (eA + Tidle(T0, eA)) − (eB/m) (4.16)

Therefore, the period of task τA-

PA ≤ 1
2[DAA→B + eA + Tidle(T0, eA)) + (eB/m)] (4.17)

Our result aims to obtain the minimum data age under strict thermal bounds, satisfying the

objective of minimizing the maximum CPU utilization.

U(t) = emax
A

PA
(4.18)

Notice that we assumed the minimum execution times of the task set for maximum data age in

the formulation.

To minimize utilization, we need to ensure the period is at its maximum. Using period obtained

from Eq.4.17, we get utilization in a two-task scenario as-

U(t) = emax
A

1
2 [DAA→B + emin

A + Tidle(T0, emin
A )) + (emin

B /m)] (4.19)
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Here we have considered emax
A because our solution will ensure data validity even with best-case

execution of the first task, while minimizing the maximum utilization the system could experience.

4.2.2.2 Formulating the initial temperature

We formulate the initial temperature of the first instance of τA such that it doen’t split. We

will follow the same exact procedure as done in the case when τA,1 splits, but before that let’s

look at the result we have obtained in Eq.4.15.

Lemma 4.2.6. Data age is maximum when τB,1 executes after the start time of τA,2.

Lemma 4.2.7. Under thermal constraints, maximum data age depends on two factors, the

initial temperature T (0) and the start temperature of τB,1.

From the above two lemmas, we can say that there are only two cases we need to consider-

4.2.2.2.1 B1 splits From Eq.4.15, we can say that if τA,1 does not split, then Tidle(T0, eA)) =

0. The data age becomes,

DAmax = 2PA − e1
A − (eB/m) (4.20)

4.2.2.2.2 τB,1 does not split From Eq.4.20, we can say that if τB,1 does not split, then the

data age is measured only till the start of τB,1, implying that eB/m need not be considered as

τB executes without any split. The data age becomes-

DAmax = 2PA − e1
A (4.21)

Amongst these two cases, the maximum data age is given by Eq.4.21, therefore the utilization

becomes:

U(t) = emax
A

1
2 [DAA→B + emin

A ] (4.22)

4.3 N Task Result

In this section, we extend our analysis from the two-task scenario to consider a general case

with an N-task chain. Here, the task chain is denoted as τC,1 to τC,n, where n represents the
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chain length and each τC,i signifies a task within the chain. Each task acts as a producer for the

subsequent task, τC,i+1, in the chain and a consumer for the preceding task, τC,i−1.

We aim to leverage the insights from the two-task formulation (Eq. 4.15) for the N-task

scenario. The key takeaways from Eq. 4.15 include:

• Maximum Data Age: The data age reaches its maximum value when task τA,2 starts

executing before the beginning of τB,1 execution.

• Intermediate Task Execution: Unlike the two-task case where the data age bound didn’t

consider any intermediate task execution between the producer and consumer tasks, the

N-task scenario allows for such occurrences. However, upon closer inspection, the derived

data age bound remains independent of any activities happening within these intermediate

tasks.

Explanation: The data age bound is independent of the idle time associated with τA,2. This

implies that the initial temperature at the start of τA,2 is not a factor in the equation. Also,

even if any job execution in between affects the temperature, the formulation only considers the

temperature at the beginning of the job execution. Hence, we can conclude that the data age

bound remains unchanged regardless of any fraction of tasks running between the producer and

consumer tasks within the chain.

Theorem 4.3.1. In N-task, where τC,i denotes the task in a task chain where 1 ≤ i ≤ n, the

end to end data age bound is given as-

DAC1→Cn+1 =
i=n∑
i=1

DACi→Ci+1 +
i=n∑
i=2

γi ∗ (eCi/mi) (4.23)

where γi ϵ {0, 1}

Proof. Proving using the Principle of Mathematical Induction,

Base Case :

As shown in the Fig. 4.8, we can say that if C1, C2 and C3 all split, then

DAC1→C3 = DAC1→C2 + eC2/m+DAC2→C3
(4.24)

In case τC,1 or τC,3 does not split, it does not make any difference to the Eq.4.24 but if τC,2

does not split then the equation transforms as,

DAC1→C3 = DAC1→C2 +DAC2→C3
(4.25)
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Figure 4.8 Data age scenario For Three-Task set

τC,1 and τC,3 split influences the data age value.

So we can conclude that if γ ϵ {0, 1} -

DAC1→C3 = DAC1→C2 + γ ∗ (eC2/m) +DAC2→C3
(4.26)

Induction Step :

Assuming that the result is true for the n task result, we will try to prove that it exists for

the (n+ 1)th task result.

As shown in the Fig.4.9, for n task set, we get-

DAC1→Cn =
i=n−1∑

i=1
dCi→Ci+1 +

i=n−1∑
i=2

γi ∗ (eCi/mi) (4.27)

. where γi ϵ {0, 1}
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Figure 4.9 Data age scenario For N-Task set

So, we have to obtain the result for (n+ 1)th task which should be -

DAC1→Cn+1 =
i=n∑
i=1

DACi→Ci+1 +
i=n∑
i=2

γi ∗ (eCi/mi) (4.28)

where, γi ϵ {0, 1}

One more addition of a task leads to the equation-

DAC1→Cn =
i=n−1∑

i=1
DACi→Ci+1 +DACn→Cn+1 +

i=n−1∑
i=2

γi ∗ (eCi/mi) + γn ∗ (eCn/mn) (4.29)

where, γn represents the possibility of the split of nth task. If we look carefully at Eq.4.29, then

we can see that it is-

DAC1→Cn+1 =
i=n∑
i=1

DACi→Ci+1 +
i=n∑
i=2

γi ∗ (eCi/mi) (4.30)
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. where, γi ϵ {0, 1}

Hence proved

In the above derivation, the consecutive two-task stitching mechanism is considered. The

above case can be extended to m task stitching depending on which tuple represents the minimum

data age among all.

So, we get our optimization formulation as,

Given : Let E = {1, 2, 3, . . . , n}, emax
i , emin

i for each i ∈ E

Find : DACi→Cj for each (i, j) ∈ E

Objective : Minimize U =
i=n−1∑

i=1

emax
Ci

PCi

which is,

∑
(i,∗)∈E

2 · emax
Ci

min(DACi→C∗) + emin
Ci

+ γi · (Tidle(T0,i, emin
Ci

)) + βi · (emin
C∗

/mC∗)

Here, γi and βi ∈ {0, 1} and T0,i denotes the temperature at the start of the execution of task τC,i.

γi and βi are 0 or 1 depending on whether in between tasks split or not and the initial temperature

of every part splits their first task or not respectively.

Subject To : ∀k,
∑

i:{i,j}∈Ek

DACi→Cj +
∑

i:{i,∗}∈Ek

(eCi/mi) ≤ DAC1→Cn

and, i : {i, j} ∈ E,DACi→Cj ≥ 0

In this formulation, stitching of the tasks has been done such that it yields the minimum

data age.
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4.4 Evaluation

4.4.1 N-Task Theory Evaluation

We implemented and evaluated our proposed theory using task set values obtained from

the MiBench automotive benchmark suite [24]. The evaluation platform consisted of an i.MX6

processor with an ARM A9 core. We focused on tasks within the automotive section of the

benchmark. Our evaluation aimed to achieve three key objectives:

1. Verification: Verify if the proposed theory guarantees adherence to both thermal and

real-time scheduling constraints while maintaining acceptable data age for the tasks.

2. Impact Analysis: Analyze how schedulability and taskset utilization change as we vary

the desired data age and temperature ranges.

3. Scalability Analysis: Examine how schedulability changes with varying task chain lengths

under different temperature constraints.

Experimental Setup: The task graphs extracted from the benchmark suite contained

between 2 and 12 tasks each. We collected a total of 16 two-task scenarios and 20 three-task

scenarios from the benchmark data. To simulate the EDF scheduling algorithm, we employed a

Linux kernel-based simulation environment.

For enriching the dataset for special cases, our evaluation captured as many relevant special

cases as possible, we combined several originally serial tasks within the benchmark into larger

composite tasks. However, we maintained the original temperature ranges associated with these

tasks in the real-world use cases to ensure the resulting data remained meaningful. And, for task

execution time parameters, we utilized WCETs from the first hardware configuration provided

in the benchmark for a subset of the given period value range. BCETs were set to half the

corresponding WCET values. Additionally, a context switch time equivalent to 1% of the WCET

was incorporated into the execution time for evaluation purposes. Experiments: Optimization

code used for derivation of periods of the tasks in a chain and the EDF Simulation along with

the thermal model used to schedule the task chain with given freshness bound and temperature

constraints are shown in Fig.4.10.
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Figure 4.10 Evaluation Flow Diagram
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4.4.1.0.1 Schedulability variation with Utilization factor For the first experiment,

we ran task chains of different lengths for various range of data age bounds. We set up the tasks

to run for 99% of the specified WCET to account for scheduler overhead and context switching.

The final values we got are the schedulability percentage for uniformly spread utilization values

over a set of temperature ranges defined for the processor.

Our simulation algorithm determined the parameters of the thermal model, including Tidle

and m, for all task sets across the considered temperature ranges. This computation followed a

comprehensive scheduling and data age experiment across all task sets. Notably, all tasks were

executed on the same core, without any external loads.

To explore the impact of varying data age bounds relative to the end-to-end data age bound

of the task set, we depicted the results in Fig. 4.15. Notably, the graph demonstrates how

schedulability varies across different temperature ranges and various data age bounds, including

12%, 30%, 50%, and 80%.

Examining Fig. 4.15(a), where we fixed the data age bound at 80%, we observed a significant

decrease in average schedulability as the thermal constraints became more stringent. This

observation holds true for a constant utilization scenario. Conversely, considering a fixed

schedulability percentage, we noted a substantial reduction in processor utilization as thermal

constraints tightened. This implies that longer task chains are less likely to be scheduled under

strict thermal limits.

Shifting our focus to the variation in data age bound from 80% (Fig. 4.15(a)) to 12% (Fig.

4.15(d)), we observed a transition from a concave downward curve to a convex upward curve

across different temperature differences. This shift is attributed to the decrease in task periods

as the data age bound diminishes, thereby making schedulability more challenging due to tighter

deadlines.

Moreover, across different data age bounds, a significant decline in schedulability is evident

when both strict thermal constraints (Tmax − T (0) = 0) and stringent data age bounds (12%)

are imposed. Relaxing either constraint leads to a decrease in schedulability, albeit less severe

than when both constraints are stringent. Ultimately, when both constraints are relaxed,

schedulability reaches its optimal level.
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Figure 4.11 Data age bound = 80%
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Figure 4.12 Data age bound = 55%
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Figure 4.13 Data age bound = 30%
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Figure 4.14 Data age bound = 12%

Figure 4.15 Schedulability Percentage and Utilization at various temperature ranges for different

data age bounds. (a)80%, (b)50%, (c)30%, and (d)12%
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4.4.1.0.2 Schedulability variation with data age bound In our second experiment, we

delved into the intricacies of each task set, determining the idle time and the ‘m’ value across

different temperature ranges. Leveraging these parameters, we calculated the maximum data

age, DAmax, for each task set. Subsequently, we identified the minimum data age value, denoted

as DAmin, required for the task set to remain schedulable. In essence, this value represents the

threshold beyond which further reduction in data age would render the task set unschedulable.

Armed with this range of data age values (from DAmin to DAmax), we scheduled all possible

periods across various thermal constraints, spanning temperature differences from 0 to 80.

Figure 4.16 Schedulablilty with different data age bounds under various temperature constraints

With the implementation of these thermal constraints, we assessed the percentage of task

chains that remained schedulable and plotted these values in Fig. 4.16. Analyzing the graph,

we observe several key trends. Firstly, for a constant data age, as the temperature difference

increases, the schedulability of tasks also rises. For instance, within a data age range of 21.79s
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to 23.2s, when the temperature difference varies from 0 to 80, the average schedulability is

46.75%, with a minimum of 12.32% and a maximum of 76.8%. Secondly, for a fixed temperature

difference, the schedulability increases in a concave upward manner as the data age bound

expands. Lastly, when maintaining a constant schedulability percentage, an increase in the

thermal bound leads to a corresponding increase in the maximum data age, aligning with the

theoretical formulation as described in Eq. 4.15.

4.4.1.0.3 Schedulability with varying chain length In our experiment, we standardized

the data age for every task chain to be 30% of the data age upper bound. Subsequently, we

utilized the idle time and ‘m’ values corresponding to each task across various temperature

ranges as input parameters. It’s noteworthy that we maintained the BCET of every task exactly

half of their WCET.

The experiment’s output consisted of the task periods for each task chain, which we executed

for chain lengths ranging from 2 to 12 under various temperature constraints. The resulting

schedulability percentages, both with and without thermal constraints, were plotted in Fig. 4.17,

with detailed values provided in Table 4.1. Examining the graph, we discern several notable

Figure 4.17 Schedulablilty with Different Chain Lengths
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trends. Firstly, for a given chain length, schedulability decreases as the temperature difference

decreases, owing to the rapid increase in required idle time. Notably, task sets with chain lengths

exceeding 9 exhibit unschedulable behavior, as depicted in Fig. 4.17. Furthermore, achieving a

specific schedulability percentage necessitates a higher temperature difference for longer chain

lengths, while even a stringent thermal bound can suffice for shorter chain lengths.

The sharp decline in average schedulability percentages with thermal constraints, compared

to those without, underscores the challenge faced by schedulers in accommodating strict data

freshness bounds and thermal constraints, especially for longer task chains. Additionally,

Table 4.1 reveals that the average drop in schedulability percentage increases with decreasing

temperature differences across all chain lengths considered.

Temperature bound 70 50 40 10 0 NIL

Average schedulability 52.52 47.73 41.56 36.44 31.49 79.27

Percent drop in schedulability 33.75 39.79 47.58 54.04 60.18 -

Table 4.1 Average schedulability at different temperature bounds

Percent drop in schedulability is a metric which defines the drop in the schedulability under

temperature constraints w.r.t to without any temperature constraint for all the chain lengths.

Average in this case, has been considered for all chain lengths unlike in Fig 13, where we

consider average for all the cases of a particular length.

It’s important to acknowledge that the optimistic schedulability values obtained without

thermal constraints contrast with real-world scenarios where thermal bounds must be considered

for processor safety and durability. Nonetheless, Fig. 4.17 highlights the benefits of incorporating

thermal constraints, particularly for task sets with longer chain lengths. Remarkably, the

schedulability percentage for chain lengths exceeding 3 remains relatively stable across different

temperature differences, suggesting resilience to unexpected temperature rises in the processor.

However, it’s worth noting that the observed variations for chain length 3 underscore the

significance of considering task set characteristics in real-life scenarios, where task sets often

exhibit considerable lengths.
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Chapter 5

Conclusion

In concluding this comprehensive exploration into the world of real-time systems, particularly

focusing on data age management under thermal and fault tolerance constraints, this thesis has

highlighted several critical areas that impact system performance and reliability. By rigorously

investigating idle time insertion as solution to thermal thresholds, checkpointing as fault tolerance

mechanisms, and the integration of scheduling techniques, this thesis has paved the way for a

deeper understanding of how data validity and timeliness can be maintained in safety-critical

applications.

The critical factors influencing data age in real-time systems have been identified and

analyzed, leading to the development of a novel data-age analysis framework. This framework

is specifically tailored to address the unique challenges posed by thermal constraints and fault

recovery mechanisms, offering a more holistic and adaptable approach to managing data age.

One of the key takeaways from this study is the profound impact of thermal management

and fault tolerance techniques on data age. The research has shown that even task splitting and

effective checkpointing that significantly mitigate the risks associated with high temperatures and

system faults, thereby enhancing overall system stability and data reliability, can significantly

degrade data age parameter of the task set.

Moreover, the research emphasizes the significance of a tailored approach to maximum data

age bound, suggesting that a one-size-fits-all solution is often not feasible due to the diverse

nature of real-time systems and their operational environments. The developed framework tries

to addresses current challenges while providing a scalable foundation for future research and

development in this field.
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As a concluding remark, the journey through this thesis reaffirms the essential role of

continuous innovation and adaptation in the field of real-time systems. The insights gained and

the methodologies developed here contribute substantially to the ongoing discourse in data age

management, offering actionable strategies and a comprehensive analytical tool set for enhancing

system performance and reliability.

5.1 Summarising the work done

Summarizing what has happened in the thesis, the research began with a detailed literature

review to set the groundwork and identify initial factors impacting data age. From there,

specific methodologies such as thermal modeling, fault tolerance mechanisms analysis, and the

application of task splitting and checkpointing were explored and developed into a cohesive

framework. Rigorous testing through simulations provided empirical support for the framework’s

effectiveness, confirming its potential in real-world applications.

5.2 Summarising the final set of factors

The final set of factors that were identified as most influential in data age management include

thermal thresholds, task scheduling flexibility, fault tolerance strategies, and the interaction

between these elements. The initial set of factors were identified from the literature study that

was done. These were then taken through a process of experimental validation and refinement,

resulting in a robust set of strategies and practices that can be applied to optimize data age

across various real-time systems. This evolution from theory to practice not only highlights the

complexity of managing data age but also showcases the potential for significant advancements

in system design and operation.

5.3 Future works

The research presented in this thesis lays a solid foundation for further exploration and

development in the field of real-time systems, particularly concerning data age management

under varying operational conditions. While the outcomes of this study provide valuable insights,

there are several areas where future work can extend the current findings:
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The following are some of the ways in which this study can be expanded:

5.3.1 Expanding Thermal Models

Future research could explore more comprehensive thermal models that encompass multi-core

and heterogeneous processor architectures. This expansion would enhance the framework’s

applicability to a broader range of real-time systems, including those in high-performance

computing environments.

5.3.2 Incorporating Diverse Fault Tolerance Techniques

The current framework primarily focuses on checkpointing and task replication as fault

tolerance mechanisms. Investigating additional strategies, such as predictive fault management

and more advanced error recovery algorithms, could provide deeper insights into optimizing

data age and system reliability.

5.3.3 Advanced Scheduling Algorithms

Further development of scheduling algorithms that can dynamically adapt to changes in

thermal conditions and fault occurrence is crucial. Future studies could develop and test

algorithms that prioritize tasks based not only on their criticality and deadlines but also on

their thermal and fault tolerance characteristics.

5.3.4 Real-World Implementation and Testing

Applying the developed framework in real-world scenarios across different industries could

validate its effectiveness on a larger scale and under diverse operational stresses. This practical

implementation would also help identify unforeseen challenges and areas for improvement.

5.3.5 Machine Learning Techniques

Employing machine learning algorithms to predict system behaviors and optimize scheduling

and fault tolerance decisions in real-time could significantly enhance the adaptability and

efficiency of real-time systems. Future work could focus on integrating AI-driven analytics to

predict and mitigate potential data age and integrity issues before they affect system performance.
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5.3.6 Cross-Domain Applications

Exploring the application of the developed data age management framework in other domains,

such as IoT networks and autonomous vehicles, where real-time data processing is critical, could

help in tailoring the framework to different technological needs and operational environments.

5.3.7 Addressing the limitations of this study

The research conducted in this thesis, while thorough, is subject to several limitations that are

important to acknowledge. Firstly, the study is primarily focused on single-core and multi-core

architectures for fault-tolerant systems and predominantly single-core for thermal-aware systems,

potentially limiting its applicability to more complex or heterogeneous computing environments.

Additionally, the framework may require further enhancement to fully integrate and leverage a

broader spectrum of scheduling techniques, which are crucial for optimizing performance and

reliability in dynamic real-time systems. In terms of thermal management, the research covers

basic strategies but does not delve into more advanced thermal-aware resource management

techniques that might significantly improve system performance under diverse operational

conditions. Furthermore, the scope of fault tolerance mechanisms considered is somewhat

narrow, potentially overlooking newer or more comprehensive fault management approaches.

Lastly, the findings and the developed framework may face challenges in generalization and

scalability when applied to different configurations of real-time systems or when scaled up for

larger, more intricate applications. These limitations highlight the focused scope of the thesis

and suggest areas where future research could expand and refine the initial findings to enhance

both the robustness and applicability of the research.
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