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Abstract

Localization and tracking play a critical role in various fields, ranging from wireless com-
munications and robotics to surveillance and autonomous vehicles. In the context of signal
processing, localization typically involves measuring signals received from multiple sensors to
estimate the source’s position. Tracking, on the other hand, extends localization to a temporal
context. In this thesis, we explore the data-driven approaches to enhance the direction of ar-
rival (DOA) trajectory estimates. DOA estimation methods involve processing multi-channel
sensor array data to determine the directions from which signals originate. Classical methods
have two key limitations: first, they rely on analytical properties of observed signals which
do not generalize well to non-ideal conditions; second they employ block-level processing,
assuming static DOA within each block. In this thesis, the first challenge is resolved with a
data-driven approachs, while the second is addressed by operating in DOA-trajectory space
instead of DOA space. So, instead of estimating individual DOA, the approach focuses on
estimating DOA trajectories.

We proposed two data-driven approaches: one grid-based and the other grid-free. In the
grid-based approach, we develop a fully convolutional neural network (FCNN) inspired by the
computer vison techniques of image translation. The FCNN processes the 2D low resolution
spectrum as input and outputs a refined 2D spectrum. The input spectrum typically has broad
peaks, while the transformed spectrum has sharp peaks, which allows precise identification
of DOA trajectory parameters. In another study, we develop a data-driven approach that is
both grid-free and re-useable. This addresses two issues: first, the limitation of parameter
estimation on predefined grids, which affects resolution; and second, the problem of estimating
all sources at once, which can make traditional methods dependent on the number of sources.
A deep complex network is proposed that directly processes the complex sensor array data,
with outputs comprising of complex signal amplitude (per snapshot) and trajectory parameters
for a single source. We obtain a residual by removing contribution of the identified source from
the input data and this residual is again fed back into the network to identify the next source
making it re-useble and independent of the number of sources to be estimated. These proposed
methods are rigorously evaluated through extensive experiments and analysis, demonstrating
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their advantages over existing approaches. These findings have the potential to impact a variety
of applications, with room for further improvement.
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Chapter 1

Introduction

Localization and tracking of objects have many applications including human-robot interac-
tion, autonomous navigation, and smart homes, [1, 2, 3, 4, 5, 6, 7]. Recently, these techniques
have also been applied in urban sound sensing [8], wildlife monitoring [9] and surveillance
[10]. These applications showcase the versatility and importance of localization and tracking
technologies in various domains. The techniques for localization and tracking vary based on
the specific application and the sensors in use. For instance, acoustic localization methods uti-
lize sound signals for object positioning, whereas vision-based localization rely on cameras or
imaging sensors to identify and track visual features. In this work, our emphasis lies on sensor
array data analysis, specifically for the task of direction of arrival (DOA) estimation. DOA
estimation is a fundamental signal processing task that involves determining the direction from
which a signal or wavefront arrives at a sensor array. This information is crucial for localizing
and tracking sources, identifying the origin of signals, and extracting useful information from
the received signals. It is widely used in various fields such as wireless communications, radar
systems, sonar systems, and acoustic signal processing. By accurately estimating the DOA
of signals, it becomes possible to localize and track sources, improve communication quality,
enhance navigation systems, and facilitate target detection and identification.

1.1 Related works

DOA estimation techniques typically involve processing multichannel sensor data to esti-
mate the angles or directions from which signals originate. To accurately estimate the DOA,
a range of traditional techniques are utilized, including conventional beamforming [11], Mul-
tiple Signal Classification (MUSIC) [12], Estimation of Signal Parameters via Rotational In-
variance Techniques (ESPRIT) [13], Root-MUsic SIgnal (Root-MUSIC) [14], and others [15].
Each technique has its own advantages and limitations, making them suitable for different ap-
plications and scenarios. MUSIC algorithm is powerful tool and it exploits the orthogonality
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between the signal and noise subspaces to estimate the DOAs of the sources. It offers high
resolution and accuracy, but it can be computationally intensive and require prior knowledge
of the number of sources present. Another popular method is ESPRIT, which exploits the
phase differences between pairs of sensors to estimate the DOAs of the sources. Unlike MU-
SIC, ESPRIT directly estimates the signal subspace using the data from the sensors without
the need for eigen decomposition. This approach can offer computational advantages over
MUSIC. Root-MUSIC is a variant of the MUSIC algorithm that operates by computing the
eigen-decomposition of the auto-correlation matrix of the received signals. It exploits the roots
of the polynomial to directly estimate the DOAs of the sources. Unlike MUSIC and ESPRIT,
this method eliminates the requirement of grid, making it more efficient approach for DOA
estimation. While these methods are effective, they all require a sufficient number of data
snapshots to accurately estimate DOA, especially in scenarios with low signal-to-noise ratios
(SNRs). Additionally, they typically assume that the DOA remains constant and that the num-
ber of sources is known beforehand.

Over the past few years, substantial progress has been achieved in DOA estimation through
the adoption of deep learning techniques. These methods harness the power of neural net-
works to learn complex mappings from sensor array data to source directions, offering poten-
tial advantages in terms of flexibility and adaptability. A key advantage of employing data-
driven learning methods is their capacity to refine DOA estimation accuracy with larger and
more diverse training datasets. [16] proposed a learning-based approach utilizing Multilayer
Perceptrons (MLP) for DOA estimation. Their approach formulates the DOA estimation as
a classification problem with 360 classes, corresponding to angles ranging from 0◦ to 359◦.
They utilized the input features extracted from the Generalized Cross Correlation (GCC) [17]
vectors. Following training, the classifier generates posterior probabilities for all 360 classes
based on an input, and the class with the highest probability is identified as the estimated class.
Moreover, [18, 19, 20] also utilized GCC as an input feature and exoerimented with different
Convolutional Neural Network (CNN) architectures for DOA classification. In [21] and [22],
the authors designed M − 1 layer CNNs with three fully connected dense layer to estimate
DOA for each time frame containing one and two speakers, respectively, in reverberant envi-
ronments. Here M represents the number of microphones in a microphone array. The authors
didn’t extract explicit features; instead, they utilized the multichannel short-time Fourier trans-
form (STFT) phase spectrograms directly. In multi-speaker localization, as outlined in [22],
the authors make use of the assumption that speakers are not active simultaneously across time-
frequency (TF) bins. This assumption is commonly referred to as the W-disjoint orthogonality
(WDO) principle [23]. As more innovative architectures have emerged, researchers have uti-
lized these architectures to address challenges in DOA estimation [24]. For instance, in [25],
the authors employed the U-Net architecture [26] to estimate one time-frequency (TF) mask for
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each considered DOA, where each TF bin was associated with a particular DOA. This spectral
mask was then utilized for source separation. Building upon this idea, [27] utilized a similar
approach to dynamically locate multiple speakers. They utilized the WDO property, which
states that each TF bin is dominated by at most a single speaker, allowing it to be associated
with a single DOA. In [28], weakly-supervised methods based on manifold learning were uti-
lized for sound source localization (SSL). The fundamental idea was that the high-dimensional
multichannel observed data reside in a low-dimensional acoustic space, which is influenced by
a few hidden variables. These studies utilized features derived from the relative transfer func-
tions (RTFs) between microphone. Similarly, [29] used this principle through a Variational
Autoencoder (VAE) [30]. They trained the VAE to generate the phase of RTFs between micro-
phones, concurrently with a DOA classifier based on phase of RTF. [31] adapted a pre-trained
neural network to unseen conditions in a unsupervised way. In [32], a 3D CNN was employed
on steered response power with phase transform (SRP-PHAT) power maps to perform single
source tracking. Inspired by computer vision techniques of image translation, [33] adopted a
supervised image mapping approach. This method involves mapping a 2D input image with
broad peaks to an output 2D image with sharp peaks. Subsequently, the source location is de-
termined based on the output image. Recently, DL-based methods are also used for joint sound
event localization and detection (SELD) task [34, 35].

1.2 Motivation

The primary motivation of this work is to address two key challenges of the existing DOA
estimation algorithms. First, classical localization approaches, such as conventional beam-
forming [11], MUSIC [12], Root-MUSIC [14] and ESPRIT [13] rely on analytical properties
of observed sensor array signals for DOA estimation. Though successful, these methods do
not generalize well to non-ideal behaviors such as multi-path signal propagation and uncertain
noise characteristics. Second, most methods use block-level processing assuming the DOA to
be constant within a block (multiple measurements) followed by using tracking filters on these
block estimates. While suitable for slow-moving targets, this assumption becomes problematic
in scenarios involving fast motion.

Recognizing these challenges, there’s a strong drive to explore new methods that can tackle
these issues and improve the reliability and precision of DOA estimation. The first challenge
is addressed by using a data-driven approach that harnesses the power of general function ap-
proximators, particularly neural networks, to learn and adapt to non-ideal behaviors. Deep
learning-based methods have demonstrated promising results for source localization tasks in
environments characterized by low SNR and reverberant [24, 36]. The second challenge is ad-
dressed by working in DOA-trajectory space instead of DOA space. In trajectory localization
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(TL), source trajectories are estimated instead of point estimates. Recently, Bayesian method
[37] and neural networks [38, 32] have been used for estimating trajectories. Earlier work [39]
developed conventional beamforming (TL-CBF) and sparse Bayesian learning (TL-SBL) algo-
rithms for trajectory localization (TL) when DOAs are linearly changing in a block. By lever-
aging these advancements and adopting a data-driven paradigm, this works aims to overcome
the limitations of traditional DOA estimation methods and pave the way for more accurate and
adaptable localization techniques capable of effectively addressing real-world challenges.

1.3 Contributions

The thesis explores data-driven methods to estimate source trajectories parameters from sen-
sor array data, offering a novel method to capture non-ideal behaviors through general function
approximators such as neural networks. To achieve this objective, the thesis examines two dif-
ferent methods: grid-based and grid-free.

1. In the grid-based approach, we build a fully convolutional neural network (FCNN) with
encoder-decoder structure, inspired by U-Net [26]. The FCNN takes low resolution TL-
CBF spectrum as input and outputs a refined spectrum allowing precise identification
of source trajectory parameters leading to better track estimates. We demonstrates the
generalization ability of FCNN across various scenarios and compare its accuracy with
baseline methods TL-CBF and TL-SBL [39]. We also compare the average processing
time by each algorithms.

2. A drawback of grid-based methods is that the parameters are estimated over a predefined
grid, limiting their resolution. They assume that the DOA (or DOA parameters) strictly
falls on the grid points, leading to potential inaccuracies when estimating DOA (or DOA
parameters) for sources that do not align precisely with the grid. The grid-free meth-
ods proposed in [40] involve sequential identification and correction of source trajectory
parameters. We develop data-driven method which is grid-free and re-useable. A deep
complex [41] regression network is proposed to achieve grid-free DOA trajectory param-
eter estimation. The network outputs are complex signal amplitude (per snapshot) and
trajectory parameters for a single source. A residual is obtained by removing contribu-
tions of this source from the input data. This residual is then fed into the same network
to identify the next source. This can be repeated until some stopping criteria is met thus
making the network re-useable and independent of the number of sources to be esti-
mated. The re-useable network is motivated by the residual-based processing commonly
employed in greedy methods such as matching pursuit [42, 43].
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1.4 Organization of Thesis

1. In Chapter 2, we will explore the background of the standard signal model, specifically on
the Multiple Measurement Vectors (MMV) signal model for DOA estimation. Addition-
ally, we will also explore the MMV signal model specifically designed where the DOA
varies linearly with snapshot, offering insights into dynamic situations. Furthermore,
the chapter reviews previously proposed methods, including TL-CBF and TL-SBL, to
provide a comprehensive understanding of existing approaches in the field.

2. In Chapter 3, we will discuss the proposed data-driven approach for joint localization and
tracking task, employing a deep learning-based U-Net architecture. We will explore how
this architecture can be utilized to estimate linear trajectory parameters effectively.

3. In Chapter 4, we will discuss the proposed data-driven method which is grid-free and re-
useable for the joint localization and tracking task, employing deep complex architecture
to estimate DOA trajectory parameters of one source at a time.

4. We present our concise summary and potential future research in Chapter 5.
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Chapter 2

Background

The aim of DOA estimation is to determine the direction from which signals arrive at a
sensor array, providing valuable spatial information about the sources emitting these signals.
An essential part of DOA estimation is creating a precise signal model. This model helps us
understand how signals travel from their source to the sensor array. In this chapter, we will
present a comprehensive overview of the signal model employed in DOA estimation, with a
specific emphasis on the far-field model and its mathematical formulation. Additionally, we
will examine the multiple measurement vectors (MMV) model, which accommodates scenarios
involving both static and dynamically changing DOA. Following this discussion, we will delve
into the baseline methods utilized to achieve precise and reliable DOA estimation.

2.1 Signal Model

The measurement y ∈ CN , captured by a uniform linear array (ULA) comprising N sensors,
in the presence of K sources, is described as follows:

y =
K∑
k=1

a(θk)sk +w = A(Θ)s+w. (2.1)

Here, in the above equation, a(θk) = ak = [1 ej2π
d
λ

sin(θk) · · · ej2π(N−1) d
λ

sin(θk)]T is the
steering vector corresponding to kth source with DOA θk. The term sk denotes the kth source
amplitude, while A(Θ) = [a1(θ1) · · · aK(θK)] ∈ CN×K is the sensing matrix with Θ =

[θ1, · · · , θK ]T . Furthermore, s = [s1, · · · , sK ]T represents the source amplitude vector, and
w ∈ CN accounts for the additive noise. Narrowband wavelength is λ and d is the sensor
separation in ULA.

In scenarios where multiple observations are available and under the assumption of static
DOA, the multiple measurement vector (MMV) signal model is given as:
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Y = AX+W = [Ax1 · · ·AxL] +W, (2.2)

where Y = [y1 · · ·yL] ∈ CN×L is the L-snapshot measurement matrix, A = [a1 · · · aK ] is
the sensing matrix, X = [x1 · · ·xL] ∈ CK×L represents the source amplitudes of K sources at
L snapshots, and W = [w1 · · ·wL] ∈ CN×L is the additive noise. In this MMV model, each
L-snapshot is utilized to estimate the DOA parameters. The utilization of multiple snapshots
enables the exploitation of temporal information, contributing to more reliable estimates of
DOA parameters.

The above MMV model assumes static DOA and therefore is not applicable for modelling
moving sources. However, in practical scenarios, sources often exhibit dynamic behavior,
leading to changes in their DOA. The difference between the assumption of unchanging DOA
and the dynamic behavior observed in real-world highlights the need for alternative models
capable of accommodating the dynamic nature of sources. To address this limitation, [39]
introduces a first order correction by incorporating linear motion of DOA across snapshots
within a block. This adjustment allows the model to better capture the movement of sources
over time, enhancing its applicability to scenarios involving dynamic sources. Thus, under the
assumption of linearly changing DOA, the DOA θlk for kth source at lth snapshot is given as,

θlk = ϕk + (
l − 1

L− 1
)αk, l = 1, 2, · · · , L. (2.3)

The parameter pair (ϕk, αk) models DOA trajectory of the kth source. Here, ϕk denotes the
initial DOA observed in the first snapshot, while αk quantifies the cumulative change in DOA
from the initial observation. The MMV model for linear DOA motion [39] can be expressed as

Y = ÃX̃+W (2.4)

where Ã = [Ã1(ϕ1, α1) · · · ÃK(ϕK , αK)] ∈ CN×KL is a matrix that contains steering matrix
for changing DOA across L snapshots for each of the K sources. Ãk(ϕk, αk) = [a(θ1k) · · · a(θLk )],
X̃ = [X̃1 · · · X̃K ]

T ∈ CKL×L with X̃k = diag(xk) ∈ CL×L, xk = [s1k · · · sLk ] is a vector of L
amplitudes of the kth source.

Extending the linear motion model to higher-order polynomials or other parametric trajecto-
ries is feasible, although it comes with increased computational demands. While higher-order
polynomial trajectories or complex parametric models offer enhanced flexibility in capturing
dynamic source behavior, they also escalate computational complexity.
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2.2 Baseline Methods

2.2.1 TL-CBF

In [39], TL-CBF was introduced as a modification of conventional beamforming [11] for
the linearly changing DOA signal model. This methodology aims to capture the linear varia-
tion in DOA observed within a data block, thereby facilitating enhanced localization of mov-
ing sources in contrast to conventional method. The power spectrum for each (ϕ, α) pair is
computed by averaging the squared inner products between the received signals and their cor-
responding steering vectors across L snapshots. This process yields a 2D representation of the
power distribution across different DOA trajectory parameters. Mathematically, it is expressed
as:

PTL-CBF(ϕ, α) =
1

L

L∑
l=1

|yH
l a(θ

l)|2. (2.5)

The power spectrum is computed over a pre-defined grid. The location of the peaks in the
spectrum provides estimates of the DOA trajectories within the L-snapshot block. An exam-
ple TL-CBF spectrum is shown in Figure 2.1. Since the computation of the power spectrum
involves correlating the received signals with steering vectors. So, even small deviations in
(ϕ, α) from the true DOA parameters (ϕ∗, α∗) can result in very high correlations, leading to
broad peaks in the spectrum.
Pros and Cons: This method is computationally efficient. However, it suffers from broad
peak issues, which restrict its ability to accurately locate nearby source trajectories. An ex-
ample of scenarios with nearby source trajectories scenarios is shown in Figure 2.2, where
detected peaks are notably distant from the true DOA source trajectories.
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Figure 2.1: TL-CBF Spectrum. Two moving sources of equal amplitudes with source trajectories
(−60,−2) and (40, 2) [black cross] at 10 dB SNR. Detected peaks are shown by red circle.
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Figure 2.2: TL-CBF Spectrum. Two moving sources of equal amplitudes with source trajectories
(10, 2) and (20, 4) [black cross]. Detected peaks are shown by red circle.

2.2.2 TL-SBL

Sparse Bayesian learning (SBL) is a compressive sensing algorithm [44, 45], which has been
instrumental in various signal processing applications. Its derivative, TL-SBL was developed
[39] to estimate DOA trajectory parameters. By formulating a sparse model, the update rule
for TL-SBL is derived as

γ̂new
m = γ̂old

m

yH
v ΣyvÂmÂ

H
mΣ

−1
yv
yv

Tr[Σ−1
yv
ÂmÂH

m]
, (2.6)

where Âm = IL ⊗ Ãm, and Tr[·] denotes trace of a matrix. The mth grid point represents
a potential (ϕm, αm) pair with corresponding steering matrix Ãm. The parameter vector γ is
sparse and the locations of non-zero entries of γ signify the source DOA trajectory estimates.
An example TL-SBL spectrum is shown in Figure 2.3 and has sharp peaks.
Pros and Cons: This method provides precise peak resolution, which is advantageous for
accurately estimating source trajectories even for nearby source. However, its high compu-
tational complexity presents challenges, particularly in real-time processing scenarios where
computational resources are limited.

2.3 Summary

In this chapter, we discussed about the signal model and baseline methods (TL-CBF and
TL-SBL) for the joint localization and tracking task. We also discuss about their advantages
and disadvantages in terms of computational speed and precision. Achieving an optimal trade-
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Figure 2.3: TL-SBL Spectrum. Two moving sources of equal amplitudes with source trajectories
(−60,−2) and (40, 2) [white cross]. Detected peaks are shown by red circle.

off between these performance indicators is essential for enhancing the performance of DOA
estimation methods in real-world scenarios.
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Chapter 3

Deep architecture for DOA trajectory localization

Trajectory localization poses inherent challenges in diverse scenarios. In the previous chap-
ter, we discussed about the signal model for lineraly changing DOA and previously proposed
algorithms, namely TL-CBF and TL-SBL [39], to address this task. TL-CBF, while computa-
tionally efficient, grapples with broad peak issues, limiting its effectiveness in locating nearby
trajectories. In contrast, TL-SBL offers precise peak resolution but at the cost of increased
computational burden, posing challenges in scenarios where real-time processing is crucial.
This trade-off between computational speed and precision is crucial in trajectory localization.
Achieving high accuracy in estimating source trajectories often requires complex algorithms
that can handle various scenarios effectively. However, these sophisticated methods may come
at the cost of increased computational demands, which can be impractical in real-world appli-
cations where real-time processing is essential. Recognizing the trade-offs inherent in these al-
gorithms, a different approach is proposed to bridge the gap between computational efficiency
and precision in trajectory localization. This involves the development of a neural network
explicitly tailored to transform low-resolution TL-CBF spectra into high-resolution counter-
parts. The motivation behind this lies from the belief that valuable information is contained
within the peak structure of TL-CBF spectra, particularly regarding merged peaks. The neural
network, by harnessing this latent information, aims to enhance peak resolution and, conse-
quently, improve the localization accuracy. This approach holds particular promise in domains
such as robotics and autonomous systems, where the ability to accurately and swiftly localize
trajectories is paramount for effective decision-making and operation. This chapter discusses
the proposed deep architecture and its impact on locating source trajectory parameters.

3.1 Network Architecture

Inspired by the U-Net [26] architecture, we use a deep fully convolutional neural network
(FCNN) model with an encoder-decoder structure and skip connections to perform refinement
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Figure 3.1: U-Net architecture with 2 skip connections, annotated with the number of channels above
each block.

of TL-CBF spectrum. The architecture features a distinctive U-shape comprising two primary
paths: a contracting path (encoder), and an expansive path (decoder). In general, the contract-
ing path utilized the convolutional and max pooling layers to decrease the spatial resolution of
the input image while simultaneously increasing the number of feature channels. This process
allows the network to capture the high-level features of the image. On the other hand, the ex-
pansive path employs transposed convolutional layers to enhance the spatial resolution of the
feature maps while reducing the number of feature channels. A notable strength of the U-Net
architecture lies in its ability to seamlessly combine contextual information and intricate de-
tails, making it particularly well-suited for tasks requiring precise localization. This is achieved
through skip connections between the contracting and expansive paths, which allow the net-
work to combine low-level and high-level features during the decoding process, resulting in
more comprehensive feature representations.

3.1.1 Encoder

In the architectural design, the encoder network plays a pivotal role in extracting spatial
features from two-dimensional input images. This process is visualized in Figure 3.1. This
initial stage of feature extraction sets the foundation for subsequent layers in the network, con-
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tributing to the model’s overall capacity to understand and interpret spatial information. As
the encoded features progress through the network, they form a compact and abstract represen-
tation that serves as the basis for subsequent decoding stages in the architectural framework.
The encoder employs a series of multiple convolutional blocks and max pooling layers to sys-
tematically capture and distill hierarchical features from the input data. For example, in image
classification, lower-level features could be edges, corners, or textures, while higher-level fea-
tures represent objects like cars, animals, or buildings. This features allows the network to
focus on relevant patterns. Within each convolutional block, different filters are employed to
convolve the input, extracting relevant features through non-linear transformations. Subse-
quently, the max pooling layers perform downsampling, reducing the spatial dimensions of the
feature maps while retaining essential information. This hierarchical feature extraction process
enables the network to focus on most relevant patterns and spatial relationships within the input
images.

The basic convolutional blocks within the architecture are comprised of a dilated convo-
lutional layer (Conv2D∗), a batch normalization (BNorm) layer, and Rectified Linear Unit
(ReLU) activation as the non-linear function. Specifically, the parameters for the convolutional
operation include a kernel size of 3, a dilation rate of 2, and a stride of 1 which defines the
step size at which the filter is applied to the input feature. Additionally, padding of 2 ensures
that the spatial dimensions of the feature maps remain consistent throughout the convolutional
process, preserving information at the borders of the input data. The dilated convolutional
layer, with its dilation rate, enables the network to capture wider context and long-range de-
pendencies in the input data. Batch normalization contributes to stable training dynamics by
normalizing intermediate feature maps, and the ReLU activation introduces non-linearity, en-
abling the network to learn complex patterns. The max pooling layers are configured with a
pool size of 2 and a stride of 2. These settings determine the dimensions and overlap of the
pooling regions, influencing the downsampling process. Additionally, the final convolutional
block in the encoder is composed of a non-dilated convolutional (Conv2D) layer succeeded
by a ReLU activation function. The specific parameters for this operation are a kernel size of
3, a stride of 1, and padding of 1. These hyperparameters and introduction of non-linearity,
shape the behavior of the convolutional operation, influencing factors such as receptive field
size, feature extraction capability, and spatial resolution. Careful parameter selection enhances
the encoder’s effectiveness in capturing essential spatial features.

3.1.2 Decoder

The decoder network is responsible for reconstructing the spatial features extracted by the
encoder into the target map. This process involves transposed convolutional blocks, whose
output is concatenated with high-level feature maps for each channel, as illustrated by the skip
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Layer Operation Channels Kernel size Stride Padding Activation Parameters

Encoder

1 Conv2D∗ + BNorm 6 (3, 3) 1 2 ReLU 60 + 12

2 Conv2D∗ + BNorm 6 (3, 3) 1 2 ReLU 330 + 12

3 Max Pooling - (2, 2) 2 - - -

4 Conv2D∗ + BNorm 12 (3, 3) 1 2 ReLU 660 + 24

5 Conv2D∗ + BNorm 12 (3, 3) 1 2 ReLU 1308 + 24

6 Max Pooling - (2, 2) 2 - - -

7 Conv2D∗ + BNorm 24 (3, 3) 1 2 ReLU 2616 + 48

8 Conv2D∗ + BNorm 24 (3, 3) 1 2 ReLU 5208 + 48

9 Max Pooling - (2, 2) 2 - - -

10 Conv2D 48 (3, 3) 1 2 ReLU 10416

Decoder

11 ConvTranspose2D 24 (4, 4) 2 1 - 18456

12 Concatenation 24+24 - - - - -

13 Conv2D 24 (3, 3) 1 1 ReLU 10392

14 ConvTranspose2D 12 (5, 5) 2 1 - 7212

15 Concatenation 12+12 - - - - -

16 Conv2D 12 (3, 3) 1 1 ReLU 2064

17 ConvTranspose2D 6 (5, 5) 2 1 - 1806

18 Conv2D 6 (3, 3) 1 1 ReLU 330

19 Conv2D 1 (1, 1) 1 0 ReLU 7

Total Parameters 61573

Table 3.1: Concise overview of the neural network architecture, detailing operations, channels, kernel
size, stride, padding and activation and parameters for each layer in the encoder and decoder.

connections in Figure 3.1. The use of skip connections is a distinctive feature of the architec-
ture, linking corresponding layers between the encoder and decoder. This connectivity aids in
the integration of high-resolution details from the encoder, contributing to the precise localiza-
tion and reconstruction of the target map. The transposed convolutional (ConvTranspose2D)
layer play a pivotal role in upsampling the spatial features to match the original resolution, al-
lowing for a detailed and accurate representation of the target map. The concatenation of these
features through skip connections enhances the network’s ability to capture both fine-grained
and contextual information, resulting in a more robust and effective decoding process. The
absence of a skip connection in the last transposed convolutional block is intentional to to re-
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duce any potential noise or distortion that may arise from low-resolution TL-CBF input, with a
focus on maintaining high-resolution details essential for accurate target map generation. The
parameters for the transposed convolution operations are specified as a kernel size of [4, 5, 5],
a stride of 2, and padding of 1. The convolutional blocks utilized within the decoder consist of
a convolutional layer followed by Rectified Linear Unit (ReLU) activation. For these blocks,
the kernel size, stride, and padding are set at 3, 1, and 1 respectively. Finally, to attain a pre-
diction map of the same size as the input dimension, a convolutional block with a kernel size
of 1 is employed. This specific operation ensures that the output of the network aligns with the
original spatial dimensions, providing a prediction map consistent with the input data. Table
3.1 offers a detailed overview of the neural network architecture, including key parameters and
specifications.

3.2 Training Objectives: Target Map Generation and Loss Functions

Since our approach involves supervised learning, obtaining ground truth is essential. Specif-
ically, for the task of refining the low-resolution TL-CBF spectrum into high-resolution coun-
terparts, we need a target map. This target map serves as a representation of the true trajectory
parameters, offering a reference for the model to learn and refine its predictions.

3.2.1 Target Map

The U-Net architecture serves to enhance input images to achieve the desired target output.
In the context of trajectory localization, a potential target image is conceived as a binary rep-
resentation, with ones precisely positioned at the coordinates of true source trajectory param-
eters. However, utilizing this binary target map can sometimes lead to an exceedingly small
loss during training, which in turn can cause gradient underflows [46]. Gradient underflows
occur when the gradient of the loss function becomes too small to effectively update the net-
work’s weight during the training. This can result in slow convergence or even halt the training
process, emphasizing the importance of carefully designing target maps to ensure stable and
meaningful training outcomes.

To overcome this challenge, exploring alternative target map representations or adjusting the
loss function is required to ensure accurate refinement of the low-resolution TL-CBF spectrum
into high-resolution counterparts. Thus, to achieve our objective of predicting DOA trajectories
as close as possible to the true source trajectories, we utilize an RMSE-based target map, as
depicted in Figure 3.2. Let θ∗lk be the DOA trajectory corresponding to the kth source (ϕ∗

k, α
∗
k).

For any point (ϕ, α) in the target map with DOA trajectory θlk for the kth source, we have
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Figure 3.2: RMSE-based target map: there are two moving sources of equal amplitudes with DOA
trajectories parameterized by (−60,−2) and (40, 2) [white cross].

Ek =

√∑L−1
l=0 (θ

∗l
k − θlk)

2

L
, k = 1, 2, . . . , K, (3.1)

Ik(ϕ, α) = e−E2
k/σ

2

, I(ϕ, α) =
K∑
k=1

Ik(ϕ, α) , (3.2)

where σ is hyperparameter controlling the rate of decay. Equation 3.1, denotes the RMSE be-
tween the ground truth trajectory and the trajectory generated from different grid pairs (ϕ, α)
for the kth source. Exponential decay is used to assign higher intensity values to the grid points
in the target map where the RMSE is small. The target map is obtained by normalizing I(ϕ, α)

through division by its maximum value, resulting in a range from 0 to 1.

In Figure 3.2, two moving sources are denoted by cross markers. The target map exhibits
non-zero values in the proximity of these markers, signifying that the associated trajectories
fall within an acceptable error range. The extent of this acceptable error can be fine-tuned
by adjusting the hyperparameter σ in the target map calculation. It do not use any source
amplitude information corresponding to ground truth DOA trajectory. This approach allows
for a more robust and meaningful representation of the relationship between predicted and true
DOA trajectories during the training process.

3.2.2 Loss functions

To compare the output of the proposed architecture against the target map, we employ two
distinct loss functions: l2-norm and l2-norm with l1 regularization. These loss functions are
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defined as follows:

l2 = ||Ioutput − Itarget||2, (3.3)

l21 = ||Ioutput − Itarget||2 + λ||Ioutput||1 (3.4)

Here, Ioutput represents the output of the proposed architecture, and Itarget is the correspond-
ing target map. The l2-norm quantifies the Euclidean distance between the output and target
maps, while the l2-norm with l1 regularization introduces a regularization term λ||Ioutput||1 to
promote sparsity in the output map, where λ is a hyperparameter controlling the strength of
this regularization. This regularization also known as Lasso regularization [47] encourages
concise representations, focusing on essential features and potentially improving generaliza-
tion and model performance by reducing overfitting. These loss functions provide a means to
measure the dissimilarity between the predicted and true representations. By minimizing these
loss functions, the model aims to generate output maps that closely align with the ground truth,
facilitating accurate refinement of the low-resolution TL-CBF spectrum.

3.3 Experiments and Results

In this section, we cover data generation methodologies, implementation specifics, and per-
formance metrics, followed by a comprehensive discussion of results. Together, these aspects
give us a better understanding of how the experiments were set up, how the architecture was
put into practice, and a detailed assessment of how well the proposed model improves the
low-resolution TL-CBF spectrum.

3.3.1 Data generation

To evaluate how well our algorithm performs, we conducted validation tests using data we
created synthetically. An 8-element Uniform Linear Array (ULA) with λ

2
spacing was em-

ployed, generating L = 100 snapshot data. A grid spanning ϕ ∈ [−80, 80] and α ∈ [−5, 5]

with a unit separation was constructed. The data generation process involved simulating vari-
ous multi-source DOA trajectories will be discussed in detail in the following sections. These
trajectories were generated within the defined grid, giving us a varied and representative dataset
to work with.

Training: We simulate numerous two (K = 2) source combinations with a minimum sep-
aration of 5◦ in ϕ. This allows the network to learn from diverse multi-source input patterns
with varying degrees of source trajectory separation and amplitude differences. One of the
sources has its amplitude sampled per snapshot independently and identically distributed (IID)
from standard normal distribution N (0, 1). The other source also has its amplitude sampled

17



per snapshot in an IID manner from N (0, u) where u follows uniform distribution in the range
[0.5, 1]. For each combination, we considered 10 uniformly random SNR values in the range
of [0, 20] dB. The output of TL-CBF applied to the sensor data Y yields an input image to
the network with dimensions of 11 × 161. In our implementation, we partitioned the training
data into three sets: train (TrainData), validation (ValData), and test (TestData). These sets
contained 240,000, 2,500, and 610 examples, respectively. The target map, crucial for training,
was generated using the equation (3.2). This simulation setup allowed us to create a diverse
dataset, essential for training and evaluating the proposed deep-learning model in handling
multiple source scenarios with varying conditions.

Testing: While the training phase utilized data featuring only 2 sources (K = 2), our
objective extends to demonstrating the network’s capacity to generalize. To achieve this, we
assess its performance on data involving 3 sources (K = 3). This approach allows us to
evaluate the model’s adaptability and efficacy in scenarios beyond those encountered during
training. By examining its performance under varied source configurations, we gain valuable
information about the model’s overall robustness and effectiveness. We generate two such
challenging datasets:

1. In the dataset labeled TestData-1, we generated scenarios featuring 3 sources, varying
the SNR values from −12 dB to 15 dB with step size of 3 dB. For each SNR value, we
simulated 200 examples, resulting in a total of 2000 data points. The trajectories of two
sources were set at (60, 2) and (5, 1), each with amplitude sampled from N (0, 1). The
third source had a trajectory of (−4,−1) with amplitude sampled from N (0, 0.5). This
enables the evaluation of the model’s performance across a range of noise levels, despite
being trained primarily with positive SNR values.

2. In the dataset labeled TestData-2, observations were simulated at a fixed SNR value of 5
dB with 3 sources present. The trajectories of two sources were kept constant at (60, 2)
and (5, 1), while the trajectory of the third source was set to (ϕ0,−1). The value of ϕ0

was varied in the range of [−40, 42]. Each case resulted in 200 data points, yielding a
total of 5600 data points. Sources with fixed trajectory have amplitudes sampled from
N (0, 1) while the third source has amplitude sampled from N (0, 0.5). This dataset was
designed to evaluate the model’s performance in scenarios with 3 sources under challeng-
ing conditions of low SNR and varying trajectories.

In each scenario, source amplitudes are sampled per snapshot independently and identically
distributed (IID) from their respective distributions.
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3.3.2 Implementation details

For generating target map, we use σ = 1. The U-Net model, proposed for this task, was im-
plemented using the PyTorch library [48], with Kaiming initialization [49] applied to initialize
the network’s parameters. The model was trained independently using the two loss functions
defined in equations (3.3) and (3.4) for a total of 50 epochs. During training, a batch size of
256 examples was utilized, with a learning rate of 10−3, and the Adam optimizer [50] was
employed. The learning rate was reduced by a factor of 0.1 after 40 epochs to aid convergence.
Additionally, for comparison, we implemented trajectory localization algorithms, specifically
TL-CBF and TL-SBL [39]. These algorithms serve as benchmarks to assess the performance
of the proposed U-Net model in refining the low-resolution TL-CBF spectrum.

3.3.3 Performance metrics

The output of the proposed U-Net architecture is the high-resolution 2D power spectrum
obtained by refining TL-CBF feature. In the 2D spectrum, the location of peaks gives the
trajectory parameters (ϕ, α) corresponding to each source. When K sources are present, we
identify atmost P = 2K + 1 peaks in the output spectrum. To quantitatively evaluate the
model’s performance, we compute the RMSE between each ground truth source trajectory and
the estimated source trajectory derived from the identified peaks, as given in Equation 3.5. The
Hungarian algorithm [51] is used to solve the assignment problem between the P peaks and
K sources. It is a combinatorial optimization technique used to find the optimal assignment of
agents to tasks, minimizing the total cost or maximizing the total profit, all within polynomial
time complexity. This algorithm efficiently associates each peak with the most likely source
trajectory, providing a basis for subsequent accuracy assessment. Once assigned, a source is
said to be detected if the RMSE between the true θ∗lk and the assigned track θ̂lk is less than the
threshold η. In this evaluation, we set η = 1.2 as a reasonable criterion for successful source
detection. Accuracy is calculated as the ratio of total number of detected sources to the total
number of sources present, over the complete dataset. This metric provides a comprehensive
measure of the model’s ability to precisely identify and associate sources within the refined
high-resolution spectrum.

RMSEk =

√∑L−1
l=0 (θ

∗l
k − θ̂lk)

2

L
, k = 1, 2, . . . , K (3.5)

3.3.4 Results and discussions

The comparative performance of TL-CBF, TL-SBL, U-Net with l2 loss, and U-Net with l21
loss across various datasets is presented in Table 3.2 and 3.3. In terms of accuracy, the U-Net
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Algorithms

S.No. DatasetName / Complexity TL-CBF TL-SBL U-Net-l2 U-Net-l21

1 TestData 73.68 93.27 94.67 95.24

2 TestData-1 50.31 61.31 64.85 74.61

3 TestData-2 73.37 90.60 88.98 90.04

4 Time (secs) 0.25 206.7 0.254 0.254

Table 3.2: Accuracy (in %) and average processing time of various algorithms on different test datasets.

with l21 loss outperforms the U-Net with l2 loss across different test datasets. This highlights
the effectiveness of incorporating l1 regularization in enhancing the model’s generalization
capabilities. TL-CBF consistently exhibits the lowest accuracy across different datasets com-
pared to other methods. We also report the average time taken by each algorithm to generate the
output spectrum image when implemented on the same machine. The proposed U-Net variants
have very low time-complexity and additionally requires little time to process the TL-CBF in-
put image. TL-SBL accuracy is relatively similar to the U-Net variants and consistently greater
than TL-CBF. However, it has the highest average processing time among all methods. In terms
of average RMSE over detected sources, the proposed U-Net variants exhibits the lower values
in comparison to the U-Net’s input TL-CBF. The average RMSE values quantify the accuracy
of trajectory parameter estimation, with lower values indicating more precise results. Notably,
for TestData and TestData-1, TL-SBL demonstrates the lowest average RMSE over detected
sources, while for TestData-2, U-Net with l21 loss exhibits the lowest value. In contrast, TL-
CBF shows higher average RMSE values compared to the other methods, indicating lower
precision in trajectory parameter estimation.

Algorithms

S.No. DatasetName TL-CBF TL-SBL U-Net-l2 U-Net-l21

1 TestData 0.286 0.199 0.239 0.264

2 TestData-1 0.632 0.420 0.627 0.574

3 TestData-2 0.415 0.395 0.389 0.384

Table 3.3: Average RMSE over detected sources of various algorithms on different test datasets.

Accuracy and average RMSE over detected sources of various algorithms are reported in
Table 3.4 and 3.5, respectively, for both TestData-1 and TestData-2 as the number of detected
peaks P varies. We vary the number of detected peaks (P ) from K to 2K + 1, where K

denotes the number of sources present. As number of detected peaks increases, accuracy of
every algorithms increases for both test dataset. For TestData-1, U-Net with l21 loss has the
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highest accuracy for all values of P , while TL-CBF consistently has lowest accuracy. For
TestData-2, TL-SBl has the highest accuracy when P = [3, 4, 6], while U-Net with l2 loss has
the highest accuracy when P = [5, 7]. For TestData-1, TL-SBL has the lowest average RMSE
over detected sources for different values of P as compared to other methods. In TestData-2,
TL-SBL has the lowest average RMSE when P = 3, but when P is greater than 3, U-Net with
l21 has the lowest RMSE.

TestData-1 TestData-2

S.No. Peaks (P ) TL-CBF TL-SBL U-Net-l2 U-Net-l21 TL-CBF TL-SBL U-Net-l2 U-Net-l21

1 3 37.96 48.76 48.43 53.25 61.35 76.05 74.92 74.77

2 4 39.33 55.90 61.10 70.41 67.57 85.84 85.78 86.57

3 5 40.05 59.10 64.28 73.70 71.42 89.0 88.64 89.97

4 6 44.40 60.61 64.66 74.40 72.79 90.17 88.94 89.97

5 7 50.31 61.31 64.85 74.61 73.68 93.28 94.67 95.24

Table 3.4: Accuracy (in %) of various algorithms on different test datasets as detected peaks (P ) varies
from K to 2K + 1, where K represents the number of sources present.

TestData-1 TestData-2

S.No. Peaks (P ) TL-CBF TL-SBL U-Net-l2 U-Net-l21 TL-CBF TL-SBL U-Net-l2 U-Net-l21

1 3 0.629 0.341 0.568 0.553 0.361 0.354 0.369 0.360

2 4 0.577 0.382 0.616 0.586 0.386 0.384 0.389 0.383

3 5 0.582 0.405 0.627 0.579 0.405 0.392 0.391 0.384

4 6 0.605 0.414 0.627 0.574 0.412 0.395 0.389 0.384

5 7 0.632 0.420 0.628 0.573 0.415 0.395 0.389 0.385

Table 3.5: Average RMSE over detected sources of various algorithms on different test datasets as
detected peaks (P ) varies from K to 2K + 1, where K represents the number of sources present.

TestData-1: In this experiment, the performance of different algorithms is analyzed as the
SNR varies from −12 dB to 15 dB for K = 3 sources. U-Net with l21 loss has the highest
average accuracy compared to other algorithms, while TL-CBF has the lowest as reported in
Table 3.2. TL-SBL and U-Net with l2 loss have approximately the same average accuracy.
The average RMSE of TL-SBL is lowest compared to other methods for detected sources is
reported in Table 3.3. The accuracy and average RMSE over detected sources of various al-
gorithms are displayed in Figure 3.3. As the SNR increases, the accuracy of each algorithms
increases but after further increment in SNR, the accuracy saturates. In parallel, the average
RMSE over detected sources for all methods exhibits a decreasing trend as SNR increases.
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Figure 3.3: Accuracy (a) and average RMSE over detected sources (b) of various algorithms as SNR is
changed.
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Figure 3.4: Accuracy (a) and average RMSE over detected sources (b) of various algorithms as RMSE
threshold (η) varies.

The trajectories for the three sources, labeled S1, S2, and S3, are (−4,−1), (5, 1) and (60, 2)

respectively. TL-CBF’s accuracy begins to saturates quite early, indicating that it struggles to
resolve nearby sources S1 and S2. Both U-Net methods surpass TL-SBL in the low-to-mid
SNR range. U-Net-l2 reaches saturation at high SNR, while TL-SBL and U-Net-l21 approach
100% accuracy. Among the methods, TL-SBL exhibits the lowest accuracy for negative SNR
values. As SNR increases, the average RMSE over detected sources for TL-CBF and U-Net
variants tends to converge to similar values. TL-SBL have highest average RMSE over de-
tected sources for SNR ∈ [−12, 0] and have lowest value for SNR ∈ [3, 15]. Notably, this
experiment demonstrates the ability of learned networks to generalize accurately to identify
more sources (K = 3) than encountered during training (K = 2), without additional training.
It’s important to note that the deep learning-based algorithms undergo training using datasets
featuring positive SNR. The superior performance of U-Net-l21 over U-Net-l2 can be attributed
to the l1 regularization term in (3.4), which contributes to sharper output spectrum. In Figure
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3.4, the accuracy and average RMSE of detected sources for various algorithms are depicted
as a function of different threshold values (η), ranging from 0.6 to 3.0. As η increases, both
the accuracy and the average RMSE over detected sources for all methods tend to increase.
Figures 3.5, 3.6, 3.7, and 3.8 displays the output spectra of various methods at −3, 0, 3, and
6 dB SNR respectively, providing a visual representation of their performance. These findings
highlight the robustness and generalization capabilities of U-Net-based methods, particularly
U-Net-l21, in resolving and accurately identifying trajectories even in challenging, low SNR
scenarios.
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Figure 3.5: Spectrum from various algorithms for −3 dB SNR. Source trajectories are (60, 2), (5, 1),
and (−4,−1) [white cross]. Detected and assigned peaks are shown by circle and square markers

respectively.
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Figure 3.6: Spectrum from various algorithms for 0 dB SNR. Source trajectories are (60, 2), (5, 1), and
(−4,−1) [white cross]. Detected and assigned peaks are shown by circle and square markers

respectively.
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Figure 3.7: Spectrum from various algorithms for 3 dB SNR. Source trajectories are (60, 2), (5, 1), and
(−4,−1) [white cross]. Detected and assigned peaks are shown by circle and square markers

respectively.
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Figure 3.8: Spectrum from various algorithms for 6 dB SNR. Source trajectories are (60, 2), (5, 1), and
(−4,−1) [white cross]. Detected and assigned peaks are shown by circle and square markers

respectively.
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Figure 3.9: Accuracy (a) and average RMSE (b) vs ϕ0. Two source trajectories are fixed to be (60, 2)
and (5, 1) while the third source trajectory is (ϕ0,−1).

TestData-2: In this experiment, we aim to assess the discriminatory capabilities of trajec-
tory localization algorithms in scenarios where source trajectories are in close vicinity. The
experimental setup involves two sources S1 and S2 having fixed source trajectories given by
(60, 2) and (5, 1) respectively while the third source S3 has a trajectory (ϕ0,−1) with ϕ0 vary-
ing from −40 to 41. The average accuracy of TL-SBL and U-Net variants is approximately
same, while TL-CBF have lowest accuracy. The U-Net with l21 loss has the lowest average
RMSE compared to other methods. Accuracy and average RMSE over detected sources as a
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function of ϕ0 is shown in Figure 3.9, offers insightful observations regarding the algorithms’
performance. As ϕ0 increases, initially S3 comes closer to S2 and then moves away from it.
When the three sources are well separated (for example, ϕ0 ∈ [−40,−10] ∪ [20, 41]), TL-SBL
and U-Net variants perform well by accurately detecting the distinct trajectories. The accuracy
of TL-CBF varies considerably when the sources are farther apart. However, as the trajectory
of S3 approaches that of S2 (for example, ϕ0 ∈ [−10, 20]), all methods show reduced accuracy
with TL-CBF having the least accuracy exhibiting the least resilience to the challenging sce-
nario of closely spaced trajectories. Remarkably, the TL-SBL, U-Net with l2 loss, and U-Net
with l21 loss are able to detect the sources with almost the same accuracy throughout. In Figure
3.9, average RMSE over detected sources of all algorithms follow the same trend. In Figure
3.4, the accuracy and average RMSE over detected sources for various algorithms are depicted
as a function of different threshold values (η), ranging from 0.6 to 3.0. Both accuracy and aver-
age RMSE over detected sources increases as η increases. Figures 3.11, 3.12, 3.13, 3.14, 3.15,
and 3.16 displays some of the output spectra of various methods as source S3 approaches to S2
and then moves away from source S2, offering a visual representation of their performance.
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Figure 3.10: Accuracy (a) and average RMSE over detected sources (b) of various algorithms as
RMSE threshold (η) varies.
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Figure 3.11: Spectrum from various algorithms for 5 dB SNR. Source trajectories are (60, 2), (5, 1),
and (−28,−1) [white cross]. Detected and assigned peaks are shown by circle and square markers

respectively.
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Figure 3.12: Spectrum from various algorithms for 5 dB SNR. Source trajectories are (60, 2), (5, 1),
and (−7,−1) [white cross]. Detected and assigned peaks are shown by circle and square markers

respectively.
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Figure 3.13: Spectrum from various algorithms for 5 dB SNR. Source trajectories are (60, 2), (5, 1),
and (−1,−1) [white cross]. Detected and assigned peaks are shown by circle and square markers

respectively.
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Figure 3.14: Spectrum from various algorithms for 5 dB SNR. Source trajectories are (60, 2), (5, 1),
and (20,−1) [white cross]. Detected and assigned peaks are shown by circle and square markers

respectively.
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Figure 3.15: Spectrum from various algorithms for 5 dB SNR. Source trajectories are (60, 2), (5, 1),
and (29,−1) [white cross]. Detected and assigned peaks are shown by circle and square markers

respectively.
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Figure 3.16: Spectrum from various algorithms for 5 dB SNR. Source trajectories are (60, 2), (5, 1),
and (41,−1) [white cross]. Detected and assigned peaks are shown by circle and square markers

respectively.
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3.4 Summary

In this chapter, we leap from previous conventional based methods to deep learning based
methods for trajectory localization. We propose U-Net architecture for DOA trajectory estima-
tion using RMSE-based target map which takes low resolution TL-CBF spectrum as input and
outputs a refined spectrum allowing precise identification of source trajectories leading to bet-
ter track estimates. The U-Net architecture demonstrates impressive generalization, adapting
to scenarios with varying numbers of sources not encountered during training. We also report
the comparison of our proposed method with other baseline methods.
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Chapter 4

DOA Trajectory Localization using Complex Deep Nets : One Source at a

time

In the pursuit of accurate DOA trajectory parameter estimation, researchers have explored
diverse methodologies. Variants of Conventional Beamforming (CBF) [11] and Sparse Bayesian
Learning [52] have been devised for this purpose, as highlighted in [39]. These methods rep-
resent classical approaches that leverage signal processing techniques for extracting crucial
information about DOA. Additionally, a novel approach involves leveraging a U-Net architec-
ture [26] for DOA trajectory parameter estimation task is discussed in the previous chapter.
The U-Net architecture, known for its proficiency in image segmentation and feature extrac-
tion, is adapted to address the specific challenges associated with low-resolution TL-CBF. This
adaptation capitalizes on the U-Net’s inherent strengths in capturing intricate spatial patterns
and contextual information from input data. This utilization of the U-Net architecture repre-
sents a significant advancement in the field, leveraging deep learning techniques to overcome
limitations associated with conventional methods. By applying this deep learning technique,
the refinement and enhancement of the TL-CBF spectrum contribute to the improvement of
DOA trajectory parameter estimation.

But all these methods share a common limitation: they estimate parameters over a grid,
which restricts their resolution capability. The grid-free methods proposed in [40] involve se-
quential identification and correction of source trajectory parameters. This departure from the
grid-based approach allows grid-free methods to provide a more fine-grained and accurate esti-
mation of parameters, offering superior resolution in scenarios where precision is critical. Ac-
knowledging this, we have developed data-based methods that are both grid-free and reusable.
A deep complex [41, 53] regression network is proposed to achieve grid-free DOA trajectory
parameter estimation. The network outputs are complex signal amplitude (per snapshot) and
trajectory parameters for a single source. After estimating parameters for one source, a residual
signal is derived by subtracting the contributions of this estimated source from the input data.
This residual signal is then fed back into the same network to identify additional sources iter-
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atively. This iterative process continues until a predefined stopping criterion is met, allowing
the network to be reusable and independent of the number of sources to be estimated. This
unique characteristic enhances adaptability and efficiency in source estimation using the same
network architecture. Notably, the number of network outputs does not depend on the number
of sources, addressing a common issue when attempting to estimate all sources simultane-
ously. The concept of a reusable network draws inspiration from residual-based processing,
a technique commonly employed in greedy methods like matching pursuit (MP) [42, 43]. It
aims to decompose a given signal into a linear combination of elementary waveforms, typically
called atoms, selected from a predefined dictionary. It is commonly used in applications such
as signal denoising, compression, feature extraction, source parameter estimation and sparse
representation of data.

4.1 Why complex-valued neural networks (CVNNs)?

Deep complex networks denote neural networks that employ complex-valued inputs, weights
and activations, as opposed to real numbers, in their operations and representations. This ap-
proach expands the network’s capability to handle complex-valued data, allowing for a more
refined and expressive representation of information. By incorporating complex numbers, these
networks can effectively model and process signals with both magnitude and phase informa-
tion, making them particularly advantageous in applications involving waveforms, signals, and
domains where the interplay of amplitude and phase is critical [54]. Thus, utilization of com-
plex numbers in the network’s architecture enhances its ability to capture and analyze intricate
relationships within the data, offering a more comprehensive representation compared to net-
works solely relying on real numbers.

Complex-valued neural networks (CVNNs) [53] diverge from real-valued deep neural net-
works (DNNs) in several key aspects:

1. Parameter representation: CVNNs utilize complex numbers as parameters, which
means that each parameter is represented by a pair of real numbers corresponding to real
and imaginary parts. This doubles the number of parameters compared to a real-valued
network with the same architecture. However, it also enhances the expressive capability
of the network, allowing it to model and process complex-valued data more effectively.

2. Complex multiplication: The use of complex multiplication in CVNNs introduces a
distinct impact on the network’s degrees of freedom compared to real-valued multiplica-
tion.
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3. Activation functions: Designing and implementing complex-valued activation functions
pose a greater challenge as it must be both complex-differentiable and bounded, which is
not a trivial task.

4. Training complexity: Training CVNNs can be more complex due to challenges in de-
signing activation functions and dealing with the increased number of parameters. Addi-
tionally, the majority of deep learning libraries are optimized for real-valued operations,
making the implementation of CVNNs more challenging [55].

5. Domain-specific applications: CVNNs excel in areas where complex numbers natu-
rally appear or are intentionally introduced. They are particularly beneficial in fields like
wireless communication, audio processing, and signal processing, where CVNNs can ef-
fectively capture the inherent correlation between the real and imaginary components of
complex numbers [56].

In conclusion, while real-valued neural networks remain versatile and widely used, CVNNs
offer a specialized and powerful alternative, providing enhanced capabilities for tasks that re-
quire handling complex data and exploiting the unique properties of complex numbers [57].
Their enhanced ability to understand complex-valued data structures can improve performance
in certain applications. However, it’s important to note that CVNNs come with challenges in
training and implementation.

4.2 Network Architecture

Drawing inspiration from the achievements in deep complex networks [41, 53, 57] and their
subsequent applications [54, 58, 59, 60], we propose a deep complex network architecture for
grid-free DOA trajectory parameter estimation. It is designed to perform estimations of the
source amplitudes and the DOA trajectory parameters, focusing on one source at a time. The
proposed network architecture is build using Inception [61] and ResNet [62] as its fundamental
building blocks. The motivation for using Inception and ResNet blocks lies in their proven
effectiveness in handling complex features and mitigating common issues encountered in deep
neural networks.

• Inception blocks facilitate efficient feature extraction across multiple scales by employ-
ing parallel convolutions with varying kernel sizes. This enables the network to capture
both local and global features effectively, enhancing its capacity to learn hierarchical
representations and improve overall model performance.

• ResNet blocks mitigate the vanishing gradient problem in deep neural networks by intro-
ducing skip connections that bypass certain layers. This promotes efficient gradient flow
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during training, facilitating more effective learning, especially in deeper architectures. As
a result, it achieve faster convergence and enable the training of deeper networks without
performance degradation.

The overall network architecture is shown in Figure 4.1. It consists of three main parts –
shared feature encoder (shaded pink), amplitude decoder (shaded blue), and trajectory decoder
(shaded peach). The shared feature encoder generates an encoding for the input data Y, serv-
ing as input for the subsequent decoder modules. The amplitude decoder estimates the source
amplitudes X, while the trajectory decoder estimates the trajectory parameters (ϕ, α). Notably,
the trajectory decoder utilizes the long short-term memory (LSTM) block to effectively extract
the sequential information [63]. The architectural design encompasses a total of 548,152 pa-
rameters. We conducted experiments with different configurations for skip connections in our
architecture, including no skip connection, skip connection only to the trajectory decoder, and
separate skip connections to both amplitude and trajectory decoders. However, these configu-
rations did not perform well in comparison to the proposed architecture. Details of the network
are discussed next.

Complex-valued convolution Blocks: Complex-valued convolution can be described as
follows. Let W = A + iB be the complex-valued convolutional filter characterized by
real-valued matrices A and B. The input to the convolutional block is a complex matrix
H = P + iQ is the input to the convolution block. The complex-valued convolution is math-
ematically formulated as W ∗H = (A ∗ P − B ∗Q) + i(A ∗Q + B ∗ P) where ∗ denotes
the convolution operator. This formula unites real and imaginary elements, revealing the con-
volution operations that encompass the real components A ∗ P − B ∗ Q and the imaginary
components A ∗Q +B ∗ P. Figure 4.2 provides a visual representation of the complex con-
volution operation, aiding in a clearer comprehension of the process.

4.2.1 Shared Feature Encoder

The shared encoder block, highlighted in pink in Figure 4.1, integrates complex convolu-
tional blocks, followed by alternate sets of two complex inception blocks and complex convo-
lutional downsampling. In each fundamental complex convolutional block, there is a combina-
tion of a complex convolutional layer, a complex batch normalization layer, and a real-valued
ReLU acting as the non-linear activation function. To achieve comprehensive information
processing across multiple scales, complex inception blocks are utilized. These blocks are
designed using five unique complex convolutional blocks featuring distinct kernel sizes: (1,
1), (1, 3), (3, 1), (3, 3), and (5, 1). This ensures effective feature capturing and integration
by enabling the model to adapt to a wide range of receptive field sizes. The output channel
numbers for two different inception blocks are 6, and 8 for each kernel size (1, 1), (1, 3), (3,
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Figure 4.1: Deep Nets architecture. Number above the blocks represents the number of channels for

convoluitional block and hidden size of LSTM. Additionally, the numbers beside each block signify

one of the dimensions that decreases as the data progresses through each layer. Various components of

the network are – shared feature encoder (shaded pink), amplitude decoder (shaded blue), and

trajectory decoder (shaded peach).

1), and (5, 1), and 8 and 16, for the (3, 3) kernel size. The intermediate channel numbers
for each inception block and for each kernel size are double of the respective output channel
numbers. With a stride parameter set to 1, padding is adjusted according to the kernel size to
maintain identical input and output sizes. This configuration ensures that information is pro-
cessed thoroughly without altering the spatial dimensions during the convolutional operations
[64]. Instead of traditional pooling layers, we employ dilated complex convolution layers for
downsampling the input. This alternative approach is chosen to preserve essential information,
as dilated convolutions allow for an expanded receptive field without compromising on the in-
put’s crucial details. Pooling layers conventionally decrease the dimensionality of feature maps
by employing max or average operations over non-overlapping regions, often resulting in the
loss of intricate details. For this operation, the specified parameters are as follows: kernel size
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Figure 4.2: An illustration of the complex convolution operator.

(3, 1), dilation rate (2, 1), stride (1, 1), and padding (1, 0). These parameters govern the behav-
ior of the dilated complex convolution layer, influencing the receptive field and downsampling
characteristics.

4.2.2 Decoder

The output generated from the shared encoder is directed towards dedicated decoders, namely
the amplitude decoder and the trajectory decoder. These decoders are designed for the purpose
of estimating signal amplitudes and trajectory parameters, respectively. Within both the ampli-
tude decoder and trajectory parameters decoder, the initial segment incorporates a set of two
complex inception block, configured with hyperparameters similar to those described earlier.
For these inception blocks, the output channel numbers for kernel sizes (1, 1), (1, 3), (3, 1), and
(5, 1) are set to 10, while while the output channel number for the (3, 3) kernel size is 24. The
intermediate channel numbers are exactly double of the corresponding output channel numbers
for each kernel size. Following this, the output obtained from the inception block within the
amplitude decoder is concatenated (via a first skip connection as shown in Figure 4.1) with
the high-level features derived from the shared encoder by processing it using complex ResNet
blocks. Subsequently, this fusion undergoes a down-sampling process enabled by dilated com-
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plex convolutional blocks. The result of this final down-sampling stage is concatenated (via a
second skip connection as shown in Figure 4.1) with an alternative set of high-level features
that have been processed through another complex ResNet block. This combined output then
undergoes further processing using the complex convolutional blocks with a kernel size of
(2, 1), a stride of 1 and zero padding. For amplitude decoder, this output is processed through
Squeeze-and-Excitation (SE) [65] block, followed by final complex convolution having kernel
size 1. The SE block encompasses two primary operations: squeezing and excitation. Squeez-
ing aggregates feature maps across their spatial dimensions to generate a channel descriptor.
Excitation takes this channel descriptor as input and generates a set of per-channel modulation
weights. These weights are then applied to the feature maps to produce the SE block’s output.
Meanwhile, in the trajectory decoder depicted in Figure 4.1, there is no skip connection. This
decoder integrates an LSTM block to extract sequential information. This information is then
passed through a fully connected dense layer followed by the Tanh non-linear activation func-
tion. The LSTM layer is configured with a hidden size of 64, and a stack of three such layers
is employed.

4.2.3 Loss functions

The following loss function is used for training of the network

L =
L∑
l=1

|x̂l − xl|2 +
L∑
l=1

|θ̂l − θl|2 +
L∑
l=1

|θ̃l − θl|2 +
L∑
l=1

|a(θ̂l)x̂l − a(θl)xl|2 (4.1)

where xl and θl are the true source amplitude and DOA values of strongest source at the l-th
snapshot, x̂l is the source amplitude estimated by the amplitude decoder, θ̂l is the source DOA
at the l-th snapshot obtained from parameters (ϕ̂, α̂) estimated by the trajectory decoder and,
θ̃l is the estimated DOA from the LSTM block. The loss is added across all the training exam-
ples. To ensure efficient network training, the first two terms of the loss function are adequate
as network is designed to estimate source amplitudes per snapshot and the corresponding DOA
parameters. However, for faster convergence, the third and fourth terms are also included in
the loss function. The motivation behind the inclusion of term 3 in loss function is based on
the assumption that obtaining accurate DOA trajectory parameter estimates is more attainable
when the output of the LSTM block closely matches the actual DOA trajectory. This align-
ment is crucial as the dense layer utilizes the LSTM block’s output for parameter estimation.
Additionally, as the network comprises two separate decoders – the amplitude decoder (for
estimating source amplitudes per snapshot) and the trajectory decoder (for estimating trajec-
tory parameters) – adding term 4 to the loss function affects the weights of these decoders. It
incorporates errors from both amplitude and trajectory parameter estimation simultaneously,
leading to mutual influence between the weights of these two decoders. This mutual influence
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accelerates training by enhancing the coordination between the decoders. An experiment ex-
cluding term 3 resulted in poor performance. Also training the network solely with the first
two terms of the loss function and excluding skip connections highlighted a more pronounced
error propagation. This effect arises because the residual signal is reintroduced to the same
network iteratively to identify additional sources. Introducing the last two terms of the loss
function enhanced precision. Additionally, incorporating skip connections as shown in Figure
4.1 further improved performance. Our network is trained to output the signal amplitudes and
trajectory parameters associated with the strongest source. The strongest source is the one with
highest energy, i.e.,

∑L
l=1 |xl|2.

4.3 Experiments and Results

This section explores the methodologies used for generating data, specific implementation
details, and performance metrics used. By delving into these aspects, we gain a comprehensive
understanding of the experimental setup, how the model architecture was implemented, and
how its performance was evaluated. The results are then discussed, providing an understanding
of the model’s effectiveness.

4.3.1 Data generation
We conducted a performance evaluation of the proposed deep learning model employing

synthetically generated data. An 8-element Uniform Linear Array (ULA) with λ
2

spacing is
used and we generate L = 30 snapshot data.

Training: We generated multiple two-source (K = 2) scenarios, ensuring a minimum sepa-
ration of 5◦ in ϕ. The amplitudes of both sources are sampled independently and identically per
snapshot. One source’s amplitudes are sampled from N (0, 1), while the other source’s ampli-
tudes are sampled from N (0, u), where u is sampled from a uniform distribution U(0.5, 1). To
accommodate varying signal-to-noise ratios (SNR), we introduced 6 uniformly random SNR
values in the range of [0, 20] dB for every combination of two-source scenarios. The sensor
array data Y as given in equation 2.4 serves as the network input, while the signal amplitudes
and trajectory parameters are used for comparison with the predicted values. This diverse
dataset enables the network to adapt to multi-source patterns with varying source trajectory
separations and amplitude differences. In total, 72,5160 data points were generated. Subse-
quently, this dataset was divided into three subsets: the training set (TrainData), validation set
(ValData), and test set (TestData). These subsets consisted of 580,128, 72,516, and 72,516
examples, respectively.

Testing: To specifically analyze the model’s performance and trends under different con-
ditions, we generate additional test data for two-source and three-source scenarios. Although
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the model is trained solely on two-source scenarios, our objective is to showcase its ability to
generalize to different scenarios.

1. Test data for two-source (K = 2) scenarios:

(a) TestData-1: In this test dataset, we simulate two closely positioned sources, de-
noted as S1 and S2, with trajectories (60.4, 3.5) and (50.5,−2.5) respectively. The
SNR values are varied from 0 dB to 19 dB with a step size of 1 dB. The S1 and
S2 source have amplitudes sampled from N (0, 1) and N (0, 0.6) respectively. This
allows the evaluation of the model’s performance across different noise levels when
two sources are present.

(b) TestData-2: In this test dataset, we maintain a fixed SNR of 10 dB with two sources
present. One source (S1) having a fixed trajectory (20.4, 3.5) and has amplitudes
sampled from N (0, 1). The other source (S2) has a variable trajectory (ϕ0,−2.5),
where ϕ0 is varied in the range of [−60, 54], and its amplitudes are sampled from
N (0, 0.75). This dataset aims to evaluate the model’s performance in scenarios
where source trajectories are both close and distant from each other.

2. Test data for three-source (K = 3) scenarios:

(a) TestData-3: In this test dataset, we include trajectories for two closely positioned
sources (S1, S2) and one distant source (S3) with coordinates (5.5, 1.2), (−7.5, 3.5),
and (60.5, 2.5) respectively. We vary the SNR from 0 dB to 20 dB in 1 dB incre-
ments. The amplitudes for sources S1, S2, and S3 are sampled from N (0, 0.8),
N (0, 0.5), and N (0, 1) respectively. This setup allows for the assessment of the
model’s performance across various noise levels when three sources are present, a
scenario that the model has not encountered during training.

(b) TestData-4: In this test dataset, we fix SNR at 5 dB and simulate three sources.
Two sources, denoted as S1 and S2, have fixed trajectories (60.5, 2.5) and (5.5, 1.2)

respectively, while the trajectory of the third source denoted as S3 is (ϕ0,−3.8),
with ϕ0 varying within the range of [−60, 54]. The sources with fixed trajectories
have amplitudes sampled from N (0, 1), while for the third source we sample from
N (0, 0.5). This dataset aims to assess the model’s performance in scenarios where
source trajectories vary in proximity, ranging from closely positioned to distant. It
includes three sources, a scenario not encountered by the model during training.

In each scenario, source amplitudes are sampled per snapshot in an IID manner from their
respective distributions. A total of 4000 examples were generated for each test dataset, with
200 examples for each set of varied parameters.

39



4.3.2 Implementation details

The proposed architecture is implemented using the Pytorch framework [48] and utilizes
Kaiming initialization [49] to initialize the network’s weights. This initialization technique is
particularly suited for deep networks that use asymmetric, non-linear activation functions like
ReLU, which is the case in our network. Its purpose is to mitigate problems such as vanishing
or exploding gradients during the training process, ensuring more stable and effective learning.
The proposed model is trained for 50 epochs with a batch size of 512, a learning rate 10−3, and
using an Adam optimizer [50]. A multi-step learning rate scheduler is employed to enhance
convergence, recognizing that a fixed learning rate may not be optimal throughout the entire
training duration. This involves reducing the learning rate by half at designated milestones,
which occurred at epochs 30, 35, 40, 43, 46, and 49. ValData is used to select best model, based
on its accuracy score. We benchmark our results against the grid-based trajectory localization
methods TL-CBF [39], U-Net-l2, and U-Net-l21. The baseline models U-Net-l2 and U-Net-
l21 were trained using the same dataset for 50 epochs. During training, a batch size of 256
examples was utilized, with a learning rate of 10−3, and the Adam optimizer was employed.
Additionally, the learning rate was reduced by a factor of 0.1 after 40 epochs to facilitate
convergence.

4.3.3 Performance metrics

We evaluate the performance of various algorithms based on accuracy metrics and average
Root Mean Square Error (RMSE) over detected sources. For the grid-based baseline methods,
we have a low-resolution 2D power spectrum for TL-CBF, along with its high-resolution coun-
terparts which are outputs from U-Net-l2 and U-Net-l21. The peaks in the 2D grid correspond
to the trajectory parameters (ϕ, α) of each source. When K sources are present, P = K peaks
are identified in the output spectrum. The decision to select the first K peaks is based on their
intensity. The Hungarian algorithm [51] is utilized to solve the assignment problem between
the P peaks and K sources. As the proposed network estimates source amplitudes and tra-
jectory parameters one source at a time, we can sequentially use the hungarian algorithm to
solve the assignment problem among K sources. Once assigned (for grid-based methods) or
estimated (for grid-free methods), a source is considered detected if the RMSE between the
true θ∗lk and the assigned/estimated track θ̂lk is less than the threshold η. We choose η = 2.4.
Accuracy is calculated as the ratio of total number of detected sources to the total number of
sources present, over the complete dataset. Since the proposed method outputs signal ampli-
tude, which is used to compute the residual, it’s crucial to consider the amplitude relative error
for the proposed method. Amplitude relative error is a metric used to quantify the difference
between the estimated amplitude and the true amplitude, relative to the true amplitude.
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4.3.4 Results and discussions

DOA trajectory localization accuracy and average detected RMSE over detected sources is
reported in Table 4.1 and 4.2 respectively for the proposed grid-free method and other grid-
based baselines.

In terms of accuracy, the proposed method demonstrates highest performance for TestData,
TestData-1 and TestData-2, all of which represent distinct scenarios for the two-source (k = 2)
case. For TestData, both the proposed method and the U-Net variants exhibit nearly identical
performance, while TL-CBF achieves the lowest accuracy. This test dataset comprises various
combinations, including scenarios with low and high SNR, source trajectories both close and
far apart, as well as varying amplitude levels. In TestData-1, where the SNR varies from 0
to 19 dB, TL-CBF demonstrates very poor performance with an accuracy of 16.17. Both the
proposed method and U-Net with l21 loss achieve similar level of accuracy. U-Net with l2
loss exhibits an accuracy approximately 10% lower compared to its l21 loss counterparts. For
TestData-3 and TestData-4, U-Net with l2 loss and U-Net with l21 loss, respectively, exhibit
the highest accuracy, with both achieving almost the same level of accuracy. These datasets
represent distinct scenarios for the three-source K = 3 case. For TestData-3, TL-CBF achieves
an accuracy of 48.49%, whereas the proposed method achieves nearly 15% higher accuracy
but approximately 13% lower than the U-Net variants. In TestData-4, the proposed method
achieves the accuracy of 65.97%, which is approximately 7% lower than that of U-Net with
l21 loss (the best performer) and about 4% lower than TL-CBF. Both U-Net variants exhibit
almost identical accuracy levels across all test datasets, with a notable 10% difference observed
in TestData-1.

Grid-based Grid-free

S.No. DatasetName TL-CBF U-Net-l2 U-Net-l21 Proposed

1 TestData 64.79 85.02 85.11 88.93

2 TestData-1 16.175 78.48 87.6 90.87

3 TestData-2 69.97 70.76 68.76 95.22

4 TestData-3 48.49 76.47 76.2 63.70

5 TestData-4 57.3 69.63 72.7 65.97

Table 4.1: Accuracy (in %) of various algorithms on different test datasets (η = 2.4).

In terms of average RMSE over detected sources, the proposed method exhibits the highest
values for each test dataset except for TestData-1. For TestData-1, TL-CBF has higest aver-
age RMSE of 1.7. U-Net with l2 loss achieves the lowest average RMSE for TestData-1 and
TestData-4. On the other hand, TL-CBF demonstrates the lowest average RMSE for TestData-
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2 and TestData-3. Both U-Net variants demonstrate almost the same average RMSE for each
test dataset, with slight differences observed in TestData-2.

Grid-based Grid-free

S.No. DatasetName TL-CBF U-Net-l2 U-Net-l21 Proposed

1 TestData 0.57 0.511 0.510 1.08

2 TestData-1 1.7 0.90 0.94 1.29

3 TestData-2 0.53 1.32 0.97 1.05

4 TestData-3 0.766 0.904 0.903 1.01

5 TestData-4 0.768 0.69 0.71 0.90

Table 4.2: Average RMSE over detected sources of various algorithms on different test datasets.
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Figure 4.3: [TestData-1] Accuracy (a) and average RMSE over detected sources (b) of various
algorithms as SNR is changed.

TestData-1: In this experiment, the primary focus is on analyzing the performance of differ-
ent algorithms for estimating the trajectories of two closely positioned sources. This analysis
is conducted across a range of SNR values spanning from 0 dB to 19 dB. Our proposed method
exhibits performance similar to U-Net variants, while TL-CBF struggles with resolving nearby
source trajectories, leading to lower average accuracy. The poor performance of TL-CBF is
attributed to closely positioned source trajectories, where it has difficulty in accurately detect-
ing peaks that are nearer to the actual ground truth source trajectories. It’s worth noting that
in terms of average RMSE over detected sources, the proposed method exhibits the higher av-
erage value compared to U-Net variants. In Figure 4.3, the accuracy and average RMSE over
detected sources are plotted as a function of SNR for different algorithms. Both the proposed
method and the U-Net variants demonstrate a similar trend of increasing accuracy and decreas-
ing average RMSE over detected sources as SNR increases. The accuracy saturates as SNR
reaches higher values for both the proposed method and the U-Net variants. However, for the
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proposed method, there’s a slight increase in average RMSE over detected sources after an
SNR value of 8 dB, whereas for the U-Net variants, the average RMSE continues to decrease
as SNR increases. TL-CBF’s accuracy and average RMSE fluctuate consistently as SNR in-
creases. Its accuracy consistently remains below 20%, while the average RMSE consistently
stays above 1.6. In Figure 4.4, the accuracy and average RMSE over detected sources are plot-
ted against the RMSE threshold (η) for various algorithms. The accuracy and average RMSE
over detected sources for both the proposed method and U-Net variants show a smooth incre-
ment as η varies from 1.2 to 3.6. Within the range of η ∈ [1.2, 2.0), U-Net with l21 loss exhibits
the highest accuracy, while for η ∈ [2.0, 3.6], the proposed method achieves higher accuracy.
The average RMSE over detected sources remains almost the same for U-Net variants and is
the lowest among all methods. For TL-CBF, the accuracy is consistently the lowest across all
threshold values, while the average RMSE over detected sources is highest within the range of
η ∈ [2.0, 3.6].

Figure 4.5 (a) visually depicts the amplitude relative error for two-source K = 2 scenarios
as SNR varies. As SNR increases, the amplitude error for both sources S1 and S2 decreases,
which is reflected in their average error as well. However, it’s worth noting that the relative er-
ror for the weaker signal source becomes more pronounced, primarily due to error propagation
during residual calculations.
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Figure 4.4: [TestData-1] Accuracy (a) and average RMSE over detected (b) sources of various
algorithms as RMSE threshold (η) varies.
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Figure 4.5: Amplitude relative error of the two-source scenarios as SNR (a) and ϕ0 (b) varies for the
proposed method.
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Figure 4.6: [TestData-1] TL-CBF spectrums: (a) original signal at 1 dB SNR, (b) after removing first
source, (c) after removing second source. Source trajectories are (60.4, 3.5) and (50.5, -2.5) [red cross].
The estimated source trajectories are indicated by red circle in (a) and (b), which are partially or fully
removed in the subsequent spectra (b) and (c) respectively. Additionally, the average power per sensor

per snapshot (P) is provided as sources are sequentially removed.
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Figure 4.7: [TestData-1] TL-CBF spectrums: (a) original signal at 5 dB SNR, (b) after removing first
source, (c) after removing second source. Source trajectories are (60.4, 3.5) and (50.5, -2.5) [red cross].
The estimated source trajectories are indicated by red circle in (a) and (b), which are partially or fully
removed in the subsequent spectra (b) and (c) respectively. Additionally, the average power per sensor

per snapshot (P) is provided as sources are sequentially removed.
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Figure 4.8: [TestData-1] TL-CBF spectrums: (a) original signal at 10 dB SNR, (b) after removing first
source, (c) after removing second source. Source trajectories are (60.4, 3.5) and (50.5, -2.5) [red cross].
The estimated source trajectories are indicated by red circle in (a) and (b), which are partially or fully
removed in the subsequent spectra (b) and (c) respectively. Additionally, the average power per sensor

per snapshot (P) is provided as sources are sequentially removed.
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Figure 4.9: [TestData-1] TL-CBF spectrums: (a) original signal at 15 dB SNR, (b) after removing first
source, (c) after removing second source at 15 dB SNR. Source trajectories are (60.4, 3.5) and (50.5,
-2.5) [red cross]. The estimated source trajectories are indicated by red circle in (a) and (b), which are
partially or fully removed in the subsequent spectra (b) and (c) respectively. Additionally, the average

power per sensor per snapshot (P) is provided as sources are sequentially removed.

Figure 4.6, 4.7, 4.8, and 4.9, displays the TL-CBF spectrums as sources are sequentially
removed using proposed method at 1, 5, 10 and 15 dB SNR respectively. From these figures, it
is evident that as sources are removed sequentially, the average power per sensor per snapshot
(P) decreases. Moreover, as SNR increases, P after removing both sources demonstrates a
decreasing trend.
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Figure 4.10: [TestData-2] Accuracy (a) and average RMSE over detected sources (b) of various
algorithms vs ϕ0. One source trajectory is fixed to be (20.4, 3.5), while the second source trajectory is

(ϕ0,−2.5). The parameter ϕ0 varies with a step size of 6, ranging from -60 to 54.

TestData-2: The primary goal of this experiment is to evaluate the performance of different
algorithms under varying source trajectories, including scenarios where the sources are either
closely positioned or far apart. Specifically, the experiment involves two sources, denoted as
S1 and S2. S1 has a fixed trajectory (20.4, 3.5), while S2 has a trajectory (ϕ0,−2.5) with ϕ0

varies from −60 to 54. As ϕ0 increases, S2 moves closer to S1 and then moves away from it.
The average accuracy of the proposed grid-free method is highest, while grid-based baseline
has approximately same accuracy. The average RMSE over detected sources is minimum for
TL-CBF while highest for U-Net with l2 loss. Figure 4.10 illustrates the average accuracy
and the average RMSE over detected sources for different algorithms as a function of ϕ0. The
proposed methods has highest accuracy compared to others when ϕ0 ∈ [−60, 12] ∪ [36, 54],
while its performance degraded when ϕ0 ∈ (12, 36). The U-Net with l2 loss demonstrates
superior accuracy compared to other methods when ϕ0 ranges from 12 to 36. Within this range,
the accuracy of other grid-based methods notably decreases. The average RMSE over detected
sources of proposed methods remains relatively similar as ϕ0 varies except when ϕ0 ∈ [12, 36].
The average RMSE over detected sources of other grid-based methods fluctuates significantly
as ϕ0 varies, with notably large values observed when ϕ0 ∈ [12, 42]. In Figure 4.11, the plot
depicts the changes in accuracy and average RMSE over detected sources as η varies. Across
different η values, the proposed method consistently achieves the highest accuracy, while TL-
CBF consistently exhibits the lowest average RMSE over detected sources. For η values in the
range [1.2, 2.4), TL-CBF exhibits higher accuracy compared to U-Net variants, while beyond
this range, U-Net variants demonstrate higher accuracy. However, all methods show saturation
in accuracy beyond η = 2.8. Additionally, the average RMSE over detected sources of U-Net
with l21 loss consistently remains lower than that of the proposed method and U-Net with l2
loss.
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Figure 4.5 (b) illustrates the amplitude relative error as a function of ϕ0. The amplitude
errors of both sources, S1 and S2, remain consistent except when ϕ0 ∈ [12, 36]. During this
range, when S1 approaches closer to S2, the amplitude error of S1 escalates, leading to error
propagation and hence, an increase in the amplitude error of S2 as well.
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Figure 4.11: [TestData-2] Accuracy (a) and average RMSE over detected sources (b) of various
algorithms as RMSE threshold varies (η). One source trajectory is fixed to be (20.4, 3.5), while the

second source trajectory is (ϕ0,−2.5). The parameter ϕ0 varies with a step size of 6, ranging from -60
to 54.

Figure 4.12, 4.13, 4.14 4.15, 4.16 and 4.17, illustrate the TL-CBF spectrum as sources are
removed using the proposed method at 10 dB SNR, corresponding to ϕ0 values of −24, 0, 12,
24, 36, and 48, respectively.
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Figure 4.12: [TestData-2] TL-CBF spectrums: (a) original signal at 10 dB SNR, (b) after removing
first source, (c) after removing second source. Source trajectories are (20.4, 3.5) and (ϕ0, -2.5) [red
cross] where ϕ0 = −24. The estimated source trajectories are indicated by red circle in (a) and (b),
which are partially or fully removed in the subsequent spectra (b) and (c) respectively. Additionally,

the average power per sensor per snapshot (P) is provided as sources are sequentially removed.
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Figure 4.13: [TestData-2] TL-CBF spectrums: (a) original signal at 10 dB SNR, (b) after removing
first source, (c) after removing second source. Source trajectories are (20.4, 3.5) and (ϕ0, -2.5) [red

cross] where ϕ0 = 0. The estimated source trajectories are indicated by red circle in (a) and (b), which
are partially or fully removed in the subsequent spectra (b) and (c) respectively. Additionally, the

average power per sensor per snapshot (P) is provided as sources are sequentially removed.

80 40 0 40 80

5

3

1

1

3

5

(a) P=3.66

80 40 0 40 80

5

3

1

1

3

5

(b) P=1.65

80 40 0 40 80

5

3

1

1

3

5

(c) P=0.22

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.14: [TestData-2] TL-CBF spectrums: (a) original signal at 10 dB SNR, (b) after removing
first source, (c) after removing second source. Source trajectories are (20.4, 3.5) and (ϕ0, -2.5) [red
cross] where ϕ0 = 12. The estimated source trajectories are indicated by red circle in (a) and (b),

which are partially or fully removed in the subsequent spectra (b) and (c) respectively. Additionally,
the average power per sensor per snapshot (P) is provided as sources are sequentially removed.
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Figure 4.15: [TestData-2] TL-CBF spectrums: (a) original signal at 10 dB SNR, (b) after removing
first source, (c) after removing second source. Source trajectories are (20.4, 3.5) and (ϕ0, -2.5) [red
cross] where ϕ0 = 24. The estimated source trajectories are indicated by red circle in (a) and (b),

which are partially or fully removed in the subsequent spectra (b) and (c) respectively. Additionally,
the average power per sensor per snapshot (P) is provided as sources are sequentially removed.
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Figure 4.16: [TestData-2] TL-CBF spectrums: (a) original signal at 10 dB SNR, (b) after removing
first source, (c) after removing second source. Source trajectories are (20.4, 3.5) and (ϕ0, -2.5) [red
cross] where ϕ0 = 36. The estimated source trajectories are indicated by red circle in (a) and (b),

which are partially or fully removed in the subsequent spectra (b) and (c) respectively. Additionally,
the average power per sensor per snapshot (P) is provided as sources are sequentially removed.
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Figure 4.17: [TestData-2] TL-CBF spectrums: (a) original signal at 10 dB SNR, (b) after removing
first source, (c) after removing second source. Source trajectories are (20.4, 3.5) and (ϕ0, -2.5) [red
cross] where ϕ0 = 48. The estimated source trajectories are indicated by red circle in (a) and (b),

which are partially or fully removed in the subsequent spectra (b) and (c) respectively. Additionally,
the average power per sensor per snapshot (P) is provided as sources are sequentially removed.

TestData-3: In this experiment, we aim to analyze the performance of different methods
as the SNR varies from 0 to 19 dB for scenarios involving three sources. This scenario has
not been encountered by both the proposed method and the U-Net variants during training.
Two of the three sources, S1 and S2, have source trajectories of (5.5, 1.2) and (−7.5, 3.5),
respectively, and are closely positioned. In contrast, the third source, S3, has a source trajec-
tory of (60.5, 2.5) and is located far from the other two sources. The U-Net variants exhibit
almost identical average accuracy, with U-Net with l2 loss showing the highest accuracy, while
TL-CBF has the lowest accuracy among them. The average RMSE over detected sources is
minimum for TL-CBF and maximum for proposed method. Figure 4.18 illustrates the accu-
racy and average RMSE over detected sources as SNR varies. While the accuracy of each
method remains relatively consistent, the average RMSE decreases for all methods as SNR
increases from 0 to 19 dB. Throughout this range, the accuracy of U-Net variants consistently
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outperforms other methods, while TL-CBF consistently exhibits the lowest accuracy. Figure
4.19 illustrates the accuracy and average RMSE over detected sources as the RMSE thresh-
old (η) varies from 1.2 to 3.6. As the RMSE threshold (η) increases, the accuracy and average
RMSE over detected sources of each algorithm also increase. The accuracy and average RMSE
over detected sources of U-Net variants remain relatively consistent across different η values.
U-Net variants consistently achieve the highest accuracy, while TL-CBF consistently demon-
strates the lowest accuracy. Additionally, as η varies, the proposed method consistently exhibits
the maximum average RMSE over detected sources, while TL-CBF consistently demonstrates
the minimum average RMSE.
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Figure 4.18: [TestData-3] Accuracy (a) and average RMSE over detected sources (b) of various
algorithms as SNR is changed. Source trajectories are fixed to be (−60.5, 2.5), (−12.5, 3.5) and

(5.5, 1.2).
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Figure 4.19: [TestData-3] Accuracy (a) and average RMSE over detected sources (b) of various
algorithms as RMSE threshold varies (η). Source trajectories are fixed to be (−60.5, 2.5), (−12.5, 3.5)

and (5.5, 1.2).
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In Figure 4.20 (a), the amplitude relative error for the three-source scenario is depicted as
SNR varies. Notably, as SNR increases, the amplitude error for each source and its average
decreases. It is observed that the proposed method exhibits poor accuracy at lower SNR due to
the higher amplitude relative error of sources S1 and S2. This discrepancy leads to error prop-
agation during residual computation, ultimately resulting in an inability to accurately estimate
the source trajectory of S3.

Figure 4.21, 4.22, 4.23, 4.24 shows the TL-CBF spectrums for 1, 5, 10 and 15 dB SNR
respectively. S1, with a source trajectory of (−60.5, 2.5), is the strongest among all sources
and is located far from the other two sources. Following S1, S3 with a source trajectory of
(−5.5, 1.2) is stronger than S2, which has a source trajectory of (−12.5, 3.5). These figures
illustrate that the proposed method first estimates the source trajectory and amplitudes of S1,
followed by S3, and then S2. As sources are removed sequentially, the average power per
sensor per snapshot also decreases. Additionally, as SNR increases, the average power per
sensor per snapshot (P) decreases, indicating that at higher SNR levels, the method can more
effectively remove the sources sequentially.
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Figure 4.20: Amplitude relative error of the three sources scenarios as SNR (a) and ϕ0 (b) varies for
the proposed method.
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Figure 4.21: [TestData-3] TL-CBF spectrums: (a) original signal at 1 dB SNR, (b) after removing first
source, (c) after removing second source. Source trajectories are (−60.5, 2.5), (−12.5, 3.5) and

(5.5, 1.2) [red cross]. The estimated source trajectories are indicated by red circle in (a), (b) and (c),
which are partially or fully removed in the subsequent spectra (b), (c) and (d) respectively.

Additionally, the average power per sensor per snapshot (P) is provided as sources are sequentially
removed.
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Figure 4.22: [TestData-3] TL-CBF spectrums: (a) original signal at 5 dB SNR, (b) after removing first
source, (c) after removing second source. Source trajectories are (−60.5, 2.5), (−12.5, 3.5) and

(5.5, 1.2) [red cross]. The estimated source trajectories are indicated by red circle in (a), (b) and (c),
which are partially or fully removed in the subsequent spectra (b), (c) and (d) respectively.

Additionally, the average power per sensor per snapshot (P) is provided as sources are sequentially
removed.
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Figure 4.23: [TestData-3] TL-CBF spectrums: (a) original signal at 10 dB SNR, (b) after removing
first source, (c) after removing second source. Source trajectories are (−60.5, 2.5), (−12.5, 3.5) and
(5.5, 1.2) [red cross]. The estimated source trajectories are indicated by red circle in (a), (b) and (c),

which are partially or fully removed in the subsequent spectra (b), (c) and (d) respectively.
Additionally, the average power per sensor per snapshot (P) is provided as sources are sequentially

removed.
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Figure 4.24: [TestData-3] TL-CBF spectrums: (a) original signal at 15 dB SNR, (b) after removing
first source, (c) after removing second source. Source trajectories are (−60.5, 2.5), (−12.5, 3.5) and
(5.5, 1.2) [red cross]. The estimated source trajectories are indicated by red circle in (a), (b) and (c),

which are partially or fully removed in the subsequent spectra (b), (c) and (d) respectively.
Additionally, the average power per sensor per snapshot (P) is provided as sources are sequentially

removed.
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Figure 4.25: [TestData-4] Accuracy (a) and average RMSE over detected sources (b) of various
algorithms vs ϕ0. Two sources have fixed trajectories (60.5, 2.5) and (5.5, 1.2), while the third source

trajectory is (ϕ0,−3.8). The parameter ϕ0 varies with a step size of 6, ranging from −60 to 54.

TestData-4: In this experiment, our goal is to assess how different methods perform as
one of the source trajectories changes, while the trajectories of the other two sources remain
constant. Both the proposed method and U-Net variants have not encountered this three-
source scenario during training. Two sources, S1 and S2, have fixed trajectories (60.5, 2.5)

and (5.5, 1.2), respectively, with similar energy levels. The source trajectory of S3 varies as
(ϕ0,−3.8), where ϕ0 ranges from −60 to 54. As ϕ0 increases, initially, S3 moves closer to S2,
then moves away from it, and finally approaches near to S1. The proposed methods demon-
strate superior performance compared to TL-CBF, yet fall short when compared to the U-Net
variants in terms of accuracy. U-Net with l21 loss have highest accuracy, while U-Net with l21
loss have lowest average RMSE over detected sources. The proposed method have the highest
average RMSE over detected sources. In Figure 4.25, the accuracy and average RMSE over de-
tected sources are depicted as a function of ϕ0. Within the range of ϕ0 ∈ [−60,−12]∪ [24, 42],
where all sources are relatively distant from each other, all algorithms exhibit approximately
consistent accuracy with small fluctuations. In this interval, U-Net with l21 loss achieves the
highest accuracy, while the TL-CBF demonstrates the lowest accuracy. When ϕ0 falls within
the range [−6, 12], S3 is closer to S2. During this interval, the proposed method achieves the
highest accuracy, while the accuracy of the grid-based methods exhibits considerable fluctua-
tions. When ϕ0 is in the range (42, 54], S3 comes closer to S1 and the accuracy of all algorithms
decreases. The average RMSE over detected sources is highest for the proposed method as ϕ0

varies.

In Figure 4.26, the average accuracy and average RMSE over detected sources are plotted
against varying values of η. Throughout the range of η, the TL-CBF consistently exhibits
the lowest accuracy and while the proposed method exhibits the highest average RMSE over
detected sources. The U-Net variants display comparable accuracy and average RMSE across
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the range. In Figure 4.20 (b), the amplitude relative error of the three sources is depicted as a
function of ϕ0. When all sources are far apart, the relative error of each source remains small
compared to scenarios where S3 approaches either S1 or S2. Notably, the relative error of
source S3 consistently remains higher compared to S1 and S2 throughout, attributed to error
propagation during residual computation resulting from estimation errors.
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Figure 4.26: [TestData-4] Accuracy (a) and average RMSE over detected sources (b) of various
algorithms as RMSE threshold varies (η). Two sources have fixed trajectories (60.5, 2.5) and

(5.5, 1.2), while the third source trajectory is (ϕ0,−3.8). The parameter ϕ0 varies with a step size of 6,
ranging from −60 to 54.

Figure 4.27, 4.28, 4.29 and 4.30 illustrates the TL-CBF spectrum as sources are removed
using the proposed method at 5 dB SNR, corresponding to ϕ0 values of −12, 0, 48, and 54,
respectively.
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Figure 4.27: [TestData-4] TL-CBF spectrums: (a) original signal at 5 dB SNR, (b) after removing first
source, (c) after removing second source. Source trajectories are (60.5, 2.5), (5.5, 1.2) and (ϕ0, -2.5)
[red cross] where ϕ0 = −12. The estimated source trajectories are indicated by red circle in (a), (b)
and (c), which are partially or fully removed in the subsequent spectra (b), (c) and (d) respectively.
Additionally, the average power per sensor per snapshot (P) is provided as sources are sequentially

removed.
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Figure 4.28: [TestData-4] TL-CBF spectrums: (a) original signal at 5 dB SNR, (b) after removing first
source, (c) after removing second source. Source trajectories are (60.5, 2.5), (5.5, 1.2) and (ϕ0, -2.5)
[red cross] where ϕ0 = 0. The estimated source trajectories are indicated by red circle in (a), (b) and

(c), which are partially or fully removed in the subsequent spectra (b), (c) and (d) respectively.
Additionally, the average power per sensor per snapshot (P) is provided as sources are sequentially

removed.
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Figure 4.29: [TestData-4] TL-CBF spectrums: (a) original signal at 5 dB SNR, (b) after removing first
source, (c) after removing second source. Source trajectories are (60.5, 2.5), (5.5, 1.2) and (ϕ0, -2.5)
[red cross] where ϕ0 = 48. The estimated source trajectories are indicated by red circle in (a), (b) and

(c), which are partially or fully removed in the subsequent spectra (b), (c) and (d) respectively.
Additionally, the average power per sensor per snapshot (P) is provided as sources are sequentially

removed.
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Figure 4.30: [TestData-4] TL-CBF spectrums: (a) original signal at 5 dB SNR, (b) after removing first
source, (c) after removing second source. Source trajectories are (60.5, 2.5), (5.5, 1.2) and (ϕ0, -2.5)
[red cross] where ϕ0 = 54. The estimated source trajectories are indicated by red circle in (a), (b) and

(c), which are partially or fully removed in the subsequent spectra (b), (c) and (d) respectively.
Additionally, the average power per sensor per snapshot (P) is provided as sources are sequentially

removed.
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4.4 Summary

In this chapter, we discuss about two primary contributions aimed at addressing the prob-
lem of DOA trajectory estimation. Firstly, we introduce a deep complex network designed
to estimate source amplitudes and trajectory parameters without relying on a grid-based ap-
proach. Secondly, this network is engineered to specifically estimate parameters for the single
(strongest) source which makes the network re-useable and allows for sequential source estima-
tion. Simulation results indicate that the proposed method is able to estimate multiple sources
and future refinements in the network architecture or training strategies may be explored to
mitigate the effects of error propagation and enhance accuracy in such scenarios.
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Chapter 5

Conclusions

The thesis begins by addressing a critical issue in existing methods, which often struggle
to generalize well to non-ideal behaviors such as uncertain noise characteristics. Additionally,
most methods predominantly employ block-level processing assuming static DOA within each
block (multiple measurements). This is effective for slow-moving targets, but may not be opti-
mal for scenarios involving fast motion. To address the dynamic behavior of sources within a
block, we acknowledge the work by authors in [39] which incorporates the linear DOA motion
across snapshots within a block and devise grid-based trajectory localization (TL) algorithms,
namely conventional beamforming (TL-CBF) and Sparse Bayesian learning (TL-SBL).

We propose two distinct solutions to address this issue: one employs a grid-based approach,
while the other adopts a grid-free strategy. Firstly, for the grid-based solution, we introduce
the utilization of the U-Net architecture for DOA trajectory estimation using an RMSE-based
target map. This involves developing a neural network specifically designed to enhance low-
resolution TL-CBF spectra, transforming them into high-resolution counterparts. The neural
network, by harnessing the latent information, aims to enhance peak resolution and, conse-
quently, improve the localization accuracy by allowing precise identification of source trajec-
tories. This showcases remarkable generalization capabilities, effectively adapting to scenarios
with differing numbers of sources, even those not encountered during the training phase. Sec-
ondly, we develop a deep complex-valued neural network to estimate source amplitudes (per
snapshot) and trajectory parameters in a grid-free manner which eliminates the need for prede-
fined grids. This network estimates the parameters of the strongest source, making the network
reusable and enabling sequential source estimation. The choice of a complex-valued neural
network is deliberate, as it offers enhanced capabilities for handling complex data. This ap-
proach represents a departure from traditional grid-based methods, offering a more scalable
and versatile solution for DOA estimation.
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5.1 Future Work

For the grid-based solution, further exploration could involve the development of novel
architectures integrating attention mechanisms. Additionally, leveraging vision transformers
could be investigated to transform low-resolution spectra into high-resolution counterparts, fa-
cilitating precise peak identification even in low SNR scenarios. Extending this solution to
handle multi-frequency TL-CBF spectrum would significantly broaden the applicability and
robustness of the grid-based approach. This expansion would enable the system to adapt to
diverse environmental conditions and effectively capture the complexities of real-world sce-
narios, thereby enhancing its utility in practical applications such as surveillance, communica-
tion, and navigation systems. For the grid-free approach, efforts can be made to mitigate the
effects of error propagation during the residual calculation process. This could involve refining
the network architecture or enhancing training strategies to achieve better error handling and
minimize inaccuracies. By optimizing these aspects, the grid-free approach has the potential to
achieve improved accuracy, potentially surpassing the performance of the grid-based approach.
Another avenue for research lies in addressing non-linear trajectories.
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