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Abstract

In earlier times, computer systems had only a single core or processor. In these computers, the num-
ber of transistors on-chip (i.e. on the processor) doubled every two years and all applications enjoyed
free speedup. Subsequently, with more and more transistors being packed on-chip, power consump-
tion became an issue, frequency scaling reached its limits and industry leaders eventually adopted the
paradigm of multi-core processors. Computing platforms of today have multiple cores and are parallel.
CPUs have multiple identical cores. A GPU with dozens to hundreds of simpler cores is present on
many systems. In future, other multiple core accelerators may also be used.

With the advent of multiple core processors, the responsibility of extracting high performance from
these parallel platforms shifted from computer architects to application developers and parallel algo-
rithmists. Tuned parallel implementations of several mathematical operations, algorithms on graphs or
matrices on multi-core CPUs and on many-core accelerators like the GPU and CellBE, and their com-
binations were developed. Parallel algorithms developed for multi-core CPUs primarily focussed on
decomposing the problem into a few independent chunks and using the cache efficiently. As an alter-
native to CPUs, Graphics Processing Units (GPUs) were the other most cost-effective and massively
parallel platforms, that were widely available. Frequently used algorithmic primitives such as sort, scan,
sparse matrix vector multiplication, graph traversals, image processing operations etc. among others
were efficiently implemented on GPU using CUDA. These parallel algorithms on the GPU decomposed
the problem into a sequence of many independent steps operating on different data elements and used
shared memory effectively.

But the above operations – statistical, or on graphs, matrices and list etc. – constitute only portions
of an end-to-end application and in most cases these operations also provide some inherent parallelism
(task or data parallelism). The problems which lack such task or data parallelism are still difficult to map
to any parallel platform, either CPU or GPU. In this thesis, we consider a few such difficult problems –
like Floyd-Steinberg Dithering (FSD) and String Sorting – that do not have trivial data parallelism and
exhibit strong sequential dependence or irregularity. We show that with appropriate design principles
we can find data parallelism or fine-grained parallelism even for these tough problems. Our techniques
to break sequentiality and addressing irregularity can be extended to solve other difficult data parallel
problems in the future. On the problem of FSD, our data parallel approach achieves a speedup of 10×
on high-end GPUs and a speedup of about 3− 4× on low-end GPUs, whereas previous work by Zhang
et al. dismiss the same algorithm as lacking enough parallelism for GPUs. On string sorting, we achieve
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a speedup of around 10 − 19× as compared to state-of-the-art GPU merge sort based methods and our
code will be available as part of standard GPU Library (CUDPP).

It is not enough to have a truly fine-grained parallel alogrithm for only a few operations. Any end-
to-end application consists of many operations, some of which are difficult to execute on a fine-grained
parallel platform like GPU. At the same time, computing platforms consist of CPU and a GPU which
have complementary attributes. CPUs are suitable for some heavy processing by only a few threads
i.e. they prefer task parallelism. GPUs is more suited for applications where large amount of data
parallel operations are performed. Applications can achieve optimal performance by combining data
parallelism on GPU with task parallelism on CPU. In this thesis, we examine two methods of combining
data parallelism and task parallelism on a hybrid CPU and GPU computer system: (i) pipelining and
(ii) work sharing. For pipelining, we study the Burrows Wheeler Compression (BWC) implementation
in Bzip2 and show that best performance can be achieved by pipelining its different stages effectively.
In contrast, a previous GPU implementation of BWC by Patel et al. performed all the tasks (BWT, MTF
and Huffman encoding) on the GPU and it was 2.78× slower than CPU. Our hybrid BWC pipeline
performs about 2.9× better than CPU BWC and thus, about 8× faster than Patel et al. For work sharing,
we use FSD as an example and split the data parallel step between CPU and GPU. The Handover and
Hybrid FSD algorithms, which use work sharing to exploit computation resources on both CPU and
GPU, are faster than the CPU alone and GPU alone parallel algorithms.

In conclusion, we develop data parallel algorithms on the GPU for difficult problems of Floyd-
Steinberg Dithering, String Sorting and Burrows Wheeler Transform. In earlier literature, simpler prob-
lems which provided some degree of data parallelism were adapted to the GPUs. The problems we
solve on GPU involve challenging sequential dependency and/or irregularity. We show that in addition
to developing fast data parallel algorithms on GPU, application developers should also use the CPU
to execute tasks in parallel with GPU. This allows an application to fully utilize all resources of an
end-user’s system and provides them with maximum performance. With computing platforms poised
to be predominantly hetergoneous, the use of our design principles will prove critical in obtaining good
application level performance on these platforms.



Contents

Chapter Page

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Design Principles for Data Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Breaking Sequentiality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Addressing Irregularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Combining Data Parallelism and Task Parallelism . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Work Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 GPU and Hybrid Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 GPU Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Hybrid Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Error Diffusion Dithering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Floyd-Steinberg Dithering Algorithm . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Previous work on Parallel FSD . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Finding Parallelism in FSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Coarse Parallel FSD Algorithm on CPU . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Fine-Grained Data Parallel FSD Algorithm on GPU . . . . . . . . . . . . . . . . . . . 17

3.4.1 Addressing Uncoalesced Memory Access . . . . . . . . . . . . . . . . . . . . 18
3.5 Mixing Task Parallelism and Data Parallelism for FSD . . . . . . . . . . . . . . . . . 19

3.5.1 Handover FSD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5.2 Hybrid FSD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6.1 Results: Coarse Parallel FSD on CPU . . . . . . . . . . . . . . . . . . . . . . 21
3.6.2 Results: Fine-grained Parallel FSD on GPU . . . . . . . . . . . . . . . . . . . 21
3.6.3 Results: Handover FSD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6.4 Results: Hybrid FSD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 String Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 CPU String Sorting Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 26

viii



CONTENTS ix

4.1.2 GPU String Sorting Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Radix Sort Based String Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Singleton Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Optimal Key Length and Adaptive Segment Ids . . . . . . . . . . . . . . . . . 30

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.1 Thrust performance on varying key size . . . . . . . . . . . . . . . . . . . . . 32
4.3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.3 Performance of our GPU String Sort . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.4 Comparison to Davidson et al. [17] . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.5 Performance on the Kepler GPU . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.6 Comparison with CPU Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.7 Performance with After-Sort Tie Length . . . . . . . . . . . . . . . . . . . . . 38

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Lossless Data Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.1 Burrows Wheeler Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.2 Sequential Burrows Wheeler Compression . . . . . . . . . . . . . . . . . . . 43
5.1.3 Parallel Burrows Wheeler Compression . . . . . . . . . . . . . . . . . . . . . 44

5.2 CPU and GPU Hybrid BWC Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.1 Modified String Sort for BWT . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2.2 String Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2.3 Mixing Data Parallelism with Task Parallelism: Hybrid BWC Algorithm . . . 47

5.3 The All-Core Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3.1 BWC in All-Core Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3.2 BW Decompression in All-Core Framework . . . . . . . . . . . . . . . . . . . 51

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.1 Results: GPU BWT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4.2 Results: Hybrid BWC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4.3 Results: All-Core BWC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



List of Figures

Figure Page

1.1 Outline of the Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 The Dithered (2 Color) Image is a much better approximation of Input (256 Color)
Image as compared to naive Threshold (2 Color) Image. . . . . . . . . . . . . . . . . . 13

3.2 Flow of errors in Floyd-Steinberg Dithering. . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Each box is a pixel and label n denotes the iteration in which the pixel can be scheduled

for processing. All pixels of same label are independent of each other. . . . . . . . . . 15
3.4 Block structure and their dependency in Coarse Parallel FSD algorithm on CPU. . . . . 16
3.5 Knight’s order storage for an image, here p indicates primal block. . . . . . . . . . . . 18
3.6 FSD using both CPU and GPU. The pixels processed by CPU are shown in blue and

green and pixels processed by GPU are white regions within the image. . . . . . . . . 19
3.7 FSD sequential implementation timings (in milliseconds). . . . . . . . . . . . . . . . . 20
3.8 Runtime (in milliseconds) for Coarse Parallel FSD on CPU. . . . . . . . . . . . . . . 21
3.9 CPU-GPU Handover times (in milliseconds) for different # iterations processed on CPU

at the start and end. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.10 Runtime (in milliseconds) for CPU-GPU Handover FSD algorithm on different images. 22
3.11 CPU-GPU Hybrid FSD times (in milliseconds) for different width of pixel boundary

processed on CPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.12 Runtime (in milliseconds) for CPU-GPU Hybrid FSD algorithm on different images. . 24
3.13 Various types of Data Dependencies and resulting parallelism. Pixels shaded with the

same color can be processed together in parallel. . . . . . . . . . . . . . . . . . . . . . 24

4.1 The strings in the global string are delimited by null characters. The pointer array con-
tains indices of the starting position of each string in the global string array. This pointer
array is shuffled during the sort to obtain the sorted order of strings. The example we
consider in this paper contains the set of strings : radix, computer, radar, parallel,
partition, particle, graph, compact. We use this same set of strings to illustrate our
sorting procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Illustration of our basic GPU sorting algorithm. In this example, we load two-character
prefix strings in each step. The steps of fixed-length sorting, removing singletons, gen-
erating segment ids and loading successive prefix strings are performed until we obtain
the final output (i.e. all strings are singletons). . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Performance of Thrust’s fixed-length sort primitive with varying key length. . . . . . . 32
4.4 Achieved vs. Expected runtime (in milliseconds) for our radix sort based GPU string

sorting algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

x



LIST OF FIGURES xi

4.5 The % of total time (w/o memory setup) used for execution by the Thrust sort, scatter
and scan primitives. On an average, 70% of the total time is utilized by Thrust primitives. 37

4.6 Speedup by using our GPU string sorting algorithm against state-of-the-art CPU algo-
rithms for string sort. For these experiments, we use the Nvidia GTX 580 GPU and Intel
Core2Duo E7500 CPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.7 In this figure, we vary the deviation of the sorted ties histogram for two datasets: words
(less ties) and pc-filelist (high ties). To reduce the deviation by a factor of k, we take
every kth character of each string. To increase deviation by a factor of k, each character
of the string is replicated k times. The runtimes for our GPU algorithm are indicated in
the legend. Datasets having histograms with low deviation are easier to sort than those
with high deviation. The runtime varies linearly with the change in deviation, indicating
we can even handle inputs with high ties as efficiently as possible. . . . . . . . . . . . 39

5.1 Illustration of the Burrows Wheeler Transform on the input string banana. . . . . . . . 43
5.2 Performance benefits of Doubling and Partial Sort & Merge optimization. . . . . . . . 45
5.3 An illustration of the CPU+GPU hybrid BWC pipeline. The merge, MTF and Huffman

steps are done on the CPU in a fully overlapped manner with the partial sorts on the
GPU of succeeding block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Work Queue based all-core framework. . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.5 The performance of our GPU BWT vs. CPU BWT (Bzip2) for different block sizes and

on datasets with different maximum/average sorting depths (MSD/ASD). GPU BWT is
2× faster on large block sizes for enwik8 and wiki-xml datasets. The GPU performance
degrades on very high sorting depth datasets (viz. linux-2.6.11.tar) which is addressed
using string perturbation (bottom right). With increase in % of string perturbation the
sorting depth reduces, and for very high sorting depth (worst-case) linux dataset, beyond
0.01% perturbation the GPU BWT achieves a speedup over CPU. . . . . . . . . . . . 52

5.6 Our hybrid BWC (with 9MB blocks) pipeline performs marginally better than CPU
BWC with 900KB blocks (which does much less work) and gives max. 2.9× speedup
when compared to CPU BWC with 9MB blocks. Using 9MB blocks also gives some
gain in compression ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.7 The decompression time (about 7s) is relatively small as compared to the compression
time (about 30s) for wiki-xml dataset. The runtime increases slightly with increase in
block size and % perturbation does not affect the decompression runtime. . . . . . . . 55



List of Tables

Table Page

4.1 Details of the datasets used in our experiments. We create and use sentences and pc-
filelist to particularly benchmark our code on typical datasets with high number of ties.
The other datasets are standard datasets used in previous string sorting literature [37, 73]. 33

4.2 Comparison of runtime (in milliseconds) of the Thrust Comparator based string sort
and our GPU string sort. The table shows the split in runtimes for different steps of our
string sorting algorithm. The value α = (t1 + t2 + t3)/t1. . . . . . . . . . . . . . . . 33

4.3 Comparison of runtime (in milliseconds) of our GPU string sorting algorithm with and
without the optimization of singleton removal. To decouple the optimizations and study
them separately we maintain a fixed segment id size in above experiments. The runtime
improves with singleton removal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Comparison of runtime (in milliseconds) of our GPU string sorting algorithm with and
without the optimization of adaptive size for segment bytes. This shows that our adap-
tive scheme reduces the number of iterations and provides us a significantly better runtime. 36

4.5 Comparison of runtime (in milliseconds) on the Kepler K20C and GTX 580 GPU. pc-
filelist dataset is replicated twice (≈ 20Mstrings) to create pc-filelist ×2. K20C can
process this large input because of its high global memory, which is not possible on
GTX 580. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 This table shows impact of block size, string perturbation on runtime and compressed
file size (CPU BWC runtime is that of the standard Bzip2 and the GPU BWC runtime
is that of our hybrid BWC implementation). Bold values indicate cases where we get
either better compression and/or runtime compared to the baseline i.e. standard CPU
BWC on the default 900KB blocks (denoted by underline). . . . . . . . . . . . . . . . 53

5.2 For this table, we use a high-end system with Intel Core i7 CPU and Nvidia GTX 580
GPU. The table shows runtime for all-core BWC (CPU+GPU) and multi-core BWC
(CPU only). We use 9MB blocks and 0.1% perturbation, best runtime for each dataset
is indicated in bold. We achieve 3.06× speedup with multi-core BWC, which improves
to 4.87× with our all-core BWC. Also, if we compare n CPU threads to n − 1 CPU
threads and 1 CPU+GPU thread, the runtimes of latter are better. This again shows our
hybrid BWC is faster than CPU BWC. . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xii



LIST OF TABLES xiii

5.3 For this table, we use a low-end Intel Core2Duo E6750 CPU, Nvidia Quadro FX 3700
(low-end) and Nvidia GTX 280 (medium-end) GPUs. The table shows runtimes for
all-core BWC (CPU+GPU) and multi-core BWC (CPU only). We use 9MB blocks and
0.1% perturbation, best runtimes for each dataset are indicated in bold. Using all-core
BWC on both these setups, allows us to improve on the speedup achieved by the multi-
core BWC (except for linux dataset). . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



Chapter 1

Introduction

In earlier times, computer systems had only a single core or processor. The number of transistors
on-chip (i.e. on the processor) doubled every two years. Intelligent use of these transistors by computer
architects led to faster hardware. The clock speed of these processors kept improving. As a result, all
applications enjoyed free speedup (popularly known as free ride [53]) every few years. This phenomena
was termed as the Moore’s Law. With more and more transistors being packed on-chip, power con-
sumption became an issue, frequency scaling reached its limits and industry leaders eventually adopted
the paradigm of multi-core processors [3]. Computing platforms of today have multiple cores and are
parallel. CPUs have multiple identical cores. A GPU with dozens to hundreds of simpler cores is present
on many systems. In future, other multiple core accelerators may also be used.

With the advent of multiple core processors, the responsibility of extracting high performance from
these parallel platforms shifted from computer architects to application developers and parallel algo-
rithmists. Tuned parallel implementations of several mathematical operations, algorithms on graphs or
matrices on multi-core CPUs and on many-core accelerators like the GPU and CellBE, and their com-
binations were developed [4, 36, 45, 82]. Intel Math Kernel Library [36] was developed as a suite of
standard operations viz. fast fourier transform, LU, Cholesky and QR decomposition, random number
and probability distribution generator, splines and interpolation etc. that made the best use of multi-core
CPU to provide optimum performance. Parallel algorithms developed for multi-core CPUs primarily
focussed on decomposing the problem into a few independent chunks and using the cache efficiently.
The development of a framework like CUDA for GPUs, made it possible to express data parallelism
easily. This allowed computation resources on graphics processors to be useful for general purpose op-
erations. Frequently used algorithmic primitives such as sort [70, 14, 28, 27], scan [70], sparse matrix
vector multiplication [6], graph traversals [29] among others were efficiently implemented on GPU us-
ing CUDA. A suite of statistical, data structures, arithmetic, image, signal processing related primitives
for the GPU, similar to Intel MKL, was developed and distributed with NvPP [59] and other libraries
viz. Thurst [32], CUDPP [16]. These parallel algorithms on the GPU decomposed the problem into a
sequence of many independent steps operating on different data elements. These steps could be per-
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formed on multiple simple cores of the GPU and they used the shared memory (for every small group
of threads) effectively.

But the above operations – statistical, or on graphs, matrices and list etc. – constitute only portions
of an end-to-end application and in most cases these operations also provide some inherent parallelism
(task or data parallelism). Matrix operations like QR decomposition, matrix multiplication or sparse
matrix vector multiplication involved performing same operations across different data elements of the
matrix. Though the nodes vary at every step, many graph traversals involved performing the same
operations on different nodes without any dependence between the nodes at every step. Many image
processing operations such as filtering, color conversion, fast fourier transform were by its very nature
data parallel, i.e. operations on all pixels were independent of each other. This led to these operations
being amongst the ones adapted early to all available parallel platforms. But, the problems which lack
such task or data parallelism are still difficult to map to any parallel platform, either CPU or GPU. In this
thesis, we consider a few such difficult problems – like Floyd-Steinberg Dithering and String Sorting
– that do not have trivial data parallelism and exhibit strong sequential dependence or irregularity. We
show that with appropriate design principles we can find data parallelism or fine-grained parallelism
even for these tough problems. Also, for high performance in applications, it is not sufficient to have
only a data parallel algorithm for some step. An application will consist of many other sequential steps.
The best performance can be achieved by combining the data parallel step on the GPU with other steps
on CPU using task parallelism, as is demonstrated for Floyd-Steinberg Dithering and Lossless Data
Compression in this thesis. In addition to finding data parallelism for difficult problems, the focus of
this thesis is to examine the techniques of achieving the right mix of data parallelism and task parallelism
on a hybrid CPU and GPU computer system. By a hybrid CPU and GPU system, we mean a computer
system which consists of a multi-core CPU and a many-core GPU. In Section 1.1 we examine the design
principles to obtain data parallelism on difficult problems and Section 1.2 talks about our methods to
combine data parallel algorithm with task parallelism for maximum performance on a hybrid CPU and
GPU system.

1.1 Design Principles for Data Parallelism

The difficulty to get good performance on end-to-end application using data parallelism results from
the fact that most applications have operations which are inherently sequential or irregular. We develop
design principles to break sequentiality (Section 1.1.1) and address irregularity (Section 1.1.2). On
problems that are inherently sequential, it is difficult to identify independent operations on different data
elements. For irregular problems, it is difficult to allocate appropriate quantity of work to every thread
such that the load is balanced. Thus, developing fast implementations which exploit the parallelism
of many-core GPU is difficult for problems with sequentiality and irregularity. They lack the inherent
parallelism that was found in simpler operations on matrices, signals and graphs which were ported to
GPUs easily. In this thesis, we develop data parallel algorithms and some design principles for these
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difficult problems. Our design principles allow us to extract fine-grained parallelism, even on problems
which show the characteristics of sequentiality and/or irregularity.

1.1.1 Breaking Sequentiality

The Error Diffusion Dithering application, specifically Floyd-Steinberg Dithering (FSD) algorithm,
exhibits sequentiality. In Chapter 3, we develop parallel algorithm for FSD and solve the problem of se-
quentiality. We note that, though error distribution scheme of FSD implies a dependency of even the last
pixel on the first, our analysis allows us to find pixels that can be processed independently. This error
distribution scheme imposes a constraint that pixels separated by a knight’s move can be processed inde-
pendently. We start with a wavefront at top left of the image and process a knight’s move pixel boundary
per iteration in parallel. We perform these parallel processing steps on the independent pixels till we
reach the bottom right of image (and achieve the final output). Our data parallel approach achieves a
speedup of 10× on high-end GPUs and a speedup of about 3− 4× on low-end GPUs (Figure 3.10 and
3.12). The pattern of data dependency that is found in FSD is commonly observed in many dynamic
programming problems. Most Dynamic Programming problems involve filling a matrix such that any
element is dependent on some or all of its neighbors and the final answer is obtained after processing
the last element. The operations at each element can also be non-linear. This is similar to the threshold
step of FSD. Techniques, similar to the ones developed by us viz. tiling, coalesced memory accesses etc.
have been applied for mapping the problems of Dynamic Programming to the GPU [80]. Thus, beyond
high performance on the application of FSD, the use of our techniques can also help accelerate many
Dynamic Programming applications using GPU. There are also other image processing operations such
as causal filtering, summed area tables etc. which exhibit the same sequentiality as FSD. Our techniques
can be extended to develop efficient solutions for these problems.

1.1.2 Addressing Irregularity

String sorting involves sorting long and mostly variable length keys. Since any two given keys match
to different lengths, the work performed by any two threads is not uniform. Also, arbitrary memory ac-
cesses need to be performed depending on the ordering between the input keys. Algorithms where work
given to different threads is different and the memory accesses are arbitrary depending on the input, are
popularly known as irregular algorithms. Thus, string sorting exhibits the characteristics of an irregular
algorithm. In Chapter 4, we develop a fast parallel algorithm for this irregular problem of string sorting.
The approach we develop involves mapping the operations of string sort to fast standard primitives of
fixed-length sort, scatter and scan. Highly tuned implementations are available on the GPUs for all
these standard primitives and their use provides high performance in any application. The challenges
of irregularity are efficiently handled within these primitives. For example, in radix sort developed by
Merrill and Grimshaw [55], they carefully design it to be compute bound and hide the latency incurred
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on account of arbitrary memory accesses during shuffling of buckets. We leverage the intelligent design
of primitives and map the original irregular problem to a sequence of steps involving only standard prim-
itives (which have an efficient solution). This primitive-based approach will allow for fast development
of parallel and high performing applications for many other irregular problems. Also, any improvements
to the primitives will be directly inherited by these applications without requiring re-design. Our string
sort approach achieves a speed up of around 10− 19× as compared to state-of-the-art GPU merge sort
based methods on difficult datasets (Table 4.2). We extend our string sorting algorithm to efficiently
solve another irregular problem of Burrows Wheeler Transform in Chapter 5. Our Burrows Wheeler
Transform implementation is the first to achieve speed up on the GPU (Figure 5.5).

1.2 Combining Data Parallelism and Task Parallelism

It is not enough to have a truly fine-grained parallel algorithm for only a few operations. Any end-
to-end application consists of many operations, some of which are difficult to execute on a fine-grained
parallel platform like GPU. At the same time, computing platforms consist of CPU and a GPU which
have complementary attributes. CPUs are optimized for running a sequential code, most of the hard-
ware (or transistors) are dedicated to finding instruction level parallelism, perform branch prediction
etc. CPUs are suitable for some heavy processing by only a few threads i.e. they prefer task parallelism.
The sequential portions of the application should thus be performed on CPUs. In GPUs, most transistors
are used for more direct problem solving purposes. Thus GPUs offer high performance benefits using
all these transistors for data parallel operations. Applications can achieve optimal performance by com-
bining data parallelism on GPU with task parallelism on CPU. In this thesis, we examine two methods
of combining data parallelism and task parallelism on a hybrid CPU and GPU computer system: (i)

pipelining (Section 1.2.1) and (ii) work sharing (Section 1.2.2).

1.2.1 Pipelining

As discussed earlier, an end-to-end application is typically made up of many tasks. Not all tasks
are amenable for fine-grained parallel processing by the GPU. An end-to-end application can achieve
maximum throughput by mapping each of its tasks to the appropriate compute platform and overlapping
them efficiently. This task scheduling or pipelining leads to optimal resource utilization and provides
maximum throughput. In Chapter 5, we take a look at the commonly used end-to-end application of
Lossless Data Compression. We study the Burrows Wheeler Compression (BWC) implementation in
Bzip2 and show that best performance can be achieved by pipelining its different stages effectively. For
compute intensive tasks (i.e. BWT) we develop a data parallel algorithm on GPU and we perform other
tasks (merge, MTF, Huffman encoding) on CPU. We efficiently overlap the CPU and GPU computations
and ensure that resources do not remain idle. In contrast, a previous GPU implementation of BWC by
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Figure 1.1: Outline of the Thesis.

Patel et al. [62] performed all the tasks (BWT, MTF and Huffman encoding) on the GPU. Each of the
task was slower on the GPU and their resulting implementation was about 2.78× slower than CPU.
Using our pipelining strategies we develop a hybrid BWC and achieve a 2× speedup over CPU on
the same problem (Figure 5.6). This hybrid BWC approach uses only a single CPU core, whereas the
CPU still has more cores. To use them effectively, we perform BWC tasks on a few blocks (using best
sequential implementation of BWC) on idle CPU cores in parallel with our hybrid BWC. We call this the
all-core BWC, which uses all cores of the CPU as well as the many core GPU. We improve nearly 2×
speedup using hybrid BWC to 4.87× with our all-core BWC on a high-end platform. Detailed results
for all-core BWC could be found in Table 5.2 and 5.3.

1.2.2 Work Sharing

If the data-parallel step is performed on the GPU alone and the problem does not have enough number
of other tasks, the CPU will remain idle. In such a scenario, we can split the data parallel step between
CPU and GPU itself. This leads to none of the resources remaining idle and provides better throughput
for the problem at hand. In Chapter 3, for the problem of FSD, we first develop a data parallel algorithm
using data-dependency to our advantage. We observe that the parallelism is low towards the start and
end for this data parallel algorithm. We solve these low parallelism portions on the CPU and GPU solves
only the high parallelism portions. This is called the Handover FSD algorithm. We further extend this
to the Hybrid FSD algorithm. In Hybrid FSD algorithm, the CPU does a portion of the work even when
GPU is operating in the high parallelism region. This Hybrid algorithm involves concurrent processing
by both CPU and GPU. Though a transfer of few bytes of memory is required per iteration to keep the
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CPU and GPU synchronized, we show that the overall performance improves even with the memory
transfer overhead. Since we split the same data parallel FSD step across CPU and GPU, we call this
work sharing instead of pipelining. This extension is also possible for the problem of string sorting.
We can split the buckets for sorting between CPU and GPU, either at the start or after every iteration.
The buckets could be split depending on the relative speeds of processing of the two processors. This
string sort which uses both CPU and GPU will provide even better performance than the current GPU
alone algorithm. Similar to string sort, our idea of work sharing can be extended to other data parallel
algorithms in the future. Today, there is an increased interest in unifying the virtual memory address
space for CPU and GPU. This unification will make memory transfer between CPU and GPU even faster
making work sharing data parallel algorithms necessary for high performance.

1.3 Outline

The outline of this thesis is given in Figure 1.1. We develop data parallel algorithms to address
sequentiality and irregularity. We combine these data parallel algorithms with task parallelism to get
the best results on a hybrid CPU and GPU computer system. Chapter 3 has details of our data par-
allel algorithm for Floyd-Steinberg Dithering (FSD) which exhibits the characteristic of sequentiality.
Chapter 4 describes our data parallel algorithm for String Sorting which is an irregular algorithm. The
String Sorting algorithm is further extended to perform difficult Burrows Wheeler Transform (BWT)
and then finally, Burrows Wheeler Compression (BWC) in Chapter 5. We show that for BWC, efficient
pipelining of tasks is critical to achieve good performance. Chapter 3 also describes our techniques for
splitting the data parallel algorithm of FSD and performing some work on the CPU using work sharing.
In both cases, FSD and BWC, the algorithms that use both the CPU and GPU efficiently (indicated by
red boxes in Figure 1.1) give the best performance.

1.4 Contributions

The major contributions of this thesis are as follows:

1. We develop data parallel algorithms on the GPU for difficult problems of Floyd-Steinberg Dither-
ing, String Sorting and Burrows Wheeler Transform. In earlier literature, simpler problems which
provided some degree of data parallelism were adapted to the GPUs. The problems we solve on
GPU involve challenging sequential dependency and/or irregularity.

2. We develop a coarse parallel algorithm for FSD on CPU and a data parallel algorithm for FSD on
GPU. We utilize the complementary attributes of CPU and GPU to share the work of data parallel
step between both. The Hybrid and Handover FSD algorithms which perform this work sharing
achieve better performance than the CPU only and GPU only parallel FSD algorithms.
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3. The string sorting algorithm developed by us outperforms the state-of-the-art string sorting ap-
proach on GPU by a large margin. String sorting is a vital primitive in many applications like
compression, pattern matching, data mining etc. and our work will help accelerate them all.

4. We use our GPU string sort and develop additional techniques on top of it to perform suffix sort
step of Burrows Wheeler Transform (BWT) on GPU. Our BWT implementation achieves speedup
on GPU for the first time.

5. We efficiently pipeline the GPU BWT step with other steps of Burrows Wheeler Compression
(BWC) on CPU. Our pipelined BWC implementation outperforms the highly tuned CPU imple-
mentation in Bzip2. BWC is routinely used by end-users and our code will be beneficial to them.

6. We show that in addition to developing fast data parallel algorithms on GPU, application develop-
ers should also use the CPU to execute tasks in parallel with GPU. This allows an application to
fully utilize all resources of an end-user’s system and provides them with maximum performance.
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Chapter 2

GPU and Hybrid Computing

Graphics applications traditionally required high computation and they also exhibited data paral-
lelism in all their operations. Dedicated hardware called Graphics Processing Units (GPUs) were de-
veloped to serve the needs of these graphics applications. The operations performed during graphics
pipeline were fixed and could be hardwired into the graphics processor. Thus, initial GPUs were fixed
function and allowed no flexibility in performing computations. A few graphics systems viz. Pixar’s
RenderMan showed the benefits of allowing flexibility in computations. With more flexibility being
added to GPUs, general purpose computations also became possible on graphics processors. Graphics
Processing Units (GPUs) became cost-effective, massively parallel platforms available. Researchers
have thus always been interested in harnessing their power for general purpose computation. Prior to
development of frameworks such as CUDA [58], people programmed the shaders in a graphics pipeline
intelligently to perform general purpose computations. With CUDA it became easier to express data
parallelism and exploit the computation resources on the graphics processor for general purpose com-
putations. Since then there has been growing interest in developing data parallel algorithms on the GPU
platform. In this chapter, we will first look at data parallel algorithms that were developed only for the
GPU alone. The work done in this area falls in the category of GPU Computing (Section 2.1). After
that, we also look at algorithms that used both GPU and the controlling CPU for additional performance
benefits. This paradigm of using CPU along with its co-processor GPU for computation is popularly
known as Hybrid Computing (Section 2.2). This chapter only consists related work for the broader areas
of GPU and Hybrid computing, the relevant related work for each chapter has been discussed in each
of the chapters. The techniques we develop to address irregularity and break sequentiality and solve
problems of Floyd-Steinberg Dithering and String Sorting, are a contribution to the area of GPU Com-
puting. Our work in pipeline and work-sharing for fast performance on Burrows Wheeler Compression
and Floyd-Steinberg Dithering, extends the ideas in Hybrid Computing literature.
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2.1 GPU Computing

Horn developed the first scan primitive for GPU architecture [35]. They used the Brook programming
language (predecessor to CUDA, OpenCL) to implement their scan, which provided limited features.
They proposed more flexibility required from the GPU architecture such as central running sum registers
and ability to send data to other parts of frame buffer etc. This and other similar work (on GPUs with
limited support for data parallelism) were important in arriving upon ideas that constituted a useful
data parallel framework like CUDA. Sengupta et al. later developed the first work optimal O(N) scan
algorithm on the GPU. They exploited the features offered by CUDA viz. shared memory, synchronized
thread warp etc. for high performance. Their scan primitive was useful in developing fast solutions
for many other problems such as quicksort, sparse matrix vector multiplication and tridiagonal matrix
solver [70].

Sorting is a fundamental operation in computer science. It was critical to develop sorting algorithms
for the GPU. Sorting is a frequently occurring primitive in most applications and sending data to-and-fro
between CPU and GPU for every sort operation (so that sort could be performed on CPU) would be an
expensive overhead. It would have hampered the use of GPUs for general purpose computation. Thus,
there was high interest and vast literature for developing sorting algorithms on the GPU platform. The
earliest sorting algorithms on GPUs involved using a sorting network which solved the problem in fixed
steps and with fixed parallelism [9, 13, 40, 64]. After this, Kipfer and Westermann [41] made better use
of GPUs computational resources and showed improvements over the bitonic sort of Buck and Purcell
[9]. Their sorting algorithm preserved the sorted order of nearly sorted arrays, thus offering additional
benefits. Sengupta et al. [70] using their scan primitive, for the first time, developed a CUDA accelerated
GPU version of quicksort and radix sort. Their quicksort was much slower than radix sort. Then,
Cederman and Tsigas [14] developed a fast quicksort on GPU that outperformed the previous state-of-
the-art quicksort and bitonic sort implementations of Sengupta et al. [70] and Kipfer and Westerman [41]
respectively . They minimize the book keeping and inter-block synchronization required in earlier GPU
quicksort for fast performance. Satish et al. developed the fastest radix sort on GPU which outperformed
an 8-core CPU by 4× [69]. They carefully designed their radix sort to have high fine-grained parallelism
and they also reduced the global communication required between threads. In the same article, Satish
et al. also presented a GPU merge sort algorithm. Though, their GPU merge sort was slower than
radix sort, it was still the fastest comparison based sorting algorithm presented. Merrill and Grimshaw
improved upon the radix sort of Satish et al. by mapping the operations to fast scan primitives [56]. Their
radix sort adjusted its granularity (digit size) adaptively to fit the underlying GPU architecture. They
introduced kernel fusion and serialization of threads for appropriate steps to reduce the global memory
accesses, which have been helpful techniques to accelerate many other applications. Their radix sort is
the fastest sort implementation till date and it is available as part of Thrust Library [32]. Sample sort
was also implemented on GPUs [43, 63]. External memory sorting algorithms were also developed for
the GPU [26].
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Apart from sorting, many other linear algebra operations: LU decomposition, sparse matrix multipli-
cation etc. and graph operations: BFS, APSP, SSSP etc. were accelerated using the massive parallelism
offered by GPUs. Bell and Garland developed a sparse matrix-vector multiplication (SpMV) algorithm
on GPU that outperformed the previous state-of-the-art quad-core CPU runtime by 10× [6]. Subsequent
efforts also improved the performance on SpMV on GPUs [51, 65]. GPUs were also used for acceler-
ating operations on graphs. Harish et al. demonstrated fast implementation of BFS, SSSP, APSP using
GPUs. Buluc et al. improved the performance of these path problems on GPUs in their work [10]. Fast
algorithms for operations on linked list such as list ranking [66] and prefix computation [78] were devel-
oped using CUDA. With time many such primitives from different domains were accelerated on GPUs.
Their code was made available to be used as part of standard libraries such as cuBLAS, cuFFT, NPP,
Magma, cuSparse, Thrust, GPP (computational geometry). More details about these libraries and primi-
tives could be found at https://developer.nvidia.com/gpu-accelerated-libraries.

2.2 Hybrid Computing

A mix of processors are already present on today’s computer. Future computer systems are bound to
maintain similar heterogeneity of processors. Thus, efficient use of these heterogeneous platforms will
be critical for obtaining runtime benefits on applications. In this section, we will discuss work in hybrid
computing that has been developed to utilize all resources on these heterogeneous computing platforms
effectively. Since heterogeneous systems with CPU and GPU are more prevalent, most work we will
discuss uses these systems as target heterogeneous platforms.

Tomov et al. did some pioneer work on using hybrid CPU and GPU systems for additional perfor-
mance gains [75]. They presented a hybrid LU factorization algorithm for a multi-core CPU + GPU
system. The performance benefits offered by extension of a previous GPU-alone LU factorization to a
hybrid CPU+GPU algorithm made a strong case for looking at CPU and GPU as co-processors to solve
a problem. Their algorithm performs balanced processing on both CPU and GPU for best performance.
They also address the communication issues observed when using the CPU and GPU together. In sub-
sequent work, Agullo et al. developed new CPU/GPU hybrid LU factorization kernels. On a multi-GPU
and CPU system they achieved a 1TFlops/s LU factorization throughput.

Choudhary et al. develop a fast implementation for the compute intensive sparse bundle adjustment
on a hybrid CPU and GPU computer system [15]. They completely overlap the expensive computations
such as Jacobian and Schur complement on the GPU with other simpler operations on the CPU viz.
L2-error from error vector etc. They achieve about 30− 50× speedup over CPU alone implementation.
Their work shows the importance of pipeling the tasks appropriately for good performance on a CPU
and GPU system. We extend this pipelining technique in our work to get high performance on common
end-to-end applications. Kumar et al. [50] in their work investigate different heuristics to split the work
between CPU and GPU for the problem of sparse matrix multiplication. They show a much improved
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performance over Intel MKL using a GPU alone. On a hybrid CPU and GPU computer system they
are able to improve their GPU alone speedup of 3.5× (over Intel MKL) further to 5.5×. Banerjee and
Kothapalli develop hybrid algorithms for the problems of list ranking and graph connected components
[5]. These hybrid algorithms offer performance benefits of 50% and 25% respectively over the best
known GPU alone implementations for the corresponding problems. They perform appropriate task
mapping and discuss the larger issues of synchronization between the CPU and and GPU in their work.

Leist et al. [44], Hawick and Playne [30] examine the interplay of cross-calling kernels and host com-
ponents on a hybrid multi-core CPU and GPU system for graph algorithms of clustering co-efficients
and component labelling respectively. Hong et al. propose a method for BFS where they choose the best
implementation at each step: a simple sequential execution or multi-core execution or GPU execution
[34]. Their algorithm uses the best platform for every step on a hybrid system and gives good perfor-
mance. This is similar to the idea of work sharing a data parallel step between both CPU and GPU. The
RSA encryption also showed improved throughput when the idle CPU cores were used for computation
along with the GPU [22]. A comprehensive survey detailing many applications and benefits of hybrid
computing could be found in [42].
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Chapter 3

Error Diffusion Dithering

Many image filtering operations have ample parallelism. This is because each input pixel creates one
output pixel value, either independently or by processing a small neighborhood around itself in the input
image. The fact that output pixels depend only on a few input pixels, and that the latter do not change as
a result of processing, allows all pixels to be processed in parallel. Such embarrassing parallelism is not
available if the operation has a causal dependence on the output of previous pixels. In such a scenario,
the output value of “later” output pixels depend on a mix of input pixel values and values of output pixels
computed “earlier”. A causal processing order for 2D images can be defined typically by choosing one
corner as the first pixel and its opposite corner as the last in processing order. The processing can then
proceed along rows or along columns. The processing step on each pixel may be a linear operation or
can involve non-linear computations. Linear operations are easy to parallelize, as the output at each
pixel can be written as a linear combination of the input values of some or all “past” pixels. The pixel
with the longest dependency decides the running time. This may not be possible if the operation is non-
linear. The operations then need to be performed strictly in order, leading to sequential dependence, as a
closed form expression is not possible. This potential dependency of even the last pixel on the very first
makes such operations inherently sequential and difficult to parallelize. These algorithms thus exhibit
the characteristic of sequentiality discussed in Section 1.1.1 and we develop a data parallel algorithm
for it. As part of this thesis, in addition to the data parallel algorithm, we develop algorithms with the
right mix of data parallelism (on GPU) and task parallelism (between CPU and GPU). The use of our
techniques can help solve other problems which exhibit similar sequentiality.

A typical example of the progressive non-linear operation discussed above is Error Diffusion Dither-
ing. Several other image processing operations involve non-linear, progressive processing of pixels viz
causal filtering. But, we use Error Diffusion Dithering as the sample application, because optimal error
diffusion algorithm poses the maximum challenge for a parallel implementation. As shown in Figure
3.1, dithering is a technique used to create an illusion of a higher color depth in images using a lim-
ited color palette. It provides a much better approximation using a limited color palette compared to
the naive thresholding methods. It approximates other colors not available in the color palette using a
spatial distribution of available colors, as the human visual system averages the colors in a neighbor-
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Figure 3.1: The Dithered (2 Color) Image is a much better approximation of Input (256 Color) Image
as compared to naive Threshold (2 Color) Image.

hood. Applications of dithering vary from printing, display on small devices like cellphones, computer
graphics [77], visual cryptography [46], image compression [74], etc. Among the class of dithering
algorithms, error diffusion dithering algorithms are popular due to their high quality output. The Floyd-
Steinberg Dithering (FSD) is an optimal error diffusion algorithm [23]. It generates better results than
other dithering methods. Its traditional sequential CPU implementation has O(mn) time complexity
(m, n being the height and width of the image in pixels). The error distribution scheme (Figure 3.2(a))
processes pixels from left to right and top to bottom. This introduces a sequential dependency of the last
pixel (bottom right) on the first (top left). Consequently, FSD problem is difficult to parallelize [57].

In this chapter, we present strategies to perform FSD on multi-core CPUs (Section 3.3), many-core
GPUs (Section 3.4), as well as a combination of CPU and GPU (Section 3.5). Our results will show
the benefits of combining data parallelism and task parallelism (i.e. using both CPU and GPU available
on a given system). We show that high performance can be obtained by using appropriate, problem-
dependent data layout and by minimizing communications, especially in a hybrid (CPU+GPU) setting.
The hybrid algorithm is especially promising on low-end computers used by millions of people, such as
a laptop or an off-the-shelf commodity desktop with a decent CPU and a mid or low-end GPU. Practical
parallel applications have to focus on such low-end platforms to bring the benefits of parallelism to a
huge number of common users and not merely the users of expensive HPC systems.

3.1 Background and Related Work

We will briefly discuss the Floyd-Steinberg Dithering algorithm (Section 3.1.1) and previous efforts
to develop parallel algorithms for it (Section 3.1.2).
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Figure 3.2: Flow of errors in Floyd-Steinberg Dithering.

Algorithm 1 Sequential Floyd-Steinberg Dithering
1: Input: Image Iin
2: Output: Image Iout
3: for i = 1→ n
4: for i = 1→ m
5: Iout(i, j) =NearestColor(Iin(i, j))
6: err = Iin(i, j)− Iout(i, j)
7: Iin(i, j + 1) + = err × 7

16
8: Iin(i+ 1, j − 1) + = err × 3

16
9: Iin(i+ 1, j) + = err × 5

16
10: Iin(i+ 1, j + 1) + = err × 1

16
11: end for
12: end for

3.1.1 Floyd-Steinberg Dithering Algorithm

The basic FSD approach proceeds as follows: For each pixel, the accumulated error from its neigh-
bors (explained later) and its own pixel value is summed. This value is quantized to the nearest value
available in the color palette. The residual quantization error is then distributed to the neighboring pix-
els in fractions shown in Figure 3.2(a). Each pixel receives quantization errors from its neighbors and
these form the pixels accumulated error (Figure 3.2(b)). The process starts with the top-left (or first)
pixel. The quantization at each pixel makes the output a non-linear function of all past pixel values. The
algorithm is summarized in Algorithm 1.

3.1.2 Previous work on Parallel FSD

Metaxas [57] was one of the first to parallelize Error Diffusion Dithering algorithm. They paral-
lelized the FSD algorithm with 2m + n parallel steps compared to mn required for the sequential
version, for an m × n image. An optimal scheduling order ensured that a pixel was processed as soon
as all its data dependencies were met. This scheduling order is same as the knights chessboard move
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Figure 3.3: Each box is a pixel and label n denotes the iteration in which the pixel can be scheduled for
processing. All pixels of same label are independent of each other.

pattern that we discuss later. The use of a linear array of processors was proposed, with each processor
processing three pixels in a row, followed by the pixels in the next row. After a processor processed
three pixels, it transmitted errors to the neighboring processor and activated them for processing. This
effort was mainly directed at the PRAM processing model and is not scalable to the many-core (GPU)
processing model of today.

Zhang et al. took an altogether different approach to parallelizing Error Diffusion Dithering [81].
They dismissed the FSD algorithm for dithering due to the low possible parallelism. They used a
pinwheel dithering algorithm [45] instead, which has much more inherent parallelism. The image is
divided into blocks of two types in a checkerboard fashion. All blocks of the same type can be processed
in parallel and independently of each other. First, blocks of one type were processed followed by
processing the other type of blocks. Metrics that take into account the human visual system show that
the raster-order FSD approach provides better results compared to the serpentine order error diffusion
used in the pin-wheel algorithm [33]. We parallelize the original FSD algorithm as it has perhaps the
most challenging data dependency pattern that reduces parallelism. Thus, techniques developed for it
and the lessons learned from it will be useful for many operations that are currently considered difficult
for parallel processing

3.2 Finding Parallelism in FSD

It is interesting to see the flow of errors in FSD. Each pixel (except the ones on the border) needs the
error values from 4 neighboring pixels before it can be processed (Figure 3.2(b)). Edge pixels depend
on fewer neighboring pixels as others are outside the image boundary. Thus, for any pixel, a maximum
of 4 neighboring pixels need to be processed before processing itself. In a sequential implementation,
the rows can be processed from left to right, starting with the first row on the top. The error distribution
pattern induces a long chain of data dependency. The last pixel of the image in causal order depends
on the first, in theory. The quantization at each pixel is a non-linear operation. The access pattern
introduces the following scheduling constraint for each pixel (i, j):
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Figure 3.4: Block structure and their dependency in Coarse Parallel FSD algorithm on CPU.

T (i, j) > max{T (i− 1, j − 1), T (i− 1, j), T (i− 1, j + 1), T (i, j − 1)} (3.1)

T (i, j) denotes the time/iteration at which pixel (i, j) is scheduled for processing. Thus for a truly
optimal scheduling, each T (i, j) should be one unit greater than maximum of its dependencies, viz,
T (i − 1, j − 1), T (i − 1, j), T (i − 1, j + 1), T (i, j − 1). Optimal scheduling constraint results in
an ordering pattern given in Figure 3.3. This pattern is the source of available parallelism, as the label
indicates the iteration in which the pixel can be scheduled. All pixels with label n can be processed
in parallel and independent of each other, provided that all pixels with label less than n have been
processed. The number of pixels that can be processed in parallel increases as we approach the diagonal
of the image. The pixels that can be processed in parallel are arranged in a knights move order in chess.
The maximum parallelism for an m× n image is min{m, n/2}.

3.3 Coarse Parallel FSD Algorithm on CPU

We now describe a block based implementation of FSD algorithm suitable for multi-core CPUs with
a small number (2 − 8) of cores. The pixels are grouped together into trapezoidal blocks, each block
has a structure shown in Figure 3.4(a). Two adjacent blocks ABCE and ECFG are shown in Figure
3.4(b). The shaded region in Figure 3.4(b) shows the pixels that need to have completed their processing
before the region ECFG can be processed. Also, due to the pattern of error distribution the bottom-
right corner pixel (at the vertex F ) can be processed only after all the remaining pixels are processed.
The triangle CDE is considered a part of the neighboring trapezoidal block (i.e. first from left), the
subsequent blocks are similar to parallelogram ECFG. The shaded blue region indicates the pixels on
the boundary that should be processed before the current block ECFG is scheduled for processing.

This blue region shows a dependency on neighboring blocks (left, top-left, top, top-right) similar to
that of pixels (Figure 3.2(b)). Thus we can use the same knights move order for parallel scheduling of
blocks. Figure 3.3 can be thought of as giving the optimal scheduling order for blocks, each of which can
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Algorithm 2 Coarse Parallel Floyd-Steinberg Dithering on CPU
Input: Image Iin // height: m, width: n
Input: Block Height a, Block Width b
Output: Image Iout
for i→ 1 to (2× m

a ) + n
b

pRow, pCol← get-primal-block(m,n, a, b, i)
omp-set-threads(t)
# pragma omp parallel for
for j = 0→ totalBlocks
row = pRow − j
col = pCow − 2× j
dither-block(row, col, Iin, Iout)

end for
end for

be processed by a thread using the sequential FSD approach. For a multi-core CPU, the thread creation
overhead is high. The optimal scheduling of threads is limited by the number of cores on the CPU. A
lot of time may be spent on context switching if the number of threads is high compared to the number
of cores. It is better to create a few heavy-weight threads as a result. We use each thread to process one
or more blocks, keeping the overall number of threads small. This suits the CPU architecture well and
gives good results.

We use OpenMP for thread creation and management on the multi-core CPUs. The first occurrence
of a block of label n, on a row-wise left to right and top to bottom traversal, is termed as the primal
block. Hence, by definition, for all blocks with label n, the primal block is the one with the minimum
row number. Once the location of primal block i.e. row and col is obtained for an iteration, we can
get the rows and columns for the other blocks by simply row = row + k and col = col − 2k, where
k = [1, 2, 3, · · · ] till row and col are within the range of the image. The pixels within a block are
dithered sequentially in a scan-line manner. Any block requires only the errors from the boundaries of
the neighboring blocks (Refer Figure 3.4(b)). The pseudo-code for block-based dithering is given in
Algorithm 2.

3.4 Fine-Grained Data Parallel FSD Algorithm on GPU

Operating at the level of pixels (and not blocks) allows us to have more fine-grained parallelism.
Pixel-based implementation of FSD is better suited to the massively parallel architecture of the GPU.
Due to availability of larger number of cores, it is best to create a large number of light-weight threads
on the GPU. We let each thread process a single pixel of the image. The sequential dependence places
strict constraints on how the threads can be scheduled. In iteration k, only as many threads can be
actively used as there are pixels with label k (Figure 3.3). A GPU kernel operates on the pixel data and
the error values from already processed pixels stored in the global memory. The output pixel value and
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Figure 3.5: Knight’s order storage for an image, here p indicates primal block.

the residual error are written to the global memory. The kernel at each thread reads the residual errors of
its neighbors, adds the correct fraction to own pixel value, performs quantization, and writes the output
pixel value and residual error. The thread number and the iteration number uniquely determine the pixel
(i, j) to be processed by the thread.

3.4.1 Addressing Uncoalesced Memory Access

The reading of error values from the neighbors will be very inefficient if the image is stored in the
usual row-major or column-major order due to the uncoalesced memory access pattern. For instance,
in Figure 3.3, consecutive threads process the 3 pixels with label 6 as shown. Their neighbors are not
consecutive in memory and the uncoalesced memory access will be very slow. Optimum memory access
times can be achieved by reordering the image. It can be seen that when the left neighbor is accessed by
each thread, the memory locations accessed are related by a knights move pattern (with difference in 1
row and 2 columns). We can reorder the image using the iteration number (labels in Figure 3.3) and a
pre-decided ranking (top to bottom) within the pixels of same label.

Figure 3.5 shows the mapping from a 3×4 image to a 12-element 1D representation. This re-ordering
can be done effectively on the GPU using shared memory by adapting the method used to transpose a
matrix [67]. We make use of a simple embarrassingly parallel kernel with m × n threads to perform
this operation. In practice, the time required by other steps is significantly larger than this conversion
time. After reordering, each thread of each iteration processes its pixel in a similar way. But, it can be
seen that the access to error values from the neighbors as well as access to own pixel value, is totally
coalesced in the new converted order, with consecutive threads (or threads in a warp) always accessing
consecutive memory locations. Thus, a single memory request can suffice to service the I/O queries of a
thread warp. The output pixel and error values are written in the same order also, using coalesced write
operations. This maintains efficient memory accesses for subsequent iterations also. The final resulting
image needs to be transformed in the reverse using a similar kernel. The FSD computation proceeds in
parallel for each iteration of Figure 3.3 resulting in a separate GPU kernel invocation per iteration.
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Figure 3.6: FSD using both CPU and GPU. The pixels processed by CPU are shown in blue and green
and pixels processed by GPU are white regions within the image.

3.5 Mixing Task Parallelism and Data Parallelism for FSD

The previous implementations used the CPU or the GPU alone. Better performance can be obtained
by using both these resources together. A few operations are performed on CPU in addition to the data
parallel operations on GPU for best performance. We now discuss two approaches for the same.

3.5.1 Handover FSD Algorithm

The number of pixels that can be processed in parallel (called parallelism) is low in the early iter-
ations and in the iterations at the very end. The parallelism slowly increases in the order 1, 1, 2, 2, 3,
3, · · · until the maximum value of min(m,n/2). Depending on the image dimensions, many iterations
can have this maximum value. Thereafter, the parallelism reduces slowly in the reverse order to · · · ,
3, 3, 2, 2, 1, 1. If the number of threads is low, the amount of time required for kernel setup is more
than the actual processing time of the kernel. We therefore let the CPU process the iterations in the
beginning and towards the very end, before handing over the computations to the GPU (Figure 3.6(a)).
The Handover FSD Algorithm algorithm has the following three stages:

1. Process initial part (top left of the image) on CPU until the parallelism exceeds a threshold and
then handover the computation to GPU.

2. Process subsequent pixels on GPU until the parallelism falls below the same threshold (towards
the bottom-right part of the image) and then handover the computation back to CPU.

3. Process end part on CPU sequentially. As will be demonstrated by our results, this algorithm
involving a handover between CPU and GPU performed better than the algorithm where GPU
alone was used for processing all the iterations. Note that GPU alone algorithm is a special case
of the Handover FSD algorithm, with CPU immediately handing over the computation to GPU.
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Figure 3.7: FSD sequential implementation timings (in milliseconds).

3.5.2 Hybrid FSD Algorithm

In the Handover FSD algorithm (Section 3.5.1), the CPU and GPU do not operate concurrently. This
results in the GPU remaining idle when CPU does the processing and vice-a-versa. On machines like
a laptop with a GPU, considerable computing resources are idle at all times. Fast processing of large
images needs the mobilization of all resources. Step 1 and 3 of the handover algorithm is best done on
the CPU alone as described above. The step 2 can be jointly performed by CPU and GPU. We do this
by partitioning pixels of each iteration (recollect that pixels of each iteration can be processed totally
independently) between CPU and GPU, with CPU processing a fixed number of pixels (indicated by
green region in Figure 3.6). After each iteration, along the border separating CPU and GPU execution,
a few residual error values need to be sent either from the CPU to the GPU or in the reverse direction.
These errors need to be sent before the next iteration begins. The transfer of error values satisfies the
data dependency for the next iteration. We use zero copy feature on Nvidia GPUs for the transfer as the
data involved is only a few bytes. This is a feature that enables the GPU threads to directly access pinned
host memory on CPU. This gives a better runtime than stream transfer methods like cudaMemcpy for
transferring small amounts of data [60]. Our hybrid algorithm uses all the resources, CPU and GPU on
a given compute system and provides optimal performance.

3.6 Experimental Results

We present the results for all the algorithms discussed above. The focus is on real-time processing
of large images on ordinary computers using all available computing resources. We also show results
on high-end computing resources such as high-end GPUs and 6-core CPUs to show the efficacy of our
methods. The CPUs we use are: Intel Core 2 Duo P8600 (2 physical cores), Intel Core i7 920 (4 physical
cores, 8 with HyperThreading [49]), Intel Core i7 980x (6 physical cores, 12 with HyperThreading). We
disabled the TurboBoost feature on the Core i7 processors to ensure a steady clock speed. We use
the GPUs Nvidia 8600M GT (32 stream processors), Nvidia GTX 480 (480 stream processors, Fermi
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Figure 3.8: Runtime (in milliseconds) for Coarse Parallel FSD on CPU.

architecture), and the Tesla T10 (240 stream processors). The input is an 8-bit gray level image and the
output is a binary image. The conversion to knight order (Figure 3.5) for the 1024×768 and 6042×3298

images takes 4ms and 99ms respectively on 8600M. Since this time is minimal, we do not include it in
the runtime for the results presented below. The runtime for the sequential FSD algorithm (Algorithm
1) on images of different sizes is given in Figure 3.7.

3.6.1 Results: Coarse Parallel FSD on CPU

We used OpenMP for handling thread creation on multicore CPUs. We varied the block size and
the number of threads independently of each other and checked timings for the combinations. A strong
dependence between the number of cores in the CPU and the maximum number of threads used is
seen, and hence we can assume the timings to be independent of the block size. For a given image, we
calculate the block size from the number of threads. For n threads, we use the block size which will have
n blocks in parallel for the maximum number of iterations. We are able to get a 3 to 4× speedup over
the purely sequential implementation. The number of threads which gives minimum timing is roughly
1.5 to 2× the number of CPU cores for CPUs with Intel HyperThreading Technology [49], and exactly
equal to the number of cores for other CPUs. By using this observation, we can compute the optimal
number of threads needed for a certain CPU (depending on number of cores) and from this we can
calculate the block size for any image automatically. Consider the 1024× 768 image (Figure 3.8). For
the Core 2 Duo P8600, we see that the speedup is 2× compared to the sequential code, when 2 threads
are used. For the Core i7 980x, the speed-up is around 4× (with 9 threads).

3.6.2 Results: Fine-grained Parallel FSD on GPU

As noted earlier, the pixel based implementation on the GPU alone is a special case of CPU-GPU
handover algorithm and thus, we do not give detailed results for it separately. The time required for
1024 × 768 image on 8600M is about 48 milliseconds (ms). Similarly for a 6042 × 3298 image, we
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Figure 3.9: CPU-GPU Handover times (in milliseconds) for different # iterations processed on CPU at
the start and end.
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Figure 3.10: Runtime (in milliseconds) for CPU-GPU Handover FSD algorithm on different images.

need about 576ms on 8600M. These values are higher than the corresponding values needed for a CPU-
GPU handover. In fact, as discussed earlier, our results reaffirm that to improve performance some of
the initial and final iterations (with low parallelism) must be offloaded to the CPU.

3.6.3 Results: Handover FSD Algorithm

The Handover FSD algorithm uses the GPU resources well. We vary the number of iterations handled
by the CPU and GPU. In essence we modify the parameter iteration number n, which is the number of
iterations after which the CPU hands over control to the GPU, and the number of iterations the CPU
handles towards the end. So an iteration value of n means that the CPU handles n iterations at the
beginning, n iterations at the end and the GPU handles the iterations in between. Figure 3.9 plots of
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Figure 3.11: CPU-GPU Hybrid FSD times (in milliseconds) for different width of pixel boundary pro-
cessed on CPU.

total time v/s iteration number at which the switch was performed. The nature of this graph indicates
that there is an optimum value of the number of iterations which should be performed on the CPU.
Increasing or decreasing this value, results in an increase in the running time. Also as seen in Figure
3.10, the time required to dither various images is the lowest for the Tesla T10. These timings are
considerably lower than the sequential timings (Figure 3.7).

3.6.4 Results: Hybrid FSD Algorithm

The hybrid algorithm uses both CPU and GPU during step (2) of the processing. We vary the number
of pixels handled by CPU in this step. This changes the boundary of CPU-GPU concurrent execution
part of the hybrid algorithm. Figure 3.11 gives time for different amounts of load handled by the CPU
in concurrent CPU+GPU phase. The results demonstrate the existence of an optimum value for pixel
width processed by CPU that reduces the total overall processing time. The overall timings for various
images on the different GPUs are shown in Figure 3.12.

3.7 Discussion

Our Handover and Hybrid FSD approaches which combine task parallelism with data parallelism
perform better than GPU alone, data parallel approach. This results from the fact that we are able to
utilize all available computational resources i.e. CPU and GPU. On high-end hardware, our speed up is
around 10× and on low-end hardware, after exhaustive utilization resources, the speed up is 3 to 4×,
compared to a standard sequential implementation, shown in Figure 3.7. Our approaches involving the
GPU work better for large images, since the kernel setup time, the memory copy time, etc., become
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Figure 3.12: Runtime (in milliseconds) for CPU-GPU Hybrid FSD algorithm on different images.

Figure 3.13: Various types of Data Dependencies and resulting parallelism. Pixels shaded with the same
color can be processed together in parallel.

overheads for small images. Although it may seem that in some cases, the block-based CPU algorithm
performs better than the Handover or Hybrid FSD algorithms, it must be remembered that multi-core
CPUs used in the block-based CPU results are relatively high-end CPUs (with 4-6 cores). On the other
hand GPU as well as the CPU in the Handover or Hybrid FSD results is a commodity or low-end
hardware. Thus, we demonstrated that problems with long sequential dependency, like Floyd Steinberg
Dithering (FSD), can be efficiently implemented in parallel even on low-end hardware. Figure 3.13,
shows different types of data dependency patterns. As shown by the shaded regions in the figure, we see
that our analysis provides us with groups of independent pixels for data parallel processing.
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Chapter 4

String Sorting

Sorting is an important operation in data processing. Fast and efficient sorting has been available on
the GPU for a few years. Radix sort performs the best on the GPU and its performance has improved
steadily since its introduction [56, 69]. The Thrust template library contains fast sort implementations,
with radix sort by Merrill and Grimshaw being the fastest [56]. Thrust sort can be enhanced with a
custom comparison operator [32]. Sorting is a vital data parallel primitive on the GPU and is a critical
component of several algorithms [2, 31, 24, 54, 76]. The use of standard primitives opens the door for
automatic performance improvements when the primitive’s performance improves due to an improved
implementation or an improved architecture, both of which happens with sort on the GPU. A primitive
based implementation can be thus be adapted efficiently to newer generation of architectures that differ
significantly.

Sorting variable length keys is still a challenge on the GPU. The most typical problem is sorting of
strings of arbitrary length, which is a common occurrence in different fields. Variable length sorting
implies different threads will perform different work (in form of comparing keys), making load balanc-
ing between them difficult. Also, sorting inherently involves dependency of an element to many other
elements making it challenging to develop parallel algorithms for it. Based on the input keys, data under-
goes shuffling memory accesses are arbitrary. Variable load and arbitrary accesses makes the problem of
string sorting irregular (Section 1.1.2). In this chapter, we develop a data parallel algorithm to efficiently
solve this irregular problem of string sorting. Our string sort is built over existing sort primitives on the
GPU. This will result in future performance improvements in the primitives to translate to string sorting
with no redesign. The developers of Thrust suggest the use of a custom string-comparator to perform
string sorting by a merge sort algorithm. The performance of this depends critically on the comparator
implementation and is not fast enough perhaps due to repetitive comparisons and data loading that occur
at every merge step. Davidson et al. presented the first string sort implementation on the GPUs using an
efficient merge sort for long and variable length keys [17]. Their performance is good, but scalability to
large datasets may not be straightforward using merge sort compared to radix sort.

In this chapter, we present a fast and efficient GPU string sort that achieves better performance than
both the above methods on large datasets. Our method is simple and scalable. We present exhaustive
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results on several datasets to demonstrate the applicability and scalability of our method. We use the
standard benchmark datasets as well as our own to demonstrate scaling to larger problem sizes. The
average after-sort tie-length quantifies the difficulty of sorting. We present results on datasets which a
cover a wide spectrum of these tie lengths. We also propose the percentage of the computation time
spent on standard performance primitive as a measure of adaptability of GPU applications. Thrust
primitives dominate the string sort time in our approach (on an average 70%). We also analytically
estimate the expected runtime for our algorithm; the experimental results are within realistic limits of
these expected runtimes. Our string sort achieves a speedup ranging from 1.8 to 19.7 over the current
methods. Our speed up is particularly good on challenging datasets with large strings and long ties. We
obtain a sorting throughput of 83 MKeys/s on a dataset of 1 million random strings. Our approach can
scale to an order of magnitude larger input size than the previously reported GPU string sort. On a 10
million words dataset we achieve a throughput of 65 MKeys/s. Our code is available for public use and
it has also been accepted into the standard CUDPP library for GPU primitives1.

4.1 Related Work

We review the relevant sorting and string sorting algorithms for the CPU and the GPU in following
sections.

4.1.1 CPU String Sorting Algorithms

Most sorting algorithms are designed with the assumption that input keys are a few characters or
integers (i.e. fixed length keys). For keys which span more than a few integers or characters (i.e. strings),
comparison based sorting algorithms can use an iterative comparator between given keys. Radix sorting
algorithms can create and recursively sort buckets starting from most significant to the least significant
integer or character. Comparison based sorts will perform Ω(Nlog(N)) comparisons, each iterating
over two strings to resolve ties. Naive radix sort procedures will shuffle the entire string in each step.
Both of these could be expensive in practice.

Several specialized string sorting algorithms have been developed over time. Most popular and
efficient amongst such approaches are: mutli-key quicksort [8], Burstsort [72, 73] and MSD (most
significant digit) radix sort [37]. These typically use a combination of two or more of the standard
sorting algorithms augmented with a few additional steps for performance. Burstsort uses burst-trie data
structure and a standard sorting algorithm [8, 52]. It organizes strings into small buckets by inserting
them into a burst-trie, such that these buckets can be sorted within the CPU cache memory. The sorted
buckets are lexicographically ordered amongst them and need not be merged later. Kärkkäinen and
Rantala engineer an efficient radix sort for strings which involves repetitive application of radix sorting

1Code available at http://web.iiit.ac.in/∼adity.deshapandeug08/stringSort/ and integrated with CUDPP at
https://github.com/aditya12agd5/cudpp
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from most significant digit to the least significant one [37]. They develop counting based methods which
require pre-computing the bucket size. To achieve this, they need to make two passes over the data per
radix sort step, where the first pass computes bucket sizes and next pass scatters the data. They also
develop one-pass dynamic methods where buckets are generated and resized on the fly. They resort to
simpler sorting viz. insertion sort when buckets are small enough. They avoid shuffling entire strings by
manipulating pointers, cache successive characters of strings, and use supra-alphabets (2 byte characters
instead of 1 byte) for small buckets, to reduce the sorting steps.

Our algorithm comes under the category of counting based method of [37], with actual implementa-
tion exploiting the efficient primitives on the GPU. The MSD radix sort creates buckets in a depth first
manner, while we show that a breadth-first pattern is more suited for exploiting the parallelism on the
GPU. Also, our implementation can compare longer length of prefixes (maximum of about 8 characters
long) per radix sort step as compared to the two character limit of MSD radix sort. In Table 4.6 and
Section 4.3.6, we show that our GPU algorithm gives significant speed up (4× - 17×) compared to both
Burstsort and MSD radix sort algorithms on standard benchmark datasets.

4.1.2 GPU String Sorting Algorithms

The GPU has emerged as a massively parallel accelerator for problems that have a strong data parallel
flavor. Several high-performance sorting algorithms have been designed for it. Cederman and Tsigas
developed an implementation of Quicksort [14], sample sort was implemented by Leischner et al. [43].
Satish et al. developed a radix sort on GPU which outperformed an 8-core CPU by 4× [69]. Their
performance benefits from the reducing of scattered writes to global memory by making use of on-chip
shared memory. They also developed a fast merge sort, which merged small blocks that fit in the on-chip
shared memory. Merrill and Grimshaw later developed a radix sort using fast scan primitives which is
the fastest sort today [56]. They introduced optimizations like adapting the radix sort granularity (digit
size) to fit the underlying GPU architecture, kernel fusion and serialization of threads for appropriate
steps to reduce the global memory accesses. All these implementations assume a fixed key size of 32/64
bits and cannot handle variable or long keys.

Thrust also provides efficient primitives for fixed key length radix sort and merge sort [32]. Devel-
opers of Thrust suggest creating a user-defined string class and a custom iterative comparator to extend
their sort to strings2. Thrust supports radix sort only for basic datatypes and resorts to a merge sort when
provided with user defined types and a custom comparator. Radix sort primitives are significantly faster
as compared to merge sort and such an approach fails to exploit them.

Recently, Davidson et al. developed an efficient merge-sort based string sorting procedure that han-
dles variable length keys well [17]. They prefer register packing (by creating a limited number of
threads) against over-utilization of GPU. Input was divided into blocks of fixed size, m = 1024, and
m/8 threads (per SM) were created to sort 8 elements each through a carefully designed bitonic sort-
ing network. Each thread then modified its search-space (neighboring 8, 16, 32 and so on elements)

2http://goo.gl/mlwlZ
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to create the final sorted block of size m. In the next step, on each GPU SM two blocks were merged
which doubles the size of the output block and halves the number of blocks. At the end when blocks
to be merged are few, they use a scheme where all threads (or cuda blocks) cooperatively merge them.
For variable length keys, they initially sort the first 4 characters and load successive characters from
global memory in case of ties. Each part of the string is compared multiple times (during every merge
step) and each comparison involves accessing the high latency global memory. As the merge procedure
nears conclusion, they observe that, comparisons are made between more similar strings and ties take
longer to resolve. Resolving ties involves accessing high latency global memory and also causes thread
divergence, these issues cannot be easily solved. Their implementation shows a good sorting perfor-
mance of 70M Strings/sec on a dataset of 1 million strings when ties are few and slows down by 4− 5×
when tie length increases. Though the GPU radix sort primitives are relatively faster, their string sort
again uses a merge sort. They avoid radix sort because “costs of radix sort algorithm that involves direct
manipulation (i.e. shuffling) of keys will scale with key length”.

We introduce a different category of efficient string sorting algorithms for the GPU, based on fast
fixed length radix sort. Instead of comparing two strings at a time in the traditional iterative manner,
we show that we can efficiently compare all strings in a column-wise manner from first to the last
character. Our approach uses a way to limit the shuffling to only string indexes and small prefix strings
at each step, while performing all operations with fast parallel primitives. Radix sort based string sorting
procedure allows us to compare the characters of the string only once (from left to right), thus avoiding
repetitive global memory accesses. Also, on practical datasets we see that the length of ties do not
exceed more than a few hundred characters and results in Section 4.3.4, 4.3.3 show that, our GPU
algorithm gives better performance and scalability as compared to the merge sort based string sorting
methods of Davidson et al. and the Thrust Library.

4.2 Radix Sort Based String Sort

The input setup stores all strings in the global memory as a single contiguous array, delimited by null
characters (Figure 4.1), accompanied by an index array. The pointers to the strings are indices in this
global string array. Fixed length radix sort primitives are the fastest amongst all others. One way to use
these primitives for performing string sorting is to load entire strings as keys and perform the radix sort
operation. This will recursively create buckets from the first to last character, but will involve shuffling
the entire string keys at each step. Such an extensive data movement will form a huge bottleneck on the
GPUs.

We develop an approach that is outlined in Algorithm 3. We exploit the efficiency of radix sort while
reducing data movement by sorting records of string bytes as the key and string index as the value (line
10). Each step uses a few bytes of each string starting at a fixed offset from the left as the key; the
offset is 0 for the first step (line 4). The fixed length radix sort primitive from the library is used in
each step. Strings with a common prefix so far come in adjacent positions after sorting. Strings with
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Figure 4.1: The strings in the global string are delimited by null characters. The pointer array contains
indices of the starting position of each string in the global string array. This pointer array is shuffled
during the sort to obtain the sorted order of strings. The example we consider in this paper contains the
set of strings : radix, computer, radar, parallel, partition, particle, graph, compact. We use this
same set of strings to illustrate our sorting procedure.

unique prefixes will be singletons and would already be in their place in the sorted output. These can
be marked and removed from further processing (line 11). For the remaining strings, we assign segment
ids (stored in the Seg array) beginning with 0 for the lexicographically smallest and increment by 1
whenever the next string differs. Common prefix strings are contiguous and get the same segment id.
Segment assignment is performed using a scan primitive after marking in parallel the locations where
adjacent sorted records have different keys. Each segment represents a bucket; strings belonging to it
will only shuffle among themselves without crossing segments in the final output. The segment id, thus,
encodes the history of the sorting steps till the current one, which allows us to discard the currently
sorted prefixes and load successive bytes in their place for further sorts (line 17). We do further sorts
on records with a key consisting of the segment id on the left and next few bytes from each string on
the right and a value consisting of the string pointers. The tuple of segment id and successive characters
forms a proxy for the entire prefix of each string. The pointers in the value, together with the offset are
used to load successive characters in every sort step.

Our approach is illustrated in Figure 4.2, where we sort the set of strings: radix, computer, radar,
parallel, partition, particle, graph and compact, organized in memory as shown in Figure 4.1. In this
example, we load 2-character prefix strings before every sort step. After the first sort step we see that the
prefix gr is a singleton, thus the position of great in output array is fixed as 3. The other prefix strings
co, pa, ra are assigned incremental segment ids. We then use the value part which consists of pointers
of the strings to load successive 2-character prefixes for each string. The next sort is performed on the
tuple of segment ids and the newly loaded 2-character prefix. This generates more singletons ra, da, di
which fixes the positions of the strings parallel, radar, radix respectively. The same process repeats for
one more iteration after which all strings become singletons and we obtain the sorted order.
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Algorithm 3 Our GPU String Sorting
1: Input: String Array G, Index Array I
2: Output: Shuffled Index Array O.
3: k = optimal key length // 8 for our platform
4: M← load prefix(G,k, 0)
5: offset← k // load next prefix starting at offset
6: Seg← [0, 0, · · · , 0] // Only one segment
7: segBytes← compute bytes(Seg) // 0 initially
8: K← pack keys(M, Seg, segBytes)
9: repeat

10: radix sort(key: K, value: I)
11: F← mark singletons(K,O) // F = Flag, O = Output
12: // above step also writes index of singletons to output
13: D← prefix scan(F) // D = Destination Array
14: K, I← scatter(K, I, flag: F, dest : D) // compaction
15: Seg← generate segments(K)
16: segBytes← compute bytes(Seg)
17: M← load prefix(G, k− segBytes, offset)
18: offset← offset +k− segBytes
19: K← pack keys(M, Seg, segBytes)
20: until no segments left
21: Output : Shuffled Index Array O

4.2.1 Singleton Elimination

A parallel kernel performs the singleton elimination. First a flag array is created with 0 if a prefix is
a singleton – that is, it is different from its predecessor and its successor – and 1 otherwise. An exclu-
sive prefix sum of the flag gives us the destination indices for each remaining string. We compact the
original records with flag of 1 using a scatter primitive and the destination indices. Singleton elimina-
tion reduces the problem size for the subsequent iterations and reduces the memory requirements. In
practice, singleton elimination improves the string sort performance by 1.1× to 4.5× as shown in Table
4.3. The use of library primitives for scan and scatter helps in scaling to other systems. Our approach
thus can handle strings of much larger problems than has been shown in the past on the GPU as can be
seen from our results.

4.2.2 Optimal Key Length and Adaptive Segment Ids

The radix sort primitives support keys of lengths 1, 2, 4 and 8 bytes efficiently on current Nvidia
GPUs. Beyond 8 bytes, the values are tupled together and compared with 2 or more standard compar-
isons [7]. Figure 4.3 shows the normalized sorting time per byte of the key on an Nvidia GeForce GTX
580 GPU for different key lengths. Beyond 8-byte keys, there is a sharp increase in this normalized per
byte sorting cost. This suggests that the individual sorting steps should use 8-byte keys for maximum

30



0 

6 

15 

21 

30 

40 

49 

55 

RA 

CO 

RA 

PA 

PA 

PA 

GR 

CO 

   KEY  VALUE 

6 

55 

49 

30 

40 

49 

0 

15 

CO 

CO 

GR 

PA 

PA 

PA 

RA 

RA 

0 

0 

1 

1 

1 

2 

2 

6 

55 

30 

40 

49 

0 

15 

MP 

MP 

RA 

RT 

RT 

DI 

DA 

0 

0 

1 

1 

1 

2 

2 

GRAPH - 49 

6 

55 

40 

49 

UT 

AC 

IT 

IC 

0 

0 

1 

1 

GRAPH - 49 

PARALLEL- 30 

RADAR - 15 

RADIX - 0 

6 

55 

30 

40 

49 

15 

0 

MP 

MP 

RA 

RT 

RT 

DA 

DI 

0 

0 

1 

1 

GRAPH - 49 

SORT LOAD 
SUCCE-
SSORS 

SORT LOAD 
SUCCE-
SSORS 

   KEY    
VALUE 

REMOVE SINGLETONS & 
GENERATE SEGMENT IDS 

REMOVE SINGLETONS & 
GENERATE SEGMENT IDS 

   - SEGMENT ID    - PREFIX STRING    - SINGLETONS    - FIXED O/P 

COMPACT - 55  

COMPUTER- 6 

GRAPH - 49 

PARALLEL- 30 

PARTICLE- 49 

PARTITION- 40 

RADAR - 15 

RADIX - 0 

FINAL OUTPUT 

Figure 4.2: Illustration of our basic GPU sorting algorithm. In this example, we load two-character
prefix strings in each step. The steps of fixed-length sorting, removing singletons, generating segment
ids and loading successive prefix strings are performed until we obtain the final output (i.e. all strings
are singletons).

performance. This number may be different on other accelerators and on future Nvidia GPUs. Our
algorithm should use appropriate key-lengths on each.

We pack the segment ids and prefix strings into the key. We can use 4 bytes to represent the segment
id and the rest for subsequent string bytes. This will process the strings slower when the number of
segments are small. We adapt to the number of segments and use the minimum number of bytes to
represent the segment id at each step. This varies from 0 bytes for the first step (all strings are in the
same segment trivially) to 3 bytes in practice in our examples. (The problem size itself was less than
224 except in one case.) The remaining bytes are used to load the prefix strings. This adaptive scheme
allows us to compare more number of characters in each step, reducing the number of iterations. On low
entropy data the adaptive scheme allows us to have fewer bytes for the segment id, which implies more
characters are compared per sort step and more new segments can be identified. For high entropy data,
segment id consumes more bytes and relatively lesser number of characters are compared per sort step.
This is still reasonable because strings are already highly segmented and only a few more comparisons
are needed to resolve ties. The results in Table 4.4 show that we get significant speed up with the
adaptive scheme.

4.3 Experimental Results

We use efficient parallel primitives provided by the Thrust Library (v1.6.0) [7]. Our setup has Nvidia
GeForce GTX 580 GPU (compute v2.0) and we use CUDA software version 4.0. We also demonstrate
our results on Nvidia Tesla K20C (compute v3.5), with the Kepler architecture. For K20C, we use
CUDA software version 5.0. We present the performance of our string sorting algorithm on different
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Figure 4.3: Performance of Thrust’s fixed-length sort primitive with varying key length.

datasets (Table 4.1) in this section. The runtimes that we measure for all CPU and GPU algorithms are
typically in milliseconds and do not include the File I/O time.

4.3.1 Thrust performance on varying key size

Figure 4.3 presents the performance of Thrust’s fixed-length radix sort primitive for different key
lengths. The key length changes from 1 to 16 bytes. The total time divided by the key length in bytes,
to sort 1 to 30 million random keys plus 4-byte value per key record, is shown in the figure. The per
byte sorting time reduces as key length varies from 1 byte to 8 bytes. Beyond 8 bytes, Thrust shifts to a
slower merge sort algorithm [7]. This results in a sharp increase in the per byte sort time. The optimal
per byte sort time is thus obtained for 8 byte keys. We, therefore, fix the key size to 8 bytes for the GPU
radix sort operations we perform. Please note that this parameter may vary on other GPUs and certainly
on other accelerators. The k parameter in Algorithm 3 can be set to the optimum value when adapting
our method to other architectures.

4.3.2 Datasets

The details of the datasets used in our experiments are given in Table 4.1. The top 8 (artificial-2
to genome) are standard datasets used in the CPU string sorting literature [37, 73]. They have data
of varying size from natural sources such as list of english words, urls, genome sequences as well as
synthetic ones such as list of repeated strings of same character (artificial-2), list of repeated strings of
same character but varying lengths (artificial-5), random strings (random), words formed from a few
characters (artificial-4), etc. Good performance on these datasets indicates the robustness of the sorting
algorithm. The GPUs are particularly good to process larger datasets. Hence, we create additional
datasets such as pc-filelist and sentences. The pc-filelist was created by listing all (about 2 million) files
on a typical server class machine starting with the root character “/”. This was replicated 5 times with
a different prefix for each copy (viz. ”node1/” to ”node5/”) to obtain a dataset of 10 million strings.
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Dataset Details Size (MB) After Sort Tie Length
Max. Avg.

artificial-2 106 same strings of A repeated ≈ 100 times 98 101 101
artificial-4 107 strings of characters a to i 162 80 13
artificial-5 106 strings containing A but varying length (1 to 100) 50 100 50
dictcalls 100187 strings of opcodes 2.2 35 15
random 106 random strings of length ≈ 100 97 5 2
words 107 ≈ 10 million words with no duplicates 118 48 7

url 107 = 10 million strings containing urls 305 215 29
genome 31623000 ≈ 30 million strings of a, t, g, c 302 9 8

sentences ≈ 1.8 million sentences from gutenberg project 124 63 17
pc-filelist ≈ 10 million strings containing filepaths 656 180 59

Table 4.1: Details of the datasets used in our experiments. We create and use sentences and pc-filelist
to particularly benchmark our code on typical datasets with high number of ties. The other datasets are
standard datasets used in previous string sorting literature [37, 73].

Dataset Thrust Comparator Sort Our GPU String Sort Speed
Up αMem.

Setup Sort Total Mem.
Setup

Iterations
(k)

Sort
(t1)

Scatter/
Scan (t2)

CUDA
Kernels (t3) Total

artificial-2 122 2652 2744 91 15 35 31 61 219 12.5 3.6
artificial-4 113 5699 5813 106 15 197 44 87 436 13.3 1.6
artificial-5 97 1808 1906 60 17 69 24 20 175 10.8 1.6
dictcalls 81 32 113 50 6 7 3 1 62 1.8 1.5
random 182 75 257 70 1 6 1 5 84 3.0 2
words 105 2016 2122 97 9 97 22 35 252 8.4 1.5

url 155 8559 8714 153 37 416 102 264 936 9.3 1.8
genome 155 14064 14219 275 2 189 92 164 720 19.7 2.3

sentences 131 895 1026 79 11 65 18 36 199 5.1 1.8
pc-filelist 230 9003 9234 225 33 705 164 313 1409 6.5 1.6

Table 4.2: Comparison of runtime (in milliseconds) of the Thrust Comparator based string sort and our
GPU string sort. The table shows the split in runtimes for different steps of our string sorting algorithm.
The value α = (t1 + t2 + t3)/t1.

For the sentences dataset, we extract sentences from nearly 40 e-books of the Gutenberg project. Large
after-sort tie length is an indicator of the difficulty of sorting a dataset [17]. These strings have many
ties to each other since many files share common base directory path and many sentences have similar
beginning. This makes them difficult, yet not artificial, inputs for string sorting. Their large size also
allows us to test for the scalability of our approach. These datasets as well as our code will be available
for others to use.

4.3.3 Performance of our GPU String Sort

In Table 4.2, we compare the performance of our radix sort based GPU string sort to Thrust’s com-
parator based string sort described in section 4.1.2. We use the implementation of Thrust comparator

33



based method that is available as part of a suffix sorting code3. This implementation is very slow as it
does not support bulk copy of the user-defined string class. Copying one string at a time is the bottle-
neck. We enhanced the code to support bulk transfers so as to facilitate its running on large datasets.
Table 4.2 shows that we obtain a speed ups ranging from 1.8 to 19.7×. We analyze and justify this
performance in the following sections.

Sort Time and Total Time. Table 4.2 shows the split of the times taken by different steps of the string
sort for all the datasets. The memory setup time includes the time for allocating memory on GPU as
well as doing all the data transfers between CPU and GPU. We also measure the time taken by the sort
primitive (t1), scatter/scan primitives (t2) and the CUDA kernels that perform the remaining operations
(t3). We see from the results that sorting is the most expensive step on all large datasets. The only ex-
ception is artificial-2 dataset, which sorts arrays of equal values each time. Thrust handles this specially
by short-circuiting the sort and provides very fast sorting [56]. Typically, if we exclude the memory
setup time, we see that the total time varies in a small band of 1.5 to 2.3× the time taken for radix sort.
We denote this by a factor α, shown in the last column of Table 4.2. In practice, as of today, we can
empirically expect α to be bound by about 2.5 for our algorithm.

Expected vs. Achieved Time. Given that the basic sorting primitive takes on average time t per
iteration, the total time for an iteration can be estimated to be α × t. With k iterations, then estimated
total time is α× t×k. If the throughput of fixed-length radix sort primitive is given in p MKeys/s and if
the string sorting problem has sizeN million strings, then the estimated time per iteration is 1000/p×N
milliseconds. Thus, the expected total time for string sort in milliseconds is

Texp(ms) = α× 1000/p×N × k ≈ t1 + t2 + t3. (4.1)

Fixed-length radix sort primitive of thrust offers a sorting performance of 1GKeys/s = 1000 MKeys/s
[56]. But in practice, on our architecture, we achieve a throughput of 500 to 760 MKeys/s from the radix
sort primitive, thus we fix p = 750 in equation 4.1 and calculate the expected runtime for α = 2.5. The
results in Figure 4.4 show that we achieve better runtime than the expected time on artificial-4, words,
pc-filelist and url datasets (each of which has 10 million strings and also long ties). Such an analysis,
shows that we can predict the performance of the string sorting algorithm based on a fixed-length sorting
primitive. This prediction needs parameters such as input size (N ), performance of the fixed-length sort
primitive (p) and max ties in the input (i.e. some indicator of the value of k). Our results in Figure
4.4, show that our achieved performance is within practical limits of the expected performance in many
cases and it justifies the speed up that we obtain over other methods.

Singleton Elimination and Adaptive Segment ID. Removal of singletons progressively reduces the
sorting problem size. This allows the fixed-length sorting primitive to perform better. In equation 4.1,
this translates to reducing the impact of N in successive iterations. Table 4.3 shows that we achieve a

3https://github.com/bzip2-cuda/bzip2-cuda/tree/master/lib

34



1	


10	


100	


1000	


10000	



art
ificia

l-2
 (1

M)	



art
ificia

l-4
 (1

0M
)	



ran
dom

 (1
M)	



dict
cal

ls (
0.1

M)	



gen
om

e (
32

M)	



word
s (1

0M
)	



url (
10

M)	



art
ificia

l-5
 (1

0M
)	



sen
ten

ces
 (1

.2M
)	



pc-fi
lel

ist
 (1

0M
)	



Expected Runtime	

 Achieved Runtime	



Figure 4.4: Achieved vs. Expected runtime (in milliseconds) for our radix sort based GPU string sorting
algorithm.

Dataset
With Singleton

Elimination - Time (ms)
Without Singleton

Elimination - Time (ms) Speed Up

artificial-2 367 357 0.9
artificial-4 601 2237 3.7
artificial-5 299 317 1.1
dictcalls 28 38 1.3
random 23 31 1.3
words 423 1340 3.1

url 1160 5331 4.5
sentences 219 408 1.8
pc-filelist 1723 4791 2.7

Table 4.3: Comparison of runtime (in milliseconds) of our GPU string sorting algorithm with and with-
out the optimization of singleton removal. To decouple the optimizations and study them separately we
maintain a fixed segment id size in above experiments. The runtime improves with singleton removal.

speed up between 1.1 to 4.5 for different datasets after eliminating singletons. There is no speed up for
the artificial-2 dataset, since it consists of equal strings and no singletons are found. For url, artificial-4
and pc-filelist datasets, which have large number of strings and long ties we see that our singleton elim-
ination technique performs particularly well giving us a speed up of 4.5, 3.7 and 2.7 respectively. Using
the minimum number of bytes for the segment id field enables us to reduce the total number of itera-
tions as more number of characters are compared per iteration. This reduces k in equation 4.1. Table 4.4
shows that we achieve a further speed up of 1.4× to 3.3× by using the adaptive scheme for segment id
bytes. Both, these optimizations aim at reducing the expected runtime for our GPU algorithm and also
yield good results in practice.

Thrust Comparator based String Sort. The enhanced Thrust sort for strings using a custom compara-
tor performs poorly (Table 4.2). This is due to the use of the slower merge sort as well as the loading
successive characters from the high-latency global memory to resolve ties. These accesses need to be
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Dataset Fixed Size Segment Id Adaptive Size Segment Id Speed
Up# Iterations Total Time # Iterations Total Time

artificial-2 26 367 15 127 2.8
artificial-4 21 601 15 328 1.8
artificial-5 26 299 17 113 2.6
dictcalls 9 28 6 11 2.5
random 2 23 1 12 1.9
words 13 423 9 154 2.7

url 54 1160 37 782 1.4
genome 3 1488 2 445 3.3

sentences 16 219 11 119 1.8
pc-filelist 46 1723 33 1182 1.4

Table 4.4: Comparison of runtime (in milliseconds) of our GPU string sorting algorithm with and with-
out the optimization of adaptive size for segment bytes. This shows that our adaptive scheme reduces
the number of iterations and provides us a significantly better runtime.

performed repeatedly per string in every merge step. Our method loads the string from start till the ties
are resolved only once per sort step. Our approach makes full use of the fact that the fixed-length radix
sort primitive ensures limited global memory accesses [56]. Reducing the high latency global memory
accesses and exploiting fast primitives of radix sort and scan, help us achieve much better performance
than the comparator based string sort of Thrust, Table 4.2 shows that we achieve a speed up of 5 to 10
on large datasets.

Time spent on Thrust Primitives. Figure 4.5 presents the fraction of total execution time that is spent
using Thrust primitives of sort, scan and scatter. This measure is an indicator of the adaptability of
our methods to newer implementations and architectures. For large datasets with long ties (i.e., url,
aritificial-4, sentences, pc-filelist) we see that greater than 65% of the time is used by Thrust primitives.
On an average the Thrust primitives use 70% of the execution time. These results show that our algo-
rithm without any redesign can benefit well from any future improvements to these primitives or the
basic architecture.

4.3.4 Comparison to Davidson et al. [17]

We compare with the method by Davidson et al. using the CUDPP code from them4 [17]. This code
is still under development and lacks a few optimizations mentioned in their paper. It presently does not
scale to the input size that we use for most datasets. On the wiki-words dataset they used, we obtained
a runtime of 20 ms, while they reported about 14 ms in their paper [17]. This is an easy dataset, with
very few ties (average ≈ 5) and only 1 million elements. Hence, the small difference in runtime is not
very significant. Scalability to large datasets is a particular strength of our approach since it is totally

4http://code.google.com/p/cudpp/source/checkout
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Figure 4.5: The % of total time (w/o memory setup) used for execution by the Thrust sort, scatter and
scan primitives. On an average, 70% of the total time is utilized by Thrust primitives.

Dataset GTX 580 (Fermi) K20C (Kepler) Speed Up
artificial-4 436 472 0.92

url 936 899 1.04
genome 720 642 1.21

pc-filelist 1409 1121 1.25
pc-filelist ×2 - 2574 -

Table 4.5: Comparison of runtime (in milliseconds) on the Kepler K20C and GTX 580 GPU. pc-filelist
dataset is replicated twice (≈ 20Mstrings) to create pc-filelist ×2. K20C can process this large input
because of its high global memory, which is not possible on GTX 580.

based on the radix sort primitive, as opposed to the slower merge sort they use. On 1 million random
strings and a larger words dataset with 10 million strings, their implementation takes 27 ms and 2100

ms respectively. Our string sort takes only 12 ms and 154 ms respectively on these datasets, we get a
speed up of 2 to 13×. The comparison will be more meaningful only when a fully optimized and stable
version of their code is available.

4.3.5 Performance on the Kepler GPU

Table 4.5 compares the performance of our string sort on Nvidia K20C and Nvidia GTX 580 GPU.
K20C is of a different architecture family (kepler) and has a relatively slower clock speed of 706 MHz
as compared to 772 MHz of GTX 580 (fermi). But, it has a global memory of ≈ 5GB and can process
much larger inputs than GTX 580 (≈ 2GB global memory). It also has 2496 cores, while the GTX
580 has only 512. In our experiments on sorting random integer data with the Thrust sort primitive, we
see that the K20C performs only marginally better as compared to GTX 580. Thus, using the K20C we
achieve a speedup of 1.21 and 1.25 on genome and pc-filelist datasets respectively. On an even larger
dataset, pc-filelist ×2, created by concatenating the pc-filelist dataset twice, K20C gives a runtime of
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Figure 4.6: Speedup by using our GPU string sorting algorithm against state-of-the-art CPU algorithms
for string sort. For these experiments, we use the Nvidia GTX 580 GPU and Intel Core2Duo E7500
CPU.

2.57s. The same dataset takes about 38.1s and 27.8s on the CPU using Burstsort and MSD radix sort
respectively (i.e. speed up of 14 and 10). Also, the global memory limit in GTX 580 GPU is prohibitive
for processing this large input. Thus, the new K20C GPU gives slightly better performance and is
scalable to much larger inputs as compared to GTX 580. Note, since our code is primarily primitive
based, no tuning of the thread/block grid parameters is required to achieve speed up on Kepler. Also, any
future improvements to the primitives that result from new features viz. dynamic parallelism, hyperQ
etc. of the Kepler architecture will be directly inherited by our string sort.

4.3.6 Comparison with CPU Algorithms

Table 4.6 compares the performance of our GPU string sorting algorithm with the state-of-the-art
CPU algorithms for string sorting: Burstsort [72, 73] and MSD radix sort [37]. For Burstsort, we use
the code provided by the authors of [72]. For MSD radix sort we use the efficient code available as part
of a standard string sorting library5. The speedup is very significant except on the very simple dictcalls
dataset. This gives a feel of the speed up that can be expected using a GPU for those who use string
sorting on the CPU.

4.3.7 Performance with After-Sort Tie Length

The sorted ties histogram quantifies the difficulty of sorting a given dataset [17, 37]. For each string,
the average of number of prefix characters that match to the strings just before and after it in the sorted
order is called its tie-length. This measure is an upper bound on the number of prefix characters that can
match to the given string from the entire dataset. The histogram of these tie-lengths is called the sorted

5https://github.com/rantala/string-sorting
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Figure 4.7: In this figure, we vary the deviation of the sorted ties histogram for two datasets: words (less
ties) and pc-filelist (high ties). To reduce the deviation by a factor of k, we take every kth character of
each string. To increase deviation by a factor of k, each character of the string is replicated k times.
The runtimes for our GPU algorithm are indicated in the legend. Datasets having histograms with low
deviation are easier to sort than those with high deviation. The runtime varies linearly with the change
in deviation, indicating we can even handle inputs with high ties as efficiently as possible.

ties histogram. If the sorted ties histogram is short (i.e. deviation is small) and steep, many strings have
small tie lengths. Such an input is easy to sort. On the other hand, if it has a large spread (i.e. deviation
is large), there are many strings with long ties and the dataset is difficult to sort.

The words dataset has strings that are smaller in length. The average tie length is 7 characters. To
study the performance of our algorithm with respect to average tie-length, we modify the sorted ties
histogram of this dataset as follows. We increase the deviation by a factor of k by replicating every
character of the given string k times. Similarly, we reduce the deviation by a factor of k by taking
every kth character of each string. Note, area under the curve remains the same for all these modified
histograms. From Figure 4.7, we see that when deviation changes by a factor of 1/8, 1/4, 2 and 4, the
runtime changes by 0.4×, 0.5×, 2.4× and 3.3× respectively. Our runtime demonstrates a near-linear
scaling with deviation. On reducing the deviation below 1/4, the tie length becomes so low that only 1-2
sort operations are required. Similarly for the pc-filelist dataset, we change deviation by factors of 1/2,
1/4 and 1/8 and obtain runtimes that are 0.47×, 0.23× and 0.12× the original runtime. The pc-filelist
dataset was designed as a stress test for our algorithm, with a large number of strings (10 million) and
very long ties. A near-linear performance on different spreads of histograms for this dataset shows that
our algorithm can handle the entire spectrum of sorted ties histogram efficiently.

The pc-filelist dataset is such that we use up all memory available on the GPU to perform the sort.
Increasing the deviation will involve replicating the characters and will require more memory. To handle
such cases, we can modify our approach to stream successive prefixes of all strings to the GPU memory
periodically to substitute the used prefixes. This can be explored in our future work and will allow our
algorithm to scale to even larger input size. It is not as straightforward to scale merge sort algorithms,
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because they will require entire strings to be in memory to perform iterative comparisons at least for the
final merge step.

4.4 Discussion

We developed an efficient data parallel algorithm for the irregular problem of string sorting, based
on the fast radix sort primitive in the paper. We got a speed up of more than 10 over the best GPU string
sorting approaches. Our approach scales to larger datasets easily. Reducing memory movement, re-
moving singleton segments early, and consuming maximum number of string bytes in each sort-step are
the key factors behind our high performance. Most of the time was spent on optimized primitives from
available libraries. We presented results on a variety of natural and synthetic datasets. The analytical
expected runtime matched the actual time quite closely.

Our method is scalable to extreme conditions in the future, when the set of strings to be sorted does
not fit the GPU memory. Our method can handle this by streaming parts of the dataset from the CPU
as and when needed, as we need to access the string strictly from the left to the right only. Strings can
thus be divided into sections by columns and streamed to the GPU. The streaming can overlap with the
computations to get very high throughput in string sort.
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Chapter 5

Lossless Data Compression

In this chapter, we present a parallel all-core implementation of an end-to-end lossless data com-
pression application, specifically, the Burrows Wheeler Compression (BWC) algorithm. We combine
data parallel algorithm of Burrows Wheeler Transform (BWT) with other steps on CPU using task par-
allelism. We solve pipelining issues discussed in Section 1.2.1 for the end-to-end application of BWC
and develop a all-core BWC that optimally uses both CPU and GPU for high performance.

BWC is a popular, open compression scheme built on Burrows Wheeler Transform (BWT) [11]. It is
used widely to compress regular files, system software, gene sequences, etc. BWC typically gives 30%
smaller compressed files compared to LZW based schemes [1]. Compression schemes are among the
hardest to parallelize on many-core architectures like the GPU due to their irregularity. The approach
developed by us scales to exploit all cores – CPU, GPU and others – present on a given computer. In
contrast, only block-parallel BWC approaches on multi-core CPUs have resulted in speedup previously
[25]. A recent GPU BWC effort performed slower than a single core CPU [62]. We develop an intra-
block, fine-grained BWC algorithm on GPU that outperforms the state-of-the-art CPU implementation
by Seward [71]. We also present an all-core framework where inter-block parallelism is exploited to
divide the tasks among multiple computing stations of the CPU and we use intra-block parallelism on
the fine-grained (many-core) architecture of the GPU. Our results show significant performance benefits
as well as effective load balancing using all cores on the system. The main contributions of our work
are given below.

• We develop a fast BWT algorithm on the GPU that is built on radix sort (Section 5.2.1 and 5.4.1).
We extend the GPU string sort approach developed by us in Chapter 4 1 [19] to address the high
tie-lengths common in compression datasets and use it to perform suffix sort step of BWT.

• BWT and its inverse are often used in pairs. This allows us a way to speedup BWT by modifying
the strings to reduce high tie-lengths. We introduce a string perturbation step to increase speed at
a slight reduction in compression ratio (Section 5.2.2). The known perturbations can be reversed
after decompression to recover the original data block.

1Code available at http://web.iiit.ac.in/ adity.deshapandeug08/stringSort/ and https://github.com/aditya12agd5/cudpp
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• We partition and efficiently pipeline the tasks between CPU core and the GPU, with naturally se-
rial tasks performed on the CPU. The controlling CPU thread performs its tasks totally overlapped
with the GPU computations, resulting in a fast hybrid BWC algorithm (Section 5.2.3).

• We develop an all-core computation framework to exploit all compute cores on a computer sys-
tem. For task/work partitioning, we present a simple strategy using work queues that can solve
the pipelining challenge in several applications. We use our hybrid BWC approach on the com-
pute stations with GPUs and the optimal BWC code from Seward [71] on the CPU compute
stations. Section 5.3 describes our all-core framework and its application to BWC in more detail.
We modify the state-of-the-art BWC implementation to support large block sizes and concurrent
processing of blocks by CPU and GPU. Our code is available for public use. 2

• We demonstrate significant speedup as well as better compression ratios on a set of challenging
datasets (Section 5.4.2 and 5.4.3). Our hybrid BWC is the first to report a speedup on the GPU.
The all-core BWC produces linear speedup using only multi-core CPUs, while being compatible
with present Bzip2 standards. The all-core BWC using both CPU cores and GPU gives better
runtime (than multi-core CPU BWC), while balancing the load between the GPU and the CPUs.

Our implementation scales well on different combination of compute cores available on a system,
providing optimal performance. On an Intel Core i7, our all-core implementation achieves a 3.06×
speedup, which improves to 4.87× when an Nvidia GTX 580 is included (Table 5.2). On a low-end
Intel Core2Duo, our all-core BWC achieves a 1.22× speedup which improves to a 1.67× speedup with
the addition of Nvidia GTX 280 (Table 5.3). We believe that the techniques and the lessons from this
work will motivate future work in designing all-core implementations for other end-to-end applications.
A suite of similar end-to-end applications that exploit every compute core will truly allow the common
user to enjoy the benefits of parallel computing on the desktop.

5.1 Background and Related Work

In this section we review related work on BWC, BWT and its sequential and parallel implementa-
tions.

5.1.1 Burrows Wheeler Transform

Burrows and Wheeler, developed BWT [11] with following steps: (i) Start with the input string
S[1...N ] and associated index array I[1...N ], initialized to 1...N , denoting the starting position of each
(cyclically shifted) suffix in input string. (ii) Sort all suffixes in lexicographic order along with the
corresponding indices I . Final suffix array is a permutation of initial index array I[1...N ]. (iii) Compute

2Code for All-Core BWC available at http://cvit.iiit.ac.in/resources/bzip2GPU/bzip2Cvit.tar.gz
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Figure 5.1: Illustration of the Burrows Wheeler Transform on the input string banana.

last elements of sorted suffixes and output it along with the index of the original string in the sorted
output.

Figure 5.1 shows the application of BWT on an input string banana. It operates on all cyclic shifts
or suffixes of input string S[1...6] = banana. It generates the output matrix containing a sorted list of
all cyclically shifted strings. The answer is the last column of output matrix, i.e. nnbaaa, appended
with number 4, since the original string occurs at 4th position in the output. In general, the suffix
sorting step of BWT is compute intensive because it involves sorting O(N) suffix strings each of length
O(N) and these strings also have a high match length (i.e. they share long common prefix). High match
length is a characteristic of compression datasets, because compression schemes are typically used when
data has redundancy. This redundancy results from long repeating substrings, which causes high match
length for suffix strings. For example, if there are 2 same substrings, say a few 1000 characters long,
that are repeated in the input, then many suffix strings will have these few 1000 characters matching.
Resolving ties between all these strings during sorting is expensive. In practice, cyclically shifted suffix
strings match to lengths as high as 103 to 105 characters within a 9M character block. This shows the
compute intensive nature of BWT.

5.1.2 Sequential Burrows Wheeler Compression

BWT was used to devise a lossless BW compression scheme by Burrows and Wheeler [11]. For
suffix sort, they performed a radix sort on first two characters (c1c2) of all suffixes followed by a modified
Quicksort [8] in subsequent iterations. They also developed a special mechanism to handle inputs with
long repeated runs on the same character. Their BWC was slow. Seward proposed a method that
generated 256 depth one buckets based on the third character (c3) after the two-character radix sort
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[71]. Within each bucket, they sorted only those suffixes starting with c3c4 (such that c3 6= c4) and
cleverly synthesized sorted order for suffixes in other buckets (of the form c∗c3). This resulted in an
efficient and popular Bzip2 file compressor. Incorporating Sadakane’s algorithm [68] improved the
performance even on worst case inputs. Synthesizing sorted order of new suffixes from previously
sorted ones avoids expensive matching and results in good performance of these methods. Such fine-
grained synthesis methods require synchronization and are difficult to do on the GPU architecture. Our
GPU implementation uses a coarse synthesis technique developed by Kärkkäinen and Sanders [38],
wherein after sorting only (2/3)rd of the suffix strings, the rest can easily be sorted and merged.

5.1.3 Parallel Burrows Wheeler Compression

Gilchrist and Cuhadar [25] exploited the inter-block parallelism for linear speedup with multiple
CPU cores for BWC. They focussed on naive parallelization without modifying the basic algorithm or
making it scale to larger input size.

Previous GPU BWC. The only prior GPU implementation of BWT by Patel et al. [62] repeatedly sorts
strings using a variable length key comparison based sort [17]. Their implementation was about 2.78×
slower (with BWT step dominating the runtime) than the CPU version due to the inherent difficulty of
parallelizing BWC. Another attempt at building parallel BWC was abandoned due to very poor perfor-
mance [12]. We build our BWT on a GPU string sorting algorithm developed by us [19] that uses radix
sort. Our GPU BWT implementation achieves more than 2× speedup. Our implementation scales to
larger block sizes giving better compression ratios.

Edwards and Vishkin BWC. In parallel with our work, Edwards and Vishkin [20] developed an intra-
block parallel BWC algorithm and compared it with the CPU BWC [21]. Their algorithm is work
optimal with an O(logN) time on architectures with fine-grained parallelism. They demonstrated it
on their Explicit Multi-Threading (XMT) architecture but not on multi-core CPUs. In contrast, we
demonstrate better performance on multi-core CPUs and GPUs. They report a speedup of 1.8 to 2.8×
on XMT-64 (∼ 64 cores) platform and 12 to 25× on a simulated XMT-1024 (∼ 1024 cores) platform.
They use files from Large Corpus3, which are small in size (< 4.5MB’s) by today’s standards and
have a low maximum sorting depth (< 2000). We demonstrate high performance on large datasets
with higher sorting depth (103 to 105) like Enwik8 (96MB) [48], Linux-2.6.11.tar (199MB) [47] and
Silesia Corpus4 (203MB, which supersedes Large Corpus) [18]. It would be worthwhile to compare the
runtime of our algorithm with Edwards and Vishkin [20] on same platforms and same test datasets in
the future.

3http://corpus.canterbury.ac.nz/descriptions/
4http://sun.aei.polsl.pl/ sdeor/index.php?page=silesia
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Fast Burrows Wheeler Compression Using CPU and GPU 1:7

(a) Sorting with Doubling MCU is expensive
but requires very few iterations, while Con-
stant MCU sorting is faster but takes very
many iterations. Thus, we use constant MCU
for first few iterations and then resort to dou-
bling MCU.

(b) Speedup of 1.2 to 2⇥ is obtained by using our
partial sort and merge strategy as compared to
performing full sorting on different datasets.

Fig. 3: Study of Optimizations to String Sort for performing BWT.

length and sorting depth interchangeably depending on the context. Large sorting
depths result from long substrings repeating many times, which degrades the GPU
BWT performance. To address this, we double the MCU length after a few steps.
This reduces the number of sort steps as longer substrings are being compared in
each successive iteration. As shown in Figure 3a, if we use doubling right from the
start, initial sort steps are very costly as compared to constant sized (k character)
MCUs. But, the total number of sort steps with doubling are very less. To obtain
the best results, we use the faster constant size MCU for the first 16 iterations and
then double the MCU length. For example, one input dataset has a sorting depth
of 960 characters. We double the MCU length after 16 sort steps. So, we perform
16 ⇤ 4 = 64 character comparisons with 4-byte MCUs. Now, only 7 more sort steps are
required to cover the remaining 896 (8 + 16 + 32 + ... + 512 > 896) characters. Doubling
MCU length after 16 sort steps gives us a speedup of 1.8⇥ (1.06s to 0.58s per block)
as compared to using constant sized MCUs in this particular case. Each sort step
with longer MCU takes more time compared to the case of constant sized MCU, but
the large drop in number of sort steps results in a much improved overall performance.

Partial GPU sorts and CPU merge. In suffix sort, it is not necessary to sort all strings,
we can sort only a subset of the original strings and synthesize the sorted order
for rest. This synthesis is possible because the input strings are cyclically shifted.
Suppose, we sort all strings at indices i (mod 3) 6= 0 (denoted by set I1,2), we can
generate the sorted order for all suffixes at i (mod 3) = 0 (denoted by set I0). This
is done as follows: we compare the first character of the two I0 strings, if it is unequal
we obtain the sorted order. If it is equal, the strings beginning from next characters
of both suffixes correspond to suffixes in I1,2, for which we already know the sorted
order. Also, it is easy to merge I0 and I1,2, since in at most two comparisons of next
characters, we hit two suffixes that belong to I1,2. Similar sort and merge approaches
have been in practice in the CPU suffix sorting literature [Kärkkäinen and Sanders
2003; Kim et al. 2003; Seward 2000]. We adapt the efficient approach by [Kärkkäinen
and Sanders 2003] to our GPU implementation. We perform the two sorting steps on
GPU and move the merge step to CPU as shown in Figure 4. This allows us to utilize
the idle CPU cycles while GPU is performing sort operation for subsequent block in
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Figure 5.2: Performance benefits of Doubling and Partial Sort & Merge optimization.

5.2 CPU and GPU Hybrid BWC Algorithm

Burrows Wheeler Transform (BWT) is the most crucial step of BWC and one that occupies a signif-
icant chunk of its runtime. Computing BWT is equivalent to suffix sorting of all suffix strings (shown
in Figure 5.1) of the input string. We can treat each suffix as a separate string and perform a string
sort. In principle, string sorting can be performed on GPU by using a custom comparator in a GPU
merge sort algorithm5 [62, 17]. This custom comparator iteratively compares two strings. In a merge
sort, input is recursively split into small buckets and these buckets can be sorted independent of each
other. Parallelism of GPU is also leveraged to perform merging of buckets co-operatively using 2 or
more thread blocks/SM’s. But, the iterative comparisons discussed earlier are performed at every merge
step. Moreover, to perform such comparisons during successive merge steps, same string is loaded
again and again from the high latency global memory. Threads in a warp diverge because of varying
length comparisons. A traditional GPU merge sort based string sort runs 2−5× slower than CPU when
used to perform suffix sorting [62]. Thus, instead we use the radix sort based string sorting procedure
developed in the previous chapter. Exploiting fast standard GPU primitives and reducing high latency
global memory accesses, allows our radix sort based GPU string sort to provide 10× improvement over
previous methods. We leverage this fast string sort along with additional techniques to perform BWT
step of BWC.

5.2.1 Modified String Sort for BWT

For BWT, all N suffix strings are each of length N and these strings share long matching prefixes
with each other. This is because, compression schemes are typically used on datasets with high re-
dundancy or match length (in form of matching substrings). Matching substrings give rise to matching

5http://goo.gl/mlwlZ
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prefixes for suffix strings. Long matching prefixes results in large number of iterations for the string sort
algorithm. The string sorting approach works well only when the input has ties up to a few 100 charac-
ters [19]. Suffix sorting step of BWT has relatively much higher number of ties (103 to 105 characters).
In such a scenario sorting using constant-sized MCUs (k characters long) takes too much time. Thus,
we perform costly sorts on longer MCUs, but reduce the number of iterations by doubling the MCU
length after every iteration. We use the property of suffix strings being cyclically shifted to only sort a
subset of strings and generate the sorted order for rest. These two sets of sorted suffix strings are then
merged by utilizing idle CPU cycles. These BWT specific optimizations are discussed in more detail in
subsequent sections –

Doubling MCU Length. The match length between suffix strings (i.e. length of longest common prefix
of all suffix strings) determine the maximum number of fixed-length sorts required. This is referred to
as the sorting depth. We use the terms match length and sorting depth interchangeably depending on
the context. Large sorting depths result from long substrings repeating many times, which degrades the
GPU BWT performance. To address this, we double the MCU length after a few steps. This reduces the
number of sort steps as longer substrings are being compared in each successive iteration. As shown in
Figure 5.2(a), if we use doubling right from the start, initial sort steps are very costly as compared to
constant sized (k character) MCUs. But, the total number of sort steps with doubling are very less. To
obtain the best results, we use the faster constant size MCU for the first 16 iterations and then double
the MCU length. For example, one input dataset has a sorting depth of 960 characters. We double the
MCU length after 16 sort steps. So, we perform 16 ∗ 4 = 64 character comparisons with 4-byte MCUs.
Now, only 7 more sort steps are required to cover the remaining 896 (8 + 16 + 32 + ... + 512 > 896)
characters. Doubling MCU length after 16 sort steps gives us a speedup of 1.8× (1.06s to 0.58s per
block) as compared to using constant sized MCUs in this particular case. Each sort step with longer
MCU takes more time compared to the case of constant sized MCU, but the large drop in number of
sort steps results in a much improved overall performance.

Partial GPU sorts and CPU merge. In suffix sort, it is not necessary to sort all strings, we can sort only
a subset of the original strings and synthesize the sorted order for rest. This synthesis is possible be-
cause the input strings are cyclically shifted. Suppose, we sort all strings at indices i (mod 3) 6= 0

(denoted by set I1,2), we can generate the sorted order for all suffixes at i (mod 3) = 0 (denoted
by set I0). This is done as follows: we compare the first character of the two I0 strings, if it is unequal
we obtain the sorted order. If it is equal, the strings beginning from next characters of both suffixes
correspond to suffixes in I1,2, for which we already know the sorted order. Also, it is easy to merge I0
and I1,2, since in at most two comparisons of next characters, we hit two suffixes that belong to I1,2.
Similar sort and merge approaches have been in practice in the CPU suffix sorting literature [38, 39, 71].
We adapt the efficient approach by [38] to our GPU implementation. We perform the two sorting steps
on GPU and move the merge step to CPU as shown in Figure 5.3. This allows us to utilize the idle CPU
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cycles while GPU is performing sort operation for subsequent block in BWC. Figure 5.2(b) shows that
we obtain a speedup of 1.2 to 2× as a result of using this optimization.

The optimizations discussed above are limited only to the BWT step of BWC. Specific to the problem
of BWC, we develop another optimization to forcefully break long ties in the input. This is discussed in
Section 5.2.2.

5.2.2 String Perturbation

Large sorting depth comes from repeated long substrings. Runtime can reduce greatly if we can
reduce long ties by perturbing the string. This works for BWT based compression schemes because a
known perturbation can be undone after decompression. Different perturbations were tried by us. In-
serting a random character at fixed positions in the input string worked the best, as it forcefully breaks
long ties. For example, on a 4.5M character block of linux-2.6.11.tar adding a random character after
every 1000th character reduced the maximum sorting depth from 65472 to 960 characters and the aver-
age sorting depth from 10078 to 825 characters (Figure 5.5, bottom right). It should be noted that the
BWT for this modified input string is not the same as BWT of the original input string. Since BWT and
inverse BWT (IBWT) are used in pairs, random characters that occur at fixed positions can be removed
to restore the original string after IBWT. The compressed file size increases slightly as we increase the
entropy by adding random characters, but our results (Section 5.4.2) show that this increase is reason-
able. This optimization also provides us a way to trade-off compression time against compression ratio.
Figure 5.5 (bottom right) and Table 5.1 demonstrate the significant improvement (8.2× speedup for
linux-2.6.11.tar with 0.1% perturbation on 9MB blocks) in runtime obtained after using string pertur-
bation. The speedup obtained by string perturbation is very useful on datasets with very high sorting
depths viz. linux-2.6.11.tar.

5.2.3 Mixing Data Parallelism with Task Parallelism: Hybrid BWC Algorithm

We have developed a hybrid BWC algorithm that partitions task between a single CPU core and the
GPU. In the design of our hybrid BWC algorithm we take into account differences between CPU and
GPU and map the appropriate operations to the appropriate compute platform. The BWC algorithm
consists of three steps: (i) Burrows Wheeler Transform, (ii) Move to Front Transform (MTF), and
finally (iii) Huffman encoding. Patel et al. [62] implemented all three stages on the GPU with the
hope of performing on the fly compression/decompression during data transfers. All three stages were
individually slower on the GPU as compared to the CPU, with BWT step experiencing the maximum
slowdown. Typically BWT computation itself takes about 80-90% of the total computation time on
the CPU. The MTF and tree building step of Huffman coding are completely serial and it is difficult
to extract performance by mapping these to a data-parallel model. Based on these observations, we
perform the bulk of BWC computation i.e. BWT operation on the GPU (using steps discussed in Section
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Figure 5.3: An illustration of the CPU+GPU hybrid BWC pipeline. The merge, MTF and Huffman
steps are done on the CPU in a fully overlapped manner with the partial sorts on the GPU of succeeding
block.

5.2.1) and we perform the remaining computations of MTF and Huffman encoding on the controlling
CPU thread. Also note that, as discussed earlier, during BWT the merge step after partial sorts is also
performed on CPU. This hybrid BWC is illustrated in Figure 5.3. Barring the last block, the merge,
MTF and Huffman operations of all the blocks are performed in a fully overlapped manner with the
partial sorts on the GPU. This makes good use of the idle CPU cycles, when GPU is busy doing the sort
operation, and provides a throughput for BWC that nearly equals the GPU BWT throughput.

The pseudo code of our hybrid BWC algorithm is given in Algorithm 4. Our algorithm takes as input
a file F (line 1) and splits it into multiple blocks ([B1,B2, · · · ,Bn]) each of size N (line 2). These
blocks are perturbed (line 3) and then undergo sort steps of BWT on the GPU and remaining merge,
mtf and huffman encoding steps on the CPU one after the other (line 4). We create an index array,
I, which denotes the starting position of each suffix string (line 5). Note that, since cyclically shifted
suffix strings are used during BWT, each of the N strings also has a length of N. We use modified
string sorting method described above, along with doubling MCU optimization to sort strings that occur
at positions I1,2 (line 8). After this string sort, I1,2 contains the indices of strings in sorted order. We
use this sorted order to non-iteratively synthesize the sorted order for strings at positions I0 (line 9).
The results of partial sorts are handed over to the CPU for performing merge and remaining BWC steps
(line 10 to 12), and GPU simultaneously begins the sort steps on the next block. The sort steps on GPU
are thus overlapped with other BWC steps on the CPU as shown in Figure 5.3.

In our algorithm for all operations on GPU, we use the fastest sort, scatter and scan primitives.
These primitives are tuned for every new architecture and there are also algorithmic improvements
which improve their performance. Our GPU BWC, built on these primitives, can directly inherit all
these improvements and is adaptable to future architectures without requiring any re-design. The design
of our hybrid BWC algorithm makes best use of both CPU and GPU. Table 5.1 and Figure 5.6 show
that our hybrid BWC gives a max. 2.9× speedup over standard CPU BWC implementation i.e. Bzip2.
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Algorithm 4 Hybrid Burrows Wheeler Compression Algorithm
1: Input: File F
2: [B1,B2, · · · ,Bn] = split-blocks(F, N) // split file into size N blocks
3: [B1,B2, · · · ,Bn]← perturb-blocks([B1,B2, · · · ,Bn], interval) // random char is added after

interval
4: for Bp in [B1,B2, · · · ,Bn]
5: I = [1 · · ·N] // Index Array, denotes starting position of each string
6: I1,2 ← {I[i] | I[i](mod 3) = 1 or 2}
7: I0 ← {I[i] | I[i](mod 3) = 0}
8: I1,2 ← GPU-modified-string-sort(Bp, I1,2, lim) // MCU doubled after lim iter.
9: I0 ← GPU-non-iterative-sort(Bp, I1,2, I0) // synthesize sorted order

/* CPU computation is fully overlapped with asynchronous GPU calls */
10: I← CPU-merge(Bp, I1,2, I0) // non-iterative merge of two sorted suffix sets
11: bwt← CPU-offset-addition(I,Bp,N) ⊕ index-of(0, I) // generate BWT
12: result← CPU-mtf-huffman(bwt) // perform MTF and Huffman encoding
13: end for

In our hybrid BWC we only use a single CPU core. We further improve our speedup by using the other
idle CPU cores through our all-core framework as shown in Tables 5.2 and 5.3.

5.3 The All-Core Framework

The all-core framework shown in Figure 5.4 is detailed in this section. A typical computation plat-
form consists of multi-core CPUs, many-core GPUs, and/or other accelerators. The specific platform
we focus on consists of a multi-core CPU and a GPU, but the framework extends easily to others. We
treat each CPU thread as a compute station or CoSt. The number of CoSts can exceed the number of
CPU cores with hyperthreading. Each GPU with a controlling CPU thread is another CoSt. The GPU
programming models are getting more flexible and multiple CoSts may coexist on a physical GPU in
the future. Each CoSt can be assigned a specific task. Each CoSt is free to choose the best possible
strategy to perform the given task. A CPU core as a CoSt will attack the problem sequentially while a
GPU as CoSt will resort to data-parallelism. For task partitioning we present a simple, but generic strat-
egy based on work queues that can be used for several problems. Each CoSt dequeues an appropriate
task from the work queue, processes it, and enqueues the results to an output queue. This framework
is best suited for applications that process large data, but in independent blocks. There may be some
pre-processing before independent blocks are formed and some post-processing to combine the outputs
of independent blocks. Several applications fit the work queue model such as video encoding, decoding,
and transcoding, lossy or lossless data compression, etc. We confine our attention to BWC compression
application in this paper, though extension to other applications is straightforward.
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Figure 5.4: Work Queue based all-core framework.

5.3.1 BWC in All-Core Framework

BWC on large data buffers (files or others) is performed by dividing it into blocks which are pro-
cessed independently. A CoSt processes a block. We add the entire data buffer to a work-queue. Each
CoSt, when free, removes a work item of appropriate size from the queue and processes it. When done,
it adds the output – a compressed bit stream in case of BWC – to the output queue and gets another item
from the queue for processing. A manager thread on CPU performs the post-processing, which involves
combining the output bit streams, adding headers, etc., and creates the final output. Each CoSt performs
the same task, but uses an implementation that best fits its architecture. Since our target architecture
has two types of CoSts, (i) CPU core and (ii) GPU with a single controlling CPU thread, we use two
BWC implementations. CPU CoSts use the best sequential implementation of BWC. On the GPU we
use our hybrid BWC algorithm. We call this implementation which uses both, CPU (BWC by [71])
and GPU (our hybrid BWC as described in 5.2.3), as the all-core BWC. It is also possible to use only
the CPU cores in our all-core framework, this gives us a multi-core BWC (which runs in parallel on
multiple CPU cores). The multi-core BWC is similar to parallel implementation by [25], but it is fully
compatible with the Bzip2 compression standard. In Table 5.2 and 5.3 we show the speedup achieved
using all-core BWC and multi-core BWC. These results show that our all-core BWC improves on the
speedup obtained by using only CPU cores in the multi-core BWC. The development of hybrid BWC
enables our all-core approach to achieve this additional speedup. Our work-queue based all-core frame-
work keeps all the CoSts busy while there is more work to do. Thus, the framework provides great
flexibility in mixing different types of compute stations while balancing the loads on them according to
their capacities.
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5.3.2 BW Decompression in All-Core Framework

Burrows Wheeler decompression has the same block level parallelism as compression and we use our
all-core framework to gain speedup. We develop an all-core implementation of decompression where
GPU CoSt performs the Inverse BWT step according to algorithm given by Patel [61]. This algorithm
involves 3 steps of sorting (1 byte key), list ranking and scatter. Efficient primitives to perform all these
operations are available on the GPU. Since inverse BWT is a simple operation, GPU does not achieve a
significant speedup over CPU. Thus, the overall speedup is linear in number of CoSt’s used through our
all-core framework. BW compression is a tougher problem than decompression and we choose to focus
on it in this work.

5.4 Experimental Results

We evaluate the performance of our GPU BWT (Section 5.4.1), hybrid BWC (Section 5.4.2), multi-
core and all-core BWC (Section 5.4.3) on different datasets and on different CPU and GPU platforms.
The GPU BWC (Algorithm 4), was implemented on Nvidia GPUs using Thrust primitives for sort (key
and value), scatter and scan [32]. The following standard datasets for lossless data compression were
used in our experiments:

• Enwik8 [48]: The first 108 bytes of the English wikipedia dump on March 3, 2006. We also use
wikipedia’s enwiki-latest-abstract-10.xml (henceforth, referred to as wiki-xml) dataset [79].

• Publicly available source of linux kernel 2.6.11 (199MB) [47].

• Silesia data corpus, a widely used standard data compression benchmark which has large files
from various sources viz. database, codes, medical images etc. [18]. We tar (concatenate) all the
files and use the tarred file (silesia.tar) as a dataset.

In our results, we benchmark the performance of our GPU BWT against the state-of-the-art BWT
on CPU, i.e. BWT implemented in Bzip2 file compressor [71] and we show the effectiveness of our
string perturbation optimization for some datasets (Section 5.4.1). We also compare the performance
of our hybrid BWC pipeline against single-core CPU BWC (Section 5.4.2). These results show that
our hybrid BWC pipeline performs about 2.9× better than the highly tuned CPU BWC and thus, about
8× faster than the previous GPU BWC [62] (which was 2.78× slower than CPU). The reader should
note that this is the first time a speedup has been achieved on GPU for the problem of BWC. Our
hybrid BWC also gives better compression ratio in lesser time by using large block sizes, as compared
to the maximum 900KB block size supported by standard CPU BWC. Finally, we show the speedup
we achieve through multi-core BWC and our all-core BWC implementation on a high-end as well as
a low-end system (Section 5.4.3). The dataset and the code used for our experiments is available at
http://cvit.iiit.ac.in/resources/bzip2GPU/bzip2Cvit.tar.gz.
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Figure 5.5: The performance of our GPU BWT vs. CPU BWT (Bzip2) for different block sizes and on
datasets with different maximum/average sorting depths (MSD/ASD). GPU BWT is 2× faster on large
block sizes for enwik8 and wiki-xml datasets. The GPU performance degrades on very high sorting
depth datasets (viz. linux-2.6.11.tar) which is addressed using string perturbation (bottom right). With
increase in % of string perturbation the sorting depth reduces, and for very high sorting depth (worst-
case) linux dataset, beyond 0.01% perturbation the GPU BWT achieves a speedup over CPU.

5.4.1 Results: GPU BWT

We benchmark the performance of both CPU and GPU BWT algorithms by varying block size
(900Kb to 9MB) and measuring the runtime on datasets with different sorting depths, i.e. for 9MB
blocks the maximum sorting depth varies from 960 (enwik8) to 2, 62, 080 (linux-2.6.11.tar). The BWT
implementation in Bzip2 on the CPU is considered to be the state-of-the-art and we use it for compari-
son. Figure 5.5 shows that our GPU algorithm achieves speedup for large block sizes (> 4.5MB) since
the GPU is not utilized well for smaller ones. We later demonstrate that these large block sizes also
provide better compression (Section 5.4.2). Figure 5.5 shows that the runtime for GPU sort operations
increases with increase in the sorting depth (indicated by dashed red line). On large block sizes, we
achieve a speedup whenever the maximum sorting depth is upper bound by about 104. The maximum
speedup, of 2.5×, is achieved for wiki-xml using 9MB blocks. For datasets, with an order of magnitude
higher sorting depth viz. linux-2.6.11.tar, the GPU BWT is about 4× slower than the CPU. This is
addressed using string perturbation.

Effect of String Perturbation. In Figure 5.5 (bottom right), we vary the % of perturbation from 0 (0
random characters added) to 1% (1 random character after every 100th) for the high sorting depth (prac-
tical worst-case) linux-2.6.11.tar dataset and measure the runtime. As we increase the % perturbation,
both the maximum and average sorting depth reduces (since long ties are broken by random characters)
and runtime improves (indicated by dashed red line). We see that at 0.01% perturbation itself, the GPU
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Dataset (Size) Block Size

(i) Compression time for our hybrid BWC (s),
(ii) Compression time for CPU BWC (s) [71],

(iii) Compressed file size in MB’s (same for both)
0% Perturb-

ation
0.01% Perturb-

ation
0.1% Perturb-

ation
1% Perturb-

ation

enwik8 (96MB)

900KB 10.07, 10.81, 27.66 10.03, 10.85, 27.70 9.91, 10.88, 28.09 8.87, 10.97, 31.32
4.5MB 7.29, 13.12, 25.62 7.29, 13.11, 25.67 7.31, 13.10, 26.09 7.60, 13.22, 29.36
9MB 8.31, 15.23, 24.86 8.30, 15.22, 24.91 8.33, 15.82, 25.33 8.63, 15.27, 28.66

wiki-xml
(151MB)

900KB 36.88, 38.29, 15.29 36.56, 38.16, 15.39 33.85, 37.63, 16.19 23.49, 32.07, 21.89
4.5MB 30.42, 60.78, 13.66 30.14, 60.76, 13.77 26.97, 60.55, 14.55 15.96, 48.52, 19.82
9MB 31.51, 80.76, 13.13 31.12, 80.77, 13.24 27.62, 79.94, 14.04 15.79, 66.12, 19.07

linux-2.6.11.tar
(199MB)

900KB 84.86, 24.93, 35.35 48.01, 24.69, 35.46 32.84, 23.21, 36.44 22.78, 22.17, 44.19
4.5MB 133.54, 45.66, 33.10 41.37, 44.02, 33.23 24.17, 39.88, 34.26 14.24, 26.65, 42.31
9MB 196.64, 53.59, 32.51 45.55, 51.77, 32.65 23.81, 32.11, 33.69 14.37, 29.64, 41.81

silesia.tar
(203MB)

900KB 39.56, 29.65, 52.06 36.14, 29.69, 52.17 28.98, 29.32, 52.97 23.06, 27.46, 59.49
4.5MB 34.60, 39.57, 50.06 29.52, 39.63, 50.19 22.97, 32.67, 51.03 16.81, 36.07, 57.54
9MB 36.10, 46.73, 49.57 28.85, 46.92, 49.70 24.55, 46.31, 50.55 17.74, 41.94, 57.11

Table 5.1: This table shows impact of block size, string perturbation on runtime and compressed file size
(CPU BWC runtime is that of the standard Bzip2 and the GPU BWC runtime is that of our hybrid
BWC implementation). Bold values indicate cases where we get either better compression and/or runtime
compared to the baseline i.e. standard CPU BWC on the default 900KB blocks (denoted by underline).

performs marginally better than the CPU. Beyond 0.01% perturbation, the speedup of GPU over CPU
becomes significant. On linux-2.6.11.tar dataset with 9MB blocks the GPU algorithm goes from being
4× slower to 1.7× faster as the perturbation varies from 0 to 1%.

Time for Merge. Figure 5.5 also shows that the time required for the overlapped CPU merge operation
is smaller than the time of the GPU sort step and it is constant for a given input size, no matter what the
dataset (indicated by a solid black line). This allows us to fully overlap the merge computation with the
sort operation on GPU.

5.4.2 Results: Hybrid BWC

We also measure the runtime of our hybrid BWC (GPU performs the partial sorts and CPU performs
the merge, MTF and Huffman in a fully overlapped manner as described in Section 5.2.3) against the
state-of-the-art CPU BWC implementation in Bzip2 file compressor. Table 5.1 gives the total runtime
and compressed file size on different datasets using different block sizes and with varying percentage
of perturbation. Our hybrid BWC is fully compatible with the Bzip2 standard and for any given input
it generates the same compressed file as the CPU Bzip2 (provided both algorithms use the same block
size and perturbation). Larger block size provides better compression, this is because BWT can now
group together characters from a larger area for the MTF and Huffman steps and this has already been
demonstrated by Burrows and Wheeler [11]. The performance of our hybrid BWC algorithm improves
with increase in block size (except only for linux dataset with no perturbation), while the CPU perfor-
mance becomes worse. For wiki-xml dataset, from 900KB to 9MB block size (without perturbation)
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Figure 5.6: Our hybrid BWC (with 9MB blocks) pipeline performs marginally better than CPU BWC
with 900KB blocks (which does much less work) and gives max. 2.9× speedup when compared to CPU
BWC with 9MB blocks. Using 9MB blocks also gives some gain in compression ratio.

the runtime of our hybrid algorithm improves by 15% (36.88s to 31.51s) while the runtime of the CPU
BWC more than doubles (38.29s to 80.76s). Also, the compressed file size reduces by 14% (15.29 to
13.13MB) with 9MB blocks. Thus, our hybrid BWC scales better with block size and can be used to
obtain better compression in lesser time as compared to CPU BWC.

To further improve our speedup and address worst-case datasets viz. linux-2.6.11.tar, we use string
perturbation. We see that with increase in perturbation (random characters added), the runtime of CPU
BWC is nearly same but the runtime of our hybrid BWC improves. Even for the worst-case linux
dataset we beat the CPU with perturbation >= 0.01% and on large blocks. Through perturbation we
are adding additional entropy to the input and the compressed file size increases. The current state-of-
the-art runtime/compression is provided by CPU BWC running with 900Kb block size and no pertur-
bation (marked by underline). Table 5.1 shows that with 0.1% perturbation and block size greater than
4.5MB, we obtain better runtime as well as compression (marked by bold values) on all 4 datasets
as compared to the state-of-the-art (marked by underline). The light-blue bars in Figure 5.6 show the
speedup (1.04 − 1.38×) obtained with respect to BWC on 900KB blocks and green line in the same
figure shows the corresponding reduction in compressed file size (2.9−8.4%). Note that, in comparison
to the state-of-the-art, our hybrid BWC implementation (using 9MB Blocks) is outperforming the CPU,
even when the CPU is doing much less work (BWT performance is worse than linear in block size)
by using only 900KB blocks. This is a significant improvement over previous GPU implementation
which was 2.78× slower and also slightly worse in compression ratio as compared to CPU [62]. Also,
to achieve the same compression ratio (using large block size) on the CPU will take much more time
as compared to our hybrid algorithm (the speedup when both standard CPU and our hybrid BWC uses
9MB block size is indicated by dark-blue bars in Figure 5.6). In practice, 0.1% perturbation allows us to
improve the runtime for our hybrid BWC and still keeps the compressed file size below the state-of-the-
art (obtained by CPU BWC on 900KB blocks). The gain (2.9− 8.4%) in compression ratio is indicated
by green line in Figure 5.6. In the results that follow, we fix our block size to 9MB and perturbation to
0.1%.
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Figure 5.7: The decompression time (about 7s) is relatively small as compared to the compression time
(about 30s) for wiki-xml dataset. The runtime increases slightly with increase in block size and %
perturbation does not affect the decompression runtime.

Decompression. In Figure 5.7 we measure the change in the runtime for BW decompression with differ-
ent block size and % perturbation. We see that there is a marginal increase in runtime when the block
size increases and no change with perturbation. Thus, our modifications do not have a drastic impact on
the decompression runtime. We leverage the block-level parallelism present in BW decompression to
gain a linear speedup with CoSts through our all-core framework.

5.4.3 Results: All-Core BWC

We use the work queue based all-core framework and run multi-core BWC (i.e. only the CPU cores)
and all-core BWC (which uses both all CPU cores and GPU) on all our datasets. The block size is fixed
to 9MB and perturbation to 0.1%, since we obtained optimal performance for these parameters (Table
5.1).

High-End System. In the first setup, we compare the performance of the multi-core and all-core BWC
on a high end system comprising of Intel Core i7 920 CPU and Nvidia GTX 580 GPU. The results are
given in Table 5.2. The 4-core Intel i7 CPU, with hyper-threading supports 8 threads at a time efficiently
and in practice, increasing the number of threads above 8 did not improve the performance. Thus in our
experiments we vary the number of CPU threads between 1 to 8. In this range, as expected, for both
implementations, the performance generally improves with more threads. Also in Table 5.2, on adding
a single additional CPU thread to the CPU+GPU thread, we see that GPU still processes 9 out of 12
blocks, 13 out of 18 blocks for enwik8 and wiki-xml respectively. This reaffirms that our hybrid BWC
is 2 times faster as compared to CPU BWC on these datasets and the work-load is balanced according
to speed of CoSts. The best runtimes on enwik8, wiki-xml, linux and silesia.tar datasets for the multi-
core BWC are 4.9s, 26.1s, 9.9s, 17.4s respectively, which improve to 3.9s (1.25×), 16.4 (1.59×), 7.7s

(1.28×) and 11.0s (1.58×) using the all-core BWC. If we look at the speedup with respect to the single-
core CPU BWC implementation, we see that our all-core BWC achieves a consistent speedup greater
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NVIDIA GTX 580 (GPU) + Intel Core i7 920 (CPU)

Dataset

Total time for all-core BWC (CPU+GPU) (s),
(#blocks processed by GPU / #total blocks)

Different number of CPU threads in addition to one CPU+GPU thread
Speedup (bold)
vs. single CPU

(underlined)0 CPU 1 CPU 2 CPU 3 CPU 4 CPU 6 CPU 7 CPU

enwik8
8.4

(12/12)
6.5

(9/12)
5.8

(7/12)
4.7

(6/12)
4.7

(5/12)
4.6

(5/12)
3.9

(4/12) 4.05

wiki-xml
27.6

(18/18)
23.6

(13/18)
19.6

(10/18)
16.4

(10/18)
16.6

(8/18)
18.9

(7/18)
18.6

(6/18)
4.87

linux
23.8

(22/22)
14.3

(13/22)
10.88
(8/22)

9.3
(8/22)

9.1
(7/22)

7.7
(5/22)

7.9
(4/22)

4.16

silesia
24

(23/23)
16.8

(16/23)
13.3

(12/23)
12.6

(12/23)
12.7

(11/23)
11.4

(9/23)
11.0

(8/23) 4.20

Only Intel Core i7 920 (CPU)

Dataset

Total time for multi-core BWC (CPU only) (s)
Different number of CPU threads

(No GPU involved)
Speedup (bold)
vs. single CPU

(underlined)1 CPU 2 CPU 3 CPU 4 CPU 5 CPU 7 CPU 8 CPU
enwik8 15.8 9.1 6.4 5.0 5.0 4.9 4.9 3.22

wiki-xml 79.9 44.5 32.3 28.4 25.6 26.2 26.1 3.06
linux 32.1 17.6 13.3 10.7 10.0 10.3 9.9 3.24
silesia 46.3 30.9 21.5 21.4 21.1 17.4 18.4 2.66

Table 5.2: For this table, we use a high-end system with Intel Core i7 CPU and Nvidia GTX 580 GPU.
The table shows runtime for all-core BWC (CPU+GPU) and multi-core BWC (CPU only). We use
9MB blocks and 0.1% perturbation, best runtime for each dataset is indicated in bold. We achieve
3.06× speedup with multi-core BWC, which improves to 4.87× with our all-core BWC. Also, if we
compare n CPU threads to n− 1 CPU threads and 1 CPU+GPU thread, the runtimes of latter are better.
This again shows our hybrid BWC is faster than CPU BWC.

than 4× for all the datasets compared to the about 3.24× speedup obtained by the multi-core BWC.
This shows that our all-core CPU+GPU BWC scales to all the available cores ( GPU in addition to the
CPU) in the system and provides maximum speedup.

Low-End System. In the second setup, we compare the performance of multi-core BWC and all-core
BWC on a combination of Intel Core2Duo E6750 CPU with Nvidia GTX 280 and Nvidia Quadro FX
3700 GPUs (Table 5.3). These are less powerful GPUs with limited support for parallelism as compared
to Nvidia GTX 580 and we observe a performance comparable or even worse than CPU for our hybrid
BWC. Except for the linux dataset, we see that in both cases the all-core BWC improves upon the best
speedup obtained by the multi-core BWC. The improvement is relatively more significant for the GTX
280, as it is a more powerful GPU compared to Quadro FX 3700. The best speedup obtained on the
GTX 280 setup is 1.67×, on the Quadro FX 3700 we achieve 1.48×, while the multi-core BWC gives
best speedup of 1.22×. Though the Nvidia Quadro FX 3700 is on average two times slower compared to
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the dual-core CPU, our pipeline is such that it effectively balances the load and still provides an overall
speedup with full resource utilization. Also, to investigate the reasons for slowdown on linux dataset,
we ran our code while keeping track of the times at which the items are dequeued from the work queue.
It so happens that GTX 280 and some CPU threads dequeue the last remaining blocks around 35.2s. The
CPU being faster terminates earlier leaving the GPU to be a bottleneck. There is always a possibility
of last block going to the slowest CoSt and affecting the runtime. A possible and an interesting way
to avoid this would be to learn the behavior of runtimes (during execution of initial work items) of all
CoSts and avoid slower CoSts from dequeuing work items at the very end.

5.5 Discussion

In this chapter, we presented an all-core framework to exploit all computing resources available on
a user’s system. We demonstrated the practical utility of our all-core framework by implementing the
Burrows Wheeler Compression (BWC) pipeline. We demonstrated a speedup on BWC on the GPU
for the first time. Our hybrid BWC, that optimally uses both CPU and GPU, achieves good speedup
over highly tuned CPU BWC. It also handles large block size efficiently, providing better compression
ratio along with better runtime as compared to state-of-the-art. Our all-core framework combines task
parallelism and data parallelism effectively. It uses all CPU cores and the GPU cores, while balancing
the load between all available resources. Everyday users haven’t gained much from enhanced computing
power of today’s parallel processing platforms. This is an area that needs attention as multi-core CPUs,
many-core GPUs, and other accelerators become more prevalent. The ideas of all-core framework and
results on an end-to-end application we presented can improve the application performance on emerging
heterogeneous processing platforms. We expect the all-core framework to be useful for applications like
video encoding and decoding, other data compression schemes, etc.
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NVIDIA Quadro FX 3700 (GPU) + Intel Core2Duo E6750 (CPU)

Dataset

Total time for all-core BWC (CPU+GPU) (s),
(#blocks processed by GPU / #total blocks)

Different #CPU threads in addition to 1 CPU+GPU thread
Best Speedup (bold) vs.
single CPU (underlined)

0 CPU 1 CPU 2 CPU 3 CPU 4 CPU

enwik8
35.2

(12/12)
22.5

(7/12)
21.8

(5/12)
21.1

(3/12)
21.4

(3/12)
1.25

wiki-xml
201.4

(18/18)
114.5
(8/18)

106.5
(6/18)

100.3
(10/18)

87.62
(4/18) 1.48

linux
176.5

(22/22)
65.1

(6/22)
51.4

(4/22)
48.9

(4/22)
47.1

(2/22) 1.01

silesia
164.5

(23/23)
66.4

(8/23)
64.6

(6/23)
61.4

(4/23)
57.2

(5/23) 1.21

NVIDIA GTX 280 (GPU) + Intel Core2Duo E6750 (CPU)

Dataset

Total time for all-core BWC (CPU+GPU) (s),
(#blocks processed by GPU / #total blocks)

Different #CPU threads in addition to 1 CPU+GPU thread
Best Speedup (bold) vs.
single CPU (underlined)

0 CPU 1 CPU 2 CPU 3 CPU 4 CPU

enwik8
20.5

(12/12)
19.3

(6/12)
19.8

(5/12)
20.1

(4/12)
20.0

(3/12)
1.33

wiki-xml
90

(18/18)
77.4

(12/18)
77.6

(10/18)
77.8

(8/18)
85.1

(6/18)
1.67

linux
77.3

(22/22)
46.1

(11/22)
40.3

(7/22)
39.8

(6/22)
39.2

(5/22) 1.21

silesia
74.3

(23/23)
57.0

(14/23)
53.3

(10/32)
53.6

(9/23)
54.0

(10/23)
1.30

Only Intel Core2Duo E6750 (CPU)

Dataset
Total time for multi-core BWC (CPU only) (s)

Different number of CPU threads (No GPU involved)
Best Speedup (bold) vs.
single CPU (underlined)1 CPU 2 CPU 3 CPU 4 CPU 5 CPU

enwik8 26.4 22.4 21.9 22.5 22.3 1.20
wiki-xml 129.9 106.0 108.3 109.6 108.1 1.22

linux 47.6 36.2 37.5 37.7 37.7 1.31
silesia 69.59 55.26 53.77 56.1 56.0 1.29

Table 5.3: For this table, we use a low-end Intel Core2Duo E6750 CPU, Nvidia Quadro FX 3700
(low-end) and Nvidia GTX 280 (medium-end) GPUs. The table shows runtimes for all-core BWC
(CPU+GPU) and multi-core BWC (CPU only). We use 9MB blocks and 0.1% perturbation, best run-
times for each dataset are indicated in bold. Using all-core BWC on both these setups, allows us to
improve on the speedup achieved by the multi-core BWC (except for linux dataset).
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Chapter 6

Conclusions

In this thesis, we developed data parallel algorithms for difficult problems of Floyd Steinberg Dither-
ing (FSD) and String Sorting. FSD had a long sequential dependence that made it difficult to develop
parallel algorithms. The non-linear dependence on the outputs of some past pixels, reduced parallelism
for FSD greatly. We develop a way to study pixel independence as a function of data dependence and
find parallelism to solve the problem efficiently. Thus, we use the data dependence to our benefit and
find independent elements for data parallel processing. As shown in Figure 3.13, we can handle various
types of data dependency by just analyzing the pixels and finding the correct pixels to process in par-
allel per iteration. A data dependency analysis and appropriate scheduling scheme, similar to one we
developed for FSD, will allow many dynamic programming problems to be solved in parallel.

String sorting is an irregular problem on account of variable work performed per thread (during string
comparisons) and arbitrary memory accesses performed depending on the ordering between strings. We
map this irregular problem of string sorting to fast standard primitives of sort, scatter and scan on
the GPU. Our data parallel algorithm built on standard primitives solves the problem of string sorting
efficiently and can adapt well to future architectures. It can easily incorporate any algorithmic improve-
ments to standard primitives for fast performance, without requiring re-design. String sorting or sorting
long and variable length keys is a bottleneck in many applications viz. Burrows Wheeler Transform,
Data Mining, Data Compression. Our algorithm could be leveraged to accelerate all these applications.
In this thesis itself, we extend our string sort algorithm to perform suffix sort step of Burrows Wheeler
Transform. Earlier, GPU performed slower than even a single core CPU on the problem of Burrows
Wheeler Transform. But, now our string sort allows us to obtain a speed up on GPU for the first time.
The data parallel algorithm presented for string sort overcomes the challenges of variable quantity of
work performed by threads, dependency between elements of the input and repetitive arbitrary global
memory access required (since the basic comparison operation requires data beyond that present in the
registers). One or more of our techniques can be adapted to suitably address these challenges in other
applications.

We not only develop data parallel algorithms for a few problems but also, we combine them with
task parallelism on a hybrid CPU and GPU system for better performance. We examine the effects
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of this mix of data parallelism and task parallelism for Floyd-Steinberg Dithering (FSD) and Burrows
Wheeler Compression (BIC). For the problem of FSD, we develop two implementations – Handover
and Hybrid FSD – that use both CPU and GPU. In these two, we use the idea of work sharing and
split the data parallel step across CPU and GPU. For the Handover algorithm, CPU operates when the
parallelism is low and GPU operates when parallelism is above some threshold value. This ensures we
extract the best performance from both CPU and GPU. The overall runtime improves as compared to
using only the data parallel algorithm. In the Hybrid algorithm, in addition to Handover, we further
split work between CPU and GPU even when the parallelism is high. We show that only a few bytes
of memory transfer are required to keep CPU and GPU synchronized. This hybrid algorithm allows for
full resource utilization and gives the best runtime. Our ideas of using CPU and GPU together can and
should be used in developing data parallel algorithms for other operations in the future.

We also develop a hybrid and all-core algorithm to solve BWC. Our BWC algorithm performs the
expensive sort steps on GPU. We perform the sequential merge, MTF and Huffman encoding computa-
tions on CPU and overlap them fully with GPU computations. If there are idle CPU cores, we use them
to perform BWC in parallel with our hybrid BWC on single CPU core and GPU. Any end-to-end appli-
cation like the BWC, will have many tasks. In this thesis, we show that one should efficiently pipeline
the execution of these tasks on CPU and GPU for best runtime. Even today, the multiple cores of CPU
and the many-core GPU remain largely under utilized by common end-to-end applications. These ap-
plications like data compression, file search, image decoding, mpeg encoding/decoding etc. primarily
use only the single CPU core or only the many-core GPU. As shown by our results, pipelining of differ-
ent tasks and also work sharing of data-parallel step between CPU and GPU is critical to achieve high
performance on end-to-end applications. The use of our techniques to combine data parallelism and
task parallelism, will allow the end-user to enjoy the full benefits of hardware available on his computer
system.
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[38] J. Kärkkäinen and P. Sanders. Simple linear work suffix array construction. In Proceedings of the 30th

International Conference on Automata, Languages and Programming, ICALP’03, 2003. 44, 46

[39] D. K. Kim, J. S. Sim, H. Park, and K. Park. Linear-time construction of suffix arrays. In Combinatorial

Pattern Matching, pages 186–199, 2003. 46

[40] P. Kipfer, M. Segal, and R. Westermann. Uberflow: A gpu-based particle engine, 2004. 9

[41] P. Kipfer and R. Westermann. Improved GPU sorting. In M. Pharr, editor, GPUGems 2: Programming

Techniques for High-Performance Graphics and General-Purpose Computation, pages 733–746. Addison-

Wesley, 2005. 9

[42] K. Kothapalli, D. S. Banerjee, P. J. Narayanan, S. Sood, A. K. Bahl, S. Sharma, S. Lad, K. K. Singh, K. K.

Matam, S. Bharadwaj, R. Nigam, P. Sakurikar, A. Deshpande, I. Misra, S. Choudhary, and S. Gupta. Cpu

and/or gpu: Revisiting the gpu vs. cpu myth. CoRR, 2013. 11

[43] N. Leischner, V. Osipov, and P. Sanders. Gpu sample sort. In Parallel Distributed Processing (IPDPS),

2010 IEEE International Symposium on, pages 1–10, 2010. 9, 27

[44] A. Leist, K. A. Hawick, and D. P. Playne. Gpgpu and multi-core architectures for computing clustering

coefficients of irregular graphs, 2012. 11

[45] P. Li and J. P. Allebach. Block interlaced pinwheel error diffusion. Journal of Electronic Imaging,

14(2):023007–023007–13, 2005. 1, 15

[46] C.-C. Lin and W.-H. Tsai. Visual cryptography for gray-level images by dithering techniques. Pattern

Recogn. Lett., 24(1-3):349–358, Jan. 2003. 13

[47] LinuxKernel. http://www.kernel.org/pub/linux/kernel/v2.6/, 2005. 44, 51

[48] M. Mahoney. Enwik8, http://mattmahoney.net/dc/text.html, 2006. 44, 51

64



[49] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller, and M. Upton. Hyper-threading

technology architecture and microarchitecture. 20, 21

[50] K. K. Matam, S. R. K. B. Indarapu, and K. Kothapalli. Sparse matrix-matrix multiplication on modern

architectures. In HiPC, pages 1–10, 2012. 10

[51] K. K. Matam and K. Kothapalli. Accelerating sparse matrix vector multiplication in iterative methods using

gpu. In Proceedings of the 2011 International Conference on Parallel Processing, ICPP ’11, pages 612–621,

Washington, DC, USA, 2011. IEEE Computer Society. 10

[52] P. M. McIlroy, K. Bostic, and M. D. McIlroy. Engineering radix sort. COMPUTING SYSTEMS, 6:5–27,

1993. 26

[53] W. mei Hwu. GPU Computing Gems Emerald Edition. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1st edition, 2011. 1

[54] D. Merrill, M. Garland, and A. Grimshaw. Scalable gpu graph traversal. SIGPLAN Not., 47(8):117–128,

Feb. 2012. 25

[55] D. Merrill and A. Grimshaw. High performance and scalable radix sorting: A case study of implementing

dynamic parallelism for GPU computing. Parallel Processing Letters, 21:245–272, 2011. 3

[56] D. Merrill and A. Grimshaw. High performance and scalable radix sorting: A case study of implementing

dynamic parallelism for GPU computing. Parallel Processing Letters, 21(02):245–272, 2011. 9, 25, 27, 34,

36

[57] P. T. Metaxas. Optimal parallel error-diffusion dithering, 1999. 13, 14

[58] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming with cuda. Queue,

6(2):40–53, Mar. 2008. 8

[59] Nvidia. Nvidia performance primitives, https://developer.nvidia.com/npp. 1

[60] Nvidia. Nvidia cuda best practices guide, 2011. 20

[61] R. A. Patel. Parallel lossless data compression on the gpu. Master’s thesis, Electrical and Computer Engi-

neering, University of California, Davis, June 2012. 51

[62] R. A. Patel, Y. Zhang, J. Mak, and J. D. Owens. Parallel lossless data compression on the GPU. In

Proceedings of Innovative Parallel Computing (InPar ’12), May 2012. 5, 41, 44, 45, 47, 51, 54

[63] S. Patidar and P. J. Narayanan. Scalable split and gather primitives for the gpu. Technical report, CVIT, IIIT

Hyderabad, 2009. 9

[64] T. Purcell. Ray tracing on stream processors. PhD Thesis, Stanford University, 2004. 9

[65] I. Reguly and M. Giles. Efficient sparse matrix-vector multiplication on cache-based gpus. In Innovative

Parallel Computing (InPar), 2012, pages 1–12, May 2012. 10

[66] M. S. Rehman, K. Kothapalli, and P. J. Narayanan. Fast and scalable list ranking on the gpu. In Proceedings

of the 23rd international conference on Supercomputing, ICS ’09, pages 235–243, New York, NY, USA,

2009. ACM. 10

65



[67] G. Ruetsch and P. Micikevicius. Optimizing matrix transpose in cuda. NVIDIA CUDA SDK Application

Note, 2009. 18

[68] K. Sadakane. A fast algorithm for making suffix arrays and for burrows-wheeler transformation. In In

Proceedings Of The IEEE Data Compression Conference, Snowbird, Utah, March 30 - April 1, pages 129–

138. IEEE Computer Society Press, 1998. 44

[69] N. Satish, M. Harris, and M. Garland. Designing efficient sorting algorithms for manycore gpus. In Parallel

Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on, pages 1–10, 2009. 9, 25, 27

[70] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan primitives for gpu computing. In Proceedings of

the 22Nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, GH ’07, pages 97–106,

Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association. 1, 9

[71] J. Seward. On the performance of bwt sorting algorithms. In Data Compression Conference, pages 173–182.

IEEE Computer Society, 2000. 41, 42, 44, 46, 50, 51, 53

[72] R. Sinha and A. Wirth. Engineering burstsort: Towards fast in-place string sorting. In C. McGeoch, editor,

Experimental Algorithms, volume 5038 of Lecture Notes in Computer Science, pages 14–27. 2008. 26, 38

[73] R. Sinha, J. Zobel, and D. Ring. Cache-efficient string sorting using copying. J. Exp. Algorithmics, 11, Feb.

2007. xii, 26, 32, 33, 38

[74] P. Slavik and J. Prikryl. Dithering as a method for image data compression. Winter School of Computer

Graphics, 1995. 13

[75] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear algebra for hybrid gpu accelerated manycore

systems. Parallel Comput., 36(5-6):232–240, June 2010. 10

[76] V. Vineet, P. Harish, S. Patidar, and P. J. Narayanan. Fast minimum spanning tree for large graphs on the

gpu. In Proceedings of the Conference on High Performance Graphics 2009, HPG ’09, pages 167–171,

New York, NY, USA, 2009. ACM. 25

[77] B. Walter, G. Drettakis, and S. Parker. Interactive rendering using the render cache. In D. Lischinski and

G. W. Larson, editors, Rendering Techniques, pages 19–30. Springer, 1999. 13

[78] Z. Wei and J. Jaja. Optimization of linked list prefix computations on multithreaded gpus using cuda. In

Parallel Distributed Processing (IPDPS), 2010 IEEE International Symposium on, pages 1–8, April 2010.

10

[79] Wikipedia. http://dumps.wikimedia.org/enwiki/latest/, 2014. 51

[80] S. Xiao, A. Aji, and W. chun Feng. On the robust mapping of dynamic programming onto a graphics

processing unit. In Parallel and Distributed Systems (ICPADS), 2009 15th International Conference on,

pages 26–33, Dec 2009. 3

[81] Y. Zhang, J. Recker, R. Ulichney, G. Beretta, I. Tastl, I.-J. Lin, and J. D. Owens. A parallel error diffusion

implementation on a gpu. In Proceedings of SPIE, Parallel Processing for Imaging Applications, volume

7872, Jan. 2011. 15

66



[82] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time kd-tree construction on graphics hardware. In ACM

SIGGRAPH Asia 2008 papers, SIGGRAPH Asia ’08, pages 126:1–126:11, 2008. 1

67


	Introduction
	Design Principles for Data Parallelism
	Breaking Sequentiality
	Addressing Irregularity

	Combining Data Parallelism and Task Parallelism
	Pipelining
	Work Sharing

	Outline
	Contributions

	GPU and Hybrid Computing
	GPU Computing
	Hybrid Computing

	Error Diffusion Dithering
	Background and Related Work
	Floyd-Steinberg Dithering Algorithm
	Previous work on Parallel FSD

	Finding Parallelism in FSD
	Coarse Parallel FSD Algorithm on CPU
	Fine-Grained Data Parallel FSD Algorithm on GPU
	Addressing Uncoalesced Memory Access

	Mixing Task Parallelism and Data Parallelism for FSD
	Handover FSD Algorithm
	Hybrid FSD Algorithm

	Experimental Results
	Results: Coarse Parallel FSD on CPU
	Results: Fine-grained Parallel FSD on GPU
	Results: Handover FSD Algorithm
	Results: Hybrid FSD Algorithm

	Discussion

	String Sorting
	Related Work
	CPU String Sorting Algorithms
	GPU String Sorting Algorithms

	Radix Sort Based String Sort
	Singleton Elimination
	Optimal Key Length and Adaptive Segment Ids

	Experimental Results
	Thrust performance on varying key size
	Datasets
	Performance of our GPU String Sort
	Comparison to Davidson et al. Davidson12EPM
	Performance on the Kepler GPU
	Comparison with CPU Algorithms
	Performance with After-Sort Tie Length

	Discussion

	Lossless Data Compression
	Background and Related Work
	Burrows Wheeler Transform
	Sequential Burrows Wheeler Compression
	Parallel Burrows Wheeler Compression

	CPU and GPU Hybrid BWC Algorithm
	Modified String Sort for BWT
	String Perturbation
	Mixing Data Parallelism with Task Parallelism: Hybrid BWC Algorithm

	The All-Core Framework
	BWC in All-Core Framework
	BW Decompression in All-Core Framework

	Experimental Results
	Results: GPU BWT
	Results: Hybrid BWC
	Results: All-Core BWC

	Discussion

	Conclusions
	Bibliography

