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Abstract

Distributed data analytics engines are designed to process and analyze large data sets in a distributed
environment. The architecture of these engines is based on two key components: a distributed file
system and a distributed computing framework. In this thesis, we consider the following two problems,
coded data rebalancing in distributed file systems and coded distributed computing.

For the data rebalancing problem, we consider replication-based distributed storage systems in which
each node stores the same quantum of data and each data bit stored has the same replication factor across
the nodes. Such systems are referred to as balanced distributed databases. When existing nodes leave
or new nodes are added to this system, the balanced nature of the database is lost, either due to the
reduction in the replication factor, or the non-uniformity of the storage at the nodes. This triggers a
rebalancing algorithm, that exchanges data between the nodes so that the balance of the database is
reinstated. The goal is then to design rebalancing schemes with minimal communication load. In a
recent work [1] by Krishnan et al., coded transmissions were used to rebalance a carefully designed
distributed database from a node removal or addition. These coded rebalancing schemes have optimal
communication load, however, require the file-size to be at least exponential in the system parameters.
In this work, we consider a cyclic balanced database (where data is cyclically placed in the system
nodes) and present coded rebalancing schemes for node removal and addition in such a database. These
databases (and the associated rebalancing schemes) require the file-size to be only cubic in the number
of nodes in the system. We bound the advantage of our node removal rebalancing scheme over the
uncoded scheme, and show that our scheme has a smaller communication load. In the node addition
scenario, the rebalancing scheme presented is a simple uncoded scheme, which we show has optimal
load.

For the distributed computing problem, we consider the widely popular MapReduce distributed com-
puting framework, which consists of three phases, namely Map, Shuffle, and Reduce. In previous works
by Li et al. [2, 3], an optimal coded distributed computing scheme has been presented. This optimal
scheme however requires very high file complexity, i.e., exponential in the number of servers K. To
address this issue, low complexity distributed computing schemes using binary matrices derived from
combinatorial designs have been presented in [4, 5]. In our work, we use similar principles to construct
a distributed computing scheme via subspace designs, the q-analogs of combinatorial designs. While
the scheme requires low file complexity, it has a higher communication load, when compared to the
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optimal scheme with equivalent parameters. Also, it is primarily useful for large local storage scenarios.
Moreover, we also provide numerical comparisons with some existing baseline schemes.
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Chapter 1

Introduction

In the field of big data processing, distributed data analytics engines are becoming increasingly
popular, as they enable efficient and scalable processing of large volumes of data across a cluster of
machines. They have become a powerful and an essential tool for organizations and businesses, that
deal with large volumes of data. These engines consist of two key components: a distributed file system
and a distributed computing framework.

A distributed file system is used to store and manage data across multiple nodes in a network. They
allow multiple users to access and share files and resources in the network. They are also used to store
and manage large data sets, used in data analysis. In a distributed file system, the data is spread out
across multiples nodes, which helps to improve fault tolerances and reduce the risk of data loss in case
of node failures. One example of such system is the Hadoop File System (HDFS) [6]. In HDFS, the
data is broken up into several smaller chunks and stored across multiple nodes in a distributed fashion,
with some redundancy (or replication factor). This ensures that the data is preserved when a node fails.
It also provides high-throughput access to the data.

A distributed computing framework is a software framework that is used to process the data stored
in a distributed file system in parallel across multiple nodes in the network, i.e., multiple nodes in the
network work together to process and analyze data. It provides the necessary tools and infrastructure to
perform such tasks in a distributed environment. MapReduce [7] is one of the most popular distributed
computing framework. It is a programming model that allows for distributed processing of data across
multiple nodes. It works by dividing the data into smaller chunks that are assigned to different nodes
so that they can be processed on different nodes in the network. Each node processes its own chunk of
data, and the results are combined to produce the final output.

In both the components, i.e., distributed file system and distributed computing framework, the nodes
need to exchange data with each other. The reason for this varies according to the application of the
system, but the general idea is that each node contains a set of data files in its local storage and demands
another set of files stored in other nodes. It is clear that uncoded transmissions will result in a high com-
munication load. Thus, a natural goal is to design coded communication schemes with communication
loads as small as possible. There has been a significant amount of work related to coded transmissions
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in the presence of local storage in several cache-enabled multi-receiver communication problems, such
as Coded Caching [8], Coded Distributed Computing [2, 3], and Coded Data Shuffling [9, 10, 11].

In this thesis, we consider two such problems, namely Data Rebalancing in distributed file systems
and Distributed Computing, which require data exchange between the nodes in the system. We describe
the two problems briefly here.

• Data Rebalancing: In a replication-based distributed file system, the available data is split into
a number of chunks and stored in the nodes in a distributed fashion with some replication fac-
tor. This ensures that the data can be recovered when a node fails. A node failure causes non-
uniformity in the data distribution across the nodes, which is known as data skew. This also
happens when a new node is added to the system. Data skew results in traffic imbalance in the
system and also in the creation of stragglers. To prevent this, several distributed file systems use a
technique known as data rebalancing. A rebalancing scheme would require moving high volumes
of data across the storage nodes in order to bring the data skew below a certain threshold. This
arises a necessity for an efficient data rebalancing algorithm. In [1], the authors have presented a
scheme which rectifies the data skew and reinstates the replication factor, in case of a single node
removal or addition.

• Distributed Computing: In MapReduce distributed computing framework, the overall compu-
tation is divided into three phases, namely Map, Shuffle, and Reduce phases. First, the available
data is divided into several chunks and then assigned to a set of nodes in a distributed fashion.
In the Map phase, the nodes generate some intermediate values (IVAs) using the Map functions
on the parts of the data assigned to them. Then, the generated IVAs are exchanged among the
nodes in order to compute the outputs using the Reduce functions. This data exchange happens
in the Shuffle Phase. This phase involves exchanging a huge amount of data among the nodes,
thus resulting in reducing the performance of a distributed computing task. In [2, 3], the authors
have presented a scheme in which they show that by careful mapping of the data chunks at the
computing nodes, coding opportunities arise, which help in bringing down the communication
load involved in the Shuffle Phase.

In previous works [1], [3], which present the schemes with optimal communication loads for Coded
Data Rebalancing and Coded Distributed Computing respectively, the file-size requirement (or file com-
plexity) is too large and hence is a major drawback for the practical implementations of these schemes.
We address this problem in both the settings and provide schemes with low file-size requirement.

1.1 Summary of Contributions
This thesis presents schemes for coded data rebalancing for distributed data storage systems with

cyclic storage, with the file-size requirement cubic in the number of nodes. We also present a low
complexity distributed computing scheme via subspace designs. We summarize our contributions here.
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1.1.1 Coded Data Rebalancing for Distributed Data Storage Systems with Cyclic Stor-

age

The following is an outline of our work on coded data rebalancing for distributed data storage systems
with cyclic storage.

• We overcome the issue of the number of segments of a file being exponential in the number of
users [1] by constructing data rebalancing schemes for cyclic databases, in which each segment
of a file is placed in a consecutive set of nodes, in a wrap-around fashion. In our schemes, the file
size is only cubic in the number of nodes in the system.

• We give two rebalancing schemes for single node removal scenario.

• We compare the communication loads of both the schemes with the optimal scheme and the un-
coded scheme. We bound the advantage of both the schemes over the uncoded scheme, and fur-
ther show that the minimum of their communication loads is always strictly less than the uncoded
scheme.

• For the node addition scenario, we present a rebalancing scheme and show that it is optimal.

• We give the proof of correctness for all the schemes presented in this work.

1.1.2 A New Low Complexity Distributed Computing Scheme via Subspace Designs

The following highlights some of the aspects of our work on distributed computing via combinatorial
objects known as subspace designs.

• We present a novel low complexity distributed computing scheme via subspace designs. The
scheme is derived by constructing a binary computing matrix based on the properties of a subspace
design.

• We provide numerical comparisons with some existing baseline schemes.

1.2 Organization of the thesis
The remainder of this thesis is organized as follows. Chapter 2 reports our work on coded data rebal-

ancing for distributed data storage systems with cyclic storage. Chapter 3 describes our contributions
towards a low complexity distributed computing scheme via subspace designs. Chapter 4 provides some
concluding remarks and future directions.

3



Chapter 2

Coded Data Rebalancing for Distributed Data Storage Systems with

Cyclic Storage

2.1 Introduction
In replication-based distributed storage systems, the available data is stored in a distributed fashion

in the storage nodes with some replication factor. Doing this helps prevent data loss in case of node
failures, and also provides for greater data availability and thus higher throughputs. In [1], replication-
based distributed storage systems in which (A) each bit is available in the same number of nodes (i.e.,
the replication factor of each bit is the same) and (B) each node stores the same quantum of data, were
referred to as balanced distributed databases. In such databases, when a storage node fails, or when a
new node is added, the ‘balanced’ nature of the database is disturbed (i.e., the properties (A) or (B) do
not hold anymore); this is known as data skew. Data skew results in various issues in the performance
of such distributed databases (see Section 1 of [1]). Correcting such data skew requires some commu-
nication between the nodes of the database. In distributed systems literature, this communication phase
is known as data rebalancing (see, for instance, [12, 13, 14, 15]). In traditional distributed storage sys-
tems, an uncoded rebalancing phase is initiated, where uncoded bits are exchanged between the nodes
to recreate the balanced conditions in the new collection of nodes. Clearly, a primary goal in such a
scenario would be to minimize the rebalancing or communication load (i.e., the total amount of data
exchanged between the nodes) on the network during the rebalancing phase.

The rebalancing problem was formally introduced in the information theoretic setting in [1] by Kr-
ishnan et al. The idea of coded data rebalancing was presented in [1], based on principles similar to
the landmark paper on coded caching [16]. In coded data rebalancing, coded data bits are exchanged
between the nodes; the decoding of the required bits can then be done by using the prior stored data
available. In [1], coded data rebalancing schemes were presented to rectify the data skew and reinstate
the replication factor, in case of a single node removal or addition, for a carefully designed balanced
database. The communication loads for these rebalancing schemes were characterized and shown to
offer multiplicative benefits over the communication required for uncoded rebalancing. Information
theoretic converse results for the communication loads were also presented in [1], proving the optimal-
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ity of the achievable loads. These results were extended to the setting of decentralized databases in [17],
where each bit of the file is placed in some random subset of the K nodes.

While Krishnan et al. [1] present an optimal scheme for the coded data rebalancing problem, the
centralized database design in [1] requires that the number of segments in the data file be a large function
of the number of nodes (denoted by K) in the system. In fact, as K grows, the number of file segments,
and thus also the file size, have to grow exponentially in K. Thus, this scheme would warrant a high
level of coordination to construct the database and perform the rebalancing. Because of these reasons,
the scheme in [1] could be impractical in real-world settings. Motivated by this, in the present work, we
study the rebalancing problem for cyclic balanced databases, in which each segment of the data file is
placed in a consecutive set of nodes, in a wrap-around fashion. For such cyclic placement, the number of
segments of the file could be as small as linear in K. Constructing such cyclic databases and designing
rebalancing schemes for them also may not require much coordination, owing to the simplicity of the
cyclic placement technique. Such cyclic storage systems have been proposed for use in distributed
systems [18, 19], as well as in recent works on information theoretic approaches to private information
retrieval [20] and distributed computing [21].

2.1.1 Contributions and Organization

This chapter presents coded data rebalancing schemes for distributed storage systems with cyclic
storage in case of single node removal and addition. The organization and contributions of this chapter
are as follows. We first review the previous work and results on coded data rebalancing for distributed
storage systems in Section 2.2. Following that, we describe the system model for cyclic databases
in Section 2.3. In Section 2.4, we present the main result (Theorem 2) of this work. In Section 2.5 we
present a coded data rebalancing algorithm (Algorithm 1) for node removal in balanced cyclic databases.
Algorithm 1 chooses between two coded transmission schemes (Scheme 1 and Scheme 2) based on the
system parameters. Each of the two schemes has lower communication load than the other in certain
parameter regimes determined by the values of K and the replication factor r. We bound the advantage
of our schemes over the uncoded scheme, and show that the minimum of their communication loads is
always strictly smaller than the uncoded rebalancing scheme, which does not permit coded transmis-
sions. Further, the segmentation required for the scheme is only quadratic in K, and the size of the file
itself is required only to be cubic in K (thus much smaller than that of [1]). In Section 2.6, we present a
rebalancing scheme for addition of a single node to the cyclic database, and show that its load is optimal.
Finally, in Section 2.7, we conclude this chapter with the comparisons between the schemes for single
node removal in this work, the uncoded scheme, and the lower bound from [1].

2.2 Background and Previous Results
In this section, we first review the optimal scheme [1] for coded data rebalancing in distributed data

storage systems, which is based on the principles similar to that of the coded caching scheme (MaN) [8]
by Maddah-Ali et al. Further, we will briefly discuss the relationship between the two schemes.
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2.2.1 Coded Data Rebalancing based on MaN Scheme

Consider a data file W of N bits, i.e. W = {Wn : n ∈ [N ]},Wn ∈ {0, 1}. The system consists of
K nodes which are connected to each other via a bus link. Thus, a noiseless broadcast channel exists
between any pair of nodes. Each subfile Wi, i ∈ [N ] is stored in exactly r out of K nodes and each
node stores same number of subfiles, i.e., rNK subfiles. Thus, we have an r-balanced distributed database
across K nodes. We assume that the node K has failed.

Figure 2.1: An r-balanced database on nodes [K]. Node K is shown dotted as it is removed from the

system.

2.2.1.1 Main Result

The main result of this work is given by the following theorem (Section III of [1]).

Theorem 1 ([1]). For balanced distributed databases on K nodes with replication factor r ≥ 2, the

following (normalized) rebalancing load L is achievable

L =
1

r − 1
+ 1,

if the file sizeN is a multiple of (r−1)P (K+1,K+1−r), where the symbolP (K+1,K+1−r) denotes

(K+1)! /(r!). Further, the above load is optimal for a given replication factor r, i.e., L∗(r) = 1
r−1 +1.

Thus, by theorem 1, we conclude that the rebalancing load in case of node removal is reduced by a
factor of r−1, when compared to the uncoded scheme. In case of node removal, the rebalancing load is
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the same as that of the uncoded scheme. For the achievability of the above theorem, the authors provide
a construction of the r-balanced distributed database, for storing the subfiles across K nodes, each with
a replication factor of r. Rebalancing schemes for both node removal and addition scenarios are also
provided. The rebalancing scheme for node removal scenario can be illustrated using the following
example.

Example: Let the number of nodes K = 5 and the replication factor r = 3. The data file W is
divided into P (5, 2) = 20 subfiles, each indexed by S([5], 2). Each node i ∈ [5] stores all the subfiles
whose indices do not contain i. Thus, each node stores P (4, 2) = 12 subfiles as given below.

• Node 1 storesW[2 3],W[3 2],W[2 4],W[4 2],W[2 5],W[5 2],W[3 4],W[4 3],W[3 5],W[5 3],W[4 5],W[5 4].

• Node 2 storesW[1 3],W[3 1],W[1 4],W[4 1],W[1 5],W[5 1],W[3 4],W[4 3],W[3 5],W[5 3],W[4 5],W[5 4].

• Node 3 storesW[2 1],W[1 2],W[2 4],W[4 2],W[2 5],W[5 2],W[1 4],W[4 1],W[1 5],W[5 1],W[4 5],W[5 4].

• Node 4 storesW[2 3],W[3 2],W[2 1],W[1 2],W[2 5],W[5 2],W[3 1],W[1 3],W[3 5],W[5 3],W[1 5],W[5 1].

• Node 5 storesW[2 3],W[3 2],W[2 4],W[4 2],W[2 1],W[1 2],W[3 4],W[4 3],W[3 1],W[1 3],W[4 1],W[1 4].

Suppose that the node 5 is removed from the system. The subfiles that were present in node 5

are partitioned into 4 groups as: G1 = {W[2 1],W[3 1],W[4 1]},G2 = {W[1 2],W[3 2],W[4 2]},G3 =

{W[1 3],W[2 3],W[4 3]}, and G4 = {W[1 4],W[2 4],W[3 4]}. The nodes associated to a group can be
obtained by considering the first element of each subfile index. For instance, the nodes associated with
G1 are {2, 3, 4}. Similarly, the nodes associated with other groups are obtained.

Consider W[2 1] in G1. It is present in all the nodes associated with G1 except one node, which is the
first element of this subfile index, i.e., node 2. Therefore, W[2 1] will be sent to node 2. Similarly, the
other subfiles of G1, i.e., W[3 1] and W[4 1] will be sent to nodes 3 and 4 respectively. This will follow
similarly for all the groups.

Now, each subfile in each group will be divided into 2 parts. For instance,W[2 1] of G1 will be divided
into W[2 1],3 and W[2 1],4. Similarly, W[3 1] will be divided into W[3 1],2 and W[3 1],4, and W[4 1] will be
divided intoW[4 1],2 andW[4 1],3. For exchanging the subfiles within the group G1, node 2 will broadcast
W[3 1],2⊕W[4 1],2, node 3 will broadcastW[2 1],3⊕W[4 1],3, and node 4 will broadcastW[2 1],4⊕W[3 1],4.
Observe that node 2 contains W[4 1],3 and W[3 1],4. Therefore, it can decode W[2 1],3 and W[2 1],4 from
the transmissions broadcast by nodes 3 and 4. Similarly, nodes 3 and 4 can decode the subfiles W[3 1]

and W[4 1] respectively. The transmissions for this data exchange corresponding to G1 are of 3
2

rds of the
size of a subfile.

The same exchange protocol will follow for the other 4 groups. Thus, the total transmission size will
be equal to 6 subfiles, which results in a communication load of 6

12 = 1
2 .

2.2.2 Relationship with the MaN Scheme

The achievable scheme, as discussed above, is inspired from the coded caching scheme (MaN) [8]
by Maddah-Ali et al. However, the converse arguments are similar to that of [3].
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For the achievability of theorem 1, the authors have presented a specific construction of the family
of distributed databases. This construction uses the principles similar to those used in the placement
phase of the MaN scheme. In particular, in the MaN scheme, the subfile indices indicate the set of users
containing that subfile, whereas in the rebalancing scheme, the subfile indices indicate the set of nodes
where that subfile is absent. This careful designing of the placement results in a symmetric placement,
which enables maximal coding opportunities to serve all the nodes involved in the rebalancing process.
This also ensures that the structural invariance is maintained after the process.

2.3 System Model for Cyclic Databases

Consider a binary file W consisting of a set of N equal-sized segments where the ithsegment is
denoted by Wi, where |Wi| = T bits. The system consists of K nodes indexed by [K] and each node
k ∈ [K] is connected to every other node in [K]\{k} via a bus link that allows a noise-free broadcast
between the nodes. A distributed database of W across nodes indexed by [K] is a collection of subsets
D = {Dk ⊆ {Wi : i ∈ [N ]} : k ∈ [K]}, such that

⋃
k∈[K]Dk = {Wi : i ∈ [N ]}, where Dk denotes

the set of segments stored at node k. We will denote the set of nodes where Wi is stored as Si. The
replication factor of the segment Wi is then |Si|. The distributed database D is said to be r-balanced,
if |Si| = r, ∀i, and |Dk| = rN

K , ∀k. That is, each segment is stored in r nodes, and each node stores an
equal r

K -fraction of the N segments. We may assume without loss of generality that 2 ≤ r ≤ K − 1,
since if r = 1 no rebalancing is possible from node removal, and if r = K no rebalancing is required.

When a node k is removed from the r-balanced database, the replication factor of the segments Dk

stored in node k drops by one, thus disturbing the ‘balanced’ state of the database. If a new empty node
K + 1 is added to the database, once again, the new database is not balanced. To reinstate the balanced
state, a rebalancing scheme is initiated. Formally, a rebalancing scheme is a collection of transmissions
between the nodes present, such that upon decoding the transmissions, the final database denoted by D′

(on nodes [K] \ {k} in case of node removal, or on nodes [K + 1] in case of node addition) is another
r-balanced database.

Definition 1. A distributed database is an r-balanced cyclic database ifN = K and a segment labelled

Wi is stored precisely in the nodes Si = {i�K 〈r − 1〉}.

Fig. 2.2 depicts an r-balanced cyclic balanced database on K nodes as defined above.

2.4 Main Result: Rebalancing Schemes for Cyclic Databases
As mentioned in the previous section, when a node is removed from an r-balanced database, the

balanced state of the database is disturbed. To reinstate the balanced state, transmissions between the
existing nodes take place. Let Xk′ = φk′(Dk′) be the transmission by node k′ during the rebalancing
phase, where φk′ represents some encoding function. The communication loads of rebalancing (denoted

8



Figure 2.2: r-balanced cyclic database on nodes [K]

by Lrem(r) for the case of node removal, Ladd(r) for node addition) are then defined as

Lrem(r) =

∑
k′∈[K]\k |Xk′ |

T
,

Ladd(r) =

∑
k∈[K] |Xk|
T

.

The normalized communication loads are then defined as Lrem(r) = Lrem(r)/N and Ladd(r) =

Ladd(r)/N . The optimal normalized communication loads for the node removal and addition scenarios
are denoted by L∗rem(r) and L∗add(r) respectively. Here, the optimality is by minimization across all
possible initial and target (final) databases, and all possible rebalancing schemes. In [1], it was shown1

that L∗rem(r) ≥ r
K(r−1) and L∗add(r) ≥

r
K+1 . Further, schemes for rebalancing were presented for node

removal and addition for a carefully designed database which required N = (K+1)!
r! and T = r − 1,

which achieve these optimal loads. Observe that, in these achievable schemes, the file size NT grows
(at least) exponentially in K as K grows, for any fixed replication factor r, which is one of the main
drawbacks of this result. Therefore, our interest lies in databases where N and T are small. Towards
this end, we now present our main result.

Theorem 2. For an r-balanced cyclic database havingK nodes and r ∈ {3, . . . ,K−1}, if the segment

size T is divisible by 2(K2 − 1), then rebalancing schemes for node removal and addition exist which

achieve the respective communication loads

Lrem(r) =
K − r
(K − 1)

+ min (L1(r), L2(r)) ,

Ladd(r) =
rK

K + 1
,

1The size of the file in the present work is NT bits; whereas in [1], the notation N represents the file size in bits, thus
absorbing both the segmentation and the size of each segment. The definitions of communication loads in [1] are also slightly
different, involving a normalization by the storage size of the removed (or added) node. The results of [1] are presented here
according to our current notations and definitions.

9



where, L1(r) = (K−r)(2r−1)
(K−1) and L2(r) = 1

2(K−1)

(
K(r − 1) + d r2−2r2 e

)
. Also, the following rela-

tionship holds betweenLrem(r) and the loadLu(r) of the uncoded rebalancing scheme for node removal

Lrem(r)

Lu(r)
< min

(
2

(
1− r − 1

K − 1

)
,

(
1

2
+

1

2r
+

r

4(K − 1)

))
,

where the RHS term is strictly smaller than 1. Further, the rebalancing scheme for node addition is

optimal (i.e., Ladd(r)/N = L∗add(r) =
r

K+1 ).

Remark 1. In the proof of the node removal part of Theorem 2, we assume that the target database is

also cyclic. For the case of r = 2, with this target database, our rebalancing scheme does not apply, as

coding opportunities do not arise. Hence, we restrict our result to the scenario of r ∈ {3, . . . ,K − 1}.

We observe that the minimum file size required in the case of cyclic databases in conjunction with
the above schemes is NT = 2(K2 − 1)K, i.e., it is cubic in K and thus much smaller than the file size
requirement for the schemes of [1].

2.5 Rebalancing Schemes for Single Node Removal in Cyclic Databases
In this section, we prove the result in Theorem 2 regarding the node removal scenario. We present a

rebalancing algorithm, the core of which is a transmission phase in which coded subsegments are com-
municated between the nodes. In the transmission phase, the algorithm chooses between two schemes,
Scheme 1 and Scheme 2. Scheme 1 has the communication load K−r

K−1 + L1(r) and Scheme 2 has the
load K−r

K−1 + L2(r). We identify a threshold value for r, denoted rth, beyond which Scheme 1 is found
to be performing better than Scheme 2, as shown by the following claim; and thus the rebalancing algo-
rithm chooses between the two schemes based on whether r ≥ rth or otherwise. The proof of the below
claim is in Appendix A.

Claim 1. Let rth = d2K+2
3 e. If r ≥ rth, then min(L1(r), L2(r)) = L1(r) (thus, Scheme 1 has a smaller

load) and if r < rth, we have min(L1(r), L2(r)) = L2(r) (thus, Scheme 2 has a lower communication

load).

The organization of this section is as follows. In Subsection 2.5.1, we provide some intuition for
the rebalancing algorithm, which covers both the two transmission schemes. Scheme 1 and Scheme 2.
Then, in Subsection 2.5.2, we describe how the algorithm works for two example parameters (one for
Scheme 1, and another Scheme 2). In Subsection 2.5.3, we formally describe the complete details of the
rebalancing algorithm. In Subsection 2.5.4, we prove the correctness of two transmission schemes and
the rebalancing algorithm. In Subsection 2.5.5, we calculate the communication loads of our schemes.
Finally, in Subsection 2.5.6, we bound the advantage of our schemes over the uncoded scheme, and
show that our schemes perform strictly better, thus completing the arguments for the node-removal part
of Theorem 2.
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Remark 2. Note that throughout this section, we describe the scheme when the nodeK is removed from

the system. A scheme for the removal of a general node can be extrapolated easily by permuting the

labels of the subsegments. Further details are provided in Subsection 2.5.3 (see Remark 3).

2.5.1 Intuition for the Rebalancing Schemes

Consider a r-balanced cyclic database as shown in Fig. 2.2. Without loss of generality, con-
sider that the node K is removed. Now the segments that were present in node K, i.e., DK =

{WK−r+1, . . . ,WK}, no longer have replication factor r. In order to restore the replication factor
of these segments, we must reinstate each bit in these segments via rebalancing into a node where it was
not present before. We fix the target database post-rebalancing to also be an r-balanced cyclic database.
Recall that Si = {i� K〈r − 1〉} represents the nodes where Wi was placed in the initial database. We
represent the K−1 file segments in this target cyclic database as W̃i : i ∈ [K−1], and the nodes where
W̃i would be placed is denoted as S̃i = {i� K−1〈r − 1〉}. This target database is depicted in Fig. 2.3.

Figure 2.3: Target cyclic database on nodes [K − 1]

Our rebalancing algorithm involves three phases: (a) a splitting phase where the segments in DK

are split into subsegments, (b) a transmission phase in which coded subsegments are transmitted, and
(c) a merge phase, where the decoded subsegments are merged with existing segments, and appropriate
deletions are carried out, to create the target database. Further, the algorithm will choose one of two
transmission schemes, Scheme 1 and Scheme 2, in the transmission phase. Our discussion here pertains
to both these schemes.

The design of the rebalancing algorithm is driven by two natural motives: (a) move the subsegments
as minimally as possible, and (b) exploit the available coding opportunities. Based on this, we give the
three generic principles below.

• Principle 1: The splitting and merging phases are unavoidable for maintaining the balanced nature
of the target database and reducing the communication load. In our merging phase, the target
segment W̃j : j ∈ [K − 1] is constructed by merging, (a) either a subsegment of Wj or the
complete Wj , along with (b) some other subsegments of the segments in DK .
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• Principle 2: Particularly, for each Wi ∈ DK , we seek to split Wi into subsegments and merge
these into those W̃j : j ∈ [K − 1] such that |S̃j ∩ Si| is as large as possible, while trying to
ensure the balanced condition of the target database. Observe that the maximum cardinality of
such intersection is r − 1. We denote the subsegment of segment Wi which is to be merged into
W̃j , and thus to be placed in the nodes S̃j \ Si, as W S̃j\Si

i . As making |S̃j ∩ Si| large reduces
|S̃j \ Si|, we see that this principle reduces the movement of subsegments during rebalancing.

• Principle 3: Because of the structure of the cyclic placement, there exist ‘nice’ subsets of nodes
whose indices are separated (cyclically) by K − r, which provide coding opportunity. In other
words, there is a set of subsegments of segments in DK , each of which is present in all-but-one of
the nodes in any such ‘nice’ subset, and is to be delivered to the remaining node. Transmitting the
XOR-coding of these subsegments ensures successful decoding at the respective nodes they are
set to be delivered to (given by the subsegments’ superscripts), because of this ‘nice’ structure.

We shall illustrate the third principle, which guides the design of our transmission schemes, via the
examples and the algorithm itself. We now elaborate on how the first two principles are reflected in
our algorithms. Consider the segment WK−r+1. We call this a corner segment of the removed node
K. Following Principles 1 and 2, this segment WK−r+1 will be split into dK−r+2

2 e subsegments, out
of which one large subsegment is to be merged into W̃K−r+1 (as |SK−r+1 ∩ S̃K−r+1| = r − 1). In
order to maintain a balanced database, the remaining dK−r+2

2 e − 1 are to be merged into the bK−r2 c
target segments W̃dK−r

2
e+1, . . . , W̃K−r, and additionally into the segment W̃K−r+1

2
ifK−r is odd. The

other corner segment of K is WK , for which a similar splitting is followed. One large subsegment of
WK will be merged into W̃K−1 (again, as |SK ∩ S̃K−1| = r − 1) and the remaining dK−r+2

2 e − 1 will
be merged into bK−r2 c target segments W̃1, . . . , W̃bK−r

2
c, and additionally into the segment W̃K−r+1

2
if

K − r is odd.
Now, consider the segmentWK−r+2. This is not a corner segment, hence we refer to this as a middle

segment. This was available in the nodes SK−r+2 = {K − r + 2, . . . ,K, 1}. Following Principles 1
and 2, this segment WK−r+2 will split into two: one to be merged into W̃K−r+1 (for which S̃K−r+1 =

{K − r+1, . . . ,K − 1, 1}) and W̃K−r+2 (for which S̃K−r+2 = {K − r+2, . . . ,K − 1, 2}). Observe
that |SK−r+2 ∩ S̃K−r+1| = r − 1 and |SK−r+2 ∩ S̃K−r+2| = r − 1. In the same way, each middle
segment WK−r+i+1 : i ∈ [r − 2] is split into two subsegments, and will be merged into W̃K−r+i and
W̃K−r+i+1 respectively.

2.5.2 Examples

We now provide two examples illustrating our rebalancing algorithm, one corresponding to each of
the two transmissions schemes.

Example illustrating Scheme 1: Consider a database with K = 8 nodes satisfying the r-balanced
cyclic storage condition with replication factor r = 6. A file W is thus split into segments W1, . . . ,W8

such that the segmentW1 is stored in nodes {1�8 〈5〉},W2 in nodes {2�8 〈5〉},W3 in nodes {3�8 〈5〉},
W4 in nodes {4�8 〈5〉}, and W5 in nodes {5�8 〈5〉}, and so on.
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Node 8 is removed from the system and its contents, namely W3, W4, W5, W6, W7, W8, must be
restored. The rebalancing algorithm performs the following steps.

Splitting: The splitting is guided by Principles 1 and 2. Each node splits the segments it contains into
subsegments as follows:

• W3 is a corner segment with respect to the removed node 8. Thus, it is split into two subsegments.
The larger is labelled W {1}3 and is of size 12T

14 . This is to be merged into W̃3 since |S3 ∩ S̃3| =
5 = (r−1). The other segment is labelledW {2}3 and is of size 2T

14 . As before, the idea is to merge
this into W̃2 to maintain a balanced database.

• The other corner segment W8 is handled similarly. It is split into two subsegments labelled W {7}8

and W {6}8 of sizes 12T
14 and 2T

14 respectively.

• W4 is a middle segment for node 8. It is split into two subsegments labelled W {2}4 and W {3}4 of
sizes 10T

14 and 4T
14 respectively. The intent once again is to merge W {2}4 into W̃4 and W {3}4 into

W̃3 since both |S4 ∩ S̃3| = |S4 ∩ S̃4| = 5 = (r − 1). The remaining middle segments are treated
similarly.

• W5 into two subsegments labelled W {3}5 and W {4}5 of sizes 8T
14 and 6T

14 respectively.

• W6 into two subsegments labelled W {4}6 and W {5}6 of sizes 6T
14 and 8T

14 respectively.

• W7 into two subsegments labelled W {5}7 and W {6}7 of sizes 4T
14 and 10T

14 respectively.

The superscript represents the set of nodes to which the subsegment is to be delivered.
Coding and Transmission: Now, to deliver these subsegments, nodes make use of coded broadcasts.

The design of these broadcasts are guided by Principle 3. We elucidate the existence of the ‘nice’ subsets
given in Principle 3 using a matrix form (referred to as matrix M ) in Figure 2.4.

We note that this representation is similar to the combinatorial structure defined for coded caching in
[22], called a placement delivery array. Consider a submatrix of M described by distinct rows i1, . . . , il
and distinct columns j1, . . . , jl+1. If this submatrix is equivalent to the l × (l + 1) matrix

s ∗ . . . ∗ ∗
∗ s . . . ∗ ∗
...

...
. . . ∗ ∗

∗ ∗ . . . s ∗

 (2.1)

up to some row/column permutation, then each of the nodes j1, . . . , jl can decode their required subseg-
ment from the XOR of the ith1 , . . . , i

th
l subsegments which can be broadcasted by the (l+1)th node. Our

rebalancing algorithm makes use of this property to design the transmissions. To denote the submatrices
we make use of shapes enclosing each requirement (represented using an ‘s’) in the matrix. For each
shape, the row and column corresponding to each ‘s’ result in a XOR-coded transmission. Before such
XOR-coding, padding the ‘shorter’ subsegments with 0s to match the length of the longest subsegment
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Figure 2.4: The matrix M for K = 8, r = 6. The rows correspond to subsegments and the columns

correspond to nodes. Entry Mi,j = ‘∗’ if the ithsubsegment is contained in the jthnode. Mi,j = ‘s’ if the

ithsubsegment must be delivered to the jthnode. For each shape enclosing an entry, the row and column

corresponding each entry with that shape gives a valid XOR-coded transmission.

would be required. There are other s entries in the matrix M which are not covered by matrices of type
(2.1). These will correspond to uncoded broadcasts. Thus, we get the following transmissions from the
matrix

• Node 1 pads W {5}6 and W {3}4 to size 12T
14 and broadcasts W {7}8 ⊕W {5}6 ⊕W {3}4 .

• Similarly, Node 7 pads W {3}5 and W {5}7 and broadcasts W {1}3 ⊕W {3}5 ⊕W {5}7 .

• Node 1 pads W {4}5 to size 10T
14 and broadcasts W {4}5 ⊕W {6}7 .

• Similarly, Node 7 pads W {4}6 and broadcasts W {2}4 ⊕W {4}6 .

• Finally, Node 1 broadcasts W {6}8 and Node 7 broadcasts W {2}3 .

The total communication load incurred in performing these broadcasts is 1
T

(
2.12T14 + 2.10T14 + 2.2T14

)
=

24
7 .

Decoding: The uncoded subsegments are directly received by the respective nodes. The nodes
present in the superscript of the XORed subsegment proceed to decode their respective required subseg-
ment as follows.

• From the transmission W {7}8 ⊕W {5}6 ⊕W {3}4 , Node 7 contains W6,W4 and can hence recover
W
{7}
8 by XORing away the other subsegments. Similarly, Nodes 3 and 5 can recover W {3}4 and

W
{5}
6 respectively.
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• From the transmission W {1}3 ⊕W {3}5 ⊕W {5}7 , Node 1 contains W5,W7 and can recover W {1}3 .
Similarly, Nodes 3 and 5 can recover W {3}5 and W {5}7 respectively.

• From the broadcast W {4}5 ⊕W {6}7 , Node 4 contains W7 and can hence recover W {4}5 . Similarly,
Node 6 can recover W {6}7 .

• From the broadcast W {2}4 ⊕W {4}6 . Node 2 contains W6 and can hence recover W {2}4 . Similarly,
Node 4 can recover W {4}6 .

Merging and Relabelling: To restore the cyclic storage condition, each node k ∈ [K − 1] merges and
relabels all segments that must be stored in it in the final database. These are W̃j for j ∈ {k �7 〈5〉}.

• W̃1 =W1|W {6}8 of size 1 + 2T
14 = 8T

7 is obtained at nodes {1, 2, 3, 4, 5, 6}.

• W̃2 =W2|W {2}3 of size 1 + 2T
14 = 8T

7 is obtained at nodes {2, 3, 4, 5, 6, 7}.

• W̃3 =W
{1}
3 |W {3}4 of size 12T

14 + 4T
14 = 8T

7 is obtained at nodes {3, 4, 5, 6, 7, 1}.

• W̃4 =W
{2}
4 |W {4}5 of size 10T

14 + 6T
14 = 8T

7 is obtained at nodes {4, 5, 6, 7, 1, 2}.

• W̃5 =W
{3}
5 |W {5}6 of size 8T

14 + 8T
14 = 8T

7 is obtained at nodes {5, 6, 7, 1, 2, 3}.

• W̃6 =W
{4}
6 |W {6}7 of size 6T

14 + 10T
14 = 8T

7 is obtained at nodes {6, 7, 1, 2, 3, 4}.

• W̃7 =W
{5}
7 |W {7}8 of size 4T

14 + 12T
14 = 8T

7 is obtained at nodes {7, 1, 2, 3, 4, 5}.

After merging and relabelling, each node keeps only the required segments mentioned previously and
discards any extra data present. Since each node now stores 6 segments each of size 8T

7 , the total data
stored is still 48T = rNT . Thus, the cyclic storage condition is satisfied.

Example illustrating Scheme 2: Consider a database with K = 6 nodes satisfying the r-balanced
cyclic storage condition with replication factor r = 3. A file W is split into segments W1, . . . ,W6 such
that the segment W1 is stored in nodes 1, 2 and 3, W2 in nodes 2, 3 and 4, W3 in nodes 3, 4 and 5, W4

in nodes 4, 5 and 6, W5 in nodes 5, 6 and 1, and W6 in nodes 6, 1 and 2.
Suppose the node 6 is removed from the system. The contents of node 6, namely W4, W5,W6 must

be restored. To do so, the rebalancing algorithm performs the following steps.
Splitting: Again, each node that contains these segments splits them into subsegments as per Princi-

ples 1 and 2.

• W4 is a corner segment for the removed node 6. This is split into three subsegments. The largest
is labelledW {1}4 and is of size 7T

10 . This subsegment is to be merged into W̃4 since |S4∩S̃4| = 2 =

(r−1). Observe that the superscript ofW {1}4 represents the set of nodes to which the subsegment
is to be delivered, i.e., S̃4 \ S4. The remaining 2 subsegments are labelled W {3}4 and W {2,3}4 and
are of sizes 2T

10 , and T
10 respectively. In order to maintain a balanced database, these are to be

merged into W̃3 and W̃2 respectively.
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• Similarly, the other corner segment W6 is split into three subsegments labelled W {5}6 ,W
{3}
6 and

W
{3,4}
6 of sizes 7T

10 ,
2T
10 , and T

10 , and are to be merged with W̃5, W̃1, and W̃2 respectively.

• W5 is a middle segment of node 6. It is split into two subsegments labelled W {1}5 and W {4}5

of size 5T
10 each. W {1}5 is to be merged into W̃5, and W {4}5 into W̃4, since both |S5 ∩ S̃5| =

|S5 ∩ S̃4| = 2 = (r − 1).

Figure 2.5: Matrix M for K = 6, r = 3 case. The rows of this matrix M correspond to subsegments

and the columns correspond to nodes. The Mi,j = ‘∗’ if the ithsubsegment is contained in the jthnode.

Mi,j = ‘s’ if the ithsubsegment must be delivered to the jthnode. For each shape enclosing an entry, the

row and column corresponding each entry with that shape lead to a XOR-coded transmission.

Coding and Transmission: As before, we make use of the placement matrix shown in Fig. 2.5 to
explain how nodes perform coded broadcasts as per Principle 3. Consider the submatrix denoted by
the circles in Figure 2.5. This submatrix described by columns 1, 4, 5 and rows 1, 3 means that each of
the subsegments corresponding to these rows are present in all but one of the nodes corresponding to
these columns. Further, node 5 contains both of these subsegments, and thus node 5 can broadcast the
XOR of them and each of the nodes 1, 4 can recover the respective subsegments denoted by the rows.
Further, those s entries in the matrix not covered by any shape lead to uncoded broadcasts. Following
these ideas, we get the following transmissions.

• Node 1 pads W {2}5 to size 7T
10 and broadcasts W {2}5 ⊕W {5}6 .

• Similarly, Node 5 pads W {4}5 and broadcasts W {1}4 ⊕W {4}5 .

• Finally, Node 1 broadcasts W {3}6 ,W
{3,4}
6 and Node 5 broadcasts W {3}4 ,W

{2,3}
4 .

The total communication load incurred in performing these broadcasts is 1
T

(
2.7T10 + 2. T10 + 2.2T10

)
= 2.

Decoding: The uncoded broadcast subsegments are received as-is by the superscript nodes. With
respect to any XOR-coded subsegment, the nodes present in the superscript of the subsegment can

16



decode the subsegment, due to the careful design of the broadcasts as per Principle 3. For this example,
we have the following.

• From the transmission W {2}5 ⊕ W
{5}
6 , node 2 can decode W {2}5 by XORing away W {5}6 and

similarly node 5 can decode W {5}6 .

• Similarly, from W
{1}
4 ⊕W {4}5 , nodes 1 and 4 can recover W {1}4 and W {4}5 respectively.

Merging and Relabelling: To restore the cyclic storage condition, we merge and relabel the subsegments
to form W̃1, . . . , W̃5.

Each node k ∈ [K−1] merges and relabels all segments that must be stored in it in the final database.
These are W̃j : j ∈ {k �5 〈2〉}.

• Observe that W1 and W {3}6 are available at nodes {1, 2, 3}, from either the prior storage or due
to decoding. Thus, the segment W̃1 = W1|W {3}6 of size 1 + 2T

10 = 6T
5 is obtained and stored at

nodes {1, 2, 3}. Similarly, we have the other merge operations as follows.

• W̃2 =W2|W {2,3}4 |W {3,4}6 of size 1 + T
10 + T

10 = 6T
5 is obtained at nodes {2, 3, 4}.

• W̃3 =W3|W {3}4 of size 1 + 2T
10 = 6T

5 is obtained at nodes {3, 4, 5}.

• W̃4 =W
{1}
4 |W {4}5 of size 7T

10 + 5T
10 = 6T

5 is obtained at nodes {4, 5, 1}.

• W̃5 =W
{2}
5 |W {5}6 of size 5T

10 + 7T
10 = 6T

5 is obtained at nodes {5, 1, 2}.

After merging and relabelling, each node keeps only the required segments mentioned previously and
discards any extra data present. Since each node now stores 3 segments each of size 6T

5 , the total data
stored is still 18T = rNT . Thus, the cyclic storage condition is satisfied.

2.5.3 Algorithm

In this section, following the intuition built in Subsection 2.5.1, we give our complete rebalancing
algorithm (Algorithm 1) for removal of a node from an r-balanced cyclic database on K nodes (with
r ≤ {2, . . . ,K − 1}). We thus prove the node-removal result in Theorem 2. Algorithm 1 initially
invokes the SPLIT routine (described in Algorithm 2) which gives the procedure to split segments into
subsegments. Each subsegment’s size is assumed to be an integral multiple of 1

2(K−1) . This is without
loss of generality, by the condition on the size T of each segment as in Theorem 2. This splitting
scheme is also illustrated in the figures Fig. 2.6-2.8. Guided by Claim 1, based on the value of r,
Algorithm 1 selects between two routines that correspond to the two transmission schemes: SCHEME
1 and SCHEME 2. These schemes are given in Algorithm 3 and 4. We note that, since the sizes of
the subsegments may not be the same after splitting, appropriate zero-padding (up to the size of the
larger subsegment) is done before the XOR operations are performed in the two schemes. Finally, the
MERGE routine (given in Algorithm 5) is run at the end of Algorithm 1. This merges the subsegments
and relabels the merged segments as the target segments, thus resulting in the target r-balanced cyclic
database on K − 1 nodes.
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Remark 3. Note that, for ease of understanding, we describe the algorithms for the removal of node K

from the system. The scheme for the removal of a general node i can be obtained as follows. Consider

the set of permutations φi : [K] → [K], where φi(j) = j �K (K − i), for i ∈ [K]. If a node i is

removed instead of K, we replace each label j in the subscript and superscript of the subsegments in

our Algorithms 2-5 with φi(j). Due to the cyclic nature of both the input and target databases, we

naturally obtain the rebalancing scheme for the removal of node i.

Algorithm 1 Rebalancing Scheme for Node Removal from Cyclic Database
1: procedure TRANSMIT

2: SPLIT() . Call SPLIT

3: if r ≥ rth = d2K+2
3 e then

4: SCHEME 1() . Call SCHEME 1

5: else

6: SCHEME 2() . Call SCHEME 2

7: end if

8: MERGE() . Call MERGE

9: end procedure

Figure 2.6: For each i ∈ [r − 2], WK−r+1+i is split into two parts labelled W {i+1}
K−r+1+i and W {i+K−r}K−r+1+i

of sizes K+r−2i−2
2(K−1) and K−r+2i

2(K−1) respectively.
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Figure 2.7: Let p = bK−r2 c. When K − r is odd, WK−r+1 is split into p + 2 parts la-

belled W
{1}
K−r+1, W {(K−r−p)�K−1〈min(r,p+1)〉}

K−r+1 , and W
{(K−r+1−j)�K−1〈min(r,j)〉}
K−r+1 for j = 1, . . . , p;

of sizes K+r−2
2(K−1) ,

1
2(K−1) ,

2
2(K−1) ,

2
2(K−1) , . . . ,

2
2(K−1) . Similarly, WK is split into p + 2 parts la-

belled W {K−1}K , W {(r+p)�K−1〈min(r,p+1)〉}
K , and W {(r−1+j)�K−1〈min(r,j)〉}

K for j = 1, . . . , p; of sizes
K+r−2
2(K−1) ,

1
2(K−1) ,

2
2(K−1) ,

2
2(K−1) , . . . ,

2
2(K−1) respectively.

Figure 2.8: Let p = bK−r2 c. WhenK−r is even,WK−r+1 is split into p+1 parts labelledW {1}K−r+1, and

W
{(K−r+1−j)�K−1〈min(r,j)〉}
K−r+1 for j = 1, . . . , p; of sizes K+r−2

2(K−1) ,
2

2(K−1) ,
2

2(K−1) , . . . ,
2

2(K−1) . Similarly,

WK is split into p+ 1 parts labelled W {K−1}K , and W {(r−1+j)�K−1〈min(r,j)〉}
K for j = 1, . . . , p; of sizes

K+r−2
2(K−1) ,

2
2(K−1) ,

2
2(K−1) , . . . ,

2
2(K−1) respectively.
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Algorithm 2 Splitting Scheme
1: procedure SPLIT

2: for each i ∈ [r − 2] do

3: Split WK−r+1+i into subsegments labelled WB
K−r+1+i for B ∈ {{i + 1}, {i + K − r}},

where the size of the subsegment is


K+r−2i−2
2(K−1) , if B = {i+ 1}

K−r+2i
2(K−1) , if B = {i+K − r}

4: end for

5: if K − r is odd then

6: Let p = bK−r2 c

7: SplitWK−r+1 into p+2 subsegments labelledWB
K−r+1, forB ∈ {{1}, {(K−r−p)�K−1

〈min(r, p+1)〉}}∪{{(K−r+1−j)�K−1〈min(r, j)〉} : j ∈ [p]}where the size of the subsegment

is


K+r−2
2(K−1) , if B = {1}

1
2(K−1) , if B = {(K − r − p)�K−1 〈min(r, p+ 1)〉}

2
2(K−1) , otherwise

8: Split WK into p + 2 subsegments labelled WB
K , for B ∈ {{K − 1}, {(r + p) �K−1

〈min(r, p+ 1)〉}} ∪ {{(r − 1 + j)�K−1 〈min(r, j)〉} : j ∈ [p]} where the size of the subsegment

is


K+r−2
2(K−1) , if B = {K − 1}

1
2(K−1) , if B = {(r + p)�K−1 〈min(r, p+ 1)〉}

2
2(K−1) , otherwise

9: else

10: Let p = K−r
2

11: Split WK−r+1 into p + 1 subsegments labelled WB
K−r+1, for B ∈ {1} ∪ {{(K − r + 1 −

j)�K−1 〈min(r, j)〉} : j ∈ [p]} where the size of the subsegment is


K+r−2
2(K−1) , if B = {1}

2
2(K−1) , otherwise

12: Split WK into p + 1 subsegments labelled WB
K , for B ∈ {K − 1} ∪ {{(r − 1 + j) �K−1

〈min(r, j)〉} : j ∈ [p]} where the size of the subsegment is


K+r−2
2(K−1) , if B = {K − 1}

2
2(K−1) , otherwise

13: end if

14: end procedure
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Algorithm 3 Transmission Scheme 1
1: procedure SCHEME 1

2: for each i = 1, . . . ,K − r do

3: Node 1 broadcasts
⊕b r−1−i

K−r
c

j=0 W
{K−i−j(K−r)}
K+1−i−j(K−r).

4: Node K − 1 broadcasts
⊕b r−1−i

K−r
c

j=0 W
{i+j(K−r)}
K−r+i+j(K−r)

5: end for

6: Node 1 broadcasts all subsegments of WK except W {K−1}K .

7: Node K − 1 broadcasts all subsegments of WK−r+1 except W {1}K−r+1.

8: end procedure

Algorithm 4 Transmission Scheme 2
1: procedure SCHEME 2

2: for each i = 2, . . . , r − 1 do

3: Node 1 broadcasts W {i}K−r+i ⊕W
{K−r+i}
K−r+i+1.

4: end for

5: Node K − 1 broadcasts W {1}K−r+1 ⊕W
{K−r+1}
K−r+2 .

6: Node 1 broadcasts all subsegments of WK except W {K−1}K .

7: Node K − 1 broadcasts all subsegments of WK−r+1 except W {1}K−r+1.

8: end procedure
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Algorithm 5 Merging and Relabelling
1: procedure MERGE

2: for each i = 1, . . . , r − 1 do

3: Each node in {(K − r + i) �K−1 〈r〉} performs the concatenation W̃K−r+i =

W
{i}
K−r+i|W

{K−r+i}
K−r+i+1.

4: end for

5: if K − r is even then

6: for each i = 1, . . . , K−r2 do

7: Each node in {i �K−1 〈r〉} performs the concatenation W̃i =

Wi|W
{(r−1+i)�K−1〈min(r,i)〉}
K .

8: end for

9: for each i = K−r
2 + 1, . . . ,K − r do

10: Each node in {i �K−1 〈r〉} performs the concatenation W̃i =

Wi|W
{i�K−1〈min(r,K−r−i+1)〉}
K−r+1 .

11: end for

12: else

13: for each i = 1, . . . , K−r−12 do

14: Each node in {i �K−1 〈r〉} performs the concatenation W̃i =

Wi|W
{(r−1+i)�K−1〈min(r,i)〉}
K .

15: end for

16: for each i = K−r+1
2 + 1, . . . ,K − r do

17: Each node in {i �K−1 〈r〉} performs the concatenation W̃i =

Wi|W
{i�K−1〈min(r,K−r−i+1)〉}
K−r+1 .

18: end for

19: Each node in
{(

K−r+1
2

)
�K−1 〈r〉

}
performs the concatenation W̃K−r+1

2
=

WK−r+1
2
|W {(r+p)�K−1〈min(r,p+1)〉}

K |W {(K−r−p)�K−1〈min(r,p+1)〉}
K−r+1 , where p = bK−r2 c.

20: end if

21: end procedure

Note: Once the target segments W̃1, . . . , W̃K−1 are recovered at the required nodes, any extra bits
present at the node are discarded.
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2.5.4 Correctness

Before we proceed, we recall the following notations. For a non-negative integer n, we use [n] to
denote the set {1, . . . , n}. We also define [0] , φ. Similarly, for a positive integer n, 〈n〉 denotes
the set {0, 1, . . . , n − 1}. To describe operations involving wrap-arounds, we define two operators.

For positive integers i, j,K such that i, j ≤ K, i �K j =

i+ j, if i+ j ≤ K

i+ j −K, if i+ j > K
. Similarly,

i �K j =

i− j, if i− j > 0

i− j +K, if i− j ≤ 0
. We also extend these operations to sets. For A ⊆ [K] and

i ∈ [K], we use {i �K A} to denote the set {i �K a : a ∈ A}. Similarly, {i �K A} denotes
{i �K a : a ∈ A}. For a binary vector X , we use |X| to denote its size. The concatenation of
two binary vectors, X1 and X2, is denoted by X1|X2. We also recall that, for a segment Wi and its
subsegment W J

i , J represents the set of nodes where this subsegment needs to be sent.
To check the correctness of the scheme, we have to check the correctness of the encoding, decoding,

and the merging. It is straightforward to check that the nodes that broadcast any transmission, whether
coded or uncoded subsegments, contain all respective subsegments according to the design of the initial
storage. Thus, the XOR-coding and broadcasts given in the transmissions schemes are correct. For
checking the decoding, we must check that each subsegment can be decoded at the corresponding ‘su-
perscript’ nodes where it is meant to be delivered. We must also check that the merging scheme is
successful, i.e., at any node, all the subsegments to be merged into a target segment are available at that
node. Finally, we check that the target database is the cyclic database on K − 1 nodes.

Now, we focus on checking the decoding of the transmissions in both Scheme 1 and Scheme 2.
Clearly, all uncoded transmissions are directly received. Thus, we now check only the decoding involved
for XOR-coded transmissions, for the two schemes.

• Decoding for Scheme 1: For each i ∈ [K − r], two broadcasts
⊕b r−1−i

K−r
c

j=0 W
{K−i−j(K−r)}
K+1−i−j(K−r) and⊕b r−1−i

K−r
c

j=0 W
{i+j(K−r)}
K−r+i+j(K−r) are made. Consider the first broadcast. Let J = {0, . . . , b r−1−iK−r c}.

For some j ∈ J , consider the segment WK+1−i−j(K−r). For any j′ ∈ J\{j}, we claim that node
K− i− j′(K− r) contains the segment WK+1−i−j(K−r). Going through all possible j, j′ would
then mean that all the segments in this first XOR-coded broadcast can be decoded at the respective
superscript-nodes. Now, for node K − i − j′(K − r) to contain the segment WK+1−i−j(K−r),
the following condition must be satisfied:

– Condition (A): K− i− j′(K− r) ∈ SK+1−i−j(K−r) = {(K+1− i− j(K− r))�K 〈r〉}.

To remove the wrap-around, we simplify Condition (A) into two cases based on the relation
between j and j′. For Condition (A) to hold, it is easy to check that one of the following pairs of
inequalities must hold.

1. if j < j′, K + 1− i− j(K − r) ≤ 2K − i− j′(K − r) ≤ K + 1− i− j(K − r) + r − 1
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2. if j > j′, K + 1− i− j(K − r) ≤ K − i− j′(K − r) ≤ K + 1− i− j(K − r) + r − 1.

Consider the first inequality. First we prove that when j < j′, K + 1 − i − j(K − r) ≤
2K − i− j′(K − r). To show this, we consider the following sequence of equations,

(2K − i− j′(K − r))− (K + 1− i− j(K − r)) = K − 1− (j′ − j)(K − r).
(a)

≥ K − 1−
(
r − 1− i
K − r

)
(K − r).

≥ K − r + i

(b)

≥ K − r + 1

(c)

≥ K − (K − 1) + 1

≥ 0,

where (a) holds as the maximum value of j′ − j is equal to b r−1−iK−r c, (b) holds as the minimum
value of i is 1, and (c) holds as the maximum value of r is K − 1.

Similarly,

(K + 1− i− j(K − r) + r − 1)− (2K − i− j′(K − r)) = r −K + (j′ − j)(K − r)
(a)

≥ r −K + (K − r) ≥ 0,

where (a) holds as the minimum value of j′ − j is equal to 1.

Now, for the second inequality, we first prove that when j > j′, K + 1 − i − j(K − r) ≤
K − i− j′(K − r). To show this, we consider the following sequence of equations

(K − i− j′(K − r))− (K + 1− i− j(K − r)) = (j − j′)(K − r)− 1

(a)

≥ K − r − 1

(b)

≥ K − (K − 1)− 1

≥ 0,

where (a) holds as the minimum value of j − j′ is equal to 1 and (b) holds as the maximum value
of r is K − 1.. Similarly,

(K + 1− i− j(K − r) + r − 1)− (K − i− j′(K − r)) = r − (j − j′)(K − r)
(a)

≥ r −
(
r − 1− i
K − r

)
(K − r)

≥ 1 + i

(b)

≥ 0,
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where (a) holds as the maximum value of j− j′ is equal to b r−1−iK−r c and (b) holds as the minimum
value of i is 1.

Hence, all the inequalities for both the cases are true. Similar arguments hold for the second
broadcast as well.

• Decoding for Scheme 2: For each i ∈ [r], a broadcastW {i}K−r+i⊕W
{K−r+i}
K−r+i+1 is made (c.f. Lines

3, 5 in Algorithm 4). Now, node i contains the subsegment WK−r+i+1 since (K − r+ i+1)�K
(r − 1) = i. Similarly, node K − r + i clearly contains the subsegment WK−r+i. Thus, node
i can decode W {i}K−r+i and node K − r + i can decode W {K−r+i}K−r+i+1. Thus, we have verified the
correctness of the transmission schemes.

• Checking the merging phase: Initially, for each i ∈ [K],Wi is stored at the nodes {i�K〈r−1〉}.
After the transmissions are done, W̃i is obtained by merging some subsegments with Wi, for each
i ∈ {1, . . . ,K}. Now, to verify that the merging can be done correctly, we need to show that all
these subsegments are present at the nodes {i�K−1 〈r − 1〉} after the transmissions are done.

– For each i ∈ [r− 1], consider the segment W̃K−r+i which is obtained by merging W {i}K−r+i
with W {K−r+i}K−r+i+1, (c.f. Algorithm 5 Line 2 and 3). We observe that W {i}K−r+i was present
in {(K − r + i) �K−1 〈r〉}\{i} before rebalancing and was decoded by node i during the
rebalancing process. Similarly, W {K−r+i}K−r+i+1 was present in {(K − r + i)�K−1 〈r〉}\{K −
r+i} before rebalancing and was decoded by nodeK−r+i during the rebalancing process.

– For each i ∈ {1, . . . , bK−r2 c}, W̃i is obtained by merging Wi and W {(r−1+i)�K−1〈min(r,i)〉}
K ,

(c.f. Algorithm 5 Lines 7 and 14). Each node in {i �K−1 〈r〉} that does not contain WK

can obtain W {(r−1+i)�K−1〈min(r,i)〉}
K using the broadcasts made in Lines 6-7 of Algorithms

3 and 4. Thus, W̃i can be obtained at the nodes {i�K−1 〈r〉}.

– We use similar arguments the target segments W̃i for each i ∈ {dK−r2 e+1, . . . ,K− r} and
W̃K−r+1

2
, if K − r is odd.

• Checking the target database structure: We first show that the sizes of all the segments after
rebalancing are equal. For this, we look at how the new segments are formed by merging some
subsegments with the older segment.

– The size of the target segment W̃K−r+i, for each i ∈ {1, . . . , r − 1}, is K+r−2(i−1)−2
2(K−1) +

K−r+2i
2(K−1) = K

K−1 (c.f. Algorithm 5 - Line 2 and 3).

– The size of the target segment W̃i, for each i ∈ [bK−r2 c], is 1 + 2
2(K−1) = K

K−1 (c.f.
Algorithm 5 - Line 6, 7, 13, and 14).

– For even K − r, the size of the target segment W̃i, for each i ∈ {K−r2 + 1, . . . ,K − r}, is
1 + 2

2(K−1) =
K
K−1 (c.f. Algorithm 5 - Line 9 and 10).

– For odd K − r, the size of the target segment W̃i, for each i ∈ {K−r+1
2 +1, . . . ,K − r}, is

1 + 2
2(K−1) =

K
K−1 (c.f. Algorithm 5 - Line 16 and 17).
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– The size of the target segment W̃K−r+1
2

is 1 + 1
2(K−1) +

1
2(K−1) =

K
K−1 . (c.f. Algorithm 5

- Line 19).

We can see that the sizes of all the segments after rebalancing are the same, i.e., K
K−1 . This

completes the verification of the correctness of our rebalancing algorithm, which assures that the
target database is an r-balanced cyclic database on K − 1 nodes.

2.5.5 Communication Load

We now calculate the communication loads of the two schemes. For the uncoded broadcasts in both
schemes corresponding to lines 6, 7 in both Algorithms 3 and 4, the communication load incurred is
2
(
K−r−1

2 . 2
2(K−1) +

1
2(K−1)

)
= K−r

(K−1) , when K − r is odd, and 2
(
K−r
2 . 2

2(K−1)

)
= K−r

(K−1) when
K − r is even, respectively. Now, we analyse the remainder of the communication loads of the two
schemes.

2.5.5.1 Scheme 1

The coded broadcasts made in Scheme 1 are
⊕b r−1−i

K−r
c

j=0 W
{K−i−j(K−r)}
K+1−i−j(K−r) and

⊕b r−1−i
K−r

c
j=0 W

{i+j(K−r)}
K−r+i+j(K−r)

for each i ∈ [K − r] (c.f. Algorithm 3 Lines 2-5). Once again, the subsegments involved in the

broadcast are padded so that they are of the same size. Consider
⊕b r−1−i

K−r
c

j=0 W
{i+j(K−r)}
K−r+i+j(K−r). The

size of each subsegment involved is K+r−2(i+j(K−r)−1)−2
2(K−1) Thus the subsegment having the maximum

size is the one corresponding to j = 0 having size K+r−2i
2(K−1) . Similarly, each subsegment involved in⊕b r−1−i

K−r
c

j=0 W
{K−i−j(K−r)}
K+1−i−j(K−r) is of size K−r+2(r−i−j(K−r))

2(K−1) . Thus, the maximum size is the one corre-
sponding to j = 0 having size, K+r−2i

2(K−1) . Thus, the communication load is

L1(r) = 2 ·
K−r∑
i=1

K + r − 2i

2(K − 1)

=

(
1

K − 1

)
((K − r)(K + r)− (K − r)(K − r + 1))

=
(K − r)(2r − 1)

(K − 1)
.

2.5.5.2 Scheme 2

The coded broadcasts made in Scheme 2 involve W {i}K−r+i ⊕W
{K−r+i}
K−r+i+1 for each i ∈ [r − 1] (c.f.

Algorithm 4 Lines 2-5). Since the smaller subsegment of each pair is padded to match the size of the
larger, the cost involved in making the broadcast depends on the larger subsegment. Now, the size of
these subsegments are K+r−2j−2

2(K−1) and K−r+2(j+1)
2(K−1) respectively (c.f. Figures 2.6, 2.7, 2.8). For the first

subsegment to be larger, K+r−2j−2
2(K−1) ≥ K−r+2(j+1)

2(K−1) . It is easy to verify that this occurs when j ≤ r
2 − 1.

We separate our analysis into cases based on the parity of r.
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For odd r, we have,

L2(r) =

r−1
2
−1∑

j=0

K + r − 2j − 2

2(K − 1)
+

r−2∑
j= r−1

2

K − r + 2(j + 1)

2(K − 1)

(a)
=

r−1
2
−1∑

j=0

K + r − 2j − 2

2(K − 1)
+

r−1
2
−1∑

j′=0

K − r + 2(r − 2− j′ + 1)

2(K − 1)

= 2 ·

r−1
2
−1∑

j=0

K + r − 2j − 2

2(K − 1)

=

(
2

2(K − 1)

)((
r − 1

2

)
(K + r − 2)−

(
r − 1

2
− 1

)(
r − 1

2

))
=

(
1

2(K − 1)

)
(r − 1)

(
K +

r − 1

2

)
,

where (a) is obtained by changing the variable j′ = (r − 2)− j.
Similarly, for even r, we have,

L2(r) =

r
2
−1∑
j=0

K + r − 2j − 2

2(K − 1)
+

r−2∑
j= r

2

K − r + 2(j + 1)

2(K − 1)

=

r
2
−2∑
j=0

K + r − 2j − 2

2(K − 1)
+
K + r − 2

(
r
2 − 1

)
− 2

2(K − 1)
+

r−2∑
j= r

2

K − r + 2(j + 1)

2(K − 1)

(a)
=

r
2
−2∑
j=0

K + r − 2j − 2

2(K − 1)
+

K

2(K − 1)
+

r
2
−2∑

j′=0

K − r + 2(r − 2− j′ + 1)

2(K − 1)

= 2 ·

r
2
−2∑
j=0

K + r − 2j − 2

2(K − 1)
+

K

2(K − 1)

=

(
2

2(K − 1)

)((r
2
− 1
)
(K + r − 2)−

(r
2
− 2
)(r

2
− 1
))

+
K

2(K − 1)

=

(
1

2(K − 1)

)
(r − 2)

(
K +

r

2

)
+

K

2(K − 1)
,

where (a) is obtained by changing the variable j′ = (r − 2)− j.
The total communication load is therefore Lrem(r) =

K−r
(K−1) +min(L1(r), L2(r)).

2.5.6 Advantage over the uncoded scheme

In this subsection, we bound the advantage of the rebalancing schemes presented in this work, over
the uncoded scheme, in which the nodes simply exchange all the data which was available at the removed
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node via uncoded transmissions. We know that the load of the uncoded scheme must thus be r. Consider
the ratio of the communication load of Scheme 1 to that of the uncoded scheme. We then have the
following sequence of equations.

K−r
K−1 + L1(r)

Lu(r)
=

1

r

(
K − r
K − 1

+
(K − r)(2r − 1)

K − 1

)
=

K − r
r(K − 1)

(1 + 2r − 1)

=
2(K − r)
K − 1

= 2

(
(K − 1)− (r − 1)

K − 1

)
= 2

(
1− r − 1

K − 1

)
.

Now we do the same for Scheme 2.

K−r
K−1 + L2(r)

Lu(r)
=

1

r

(
K − r
K − 1

+
r − 1

2(K − 1)

(
K +

r − 1

2

))
=

1

2r(K − 1)

(
2K − 2r + rK −K +

(r − 1)2

2

)
=

1

2r(K − 1)

(
K(r + 1) +

(r − 1)2 − 4r

2

)
<

1

2r(K − 1)

(
K(r + 1) +

r2 − 4r

2

)
≤ (K − 1 + 1)(r + 1)

2r(K − 1)
+

r − 4

4(K − 1)

≤ 1

2
+

r +K

2r(K − 1)
+

r − 4

4(K − 1)

≤ 1

2
+

1

2(K − 1)

(
K − r
r

+
r

2

)
<

1

2
+

1

2r
+

r

4(K − 1)
,

where the last inequality follows by using the fact thatK−r ≤ K−1. Observe that 1
2+

1
2r+

r
4(K−1) <

1, as r ≥ 3 and K − 1 ≥ r. As the choice of the scheme selected for transmissions is based on the
minimum load of Scheme 1 and Scheme 2, we have the result in the theorem. This completes the proof
of the node-removal part of Theorem 2.

2.6 Rebalancing Scheme for Single Node Addition in Cyclic Databases
We consider the case of a r-balanced cyclic database system when a new node is added. Let this

new empty node be indexed by K +1. For this imbalance situation, we present a rebalancing algorithm
(Algorithm 6) in which nodes split the existing data segments and broadcast appropriate subsegments,
so that the target database which is a r-balanced cyclic database on K+1 nodes, can be achieved. Each
subsegment’s size is assumed to be an integral multiple of 1

K+1 . This is without loss of generality, by
the condition on the size T of each segment as in Theorem 2. Since node K + 1 starts empty, there
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are no coding opportunities; hence, the rebalancing scheme uses only uncoded transmissions. We show
that this rebalancing scheme achieves a normalized communication load of r

K+1 , which is known to be
optimal from the results of [1]. This proves the node-addition part of Theorem 2.

Algorithm 6 Rebalancing Scheme for Single Node Addition
1: procedure DELIVERY SCHEME

2: for each i ∈ [K] do

3: Split Wi into two subsegments, labelled W̃i of size K
K+1 and W {K+1}∪[min(r−1,i−1)]

i of size
1

K+1 .

4: Node i broadcasts W {K+1}∪[min(r−1,i−1)]
i .

5: end for

6: Each node in {(K + 1)�K+1 〈r〉} initializes the segment W̃K+1 as an empty vector.

7: for each i ∈ [K] do

8: Each node in {(K + 1) �K+1 〈r〉} performs the concatenation W̃K+1 =

W̃K+1|W {K+1}∪[min(r−1,i−1)]
i .

9: end for

10: for each i = (K − r + 2) to K do

11: Node i transmits W̃i to node K + 1.

12: end for

13: for each i = 1 to r − 1 do

14: Node i discards W̃K−r+1+i.

15: end for

16: end procedure

2.6.1 Correctness

We verify the correctness of the rebalancing algorithm, i.e., we check that the target r-balanced
cyclic database onK+1 nodes is achieved post-rebalancing. To achieve the target database, each target
segment W̃i, for i ∈ [K + 1], must be of size K

K+1 and stored exactly in i�K+1 〈r − 1〉. Consider the
segments W̃i for each i ∈ [K − r + 1]. Since, these were a part of Wi, they are already present exactly
at nodes {i�K+1 〈r − 1〉}.

Now, consider the segments W̃i : i ∈ {(K−r+1)�K 〈r〉}. We recall Si as the set of nodes whereWi

is present in the initial database. Let S̃i be the set of nodes where it must be present in the final database.
Now, the nodes where W̃i is not present and must be delivered to are given by S̃i\Si = {K + 1}. This
is performed in lines 10-12 of Algorithm 6. Also, the nodes where Wi is present but W̃i must not be
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present are given by Si\S̃i = {i −K + r − 1}. This node discards W̃i in lines 13-15 of Algorithm 6.
Finally, W̃K+1 must be present in nodes {(K +1)�K+1 〈r〉}. This can be obtained by the those nodes
from the broadcasts made in line 4 in Algorithm 6 and the concatenation performed in lines 7-9.

Finally, It is easy to calculate that each target segment W̃i : i ∈ [K + 1] is of size K
K+1 . Thus, the

final database satisfies the cyclic storage condition.
Note: Once the target segments W̃1, . . . , W̃K+1 are recovered at the required nodes, any extra bits

present at the node are discarded.

2.6.2 Communication Load

For broadcasting each W {K+1}∪[min(r−1,i−1)]
i of size 1

K+1 , ∀i ∈ [K], the communication load in-
curred is K. 1

K+1 = K
K+1 . Now, to transmit W̃K−r+2 . . . W̃K to node K + 1, the communication load

incurred is (r − 1). K
K+1 . Hence, the total communication load is Ladd(r) =

rK
K+1 .

2.7 Comparisons between the existing schemes for single node removal
A comparison of the discussed schemes for single node removal is shown in Fig. 2.9 for the case

of K = 15 (as r varies), along with the load Lu(r) of the uncoded rebalancing scheme, and the lower
bound based on the results of [1] (L∗rem(r)N = rK

K(r−1) =
r
r−1 ).
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Figure 2.9: For K = 15, the figure shows comparisons of communication loads of Scheme 1 and Scheme 2 with

the load of uncoded transmission scheme and the optimal load achieved by the scheme in [1], for varying r. Note

that all curves are relevant only for r ∈ {3, . . . ,K−1}. We see that the minimum of the loads of the two schemes

is always less than the uncoded load. Further, for any integer value of r ≥ 11, we see that Scheme 1 has smaller

load than Scheme 2, and the reverse is true otherwise.

30



Chapter 3

A New Low Complexity Distributed Computing Scheme via Subspace

Designs

3.1 Introduction
A distributed computing framework is a software framework that enables the coordination of mul-

tiple computers in a distributed computing environment. The framework provides tools and APIs for
programmers to write distributed applications that can be executed on a cluster of computers. There are
many distributed computing frameworks available, each with its own set of features and capabilities.
One of the most popular such frameworks is MapReduce [7]. MapReduce is a programming framework
for processing large amounts of data in a distributed environment. It provides careful parallelization and
distribution of the work across the network of computers.

In the MapReduce framework, the available data file is divided into smaller chunks and these chunks
are assigned to different computing nodes. The overall computation in MapReduce is divided into two
main phases, namely Map and Reduce. In the Map phase, the computing nodes process parts of the
data that are assigned to them locally and generate some intermediate values (IVAs) using the Map
functions. Following that, the nodes exchange the generated IVAs with each other to compute the
outputs using the Reduce functions in a distributed fashion. This corresponds to the Shuffle Phase of
the framework. This phase involves movement of high volumes of data between the nodes and the
total amount of data shuffled (i.e., exchanged among the nodes) is called the communication load in
the literature. The data shuffling problem in the context of distributed computing is widely studied, as
it limits the performance of distributed computing applications. For instance, in a Facebook’s Hadoop
Cluster, about one-third of the total execution time is spent on data shuffling [23]. In order to address
this issue, Coded MapReduce was introduced in [2] that exploits a specific form of coding in order to
reduce the communication load involved in the data shuffling phase. Further, in [3], the authors proposed
a Coded Distributed Computing Scheme (CDC). In particular, they have characterized a fundamental
tradeoff between the computation load in the Map Phase and the communication load in the Shuffle
Phase. The communication load achieved by the scheme in [2, 3] is shown to be optimal in [3]. In
[24, 25, 26], coded MapReduce schemes were considered in which it was not required to compute

31



IVAs of all the stored subfiles. Furthermore, in [25, 26], tradeoffs between storage, computation, and
communication were presented along with an optimal scheme that meets this tradeoff. In [27, 28], coded
distributed computing schemes limited to linear computing functions in the presence of stragglers are
discussed. This restriction was lifted in the works [29, 30], where they extend the model in [3] to
arbitrary computing functions in the presence of stragglers.

Though some of the discussed results above are shown to be optimal in terms of communication load,
the file complexity for these schemes is too large, i.e., exponential in the number of computing nodes.
In [4, 5], the authors have presented distributed computing schemes using a binary matrix framework.
They have shown how such binary matrices which produce distributed computing schemes arise out of
combinatorial designs. The schemes presented require low file complexity, at the cost of higher local
storage and communication load.

In this work, we present a scheme based on the principles of [4] (and its extended version [5]). In
particular, we use the q-analogs of combinatorial designs, known as subspace designs, and present a
distributed computing scheme based on them.

3.1.1 Contributions and Organization

This chapter presents a distributed computing scheme via subspace designs, which has low file com-
plexity. The organization and contributions of this chapter are as follows. Previous works and results
on Coded MapReduce are discussed in Section 3.2. We first review the Coded MapReduce setup [2, 3]
in subsection 3.2.1. Following that, we give an introduction to the notion of binary matrices for dis-
tributed computing [4] and an example illustrating a distributed computing scheme via binary matrices
in subsection 3.2.2. In Section 3.3, we review the important terminologies and constructions related to
combinatorial designs and their q-analogs (subspace designs). In Section 3.4, we discuss the subspace
designs based scheme and give its parameters. Finally, in Section 3.5, we conclude the chapter with
numerical comparisons of our scheme with some existing baseline schemes.

3.2 Background and Previous Results
In this section, we first review the system model of Coded MapReduce presented in [2, 3] and discuss

the main results of [3]. Further, we discuss the notion of binary matrices for distributed computing [4].

3.2.1 System Model for Coded MapReduce Distributed Computing

The framework of Coded MapReduce was introduced in [2, 3] and the formal system model was
presented in [3]. We briefly review the same in this section.

The goal of this framework is to computeQ output functions on a file usingK distributed computing
nodes (servers). These servers are indexed by a set K. The file on which the output functions are to be
computed is divided into F subfiles, for F ≥ K. These subfiles are indexed by a set F . In the context
of coded distributed computing, the parameter F is known as the file complexity. We now define the
computation load as in [3].
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Figure 3.1: Workflow of a generic MapReduce framework onK servers. The three phases, namely Map, Shuffle,

and Reduce phase are separated by a dotted line. The data file is first divided into F subfiles, which are then

assigned to different nodes. In the Map phase, the nodes use Map functions to generate IVAs (shapes), which are

then exchanged among the nodes in the Shuffle phase (shown using arrows) in order to compute the outputs using

the Reduce functions in the Reduce phase.

Definition 2 (Computation Load [3]). We define the computation load, denoted by r, 1 ≤ r ≤ K, as

the total number of Map functions computed across the K nodes, normalized by the number of subfiles

(file complexity F ). The computation load r can also be interpreted as the average number of nodes

that map each subfile.

By the above definition, each subfile is assigned to r nodes, r ≥ 1. We denote the set of subfiles
assigned to node k (k ∈ K) asMk ⊆ F . Now, we define the computing functions below.

• The Q output functions are denoted as φ1, . . . , φQ. Each φq maps all the input files to a fixed
length binary stream uq = φq({∀f ∈ F}).

• The map function gq,f , ∀q ∈ [Q], ∀f ∈ F maps the input subfile f ∈ F into Q length-T inter-
mediate values (IVAs), denoted as {v1,f , . . . , vQ,f}. Each vq,f , gq,f (f), q ∈ [Q], f ∈ F is an
IVA corresponding to the subfile f and the qth map function.
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• The reduce function hq, q ∈ [Q] maps the IVAs vq,f : ∀f ∈ F into the output value uq. Thus,
uq = φq({∀f ∈ F}) = hq({vq,f : ∀f ∈ F}) = hq({gq,f (f) : ∀f ∈ F}).

The computation in a distributed computing scheme in the MapReduce framework proceeds in three
phases: Map, Shuffle, and Reduce, which we describe as follows:

1. Map Phase: Each node k ∈ K uses the map functions to compute all the IVAs of the subfiles in
Mk, i.e., the node k computes gq,f (f) : ∀f ∈ Mk,∀q. Thus, the node k will have {vq,f : ∀q ∈
[Q],∀f ∈Mk} after the map phase.

2. Shuffle Phase: A distinct set of β = Q
K functions of the Q functions are assigned to each node.

In order to compute the output of a reduce function, a node needs to have the IVAs of that output
function for all the subfiles. Each node k ∈ K already has the IVAs corresponding to the subfiles in
Mk (Map Phase). Thus, to reduce the functions assigned to it, it requires {vq,f : ∀q ∈ Wk, ∀f 6∈
Mk}. Therefore, the nodes send broadcast transmissions to each other so that each node has all
the IVAs it requires to reduce the functions assigned to it. This exchange of data (data shuffling)
is known as the shuffle phase in the MapReduce framework.

3. Reduce Phase: Each node k computes hq({vq,f : ∀f ∈ F}) for each q ∈ Wk, using the IVAs
computed in the map phase and the received IVAs in the shuffle phase. This results in computing
the value of the φq : ∀q ∈ Wk on the input file.

Definition 3 (Communication load [3]). Let T be the size of each IVA in bits. The communication load,

denoted by L, 0 ≤ L ≤ 1, is defined as the (normalized) total number of bits communicated by the K

computing nodes during the Shuffle phase and can be calculated using the following.

L ,
Total number of bits transmitted in shuffle phase

QFT
.

Let us consider the uncoded scheme, in which each node receives the required IVAs sent by other
nodes without any coding. It is clear that QF IVAs are needed across the K nodes and rF · QK = rQF

K

of them are already available (Map Phase). Thus, the communication load achieved by the uncoded
scheme is

Luncoded =
(QFT − rQFT

K )

QFT
= 1− r

K
.

In [3], the authors have proposed Coded Distributed Computing (CDC). CDC uses a specific strategy
to assign the computations of Map and Reduce functions across the K computing nodes, which enables
coding opportunities during the shuffle phase. From the definition of computation load r, each subfile is
mapped by a total of r nodes. The authors carefully design a mapping of the subfiles at r distinct nodes
to enable maximal coding opportunities. This results in a communication load of

L =
1

r
(1− r

K
).
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Observe that using CDC, the communication load is reduced exactly by a factor of r, when compared
to the uncoded scheme.

The authors also apply CDC to a more general framework of distributed computing, where each
output function is computed by s ∈ {1, . . . ,K} nodes. This is done to provide better fault-tolerance.

The main result of [3] are given by the following theorem.

Theorem 3 ([3]). The computation-communication function of the distributed computing framework,

L∗(r) is given by

L∗(r) = Lcoded(r) ,
1

r
· (1− r

K
), r ∈ {1, . . . ,K},

for sufficiently large T . For general 1 ≤ r ≤ K, L∗(r) is the lower convex envelope of the above points

{(r, 1r · (1−
r
K )) : r ∈ {1, . . . ,K}}.

We refer the reader to Section V of [3] for the proof of achievability of the theorem above. The
authors have also proved the converse of the theorem in Section VI of [3].

3.2.2 Binary Matrices and Distributed Computing

In [31] (and its extended version [32]), coded caching schemes were constructed using binary matri-
ces, while in [4] (and its extended version [5]), distributed computing schemes were constructed using
binary matrices. In this section, we review how a distributed computing scheme can be constructed us-
ing a binary matrix with constant column weight. We also provide an example illustrating a distributed
computing scheme via binary matrices arising out of a specific combinatorial design.

Definition 4 (Binary Computing Matrix [4, 5]). Consider a binary matrix C with rows indexed by a

K-sized set K and columns indexed by a F -sized set F such that the number of 0’s in any column is

constant (say r). Then the matrix C defines a distributed computing scheme with K users (indexed by

K), file complexity F (subfiles indexed by F) and computation load = r as follows:

• Server k ∈ K maps subfile f : ∀f ∈ F if C(k, f) = 0 and does not map it if C(k, f) = 1.

We then call the matrix C as a (K,F, r)-computing matrix.

The lemma below describes a single round of two transmissions using an identity submatrix of the
computing matrix.

Lemma 1 ([4]). Consider an identity submatrix ofC given by rows {k1, k2, .., kl : ki ∈ K} and columns

{f1, f2, .., fl : fi ∈ F}, such that C(ki, fi) = 1, ∀i ∈ [l], while C(ki, fj) = 0,∀i, j ∈ [l] where i 6= j.

Then there exists two transmissions of length βT = QT
K bits each, one coded and one uncoded, done by
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any two different servers ki and kj : i, j ∈ [l], i 6= j such that each server ki : i ∈ [l] can recover the

missing IVAs, {vq(ki,b),fi : ∀b ∈ [β]}, from these two coded transmissions.

Using lemma 1, the following theorem was presented in [4].

Theorem 4 ([4]). Consider a computing matrix C of size K × F with a non-overlapping identity

submatrix cover C = {C1, C2, .., CS} where the size of each identity submatrix is g ≥ 2. Then, there

exists a distributed computing scheme with K nodes, attaining computation load r and communication

load L = 2
g

(
1− r

K

)
, with file complexity F .

We refer the reader to Section III of [4] and [5] for the proof of Lemma 1 and Theorem 4 respectively.
Given below is an example illustrating the new scheme using an identity submatrix cover of a given
computing matrix.

Example 1. Consider a set system (K,F) given byK = {1, 2, 3, 4, 5, 6, 7} andF = {127, 145, 136, 467,

256, 357, 234}. The incidence matrix C for this set system is

C =



127 145 136 467 256 357 234

1 1 1 1 0 0 0 0

2 1 0 0 0 1 0 1

3 0 0 1 0 0 1 1

4 0 1 0 1 0 0 1

5 0 1 0 0 1 1 0

6 0 0 1 1 1 0 0

7 1 0 0 1 0 1 0


.

We can see that the above matrix is a (7, 7, 4)-computing matrix. The distributed computing system

corresponding to this matrix has K = 7 nodes and F = 7 subfiles. Each subfile is stored in r = 4

nodes. For instance, the subfile indexed by 145 is stored in nodes 2, 3, 6, and 7.

The identity submatrices (using 7 different shapes), each of size 3, of the above matrix form an

identity submatrix cover, which consists of 7 non-overlapping identity submatrices.

We will now describe one round of transmissions, which consists of two transmissions corresponding

to one identity submatrix. Consider the identity submatrix denoted as C1, where

C1 =


145 256 357

1 1 0 0

6 0 1 0

7 0 0 1

.
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In C1, the row indices {1, 6, 7} represent the servers and the column indices {145, 256, 357} rep-

resent the subfiles. One round of transmissions will consist of a coded transmission and an uncoded

transmission, done by two different servers respectively. In this example, let server 1 do the coded

transmission and server 6 do the uncoded transmission.

Let Q = 14 (i.e., β = 2) and W1 = {1, 8}, W6 = {6, 13}, W7 = {7, 14}. As 145 /∈ M1,

server 1 will be missing the IVAs {v1,145, v8,145}. Similarly, server 6 and 7 will be missing the IVAs

{v6,256, v13,256} and {v7,357, v14,357} respectively. Now, server 1 will send the coded transmission

{v7,357⊕ v6,256, v14,357⊕ v13,256}. Observe that server 6 can decode v6,256 and v13,256 since it already

has v7,357 and v14,357. Similarly, server 7 can decode v7,357 and v14,357. Server 6 sends the uncoded

transmission {v1,145, v8,145}, which is received by server 1.

All the other transmissions corresponding to the remaining identity submatrices are done in a similar

manner and the decoding of the required IVAs at the respective servers is done successfully, according

to Theorem 4 and finally, rate = 2
3(1−

4
7) =

2
7 .

As mentioned in the previous section, the scheme in [3] achieves a communication load of 1
r ·(1−

r
K ),

which was shown to be optimal. However, the file complexity required for this scheme is
(
K
r

)
. The

distributed storage scheme corresponding to the Map Phase of the scheme in [3] can be represented
using a computing matrix. This is captured in the following corollary to Theorem 4.

Corollary 1 ([4]). For any positive integers K and r ∈ [K], there exists a (K,
(
K
r

)
, r)-computing

matrix, from which we get a distributed computing scheme on K nodes with computation load r and

communication load L = 2
r+1

(
1− r

K

)
, with file complexity F =

(
K
r

)
. Further, this load L < 2L∗(r),

where L∗(r) [3]is the optimal rate for a given computation load r.

The proof of the above corollary can be found in Section X of [33].
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3.2.2.1 Extensions to the Straggler Scenarios

Straggling nodes or stragglers are the nodes that are slower than the other nodes. The presence of
straggling nodes is one of the practical issues in the distributed computing framework. In [4, 33], the
authors have extended their schemes to the full and partial straggler scenarios. Full stragglers are the
nodes that are unable to complete any map tasks completely. Thus, they can be considered identical to
failed nodes and are not involved in any phase of the MapReduce framework. Partial stragglers are also
slower than the other nodes by some factor, but they are not considered as failed nodes.

The following two theorems state the main results presented in [4, 33] with respect to the full and
partial straggler scenarios, respectively. In both cases, the schemes presented are robust up to g − 2

stragglers, where g is the size of any identity submatrix. We refer the reader to Section XI of [33] for
the proofs of both the theorems given below.

Theorem 5 ([4, 33]). Consider a computing matrix of size K × F with a non-overlapping identity

submatrix cover C = {C1, C2, .., CS} where the size of each identity submatrix is g ≥ 2. Then, there

exists a distributed computing scheme withK nodes that is robust forK−κ ∈ [0 : g−2] full stragglers,

attaining computation load = r and communication load L(κ) =
2

g

(
K

κ
− r

κ

)
, with file complexity F .

Theorem 6 ([4, 33]). Consider a computing matrix of size K × F with a non-overlapping identity

submatrix cover C = {C1, C2, .., CS} where the size of each identity submatrix is g ≥ 2. Then, there

exists a distributed computing scheme with K nodes that is robust for K − κ′ ∈ [0 : g − 2] partial

stragglers, attaining computation load = r and communication load L(κ′) =
2

g

(
1− r

K

)
, with file

complexity F .

In [29] (and its extended version [34]), a similar setting was assumed for the full straggler scenario.
The presented scheme is robust K − κ ≤ r − 1 and achieves the following communication load

L∗(κ) =
(
1− r

K

)min{r,κ−1}∑
i=r+κ−K

1

i

(
r
i

)(
K−r−1
κ−i−1

)(
K−1
κ−1
) .

The numerical comparisons with the above scheme can be found in Table VII of [33].

3.3 Background on Subspace Designs
We first review some of the basic definitions related to combinatorial designs and their constructions.

For more details regarding the combinatorial designs, the reader is referred to [35, 36]. Later, we review
some relevant aspects of subspace designs, which are the q-analogs of combinatorial designs.

Definition 5 (Design (X ,A) [31]). A design is a pair (X ,A) such that the following properties are

satisfied:
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(D1). X is a set of elements called points, and

(D2). A is a collection (i.e., multiset) of nonempty subsets of X called blocks.

We now define t-designs.

Definition 6 (t-designs [31]). Let v, k, λ, and t be positive integers such that v > k ≥ t. A t-(v, k, λ)-

design (or simply t-design) is a design (X ,A) such that the following properties are satisfied:

(T1). |X | = v,

(T2). Each block contains exactly k points, and

(T3). Every set of t distinct points is contained in exactly λ blocks.

Definition 7 (Subspace Designs). Let V be a vector space over the finite field Fq of dimension v. Let

the subspaces with dimension k be called as k-dim subspaces. The q-analog of a design is defined as

follows. Let 0 ≤ t ≤ k ≤ v be integers and λ be a non-negative integer. A pair D = (V,A), where A

is s a collection of k-dim subspaces (blocks) of V , is called a t-(v, k, λ)q-subspace design on V if each

t-dim subspace of V is contained in exactly λ blocks.

A t-(v, k, 1) subspace design is also referred to as a q-analog of an equivalent t-(v, k, 1) design. We
now recount some known constructions of subspace designs.

Example 2. Few constructions of subspace designs known from literature are recollected here.

1. For any 0 ≤ t ≤ k ≤ v, and any q being a prime power, the collection of all k-dimensional

subspaces of Fvq forms a t− (v, k,
〈
v − t, k − t

〉
)q subspace design. Specifically, when t = k, we

get a k − (v, k, 1)q subspace design.

2. For any prime power q, it was shown in [37] that there exists a 1− (v, k, 1)q design if and only if

k divides v.

3. In [38, 39], a construction of nontrivial 2 − (v, 3, q2 + q + 1)q designs was presented, for all q

being a prime power and for all v ≥ 7 such that v and the integer 24 are coprime.

4. The authors in [40] showed the existence of subspace designs over Fq for any t and any k >

12(t+ 1), when n is sufficiently large.

5. Many other individual constructions for specific parameters are available in [37], some of which

we use in this work to present numerical examples of the schemes obtained from subspace designs.
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3.4 Low File Complexity Scheme based on Binary Matrices from Sub-

space Designs
In Section VIII of [33], a coded caching scheme is presented via binary matrices arising out of

subspace designs. We utilize the designed binary matrix as a scheme for MapReduce framework.
Let (V,A) denote a t-(v, k, 1)q-subspace design for t ≥ 2. Let the blocks in this design be denoted

by A = {B1, B2, . . . , Bb}. Let T denote the set of all 1-dim subspaces of V , H denote the set of all
t-dim subspaces of V , and R denote the set of all (t− 1)-dim subspaces of V .

We construct a binary matrix C as follows. Let the rows of C be indexed by the set R. Let the
columns be indexed by {(y,B) : y ∈ T, y ⊂ B,B ∈ A}. The number of rows in matrix C is〈
v, t − 1

〉
. The number of columns in matrix C is b

〈
k, 1
〉
=

〈
v,t
〉〈
k,1
〉〈

k,t
〉 . For some D ∈ R, the matrix

C = (C(D, (y,B))) is defined by the rule,

C(D, (y,B)) =

1, if D
⊕
y ∈ H,D

⊕
y ⊂ B

0, otherwise.

Remark 4. The number of 1’s in each row of C is
〈
v − t + 1, 1

〉
· qt−1. We see this by noting

that the distinct r-dim subspaces of Fvq intersecting a fixed s-dim subspace in some l-dim subspace

is q(r−l)(s−l)
〈
v − s, r − l

〉〈
s, l
〉

(see [41] for a proof). To count the number of 1’s in each row, since

each t-dim subspace is included precisely in one block of the design, we only have to count the number

of t-dim subspaces of Fvq intersecting a fixed (t−1)-dim subspace (identified by the row) in a (t−1)-dim

subspace. This turns out to be precisely
〈
v − t+ 1, 1

〉
· qt−1. Similarly, we can obtain that the number

of 1’s in each column is
〈
k − 1, t − 1

〉
· qt−1 by the expression above. Hence, the binary computing

matrix C defined above is also a constant row and column weight matrix.

In the matrix C, the rows represent the set of servers, while the columns represent file complexity

F . Thus, the matrix C gives us a
(〈
v, t− 1

〉
,

〈
v,t
〉〈
k,1
〉〈

k,t
〉 ,

〈
v, t− 1

〉
−
〈
k − 1, t− 1

〉
qt−1

)
-computing

matrix. For some y ∈ T , let By be the set of blocks containing y. Now,

|By| = λ1 =

〈
v − 1, t− 1

〉〈
k − 1, t− 1

〉 .
DenoteBy byBy = {B1, B2, . . . , Bλ1}. For anyBi, denote byDi = {Di,j : j ∈

[〈
k − 1, t− 1

〉
· qt−1

]
}

the set of all (t − 1)-subspaces of Bi that do not contain y. In the next lemma, we describe an identity
submatrix of the matrix C.

Lemma 2. For some j ∈
[〈
k − 1, t− 1

〉
· qt−1

]
and y ∈ T , consider the submatrix Cy,j of C defined

as follows: the rows of Cy,j are indexed by {Di,j : ∀i ∈ [λ1]} and the columns are indexed by {(y,Bi) :

Bi ∈ By}. Then Cy,j is an identity submatrix of C of size λ1.
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The next two lemmas state that there is no overlap between the identity sub-matrices in the collection
{Cy,j : ∀y ∈ T, ∀j ∈

[〈
k − 1, t− 1

〉
· qt−1

]
} and that these identity sub-matrices will cover all the

entries where C(D, (y,B)) = 1 in matrix C.

Lemma 3. Any C(D, (y,B)) = 1 such that y ∈ T,B ∈ A, D ∈ R will be covered by exactly one

identity submatrix of C (as defined in Lemma 2).

Lemma 4. The set of matrices {Cy,j : ∀y ∈ T, ∀j ∈
[〈
k − 1, t− 1

〉
· qt−1

]
} forms a non-overlapping

identity submatrix cover of C.

We refer the reader to Section VIII of [33] for the proofs of lemmas 2, 3, and 4. Given below are the
parameters for the distributed computing scheme based on subspace designs.

Communication Communication

Number of File Computation Load Load for Load for

servers Complexity r non/partial K − κ full

K F straggler case straggler case〈
v, t− 1

〉 〈
v,t
〉〈
k,1
〉〈

k,t
〉 〈

v, t− 1
〉
−
〈
k − 1, t− 1

〉
qt−1

2
〈
k−1,t−1

〉2
qt−1〈

v,t−1
〉〈
v−1,t−1

〉 2
〈
k−1,t−1

〉2
qt−1

κ
〈
v−1,t−1

〉
Table 3.1: Parameters of distributed computing schemes based on subspace designs.

Example 3. We consider the case in which t = k (Example 2). This leads to a k-(v, k, 1)q subspace

design. For v = 3, k = t = 2, and q = 4, we get a distributed computing scheme with parameters

K = 21, F = 105, and r = 17. Thus, we have a (21, 105, 17)-computing matrix.

The identity submatrix cover of this matrix will consist of 84 identity submatrices. Each identity

submatrix in this matrix will be of size 5 and thus the rate is 2
5(1−

17
21) = 0.076.

3.5 Numerical Comparisons
In Table 3.2, we provide some numerical examples of our subspace design based construction for

coded computing schemes. We provide the parameters of the design used and the resulting parameters
of the coded computing scheme, the number of serversK, the file complexity F , the computation load r,
along with the communication load for the no-straggler scenario as given by Theorem 4 (which matches
the partial straggler load as given by Theorem 6), and the full-straggler load (as given by Theorem 5)
for K − κ ∈ {1, 2} stragglers. Finally, in Table 3.3, we compare our scheme with that from [29]. We
see that our scheme has advantages in file-complexity, with increased communication loads.
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Subspace Number of File Computation L for L for L for

Design servers Complexity Load non/partial K − κ = 1 K − κ = 2

Parameters K F r straggler case

2− (3, 2, 1)2 7 21 5 0.19 0.22 0.27

4− (5, 4, 1)2 155 465 147 0.00688 0.00693 0.00697

3− (4, 3, 1)3 130 520 121 0.01065 0.01073 0.01082

4− (5, 4, 1)3 1210 4840 1183 0.0011157 0.0011166 0.0011175

Table 3.2: Numerical comparisons of communication loads of our schemes in non/partial straggler case

and straggler case (applying the expressions in Table 3.1 to specific constructions of Section 3.3).

Number of Computation File File Number of Communication Optimal

servers Load Complexity Complexity non stragglers Load in Communication

K r F F in [29] κ Theorem 5 Load in [29]

13 10 52 286 13 0.115 0.023

13 10 52 286 11 0.136 0.028

130 121 520 2.2× 1013 130 0.0106 0.00057

130 121 520 2.2× 1013 128 0.0108 0.00058

1210 1183 4840 1.18× 1055 1210 0.001115 1.887× 10−5

1210 1183 4840 1.18× 1055 1208 0.001117 1.889× 10−5

Table 3.3: Numerical comparisons between the scheme from [29] and subspace designs based com-

puting schemes presented in this work. The load expression for the scheme in [29] is given in Section

3.2.2.1, while those of our schemes are compiled in Table 3.1 (in conjunction with specific constructions

of Section 3.3).
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Chapter 4

Future Work and Conclusions

We have addressed the problem of large file-size requirement in two of the known cache-enabled
multi-receiver communication problems, namely Data Rebalancing in distributed file systems and Dis-
tributed Computing. We provide communication schemes for both settings with low file-size require-
ment, with a relatively high communication load as compared to the existing optimal schemes.

In Chapter 2, we have presented a XOR-based coded rebalancing scheme for the case of node re-
moval and node addition in cyclic databases. Our scheme only requires the file size to be only cubic
in the number of nodes in the system. For the node removal case, we present a coded rebalancing
algorithm that chooses between the better of two coded transmission schemes in order to reduce the
communication load incurred in rebalancing. We showed that the communication load of this rebalanc-
ing algorithm is always smaller than that of the uncoded scheme. For the node addition case, we present
a simple uncoded scheme that achieves the optimal load.

We give a few comments regarding other future directions. Constructing good converse arguments
in the cyclic database setting for the minimum communication load required for rebalancing from node-
removal seems to be a challenging problem, due to the freedom involved in choosing the target database,
the necessity of the target database to be balanced, and also because of the low file size requirement. Fig.
2.9 shows a numerical comparison of the loads of our schemes with the converse from [1]. However,
the conditions of having a constrained file size or balanced target database are not used to show this
converse, thus this bound is possibly quite loose for our cyclic placement setting. It would be certainly
worthwhile to construct a tight converse for our specific setting. As we do not have a tight converse, it
is also quite possible that rebalancing schemes for node removal exist with lower communication load
for the cyclic placement setting. Designing such schemes would be an interesting future direction.

In Chapter 3, we have presented a novel distributed computing scheme via binary matrices arising
out of subspace designs. The scheme has the advantage of low file complexity at the cost of a higher
rate, as compared to the optimal scheme. Further, this scheme can further be extended to the full and
partial straggler scenarios as well. Numerical comparisons with some existing baseline schemes are also
shown, to illustrate the advantage of our scheme in terms of file complexity.
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It is important to note that the presented scheme is primarily useful for the large local storage sce-
nario. A possible future direction would be to consider wider classes of subspace designs to address
the issue of large local storage requirement. In this work, we have used a t-(v, k, 1)q-subspace design
to produce a distributed computing scheme. Using higher values of λ is likely to address this issue.
However, designing the communication schemes for the same appears to be difficult.
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Appendix A

Proof of Claim 1

First, we can assume K ≥ 4 without loss of generality, as our replication factor r lies between
{3, . . . ,K − 1}. Consider the expressions in Theorem 2 for L1(r) and L2(r) as continuous functions
of r. Also, consider L2,o(r) = K−r

(K−1) +
r−1

2(K−1)
(
K + r−1

2

)
be the continuous function of r which

matches with K−r
K−1 +L2(r) in Theorem 2 for odd values of r ∈ {3, . . . ,K−1}. Similarly, let L2,e(r) =

K−r
(K−1) +

r−2
2(K−1)

(
K + r

2

)
+ K

2(K−1) be the continuous function of r which matches with K−r
K−1 + L2(r)

in Theorem 2 for even values of r ∈ {3, . . . ,K − 1}.
Let ro be a real number in the interval [3 : K − 1] such that L2,o(ro) = L1(ro). Similarly, let re be

a real number r in the interval [3 : K − 1] such that L2,e(re) = L1(re).

With these quantities set up, the proof then proceeds according to the following steps.

1. Firstly, we show that L2,o(r) > L2,e(r) for K ≥ 4.

2. We then find the values of ro and re, which turn out to be unique. We also show that re > ro and
that dree = d2K+2

3 e = broc+ 1.

3. Then, we shall show that for any integer r > re, we have L1(r) < L2,e(r). Further, we will also
show that for any integer r < ro, we have L2,o(r) < L1(r).

It then follows from the above steps that the threshold value is precisely rth = dree = d2K+2
3 e. We now

show the above steps one by one.

1) Proof of L2,o(r) > L2,e(r) for K ≥ 4: We have that

L2,o(r)− L2,e(r) =
r − 1

2(K − 1)

(
K +

r − 1

2

)
− r − 2

2(K − 1)

(
K +

r

2

)
− K

2(K − 1)

=
(r − 1)(2K + r − 1)− (r − 2)(2K + r)− 2K

4(K − 1)

=
2rK − 2K + r2 − 2r + 1− 2rK + 4K − r2 + 2r − 2K

4(K − 1)

=
1

4(K − 1)
> 0,
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which holds as K ≥ 4. Hence, L2,o(r) > L2,e(r) for K ≥ 4.
2) Finding ro and re and their relationship: Calculating L2,o(r)− L1(r), we get the following

L2,o(r)− L1(r) =
r − 1

2(K − 1)

(
K +

r − 1

2

)
− (K − r)(2r − 1)

(K − 1)

=
(r − 1)(2K + r − 1)− 4(K − r)(2r − 1)

4(K − 1)

=
9r2 − 6r(K + 1) + 2K + 1

4(K − 1)
.

Solving for r from L2,o(r)− L1(r) = 0 with the condition that r ≥ 3, we get

r =
2K + 1

3
.

It is easy to see that 2K+1
3 > 2 forK ≥ 4. Also, we can check that 2K+1

3 < (K−1), whenK ≥ 4. Thus,
we have that ro = 2K+1

3 . By similar calculations for L2,e(r) − L1(r), we see that re = K+1+
√
K2+1

3 .
Further, we observe that re−ro =

√
K2+1−K

3 , forK ≥ 4. Hence, re > ro forK ≥ 4. Also observe that
dree ≤ d2K+2

3 e = b2K+1
3 c + 1 = broc + 1, where the first equality holds as K ≥ 4. Now, as re > ro

we have that dree > broc. Thus, we see that dree = d2K+2
3 e = broc+ 1.

Proof of 3): We now prove that for any integer r if r > re, then L1(r) < L2,e(r). Let r = re + a,
for some real number a > 0 such that re + a is an integer. We know that L1(re) = L2,e(re). Consider
the following sequence of equations.

L1(r) = L1(re + a)

=
K − (re + a)

(K − 1)
+

(K − (re + a))(2(re + a)− 1)

(K − 1)

=
K − re
K − 1

− a

K − 1
+

(K − re − a) (2re − 1 + 2a)

K − 1

=
K − re
K − 1

+
(K − re)(2re − 1)

K − 1
+
−a− a(2re − 1 + 2a) + 2a(K − re)

K − 1

= L1(re) +
2aK − 2a2 − 4are

K − 1

= L2,e(re) +
2aK − 2a2 − 4are

K − 1
.

Similarly, consider the following.

L2,e(r) = L2,e(re + a)

=
K − (re + a)

(K − 1)
+

(re + a)− 2

2(K − 1)

(
K +

re + a

2

)
=

K − re
(K − 1)

− a

K − 1
+

(re − 2) + a

2(K − 1)

(
K +

(e+a

2

)
=

K − re
(K − 1)

+
(re − 2)

(
K + re

2

)
2(K − 1)

+
−6a+ a2 + 2aK + 2are

4(K − 1)
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= L2,e(re) +
−6a+ a2 + 2aK + 2are

4(K − 1)
.

Now, L2,e(r)− L1(r) =
18are − 6aK + 9a2 − 6a

4(K − 1)

=
a(18re − 6K + 9a− 6)

4(K − 1)

(a)
>
a(6
√
K2 + 1 + 9a)

4(K − 1)

(b)
> 0,

where (a) holds on substituting re = K+1+
√
K2+1

3 , (b) holds as K, a > 0. Therefore, when r > re,
L1(r) < L2,e(r).

We now prove that for any integer r if r < ro, then L2,o(r) < L1(r). Let r = ro − a, for some real
number a < ro such that ro − a is an integer. We know that L1(ro) = L2,o(ro). Consider the following
sequence of equations.

L1(r) = L1(ro − a)

=
K − (ro − a)

(K − 1)
+

(K − (ro − a))(2(ro − a)− 1)

(K − 1)

=
K − ro
K − 1

+
a

K − 1
+

(K − ro + a) (2ro − 1− 2a)

K − 1

=
K − ro
K − 1

+
(K − ro)(2ro − 1)

K − 1
+
a+ a(2ro − 1− 2a)− 2a(K − ro)

K − 1

= L1(ro) +
4aro − 2aK − 2a2

K − 1

= L2,o(ro) +
4aro − 2aK − 2a2

K − 1
.

Similarly, consider the following.

L2,o(r) = L2,o(ro − a)

=
K − (ro − a)

(K − 1)
+

(ro − a)− 1

2(K − 1)

(
K +

(ro − a)− 1

2

)
=

K − ro
(K − 1)

+
a

K − 1
+

(ro − 1)− a
2(K − 1)

(
K +

(ro − 1)− a
2

)

=
K − ro
(K − 1)

+
(ro − 1)

(
K + (ro−1)

2

)
2(K − 1)

+
6a− 2aro + a2 − 2aK

4(K − 1)

= L2,o(ro) +
6a− 2aro + a2 − 2aK

4(K − 1)
.

Now, L1(r)− L2,o(r) =
18aro − 6aK − 9a2 − 6a

4(K − 1)
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=
a(18ro − 6K − 9a− 6)

4(K − 1)

=
3a(3ro − 3a+ 3ro − 2K − 2)

4(K − 1)

(a)

≥ 3a(3 + 3ro − 2K − 2)

4(K − 1)

≥ 3a(3ro − 2K + 1)

4(K − 1)

(b)

≥ 3a(1 + 1)

4(K − 1)

> 0,

where (a) holds because ro − a ≥ 1 and (b) holds on substituting ro = 2K+1
3 . Therefore, when r < ro,

L2,o(r) < L1(r). The proof is now complete.
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