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Abstract

Unmanned Aerial Vehicles (UAVs) continue to penetrate diverse sectors, including agriculture, dis-
aster management, communication, transportation, and defense. The robustness and reliability of their
operation have become paramount due to the increasing ubiquity of these systems across numerous sec-
tors. UAVs can undergo faults in their sensors, actuators (motors), and even structure - all of these have
different levels of severity and effects on the system. Motor faults can be of three main types, namely,
Motor Locking, Loss of Efficiency (LoE), and Loss of Actuation (LoA). Motor locking is a case where
the actuator keeps spinning at a given RPM and cannot be changed, whereas LoE is a case where the
actuator degrades over time and is not able to generate enough torque due to lower RPM. In this the-
sis, however, we focus on LoA, where an actuator stops working completely (gets stuck at zero RPM)
and can result in catastrophic failure in the UAV. This work delves into the dynamics of UAVs under
actuator fault conditions, examines the resulting instability issues, and explores potential methods for
identification and control reconfiguration for safe operation.

Once an actuator failure occurs, the Fault Detection & Isolation (FDI) module should be able to
locate the fault and pinpoint it with high accuracy and in a very short time, to allow the UAV to stabilize
the fault. Various approaches can be used for the FDI system, namely, rule-based, model-based, and
data-driven. Implementation of these methods can be relying on RPM sensors, battery monitors, and
software-only solutions. We propose a data-driven software module for this purpose, since it is UAV
frame agnostic, does not require any additional hardware (software-only), and can be run with minimal
setup. The proposed Rotation Forest based classifier can detect, classify, and report the fault within
120-250 milliseconds of occurrence of the fault. This is an acceptable delay, since we have observed
that the vehicle cannot handle delays upwards of 500 milliseconds in simulations.

Once a fault is reported by the FDI module, the Fault Tolerant Control (FTC) module reconfigures
the control system to stabilize the vehicle and continue the mission, or prevent a crash by peforming a
safe landing. This thesis focuses on cases of complete actuator failure in Hexacopter UAVs, specifically,
for single motor failure scenarios. The proposed FTC module performs UAV stabilization using control
reconfiguration, after fault occurrence.

We perform a thorough analysis for the FDI and FTC modules separately, extensively in simulation,
and demonstrate the same in real flight tests. We also combine the two modules and analyze the response
in the simulation. In real flights, the classifier (FDI module) responds to the fault in 2-5 sensor data
samples (at a 60ms rate per sample) and has a high true positive rate of 92.6%. Also, in real flights,
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the performance of the FTC module is measured in terms of tracking error, percentage overshoot, and
settling time.

Integration of the FDI and FTC modules is performed and simulation results are presented showing
satisfactory operation of each of these modules with guaranteed stable flight.
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Chapter 1

Introduction

As Unmanned Aerial Vehicles (UAVs) continue to become more prevalent, the robustness and re-
liability of their operation have become paramount. An integral element of UAV reliability is fault
tolerance, the ability of these systems to continue the mission even when subjected to various types of
faults or failures happening to its software or hardware components. Fault tolerance in UAVs is not
just a matter of service quality, but also of safety and sustainability. An in-flight fault can lead to un-
controlled UAV behavior, possibly resulting in crashes that could damage property, harm individuals,
depending on the UAV’s size and operational environment. This is particularly relevant when consid-
ering the variety of faults UAVs can encounter, including mechanical faults such as propeller or motor
failure, sensor faults such as GPS or altimeter malfunctions, or software faults in control algorithms or
onboard firmware. Furthermore, UAV failures can cause environmental damage, as crashes can spread
debris or leak potentially hazardous materials. In some cases, the unpredictability of a faulty UAV can
also compromise missions, leading to financial losses and operational inefficiencies. Thus, the issue of
fault tolerance in UAVs is not just a technical problem, but a complex, multidimensional challenge that
calls for rigorous research and innovative solutions.

This work specifically focuses on the challenges posed by actuator or motor faults in a multirotor
UAV, which are common but potentially disastrous problems in UAV operations. Actuator faults gener-
ally manifest in three main forms: loss of efficiency, which results in decreased output; loss of actuation,
where the motor stops completely; and motor locking, where the motor becomes stuck at a constant out-
put. Among these, we focus primarily on the scenario of a complete loss of actuation. In such cases,
the UAV is left with a critical deficiency in its control capabilities, making maintenance of stability a
significant challenge and can lead to severe imbalance and a possible catastrophic failure if not properly
managed. This work delves into the dynamics of UAVs under such critical fault conditions, examines
the resulting instability issues, and explores potential methods for control and mitigation. Through a
detailed understanding of these dynamics, this research aims to contribute to the development of more
resilient, reliable, and fault-tolerant UAV systems.
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Figure 1.1: A failure scenario occurring in a drone delivery mission can cause the drone to flip over and

burn. Source: https://www.youtube.com/watch?v=bnC6pfwtVvI

This work focuses on the dynamics and implications of complete loss of single actuator in Hexa-
copter UAVs. When a UAV suffers from such a failure, it results in an instantaneous drop of control
inputs to zero for the affected actuator, resulting in a sudden shift in the system dynamics. This loss
manifests mathematically as a discontinuity in the system equations, disrupting the UAV’s flight trajec-
tory and potentially leading to erratic and uncontrollable movements. The objective is to understand the
precise trajectory alterations, changes in the UAV’s orientation, and shifts in the system’s equilibrium
points triggered by a complete actuator failure. In doing so, this work aims to provide a mathematical
foundation for developing robust control strategies that can ensure stability and control, even in the face
of total actuator loss.

Complete loss of actuation often introduces a sudden and dramatic imbalance in a UAV’s control
system, leading to significant instability issues. The UAV’s flight dynamics are directly tied to the
functioning of its actuators - when one or more actuators fail entirely, the symmetry in the control inputs
is disrupted. This disruption can result in unpredictable and often amplified changes in the UAV’s
attitude and velocity, making it challenging to maintain a stable flight path. The UAV may enter a
spin or tumble, or even fall from the sky, given the severity of the instability. Such instability can
escalate quickly, especially without appropriate compensation strategies in place, resulting in a rapid
deterioration of the UAV’s operational state and potential catastrophic failure.

The occurrence of complete actuator loss necessitates the application of a dual-layered response
system: i) Fault Detection and Isolation (FDI) and ii) Fault Tolerant Control (FTC). FDI performs
real-time monitoring to identify and isolate any discrepancies in the system’s mathematical models
indicative of a fault. Post-fault identification, FTC assumes responsibility, deploying control strategies
to counteract the system’s imbalance caused by the actuator failure. These strategies are formulated
based on the UAV’s mathematical models, with an aim to maintain the UAV’s operational stability and
safety in the face of faults. In summary, FDI and FTC should work simultaneously to mitigate the impact
of complete actuator failure and, in doing so, increase the fault tolerance of the UAV. The amount of
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time taken from fault occurrence to its detection/classification plays a crucial role in the UAV’s ability
to stabilize post fault, since a UAV in midflight, with fault, most of the UAVs are typically left with a
few milliseconds of time to counter and compensate for the resulting torque [31].

This work details the FDI module - a Rotation Forest Classifier-based technique, an ensemble learn-
ing method typically used in machine learning for classification tasks. This technique has been inno-
vatively adapted to effectively detect and isolate actuator faults in UAVs, using its powerful decision-
making capabilities to discern between normal and faulty operating conditions. Regarding FTC, a strat-
egy based on Weighted Control Allocation (WCA) is used. This method dynamically reallocates control
among the remaining operational actuators to counteract the effects of loss of actuation. Using this ap-
proach, the aim is to maintain the stability and controllability of the UAV despite the occurrence of
critical faults. Therefore, this work pioneers the application of a Rotation Forest Classifier for FDI and
a WCA-based strategy for FTC, significantly advancing the field of fault tolerance in UAVs.

The issue of complete actuator loss in Unmanned Aerial Vehicles (UAVs) is of significant relevance,
since the functionality of UAVs depends heavily on their operational reliability. Actuator faults pose
a significant threat to this. Complete actuator loss can cause severe instability, potentially leading to
catastrophic failures, compromising property, human life, and the environment. Furthermore, these
faults can lead to mission failures, leading to substantial financial losses and operational inefficiencies.
As UAVs continue to become more integral to our societal infrastructure, addressing the challenge of
complete actuator loss becomes increasingly critical. Therefore, this research focusing on robust fault
detection and fault-tolerant control mechanisms for UAVs in severe fault conditions is highly relevant
and timely.

1.1 Related Works

1.1.1 Fault Detection & Isolation

Existing fault detection and classification approaches focus on obtaining a high confidence value in
a short period after the fault occurs to allow the proceeding control algorithm to compensate quickly
and avoid a crash. In [30], a complete error detection, fault diagnosis, and system recovery architecture
for a coaxial octorotor is presented. The diagnosis module uses motor speeds and currents measured
by electronic speed controllers to reconfigure the control allocation matrix and distinguish between mo-
tor failures and propeller losses. The fault diagnosis method combines model-based thresholding and
model-free classification using a support vector machine (SVM) algorithm. In [26], a combination of
dynamic and data-driven models is used to generate training data and a deep neural network known
as the long-short-time memory (LSTM) network to estimate the torque and thrust of faulty propellers.
Flight datasets under normal and faulty scenarios are generated through simulation using the developed
data-generative model. The article also proposes a fault classifier that uses a convolutional neural net-
work (CNN) structure to identify and evaluate the degree of damage to the propellers. Both of these
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approaches are infeasible since they require additional hardware in actual test flights. Our approach
aims to improve this aspect by providing a software-based model-free solution that does not require
additional sensors. Existing Note that our approach is designed for complete motor failures, while
those compared before can also classify propeller loss to a reasonable extent. In [26], similar results are
shown for propeller damage detection, running on a Random Forest algorithm and reporting an accuracy
of 86.57%.

Figure 1.2: Different types of Supervised Learning methods for time-series classification. Source:

https://doi.org/10.3390/drones6110330

As shown in Fig. (1.2), various supervised learning methods can be used for the detection [27] and
classification [35] of motor failures in a UAV. Since SVMs underperform in large datasets with noise [3],
such as the sensor data used as input in our work. Also, CNNs performance is greatly influenced by
hyperparameter selection [2], we have taken a tree-based approach. Tree-based models are better in
our case, because they can handle interactions between features and provide easy interpretability of the
model’s decision-making process [33]. This made Decision Trees an interesting choice over existing
approaches for our problem statement, over other classifiers [17, 21].

1.1.2 Fault Tolerant Control

Different fault-tolerant architectures exist for quadcopters, hexacopters, and octocopters [18, 20].
Here, we focus on a fault-tolerant architecture for hexacopter in single actuator failure [11,19,23]. Fault
tolerance can be achieved by modifying the hardware [14, 24] or changing the controller architecture
[12, 29]. Work done in [24] and [14] allows for higher torque in all directions, since it uses a tilted
rotor configuration. This added torque and the tilting ability of the mechanism allow it to tolerate motor
faults. Such a mechanism is difficult to manufacture and does not provide a general solution that can
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be easily implemented. Some existing works propose a different motor placement configuration, in
order to achieve a higher level of fault tolerance, while sacrificing overall controllability in non-faulty/
general scenarios [18, 25, 38]. This approach is not ideal since fault scenarios are a low probability
occurrence. Since the control allocation problem is an optimization problem, there are other alternatives
in existing literature [5], such as mixer logic, linear programming and the simplex algorithm. Work
done in [12] shows the architecture of an attitude control approach with classical control allocation on a
hexacopter. To improve on this method, we have used the Weighted Control Allocation (WCA) method
and conducted a study on the performance of the UAV using exhaustive flight trials.

Figure 1.3: A fault tolerant quadrotor built by Researchers at the University of Zurich and the Delft

University of Technology. Source: https://robohub.org/how-to-keep-drones-flying-when-a-motor-fails/

In existing UAV fault-tolerant methodologies, several gaps are evident that limit their effectiveness
in managing complete actuator loss. Specifically, the utilization of a machine learning-based approach
like the Rotation Forest Classifier in the Fault Detection and Isolation (FDI) domain remains largely
unexplored. Furthermore, while dynamic Control Allocation strategies have been employed in the Fault
Tolerant Control (FTC) domain, their applications for UAVs with complete actuator loss are scarce. This
research seeks to bridge these gaps by pioneering the implementation of the Rotation Forest Classifier
for FDI and Dynamic Control Reallocation (DCR) for FTC specifically for the scenario of complete
actuator loss. This innovative combination of machine learning and dynamic control reallocation strate-
gies, tailored for UAVs under severe fault conditions, serves as a key contribution of this work and is
anticipated to significantly enhance the state-of-the-art in UAV fault tolerance.

1.2 Contributions

The main contributions of this thesis are:
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1. Use of Rotation Forest (RF), an ensemble classification method, can effectively approximate non-
orthogonal boundary curves in decision trees. Using a two-stage algorithm, this method can
identify faults and classify or pinpoint the failing motor.

2. A large simulation dataset is generated, half of which is used for training the two-stage algorithm.
The other half of this dataset is used for validation. In addition, outdoor tests are conducted to
verify the system in a test flight where the fault was injected through software.

3. Proposed method (RF) is analysed and compared to existing methods such as Linear Regression,
Gaussian Naive Bayes, AdaBoost, and Random Forest.

4. Use of a Weighted Control Allocation (WCA) matrix implemented as a part of dynamic control
reallocation for fault tolerant control of hexacopter UAV under single motor failure. This method
can successfully hold the UAV’s position or land safely in the event of a single motor failure, and
some cases of two motor failures.

5. Through extensive flight trials, it has been shown that the proposed method can ensure flight
stability in the event of any one of the six motors failing.

6. Proposed solution (WCA) also works in the event of two motor failures. Two motor failure
solutions for hexacopters have not been demonstrated in real test flights [36], in the existing
literature, to our knowledge.

7. A detailed performance analysis is performed for the proposed fault-tolerant control, quantified in
terms of tracking error, percentage overshoot, control effort, settling time, CPU usage, endurance,
and effect on closed-loop sampling time. To our knowledge, this study has not been carried out
for any of the existing fault-tolerant control architectures.

8. An open-source dataset consisting of single-motor failure simulations is published for training and
validation1. Another dataset containing real flight trials with post-fault stabilization2 for faults in
different motors is also published.

1.3 Preliminaries

This section details UAV dynamics, fault conditions, fault cases we are considering and how the
UAV dynamics change with fault occurrence.

1Can be downloaded at https://doi.org/10.5281/zenodo.7739411
2Can be downloaded at https://doi.org/10.5281/zenodo.7642240
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1.3.1 Hexacopter Dynamics

Figure 1.4: Figure shows the Hexacopter in the body-fixed frame, which is represented by the coordi-

nates xB, yB, and zB.

Fig. (1.4) shows a hexacopter with 6 motors with ωi denoting the individual motor speed for the
ith motor. We use a general non-linear hexacopter model derived from its kinematics and dynamics
[7]. The state variables are the Euler angles roll-pitch-yaw (φ − θ −ψ), body axis angular velocities
(ωx−ωy−ωz), vertical velocity ż and vertical acceleration z̈.

The moment balance equation is given below.ω̇x

ω̇y

ω̇z

=

k1ωyωz

k3ωxωz

k5ωxωy

+

k2τφ

k4τθ

k6τψ

 (1.1)

Where k1 =
Jyy−Jzz

Jxx , k2 =
1

Jxx , k3 =
Jzz−Jyy

Jyy , k4 =
1

Jyy , k5 =
Jxx−Jyy

Jzz and k6 =
1

Jzz .
Jxx, Jyy, and Jzz are the moment of inertia along the the axis xB,yB and zB, respectively. The input

torques along the body xB,yB and zB axes are denoted by τφ , τθ , and τψ , respectively.
The relation between the Euler angles and (ωx−ωy−ωz) is given below.

˙̇
φ

˙̇
θ

˙̇ψ

=

1 sinφ tanθ cosφ tanθ

0 cosφ sinφ

0 sinφ

cosθ

cosφ

sinθ


ωx

ωy

ωz

 (1.2)

The altitude dynamics is given in Eq (1.3).

z̈ = (cosφ cosθ)×
Tf

m
−g (1.3)
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Where z is the altitude of the UAV, ż and z̈ are vertical velocity and acceleration, respectively. Tf is
the total thrust generated by the motors, m is the mass of the hexacopter, and g is the acceleration due to
gravity.

The relationship between the angular velocity of the ith motor ωi, to corresponding thrust Ti (N) and
the torque τi (Nm) is modeled as given below.

Ti = k f ωi
2 (1.4)

τi = kmωi
2 (1.5)

Where Ti, τi are generated for motor i at a distance l (m) from the center of gravity (as shown in
Fig. 1), and k f (N/rps2), km (Nm/rps2) are the propeller thrust and torque coefficients (constants) that
depend on the geometry of the propeller and the flight velocity.

The relationship between control inputs M and motor angular velocity ωa is given below.

M = Gωa (1.6)

Where

G =


−lk f lk f

1
2 lk f −1

2 lk f −1
2 lk f

1
2 lk f

0 0 −
√

3
2 lk f

√
3

2 lk f −
√

3
2 lk f

√
3

2 lk f

−km km −km km km −km

k f k f k f k f k f k f

 (1.7)

And

M =


τφ

τθ

τψ

Tf

 (1.8)

ωa =



ω2
1

ω2
2

ω2
3

ω2
4

ω2
5

ω2
6


(1.9)

Eq. (1.6) then becomes.


τφ

τθ

τψ

Tf

=


−lk f lk f

1
2 lk f −1

2 lk f −1
2 lk f

1
2 lk f

0 0 −
√

3
2 lk f

√
3

2 lk f −
√

3
2 lk f

√
3

2 lk f

−km km −km km km −km

k f k f k f k f k f k f





ω2
1

ω2
2

ω2
3

ω2
4

ω2
5

ω2
6


(1.10)
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Here, G acts as the transformation matrix between the motor velocities and the vector of total thrust
and torques. Each row of G represents the contribution of the motors to roll, pitch, yaw, and thrust,
respectively. Similarly, each column represents the contributions of that ith motor.

1.3.2 Fault Conditions

In this research, we are specifically investigating fault cases related to complete loss of actuation
in UAVs. This kind of fault scenario, although severe, is not uncommon and can be induced by a
variety of factors, including mechanical failure, electrical problems, or external damage. Our focus is
on understanding and addressing the implications of this total actuator loss, from its immediate impact
on the UAV’s control system to the subsequent effects on the vehicle’s flight stability and safety.

Let desired angular velocities of the hexacopter be ωxd , ωyd , and ωzd , and the corresponding desired
input torques be τφd , τθd and τψd generated by the PID controller. In normal operation, the desired input
torques can be achieved by solving the equations relating individual motor thrust and input torque, given
by Eq. (1.10), as a function of the angular velocities ωi. In motor failure, the input torques achieved
deviate from the desired input torques as the angular velocity ωi of the failed motor drops to zero. The
input torques achieved can be expressed as a function of the remaining angular velocities and the known
properties of the hexacopter by substituting ωi with zero in Eq. (1.4).

In case of complete motor failure in motor 3, Eq. (1.10) would then become


τφ

τθ

τψ

Tf

=


−lk f lk f

1
2 lk f −1

2 lk f −1
2 lk f

1
2 lk f

0 0 −
√

3
2 lk f

√
3

2 lk f −
√

3
2 lk f

√
3

2 lk f

−km km −km km km −km

k f k f k f k f k f k f





ω2
1

ω2
2

0
ω2

4

ω2
5

ω2
6


(1.11)

This fault in motor 3 will result in ω3 = 0, which will cause that motor’s contribution to 3rd column
of matrix G to be 0. In this case, the equations relating the input and desired torques are given by Eq.
(1.12), and can be used to analyze the impact of the fault where ω3d is the desired non-zero angular
velocity of motor 3. τφd

τθd

τψd

=

τφ

τθ

τψ

+


1
2 lk f ω

2
3d

−
√

3
2 lk f ω

2
3d

−kmω2
3d

 (1.12)

Eq.(1.12) implies that a motor failure in motor 3 will cause an increase in the applied rolling torque τφ ,
resulting in an instantaneous negative change in the roll rate (p) with a magnitude inversely proportional
to the moment of inertia, Jxx. Similarly, there will be instantaneous negative changes in both the pitch
rate (ωy) and the yaw rate (ωz). These changes in rotation rates can be analyzed using the known
properties of the hexacopter and the remaining angular velocities.
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Table (1.1) summarizes the changes in angular velocity that occur in response to the failure of each
motor in the hexacopter. ”+” and ”-” indicate a positive and negative change in angular velocity, respec-
tively. By analyzing these instantaneous changes in angular velocity, we can detect motor faults and
develop a fault detection method.

Table 1.1: Instantaneous change in Torque (τφ ,τθ ,τψ ) for faults in different motors for the UAV config-

uration in Fig. 1

Fault in ∆τφ ∆τθ ∆τψ

Motor 1 + 0 -

Motor 2 - 0 +

Motor 3 - - -

Motor 4 + + +

Motor 5 + - +

Motor 6 - + -

Here,

∆τφ = τφd− τφ (1.13)

∆τθ = τθd− τθ (1.14)

∆τψ = τψd− τψ (1.15)

The onset of a complete actuator loss triggers substantial changes in the dynamics of a UAV. Ac-
tuators play a pivotal role in maintaining and controlling the flight of a UAV; they regulate essential
operations like changes in altitude, direction, and speed. When a complete actuator loss occurs, it
results in an instantaneous zeroing of the control input for the affected actuator. This abrupt change cre-
ates a discontinuity in the UAV’s system dynamics, leading to potential instability and erratic behavior.
Depending on the specific actuator that fails, the UAV might exhibit sudden shifts in its trajectory, alter-
ations in attitude or velocity, or changes in its equilibrium points. These altered dynamics can make the
UAV challenging to control and possibly lead to uncontrolled movement or even a crash if not properly
managed. Therefore, understanding how the dynamics change with the occurrence of such a severe fault
is crucial for developing effective fault-tolerant control strategies.
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1.3.3 Fault Classification

Ensemble methods consisting of accurate and diverse base classifiers are an active research field
in machine learning and pattern recognition. Such classifiers can have high accuracy and can avoid
coincidence errors [37]. In this method, if a base classifier wrongly classifies a sample, it will be
corrected by others, since the combined classifier output is more accurate than any given individual base
classifier. Using the ensemble approach, Rotation Forest can reduce the risk of overfitting and improve
generalization performance. Moreover, it can handle many features and select the most relevant ones
for the task, improving interpretability and computational efficiency. As a fault detection and isolation
method in hexacopter UAVs, it shows promising results and highlights the potential of this algorithm in
other similar applications.

The classifier is trained with simulation data, where faults are injected through software and the
timestamp is logged. Post-flight, this log entry is used to add the class markers in our dataset. In
training, Principal Component Analysis (PCA) is performed on a randomly chosen subset of features,
and these new uncorrelated principal components form the basis for a new dataset. This process is
repeated, generating a ’forest’ of classifiers, each trained on a differently rotated version of the original
data.

When a new input, such as UAV sensor data, is fed into the system, each classifier in the ’forest’
makes a decision. These decisions are then aggregated, often by voting, to form the final output of
the Rotation Forest. This output can indicate whether a fault, specifically a complete actuator loss, has
occurred, making it a useful for fault detection and isolation (FDI).

The strength of this classifier lies in its robustness to overfitting and its ability to handle high-
dimensional data, making it particularly suitable for complex systems like UAVs where a multitude
of sensor inputs needs to be monitored and analyzed continuously for fault detection.

1.4 Outline

• In the Second chapter, Fault Detection and Isolation (FDI) on a Hexacopter UAV using a Two-
stage classification method is discussed.

• In the Third chapter, Performance evaluation of Dynamic Control Reallocation on a Hexacopter
for single and two rotor failure in outdoor test flights is carried out.

• In the Fourth chapter, the two modules (FDI and FTC) are combined and simulation results are
presented and analysed.

• In the Fifth chapter, the thesis is concluded and outcomes, future work is discussed.
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Chapter 2

Fault Detection and Isolation (FDI) using Rotation Forest Classifier

Identifying whether a motor failure has occurred presents a significant challenge in the Fault De-
tection and Isolation (FDI) process. Motor failures, particularly a complete actuator loss, can instan-
taneously alter the UAV’s flight dynamics, leading to rapid, potentially catastrophic changes in flight
behavior. However, these changes can sometimes be subtle or masked by other simultaneous flight dy-
namics or environmental factors, making their detection nontrivial. Moreover, different types of fault
can result in similar system responses, making it challenging to isolate a motor failure from other poten-
tial issues. Rapid and accurate detection and isolation of motor failures are crucial, as they trigger the
necessary control reallocation strategies to mitigate the impacts of the fault. Overcoming the complexi-
ties associated with accurately diagnosing motor failure in real time is a central aspect of this research,
aimed at improving the reliability and safety of UAV operations.

The following problems are crucial for designing a FDI system:

• Detecting a motor failure

– False negatives can occur - where the FDI module fails to detect a fault even after its occur-
rence.

• Identifying which motor has failed

• Delay since occurrence of fault and result from FDI system

• Accuracy of the FDI result.

– False positives can cause the Fault Tolerant Control (FTC) system to inadvertently balance
the incorrect motors.

2.1 Overview of Fault Detection & Isolation

Major factors for choosing our FDI algorithm are the ability to choose the most relevant features,
to handle time series data, to avoid overfitting, and to provide a result within a duration permitted by
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the Fault Tolerant Control algorithm. The input data is dependent on the real-time sensor input, and
features depend on the UAV dynamics. Decision Trees are useful for breaking down complex data
into multiple manageable parts. We have a large set of features that can vary depending on which
motor we want to classify. Furthermore, decision trees are known to perform well with time-series data
classification [1], making them a good choice for the classification task. In this chapter, we analyze
various classification algorithms in order to solve for i) real-time (online) response within 500ms, ii)
accuracy of the classifier, and iii) ability to handle a large set of features. Here, ensemble methods are
particularly interesting, as they can be used to increase the confidence value significantly and avoid false
negatives. We implemented classifier algorithms: Logistic Regression, Gaussian Naive Bayes, Support
Vector Machine (SVM), AdaBoost, Random Forest, and Rotation Forest. In our analysis, we found that
Rotation Forest worked best for our use-case and outperforms the others to the best of our knowledge.

2.2 Rotation Forest Algorithm for time-series classification

Due to the complex and coupled nature of our problem, we need a multi-level solution using an
ensemble approach. Rotation Forest can reduce the risk of overfitting and improve generalization per-
formance compared to generic Decision Trees. Moreover, it can handle many features and select the
most relevant ones for the task, improving interpretability and computational efficiency. As a fault detec-
tion and isolation method in Hexacopter UAVs, it shows promising results and highlights the potential
of this algorithm in other similar applications.

Rotation Forest algorithm as described in Algo. (1) uses L decision trees, where the feature set for
training samples X with corresponding labels Y and a feature set F containing n features is randomly
split into K subsets, each containing U(= n/K) features, the class labels are denoted by α . For each
decision tree, a subset of features is selected, and a bootstrap subset of objects is drawn to form a new
training set. This training set undergoes a linear transformation to generate coefficients in a matrix,
which is used to construct a sparse rotation matrix as shown in Eq. (2.1).

Ri =


a(1)1 j a(1)2 j · · · a(1)U j

a(2)1 j a(2)2 j · · · a(2)U j
...

...
. . .

...

a(N/2)
1 j a(N/2)

2 j · · · a(N/2)
U j

 (2.1)

Here, a(k)i j is the kth coefficient in the linear transformation of the jth feature subset of the training
set for classifier Di, and N is the total number of objects in the training set. The matrix Ri ∈ R(N/2)×U ,
where N/2 is the size of the bootstrap subset of objects drawn for the training set.

After constructing the sparse rotation matrix for each decision tree, the transformed data matrix XRi

is trained. Subsequently, the predictions of each decision tree on the test set are aggregated using the
mode function, which results in the final prediction as shown in Eq. (2.2).

Ŷ = mode(D1(XR1),D2(XR2), . . . ,DL(XRL)) (2.2)
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Algorithm 1: The Rotation Forest algorithm
Input: k (the number of trees), n (the number of features), p (the sample proportion), D (input

data)

Output: F (the set of classifiers)

Let L =< L1...Lk > be the C4.5 trees [32] in the forest1

for i = 1 to k do

Randomly partition the original features into U subsets, each with n features (U = n/K),2

denoted < K1...KU >

Let Di be the training set for tree i, initialised to the original data, Di←− D.

for j = 1 to U do

Select a non-empty subset of classes and extract only cases with those class labels. Each3

class has 0.5 probability of inclusion.

Draw a proportion p of cases (without replacement) of those with the selected class value.

Perform a Principal Component Analysis (PCA) on the features in K j of the whole

training dataset.

Apply the PCA transform built on this subset to the features in K j of the whole training

dataset.

Replace the features K j in Di with the PCA features.

Build C4.5 Classifier Fi on the transformed data Di. Here, each classifier contains decisions4

for L number of trees.
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Here, the C4.5 algorithm [32] used is an innovative method in machine learning for generating de-
cision trees from a dataset for classification tasks. C4.5 decision trees are less biased in comparison to
other trees, and are able to efficiently handle both continuous and discrete data - making them a good
choice for time-series data. Ŷ is the predicted class labels, Di(XRi) is the prediction of the ith decision
tree on the transformed data matrix XRi, and mode is the statistical mode function. The decision trees
are trained on the transformed data and used to make predictions on the test set. The final prediction is
based on the majority vote of the L decision trees, and the final prediction can be used to classify the
appropriate actuator fault.

We present a two-stage classifier system that utilizes sensor data to detect and isolate faults on hexa-
copters in real time. Our primary objective is to improve the safety and reliability of hexacopters while
minimizing the potential damage to the vehicle and the environment caused by missing fault conditions.

The proposed system is designed to be highly efficient for real-time operation, with a focus on
minimizing the time delay (∆t = t2− t1) between the occurrence of the fault (t1) and the detection of
the fault (t2). The system can thus enable control reconfiguration of the hexacopter before it becomes
unstable, ensuring vehicle safety.

It also aims to achieve a high true positive detection rate (correctly identifying the presence of a fault)
ensuring that any issues with the hexacopter are detected and addressed promptly. A low false negative
detection rate is achieved to reduce the possibility of missing any fault conditions.

The proposed system utilizes the Rotation Forest algorithm to achieve these objectives, designed to
capture complex relationships between features and class labels. The confidence value Cv(α|X) is used
to adjust the contribution of each decision tree in the algorithm, with weights assigned based on the
accuracy of the decision tree on the training data.

Cv(α|X) =
∑

L
i=1 wiDi(XRi,α)

∑
L
i=1 wi

(2.3)

Here, Di(XRi,α) is the predicted probability of class label α for the ith decision tree, and X is the
test sample transformed by Ri. The weight wi is assigned based on the accuracy of the decision tree on
the training data, with higher accuracy trees receiving higher weights.

In conclusion, the proposed two-stage classifier system represents a significant step forward in de-
tecting and isolating faults on hexacopters.

A data-driven method is used to detect and isolate the failure of a single rotor for a hexacopter UAV
during a flight. Considering the Eq. (1.10) describing the rotational dynamics of the hexacopter and Eq.
(1.12) showing the change in input torques, the following functional relations are obtained for the kth

discrete time sample.

∆M(k) = f (ωx,y,z(k),ωx,y,z(k−1),ωd(k)) (2.4)

Where ∆M(k)= [∆Mφ (k),∆Mθ (k),∆Mψ(k)]T is a vector representing the changes in the input torques,
and f and ωx,y,z are vectors containing the functions f1(.), f2(.) and f3(.) and the angular velocities
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ωx,ωy,ωz, respectively. The vector ωd(k) = [ωxd(k),ωyd(k),ωzd(k)]T represents the desired angular
velocities.

2.3 Two-stage classification based on Rotation Forest algorithm

The architecture of the proposed data-driven method is given in Fig. (2.1).

Time series 

flight data

First Stage

Second Stage

Side, Front, Back 

Motors Classifier C1

Fault Detected

Side Motors (1 & 2) 

Classifier C2-A

Front Motors (3 & 5) 

Classifier C2-B

Fault Motor 

Classified

Diagnosis 

Results

Back Motors (4 & 6) 

Classifier C2-C

Side, Front or Back
Motors Classified

Motor 1 or 2

Fault Classified

Motor 3 or 5

Fault Classified
Motor 4 or 6

Fault Classified

Figure 2.1: Flowchart of the two-stage fault classifier

The proposed method contains two-stage fault detection and isolation on a hexacopter UAV, which
offers several advantages. Firstly, it enables us to detect and group a fault based on its type and then
classify which motor is affected. This approach simplifies the problem and results in higher accuracy. In
the group classifier stage, sensor data is analyzed to identify any anomalies or deviations from normal
behaviour, indicating the presence of a fault. Once a fault is detected, the motor classification stage
identifies the failed motor.

2.3.1 Fault Detection - First Stage

In the first stage of the proposed method, the fault is detected and grouped into one of the three cate-
gories - front, back, or side motor, to efficiently and effectively distinguish between the faults occurring
in the motor. To achieve this, all the variables used in Eq. (2.4) and their past values are used to classify
the fault.
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Once the fault is classified in the first stage, we reduce the number of variables used in the second
stage. Specifically, we only use the variables related to the first stage variable classification C1. This
reduces the classification process’s computational complexity and improves the algorithm’s efficiency.
This matrix ∈ Rk×9, where k is the current sample.

Classifier C1→



ωx(1) . . .ωx(k)
ωx(0) . . .ωx(k−1)
ωxd(1) . . .ωxd(k)
ωy(1) . . .ωy(k)

ωy(0) . . .ωy(k−1)
ωyd(1) . . .ωyd(k)
ωz(1) . . .ωz(k)

ωz(0) . . .ωz(k−1)
ωzd(1) . . .ωzd(k)


(2.5)

The results of this stage of classification (detection) are passed to the next stage to isolate and diag-
nose the fault.

2.3.2 Fault Classification - Second Stage

In the second stage, the objective is to further refine fault detection and isolate the malfunctioning
motor. For this purpose, we use a subset of variables specifically chosen to distinguish between the
different motors using Eq. (1.10) and Table (1.1).

In the case of classification between motors 1 and 2 (C2-A), the matrix includes past values of ωx and
ωxd , which are variables related to the angular velocity of the hexacopter on the x axis. These variables
are relevant to distinguish between motors 1 and 2 because a fault in one of these motors would affect
the angular velocity of the hexacopter on the x axis. This matrix ∈ Rk×3.

Classifier C2-A

↓[
ωx(1) ωx(0) ωxd(1)

...
...

...
ωx(k) ωx(k−1) ωxd(k)

]
(2.6)

For the classification between motors 3 and 5 (C2-B) and between motors 4 and 6 (C2-C), additional
variables such as ωy and ωz are included. These variables are related to the angular velocity of the
hexacopter on the y-axis and the z-axis, respectively, and help distinguish between motors (3, 5) and (4,
6). The matrix used for C2-B and C2-C ∈ Rk×5.

Classifier C2-B, C2-C

↓
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[
ωx(1) ωy(1) ωy(0) ωxd(1) ωz(1)

...
...

...
...

ωx(k) ωy(k) ωy(k−1) ωxd(k) ωz(k)

]
(2.7)

Using a subset of variables specific to each motor, the fault detection and isolation method can ef-
fectively isolate the malfunctioning motor. This approach makes the method more accurate and reliable
in detecting and isolating motor failures in hexacopters.

In general, the two-stage approach used in this method allows for a more robust and efficient fault
detection and isolation process, especially in the context of a Hexacopter UAV, where quick and accurate
identification of faults is crucial for the safety and success of the mission.

2.4 Training Datasets

The simulation datasets were generated by introducing faults through the software on a Hexacopter
UAV in the Gazebo simulation environment. The UAV is set to hover for a few seconds, before the fault
is introduced. The sampling rate is set to 50 Hz, and contains the sensor data (ωx,ωy,ωz) as well as the
PID controller’s desired values (ωxd ,ωyd ,ωzd).

For the training dataset,

XT = [ωx(.), ωxd(.), ωy(.), ωyd(.), ωz(.), ωzd(.)] (2.8)

Where, 60 dataset files (10 per motor) are used that contain approximately 200 time series data
points. These time series data points consist of the features selected above in Section III. Each dataset
file is generated with a 90% signal-to-noise ratio. The classifier models generated in training are saved
for later use in the validation/testing phase.

The validation dataset XV also has 60 dataset files containing approximately 200 data points each,
but is generated with a 80% signal-to-noise ratio instead. This adds slightly higher error values to the
input dataset while trying to mimic real flight behavior.

Here, XT +XV = total dataset.
For our case, the Rotation Forest classifier is restricted to 200 trees in training, and takes approxi-

mately 6 to 8 minutes to train the datasets defined above.

2.5 Validation & Results

This section provides the results for the proposed classification method in simulated datasets fol-
lowed by experimental datasets.

2.5.1 Validation with simulation dataset

Validation is performed on the dataset XV , which contains the log files from our Ardupilot simulation.
Futher analysis demonstrates the proposed fault detection and classification approach and benchmarks
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it against other existing algorithms. The proposed classifiers can accurately detect and classify motor
system faults despite the addition of simulated disturbances and noise. These results are significant
because they advance the development of reliable and robust methods for detecting and isolating faults
in complex systems such as unmanned aerial vehicles (UAVs).

Figures (2.2) - (2.7) show the performance of classifiers C1 and C2(A,B,C) under simulated condi-
tions, where a fault is introduced during a flight. Each figure displays the trajectory of the features (state
variables) over time and the points at which the classifiers are activated. Note that stage one classifier C1
gives a group output denoting the locality of the motors, based on the functional relationship between
the input and output variables. Second stage classifiers C2-A, C2-B and C2-C, however, classify the
fault to the exact failing motor.

167 168 169 170 171 172

Sample Number

-40

-20

0

20

40

60

Figure 2.2: Trajectory of the features(state variables) for fault detection on Motor 1, showing classifier

C1 running after a fault is introduced in simulation. The vertical red line shows the time at which fault is

introduced. After fault occurrence, the classifier output (motor locality) is received in the next sample.

19



171 172 173 174 175 176 177 178 179 180

Sample Number

-120

-100

-80

-60

-40

-20

0

20

Figure 2.3: Trajectory of the features(state variables) for fault classification on Motor 1, showing classi-

fier C2-A running after a fault is introduced in simulation. The vertical red line shows the time at which

fault is introduced. After fault occurrence, the classifier output (motor number) is received in the next

sample.

Fig. (2.2), (2.3) illustrate the trajectory of the features (state variables) used for fault detection and
classification in Motors 1 in a validation study. Here, the roll axis values ωx,ωxd are affected the most,
due to motor symmetry as shown in Fig. (1.4).
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Figure 2.4: Trajectory of the features(state variables) for fault detection on Motor 3, showing classifier

C1 running after a fault is introduced in simulation. The vertical red line shows the time at which fault is

introduced. After fault occurrence, the classifier output (motor locality) is received in the next sample.
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Figure 2.5: Trajectory of the features(state variables) for fault classification on Motor 3, showing classi-

fier C2-B running after a fault is introduced in simulation. The vertical red line shows the time at which

fault is introduced. After fault occurrence, the classifier output (motor number) is received in the next

sample.

Fig. (2.4), (2.5) illustrate the trajectory of the features (state variables) used for fault detection and
classification in Motors 3 in a validation study. Here, a net positive effect is seen on both the roll axis
(ωx,ωxd), and pitch axis (ωy,ωyd) values, indicating a failure in the front motors (Motor 3 or Motor 5).
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Figure 2.6: Trajectory of the features(state variables) for fault detection on Motor 4, showing classifier

C1 running after a fault is introduced in simulation. The vertical red line shows the time at which fault is

introduced. After fault occurrence, the classifier output (motor locality) is received in the next sample.
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Figure 2.7: Trajectory of the features(state variables) for fault classification on Motor 4, showing classi-

fier C2-C running after a fault is introduced in simulation. The vertical red line shows the time at which

fault is introduced. After fault introduction, the classifier output (motor number) is received in the next

sample.

Fig. (2.6), (2.7) illustrate the trajectory of the features (state variables) used for fault detection and
classification in Motors 4 in a validation study. Here, the roll axis values (ωx,ωxd) have a net positive
effect, while the pitch axis values (ωy,ωyd) have a net negative effect, indicating a failure in the back
motors (Motor 4 or Motor 6).

2.5.2 Comparision with other Classifiers

We further process the same training (XT ) and validation (XV ) datasets with other classifiers, namely,
Logistic Regression, Gaussian Naive Bayes, AdaBoost, Support Vector Machines (SVMs), and Random
Forest.

Table 2.1: Fault Detection accuracy for different algorithms in simulations

Classifier Accuracy

Logistic Regression 1.0

Gaussian Naive Bayes 0.96

AdaBoost 0.99

Support Vector Machine (SVM) 0.98

Random Forest 1.0

Rotation Forest 1.0

Table (2.1) shows a comparison between different classifier’s ability to detect faults. Here, the clas-
sifier’s ability to identify the failing motor is not considered. Instead, each of the classifiers is run across
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the entire validation dataset XV , and a binary output is taken where 0 represents no fault and 1 represents
a fault. All the algorithms in comparison show a high accuracy for detection of faults.

Table 2.2: Fault Classification’s confidence value (Cv) rate for different algorithms in Simulations

Motor Logistic Gaussian AdaBoost SVM Random Rotation

Number Regression Naive Bayes Forest Forest

1 0.8 0.82 0.91 0.92 0.88 0.92

2 0.98 0.91 0.8 0.78 0.75 0.89

3 0.94 0.87 0.69 0.74 0.88 0.97

4 0.75 0.88 0.79 0.81 0.83 0.91

5 0.92 0.93 0.7 0.8 0.77 0.94

6 0.88 0.94 0.93 0.89 0.92 0.97

Avg 0.878 0.891 0.803 0.823 0.838 0.926

Table (2.2) shows the confidence value rates (Cv) for different algorithms compared to ours. Here, Cv

is calculated by averaging the class probabilities output by the individual trees in the ensemble. The rates
shown here refer to the classifier’s ability to identify the failing motor. Logistic Regression [6, 39] had
high accuracy in the simulation, but its performance was affected by outliers. Gaussian Naive Bayes [10]
assumes independence among predictors, which is not suitable for the coupled nature of Hexacopter
UAV dynamics. AdaBoost [34] is more prone to overfitting in noisy datasets, which is often the case
for UAVs due to significant IMU data noise. Random Forest [8,9] can provide unsatisfactory results for
datasets with multiple outliers due to its grid-like decision structure. On the other hand, Rotation Forest
can approximate non-orthogonal boundary curves in decision trees and is an improvement over Random
Forest. Rotation Forest [28] showed better overall accuracy than other models, with an average true
positive rate of 92.6% during simulation dataset validation. Here, the true positive rate (Tpr) is calculated
as the ratio of true positives to the sum of true positives and false negatives (Tpr = T p/(T p+Fn)).

2.5.2.1 Decision Boundary Comparison

In this section, we visualize the decision boundaries in order to compare the different classifiers and
analyze their performance.
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Figure 2.8: Decision boundaries for the Logistic Regression based classifier

Fig. (2.8) shows the decision boundaries with the Logistic Regression based classifier. For our case,
Logistic Regression underfits and classifies data points that are in a cluster as the same class. This
happens because of the high number of features, highly unbalanced datasets [21] and varying amount
of noise in the sensor data.

Figure 2.9: Decision boundaries for the Gaussian Naive Bayes based classifier

Fig. (2.9) shows the decision boundaries with the Gaussian Naive Bayes (GNB) based classifier.
GNB can have curved boundaries due to the Gaussian distribution function it uses. Additionally, GNB
assumes that features are independent of each other, and thus it misclassifies outliers [17].
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Figure 2.10: Decision boundaries for the AdaBoost based classifier

Fig. (2.10) shows the decision boundaries with the AdaBoost classifier. AdaBoost focuses on mini-
mizing the error and hence can underfit on complex datasets, even though it provides very clean bound-
aries. In low-noise datasets, AdaBoost rarely overfits, but our input dataset is sensor-based and hence
noisy. Furthermore, the performance is poor on unseen data [16]. i.e., new data points in validation
begin to overfit.

Figure 2.11: Decision boundaries for the Support Vector Machine (SVM) based classifier

Fig. (2.11) shows the decision boundaries with the Support Vector Machine (SVM) based classifier.
This classifier performance reduces when the target classes overlap, and begins to underperform [3] as
the number of data points keeps increasing.
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Figure 2.12: Decision boundaries for the Random Forest based classifier

Fig. (2.12) shows the decision boundaries with the Random Forest classifier. Random Forest works
very well in terms of classifying the data, but as the number of trees grows, the algorithm begins to slow
down [13] and hence proves inefficient for real-time (online) predictions.

Figure 2.13: Decision boundaries for the Rotation Forest based classifier

Fig. (2.13) shows the decision boundaries with the Rotation Forest classifier. Rotation Forest bound-
aries are less complex in comparison to Random Forest, due to its non-orthogonal curve approximation.
Even though Rotation Forest needs more computation during training in comparison to Random For-
est [4], it’s real-time (online) predictions are faster due to the reduction in decision tree depth.
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2.5.3 Results of classification on experimental dataset

Figure 2.14: Our Hexacopter setup for outdoor flight testing consisting of the flight controller, external

GPS and raspberry pi.

We used a hexacopter equipped with open-source ArduPilot firmware running on a CUAV v5+ Pix-
hawk board for testing/validating in real flights. To test the classifier, we ran the validation code on the
post-flight data and found that the delay ∆t is 60 ms. In real flights, the classifier responds to the fault
within 2 to 5 samples, while it responds in the next sample for simulations. This gives us a delay of 2∆t
to 5∆t after the fault before the controller can be notified of the occurrence of the fault.

Table 2.3: Our algorithm’s True Positive and False Negative values for real test flights

Motor True Positive False Negative

1 0.93 0.07

3 0.97 0.03

6 0.98 0.02

Table (2.3) shows the test flight results for different groups chosen earlier for the two-stage approach.
These values are averaged over two test flights for each case. Here, false negative refers to cases where a
fault occurs but the classifier still labels it as normal state. This occurs when the classifier does not label
the fault in the exact sample after fault injection since the input parameters do not change as quickly as
the operating frequency.

2.6 Conclusion & Inference

We demonstrated a Fault Detection and Isolation (FDI) module, which uses an ensemble classifier,
Rotation Forest. Our proposed classifier takes state inputs of roll rate (ωx), pitch rate (ωy) and yaw
rate (ωz) and predicts the occurrence of a fault. These input rates are a result of the change in torque
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as discussed in Eq. (1.12) and in Table (1.1). The first stage of our classifier is used to detect a fault,
while the second stage is used to isolate the fault. The classifier reports its first stage in 60 ms and can
isolate the fault to the failing motor in a total of 120 to 250 ms (including the time taken for detection
and input/output processing). The prediction values are published by the classifier at a constant rate (50
Hz) and can be subscribed from the Fault Tolerant Control (FTC) module, in order to perform post-fault
stabilization.
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Chapter 3

Fault Tolerant Control (FTC) using Dynamic Control Re-allocation

Following the detection and isolation of complete actuator loss, the next critical component in ensur-
ing robust UAV operation is the implementation of a suitable Fault Tolerant Control (FTC) strategy. The
objective of FTC is to maintain the stability and controllability of the UAV despite the occurrence of
faults. The primary challenge lies in dynamically reallocating control among the remaining operational
actuators in a manner that compensates for the effects of the actuator loss. This section delves into the
intricacies of FTC for UAVs experiencing complete actuator loss, detailing the proposed control real-
location methodology, its mathematical analysis, and its effectiveness in maintaining system stability
under such severe fault conditions.

The previous chapter details our Fault Detection and Isolation (FDI) module, which reacts to changes
in body angular rates (ωx,ωy,ωz) and Torque and predicts the current state of the vehicle. This prediction
can be used to correct the fault and stabilize the vehicle.

This chapter contains equilibrium analysis for determining the effects of a fault on the UAV dynam-
ics, controllability test, the control allocation method used and it’s attained control authority. Further,
we discuss our FTC module and analyze its performance in terms of the change in motor angular ve-
locities, tracking error, percentage overshoot, settling time, control effort, estimated vehicle endurance,
CPU load, RAM usage, and closed-loop sampling delay.

3.1 Equilibrium analysis

Since most of the UAV’s time is spent in a cruise or hover, which are both relatively close to the
hover condition, we can analyze the UAV behavior at hover condition and study the effects of faults.
As discussed earlier in Eq. (1.12), the occurrence of the fault can have some effect on the magnitude
of torque inputs. The focus of our work is to successfully stabilize the hexacopter by controlling the
angular momentum and altitude, based on the aforementioned torque changes. For this, we observe the
equilibrium at hover and analyze the effects of fault occurrence on the UAV dynamics.

29



3.1.1 Equilibrium at hovering:

The equilibrium at the hovering state is given by following conditions in Eq (3.1 - 3.2).

ω̇x = ω̇y = ω̇z = φ̇ = θ̇ = ψ̇ = ż = z̈ = 0 (3.1)

and
φ = θ = ωx = ωy = ωz = 0 (3.2)

The variables ψ and z can be non-zero constants. The corresponding equilibrium input is denoted by
M = Me = [τφe = 0,τθe = 0,τψe = 0,Tf e = mg] obtained from Eq (1.1 - 1.3). From Fig. (1.4), the
expression for τφe,τθe,τψe, and Tf e are given in Eq (3.3 - 3.6).

τφe = l[T1 +T4 +T5− (T2 +T3 +T6)] = 0 (3.3)

τθe = l[T4 +T6− (T3 +T5)] = 0 (3.4)

τψe = [τ2 + τ4 + τ5− (τ1 + τ3 + τ6)] = 0 (3.5)

Tf e =
6

∑
i=1

Ti = mg (3.6)

3.1.2 Deviation from equilibrium hover due to motor fault:

In case of ith motor failure, Ti = 0, the control input M deviates from Me as given below.

τφ = τφe− lTi (3.7)

τθ = τθe− lTi (3.8)

τψ = τψe− τi (3.9)

Tf = Tf e−Ti (3.10)

This deviation, which is a function of Ti and τi, can lead to flight instability as the ωx,ωy,ωz,θ ,φ

values deviate from the equilibrium condition when the control input is given in Eq (3.11 - 3.14) is
applied to Eq (1.1 - 1.3).

For example, in the case of failure in motor 1, the deviation will result in M f 1 given below.

τφ f 1 = l ∗ k f [ω2
2 +

1
2
(ω3

2−ω4
2−ω5

2 +ω6
2)] (3.11)
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τθ f 1 = l ∗ k f

√
3

2
(−ω3

2 +ω4
2−ω5

2 +ω6
2) (3.12)

τψ f 1 = km(ω2
2−ω3

2 +ω4
2 +ω5

2−ω6
2) (3.13)

Tf f 1 = k f (ω2
2 +ω3

2 +ω4
2 +ω5

2 +ω6
2) (3.14)

By simplifying Eq. (3.11 - 3.14), we can see that the net resultant torque and thrust are effective on
the body axis as given below.

τφ f 1 = l ∗ k f (ω2
2) (3.15)

τθ f 1 = 0 (3.16)

τψ f 1 = km(ω2
2) (3.17)

Tf f 1 = k f (ω2
2 +ω3

2 +ω4
2 +ω5

2 +ω6
2) (3.18)

From Eq. (3.15 - 3.18) it can be observed that a deviation occurs in the roll, yaw and thrust, in case
of fault in Motor 1. This deviation pushes the UAV out of equilibrium. The divergence is unbounded
and can eventually lead to instability. In such a case, equilibrium can only be achieved if the diagonally
opposite motor’s angular velocity ω2 = 0 and the rest of the motors can provide enough thrust to balance
the weight of the UAV. In real flights, turning off the opposing motor (in case of simultaneous failures
in motors 1, 2) causes an imbalance in the direction of remaining propellors, resulting in a loss of yaw
control. Similarly, for some other cases (simultaneous failure in motors 3, 5; motors 3, 6), the pitch and
roll control respectively are lost significantly.

For the above example of failure in motor 1; the condition ω2 = 0 cannot be satisfied. In such a
scenario, the original hovering equilibrium cannot be attained.

3.1.3 Controllability

We can study the behavior of our closed-loop control system in Eq. (1.1, 1.3), by linearizing at the
equilibrium point under hover condition. The state equation for this linear first-order system is of the
form given below.

ṡ = A s+B u (3.19)

Where s is a state vector representing the attitude of the vehicle,
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s =


ωx

ωy

ωz

ż

 (3.20)

ṡ is the derivative of the state vector,
A is a system matrix that is derived by linearizing our system around the hover equilibrium.

A =
∂ ṡ
∂ s

∣∣∣∣
s=sh

=


0 k1 ωz k1 ωy 0

k3 ωz 0 k3 ωx 0
k5 ωy k6 ωx 0 0

0 0 0 0

 (3.21)

Where sh is the state vector under hover conditions as mentioned in Eq. (3.1-3.2).
B is the input matrix as given below.

B = Jc G (3.22)

Where Jc is the matrix form derived by writing the inertia components (k2,k4,k6) in Eq. (1.1) and G
is as defined in Eq. (1.7).

Jc =


k2 0 0 0
0 k4 0 0
0 0 k6 0
0 0 0 1

 (3.23)

From Eq. (1.6), we have a relationship between torque, thrust inputs, and the motor angular veloci-
ties. Further, the control input u is given below.

u =



ω1
2

ω2
2

ω3
2

ω4
2

ω5
2

ω6
2


(3.24)

In a healthy condition, the state equation can be written as given in Eq. (1.1) and Eq. (3.19). After a
fault occurs, the deviation is as mentioned in Eq. (3.11 - 3.14) changes the behavior due to the additional
thrust and torque components.

We check controllability using the Controllability test, where the rank of the matrix Ci is checked
to determine whether loss of control over a control input has occurred after motor failure in given ith

motor.
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Ci = [Bi ABi A2Bi ...An-1Bi] (3.25)

For motor 1 failure, we get B1 and C1 as given below. In this case, C1 has full rank. Here, B1 is given
below.

B1 = JcG1 (3.26)

Where G1 is given below.

G1 =


0 lk f

1
2 lk f −1

2 lk f −1
2 lk f

1
2 lk f

0 0 −
√

3
2 lk f

√
3

2 lk f −
√

3
2 lk f

√
3

2 lk f

0 km −km km km −km

0 k f k f k f k f k f

 (3.27)

and

C1 =
[
B1 AB1 A2B1 A3B1

]
(3.28)

Since C1 maintains rank equal to number of states, it is a controllable system. Similarly, since
all cases of single motor failure do not cause rank deficiency in the matrix Ci, the given system is
controllable.

3.2 Control Allocation

Control allocation is a fundamental problem in the realm of Fault Tolerant Control (FTC) for UAVs
[15], particularly in the scenario of complete actuator loss. Essentially, control allocation involves
determining how to efficiently distribute control efforts among the available actuators to achieve the
desired output of the system. This problem becomes notably complex in the event of a complete actuator
loss, as the control efforts need to be redistributed amongst the remaining operational actuators. A
primary challenge here lies in ensuring that the redistribution does not saturate the functioning actuators.

In order to reallocate the motor outputs after fault occurrence, we can modify the G matrix in Eq.
(1.6).

Hence, the motor angular velocity ωa is computed as given below.

ωa = G+ M (3.29)

Where

G+ = GT(GGT)-1 (3.30)

is the pseudo-inverse of G matrix. Note that G is always non-singular.
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In a normal fault-free scenario, Eq (1.6) has a unique solution for ωa using the pseudo-inverse method
given in Eq (3.30). Let us consider the case of motor failure where ωi = 0 for any of the ith motors.
Then the solution provided by Eq (3.29) does not satisfy the condition ωi = 0. Enforcing ωi = 0 and
retaining the other terms of ωa obtained using Eq (3.29) does not satisfy Eq (1.10).

This means that the desired torque and thrust generated by the PID controller cannot be achieved
by the default control allocation. This difference in the desired torque and thrust and the one obtained
through control allocation can lead to flight instability.

Let the new torque and thrust achieved through control allocation for ith motor failure be denoted by
Mi. The objective is to find a modified matrix Min such that the stability of the UAV is maintained by
making it as close to the desired value M. The flight condition considered here is the hovering [22] state.

The dynamic control reallocation proposed here reduces the difference between M and Me to retain
flight stability. After the ith motor fails, the corresponding ith column of G in Eq (1.7) is set to 0, and Gi

denotes the corresponding matrix.

For example, a fault in motor 1 leads to G1 as given below.

G1 =


0 lk f

1
2 lk f −1

2 lk f −1
2 lk f

1
2 lk f

0 0 −
√

3
2 lk f

√
3

2 lk f −
√

3
2 lk f

√
3

2 lk f

0 km −km km km −km

0 k f k f k f k f k f

 (3.31)

The corresponding motor angular velocity ωai is obtained using the below-mentioned relation.

ωai = Gi
+ M (3.32)

Note that the condition ωi = 0 is enforced when ωai is computed using Eq. (3.32).

Furthermore, to maintain the torque and thrust constraints, the matrix Gi is modified as GWi =WsGi

while implementing Eq. (3.32) on the autopilot hardware. Now, GWi is the Weighted Control Allocation
(WCA) matrix.

3.3 Achievable control authority after control re-allocation

In Figs. (3.1 - 3.8), the upper and lower limits of a healthy case are compared to the reduced set of
control achieved with our FTC module in the case of motor 1 failure. These Control Authority graphs
show the range of Torque (τφ ,τθ ,τψ ) and Thrust output acting along the body axis, with given Roll,
Pitch inputs. The upper and lower limits of control authority are plotted and saturation can be seen on
all different control inputs due to changes in the system dynamics. In these figures, the roll and pitch
inputs are given in a {-5, 5} range and the roll, pitch, yaw, and thrust outputs are mapped. It is observed
that the control authority changes differently for each axis after the fault is corrected and the UAV is
stabilized.

34



Figure 3.1: Upper limits of Roll output achieved with a given roll and pitch input. τφh represents healthy

condition Roll, while τφca represents Roll after fault occurs in motor 1 and control allocation is used.

Figure 3.2: Lower limits of Roll output achieved with a given roll and pitch input. τφh represents healthy

condition Roll, while τφca represents Roll after fault occurs in motor 1 and control allocation is used.

In Fig. (3.1, 3.2), it can be seen that roll control authority is slightly lost, since the ability to control
roll axis is reduced due to failure in motor 1, and the diagonally opposite motor has to compensate for
the same amount of roll.
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Figure 3.3: Upper limits of Pitch output achieved with a given roll and pitch input. τθh represents

healthy condition Pitch, while τθca represents Pitch after fault occurs in motor 1 and control allocation

is used.

Figure 3.4: Lower limits of Pitch output achieved with a given roll and pitch input. τθh represents

healthy condition Pitch, while τθca represents Pitch after fault occurs in motor 1 and control allocation

is used.

In Fig. (3.3, 3.4), it can be seen that pitch control authority is lost heavily when roll input is non-zero.
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Figure 3.5: Upper limits of Yaw output achieved with a given roll and pitch input. τψh represents healthy

condition Yaw, while τψca represents Yaw after fault occurs in motor 1 and control allocation is used.

Figure 3.6: Lower limits of Yaw output achieved with a given roll and pitch input. τψh represents healthy

condition Yaw, while τψca represents Yaw after fault occurs in motor 1 and control allocation is used.

In Fig. (3.5, 3.6), it can be seen that the control authority of the yaw is heavily skewed on motor 1
failure. This occurs since τψ is left unbalanced as discussed in Eq. (3.16).
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Figure 3.7: Upper limits of Thrust output achieved with a given roll and pitch input. Th represents

healthy condition Thrust, while Tca represents Thrust after fault occurs in motor 1 and control allocation

is used.

Figure 3.8: Lower limits of Thrust output achieved with a given roll and pitch input. Th represents

healthy condition Thrust, while Tca represents Thrust after fault occurs in motor 1 and control allocation

is used.

In Fig. (3.7, 3.8), it can be seen that thrust control authority is minimally affected. This verifies that
the rest of the healthy motors can achieve enough thrust to stay in hover condition.
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3.4 Implementation of Fault Tolerant Control on Experimental Hexa copter

This section gives details on the implementation of software, the hexacopter (hardware) used, and
details of the flight tests.

Control Allocator
Module

State inputs Altitude Control

Frame logic 
saved to 
EEPROM

Output FunctionPosition Control

Changes Actuator 
Effectiveness Matrix

Computes New 
Control Allocation 

Matrix

Our Module

PARAM over 
MAVLink

PWM Output

Firmware

Middleware

Figure 3.9: Module diagram showing how FTC module works on the autopilot firmware

3.4.1 Experimental Setup

A hexacopter is used with parameters given in Table (3.1) for flight trials. PX4 autopilot firmware
v1.13 is modified to implement dynamic control reallocation as described in Fig. (3.9). Software in-
troduces failures by setting parameters via a ground control station (GCS). The Ws matrix used for
computing GWi is selected as a diagonal matrix given by Ws = diag(0.3,0.3,0.15,0.25). Here, the Ws

matrix elements represent the maximum allowed control input normalized between 0 to 1, contributing
to roll, pitch, yaw axis and to the total thrust.
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Table 3.1: Hexacopter parameters

Parameter Description Value

Jxx Moment of Inertia about body frame’s x-axis 6.89x10-3 kg.m2

Jyy Moment of Inertia about body frame’s y-axis 6.89x10-3 kg.m2

Jzz Moment of Inertia about body frame’s z-axis 3.44x10-2 kg.m2

l Arm length 0.33 m

Jr Rotor inertia 6x10-4 kg.m2

m Mass of hexacopter 0.95 kg

kT Aerodynamic force constant 3.13x10-4 N.s2

kM Aerodynamic moment constant 7.5x10-6 Nm.s2

Rmot Motor circuit resistance 0.6 Ω

Kmot Motor torque constant 5.2 mNm/A

Table 3.2: PID Tuning parameters

Parameter Value

kPz 4.0

kDz 0.1

kIz 2.0

kPφ ;kPθ 6.5

kPψ 2.8

kDφ ;kDθ ;kDψ 6.5

kIφ ;kIθ ;kIψ 2.8

The PID parameters used to generate the control input M are shown in Table (3.2) and are selected
after tuning the closed-loop hexacopter model in the Gazebo simulator. Closed-loop sampling time, Ts

= 10 ms.
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3.4.2 Outdoor flight testing and dataset generation for analysis

(a) 2s before fault (b) Fault injected (c) 2s after fault

Figure 3.10: Demonstration of outdoor stabilization after a complete failure of Motor 1. (Yellow encir-

cled propeller). Note that the encircled propeller is stationary in sub-figures (b) and (c).

Multiple tests have been conducted outdoors to validate the proposed fault-tolerant architecture on
a real hexacopter. During flight trials, the hexacopter is launched to 1− 3 meters from the ground and
set to altitude hold mode. A few seconds later, motor fault(s) is introduced, and the dynamic control
reallocation is enabled. It is observed that the UAV can stabilize and perform a safe landing for all
possible single motor failures1, and some configurations for two motor failures2. It is noteworthy that
the classifier (FDI) output is only useful for the 1st fault occurrence; hence the 2 motor failure cases
are tested by immediately injecting 2 faults consecutively. Photograph of UAV flight for a single motor
failure is shown in Fig (3.10). Here, the encircled motor is undergoing failure during flight. A dataset
containing sensor and actuator data of outdoor flight results is published in the open-source domain to
validate the same3.

3.5 Results

We have conducted multiple flight trials on all six motors for the proposed dynamic control reallo-
cation method to verify the Fault Tolerant Control (FTC) solution for the UAV platform as mentioned
earlier. Regarding performance constraints, sensor sampling delay, CPU load, and RAM usage are ver-
ified. The onboard Arm Cortex-M7 processor(STM32F765, 216MHz, 32-Bit) can handle CPU loads
and increased RAM consumption without reducing its operating frequency or causing disruption. We
have conducted extensive experiments to evaluate various control and performance aspects of the UAV
platform equipped with our fault-tolerant strategy, which is summarized below:

• Motor angular velocities before and after fault.

• Flight performance - tracking error, percentage overshoot, settling time.
1Can be viewed at https://youtube.com/watch?v=z1vDjloeLiw
2Can be viewed at https://youtube.com/watch?v=p_mJ04ftzE0
3Can be downloaded at https://doi.org/10.5281/zenodo.7642240
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• Control effort and estimated endurance.

• System characteristics - changes in CPU load, RAM usage and closed-loop sampling time.

3.5.1 Motor angular velocities before and after fault:

Fig. (3.11) shows the motor angular velocity (ω1...ω6) scaled to 0 to 1. Note that fault is introduced
around 14s to motor 1, i.e. ω1 = 0. Failure of motor 1 leads to a sudden significant drop in ω2 (motor
located symmetrically opposite to motor 1). In the rest of the flight, ω2 remains lower than the other
healthy motors, i.e., ω3 to ω6. This is mainly for compensating the unbalanced rolling moment caused
due to the result of ω1 going to zero. Similarly, Fig. (3.12) shows motor angular velocities for the case
of two motor failure.
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Figure 3.11: Motor outputs after introducing a hard fault (failure) on Motor 1 at 14s
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Figure 3.12: Motor outputs after introducing hard faults (failures) in Motor 3 and Motor 6 at 43s

3.5.2 Flight performance - tracking error, percentage overshoot, settling time:

Motor failure immediately affects flight performance, leading to asymmetry regarding the control
inputs. Dynamic control reallocation reduces the effects caused by asymmetric control inputs. Fig.
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(3.13, 3.14) compares UAV state variables 4 seconds before and after the occurrence of the fault in
single motor scenario. Please note that the system response settles within the 4 second time period
after the occurrence of the fault. The blue curve in Fig. (3.13, 3.14) denotes the trajectory of the state
variables before fault. In contrast, the orange colour shows the trajectory of the state variables after
the fault has occurred. Before the occurrence of a fault, the state variables are maintained around the
equilibrium point as given in Eq (3.1, 3.2). After the fault occurs, the corresponding immediate change
in the state variables, percentage overshoot, and the settling time of the deviation from the equilibrium
conditions are given in Table (3.3).

The peak values among angular velocity and Euler angles are observed for ωx and φ , respectively.
The pitch attitude dynamics are least affected by the fault owing to the location of the motors M1 and
M2 with respect to the pitch axis yB. Overall, there is only a small difference in the magnitude of the
state variables when comparing before and after the fault, especially after settling time. Yaw attitude
dynamics settle at the slowest rate. Changes in altitude dynamics are negligible. We can see the peak
values among angular rates in Fig. (3.13). An error in the orientation (roll, pitch) is seen - the magnitude
is smaller in the pitch axis since motor M1 does not have any effect on pitch as seen in Fig. (1.4).

Table 3.3: Effect of motor fault on flight performance

Motor no 1 2 3 4 5 6 3, 6

∆φ (rad) -0.4 -0.7 0.7 0.04 0.39 0.08 0.8

∆θ (rad) 0.25 0.11 -0.25 -0.52 0.17 -0.93 -0.84

∆ψ (ad) 0.0 0.07 0.0 0.0 0.01 0.16 0.75

∆z (m) 0.16 0.11 0.06 0.03 0.04 0.02 0.35

∆p (rad/s) 0.6 0.51 0.27 -0.11 0.44 0.56 0.29

∆q (rad/s) 0.11 -0.02 -0.14 -0.17 0.0 0.11 0.1

∆r (rad/s) 0.0 -0.08 0.0 0.0 0.01 -0.02 0.6

% overshoot φ 298.62% 303.24% 103.86% 150.42% 103.1% 172.59% 263.35%

% overshoot θ 160.27% 121.49% 157.46% 16.54% 176.21% 11.16% 48.21%

% overshoot ψ 1.95% 3.23% 2.3% 0.24% 0.13% 2.86% 2.9%

% overshoot z 9.26% 6.45% 3.56% 2.07% 2.17% 1.12% 25.48%

Settling time (s) 6.8s 6.85s 2.75s 8.4s 3.83s 8.95s -

Table (3.3) is generated by taking an average of two test flights for each motor failure. The immediate
change of any state variable α is computed as shown below.

∆α = α(t f +Ts)−α(t f ) (3.33)
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Figure 3.13: Trajectory of state variables φ ,θ ,ψ and z before and after the failure of Motor 1 for a

duration of 4 seconds. Blue and orange curves denote the trajectory before and after failure, respectively.
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Where t f is the time instant at which fault has occurred, and Ts is the closed loop sampling time or the
time in which the PID control loop runs (Ts = 10ms).

The results of flight performance are given in Table (3.3) corresponding to the hexacopter shown
in Fig. (1.4). The proposed algorithm stabilizes the UAV within a time range of 2.7 to 8.95 seconds,
depending upon the location of the faulty motor with respect to the body axis. The maximum immediate
change occurs in pitch angle due to the failure of motor M4 or M6. The percentage overshoot is the
maximum for the failure of motor M1 or M2 on the roll axis. The failure of motors M1 or M2 results in
high tracking errors and overshoot in response to the roll attitude dynamics. Similarly, failure of motors
M3 or M5 results in higher tracking errors and overshoot on the pitch attitude dynamics. Still, the
response reaches a steady state in a short duration compared to roll and yaw attitude dynamics. Failure
in M4 or M6 results in a high overshoot on the roll attitude dynamics compared to the pitch axis. In
case of two motor failure scenario (M3, M6), the an immediate drop in altitude occurs, since the thrust
generated by remaining motors is not enough to compensate for the total weight of the vehicle.

3.5.3 Control effort and estimated endurance:

Motor failure directly affects the control effort used for stabilization. Here, the control effort (Ce) is
computed below.

Ce =
6

∑
i=1

ωi
2 (3.34)
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Figure 3.15: Control effort for all motors cases after fault occurs at 7s, in a 14s window.

Fig. (3.15) shows the control effort scaled between 0 to 1 for all the six single motor failure cases
and one case for two motor failure. For all the cases, the control effort goes down momentarily after
the fault occurs and then increases later. This is evident from Fig. (3), where ω1 = 0 and the magnitude
of ω2 reduces to compensate for unbalanced rolling torque. This results in the reduction of Ce, even if
there is an increase in the magnitude of ω3 to ω6 after the fault occurs. This also leads to a reduction in
flight performance in the post-fault scenario compared to the pre-fault scenario.
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Figure 3.16: Estimated Endurance of the UAV when motor failures occur at 7s, in a 14s window.

Fig. (3.16) shows the estimated endurance of the UAV for a single flight test where failure was
introduced for motor M1, in ideal case and in real case. It also shows estimated endurance in case of
failure of 2 motors (M3 and M6). The endurance (E) in hours is calculated from Eq (3.35).

E =C× VB

IC×VC
(3.35)

Where C represents the rated battery capacity (in mAh), VB is the rated battery voltage (in V), VC is
the instantaneous battery voltage (in V), and IC is the instantaneous current consumed (in mA). For the
ideal case, we assume VB = VC. But for the real case, VC < VB due to non-ideal battery characteristics.
Here, Ic×V c is the instantaneous power consumption (in Watt). Due to increased power consumption,
the battery life decreases after the fault occurs. This is observed for both ideal and real cases. In Fig.
(3.16), the endurance goes up after a few seconds in case of two motor failure scenario, since the UAV
has already safely landed (within 4-5 seconds of fault).

3.5.4 System characteristics - changes in CPU load, RAM usage and closed-loop sam-

pling time:

Performance constraints such as sensor sampling delay, CPU load and RAM usage are verified. The
onboard Arm Cortex-M7 processor(STM32F765, 216MHz, 32-Bit) can handle CPU loads and increased
RAM consumption without reducing its operating frequency or causing disruption. Motor failure is
implemented by computing the control matrix as described in Eq (3.32). This matrix reconfiguration
causes a momentary increase in the computational load of the CPU and causes an increase in the closed
loop sampling time. No relevant effects on the RAM were observed.
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Figure 3.17: Comparison of CPU Loads in a 7-second window before and after a fault for all motor

failure cases.

Fig. (3.17) shows the CPU’s computational load increase across multiple flight tests for the ith motor
failure.

Table 3.4: Effect of reconfiguration algorithm on the performance of the CPU computational load and

closed-loop sampling time

Motor no. CPU load increase Closed-loop sampling delay

1 10.7% +8%

2 10.2% +9%

3 12% +5%

4 14.5% +11%

5 8% +3.9%

6 14.35% +13%

3,6 16% +11%

In Table 3.4, Fig. (3.17) CPU load is tracked within a few milliseconds of fault introduction. Due to
the added matrix computations, an apparent increase is seen in the CPU load. Different motor reconfig-
urations (or failures in different motors) have minor differences in the amount of CPU load due to the
positioning of the faulty motor. The amount of correction required for each axis is different for different
fault cases, as explained in Section 5.2 using Table 3. An apparent lag in the closed-loop response (a
few microseconds) is observed immediately after the fault introduction. The closed-loop response delay
increases as the CPU load increases. The computational load increases momentarily by an average of
10% for 10 ms. The increase in load is caused by the increase in settling time because it takes more time
to reach stability. The total RAM consumption does not change in any of the cases. CPU usage returns
to normal once the matrix calculations are completed. The motor placement considerably affects the
flight performance, but only slightly to CPU load.
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3.6 Conclusion & Inference

In this chapter, we presented the Fault Tolerant Control (FTC) module that subscribes to fault predic-
tion results from the Fault Detection and Isolation (FDI) module and is able to successfully stabilize the
vehicle after single motor faults. We have also tested and analyzed cases of 2 motor failures, where the
UAV has to be landed immediately. We also analyzed the system response after the fault is stabilized
and compared it to that of the healthy case, without any motor faults.
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Chapter 4

Integration of Fault Detection & Isolation (FDI) and Fault Tolerant

Control (FTC) modules for Hexacopter UAV

This chapter presents a comprehensive evaluation of the proposed methodologies for Fault Detection
and Isolation (FDI) and Fault Tolerant Control (FTC) in the event of complete actuator loss in Hexa-
copter UAVs. Here, we assess the performance of the Rotation Forest Classifier in accurately detecting
and isolating the occurrence of faults and examine the effectiveness of the Dynamic Control Realloca-
tion strategy in maintaining UAV stability post fault identification. By combining these two components,
our aim is to illustrate a cohesive, end-to-end fault management solution. This section demonstrates the
practical applicability of the methods developed through rigorous testing and validation scenarios, pro-
viding insights into their potential in enhancing UAV operational reliability and safety in real-world
applications. It represents a critical juncture where theory meets application, solidifying the relevance
and impact of our research.

Rotation Forest
Classifier

Dynamic Control
Re-allocation

PID Controller
Control Allocation

(Mixer) Module

x, y, z

φ, θ, ψ

New CA matrix

Fault Detection & 

Isolation Module

Fault Tolerant 

Control Module

Fault

Information

Motor Outputs
Fault occurs

Sensor input
PWM Output

Figure 4.1: Proposed architecture of the integrated FDI and FTC modules. Here, the red cross denotes

the motor under failure.
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Fig. (4.1) shows the module diagram with details of our combined FDI and FTC implementation.
Here, the FDI module runs in the background while the UAV performs its missions. On occurrence of
the fault, the FDI module detects, classifies, and reports the fault. This FDI module output is taken in
the FTC module, and correction is performed to stabilize the UAV.

4.1 Simulation Results for integrated FDI and FTC modules

Simulation is carried out in order to validate the proposed FDI and FTC modules together and analyze
the system performance. The vehicle model used is a Hexacopter UAV as described in Fig. (1.4) and
Tables (3.1, 3.2). We start the simulation in hover condition and then give a motor fault in Motor 1 at 2
seconds. The results are compared between our proposed FDI + FTC module and the case of immediate
control reallocation. In the immediate case, the drone stabilizes as soon as a fault is introduced, whereas
in the case of our module, the fault is introduced and then stabilized only after the FDI module classifies
and isolates the fault to the failing motor. The simulation implementation is done in Python using the
DOP853 ODE algorithm.

Figure 4.2: State variables φ and ωx response after Motor 1 fault introduced at 2s, detected and classified

at 2.2s and corrected (stabilized) at 2.25s (blue). Orange line shows response after fault introduced at 2s

and immediately corrected (stabilized).

Fig. (4.2) shows that motor 1 failure has a huge effect on the roll axis, due to vehicle symmetry as
shown in Fig. (1.4). This effect is minimal if the fault is immediately corrected with control allocation;
however, real-world scenarios will have a delay for the detection and input/output delays.
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Figure 4.3: State variables θ and ωy response after Motor 1 fault introduced at 2s, detected and classified

at 2.2s and corrected (stabilized) at 2.25s (blue). Orange line shows response after fault introduced at 2s

and immediately corrected (stabilized).

Fig. (4.3) shows that motor 1 failure has a negligible effect on the pitch axis. This can be verified
intuitively in Fig. (1.4).

Figure 4.4: State variables ψ and ωz response after Motor 1 fault introduced at 2s, detected and classified

at 2.2s and corrected (stabilized) at 2.25s (blue). Orange line shows response after fault introduced at 2s

and immediately corrected (stabilized).

Fig. (4.4) shows that motor 1 failure has a sudden shift in the yaw axis. This shift, however, does not
cause any damage to the UAV, since it is only rotating around its yaw axis and the heading (direction)
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changes. This effect is reduced in real scenarios where the PID controller is tuned to compensate for
such a drift.

Figure 4.5: State variables z and ż response after Motor 1 fault introduced at 2s, detected and classified

at 2.2s and corrected (stabilized) at 2.25s (blue). Orange line shows response after fault introduced at 2s

and immediately corrected (stabilized).

Fig. (4.5) shows that motor 1 failure has a varying effect on vehicle altitude (z). If stabilization is
performed immediately, the change is close to 5% of the current altitude of the vehicle. This change
increases to 10% for the proposed integrated FDI and FTC modules, as we have a delay of 250 ms.

Table 4.1: Difference in flight performance, compared between our FDI + FTC module and that in

which control reallocation is done immediately after fault occurrence.

∆φ (deg) 70

∆θ (deg) -14

∆ψ (deg) 50.2

∆z (m) 1.3

∆ωx (deg/s) 805

∆ωy (deg/s) 744

∆ωz (deg/s) 199

% overshoot φ 366.1%

% overshoot θ -250%

% overshoot ψ 411.3%

% overshoot z 12.4%

Settling time (s) 3.5s
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Table. (4.1) shows the performance comparison between our FDI + FTC module and that in which
control reallocation is done immediately after the occurrence of the fault. All values listed in this
table are the differences between the two methods of comparison. Note that the difference in rates and
overshoot is higher since the simulation does not closely emulate the motor behavior due to slew rates
and a difference in PID tracking performance. Here, the delta values are the immediate change in the
next time sample, while the percentage overshoot represents the maximum difference in the two values
before settling down.
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Figure 4.6: Motor outputs showing how stabilization works in simulation.

Fig. (4.6) shows motor output velocities. Fault is introduced at 2s and Motor 1 velocity ω1 can be
seen dropping to 0. After fault detection at 2.25 seconds, the diagonally opposite motor (Motor 2) is
turned off due to control reallocation, and other motor velocities (ω2 to ω6) start to stabilize. Eventually,
the total thrust output of the motors is increased to compensate for motor failure.
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Figure 4.7: Proposed architecture of the integrated FDI and FTC modules.
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Fig. (4.7) shows the predictions of the Rotation Forest classifier. Prediction value 0 refers to a healthy
state without fault, while values 1 to 6 refer to Motor 1 to Motor 6 fault. Shortly after the introduction
of the fault at 2s, the classifier output changes to 1, referring to a fault in Motor 1.

4.2 Conclusion & Inference

In this chapter, we presented the two modules for Fault Detection & Isolation (FDI) and Fault Tol-
erant Control (FTC) combined together and analyze their performance compared to the case where the
FTC module is run directly after fault injection. With our proposed method, we demonstrate a real-world
solution for detecting a fault and then correcting it by stabilizing the UAV. Factors such as input/output
delay, classifier operational speed, and sampling frequency can cause a delay between the fault occur-
rence and its correction. By integrating the modules, we demonstrate the delay after fault occurrence
and it’s impact on the UAV dynamics. For example, the state variables start to oscillate as soon as the
fault is introduced and can cause the UAV to crash if the delay is too high (above 400 ms in our simula-
tions). It is observed that the FDI module is able to detect and classify the fault within 250 ms and hence
allows the FTC module to stabilize the UAV before it rolls, tips over, or crashes. This is an acceptable
delay in the response, since existing literature considers 500 ms as a pessimistic value for the delay [31].
In real-time, however, the response would be faster due to the PID controller tuning, motor slew rates,
and higher sampling frequency.

4.2.1 Open-source results

Some of the work done related to this thesis has been published in the open-source domain:

• Code repository used to generation of simulation datasets.1

• Dataset repository containing simulation & real flight results datasets for multiple use-cases.2

• Dataset repository used for the FDI module(simulation and real data for training and validation).3

• Dataset generated after running the FTC module.4

1GitHub: https://github.com/Embedded-Fault-Tolerant-Control/rrc_fault_tolerant_
control

2GitHub: https://github.com/Embedded-Fault-Tolerant-Control/rrc_ftc_datasets
3GitHub: https://github.com/Embedded-Fault-Tolerant-Control/

RotationForest-FDI-Dataset
4GitHub: https://github.com/Embedded-Fault-Tolerant-Control/WCA-FTC-Dataset
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Chapter 5

Conclusions

Existing fault management methods for UAVs face significant challenges in terms of real-time fault
detection, isolation, and subsequent control reallocation. The high likelihood of UAV crashes following
motor failures, especially in real flight scenarios, is a pressing issue that has yet to be satisfactorily
addressed. Our research presents a comprehensive solution that not only mitigates these issues, but also
demonstrates practical applicability and effectiveness.

Our proposed method integrates a Rotation Forest classifier for Fault Detection and Isolation (FDI)
and a dynamic control reallocation strategy for Fault Tolerant Control (FTC). The classifier achieves
high accuracy with a true positive rate of 92. 6%, and, remarkably, the fault is identified and classified
within 60 to 180 ms of its occurrence. This quick and accurate response is crucial to trigger subsequent
fault management actions.

In real and simulated environments, our method proved successful in managing single motor faults,
significantly enhancing the resilience of UAV operations. For all cases of single motor failure, the
vehicle is able to continue the mission as defined; i.e. waypoint navigation, landing at a point. In
a limited number of cases, it also demonstrated effectiveness in managing two simultaneous motor
failures. Specifically, in case of faults in motors 3, 6 or motors 4, 5; our proposed method can be used to
safely land the vehicle. In other cases, simultaneous failure in two motors leads to unstable behaviour
and results in a crash. However, comprehensive testing and optimization for all scenarios involving dual
motor faults remain a subject for future research.

The handling of triple motor faults, an extreme scenario, presents another challenge that has yet to
be fully addressed and calls for further analysis and algorithm development. The implications of our
work are profound. Although we observed changes in UAV performance and a slight loss in tracking
efficiency post fault occurrence, our method successfully achieves mid-flight stabilization, drastically
reducing the chances of UAV crashes. Our work provides a solid foundation for future research aiming
to enhance the robustness and safety of UAV operations, particularly in fault-prone or critical environ-
ments.
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Future Work

• Analysis of 2 motor failure cases, its system response and performance. For some cases, real test
flights have already been conducted.

• Analysis of 3 motor failure cases.

• Extension of our work to Quadcopters, where one of the axes will have to be sacrificed in order
to avoid crashing.

57



Related Publications

• Aditya M., Mayank S., Munjaal B., Prudhvi T., Harikumar K, Deepak G. ”Fault Detection and
Isolation on a Hexacopter UAV using a Two-stage classification method” Accepted in IEEE In-
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