
Novel Stochastic Solvers for Image Classification,
Generation, and Further Explorations

Thesis submitted in partial

fulfillment of the requirements of the degree of

Master of Science

in

Computer Science and Engineering

by Research

by

Neel Mishra

2020701017

neel.mishra@research.iiit.ac.in

Advised by Dr. Pawan Kumar

International Institute of Information Technology

Hyderabad - 500032, India

November, 2023

Copyright © Neel Mishra, 2023

All Rights Reserved

International Institute of Information Technology

Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “ Optimizing Minimization

and Minimax with Structural Information, Approximations, and Architectural

Modifications ” by Neel Mishra, has been carried out under my supervision and is not

submitted elsewhere for a degree.

Date Adviser: Dr. Pawan Kumar

Bhagavad Gita (Chapter 3, Verse 8)

Perform your duty, for action is superior to inaction.

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my parents, who have

provided unwavering support throughout my life. In times of difficulty, both my father and

mother have been there for me without hesitation. My father has always been prompt in

addressing any situation, regardless of potential consequences. Their consistent presence

and care have been incredibly valuable to me.

I am deeply thankful to my brother and sister, as they have played distinct roles that

have greatly influenced my life. My brother’s selflessness, always prioritizing others, has

been a guiding light for me. Meanwhile, my sister has been a constant companion since

my childhood. From helping me get ready for school to offering guidance throughout my

journey, her nurturing presence has had a significant impact on shaping my character.

I am indebted to my guide, Dr. Pawan Kumar, whose guidance has been invaluable.

He has not only encouraged me to explore new and daring ideas but has also unwaveringly

believed in my abilities. Even during challenging research endeavors, his unwavering sup-

port and thorough training have given me the confidence to navigate the research process.

I am forever grateful for his mentorship and dedication.

I would also like to express my gratitude to my friends, including Swayatta, Abhinaba,

Ritam, Kinal, Arpan, Rudresh, Kaustabh, Uzefa, Gopichand, Nikhil, Anish, Avneesh,

Ankit, Keshav, and others. Their unwavering support and influence have played a crucial

role in my personal growth and character development. I deeply appreciate their friendship

and the profound impact they have had on my life.

Lastly, I want to express my gratitude to God, whose presence and guidance have been

paramount during my most challenging times. When I believed I had reached a dead end, it

was the glimpse of his grace that helped me persevere and ultimately overcome adversity. I

will always cherish the support and strive to follow the path guided by the divine presence.

v

Abstract

This thesis presents research on deep learning optimization, emphasizing three separate

yet related topics: adaptive learning rates, first-order optimization for generative adver-

sarial networks (GANs), and the effects of label smoothing.

Firstly, we propose a novel approach for obtaining adaptive learning rates in gradient-

based descent methods for classification tasks. Departing from traditional methods that

rely on decayed expectations of gradient-based terms, our approach leverages the angle

between the current gradient and a new gradient computed from the orthogonal direc-

tion. By incorporating angle history, we determine adaptive learning rates that lead to

superior accuracy compared to existing state-of-the-art optimizers. We provide empiri-

cal evidence of convergence and evaluate our approach on diverse benchmark datasets,

employing prominent image classification architectures.

Secondly, we introduce a groundbreaking first-order optimization method tailored specif-

ically for training GANs. Our method builds upon the Gauss-Newton method, approximat-

ing the min-max Hessian, and utilizes the Sherman-Morrison inversion formula to calculate

the inverse. Operating as a fixed-point method that ensures necessary contraction, our ap-

proach produces high-fidelity images with enhanced diversity across multiple datasets. No-

tably, it outperforms state-of-the-art second-order methods, including achieving the highest

inception score for CIFAR10. Additionally, our method demonstrates comparable execu-

tion times to first-order min-max methods.

Furthermore, we investigate the effects of label smoothing on GAN training, examining

various optimizer variants and learning rates. Our research reveals that employing label

smoothing with a high learning rate and the CGD optimizer yields results surpassing the

quality attained by using ADAM with the same learning rate. Importantly, we establish

that label smoothing plays a vital role, as its absence fails to generate comparable re-

sults. We also explore the impact of architectural changes on the generator’s conditioning,

providing valuable insights into the factors influencing GAN performance.

vi

vii

Our research advances the deep learning optimization field by delving into these inter-

connected areas. We present novel methodologies for adaptive learning rates, first-order

optimization for GANs, and the importance of label smoothing. These advancements offer

improved accuracy in classification tasks, enhanced image generation quality, and a deeper

understanding of the nuances of GAN training.

Research Papers from the Thesis Work

Conference Papers

1. Neel Mishra, Pawan Kumar ”Angle Based Dynamic Learning Rate for Gradient

Descent”, International Joint Conference on Neural Networks (IJCNN),

2023

2. Neel Mishra, Sukhjinder Kumar, Bamdev Mishra, Pratik Jawanpuria, ”A Gauss-

Newton Approach for Min-Max Optimization in GANs”, Submitted at WACV,

2023

viii

Contents

Chapter Page

1 Introduction . 1

1.1 Motivation . 1

1.2 Problem Addressed . 2

1.3 Challenges . 3

1.4 Contributions . 3

2 Literature Survey . 5

2.1 Introduction to Optimization . 5

2.2 Non stochastic optimization techniques . 5

2.2.1 Gradient Descent . 5

2.2.2 Newton’s Method . 7

2.2.3 Krylov subspace solvers . 8

2.2.3.1 Conjugate Gradient(CG) Method 9

2.3 Stochastic Optimization . 11

2.3.1 Introduction . 11

2.3.2 Non-Convexity . 12

2.3.3 Stochastic Gradient Descent (SGD) 13

2.3.4 RMSprop : Root Mean Square Propagation 15

2.3.5 Adam : Adaptive Moment Estimation 15

2.3.6 Other notable stochastic solvers . 16

2.3.7 Regularization . 17

2.3.8 L1 Regularization (Lasso) . 17

2.3.8.1 L2 Regularization (Ridge) 17

2.3.8.2 Elastic Net Regularization 18

2.4 Wolfe conditions . 18

2.4.1 Sufficient Decrease Condition . 18

2.4.2 Curvature Condition . 19

2.5 Techniques for Stochastic Minimax Optimization 20

2.5.1 Formulation . 20

ix

x CONTENTS

2.5.2 Optimistic Gradient Descent Ascent (OGDA) 22

2.5.3 Extra Gradient Method (EG) . 23

2.5.4 Follow the Ridge (FR) . 24

2.5.5 Competitive Gradient Descent (CGD) 24

2.5.6 Implitict Competitive Regularization in GANs 26

2.5.7 Consensus Optimization . 28

2.5.8 Minimax optimization on Riemannian manifolds 28

2.6 Techniques for improved Deep Learning Training 29

2.6.1 Label smoothing . 29

2.6.1.1 Modified Cross-Entropy Loss 30

2.6.2 Early stopping . 31

2.6.3 Embedding layers . 32

2.6.4 Data normalization . 33

2.6.4.1 Min-Max Scaling . 34

2.6.4.2 Z-score Normalization . 34

2.6.4.3 Decimal Scaling . 34

2.6.4.4 Log Transformation . 34

2.6.4.5 Unit Vector Scaling . 35

3 Angle based dynamic learning rate for gradient descent 36

3.1 Formulation . 36

3.2 Experiments on Some Toy Examples . 38

3.2.1 Toy Example A . 38

3.2.2 Toy Example B . 39

3.3 Convergence Results . 40

3.4 Numerical results . 43

3.5 Code Repository . 47

3.6 Ablation study . 47

3.7 Experimental Setup . 47

3.8 Hyper-parameters tuning setup . 47

4 A Gauss-Newton Approach for Min-Max Optimization in GANs 55

4.1 Formulation . 55

4.2 Algorithm . 57

4.3 Fixed point iteration and convergence . 58

4.4 Numerical results . 62

4.4.1 Experimental setup . 62

4.4.2 Image generation on grey scale images 63

4.4.3 Image generation on color images . 65

4.5 Computational complexity and timing comparisons 67

CONTENTS xi

5 Other explorations . 68
5.1 An attempt to overcome momentum . 68
5.2 Implicit Label Smoothing Regularization (ILSR) 69
5.3 Disentangled representation learning . 70
5.4 Inducing Mode limiting with the Embedding Layer 72

6 Conclusion and Future Work . 74

List of Figures

Figure Page

2.1 Comparison of GDA (top row) and OGDA (bottom row) techniques for the
function F (X,Y) = XY . The top row shows sequential and simultane-
ous implementations of GDA, while the bottom row depicts sequential and
simultaneous implementations of OGDA. 22

2.2 EG update . 23

2.3 The distribution of eigenvalues before (top two) and after (bottom two)
training using consensus optimization, as observed empirically [52]. 29

3.1 Illustration of one iteration of the proposed method. 36

3.2 Progression of angles with increasing epochs on CIFAR 10 dataset. We
observe that for most of the architectures, except of epochs less than 10, the
angles are between 0-2 degrees. This is configured in such a way because
too less of an angle and the cot becomes unstable, and attempting to have
larger angles by having a larger h can lead to g1 and g2 (See Figure 14) in
the algorithm 14, to lie in different localities. 38

3.5 Accuracy plots versus epochs for image classification on the CIFAR-10 dataset.
Our method is represented by dark purple curve, which is an average over
3 runs. The variance observed is not much around the mean. On DLA we
observe a significantly better accuracy. On other architectures, our method
maintains the highest accuracy. 44

3.6 Accuracy plots versus epochs for image classification on CIFAR-100 dataset.
Our method is represented by dark purple curve. Except for ResNet50 and
VGG16, our method achieves the highest accuracy. The accuracy plots for
longer number of epochs is shown in Figure 3.7. For hyper-parameters and
ablation study, please refer to supplementary material. 46

3.7 Accuracy versus epochs plot for image classification for CIFAR-100 results
for 300 epochs. We verify that on long term our method maintains high
accuracy, and most methods start to stagnate from epochs 100 onwards. . . 46

3.8 Ablation study of our method on CIFAR-10 54

xii

LIST OF FIGURES xiii

4.1 Results for CIFAR10. 62
4.3 Images generated for MNIST. Samples inside white box show mode-collapse. 64
4.4 Images generated for Fashion MNIST. Samples inside white box show mode-

collapse. 65
4.5 Images generated by our method on LSUN-tower and LSUN-bridges. 66
4.6 Images generated by our method on FFHQ and LSUN-classroom. 66

5.1 Performance comparison between CGD with and without label smooth-
ing(LS) on MNIST, Fashion MNIST, and CIFAR datasets. 69

5.2 Implicit label smoothing supported generator 69
5.3 Good diversity, and mixing of modes from our method which is due to better

disentangling . 71
5.4 Performance of ILSR on MNIST, FMNIST, and CIFAR 72
5.5 Learning can be restricted to few modes when number of rows of the em-

bedding layers are restricted. 73

List of Tables

Table Page

3.1 Results on mini-ImageNet dataset. Since ImageNet is a relatively large
dataset, we have results on EfficientNet only. We observe that our method
has the best accuracy for two variants shown in bold, and the second best
results for the other two variants shown as underlined. Despite hyperparam-
eter tuning, most other methods except vanilla SGD perform poorly. 43

3.2 Overall accuracies on CIFAR-10 first 100 epochs. The best results are in
bold, and second best is underlined. We find that our method has the best
accuracy among all the methods compared. Here RN stands for ResNet,
D121 is DenseNet-121, and DLA is Deep Layer Aggregation. 43

3.3 Overall accuracies on CIFAR-100 first 100 epochs. The best results are
shown in bold, and the second best results are underlined. We observe that
our method has the best results on four architectures and the second best on
one architecture. Here RN stands for ResNet, D121 is DenseNet-121, and
DLA is Deep Layer Aggregation. 45

3.4 Hyperparameter for ResNet-18 architecture. 48

3.5 Hyperparameter for ResNet-34 architecture. 48

3.6 Hyperparameter for ResNet-50 architecture. 49

3.7 Hyperparameter for DenseNet-121 architecture. 49

3.8 Hyperparameter for VGG-16 architecture. 49

3.9 Hyperparameter for DLA architecture. 50

3.10 Hyperparameter for ResNet-18 architecture. 51

3.11 Hyperparameter for ResNet-34 architecture. 51

3.12 Hyperparameter for ResNet-50 architecture. 51

3.13 Hyperparameter for DenseNet-121 architecture. 52

3.14 Hyperparameter for VGG16 architecture. 52

3.15 Hyperparameter for DLA architecture. 52

3.16 Hyperparameter for Mini-ImageNet . 53

xiv

LIST OF TABLES xv

4.1 Generator architecture for MNIST and FashionMNIST experiments. Here
Conv1, Conv2, and Conv3 are convolution layers with batch normalization
and ReLU activation, Conv4 is a convolution layer with Tanh activation. . . 61

4.2 Discriminator architecture for MNIST and FashionMNIST experiments. Here
Conv1 is a convolution layer with LeakyReLU activation, Conv2, and Conv3
are convolution layers with batch normalization and ReLU activation, Conv4
is a convolution layer with sigmoid activation. 61

4.3 Generator architecture for CIFAR10 experiments. Here Conv1, Conv2, and
Conv3 is a convolution layer with batch normalization and ReLU activation,
Conv4 is a convolution layer with Tanh activation. 63

4.4 Discriminator architecture for CIFAR10 experiments. Here Conv1 is a con-
volution layer with LeakyReLU activation, Conv2 and Conv3 is a convolu-
tion layer with batch normalization, and LeakyReLU activation, Conv4 is a
convolution layer with sigmoid activation. 64

4.5 Timings and inception scores across multiple runs. 67

Chapter 1

Introduction

“The greatest glory in living lies not in never falling, but in rising every

time we fall.”

-Nelson Mandela

The quote’s emphasis on persistence and perseverance in the face of

failure reflects the iterative nature of numerical optimization, which in-

volves a series of ups and downs in the solver’s trajectory. It’s crucial

to maintain resilience and learn from setbacks to refine the optimization

approach and eventually reach the optimal solution.

1.1 Motivation

Numerical optimization is a powerful tool that has found its applications in a variety of

sectors including science, engineering, economics, and many others.

The primary motivation for numerical optimization is to improve efficiency and perfor-

mance in various applications. In engineering and physics, optimization is used to design

structures, devices, and systems that are more energy-efficient, safer, and more reliable, and

in chemical engineering, optimization is used to design chemical processes that maximize

the yield of a desired product while minimizing the use of raw materials and energy.

Numerical optimisation is often used in artificial intelligence to train models that are

capable of performing a variety of tasks, including as image recognition, natural language

1

processing, and autonomous navigation. By optimizing the parameters of these models, we

can improve their accuracy, speed, and generalization capability. In conclusion, numerical

optimization is a critical tool for solving many complex problems in various domains. Its

applications are widespread and diverse, and its benefits are significant. As such, numerical

optimization is an area that will continue to attract significant attention and research in

the future.

Minimax optimization is a branch of optimization that has gained significant attention

in various fields, including game theory, control theory, machine learning, and many others.

The objective of minimax optimization is to find a solution that minimizes the maximum

possible loss, given certain constraints and objectives. This approach is particularly useful

in situations where the worst-case scenario needs to be taken into account, such as in

competitive settings or in uncertain environments.

One of the main motivations for minimax optimization is to provide robust solutions that

can withstand worst-case scenarios. In game theory, for instance, minimax optimization is

used to determine optimal strategies for two or more players in a zero-sum game. A zero-

sum game is a situation where one player’s gain is the other player’s loss. The objective

of each player is to minimize their maximum possible loss, which can be achieved by

maximizing their minimum possible gain. This approach ensures that the player’s strategy

is robust against any strategy that the opponent might choose.

1.2 Problem Addressed

Line search methods are an essential component of optimization algorithms that seek

to identify the optimal learning rate for a given objective function. However, traditional

line search methods can be time-consuming and may require many iterations to converge

to a satisfactory solution. Our approach provides an alternative to these methods by using

structural information and an additional gradient to enable a more efficient line search.

In addition to improving line search methods, we have also focused on developing solvers

to facilitate better GAN training. Second-order solvers that compute a form of full Newton

method can be quite effective in GAN training, but they are also notoriously slow. We

have created a solver to deal with this problem, our solver can approximate a second-order

solution while maintaining the execution complexity of a first-order method.

In addition to improving line search methods and developing efficient solvers, we have

also explored label smoothing in GAN training. While label smoothing can mitigate the

2

need for momentum in some cases, we have found that in certain scenarios, momentum is

absolutely necessary to enable the training of GANs that generate meaningful images. Our

research has identified the limitations of label smoothing and shown where momentum is

needed to compensate for these limitations. By understanding the interactions between

label smoothing and momentum, we can develop more effective strategies for GAN training

that can overcome these limitations and generate high-quality images. Our research has

also examined how various architectural changes in the embedding layer can affect GAN

training. Surprisingly, we discovered that restricting the embedding layer’s number of

layers can actually reduce the range of modes that a GAN can learn.

In summary, our research has focused on developing more efficient and effective methods

for line search and GAN training. By leveraging structural information and examining the

effects of label smoothing and architectural changes, we have made significant strides in

improving these critical optimization processes.

1.3 Challenges

• Line search methods take a long time to find the optimal learning rate.

• Second order solvers that compute a form of full Newton take an excruciatingly long

time to train, which can be a significant challenge for GAN training.

• The development of an efficient solver that approximates a second-order solution, but

with the execution complexity of a first-order method, is a challenging task.

• Most solvers for GANs use momentum, but it is unclear whether it is possible to

remove momentum altogether and still achieve good performance.

1.4 Contributions

• Development of a method that improves line search by exploiting structural informa-

tion using an additional gradient.

• Design of an efficient solver for GAN training that approximates a second-order

solution, while maintaining the execution complexity of a first-order method.

3

• Exploration of label smoothing as a strategy for GAN training and identification of

its limitations.

• Analysis of the interactions between label smoothing and momentum, and identifi-

cation of scenarios where momentum is necessary for GAN training.

• Investigation of the effects of architectural changes in the embedding layer on GAN

training and identification of a surprising result that reducing the number of layers

can limit the number of modes that a GAN can learn.

4

Chapter 2

Literature Survey

2.1 Introduction to Optimization

A constrained optimization problem is formulated as follows [57, Equation 1.1]:

minimize f(x)

subject to gi(x) ≤ 0, i = 1, 2, . . . ,m

hj(x) = 0, j = 1, 2, . . . , p,

where x ∈ Rn is the vector of decision variables, f(x) is the objective function to be

minimized, gi(x) are the inequality constraints, and hj(x) are the equality constraints. The

problem is to find the values of x that minimize f(x) subject to the constraints gi(x) ≤ 0

and hj(x) = 0.

2.2 Non stochastic optimization techniques

2.2.1 Gradient Descent

A popular optimisation technique for locating a function’s minimum is gradient descent.

Gradient descent works by iteratively updating the values of the choice variables in the

direction of the objective function’s negative gradient. In other words, the algorithm tries

to find the steepest descent direction at each iteration and moves the decision variables in

that direction to reach the minimum of the function. The gradient of the objective function

5

f(x) is defined as the vector of partial derivatives with respect to each decision variable:

∇f(x) =
[

∂f
∂x1

∂f
∂x2

. . . ∂f
∂xn

]
. (2.1)

The gradient descent algorithm starts with an initial guess of the decision variable values,

denoted as x(0). At each iteration k, the algorithm updates the decision variable values

using the following update rule:

x(k+1) = x(k) − αk∇f(x(k)),

where αk is the step size or learning rate at iteration k. The learning rate determines the

size of the step taken in the descent direction and contributes much to the convergence of

the algorithm. The algorithm may converge very slowly if the learning rate is too low, and it

may fail to converge or even diverge if it is too high. The update rule for gradient descent

can be interpreted as follows: at each iteration, the algorithm determines the negative

gradient of the objective function at the current point and scales the decision variables in

that direction. The algorithm continues to iterate until it reaches a stopping criterion, such

as a maximum number of iterations or a small enough change in the objective function

value. Gradient descent has a number of variations, such as batch, stochastic, and mini-

batch gradient descents, which vary in how the gradient is computed and the size of the

updates. While stochastic gradient descent only uses one randomly chosen data point at

a time, batch gradient descent computes the gradient utilising all of the data points. A

middle ground between the two is mini-batch gradient descent, in which the gradient is

calculated using a very small batch of data points at each iteration.

Algorithm 1 Gradient Descent Algorithm

Require: Initial guess x(0), learning rate η, tolerance ϵ
Ensure: Optimal solution x∗

1: Initialize k ← 0
2: repeat
3: Compute gradient ∇f(x(k))
4: Update variables: x(k+1) ← x(k) − αk∇f(x(k))
5: k ← k + 1
6: until ||∇f(x(k))|| ≤ ϵ

6

In the algorithm 1, the objective function is denoted as f(x), where x is the decision

variable vector. The gradient of the objective function is denoted as ∇f(x), which is a

vector of partial derivatives with respect to each decision variable. The initial guess of the

decision variable values is denoted as x(0). The decision variable values at each iteration

are denoted as x(k). The step size or learning rate at iteration k is denoted as αk. The

stopping criterion is a condition that determines when to stop the iteration process, such

as a maximum number of iterations or a small enough change in the objective function

value. The optimal solution is denoted as x∗.

2.2.2 Newton’s Method

Newton’s method is an iterative method that requires the computation of the func-

tion’s first and second derivatives, denoted as ∇f(x) and ∇2f(x) respectively. Iteratively

updating the decision variables is done using a second-order Taylor approximation of the

objective function. The fundamental principle of Newton’s approach is to solve for the

minimum of the quadratic function that is used to approximate the objective function at

each iteration. The decision variables are updated by subtracting the inverse of the Hessian

matrix, multiplied by the gradient vector, from the current decision variable values. The

Hessian matrix is denoted as H(x), which is a symmetric positive definite matrix if the

objective function is convex.

The Newton’s method algorithm can be written as follows:

Algorithm 2 Newton’s Method Algorithm

Require: Initial guess x(0), tolerance ϵ
Ensure: Optimal solution x∗

1: Initialize k ← 0
2: repeat
3: Compute gradient and Hessian: ∇f(x(k)) and H(x(k))
4: Solve for p: H(x(k))p = −∇f(x(k))
5: Update variables: x(k+1) ← x(k) + αkp
6: k ← k + 1
7: until ||∇f(x(k))|| ≤ ϵ

In this algorithm, the initial guess of the decision variable values is denoted as x(0), and

the decision variable values at each iteration are denoted as x(k). The Hessian matrix is

denoted as H(x). The step direction at each iteration, denoted as p, is obtained by solving

7

the linear system of equations

H(x(k))p = −∇f(x(k)).

Newton’s method is known to converge quadratically [57, Theorem 3.5] when the objec-

tive function is twice continuously differentiable and has a positive definite and Lipschitz

continous Hessian matrix. The Hessian matrix must be positive definite for the inverse

to exist, and computing it can be computationally expensive. Therefore, modifications

to Newton’s method have been proposed, such as the quasi-Newton methods, which ap-

proximate the Hessian matrix instead of computing it exactly, or the Newton-CG method,

which uses a conjugate gradient method to solve for the step direction instead of solving a

linear system of equations.

It is also worth noting that Newton’s method can be extended to handle constraints by

using constrained optimization techniques such as the interior-point method or the aug-

mented Lagrangian method. These methods incorporate the constraints into the objective

function and use Newton’s method to find the optimal solution subject to the constraints.

Newton’s method is a robust optimization algorithm that can converge quickly to the

optimal solution if certain conditions are met. However, it can also be computationally

expensive and sensitive to the choice of initial guess. Therefore, it is important to carefully

consider the problem at hand and choose the appropriate optimization algorithm for the

specific application.

2.2.3 Krylov subspace solvers

Krylov subspace methods are iterative algorithms used to solve large sparse systems of

linear equations of the form Ax = b, where A is a large, sparse matrix, b is a vector of

constants, and x is the unknown solution vector. These techniques are especially helpful

for resolving problems where A is either too big to fit in memory or requires too much

processing power to directly invert.

The key idea behind Krylov subspace methods is to construct a sequence of subspaces

Kn of increasing dimension that are generated by repeated multiplication of A by a given

vector. The vectors in Kn are then used to construct an approximate solution to the linear

system.

8

Conjugate gradient (CG) is a common Krylov subspace technique [49, Chapter 2]. The

CG method is made to solve symmetric positive-definite systems, which are widespread

in many applications, including optimisation and finite element analysis issues. The CG

method generates a sequence of vectors x1, x2, . . . , xn that converge to the exact solution

x.

2.2.3.1 Conjugate Gradient(CG) Method

The CG method works by iteratively minimizing the residual rk = b − Axk over the

subspace Kk, where xk is the current approximate solution. The search directions are

chosen to be conjugate with respect to the matrix A, meaning that the dot product of any

two search directions is zero. This property ensures that the algorithm converges in at

most n iterations, where n is the size of the system.

The Conjugate Gradient (CG) algorithm is derived by minimizing the error function

ϕ(x) in the A-norm, as shown in the Equation (2.2)

ϕ(x) =
1

2
xTAx− bTx. (2.2)

To minimize ϕ(x), we need to find a set of search directions p1, p2, . . . , pn that are

mutually conjugate with respect to the matrix A, i.e they must satisfy the Equation (2.3):

pTi Apj = 0 for i ̸= j. (2.3)

We also need to find a set of step sizes α1, α2, . . . , αn that minimize ϕ(x) in the A-norm

along each search direction pi. We can find these step sizes by solving the Equation (2.4),

which is a one-dimensional (in α) optimization problem:

αi = arg min
α∈R

ϕ(xi + αpi). (2.4)

To solve this optimization problem, we differentiate ϕ(xi + αpi) with respect to α and

set the derivative equal to zero:

d

dα
ϕ(xi + αpi) = (xi + αpi)

TApi − bT pi = 0. (2.5)

Solving for α yields:

9

αi =
rTi ri

pTi Api
, (2.6)

where ri = b−Axi is the residual vector at iteration i.

Using these step sizes, we can update our approximation of the solution as follows:

xi+1 = xi + αipi. (2.7)

Substituting this into the definition of the residual vector, we get:

ri+1 = b−Axi+1

= b−A(xi + αipi)

= b−Axi − αiApi

= ri − αiApi.

To ensure that our search directions are mutually conjugate, we need to update our

search direction as follows:

pi+1 = ri+1 + βipi. (2.8)

Substituting the expression for pi+1 as pi, and pi as pj in the equation (2.3), we get:

(ri+1 + βipi)
TApi = 0.

Expanding and simplifying this expression, we get:

βi = −
rTi+1Api

pTi Api
.

Incorporating all of this will give the CG algorithm that is shown in the Algorithm (3).

10

Algorithm 3 Conjugate Gradient Method

Require: Linear system Ax = b, initial guess x0, tolerance ϵ, and symmetric A
Ensure: Solution x
1: r0 = b−Ax0

2: p0 = r0
3: k = 0
4: while ∥rk∥ > ϵ do

5: αk =
rT
k rk

pT
k Apk

6: xk+1 = xk + αkpk

7: rk+1 = rk − αkApk

8: βk+1 =
rT
k+1rk+1

rT
k rk

9: pk+1 = rk+1 + βk+1pk

10: k = k + 1
11: end while
12: return xk

2.3 Stochastic Optimization

2.3.1 Introduction

Stochastic optimization is a crucial field in machine learning that deals with finding

optimal solutions to problems that involve uncertainty. The importance of stochastic op-

timization in machine learning arises from the fact that many real-world machine learning

problems are inherently stochastic. Additionally, in deep learning, the stochastic gradient

descent algorithm is widely used to optimize the parameters of the neural network, which

involves randomly selecting mini-batches of data to update the parameters.

Stochastic optimization provides a powerful framework for modeling and solving such

problems by taking into account the randomness and uncertainty in the problem formula-

tion. It allows for the incorporation of probabilistic models and statistical methods into the

optimization process, which can lead to more robust and reliable solutions. Furthermore,

stochastic optimization can help in exploring the solution space more efficiently and effec-

tively, by leveraging the randomization in the optimization process to escape local optima

and discover better solutions.

In summary, stochastic optimization is an essential tool in machine learning for address-

ing real-world problems that involve randomness and uncertainty. Its ability to model and

11

solve such problems can lead to more robust and reliable solutions, and can also help in

exploring the solution space more efficiently and effectively.

The stochastic objective function is defined as:

J(θ) =
1

N

N∑
i=1

fi(θ) + λR(θ), (2.9)

where θ is a vector of model parameters, N is the number of data samples, fi(θ) is

the loss function associated with the i-th sample, R(θ) is a regularization term, and λ is a

hyperparameter controlling the strength of regularization.

2.3.2 Non-Convexity

A non-convex function is one that doesn’t satisfies the conditions of convexity mentioned

in [8, Chapter 3]. Non-convexity, therefore, means that the function has some regions where

the curvature is negative or flat, leading to multiple local minima and maxima. This can

create problems in optimization because finding the global minimum or maximum of a

non-convex function can be challenging.

The implications of non-convexity for optimization are significant because many real-

world problems involve non-convex objective functions. Non-convexity can arise due to

complex interactions between variables or nonlinear constraints, making the optimization

problem much harder to solve. Moreover, finding the global optimum for non-convex

functions is challenging since these functions may have several local optima.

To optimize non-convex functions, we need to use specialized algorithms that can deal

with non-convexity. These algorithms can broadly be classified into two categories: de-

terministic and stochastic. Deterministic methods, such as gradient descent and Newton’s

method, search for the optimum by iteratively improving an initial solution. Stochastic

methods, such as simulated annealing and genetic algorithms, use randomization to explore

the search space and find the global optimum. Stochasticity and non-convexity can create

a challenging and unpredictable training environment for machine learning models.

The challenges of optimizing non-convex objective functions include:

1. Several local optima: Finding the global optimum of non-convex functions is

difficult because these functions might have several local optima.

12

2. Computational item complexity: The computational complexity of finding the

global optimum increases exponentially with the number of variables, making it chal-

lenging to optimize high-dimensional non-convex functions.

3. Initialization: The performance of many optimization algorithms depends heavily

on the initial solution. Finding a good initial solution for non-convex functions can

be challenging, and the quality of the solution can affect the convergence rate.

4. Convergence: Non-convex optimization algorithms can converge to a local optimum

instead of a global one, making it difficult to guarantee the solution’s optimality.

In summary, non-convexity refers to functions that do not satisfy convexity conditions,

leading to multiple local optima and challenging optimization. While stochasticity can

introduce randomness and variability in the training process, non-convexity can make find-

ing the optimal model parameters difficult. To overcome these challenges, specialized

algorithms must deal with non-convexity and stochasticity.

2.3.3 Stochastic Gradient Descent (SGD)

The optimisation method known as Stochastic Gradient Descent (SGD) is utilised fre-

quently for training machine learning models with stochastic objective functions. The

fundamental concept of SGD is to update the model parameters in the direction of the

objective function’s negative gradient, which is computed using a mini-batch—a small

batch—of training data that is randomly chosen. The update rule for SGD can be ex-

pressed as:

θt+1 = θt − α∇f(θt, xi:t), (2.10)

where θt is the parameter vector at time step t, f(θt, xi:t) is the objective function evaluated

at θt using a mini-batch of data points xi:t, ∇f(θt, xi:t) is the gradient of the objective

function with respect to θt, and α is the learning rate, which determines the step size

for the update. In practice, SGD is typically used with a variant known as mini-batch

SGD, where the objective function is evaluated using a small batch of data points at each

iteration. This can help to reduce the variance of the gradient estimate and improve

convergence. Mini-batch SGD can be summarized as follows:

1. Randomly sample a mini-batch of data points xi:t

13

2. Compute the gradient estimate ∇f(θt, xi:t)

3. Update the parameters using the SGD update rule

4. Repeat until convergence

Overall, SGD is a simple but effective optimization technique for training machine learning

models with stochastic objective functions. Its ease of implementation and scalability

to large datasets have made it a popular choice for many applications, including, but

not limited to image classification [46, 74], object detection [61, 63], natural language

processing [11, 79], speech recognition [1, 23], recommender systems [42, 64], neural machine

translation [3, 85], video analysis [19, 82], generative models [22, 67], reinforcement learning

[54, 55], adversarial attacks [27, 31], semi-supervised learning [58, 38], transfer learning [16,

10], online learning [77, 79], federated learning [59, 68], graph neural networks [66], Bayesian

deep learning[62, 26]. Momentum is a technique used to accelerate the convergence of

Stochastic Gradient Descent (SGD). It helps the optimizer to move faster towards the

minimum of the loss function by accumulating the previous gradients. The momentum

technique updates the gradient descent with a fraction of the previous gradient. This

fraction is a hyperparameter called momentum coefficient, denoted by γ. The update rule

for the momentum technique is as follows:

vt = γvt−1 + η∇f(θt−1, xi:t),

where vt is the current velocity, η is the learning rate, ∇f(θt−1, xi:t) is the gradient of the

loss function with respect to the parameters θ. The velocity is initialized to zero v0 = 0.

Then the parameters are updated as follows:

θt = θt−1 − vt.

The momentum technique helps to dampen the oscillations in the gradient descent path,

which allows the optimizer to take larger steps in the correct direction. This technique is

particularly useful for high-dimensional optimization problems with a lot of noise in the

gradients.

14

2.3.4 RMSprop : Root Mean Square Propagation

In the lecture 6 of the online course “Neural Networks for Machine Learning” [78],

RMSprop was first introduced. It is an optimization algorithm that adapts the learning

rate for each parameter during training. It adapts the learning rates based on the his-

torical gradient information, which allows it to converge faster and handle noisy gradients

effectively.

Algorithm 4 RMSprop Optimization Algorithm

1: Initialize parameters: θ0, moving average of squared gradients v0, time step t = 0
2: Set hyperparameters: α (learning rate), β (exponential decay rate), ϵ (small constant

to prevent division by zero)
3: while not converged do
4: Increment time step: t← t + 1
5: Randomly sample a mini-batch of data points xi:t
6: Compute the gradient: ∇f(θt−1, xi:t)
7: Update moving average of squared gradients: vt ← βvt−1 + (1− β)(∇f(θt−1, xi:t))

2

8: Update parameters: θt ← θt−1 − α
∇f(θt−1, xi:t)√

vt + ϵ
9: end while

In the algorithm 9, θt represents the parameter vector at time step t, f(θt, xi:t) is the

objective function evaluated using a mini-batch of data points xi:t, and ∇f(θt−1, xi:t) is

the gradient of the objective function with respect to θt−1. The hyperparameters α, β, and

ϵ control the learning rate, the exponential decay rate, and a small constant to prevent

division by zero.

2.3.5 Adam : Adaptive Moment Estimation

In their work Kingma and Ba introduced Adam which is an optimization algorithm that

combines the benefits of both momentum and RMSprop. It is widely used for training deep

learning models. Adam dynamically adapts the learning rates for each parameter, making

it well-suited for non-convex optimization problems.

The Algorithm of Adam is summarized in Algorithm 5, θt represents the parameter

vector at time step t, f(θt, xi:t) is the objective function evaluated using a mini-batch of

data points xi:t, and ∇f(θt−1, xi:t) is the gradient of the objective function with respect

to θt−1. The hyperparameters α, β1, β2, and ϵ control the learning rate, the exponential

15

Algorithm 5 Adam Optimization Algorithm

1: Initialize parameters: θ0, first moment vector m0, second moment vector v0, time step
t = 0

2: Set hyperparameters: α (learning rate), β1 (exponential decay rate for the first mo-
ment), β2 (exponential decay rate for the second moment), ϵ (small constant to prevent
division by zero)

3: while not converged do
4: Increment time step: t← t + 1
5: Randomly sample a mini-batch of data points xi:t
6: Compute the gradient: ∇f(θt−1, xi:t)
7: Update first moment estimate: mt ← β1mt−1 + (1− β1)∇f(θt−1, xi:t)
8: Update second moment estimate: vt ← β2vt−1 + (1− β2)(∇f(θt−1, xi:t))

2

9: Correct for bias in first moment: m̂t ←
mt

1− βt
1

10: Correct for bias in second moment: v̂t ←
vt

1− βt
2

11: Update parameters: θt ← θt−1 − α
m̂t√
v̂t + ϵ

12: end while

decay rates for the first and second moments, and a small constant to prevent division by

zero.

Adam’s adaptive learning rates, along with the momentum and RMSprop-like mech-

anisms, make it a popular choice for training deep neural networks. It helps accelerate

convergence and handle noisy or sparse gradients effectively. Other variants of Adam for

deep learning are NADAM [17], Rectified Adam (RAdam) [50], Nostalgic Adam [32], and

AdamP [28].

2.3.6 Other notable stochastic solvers

Dubey et al. introduced a stochastic solver diffGrad, which uses a friction coefficient

called diffGrad friction coefficient (DFC); They compute this coefficient using a non-linear

sigmoid function on the change in gradients of current and immediate past iteration. Ad-

abelief [91], another popular optimizer uses the square of the difference between the current

gradient and the current exponential moving average to scale the current gradient. Many

of the popular optimizers have played around with these four properties, namely, momen-

tum, a decaying average of gradients or weight updates, gradient scaling, and a lookahead

vector to derive their gradient update rules.

16

There have been few papers that have considered the angle information between suc-

cessive gradients. Song et al. tries to correct the obtained gradient’s direction by using

the angle between the successive current and the past gradients. Roy et al. have also used

the angle between successive gradients, but they control the step size based on the angle

obtained from previous iterations and use it to calculate the angular coefficient, essentially

the tanh of the angle between successive gradients. They claim that it reduces the oscilla-

tions between the successive gradient vectors; they also combine the gradient scaling, like

RMSprop, and the expected weighted average of gradients as in ADAM.

2.3.7 Regularization

Optimization problems involving non-convex functions are notoriously challenging due

to the presence of multiple local minima and non-linearities. Traditional optimization

methods often struggle to converge to the global minimum in such cases. Regularization

techniques offer a powerful approach to mitigate these issues and improve the optimiza-

tion process. By introducing additional terms or constraints to the objective function,

regularization methods guide the optimization algorithm towards better solutions.

2.3.8 L1 Regularization (Lasso)

L1 regularization, also known as Lasso regularization, is a technique that adds the ab-

solute values of the model’s coefficients as a penalty term to the objective function. It

encourages sparsity in the solution by driving some coefficients to zero. The L1 regulariza-

tion term can be defined as:

RL1(w) = λ
n∑

i=1

|wi|, (2.11)

where w is the vector of model coefficients, wi represents the i-th coefficient, and λ is

the regularization parameter that controls the strength of the penalty.

2.3.8.1 L2 Regularization (Ridge)

L2 regularization, also known as Ridge regularization, adds the squared magnitudes of

the model’s coefficients to the objective function. Unlike L1 regularization, L2 regulariza-

tion encourages small but non-zero values for all coefficients. The L2 regularization term

can be defined as:

17

RL2(w) = λ
n∑

i=1

w2
i , (2.12)

where w and wi have the same meaning as in L1 regularization, and λ is the regular-

ization parameter.

2.3.8.2 Elastic Net Regularization

Elastic Net regularization combines L1 and L2 regularization techniques to leverage

their respective advantages. It adds both the absolute values and the squared magnitudes

of the model’s coefficients to the objective function. The Elastic Net regularization term

can be defined as:

RElasticNet(w) = λ1

n∑
i=1

|wi|+ λ2

n∑
i=1

w2
i , (2.13)

where w, wi, λ1, and λ2 have the same meaning as in L1 and L2 regularization.

2.4 Wolfe conditions

The Wolfe conditions are a set of criteria used in line search methods to ensure the

sufficient decrease and curvature properties of the step size. These conditions are com-

monly employed to determine an appropriate step length that guarantees convergence and

maintains progress towards the optimal solution.

2.4.1 Sufficient Decrease Condition

The sufficient decrease condition, also known as the Armijo condition, ensures that the

step size significantly decreases the objective function value. It is defined as follows:

f(x + αd) ≤ f(x) + c1α∇f(x)Td, (2.14)

where α represents the step length, x is the current solution point, d is the search

direction, f(x) is the objective function value at x, ∇f(x) is the gradient of f at x, and

c1 is a constant satisfying 0 < c1 < 1.

18

The basic idea behind the sufficient decrease condition is to ensure that the step size

decreases the objective function value that is proportional to the step length and aligned

with the gradient direction. If this condition is not satisfied, the step length is reduced

until the condition holds.

2.4.2 Curvature Condition

The curvature condition, also known as the curvature condition or the strong Wolfe

condition, ensures that the step size does not lead to excessive curvature in the objective

function. It is defined as follows:

∇f(x + αd)Td ≥ c2∇f(x)Td, (2.15)

where ∇f(x+αd) represents the gradient of f at x+αd, and c2 is a constant satisfying

c1 < c2 < 1.

The curvature condition ensures that the step size does not result in excessive growth

or sharp turns in the objective function. It verifies that the slope of the objective function

in the new point is sufficiently aligned with the search direction. If this condition is not

met, the step length is adjusted accordingly.

Algorithm 6 Wolfe Line Search Algorithm

Require: Initial solution x, search direction d, constants c1 and c2
1: Initialize step length α
2: Compute initial function value f(x) and gradient ∇f(x)
3: while Wolfe conditions are not satisfied do
4: Compute f(x + αd) and ∇f(x + αd)
5: if Sufficient decrease condition is not satisfied then
6: Reduce step length: α← α/2
7: else
8: if Curvature condition is not satisfied then
9: Increase step length: α← α× 2

10: end if
11: end if
12: end while
13: Return Step length α

19

Advantages

1. Balanced trade-off : The Wolfe conditions strike a balance between ensuring a

sufficient decrease in the objective function value and controlling the curvature of

the function. By satisfying both conditions, the chosen step size tends to lead to

convergence to a good solution.

2. Convergence guarantee: The strong Wolfe conditions, in particular, provide strong

convergence guarantees for optimization algorithms. By imposing stricter criteria,

these conditions ensure rapid convergence to a local minimum.

3. Safety margin: The Wolfe conditions introduce safety margins through the con-

stants c1 and c2. These margins provide flexibility in selecting step sizes and help

prevent overshooting or oscillation during the optimization process.

Disadvantages

1. Computational cost: Implementing the Wolfe conditions requires additional com-

putations, such as evaluating the objective function and its gradient at each step

length. This can increase the computational cost of the optimization algorithm.

2. Sensitivity to constants: The Wolfe conditions depend on the choice of the con-

stants c1 and c2. Different values of these constants can lead to variations in the

convergence behavior and performance of the optimization algorithm.

3. Restrictiveness: The strong Wolfe conditions can be overly restrictive in certain

scenarios. These conditions may reject step sizes that could potentially lead to faster

convergence or exploration of the solution space. In such cases, the weak Wolfe

conditions can offer more flexibility.

2.5 Techniques for Stochastic Minimax Optimization

2.5.1 Formulation

We consider the problem of solving the following min max problem

min
x

max
y

f(x, y), (2.16)

20

where f : Rm × Rn → R. This can be seen as a two-player game, where one agent tries

to maximize the objective, whereas, the other agent tries to minimize the objective. In

the following, sometimes, we may use the notation f(x, y) = −g(x, y) to indicate zero sum

game. Here f(x, y) is the utility of the min player, and the g(x, y) is the utility of the max

player. A point (x∗, y∗) is defined to be a local nash equilibrium point if there exsist an

epsilon ball around the point U , such that for all (x, y) ∈ U satisfies the following

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗). (2.17)

The simple interpretation of the Equation (2.17) is that if (x∗, y∗) is a local nash equilibrium

point then any perturbation in x while keeping the y fixed will only increase the function

value, similarly any perturbation in y while keeping the x fixed can only decrease the

function value. The authors in the paper [33] have also proposed local minimax equilibrium

as an alternative to local nash equilibrium as is shown in the Equation 2.18.

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, r(x)), (2.18)

where r(x) is an implicit function defined by ∇yf(x, y) = 0 in a neighbourhood of x∗ with

r(x∗) = y∗.

21

2.5.2 Optimistic Gradient Descent Ascent (OGDA)

(a) Trajectory of GDA

(b) Trajectory of OGDA

Figure 2.1: Comparison of GDA (top row) and OGDA (bottom row) techniques for the
function F (X,Y) = XY . The top row shows sequential and simultaneous implementations
of GDA, while the bottom row depicts sequential and simultaneous implementations of
OGDA.

Traditional GDA (Algorithm 7 method is known to exhibit cyclic behavior around nash

equilibrium, one such example is shown in Figure 2.1 (top row), to counter this The authors

in the paper [13] propose the use of optimism to counter the rotations. The resulting

algorithm with optimism is shown in the Algorithm 8, intuitively the past gradients are

added to counteract the tangential motion, and the vector addition induces motion towards

the center. This simple trick is very effective, as we can see in the Figure 2.1 (bottom

row), where using OGDA, we are able to converge to nash equilibrium. The authors

shows that OGDA effectively resolves the problem of limit cycling in WGAN training;

they also emphasize the significant qualitative difference between GD and OGDA dynamics

using illustrative toy examples, even when GD incorporates various adaptations proposed

in recent literature, such as gradient penalty or momentum, and suggest that OGDA

demonstrates faster regret rates in zero-sum games.

22

Algorithm 7 Gradient Descent Ascent

1: while not converged do
2: t← t + 1
3: xt+1 = xt − η∇xf(x, y)
4: yt+1 = yt + η∇yf(x, y)
5: end while

Algorithm 8 Optimistic Gradient Descent Ascent (OGDA)

1: while not converged do
2: t← t + 1
3: xt+1 = xt − η∇xf(xt, yt) + η

2∇xf(xt−1, yt−1)
4: yt+1 = yt + η∇yf(xt, yt)− η

2∇yf(xt−1, yt−1)
5: end while

2.5.3 Extra Gradient Method (EG)

Figure 2.2: EG update

The computational complexity of EG method is twice of that of GDA, because it involves

twice the gradient computations in a single update. As is shown in steps 2 and 3 of the

Algorithm 9, the midpoint is computed first from the starting point (xt, yt) to estimate the

lookahead vectors, once obtained we go back and use the lookahead vectors to perform the

update on the points (xt, yt). As shown in Figure 2.2, it is also a first-order method that

23

counter the rotations of GDA. The work by Mokhtari et al. offers a thorough analysis of

OGDA and EG, first-order methods designed to address the rotational challenges of GDA.

Algorithm 9 Extra Gradient Method (EG)

1: while not converged do
2: t← t + 1
3: xt+1/2 = xt − η∇xf(xt, yt)
4: yt+1/2 = yt + η∇yf(xt, yt)
5: xt+1 = xt − η∇xf(xt+1/2, yt+1/2)
6: yt+1 = yt + η∇yf(xt+1/2, yt+1/2)
7: end while

2.5.4 Follow the Ridge (FR)

In their paper, Wang et al. [83] presented an intriguing approach aimed at overcoming

the limitations of Gradient Descent Ascent (GDA). They introduced the concept of local

minimax, as defined in Equation 2.18, and assigned the roles of ”leader” to the player

who moves first and ”follower” to the player who moves second. They have proposed the

Algorithm 10(we will now refer f(x, y), and g(x, y) as f and g). Since a local minimax

must by definition be located on a ridge, it makes sense to learn to follow the ridge, hence if

a point (xt, yt) is on ridge, the leader in case of GDA will try to move away from the ridge

by the update ∆x = −η∇xf . To counter this, the follower can then use the correcting

term η(∇yf + (∇2
yyf)−1∇2

yx∇x), hence allowing both players to stay on the ridge.

Algorithm 10 Follow the Ridge (FR)

1: while not converged do
2: t← t + 1
3: ∆x← −∇xf
4: ∆y ← ∇yf + (∇2

yyf)−1∇2
yx∇xf

5: xt+1 ← xt + η∆x
6: yt+1 ← yt + η∆y
7: end while

2.5.5 Competitive Gradient Descent (CGD)

In the context of GDA, the strategies chosen by players for their next moves are influ-

enced by the strategies selected by the other players in previous rounds. Various methods

24

Algorithm 11 Competitive gradient descent (CGD)

1: while not converged do
2: t← t + 1
3: ∆x← −

(
I − η2∇2

xyf∇2
yxg
)−1 (∇xf − η∇2

xyf∇yg
)

4: ∆y ← −
(
I − η2∇2

yxg∇2
xyf
)−1 (∇yg − η∇2

yxg∇xf
)

5: xt+1 ← xt + η∆x
6: yt+1 ← yt + η∆y
7: end while

have been proposed to enhance the players’ ability to predict each other’s actions. These

methods include following the regularized leader [73, 24], fictitious play [9], predictive up-

dates [87], opponent learning awareness [20], and optimism [60, 13, 51]. Many of these

techniques can be seen as variations of the extragradient method [Korpelevich], which

shares algorithmic similarities with the approaches as mentioned above. Additionally, cer-

tain methods directly modify the dynamics of gradients to promote convergence. This

can be achieved through techniques such as applying gradient penalties to encourage con-

vergence [52], or by separating the potential convergent components from the rotational

Hamiltonian components of the vector field [5, 48, 21]. In the paper ”Competitive Gradient

Descent (CGD)” [70], for the numerical computation of Nash equilibria of competitive two-

player games, the authors present a new algorithm. Their approach is a straightforward

extension of gradient descent to a two-player situation, where the update is provided by

the Nash equilibrium of a regularised bilinear local approximation of the underlying game.

This approach avoids the oscillatory and divergent behaviors seen in alternating gradient

descent. The update rule of CGD is given by the Equation (2.19).

(
∆x

∆y

)
= −

(
Id ηD2

xyf

ηD2
yxg Id

)−1(
∇xf

∇yg

)
. (2.19)

It is worth mentioning that CGD (Conjugate Gradient Descent) shares similarities with

”Regularized Newton Descent.” However, CGD does not include the diagonal blocks of the

Hessian. If we were to incorporate all the blocks of the Hessian, the update rule would

resemble Equation (2.20).

(
∆x

∆y

)
= −

(
Id + ηD2

xxf ηD2
xyf

ηD2
yxg Id + ηD2

yyg

)−1(
∇xf

∇yg

)
. (2.20)

25

The solution to this linear system is a Nash equilibrium of the two-player game with

consensus terms mentioned in Equation 2.21.

min
x∈Rm

xT∇xf + xT∇2
xyfy + xT∇2

xxf + yT∇yf +
1

2η
xTx,

min
y∈Rn

yT∇yg + yT∇2
yxgx + yT∇2

yyg + xT∇xg +
1

2η
yT y.

(2.21)

The authors provide several reasons that are mentioned below for the impracticality of

Equation (2.20), which we have also found out to be true through our experimentation.

1. Matrix Inverse Conditioning: Competitive gradient descent offers the advantage

of bounded condition numbers for the matrix inverse in Algorithm 1. In many cases,

such as zero-sum games, the condition number is upper-bounded by η2∥Dxy∥2. How-

ever, for non-convex-concave problems incorporating diagonal blocks of the Hessian,

the matrix can become singular if η∥D2
xxf∥ ≥ 1 or η∥D2

yy∥ ≥ 1.

2. Impact of Irrational Updates: The effectiveness of the update rule (5) in reaching

a local Nash equilibrium depends on certain conditions. In convex-concave problems

or when η∥D2
xxf∥ and η∥D2

yy∥ are both less than 1, the update rule aligns with

players’ best strategies based on the quadratic approximation. Deviation from these

conditions may lead to players adopting their worst strategies, contrary to the game

interpretation of the problem.

3. Regularity Constraints: The incorporation of diagonal blocks of the Hessian relies

on additional assumptions regarding the regularity of f .

The algorithm for competitive gradient descent is shown in Algorithm 11.

2.5.6 Implitict Competitive Regularization in GANs

The authors in the paper ”Implicit Competitive Regularization in GANs” [72] propose

an extension to CGD, which alone doesn’t work on realistic dataset such as CIFAR (in

our experiments), an extension named ACGD where adaptive learning is achieved using

RMS-prop type heuristics. The improvement is observed when using both Wasserstein

GAN (WGAN) loss and the original saturating GAN loss proposed by [12]. Moreover,

the authors claimed that CGD imposes an implicit regularization when the minimax is

26

viewed as simultaneous minmax, whose solution would correspond to Nash equilibrium.

Note that this also introduces mixed second derivative terms. When the generator and

discriminator are trained simultaneously, a phenomenon known as implicit competitive

regularisation (ICR) occurs that results in additional stable points or regions that do not

appear when the generator and discriminator are trained separately using gradient descent

and the discriminator is kept fixed. According to the authors, GAN is dependent on ICR

and stabilises generators for whom the discriminator can only gradually reduce loss. The

generators will create high-quality samples, according to the theory. Finding algorithms

that provide stronger ICR than SGA is therefore desirable. For completeness, the full

algorithm is shown in Algorithm 12. As was with CGD, the updates of ACGD requires

solving linear system, and it can be very costly in practice.

Algorithm 12 ACGD, a variant of CGD with RMSProp-type heuristic to adjust learning
rates. ϕ(η) denotes a diagonal matrix with η on the diagonal.

Require: α : Stepsize
Require: β2 : Exponential decay rates for the second moment estimates, default value is 0.99
Require: maxy minx f(x, y) : zero-sum game objective function with parameters x, y
Require: x0, y0 : ▷ Initial parameter vectors
1: t← 0 ▷ Initialize time step
2: vx,0, vy,0 ← 0 ▷ Initialize the 2nd moment estimate
3: repeat
4: t← t + 1
5: vx,t ← β2 · vx,t−1 + (1− β2) · g2x,t
6: vy,t ← β2 · vy,t−1 + (1− β2) · g2y,t
7: vx,t ← vx,t/(1− βt

2)
8: vy,t ← vy,t/(1− βt

2)
9: ηx,t ← α/(

√
vx,t + ϵ)

10: ηy,t ← α/(
√
vy,t + ϵ)

11: Ax,t = ϕ(ηx,t)
12: Ay,t = ϕ(ηy,t)

13: ∆xt ← −A
1
2
x,t(I + A

1
2
x,tD

2
xyfAy,tD

2
yxfA

1
2
x,t)

−1A
1
2
x,t(∆xf + D2

xyfAy,t∆yf)

14: ∆yt ← A
1
2
y,t(I + A

1
2
y,tD

2
yxfAx,tD

2
xyfA

1
2
y,t)

−1A
1
2
y,t(∆yf + D2

yxfAx,t∆xf)
15: xt ← xt−1 + ∆xt
16: yt ← yt−1 + ∆yt
17: until xt, yt converged

27

2.5.7 Consensus Optimization

Algorithm 13 Consensus gradient descent (ConOpt)

1: while not converged do
2: t← t + 1
3: ∆x← ∇xf − γ∇2

xy∇yf − γ∇2
xx∇xf

4: ∆y ← ∇yg − γ∇2
yx∇yg − γ∇2

xx∇xg
5: x← x + η∆x
6: y ← y + η∆y
7: end while

In [53], consensus gradient descent algorithm 13 was proposed. However, in the results

shown in their paper, this was combined with Adam for adaptivity in the learning rate.

As we can see, the primary update rule for ConOpt requires both ∇2
xyf and ∇2

xxf terms.

The authors argue that two factors impede the effectiveness of current algorithms: i) the

occurrence of eigenvalues in the Jacobian of the gradient vector field with a real-part equal

to zero, and ii) eigenvalues exhibiting a significant imaginary part. The paper also uses fixed

point theory framework to show that their method is convergent. Figure 2.3 presented by

the authors in their paper displays the observed empirical distribution of eigenvalues for the

Jacobian of the original vector field v(x) associated with the simultaneous gradient ascent

and the regularized vector field w(x) that is given by the consensus optimization. Notably,

it is evident that in proximity to the Nash equilibrium, a significant number of eigenvalues

are closely aligned with the imaginary axis. Moreover, the suggested modification of the

vector field employed in consensus optimization effectively shifts the eigenvalues toward

the left.

2.5.8 Minimax optimization on Riemannian manifolds

In recent years, there has been a growing interest in min-max problems on Riemannian

manifolds. In [90], authors introduced a generalization of Sion’s minimax theorem to Rie-

mannian manifolds and proposed the Riemannian extra-gradient method (RCEG) for solv-

ing geodesic-convex-geodesic-concave problems. Building on this work, Jordan et al. con-

ducted a comprehensive analysis of both Riemannian gradient descent ascent (RGDA) and

RCEG, focusing on geodesic-(strongly)-convex-geodesic-(strongly)-concave settings. Han

et al. extended the Hamiltonian gradient methods to Riemannian min-max optimization

28

Figure 2.3: The distribution of eigenvalues before (top two) and after (bottom two) training
using consensus optimization, as observed empirically [52].

and demonstrated convergence under the Riemannian PL condition on a proxy function.

[29] and [84] made significant contributions. [2] has adapted several existing second-order

methods on Riemannian manifolds.

2.6 Techniques for improved Deep Learning Training

2.6.1 Label smoothing

Label smoothing is a technique commonly used in deep learning to improve model

generalization and reduce overfitting. It involves modifying the target labels used during

training by introducing a small amount of uncertainty.

29

Let’s consider a classification task with C classes. Normally, in a one-hot encoded

representation, the ground truth label y for an input x is a vector of zeros with a single

one at the index corresponding to the correct class. For example, if x belongs to class 3,

y = [0, 0, 1, 0, . . . , 0].

Label smoothing replaces the one-hot encoded label with a smoothed distribution that

assigns a small probability to incorrect classes. This encourages the model to be less

confident and can help prevent overfitting. The smoothed label ỹ is computed as follows:

ỹi = (1− ϵ) · yi +
ϵ

C
, (2.22)

where yi is the i-th element of the one-hot encoded label y and ϵ is a small positive

value representing the smoothing factor.

Label smoothing affects the choice of the loss function used for training. The commonly

used cross-entropy loss needs to be modified to accommodate the smoothed labels. The

cross-entropy loss with label smoothing is defined as:

L = −
C∑
i=1

ỹi log(pi), (2.23)

where pi is the predicted probability for class i obtained from the model. The logarith-

mic term penalizes the model for assigning low probabilities to correct classes and high

probabilities to incorrect classes, as guided by the smoothed labels.

Label smoothing provides several benefits in deep learning, including improved general-

ization, regularization, and reduced sensitivity to outliers. By introducing a small amount

of uncertainty in the labels, label smoothing prevents the model from becoming overly

confident and encourages it to generalize better to unseen data.

2.6.1.1 Modified Cross-Entropy Loss

The modified cross-entropy loss with label smoothing, as is mentioned in the Equation

(2.22) is now modified as shown below:

Lsmoothed = −
C∑
i=1

ỹi log(pi).

30

To prove that label smoothing introduces a regularization factor, let’s expand the modified

loss function:

Lsmoothed = −
C∑
i=1

ỹi log(pi)

= −
C∑
i=1

(
(1− ϵ) · yi +

ϵ

C

)
log(pi)

= −
C∑
i=1

(1− ϵ) · yi log(pi)−
C∑
i=1

ϵ

C
log(pi)

= (1− ϵ) ·

(
−

C∑
i=1

yi log(pi)

)
− ϵ

C

C∑
i=1

log(pi)

= (1− ϵ) · Loriginal −
ϵ

C

C∑
i=1

log(pi).

We can observe that the second term, ϵ
C

∑C
i=1 log(pi), acts as a regularization factor in

the loss function. It penalizes the model for assigning high probabilities to the predicted

classes, encouraging the model to be less confident and reducing overfitting.

Therefore, we have mathematically proved that label smoothing introduces a regular-

ization factor in the loss function, which helps to regularize the model and improve its

generalization capabilities.

2.6.2 Early stopping

Early stopping is a popular technique used in deep learning to prevent overfitting and

improve the generalization performance of a model. It involves monitoring the performance

of a neural network during the training process and stopping the training when certain

criteria are met. The idea is that as the model trains, it initially improves its performance

on both the training and validation sets. However, at some point, the model’s performance

on the validation set may start to deteriorate, indicating that it is overfitting the training

data

If the model is trained for too long, it may start to memorize the training data instead

of learning general patterns. This leads to overfitting, where the model performs well

on the training data but fails to generalize to new, unseen data. Early stopping helps

31

to address this issue by providing a way to determine the optimal point at which to stop

training. It involves monitoring a validation set during the training process. The validation

set is a separate dataset that is not used for training but is used to estimate the model’s

performance on unseen data.

During training, the model’s performance on the validation set is evaluated periodically.

The performance metric used for evaluation can vary depending on the task, but commonly

used metrics include accuracy, loss, or any other relevant evaluation metric. The validation

performance is tracked over multiple training iterations, and if it starts to degrade or no

longer improves significantly, training is stopped.

Once early stopping triggers and training is stopped, the model’s parameters at that

point are typically used as the final model. These parameters strike a balance between

fitting the training data well and generalizing to new data.

2.6.3 Embedding layers

The embedding layer is a fundamental component in deep learning models, particularly

in natural language processing (NLP) tasks. It plays a crucial role in representing cate-

gorical variables, such as words or entities, as continuous vectors in a lower-dimensional

space.

The embedding layer essentially maps discrete and high-dimensional inputs, such as

words from a vocabulary, to dense vectors of fixed size. Each unique word is assigned a

unique vector representation, often referred to as an embedding vector. The goal is to

capture the semantic and syntactic relationships between words, enabling the model to

learn meaningful patterns and generalize well to unseen data.

During the training process, the embedding layer’s parameters are learned alongside

the other model parameters through backpropagation. The optimization algorithm adjusts

these parameters to minimize the loss function, which measures the model’s performance

on the task at hand. As a result, the embedding vectors gradually adapt to the context

and the specific task, effectively encoding useful information about the data. The following

steps illustrate the functioning of the embedding layer:

1. Initialization:

Embedding Matrix: The embedding layer initializes an embedding matrix E of size

V × D, where V is the vocabulary size and D is the embedding dimension. Each row of

the matrix represents the embedding vector for a specific categorical variable (word).

32

2. Input representation:

Input sequence: Let’s assume we have an input sequence of length T , where each el-

ement represents a categorical variable (word). We’ll represent this sequence as X =

[x1, x2, . . . , xT], where xi belongs to the range [1, V], indicating the index of the word in

the vocabulary.

3. Embedding lookup:

One-hot encoding: We first convert the input sequence X into a one-hot encoded matrix

H of size T × V , where each row corresponds to a word in the sequence. The one-hot

encoding assigns a ’1’ to the position corresponding to the index of the word and ’0’ to all

other positions.

Embedding lookup operation: The embedding lookup operation can be mathematically

expressed as the matrix multiplication of H and E. The result is a matrix Z of size T ×D,

where each row represents the embedding vector for a word in the input sequence.

Z = H · E.

4. Training:

During training, the embedding layer learns the optimal values of the embedding matrix

E through backpropagation and gradient descent. The gradients flow through the embed-

ding layer and update the embedding vectors based on the loss function and the model’s

objective.

5. Embedding representation:

The output of the embedding layer is the matrix Z, which contains the dense numerical

representations (embeddings) of the input sequence. These embeddings can then be passed

to subsequent layers for further processing or prediction.

2.6.4 Data normalization

Data normalization is a crucial preprocessing step in machine learning and deep learning

that involves transforming input data into a common scale or distribution. The goal of

normalization is to ensure that different features or variables are treated equally and to

prevent any particular feature from dominating the learning process. By normalizing the

data, the range or distribution of values across features is adjusted, making it easier for

the learning algorithm to find meaningful patterns or relationships.

33

2.6.4.1 Min-Max Scaling

Min-Max scaling, also known as normalization, rescales the data to a specific range,

typically between 0 and 1. The normalized value xnorm is derived using the Equation

(2.24) in case of Min-Max scaling.

xnorm =
x− xmin

xmax − xmin
. (2.24)

here x is the feature value of the current sample, xmin, and xmax are the minimum, and

maximum value of the feature out of all samples respectively.

2.6.4.2 Z-score Normalization

Z-score normalisation, sometimes referred to as standardisation, transforms the data so

that the mean and standard deviation are both 0. The normalized value xnorm can be

calculated using the Equation (2.25).

z =
x− µ

σ
, (2.25)

where z represents the standardized value, x is the original value, µ denotes the mean

of the dataset, and σ represents the standard deviation of the dataset.

2.6.4.3 Decimal Scaling

xnorm =
x

10d
. (2.26)

In Equation (2.26), x represents the original value of the feature, and d represents the

decimal shift.

2.6.4.4 Log Transformation

xnorm = log(x). (2.27)

In Equation (2.27), x represents the original value of the feature.

34

2.6.4.5 Unit Vector Scaling

xnorm =
x

∥X∥
. (2.28)

In Equation (2.28), x represents the original value of the feature, and ∥X∥ represents

the magnitude of the vector formed by all the data points.

35

Chapter 3

Angle based dynamic learning rate for gradient descent

3.1 Formulation

To facilitate an adaptive and more accurate step size, we consider a snapshot in the

global gradient vector field, it is well known that the gradient vectors will be perpendicular

to the tangential plane of the level curve at each point of the vector field. The existing

gradient descent methods go parallel to the negative gradient g1 from the point X1, instead,

we first go perpendicular in the direction of g1
⊥ towards a new point X2 by a small h step

(a hyperparameter); the direction g1
⊥ is any random vector inside the tangential plane.

At X2 we calculate another negative gradient g2. Let point O be the intersection point of

these two gradients. We now simply use these information to calculate the height of the

triangle as shown in the Figure 3.1 by calculating the step size d = h ·cot (θ) in the step 8 of

the Algorithm 14, where θ is the angle between the two vectors g1 and g2. We then travel

Figure 3.1: Illustration of one iteration of the proposed method.

36

in the direction of normalized g1 with step size d as shown in step 13 of the algorithm 14,

and essentially reach the intersection point O of the two gradients; we repeat this process

until convergence.

Although the perpendicular step size is fixed and static, our learning rate changes with

every new iteration. The perpendicular step h plays a critical role in our method; too large

of a perpendicular step will lead g1 and g2 to point to different localities in non-convex

settings. Hence, the calculation of step length will make no sense. On the other hand, if

the value of h is too tiny, then the gradient vectors will overlap, and the angle between

these gradients will be too small to compute precisely. So to tackle this issue, we keep a

relatively small perpendicular step size h and add some ϵ to h because cot θ is infinite when

θ is zero. Figure 3.2 shows the resulting angle for the optimal h on different architectures.

In steps 8 to 11 of algorithm 14, we use the decayed expectation (step 9) of the step size to

double the current estimated step size (step 11), if the current estimated step size is lesser

than the expected step size.

Algorithm 14 ASSIT-gradients: Adaptive Step Size through Intersection of Subsequent
Transversed-gradients.

Input: X
Parameter: h, β

1: while not converged do
2: X1 ← X ▷ Initial random guess
3: g1 ← −∇Xf(X1)
4: p1 ← g1

⊥ ▷ Perpendicular unit vector to g1
5: X2 ← X1 − h · p1
6: g2 ← −∇Xf(X2)
7: θ ← ∠(g1, g2) + ϵ
8: d← h · cot θ ▷ Find current step size
9: davg ← β · davg + (1− β) · d ▷ Average step size

10: if d < davg then
11: d← 2 · d
12: end if
13: X ← X1 + d · g1

∥g1∥
▷ Update step

14: end while

37

Figure 3.2: Progression of angles with increasing epochs on CIFAR 10 dataset. We observe
that for most of the architectures, except of epochs less than 10, the angles are between 0-2
degrees. This is configured in such a way because too less of an angle and the cot becomes
unstable, and attempting to have larger angles by having a larger h can lead to g1 and g2
(See Figure 14) in the algorithm 14, to lie in different localities.

3.2 Experiments on Some Toy Examples

In this section, we experimentally demonstrate the potential of our method to overcome

bad minima; for this, we have crafted two challenging surfaces using the tool [Joffe]. We

have also shown the 3D visualization for the same in Figures 3.3a and 3.4a. For the

experimental setup on these toy examples, we set the learning rate η = 1e− 2, we keep the

same initial point for all the methods, and we train them up to 1000 iterations.

3.2.1 Toy Example A

In the toy example A, we consider the following simple function

f(x, y) = −y2 sinx. (3.1)

We see in Figure 3.3a that the surface corresponding to this function is wavy and has

multiple local minima. The initialization point is (−2.0, 0.0) as shown in the Figure 3.3a.

Although our trajectory is the same as that of SGD without momentum, we can see

that while all the optimizers get stuck at the relatively bad local minima, our proposed

optimizer goes to a better local minimum, and it doesn’t stop there; we can see that it

tries to go further only to come back due to steep curvature ahead. Even though the

gradient amplitude may be small in a region, since we take the unit direction of gradient

to estimate the perpendicular direction, this perpendicular step is invariant to the current

gradient amplitude. Hence, it can explore a region where the gradient is more substantial

and use it to estimate an effective step length that may lead to further descent.

38

(a) Toy Example A: Our method is shown as bottom right figure. We observe that while all other
methods get stuck in the local minima, our method can descents further. The black star denotes
the terminal point, while the yellow star denotes the starting point.

3.2.2 Toy Example B

The toy example B is defined as follows

f(x, y) = −sin (x2 + y2)

x2 + y2
. (3.2)

The shape of f(x, y) as shown in Figure 3.4a is similar to a ripple in the water, the

initialization point is kept at (3.0, 3.0). We observe that other optimizers get stuck within

the ripple of the function, while ours can explore further and eventually find a better

minimum.

39

(a) Toy Example B: Here our method is shown in the bottom right. The black star denotes the
terminal point, while the yellow star denotes the starting point. We observe that while all other
methods cannot explore efficiently, our method reaches a better local minima.

3.3 Convergence Results

In this section, we prove convergence results. We show that with our choice of learning

rate for SGD, our method converges. Moreover, later we also show that the Armijo’s

condition for our choice learning rate is satisfied.

Theorem 3.1. Let f : Rn → R be a function which is convex and differentiable, and

let the gradient of the function be L Lipschitz continuous with Lipschitz constant L > 0,

i.e., we have that ∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥ then the objective function value will be

monotonously decreasing with each iteration of our method.

Proof. The below equation gives the update rule of our method

y = xt = xt−1 − ht−1 cot θt−1
∇f(xt−1)

∥∇f(xt−1)∥
. (3.3)

And, let h be constrained as,

40

ht ≤
∥f(xt)∥
L cot θt

. (3.4)

With assumptions on f(x), we have

f(y) ≤ f(x) +∇f(x)T (y − x) +
1

2
∇2f(x)∥y − x∥2.

Since ∇f(x) is L-Lipschitz continuous, ∇2f(x) ≤ L

f(y) ≤ f(x) +∇f(x)T (y − x) +
1

2
L∥y − x∥2.

Substituting y as in equation (3.3), and x as xt−1, we get:

f(xt) ≤ f(xt−1) +∇f(xt−1)T (−ht−1 cot θt−1
∇f(xt−1)

∥∇f(xt−1)∥
)

+
1

2
L∥ − ht−1 cot θt−1

∇f(xt−1)

∥∇f(xt−1)∥
∥2)

≤ f(xt−1) +∇f(xt−1)T (−ht−1 cot θt−1
∇f(xt−1)

∥∇f(xt−1)∥
)

+
1

2
Lh2

t−1 cot2 θt−1)

≤ f(xt−1) + ht−1 cot θt−1(
L

2
ht−1 cot θt−1 − ∥∇f(xt−1)∥).

Using equation (3.4), we get

f(xt) ≤ f(xt−1) +
∥∇f(xt−1)∥

L
(
∥∇f(xt−1)∥

2
− ∥∇f(xt−1)∥)

≤ f(xt−1)− 1

2L
(∥∇f(xt−1)∥2).

Hence the objective function decreases with every iterate.

A well-known condition on the step length for sufficient decrease in function value is

given by Wolfe’s condition as stated below. We will show that the first Wolfe’s condition,

which is Armijo’s condition is satisfied, however, we show that second Wolfe’s condition is

not satisfied.

41

Theorem 3.2 (Wolfe’s Condition). Let αk be the step length and pk be the descent

direction for minimizing the function f(x) : Rn → R. Then the strong Wolfe’s condition

require αk to satisfy the following two conditions:

f(xk + αkpk) ≤ f(xk) + c1αk∇fT
k pk. (3.5)

|∇f(xk + αkpk)T pk| ≤ c2|∇fT
k pk|, (3.6)

with 0 < c1 < c2 < 1.

Proof. See [36, p. 39] for details.

Theorem 3.3 (First Wolfe condition). Under the assumptions of theorem 3.1, the

update rule in Algorithm 14 satisfies the first Wolfe’s sufficient decrease condition condition

(3.5) with c1 = 1
2L .

Proof. We recall that in Wolfe’s conditions, pk and α are the descent direction and step

size, respectively. For our method in Algorithm 14, pk = −∇f(xk) and α = h cot θ. From

theorem 3.1 we have the expression,

f(xt) ≤ f(xt−1)− 1

2L
(∥∇f(xt−1)∥2)

≤ f(xt−1) +
1

2L
∇f(xt−1)T pt−1.

Hence, for c1 = 1
2L the above inequality holds true.

42

Optimizer EN-B0 EN-B0 wide EN-B4 EN-B4 wide

SGD 59.53 59.99 61.45 61.76
ADAM 57.41 55.86 56.20 54.57
RMSPROP 57.98 56.52 57.00 55.77
DIFFGRAD 56.79 56.12 59.03 58.59
AGC 58.61 58.33 58.22 56.46
AGT 58.70 58.08 57.97 56.62
OURS 60.21 60.51 61.32 61.17

Table 3.1: Results on mini-ImageNet dataset. Since ImageNet is a relatively large dataset,
we have results on EfficientNet only. We observe that our method has the best accuracy for
two variants shown in bold, and the second best results for the other two variants shown
as underlined. Despite hyperparameter tuning, most other methods except vanilla SGD
perform poorly.

3.4 Numerical results

Method RN18 RN34 RN50 D121 VGG16 DLA

SGD 93.18 93.63 93.40 93.85 92.57 93.29
Adam 93.85 93.99 93.88 94.28 92.66 93.57
RMSProp 93.63 94.07 93.42 93.84 92.36 93.29
AdaBelief 93.57 93.71 93.80 94.26 92.84 93.72
diffGrad 93.85 93.73 93.65 94.28 92.67 93.49
AGC 93.64 94.02 94.05 94.57 92.64 93.6
AGT 93.92 93.89 94.11 94.50 92.76 93.74
OURS 94.00 94.24 94.39 94.75 93.18 94.38

Table 3.2: Overall accuracies on CIFAR-10 first 100 epochs. The best results are in bold,
and second best is underlined. We find that our method has the best accuracy among all
the methods compared. Here RN stands for ResNet, D121 is DenseNet-121, and DLA is
Deep Layer Aggregation.

We test the performance of the current state-of-the-art optimizers with ours on CIFAR-

10 [Krizhevsky et al.], CIFAR-100 [Krizhevsky et al.], and mini-imagenet [80].

For CIFAR-10, and CIFAR-100, we take the prominent image classification architec-

tures, these are ResNet18 [27], ResNet34 [27], ResNet50 [27], VGG-16 [75], DLA [89], and

DenseNet121 [30], in the tables, we refer to these architectures as RN18, RN34, RN50,

43

VGG16, DLA, and D121 respectively. The current state-of-the-art optimizers are being

compared with our method, i.e, Stochastic Gradient Descent with Momentum (SGDM),

Adam [41], RMSprop, Adabelief, diffGrad, cosangulargrad (AGC), tanangulargrad (AGT).

To see long term result and stagnation of accuracy for CIFAR-100, a relatively large

dataset, we run for 300 epochs and show accuracy results in Figure 3.7 for ResNet50,

VGG-16, DenseNet-121, and DLA. Our method performs substantially better on DLA,

and achieves best accuracy for resnet-50 and DenseNet on CIFAR-100.

Figure 3.5: Accuracy plots versus epochs for image classification on the CIFAR-10 dataset.
Our method is represented by dark purple curve, which is an average over 3 runs. The
variance observed is not much around the mean. On DLA we observe a significantly better
accuracy. On other architectures, our method maintains the highest accuracy.

Figure 3.5 shows accuracy versus epochs for CIFAR-10 for 3 runs and hence variations

are seen around mean; we show the mean by bold lines. The best accuracy results for

CIFAR-10 dataset are also shown in Table 3.2. We observe that our method performs the

best across all the architectures; with more pronounced accuracy for the DLA and VGG.

The observed jump in performance at epoch 80 is due to the learning rate scheduler, which

is set to reduce the learning rate by 10 at the 80th epoch. The experimental results for

CIFAR-100 are shown in the Table 3.3, and the plots for accuracy versus epochs for multiple

runs are shown in the Figure 3.6. We perform the best in most of the architectures, except

on ResNet-50 and our method performs the second best for VGG-16. Mini-imagenet [81]

44

dataset is a subset of the larget Imagenet dataset [15]. We use the efficient net architecture

for mini-imagenet because as shown in Figure 1 in the paper [77], efficient-net provides

the best accuracy per parameter. The best accuracy results of the mini-imagenet is shown

in Table 3.1. We outperform all the standard state-of-the-art methods that use decaying

expectations of the gradient terms (includes momentum based methods) to either scale the

gradient or correct its direction. We perform best in EfficientNet-B0 and EfficientNet-B0

wide; second best in EfficientNet-B4 and EfficientNet-B4 wide while performing substan-

tially better than the adaptive methods.

Method RN18 RN34 RN50 D121 VGG16 DLA

SGD 72.94 73.31 73.82 74.82 69.24 73.84
Adam 71.98 71.92 73.52 74.50 67.78 71.33
RMSProp 68.90 69.66 71.13 71.74 65.79 67.91
AdaBelief 73.07 73.44 75.47 75.60 69.63 74.09
diffGrad 72.02 72.21 74.08 74.53 67.83 71.07
AGC 73.25 73.64 75.46 75.36 69.21 72.84
AGT 73.13 73.35 75.75 75.39 68.85 73.06
OURS 73.33 74.22 74.44 76.79 69.46 74.92

Table 3.3: Overall accuracies on CIFAR-100 first 100 epochs. The best results are shown
in bold, and the second best results are underlined. We observe that our method has the
best results on four architectures and the second best on one architecture. Here RN stands
for ResNet, D121 is DenseNet-121, and DLA is Deep Layer Aggregation.

45

Figure 3.6: Accuracy plots versus epochs for image classification on CIFAR-100 dataset.
Our method is represented by dark purple curve. Except for ResNet50 and VGG16, our
method achieves the highest accuracy. The accuracy plots for longer number of epochs is
shown in Figure 3.7. For hyper-parameters and ablation study, please refer to supplemen-
tary material.

Figure 3.7: Accuracy versus epochs plot for image classification for CIFAR-100 results for
300 epochs. We verify that on long term our method maintains high accuracy, and most
methods start to stagnate from epochs 100 onwards.

46

3.5 Code Repository

https://github.com/misterpawan/dycent.

3.6 Ablation study

As shown in figure 3.8, we provide the ablation study of our algorithm across multiple

h on the CIFAR-10 dataset. Each row corresponds to a different architecture, and each

column corresponds to a different step size h, decreasing as we go from left to right. For the

ablation study, we take the same architectures that where in the main paper. We take the

secondary hyperparameter of our method β to be 0.2, 0.4, 0.6, 0.8, and the performance

related to each beta is reflected in the graph by their respective curves. The aim is to

study the effects of the hyper-parameter β on different h. We also notice that for a lower

learning rate, β = 0.6 dominates, while for a larger learning rate, the differences between

β get less noticeable, hence any reasonable value of β ∈ [0.2, 0.6] is good enough.

3.7 Experimental Setup

We adopt the code from the GitHub repository of the recent state-of-the-art paper [65];

we keep all their experimental setup the same for CIFAR-10 and CIFAR-100, i.e., keeping

the batch size 128 and the same learning rate scheduler which divides the learning rate by

10 every 80th epoch; we performed three independent trials on three random seeds for each

of those scripts. The training of each script is done on systems with one GeForce GTX

1080 Ti GPU, 10 CPUs, with 2G memory per CPU; each CPU is “Intel(R) Xeon(R) CPU

E5-2640 v4 @ 2.40GHz”. We use the deep learning library PyTorch in our experiments,

specifically PyTorch version 1.9.0. Most of the plotting is shown using matplotlib version

3.2.2; for the 3-D plots, we have used matplotlib version 3.5.0.

3.8 Hyper-parameters tuning setup

We show the hyperparameters related to our experiments in the tables below; these

are the hyperparameters that gave the best performance out of the learning rates η =

1e−1, 1e−2, 1e−3, 1e−4. In each of the tables from 3.4 to 3.16, we show hyperparameters

47

https://github.com/misterpawan/dycent

for CIFAR-10, CIFAR-100, and Mini-imagenet for all the methods. The ηinit represents

the traditional learning rate; we have shown it as 1 in our method because we are traveling

perpendicular with h. The hyperparameter α in RMSProp is the weight of the weighted

average of the square of the gradients. In contrast, the hyperparameters β1 and β2 are the

weights of the weighted average of gradient, and square of the gradient terms, respectively.

While the γ is the hyperparameter for the SGD, it represents the momentum factor. We

have marked NA (Not Applicable) in those entries where that particular hyperparameter

doesn’t apply to that respective method. The tables 3.4 to 3.9 show the hyperparameters

for cifar-10 specifically, the hyperparameter for most of the methods remain unchanged,

however, for the methods of AGC, AGT the stepsize oscillate between η = 1e-2, and 1e-3.

And the tables 3.10 to 3.15 reflect similar trends. Hyperparameters for the Mini-imagenet

are shown in the table 3.16.

ResNet-18

Optimizerηinit h α β1 β2 γ β

SGD 1e-2 NA NA NA NA 0.9 NA
ADAM 1e-3 NA NA 0.9 0.99 0 NA
RMSprop 1e-3 NA 0.99 NA NA 0 NA
AGC 1e-3 NA NA 0.9 0.99 0 NA
AGT 1e-2 NA NA 0.9 0.99 0 NA
diffGrad 1e-3 NA NA 0.9 0.99 0 NA
Adabelif 1e-3 NA NA 0.9 0.99 0 NA
Ours 1 1e-2 NA NA NA 0 0.2

Table 3.4: Hyperparameter for ResNet-18 architecture.

ResNet-34

Optimizerηinit h α β1 β2 γ β

SGDM 1e-2 NA NA NA NA 0.9 NA
ADAM 1e-3 NA NA 0.9 0.99 0 NA
RMSprop 1e-3 NA 0.99 NA NA 0 NA
AGC 1e-3 NA NA 0.9 0.99 0 NA
AGT 1e-2 NA NA 0.9 0.99 0 NA
diffGrad 1e-3 NA NA 0.9 0.99 0 NA
Adabelif 1e-3 NA NA 0.9 0.99 0 NA
Ours 1 1e-2 NA NA NA 0 0.2

Table 3.5: Hyperparameter for ResNet-34 architecture.

48

ResNet-50

Optimizerηinit h α β1 β2 γ β

SGDM 1e-2 NA NA NA NA 0.9 NA
ADAM 1e-3 NA NA 0.9 0.99 0 NA
RMSprop 1e-3 NA 0.99 NA NA 0 NA
AGC 1e-3 NA NA 0.9 0.99 0 NA
AGT 1e-2 NA NA 0.9 0.99 0 NA
diffGrad 1e-3 NA NA 0.9 0.99 0 NA
Adabelif 1e-3 NA NA 0.9 0.99 0 NA
Ours 1 1e-2 NA NA NA 0 0.2

Table 3.6: Hyperparameter for ResNet-50 architecture.

DenseNet-121

Optimizerηinit h α β1 β2 γ β

SGDM 1e-2 NA NA NA NA 0.9 NA
ADAM 1e-3 NA NA 0.9 0.99 0 NA
RMSprop 1e-3 NA 0.99 NA NA 0 NA
AGC 1e-3 NA NA 0.9 0.99 0 NA
AGT 1e-2 NA NA 0.9 0.99 0 NA
diffGrad 1e-3 NA NA 0.9 0.99 0 NA
Adabelif 1e-3 NA NA 0.9 0.99 0 NA
Ours 1 1e-2 NA NA NA 0 0.2

Table 3.7: Hyperparameter for DenseNet-121 architecture.

VGG-16

Optimizerηinit h α β1 β2 γ β

SGDM 1e-2 NA NA NA NA 0.9 NA
ADAM 1e-3 NA NA 0.9 0.99 0 NA
RMSprop 1e-3 NA 0.99 NA NA 0 NA
AGC 1e-2 NA NA 0.9 0.99 0 NA
AGT 1e-2 NA NA 0.9 0.99 0 NA
diffGrad 1e-3 NA NA 0.9 0.99 0 NA
Adabelif 1e-3 NA NA 0.9 0.99 0 NA
Ours 1 1e-2 NA NA NA 0 0.2

Table 3.8: Hyperparameter for VGG-16 architecture.

49

DLA

Optimizerηinit h α β1 β2 γ β

SGDM 1e-2 NA NA NA NA 0.9 NA
ADAM 1e-3 NA NA 0.9 0.99 0 NA
RMSprop 1e-3 NA 0.99 NA NA 0 NA
AGC 1e-3 NA NA 0.9 0.99 0 NA
AGT 1e-2 NA NA 0.9 0.99 0 NA
diffGrad 1e-3 NA NA 0.9 0.99 0 NA
Adabelif 1e-3 NA NA 0.9 0.99 0 NA
Ours 1 1e-2 NA NA NA 0 0.2

Table 3.9: Hyperparameter for DLA architecture.

50

ResNet18

Optimizerηinit h α β1 β2 γ β

SGDM 1e-2 NA NA NA NA 0.9 NA
ADAM 1e-3 NA NA 0.9 0.99 0 NA
RMSprop 1e-3 NA 0.99 NA NA 0 NA
AGC 1e-3 NA NA 0.9 0.99 0 NA
AGT 1e-2 NA NA 0.9 0.99 0 NA
diffGrad 1e-3 NA NA 0.9 0.99 0 NA
Adabelif 1e-3 NA NA 0.9 0.99 0 NA
Ours 1 1e-2 NA NA NA 0 0.4

Table 3.10: Hyperparameter for ResNet-18 architecture.

ResNet34

Optimizerηinit h α β1 β2 γ β

SGDM 1e-2 NA NA NA NA 0.9 NA
ADAM 1e-3 NA NA 0.9 0.99 0 NA
RMSprop 1e-3 NA 0.99 NA NA 0 NA
AGC 1e-3 NA NA 0.9 0.99 0 NA
AGT 1e-2 NA NA 0.9 0.99 0 NA
diffGrad 1e-3 NA NA 0.9 0.99 0 NA
Adabelif 1e-3 NA NA 0.9 0.99 0 NA
Ours 1 1e-2 NA NA NA 0 0.4

Table 3.11: Hyperparameter for ResNet-34 architecture.

ResNet-50

Optimizerηinit h α β1 β2 γ β

SGDM 1e-2 NA NA NA NA 0.9 NA
ADAM 1e-3 NA NA 0.9 0.99 0 NA
RMSprop 1e-3 NA 0.99 NA NA 0 NA
AGC 1e-3 NA NA 0.9 0.99 0 NA
AGT 1e-2 NA NA 0.9 0.99 0 NA
diffGrad 1e-3 NA NA 0.9 0.99 0 NA
Adabelif 1e-3 NA NA 0.9 0.99 0 NA
Ours 1 1e-2 NA NA NA 0 0.4

Table 3.12: Hyperparameter for ResNet-50 architecture.

51

DenseNet-121

Optimizerηinit h α β1 β2 γ β

SGDM 1e-2 NA NA NA NA 0.9 NA
ADAM 1e-3 NA NA 0.9 0.99 0 NA
RMSprop 1e-3 NA 0.99 NA NA 0 NA
AGC 1e-3 NA NA 0.9 0.99 0 NA
AGT 1e-2 NA NA 0.9 0.99 0 NA
diffGrad 1e-3 NA NA 0.9 0.99 0 NA
Adabelif 1e-3 NA NA 0.9 0.99 0 NA
Ours 1 1e-2 NA NA NA 0 0.4

Table 3.13: Hyperparameter for DenseNet-121 architecture.

VGG-16

Optimizerηinit h α β1 β2 γ β

SGDM 1e-2 NA NA NA NA 0.9 NA
ADAM 1e-3 NA NA 0.9 0.99 0 NA
RMSprop 1e-3 NA 0.99 NA NA 0 NA
AGC 1e-2 NA NA 0.9 0.99 0 NA
AGT 1e-2 NA NA 0.9 0.99 0 NA
diffGrad 1e-3 NA NA 0.9 0.99 0 NA
Adabelif 1e-3 NA NA 0.9 0.99 0 NA
Ours 1 1e-2 NA NA NA 0 0.4

Table 3.14: Hyperparameter for VGG16 architecture.

DLA

Optimizerηinit h α β1 β2 γ β

SGDM 1e-2 NA NA NA NA 0.9 NA
ADAM 1e-3 NA NA 0.9 0.99 0 NA
RMSprop 1e-3 NA 0.99 NA NA 0 NA
AGC 1e-3 NA NA 0.9 0.99 0 NA
AGT 1e-2 NA NA 0.9 0.99 0 NA
diffGrad 1e-3 NA NA 0.9 0.99 0 NA
Adabelif 1e-3 NA NA 0.9 0.99 0 NA
Ours 1 1e-2 NA NA NA 0 0.4

Table 3.15: Hyperparameter for DLA architecture.

52

B0, B0-Wide, B4, B4-wide

Optimizerηinit h α β1 β2 γ β

SGDM 1e-2 NA NA NA NA 0.9 NA
ADAM 1e-3 NA NA 0.9 0.99 0 NA
RMSprop 1e-3 NA 0.99 NA NA 0 NA
AGC 1e-3 NA NA 0.9 0.99 0 NA
AGT 1e-3 NA NA 0.9 0.99 0 NA
diffGrad 1e-3 NA NA 0.9 0.99 0 NA
Adabelif 1e-3 NA NA 0.9 0.99 0 NA
Ours 1 1e-1 NA NA NA 0 0.2

Table 3.16: Hyperparameter for Mini-ImageNet

53

Figure 3.8: Ablation study of our method on CIFAR-10
54

Chapter 4

A Gauss-Newton Approach for Min-Max Optimization in

GANs

4.1 Formulation

We adapt the Gauss-Newton method as a preconditioned solver for minmax problems

and show that it fits within the fixed point framework [53]. As a result, we obtain a reliable,

efficient, and fast first-order solver. We proceed to describe our method in detail. Consider

the general form of the fixed point iterate, where v(p) is the combined vector of gradients

of both players at point p = [x, y]T (See Equation (4.5)).

F (p) = p + hA(p)v(p), (4.1)

where h is the step size. The matrix A(p) corresponding to our method is

A(p) = B(p)−1 − I, (4.2)

where B(p) denotes the Gauss-Newton preconditioning matrix defined as follows

B(p) = λI + v(p)v(p)T . (4.3)

55

Algorithm 15 Proposed solver for min-max.

Require: minx maxy f(x, y): zero-sum game objective function with parameters x, y
Require: h: Step size
Require: λ: Fisher preconditioning parameter
Require: Initial parameter vectors p0 = [x0, y0]
Require: Initialize time step t← 0
Require: Compute initial gradient v0 at p0
1: repeat
2: t← t + 1
3: ut ← 1√

λ
∗ vt

4: z ← 1

λ
∗
(
vt −

ut(u
T
t vt)

(1 + uTt ut)

)
5: ∆← −(vt − z)
6: Update [

xt
yt

]
←
[
xt−1

yt−1

]
+ h ∗∆

7: until pt = [xt, yt]
T converged

With Sherman-Morison formula to compute B(p)−1. We have

A(p) =
1

λ

I −

v(p)v(p)T

λ

1 +
v(p)T v(p)

λ

− I. (4.4)

A regularization parameter λ > 0 is added in (4.3) to keep B(p) invertible. Our analysis

in next section suggests to keep λ < 1 for convergence guarantee. Hence, a recommended

choice is λ ∈ (0, 1). To compute the inverse of Gauss-Newton matrix B(p), we use the

well-known Sherman–Morrison inversion formula to compute the inverse cheaply. Some

of the previous second-order methods that used other approximation of Hessian require

solving a large sparse linear system using a Krylov subspace solver [71, 69]; this makes

these methods extremely slow. For larger GAN architectures with large model weights

such as GigaGAN [37], we cannot afford to use such costly second-order methods.

56

4.2 Algorithm

In Algorithm 15, we show the steps corresponding to our method, and in Algorithm 16,

we show our method with momentum. In the algorithms, we implement the fixed point

iteration (4.1) with the choice of matrix given in (4.4) above. We use vt to denote the

gradient v(pt) computed at point pt = [xt, yt]
T at iteration t. We use the notation ut in

Line 3 of Algorithm 15 to denote the gradient vt scaled by
√
λ. With these notations, our

A(pt) matrix computed at pt becomes

A(pt) =
1

λ

(
I − utu

T
t

1 + uTt ut

)
− I.

Consequently, the matrix A(pt)vt now becomes

A(pt)vt =
1

λ

(
vt −

utu
T
t vt

1 + uTt ut

)
− vt.

The computation of A(pt)vt is achieved in Steps 4 and 5 of Algorithm 15. Finally, the fixed

point iteration:

pt+1 = pt + A(pt)vt.

for pt = [xt, yt]
T is performed in Step 6. Similarly, a momentum based variant with a

heuristic approach is developed in Algorithm 16.

57

Algorithm 16 Adaptive solver

Require: minx maxy f(x, y): zero-sum game objective function with parameters x, y
Require: h: Step size
Require: β2: Exponential decay rates for the second moment estimates
Require: λ: Fisher preconditioning parameter
Require: Initial parameter vectors p0 = [x0, y0]
Require: Compute initial gradient v0 at p0
Require: Compute θ0 = v20
Require: Initialize time-step: t← 0
1: repeat
2: t← t + 1
3: θt ← β2 · θt−1 + (1− β2) · v2t−1

4: gt ← vt/(
√
θt + ϵ)

5: ut ←
√

h

λ
∗ gt

6: z ← 1

λ
∗
(
vt −

ut(u
T
t vt)

(1 + uTt ut)

)
7: ∆← −(gt − z)
8: Update [

xt
yt

]
←
[
xt−1

yt−1

]
+ h ∗∆

9: until pt = [xt, yt]
T converged

4.3 Fixed point iteration and convergence

We wish to find a Nash equilibrium of a zero sum two player game associated with

training GAN. For a differentiable two-player game, the associated vector field is given by

v(x, y) =

[
∇xf(x, y)

−∇yf(x, y)

]
. (4.5)

The derivative of the vector field is

v′(x, y) =

[
∇2

xxf(x, y) ∇2
xyf(x, y)

−∇2
yxf(x, y) −∇2

yyf(x, y)

]
.

58

The general update rule in the framework of fixed-point iteration is described in [53, Equa-

tion (16)]. Our method uses the fixed point iteration shown in (4.1). Recall that p = (x, y).

For the minmax problem, with minmax gradient v(p) defined in (4.5), the fixed point iter-

ative method in (4.1) well defined.

Lemma 4.1. [53, Lemma 1 of Supplementary] For zero-sum games, v′(p) is negative

semi-definite if and only if ∇2
xxf(x, y) is negative semi-definite and ∇2

yyf(x, y) is positive

semi-definite.

Corollary 4.1. [53, Corollary 2 in Appendix] For zero-sum games, v′(p̄) is negative semi-

definite for any local Nash equilibrium p̄. Conversely, if p̄ is a stationary point of v(p) and

v′(p̄) is negative-definite, then p̄ is a local Nash equilibrium.

Proposition 4.1. [7, Proposition 4.4.1] Let F : Ω → Ω be a continuously differentiable

function on an open subset Ω of Rn and let p̄ ∈ Ω be so that

1. F (p̄) = p̄, and

2. the absolute values of the eigenvalues of the Jacobian F ′(p̄) are all smaller than 1 .

Then, there is an open neighborhood U of p̄ so that for all p0 ∈ U , the iterates F (k) (p0)

converge to p̄. The rate of convergence is at least linear. More precisely, the error∣∣F (k) (p0)− p̄
∣∣ is in O

(
|λmax|k

)
for k → ∞, where λmax is the eigenvalue of F ′(p̄) with

the largest absolute value.

The Jacobian of the fixed point iteration 4.1 is given as follows

F ′(p) = I + hA(p)v′(p) + hA′(p)v(p). (4.6)

At stationary point p = p̄, v(p̄) = 0, hence from (4.2), we have A(p̄) = (1/λ− 1)I, hence,

at equilibrium, the Jacobian of the fixed point iteration (4.6) reduces to

F ′(p̄) = I + hA(p̄)v′(p̄) = I + σv′(p̄), (4.7)

59

where

σ = h(1/λ− 1). (4.8)

Lemma 4.2. If p̄ is a stationary point of v(p̄) and A(p̄) is defined as in equation (4.4),

then A(p̄)v′(p̄) is negative definite for some λ < 1.

Proof.

A(p̄)v′(p̄) =

 1

λ

I − v(p̄)v(p̄)T

λ

1 +
v(p̄)T v(p̄)

λ

− I

 v′(p̄).

At the fixed point, we have v(p̄) = 0, hence, from above

A(p̄)v′(p̄) =

(
1

λ
(I)− I

)
v′(p̄).

From Corollary 4.1, v′(p̄) is negative definite at the local Nash equilibrium p̄, hence, for

λ < 1 the proof is complete. ■

At the stationary point, we do have F (p̄) = p̄, which satisfies the first item of Proposition

4.1. In the Corollary below, we show that for σ in (4.7) small enough, we satisfy the Item

2 of Proposition 4.1. To this end, we use the following Lemma.

Lemma 4.3. [53, Lemma 4 in Supplementary] Let U ∈ Rn×n only has all eigenvalues with

negative real part, and let h > 0 (in Equation (4.8)), then the eigenvalues of the matrix

I + σU lie in the unit ball if and only if

σ <
1

|R(ξ)|
2

1 +

(
I(ξ)

R(ξ)

)2 (4.9)

for all eigenvalues ξ of U. Here, I(ξ) and R(ξ) denote the real and imaginary eigenvalues

of the matrix U.

60

Table 4.1: Generator architecture for MNIST and FashionMNIST experiments. Here
Conv1, Conv2, and Conv3 are convolution layers with batch normalization and ReLU
activation, Conv4 is a convolution layer with Tanh activation.

Module Kernel Stride Pad Shape

Input N/A N/A N/A z ∈ R100 ∼ N (0, I)
Conv1 4× 4 1 0 100→ 1024
Conv2 4× 4 2 1 1024→ 512
Conv3 4× 4 2 1 512→ 256
Conv4 4× 4 2 1 256→ 3

Corollary 4.2. Let p̄ be a stationary point. If v′(p̄) has only eigenvalues with negative real

part, then the iterative method with the fixed point iteration (4.1), with (4.2) and (4.3) is

locally convergent to p̄ for σ defined in (4.7).

Proof. As mentioned above, F (p̄) = p̄ at stationary point p̄ thereby satisfying item 1 of

Proposition 4.1. We use Lemma 4.3 with σ same as in (4.7) and U = v′(p̄). From corollary

4.1, we have that U has all eigenvalues with negative real part. Moreover, we can change

h, and λ such that σ satisfies the upper bound (4.9), and we will have the eigenvalues of

F ′(p̄) = I + σU = I + σv′(p̄) lie in a unit ball, hence, we also satisfy item 2 of Proposition

4.1. Thereby, we have local convergence due to Proposition 4.1. ■

Table 4.2: Discriminator architecture for MNIST and FashionMNIST experiments. Here
Conv1 is a convolution layer with LeakyReLU activation, Conv2, and Conv3 are convolu-
tion layers with batch normalization and ReLU activation, Conv4 is a convolution layer
with sigmoid activation.

Module Kernel Stride Pad Shape

Input N/A N/A N/A z ∈ R100 ∼ N (0, I)
Input N/A N/A N/A x ∈ R3×32×32

Conv1 4× 4 2 1 3→ 256
Conv2 4× 4 2 1 256→ 512
Conv3 4× 4 2 1 512→ 1024
Conv4 4× 4 1 0 1024→ 1

61

(a) CIFAR10: Inception score. (b) CIFAR10: Time comparison.

(c) CIFAR10: Variance in inception scores for multiple runs.

Figure 4.1: Results for CIFAR10.

4.4 Numerical results

4.4.1 Experimental setup

In the following, we refer to Algorithm 16 as “ours”. We compare our proposed method

with ACGD [71] (a practical implementation of CGD), ConOpt [53], and Adam (GDA with

gradient penalty and Adam optimizer). ACGD and ConOpt are second-order optimizers,

whereas Adam is a first-order optimizer. We do not compare with other methods including

SGA [4] and OGDA [14] as ACGD [71] has already been shown to be better than those.

All experiments were carried out on an Intel Xeon E5-2640 v4 processor with 40

virtual cores, 128GB of RAM, and an NVIDIA GeForce GTX 1080 Ti GPU equipped with

14336 CUDA cores and 44 GB of GDDR5X VRAM. The implementations were done using

Python 3.9.1 and PyTorch (torch-1.7.1). Model evaluations were performed using the

Inception score, computed with the inception v3 module from torchvision-0.8.2. The

WGAN loss with gradient penalty was employed. We tuned the methods on a variety

of hyperparameters to ensure optimal results, following the recommendations provided in

62

Table 4.3: Generator architecture for CIFAR10 experiments. Here Conv1, Conv2, and
Conv3 is a convolution layer with batch normalization and ReLU activation, Conv4 is a
convolution layer with Tanh activation.

Module Kernel Stride Pad Shape

Input N/A N/A N/A z ∈ R100 ∼ N (0, I)
Conv1 4× 4 1 0 100→ 1024
Conv2 4× 4 2 1 1024→ 512
Conv3 4× 4 2 1 512→ 256
Conv4 4× 4 2 1 256→ 3

the official GitHub repositories or papers. For ACGD, we used the code provided in the

official GitHub repository as a solver (https://github.com/devzhk/cgds-package), and

followed their default recommendation for the maxiter parameter. The step size h was

tested across multiple values (1e − 1, 1e − 2, 1e − 3, 1e − 4, 1e − 5, 8e − 5, 2e − 4), and the

gradient penalty constant λgp was varied as (10, 1, 1e− 1, 0). The best result for ACGD in

our experimental setup was obtained with h = 1e− 4 and λgp = 1. In the case of ConOpt,

we tried the step size h across 1e − 1, 1e − 2, 1e − 3, 1e − 4, 1e − 5, 2e − 5, 8e − 6, varied

λgp as (10, 1, 1e− 1, 0), and adjusted the ConOpt parameter γ across 10, 1, 1e− 1. ConOpt

performed best in our setup with h = 1e−5, λgp = 1, and γ = 1e−1. For Adam, we tested

the same step sizes as with ConOpt and used the default parameter values recommended

by PyTorch. Adam’s best performance was achieved with a step size of lr = 1e − 5.

Our proposed method performed best with regularization parameter λ = 1e− 1, step size

h = 1e− 5, and gradient penalty constant for WGAN λgp = 10.

4.4.2 Image generation on grey scale images

We investigate grayscale image generation using public datasets MNIST [47] and Fash-

ionMNIST [86], with the discriminator and generator architectures shown in Tables 4.1

and 4.2, respectively. In Figure 4.3, we present the MNIST dataset comparison. A careful

inspection of the generated images reveals that the first-order optimizer Adam is capable

of producing high-fidelity images closely resembling the original dataset shown in Figure

4.3a. Nonetheless, Adam’s drawback is its tendency to generate images with characters

of the same mode/class, such as 0 and 2, which might indicate mode-collapse, while also

maintaining a uniform style across all images in Figure 4.3c. We highlighted the similar

63

https://github.com/devzhk/cgds-package

Table 4.4: Discriminator architecture for CIFAR10 experiments. Here Conv1 is a convolu-
tion layer with LeakyReLU activation, Conv2 and Conv3 is a convolution layer with batch
normalization, and LeakyReLU activation, Conv4 is a convolution layer with sigmoid ac-
tivation.

Module Kernel Stride Pad Shape

Input N/A N/A N/A z ∈ R100 ∼ N (0, I)
Input N/A N/A N/A x ∈ R3×32×32

Conv1 4× 4 2 1 3→ 256
Conv2 4× 4 2 1 256→ 512
Conv3 4× 4 2 1 512→ 1024
Conv4 4× 4 1 0 1024→ 1

(a) Real (b) Ours (c) Adam (d) ACGD (e) ConOpt

Figure 4.3: Images generated for MNIST. Samples inside white box show mode-collapse.

samples with white box illustrating mode-collapse for Adam. The second-order optimizer

ACGD offers an alternative solution to this issue, as shown in Figure 4.3d. Although

the images contain some minor artifacts, they display high quality. ACGD mitigates the

consistent character style observed in first-order optimizers, enabling increased diversity

in generated images while preserving visual fidelity to the original dataset. Our proposed

method balances the advantages of both Adam and ACGD. By utilizing this approach, we

can generate characters in 4.3b that closely mimic the original dataset and remain compu-

tationally efficient, similar to Adam, a first-order optimizer. Although some minor artifacts

may be present in the generated images, our method overall provides a promising solution

achieving high-quality and diverse results. As depicted in Figure 4.4, the generation of

FashionMNIST images displays a trend similar to that observed in MNIST. For grey-scale

images, ConOpt’s performance is found to be suboptimal. We note that the ConOpt paper

[53] did not present results for grey-scale images; thus, we acknowledge that we may not

know the appropriate hyperparameters for these datasets.

64

(a) Real (b) Ours (c) Adam (d) ACGD (e) ConOpt

Figure 4.4: Images generated for Fashion MNIST. Samples inside white box show mode-
collapse.

4.4.3 Image generation on color images

For color image datasets, we examine the well-known and widely-used datasets CIFAR10

[44], FFHQ [39], and LSUN bridges, tower, and classroom datasets [88]. A comparison for the

CIFAR10 dataset [44] is displayed in Figure 4.1. Our method generates images of compara-

ble quality to those produced by ACGD. A widely accepted metric for comparing methods

on the CIFAR10 dataset is the inception score. We analyze the inception scores of ACGD,

Adam, ConOpt, and our method in Figure 4.1a and Figure 4.1c. The former demonstrates

the performance over extended training durations, while the latter illustrates the perfor-

mance variations across multiple runs. The generator and discriminator architectures for

CIFAR10 are presented in Tables 4.3 and 4.4, respectively. Table 4.5a displays the average

time taken per epoch, while Table 4.5b showcases the maximum inception scores across

multiple runs. Our method achieves the highest inception score of 5.82, followed closely by

Adam with a score of 5.76, and then ConOpt and ACGD.

ACGD has a long runtime due to the costs involved in solving linear systems. However,

it may achieve a higher inception score if allowed to run for an extended period. To

investigate this, we conducted experiments for a long runtime of approximately eight days,

as illustrated in Figure 4.1a. We used the same experimental setting as ACGD, including

testing different values of GP and a case where GP was not used. For our architecture,

ACGD gave better results than the results reported on a smaller architecture in ACGD

paper; as shown in [69, Figure 9]. However, we find that Adam demonstrated better

performance than ACGD on this architecture.

Figure 4.6a displays our generated images of FFHQ, created using a training dataset

of FFHQ thumbnails downscaled to 64x64x3 dimensions. Our images demonstrate a high

level of detail and texture in the skin and realistic facial features. Figure 4.6b shows our

results on the LSUN classroom dataset, where our model successfully learned significant

65

(a) LSUN-tower. (b) LSUN-bridges.

Figure 4.5: Images generated by our method on LSUN-tower and LSUN-bridges.

features, capturing the essence of classroom scenes. In Figure 4.5, the generated images

of LSUN-tower and LSUN-bridges exhibit recognizable characteristics, such as the distinct

shape of a tower and the features typical of bridges.

(a) FFHQ. (b) Classroom.

Figure 4.6: Images generated by our method on FFHQ and LSUN-classroom.

66

Table 4.5: Timings and inception scores across multiple runs.

Method Average time per epoch

ACGD 35.34
Adam 0.186
ConOpt 0.25
Ours 0.184

(a) Average time in seconds.

Method Run1 Run2 Run3

ACGD 5.55 5.52 5.60
Adam 5.38 5.65 5.58
ConOpt 5.73 5.72 5.76
Ours 5.82 5.77 5.79

(b) Max inception scores across runs.

4.5 Computational complexity and timing comparisons

Assuming x ∈ Rm, y ∈ Rn, then due to the terms ∇2
xy, and ∇2

yx involved in ConOpt,

there is additional computational cost of the order O(m2n2), O(m3) and O(n3), these costs

are associated with constructing these terms and for matrix-vector operation required. On

the other hand, for ACGD, there are additional cost of order O(m3n3) for solving the

linear system with matrix of order mn×mn if direct method is used, and of order O(mn)

if iterative methods such as CG as in [71] is used. For empirically verifying the time

complexity, for CIFAR10 dataset, in Figure 4.1b, we observe that ACGD is the slowest,

and ConOpt is also costlier than our method. Our method has similar complexity to that

of Adam the first order methods. To compute the order of complexity of Algorithm 15,

we have m + n cost for scaling, 2(m + n) cost for u(uT gt) computation, and m + n cost

for uTu computation, then subtraction with gt costs (m + n). The total cost per epoch is

O(m + n), which is same order as any first-order method such as Adam.

Table 4.1b displays a comparison of the time taken per epoch for various methods,

including ACGD. It is noteworthy that ACGD consumes a significantly greater amount of

time compared to other methods. Specifically, ACGD takes 35 seconds per epoch, which is

approximately 200 times more than our method that takes only 0.184 seconds per epoch.

Notably, this is almost identical to the time taken by Adam, which is 0.186 seconds per

epoch.

67

Chapter 5

Other explorations

5.1 An attempt to overcome momentum

The majority of optimizers discussed in the Generative Adversarial Network (GAN)

literature incorporate techniques such as momentum or gradient scaling. However, through

our experiments, we have discovered that when such components are removed from the

optimizer, these models fail to generate satisfactory results. In an effort to address this

limitation, we endeavored to explore alternative methods that could effectively replace the

use of momentum during training. Our experimentation revealed that the generator’s loss

function exhibited significant instability, while the discriminator’s loss function quickly

approached zero.

To mitigate this issue, we use a form of regularization known as label smoothing (LS).

Previous chapter has demonstrated that LS introduces regularization effects. As depicted in

Figure 5.1, the top row illustrates the generated images from a training session conducted

without momentum and LS, showcasing highly noisy outputs. In contrast, the bottom

row demonstrates that, specifically for black and white datasets, the generator was able

to generate visually appealing images. Notably, for MNIST, the generated images bear

a striking resemblance to the original dataset, while for FMNIST, although the image

quality is subpar, it is an improvement over generating nothing. It should be acknowledged,

however, that even after the application of LS, the generator continued to produce only

noise when confronted with colored datasets such as CIFAR.

68

(a) CGD without LS - MNIST (b) CGD without LS - FMNIST (c) CGD without LS - CIFAR

(d) CGD with LS - MNIST (e) CGD with LS - FMNIST (f) CGD with LS - CIFAR

Figure 5.1: Performance comparison between CGD with and without label smoothing(LS)
on MNIST, Fashion MNIST, and CIFAR datasets.

5.2 Implicit Label Smoothing Regularization (ILSR)

We tried to train the GAN in a novel way as in shown in the Figure 5.2, where we are in-

corporating the label smoothing regularization(LSR) implicitly. We do this by conditioning

the generator on the smoothed labels.

Instead of providing a fixed label, we are providing soft label from a random distribution

on the interval [l1, l2), where l1, and l2 is the lower, and upper label limit respectively.

reflects the situation where no label smoothing is taking place.

Figure 5.2: Implicit label smoothing supported generator

69

To condition the generator on these smoothed labels, we first obtain L, which we call

abstract class label using the smoothed labels via the 18 in the step 4 of the Algorithm 17,

and then we feed these L into an embedding layer within the step 6 of Algorithm 17 to

obtain a fresh batch of fake images, and then we train the GAN normally using these fake

images.

Algorithm 17 Implicit label smoothing regularization

Require: l1 , l2, batch size, abstract classes, and λ.
1: initial gap← l2 − l1
2: for epoch← 1 to max epochs do
3: label← (l2 − l1) ∗ r(batch size) + l2 ▷ r(x) is a uniform distribution on the

interval [0,1)
4: abstract class labels← label gen(label)
5: real images← dataset(batch size)
6: fake images← generator(abstract class labels, noise)
7: Train generator using this fake images, and train discriminator normally.
8: end for

Algorithm 18 label gen

Require: label, l1, l2, abstract classes
1: interval← [l1, l2]
2: n← length(abstract classes)
3: Divide the intervals in n equal bins, and assign each bin a unique value incrementally.
4: abstract class labels← []
5: for i← 1 to length(label) do
6: Li ← bin value[labeli]
7: end for
8: return L

5.3 Disentangled representation learning

Disentangled representation is necessary to learn the general representation of the given

distribution, a generator that learns a disentangled representation provides with more

diverse images not only among different classes, but also within the same class. It is also

responsible for allowing generator to learn salient features of the dataset.

70

Authors in [6] have experimentally agreed that a good disentangling leads to better yield

of samples, and better mixing between the mode. We have witnessed something similar in

our experiments.

In Figure 5.3 we can see that on fixing the abstract class label L to a specific value, we

obtain a range of diverse images which have been learned as an umbrella representation

under that L within the embedding layer. We can also witness mixing of modes pertain-

ing to similar characteristic between the samples, this is a mark of generator which has

successfully learned deeper representation due to disentanglement.

For example, The samples in 5.3a have very similar salient features, where we can observe

similar classes are being learned as an umbrella representation under L = 0, particularly

samples very similar to the digit class 0,6,8. And even within a particular digit class we

witness more diverse options among the sample where the thickness, height, roundness and

alignment are differing. Hence an effective disentanglement has been achieved. This is also

true for other values of L as can be seen in the other subfigures under figure 5.3.

(a) L fixed to 0 (b) L fixed to 1 (c) L fixed to 2 (d) L fixed to 3 (e) L fixed to 4

(f) L fixed to 5 (g) L fixed to 6 (h) L fixed to 7 (i) L fixed to 8 (j) L fixed to 9

Figure 5.3: Good diversity, and mixing of modes from our method which is due to better
disentangling

71

(a) MNIST (b) Fashion MNIST (c) CIFAR

Figure 5.4: Performance of ILSR on MNIST, FMNIST, and CIFAR

5.4 Inducing Mode limiting with the Embedding Layer

In this section we show that this setup is indeed conditioning the generator in a way

that can limit the maximum number of modes learned during the training.

For this we are increasing the latent space of the embedding layer to 200, and changing

the dictionary size of the embedding layer to see if we can limit the number of nodes

produced by generator using this setup. This might not be ideal for a practical scenario

where we would like to take into consideration the effect that noise could have had to train

a higher quality GAN, instead this demonstration is just to reflect that the system is indeed

getting conditioned by our method, and that the embedding layer needs at least the same

number of rows as there are number of classes in the real distribution, i.e for MNIST where

the number of classes are 10 (digits [0-9]) we need at least 10 rows in the embedding layer.

When limit the number of rows in the embedding layer to less than 8 for the 8-mode

Gaussian distribution, in Figure 5.5 we witness that the maximum learned modes are

exactly equal to the number of rows, hence effectively limiting the generator’s capability

to learn, only when we set the number of rows to 8 the generator is capable of producing

all 8 modes. Hence this gives a clear intuition that the embedding rows must at least equal

the number of classes in the real distribution, to learn all the modes effectively.

72

(a) Training output when the number of rows of the embedding layer is restricted to 2.

(b) Training output when the number of rows of the embedding layer is restricted to 3.

(c) Training output when the number of rows of the embedding layer is restricted to 4.

(d) Training output when the number of rows of the embedding layer is restricted to 5.

(e) Training output when the number of rows of the embedding layer is restricted to 6.

(f) Training output when the number of rows of the embedding layer is restricted to 7.

(g) Training output when the number of rows of the embedding layer is restricted to 8.

Figure 5.5: Learning can be restricted to few modes when number of rows of the embedding
layers are restricted.

73

Chapter 6

Conclusion and Future Work

In conclusion, this thesis has explored and contributed to the field of deep learning

optimization by investigating adaptive learning rates, first-order optimization for GANs,

and the effects of label smoothing.

Our novel approach for obtaining adaptive learning rates surpasses traditional methods

by leveraging the angle between gradients, leading to superior accuracy compared to state-

of-the-art optimizers. We have demonstrated convergence and evaluated the approach on

diverse benchmark datasets using prominent image classification architectures.

The introduction of our first-order optimization method for GANs, based on the mod-

ified Gauss-Newton method, has shown remarkable results. Our method generates high-

fidelity images with enhanced diversity across multiple datasets, outperforming second-

order methods and achieving the highest inception score for CIFAR10. Additionally, the

execution time of our method is comparable to that of first-order min-max methods.

Through an investigation of label smoothing effects on GAN training, we have high-

lighted the significance of employing label smoothing with a high learning rate and the

CGD optimizer. The results surpass those obtained with ADAM at the same learning

rate, demonstrating the crucial role of label smoothing in achieving superior quality. We

have also explored architectural changes and their impact on the conditioning of the gen-

erator, providing valuable insights into optimizing GAN performance.

Overall, our research has made significant contributions to the field of deep learning opti-

mization. Our proposed methodologies for adaptive learning rates, first-order optimization

for GANs, and the importance of label smoothing offer improved accuracy in classification

tasks, enhanced image generation quality, and a deeper understanding of the intricacies in-

volved in GAN training. These advancements pave the way for further advancements and

74

applications in the field of deep learning optimization. The following endeavors present

potential avenues for future work based on the findings of this thesis:

1. Generalization of the angular framework: Expanding the application of the

proposed adaptive learning rate approach to other optimization methods such as

Adam, RMSprop, and exploring its efficacy in tasks beyond image classification, such

as natural language processing. This would involve adapting the angular framework

to different domains and analyzing its performance in diverse scenarios.

2. Refinement and extension of the Gauss-Newton framework: Further investi-

gation of the proposed first-order optimization method for GANs by incorporating a

detailed analysis of convergence rate. Conducting experimental evaluations on larger

architectures to assess the scalability and generalizability of the method. This would

provide a more comprehensive understanding of the method’s performance and its

potential applications in various GAN settings.

3. Theoretical justification for label smoothing in GAN training: Incorporating

theoretical insights that support and elucidate the benefits of label smoothing in GAN

training. Considering the widespread usage of momentum-based solvers in modern

GAN optimization, exploring theoretical foundations can enhance our understanding

of the role and impact of label smoothing. This theoretical justification would provide

a stronger basis for the practical adoption of label smoothing techniques in GAN

models.

By pursuing these future research directions, we can build upon the current thesis and

advance the field of deep learning optimization, opening up new possibilities for improved

optimization methods, expanded applications, and theoretical justifications.

75

Bibliography

[1] Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C.,

Casper, J., Catanzaro, B., Cheng, Q., Chen, G., et al. (2016). Deep speech 2: End-to-

end speech recognition in english and mandarin. In International conference on machine

learning, pages 173–182. PMLR.

[2] Anonymous (2023). Nonconvex-nonconcave min-max optimization on riemannian man-

ifolds. Submitted to Transactions on Machine Learning Research. Under review.

[3] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly

learning to align and translate. arXiv preprint arXiv:1409.0473.

[4] Balduzzi, D., Racaniere, S., Martens, J., Foerster, J., Tuyls, K., , and Graepel, T.

(2018a). The mechanics of n-player differentiable games. arXiv:1802.05642.

[5] Balduzzi, D., Racaniere, S., Martens, J., Foerster, J., Tuyls, K., and Graepel, T.

(2018b). The mechanics of n-player differentiable games. In International Conference

on Machine Learning, pages 354–363. PMLR.

[6] Bengio, Y., Mesnil, G., Dauphin, Y., and Rifai, S. (2013). Better mixing via deep

representations. In International conference on machine learning, pages 552–560. PMLR.

[7] Bertsekas, D. (1999). Nonlinear Programming. Athena Scientific.

[8] Boyd, S., Boyd, S. P., and Vandenberghe, L. (2004). Convex optimization. Cambridge

university press.

[9] Brown, G. W. (1951). Iterative solution of games by fictitious play. Act. Anal. Prod

Allocation, 13(1):374.

[10] Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D. (2020). Electra: Pre-training

text encoders as discriminators rather than generators. arXiv preprint arXiv:2003.10555.

76

[11] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P.

(2011). Natural language processing (almost) from scratch. Journal of machine learning

research, 12(ARTICLE):2493–2537.

[12] Cortes, C., Lawarence, N., Lee, D., Sugiyama, M., and Garnett, R. (2015). Advances in

neural information processing systems 28. In Proceedings of the 29th Annual Conference

on Neural Information Processing Systems.

[13] Daskalakis, C., Ilyas, A., Syrgkanis, V., and Zeng, H. (2017). Training gans with

optimism. arXiv preprint arXiv:1711.00141.

[14] Daskalakis, C., Ilyas, A., Syrgkanis, V., and Zeng, H. (2018). Training gans with

optimism. ArXiv, abs/1711.00141.

[15] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A

large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision

and Pattern Recognition, pages 248–255.

[16] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805.

[17] Dozat, T. (2016). Incorporating nesterov momentum into adam. ICLR Workshop,

1:2013–2016.

[18] Dubey, S. R., Chakraborty, S., Roy, S. K., Mukherjee, S., Singh, S. K., and Chaudhuri,

B. B. (2019). diffgrad: an optimization method for convolutional neural networks. IEEE

transactions on neural networks and learning systems, 31(11):4500–4511.

[19] Feichtenhofer, C., Pinz, A., and Zisserman, A. (2016). Convolutional two-stream

network fusion for video action recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1933–1941.

[20] Foerster, J. N., Chen, R. Y., Al-Shedivat, M., Whiteson, S., Abbeel, P., and Mordatch,

I. (2017). Learning with opponent-learning awareness. arXiv preprint arXiv:1709.04326.

[21] Gemp, I. and Mahadevan, S. (2018). Global convergence to the equilibrium of gans

using variational inequalities. arXiv preprint arXiv:1808.01531.

77

[22] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., and Bengio, Y. (2020). Generative adversarial networks. Communications

of the ACM, 63(11):139–144.

[23] Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep

recurrent neural networks. In 2013 IEEE international conference on acoustics, speech

and signal processing, pages 6645–6649. Ieee.

[24] Grnarova, P., Levy, K. Y., Lucchi, A., Hofmann, T., and Krause, A. (2017). An online

learning approach to generative adversarial networks. arXiv preprint arXiv:1706.03269.

[25] Han, A., Mishra, B., Jawanpuria, P., Kumar, P., and Gao, J. (2022). Rieman-

nian hamiltonian methods for min-max optimization on manifolds. arXiv preprint

arXiv:2204.11418.

[26] He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-cnn. In Proceedings

of the IEEE international conference on computer vision, pages 2961–2969.

[27] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770–778.

[28] Heo, B., Chun, S., Oh, S. J., Han, D., Yun, S., Kim, G., Uh, Y., and Ha, J.-W.

(2020). Adamp: Slowing down the slowdown for momentum optimizers on scale-invariant

weights. arXiv preprint arXiv:2006.08217.

[29] Huang, F. and Gao, S. (2023). Gradient descent ascent for minimax problems on

riemannian manifolds. IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30] Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2016). Densely

connected convolutional networks.

[31] Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). Densely

connected convolutional networks. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4700–4708.

[32] Huang, H., Wang, C., and Dong, B. (2018). Nostalgic adam: Weighting more

of the past gradients when designing the adaptive learning rate. arXiv preprint

arXiv:1805.07557.

78

[33] Jin, C., Netrapalli, P., and Jordan, M. (2020). What is local optimality in nonconvex-

nonconcave minimax optimization? In International Conference on Machine Learning,

pages 4880–4889. PMLR.

[Joffe] Joffe, B. Functions 3d: Examples. https://www.benjoffe.com/code/tools/functions3d/examples.

[35] Jordan, M., Lin, T., and Vlatakis-Gkaragkounis, E.-V. (2022). First-order algorithms

for min-max optimization in geodesic metric spaces. Advances in Neural Information

Processing Systems, 35:6557–6574.

[36] Jorge Nocedal, S. J. W. (2006). Numerical Optimization. Springer-Verlag, New York.

[37] Kang, M., Zhu, J.-Y., Zhang, R., Park, J., Shechtman, E., Paris, S., and Park, T.

(2023). Scaling up gans for text-to-image synthesis. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR).

[38] Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2017). Progressive growing of gans

for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196.

[39] Karras, T., Laine, S., and Aila, T. (2019). A style-based generator architecture for gen-

erative adversarial networks. In Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pages 4401–4410.

[40] Kingma, D. P. and Ba, J. (2014a). Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980.

[41] Kingma, D. P. and Ba, J. (2014b). Adam: A method for stochastic optimization.

[42] Koren, Y. (2009). Collaborative filtering with temporal dynamics. In Proceedings

of the 15th ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 447–456.

[Korpelevich] Korpelevich, G. Extragradient method for finding saddle points and other

problems (in russian) economics and mathematical methods, 1976, vol.

[44] Krizhevsky, A. (2009). Cifar-10 (canadian institute for advanced research). Technical

report, University of Toronto.

[Krizhevsky et al.] Krizhevsky, A., Nair, V., and Hinton, G. Cifar-10, and cifar-100 (cana-

dian institute for advanced research).

79

[46] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with

deep convolutional neural networks. Communications of the ACM, 60(6):84–90.

[47] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[48] Letcher, A., Balduzzi, D., Racaniere, S., Martens, J., Foerster, J., Tuyls, K., and

Graepel, T. (2019). Differentiable game mechanics. The Journal of Machine Learning

Research, 20(1):3032–3071.

[49] Liesen, J. and Strakos, Z. (2013). Krylov subspace methods: principles and analysis.

Numerical Mathematics and Scie.

[50] Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and Han, J. (2019). On the

variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265.

[51] Mertikopoulos, P., Lecouat, B., Zenati, H., Foo, C.-S., Chandrasekhar, V., and Pil-

iouras, G. (2018). Optimistic mirror descent in saddle-point problems: Going the extra

(gradient) mile. arXiv preprint arXiv:1807.02629.

[52] Mescheder, L., Nowozin, S., and Geiger, A. (2017a). The numerics of gans. Advances

in neural information processing systems, 30.

[53] Mescheder, L., Nowozin, S., and Geiger, A. (2017b). The numerics of GANs. In Pro-

ceedings of the 31st International Conference on Neural Information Processing Systems,

NIPS’17, page 1823–1833, Red Hook, NY, USA. Curran Associates Inc.

[54] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and

Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint

arXiv:1312.5602.

[55] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,

Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level

control through deep reinforcement learning. nature, 518(7540):529–533.

[56] Mokhtari, A., Ozdaglar, A., and Pattathil, S. (2020). A unified analysis of extra-

gradient and optimistic gradient methods for saddle point problems: Proximal point

approach. In International Conference on Artificial Intelligence and Statistics, pages

1497–1507. PMLR.

80

[57] Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer, New York,

NY, USA, 2e edition.

[58] Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation

learning with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434.

[59] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019).

Language models are unsupervised multitask learners. OpenAI blog, 1(8):9.

[60] Rakhlin, A. and Sridharan, K. (2013). Online learning with predictable sequences. In

Conference on Learning Theory, pages 993–1019. PMLR.

[61] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once:

Unified, real-time object detection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788.

[62] Redmon, J. and Farhadi, A. (2017). Yolo9000: better, faster, stronger. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 7263–7271.

[63] Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time ob-

ject detection with region proposal networks. Advances in neural information processing

systems, 28.

[64] Rendle, S. (2010). Factorization machines. In 2010 IEEE International conference on

data mining, pages 995–1000. IEEE.

[65] Roy, S., Paoletti, M., Haut, J., Dubey, S., Kar, P., Plaza, A., and Chaudhuri, B.

(2021). Angulargrad: A new optimization technique for angular convergence of convo-

lutional neural networks. arXiv preprint arXiv:2105.10190.

[66] Sabour, S., Frosst, N., and Hinton, G. E. (2017). Dynamic routing between capsules.

Advances in neural information processing systems, 30.

[67] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen, X.

(2016). Improved techniques for training gans. Advances in neural information processing

systems, 29:2234–2242.

81

[68] Sarzynska-Wawer, J., Wawer, A., Pawlak, A., Szymanowska, J., Stefaniak, I.,

Jarkiewicz, M., and Okruszek, L. (2021). Detecting formal thought disorder by deep

contextualized word representations. Psychiatry Research, 304:114135.

[69] Schaefer, F., Zheng, H., and Anandkumar, A. (2020). Implicit competitive regulariza-

tion in GANs. In III, H. D. and Singh, A., editors, Proceedings of the 37th International

Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Re-

search, pages 8533–8544. PMLR.

[70] Schäfer, F. and Anandkumar, A. (2019). Competitive gradient descent. Advances in

Neural Information Processing Systems, 32.

[71] Schäfer, F. and Anandkumar, A. (2019). Competitive gradient descent. In Proceedings

of the 33rd International Conference on Neural Information Processing Systems, Red

Hook, NY, USA. Curran Associates Inc.

[72] Schäfer, F., Zheng, H., and Anandkumar, A. (2019). Implicit competitive regulariza-

tion in gans. arXiv preprint arXiv:1910.05852.

[73] Shalev-Shwartz, S. and Singer, Y. (2006). Convex repeated games and fenchel duality.

Advances in neural information processing systems, 19.

[74] Simonyan, K. and Zisserman, A. (2014a). Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556.

[75] Simonyan, K. and Zisserman, A. (2014b). Very deep convolutional networks for large-

scale image recognition.

[76] Song, C., Pons, A., and Yen, K. (2021). Ag-sgd: Angle-based stochastic gradient

descent. IEEE Access, 9:23007–23024.

[77] Tan, M. and Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional

neural networks. In International conference on machine learning, pages 6105–6114.

PMLR.

[78] Tieleman, T., Hinton, G., et al. (2012). Lecture 6.5-rmsprop: Divide the gradient by

a running average of its recent magnitude. COURSERA: Neural networks for machine

learning, 4(2):26–31.

82

[79] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,

 L., and Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Infor-

mation Processing Systems, pages 5998–6008.

[80] Vinyals, O., Blundell, C., Lillicrap, T., kavukcuoglu, k., and Wierstra, D. (2016a).

Matching networks for one shot learning. In Lee, D., Sugiyama, M., Luxburg, U.,

Guyon, I., and Garnett, R., editors, Advances in Neural Information Processing Systems,

volume 29. Curran Associates, Inc.

[81] Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al. (2016b). Matching networks

for one shot learning. Advances in neural information processing systems, 29.

[82] Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., and Van Gool, L. (2016).

Temporal segment networks: Towards good practices for deep action recognition. In

European conference on computer vision, pages 20–36. Springer.

[83] Wang, Y., Zhang, G., and Ba, J. (2019). On solving minimax optimization locally: A

follow-the-ridge approach. arXiv preprint arXiv:1910.07512.

[84] Wu, X., Hu, Z., and Huang, H. (2023). Decentralized riemannian algorithm for non-

convex minimax problems. arXiv preprint arXiv:2302.03825.

[85] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M.,

Cao, Y., Gao, Q., Macherey, K., et al. (2016). Google’s neural machine translation

system: Bridging the gap between human and machine translation. arXiv preprint

arXiv:1609.08144.

[86] Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for

benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.

[87] Yadav, A., Shah, S., Xu, Z., Jacobs, D., and Goldstein, T. (2017). Stabilizing adver-

sarial nets with prediction methods. arXiv preprint arXiv:1705.07364.

[88] Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., and Xiao, J. (2015). Lsun:

Construction of a large-scale image dataset using deep learning with humans in the

loop. In arXiv preprint arXiv:1506.03365.

[89] Yu, F., Wang, D., Shelhamer, E., and Darrell, T. (2018). Deep layer aggregation.

In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

2403–2412.

83

[90] Zhang, P., Zhang, J., and Sra, S. (2023). Sion’s minimax theorem in geodesic metric

spaces and a riemannian extragradient algorithm.

[91] Zhuang, J., Tang, T., Ding, Y., Tatikonda, S. C., Dvornek, N., Papademetris, X., and

Duncan, J. (2020). Adabelief optimizer: Adapting stepsizes by the belief in observed

gradients. Advances in neural information processing systems, 33:18795–18806.

84

	Introduction
	Motivation
	Problem Addressed
	Challenges
	Contributions

	Literature Survey
	Introduction to Optimization
	Non stochastic optimization techniques
	Gradient Descent
	Newton's Method
	Krylov subspace solvers
	Conjugate Gradient(CG) Method

	Stochastic Optimization
	Introduction
	Non-Convexity
	Stochastic Gradient Descent (SGD)
	RMSprop : Root Mean Square Propagation
	Adam : Adaptive Moment Estimation
	Other notable stochastic solvers
	Regularization
	L1 Regularization (Lasso)
	L2 Regularization (Ridge)
	Elastic Net Regularization

	Wolfe conditions
	Sufficient Decrease Condition
	Curvature Condition

	Techniques for Stochastic Minimax Optimization
	Formulation
	Optimistic Gradient Descent Ascent (OGDA)
	Extra Gradient Method (EG)
	Follow the Ridge (FR)
	Competitive Gradient Descent (CGD)
	Implitict Competitive Regularization in GANs
	Consensus Optimization
	Minimax optimization on Riemannian manifolds

	Techniques for improved Deep Learning Training
	Label smoothing
	Modified Cross-Entropy Loss

	Early stopping
	Embedding layers
	Data normalization
	Min-Max Scaling
	Z-score Normalization
	Decimal Scaling
	Log Transformation
	Unit Vector Scaling

	Angle based dynamic learning rate for gradient descent
	Formulation
	Experiments on Some Toy Examples
	Toy Example A
	Toy Example B

	Convergence Results
	Numerical results
	Code Repository
	Ablation study
	Experimental Setup
	Hyper-parameters tuning setup

	A Gauss-Newton Approach for Min-Max Optimization in GANs
	Formulation
	Algorithm
	Fixed point iteration and convergence
	Numerical results
	Experimental setup
	Image generation on grey scale images
	Image generation on color images

	Computational complexity and timing comparisons

	Other explorations
	An attempt to overcome momentum
	Implicit Label Smoothing Regularization (ILSR)
	Disentangled representation learning
	Inducing Mode limiting with the Embedding Layer

	Conclusion and Future Work

