
Program Synthesis for Linguistic Rules

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science
in

Computational Linguistics
by Research

by

Saujas Srinivasa Vaduguru
20171098

saujas.vaduguru@research.iiit.ac.in

International Institute of Information Technology
Hyderabad – 500 032, INDIA

June 2022

Copyright © Saujas Srinivasa Vaduguru, 2022

All Rights Reserved

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Program Synthesis for Linguistic Rules” by
Saujas Srinivasa Vaduguru, has been carried out under my supervision and is not submitted elsewhere
for a degree.

Date Adviser: Dr. Monojit Choudhury Adviser: Prof. Dipti Misra Sharma

To my parents

Acknowledgments

I am grateful to several people for their guidance and support towards and during my work on this
thesis.

My adviser, Monojit Choudhury, has been an incredible mentor both in my research and beyond. He
sparked my curiosity about computational linguistics when I was still in school and has helped develop
it into a deep research interest during my undergraduate and masters years. It was his idea that sparked
the project that eventually led to this thesis, and he graciously agreed to guide my work on it. As my
thesis adviser, he led me through the research process, providing the necessary guidance and support
and also being patient and receptive to my ideas. He has shaped my development as a researcher in
profound ways, and for this, I’m immensely grateful.

I am also grateful to my other adviser, Dipti Misra Sharma, for supporting and guiding my work on
this project. Without her encouragement, this project might never have gone as far as it did. In working
on this, she has given me a lot of freedom to pursue ambitious goals and difficult problems, and this
work wouldn’t have been possible without that.

I’d also like to thank my collaborators on this project, Aalok Sathe and Partho Sarthi. They have
provided invaluable help and contributed to the development of these ideas in significant ways.

I am also thankful to the Pān. ini Linguistics Olympiad community, and to the broader Linguistics
Olympiad community as a whole. The Olympiad kindled my interest in linguistics when I was a partic-
ipant and has been a central part of what I’ve worked on in my research. I’ve also learned so much by
participating in the Olympiad, helping organise it, and mentoring contestants.

Beyond the work on this thesis, a number of people have influenced my development as a researcher,
and I would be remiss not to acknowledge them here. Evan Pu is one of the most interesting researchers I
know. His picking up on an innocuous question I asked during NeurIPS 2020 has led to some of the most
exciting research I have worked on so far, and collaborating with him has been an amazing experience.
The summer (and more) I spent at Sarath Chandar’s lab was an incredible learning experience. He is
a versatile researcher and an extremely kind mentor, and has been a generous and supportive guide in
pursuing a variety of ideas. During this period, I also had the opportunity to spend time with and learn
from Prasanna Parthasarathi, whose enthusiasm to explore a variety of deep questions about language
and learning has shaped how I think about them.

My extensive discussions with Shyamgopal Karthik and Ameya Prabhu have taught me a lot about
machine learning, and even more about research. As a young student, I found their enthusiasm for

v

vi

research and their extensive knowledge inspiring. I am extremely grateful for all the support and advice
they have given me in navigating college and research.

I have also enjoyed discussing NLP, linguistics, and research with friends, including Aditya Ya-
davalli, Alok Debnath, Shashwat Goel, Shelly Jain, and Ujwal Narayan, and I’m grateful for the chance
to learn from them.

I’m also grateful to have had supportive friends in college – AadilMehdi Sanchawala, Ajay Shrihari,
Anirudha Ramesh, Aryan Sakaria, Athreya Chandramouli, Jainam Khakhra, Mahathi Vempati, Mukund
Choudhary, Rahul Sajnani, Rohan Chacko, Sayar Ghosh Roy, Souvik Banerjee, Sriven Reddy, Zubair
Abid and more.

In my time spent away from home in Hyderabad, my uncle and grandmother provided a much-
needed support system. I’m grateful to them for helping me feel at home even when I was away and
taking good care of me.

It almost goes without saying that this work wouldn’t be possible without the incredible efforts of
my parents. They have been ardent and unrelenting supporters of my interest in research and have done
everything they can to enable my success. They have celebrated the good times with me and helped me
get through more difficult times. For all this and more, I am immensely thankful.

Abstract

Recent work in NLP has focused on applying powerful neural sequence models to various learning
problems. These neural models excel at extracting statistical patterns from large amounts of data but
struggle to learn patterns or reason about language from only a few examples. We ask the question: Can
we learn explicit rules that generalize well from only a few examples?

We explore this question by viewing linguistic rules as programs that operate on linguistic forms.
This allows us to tackle the problem of learning linguistic rules using program synthesis – a method
to learn rules in the form of programs in a domain-specific language (DSL). We develop a synthesis
model to learn phonological rules as programs in a DSL. In addition to being highly sample-efficient,
our approach generates human-readable programs and allows control over the generalizability of the
learned programs.

We test the ability of our models to generalise from only a few training examples using our new
dataset of problems from the Linguistics Olympiad. These problems are tasks from contests for high
school students around the world that require inferring linguistic patterns from a small number of given
examples. These problems are a challenging set of tasks that require strong linguistic reasoning ability.

Having shown that program synthesis can be used to learn phonological rules in highly data-constrained
settings, we use the problem of phonological stress placement as a case to study how the design of the
domain-specific language influences the generalisation ability when using the same learning algorithm.
We find that encoding the distinction between consonants and vowels results in much better perfor-
mance, and providing syllable-level information further improves generalization. Program synthesis,
thus, provides a way to investigate how access to explicit linguistic information influences what can be
learned from a small number of examples.

vii

Contents

Chapter Page

1 Introduction . 1
1.1 Thesis organisation . 2

2 Linguistic Problems . 4
2.1 Linguistics Olympiads . 4

2.1.1 Rosetta Stone-style problems . 5
2.2 Meta-linguistic awareness . 5
2.3 Phonology problems . 6
2.4 Dataset . 6

2.4.1 Dataset statistics . 7

3 Learning from Limited Data . 8
3.1 Abstract reasoning tasks . 8

3.1.1 Compositionality . 9
3.1.2 Program synthesis approaches . 10

3.2 Phonology and morphology from limited data . 10
3.2.1 Program synthesis approaches . 11

4 Program Synthesis . 13
4.1 Dimensions of program synthesis . 13
4.2 FlashMeta . 15

5 Learning Phonological Rules as String Transformations . 18
5.1 Program synthesis . 18

5.1.1 Phonological rules as programs . 18
5.1.2 Domain-specific language . 19
5.1.3 Synthesis algorithm . 20
5.1.4 Structure of the problems . 22

5.2 Experiments . 23
5.2.1 Baselines . 23
5.2.2 Program synthesis experiments . 23
5.2.3 Metrics . 24
5.2.4 Results . 24

5.3 Analysis . 24
5.3.1 Features aid generalisation . 25

viii

CONTENTS ix

5.3.2 Correct programs are short . 26
5.3.3 Using features . 26
5.3.4 Multi-pass rules . 27
5.3.5 Selecting spans of the input . 27
5.3.6 Global constraints . 27

5.4 Conclusion . 28

6 Learning Rules for Phonological Stress Placement . 29
6.1 Program synthesis . 29

6.1.1 Stress rules as programs . 29
6.1.2 Domain-specific languages . 30

6.1.2.1 Classes of phonemes . 31
6.1.2.2 Predicate types . 31

6.1.3 Synthesis algorithm . 34
6.2 Dataset . 35
6.3 Experiments . 35

6.3.1 Results . 36
6.4 Analysis . 37

6.4.1 Benefits of the consonant-vowel distinction 37
6.4.2 Benefits from syllable-level distinctions . 38
6.4.3 Incorrect generalisations . 38
6.4.4 Insufficient constraints for stress placement 39

6.5 Related work . 40
6.6 Conclusion . 41

7 Conclusions . 42

Appendix A: . 44
A.1 Olympiad data . 44
A.2 Examples . 44

Appendix B: . 48
B.1 Neural . 48
B.2 WFST . 48

List of Figures

Figure Page

4.1 An illustration of the search performed by the FlashMeta algorithm. The blue boxes
show the specification that an operator must satisfy in terms of input-output examples,
with the input token underlined in the context of the word. The Inverse Semantics
of an operator is a function that is used to infer the specification for each argument of
the operator based on the semantics of the operator. This may be a single specifica-
tion (as for predicate) or a disjunction of specifications (as for token and offset). The
algorithm then recursively searches for programs to satisfy the specification for each
argument, and combines the results of the search to obtain a program. The search for
the transformation – rule – in an IfThen statement proceeds similarly to the search for
a predicate. Examples of programs that are inferred from a specification are indicated
with =⇒ . A dashed line between inferred specifications indicates that the specifica-
tions are inferred jointly. 17

5.1 IfThen-Else statements in the DSL . 19
5.2 An illustration of the synthesis algorithm. FM is FlashMeta, which synthesises rules

which are combined into a disjunction of rules by NDSyn. Here, rule #1 is chosen over
#4 since it uses the more general concept of the voice feature as opposed to a specific
token and thus has a higher ranking score. 22

5.3 Number of rules plotted against EXACT score . 25

6.1 IfThenElse statements in the DSL. A transformation T is applied if the condition C is
true, else a transformation determined by the remaining rules is applied. 31

6.2 Classes available to each DSL – BASIC, CV, SYLLABLE, and FEATURE. 32
6.3 Illustration of the synthesis algorithm on a hypothetical case where the stress is on

the last vowel, using the BASIC DSL. The input examples are first used to generate
phoneme-level examples. The LearnProgram procedure then learns a decision list for
the phoneme-level examples through calls to LearnBranch. The LearnBranch proce-
dure iterates through different candidate transformations (such as ReplaceBy(’0’) and
ReplaceBy(’1’)). For each transformation, the LearnConj procedure produces candi-
date conjunctions for when the transformation applies and when it does not. The candi-
date which is true for the most number of cases where the transformation applies, and
none of the cases where it does not, is chosen. Here, this is #1 for the ReplaceBy(’1’)
action and #6 for the ReplaceBy(’0’) action. The predicate-action pair which solves
the most examples (here b) is then added to the decision list, and the LearnBranch
procedure is called again on the unsolved examples. 33

x

List of Tables

Table Page

1.1 Verb forms in Mandar (McCoy, 2018) . 1

2.1 A few examples from different types of Linguistics Olympiad problems. ‘?’ represents
a cell in the table that is part of the test set. 6

5.1 Predicates that are used for synthesis. The predicates are applied to a token x that is at
an offset i from the current token in the word w. The offset may be positive to refer to
tokens after the current token, zero to refer to the current token, or negative to refer to
tokens before the current token. 20

5.2 Transformations that are used for synthesis. The transformations are applied to a token
x in the word w. The offset i for the Copy transformations may be positive to refer to
tokens after the current token, zero to refer to the current token, or negative to refer to
tokens before the current token. 21

5.3 Metrics for all problems, and for problems of each type. The CHFF score for stress
problems is not calculated, and not used to determine the overall CHRF score. 23

5.4 Number of problems where the model achieves different thresholds of the EXACT score. 25

6.1 An example of the task of predicting stress patterns based on surface forms from the
Cofan language. Each phoneme in each word is labelled with 1 for primary stress or 0
for secondary stress. 30

6.2 Average accuracy across languages for each of the different DSLs for the entire set of
languages and grouped by source of data. 36

6.3 Number of languages where the system obtains perfect test accuracy, or test accuracy
over 50%. 36

A.1 Languages for which we collect data. 45
A.2 Olympiad problems. Kabardian is an IOL problem in which stress is presented as a side

phenomenon, and is easier to deduce than in other IOL problems. 45
A.3 Creek stress . 46
A.4 Kabardian stress . 47

xi

Chapter 1

Introduction

In the last few years, the application of deep neural models has allowed rapid progress in NLP. Tasks
in phonology and morphology have been no exception to this, with neural encoder-decoder models
achieving strong results in recent shared tasks in phonology (Gorman et al., 2020) and morphology
(Vylomova et al., 2020). They have also been incorporated into theories of phonology Wu et al. (2021).
While neural models are powerful learning machines, they require a large number of training examples,
either for supervised or for transfer learning. Additionally, these models are not easily interpretable,
and understanding what structures and patterns these models learn from data is a non-trivial task. In
this paper, we explore the problem of learning interpretable phonological and morphological rules from
only a small number of examples, a task that humans are able to perform.

to V to be Ved

mappasuN dipasuN
mattunu ditunu

? ditimbe
? dipande

Table 1.1: Verb forms in Mandar (McCoy, 2018)

Consider the example of verb forms in the language Mandar presented in Table 1.1. How would
a neural model tasked with filling the two blank cells do? The data comes from a language that is not
represented in large-scale text datasets that could allow the model to harness pretraining, and the number
of samples presented here is likely not sufficient for the neural model to learn the task.

However, a human would fare much better at this task even if they didn’t know Mandar. Identifying
rules and patterns in a different language is a principal concern of a descriptive linguist (Brown and
Ogilvie, 2010). Even people who aren’t trained in linguistics would be able to solve such a task, as
evidenced by contestants in the Linguistics Olympiads1, and general-audience puzzle books (Bellos,
2020). In addition to being able to solve the task, humans would be able to express their solution
explicitly in terms of rules, that is to say, a program that maps inputs to outputs.

1https://www.ioling.org/

1

https://www.ioling.org/

In this thesis, we aim to devise methods that can learn linguistic rules from a small number of exam-
ples, and study the effect of prior knowledge on how the learned rules generalise to unseen examples.
We explore a different approach to learning linguistic patterns from data – by viewing rules as programs
that operate on linguistic forms. In this view, we can cast the task of learning linguistic patterns as pro-
gram synthesis. Program synthesis (Gulwani et al., 2017) is a method that can be used to learn programs
that map an input to an output in a domain-specific language (DSL). It has been shown to be a highly
sample-efficient technique to learn interpretable rules by specifying the assumptions of the task in the
DSL (Gulwani, 2011).

The contributions of this thesis are as follows:

• Applying program synthesis methods to learning phonological rules as string transformation pro-
grams given only a few examples

• Curating a set of phonology problems from Linguistic Olympiads suitable to evaluate a system
that is tasked with learning linguistic patterns from small amounts of data

• Showing the efficacy of this method in learning rules to solve challenging problems from Lin-
guistics Olympiads

• Exploring how the design of the domain-specific language and the linguistic knowledge encoded
into the synthesis procedure in synthesising rules for stress placement

1.1 Thesis organisation

In Chapters 2 to 4, we lay out the relevant background on Linguistics Olympiads and program syn-
thesis, and discuss related work on learning from limited amounts of data.

Chapter 2 We describe Linguistics Olympiads and discuss the challenges involved in solving prob-
lems from these Olympiads. We discuss the types of problems we tackle in this work and describe the
dataset of problems we compile to evaluate our system.

Chapter 3 We review work on learning abstract rules from limited data. We discuss two broad views
of the task of solving problems like those that appear in the Linguistics Olympiads – as a task of learning
rules for abstract reasoning tasks, and as learning linguistics patterns (specifically phonological and
morphological) patterns from a limited amount of data.

Chapter 4 We present a short primer on program synthesis. We discuss different dimensions of the
program synthesis task and discuss the choice of program synthesis approach for the learning problem
we tackle. We also describe a key component of the program synthesis approach used in later chapters.

In Chapters 5 and 6 we present the synthesis formalism, describe the algorithm, discuss the experi-
mental methods, and analyse the results.

2

Chapter 5 We show that program synthesis can be used to learn linguistic rules from a small number
of examples, and apply it to learning phonological rules that perform string-to-string transformations.
We demonstrate a method for learning different types of rules, including morphophonology, translitera-
tion, and phonological stress.

Chapter 6 We extend the formulation of phonological stress placement as a string-to-string transfor-
mation problem from Chapter 5 and develop a program synthesis approach specific to stress. We design
different DSLs, each providing access to different phonological abstractions. We compare the results
from using these different DSLs on data from a variety of languages.

Through the example of using program synthesis to learn stress rules, we seek to illustrate how
program synthesis can be used as a general framework to compare how providing the same learning
algorithm access to different linguistic abstractions can influence generalisation from some given data.

3

Chapter 2

Linguistic Problems

In this chapter, we introduce and discuss Linguistics Olympiads and describe the data collected for
our experiments.

2.1 Linguistics Olympiads

Linguistic problems are a genre of composition that presents linguistic facts and phenomena in enig-
matic form (Derzhanski and Payne, 2010). The most common use of these problems is in contests
for secondary school students such as the North American Computational Linguistics Olympiad (in
the USA and Canada), the Panini Linguistics Olympiad (in India), and the International Linguistics
Olympiad (IOL). These problems satisfy two conditions (Bozhanov and Derzhanski, 2013):

• They do not require knowledge (including knowledge of linguistic theory) beyond what is taught
in the secondary school curriculum

• They must have a unique, unambiguous solution

Though these problems are designed such that they do not require specific linguistic knowledge, they
require the ability to perform complex reasoning and spot general patterns using very few examples. The
problems are also designed in a manner that ensures the patterns can be deduced from the data. This
guarantee makes these problems a suitable challenge for algorithms that can learn to generalise from
only a few examples.

In these problems, the solver is presented with examples of linguistic forms (words, phrases, sen-
tences) and other forms derived by applying the rules to these forms. These forms, which we will refer
to as the data, typically consist of 20-50 forms, and the problems are designed to provide the minimal
number of examples required to infer the correct rules is presented (Şahin et al., 2020).

The assignments provide other linguistic forms, and the solver is tasked with applying the rules
inferred from the data to these forms. The forms in the assignments are carefully selected by the designer
to test whether the solver has correctly inferred the rules, including making generalisations to unseen

4

data. This allows us to see how much of the intended solution has been learnt by the solver by examining
responses to the assignments.

The small number of training examples (data) tests the generalisation ability and sample efficiency
of the system and presents a challenging learning problem for the system. The careful selection of test
examples (assignment) lets us use them to measure how well the model learns these generalisations.

2.1.1 Rosetta Stone-style problems

One class of linguistic problems – dubbed Rosetta Stone problems – is particularly well suited for
this kind of challenge. These problems consist of ordered matching expressions of two languages or
language-like symbolic systems, so chosen as to enable deducing the regularities behind the correspon-
dences Bozhanov and Derzhanski (2013). Often, these problems take the form of translation tasks,
where phrases or sentences from two languages are given, and the solver has to infer the rules required
to translate from one language to the other.

Şahin et al. (2020) present a set of Rosetta Stone-style problems from various Linguistics Olympiads
based on translation tasks as a benchmark for how well modern systems perform on translation tasks
given a very small number of examples. These problems require rules at various levels of linguistic
processing – phonology, morphology, syntax, and semantics. A further challenge in these problems is
the interaction between these different levels of processing, making these problems difficult benchmarks
for learning linguistic regularities from data.

Unsurprisingly, they find that while humans are able to solve these tasks – as evidenced by the
contestants in the Olympiads in which these problems appeared – even powerful NLP models perform
quite poorly, getting hardly any translations correct.

In addition to the benchmark, and experimental results, Şahin et al. (2020) identify meta-linguistic
awareness as a requirement to solve such problems, where the amount of data given is extremely small.

2.2 Meta-linguistic awareness

Şahin et al. (2020) build on Chomsky’s (1975) definition of meta-linguistics as “the knowledge of the
characteristics and structures of language”. They argue that this meta-linguistic awareness – knowledge
of how languages work in general, beyond any specific language – can help with learning new languages
efficiently. In the context of NLP models, having greater meta-linguistic awareness can help with cross-
lingual generalisation, and transferring knowledge between languages more easily.

The program synthesis approach we take allows us to encode certain forms of prior knowledge into
the space in which we search for solutions. These can be viewed as building certain specific forms of
meta-linguistic awareness into our models. This setting allows us to explicitly define what we consider to
be meta-linguistic awareness, and understand what forms of this awareness are helpful in inferring rules

5

base form negative form

joy kas joya:ya’
bi:law kas bika’law
tipoysu:da ?
? kas wurula:la’

(a) Movima negation

Turkish Tatar

bandIr mandIr
yelken cilkän
? osta
bilezik ?

(b) Turkish and Tatar

Listuguj Pronunciation

g’p’ta’q g@b@da:x
epsaqtejg epsaxteck
emtoqwatg ?
? @mtesk@m

(c) Micmac orthography

Aleut Stress

tatul 01000
n@tG@lqin 000010000
sawat ?
qalpuqal 00001000

(d) Aleut stress

Table 2.1: A few examples from different types of Linguistics Olympiad problems. ‘?’ represents a cell
in the table that is part of the test set.

from only a small number of samples. In the context of learning from data, meta-linguistic awareness
can also be viewed as a form of inductive bias.

2.3 Phonology problems

Linguistics Olympiad problems, in general, are based on various types of linguistic phenomena –
including phonology, morphology, syntax, and semantics – and often involve multiple linguistic phe-
nomena that interact across levels of linguistic analysis.

In this thesis, we restrict our study to problems based on phonology. More specifically, we choose
problems whose solution depends on rules that can be inferred based only on the form of the data, with-
out relying on aspects of meaning. Olympiad problems often involve phenomena that require reasoning
about semantic concepts and categories, such as tense, number, grammatical gender, etc. When solving
these problems, humans rely on their knowledge of these concepts in the language(s) they already know.
However, in designing a program synthesis system, especially one where we don’t assume access to ex-
tensive data for learning, defining such categories in a way that can be flexibly used across languages
is a difficult, if not insurmountable, challenge. In choosing problems based on phonology, we restrict
our investigation to a space where concepts can be defined based on classes of symbols, or in terms of a
small set of well-understood features.

2.4 Dataset

We select 34 problems from various Linguistics Olympiads to create our dataset. We include publicly
available problems that have appeared in Olympiads before. These problems are based on phonology,

6

and some aspects of the morphology of languages, as well as the orthographic properties of languages.
We choose problems that only involve rules based on the symbols in the data, and not based on knowl-
edge of notions such as gender, tense, case, or semantic role. These problems are based on the phonol-
ogy of a particular language and include aspects of morphology and orthography, and maybe also the
phonology of a different language. In some cases where a single Olympiad problem involves multi-
ple components that can be solved independently of each other, we include them as separate problems
in our dataset. As described in Section 2.3, these problems are chosen such that the underlying rules
depend only on the given word forms, and not on inherent properties of the word like grammatical
gender or animacy. The problems involve (1) inferring phonological rules in morphological inflec-
tion (Table 2.1a) (2) inferring phonological changes between multiple related languages (Table 2.1b)
(3) converting between the orthographic form of a language and the corresponding phonological form
(Table 2.1c) (4) marking the phonological stress on a given word (Table 2.1d). We refer to each of these
categories of problems as morphophonology, multilingual, transliteration, and stress respectively. The
dataset is available at https://github.com/saujasv/phonological-generalizations.

2.4.1 Dataset statistics

The dataset we present is highly multilingual. The 34 problems contain samples from 38 languages,
drawn from across 19 language families. There are 15 morphophonology problems, 7 multilingual
problems, 6 stress, and 6 transliteration problems. The set contains 1452 training words with an average
of 43 words per problem and 319 test words with an average of 9 per problem. Each problem has a
matrix that has between 7 and 43 rows, with an average of 23. The number of columns ranges from 2 to
6, with most problems having 2.

7

https://github.com/saujasv/phonological-generalizations

Chapter 3

Learning from Limited Data

In this chapter, we review different directions in learning from limited data. First, we consider
work in the cognitive science and artificial intelligence communities on inducing abstract rules from
limited data. Then, we review work from the natural language processing and computational linguistics
communities on learning phonological and morphological rules from limited data.

3.1 Abstract reasoning tasks

Solving the types of problems we consider in this thesis can be viewed as an instance of the task
of inferring abstract rules from limited data, with the data being in the form of strings of phonemes in
a particular language. There has been significant work studying how humans infer abstract concepts
and solve such reasoning challenges, and also in developing computational models of such reasoning
processes. Moreton et al. (2017) also cast phonological concept induction as an instance of general
concept induction methods, connecting the elements of phonological rule learning and reasoning about
abstract concepts that we examine in this work.

Chollet (2019) presents one such suite of abstract reasoning tasks called the ARC challenge. These
tasks are intended to measure progress towards general, fluid, human-like intelligence. The tasks consist
of sets of input-output pairs, each of which is a pair of grids. The cells of the grid may be coloured in
different ways, forming a pattern. Each input-output pair demonstrates the application of a specific
transformation to the input grid that produces the output grid. An agent that solves these tasks must
infer the transformation, and successfully apply it to an input grid (for which the corresponding output
is not provided) to obtain the correct output.

Johnson et al. (2021) cast the ARC challenge as an instance of human program induction, and mea-
sure how well humans perform on these abstract reasoning tasks.1 They note that the ARC challenge
incorporates “elements such as flexible hypothesis generation, few-shot learning, compositionality and
program induction”, all of which are important aspects of solving the Olympiad problems we consider

1They find that humans are able to solve 80% of these tasks on average, which is far higher than the best performing model
at the time of their writing, which solved 21% of the tasks.

8

as well. Another aspect of Olympiad problems that is also a feature of the ARC challenge is the pres-
ence of a generation component – the solver has to generate answers to the assignments from scratch.
One theme that has been extensively explored in machine learning and artificial intelligence work that
has sought to build models that can generalise from a small amount of data is compositionality.

3.1.1 Compositionality

Compositionality is the notion that a small number of primitives can be combined to create complex,
composite structures. Lake et al. (2017) argue that the productivity afforded by compositionality is core
to how humans can learn new concepts from a large space of possibilities. Compositionality is also
an essential component of abstract rule-like structures, which humans can learn efficiently and use to
generalise from only a few examples or demonstrations (Lake et al., 2019).

The ability of neural network (or connectionist) models to generalise compositionally in a systematic
manner is yet to be established (Lake and Baroni, 2018). To tackle the issue of compositionality, a
number of approaches have been proposed. Here, we review two classes of approaches – meta-learning
and data augmentation – which have been applied to sequence-to-sequence problems in a few-shot
learning setting.

Meta-learning is the notion of learning how to acquire a new task from only a few examples through
training across many such tasks. Lake (2019) presents an approach using meta-learning to train a
memory-augmented sequence-to-sequence model and introduce compositional inductive biases. Through
training across many tasks, the model learns to use its memory to generalise systematically from only a
few given examples of sequence-to-sequence transformations at test time.

Another approach to achieving compositional generalisation has been through data augmentation.
Data augmentation refers to “strategies for increasing the diversity of training examples without ex-
plicitly collecting new data” (Feng et al., 2021). Andreas (2020) presents a data augmentation method
designed to improve compositional generalisation by identifying phrases in the training data and substi-
tuting them in new environments. This simple approach improves the performance of black-box neural
network models in a variety of tasks, including semantic parsing and low-resource language modeling.
Akyürek et al. (2021) build upon the idea of data augmentation for compositional generalisation and
propose using learned augmentations. They use a learned model to combine examples from training
data – either by copying fragments or learning to insert appropriate examples in context – and resample
to obtain an augmented training set. This approach allows for highly data-efficient generalisation. They
study the setting of morphological analysis, similar to the task we consider, and find that their model
can generalise to a new paradigm given as few as 8 examples of that paradigm.

Though meta-learning is a promising approach to learn from a small number of examples in a new
task, it does require a large number of tasks to learn from. Data augmentation approaches may allow
for learning new skills (such as inflecting in new morphological paradigms), or improve compositional

9

generalisation, but still requires a large amount of data. Given the constraints on the data we have, we
adopt a program synthesis approach and design the DSL to enable desirable forms of generalisation.

3.1.2 Program synthesis approaches

Program synthesis approaches – including ones that incorporate learning, search, and some combi-
nation of the two – have shown significant promise in generalising from only a few examples.

Search-based program synthesis approaches have succeeded at learning rules from very few input-
output examples. One of the most successful instances of this is the FlashFill system (Gulwani, 2011)
that learns string transformations. When the ARC challenge was hosted on Kaggle, a popular machine
learning contest platform, the best performing solution at the time used search-based program synthe-
sis2.

Neural models have also resulted in learning-based approaches to program synthesis. Devlin et al.
(2017) presented a system that learnt to generate the string form of a program given a small set of input-
output examples. Execution-guided approaches have also been successful at these string transformation
tasks, using the result of executing partial programs to build larger, more complex programs (Ellis et al.,
2019). Nye et al. (2020) present a method where a program synthesis-based approach is used to learn
compositional rules for string transformation tasks, including mapping numeral expressions in language
to the numeric value in a number of different languages.

3.2 Phonology and morphology from limited data

In this thesis, we focus on a subset of Linguistics Olympiad problems that deal specifically with
phonology and morphology. In this section, we review work on learning linguistic rules in highly data-
constrained settings.

Recent work on morphology has focused on the task of morphological (re)inflection, where the
surface form, or stem, of a word and a target morphological paradigm are given, and the task is to learn
to predict the surface form of the word inflected for the target paradigm.

Recent shared tasks on morphological reinflection, have seen a number of approaches that employ
powerful neural sequence transduction models (Vylomova et al., 2020). Data augmentation-based ap-
proaches (Anastasopoulos and Neubig, 2019), in combination with ensembling and other training tech-
niques have allowed for morphological reinflection models even for low-resource languages. Anasta-
sopoulos and Neubig (2019) also explore the efficacy of transfer learning – training on a language with
more available labelled data to improve performance on languages with little training data – for the
reinflection task.

Kann and Schütze (2018) study the morphological reinflection task in the setting where even fewer
labelled samples are available than in typical low-resource morphological reinflection settings, which

2https://github.com/top-quarks/ARC-solution

10

https://github.com/top-quarks/ARC-solution

they term the minimal-resource setting. They consider this setting as an instance of paradigm comple-
tion, where given a partial paradigm of a lemma, the remaining forms are to be generated. They use
transductive learning to use the partial paradigms at test time to improve predictions. This work is aimed
at learning to generalise with a small number of paradigms, but the number of forms within a paradigm
may not be minimal.

While the formulation of the morphological reinflection tasks is similar (when viewed as filling cells
in a paradigm table), the full reinflection task may have instances where the answer cannot be determined
only based on the given forms. For example, the Czech data from the SIGMORPHON 2017 shared task3

includes the following training triples:

Source form Target form Tags

dvojka dvojky N;GEN;SG

svazek svazku N;GEN;SG

Here, the difference in the suffix depends on the gender of the base form. This information is not
available in the paradigm tag.

Another focus of our investigation is the number of samples, where a small number of selected
examples is provided to ensure the task is solvable. With Olympiad problems, we know that the test
set forms can be deduced based on the other given (training set) forms. However, the reinflection task
data has more samples, and selecting a subset of training samples to allow all test forms to be inferred
is itself a challenging task.

Learning rules in extremely resource-constrained settings has also been explored in other computa-
tional linguistics tasks. Chaudhary et al. (2020) explore learning rules for morphosyntactic agreement.
They use transfer learning-based approaches to dependency parsing to obtain dependency trees for sen-
tences in a language where only a small amount of (labelled) data may be available. Based on the trees,
they extract features that can be used to train a decision tree-based classifier for predicting agreement.
Since decision trees are interpretable models the decision tree constitutes a set of rules for predicting
agreement.

Finally, the use of a hand-crafted domain-specific language in program synthesis allows us to control
the specific inductive biases that our models use to learn generalisable rules. Gildea and Jurafsky (1996)
also study the problem of learning phonological rules from data and explicitly controlling generalisation
behaviour through specifying inductive biases. However, we consider this problem in a setting where
the number of samples available is far smaller.

3.2.1 Program synthesis approaches

Ellis et al. (2015) apply program synthesis to learning morphophonological rules in English. Given
triples of lexeme, tense, and surface form (which constitute paradigm tables presented in a different

3https://github.com/sigmorphon/conll2017/blob/master/all/task2/czech-train-low

11

https://github.com/sigmorphon/conll2017/blob/master/all/task2/czech-train-low

format), their model jointly infers regular rules that govern the morphophonological processes. The joint
inference proves to be a computationally expensive solution, and this limitation is addressed by Barke
et al. (2019). Their method breaks down the process into three steps – inferring the underlying form
of the word, inferring changes between the underlying form and the surface form, and then inferring
conditions in which these changes occur. This decomposition of the problem allows for much faster
inference.

Ellis et al. (2015) and Barke et al. (2019) learn phonological rules to determine the surface forms
of words in different paradigms by applying rules to an underlying form or stem. This is similar to the
framework presented by Chomsky and Halle (1968), where the “phonological component is a system
of rules [...] that relates surface structures [...] to phonetic representations.”4 Thus, to transform a word
in one morphological paradigm to another, the underlying form of the word has to be inferred, and
the rules that convert the underlying form to the surface form. However, these underlying forms are
an abstraction posited as part of the learning process, and the strings corresponding to the underlying
forms are also inferred alongside the rules. Thus, some prior work applying program synthesis to learn
linguistic rules works within the theoretical framework described in Chomsky and Halle (1968).

In contrast, the approach we adopt in this thesis does not follow any particular theoretical framework.
We design systems that learn rules to directly convert between surface forms. We do not infer underlying
forms as an intermediate step in converting between these surface forms. We also assume access to fea-
tures (which are part of the DSL used by Barke et al. (2019) and Ellis et al. (2015)) is optional, allowing
us to observe the effect of access to features when learning general string transformation programs. This
also allows us to test our approach on a more varied set of problems that involves aspects of morphol-
ogy, transliteration, multilinguality, and stress by modeling them as instances of string transformations.
Despite differing the theoretical motivations of the work, we adopt the formalism of conditional rewrite
rules in this work (this formalism is described in greater detail in Chapter 5). Whereas prior work uses
conditional rewrite rules to model the transformation from the string corresponding to the underlying
form to surface form, we use them to directly model transformations between surface form strings.

Sarthi et al. (2021) apply program synthesis to the problem of grapheme-to-phoneme conversion in
Hindi and Tamil, which they pose as a string-to-string transformation task. Their design of the domain-
specific languages captures specific phonological processes in Hindi and Tamil. In, Chapter 5 we adapt
the method presented by Sarthi et al. (2021) to the task of learning phonological rules.

4Chomsky and Halle (1968) use surface structure to refer to the output of the syntactic process, what we refer to elsewhere
as the underlying form for the phonological component, and phonetic representation is used to refer to the output of the
phonological component, which we refer to elsewhere as the surface form.

12

Chapter 4

Program Synthesis

Program synthesis is “the task of automatically finding programs from the underlying programming
language that satisfy (user) intent expressed in some form of constraints” (Gulwani et al., 2017). This
definition highlights two important aspects of program synthesis – the underlying programming lan-
guage, or domain-specific language, and the expression of intent in the form of constraints. Gulwani
et al. (2017) identify three dimensions in program synthesis, which we discuss.

4.1 Dimensions of program synthesis

Intent There are many possible ways to specify intent in program synthesis. Given the specifica-
tion, synthesis is the task of finding programs that are consistent with the specification. Some ways of
specifying intent are:

• Programs: The intended program can be defined as one that behaves identically to another speci-
fied program. This form of specification finds application in tasks like superoptimisation – where
the synthesiser is used to find a more efficient program that behaves identically to the intended
program. (Bansal and Aiken, 2008).

• Partial programs: Another way of specifying intent is by providing partial programs that have
holes that need to be filled by synthesised code. The SKETCH system (Solar-Lezama, 2008) is an
example of a synthesiser that completes partial programs.

• Natural language: Intent can also be specified as a natural language utterance (Desai et al.,
2016). Natural language may be used as the sole form of specification, or in conjunction with
examples and other types of constraints in multimodal program synthesis (Ye et al., 2021).

• Examples: Examples are a popular form of specifying intent for program synthesis and the form
we focus on in this thesis. Here, a small number of inputs, along with the result of executing the
intended program on these inputs, is provided to the synthesiser. This has been used for building
synthesisers that can find programs for tasks such as string transformations from just 2-3 examples

13

(Gulwani, 2011). We cast the task of solving Rosetta Stone-style Olympiad problems as finding
the program that transforms forms in one language to another, or from one inflectional paradigm
to another.

Search space The domain-specific language (DSL) specifies the space of programs that needs to be
searched. By imposing some structure on the search space through the DSL, we can make the search
procedure more efficient. Additionally, the design of the DSL allows us to encode the domain-specific
knowledge into the space of programs. This ensures that the program space only contains programs that
are feasible solutions, and eliminates many spurious solutions that may satisfy the given constraints.
When working in challenging settings like learning rules from only a few input-output examples, the
design of the DSL can improve synthesis significantly (we explore this in Chapter 6).

The ability to explicitly encode domain-specific assumptions gives program synthesis broad appli-
cability to various tasks. In this thesis, we explore applying it to the task of learning phonological rules.
Whereas previous work on rule-learning has focused on learning rules of a specific type (Brill, 1992;
Johnson, 1984), the DSL in program synthesis allows learning rules of different types, and in different
rule formalisms.

Search technique Given a form of specifying intent, and a space to search in, there are different ways
of searching for the intended program.

• Enumeration: One way of synthesising programs is enumerating programs in some order (like
in order of increasing size/complexity) until a program consistent with the specification is found.
This is a simple technique for synthesis but can be difficult to scale.

• Deduction: Another way to search for programs is to break down the search problem into a
collection of smaller search problems using rules of deduction, and combining the solutions to
these. The FlashMeta algorithm is an instance of this class of methods, and we use this type
of search for solving problems in later chapters. FlashMeta is described in greater detail in
Section 4.2.

• Constraint solving: This way of synthesising programs involves generating logical constraints
whose resolution results in a program consistent with the specification. This form of synthesis
has been used in prior work by Barke et al. (2019) applying program synthesis to linguistic rules,
which was discussed in Chapter 3.

• Statistical methods: Techniques involving statistical methods including machine learning (Menon
et al., 2013), genetic programming (Weimer et al., 2009), MCMC sampling (Schkufza et al.,
2013), and probabilistic inference (Jojic et al., 2006) have been studied in the context of program
synthesis. Recent work has found that neural models, particularly neural sequence models, are
powerful, robust synthesisers (Devlin et al., 2017; Nye et al., 2020).

14

An important concern in searching for programs is incorporating domain-specific preferences for
some programs over others. Some preferences, such as a preference for shorter programs, are useful
in a variety of domains. Incorporating domain-specific knowledge can result in more generalisable
programs, and allow for learning from even a small number of examples. These preferences may be
introduced in many ways. One common way is to use a ranking function, that imposes an ordering over
the space of programs and breaks ties between multiple programs that may be consistent with a given
specification. This ranking function may be learnt from data (Gulwani and Jain, 2017), or specified
by hand (Gulwani, 2011). The FlashMeta algorithm allows specifying a ranking function by hand,
and we use this since we do not have sufficient data for learning. Other ways of imposing preferences
over programs include posing synthesis as a constrained optimisation problem rather than a constraint
satisfaction problem. This approach was adopted by Barke et al. (2019).

4.2 FlashMeta

FlashMeta is a framework for inductive program synthesis. The framework allows for specifying a
domain-specific language — defined by

• a syntax in the form of a context-free grammar, which has rules that expand non-terminal variables
on the left hand side to the application of an operator to non-terminal variables on the right hand
side

• a semantics which defines the semantics of each operator in the DSL, which the framework treats
as black-box operators that can be defined by the user

• witness functions that define the inverse semantics of the operator, and allow for deductive search

• a ranking function that assigns a (sub-)program a real-valued score

This structure of FlashMeta allows it to leverage multiple forms of guidance in the search. The
domain-specific language defines a syntax that can be used to guide search, as in SyGuS (?). The use
of witness functions allows the task of synthesis to be broken down into smaller sub-tasks – a deductive
process. The specification of a ranking function allows for imposing domain-specific preferences over
consistent programs.

Now, we sketch the working of witness functions – a central part of FlashMeta’s search procedure.
The synthesis task is given by the DSL operator P and the specification of constraints X that the synthe-
sised program must satisfy. The algorithm recursively decomposes the synthesis problem (P,X) into
smaller tasks (Pi,Xi) for each argument Pi to the operator. Xi is inferred using the inverse semantics
of the operator Pi, which is encoded as a witness function. The inverse semantics provides the possible
values for the arguments of an operator, given the output of the operator.

In our application, this specification is in the form of token-level examples. These examples are
obtained from input-output pairs of strings by aligning the input and output at the token level. This

15

yields a set of pairs where the input is a ‘central token’ in context of other tokens, and the output is
another token. The DSL operators are the predicates and transformations that are used in if-then rules.
These rules use predicates to check whether a transformation can be applied to a token based on its
identity and its context, and if it can, returns the result of applying the transformation to the token.

Consider a simplified setting where one predicate, IsToken(w, c, o), can be used to check whether
a token in the string w at an offset o from the central token is equal to the token c. In this setting, the
token may be transformed by one of two operators – ReplaceBy(x, c1, c2) and ReplaceAnyBy(x,

c). ReplaceBy returns the token c2 if x is equal to c1. ReplaceAnyBy always returns c as a replacement
for x. Figure 4.1 illustrates the working of FlashMeta in this setting. The specific DSL structure used –
including predicates, transformations, and the mechanism for converting between string-level examples
and token-level examples – is described in detail in Chapters 5 and 6.

The FlashMeta framework also allows for defining a ranking function over programs and sub-
programs by defining a score of an operator in terms of the scores for the arguments it takes (which
may in turn be the result of applying another operator). In the example shown in Figure 4.1, the score
for the IsToken operator is defined in terms of its arguments – a token, and an integer value for the
offset. Similarly, the value for an IfThen construct is defined in terms of the score of the predicate and
the score of the transformation that it takes as arguments. Details about the specific ranking function
used are also presented in Chapters 5 and 6.

16

ab
c
→

d

In
ve
rs
e
Se
ma
nt
ic
s I

fT
he

n

ab
c
→

Tr
ue

In
ve
rs
e
Se
ma
nt
ic
s I

sT
ok

en

ab
c
→

a
ab

c
→
−
1

ab
c
→

b

ab
c
→

c

ab
c
→

0

ab
c
→

1

I
s
T
o
k
e
n
(
w
,
"
a
"
,
-
1
)

I
s
T
o
k
e
n
(
w
,
"
b
"
,
0
)

I
s
T
o
k
e
n
(
w
,
"
c
"
,
1
)

S
ea
rc
h
fo
r

ru
le

R
e
p
l
a
c
e
B
y
(
x
,
"
b
"
,
"
d
"
)

R
e
p
l
a
c
e
A
n
y
B
y
(
x
,
"
d
"
)

I
f
T
h
e
n
(
I
s
T
o
k
e
n
(
w
,
"
a
"
,
-
1
)
,

R
e
p
l
a
c
e
B
y
(
x
,
"
b
"
,
"
d
"
)
)

I
f
T
h
e
n
(
I
s
T
o
k
e
n
(
w
,
"
b
"
,
0
)
,

R
e
p
l
a
c
e
A
n
y
B
y
(
x
,
"
d
"
)
)

I
f
T
h
e
n
(
I
s
T
o
k
e
n
(
w
,
"
c
"
,
1
)
,

R
e
p
l
a
c
e
A
n
y
B
y
(
x
,
"
d
"
)
)

pr
ed

ic
at

e
ru

le

to
ke

n
off

se
t

Fi
gu

re
4.

1:
A

n
ill

us
tr

at
io

n
of

th
e

se
ar

ch
pe

rf
or

m
ed

by
th

e
Fl

as
hM

et
a

al
go

ri
th

m
.

T
he

bl
ue

bo
xe

s
sh

ow
th

e
sp

ec
ifi

ca
tio

n
th

at
an

op
er

at
or

m
us

t
sa

tis
fy

in
te

rm
s

of
in

pu
t-

ou
tp

ut
ex

am
pl

es
,w

ith
th

e
in

pu
tt

ok
en

un
de

rl
in

ed
in

th
e

co
nt

ex
to

ft
he

w
or

d.
T

he
In

ve
rs

e
Se

ma
nt

ic
s

of
an

op
er

at
or

is
a

fu
nc

tio
n

th
at

is
us

ed
to

in
fe

r
th

e
sp

ec
ifi

ca
tio

n
fo

r
ea

ch
ar

gu
m

en
to

f
th

e
op

er
at

or
ba

se
d

on
th

e
se

m
an

tic
s

of
th

e
op

er
at

or
.

T
hi

s
m

ay
be

a
si

ng
le

sp
ec

ifi
ca

tio
n

(a
s

fo
rp

re
di

ca
te

)o
ra

di
sj

un
ct

io
n

of
sp

ec
ifi

ca
tio

ns
(a

s
fo

rt
ok

en
an

d
of

fs
et

).
T

he
al

go
ri

th
m

th
en

re
cu

rs
iv

el
y

se
ar

ch
es

fo
rp

ro
gr

am
s

to
sa

tis
fy

th
e

sp
ec

ifi
ca

tio
n

fo
r

ea
ch

ar
gu

m
en

t,
an

d
co

m
bi

ne
s

th
e

re
su

lts
of

th
e

se
ar

ch
to

ob
ta

in
a

pr
og

ra
m

.
T

he
se

ar
ch

fo
r

th
e

tr
an

sf
or

m
at

io
n

–
ru

le
–

in
an

If
Th

en
st

at
em

en
tp

ro
ce

ed
s

si
m

ila
rl

y
to

th
e

se
ar

ch
fo

ra
pr

ed
ic

at
e.

E
xa

m
pl

es
of

pr
og

ra
m

s
th

at
ar

e
in

fe
rr

ed
fr

om
a

sp
ec

ifi
ca

tio
n

ar
e

in
di

ca
te

d
w

ith
=
⇒

.A
da

sh
ed

lin
e

be
tw

ee
n

in
fe

rr
ed

sp
ec

ifi
ca

tio
ns

in
di

ca
te

s
th

at
th

e
sp

ec
ifi

ca
tio

ns
ar

e
in

fe
rr

ed
jo

in
tly

.

17

Chapter 5

Learning Phonological Rules as String Transformations

In this chapter, we study the following questions:

(i) Can program synthesis be used to learn linguistic rules from only a few examples?

(ii) If so, what kind of rules can be learnt?

(iii) What kind of operations need to explicitly be defined in the DSL to allow it to model linguistic
rules?

(iv) What knowledge must be implicitly provided with these operations to allow the model to choose
rules that generalise well?

We present a program synthesis model and a DSL for learning phonological rules and evaluate on the
set of Linguistics Olympiad problems described in Chapter 2. We perform experiments and comparisons
to baselines and find that program synthesis does significantly better than our baseline approaches. We
also present some observations about the ability of our system to find rules that generalise well and
discuss examples of where it fails.

5.1 Program synthesis

In this work, we explore learning rules similar to rewrite rules (Chomsky and Halle, 1968) that are
used extensively to describe phonology. Sequences of rules are learnt using a noisy disjunctive synthesis
algorithm NDSyn (Iyer et al., 2019) extended to learn stateful multi-pass rules (Sarthi et al., 2021).

5.1.1 Phonological rules as programs

The synthesis task we solve is to learn a program in a domain-specific language (DSL) for string
transduction, that is, to transform a given sequence of input tokens i ∈ I∗ to a sequence of output
tokens o ∈ O∗, where I is the set of input tokens, and O is the set of output tokens. Each token is a
symbol accompanied by a feature set, a set of key-value pairs that maps feature names to boolean values.

18

We learn programs for token-level examples, which transform an input token in its context to output
tokens. The program is a sequence of rules which are applied to each token in an input string to produce
the output string. The rules learnt are similar to rewrite rules, of the form

φ−l · · ·φ−2φ−1Xφ1φ2 · · ·φr → T

where (i) X : I → B is a boolean predicate that determines input tokens to which the rule is applied
(ii) φi : I → B is a boolean predicate applied to the ith character relative to X , and the predicates φ
collectively determine the context in which the rule is applied (iii) T : I → O∗ is a function that maps
an input token to a sequence of output tokens.

X and φ belong to a set of predicates P , and T is a function belonging to a set of transformation
functions T . P and T are specified by the DSL.

We allow the model to synthesise programs that apply multiple rules to a single token by synthesising
rules in passes and maintaining state from one pass to the next. This allows the system to learn stateful
multi-pass rules (Sarthi et al., 2021).

5.1.2 Domain-specific language

The domain-specific language (DSL) defines the allowable string transformation operations. The
DSL is defined by a set of operators, a grammar that determines how they can be combined, and a
semantics that determines what each operator does. By defining operators to capture domain-specific
phenomena, we can reduce the space of programs to be searched to include those programs that capture
distinctions relevant to the domain. This allows us to explicitly encode knowledge of the domain into
the system.

Operators in the DSL also have a score associated with each operator that allows for setting domain-
specific preferences for certain kinds of programs. We can combine scores for each operator in a pro-
gram to compute a ranking score that we can use to identify the most preferred program among can-
didates. The ranking score can capture implicit preferences like shorter programs, more/less general
programs, certain classes of transformations, etc.

The DSL defines the predicates P and the set of transformations T that can be applied to a partic-
ular token. The predicates and transformations in the DSL we use, along with the description of their
semantics, can be found in tables 5.1 and 5.2.

output := Map(disjunction , input_tokens)
disjunction := Else(rule , disjunction)
rule := transformation

| IfThen(predicate , rule);

Figure 5.1: IfThen-Else statements in the DSL

19

Predicate

IsToken(w, s, i) Is x equal to the token s? This allows us to evaluate matches with
specific tokens.

Is(w, f, i) Is f true for x? This allows us to generalise beyond single tokens
and use features that apply to multiple tokens.

TransformationApplied(w, t, i) Has the transformation t been applied to x in a previous pass? This
allows us to reference previous passes in learning rules for the cur-
rent pass.

Not(p) Negates the predicate p.

Table 5.1: Predicates that are used for synthesis. The predicates are applied to a token x that is at an
offset i from the current token in the word w. The offset may be positive to refer to tokens after the
current token, zero to refer to the current token, or negative to refer to tokens before the current token.

Sequences of rules are learnt as disjunctions of IfThen operators, and are applied to each token of
the input using a Map operator (fig. 6.1). The conjunction of predicates X and φ that define the context
are learnt by nesting IfThen operators.

A transformation produces a token that is tagged with the transformation that is applied. This
allows for maintaining state across passes.

The operators in our DSL are quite generic and can be applied to other string transformations as well.
In addition to designing our DSL for string transformation tasks, we allow for phonological information
to be specified as features, which are a set of key-value pairs that map attributes to boolean values.
While we restrict our investigation to features based only on the symbols in the input, more complex
features based on meaning and linguistic categories can be provided to a system that works on learning
rules for more complex domains like morphology or syntax. We leave this investigation for future work.

5.1.3 Synthesis algorithm

We use an extension (Sarthi et al., 2021) of the NDSyn algorithm (Iyer et al., 2019) that can syn-
thesise stateful multi-pass rules. Iyer et al. (2019) describe an algorithm for selecting disjunctions of
rules, and use the FlashMeta algorithm as the rule synthesis component. Sarthi et al. (2021) extend the
approach proposed by Iyer et al. (2019) for disjunctive synthesis to the task of grapheme-to-phoneme
(G2P) conversion in Hindi and Tamil. They propose the idea of learning transformations on token-
aligned examples and use language-specific predicates and transformations to learn rules for G2P con-
version. We use a similar approach, and use a different set of predicates and transformations that are
language-agnostic. fig. 5.2 sketches the working of the algorithm.

We use the NDSyn algorithm to learn disjunctions of rules. We apply NDSyn in multiple passes to
allow the model to learn multi-pass rules.

At each pass, the algorithm learns rules to perform token-level transformations that are applied to
each element of the input sequence. The token-level examples are passed to NDSyn, which learns

20

Transformation

ReplaceBy(x, s1, s2) If x is s1, it is replaced with s2. This allows the system to learn condi-
tional substitutions.

ReplaceAnyBy(x, s) x is replaced with s. This allows the system to learn unconditional sub-
stitutions.

Insert(x, S) This inserts a sequence of tokens S after x at the end of the pass. It
allows for the insertion of variable-length affixes.

Delete(x) This deletes x from the word at the end of the pass.

CopyReplace(x, i) These are analogues of the ReplaceBy and Insert transformations
where the token which is added is the same as the token at an offset i
from x. They allow the system to learn phonological transformations
such as assimilation and gemination.

CopyInsert(x, i)

Identity(x) This returns x unchanged. It allows the system where a transformation
applies under certain conditions but does not under others.

Table 5.2: Transformations that are used for synthesis. The transformations are applied to a token x in
the word w. The offset i for the Copy transformations may be positive to refer to tokens after the current
token, zero to refer to the current token, or negative to refer to tokens before the current token.

the IfThen-Else statements that constitute a set of rules. This is done by first generating a set of
candidate rules by randomly sampling a token-level example and synthesising a set of rules that satisfy
the example. Then, rules are selected to cover the token-level examples.

Rules that satisfy a randomly sampled example are learnt using the FlashMeta program synthesis
algorithm (Polozov and Gulwani, 2015), described in Chapter 4. After the candidates are generated,
they are ranked according to the ranking score of each program. The ranking score for an operator
in a program is computed as a function of the scores of its arguments. The arguments may be other
operators, offsets, or other constants (like tokens or features). The score for an operator in the argument
is computed recursively. The score for an offset favours smaller numbers and local rules by decreasing
the score for larger offsets. The score for other constants is chosen to be a small negative constant. The
scores for the arguments are added up, along with a small negative penalty to favour shorter programs,
to obtain the final score for the operator.

This ranking score selects for programs that are shorter, and may favour choosing more general by
giving the Is predicate a higher score or more specific rules by giving the IsToken predicate a higher
score. The top k programs according to the ranking function are chosen as candidates for the next step.

To choose the final set of rules from the candidates generated using the FlashMeta algorithm, we
use a set covering algorithm that chooses the rules that correctly answer the most number of examples
while also incorrectly answering the least. These rules are applied to each example, and the output
tokens are tagged with the transformation that is applied. These outputs are then the input to the next
pass of the algorithm.

21

Words
kæt → kæts
dOg → dOgz

Token-level
examples

k → k
æ → æ
t → t
→ s

d → d
O → O
g → g
→ z

Candidates

#1. IfThen(IsToken(w,"$",1),
IfThen(Is(w,"voice",0),
Insert(x,"z")))

#2. IfThen(IsToken(w,"t",0),
IfThen(IsToken(w,"$",1),
Insert(x,"s")))

#3. IfThen(IsToken(w,"$",1),
Insert(x,"s")),

#4. IfThen(IsToken(w,"g",0),
IfThen(IsToken(w,"$",1),
Insert(x,"z")))

#5. IfThen(
Not(IsToken(w,"$",1)),

Identity(x))

Rules

Else(#1,
Else(#3,
Else (#5)
)

)

Program

Input
examples

align FM NDSyn

multi-pass

Figure 5.2: An illustration of the synthesis algorithm. FM is FlashMeta, which synthesises rules which
are combined into a disjunction of rules by NDSyn. Here, rule #1 is chosen over #4 since it uses the
more general concept of the voice feature as opposed to a specific token and thus has a higher ranking
score.

The synthesis of multi-pass rules proceeds in passes. In each pass, a set of token-aligned examples is
provided as input to the NDSyn algorithm. The resulting rules are then applied to all the examples, and
those that are not solved are passed as the set of examples to NDSyn in the next pass. This proceeds
until all the examples are solved, or for a maximum number of passes.

5.1.4 Structure of the problems

Each problem is presented in the form of a matrixM . Each row of the matrix contains data pertaining
to a single word/linguistic form, and each column contains the same form of different words, i.e., an
inflectional or derivational paradigm, the word form in a particular language, the word in a particular
script, or the stress values for each phoneme in a word. A test sample in this case is presented as a
particular cell Mij in the table that has to be filled. The model has to use the data from other words in
the same row (Mi:) and the words in the column (M:j) to predict the form of the word in Mij .

In addition to the data in the table, each problem contains some additional information about the
symbols used to represent the words. This additional information is meant to aid the solver understand
the meaning of a symbol they may not have seen before. We manually encode this information in the
feature set associated with each token for synthesis. Where applicable, we also add consonant/vowel
distinctions in the given features, since this is a basic distinction assumed in the solutions to many
Olympiad problems.

We use the assignments that accompany every problem as the test set, ensuring that the correct
answer can be inferred based on the given data.

22

Model All Morphophonology Multilingual Transliteration Stress

EXACT CHRF EXACT CHRF EXACT CHRF EXACT CHRF EXACT

NOFEATURE 26.8% 0.64 30.1% 0.72 42.1% 0.59 12.0% 0.51 15.4%
TOKEN 32.7% 0.63 37.5% 0.68 45.3% 0.60 16.4% 0.52 22.2%
FEATURE 30.9% 0.51 38.6% 0.56 39.9% 0.42 9.5% 0.49 23.0%

LSTM 9.7% 0.44 9.2% 0.49 5.7% 0.45 2.1% 0.31 23.2%
Transformer 5.3% 0.42 2.3% 0.39 9.2% 0.50 1.7% 0.42 12.1%
WFST 20.9% 0.56 16.3% 0.47 38.7% 0.63 29.7% 0.71 2.8%

Table 5.3: Metrics for all problems, and for problems of each type. The CHFF score for stress problems
is not calculated, and not used to determine the overall CHRF score.

5.2 Experiments

5.2.1 Baselines

Given that we model our task as string transduction, we compare with the following transduction
models used as baselines in shared tasks on G2P conversion (Gorman et al., 2020) and morphological
reinflection (Vylomova et al., 2020).
Neural: We use LSTM-based sequence-to-sequence models with attention as well as Transformer mod-
els as implemented by Wu (2020). For each problem, we train a single neural model that takes the source
and target column numbers, and the source word, and predicts the target word.
WFST: We use models similar to the pair n-gram models (Novak et al., 2016), with the implementation
similar to that used by Lee et al. (2020). We train a model for each pair of columns in a problem. For
each test example Mij , we find the column with the smallest index j′ such that Mij′ is non-empty and
use Mij′ as the source string to infer Mij .

Additional details of baselines are provided in Appendix B.

5.2.2 Program synthesis experiments

As discussed in section 5.1.4, the examples in a problem are in a matrix, and we synthesise programs
to transform entries in one column into entries in another. Given a problem matrix M , we refer to a
program to transform an entry in column i to an entry in column j as M:i → M:j . To obtain token-
level examples, we use the Smith-Waterman alignment algorithm (Smith et al., 1981), which favours
contiguous sequences in aligned strings.

We train three variants of our synthesis system with different scores for the Is and IsToken operators.
The first one, NOFEATURE, does not use features, or the Is predicate. The second one, TOKEN, assigns
a higher score to IsToken and prefers more specific rules that reference tokens. The third one, FEATURE,
assigns a higher score to Is and prefers more general rules that reference features instead of tokens. All
other aspects of the model remain the same across variants.

23

Morphophonology and multilingual problems: For every pair of columns (s, t) in the problem matrix
M , we synthesise the program M:s →M:t. To predict the form of a test sample Mij , we find a column
k such that the program M:k →M:j has the best ranking score, and evaluate it on Mik.
Transliteration problems: Given a problem matrix M , we construct a new matrix M ′ for each pair
of columns (s, t) such that all entries in M ′ are in the same script. We align word pairs (Mis,Mit)

using the Phonetisaurus many-to-many alignment tool (Jiampojamarn et al., 2007), and build a simple
mapping f for each source token to the target token with which it is most frequently aligned. We fill in
M ′is by applying f to each token of Mis and M ′it = Mit. We then find a program M ′:s →M ′:t.
Stress problems: For these problems, we do not perform any alignment, since the training pairs are
already token aligned. The synthesis system learns to transform the source string into the sequence of
stress values.

5.2.3 Metrics

We calculate two metrics: exact match accuracy, and CHRF score (Popović, 2015). The exact match
accuracy measures the fraction of examples the synthesis system gets fully correct.

EXACT =
#{correctly predicted test samples}

#{test samples}
The CHRF score is calculated only at the token level and measures the n-gram overlaps between the
predicted answer and the true answer, and allows us to measure partially correct answers. We do not
calculate the CHRF score for stress problems as n-gram overlap is not a meaningful measure of perfor-
mance for these problems.

5.2.4 Results

Table 5.3 summarises the results of our experiments. We report the average of each metric across
problems for all problems and by category.

We find that neural models that don’t have specific inductive biases for the kind of tasks we present
here are not able to perform well with this amount of data. The synthesis models do better than the
WFST baseline overall, and on all types of problems except transliteration. This could be due to the
simple map computed from alignments before program synthesis causing errors that the rule learning
process cannot correct.

5.3 Analysis

We examine two aspects of the program synthesis models we propose. The first is the way it uses
the explicit knowledge in the DSL and implicit knowledge provided as the ranking score to generalise.
We then consider specific examples of problems and show examples of where our models succeed and
fail in learning different types of patterns.

24

Model 100% ≥ 75% ≥ 50%

NOFEATURE 3 5 7
TOKEN 3 6 10

FEATURE 3 6 11
WFST 1 2 7

Table 5.4: Number of problems where the model achieves different thresholds of the EXACT score.

5.3.1 Features aid generalisation

Since the test examples are chosen to test specific rules, solving more test examples correctly is
indicative of the number of rules inferred correctly. In table 5.4, we see that providing the model with
features allows it to infer more general rules, solving a greater fraction of more problems. We see that
allowing the model to use features increases its performance, and having it prefer more general rules
involving features lets it do even better.

Figure 5.3: Number of rules plotted against EXACT score

25

5.3.2 Correct programs are short

In fig. 5.3 we see that the number of rules in a problem1 tends to be higher when the model gets the
problem wrong than when it gets it right. This indicates that when the model finds many specific rules,
it overfits to the training data, and fails to generalise well. This holds true for all the variants, as seen in
the downward slope of the lines.

We also find that allowing and encouraging a model to use features leads to shorter programs. The
average length of a program synthesised by NOFEATURES is 30.5 rules, while it is 25.8 for TOKEN, and
20.7 for FEATURE. This suggests that explicit access to features and implicit preference for them leads
to fewer, more general rules.

5.3.3 Using features

Some problems provide additional information about certain sounds. For example, a problem based
on the alternation retroflexes in Warlpiri words (Laughren, 2011) explicitly identifies retroflex sounds
in the problem statement. In this case, a program produced by our FEATURE system is able to use
these features, and isolate the focus of the problem by learning rules such as in the following program
fragment:

IfThen(Not(Is(w, "retroflex", 0)),
Identity(x))

The system learns a concise solution and is able to generalise using features rather than learning
separate rules for individual sounds.

In the case of inflecting a Mandar verb (McCoy, 2018), the FEATURE system uses a feature to find a
more general rule than is the case. To capture the rule that the prefix di- changes to mas- when the root
starts with s, the model synthesises the following program fragment:

IfThen(Is(w, "fricative", 1),
ReplaceBy(x, "i", "s"))

However, since s is the only fricative in the data, this rule is equivalent to a rule specific to s. This
rule also covers examples where the root starts with s, and causes the model to miss the more general
rule of a voiceless sound at the beginning of the root to be copied to the end of the prefix. It identifies
this rule only for roots starting with p as in the following program fragment:

IfThen(IsToken(w, "p", 1),
CopyReplace(x, w, 1))

The TOKEN system does not synthesise these rules based on features, and instead chooses rules
specific to each initial character in the root.

Since the DSL allows for substituting one token with one other, or inserting multiple tokens, the
system has to use multiple rules to substitute one token with multiple tokens. In the case of Mandar, we

1To account for some problems having more columns than others (and hence more rules), we find the average number of
rules for each pair of columns.

26

see one way it does this, by performing multiple substitutions (to transform di- to mas- it replaces d and
i with a and s respectively, and then inserts m).

5.3.4 Multi-pass rules

In a problem on Somali verb forms (Somers, 2016), we see a different way of handling multi-token
substitutions by using multi-pass rules to create a complex rule using simpler elements. The problem
requires being able to convert verbs from 1st person to 3rd person singular. The solution includes a
rule where a single token (l) is replaced with (sh). The learnt program uses two passes to capture this
rule through the sequential application of two rules: first ReplaceBy(x, "l", "h"), followed by this
program fragment in the next pass:

IfThen(TransformationApplied(w,
"{ReplaceBy , h}", 1),

Insert(x, "s"))

5.3.5 Selecting spans of the input

In a problem involving reduplication in Tarangan (Warner, 2019), all variants fail to capture any
synthesis rules. Reduplication in Tarangan involves copying one or two syllables in the source word
to produce the target word. However, the DSL we use does not have any predicates or transformations
that allow the system to reference a span of multiple tokens (which would form a syllable) in the input.
Therefore, it fails to model reduplication.

5.3.6 Global constraints

Since we provide the synthesis model with token-level examples, it does not have access to word-
level information. This results in poor performance on stress problems, as stress depends on the entire
word. Consider the example of Chickasaw stress (Vaduguru, 2019). It correctly learns the following
rule:

IfThen(Is(w, "long", 0),
ReplaceAnyBy(x, "1"))

that stresses any long vowel in the word. However, since it cannot check if the word has a long vowel
that has already been stressed, it is not able to correctly model the case when the word doesn’t have a
long vowel. This results in some samples being marked with stress at two locations, one where the rule
for long vowels applies, and one where the rule for words without long vowels applies.

27

5.4 Conclusion

In this chapter, we explore the problem of learning linguistic rules from only a few training examples,
using a method based on program synthesis. we demonstrate that synthesis is a powerful and flexible
technique for learning phonology rules in Olympiad problems. These problems are designed to be
challenging tasks that require learning rules from a minimal number of examples. These problems also
allow us to specifically test for generalisation.

We compare our approach to various baselines and find that it is capable of learning phonological
rules that generalise much better than existing approaches. We show that using the DSL, we can explic-
itly control the structure of rules, and using the ranking score, we can provide the model with implicit
preferences for certain kinds of rules.

Having demonstrated the potential of program synthesis as a learning technique that can work with
very little data and provide human-readable models, we further explore the role of DSL design in syn-
thesis.

28

Chapter 6

Learning Rules for Phonological Stress Placement

In Chapter 5, we saw that program synthesis can be used to learn linguistic rules from a small number
of examples, and apply it to learning phonological rules that perform string-to-string transformations.
We demonstrated a method for learning different types of rules, including morphophonology, transliter-
ation, and phonological stress.

In this chapter, we investigate how the design of the DSL influences what rules are learnt from data.
To do this, we focus on learning rules that determine the placement of phonological stress from data.
Phonological stress depends on both the position of a syllable within words and language-dependent
syllable weight hierarchies. This allows us to study how encoding information about the position within
a word and distinctions relevant to syllable weight hierarchies affects a program synthesis system de-
signed to learn these rules from only a small number of examples. Table 6.1 shows an example of the
task of phonological stress placement.

We extend the formulation of phonological stress placement as a string-to-string transformation prob-
lem from Chapter 5 and develop a program synthesis approach specific to stress. We design different
DSLs, each providing access to different phonological abstractions. We compare the results from using
these different DSLs on data from a variety of languages.

Through the example of using program synthesis to learn stress rules, we seek to illustrate how
program synthesis can be used as a general framework to compare how providing the same learning
algorithm access to different linguistic abstractions can influence generalisation from some given data.

6.1 Program synthesis

6.1.1 Stress rules as programs

We model stress rules as string-to-string transformations. Formally, we synthesise a program that
implements a function f : Σ∗ → {0, 1, 2, 3}∗, where Σ is the set of phonemes in a language. f takes
as input a sequence of phonemes w1w2 . . . wn, and assigns a “degree of stress” to each phoneme. 0

indicates that a phoneme is unstressed, 1 indicates primary stress, 2 secondary stress, and 3 tertiary

29

Word Stress pattern

sata 0100
hiha 0100

vatova 000100
kahasi 000100
Paona 01000

dehiaPhe 00001000

Table 6.1: An example of the task of predicting stress patterns based on surface forms from the Cofan
language. Each phoneme in each word is labelled with 1 for primary stress or 0 for secondary stress.

stress. Since stress is applied at the level of the syllable, we conventionally mark the first vowel of a
syllable with the degree of stress, treating it as the ‘locus’ of stress within a syllable. We refer to this
output string composed of the degree of stress for each phoneme in the input word as the stress pattern
for the word.

The programs we synthesise take the form of sequences of rules similar to rewrite rules Chomsky
and Halle (1968).

Each rule is of the form

φ−l · · ·φ−1X1 · · ·Xcφ1 · · ·φr → T (6.1)

A rule applies to a central phoneme that satisfies a conjunction of predicates X1, . . . , Xc, which
appears in a context defined by the conjunction of predicates φ−l, . . . , φ−1 (which apply to l phonemes
to the left of the central phoneme) and φ1, . . . , φr (which apply to r phonemes to the right of the central
phoneme). If the conjunction of all predicates is satisfied, a transformation T is applied to the phoneme.

The DSL defines the set of predicates P and the set of transformations T that can be used. We
vary the predicates (P) available to the synthesiser to define different DSLs, each providing access to
different classes of phonological abstractions. The transformation is a function that takes the phoneme
as input and outputs the degree of stress. It is of the form ReplaceBy(s), where s is a value representing
the degree of stress.

6.1.2 Domain-specific languages

We use a DSL that implements rules of the form described in Section 6.1.1 using if-then-else con-
structs. This allows us to define a sequence of rules, the application of which is conditioned on a
conjunction of predicates. The first rule for which the condition is satisfied is executed. The sequence
of rules is applied to each phoneme of the input to obtain the degree of stress on that phoneme. This is
achieved using a Map operator.

As described in Section 6.1.1, the condition for the IfThenElse constructs is defined as a conjunction
of predicates. Based on the set of predicates available to the DSL, we define a sequence of 4 DSLs, each
of which provides access to a different set of phonological classes (sets of phonemes).

30

output := Map(rules , input_phonemes)
rules := IfThenElse(C, T, rules) | T

Figure 6.1: IfThenElse statements in the DSL. A transformation T is applied if the condition C is true,
else a transformation determined by the remaining rules is applied.

A predicate is defined by a predicate type and a class of phonemes to which it applies. We define
various classes, and use groups of these classes to define different DSLs.

6.1.2.1 Classes of phonemes

The most basic set of classes is the set of singleton classes, each referring to one phoneme. We
then define classes of consonants and vowels. Most stress systems do not distinguish between different
(short) vowels to determine syllable weight hierarchies. Allowing this distinction to be made can allow
the synthesiser to learn rules that identify syllable types as a sequence of vowels and consonants in a
specific order.

Phonemes that share phonological features are also grouped into classes. We include vowel features
such as height and frontness, and also features of consonants such as place and manner of articulation.

Finally, we define classes based on syllable-level information, such as whether a phoneme is the
first vowel of a long vowel, diphthong, open syllable, or closed syllable. For our synthesiser, we define
these uniformly across languages. A diphthong refers to a sequence of two different vowels. We treat a
syllable as closed when the vowel is followed by multiple consonants, and break the syllable after the
first consonant. A syllable that is not closed is treated as open.

The classes that are available to each of the 4 DSLs we define – BASIC, CV, SYLLABLE, and FEA-
TURE – are shown in Figure 6.2.

6.1.2.2 Predicate types

We define a number of predicate types, which determine the positions in the word to which the
predicate applies. In each of these cases, X refers to a class of phonemes. We will illustrate how each of
these predicate types, defined for one unit, can be used as part of a hypothetical stress rule.

IsX predicates determine whether a phoneme is a member of a particular class. For example, since
consonants are not stressed, IsConsonant can be used to ensure the output at a consonant is 0.

IsKthX predicates take an additional argumentK, and determine if a phoneme is theKth occurrence
of a member of a class in the word. If a stress rule places primary stress on the second closed syllable of
a word, then the IsKthClosedSyllable predicate can be used with K = 2 to select that syllable. Note
that K can also be negative, to refer to units counting from the right edge of the word.

Each of these predicates may apply to either the central phoneme (one of the Xi from eq. (6.1)),
or phonemes in the context (one of the φi from eq. (6.1)). We guide the synthesiser to prefer simpler
rules by ranking predicates that refer to nearby phonemes (at a smaller displacement from the central

31

Basic

cv

Feature

Syllable

vowel height

vowel frontness

voicing

place of articulation

manner of articulation

phonemes

consonants

vowels

long vowels

diphthongs

open syllables

closed syllables

Figure 6.2: Classes available to each DSL – BASIC, CV, SYLLABLE, and FEATURE.

phoneme) above those that refer to more distant phonemes. For IsKthX predicates, we rank predicates
that take a smaller absolute value of K higher to guide the synthesiser to prefer rules that refer to edges
of the word over arbitrary positions in between. We also define additional types of predicates that can
refer only to the central phoneme.1

PrefixContainsX predicates check whether the prefix of the word up to, but not including, the
phoneme contains any instances of a class. If a stress rule places primary stress on the first occurrence
of /e/ in a word, then PrefixContainsPhoneme(e) can be used to ensure other occurrences of /e/ are
not stressed.

SuffixContainsX predicates check whether the suffix of the word after, but not including, the
phoneme contains any members of a class. Similar to the example above, if the last occurrence of
/e/ is to be stressed, PrefixContainsPhoneme(e) can be used to ensure other occurrences are not
stressed.

WordContainsX predicates check whether a member of the class exists anywhere in the word. If
a stress rule places stress on the first vowel of the word if there are no long vowels in the word, then
WordContainsLongVowel can be used to ensure stress is not placed on the first vowel incorrectly.

1These predicates are not included in the FEATURE DSL due to the requirement of enumerating a very large number of
predicates.

32

L
ea

rn
P
ro
g
ra
m

L
ea

rn
B
ra
n
ch

In
p
u
t

e
x
a
m
p
le
s

ab
a
→

0
01

b
ab

→
01
0

P
h
o
n
e
m
e
-

le
v
e
l

e
x
a
m
p
le
s

ab
a
→

0
ab

a
→

0
ab

a
→

1
b

ab
→

0
b

ab
→

1
b

ab
→

0

Re
pl
ac
eB
y(
’1
’)

b
ab

→
Tr
ue

ab
a
→

Tr
ue

ab
a
→

Fa
ls
e

ab
a
→

Fa
ls
e

b
ab

→
Fa
ls
e

b
ab

→
Fa
ls
e

Re
pl
ac
eB
y(
’0
’)

ab
a
→

Tr
ue

ab
a
→

Tr
ue

b
ab

→
Tr
ue

b
ab

→
Tr
ue

ab
a
→

Fa
ls
e

b
ab

→
Fa
ls
e

L
ea

rn
C
o
n
j

#
1
.
I
s
P
h
o
n
e
m
e
(
'
a
'
,
0
)

#
2
.
I
s
K
t
h
P
h
o
n
e
m
e
(
'
a
'
,
0
,
-
1
)

#
3
.
A
N
D
(
I
s
P
h
o
n
e
m
e
(
'
b
'
,
1
)

I
s
K
t
h
P
h
o
n
e
m
e
(
'
a
'
,
0
,
-
1
)
)

L
ea

rn
C
o
n
j

#
4
.
I
s
P
h
o
n
e
m
e
(
'
b
'
,
0
)

#
5
.
I
s
P
h
o
n
e
m
e
(
'
a
'
,
1
)

#
6
.
N
O
T
(
I
s
K
t
h
P
h
o
n
e
m
e
(
'
a
'
,
0
,
-
1
)
)

a.
〈I
sK
th
Ph
on
em
e(
’a
’,

0,
-1
),
Re
pl
ac
eB
y(
’1
’)
〉

b.
〈N
OT
(I
sK
th
Ph
on
em
e(
’a
’,

0,
-1
))
,R
ep
la
ce
By
(’
0’
)〉

3

Fi
gu

re
6.

3:
Il

lu
st

ra
tio

n
of

th
e

sy
nt

he
si

s
al

go
ri

th
m

on
a

hy
po

th
et

ic
al

ca
se

w
he

re
th

e
st

re
ss

is
on

th
e

la
st

vo
w

el
,

us
in

g
th

e
B

A
S

IC
D

SL
.

T
he

in
pu

te
xa

m
pl

es
ar

e
fir

st
us

ed
to

ge
ne

ra
te

ph
on

em
e-

le
ve

le
xa

m
pl

es
.

T
he

Le
ar

nP
ro

gr
am

pr
oc

ed
ur

e
th

en
le

ar
ns

a
de

ci
si

on
lis

tf
or

th
e

ph
on

em
e-

le
ve

l
ex

am
pl

es
th

ro
ug

h
ca

lls
to

Le
ar

nB
ra

nc
h.

T
he

Le
ar

nB
ra

nc
h

pr
oc

ed
ur

e
ite

ra
te

s
th

ro
ug

h
di

ff
er

en
t

ca
nd

id
at

e
tr

an
sf

or
m

at
io

ns
(s

uc
h

as
Re

pl
ac

eB
y(

’0
’)

an
d
Re

pl
ac

eB
y(

’1
’)

).
Fo

r
ea

ch
tr

an
sf

or
m

at
io

n,
th

e
Le

ar
nC

on
jp

ro
ce

du
re

pr
od

uc
es

ca
nd

id
at

e
co

nj
un

ct
io

ns
fo

r
w

he
n

th
e

tr
an

sf
or

m
at

io
n

ap
pl

ie
s

an
d

w
he

n
it

do
es

no
t.

T
he

ca
nd

id
at

e
w

hi
ch

is
tr

ue
fo

r
th

e
m

os
tn

um
be

r
of

ca
se

s
w

he
re

th
e

tr
an

sf
or

m
at

io
n

ap
pl

ie
s,

an
d

no
ne

of
th

e
ca

se
s

w
he

re
it

do
es

no
t,

is
ch

os
en

.
H

er
e,

th
is

is
#1

fo
r

th
e
Re

pl
ac

eB
y(

’1
’)

ac
tio

n
an

d
#6

fo
r

th
e
Re

pl
ac

eB
y(

’0
’)

ac
tio

n.
T

he
pr

ed
ic

at
e-

ac
tio

n
pa

ir
w

hi
ch

so
lv

es
th

e
m

os
te

xa
m

pl
es

(h
er

e
b)

is
th

en
ad

de
d

to
th

e
de

ci
si

on
lis

t,
an

d
th

e
Le

ar
nB

ra
nc

h
pr

oc
ed

ur
e

is
ca

lle
d

ag
ai

n
on

th
e

un
so

lv
ed

ex
am

pl
es

.

33

6.1.3 Synthesis algorithm

Synthesis begins with extracting phoneme-aligned pairs from the words. Each example is a pair of
a phoneme and the degree of stress with which it is labelled. The synthesis algorithm then learns rules
that map a phoneme (in its context) to the correct label.

To synthesise IfThenElse constructs, we adapt the LearnProgram, LearnBranch, and LearnConj
procedures from Kini and Gulwani (2015). These procedures allow for learning decision lists, which
are sequences of predicate-transformation pairs of the form 〈(p1, t1), (p2, t2), . . . , (pn, tn)〉, where each
pi is a conjunction of atomic predicates introduced before, and ti is a transformation function. The
list is constructed such that given a set of examples X , the set can be partitioned into n subsets such
that for the ith subset Xi is does not satisfy any of the predicates p1, . . . , pi−1, and satisfies pi, and the
transformation ti results in the correct output for the examples in Xi. These decision lists correspond to
nested IfThenElse constructs. An example is tested for the predicate pi. If the predicate is true of the
example, ti is executed, and execution is terminated. If not, the else clause – which represents the rest
of the list – is executed.

The LearnProgram procedure learns a decision list given a set of input-output examples X , opti-
mising for a shorter list. The procedure maintains a set R of examples that haven’t yet been covered by
any of the predicates of the decision list, which is initialised with the entire set X . The procedure then
calls LearnBranch, which learns the next element of decision list – a predicate that determines when
the item will apply, and a corresponding action. Examples that satisfy the predicate are then removed
from R. This is repeated till R is empty.

LearnBranch starts by generating a set of candidate transformations. Each transformation divides
the set of examples into two – those it transforms correctly, and those it does not. Then, the LearnConj
can be used to obtain conjunctions of candidate atomic predicates that are true for the most examples in
the former set, and false for all examples in the latter set. The conjunctions with the best ranking scores
(determined as the sum of the scores for individual atomic predicates) are then each combined with the
transformation to obtain predicate-transformation pairs. The predicate-transformation pair that covers
the largest number of examples is then chosen as the next element of the decision list.

The LearnBranch and LearnConj procedures require the synthesis of candidate atomic predicates
and transformations. These are synthesised using the FlashMeta algorithm. Given the transformation
or predicate operator (as described in Section 6.1.2), FlashMeta can be used to infer arguments to the
operator such that it satisfies a given set of examples. Based on the examples, FlashMeta finds the
position of phonemes to which a predicate applies relative to the central phoneme (a value between −l
and r in eq. (6.1), where 0 refers to the central phoneme), and values of additional arguments to the
predicate such as the value of K in predicates of the type IsKthX. FlashMeta also finds the output
value for transformation operators. To do this, FlashMeta uses the inverse semantics of the operators,
which constrains the values of arguments given the behaviour of the operator as input-output examples.
Figure 6.3 illustrates the working of the synthesis algorithm.

34

6.2 Dataset

We obtain data by consulting grammars and other linguistic and phonological analyses of languages
listed in the STRESSTYP2 database Goedemans et al. (2014) or by Gordon (2002). The database con-
tains information about various lects and the kinds of stress patterns exhibited by these lects. The
database also has links to the sources from which the data was collected for compiling the database, and
these were the sources we consulted for examples of words with stress patterns marked. All the words
collected from these sources have the stress marking attested in the source – there are no cases of a given
rule being used to predict the stress pattern on words. Further details about the languages are presented
in Appendix A.

Once words and the corresponding stress patterns are collected for a language, the set of words is
split into two parts – one to be used for synthesising programs (the training split) and the other (the test
split) to be used for evaluating the synthesised rules. We ensure that all test examples are marked with
a stress rule that is attested in the training examples. We also use data from the stress problems chosen
from the Linguistics Olympiads, which were described in Chapter 2.

In total, we have data from 34 languages – 28 from the data we collect, and 6 from Linguistics
Olympiad problems. Each language has between 5 and 33 training examples, with an average of 11.3,
and between 2 and 16 test examples, with an average of 4.8.

6.3 Experiments

As described in Section 6.2, each language has a number of pairs – of word and stress pattern – in
the training split. These are provided to the synthesis system, which produces a program. Given that
the system checks shorter programs before longer ones, programs that are found after a long search
are likely to be overfit to the given examples and unlikely to generalise to unseen cases. This is why
we terminate the synthesis if a program isn’t found within 60 minutes. We also observe that for most
languages, synthesis terminates well before this limit. For each language, we experiment with each of
the 4 DSLs described in Section 6.1.2.

We also experiment with two neural sequence-to-sequence baselines, based on the LSTM and the
Transformer architecture respectively. We use the implementation made available by Wu (2020), and
train models with the same hyperparameters as in Chapter 5.

To evaluate the synthesised programs, we consider the output of the program on words in the test
split. We only consider cases where the predicted stress pattern exactly matches the ground truth stress
pattern as correct, and compute the fraction of samples for which the predictions are correct – the
accuracy of the program on the test set. We report the average accuracy for the set of languages we
consider. We also report the average accuracy separately for data from each source – data which we
collect and that chosen from Linguistics Olympiads – to observe any differences based on the source of
data.

35

Languages BASIC CV SYLLABLE FEATURE LSTM Transformer

All 18.9 46.4 60.8 52.8 15.0 12.7

– Ours 18.8 52.8 63.9 57.1 13.2 12.8
– Olympiad 19.4 16.7 46.1 32.2 23.2 12.1

Table 6.2: Average accuracy across languages for each of the different DSLs for the entire set of lan-
guages and grouped by source of data.

Languages BASIC CV SYLLABLE FEATURE

= 100% ≥ 50% = 100% ≥ 50% = 100% ≥ 50% = 100% ≥ 50%

All 0 7 8 17 12 21 11 18

– Ours 0 6 7 16 11 18 10 17
– Olympiad 0 1 1 1 1 3 1 1

Table 6.3: Number of languages where the system obtains perfect test accuracy, or test accuracy over
50%.

Additionally, we report the number of languages for which a synthesiser achieves a test accuracy of
100% or over 50%. This allows us to count the number of languages for which the synthesisers infer
all, or a substantial fraction of, the rules of stress placement.

6.3.1 Results

The results obtained are shown in Tables 6.2 and 6.3. Language-wise results are presented in Ap-
pendix A. As expected, we see that neural baselines achieve low scores (except LSTM models on data
from the Olympiads). Using program synthesis allows for significant gains over these baselines.

We observe that providing no information beyond the identity of the phonemes is not sufficient to
infer correct rules. This is seen in the low overall accuracy obtained using the BASIC DSL, and the fact
that it doesn’t achieve perfect test accuracy for any of the languages.

Providing the DSL with just the distinction between consonants and vowels results in a big jump in
performance. The CV DSL achieves a much higher average test accuracy and is able to infer the rules
fully in a number of languages.

Since stress placement is determined based on syllables, it is not surprising that encoding distinctions
relevant to syllable weight hierarchies, such as vowel length and open/closed-ness of syllables, achieves
the best performance. The SYLLABLE DSL achieves the highest average test accuracy, and the infers
the rules fully in the highest number of languages.

While providing access to other features of phonemes in the FEATURE DSL does improve upon
providing only the consonant-vowel distinctions, we see that it does not help as much as providing
access to syllable-level distinctions.

36

We also note the difference between different sources here. Since Linguistics Olympiad problems are
intended as reasoning challenges where solvers have to infer rules, they pose a more difficult learning
challenge for our program synthesis system. This is seen in the lower accuracy obtained using all the
DSLs for these languages. We also note that in these problems, access to syllable-level distinctions
provides larger gains relative to access to only consonant-vowel distinctions.

6.4 Analysis

We examine the synthesised programs for specific languages to understand the reasons for different
levels of performance when using different DSLs, and illustrate patterns in failures due to the properties
of the DSL.

6.4.1 Benefits of the consonant-vowel distinction

We see that providing the synthesiser access to the distinction between vowels and consonants can
improve its performance significantly. A synthesiser that does not have access to these needs to infer
from the data alone that different vowels may behave in the same way and that the behaviour may be
common in a variety of contexts. In the absence of a large amount of data to provide negative evidence
that occurrence in a specific context determines the application of a rule, the synthesiser tends to discover
incorrect rules.

Consider the example of Lezgian. Stress is Lezgian is always placed on the second syllable of a
word. Using the BASIC DSL, the system discovers rules such as in the following program fragment:

IfThenElse(

And(PrefixContainsPhoneme('a', v, i),

And(PrefixContainsPhoneme('l', v, i),

Not(

IsKthPhoneme('f', 0, 0, v, i)

))),

ReplaceBy ('1'))

This rule places stress on a phoneme if the prefix of the word up to the phoneme contain /a/ and /l/,
and it is not the first occurrence of /f/ in the word. It also learns the following rule:

IfThenElse(

SuffixContainsPhoneme('i', v, i),

ReplaceBy ('0'))

37

This does not place stress on a phoneme if the phoneme /i/ occurs after it in the word. This would
lead to incorrect predictions if /i/ occurs in the third syllable of the word. Such rules are clearly overfit
to the training data, and do not generalise well.

On the other hand, with the CV DSL, the system just learns the following rules:

IfThenElse(

IsKthVowel (0, 1, v, i),

ReplaceBy('1'),

ReplaceBy ('0'))

These place stress on a phoneme if it is the second vowel (indexing starts at 0), and does not in all
other cases. This illustrates the importance of access to such phonological distinctions when rules need
to be learnt from a small amount of data.

6.4.2 Benefits from syllable-level distinctions

The benefits of being able to refer to syllable-level information in rules is visible in the programs
synthesised for Sio. Stress in Sio depends on the weight of the syllable. If the final syllable of the word
is a heavy syllable, it is stressed. If not heavy, the penultimate syllable is stressed. One of the rules the
SYLLABLE grammar learns is the following:

IfThenElse(

Not(SuffixContainsDiphthong(v, i)),

ReplaceBy ('1'))

While there are other constraints to placement, this rule works towards ensuring that if the final
syllable contains a diphthong (which is part of a heavy syllable), it is not stressed incorrectly.

To infer a rule about diphthongs correctly within the CV DSL, predicates about the first vowel have
to be taken in conjunction with predicates about the second vowel, and this conjunction has to be dis-
tinguished from many other competing conjunctions which may also be consistent with the data. If
other conjunctions which don’t generalise beyond the training data are simpler, these are ranked higher
and incorrectly chosen. Allowing the DSL to distinguish concepts such as diphthongs thus allows for
learning simpler rules in such situations.

6.4.3 Incorrect generalisations

However, providing access to syllable-level distinctions may also encourage the synthesiser to dis-
cover incorrect generalisations. We see this in the case of Tzutujil. Stress in Tzutujil is placed on the
final syllable of a word. With the CV DSL, the following rules are learnt:

38

IfThenElse(

And(SuffixContainsVowel(v, i),

And(IsKthVowel (0, -2, v, i),

IsKthVowel (1, -1, v, i))),

ReplaceBy ('1'))

IfThenElse(

And(Not(SuffixContainsVowel(v, i)),

IsKthConsonant (-1, 0, v, i)),

ReplaceBy ('1'))

IfThenElse(

And(Not(SuffixContainsVowel(v, i)),

IsKthVowel (0, 1, v, i)),

ReplaceBy ('1'))

The first rule checks that if the suffix of the word after a phoneme to be stressed contains a vowel,
it is the last vowel in the word. This is a case where the rule for a diphthong is discovered in the CV

DSL. The other two rules ensure that a non-final vowel is not stressed by checking that the suffix doesn’t
contain any vowels.

The SYLLABLE DSL on the other hand discovers the following rule:

IfThenElse(

Not(IsOpenSyllableVowel (0, v, i)),

ReplaceBy ('1'))

This incorrectly places stress on any vowel that is part of an open syllable. This results in the
SYLLABLE DSL performing worse than the CV DSL for Tzutujil.

6.4.4 Insufficient constraints for stress placement

A common reason for failure is the failure to learn sufficient constraints for the application of rules.
This results in sets of rules which allow primary stress to be placed on multiple phonemes, or on no
phonemes, both of which are incorrect. We see examples of this in the program synthesised for stress in
Cofan, where the penultimate syllable of the word is stressed.

Using the CV DSL, the following are some of the rules that are synthesised:

39

IfThenElse(

And(IsKthVowel (0, 1, v, i),

PrefixContainsPhoneme('k', v, i)),

ReplaceBy ('1'))

IfThenElse(

And(PrefixContainsPhoneme('s', v, i),

IsKthVowel (0, 0, v, i)),

ReplaceBy ('1')

Neither of these rules is sufficiently general. They rely on the presence of /k/ or /s/ in the prefix
of the word up to the phoneme, neither of which is not relevant to the placement of stress. However,
another problem is that there is no constraint that prevents both these rules applying to the same word.
This occurs for the Cofan word /sok1/. The program incorrectly predicts that both syllables in this word
receive primary stress, which is not allowed.

The program synthesised with the SYLLABLE DSL for the same data includes the following rule:

IfThenElse(

IsKthConsonant (-1, -2, v, i),

ReplaceBy ('1'))

This rule places stress on the phoneme following the penultimate consonant of the word. When
the word ends with two open syllables, this rule correctly predicts stress. However, for a word such
as /PaiPpa/, this rule does not apply. When other rules also fail to apply, as is the case for this word,
no phoneme is predicted to be stressed. This violates the requirement that at least one syllable should
receive primary stress.

6.5 Related work

Dresher and Kaye (1990) develop a system that learns stress patterns within the principles and pa-
rameters framework. Given words and the structure of syllables in these words, their method learns the
parameters for principles relevant to the placement of stress.

Gupta and Touretzky (1992) propose a perceptron-based method for learning stress rules for em-
pirical data. They propose a model that takes as input the weight of a syllable and predicts a value
corresponding to the type of stress on the syllable.

Heinz (2006) proposes a method to learn rules for quality-insensistive stress, where the stress pattern
depends only on the position and not on the weight of a syllable. Using the property of neighbourhood-
distinctness, they propose a method that learns a finite-state machine to model stress patterns.

40

While these works consider the learnability of stress patterns using a model that assumes certain
features or properties of the input to be available, we propose a generic method where the availability
of features can be controlled, and learning of abstract composite concepts like syllable weights from
various primitive concepts can be investigated.

6.6 Conclusion

In this chapter, we explore the problem of learning rules for the placement of phonological stress
from only a few examples using program synthesis. We pose the problem as one of learning rules in
the form of programs for string-to-string transformations. By designing the domain-specific language
in which the rules are synthesised, we can control the amount of linguistic information available to the
synthesiser.

We use the allowance to explicitly provide the learning algorithm access to linguistic information
to investigate how different linguistic concepts influence the rules that are learnt from data. To do this,
we develop a generic program synthesis algorithm and different domain-specific languages in which
programs are synthesised. Each algorithm provides access to a different set of phonological classes,
which can be used to identify phonemes that share common features.

We find that given a small number of examples, a synthesiser that doesn’t have access to linguistic
information beyond phoneme identity is unable to learn any useful rules. However, distinguishing con-
sonants and vowels proves extremely useful, and distinguishing different types of syllables proves even
more so.

Thus, using the synthesis of rules for stress as a case study, we show how program synthesis can be
used as a way to compare how different primitive concepts can be combined to learn rules for the same
data using the same learning algorithm. Such methods can therefore be used to analyze what concepts
are necessary to learn various rules from a limited number of samples, without changing the way in
which these concepts are combined.

41

Chapter 7

Conclusions

In this thesis, we have designed methods that can learn linguistic rules from a small number of exam-
ples and evaluated their efficacy on a set of phonology problems curated from Linguistics Olympiads.
We also studied the effect of prior knowledge on how the learned rules generalise to unseen examples
in a case study of learning rules for phonological stress placement.

This task of learning rules can be viewed from two perspectives, as discussed in Chapter 3 – learning
phonology and morphology from limited data and learning rules for abstract reasoning tasks.

From the perspective of learning phonology and morphology from limited data, we have shown that
program synthesis can be a method to learn aspects of phonology and morphology from very small
amounts of data. In addition to the system being highly data-efficient, the resulting rules are in the
form of human-readable programs and the ways in which the model generalises can be controlled. This
controllable nature also lends itself to using program synthesis to study the types of learning biases
required to model phonological processes.

While the fully symbolic nature of the models we discuss allows for control and generalisation,
integrating data-driven learning will allow for leveraging more data when available, taking into account
factors beyond the word forms in the language such as typology, and also adapting better to variation
and irregular forms in natural language with statistical learning.

From the perspective of learning rules for abstract reasoning, the Olympiad problems continue to
pose a significant challenge. The systems we propose are able to tackle only specific types of problems
from the Olympiad, and we remain far from being able to tackle the task in its most general form – where
problems may involve reasoning about intricate syntactic structures, and complex semantic phenomena.

Johnson et al. (2021) note one feature of the ARC challenge that is also present in Olympiad prob-
lems, but one that we do not account for in our modeling – the aspect of abductive reasoning as opposed
to inductive reasoning. Solving Olympiad problems requires being able to flexibly hypothesise new
abstract concepts “on-the-fly”, and correctly and consistently bind values to these variables to solve the
task. They speculate that one possible way humans generate hypotheses is by using natural language as
a scaffold.

42

Acquaviva et al. (2021) explore this aspect of the problem, using a communication game to collect
natural language data about strategies to solve the ARC challenge. They identify program-like elements
in natural language instructions on solving the tasks and find that using natural language to guide the
search for programs improves performance significantly. The advantage of using natural language to
guide the discovery of programmatic abstractions has also been demonstrated by Wong et al. (2021)
and Andreas et al. (2018). Leveraging natural language instructions to learn about how human solvers
hypothesise abstract concepts is a promising direction in informing the search for program-like solutions
to complex abstract reasoning tasks such as solving Linguistics Olympiad problems.

43

Appendix A

Data from grammars and other linguistic and phonological analyses of languages listed in the STRESSTYP2
database Goedemans et al. (2014) or by Gordon (2002) were used to create the dataset. The STRESSTYP2
database contains information about various lects and the kinds of stress patterns exhibited by these lects.
The database also has links to the sources from which the data was collected for compiling the database,
and these were the sources we consulted for examples of words with stress patterns marked. All the
words collected from these sources have the stress marking attested in the source – there are no cases of
a given rule being used to predict the stress pattern on words. All languages used are listed in Table A.1.

A.1 Olympiad data

Language-wise results are listed in Table A.2.

A.2 Examples

Examples of problems are provided in Table A.3 and Table A.4.

44

Language Source BASIC CV SYLLABLE FEATURE LSTM Transformer

Anejom Lynch, 2000 0 0 0.666667 0 0 0
Arabic Wright, 1874 0.25 0.75 0.25 0.5 25 50
Araucanian Echeverrı́a and Contreras, 1965 0 0.666667 0.333333 0.333333 0 0
Au Scorza, 1985 0 0.666667 0.333333 0 33.3333 0
Awtuw Feldman, 1983 0.333333 1 1 1 0 0
Bortzerrieta Basque Hualde, 1989 0 1 1 1 0 0
Cofan Borman, 1962 0 0.333333 0.666667 0.666667 33.3333 0
Coreguaje Gralow, 1985 0 1 1 1 50 50
Garawa Furby, 1974 0 0 1 1 0 0
Hopi Jeanne, 1978 0.4 0.4 0.8 0.6 0 20
Kaliai-Kove Counts, 1969 0.25 1 1 1 25 0
Kara Schlie and Schlie, 1993 0.25 0.25 0 0 0 0
Kwakiutl Bach, 1975 0.2 0 0.2 0 0 40
Lezgian Haspelmath, 1993 0 1 1 1 50 0
Manam Buckley, 1998 0 0.25 1 0.25 0 0
Mathimathi Hercus, 1986 0 0.25 0 0 0 25
Murik Abbott, 1985 0.5 0.75 0.75 0.75 0 0
Piro Matteson, 1965 0 0 0 0 0 0
Sarangani Monobo Dubois, 1976 0.5 0.5 0.75 1 0 0
Seri Marlett, 1988 0.75 0.75 0.75 0.75 50 50
Sio Soetenga Clark, 1993 0.5 0.5 1 0.75 0 0
Tahitian Tryon, 1976 0.666667 0.666667 0.666667 0.666667 0 66.6667
Tamazight Abdel-Massih, 1971 0.666667 1 1 1 0 0
Tinrin Osumi, 1995 0 1 1 1 0 0
Tol Fleming and Dennis, 1977 0 0.25 1 1 50 25
Tumpisa Dayley, 1989 0 0 0.333333 0.333333 33.3333 33.3333
Tzutujil Dayley, 1985 0 0.8 0.4 0.4 20 0
Yidiny Dixon, 1977 0 0 0 0 0 0

Table A.1: Languages for which we collect data.

Problem Name BASIC CV SYLLABLE FEATURE LSTM Transformer

Aliutor 0.25 0 0.4375 0.4375 37.5 31.25
Chickasaw Stress 0 0 0.833333 0.166667 0 0
Creek 0.416667 0 0.5 0.083333 33.3333 0
Kabardian 0.5 1 1 1 33.3333 16.6667
Old Indic 0 0 0 0.25 25 25
Piraha 0 0 0 0 10 0

Table A.2: Olympiad problems. Kabardian is an IOL problem in which stress is presented as a side
phenomenon, and is easier to deduce than in other IOL problems.

45

Creek word Stress pattern

coko 0001
ca:lo 0100
sokca 01000

wa:koci 000001
pocoswa 0001000
fami:ca 000100
yanasa 000100
iyanawa 0000001

ĥi:spakwa 00001000
aklowahi: 00000001
imahicita 000000100
inkosapita 0000000001
tapasso:la 000000100
akkopanka 000001000
cokpilâ:pila 00000000001
tokna:photi 0000000001
co:kakiììita 00000000001
ìafotahaya 0000000100

itiwanayipita 0000000000100
ipahankatita 000000000100

pokkoìakkoakkopankacoko 00000000000000000000100
ifa ?

nâ:naki ?
aktopa ?

wanayita ?
isiskitoci ?
honanta:ki ?

ifoci ?
sâ:sakwa ?
hoktaki ?

a:tamihoma ?
awanayita ?
ilitohtaìita ?

Table A.3: Creek stress

46

Kabardian word Stress pattern

def@n 00010
gw@š’@Pen 0000010

made 0100
mašxe 01000

mec
˙
antXwe 00010000

megw@š’@Pef 000000010
mes 010

meb@b@pe 00000100
mešxape 0000100
meZeq̇afe 00000100

s@n 010
t
˙
@gw@r@gw@n 000000010

Zeq̇en ?
medef ?
medafe ?
s@f@n ?

megw@š’@Pe ?
meb@b ?

c
˙
antXweq̇@m 010000000
c
˙
antXwet 0100000

c
˙
entXwéft 000t0100
dapet 01000

defxeme 0100000
c
˙
antXwexeme 0100000000

met
˙
@gw@r@gwxe 00000001000
s@fq̇@m 010000
b@bme 01000
b@bxet 010000
šxeme 00100

t
˙
@gw@r@gwq̇@m 0000010000
c
˙
entXwefme ?

šxafexeq̇@m ?
b@b@ft ?
šxet ?

t
˙
@gw@r@gw@peme ?

Table A.4: Kabardian stress

47

Appendix B

B.1 Neural

Following Şahin et al. (2020), we use small neural models for sequence-to-sequence tasks. We train
a single neural model for each task, and provide the column numbers as tags in addition to the source
sequence. We find that the single model approach works better than training a model for each pair of
columns.
LSTM: We use LSTM models with soft attention Luong et al. (2015), with embeddings of size 64,
hidden layers of size 128, a 2-layer encoder and a single layer decoder. We apply a dropout of 0.3 for
all layers. We train the model for 100 epochs using the Adam optimiser with a learning rate of 10−3,
learning rate reduction on plateau, and a batch size of 2. We clip the gradient norm to 5.
Transformer: We use Transformer models Vaswani et al. (2017) with embeddings of size 128, hidden
layers of size 256, a 2-layer encoder and a 2-layer decoder. We apply a dropout of 0.3 for all layers. We
train the model for 2000 steps using the Adam optimiser with a learning rate of 10−3, warmup of 400
steps, learning rate reduction on plateau, and a batch size of 2. We use a label smoothing value of 0.1,
and clip the gradient norm to 1.

We use the implementations provided at https://github.com/shijie-wu/neural-transducer/
for all neural models.

B.2 WFST

We use the implementation the WFST models available at https://github.com/sigmorphon/

2020/tree/master/task1/baselines/fst for the WFST models. We train a model for each pair
of columns. We report the results for models of order 5, which were found to perform the best on the
test data (highest EXACT score) among models of order 3 to 9.

48

https://github.com/shijie-wu/neural-transducer/
https://github.com/sigmorphon/2020/tree/master/task1/baselines/fst
https://github.com/sigmorphon/2020/tree/master/task1/baselines/fst

Related Publications

1. Saujas Vaduguru, Partho Sarthi, Monojit Choudhury, and Dipti Sharma. Stress Rules from Sur-
face Forms: Experiments with Program Synthesis. In International Conference on Natural Lan-
guage Processing (ICON), 2021. Accepted.

2. Saujas Vaduguru, Aalok Sathe, Monojit Choudhury, and Dipti Sharma. Sample-efficient lin-
guistic generalizations through program synthesis: Experiments with phonology problems. In
Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics,
Phonology, and Morphology, 2021. Accepted.

49

Bibliography

Stan Abbott. 1985. A Tentative Multilevel Multiunit Phonological Analysis of the Murik Language,
volume 63 of Pacific Linguistics, Series A. Australian National University, Canberra.

E.T. Abdel-Massih. 1971. A Reference Grammar of Tamazight: A Comparative Study of the Berber Di-
alects of Ayt Ayache and Ayt Seghrouchen. Number v. 1 in Publications of the Center for Near Eastern
and North African Studies, University of Michigan. Center for Near Eastern and North African Stud-
ies, University of Michigan.

Samuel Acquaviva, Yewen Pu, Marta Kryven, Theodoros Sechopoulos, Catherine Wong, Gabrielle E
Ecanow, Maxwell Nye, Michael Henry Tessler, and Joshua B. Tenenbaum. 2021. Communicating
natural programs to humans and machines.

Ekin Akyürek, Afra Feyza Akyürek, and Jacob Andreas. 2021. Learning to recombine and resample
data for compositional generalization. In International Conference on Learning Representations.

Antonios Anastasopoulos and Graham Neubig. 2019. Pushing the limits of low-resource morpholog-
ical inflection. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 984–996, Hong Kong, China. Association for Computational Linguistics.

Jacob Andreas. 2020. Good-enough compositional data augmentation. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pages 7556–7566, Online. Associ-
ation for Computational Linguistics.

Jacob Andreas, Dan Klein, and Sergey Levine. 2018. Learning with latent language. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1 (Long Papers), pages 2166–2179, New Orleans,
Louisiana. Association for Computational Linguistics.

E. Bach. 1975. Long vowels and stress in kwakiutl. Texas Linguistic Forum, 2:9–19.

Sorav Bansal and Alexander Aiken. 2008. Binary translation using peephole superoptimizers. In OSDI.

Shraddha Barke, Rose Kunkel, Nadia Polikarpova, Eric Meinhardt, Eric Bakovic, and Leon Bergen.
2019. Constraint-based learning of phonological processes. In Proceedings of the 2019 Conference

50

https://books.google.co.in/books?id=Eh9XAAAAMAAJ
https://books.google.co.in/books?id=Eh9XAAAAMAAJ
http://arxiv.org/abs/2106.07824
http://arxiv.org/abs/2106.07824
https://openreview.net/forum?id=PS3IMnScugk
https://openreview.net/forum?id=PS3IMnScugk
https://doi.org/10.18653/v1/D19-1091
https://doi.org/10.18653/v1/D19-1091
https://doi.org/10.18653/v1/2020.acl-main.676
https://doi.org/10.18653/v1/N18-1197
https://doi.org/10.18653/v1/D19-1639

on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages 6176–6186, Hong Kong, China. Association
for Computational Linguistics.

A. Bellos. 2020. The Language Lover’s Puzzle Book: Lexical perplexities and cracking conundrums
from across the globe. Guardian Faber Publishing.

M. B. Borman. 1962. Cofan phonemes. In Benjamin F. Elson, editor, Studies in Ecuadorian Indian
languages 1, volume 7 of Linguistic Series, pages 45–59. Summer Institute of Linguistics of the
University of Oklahoma, Norman.

Bozhidar Bozhanov and Ivan Derzhanski. 2013. Rosetta stone linguistic problems. In Proceedings of
the Fourth Workshop on Teaching NLP and CL, pages 1–8, Sofia, Bulgaria. Association for Compu-
tational Linguistics.

Eric Brill. 1992. A simple rule-based part of speech tagger. In Third Conference on Applied Natural
Language Processing, pages 152–155, Trento, Italy. Association for Computational Linguistics.

Keith Brown and Sarah Ogilvie. 2010. Concise encyclopedia of languages of the world. Elsevier.

Eugene Buckley. 1998. Alignment in manam stress. Linguistic Inquiry, 29(3):475–496.

Aditi Chaudhary, Antonios Anastasopoulos, Adithya Pratapa, David R. Mortensen, Zaid Sheikh, Yulia
Tsvetkov, and Graham Neubig. 2020. Automatic extraction of rules governing morphological agree-
ment. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 5212–5236, Online. Association for Computational Linguistics.

François Chollet. 2019. On the measure of intelligence.

N. Chomsky. 1975. Reflections on Language. Pantheon Books. Pantheon Books.

Noam Chomsky and Morris Halle. 1968. The sound pattern of english.

David R. Counts. 1969. A grammar of kaliai-kove. Oceanic Linguistics Special Publications, (6):i–170.

Jon P. Dayley. 1985. Tzutujil Grammar, volume 107 of University of California Publications in Lin-
guistics. University of California Press, Berkeley and Los Angeles. Bibliography: p. 409-412.

Jon P. Dayley. 1989. Tümpisa (Panamint) Shoshone Grammar, volume 115 of University of California
Publications in Linguistics. University of California Press, Berkeley.

Ivan Derzhanski and Thomas Payne. 2010. The Linguistic Olympiads: academic competitions in lin-
guistics for secondary school students, page 213–226. Cambridge University Press.

51

https://books.google.co.in/books?id=xzzUDwAAQBAJ
https://books.google.co.in/books?id=xzzUDwAAQBAJ
https://aclanthology.org/W13-3401
https://doi.org/10.3115/974499.974526
http://www.jstor.org/stable/4179029
https://doi.org/10.18653/v1/2020.emnlp-main.422
https://doi.org/10.18653/v1/2020.emnlp-main.422
http://arxiv.org/abs/1911.01547
https://books.google.co.in/books?id=R78kAQAAMAAJ
http://www.jstor.org/stable/20019126
https://doi.org/10.1017/CBO9780511770791.019
https://doi.org/10.1017/CBO9780511770791.019

Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare, Mark Marron, Sailesh
R, and Subhajit Roy. 2016. Program synthesis using natural language. In Proceedings of the 38th
International Conference on Software Engineering, ICSE ’16, page 345–356, New York, NY, USA.
Association for Computing Machinery.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel rahman Mohamed, and Push-
meet Kohli. 2017. RobustFill: Neural program learning under noisy I/O. In Proceedings of the 34th
International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Re-
search, pages 990–998. PMLR.

Robert M. W. Dixon. 1977. Some phonological rules in yidin. Linguistic Inquiry, 8:1–34.

B.Elan Dresher and Jonathan D. Kaye. 1990. A computational learning model for metrical phonology.
Cognition, 34(2):137–195.

Carl D. Dubois. 1976. Sarangani Manobo: An Introductory Guide, volume 6 of Special monograph
issue. Linguistic Society of the Philippines, Manila.

Max S. Echeverrı́a and Heles Contreras. 1965. Araucanian phonemics. International Journal of Ameri-
can Linguistics, 31(2):132–135.

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama. 2019.
Write, execute, assess: Program synthesis with a repl. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Kevin Ellis, Armando Solar-Lezama, and Josh Tenenbaum. 2015. Unsupervised learning by program
synthesis. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances
in Neural Information Processing Systems 28, pages 973–981. Curran Associates, Inc.

H. Feldman. 1983. A Grammar of Awtuw. Australian National University.

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko Mitamura, and
Eduard Hovy. 2021. A survey of data augmentation approaches for NLP. In Findings of the Asso-
ciation for Computational Linguistics: ACL-IJCNLP 2021, pages 968–988, Online. Association for
Computational Linguistics.

Ilah Fleming and Ronald K. Dennis. 1977. Tol (jicaque): Phonology. International Journal of American
Linguistics, 43(2):121–127.

Christine E. Furby. 1974. Garawa Phonology, volume 37 of Pacific Linguistics, Series A, pages 1–11.
Australian National University, Canberra.

Daniel Gildea and Daniel Jurafsky. 1996. Learning bias and phonological-rule induction. Computational
Linguistics, 22(4):497–530.

52

https://doi.org/10.1145/2884781.2884786
https://proceedings.mlr.press/v70/devlin17a.html
https://doi.org/https://doi.org/10.1016/0010-0277(90)90042-I
http://www.jstor.org/stable/1263743
https://proceedings.neurips.cc/paper/2019/file/50d2d2262762648589b1943078712aa6-Paper.pdf
http://papers.nips.cc/paper/5785-unsupervised-learning-by-program-synthesis.pdf
http://papers.nips.cc/paper/5785-unsupervised-learning-by-program-synthesis.pdf
https://pure.mpg.de/rest/items/item_400301_4/component/file_2065691/content
https://doi.org/10.18653/v1/2021.findings-acl.84
http://www.jstor.org/stable/1264929
https://aclanthology.org/J96-4003

Rob Goedemans, Jeffrey Heinz, and Harry Van der Hulst. 2014. Stresstyp2. University of Connecticut,
University of Delaware, Leiden University, and the US National Science Foundation.

Matthew Gordon. 2002. A factorial typology of quantity-insensitive stress. Natural Language & Lin-
guistic Theory, 20(3):491–552.

Kyle Gorman, Lucas F.E. Ashby, Aaron Goyzueta, Arya McCarthy, Shijie Wu, and Daniel You. 2020.
The SIGMORPHON 2020 shared task on multilingual grapheme-to-phoneme conversion. In Pro-
ceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology,
and Morphology, pages 40–50, Online. Association for Computational Linguistics.

Frances L. Gralow. 1985. Coreguaje: Tone, stress and intonation. In Ruth M. Brend, editor,
From phonology to discourse: Studies in six Colombian languages, volume 9 of Language Data,
Amerindian Series, pages 3–11. Summer Institute of Linguistics, Dallas.

Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. SIG-
PLAN Not., 46(1):317–330.

Sumit Gulwani and Prateek Jain. 2017. Programming by examples: Pl meets ml. In APLAS 2017.
Springer.

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program synthesis. Foundations and
Trends® in Programming Languages, 4(1-2):1–119.

Prahlad Gupta and David Touretzky. 1992. A connectionist learning approach to analyzing linguistic
stress. In Advances in Neural Information Processing Systems, volume 4. Morgan-Kaufmann.

Martin Haspelmath. 1993. A Grammar of Lezgian, volume 9 of Mouton Grammar Library. Mouton de
Gruyter, Berlin.

Jeffrey Heinz. 2006. Learning quantity insensitive stress systems via local inference. In Proceedings of
the Eighth Meeting of the ACL Special Interest Group on Computational Phonology and Morphology
at HLT-NAACL 2006, pages 21–30, New York City, USA. Association for Computational Linguistics.

Luise. A. Hercus. 1986. Outline of the madimadi language. In L. A. Hercus, editor, Victorian Lan-
guages: A Late Survey, volume 77 of Pacific Linguistics, Series B, pages 101–151. Australian Na-
tional University, Canberra.

José Ignacio Hualde. 1989. A lexical phonology of basque.

Arun Iyer, Manohar Jonnalagedda, Suresh Parthasarathy, Arjun Radhakrishna, and Sriram K Rajamani.
2019. Synthesis and machine learning for heterogeneous extraction. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation, pages 301–315.

L. Jeanne. 1978. Aspects of hopi grammar.

53

https://doi.org/10.1023/A:1015810531699
https://doi.org/10.18653/v1/2020.sigmorphon-1.2
http://www.sil.org/acpub/repository/18622.pdf
https://doi.org/10.1145/1925844.1926423
https://www.microsoft.com/en-us/research/publication/programming-examples-pl-meets-ml/
https://doi.org/10.1561/2500000010
https://proceedings.neurips.cc/paper/1991/file/d07e70efcfab08731a97e7b91be644de-Paper.pdf
https://proceedings.neurips.cc/paper/1991/file/d07e70efcfab08731a97e7b91be644de-Paper.pdf
https://aclanthology.org/W06-3203

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek Sherif. 2007. Applying many-to-many align-
ments and hidden Markov models to letter-to-phoneme conversion. In Human Language Technolo-
gies 2007: The Conference of the North American Chapter of the Association for Computational
Linguistics; Proceedings of the Main Conference, pages 372–379, Rochester, New York. Association
for Computational Linguistics.

Aysja Johnson, Wai Keen Vong, Brenden M. Lake, and Todd M. Gureckis. 2021. Fast and flexible:
Human program induction in abstract reasoning tasks. ArXiv, abs/2103.05823.

Mark Johnson. 1984. A discovery procedure for certain phonological rules. In 10th International Con-
ference on Computational Linguistics and 22nd Annual Meeting of the Association for Computational
Linguistics, pages 344–347, Stanford, California, USA. Association for Computational Linguistics.

Vladimir Jojic, Sumit Gulwani, and Nebojsa Jojic. 2006. Probabilistic inference of programs from
input/output examples. Microsoft Research.

Katharina Kann and Hinrich Schütze. 2018. Neural transductive learning and beyond: Morphological
generation in the minimal-resource setting. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 3254–3264, Brussels, Belgium. Association for
Computational Linguistics.

Dileep Kini and Sumit Gulwani. 2015. Flashnormalize: Programming by examples for text normaliza-
tion. In Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI’15, page
776–783. AAAI Press.

Brenden Lake and Marco Baroni. 2018. Generalization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks. In Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 2873–
2882. PMLR.

Brenden M Lake. 2019. Compositional generalization through meta sequence-to-sequence learning. In
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.

Brenden M. Lake, Tal Linzen, and Marco Baroni. 2019. Human few-shot learning of compositional
instructions.

Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J. Gershman. 2017. Building
machines that learn and think like people. Behavioral and Brain Sciences, 40:e253.

Mary Laughren. 2011. Stopping and flapping in warlpiri. In Dragomir Radev and Patrick Littell, editors,
North American Computational Linguistics Olympiad 2011: Invitational Round. North American
Computational Linguistics Olympiad.

54

https://aclanthology.org/N07-1047
https://aclanthology.org/N07-1047
https://doi.org/10.3115/980491.980561
https://doi.org/10.18653/v1/D18-1363
https://doi.org/10.18653/v1/D18-1363
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.mlr.press/v80/lake18a.html
https://proceedings.neurips.cc/paper/2019/file/f4d0e2e7fc057a58f7ca4a391f01940a-Paper.pdf
http://arxiv.org/abs/1901.04587
http://arxiv.org/abs/1901.04587
https://doi.org/10.1017/S0140525X16001837
https://doi.org/10.1017/S0140525X16001837
https://www.nacloweb.org/resources/problems/2011/naclo11r1_prob.pdf

Jackson L. Lee, Lucas F.E. Ashby, M. Elizabeth Garza, Yeonju Lee-Sikka, Sean Miller, Alan Wong,
Arya D. McCarthy, and Kyle Gorman. 2020. Massively multilingual pronunciation modeling with
WikiPron. In Proceedings of the 12th Language Resources and Evaluation Conference, pages 4223–
4228, Marseille, France. European Language Resources Association.

Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint arXiv:1508.04025.

John Lynch. 2000. A Grammar of Anejom, volume 507 of Pacific Linguistics. Australian National
University, Canberra.

Stephen A. Marlett. 1988. The syllable structure of seri. International Journal of American Linguistics,
54(3):245–278.

Esther Matteson. 1965. The Piro (Arawakan) Language. University of California Press, Berkeley.

Tom McCoy. 2018. Better left unsaid. In Patrick Littell, Tom McCoy, Dragomir Radev, and Ali Shar-
man, editors, North American Computational Linguistics Olympiad 2018: Invitational Round. North
American Computational Linguistics Olympiad.

Aditya Krishna Menon, Omer Tamuz, Sumit Gulwani, Butler W. Lampson, and Adam Tauman Kalai.
2013. A machine learning framework for programming by example. In ICML.

Elliott Moreton, Joe Pater, and Katya Pertsova. 2017. Phonological concept learning. Cognitive science,
41 1:4–69.

Josef Robert Novak, Nobuaki Minematsu, and Keikichi Hirose. 2016. Phonetisaurus: Exploring
grapheme-to-phoneme conversion with joint n-gram models in the wfst framework. Natural Lan-
guage Engineering, 22(6):907–938.

Maxwell Nye, Armando Solar-Lezama, Josh Tenenbaum, and Brenden M Lake. 2020. Learning compo-
sitional rules via neural program synthesis. In Advances in Neural Information Processing Systems,
volume 33, pages 10832–10842. Curran Associates, Inc.

Midori Osumi. 1995. Tinrin grammar. Oceanic Linguistics Special Publications, (25):i–304.

Oleksandr Polozov and Sumit Gulwani. 2015. Flashmeta: A framework for inductive program synthesis.
SIGPLAN Not., 50(10):107–126.

Maja Popović. 2015. chrF: character n-gram F-score for automatic MT evaluation. In Proceedings of the
Tenth Workshop on Statistical Machine Translation, pages 392–395, Lisbon, Portugal. Association for
Computational Linguistics.

55

https://aclanthology.org/2020.lrec-1.521
https://aclanthology.org/2020.lrec-1.521
http://www.jstor.org/stable/1265079
https://www.nacloweb.org/resources/problems/2018/NACLO2018ROUND2.pdf
https://doi.org/10.1017/S1351324915000315
https://doi.org/10.1017/S1351324915000315
https://proceedings.neurips.cc/paper/2020/file/7a685d9edd95508471a9d3d6fcace432-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/7a685d9edd95508471a9d3d6fcace432-Paper.pdf
http://www.jstor.org/stable/20006758
https://doi.org/10.1145/2858965.2814310
https://doi.org/10.18653/v1/W15-3049

Gözde Gül Şahin, Yova Kementchedjhieva, Phillip Rust, and Iryna Gurevych. 2020. PuzzLing Ma-
chines: A Challenge on Learning From Small Data. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 1241–1254, Online. Association for Computa-
tional Linguistics.

Partho Sarthi, Monojit Choudhury, Arun Iyer, Suresh Parthasarathy, Arjun Radhakrishna, and Sriram
Rajamani. 2021. ProLinguist: Program Synthesis for Linguistics and NLP. IJCAI Workshop on
Neuro-Symbolic Natural Language Inference.

Eric Schkufza, Rahul Sharma, and Alexander Aiken. 2013. Stochastic superoptimization. ArXiv,
abs/1211.0557.

P. Schlie and G. Schlie. 1993. A kara phonology. In J. Clifton, editor, Phonologies of Austronesian
Languages 2, pages 99–130. Summer Institute of Linguistics, Ukarumpa.

David Scorza. 1985. A Sketch of Au Morphology and Syntax, volume 63 of Pacific Linguistics, Series
A. Australian National University, Canberra.

Temple F Smith, Michael S Waterman, et al. 1981. Identification of common molecular subsequences.
Journal of molecular biology, 147(1):195–197.

D. Soetenga Clark. 1993. The phonology of the sio language. In J. Clifton, editor, no booktitle, volume 2
of Phonologies of Austronesian Languages, pages 25–70. Summer Institute of Linguistics, Ukarumpa.

Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph.D. thesis, University of California,
Berkeley.

Harold Somers. 2016. Changing the subject. In Andrew Lamont and Dragomir Radev, editors, North
American Computational Linguistics Olympiad 2016: Invitational Round. North American Compu-
tational Linguistics Olympiad.

Darrell T. Tryon. 1976. Conversational Tahitian: an introduction to the Tahitian Language of French
Polynesia. Australian National University Press, Canberra.

Saujas Vaduguru. 2019. Chickasaw stress. In Shardul Chiplunkar and Saujas Vaduguru, editors, Panini
Linguistics Olympiad 2019. Panini Linguistics Olympiad.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.

Ekaterina Vylomova, Jennifer White, Elizabeth Salesky, Sabrina J. Mielke, Shijie Wu, Edoardo Maria
Ponti, Rowan Hall Maudslay, Ran Zmigrod, Josef Valvoda, Svetlana Toldova, Francis Tyers,

56

https://www.aclweb.org/anthology/2020.acl-main.115
https://www.aclweb.org/anthology/2020.acl-main.115
https://www.nacloweb.org/resources/problems/2016/NACLO2016ROUND2.pdf
https://www.nacloweb.org/resources/problems/2016/NACLO2016ROUND2.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Elena Klyachko, Ilya Yegorov, Natalia Krizhanovsky, Paula Czarnowska, Irene Nikkarinen, An-
drew Krizhanovsky, Tiago Pimentel, Lucas Torroba Hennigen, Christo Kirov, Garrett Nicolai, Adina
Williams, Antonios Anastasopoulos, Hilaria Cruz, Eleanor Chodroff, Ryan Cotterell, Miikka Silfver-
berg, and Mans Hulden. 2020. SIGMORPHON 2020 shared task 0: Typologically diverse morpho-
logical inflection. In Proceedings of the 17th SIGMORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology, pages 1–39, Online. Association for Computational Lin-
guistics.

Elysia Warner. 2019. Tarangan. In Samuel Ahmed, Bozhidar Bozhanov, Ivan Derzhanski (techni-
cal editor), Hugh Dobbs, Dmitry Gerasimov, Shinjini Ghosh, Ksenia Gilyarova, Stanislav Gurevich,
Gabrijela Hladnik, Boris Iomdin, Bruno L’Astorina, Tae Hun Lee (editor-in chief), Tom McCoy,
André Nikulin, Miina Norvik, Tung-Le Pan, Aleksejs Peguševs, Alexander Piperski, Maria Rubin-
stein, Daniel Rucki, Artūrs Semeņuks, Nathan Somers, Milena Veneva, and Elysia Warner, editors,
International Linguistics Olympiad 2019. International Linguistics Olympiad.

Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009. Automatically
finding patches using genetic programming. 31st IEEE International Conference on Software Engi-
neering, pages 364–374.

Catherine Wong, Kevin M Ellis, Joshua Tenenbaum, and Jacob Andreas. 2021. Leveraging language to
learn program abstractions and search heuristics. In Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 11193–
11204. PMLR.

William Wright. 1874. A Grammar of the Arabic Language, 3 edition. Librairie du Liban, Beirut.

Shijie Wu. 2020. Neural transducer. https://github.com/shijie-wu/neural-transducer/.

Shijie Wu, Edoardo Maria Ponti, and Ryan Cotterell. 2021. Differentiable generative phonology.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. 2021. Optimal neural program synthesis from mul-
timodal specifications. In Findings of the Association for Computational Linguistics: EMNLP 2021,
pages 1691–1704, Punta Cana, Dominican Republic. Association for Computational Linguistics.

57

https://doi.org/10.18653/v1/2020.sigmorphon-1.1
https://doi.org/10.18653/v1/2020.sigmorphon-1.1
https://ioling.org/booklets/iol-2019-indiv-prob.en.pdf
https://proceedings.mlr.press/v139/wong21a.html
https://proceedings.mlr.press/v139/wong21a.html
https://github.com/shijie-wu/neural-transducer/
http://arxiv.org/abs/2102.05717
https://aclanthology.org/2021.findings-emnlp.146
https://aclanthology.org/2021.findings-emnlp.146

	Introduction
	Thesis organisation

	Linguistic Problems
	Linguistics Olympiads
	Rosetta Stone-style problems

	Meta-linguistic awareness
	Phonology problems
	Dataset
	Dataset statistics

	Learning from Limited Data
	Abstract reasoning tasks
	Compositionality
	Program synthesis approaches

	Phonology and morphology from limited data
	Program synthesis approaches

	Program Synthesis
	Dimensions of program synthesis
	FlashMeta

	Learning Phonological Rules as String Transformations
	Program synthesis
	Phonological rules as programs
	Domain-specific language
	Synthesis algorithm
	Structure of the problems

	Experiments
	Baselines
	Program synthesis experiments
	Metrics
	Results

	Analysis
	Features aid generalisation
	Correct programs are short
	Using features
	Multi-pass rules
	Selecting spans of the input
	Global constraints

	Conclusion

	Learning Rules for Phonological Stress Placement
	Program synthesis
	Stress rules as programs
	Domain-specific languages
	Classes of phonemes
	Predicate types

	Synthesis algorithm

	Dataset
	Experiments
	Results

	Analysis
	Benefits of the consonant-vowel distinction
	Benefits from syllable-level distinctions
	Incorrect generalisations
	Insufficient constraints for stress placement

	Related work
	Conclusion

	Conclusions
	Appendix A:
	Olympiad data
	Examples

	Appendix B:
	Neural
	WFST

