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Breast cancer continues to be a major worldwide health burden, and therapy and prognosis are greatly 

influenced by hormone receptor status. Immunohistochemistry (IHC) is currently the gold standard for 

evaluating the status of the estrogen receptor (ER), the progesterone receptor (PR), and the human 

epidermal growth factor receptor 2 (HER2). However, this approach has drawbacks, such as the 

potential for labelling errors and inconsistency with intrinsic subtypes. To increase the precision of 

predicting hormone receptor status, this thesis introduces a unique predictive modelling approach 

employing DNA methylation and gene expression data. 

 

We created machine learning models that use data from The Cancer Genome Atlas (TCGA) and Gene 

Expression Omnibus (GEO) to include DNA methylation profiles and gene expression data to forecast 

ER, PR, and HER2 status. Using MSigDB and STRINGDB, we discovered genes that had varying levels 

of methylation in relation to each receptor status and looked into the functional significance of these 

findings. Additionally, we used machine learning models based on noisy label training to address the 

issue of noisy labels that may be present as a result of potential mislabeling by IHC-based approaches.  

 

The results of the study revealed that gene expression information and DNA methylation profiles are 

reliable indicators of hormone receptor status. Our models performed well as compared to traditional IHC 

techniques, indicating potential clinical value. Additionally, our method might predict brand-new 

biomarkers and offer deeper perceptions into the epigenetic pathways underlying breast cancer.  

 

However, there are still certain drawbacks, such as class imbalance problems and the high-dimensionality 

of DNA methylation data, which may be resolved with the development of machine learning techniques 

and larger, more representative datasets. This thesis emphasises the potential of DNA methylation-based 

prediction models to increase the precision of determining hormone receptor status, provide useful 

information for individualised therapy approaches, and enhance patient prognosis. 
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Introduction 
 
 
 

 

1.1    Breast Cancer 
 
 

According to WHO, “Cancer is a large group of diseases that can start in almost any organ or 

tissue of the body when abnormal cells grow uncontrollably, go beyond their usual boundaries to 

invade adjoining parts of the body and/or spread to other organs”. Cancer occurs when a single or a 

small group of cells produces faulty signals about how often the cells should multiply. These faulty 

signals may cause cells to grow uncontrollably and form a lump known as a tumour and are usually 

attributed to changes in the cell’s DNA. While not all DNA changes are harmful, and cells quickly 

die off in case of DNA damage in most cases, some might lead to cancer. Breast Cancer (BC) is one 

of the most frequent cancers in women, with an incidence of one in every 29 Indian women. The 

chances of a woman dying from breast cancer currently is about 2.6%. Despite the fact that current 

statistics show a rise in breast cancer incidence, the mortality rate due to breast cancer has decreased 

by 1% every year from 2013 to 2018. Early detection and better therapies are thought to be 

responsible for the lower fatality rate. Breast cancer is currently seen as a collection of diseases that 

attack the same anatomical region, rather than a single disease, due to its nature. They respond to the 

same treatment in different ways, have varied clinical behaviours, and have diverse histological 

characteristics [35]. Molecular analysis of breast cancers by high-throughput methods have shown 

that these differences arise due to genetic and epigenetic changes at the molecular scale [36]. Such 

changes could lead to cancer in one or more of the following ways: 

● High expression of oncogenes leads to the survival of cells that were otherwise designated for 

apoptosis and involve in cell growth and division instead. 

● Repression of tumour suppressor genes prevents the regulation of cell multiplication.  

● Production of abnormal proteins, which works differently than usual. 

Morphologically, breast cancer can be split into two categories: In situ carcinoma and invasive 

carcinoma. The two subtypes are divided based on the fact that whether cancer has spread to other 

tissues from the site of origin or not. In situ carcinoma are those which have started in a milk duct or 

lobule but have not spread into the breast tissue; thus, cancer cannot metastasize beyond the breast to 

other body parts. On the other hand, in situ carcinoma can progress to invasive cancer in some cases, 

where they have spread into surrounding breast tissues. Invasive cancer could thus  metastasize to 
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other parts of the body. Both of these subtypes (in situ carcinoma and invasive carcinoma) can further 

be classified into lobular or ductal carcinoma based on the fact whether cancer started in the milk-

producing glands (lobules) or the cells that line a milk duct respectively. Based on their histological 

features, in situ ductal carcinoma is further divided into multiple subtypes such as solid, cribriform and 

comedo breast cancer. Similarly, invasive ductal carcinoma is also divided into subtypes such as 

medullary, tubular and inflammatory breast cancer. Figure 1.1 shows the normal duct and lobe cells and 

in situ carcinoma in both of them. 

 

 

 

Figure 1.1 Normal duct and lobe cells along with their corresponding in situ carcinoma. 〈Reproduced 

from: https://www.verywellhealth.com/breast-cancer-staging-stage-zero-429887〉 

Along with lifestyle-related factors, inherited DNA alterations can dramatically raise the risk of 

breast cancer. For example, a change in one of the tumour suppressor genes, BRCA1 and BRCA2, can 

be inherited by a child from a parent. Breast cancer is known to be a highly heterogeneous disease 

involving complex biological mechanisms. Breast cancer is classified into more than 20 major 

categories and 18 minor subtypes by the World Health Organization [53]. The histological 

classification of breast cancer, unlike the morphological classification (which is limited to the location 

of appearance of the tumour and whether the tumour has invaded the surrounding tissues), depends 

upon the cell type characteristics, the number of cells, type and location of secretion, 

immunohistochemical profile and architectural characteristics [54]. These features together define 

whether a tumour is ductal or lobular along with its sub-classification. The treatment plans and the 

survival rate of patients depend upon the accurate classification of breast cancer subtypes. Today, the 

histomorphological classification and clinical-pathological parameters are deemed insufficient to 

predict the real behaviour and treatment plan of cancer. Thus, molecular patterns of breast cancer are 
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analysed to get a better knowledge of the patient’s breast cancer and thus determining the correct 

treatment for them. Traditionally, a patient's clinical subtype is determined by the expression status of 

three receptors [30] : 

 

● Estrogen Receptor (ER) 

● Progesterone Receptor (PR) 

● Human Epidermal growth factor Receptor 2 (HER2) 

 

 

Figure 1.2 Breast cancer subtypes are classified based on morphology, immunohistochemistry, and 

transcriptome data (Reproduced from [29]). 

The molecular categorization of breast cancer may be split into four subgroups based on the 

expression of the above-mentioned receptors: Luminal A, Luminal B, Basal-like (Triple Negative) and 

HER2+. Other molecular subtypes of breast cancer are normal-like, claudin-low and molecular 

apocrine breast cancer. Figure 1.2 shows the breast cancer subtypes classified based on morphology, 

immunohistochemistry, and transcriptome data. The Luminal A subtype is the most prevalent, 

accounting for almost half of all breast cancer occurrences. The subtype is usually attributed to a highly 

favourable prognosis with a less painful clinical course. The subtype is known to have ER and/or PR 

positive status. Due to its positive hormone receptor status, patients suffering from this subtype benefit 

from hormone therapies. Hormone therapy is a technique that utilises hormones to delay or stop the 

development of cancer that is hormone-dependent. Luminal B subtype is observed in nearly 20-30% of 

all breast cancer cases. It is thought to be the most aggressive type of hormone-dependent breast 

cancer, requiring additional treatments such as chemotherapy in addition to hormonal therapy. HER2 

subtype is observed in nearly 15-20% of all BC patients and is characterized by its strong HER2 

expression along with low ER and PR expression. Anti-HER2 therapies like Trastuzumab and 
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Lapatinib work well on these tumours. TNBC (Triple-Negative Breast Cancer) is defined by a lack of 

expression for all three receptor statuses and occurs in roughly 10%-20% of all breast cancer cases. 

Patients with BRCA1 mutations, as well as young females, are more likely to develop these tumours. 

Owing to its morphological, genetic, and clinical heterogeneity, as well as a lack of targeted therapies, 

this subtype has proven to be difficult to be treated. 

 

 

1.2    Epigenetics 

 

Epigenetics is defined as the study of changes in gene function that are heritable at the mitotic 

and/or meiotic levels but do not involve a change in DNA sequence, as opposed to genetics [1]. The 

importance of epigenetics can be observed by the fact that different cells in our body serve different 

morphological and functional purposes, even though all of them have the same genetic information 

(DNA). This phenomenon of the same genetic material serving different purposes is possible because 

different body parts express different genes. Differential gene expression can occur throughout 

development and be maintained during mitosis [4]. Epigenetics has a major role in various biological 

functions such as tissue regeneration, genomic imprinting, X chromosome inactivation, transfer of 

information from one generation to the next, and ageing of organisms. Epigenetic alterations are known 

to be influenced by variables such as diet, behaviour, stress, physical exercise, working habits, 

drinking, etc [2]. Dietary factors vary a lot between people and between human populations and have 

shown to have a significant impact on the genome's epigenetic expression. Dietary changes can trigger 

not only epigenetic variations but can also transfix epigenetic changes. Environmental agents may also 

cause epigenome changes, which may lead to toxicity or carcinogenesis. Epigenetics has opened new 

doors in cancer research as studies have indicated a key role of epigenetic events in critical biological 

processes. DNA methylation, methyl-binding domain proteins, RNA-mediated gene silencing and 

histone modifications are some of the key processes which play a vital part in epigenetal control. 

Disruption of either DNA methylation or histone acetylation affects each other. For example, 

hypomethylation of CpG island in gene promoter regions leads to deacetylation of local histones and 

vice versa. However, the underlying mechanisms of the process are still unclear. Epigenetics have long 

been recognised as a factor in gene expression regulation and cancer. Epigenetic changes have been 

linked to a slew of different illnesses and diseases, including autoimmune disorders, obesity, 

hypertension, autism, and Alzheimer's disease. 

 

Histone Modification: Histones are an important protein in providing a structural backbone to the 

DNA. Nucleosomes, the building blocks of chromatin, are formed by wrapping DNA around histone 

octamers i.e. two units each of H2A, H2B, H3 and H4. Each histone consists of a core and a histone 

tail. The extent to which DNA wraps around histones is altered when epigenetic factors attach to 

histone tails. Epigenetic alterations to the tails of histone proteins include methylation, acetylation, 

phosphorylation, and ubiquitination and may alter gene expression. The combination of these 

alterations affects the degree to which DNA is wrapped around histones, thus increasing or decreasing 

transcriptional accessibility. As shown in Figure 1.3, when a gene binds tightly around a histone, the 

gene remains inactive, but when an epigenetic factor adds to the histone tail, the DNA is loosely 
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wrapped around the histone, thus it is activated. Histone phosphorylation is important during mitosis 

and meiosis, and it interacts with other histone modifications that affect gene transcription. 

Phosphorylation can affect all histones at different sites at their tails. Histone methyltransferases 

(HMTs) bind to specific DNA sequences and interact with Trithorax group (Trx) proteins, Polycomb 

group (PcG) proteins, and RNA-interference (RNAi) to mediate histone methylation. Modifications to 

DNA methylation are also linked with modifications to histone marks; for example, in cell 

differentiation, the loss of active H3K4 tri-methylation and the retention of repressive H3K27 tri-

methylation corresponds to an increase in DNA methylation. These findings show the presence of 

bidirectional crosstalk between DNA methylation and histone modifications. 

 

   

Figure 1.3 The role of histones in the activation and inactivation of genes. Left: When epigenetic factor 

is not attached to the histone tail, the DNA is tightly wound around the histones and is inaccessible, thus 

making the region inactive. Right: When epigenetic factor is attached to the histone tail, the DNA is 

loosely bound around the histones, making it accessible and the region activated. 〈Reproduced from: 

https://en.wikipedia.org/wiki/Epigenetics#/media/File:Epigenetic_mechanisms.png〉 

DNA Methylation: DNA methylation is a key component of epigenetic mechanisms that control 

gene expression by chemically altering DNA without changing the underlying DNA sequence. 

Cytosine bases located 5’ to a guanine base gets a methyl group covalently attached to its 5-carbon 

position to convert cytosine to 5-methylcytosine. This cytosine alteration has no effect on the DNA 

sequence but may have an effect on its regulation. A CpG site is a position in the DNA sequence where 

a guanine nucleotide lies after cytosine along the 5’ to 3’ direction. An estimated 60 - 80% of the total 

28 million CpG sites are methylated in the human genome [12]. Initiation and modification of DNA 

methylation are known to be caused by at least three DNA methyltransferases (DNMTs): DNMT1, 

DNMT3a and DNMT3b. DNMT1 has a high affinity to hemimethylated DNA and is required for 

correct embryonic development as it transfers DNA methylation patterns to a newly replicated DNA 

sequence. DNMT3a and DNMT3b have a high affinity for unmethylated DNA and can initiate de novo 

methylation. The exact mechanisms involved in DNA demethylation are unknown, but it is thought to 

occur via the ten-eleven-translocase (TET) enzymes oxidising 5-methylcytosine to 5-

hydroxymethylcytosine, followed by a base-excision repair mechanism. Figure 1.4 shows the DNA 

methylation and demethylation processes. The precise role of DNA methylation throughout the 

genome is unclear, with various functions ascribed to distinct genomic locations. It is widely known 

that DNA methylation at gene promoters plays a function in transcriptional suppression. 

Hypermethylated CpG islands lead to tightly compacted chromatin, which prevents the initiation of 
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transcription. Thus, when gene promoters are hypermethylated, they are unable to bind with 

transcription factors that cause gene inactivation. DNA methylation is required for genomic imprinting, 

which occurs when one of the paternal or maternal alleles expresses a gene while the other allele is 

epigenetically repressed [74]. Female X chromosome silencing is linked with DNA hypermethylation 

and heterochromatin formation caused by antisense RNA.   

 

 

 

Figure 1.4 DNA methylation and demethylation processes occurring via DNMTs and TETs 

respectively (Reproduced from [73]). 

 

1.2.1    Role of Epigenetics in Cancer 

 

A lot of ongoing research shows the role of epigenetics in various human diseases, including cancer. 

The majority of epigenetic modifications occur during cell differentiation and are stably maintained 

over many cell division cycles, allowing cells to have distinct identities while retaining the same 

genetic material. If not maintained properly, these heritable epigenetic markers can result in improper 

activation or inhibition of different signalling pathways, leading to diseases like cancer. Traditionally, 

cancer was viewed as a purely genetic disease. But due to the development of epigenetics, it is now 

known that epigenetic alterations also play a crucial role in cancer and in addition to various genetic 

changes, human cancer cells have global epigenetic abnormalities. Two types of abnormal DNA 

methylation are found in human cancer: gene promoter-associated hypermethylation and global 

hypomethylation. Hypermethylation of promoter regions of tumour suppressors and other cancer-

related genes has been implicated in the silencing of these genes in a number of studies. By 

misregulating chromatin structure and activity, abnormal histone-modifying factor activity may also 
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promote cancer development through deregulation of gene transcription and DNA repair. The fact that 

epigenetic alterations are reversible, makes epigenetic therapy a promising field for early detection, 

risk assessment and providing a better treatment plan for treating cancer patients by reversing or 

arresting the growth of cancer [3]. Cancer is a disease with a high degree of heterogeneity; thus, 

understanding the role of epigenetics in cancer could help us open doors to new treatment and 

personalised medications. 

 

1.2.2    Role of Epigenetics in Breast Cancer 

 

Breast cancer is caused by genetic and epigenetic changes, the latter happening during the early 

stages of the disease. Previous findings show a global decrease of DNA methylation in base-pair 

resolved primary breast cancer tissues [11]. This loss in DNA methylation leads to instability and 

activation of regulatory DNA sequences such as oncogenes, retrotransposons and genes that play a role 

in tumour cell development. High levels of methylation in tumour suppressor genes lead to the 

silencing of genes that block growth-promoting proteins. Many of the genes involved in tumour 

suppression, cell cycle control, apoptosis, angiogenesis, tissue invasion, and metastasis have been 

shown to be hypermethylated in primary breast tumours or BC cell lines [54]. Hypermethylation of the 

BRCA1 gene is one of the most researched epigenetic changes in BC, which results in the 

downregulation of tumour suppressor genes involved in DNA maintenance and repair. 

Hypermethylation of the promoter region of the PTEN gene, a tumour suppressor, activates the Akt 

pathway, suppresses apoptosis, and increases cell survival. Hypermethylation of the CpG islands in the 

promoter region has been linked to the progression of BC. Studies have shown that tumours that 

express hormone receptors and those that do not express hormone receptors have distinct epigenetic 

patterns [55]. In later research, it was shown that the differences in methylation patterns between 

hormone receptor-positive and hormone receptor-negative breast tumours affect the tumour response to 

hormonal treatment such as tamoxifen. Breast cancer subtypes have been linked to epigenetic patterns, 

and the methylation profiles of Basal-like, Luminal A, and Luminal B tumours differ. Methylation was 

found to be significantly higher in Luminal B samples than in Basal-like tumours. Cell cycle 

regulation, DNA repair, hormone regulation, cell adhesion, invasion, angiogenesis, and cellular 

growth-inhibitory signalling related genes are all impacted by abnormal epigenetic modifications in 

breast cancer. 

 

 

1.3    DNA Methylation Profiling Methods 

 

The first step in determining the methylation level of DNA is to transform the original DNA so that 

the methylated sequences can be differentiated from the unmethylated sequences. DNA methylation 

profiling can be mainly categorised into three different approaches [5, 6]: 
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1.3.1    Restriction Enzyme-Based Method 

 

In this technique, either one of the two cytosines (methylated or unmethylated) are cleaved using 

restriction enzymes, and the other cytosines remain intact. The DNA fragments are then size-selected 

and sequenced (MRE-seq). Figure 1.5 shows the two commonly used Enzyme digestion based 

methods. The Differential Methylation Hybridization (DMH) method digests genomic DNA using 

MseI, which cuts the DNA into small fragments. The fragments are then ligated with linkers, and the 

unmethylated fragments are digested using either BstUI and/or HpaII restriction enzymes. The 

methylated fragments are then PCR amplified, which are then labelled and hybridised to arrays. This 

method is relatively more straightforward but has a major limitation: the restriction sites are mainly 

distributed in CpG islands; thus, it can identify a limited fraction of the total genomic CpG sites. To 

tackle this issue, the McrBC methodology uses the McrBC restriction enzyme that digests methylated 

fragments instead of unmethylated fragments, thus can digest densely methylated regions. Finally, 

high-throughput direct sequencing is used to determine the DNA methylation profile of the genome. 

The method is cost-effective and but the major disadvantage of McrBC is that it has relatively low 

resolution and is limited to regions lying near enzyme recognition sites. 

 

 

 

 

 

Figure 1.5 Restriction enzyme-based DNA methylation profiling methods. (A) DMH method; (B) 

McrBC method (Reproduced from [5]). 
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1.3.2    Bisulfite Conversion 

 

When genomic DNA is treated with sodium bisulfite, unmethylated Cytosine (C) is deaminated to 

Uracil (U). In contrast, methylated Cytosine (C) residues remain unaltered from the effect of sodium 

bisulfite [7]. The Uracil gets converted to Thymine on PCR amplification. Figure 1.6 shows how 

bisulfite conversion and PCR amplification of a DNA fragment can lead to up to four different 

sequences. The methylation state of each position is inferred by aligning and comparing the bisulfite-

converted sequences with the original sequence using tools such as Bismark [68]. The sequence reads 

are parallelly aligned against the bisulfite genome and the read with the best alignment is compared 

with the normal genomic sequence to infer the methylation states of the cytosines. Figure 1.7 shows 

two bisulfite conversion-based methods: Reduced Representation Bisulfite Sequencing (RRBS) and 

Padlock probes. The RRBS method fragments DNA using MspI or Bg/II digestion, which is then size-

selected for DNA fragments between 40 to 220 base pair size. The DNA segments are treated with 

bisulfite conversion and PCR amplification before being analysed by next-generation sequencing 

methods. A padlock probe is made up of a standard linker sequence that connects two variable capture 

arms capable of annealing to two genomic DNA regions separated by hundreds of bases [66]. The 

padlock probe method uses padlock probes designed to target specific CpG sites, which can attach to 

both 5’ and 3’ ends of the target CpG sites. The probes attach to the bisulfite-converted target DNA 

sites. The extension and ligation process is done with the help of a mixture of dNTPs, polymerase and 

ligase. The leftover padlocks and genomic DNA is removed with the help of exonucleases, and finally, 

PCR amplification is performed before next-generation sequencing. There are also microarray-based 

bisulfite conversion methods used by the Infinium platform, which is discussed in the later section 1.4. 

This technique enables high-resolution analysis of genome-wide methylation patterns, but the 

drawback of these methods is their cost for whole-genome sequencing and substantial DNA 

degradation that leads to problems in designing hybridization array probes and mapping sequencing 

reads. 
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Figure 1.6 Bisulfite conversion of genomic DNA and subsequent PCR amplification (Reproduced 

from [67]). mC: 5-methylcytosine; OT: original top strand; CTOT: strand complementary to the 

original top strand; OB: original bottom strand; and CTOB: strand complementary to the original 

bottom strand. 

 

 

 
 

Figure 1.7 Bisulfite conversion-based DNA methylation profiling methods. (A) RRBS method; (B) 

Padlock probes method (Reproduced from [5]). 
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1.3.3    Affinity Enrichment 

 

This technique uses the methyl-CpG-binding domain (MBD) proteins or 5mC-specific antibodies to 

capture methylated DNA sequences [6].  The antibody-based approach is known as methylated DNA 

immunoprecipitation (MeDIP) and the MBD proteins based approach is known as methylated CGI 

recovery assay (MIRA). Figure 1.8 shows the pipeline for MeDIP and MIRA approaches. In MeDIP, 

the DNA sequence is first fragmented using sonification and denaturation, following which anti-5mC 

antibodies that bind to methylated fragments are used to enrich those fragments. The enriched 

hypermethylated DNA fragments and the total input DNA are labelled with Cy5 and Cy3 fluorescent 

dyes respectively. The methylation status is finally determined by the ratio of fluorescent intensity of 

Cy5 to Cy3. MIRA method uses MBD proteins, unlike antibodies used by the MeDIP method. The 

method does not require denaturation of DNA and uses MBD to enrich methylated DNA. Affinity 

enrichment-based methods have certain advantages as they do not modify the DNA sequence like 

restriction enzyme and bisulfite conversion-based methods. The method is not restricted to the number 

of restriction sites present in the genome, unlike restriction enzyme-based methods; and there is no 

problem in designing hybridization array probes and mapping sequencing reads, unlike bisulfite 

conversion-based methods. However, both of these methods have certain limitations. The MeDIP 

method has a bias towards hypermethylated regions due to the antibodies’ affinity binding; thus they 

are suitable for detecting hypermethylated CpG sites and has a major disadvantage in that it is rather 

inaccurate in hypomethylated regions. The MIRA method can detect hypomethylated regions; 

however, the use of MBD proteins causes preferential enrichment of CpG islands over other CpG 

regions [69]. 

 

 
 

Figure 1.8 Affinity enrichment-based DNA methylation profiling methods. (A) MeDIP method; (B) 

MIRA method (Reproduced from [5]). 
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1.4    Platforms for DNA methylation 

 

Once the DNA is transformed to distinguish a methylated sequence from an unmethylated sequence, 

the next step is the identification of the methylated and unmethylated sites. DNA hybridization array 

(also known as microarrays) and Next Generation Sequencing (NGS) are the two most often used ways 

of identification. NGS method allows millions of sequencing reactions in parallel. They do not require 

the reactions to be physically separated into different wells or tubes. Although different NGS platforms 

use different methods, the typical workflow is the same for all of them. The first step is library 

preparation which includes DNA fragmentation and adapter ligation. The next step is library 

amplification, followed by sequencing using different approaches [70]. Figure 1.9 shows the basic 

steps involved in NGS. The current NGS techniques are pyrosequencing, sequencing by ligation and 

sequencing by synthesis. 

 

 

 

 

 

Figure 1.9 The fundamental stages involved in DNA sequencing using various NGS platforms 

(Reproduced from [70]). 
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Figure 1.10 Steps involved in two-colour microarray-based methods (Reproduced from [71]). 

 

One of the common approaches for DNA methylation profile analysis is using a two-color 

microarray method. Figure 1.10 shows the steps involved in two-colour microarray-based methods. A 

DNA microarray plate consists of multiple surface wells located on a glass or silicon slide. Each 

surface well has a unique DNA probe attached to them. The DNA probes of the sample are amplified 

and printed on the microarray slides. Two different fluorescent dyes that bind exclusively with 

methylated/unmethylated DNA are added to each probe and hybridize with the samples. As the dyes 

are distinct in color, it is possible to distinguish two different DNA states on the microarray plate. To 

do so, the chips are scanned and the fluorescent signal intensity of each probe is determined. 
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Figure 1.11 Commonly used DNA methylation profiling methods and their pipeline for methylation 

analysis (Reproduced from [6]). 

 

Each profiling method can sequence the DNA by using either Microarray or NGS based techniques. 

Figure 1.11 shows a summary of commonly used methods and the profiling and sequencing method 

they follow. Either restriction enzyme digestion or sonification first fragments the genomic DNA, then 

the fragmented DNA is profiled by either antibody enrichment, MBD enrichment or bisulfite 

conversion. 

 

The Illumina Infinium HumanMethylation platform uses bisulfite conversion-based methods for 

DNA transformation and microarray-based methods for methylation identification, and they are widely 

used for genome-wide DNA methylation-based studies. Illumina DNA methylation microarrays are 

currently one of the most frequently utilised techniques for studying DNA methylation in humans. One 

of the disadvantages of Illumina DNA methylation microarrays is that they are marketed as suitable for 

human samples only. Recent experiments on mice show that Illumina Human Infinium Methylation 

EPIC microarray can have limited use in differential methylation analysis in mice [38]. 
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Figure 1.12 Comparison of the Infium I and Infium II assays used in the Illumina HumanMethylation 

27K and 450K Beadchips. A. Infinium I assay involves using two types of probes. One probe is 

complementary to methylated cytosine. The second probe binds to the thymine that has appeared as a 

result of bisulfite conversion. B. Infinium II assay uses only one probe that can cover up to 3 CpG sites. 

During single-base extension, labelled adenine complements the thymine, while cytosine protected 

from the bisulfite conversion by the methyl group is complemented with the labelled guanine  

(Reproduced from [33]). 

 

Illumina Methylation Beadchips are based on the Illumina Infinium assay. There are two types of 

Infinium assays - Infinium I and Infinium II. Figure 1.12 shows the comparision of the Infium I and 

Infium II assays used in the Illumina HumanMethylation 27K and 450K Beadchips. In Infinium I, two 

probes are used for each CpG locus: a “methylated” and an “unmethylated” probe. The methylated 

probe is designed to match the protected cytosine. The unmethylated probe matches the thymine base 

that appears as the result of bisulfite conversion. The Infinium II assay uses only one probe per locus. 
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Each probe can contain up to 3 underlying CpG sites. For each probe, its 3` terminus complements the 

base directly upstream of the query site. A single base extension results in the addition of a labelled 

guanine or adenine base, complementary to either the ‘methylated’ cytosine or ‘unmethylated’ thymine 

(unmethylated cytosine converted to thymine by bisulfite conversion and amplification), respectively. 

Depending on the approach utilized, Illumina Human Methylation Beadchips can detect a different 

number of CpG sites. 

 

1.4.1   Illumina Humanmethylation 27K Beadchip 

 

The Illumina Human Methylation 27K Beadchip platform targets 27,578 CpG sites. The CpG sites 

are found in 14,495 genes, which includes RefSeq genes from the NCBI CCDS Database. The Infinium 

I assay design used in the measurement of DNA methylation is done by two beads. Figure 1.12, part A 

shows how the Infinium I design uses two probes; one probe measures the Methylated (M) intensity of 

the CpG site, while the other probe measures the Unmethylated (U) intensity of the CpG site. The 

probes either bind to the protected cytosine (methylated design) or the thymine base formed during 

bisulfite conversion and amplification (unmethylated design). The methylation level can be then 

determined by the intensity ratio of the two probes. The major disadvantage of this platform is that it 

does not cover a lot of regions except the gene promoter regions in the genome. 

 

1.4.2    Illumina Humanmethylation 450K Beadchip 

 

The Illumina Humanmethylation 450K BeadChip targets 96% of the human genome’s CpG islands, 

which provides methylation information of about 480K CpG sites [33]. It covers 99% of the RefSeq 

genes and has a 17-fold increase in coverage over the 27K Beadchip array.  The 450K beadchip array 

covers all gene regions in addition to CpG islands and island shores, unlike the 27K beadchip which 

only covers gene promoter regions. Illumina 450K Beadchip combines both Infinium I and Infinium II 

approaches, unlike Illumina Human Methylation 27K BeadChip, which utilizes one type of probe. Due 

to application of both types of the coverage for the methylation analysis is increased. The two types of 

probe designs used by Illumina 450K beadchip are: 

● Infinium I (for 135501 CpG sites) 

● Infinium II (for 350076 CpG sites) 

 

Therefore, the combination of both approaches can potentially detect 485K CpG sites in total. 

Considering that the detected sites can overlap, the beadchip can detect around 450K unique 

methylated sites or more, depending on their specific features. The principle of the Infinium I design is 

similar to the method used in Illumina Human Methylation 27K Beadchip described earlier. For 

Infinium II, the measurement of DNA methylation is achieved with the help of a single probe that 

measures the methylated (M) and unmethylated (U) intensities through red and green dye colours. As 

seen in Figure 1.12, B, Illumina II design uses a single bead to measure the methylation intensity of the 

CpG site. During single-base extension, the labeled probe either binds to the methylated cytosine or 

thymine (unmethylated cytosine converted to thymine by bisulfite conversion and amplification). 
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1.4.3    Illumina MethylationEPIC Beadchip (EPIC) 

 

The Illumina MethylationEPIC Beadchip microarray is the most recent DNA methylation array 

available on the Illumina microarray platform. The EPIC and 450K microarray uses the same DNA 

methylation protocols and probe designs namely, Infinium I and Infinium II. The EPIC array provides 

methylation information for 866,836 cytosine sites on the human genome. It includes 450,161 CpG 

probes from the 450K beadchip. The EPIC beadchip omitted 32,260 probes present in 450K beadchip 

due to being flagged unreliable previously. EPIC includes 413,743 additional CpG probes, including 

over 350,000 CpG sites identified as possible enhancers in the FANTOM5 and ENCODE projects. The 

distribution of probes across various genome annotation categories (GENCODE19 genes, CpG islands, 

and regulatory areas) as defined by the ENCODE and FANTOM5 projects is shown in Figure 1.14. 

The probes are classified as those that are shared across EPIC and 450K and those that are exclusive to 

EPIC. 

 

 

Figure 1.14 The distribution of probes across various categories of genome annotation based on 

publicly available catalogues (Reproduced from [72]). 

 

 

1.5    Review of DNA methylation studies in Breast Cancer 

 

Previously, several studies established a link between DNA methylation patterns and the risk of 

breast cancer. A study in 2019 [28] established the relationship between DNA methylation and gene 

expression in breast cancer patients. The study used the TCGA and METABRIC dataset for DNA 

methylation and gene expression data and derived the methylation profiles. They identified 368 

differentially methylated CpG positions between tumour and normal breast tissue samples and showed 

their association with gene expression data. They found that 56% of hypermethylated CpGs were found 
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in upstream promoter regions, and 66% of hypomethylated CpG sites were found in the gene body. 209 

of the 368 differentially methylated CpG sites, which were located in 169 genes, were differentially 

expressed between tumour and normal breast tissue. They observed that 70% of promoter CpG sites’ 

methylation-expression was negatively correlated and 74% of gene body CpG sites’ methylation-

expression was positively correlated. They also identified novel DNA methylation markers that might 

be useful for diagnostic and prognostic roles in breast cancer. 

 

 

1.6    Receptors and Their Role in Breast Cancer 

 

 Cancer biology is complex and therefore, predictive and prognostic markers play a crucial role in 

determining the treatment plan for breast cancer patients [31]. While predictive markers help predict a 

treatment plan’s outcome, prognostic factors help determine the patient’s clinical outcome in the 

absence of standard therapy. The most widely studied predictive markers whose expression status is 

associated with BC are: ER (Estrogen Receptor), PR (Progesterone Receptor), and the HER2 (Human 

Epidermal Growth factor Receptor 2). These have been used for intrinsic subtype classification of BC 

and are currently used in clinical setting. ER and PR bind their respective hormone ligands and regulate 

the expression of genes associated with cell growth and proliferation [99]. Similarly, HER2 also 

activates cell signaling pathways that drive cellular proliferation pathways [100]. 

 

In breast cancers, the hormone-receptor status is either positive or negative; for example, ER-

positive breast cancer means that the cancer cells express the estrogen receptor. Establishing the 

hormone receptor status of breast cancer helps devise the appropriate treatment approach. Only three 

markers are primarily used to determine the molecular subtyping and subsequently the treatment plan 

for the patient: the Estrogen and Progesterone Receptors act as a predictive marker for response to 

hormone therapy [101], and the HER2 status acts as a predictive marker for HER2-targeted therapies 

[102]. Receptor status could also help to stage the cancer i.e., identify whether it is at its initial, 

receptor-positive and differentiated stage, or is at an advanced cancer stage, where the cells in a tumor 

mass are undifferentiated and receptor-negative [103]. However, the receptor-negative status alone 

cannot be used to stage a cancer as clinical studies have failed to establish its individual diagnostic 

value. Similarly, only ER expression alone poorly predicts outcome and further indicators of response 

or resistance are required. Compared to hormone-receptor positive BC, receptor-negative BC 

proliferate quickly, and may have metastasized before being diagnosed. In comparison to ER and PR-

positive BC, other sub-types of breast cancers show increased risk of mortality over a 5-year survival 

period, ranging from a 1.5-fold increase in mortality in ER+/PR- cancers, 2-fold increase in ER-/PR+ 

cancers, and 2.6-fold increase in ER-/PR- cancers [40]. 

 

1.6.1    Estrogen Receptors 

 

In 80% of breast malignancies, estrogen promotes tumour cell biology by activating estrogen 

receptors. Estrogen Receptors are a subtype of hormone receptors that are activated by the steroid 

hormone estrogen. 17-β-estradiol (E2) is the most common type of estrogen produced by the ovaries 
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and adrenal glands, and it exerts its function through activation of ER [104]. When activated, estrogen 

receptors stimulate normal breast epithelial cell growth and may also promote proliferation in invasive 

breast cancer cells [105]. For example, coactivators of E2, such as SRC-1 and CBP have histone 

acetyltransferase activity, and corepressors such as MTA1 and NCOR have histone deacetylase 

activity. These proteins play an epigenetic role by modifying gene expression. The multi-protein 

regulatory complex is dysregulated in ER-positive breast cancers [39]. 

 

Immunohistochemistry (IHC) is employed to prepare histological samples of tumor biopsies to 

determine the ER status in breast cancer cells. ER-negative breast cancer is a different disease entity, 

and has a poor clinical outcome when compared to ER-positive breast cancer [106]. If a breast cancer 

is ER-positive, it indicates an upregulation of ER-induced activation of gene expression, which in turn 

leads to growth and proliferation of breast cancer epithelial cells. Preventing estrogen from binding its 

receptor (ER) can reduce tumor growth and metastasis. This is referred to as hormone therapy. 

Through administering a drug such as tamoxifen, estrogen receptors are blocked, thereby 

downregulating the proliferation of breast cancer [97]. Hormone therapy aims to either decrease 

estrogen-stimulated growth (tamoxifen) or to reduce estrogen production (aromatase inhibitors) [41]. 

 

1.6.2    Progesterone Receptors 

 

Progesterone Receptors are also a subtype of hormone receptor that are activated by the steroid 

hormone progesterone. When activated, PRs also stimulate the growth of tumour cells [52]. The PGR 

gene on chromosome 11 encodes progesterone receptors, and is an ER target gene- which means that 

when the ER is activated, PGR is one of the downstream genes expressed for growth and development 

of the mammary gland [47]. Because ER regulates PR expression, the presence of PR usually indicates 

that the ER pathway is intact and functioning. Around 70% of all breast cancers have PR-positive 

status. While PR and ER expression are highly correlated, the correlation is imperfect, resulting in four 

different phenotypes of combined expression. Both the ER and PR status need to be determined as each 

combination is associated with significantly varied rates of hormonal treatment response [45]. 

 

1.6.3    Human Epidermal Growth Factor Receptors 2 

 

HER2 is a growth factor receptor protein that is encoded by the ERBB2 gene (Erb-B2 Receptor 

Tyrosine Kinase 2) on chromosome 17 in humans, and is a member of the ErbB family of 

transmembrane RTKs (receptor tyrosine kinase) proteins. This subclass of cell-surface growth factor 

receptors is known to influence cell differentiation, proliferation, and survival [50,51]. HER2 can 

undergo ligand-independent dimerization; when HER2 undergoes heterodimerization with HER3, it is 

a potent anti-apoptotic stimulator of the Phosphoinositide-3-kinase (PI3K)/Akt pathway- a cell 

signaling pathway that is most activated in oncogenesis [46]. 

 

HER2 status is commonly determined by either immunohistochemistry (IHC) method at the protein 

level, or by fluorescence in situ hybridization (FISH) or chromogenic in situ hybridization (CISH) 

method at the DNA level. In 15%–25% of breast cancers, HER2 is overexpressed [48,49]. The most 
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common signaling pathways upregulated in HER2 breast cancers are the mitogen-activated protein 

kinase pathway (MAPK), Phosphoinositide-3-kinase (PI3K)/Akt pathway, and protein kinase C (PKC) 

pathway. These signaling pathways are involved in cell proliferation, migration, apoptosis, and effect 

breast cancer tumor growth, proliferation and metastasis. It is observed that high HER2 amplification 

may result in poor outcome or even resistance to cancer treatments. HER2 amplified breast cancers 

show increased proliferation rates, more aneuploidy (presence of an abnormal number of 

chromosomes) [42], and tend to metastasize to the central nervous system (CNS) [43] and viscera [44]. 

The discovery that HER2-positive breast cancer patients had a poorer prognosis than HER2-negative 

breast cancer patients has laid the groundwork for establishing HER2-targeted treatment strategies in 

modern oncology [41]. Almost two decades after this observation, trastuzumab was established as a 

therapy known to benefit HER2-positive breast cancer patients. Another treatment designed to block 

the growth of HER2-positive cancers is lapatinib, which binds and blocks the receptor tyrosine kinase 

ATP-binding domain, thus inhibiting tumor growth [40]. 

 

 

1.7    Review of Studies for Receptor Status Prediction 

 

The most common practice used by laboratories to determine the Receptor status of breast cancer 

patients is the ImmunoHistoChemistry (IHC) method. This method uses an antibody to target the 

extracellular or intramembranous domain of the receptor. The attached antibody is then visualised with 

the help of an antigen-antibody reaction that binds to a colour-emitting molecule. After that, the 

scoring is carried out using a light microscope. Although the IHC method is less accurate, it is faster 

and cheaper than the more accurate Fluorescence in situ hybridisation (FISH) method. Most 

pathologists initially use the IHC method and using the FISH method as a confirmatory technique or in 

intermediate cases where the results obtained by the IHC method are unsure. FISH test is widely used 

to identify the genetic material present in a person's cells and to visualize specific regions of 

chromosomes. In this cytogenetic technique, fluorescent labelled DNA probes are hybridized with 

denatured chromosomal DNA to visualise specific portions of chromosomes. For example, in HER2 

testing FISH test is employed to see the number of copies of HER2 gene in each nucleus. Preferably 

20-60 cells must be assessed from 3 different tumor fields to determine the HER2 to chromosome 17 

ratio [37]. Both IHC and in situ hybridization (ISH) are FDA-approved techniques, but both methods 

have shown contradictory results. R Memon, (2021) studied HER2 status in patients of breast cancer 

between 2015 and 2020, and determined the discordance between the results of IHC and ISH. Along 

with their own study, they also performed pooled literature review analysis to see the results of 

relevant studies. They found that 1.6% cases had IHC-/ISH+ and 11.9% cases had IHC+/ISH- 

discordance in their own study. Also according to detailed literature analysis, they performed, the 

discordances (IHC+/ISH- and IHC-/ISH+) between two methods observed. with an IHC+/ISH− 

discordance was considerably higher than IHC−/ISH+ (13.8% vs. 3%, P < .0001) [92]. Due to the 

costly tests done at molecular-genetic level, immunohistochemical (IHC) markers are widely used as 

they are easily available and cost-effective. For this reason, subtyping of breast cancer by IHC is often 

practiced. Prior studies have shown that subtyping of breast cancer is crucial in prognosis and plays 

important role in endocrine therapy and chemotherapy. However, IHC-Luminal A was not 

significantly predictive of Pathologic Complete Response (pCR) [93]. Pathologic complete response 
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(pCR) is the complete absence of invasive or in situ cancer in the breast and axillary lymph nodes [32]. 

pCR is predictive of the outcomes of neoadjuvant treatment for breast cancer. Recently in 2020, there 

have been attempts to determine a patient’s receptor status by using their Gene Expression Profiles [8]. 

The method identified predictor genes and performed receptor-status prediction using logistic 

regression based on those predictor genes. The method had a higher concordance with the intrinsic 

subtypes than the IHC-based method, with 5%-12% of the cases having predicted status different from 

the IHC-based status. It also showed that the patients with a mismatch between the predicted status 

and the IHC-based status had an overall lower survival rate and concluded that it provides a more 

reliable classification than the IHC method.  

 

 

1.8    Need for Receptor Status Prediction Using DNA Methylation 

 

Together with grade and stage, immunohistochemistry (IHC) subtypes are well-known independent 

prognostic markers of breast cancer in women. Testing of ER/PR/HER2 status of a tumour is usually 

done using a method known as IHC (immunohistochemistry). Immunohistochemistry (IHC) tumour 

markers such as estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor 

receptor 2 (HER2), and Ki67, are independent prognostic markers for breast cancer. Laboratory 

dependent factors such as choice of the specimen, choice of antibody and threshold for positivity can 

lead to different results for the same patient [9]. Through randomized controlled experiments it was 

observed that immunohistochemistry (IHC) resulted in discordant results when testing for hormone 

receptors (ER/PR) and HER2 expression in breast tumours. With HER2, 14.5% of cases were false-

positive while 21.4% of false-negative cases were detected in the phase III trial [90]. This suggests that 

there are quality issues with IHC: (i) it requires stringent quality control; (ii) longer cold ischemic time 

and inappropriate time for fixation may result in false-negative results plausibly due to their 

detrimental effect on proteins; and (iii) HER2-positivity rate is affected by histological grade, age, HR 

and nodal status [91]. The accuracy of the results is essential because they can affect the patient’s 

treatment plan and recurrence chance. Better accuracy of ER/PR status prediction can also help avoid 

side effects and potentially life-threatening toxicity that may occur due to treatments that might not 

even work for the patient. As explained in section 1.7, a recent study [8] has shown that Gene 

Expression Profiles might be better at predicting Hormone Receptor Status, which in turn showed that 

patients with different results from the IHC method had overall lower chances of survival. Other 

studies have indicated a strong correlation of DNA methylation profiles with breast cancer patients’ ER 

and PR status [55]. Pyrosequencing methylation analysis was performed to investigate the methylation 

patterns of 12 tumour suppressor genes in 90 pairs of malignant and normal breast tissue. They found 

that methylation patterns of HIN-1, RASSF1A, RIL and CDH13 genes were strongly correlated to the 

ER and PR status. Building a machine learning-based ER/PR/HER2 prediction model can help in more 

accurate receptor status prediction, leading to better treatment and prognosis for patients. 
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1.9    Thesis overview 

 

In this thesis, we have used a Machine Learning method to predict the Receptor Status (ER, PR and 

HER2) of Breast Cancer patients using DNA methylation data. In Chapter 2, we have briefly discussed 

the datasets used and data preprocessing, feature selection and prediction models that have been used 

for our study. We further discussed the pipeline used to predict the Receptor Status of Breast Cancer 

patients using DNA methylation data. In Chapter 3, we investigated the differences in DNA 

methylation profiles of breast cancer patients with different receptor statuses and the performance of 

our machine learning algorithm in predicting the receptor status, followed by a discussion. In Chapter 

4, we have concluded the main points and contributions of our study and possible ideas that could be 

worked upon in the future.  
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Methodology 
 
 
 

 

2.1    Datasets used 

 

We have used the TCGA-BRCA dataset [21] and four additional datasets from the NCBI GEO 

portal [22-24] consisting of DNA Methylation Data from the Infinium Hypermethylation 450K 

platform. The four other datasets were shortlisted from a list of more than 200 datasets based on 

the following criteria : 

● The platform used should be Infinium Hypermethylation 450K platform. 

● The data should be present in the IDAT format. 

● The dataset is related to Breast Cancer. 

● There should be at least ten samples in the dataset. 

● The receptor status should be defined by IHC method. 

 

The number of Breast Cancer samples total to 1514. All the data was downloaded in IDAT 

format due to the presence of control probes, as it helps in the preprocessing and Quality Control 

of the data. After downloading the data, it was preprocessed and normalised for further analysis, 

as explained in subsequent sections. Table 2.1 summarises the total number of samples and the 

count of patients with their ER positive/negative status, PR positive/negative status and HER2  

positive/negative status. In the process of conducting 10-Fold Cross Validation, all available 

datasets were used. However, when it came to independent dataset testing, the GSE72251 was 

specifically used for that purpose, while the remaining datasets contributed to the training process. 

The table also mentions whether it contains information about the overall survival of the patients 

and PAM50 subtype classification. 

 

The results from the IHC method depend on several laboratory dependent factors such as 

choice of the specimen, choice of the antibody, the threshold for positivity etc., as explained in 

Section 1.8 and could lead to different results from the same patient. This could mean that some of 

the samples might have misclassified receptor status. There has been a reported discordance rate 

of about 20%–50% between IHC-based clinical subtypes and intrinsic subtypes [25-27].  
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Thus, the Hormone Receptor status data labels were considered noisy labelled data for further 

downstream analysis. 

 

Table 2.1 Summary of the datasets shortlisted for further analysis. 

 

Dataset ID 
Total case 

samples 

ER +ve/-

ve 

PR +ve/-

ve 

HER2 

+ve/-ve 

Overall 

Survival 

PAM50 

subtype 

GSE72245 118 64/53 0/0 30/88 Available Available 

GSE72251 119 70/49 54/65 25/94 Available N/A 

GSE84207 330 220/59 0/0 0/0 N/A Available 

GSE117439 52 36/16 0/0 0/0 N/A N/A 

TCGA-BRCA 895 650/188 699/344 164/564 Available Available 

Total 1514 1040/365 753/409 219/746 -  

Total number of 

samples after 

QC 

1261 923/336 526/291 141/561 -  

 

A brief description of the datasets used is explained below. 

 

● GSE72245 and GSE72251: The dataset consists of 118 and 119 samples, respectively, 

where fresh breast tumour tissues were collected immediately after the surgery. The DNA 

methylation was analysed on Infinium HumanMethylation450K bead arrays. The mean age 

of patients for the three datasets were 56 and 58, respectively. The histologic grade of the 

tumour was G1-G2 for 34 and 33 patients, respectively, while it was G3 for 84 and 85 

patients, respectively. The IHC subtype for GSE72245 and GSE72251 datasets were HER2 

for 30 and 25 patients, Luminal A for 25 and 27 patients,  Luminal B for 32 and 31 patients 

and Basal-like for 31 and 34 patients, respectively. 

 

● GSE84207: Using the Infinium HumanMethylation450K technology, the cohort was 

utilised to assess the DNA methylation levels of 330 patient tumours. The PAM50 subtype 

was Luminal A for 120 patients, Luminal B for 63 patients, Normal for 18 patients, HER2 

for 37 patients and Basal-like for 34 patients. The PAM50 subtype was unknown for the 

rest of the patients. 

 

● GSE117439: The dataset consists of 46-paired tumours. Primary tumours also referred to 
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as first tumours, were matched to a second tumour from the same woman. Twelve tumour 

pairs were from women with ER +ve first and second tumours. Five tumour pairs were 

from women with ER -ve first and second tumours. Six tumour pairs were from women 

with ER +ve first and ER -ve second tumours. Additionally, six ER +ve tumour samples 

were obtained from women who had no recurrence of BC during a seven-year follow-up 

period. The DNA methylation levels of the samples were determined using the Infinium 

HumanMethylation450K platform. 

 

● TCGA-BRCA: In 2012, TCGA launched a Pan-Cancer analysis project aimed to gain 

knowledge about different cancer types. This included the BRCA project that was aimed at 

Breast tissue-related tumours. The dataset consists of 1098 cases and consists of various 

data such as DNA methylation data, copy number variation data, clinical data, sequencing 

reads, etc. Out of these 1098 cases, 895 had DNA methylation data of breast cancer tissue 

in IDAT format from the Illumina Humanmethylation 450K platform. The samples had to 

meet specific quality standards that include: 

◦ A primary untreated tumour along with normal tissue/blood sample from a matching 

source. 

◦ Frozen and sufficiently sized surgically removed samples. 

◦ A threshold of at least 80% tumour nuclei in the sample. 

 

We also incorporated The Cancer Genome Atlas - Breast Invasive Carcinoma (TCGA-BRCA) 

RNA-Seq Gene Expression Data in our research to establish a link between DNA methylation and 

gene expression. The data, which was generated using the Illumina HiSeq platform, consists of a 

sizeable dataset from 1095 samples. Among these samples, we had information on ER status for 

777 instances, with 599 classified as ER+ and 178 as ER-. Similarly, PR status was disclosed for 

630 samples, which comprised 522 PR+ and 108 PR- instances. The HER2 status was provided for 

767 samples, including 114 HER2+ and 653 HER2-. The processing of raw data for analysis was 

carried out using the TCGAbiolinks package [17, 107]. 

 

2.2    Preprocessing 

 

Before using our data for any downstream analysis, all datasets were processed using the 

PyMethylProcess tool for quality control, preprocessing, and normalisation [61]. The 

PyMethylProcess tool helps to preprocess methylation IDAT files without the need to use R. The 

programme includes three distinct libraries for data quality control and normalisation, notably 

minfi, meffil, and ENmix [62-64]. We have used the meffil pipeline as it uses significantly less 

computation memory and processing time than the minfi pipeline and can handle larger datasets 

comprising thousands of samples. The meffil tool uses Functional Normalisation technique to 

normalize DNA methylation data. Functional Normalisation separates biological variation from 

technical variation using information from control probes [34]. The pipeline of the tool is mainly 

divided into five steps which are explained below: 
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● Quality Control 

● Normalisation 

● Data Imputation 

● Non autosomal sites removal 

● Feature selection  
 

Microarray analysis is sensitive to variations in experimental conditions. It faces the issue of 

batch effects, especially in larger datasets, since it is not possible to process all the samples 

simultaneously and by the same technical personnel. DNA methylation is determined by treating 

the DNA with bisulfite, which deaminates and converts unmethylated cytosine to uracil. This 

process is carried out in batches and may introduce technical bias in one of two ways: either all 

unmethylated cytosines are not converted to uracil, or methylated cytosines are converted to uracil 

if the bisulfite conversion is not adequately regulated. This leads to unwanted variations in the 

data that can increase false positive and false negative rates. DNA collected from different 

samples such as white cells, blood spots, peripheral blood lymphocytes, and whole blood would 

also have slight differences in their methylation patterns. 

 

To tackle such problems, quality control and normalisation of data are required. The quality 

control is performed based on sex outliers, methylated/unmethylated ratio, control probes mean, 

detection scores, etc. The meffil tool identifies sex outliers based on the difference between the 

total medial intensity between X and Y chromosome probes. Based on this, the meffil tool 

identified 7 sex detection outliers. 6 of them were from GSE117439 dataset, while one was from 

TCGA-BRCA dataset. Further quality control was performed by plotting the median methylation 

intensity against the median unmethylation intensity. The meffil tool considers samples as outliers 

when the median methylated signal is more than 3 standard deviations. There were a total of 16 

samples, 15 of them were from TCGA-BRCA dataset and 1 was from GSE84207 dataset. The 

450k array consists of control probes which can be used to judge the quality of processing steps 

such as staining, extension, hybridization, bisulfate conversion etc. These control probes are 

grouped in 42 categories of control types. There were 18 samples that didn’t pass the control probe 

quality control, out of which 1 was from the GSE117439 dataset while the rest were from TCGA-

BRCA dataset. Further quality control was performed by calculating the proportion of probes that 

did not pass the detection p-value and the meffil tool identified 34 samples with a high proportion 

of undetected probes. 1 of the sample was from GSE84207 dataset, 3 samples were from the 

GSE117439 dataset, while the rest 30 were from the TCGA-BRCA dataset. Further there were 0 

samples with a high proportion of probes with low bead number and thus no further samples were 

removed.  The meffil tool also identified 15755 probes with only background signal in high 

proportion of samples and thus they were removed from further analysis. The tool also removed 

181 CpGs with low bead numbers in high proportion of samples. 

 

Illumina Humanmethylation 450K and MethylationEPIC 850K arrays include control probes 

that vary due to technical variation and remain unaffected by biological variations. Functional 

Normalisation uses these control probes to distinguish between technical variations and biological 
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variations and is thus used by the meffil library.  

 

The methylation level of a CpG site is represented by β-value, calculated by the following 

formula: β=M/(M+U+α). Here, M represents the methylated intensity of the CpG site, U 

represents the unmethylated intensity of the CpG site, and α is an offset that is generally set as 100 

that helps stabilize beta values for small M and U values. CpG sites for which more than 50% of 

the samples had missing data were removed from further analysis. The missing β-values in the 

remaining data are imputed by the PyMethylProcess tool using the k-Nearest Neighbors (KNN) 

method. 

 

The PyMethylProcess tool further removes sex probes to keep only autosomal sites for further 

analysis. This was done to remove any features dependent on sex so that the pipeline remains 

consistent irrescpective of the gender of the patient. CpG sites lying in the SNP regions were 

further removed. Finally, Feature Selection was performed using the PyMethylProcess tool to get 

the top 3,00,000 CpG sites with the highest amount of mean absolute deviation from the mean 

methylation from the set of CpGs. Figure 2.1 shows the t-SNE plot for the samples used in the 

final analysis after normalisation. Note the separate blue cluster of the GSE117439 dataset, this is 

due to the fact that GSE117439 dataset had both primary and secondary tumours. 

 

 

Figure 2.1 t-SNE plot for the cancer samples used in the final analysis after normalisation. 
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2.3    Dimensionality Reduction 

 

A lot of data in biology, such as high-throughput data, consists of a high number of dimensions 

where the number of dimensions in the data is significantly greater than the number of samples 

available. Our study consists of more than 4,80,000 dimensions for CpG sites, while the number of 

patients in the study ranges from around 750-1300. This poses a lot of problems for any machine 

learning model. If not handled properly, the high dimensional data can significantly increase the 

time of the execution for the algorithm and negatively impact its performance. Increasing the 

number of features helps with the classifier’s performance up to a certain limit, after which further 

increasing the features would decrease the classifier’s performance. One reason is because 

increasing the number of features may result in an increase in noise, since not all characteristics 

are useful for categorization. Another issue is that increasing the number of features may result in 

overfitting the data, since the density of data points decreases exponentially as the number of 

features increases [65]. Due to this sparsity, it becomes much simpler to identify a separable 

hyperplane, since the probability of a training sample being on the incorrect side of the best 

hyperplane decreases as the number of features increases. This causes overfitting of the samples 

and leads to poorer results. The next section discusses some of the dimensionality reduction 

methods. 

 

2.3.1    Principal Component Analysis (PCA) 

 

Principal Component Analysis (PCA) is an unsupervised learning method that is used to reduce 

the dimension of high-dimensional data and to visualise it [13]. The primary objective of PCA is 

to minimise the number of dimensions by transforming the original dimensions to a new set of 

dimensions (known as a principal component) while maintaining as much information as possible 

from the original dataset. It tries to preserve the global structure of data while reducing the 

dimensions, which could lead to a loss of local structures. The first principal component indicates 

in the direction of the projected data with the greatest variation. The ith principal component may 

be defined as an orthogonal path to the first i – 1 principal component that maximises the variance 

of the projected data. Figure 2.2 explains the first two principal components of data. 
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Figure 2.2 The first principal component of the data has the most variance while the second 

principal component of the data is orthogonal to the first component and has the most variance 

after the first component. 〈Reproduced from: 

https://weigend.com/files/teaching/stanford/2008/stanford2008.wikispaces.com/file/view/pca_exa

mple.gif〉 

 

 

 

2.3.2    t-distributed stochastic neighbour embedding (t-SNE) 

 

The t-distributed stochastic neighbour embedding (t-SNE) method is an unsupervised learning 

technique that is used to reduce the dimension of high-dimensional data and to visualise it [60]. 

The goal of t-SNE is to decrease data from a higher dimension to a lower dimension while 

preserving the data's neighbourhood. Unlike PCA, this method attempts to retain the data's local 

structure. Additional distinctions between t-SNE and PCA include the fact that it is a non-linear 

dimensionality reduction method and a non-deterministic algorithm (same inputs for the algorithm 

could lead to different outcomes on different runs). 
  

 

2.4    Classification Algorithms in Machine Learning 

 

Machine Learning is the study of how computers may learn to execute particular tasks from 

examples without being specifically programmed to do so. Classification algorithms try to predict 

unseen data’s class labels after learning discriminating patterns of different classes in the training 

phase. Some of the common classification algorithms in Machine Learning are briefly explained 

below. 
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2.4.1    Support Vector Machines (SVM) 

 

SVM is a supervised machine learning algorithm that outputs an optimal hyperplane, using 

labelled training data to classify new samples [57]. In two-dimensional feature space, the 

hyperplane is a line; in three-dimensional feature space, the hyperplane is a plane, and so on. The 

method makes no assumptions about the data and instead attempts to fit an optimum hyperplane 

that separates the various groups with the greatest margin. As shown in Figure 2.3, the blue 

coloured samples are represented as label 1, and green coloured samples are represented as label -

1.  

 

The hyperplane can be written as the set of points  satisfying the following equation: 

 

                                                                                                             (2.1) 

 

Here,  is a normal vector to the hyperplane and  is the negative of the intercept of the 

hyperplane. All the samples that lie on or above the following equation are classified into one 

class, represented by label 1. 

                                                                                                         (2.2) 

 

All the samples that lie on or above the following equation are classified into the other class, 

represented by label -1. 

 

                                                                                                 (2.3) 

 

The explained idea works fine if the class labels are linearly separable. If it’s not the case, this 

linear boundary classifier can be converted into a non-linear boundary classifier with the help of 

the kernel trick. The main idea of kernels is that a non-linearly separable dataset might become 

linearly separable when it is projected in a higher dimension. 
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Figure 2.3 The SVM classifier outputs a solid line separating the two classes (red and blue) 

into two-dimensional space. The dotted lines are the functional margins, and samples lying on 

them are called support vectors. 〈Reproduced from: https://en.wikipedia.org/wiki/Support-

vector_machine〉  

 

2.4.2    Multi-Layer Perceptron (MLP) 

 

A perceptron, also referred to as a neuron in Machine Learning is a linear classifier. A linear 

classifier is a classification algorithm that uses a linear predictor function to make predictions. A 

perceptron is the basis of all Artificial Neural Networks (ANN), which is somewhat inspired by a 

biological brain.  

 

Figure 2.4 shows a model of the perceptron. The output is computed as: 

 

                                                     

                          (2.4)  

 

 

Here F is a non-linear activation function, x is an m-dimensional input vector, w is the m-

dimensional weight vector, b is the bias, and Y is the computed output. 
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Figure 2.4 Model of a perceptron 〈Reproduced from: 

https://www.tutorialspoint.com/artificial_neural_network/artificial_neural_network_supervised_lea

rning.htm〉 

 

A perceptron has a limitation of only linear classification. This problem is overcome by 

multilayer perceptron (MLP), which stacks multiple perceptrons in a layer-wise fashion. Every 

MLP consists of three main parts: 

 

● Input layer: This layer has the same number of perceptrons as the dataset's dimension. 

This layer's data is sent into the first hidden layer's neurons. 

● Hidden layers: The capacity of an MLP to learn a complicated model is proportional to 

the number of hidden layers it contains [14]. Without the use of hidden layers, an MLP is 

capable of learning decision boundaries that are linearly separable. Any function that has a 

continuous mapping from one finite space to another may be approximated by a single 

hidden layer. It may represent any arbitrary decision boundary using two hidden layers. 

Three or more hidden layers are used to perform automatic feature engineering to learn 

complex representations. 

● Output layer: This layer receives data from the hidden layer and predicts the input. 

 

 Figure 2.5 shows the architecture of an MLP. Generally, simple datasets don’t require more 

than two hidden layers. However, Deep Learning problems involving complex datasets such as in 

Computer Vision, NLP and time-series problems can have as many as 100 layers or more. 
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Figure 2.5 Architecture of a multilayer perceptron with a single hidden layer. 〈Reproduced 

from: https://medium.com/pankajmathur/a-simple-multilayer-perceptron-with-tensorflow-

3effe7bf3466〉 

 

2.4.3    K-Nearest Neighbors 

 

K-Nearest Neighbors (KNN) is one of the most straightforward supervised machine learning 

algorithms. KNN algorithms make the assumption that similar things lie in close proximity to each 

other. The algorithm is only useful when the assumption stated is true. The similarity between data 

points is usually determined by distance (such as Euclidean, Manhattan) between them. The main 

drawback of the KNN algorithm is that it’s not scalable as it becomes significantly slower with the 

increase in data. 

 

 

2.5    Noisy Label Training 

 

Machine Learning has proved to be extremely helpful in providing meaningful information 

from a vast raw data set. It is known to have an impressive performance in various tasks such as 

language processing, image recognition and medical diagnosis. The success of these models is 

mainly dependent on a large amount of data that is correctly labelled. Always determining the 

correct label is sometimes infeasible and could also be expensive and time-consuming. In some 

cases, data labelling can be highly complex, even for Subject Matter Experts (SMEs) [18]. Such 

problems can lead to unreliable labels, also known as noisy labels, as they may differ from the 

ground truth. These noisy labels can affect the training of the machine learning model and can lead 
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to a drop in their prediction performance. 

 

The receptor status of the samples are noisy labels as the labels determined in the clinical data 

could be wrong due to a variety of reasons, including laboratory dependent factors as explained in 

Section 1.8. To tackle this issue, we have used the Cleanlab tool [19] that uses the current state-of-

the-art method for machine learning with noisy labels for binary classification [20]. The method, 

known as “Rank Pruning for Robust Classification with Noisy Labels” is the first time-efficient 

algorithm that achieves similar or better results than the previous state-of-the-art methods. The 

algorithm emphasizes the use of learning with confident examples than learning with more 

examples for training. Here confident examples mean the examples which have a very high 

probability of having the correct label. The algorithm uses a probabilistic classifier to estimate the 

number of samples that could be incorrectly labelled for each class. After removing samples with 

anticipated noisy labels from the training set, only the confident instances are utilised to train the 

machine learning model. 

 

Previous research [15, 16] have used the Cleanlab technology effectively, demonstrating its 

potential usefulness in comparable settings. In one study [15], the Cleanlab tool was used to 

address the issue of noisy labelling in whole slide images when applying deep learning algorithms 

to classify brain tumours. The researchers discovered that integrating Cleanlab enhanced the 

classification model's accuracy, emphasising its utility in dealing with noisy labels in the context 

of histopathological investigation. Another important study [16] concentrated on using telemetry 

data to detect atrial fibrillation without considerable manual annotation. The researchers tested 

Cleanlab to other approaches and discovered that it performed similarly, suggesting its resilience 

and dependability in resolving the issues provided by noisy labels in biological datasets. 

 

Given Cleanlab's effectiveness in prior studies involving varied biological datasets, its use in 

the current research on receptor status prediction in breast cancer is promising. It is hoped that by 

using Cleanlab's capabilities, the negative impact of noisy labels on prediction accuracy can be 

reduced, ultimately boosting the reliability and effectiveness of the receptor status prediction 

models for breast cancer. 

 

2.6    Evaluation Metrics 

 

Evaluation metrics are important for any machine learning project. It helps to quantify the 

quality of any machine learning or statistical model. Multiple evaluation metrics are necessary 

when evaluating a model, since a model may perform well on one evaluation metric but badly on 

another. In this thesis, we are studying receptor status classification; for all metrics, the classes 

ER/PR/HER-2 positive are defined as positive and classes ER/PR/HER2 negative are defined as 

negative. Figure 2.6 explains the terms True Positive (TP), False Positive (FP), True Negative 

(TN) and False Negative (FN) visually. Here, we take an example of an imaginary model used to 

predict an image as either a “Dog” or “Not Dog”. 
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There are four cases possible: 

● The picture of a cat, correctly labelled as Not-dog, is a True Negative. 

● The picture of a man with a dog filter incorrectly labelled as a Dog, is a False Positive. 

● The picture of a dog wearing a helmet, incorrectly labelled as Not dog, is a False 

Negative. 

● The picture of a dog, correctly labelled as Dog, is a True Positive. 

 

True Negative 

 

Prediction: Not dog 

 

False Positive 

 

Prediction: Dog 

 

False Negative 

 

Prediction: Not dog 

 

True Positive 

 

Prediction: Dog 

 

 

Figure 2.6 An example where a model classifies an image as either “Dog” or “Not Dog”. (This 

example has been designed using resources from Freepik.com). 
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Here are the Evaluation metrics we have used in our study: 

 

2.6.1    Accuracy 

 

The formula for accuracy is as follows: 

 

                        (2.5) 

 

But the Accuracy metric alone can be misleading. Consider an example of a model to identify 

terrorists with over 99.99% accuracy. But the model still might not be useful as it is an imbalanced 

classification problem, with the number of terrorists significantly lower than non-terrorists. The 

model could never identify a single terrorist and still could have good accuracy. 

 

2.6.2    Precision 

 

The formula for precision is as follows: 

 

                                                                   (2.6) 

 

A model's precision indicates how many of the identified items are genuinely meaningful. 

It is computed by dividing true positives by total positives. In the example shown in Figure 2.5, 

the precision percentage can be interpreted as the probability that an image which the model 

detected as a dog actually shows dog. 

 

2.6.3    Recall 

 

The formula for recall is as follows: 

 

                        

 

                                                                                      (2.7) 
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Recall, also known as sensitivity, measures the proportion of actual positive instances correctly 

identified by a model. It is calculated by dividing true positives by the sum of true positives and 

false negatives. A higher recall value indicates a greater ability to capture all relevant items of a 

certain class. It is a crucial metric in scenarios where identifying all positives is important, such as 

medical diagnoses or quality control. 

 

2.6.4    Matthews Correlation Coefficient (MCC) 

 

The formula for MCC is as follows: 

                              

    (2.8) 

 

An effective statistic for assessing binary classification models in machine learning is the 

Matthews Correlation Coefficient (MCC). When dealing with imbalanced datasets, the MCC 

gives a balanced measure even when the classes are of extremely different sizes, making it a more 

reliable measure. The MCC returns a value between -1 and +1 after accounting for both over- and 

under-predictions. A MCC of +1 denotes a perfect prediction, a value of 0 is equivalent to a 

random guess, and a value of -1 denotes complete discrepancy between the prediction and the 

observation. As a result, we selected the MCC to evaluate how well our models performed in 

predicting the hormone receptor status of breast cancer. 

 

2.6.5    Confusion Matrix 

 

 

 

Figure 2.7 Confusion matrix for n-class classification. When considering the class k (0 ≤ k ≤ 

n), four distinct classification results may be achieved (Reproduced from [58]). 
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A confusion matrix is a table that is used to visualise and summarize the performance of a 

classification algorithm. It is an important evaluation metric that gives an insight into the type of 

errors made by the classification algorithm. In this thesis, each row of the confusion matrix 

represents the known label from the dataset, and each column represents the predicted label by the 

model. Figure 2.7 shows how a confusion matrix is divided into TP, FP, TN and FN. 

 

 

2.7    Method pipeline for Receptor status prediction 

 

Our study to predict the receptor status in breast cancer patients was performed individually for 

each receptor status. Figure 2.8 shows the overall workflow of the study. The pipeline is explained 

in detail in the following sections. 

 

2.7.1    Preprocessing 

 

The dataset used for predicting receptor status in breast cancer is compiled from several 

laboratories, which introduces background noise into the data. It is critical to do quality control, 

preprocessing, and data normalisation, as discussed in section 2.2, to ensure the reliability and 

correctness of the future analysis. A well-established pipeline based on PyMethylProcess’s meffil 

module is used to do this. This pipeline, which is thoroughly described in section 2.2, includes a 

series of necessary actions to prepare the data for further analysis.  

 

The data comprises of β-values for each CpG site. In cases where there are missing fields in the 

data, the PyMethylProcess programme imputes these values, delivering a complete dataset for 

enhanced downstream analysis. The noisy background inherent in data from different laboratories 

can be efficiently addressed by utilising PyMethylProcess's meffil-based pipeline. This 

preprocessing strategy is critical for optimising the dataset's quality and consistency, allowing for 

reliable and robust receptor status prediction models for breast cancer. 

 

2.7.2    Prediction Using Differentially Methylated CpG sites 

 

Given that the features in our dataset far outnumber the available samples, we needed to use a 

dimensionality reduction strategy, as described in section 2.3. To accomplish this, we identified 

CpG sites with a delta beta value greater than 0.2 and a multiple comparison corrected p-value 

less than 0.05 as characteristics for further investigation between malignant and normal samples. 

This method reduced the dataset to 19834 CpG locations. We further refined this selection by 

selecting only CpG sites in gene promoter regions, resulting in a total of 617 CpG sites. 

Following that, we estimated the delta beta values for each of these sites separately, taking into 

account the relevant subsets of ER+/ER-, PR+/PR-, and HER2+/HER2- samples. 
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Figure 2.8 Workflow of CpG site selection, DEG selection, model training, receptor status 

prediction and analysis. 
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We used the TCGAanalyze_DEA function of the TCGAbiolinks tool to determine 

differentially expressed genes across receptor-positive and receptor-negative samples. This 

method generated a list of differentially expressed genes that included the mean expression values 

for both receptor-positive and receptor-negative samples. It also calculated log2(Fold Change), 

which is log2(mean(HR+)/mean(HR-)), and Delta, which is log2FC*(mean(ER+) - mean(ER-)). 

This approach found 2118 genes that differed between ER+ and ER- samples, 1271 genes that 

differed between PR+ and PR- samples, and 1066 genes that differed between HER2+ and HER2- 

samples. 

 

Following that, we calculated the Pearson correlation between the selected CpG sites and their 

corresponding differentially expressed genes, if they were present. Our aim was to find the 

correlation values between the two. CpG sites with an absolute Pearson Correlation value greater 

than 0.4 were considered relevant for ER and PR. When multiple CpG sites were found within the 

promoter region of the same gene, the site with the highest correlation value was chosen. For 

HER2, a lower cutoff of 0.3 was used because a higher cutoff yielded insufficient CpG sites to 

accurately predict receptor status. As a result, we found 45 CpG sites for ER, 54 for PR, and 51 

for HER2. Further discussion of these sites is done in section 3.2.1 and 3.3. 

 

  The final stage in our study was to use the CpG sites we had chosen as features in our 

Support Vector Machine (SVM) model. To partition the data, we used the Stratified 10-fold 

Cross-validation approach, with 90% put aside for training and 10% set away for validation. This 

stratification ensures that the class ratio remains constant over the K folds, replicating the ratio in 

the original dataset. In predicting ER status, for example, where we observed a class ratio of about 

2.7:1, the stratified K-fold technique maintained this ratio throughout all folds. 

 

We trained a Noisy-Label SVM for Receptor Status prediction, utilising the Cleanlab [19] tool 

as a noisy-label training wrapper and the scikit-learn [56,57] tool for the SVM model. The grid 

search approach was used to find the best hyperparameters while maximising the Matthews 

Correlation Coefficient (MCC) score. The kernel, degree, gamma and class weight was optimized 

using the grid search method for each receptor prediction model. The Radial Basis Function 

(RBF) Kernel was used in all receptors in our investigation. 

 

Following modelling, we created Kaplan-Meier survival graphs [59] using the lifelines 

programme [10] to compare survival probabilities. The following chapter of the thesis elaborates 

on this procedure and the subsequent results. 
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Results and Discussions 
 
 
 

 

As explained previously in sections 1.7 and 1.8, the IHC method is commonly used to 

determine the receptor status of BC patients but suffers from lower accuracy due to a number of 

laboratory dependent factors. Determining the receptor status of BC patients with high accuracy is 

crucial as they help in determining the treatment plan and chance of recurrence for the patients. 

Recent studies have shown that Gene Expression-based Profiling can provide better accuracy for 

receptor status prediction. There have also been previous studies that show a strong correlation of 

differential methylation patterns with ER and PR status of patients [55]. Thus, it makes a strong 

case to study whether DNA methylation patterns can be used to predict the Receptor Status of BC 

patients and whether they would be beneficial over traditional IHC-based methods. 

 

The pipeline to predict the Receptor status of patients from DNA methylation data is explained 

in detail in section 2.7. After preprocessing the data using the PyMethyProcess tool, we performed 

dimensionality reduction using a number of steps explained in section 2.7. We used these 

shortlisted CpG sites to train a noisy-label SVM model for receptor status prediction. In this 

chapter, we present our findings and observations from the research conducted for this thesis. In 

section 3.1, we reviewed the DNA methylation patterns of the data in relation to their Receptor 

status. We have further discussed the prediction results of our model with given label and intrinsic 

subtypes in section 3.2 and how the prognosis is affected for patients with misclassified labels 

between our ML model and the given label, as compared to the patients with the same 

classification. The differential methylation landscape between Receptor-positive and Receptor-

negative samples is then discussed in section 3.3. 

 

3.1    Macroscopic Landscape of DNA Methylation Patterns 

 

To visualize the Receptor-positive and Receptor-negative groups’ DNA methylation data in a lower 

dimension, we used t-SNE plots. t-SNE is an unsupervised dimensionality reduction algorithm that 

tries to reduce the dimensions of the data while preserving its neighbourhood. Figure 3.1 shows the 

t-SNE plots generated using the shortlisted methylated CpG positions. ER and PR show their 

positive and negative groups are clustered together without clear separation, but HER2 didn’t have  
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a very clear separation. 

 

                     

                                                 A                                                                                                                     B 

 

                                                 C 

Figure 3.1 t-SNE plots between Receptor-positive and Receptor-negative samples (A) Estrogen 

Receptor, (B) Progesterone Receptor, (C) HER2 using the feature selected CpG positions. 

 

However, there is an intermixing of some samples. Some of the intermixed samples could be 

the ones potentially misclassified by the traditional methods, while others could be due to the t-

SNE's limited ability to preserve the neighborhood. The data is thus ideal for a machine-learning-

based classification model since the groups are clustered together. 
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3.2    Analysis of Results for Receptor Status Prediction 

 

3.2.1    Genes of CpG sites used as features for prediction 

 

    We evaluated the genes corresponding to the nominated CpG sites across all three receptors to 

gain a better understanding of the features used in our predictions. The Venn diagram, as shown in 

Figure 3.2, displays gene overlap between distinct receptors. We discovered 94 unique genes, with 

12 of them shared by all three receptors. In addition, 21 genes were shared by PR and HER2, 

while 10 genes were shared by ER and PR. However, only one gene was discovered to be shared 

by ER and HER2. This study sheds light on the interconnections that exist between these 

receptors. 

 

 

Figure 3.2 Venn Diagram Illustrating the Overlap of Genes Corresponding to Selected CpG Sites 

Across ER, PR, and HER2 Receptors. 

 

 

We used OncoScore, a method that scores genes based on their connection with cancer in the 

scientific literature [76]. OncoScore is a text-mining algorithm that provides scores to genes based 

on the frequency with which they appear in cancer-related publications. Table A.3 in the 

appendix, shows the genes of CpG sites used for prediction, the OncoScore for each gene, whether 

a related CpG site was used for prediction for a certain receptor, the methylation status of the 

relevant CpG sites, and gene expression status when receptor-negative is considered normal. The 

bulk of the genes in the table have high OncoScores, indicating that they have previously been 

associated to cancer and show an inverse association between methylation and gene expression.. 
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For example, the ERBB2 gene, which is hypomethylated and upregulated, is known to encode the 

HER2 receptor and has been linked to breast, ovarian, lung, and stomach cancer. Section 3.3 of 

the thesis conducts a more in-depth investigation of the methylation landscape. 

 

 

3.2.2    Prediction Comparison Between the Given Label and ML Model 

 

    We examined a total of 1261 samples in our study. Five datasets, all of which contained DNA 

methylation data from breast cancer patients, were used to train and evaluate our machine learning 

model. We used stratified 10-fold cross-validation to assess the model. Table 3.1 shows the mean 

and standard deviation of the 10 folds' accuracy, precision, and recall. The table shows that the 

standard deviation between each fold for ER and PR is low, suggesting the model's robustness. 

However, for HER2, we found a significantly higher standard deviation as well as lower precision 

and recall scores. This is due to the relatively significant class imbalance and the low number of 

samples reporting HER2 status. Table 2.1 summarizes the datasets used in the research. Our 

evaluation metrics were accuracy, precision, and recall, with thorough explanations provided in 

section 2.6. Figure 3.3 shows the confusion matrix for the 10-fold cross validation method.   

 

Table 3.2 presents the performance metrics - accuracy, precision, and recall - when employing 

GSE72251 as an independent testing dataset. This dataset was specifically selected as it 

encompasses comprehensive information about all three hormone receptors and contains 119 

samples, approximately 10% of the entire dataset. For the validation on this dataset, we retrained 

our SVM model using the same features, however, the training dataset comprised all samples 

excluding those from GSE72251, whereas the testing dataset solely incorporated samples from the 

GSE72251 dataset. The predictions for ER, PR, and HER2 showcased commendable performance, 

with accuracies reaching 87%, 81%, and 93% respectively, accompanied by substantial precision 

and recall values, and minimal standard deviations. Figure 3.4 shows the confusion matrix for 

independent test dataset. 

 

3.2.3    Kaplan Meier Survival Analysis 

 

The treatment options of cancer patients have a significant impact on their survival probability, 

making it critical to examine the possible benefits of DNA-Methylation based Receptor status 

prediction for select patients. Using censored data, the Kaplan-Meier method, a survival analysis 

methodology, was used to compute the likelihood of mortality at a given period. This method uses 

individual survival data to estimate survival probabilities without assuming the form of the 

distribution. We can compare the survival probabilities of patients whose receptor statuses align 

with those whose statuses do not by analysing Kaplan-Meier plots. A Kaplan-Meier survival plot 

analysis is shown in Figure 3.5, comparing patients whose traditional and machine learning-based 

approach predictions agree with those whose projections differ. 
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Table 3.1: Performance Metrics Across 10-Fold Cross-Validation (A) ER, (B) PR, (C) HER2 

 

(A) 

 
 

ER 
 

Accuracy Precision Recall MCC 

Fold 1 89% 94% 90% 0.70 

Fold 2 87% 90% 92% 0.64 

Fold 3 83% 91% 86% 0.57 

Fold 4 85% 90% 89% 0.61 

Fold 5 82% 87% 88% 0.57 

Fold 6 91% 95% 93% 0.74 

Fold 7 85% 88% 91% 0.68 

Fold 8 83% 87% 91% 0.61 

Fold 9 87% 91% 91% 0.62 

Fold 10 86% 92% 89% 0.64 

Mean 86% 91% 90% 0.64 

Std. Dev. 2.82% 2.71% 2.05% 0.05 
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(B) 

 
PR 

 

Accuracy Precision Recall MCC 

Fold 1 88% 86% 96% 0.76 

Fold 2 87% 88% 92% 0.76 

Fold 3 85% 85% 94% 0.67 

Fold 4 80% 80% 92% 0.58 

Fold 5 89% 87% 98% 0.76 

Fold 6 87% 86% 94% 0.64 

Fold 7 88% 88% 94% 0.75 

Fold 8 78% 78% 90% 0.61 

Fold 9 88% 88% 94% 0.75 

Fold 10 81% 84% 88% 0.62 

Mean 85% 85% 93% 0.69 

Std. Dev. 3.95% 3.46% 2.85% 0.07 
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(C) 

 
HER2 

 

Accuracy Precision Recall MCC 

Fold 1 83% 64% 47% 0.47 

Fold 2 87% 78% 50% 0.52 

Fold 3 89% 80% 57% 0.61 

Fold 4 90% 77% 71% 0.72 

Fold 5 91% 100% 57% 0.70 

Fold 6 87% 78% 50% 0.55 

Fold 7 83% 60% 43% 0.43 

Fold 8 87% 67% 71% 0.58 

Fold 9 93% 91% 71% 0.73 

Fold 10 79% 46% 43% 0.52 

Mean 87% 74% 56% 0.58 

Std. Dev. 4.22% 15.53% 11.39% 0.10 

 

 

Table 3.2: Performance Metrics for Independent Test Dataset GSE72251  

  ER  PR  HER2  

Accuracy  87%  81%  93%  

Precision  86%  74% 87% 

Recall  94%  89% 80% 

MCC 0.74 0.63 0.76 
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Figure 3.3: Cross-Validation Confusion Matrices for Hormone Receptor Status 

Prediction via 10-Fold Stratified Approach (a) ER, (b) PR, (c) HER2 
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Figure 3.4: Cross-Validation Confusion Matrices for Hormone Receptor Status Prediction on 

independent dataset GSE72251 (a) ER, (b) PR, (c) HER2 
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                                            A                                                                                                               B 

 

 

                                 C 

Figure 3.5 Kaplan-Meier survival plots contrasting matching and non-matching Receptor 

status for (A) ER, (B) PR and (C) HER2. 

 

We can see a significant difference in the survival probability of patients with mismatched ER (p-

value < 0.005) and HER2 (p-value < 0.005) status up to the 6-year mark Patients with matching 

ER/HER2 receptor status predictions between the two approaches had a greater chance of survival 

than those with mismatched ER/HER2 receptor status predictions. Meanwhile, no significant 

change in survival probabilities was observed in PR status survival plots (p-value = 0.79 at the 6-

year period). 

 

Table 3.3 offers a detailed overview of the dataset, including the mean age, standard age deviation, 

and treatment types received by individuals with both matched and mismatched receptor statuses. 

The table consists of patients for whom clinical data was available. The columns are organised 

according to IHC labels. Table 3.3 shows that the mean ages of patients are remarkably stable 

across all receptor types, regardless of whether their receptor statuses are matched or mismatched. 

Out of the total patients around 5.5% had an age greater than 80 years. Despite this underlying 

homogeneity, when we look into the particular, surprising treatment patterns emerge. For example, 

in the DNA methylation-based prediction, patients with PR+ status are more likely than their 

counterparts to receive Hormone Therapy. Patients with PR- status, on the other hand, are more 

frequently exposed to Hormone Therapy in the IHC-Based Characterization group. In the case of 
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HER2 receptor status, a similar pattern can be observed. HER2- patients in the DNA methylation-

based prediction group are more likely to receive both chemotherapy and hormone treatment. On 

the contrary, HER2+ individuals are more likely to receive these two types of therapy in the IHC-

Based Characterization group. These findings highlight the need of proper receptor status 

identification because it directly determines therapeutic options used, potentially influencing 

patient outcomes. 

 

Table 3.3: (A) Patient Demographics of matched and mismatched patients (B) Treatment Details 

for IHC-Based Characterization and DNA methylation-based prediction 

 

(A) 

 

   Matched  Mismatched  

   ER+  ER-  PR+  PR-  HER2+ HER2-  ER+  ER-  PR+  PR-  HER2+ HER2-  

Mean age  57.94  57.65  57.65  56.80  60.33  58.70  

Std. Dev.  13.16  13.26  13.09  13.55  13.88  14.00  

 

(B) 

 
 IHC-Based Characterization  DNA methylation-based prediction 

ER+/- PR+/- HER2+/- ER+/- PR+/- HER2+/- 

Chemotherapy 281/112 245/146 51/222 262/131 261/130 25/248 

Hormone Therapy 340/10 293/57 40/193 305/45 318/32 22/211 

Others 44/15 34/18 16/32 44/15 40/12 23/25 

 

3.2.4    Comparison with Intrinsic subtypes 

 

Intrinsic subtypes of breast cancer are determined by their underlying biological traits rather than 

their behavioural elements, as the name implies. These intrinsic subtypes have received significant 

clinical attention throughout the years due to their ability to predict treatment responses and 
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prognosis outcomes. Positive ER and/or PR status and negative HER2 status define the Luminal A 

subtype. The Luminal B subtype is distinguished by positive ER and/or PR status, as well as HER2 

positivity or negativity. Negative ER status and positive HER2 status distinguish the HER2-

enriched subtype. The basal-like subtype is negative for ER, PR, and HER2. Finally, the negative 

HER2 status of the normal-like subtype defines it. 

 

We used a comparison of the positive and negative occurrences of ER, PR, and HER2 statuses for 

each intrinsic subtype to assess the disparity between the intrinsic subtype and the clinical subtype, 

defined by ER, PR, and HER2 status. To accomplish this, we used labels from our dataset and 

predictions from our machine-learning model. Datasets GSE72245, GSE84207, and TCGA-BRCA 

provided PAM50 intrinsic subtype information, while the GSE72251 dataset provided IHC-based 

subtype information. We limited our analysis to samples from the TCGA-BRCA dataset for robust 

quality control and benchmarking.  

 

Table 3.4 compares receptor status for each intrinsic subtype using two methods: (a) standard IHC-

Based Characterization and (b) our proposed DNA methylation-based prediction. Table 3.4 shows 

that when employing the DNA methylation-based method rather than the traditional IHC-based 

approach, the discordance rates between the intrinsic and clinical subtypes (based on ER, PR, and 

HER2 status) are often lower. This is most noticeable in the intrinsic subtypes Luminal A, Luminal 

B, TNBC, and Normal-like. The DNA methylation-based prediction approach, for example, 

categorised samples as ER+ and PR+ in the Luminal A and Luminal B subcategories. In contrast, 

the conventional technique correctly recognised a higher proportion of these samples as ER- or PR- 

 

For Luminal A, the IHC-based approach classified 23 samples as PR-, whereas the DNA 

methylation-based method classified only 5 samples as PR-. When comparing the two 

categorization systems, similar differences in the ER- status of Luminal A and PR- status of 

Luminal B samples were detected. The DNA methylation-based method recognised nearly all 

samples (with only three exceptions in ER) as negative for all three receptors (ER/PR/HER2) 

within the TNBC intrinsic subtype, in contrast to the old method, which classified some samples as 

receptor-positive. When it came to the Normal Breast-like subtype, the DNA methylation-based 

method predicted more samples as HER2- than the old method. Finally, the HER2-enriched 

subtype revealed considerable discordance between both approaches; however, given the limited 

sample size in comparison to other subtypes, drawing meaningful conclusions for this group is 

difficult. 

 

Overall, these data indicate that DNA methylation-based prediction may provide more consistent 

receptor status classification based on intrinsic subtypes, thereby improving therapeutic strategy 

planning and patient prognosis. 
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Table 3.4 Receptor status for each intrinsic subtype by (a) IHC-Based Characterization and (b) DNA 

methylation-based prediction. 

Subtype 
(a) IHC-Based Characterization 

(b) DNA methylation-based 

prediction 

ER+/- PR+/- HER2+/- ER+/- PR+/- HER2+/- 

Luminal A 210/8 194/23 19/126 214/4 212/5 12/133 

Luminal B 95/1 79/17 15/45 96/0 90/6 14/46 

TNBC / Basal-like 6/61 3/64 1/45 3/64 0/67 0/46 

Normal Breast-like 60/22 50/31 14/45 30/52 63/18 5/54 

HER2 - enriched 4/19 4/19 13/6 21/2 2/21 12/7 

 

3.2.5    Effects of Cleanlab Tool 

 

To evaluate the impact of the Cleanlab tool on our analysis, we compared the average 

Immunohistochemistry (IHC) scores for patients correctly and incorrectly labelled by the Cleanlab tool. 

Table 3.5 shows the mean IHC scores for each receptor state, along with the standard deviations. The 

IHC score normally varies from 0 to 4, with hormone receptor-negative samples gravitating to the lower 

end of the spectrum and hormone receptor-positive samples gravitating to the upper end. When we look 

at the table, we can see that there are significant disparities between samples with and without labelling 

difficulties, even when they have the same hormone receptor status as established by the IHC approach. 

Consider the PR- samples: their IHC score should ideally be between 0 and 2. The mean score for 

samples with labelling errors, on the other hand, is 3.13 (with a low standard deviation), compared to 

1.64 for samples without label discrepancies. In HER2+ samples, a similar pattern is observed: those 

with labelling abnormalities had a lower mean IHC score of 2.18, compared to 2.84 for those without 

labelling concerns. Such changes are also visible in ER+ and PR+ samples, but on a lower scale. This 

analysis emphasises the Cleanlab tool's possible impact on our study.  

Figure 3.6 depicts Kaplan-Meier survival plots contrasting samples correctly and wrongly labelled for 

each receptor by Cleanlab. However, there are no significant survival differences between the two 

situations, making it difficult to draw solid inferences from these results. 
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Table 3.5 Mean and Std. Deviation (in brackets) of IHC scores for samples with label issues and 

samples without label issues. 

 Samples with label issues Samples without label issues 

ER+ 1.87 (1.16) 2.38 (0.92) 

ER- No samples found 0.69 (0.82) 

PR+ 2.43(1.05) 2.83 (0.65) 

PR- 3.13(0.33) 1.64 (1.11) 

HER2+ 2.18 (0.72) 2.84 (0.47) 

HER2- 1.00 (0.00) 0.86 (0.44) 

 

 

                       
                                            A                                                                                                               B 

 

 

                                 C 

Figure 3.6 Kaplan-Meier survival plots contrasting samples labelled as correctly labelled and 

incorrectly labelled according to Cleanlab tool for (A) ER, (B) PR and (C) HER2. 
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3.3    Analysis of Genes Associated with CpG Sites Used for Prediction 

 

In continuation to the information provided in section 3.2.1, where we discussed the 94 unique 

genes across all three hormone receptors. We performed functional analysis for these genes 

individually for each hormone receptor using MSigDB[75]. Table A.1 in appendix, shows the list 

of genes and their relation to corresponding functional analysis in MSigDB. The description of the 

functional analysis keyword is attached in Appendix A.2. We also generated protein-protein 

interaction networks for these genes using STRINGDB[77]. Figure 3.7 shows the PPI networks 

for the genes associated with each hormone receptors.  

 

ER consisted of 45 genes out of which 40 had an Oncoscore greater than zero. Similary, PR 

consisted of 54 genes out of which 50 had an Oncoscore greater than zero and HER2 had a total of 

51 genes out of which 46 had an Oncoscore greater than zero. None of the genes which had a zero 

oncoscore were part of the biggest connected component in STRINGDB. They were also not 

involved in any of the pathways from the MSigDB functional analysis list. The functional analysis 

showed 6 genes related to pathways that cause Downregulation in ER+ cancers and were present 

in ER gene group. Our analysis confirmed the same with gene expression downregulated for all of 

them and methylation status hypermethylated for all of them. Out of these 5 genes were common 

in all three gene group, 3 of them (PROM1, SOX10, ZIC1) were part of largest connected 

component of STRINGDB in all receptors and 1 of them (SOX11) was part of the largest 

connected component in ER and PR. Similarly, we had 10 genes related to pathways that cause 

Upregulation in ER+ cancers and were present in ER gene group. Our analysis confirmed the 

same with gene expression upregulated for all of them and methylation status hypomethylated for 

all except one. There were 6 genes from them that were present in largest connected component of 

ER in STRINGDB out of which two of them (ESR1 and CELSR1) were also part of largest 

connected component of PR. 

 

There were 28 genes from our list that were known to be Upregulated in TNBC by MSigDB. 

The same was found to be true in our analysis as well, where all genes were upregulated when ER, 

PR and HER2 status was negative. All were also Hypomethylated except APBA2, which was 

hypermethylated for ER and PR in this case and NXN which was hypermethylated for ER. There 

were 3 genes (PROM1, SOX10 and ZIC1) which were part of strongly connected component in 

all three receptors in STRINGDB, while there was SOX11 which was part of ER and PR, and 

there were ID4, KRT17 and EN1 which were part of both PR and HER2. The genes that form the 

largest connected component of STRINGDB are discussed in detail below. 
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Figure 3.7: Protein-Protein Interaction Networks for (A) ER, (B) PR, (C) HER2. 

 

GREB1 (growth regulation by estrogen in breast cancer 1) is an estrogen receptor (ER) gene target 

associated with proliferation and ER activity regulation in estrogen-responsive breast cancer cells 

[78]. GREB1 plays an important role in the estrogen-induced growth of breast cancer cells. Higher 

GREB1 expression in ER+ve breast cancer is associated with improved survival in response to the 

ER agonist tamoxifen [80]. Higher GREB1 expression was associated with both prolonged 

disease-free survival and sensitivity to tamoxifen treatment in a study that included only patients 

who received adjuvant tamoxifen monotherapy [81]. 
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CDK6 belongs to the cyclin-dependent kinase (CDK) gene family, which is involved in breast 

cancer. CDK6 has been shown to be under-expressed in breast cancer cells, which may result in a 

poor prognosis for patients [79]. CDK4/6 inhibitors have changed the way advanced hormone 

receptor-positive, HER2-negative breast cancer is treated [82]. Inhibiting CDK6 has been shown 

to be a promising cancer treatment strategy [83]. 

 

MUC1 is a gene that codes for a transmembrane glycoprotein found on the surface of many 

epithelial cells. It's been found to be overexpressed in a variety of cancers, including TNBC breast 

cancer [84]. MUC1 overexpression has been linked to a poor prognosis in patients with HER2+ 

breast cancer [85]. MUC1 overexpression has also been linked to a more estrogen receptor (ER)-

positive phenotype [86]. In our own analysis, we found MUC1 to be upregulated and 

hypermethylated in ER+ cancers. 

 

TOX3 is a gene that has been identified as a susceptibility locus for breast cancer [87]. It binds to 

the BRCA1 promoter and suppresses BRCA1 expression2. In a mouse model of breast cancer, 

ectopic expression of TOX3 increased breast cancer cell proliferation, migration, and survival 

after apoptotic stimuli and was associated with tumor progression [88]. TOX3 upregulates a 

subset of ER target genes as well as genes involved in cell cycle, cancer progression, and 

metastasis in the MCF-7 breast cancer cell line [89]. 

 

RUNX3 is a transcription factor that suppresses tumor growth in breast cancer [94]. In human 

breast cancer cell lines and samples, it is frequently inactivated by hemizygous deletion of the 

Runx3 gene, hypermethylation of the Runx3 promoter, or cytoplasmic sequestration of RUNX3 

protein [96]. RUNX3 inactivation has been linked to the onset and progression of breast cancer 

[96]. In severe combined immunodeficiency mice, RUNX3 inhibits the estrogen-dependent 

proliferation and transformation potential of ER-positive MCF-7 breast cancer cells and 

suppresses tumorigenicity of MCF-7 cells [94]. 

 

Prominin-1 (PROM1) is a glycoprotein found on the cell surface that has been shown to regulate 

PKA-induced gluconeogenesis, TGFβ-induced fibrosis, and IL-6-induced regeneration in the liver 

[98]. PROM1 is commonly reported as a neuronal and hematopoietic stem cell marker, but it is 

also expressed in cancer stem cells and cancer cells, including breast cancer [108]. PROM1 

overexpression has been found in cancers of the brain, esophagus, leukemia, testis, ovary, and 

stomach, while PROM1 underexpression has been found in bladder, breast, and kidney cancers 

[108].  

 

WWTR1, also known as TAZ, is a 14-3-3 binding protein with a PDZ binding motif that regulates 

the differentiation of mesenchymal stem cells [109]. It has been demonstrated that it plays an 

important role in the migration, invasion, and tumorigenesis of breast cancer cells [109]. TAZ is 

prominently expressed in human breast cancer cell lines, and its levels generally correlate with 

cancer cell invasiveness [109]. TAZ overexpression causes morphologic changes characteristic of 

cell transformation and promotes cell migration and invasion in low-expressing MCF10A cells. 

RNA interference-mediated knockdown of TAZ expression in MCF7 and Hs578T cells, on the 
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other hand, reduces cell migration and invasion [109]. 

 

SOX11, a transcription factor, has been linked to breast cancer. In breast cancer patients, high 

SOX11 expression is associated with poor overall survival and increased metastasis formation 

[110]. SOX11 has been shown in vivo to promote invasive transition, confirming its role in the 

progression of DCIS to invasive breast cancer [110]. 

 

RERG (RAS-related and estrogen-regulated growth inhibitor) is a one-of-a-kind RAS superfamily 

gene that has been linked to breast cancer [111]. High RERG expression has been found to 

correlate with a set of genes that define an estrogen receptor-positive breast tumour subtype, as 

well as a slow rate of tumour cell proliferation and a favorable prognosis for these cancer patients 

[111]. In breast cancer, RERG has been shown to be involved in the RAS pathway and ER-

dependent transcription [112]. It was discovered to inhibit the Ras-activated pathway and to 

mediate RAS-driven biological effects [112]. RERG knockdown has been shown to increase the 

mobility of breast cancer cells and make them more resistant to SERM treatment [112]. 

 

The estrogen receptor protein (ESR1) is encoded by the ESR1 gene. It contributes to the 

pathogenesis of cancers like breast, endometrial, and prostate cancer. ESR1 mutations are a 

common cause of acquired resistance to estrogen deprivation by aromatase inhibition, which is the 

backbone of therapy in metastatic hormone receptor-positive breast cancer [113]. These 

mutations, which can affect tumor sensitivity to established and novel therapies, are a focus of 

current research [113]. 

 

KRT18 belongs to the keratin family of intermediate filament proteins. It is expressed in simple 

epithelial cells and is used to identify them [114]. KRT18 has been shown to be a useful breast 

cancer prognostic marker [114]. It has also been shown to be associated with malignant status and 

to function as an oncogene in the progression of colorectal cancer [115]. 

 

B3GNT5 (β1,3-N-acetylglucosaminyltransferase V) is a unique glycosyltransferase that has been 

linked to breast cancer [116]. Increased B3GNT5 transcription and glycosylation has been shown 

to promote breast cancer aggressiveness [116]. Through B3GNT5 overexpression and 

glycosylation-mediated protein stabilization, B3GNT5 promotes tumorigenesis by increasing 

SSEA-1 expression and cancer stem cell (CSC) properties in breast cancer cells [116].  

 

The SOX10 gene encodes a transcription factor that is essential for neural crest-derived 

melanocytes and glia survival, maturation, and differentiation [117]. SOX10 has been linked to 

cancer progression and has been shown to significantly regulate tumour proliferation, migration, 

and apoptosis [118]. A Salk Institute team discovered that the gene SOX10 directly controls the 

growth and invasion of a significant proportion of difficult-to-treat triple-negative breast cancers 

[119]. SOX10 has also been linked to triple-negative breast cancer (TNBC) [119]. 

 

Zinc finger of the cerebellum 1 (ZIC1) is a gene that has been found to suppress breast cancer 

growth by targeting survivin[121]. Han et al. discovered that ZIC1 correlated negatively with 
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survivin in tumours and cells, and that higher ZIC1 RNA expression predicted better overall 

survival in breast cancer samples from The Cancer Genome Atlas (TCGA)[121]. ZIC1 

overexpression inhibited cell proliferation, decreased mitochondrial membrane potential, and 

induced apoptosis in breast cancer cells in vitro by inactivating the Akt/mTOR/P70S6K pathway, 

suppressing survivin expression, modulating the cell cycle, releasing cytochrome c (Cyto-c) into 

the cytosol, and activating caspase proteins [121]. In vivo, increased ZIC1 expression inhibited the 

growth of implanted tumours and downregulated survivin expression in tumors [121]. On the 

whole, these findings demonstrate that ZIC1 plays a tumor suppressive role in breast cancer by 

targeting surviving and significantly downregulating its expression [121]. 

 

Thrombopoietin (THPO) is a protein that promotes cell growth and division (proliferation). It is 

well-known for its role in megakaryocyte proliferation and maturation as a megakaryocyte growth 

and development factor (MGDF)[122]. THPO has been linked to a poor prognosis in patients with 

gastric adenocarcinoma [122]. THPO expression was increased in tumour tissue and cells, and it 

was linked to a poor prognosis in patients with gastric adenocarcinoma [122]. 

 

SLC7A4 (solute carrier family 7 member 4) is a gene that codes for a protein in the solute carrier 

(SLC) family [123]. As glucose and glutamate transporters, the SLC family plays critical roles in 

cancer cell metabolism [124]. SLC7A4 has been linked to improved progression-free interval 

(PFI) and disease-specific survival (DSS) in breast cancer [124]. SLC7A4 was also associated 

with a favourable overall survival (OS), distant metastasis-free survival (DMFS), relapse-free 

survival (RFS), and post-progression survival (PPS) prognosis [124].  

 

Approximately 30% of human breast cancers and many other cancer forms, including ovarian, 

stomach, bladder, salivary, and lung carcinomas, have the ERBB2 gene amplified or 

overexpressed. Numerous studies have found that ERBB2 amplification or overexpression 

disturbs normal cell-control processes, giving rise to aggressive cancer cells. Those with ERBB2-

overexpressing breast cancer have significantly poorer overall survival rates and shorter disease-

free intervals than those with ERBB2-negative breast cancer [125]. Breast tumours with ERBB2 

amplification exhibit rapid tumour growth, a decreased survival rate, and accelerated disease 

progression. The molecular processes underpinning ERBB2's oncogenic action entail a complex 

signalling network that closely controls malignant cell migration and invasion, and thus metastatic 

potential [126]. 

 

TMPRSS2 is a transmembrane serine protease that is involved in the activation of the SARS-

CoV-2 spike protein [127]. The gene TMPRSS2 has been linked to cancer susceptibility and 

severity [127]. High TMPRSS2 expression was associated with a shorter overall survival in breast 

invasive cancer (BRCA)[127][128]. 

 

Anterior gradient 2 (AGR2) is a protein that is involved in various signal transduction pathways 

that are crucial for cell survival and plays a critical function in oxidative protein folding in the 

endoplasmic reticulum [129]. AGR2 expression is related with oestrogen receptor (ER)-positive 

tumours in breast cancer, and its overexpression is a predictor of poor prognosis [130]. ER-alpha, 
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which is predominantly bound in tumours with poor outcomes, directly targets the AGR2 gene 

[130]. AGR2 has also been linked to the advancement of breast cancer via influencing the tumour 

immune microenvironment. Patients with low AGR2 expression may benefit from a combination 

of immune checkpoint inhibitors and TGF-β blockers [131]. 

 

ID4 is a protein in the ID (inhibitors of differentiation) family that has been linked to a stem-like 

phenotype and a poor prognosis in basal-like breast cancer [132]. It has been demonstrated that it 

promotes angiogenesis by increasing the expression of pro-angiogenic cytokines such as 

interleukin-8, CXCL1 and vascular endothelial growth factor [132]. ID4 can act as a tumour 

suppressor or oncogene in various tumour types, in addition to its role in angiogenesis. Its 

significance in breast cancer is unclear, as it has both an oncogenic and tumour suppressor 

function. ID4 is thought to act as both, however its involvement in breast cancer varies depending 

on the tumor's oestrogen receptor (ER) status [133]. 

 

The HOXA4 gene is a member of the HOX gene family. Several investigations have found 

HOXA4 to be involved with cancer. For example, HOXA4 expression has been observed to be 

down-regulated in lung cancer tissues when compared to non-cancerous tissues [134]. The 

expression of HOXA4 has been linked to tumour size, TNM stage, lymph node metastasis, and 

prognosis [134]. According to studies, HOXA4 expression is adversely linked with cell cycle, 

metastasis, and the Wnt signalling pathway. Furthermore, overexpression of HOXA4 in lung 

cancer cell lines inhibited cell proliferation, migration, and invasion [134]. These findings imply 

that HOXA4 is a possible diagnostic and prognostic marker in lung cancer, and that its 

overexpression may slow the course of the disease [134]. The involvement of HOXA4 has also 

been reported in colorectal cancer and epithelial ovarian cancer [135][136]. 

 

CYP1B1 is a gene that encodes an enzyme from the cytochrome P450 class. These enzymes have 

a role in a variety of bodily activities, including the breakdown of medications and the production 

of specific fats (lipids). The CYP1B1 enzyme is involved in biochemical reactions that involve the 

addition of an oxygen atom to other compounds. According to a study published in Cancer 

Letters, CYP1B1 catalyses the conversion of 17-β-estradiol (E2) to the catechol oestrogen 

metabolites 2-OH-E2 and 4-OH-E2, both of which have been implicated in breast carcinogenesis 

[137]. The study also claims that distinct single nucleotide polymorphisms (SNPs) in the CYP1B1 

gene may explain the variation in enzymatic activity of the CYP1B1 protein and thus its ability to 

metabolise oestrogen between individuals [137]. 

 

KRT17 is a gene that encodes a keratin protein family member that is abundant in the skin's outer 

layer and protects epithelial cells from injury. KRT17 has been studied in a variety of cancers, 

including breast cancer. KRT17 expression was much lower in breast cancer tissues than in 

normal tissues, according to a study published in Biomolecules, particularly in the luminal-A, 

luminal-B, and human epidermal growth factor receptor-2 (HER2) + subtypes of breast cancer 

[138]. The study also discovered that lower KRT17 expression was substantially associated with a 

poor prognosis in breast cancer patients, particularly those with HER2 high and ER high tumors 

[138]. KRT17 was discovered to be engaged in antitumor immunity pathways, particularly the IL-
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17 signaling pathway, and to be connected with a variety of immune cells, including natural killer 

(NK) and CD4 + T cells [138]. Finally, greater KRT17 expression indicated a better outcome in 

breast cancer patients with higher HER2 expression [138]. 

 

In breast cancer, the STARD3 (StAR related lipid transfer domain containing 3) gene has been 

found to be co-amplified with human epidermal growth factor receptor 2 (HER2) [139]. STARD3 

is required in tumor cells for cholesterol transport and metabolism [139]. STARD3's potential role 

as a diagnostic and prognostic biomarker in breast cancer (BC) was investigated [139]. In a study 

of 112 patients with HER2-positive non-metastatic breast cancer treated with neoadjuvant 

systemic therapy (NST) and then surgery, STARD3 was found to be positive in 86.6% of cases 

and was significantly associated with pathological complete response (pCR) in univariate analysis 

(p = 0.013) and after adjustment for other known pathological parameters (p = 0.044) [140]. 

According to this study, assessing STARD3 overexpression status on initial biopsies of HER2-

positive tumors adds benefit to the management of a subset of patients who have a high likelihood 

of no pathological response [140]. 

 

FGF2 has been demonstrated to promote breast cancer growth via hormone-independent 

activation and recruitment of oestrogen receptor alpha (ER) and PRB4 isoform to MYC regulatory 

sequences [141]. FGF2-induced effects were reversed by MYC inhibitors, antiestrogens, or 

antiprogestins [141]. A study on antiprogestin-resistant mammary carcinomas discovered that 

these tumours have lower levels of progesterone receptor A isoforms (PRA) than B isoforms 

(PRB)[142]. The study's goal was to determine the involvement of FGF2 isoforms in the 

advancement of breast cancer [142]. 

 

HAPLN3 is a novel link protein with hyaluronic acid binding and cell adhesion properties. It has 

been linked to cancer development and metastasis [143]. Transcriptome analysis confirmed 

MFGE8-HAPLN3 fusion as a new biomarker in triple-negative breast cancer (TNBC) in another 

study [144]. The study's goal was to find new fusion transcripts in TNBC [144]. TNBC had 189 

fusion transcripts discovered using RNA sequencing data, 22 of which were recurrent fusions 

[144]. MFGE8-HAPLN3 was chosen as a new biomarker based on tumour selectivity and 

frameshift mutation and was verified in TNBC samples using PCR and Sanger sequencing [144]. 

 

IRX1 belongs to the Iroquois homeobox gene family and has been demonstrated to function as a 

tumour suppressor gene in different cancers. In patients with non-small cell lung cancer (NSCLC), 

for example, IRX1 promoter methylation may be a tumor-associated event and an independent 

predictor of survival advantage [145]. In addition, IRX1 has been identified as a tumour 

suppressor gene in gastric cancer [146]. 

 

The EN1 gene encodes the transcription factor EN1, which has been reported to be overexpressed 

in triple-negative breast tumors (TNBCs). Downregulation of EN1 has been demonstrated to 

diminish viability and tumorigenicity in TNBC cell lines preferentially and significantly [147]. 

Researchers identified genes involved in WNT and Hedgehog signaling, neurogenesis, and axonal 

guidance as direct EN1 transcriptional targets by combining gene expression changes after EN1 
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downregulation with EN1 chromatin binding patterns [147]. In patients with TNBC, high EN1 

expression was associated with a shorter overall survival and an increased likelihood of acquiring 

brain metastases [147]. High EN1 expression has been linked to an increased risk of developing 

brain metastases in patients with triple-negative breast cancer (TNBC). These findings imply that 

the EN1 transcription factor controls neurogenesis-related genes and is linked to brain metastasis 

in TNBC. EN1 is thus a prognostic marker as well as a possible therapeutic target in TNBC [147]. 

 

OTX1 is a transcription factor that has been linked to cancer. OTX1, for example, has been shown 

to enhance the growth of colorectal cancer and hepatocellular carcinoma tumors [148]. In bladder 

cancer, OTX1 enhances cancer cell proliferation and motility by boosting cell cycle progression 

[148]. OTX1 expression is regulated by p53 in breast cancer, and its activity suggests a synergistic 

role with p53 in cancer stem cell (CSC) differentiation [149]. 

 

3.4    Discussion 

 

This thesis investigated into how well hormone receptor status of patients with breast cancer 

(BC) may be predicted based on their DNA methylation patterns. Our strategy includes lowering 

the complexity of the DNA methylation data and constructing a machine-learning model to 

forecast receptor status. After applying this methodology to five datasets, it was possible to see 

some interesting trends and possible improvements over conventional Immunohistochemistry 

(IHC) techniques. Our t-SNE plots demonstrated that there was clustering, with some intermixing, 

between the receptor-positive and receptor-negative groups for ER, PR, and HER2. High 

OncoScore values supported the significant cancer relationship seen in gene analysis connected to 

CpG sites. 

 

Satisfactory results were obtained from the model evaluation utilising stratified 10-fold cross-

validation, particularly for the prediction of ER and PR status. The Kaplan-Meier technique of 

survival analysis showed a significant difference in the likelihood of survival of patients with 

mismatched ER (p-value 0.005) and HER2 (p-value 0.005) status up to the 6-year point. Notably, 

patients with correctly predicted ER/HER2 receptor status matching had higher survival rates. The 

significance of accurate receptor status identification in patient prognosis and treatment planning 

was highlighted by this. 

 

When the discordance between intrinsic and clinical subtypes was analysed, it became clear 

that DNA methylation-based prediction frequently produced lower discordance rates, indicating 

more accurate classification of receptor status. Planning for therapeutic strategies and patient 

prognosis may be enhanced as a result. It was helpful to utilise the Cleanlab programme to find 

labelling mistakes because it showed that samples with and without labelling problems had 

significantly different IHC results. Although the Cleanlab did not significantly affect survival 

results, it did have a substantial impact in predicting receptor status and subsequent treatment 

plans. 
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The crucial function of the 94 distinct genes across the three hormone receptors- ER, PR, and 

HER2 takes centre stage in our discussion. As a result of our research, we can see that certain 

genes demonstrate a correlation with particular functional pathways as identified by MSigDB and 

are intricately linked in protein-protein interaction networks. Importantly, these genes exhibit 

patterns in their Oncoscore status, an indicator of their potential contribution to the development 

of cancer. Further supporting their significance in cancer dynamics is the fact that genes with a 

zero Oncoscore were neither included in any MSigDB-defined pathways nor the largest linked 

component in STRINGDB. 

 

The discovery of particular genes, such as PROM1, SOX10, ZIC1, and SOX11, which span all 

three hormone receptors and function as essential nodes in the protein-protein interaction 

networks, is noteworthy. Under ER+ cancer or TNBC settings, these genes exhibited the expected 

expression and methylation patterns. Our research, reveals a group of genes that are known to be 

elevated in TNBC, a result that may provide some insight into the molecular complexity of this 

aggressive breast cancer subtype. The information obtained via this research sets the door for a 

more in-depth comprehension of the functional interactions between hormone receptors and 

cancer and the genetic components that affect the many phenotypes of cancer. 

 

Prior efforts, as highlighted in a 2020 study [8], tried to predict the receptor status of breast 

cancer patients by utilising Gene Expression Profiling data. Logistic regression was used to find 

the predictor genes using data from the TCGA and METABRIC datasets. These widespread 

predictor genes were then utilised in a different Logistic Regression model to calculate the 

patients' receptor status. While this method outperformed the IHC-based method in terms of 

clinical significance and a reduction in incongruity with intrinsic subtypes, it fell short in resolving 

the problem of noisy labels, which results from potential mislabeling by the IHC-based method. In 

contrast, our analysis used gene expression data for feature selection and DNA methylation data 

for predicting receptor status. This strategy was chosen because it has been established that patient 

DNA methylation profiles and receptor status correlate, and because reversible epigenetic therapy 

has compelling therapeutic potential. Additionally, our approach addressed the problem of noisy 

labels in the dataset by implementing Noisy-Label training based machine learning models, which 

work to reduce the negative performance impact caused by inaccurate labels in the dataset. 

 

Our machine-learning pipeline does have some limitations, though. Given the abundance of 

features in DNA methylation data, there is a chance that important characteristics for predicting 

Receptor Status may be accidentally overlooked during feature selection, and non-biologically 

relevant features may enter the prediction model. Due to the fact that the sample size currently 

available for training machine learning models is far smaller than the number of features per 

sample, a high-dimensional data environment has been created, which when combined with a 

small sample size leads to overfitting in machine learning models. In addition, class imbalance is a 

recurring problem in predictions of receptor state based on machine learning. Since 80% of all 

breast tumours are HER2-positive, there are difficulties with class imbalance during model 

training that could have an effect on performance. The potential inconsistencies in receptor status 

labels generated by laboratory procedures could hinder the machine learning models' anticipated 
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performance, even with our usage of a noisy label trained machine learning model. However, we 

remain enthusiastic about the potential to get over these restrictions in future research given the 

continual swift developments in data accessibility and machine learning.



Chapter 4 

 

 
 
 

Conclusions 
 
 
 

 

 The proper assessment of receptor status is a crucial step in the effort to give breast cancer 

patients more specialised and personalised care. It immediately affects the course of treatment and 

aids in predicting the possibility of illness recurrence, thereby saving patients from unwanted side 

effects and potentially fatal toxicity from medicines that were administered without adequate 

knowledge. Immunohistochemistry (IHC), a technique known to be impacted by different 

laboratory-based factors and sensitive to discrepant results, is now the main method for predicting 

receptor status in breast cancer patients. By employing machine learning approaches to develop a 

DNA methylation-based receptor status prediction model for this thesis, we attempted to address 

these shortcomings. Given the well-established significance of DNA methylation in breast cancer 

and the evidence supporting a link between patient DNA methylation profiles and receptor status 

[55], this method presented a possible replacement for conventional IHC-based techniques. 

 

Our findings showed that compared to the IHC-based method, receptor status predictions based 

on DNA methylation yielded a reduced discordance rate with intrinsic subtypes. Additionally, we 

discovered genes with variable levels of methylation in their promoter regions. Some of these 

genes have been linked to various breast cancer subtypes and cancer in general. In addition, we 

discovered genes about which little to no information had previously been known, opening up 

fresh research directions for potential diagnostic or prognostic indicators for breast cancer 

subtypes. This thesis, to our knowledge, is the first to use DNA methylation data to predict the ER, 

PR, and HER2 status of breast cancer patients. Our analysis sheds light on the potential value of 

DNA methylation information for predicting receptor status. This strategy might improve the 

selection of patients' appropriate treatment programmes, ultimately resulting in a better prognosis. 

 

We acknowledge that this study still must be improved even though we were able to predict 

receptor status. Future studies should work to support the therapeutic applicability of our findings. 

To improve the performance of DNA methylation-based prediction models, larger datasets are 

required, especially those with more evenly distributed classes. To reduce the problem of noisy 

labels in training samples, receptor status labelling must be done with more care. It is also 

necessary to look more closely at the effects that distinct receptors' differential methylation has on  
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patients' gene expression profiles. Finally, clinical trials will be used as the final test for the 

applicability of our work. 

 

We anticipate advances that will help overcome these issues as the availability of data and the 

field of machine learning continue to grow. By doing this, we want to advance the personalization 

and advancement of breast cancer treatment, ultimately improving patient outcomes.
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CHARAFE_BREAST_CANCER_LUMINAL_VS_BASAL 

SAL_UP 

Genes up-regulated in luminal-like breast cancer cell 

lines compared to the basal-like ones. 

DOANE_BREAST_CANCER_ESR1_DN Genes down-regulated in breast cancer samples 

positive for ESR1 [GeneID=2099] compared to the 

ESR1 negative tumors. 

DOANE_BREAST_CANCER_ESR1_UP Genes up-regulated in breast cancer samples positive 

for ESR1 [GeneID=2099] compared to the ESR1 

negative tumors. 

FARMER_BREAST_CANCER_BASAL_VS_LULMINAL Genes which best discriminated between two groups 

of breast cancer according to the status of ESR1 and 

AR [GeneID=2099;367]: basal (ESR1- AR-) and 

luminal (ESR1+ AR+). 

SMID_BREAST_CANCER_BASAL_DN Genes down-regulated in basal subtype of breast 

cancer samles. 

SMID_BREAST_CANCER_BASAL_UP Genes up-regulated in basal subtype of breast cancer 

samles. 

SMID_BREAST_CANCER_LUMINAL_B_DN Genes down-regulated in the luminal B subtype of 

breast cancer. 

SMID_BREAST_CANCER_LUMINAL_B_UP Genes up-regulated in the luminal B subtype of 

breast cancer. 

VANTVEER_BREAST_CANCER_ESR1_DN Down-regulated genes from the optimal set of 550 

markers discriminating breast cancer samples by 

ESR1 [GeneID=2099] expression: ER(+) vs ER(-) 

tumors. 

YANG_BREAST_CANCER_ESR1_UP Genes up-regulated in early primary breast tumors 

expressing ESR1 [GeneID=2099] vs the ESR1 

negative ones. 

 

 

 

 

 

 

 

 

Table A.2: Functional analysis keyword description 
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