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Abstract

Representing knowledge in a diagrammatic form has been a long-standing goal of humanity. Early

efforts in the field of knowledge representation, such as symbolic logic and semantic net, have led

to the development of The Semantic Web, which provided a strong foundation for the development

of Knowledge Graphs (KGs). KGs were first introduced in 1986 and were popularized recently in

2012 with the introduction of the Google knowledge graph. Most KGs suffer from the problem of

incompleteness, which has led to many efforts in the field of KG completion. In this thesis, we address a

specific subproblem from this field called link forecasting. Link forecasting is the problem of predicting

future links in a given temporal knowledge graph (TKG) using the existing data. Although several link

forecasting frameworks exist in the literature, most previous studies suffer from reduced performance

as they cannot efficiently capture the time dynamics of a TKG.

We present a novel rule-based link forecasting framework by introducing two new concepts: relaxed

temporal random walks and link-star rules. The former concept involves generating rules by performing

random walks on a TKG, considering the real-world phenomenon that the order of any two events may

be ignored if their occurrence time gap is within a threshold value. The latter concept defines a class

of acyclic rules generated based on the natural phenomenon that history repeats after a particular time.

Our framework also accounts for the problem of combinatorial rule explosion, making our framework

practicable. Experimental results demonstrate that our framework outperforms the state-of-the-art by a

substantial margin.
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Chapter 1

Introduction

The human pursuit of making sense out of data has led to the development of the field of knowledge

representation. Early efforts in this field date back to the development of symbolic logic in the Gen-

eral Problem Solver by Newell et al. [39] and the concept of semantic net proposed by R.H. Richens

[46]. The Semantic Web [4] was the first large-scale project aimed in this direction, which is aimed

at increasing the machine-understanding of the data available on the world wide web. The Semantic

Web was built on two foundational pillars, the Resource Description Framework (RDF) [43] to capture

the semantics of the web, and the Web Ontology Language (OWL) [32] to capture the ontology of the

same. These efforts, along with other developments in the field of logic and reasoning systems led to

the development of ‘Knowledge Graphs (KGs)’, a term first coined by Stokman and Vries [51] in 1986,

when they formalized the process of building a knowledge graph.

Knowledge graphs rose to prominence with the announcement of the Google Knowledge Graph

[50] in 2012. Since then, large conglomerates such as Microsoft, Facebook, and Uber have developed

enterprise KGs [42]. Table 1.1 reflects the scale of some of these KGs. They have also seen extensive

usage [1] in the domains such as medicine and healthcare, education, cybersecurity, telecom, finance,

tourism, transportation, and natural sciences. This versatility in application outlines the importance of

knowledge graphs.

In this thesis, we propose an improved approach for link forecasting in knowledge graphs. We

develop a rule-based link forecasting framework to address the drawbacks of the previous methods. We

also demonstrate the benefits of our approach with extensive experimentation and analysis.

The remainder of this chapter is organized as follows: We first explain the concept of knowledge

graphs. Next, we discuss temporal knowledge graphs and explain the related research issues. Subse-

quently, we explain the problem of link forecasting and summarize the proposed framework. At the end

of this chapter, we list our contributions and provide the organization of the thesis.
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Organization Entities Facts

Microsoft 2 Bn. 55 Bn.

Google 1 Bn. 70 Bn.

Facebook 50 Mn. 500 Mn.

IBM 100 Mn. 100 Mn.

Table 1.1: The scale of various real-world knowledge graphs. Source: Noy et al. [42] (data from 2019)

1.1 Knowledge Graphs

Although the definition of a KG varies slightly across literature, a recent survey work by Hogan et

al. [20] defines a Knowledge Graph as “a graph of data intended to accumulate and convey knowledge

of the real world, whose nodes represent the entities of interest and whose edges represent the relations

between these entities”.

Figure 1.1: A static knowledge graph

Figure 1.1 shows a hypothetical KG, where the vertices are real-world actors such as people and

countries while the edges represent some relation that is true in their context. For example, the directed

edge with a label ‘capital’ indicates that the entity ‘New Delhi’ has a relation of ‘capital’ with the entity

‘India’. This information represented in the triple format as (New Delhi, capital, India) is also called as

a link1.

We now discuss a few KGs that are being used in the real-world, to highlight their importance and

versatility. Broadly, such graphs can be divided into two categories: (i) Open Knowledge Graphs, and

(ii) Enterprise Knowledge Graphs.

1A link is sometimes also referred to as an atom. To avoid confusion, we will use the term ‘link’ throughout this thesis

2



1.1.1 Open Knowledge Graphs

The Open Data Philosophy2 defines openness as follows: “Open data and content can be freely used,

modified, and shared by anyone for any purpose”. The Knowledge Graphs published under this philoso-

phy are considered as ‘open knowledge graphs’. Some notable examples of such KGs include DBPedia,

YAGO, WikiData, and FreeBase. DBpedia [3] is a project that extracts structured data from Wikipedia

articles and enriches it with external resources. YAGO [45] also extracts data from Wikipedia, integrat-

ing it with the hierarchical structure of WordNet [36] to create a lightweight ontology. Freebase [5],

on the other hand, solicits contributions directly from human editors and aimed to address information

integration challenges. Wikidata [53] serves as a central knowledge graph for Wikipedia, providing

structured data that can be used to update articles across different languages automatically. It allows

collaborative editing of both data and schema and has been widely adopted by various applications,

famously including Apple’s Siri.

1.1.2 Enterprise Knowledge Graphs

The use of knowledge graphs in industry has gained significant attention, with many companies

developing proprietary ‘enterprise knowledge graphs’ to achieve various goals. These goals include

improving search capabilities, providing user recommendations, implementing conversational agents,

enhancing targeted advertising, empowering business analytics, connecting users, extending multilin-

gual support, facilitating research and discovery, assessing and mitigating risk, tracking news events,

and increasing transport automation, among others.

Enterprise knowledge graphs have been deployed in various industries [42, 20, 1]. Commerce com-

panies such as Amazon, eBay, Airbnb, and Uber have developed KGs to enhance product search, rec-

ommendations, and semantic features for their platforms. Social networking services like Facebook,

LinkedIn, and Pinterest have employed KGs to connect people, provide recommendations, and improve

content discovery. The financial sector has leveraged KGs for financial data analytics, sentiment anal-

ysis, risk assessment, and investment research. Other industries, including healthcare, transportation,

oil and gas, have also explored the use of KGs for applications like drug discovery, genomics research,

driving automation, and risk mitigation.

1.2 Temporal Knowledge Graphs

Notably, static KGs cannot capture temporal information and so it is very difficult to assert the va-

lidity of each link. For example, as shown in Figure 1.1, India being neighbours of China will always

2http://opendefinition.org/
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remain true, but N. Modi being the prime minister of India might be valid only for a certain period.

Since static knowledge graphs could not capture time-related information, Temporal Knowledge Graphs

(TKGs) were developed. A TKG is a knowledge graph that additionally captures time-related informa-

tion through timestamps.

Figure 1.2: A temporal knowledge graph

A sample TKG is shown in Fig. 1.2. Notice how in comparison to Fig. 1.1, there is a timestamp as-

sociated with each edge, thus recording temporal information. For example, the directed edge ‘consult,

12/09/2014’ indicates that the entity ‘India’ has a relation of ‘consult’ with the entity ‘UN’, that is valid

on the date ‘12/09/2014’. This can be interpreted in simple terms as follows: India consulted the UN on

12/09/2014.

TKGs extend the traditional knowledge graph model to capture temporal dynamics in the relation-

ships between the entities. A TKG enables the represention of not only what entities are related but also

how and when these relationships change over time. For example, a TKG could represent the evolu-

tion of a social network over time, capturing how individuals join or leave the network and how their

relationships with other individuals change over time.

Temporal knowledge graphs have a wide range of applications that are made possible by the inclu-

sion of temporal information. For example, TKGs can be used to analyze social networks [16], financial

assessment [21], and generate personalized recommendations [35]. In each of these applications, in-

cluding temporal information is critical to the accuracy and usefulness of the TKG. In this manner, a

TKG enables us to make predictions, detect anomalies, and optimize performance in various domains

by capturing how relationships and behaviors change over time.

1.3 Research on Knowledge Graphs

The research on knowledge graphs can be classified into three domains:

4



1. Knowledge Representation Learning deals with the study of embedding-spaces in the context

of machine learning. This aids in capturing the semantic information of entities and relations in a

KG. Specifically, this includes the study of the representation space [15], scoring functions [37],

and auxiliary information [54].

2. Knowledge-aware Applications refers to the application-level research of KGs, which includes

the development of Question Answering systems [8], Recommender systems [17], and Semantic

Search [60]. Domain-specific applications of KGs [1] is also an important research area in this

category.

3. Knowledge Acquisition deals with the study of extracting knowledge from text sources, semi-

structured, and structured data in order to create knowledge graphs. It can be classified into

three categories: entity discovery [56], relation extraction [40], and knowledge graph completion

(KGC) [7]. An essential problem in the context of KGC is link forecasting, which is the prob-

lem of predicting future connections in a given TKG. This thesis aims to propose an improved

approach to tackle the link forecasting problem.

1.4 About link forecasting

Link forecasting is an important subproblem in the area of knowledge graph completion that aims

to predict a future event based on a given set of past events drawn from a TKG. Formally, the problem

is to find a suitable candidate for a missing entity in a given link with a future unseen timestamp, as

illustrated in the following example.

Example 1 Given a query link (Afghanistan, consult, ?, 29/11/2014), the problem of link forecast-

ing is to traverse the TKG shown in Fig. 1.2, which contains all the past events and use them to identify

an appropriate candidate entity to replace ?. Notice that, the timestamp in the query ‘29/11/2014’ is a

future unseen timestamp because the newest existing timestamp in the TKG is ‘18/11/2014’.

In the real-world, link forecasting can be used for event prediction [30], medical applications for

predicting drug patterns and behaviour [31], as well as applications in social network graphs to predict

possible future links [11]. Apart from that, the broader problem of knowledge graph completion will

always remain very important as large-scale data is often incomplete in nature.

In the past, many embedding-based frameworks [14, 15, 18, 25, 26, 27, 59] have exploited temporal

information in a graph to perform link forecasting. However, these frameworks lack explainability,

which is crucial for developing transparent and interpretable applications. Recently, Liu et al. [30]

exploited the concept of ‘temporal logical rules’ and presented an explainable state-of-the-art framework

5



known as TLogic. However, even the TLogic framework misses many useful rules, which in turn,

negatively affect its forecasting efficiency. In this thesis, we study its shortcomings in detail, and discuss

the reasons behind the framework missing useful rules for link forecasting. We then propose a new

framework which takes these gaps into account to make an improved link forecasting framework.

1.5 Overview of the proposed approach

We propose an improved framework called Temporally Relaxed Knowledge Graph Miner (TRKG-

Miner). Our framework improves over the previous approaches via the means of two novel ideas, in the

form of adding temporal relaxation, and the introduction of acyclic rules for link forecasting.

We have observed that, the current time constraints imposed on the graph random walks required for

generating logical rules are too strict. Due to strictness, many useful walks are being missed out and

leads to missing many useful rules for link forecasting. On the other hand, eliminating time constraints

from this process leads to the generation of numerous spurious rules. To overcome this problem and

reach an ideal middle-ground, the proposed approach employs a new time-relaxation parameter called

as maximum time gap (δ). This parameter is used to capture the irregular occurrence order of temporal

events by allowing for a small time-gap between the consecutive events. This aids in finding useful

rules, which were previously being missed out.

Existing rule-based methods for link forecasting mine only cyclic rules from temporal knowledge

graphs. We have observed that, cyclic rules alone are insufficient for link forecasting as they are not

able to capture all the patterns that exist in a TKG. In an effort to get closer to the goal of extracting as

much useful information as possible from a TKG, we propose a framework to generate and use acyclic

rules for link forecasting, while also ensuring that there is no rule-explosion.

1.6 Contributions

The major contributions of this thesis are as follows:

• To improve link forecasting, we propose two new concepts: temporal relaxation, and link-star

rules.

• We develop a novel explainable rule-based link forecasting framework called TRKG-Miner for

temporal knowledge graphs using the above concepts.

• We perform extensive experimentation to verify the effectiveness of our proposed framework, and

present a thorough analysis of the results.

6



1.7 Thesis organization

The rest of the thesis is organized as follows.

• In Chapter 2, we discuss the related work.

• In Chapter 3, we discuss the background associated with rule-based link forecasting.

• In Chapter 4, we present the proposed framework and the experimental results.

• Finally, in Chapter 5, we conclude the thesis with future research directions.

7



Chapter 2

Related Work

In this chapter, we discuss the related work. First, we discuss the work related to the development of

knowledge graphs over time. Next, we discuss the various areas of research that are ongoing for KGs.

We discuss the related works on the problem of link forecasting. Finally, we discuss various approaches

to solving it using embedding-based and random-walk-based methods and how the proposed approach

differs from the preceding approaches in the literature.

2.1 Knowledge Graphs

The concept of knowledge graphs can be traced back to the origins of diagrammatic forms of knowl-

edge representation, which began with Aristotle’s notion of visual reasoning through forms such as Euler

circles and Venn diagrams. Representation of knowledge with computers dates back to the development

of symbolic logic in the General Problem Solver by Newell et al. [39] and the concept of semantic net

proposed by R.H. Richens [46]. The next most significant step in this timeline was the introduction of

The Semantic Web [4], which was proposed to enhance the search and machine-understanding of the

World Wide Web.

In the semantic web, information is given well-defined meaning. The semantic web is built upon two

central concepts: Resource Description Framework (RDF) [43], and Web Ontology Language (OWL)

[32]. RDF is a foundation for processing metadata of the web, which is aimed at developing machine-

understanding of the same. OWL is intended to provide a language for establishing and creating web

ontologies. This additional layer of interpretation captures the semantics of the data. This also resulted

in many open knowledge bases/ontologies being published, such as YAGO, DBPedia, WordNet, and

Freebase.

In 1986, Stokman and Vries [51] proposed the idea of structuring knowledge in a graph, hence giving

rise to the term ‘Knowledge Graphs’. However, it was much later in 2012, when knowledge graphs

gained popularity with the introduction of the Google Knowledge Graph, which was aimed at enhancing
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the search capabilities of their search engine. Notably, Google also introduced the Knowledge Vault

[12], which was a new way to build large-scale knowledge graphs. These series of events accelerated

the research on knowledge graphs, which can be classified into three domains:

1. Knowledge Representation Learning: deals with the study of embedding-spaces in the context

of machine learning. This aids in capturing the semantic information of entities and relations

in a KG. Specifically, this includes the study of the following: (i) Representation spaces are

used to learn low-dimensional embeddings of entities and relations. Goel et al. [15] provide a

comprehensive survey of many such methods. (ii) Scoring functions are used to measure the

plausibility of facts. The survey by Ji et al. [24] covers a wide variety of scoring functions used

in knowledge representation learning. (iii) Auxiliary information is often used in conjunction

with knowledge graphs to enhance the information present within them. Ji et al. [24] also cover a

range of methods that use auxiliary information for knowledge representation learning.

2. Knowledge-aware Applications: refers to the application-level research of KGs, which includes

the development of the following: (i) Question Answering Systems, which leverage KGs to find

answers to natural language questions input by human users. The survey by Chakraborty et al.

[8] covers many such neural network-based question answering systems. (ii) Recommendation

Systems, which are used to model user preferences. Guo et al. [17] covers many such systems

which leverage the power of knowledge graphs to create recommender systems. (iii) Semantic

Search is important to find entities that share a similar meaning. For this problem, Zhu and Iglesias

[60] created a framework that provides similarity tools and datasets that allow users to perform

semantic search in a KG. (iv) KGs have also seen extensive usage in various domains in the real-

world. The work by Abu et al. [1] covers a wide range of such domain-specific applications of

KGs.

3. Knowledge Acquisition: deals with the study of extracting knowledge from text sources, semi-

structured, and structured data in order to create knowledge graphs. It can be classified into three

categories: (i) Entity discovery is the problem of discovering new entities from various sources

such as news streams, web pages, and social feeds. The work by Wu et al. [56] contains a study of

several embedding-based models that are being used for entity discovery. (ii) Relation extraction

is the problem of extracting semantic relations between pairs of entities in text. This problem

has primarily been approached using several language processing and deep learning methods as

shown in the work by Nguyen et al. [40]. (iii) Knowledge graph completion [49, 7] is the problem

of filling the missing information in the KG using various machine learning and graph analytical

techniques. We discuss this problem in further detail in the next section.
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2.2 Knowledge Graph Completion

Since large-scale data is often incomplete, researchers faced a crucial problem in the form of filling

the missing information in knowledge graphs [20]. This led to the growth of the field of knowledge

graph completion (KGC). KGC is the problem of predicting and completing the missing parts of a link.

The survey on KG completion by Shen et al. [48] provides a comprehensive study of several KGC

techniques. The survey by Cai et al. [7] presents a study of several TKG completion techniques. KGC

frameworks are generally tested on one or more of the following subtasks:

1. Link prediction: The problem of link prediction is to find the best candidate for a missing entity

in a given link. We discuss this problem in further detail in the next section.

2. Triple classification: Triple classification is the problem of determining whether to add a given

link to a KG by estimating whether it is true. Xie et al. [57] suggested a KGC model that

takes advantage of the hierarchical structure present in the entities within the knowledge graph to

perform KGC. They test their model on the subtasks of link prediction and triple classification.

Jaradeh et al. [23] suggested leveraging pre-trained language models [38] to perform KGC on a

scholarly knowledge graph. They benchmarked their model using triple classification.

3. Relation prediction: The problem of relation prediction is to compute the probability of estab-

lishing a relation between two given entities. Cui et al. [10] suggested a framework that augments

existing embedding-based KGC models with type information from the knowledge graph. They

test their framework on the subtask of relation prediction. Similarly, Li et al. [28] leverage multi-

hop paths in KGs to capture the global semantics of the KG for relation prediction.

Out of the above tasks, the one that interests us the most is link prediction, specifically, a variant of it

known as ‘link forecasting.’ While link prediction is a problem that applies to all KGs, link forecasting

is a problem specific to TKGs. The problem of link forecasting is to find the best candidate for a

missing entity in a given link with a future timestamp. That is, we are essentially forecasting a future

event instead of filling in missing information. The rest of this chapter discusses literature specific to

our problem, beginning from the first approaches for link prediction on static KGs.

2.2.1 Link prediction on static knowledge graphs

Trouillon et al. [52] propose an embedding-based link prediction model called ‘ComplEx’ which

uses a three-way tensor factorization approach that embeds entities and relationships into a continu-

ous vector space. The model is able to learn latent representations of both entities and relationships,

allowing it to predict missing or unknown relationships in the data. It presents a new approach for an-

alyzing complex datasets with multiple relationships, but there are also some potential drawbacks and
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limitations to consider. One major drawback of the ComplEx model is its computational complexity.

The model uses a three-way tensor factorization approach that embeds entities and relationships into a

continuous vector space. This requires a large number of parameters, which can make training and in-

ference computationally expensive. As the size of the dataset and the number of relationships increase,

the model’s computational requirements can become prohibitively high.

Bordes et al. [6] present a new model for learning from multi-relational data called TransE. The

model represents entities and relations as continuous vectors in a low-dimensional space and uses trans-

lation operations to capture the relationships between entities. One major limitation of the TransE model

is that it assumes that all relationships between entities are one-to-one, meaning that each entity is con-

nected to only one other entity by a single relation. In reality, many relationships between entities may

be more complex, involving multiple entities and/or multiple relations.

DistMult is a model proposed by Yang et al. [58] for learning from multi-relational data that rep-

resents entities and relations as low-dimensional vectors in a latent space. Unlike some other models,

DistMult models relations as diagonal matrices, which allows it to capture correlations between enti-

ties and relations more effectively. The model uses a bilinear form to calculate the plausibility of a

relationship between two entities based on the embeddings of the entities and the relation connecting

them.

Nickel et al. [41] proposes a new model, called RESCAL (REscaling for SCAlable Learning of

Multi-relational data), for learning from multi-relational data. The model represents entities as low-

dimensional vectors and relations as matrices that act as linear transformations between entity vectors.

One limitation of RESCAL is that it assumes that all relations between entities are equally important,

and it does not provide a way to weight the importance of different relations. This can be problematic

in some domains where some relations may be more significant than others. RESCAL also requires all

relations to be represented as matrices, which can be computationally expensive for large datasets with

many relations.

2.2.2 Related work on temporal knowledge graphs

TTransE by Leblay et al. [27] adds a temporal dimension to TransE by incorporating time as an

additional entity in the model. In TTransE, each entity and relation is associated with a continuous

embedding vector in the same space, and the goal is to learn these embeddings such that the model

can accurately predict missing relationships in the graph. TTransE achieves this by introducing a time

dimension, where each triple in the graph is associated with a timestamp indicating the time when the

relationship occurred. TTransE models temporal dynamics by treating time as a special entity, which is

added to the head and tail embeddings of each triple. These temporal embeddings capture the change
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in the relationships over time, allowing the model to distinguish between different versions of the same

relationship.

Garcı́a-Durán et al. [14] proposed a model called Temporal Attention-based DistMult (TA-DistMult)

. TA-DistMult is a tensor factorization model that uses attention mechanisms to handle temporal dy-

namics and complex relations. The model is based on DistMult, which is a bilinear model that projects

entities and relations into a shared embedding space. In TA-DistMult, attention mechanisms are used

to capture the temporal dynamics of the knowledge graph. The model uses an attention mechanism to

weight the embeddings of entities and relations based on the time they occur. This allows the model to

capture how the relationships in the graph change over time.

TNTComplEx by Lacroix et al. [26] is a knowledge graph embedding model that extends the Com-

plEx model to handle temporal dynamics in the KG. This model combines a tensor factorization ap-

proach with attention mechanisms to capture both the structure and the temporal dynamics of the KG.

In TNTComplEx, each entity and relation is represented by a complex-valued embedding vector. The

model uses a tensor factorization approach to capture the structure of the KG, where the embeddings

of entities and relations are combined using tensor products. To capture temporal dynamics, TNTCom-

plEx uses an attention mechanism that weights the embeddings of entities and relations based on their

temporal proximity to the query time. This allows the model to capture the evolution of the relationships

in the KG over time.

CyGNet is a deep learning-based approach for link prediction in TKGs, proposed by Zhu et al. [59].

CyGNet is designed to address the challenges of link prediction in TKGs, including the sparsity and

noise in the data, and the complex temporal dependencies between the entities and their relationships.

It leverages the concept that facts/links often show repetition to describe an embedding-based model

which doesn’t only predict future events, but also identifies facts with recurrence.

RE-Net [25] is a neural network-based model proposed by Jin et al. for the task of link prediction

in KGs. The main idea behind RE-Net is to use a neural network architecture that combines relational

information with entity information to make predictions. The model consists of three components: and

entity encoder, a relation encoder, and a relation network. The key innovation in RE-Net is the use of

relation networks to capture the interactions between entities and relationships. The relation network

allows the model to capture complex patterns in the data that may not be easily captured by traditional

methods such as rule-based or statistical approaches.

xERTE (eXtended Entity-Relation-Typing with Entity descriptions) is a method proposed by Han et

al. [18] for link prediction in knowledge graphs. The approach of xERTE is based on a combination

of entity descriptions and relation types to enhance link prediction. The xERTE model consists of three

main components: an entity encoder, a relation encoder, and a scoring function. The entity encoder

learns representations for entities using their descriptions, related entities, and their types. The relation
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encoder learns representations for relation types using the entities that participate in those relations. The

scoring function computes the likelihood of a relation between two entities based on their representations

and the relation type.

2.2.3 Rule-based link forecasting frameworks

Rule-based methods and embedding-based methods are two popular approaches for link forecasting

in knowledge graphs. While both methods have their own strengths and weaknesses, rule-based methods

offer several advantages over embedding-based methods in terms of explainability and interpretability.

While embeddings are hidden and obscure in nature, association rules are explainable because they have

a logical human-interpretation.

AMIE by Galárraga et al. [13] is one of the earliest known frameworks for mining association rules

from KGs. AMIE focuses on leveraging ontological KGs and limited factual information to discover

meaningful patterns using association rule mining. It does so by applying a set of novel algorithms that

take into account the inherent uncertainty and incompleteness of knowledge bases.

AnyBURL (Anytime Bottom-Up Relational Learning) is a method proposed by Meilicke et al. [34]

for learning expressive rules from KGs. The aim of AnyBURL is to identify patterns or regularities in

the relationships between entities in a KG and use these patterns to make predictions about unknown re-

lationships. The approach of AnyBURL is based on a bottom-up learning strategy that starts with simple

rules and iteratively refines them to produce more complex and expressive rules. AnyBURL can learn

a wide range of rules, including Horn rules, non-Horn rules, and rules with existential quantification.

Overall, while AnyBURL is a powerful method for learning expressive rules from knowledge graphs,

it may not be well-suited for handling temporal knowledge graphs without appropriate modifications or

extensions. Thus, frameworks such as TLogic have been proposed.

TLogic is a framework proposed by Liu et al. [30] for link forecasting in TKGs. Unlike traditional

approaches that use statistical or machine learning models, TLogic leverages logical rules extracted via

temporal random walks to make predictions about the likelihood of future links in a network. In addition

to increasing explainability, this method also outperforms most embedding-based methods.

2.3 Differences with the existing approaches

The proposed approach differs from the preceding approaches in the following ways: Static KG

link prediction approaches overlook the crucial temporal information present in TKGs. Similarly, it

was observed that frameworks extended from static KG link prediction approaches do not capture the

temporal information of TKGs properly and thus still suffer from performance issues. This is evident in

their inferior performance as compared to the other methods during experimentation. While embedding
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based link prediction methods have become popular in recent years due to their high predictive accuracy

in various applications, these methods lack explainability and transparency in their predictions. Our

proposed approach is a rule-based framework that makes use of random walks for link forecasting,

which helps with explainability while also performing significantly better than the previous approaches.

2.4 Summary

In this chapter, we have discussed several approaches for link forecasting on knowledge graphs. We

have observed that even state-of-the-art approaches for link forecasting in TKGs such as TLogic are not

able to mine enough rules, which makes them inefficient for link forecasting. In the following chapter,

we build up the background necessary to understand rule-based link forecasting.
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Chapter 3

Preliminaries

The integration of time information into Knowledge Graphs has led to the development of Temporal

Knowledge Graphs (TKGs). In TKGs, nodes and edges are associated with temporal intervals, allowing

the representation of time-varying relations between entities. In this chapter, we formalize the concept

of TKGs, introduce random walks, Horn rules, and discuss the problem of link forecasting, which aims

to predict the existence or absence of a link between entities in a TKG at a future time. We conclude by

defining the central problem statement addressed by this thesis.

3.1 Temporal Knowledge Graphs

Formally, a TKG can be described as follows: Let E = {e1, e2, · · · , em}, m ≥ 1, be a set of entities.

LetR = {r1, r2, · · · , rn}, n ≥ 1, be a set of relations. Let T = {t1, t2, · · · , to}, o ≥ 1, be an ordered

set of timestamps. A link (or an edge), denoted as lki, i > 0, is a quadruple (esub, r, eobj , t), where

esub ∈ E corresponds to a subject entity, r ∈ R represents a relation, eobj ∈ E is an object entity, and

t ∈ T represents a timestamp. For each link lki = (esub, r, eobj , t), there exists an inverse link, denoted

as ˆlki = (eobj , r
−1, esub, t), that allows us to perform graph walks along this link in both directions.

The relation r−1 is called the inverse relation of r. A temporal Knowledge Graph, denoted as TKG, is

a set of links, i.e., TKG = ∪pi=1lki, p ≥ 1.

Example 2 Let E = {Fred,Robin, France,Belgium, Spain} be the set of entities.

LetR = {talk, visit} be the set of relations. Let T = {19/05, · · · , 05/06} be the set of timestamps.

A link, say lk1 = (Robin, visit, France, 05/06), where ‘Robin’ is a subject entity, ‘visit’ is a relation,

‘France’ is an object entity, and ‘05/06’ is a timestamp. For this link, there exists an inverse link

ˆlk1 = (France, visit−1, Robin, 05/06). A hypothetical TKG containing all such links is shown in Fig.

3.1. We will use this TKG as the running example to explain our framework.
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Figure 3.1: A hypothetical temporal knowledge graph. We will use this TKG to explain the proposed

approach.

3.2 Random Walks

Random walks on TKGs refer to a stochastic process in which a walker moves from one entity to

another through the relationships of the graph, taking into account the timestamps associated with those

relationships. Random walks on TKGs have several applications, such as in recommender systems, link

forecasting, and anomaly detection. For example, a recommender system aims to recommend items to

users based on their past interactions with the system. Random walks can be used to model the user’s

behavior over time and to identify related items that the user may be interested in.

One approach to random walks on TKGs is to use a modified version of the standard random walk

algorithm, called the time-aware random walk. In this algorithm, the walker moves from one entity to

another according to the probabilities associated with the relationships of the graph, taking into account

the timestamps associated with those relationships. Specifically, the probability of moving from entity

i to entity j is proportional to the weight of the edge between i and j, multiplied by a time-dependent

factor that reflects the recency of the relationship. Based on this concept, we present the formal definition

of a random walk on a Temporal Knowledge Graph.

Definition 1 Random Walk: A Random Walk of length n ∈ N on a Temporal Knowledge Graph is an

ordered set of connected links. That is, W = ⟨(e1, r1, e2, t1), (e2, r2, e3, t2) . . . (en, rn, en+1, tn)⟩

Example 3 The following sequence of links is a random walk on the TKG in Fig. 3.1: ⟨(Belgium, visit−1,

F red, 24/05), (Fred, talk,Robin, 28/05), (Robin, visit, Spain, 25/05)⟩.
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3.3 Horn Clauses and Temporal Rules

Horn clauses [22] are a type of logical formula widely used in logic programming. A Horn clause

is a special logical formula with at most one positive literal (i.e., an atomic proposition that is true) and

any number of negative literals (i.e., atomic propositions that are false). Horn clauses are essential in

logic programming because they can be efficiently solved by an inference engine, making it possible to

derive solutions to problems quickly.

There are two main types of Horn clauses:

1. Fact: A fact is a Horn clause with no negative literals, and it simply states that a particular predi-

cate is true. For example, the Horn clause p is a fact that simply states that p is true.

2. Rule: A rule is a Horn clause that has one positive literal and one or more negative literals. A rule

is used to derive a conclusion from a set of conditions. For example, the Horn clause p← q ∧ r
is a rule that states that if q and r are true, then p must also be true.

Additionally, there are two ways to represent a Horn clause: Disjunction and Implication.

1. Disjunction form: A Horn clause is represented as a disjunction of atomic propositions, where at

most one of the propositions is true. In disjunction form, the Horn clause can be thought of as a

set of constraints, where each proposition is a constraint that must be satisfied.

2. Implication form: In implication form, a Horn clause is represented as an implication of atomic

propositions, where the conclusion is the positive literal and the conditions are the negative liter-

als. In implication form, the Horn clause can be thought of as a rule where the conditions must be

true in order for the conclusion to be true.

For example, the Horn clause in the implication form p← q ∧ r can be represented in disjunction

form as p ∨¬ q ∨¬ r. Here, the ¬ symbol denotes negation, the ∨ symbol denotes disjunction, the ∧
symbol denotes conjunction, and the← symbol denotes implication. Both disjunction form and impli-

cation form are equivalent representations of Horn clauses and can be used interchangeably depending

on the needs of the problem.

Horn rules can be used for graph analysis [33, 9, 47], where the goal is to predict the presence or ab-

sence of links between pairs of nodes in a graph. Horn rules allow us to incorporate prior knowledge and

domain expertise into the link forecasting process. We can use existing knowledge about the structure

and properties of the graph to formulate Horn rules that capture the underlying patterns and relation-

ships. For example, we can use Horn rules to encode the intuition that nodes with similar attributes are

likely to be connected or that nodes with common neighbors are more likely to be connected.
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Horn rules are well-suited for efficient computation, which is critical for large-scale link forecasting

problems. Horn rules can be solved using a forward-chaining algorithm [19], which only considers

the rules that are relevant to the problem at hand. This makes it possible to quickly derive solutions

to link forecasting problems even for very large graphs. Further, Horn rules are highly flexible and

expressive, which means they can capture complex patterns and relationships in the graph. Horn rules

can incorporate both positive and negative information about the graph, which allows them to capture

subtle patterns that may be missed by other methods.

In summary, Horn rules offer several advantages for link forecasting, including the ability to incor-

porate domain knowledge, efficient computation, flexibility and expressivity. Keeping these advantages

in mind, we define Temporal Rules as follows:

Definition 2 Temporal Rule: Let Ei and Ti represent entity and timestamp variables, respectively. A

Temporal Rule of length n ∈ N is a Horn Rule composed in the following form: ((Es, rh, Eo, Th) ←

∧lki=1(Ei, ri, Ei+1, Ti))

In a Temporal Rule, the left-hand side of the arrow is called the rule head, while the right-hand side

is called the rule body, which is represented by an ordered conjunction of body links (Ei, ri, Ei+1, Ti).

All the entities and timestamps are variables, whereas all the relations are fixed. rh is called as the head

relation. A rule of this form implies that if the rule body holds along with the given time constraints,

then the rule head is true.

Example 4 The following is an example of a Temporal Rule:

(E1, host, E3, T3)← (E1, call, E2, T1) ∧ (E2, invite, E3, T2) (3.1)

This rule indicates that if E1 calls E2 and E2 invites E3, then E1 will host E3.

Having established all the required background, we move on to define the problem statement of this

thesis.

3.4 Link forecasting problem

The problem of link forecasting is to predict a future event from a given set of past events present in

the form of a temporal knowledge graph. Formally, we present the problem statement as follows:

Given a query containing a future timestamp, say (esub, rx, ?, tfuture) or (?, rx, eobj , tfuture), the

goal of link forecasting is to predict a missing (subject or object) entity. The term tfuture represents a

future timestamp that does not exist in the TKG. That is, tfuture > to and tfuture ̸∈ T .
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Example 5 The TKG shown in Fig.3.1 records the events that happened from ‘19/05’ to ‘05/06’ in

a year. Given a query with an unseen future timestamp, say (Fred, visit, ?, 13/06), the goal of link

forecasting is to predict an appropriate candidate entity to replace ?.

3.5 Summary

In this chapter, we introduced the necessary background required to understand the problem and

the proposed solution. We began with a formal definition for TKGs and explained random walks and

temporal rules, concluding with defining the link forecasting problem. In the next chapter we will

introduce TRKG-Miner, our proposed link forecasting framework.
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Chapter 4

Proposed Framework

In this chapter, we present the proposed approach to improve link forecasting in TKGs, called Tem-

porally Relaxed Knowledge Graph Miner (TRKG-Miner). In the previous chapters we have introduced

knowledge graphs and discussed work relevant to the problem of link forecasting. We have also built

up the necessary background required to understand the concepts that will be applied in this chapter.

Now, we explain the motivation behind our approach as well as the ideas and algorithms that constitute

our approach. We conduct extensive experimentation and a discussion of the results, which show a

significant improvement of the proposed approach over the previous best approach.

4.1 Introduction

We have defined the problem of link forecasting in temporal knowledge graphs in the preceding chap-

ter. Briefly, link forecasting is the problem of predicting a missing entity in a link with a future times-

tamp for a given knowledge graph. In the related work, we have discussed several approaches aimed at

tackling this problem. Among those approaches, TLogic is a rule-based link forecasting framework that

performs better than all the other discussed approaches while also being explainable. However, we have

observed several drawbacks in the TLogic framework that affect its performance negatively. We address

some of these problems by using two concepts, namely, temporal relaxation and link-star rules. We use

these concepts to build TRKG-Miner. We follow it up by performing extensive experimentation to test

the effectiveness of our approach’s effectiveness and the usefulness of all the algorithm parameters. We

can observe that our approach outperforms the previous approaches by a substantial margin.

The rest of the chapter is organized as follows. In the next section, we briefly explain the TLogic

framework and discuss the drawbacks found by us. Then, we discuss the basic ideas behind our approach

and explain how they are integrated into our framework. This is followed by a section that describes

our proposed approach, along with the algorithms involved in our framework. After that, we discuss the

experimental setup. We then present and discuss the results of these experiments.
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4.2 TLogic and its drawbacks

TLogic is a framework proposed by Liu et al. [30] for link forecasting in TKGs. Unlike traditional

approaches that use statistical or machine learning models, TLogic leverages logical rules to predict the

likelihood of future links in a network. This makes it one of the best frameworks for link forecasting on

TKGs. At a high level, the TLogic framework involves two key steps:

• Rule Generation: The process of generating logical rules from a given TKG. This step can be

divided into two parts:

– Rule Extraction: The first step involves extracting logical rules from the observed network

data. These rules capture the relationships and patterns in the network and can be represented

using first-order logic (FOL).

– Rule Abstraction: In this step, the extracted rules are abstracted to make them more gen-

eralizable and applicable to new situations. This is done by replacing specific entities and

predicates in the rules with variables, which allows the rules to be applied to different con-

texts.

• Rule Evaluation: Finally, the abstracted rules are evaluated to make predictions about the like-

lihood of future links in the network. This is done by applying the rules to the current state of

the network and then using logical inference to determine the probability of a new link forming

between two nodes.

Upon close inspection of the TLogic framework, the following drawbacks can be observed:

1. Rule abstraction trade-offs: While rule abstraction allows the extracted rules to be more general-

izable, there are trade-offs to consider. For example, too much abstraction can lead to oversim-

plification and loss of important details, while too little abstraction can result in rules that are too

specific and not applicable to new contexts. In comparison, AnyBURL uses semi-abstract rules

as well.

2. Absence of entity-aware random walks: The probabilities for jumping from one node to another

are decided based on a similarity metric that considers only the gap between timestamps. In this

context, entity knowledge can also be used for decision making during the walks. For instance,

it is more likely that a relation ‘talk’ is valid between two people rather than a building and a

vehicle.

3. Brute-force cycle finding method: The process for obtaining cyclic walks is brute-force, and thus

there is a lot of scope for improvement there by using cycle-finding techniques such as simple
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depth/breadth first search, or union-find. Additionally, in the context of logical rules only small

cycles of lengths 2-4 are required, and this constraint can be exploited to develop specific cycle-

finding algorithms.

4. Not using acyclic rules: The TLogic framework implicitly assumes that cyclic rules alone are

sufficient for link forecasting, and there is no provision for generating or using acyclic rules.

However, cyclic rules alone can be insufficient to capture all the diverse patterns that can arise in

a KG. Thus, there is a need to generate acyclic rules as well.

5. Presence of strict temporal constraints: The temporal constraints imposed while performing ran-

dom walks and generating rules is too strict. However, in the real world, events happening at

around the same time may or may not happen in a specific temporal order. For example, multiple

events can happen simultaneously, or there can be cyclical relationships between two events.

Out of the aforementioned drawbacks, we address the last two drawbacks i.e. not using acyclic rules

and the presence of strict temporal constraints. These two problems collectively amount to the problem

of the inability to mine many useful rules. We discuss both of these drawbacks one-by-one in detail and

explain the plan to tackle them in the next section.

4.3 Basic Idea: Temporal relaxation and Link-star rules

In this section we introduce the basic ideas behind our framework: (i) Temporal relaxation and (ii)

Link-star rules. We first introduce the motivation behind these ideas with a discussion of the problems

that they address. We then introduce the methods and parameters that are used to integrate these ideas

into our proposed approach.

4.3.1 Temporal relaxation

Since the real world is complex and driven by convenience, events may or may not happen in an

exact temporal order. In general, the temporal order of events is an important aspect of causality, as it

helps us understand the cause-and-effect relationships between events. For example, if event A happens

before event B, we may infer that event A caused event B. However, there are situations where events

happening close to each other temporally may not follow any exact order, making it difficult to establish

a clear cause-and-effect relationship between them.

One such situation is when multiple events happen simultaneously. In such cases, it is impossible

to determine which event caused the other, as they are happening at the same time. For example, in a

car accident involving multiple vehicles, it may be challenging to determine which vehicle caused the
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Figure 4.1: A relaxed temporal random walk on a TKG. The dotted lines indicate the direction of the

walk.

accident, as multiple vehicles may have collided simultaneously. Additionally, some events may have a

non-linear or cyclical relationship with one another, making it challenging to establish a clear temporal

order. For example, the waves that occurred during the peak of the COVID-19 pandemic.

In summary, while the temporal order of events is an important aspect of causality, there are situations

where events happening close to each other temporally may not follow any exact order. Multiple events

happening simultaneously, events happening in a short span of time, and events with non-linear or

cyclical relationships are some examples of such situations.

The temporal constraints enforced in the TLogic framework [30] state that there must be a strict

temporal order between consecutive events/links which encompasses both the steps of rule generation

and rule application. The following problems arise because of the aforementioned time constraints:

1. Not mining enough rules: During Rule Generation, in the step for performing a random walk,

several significant links are being missed, which subsequently leads to the inability to mine a

large number of useful logical rules.

2. Inability to find candidates during rule application: During rule application, in the step for the

search for candidate entries, several candidates are being missed by TLogic.

4.3.1.1 Maximum Time Gap (δ)

Our proposed solution for both of these problems is to introduce temporal relaxation in the form of

a parameter called ‘Maximum Time Gap’, denoted by δ. The idea behind this parameter is to allow
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for a small interval of time between two events which occur temporally close to each other to allow

for the previously mentioned relaxation in the case of multiple events happening simultaneously, events

happening in a short span of time, and events with non-linear or cyclical relationships. Equipped with

this parameter, we give the formal definition for a temporally relaxed random walk.

Definition 3 Relaxed Temporal Random Walk: A Relaxed Temporal Random Walk, denoted as W, is

an ordered set of links such that the time gap between any two consecutive links is no more than the user-

specified maximum time gap (δ). That is, W = ⟨(e1, r1, e2, t1), (e2, r2, e3, t2) . . . (el, rl, el+1, tl+1)⟩,

l > 0, ti ≥ (ti−1− δ), and i ∈ [1, l]. The length of the walk W , denoted as len(W ), represents the total

number of links in W . That is, len(W ) = |W |, where |W | represents the number of links in W .

Example 6 Consider the following sequence of links in Fig. 4.1: ⟨(Belgium, visit−1, F red, 24/05),

(Fred, talk,Robin, 28/05), (Robin, visit, Spain, 25/05)⟩. The existing frameworks do not consider

the above sequence of links as a random walk because the link (Fred, talk,Robin, 28/05) violates the

strict temporal constraint that it has to occur before the link (Robin, visit, Spain, 25/05). However,

if we relax the temporal constraint that the actual order of events can be ignored if their occurrence

is within a particular time gap, say 4 days, i.e., δ = 4, we can consider the above sequence of links a

relaxed temporal random walk. The length of this walk is 3 as it contains only three links.

After having introduced temporal relaxation to random walks to fix the problem occurring during

rule generation, we move to present a similar time-relaxed version of temporal rules which can solve

the problems that arise during rule application.

Definition 4 Relaxed Temporal Rule: Let Ei and Ti represent entity and timestamp variables, respec-

tively. A Relaxed Temporal Rule of length n ∈ N is defined as ((Es, rh, Eo, Th)← ∧i(Ei, ri, Ei+1, Ti)),

with the constraint Ti ≥ Ti−1 − δ; i ∈ [1, n].

Example 7 The following is an example of a Relaxed Temporal Rule extracted from the TKG in Fig.

4.1: (E1, visit, E3, T3)← (E1, visit, E2, T1) ∧ (E2, talk, E3, T2).

Having established Relaxed Temporal Random Walks and Relaxed Temporal Rules, we divide the

walks and rules into two types, cyclic and acyclic, where each type has its own process of performing

random walks and generating rules from the said walks.

Definition 5 Cyclic Relaxed Temporal Random Walk: A relaxed temporal random walk, W , is said to

be a Cyclic Relaxed Temporal Random Walk, denoted as CW , if the walk starts and end at the same

entity (or node). That is, CW = ⟨(e1, r1, e2, t1), (e2, r2, e3, t2) . . . (en, rn, e1, tn)⟩
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Figure 4.2: A cyclic relaxed temporal random walk on a TKG. The dotted lines indicate the direction of

the walk.

Example 8 Consider the following walk on the TKG in Fig. 4.2:

⟨(Robin, visit, Spain, 25/05), (Spain, talk, France, 20/05), (France, visit−1, Robin, 05/06)⟩

(4.1)

This is a cyclic relaxed temporal random walk because it starts and ends with the same entity, i.e.,

Robin.

Definition 6 Relaxed Temporal Cyclic Rule: A Relaxed Temporal Cyclic Rule is a Relaxed Temporal

Rule generated from a cyclic walk by generalizing the entities and timestamps with variables. While

the inverse of the last link becomes the rule head (E1, r
−1
h , En, Tn), the other links are mapped to body

atoms, where each link (ei, ri, ei+1, ti) is converted to the body atom (Ei, ri, Ei+1, Ti). That is, the final

rule is of the form (En, r
−1
h , E1, Tn)← ∧li=1(Ei, ri, Ei+1, Ti)

The following example illustrates the process of converting a cyclic walk to a cyclic rule.

Example 9 Let us consider the cyclic walk from Example 8:

⟨(Robin, visit, Spain, 25/05), (Spain, talk, France, 20/05), (France, visit−1, Robin, 05/06)⟩

(4.2)
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Figure 4.3: A cyclic relaxed temporal random walk on a TKG that can be converted to a rule. The red

and blue links correspond to the head link and the body links, respectively.

Upon replacing the entities and timestamps with variables, we get the following:

⟨(E1, visit, E2, T1), (E2, talk, E3, T2), (E3, visit
−1, E1, T3)⟩ (4.3)

where E1, E2, E3, T1, T2 and T3 are generalized from ‘Robin,’ ‘Spain,’ ‘France,’ ‘25/05,’ ‘20/05,’

and ‘05/06’ respectively. Then, as shown in Fig. 4.3 we consider the inverse of the last link as the rule

head and present the final rule:

(E1, visit, E3, T3)← (E1, visit, E2, T1) ∧ (E2, talk, E3, T2) (4.4)

4.3.2 Link-star rules

Acyclic rules are a common appearance in knowledge-based systems owing to their versatile nature.

There are several real-world patterns that cannot be captured by cyclic rules alone. Cyclic rules can

be understood as providing two alternate paths between any two entities, where one path is the rule

head and the other path is the rule body. But this is just one of the many types of relationships that can

exist between entities in a TKG. For instance, AnyBURL [33] is a rule-learning framework that takes

advantage of acyclic rules to extract useful information from KGs. Their work suggests that acyclic

rules are a vital and relevant part of link prediction on KGs.

However, with the onset of acyclic rules, comes the overhead of processing them, and often the most

glaring problem in this regard is combinatorial rule explosion [44], which involves producing too many
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Figure 4.4: An acyclic relaxed temporal random walk on a TKG that can be converted to a rule. The red

and blue links correspond to the head link and the body links, respectively.

rules. There is a computational and runtime cost associated with each performed walk, and it becomes

intractable to control this cost when we begin mining acyclic rules. This also takes us back in time

to the development of pruning, and data mining in general. As revolutionized by the seminal work of

Agrawal and Srikant [2], pruning techniques are vital in case of combinatorial bottom-up rule building

techniques to control combinatorial rule explosion. However, we can work our way around this problem

by ignoring rules of length 2, while at the same time not ignoring them. We achieve this solution with

the help of link-star (L-star) rules.

Before formalizing a definition for L-star rules, we define Acyclic walks, which are used to form the

said rules.

Definition 7 Acyclic Relaxed Temporal Random Walk: An Acyclic Relaxed Temporal Random Walk is

a temporal random walk which does not contain any cycles (repeated entities) in the walk.

Example 10 As shown in Fig. 4.1, the following sequence of links constitutes an acyclic relaxed tem-

poral random walk.

⟨(Belgium, visit−1, F red, 24/05), (Fred, talk,Robin, 28/05), (Robin, visit, Spain, 25/05)⟩

Definition 8 Link-star (L-star) Rule: A Link-star (or L-star) Rule is a Relaxed Temporal Rule gener-

ated from an acyclic walk of length 3 by generalizing the entities and timestamps with variables. While
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Figure 4.5: The direction of the rule head (RED) and the rule body (BLUE) in a cyclic rule vs. a link-

star rule. The two different types of rules capture different types of patterns. It is important to note that

sometimes in a rule, the links can be inverted.

the second link in the walk becomes the rule head (E2, rh, E3, T2), the other two links are mapped to

body atoms, where each link (ei, ri, ei+1, ti) is converted to the body atom (Ei, ri, Ei+1, Ti). The final

rule is of the form (E1, rh, E2, T1)← (E0, r1, E1, T0) ∧ (E2, r3, E3, T2)

Example 11 Consider the following sequence of links in Fig. 4.1:

⟨(Belgium, visit−1, F red, 24/05), (Fred, talk,Robin, 28/05), (Robin, visit, Spain, 25/05)⟩

Upon replacing the entities and timestamps with variables, we get the following:

⟨(E0, visit
−1, E1, T0), (E1, talk, E2, T1), (E2, visit, E3, T2)⟩ (4.5)

Then, as shown in Fig. 4.4 we consider the middle link as the rule head and the rest of the links as

the rule body and present the final rule as follows:

(E1, talk, E2, T1)← (E0, visit
−1, E1, T0) ∧ (E2, visit, E3, T2) (4.6)

In graph theory, a star [29] represents a set of vertices where a vertex (called as core) is adjacent to all

other vertices (called as leaves). Star patterns occur when a central entity has multiple edges connecting

it to other entities, but those entities do not have any edges connecting them to each other. Thus the

core shares some information with all the leaves. Analogous to that, in a link-star rule we consider the

rule head as a core vertex while its adjacent links form the rule body. A Link-star rule is formed only

from acyclic (relaxed temporal random) walks of length 3. Link-star rules are a simple version of star

patterns found in graphs, where neighbourhood relations are considered to be sharing some information

with the core. Fig. 4.5 illustrates this idea of the core being at the center of a link-star rule in a simplified

manner.
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Rule explosion occurs when a large number of rules are generated from the dataset. This is especially

common when the dataset is large or when the minimum support and confidence thresholds used to filter

the rules are low. The problem of rule explosion makes it difficult to identify the most interesting and

useful patterns from the dataset, as there are simply too many rules to examine manually. This issue

is amplified further in the case of link forecasting in TKGs because unlike cyclic rules, that have a

constraint of being generated from a cyclic walk, acyclic rules are not bound by any constraint, and thus

almost every search leads to the formation of a rule (sparing those rules which do not satisfy the minsup

threshold.

Rule explosion can lead to a number of issues. First, it can make it difficult to identify the most

important patterns from the dataset. With so many rules to examine, it can be challenging to identify

the patterns that are most relevant to the user’s needs. Second, rule explosion can lead to a high number

of false positives. When there are too many rules to examine, it becomes more likely that some of the

rules are not actually interesting or useful. Also, rule explosion can make it challenging to scale pattern

mining algorithms to larger datasets, as the time and computational resources required to generate and

filter the rules can become prohibitively large.

To tackle this challenge, a single link-star rule encompasses multiple acyclic rules. Consider a crude

generalization of a link-star rule as B ← A ∧ C where the alphabets represent distinct links. This rule

inherently contains several rules. B ← A, B ← C, and B ← A∧C can all be considered as subsets of

this rule. In this way, we are able to prevent repetition of acyclic rules. Admittedly, we are losing some

accuracy by not considering explicit rules of length 2, but the tradeoff gained in terms of saving time

and computation far outweighs this loss.

We define a few more concepts that are necessary for specifying our framework as follows.

4.3.2.1 ACR and the number of searches

We define a hyperparameter which can be controlled by the user to allow for flexibility in the number

of walks performed during rule generation. Acyclic to Cyclic Ratio or ACR gives the ratio of acyclic

walks to cyclic walks that are to be performed during rule generation. The number of searches (denoted

by ‘s’) is the number of cyclic walks sampled inorder to create rules. This value is multiplied by ACR

to compute the number of acyclic walks to be sampled during rule generation.

For example, if s = 100 and ACR = 0.5, then 50 acyclic walks and 100 cyclic walks will be

performed during rule generation. Our experimentation indicates that increasing ACR results in some

improved forecasting accuracy but it also increase the runtime by a noticeable amount. We discuss this

in further detail in the experiments section.
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4.3.2.2 Rule Confidence

Since all the generated rules are probabilistic, we need to specify a confidence measure to establish

the likelihood of a rule being applicable to a given query. To evaluate the quality of the generated rules,

we consider the conventional confidence measure. The confidence (denoted by conf ) of a cyclic rule is

the ratio of its rule groundings to body groundings in the TKG.

Definition 9 Body Grounding: A body grounding for a rule is a tuple of entities and timestamps

(e1, t1, e2, t2, · · · , tn, en+1), such that each body link (ei, ri, ei+1, ti) exists in the TKG.

Definition 10 Rule Grounding: For a cyclic rule, a body grounding is also a rule grounding if there

are two entities in the grounding such that the link (e1, rh, en+1, tn+1); tn ≤ tn+1 + δ, also exists in the

TKG.

Example 12 Let us compute the confidence of the rule given by equation 4.4. One possible body

grounding for this rule is as follows:

(Fred, 24/05, Belgium, 25/05, F rance) (4.7)

However, there is no link of the form (Fred, visit, France, tx); tx > 25/05. Thus it is not a rule

grounding. Another valid body grounding for that rule is

(Robin, 25/05, Spain, 20/05, F rance) (4.8)

Further, this TKG contains the link (Robin, visit, France, 05/06), and 05/06 > 25/05. Thus, this

body grounding is also a rule grounding.

Total rule groundings = 1

Total body groundings = 2

Hence, the confidence of this rule = 1/2 = 0.5

We do not use the same measure for L-star rules. Instead, we implicitly mine acyclic rules with high

confidence. We achieve this by ensuring the presence of the head relation while performing acyclic

walks. That is, while sampling acyclic walks, we begin with the head relation and then find the body

links afterwards. This approach is different from cyclic walks where we perform walks for the rule body

and match the rule head later. This saves a significant amount of time and computation resources, and

also results in better forecasting accuracy.
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Figure 4.6: The basic flow of TRKG-Miner. The inward and outward arrows indicate Inputs and Out-

puts, respectively.

4.4 Proposed approach

In this section we present the algorithms which are central to our framework, having established

the problem and the required definitions and notations. As discussed previously, Temporally Relaxed

Knowledge Graph Miner (TRKG-Miner) consists of two broad steps, and each of these steps corre-

sponds to one algorithm. The overall flow of our approach has been explained in Fig. 4.6. The first

algorithm is for rule generation, which consists of performing random walks on the TKG as well as

generating rules from them. This algorithm takes the TKG as an input and returns a set of human-

understandable rules which are stored in the secondary memory. The second algorithm is for rule ap-

plication, which takes a query and the generated rules as input and returns the top-k suitable candidates

for the given query.

4.4.1 Rule Generation

The rule generation process is shown in Algorithm 1. First, we iterate over all the relations and

perform both cyclic and acyclic random walks.

For cyclic walks, we perform the walk in a reverse temporal order, that is, starting from the last link

and going backwards in time. That is essentially the same thing as performing a normal cyclic walk, but

in this case we can ensure that we go through all the relations.

Example 13 Consider the following walk on the TKG in Fig. 4.2:

⟨(Robin, visit, Spain, 25/05), (Spain, talk, France, 20/05), (France, visit−1, Robin, 05/06)⟩

(4.9)

In TRKG-Miner, we sample this walk in the following order:
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Algorithm 1 Rule Generation
Input: A temporal knowledge graph

Parameters: Number of searches s ∈ N, ACR, δ

Output: Set of Relaxed Temporal rules RTR

1: for links with relation r ∈ R do

2: for i ∈ [s] do ▷ Repeat with [ACR ∗ s] for L-star rules

3: Sample a walk w

4: Create rule rt from w

5: Compute rule confidence conf(rt)

6: RTR ← ∪(rtr, conf(rt))

7: end for

8: end for

⟨(Robin, visit, France, 05/06), (France, talk−1, Spain, 20/05), (Spain, visit−1, Robin, 25/05)⟩

(4.10)

For acyclic walks, we take a similar approach (of beginning with the relation in the rule head) and

then find the rest of the body links. Taking this specific path has an added advantage in the case of L-star

rules. Since the rule head occurs between the two body links, by beginning with it, we are ensuring that

the rules we mine are of high confidence by themselves. In a way, this is analogous to both frequent

patterns and association rules, where we get the best of both worlds. The naı̈ve way to perform an

acyclic walk would entail starting with the first link, and then finding the rule head, in which case we

cannot ensure that all the relations are considered for the rule head. Thus, that approach is discarded in

favour of our approach which implicitly mines rules with high confidence.

Example 14 Assume that we wish to find a rule where the head relation is ‘talk’. Consider the following

sequence of links in Fig. 4.1:

⟨(Belgium, visit−1, F red, 24/05), (Fred, talk,Robin, 28/05), (Robin, visit, Spain, 25/05)⟩

(4.11)

In this case, we begin by sampling the link (Fred, talk, Robin, 28/05) first, and then sample the other

two links.
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During walk sampling, there can be multiple possible next links. In this case, the priority is given

to the links which have a timestamp closer to the head link. This distribution is a weighted normalized

probability distribution given by Equation 4.12. (tu is the current timestamp and Tc = {tc1 , ...tci , ..., tcs}
is a set of timestamps of the candidates)

P(tc;Tc, tu) =
exp(−|tu − tc|)∑
Tc

exp(−|tu − tci |)
(4.12)

As explained in the previous section, for each walk we perform a generalization (opposite of ground-

ing) and replace the entities and timestamps with variables to obtain rules. The final step is to compute

rule confidence (Subsection 4.3.2.2) following which all the rules are stored for later use.

4.4.2 Rule Application

Given a query of the form (equery, rquery, ?, tquery), and a set of rules generated from the previous

algorithm, the goal is to find a ranked list of top-k candidates to replace ‘?’. The basic intuition behind

this algorithm is that past events and patterns tend to repeat themselves, and they do so quite frequently.

This can be leveraged to get an accurate forecast for a future event.

Algorithm 2 Rule Application
Input: RTR, Query (equery, rquery, ?, tquery)

Parameters: No. of candidates required (k), minsup

Output: Answer candidates A

1: RTR ← {rt|support(rt) > minsup}

2: for each rt with relation rquery do

3: Find all body groundings for rt

4: for each body grounding do

5: Get candidate a and candidate timestamp ta

6: score(a)← α(exp(−λ(tquery − ta))) + (1− α)conf(rt)

7: end for

8: end for

9: Return top-k candidates ordered by score

First, all the rules are pruned according to a chosen minimum support (minsup) and ranked in de-

creasing order of rule confidence. Next, the rules are filtered to use only those whose head relation is

rquery.
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Next, body groundings are determined for each rule. For cyclic rules, body groundings are found for

each rule by performing a relaxed temporal walk starting from equery. Then, from each grounding of

the form (equery, t0, ..., ti, ei, ..., tn, en), the last entity en and timestamp tn are selected as a candidate

and its candidate timestamp.

In the case of L-star rules, this body grounding is determined by starting from equery and finding a

pre-link (link connected to the subject entity in the rule head). After this, a post-link (link connected to

the object entity in the rule head) is determined by matching link which are 1 link apart from equery. In

this way, multiple candidates are found. From each grounding of the form (e0, t0, equery, t1, e2, t2, e3),

e2 represents a candidate and t1 represents its candidate timestamp.

To rank the different candidates that are obtained, a score is calculated for each of them. Given a

candidate a with a candidate timestamp ta extracted from a rule rt, the candidate score, denoted by

score(a) is calculated as follows:

score(a) = α(exp(−λ(tquery − ta))) + (1− α)conf(rt) (4.13)

λ and α are experimentally-determined parameters. The reason for considering this scoring function

are as follows:

1. Recent events are more relevant to the query than older events

2. The candidates extracted using rules with a better rule quality metric should receive a higher score

Cyclic rules get lesser priority over acyclic rules because the search criteria for generating cyclic

walks is based on loops of a short length like 2-3 which does not work well in sparse segments of the

TKG. This is not the case with L-star rules, since they do not have any such criteria and they are acyclic

by nature. Finally, the top-k candidates ordered by score are returned.

Having explained our basic idea and its implementation in the form of a framework, we move on to

define the datasets and the experimental setup, and then we present our findings.

4.5 Experiments

In this section we discuss the experimental setup, error metrics, and the datasets used for the experi-

ments.

4.5.1 Datasets

The three ICEWS [55] datasets - ICEWS14, ICEWS18, and ICEWS0515 - are collections of world

event data that contain event information from the years 2014, 2018, and 2005-15, respectively. The
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events in these datasets include various types of political activity such as protests, negotiations, violent

incidents, and state repression, among others. This data is present in the datasets in the form of several

thousand tuples of entity-relation-entity-timestamp (see Table 4.3, that can be directly used as links to

build a temporal knowledge graph. Using the ICEWS datasets for link forecasting creates an important

real-world tool to identify potential significant events that may occur in the future.

The ICEWS datasets are created by a team of researchers who use automated methods to collect and

preprocess data from various sources such as news wires, online news outlets, local newspapers, social

media. Here’s a brief discussion of data collection and preprocessing for the ICEWS datasets:

4.5.2 Data Collection

The ICEWS data collection process starts with the collection of raw news articles from a wide range

of sources, including news wires, local newspapers, and online news outlets. The articles are collected

in real-time and stored in a centralized database. A team of trained analysts then reads and codes the

articles using the CAMEO coding scheme, which categorizes each event according to its type, actors

involved, and other relevant information. The coded data is then stored in a structured format that can

be easily analyzed and processed.

We split the data into train, test, and validation sets, where the test set contains timestamps which are

relatively in the future from the training and validation sets. The distribution can be found in Table 4.2.

Notably, we can see that the test and valid sets contain a good fraction of new unseen entities from the

train sets. More importantly, all the timestamps are new and unseen from the train sets. For consistency

and reproducibility, we use the same train-test-validation split as xERTE [18].

Table 4.1: Statistics of the used datasets

– ICEWS14 ICEWS18 ICEWS0515

Links 90730 468558 461329

Entities 7128 23033 10488

Relations 222 256 251

Timestamps 262 304 4017

4.5.3 Experimental setup

We run our experiments on a multicore server with 128 cores, with each core having a maximum

clock speed of 2.9 GHz. Since the number of processes can be passed as a parameter while running

the framework, more available cores means easy parallelization and subsequently a faster run-time.
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Table 4.2: train-valid-test distribution for the experiments. ‘(N)’ indicates new.

ICEWS14 ICEWS18 ICEWS0515

– train valid test train valid test train valid test

Links 63685 13823 13222 373018 45995 49545 322958 69224 69147

Links (N) - 964 865 - 1411 1955 - 3241 8559

Ents. 6180 2968 2845 21085 7730 8243 8853 4851 4751

Ents. (N) - 530 496 - 910 1140 - 939 1089

Rels. 222 164 171 251 204 213 248 222 217

Rels. (N) - 5 4 - 3 3 - 2 2

TS 262 52 51 240 30 34 2775 679 563

TS (N) - 52 51 - 30 34 - 679 563

Table 4.3: Sample Links from ICEWS14

Arsen Avakov, make statement, Military (Ukraine), 2014-06-17

Muhammadu Buhari, make an appeal or request, Citizen (Nigeria), 2015-01-23

Thailand, host a visit, Japan, 2015-01-23

Malaysia, sign formal agreement, Japan, 2015-10-07

Experiments on ICEWS14 can be performed on a regular personal computer as well, but the other two

datasets need significantly more computing power and time. Especially, since almost every sampled

acyclic walk is converted to a rule (as compared to cyclic walks, which depend on the walk being a

cycle), the time needed for rule generation is greatly influenced by ACR.

We use hits@k (k={1,3,10}) and Mean Reciprocal Rank as performance metrics. The hits@k metrics

measures the fraction of times that the correct entity is present among the top-k returned candidates. For

example, hits@1 measures the fraction of times when the top ranked candidate is the correct entity for

a given query. MRR is defined as the average of all reciprocal ranks of the correct query answers across

all queries, where reciprocal rank is 1/x for a rank x. MRR can also be considered as the weighted

average of hits@1 (h@1), hits@3 (h@3), and hits@10 (h@10).

The primary motivation behind choosing these experiments is to establish that the proposed frame-

work is efficient and works as described throughout the manuscript. Secondly, we our model is indeed

superior to other approaches, and thus can be regarded as a positive contribution to the field. Thridly, we
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do an ablation study/hyperparameter analysis to show that our introduced variables/concepts are indeed

impactful and not just random additions to the framework.

During experimentation, we are mainly concerned with the dynamics of the following: ACR, minsup,

and δ. Thus, we test the influence of each parameter while keeping the other two constant. We also

observe the number of generated rules and analyze them across the experiments. In the first and central

experiment, we compare the performance of the proposed framework, TRKG-Miner, against eleven

existing frameworks (DistMult [58], ComplEx [52], AnyBURL [33], TTransE [27], TA-DistMult [14],

DE-SimplE [15], TNTComplEx [26], CyGNet [59], RE-Net [25], xERTE [18], and TLogic [30]) on the

three datasets. After that, we study the performance of the framework on varying the parameters ACR,

δ, and minsup. We are limited by the fact that some of these experiments take several hours, especially

in the case of ICEWS18 and ICEWS0515, where this can transition into days. Thus, we had to modify

a few parameters to obtain results in a reasonable time and complete our experimentation. We present

an analysis of the observed error metrics as well as the runtime for each experiment in the next section.

4.6 Results and Discussion

In this section we present the results of our experiments accompanied by a discussion of the same.

4.6.1 Performance comparison with other frameworks

Table 4.4 presents the performance results of TRKG-Miner against the existing link forecasting

frameworks. It can be observed that TRKG-Miner outperforms all of its competitors on all of the

evaluated datasets. Notably, the results of TRKG-Miner for hits@1 metrics improve by approximately

45% on average, which means the accuracy of finding the correct result from the first ranked candidate

increases. This helps in making accurate predictions in one shot without having to rely upon multiple

candidate predictions. There is also a significant improvement in hits@3. Consequently, the MRR is

improved by about 23%. This momentous improvement in forecasting accuracy can be attributed to the

introduction of temporal relaxation and Link-star rules.

Comparing hits@1 across the three datasets shows that the performance on ICEWS18 achieves the

most significant improvement over previous approaches. More importantly, we can observe that the

improvement in the results is not affected by scaling the knowledge graph, since both ICEWS18 and

ICEWS0515 achieve comparable or even a higher percentage of improvement over ICEWS14, even

though ICEWS18 has about three times the number of entities and ICEWS0515 has ten times the number

of timestamps over ICEWS14. Having more training data certainly helps, since more and more new

rules can be generated and used for link forecasting.
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Figure 4.7: A plot of the number of rules generated with a variation in ACR
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Figure 4.8: A plot of the error metrics with a variation in ACR

4.6.2 Varying ACR

Fig. 4.7 records the variation in the number of rules used for rule application on varying ACR during

rule generation, and Fig. 4.8 records the change in the error metrics when varying the same. We find that

increasing the fraction of L-star rules leads to an increase in prediction accuracy. The steepest increase

happens initially when acyclic rules are introduced, and the slope gradually decreases. It is important

to note that meanwhile the number of rules is also increasing, and with it comes added time for both

generating and applying each rule. Another important thing to keep in mind is that during the search,

almost every acyclic walk is converted to an L-star rule, and thus this increase in run time is guaranteed,

unlike cyclic rules where the formation of a rule depends on the sampled walk being a cycle. Thus, we

cannot leave this parameter unchecked, because for a minor gain in accuracy we might have to tradeoff

a significant amount of run time. Thus, this parameter should be carefully decided based on the time

and computing power available.

Another important observation is that when ACR = 0, only cyclic rules are mined. This demon-

strates how our approach generates a significant number of new useful rules as compared to previous

approaches. This goes against the conventional idea that often rule mining algorithms mine a lot of

unnecessary rules as a result of which they need pruning. We believe that that is the case only when

rule searches are brute force, such as combinatorial apriori search. Integrating contextual and structural

knowledge while mining patterns can result in finding a much better set of patterns from the get go. We
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sincerely hope that the reader takes note of this point, and we believe that this is the core essence of this

entire work.
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Figure 4.9: A plot of the number of rules generated with a variation in maximum time gap
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Figure 4.10: A plot of the error metrics with a variation in maximum time gap

4.6.3 Varying Maximum Time Gap

Fig. 4.9 records the variation in the number of rules used for rule application on varying maximum

time gap (δ), and Fig. 4.10 records the change in the error metrics when varying the same. With an

increase in δ, the number of generated rules increases. There is also a significant increase in forecasting

efficiency when changing δ from 0 to 1, which indicates the usefulness of introducing temporal relax-

ation. Interestingly, the forecasting accuracy seems to deteriorate afterwards. This experiment validates

our hypothesis, that mutually exclusive events happening close to each other need not follow any strict

order. However, we also find that this matters only when the events remain within an acceptable time

gap. Once we go beyond a certain limit, the number of patterns increases while MRR decreases.

Unlike the last experiment, we we can observe that the increase in the number of rules as compared

to increase in δ is nominal. This is consistent with the idea that the dataset has an even distribution of

facts over the temporal dimension. Another important observation is that initially, an increase in δ is not

followed by an increase in the number of rules. This makes sense since this parameter primarily affects
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the walks, which means that walks are found which range over a larger span of time, and thus they do

not find the minimum support to qualify for being converted to a rules.

The change in the error metrics initially follows the number of rules, but as explained in the previous

paragraph, that behaviour in anomalous, and in general an increasing δ is associated with a decrease in

forecasting accuracy. In fact, δ can be considered as a handy tool which lets us to arrive at a midpoint

between the two approaches of either being too strict temporally (e.g. TLogic), or completely disre-

garding temporal dynamics (e.g. static KG completion approaches). This, in our opinion, is the second

most important takeaway of this thesis, which is (also consistent with the real-world idea) that often a

compromise between two extreme views helps explain a concept better than either of them.
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Figure 4.11: A plot of the number of rules used for rule application with a variation in minimum support
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Figure 4.12: A plot of the error metrics with a variation in the minimum support

4.6.4 Varying minsup

Fig. 4.11 records the variation in the number of rules used for rule application on varying the min-

imum support parameter, and Fig. 4.12 records the change in the error metrics when varying the min-

imum support. Contrary to conventional beliefs, we observe that an increase in minsup almost always

leads to a decrease in the forecasting accuracy.

In conventional data mining tasks, having a minsup as low as 2 can lead to an explosion in the

number of spurious rules. However, in the case of link forecasting using our approach, this does not

seem to be the case. Even a minor increase in minsup leads to a decrease in model performance.
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Although we acknowledge that the runtime is quite large, it is acceptable for experimentation because

some parameters have been tweaked inorder to complete all the experiments in a reasonable amount of

time. Notably, this behavior is consistent with TLogic, where an increase in minsup led to a decrease

in the forecasting accuracy [30]. Subsequently, with increasing minimum support the performance gets

worse. Our final experiment reinforces an important overall takeaway from this work, which is that

conventional ideas need not always apply to every problem, and often seemingly unintuitive paths lead

to surprising discoveries.

4.6.5 Analysis of the generated rules

Table 4.5 shows a few of the rules generated by using TRKG-Miner on ICEWS14. The first three

rules are acyclic while the other three are cyclic rules. We can observe the existence of loops in the

cyclic rules (apart from the main loop formed by the rule head and the rule body). We can also observe

that the rule length varies among the cyclic rules only, and all the acyclic rules are of length 3. We

can also extract some inferences from the mined rules, which indicate the closeness between different

entities, which is quite consistent with the events happening in the real-world.

Table 4.5: Sample Rules generated from ICEWS14

Cooperate militarily (X1, X2, T1)← Use conventional military force (X0, X1, T0) ∧ Pro-

vide aid(X2, X3, T2)

Cooperate economically (X1, X2, T1) ← Impose embargo, boycott, or sanctions

(X0, X1, T0) ∧ Make a visit (X2, X3, T2)

Defy norms, law (X1, X2, T1)← Demand (X0, X1, T0) ∧ Accuse (X2, X3, T2)

Accede to demands for change in policy (X0, X1, T3) ← Retreat or surrender militarily

(X0, X1, T0) ∧ Make statement (X1, X2, T1) ∧ Accuse (X2, X1, T2)

Accuse (X0, X2, T3) ← Criticize or denounce (X0, X1, T0) ∧ Criticize or denounce

(X1, X0, T1) ∧ Accuse (X0, X2, T2)

Mediate (X0, X1, T1)← Host a visit (X0, X1, T0)

4.7 Summary

In this chapter we introduce TRKG-Miner, an improved rule-based link forecasting framework.

TRKG-Miner improves the forecasting efficiency by finding additional useful rules over previous ap-
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proaches. This is achieved because of two main improvements: (i) To better capture the irregular

occurrences of events within a time gap, we added time relaxation in the form of maximum time gap

(ii) Based on the principle that past events repeat themselves, we introduced and developed an algo-

rithm to generate Link-star rules, a special type of acyclic rules. Our experimentation indicates that we

achieve significantly better results than the past approaches. The next chapter concludes our thesis by

summarising our key contributions. We then acknowledge any potential limitations of the experiments

and suggests future research directions.
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Chapter 5

Conclusion

Temporal Knowledge Graphs find a wide range of applications in various fields. One of their most

significant applications is predicting future events. By analyzing the patterns and trends in temporal data,

temporal knowledge graphs can provide insights into what may happen in the future. TKGs are used for

real-world applications such as event-forecasting, medical data analysis, traffic congestion analysis, and

social network analysis. Formally known as Link forecasting, the problem of predicting future events

can be formulated as finding missing entities in a given query. This problem of link forecasting has led

to joint efforts from various domains, such as machine learning and graph theory.

In this thesis, we have carried out a discussion on approaching the problem of link forecasting in

temporal knowledge graphs. Notably, we identify and tackle the following research gaps: First, we ob-

serve that the number of rules generated by previous frameworks is too less because of strictly imposed

temporal constraints on both rule generation and rule application. To mitigate this we propose temporal

relaxation in the form of a parameter called the maximum time gap. Secondly, there is no provision for

finding acyclic rules, which often play a major role alongside cyclic rules in many applications. For

this we introduce Link-star rules, a special class of acyclic rules and use them for link forecasting. The

experimental results indicate that our framework is a substantial improvement over the past approaches.

We conclude that rule-based approaches are one of the best paradigms for link forecasting in TKGs.

From our discussion throughout this thesis, we can conclude that temporal relaxation and the use of

cyclic and acyclic rules positively impact link forecasting frameworks, and there is much scope for

real-world applications of rule-based systems in the future.

5.1 Limitations

While our study provides valuable insights into the topic at hand, several factors should be considered

when interpreting our findings. It is crucial to address these limitations to ensure our conclusions are not
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overgeneralized and to provide direction for future research. The following are two notable limitations

of our approach.

• Although our framework can handle large amounts of data, this comes at the cost of using a large

amount of resources in the form of high memory usage and high computation time.

• We are not using any entity-related contextual information, for example, the fact that USA is a

country, and typically it will not have links shared with, say, a farmer in Vietnam. These ideas are

captured only in an implicit but inefficient format via the means of temporal rules.

Although beyond the scope of this thesis, we present a few future directions for possible improve-

ments and extensions in the next section.

5.2 Future Work

Future extensions of our work can include the following:

• Frameworks that can perform link forecasting on datasets with heterogeneous timestamps. These

datasets contain timestamps where time gaps are a mix of seconds, minutes, days, or even months,

unlike the current work where the time gap is consistent, that is, one day.

• A framework could also be developed for handling time intervals (and not just timestamps), which

would mean dealing with a different type of data and developing rule generation and rule appli-

cation algorithms for it.

• There is scope for adding more complex variations of cyclic and acyclic rules to make a better

link forecasting framework.
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