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Abstract

In this work, we develop three (related) schemes to generate novel molecules based on a seed
molecule using an attentive captioning network. Input is the grid representation of the seed molecule,
which could be one of the following: voxelised grid of the seed molecule, a grid reconstructed grid
from it, or a sampled grid from it. The reconstructed grid is generated by passing the voxelised grid
to the variational autoencoder and the sampled grid is generated by conditioning the decoder phase of
the variational autoencoder on pharmacophoric requirements. The first scheme called ‘Direct Genera-
tion’ uses a RNN with the voxelised grid of the seed molecule as input to give an SMILES output of
generated molecule. The second and third schemes utilize an additional variational autoencoder (VAE)
to generate the grid which is used as input to RNN mentioned above in the subsequent step; the latent
space of this VAE is modelled as a Riemannian manifold attached with a metric which is learnt along
with the encoder and decoder networks of this VAE, which we name RHVAE. The second scheme,
named ‘Autoencoded Generation’, takes as input the seed molecules’ voxelised grid representation for
the encoder and its output along with the Remianian metric generates the latent space representation;
this latent space representation along with the pharmacophoric requirement conditions form inputs for
the decoder which outputs the ‘reconstruction grid’. In the third scheme, named ‘Sampled Generation’,
starts with a point (and its Remanian metric) randomly sampled from latent space distribution learnt
during training. This is evolved using either Hamiltonain Monte Carlo or Random Walk Monte Carlo,
and then the evolved point with pharmacophoric conditions is sent to decoder to generate a ‘sampled
grid’. In the subsequent step of Autoencoded Generation (Sampled Generation), this reconstructed grid
(sampled grid) is sent to RNN for obtaining the SMILES of generated molecules. Overall, we demon-
strate the generation of meaningful ligand shapes through the autoencoder network which can then be
passed to our attentive captioning network to generate novel molecules while requiring smaller data sets
for training while retaining the similar performance.
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Chapter 1

Introduction

The main focus of drug discovery and design is to find suitable candidates that can bind to some
target proteins, thereby altering their properties. The naive approach to do this is to screen the massive
chemical space and filter that down to a subset of compounds which are most likely to be active. But this
approach is computationally expensive. To enhance this approach, rapid identification of new drug leads
is done by assessing the interaction of a large library of small molecules and some target macromolecule.
This approach is referred to as virtual screening[1], a modern drug developement approach.

The chemical space is vast, a generative pipeline becomes much more suited for exploring it than
brute force search[10]. Some of the most popular generative methods involve RNNs[2], GANs [3]
and VAEs[4], transformers[46]. Past work has shown that generative models help in exploring the vast
chemical space in an efficient way.

RNNs have been effective in solving language specific tasks, and have been applied in the field of
molecular generation as well with SMILES string format used to represent the input molecule [5, 6].
However these approaches are limited in the sense that they can generate SMILES strings which do
not correspond to valid molecules. To improve upon this, better ways to learn the grammar have been
proposed [7, 8]. Bidirectional generative RNNs[9], in which the SMILE strings are grown in forward
and backward direction, improves the proportion of vaild SMILE strings generated. A VAE based
approach was proposed where the input molecules was encoded in a continuous latent space and decoded
back to it’s original discrete representation[10]. The aim was to explore the latent space to generate
molecules with desirable properties. Similar to this, a conditional variational autoencoder was used to
generate SMILES sequences conditioned on multiple molecular properties [12].To address the issue of
posterior collapse in VAE based molecular generation, an alternative loss formulation was proposed,
which corrected the underestimated reconstruction loss in prior works[11]. VAEs in conjunction with
molecular graph representations were proposed to generate novel molecules stepwise in the form of
molecular graphs[13, 14].

As a computational improvement, a flow-based VAE was suggested for molecular graph generation[15].
More recently, conditional β-VAE was proposed to generate novel molecules[16]. In particular, a recur-
rent, conditional β-VAE was used which disentangles the latent space to aid in the subsequent molec-
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ular optimization task for properties like pLogP, QED scores. Molecular graphs was also used along
with GANs for molecular synthesis[17]. To address the issue of mode collapse in GANs, valid sam-
ples from the generator were stored and used in further training of the model to increase the diversity
of molecules being generated[18]. More recent developments include MolGPT[46] which uses the
transformer-decoder model to perform the task of molecule generation from a scaffold molecule along
with required property conditions.

Reinforcement learning in conjunction with GANs was able to successfully generate novel molecules
satisfying desired properties [19, 20, 21, 22]. Recently, SELFIES[23] was introduced which generates
a string based representation of molecular graphs where each random string corresponds to a valid
molecule. To overcome the limitation of design of molecules based on known seed structures, generation
of compounds conditioned on a target protein sequence was proposed[24]. An equivariant diffusion
based model that was conditioned on 3D-protein pockets was able to generate novel, diverse ligands
with high binding affinity towards the protein pockets[25].

Apart from this, a Shape-Based Generative Modeling [26] was proposed which mapped the 3D grid
structure of a reference/seed molecule to a SMILES string. This work variationally designed multiple
molecules starting out from a seed molecule. It proposed a probabilistic sampling strategy to generate
a SMILES sequence based on the spatial features of the molecule and previous tokens in the sequence;
in this study, we use this study (called ShapeVAE) as a baseline. As an extension to this work, ligand
shapes were generated complimentary to a protein pocket which were then decoded using a captioning
network to get novel molecules[43].

Our proposed method involves three distinct approaches for generating novel molecules. The first
approach, named ‘Direct Generation’ involves generating output SMILES by passing the input grid
directly to our attentive captioning network. The second approach, named ‘Autoencoded Generation’
involves generating output SMILES by passing the reconstructed grid instead of the input grid to our
attentive captioning network. Finally, the third approach allows us to generate diverse set of SMILES
by sampling grids biased on some input pharmacophoric requirements and passing it to our attentive
captioning network. For sampling grids, two schemes are discussed in our work, namely Hamiltonian
Monte Carlo and Random Walk Monte Carlo. Our work discusses two pipelines: Riemannian Hamil-
tonian Variational AutoEncoder (RHVAE)[27] and Attentive Shape Captioning. The RHVAE pipeline
generates reconstructed version of the input grid. The Attentive Shape Captioning pipeline generates
output SMILES given some input grid; this is achieved by executing the attention mechanism at each
decode step of the shape captioning pipeline and choosing the optimal SMILES sequences through beam
search[28].
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Chapter 2

Theory

This chapter covers some of the mathematical concepts involved in a Riemannian Hamiltonian Vari-
ational Autoencoder. In our work, we use the Riemannian Hamiltonian Variational Autoencoder to
reconstruct and sample grids starting out from a seed molecule or some pharmacophoric conditions.

2.1 Hamiltonian Markov Chain Monte Carlo

In Hamiltonian Monte Carlo sampler(HMC)[47], the latent space variable z is assumed to be coming
from a Eucledian space and follow a target density π(z) derived from a potential U(z). The distribution
becomes:

π(z) =
e−U(z)∫
e−U(z̄)dz̄

(2.1)

where U(z) = − log π(z) At the time of training the network, it’s not possible to know beforehand what
π(z) is. So we introduce an additional random variable ρ ∈ Rd independent of z to sample on behalf
of z. This random variable is loosely referred to as the momentum and is sampled from ρ ∼ N (0,M),
where M is the mass matrix. We can then work with the extended distribution of variables (z, ρ) where
the distribution becomes:

π(z, ρ) =
e−H(z,ρ)∫

R2d e−H(z,ρ)dzdρ
(2.2)

where H(z, ρ) is the Hamiltonian.

H(z, ρ) = − log π(z, ρ) = − log π(z) +
1

2
log

(
(2π)d detM

)
+

1

2
ρTM−1ρ = U(z) + κ(ρ) (2.3)

Extending the idea of a physical system to the given equation, U(z) is the potential energy and κ(ρ)

is the kinetic energy. The evolution with time for (z(t), ρ(t)) is given by the following sets of equations:

δz

δt
=

δH

δρ
= M−1ρ (2.4a)

dρ

dt
= −∂H

∂z
= ∇z log π(z) (2.4b)
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The solution to the above set of partial differential equations 2.4 has to satisfy the following condi-
tions:

• Hamiltonian preservation i.e H(zt, ρt) = H(z0, ρ0).

• Volume preserving i.e the determinant of the Jacobian should equal 1.

• Time reversible.

To satisfy the given three conditions, a discretization scheme is used to get the approximate evolution
of z and ρ. In particular, Stormer-Verlet integrator is used to solve the set of PDEs.

ρ (t+ ϵ/2) = ρ(t)− ϵ

2
· ∇zH (z(t), ρ(t)) (2.5a)

z (t+ ϵ) = z(t) + ϵ · ∇ρ (H (z(t), ρ(t+ ϵ/2))) (2.5b)

ρ (t+ ϵ) = ρ(t+ ϵ/2)− ϵ/2 · ∇zH (z(t+ ϵ), ρ(t+ ϵ/2)) (2.5c)

where ϵ is the step size of the integrator. The integrator is run n times to sample the state (zn, ρn). This
state gets accepted with the probability of min

(
1, exp(−H(zn,ρn))

exp(−H(z,ρ))

)
. If the energy of the new sampled

state is higher than energy of the current state, the new state is rejected. Otherwise, it gets accepted. This
particular acceptance criterion creates minor fluctuations in energy, so approximately the Hamiltonian
is conserved. The integrator is also time reversible and volume preserving.

2.2 Applying HMC for a VAE

In a typical variational autoencoder, the true posterior distribution π corresponding to the encoder
network is hard to sample from directly as it’s time intractable. To overcome this, we can use the
following relation pθ(z|x) = pθ(x,z)

pθ(x)
∝ pθ(x, z) for every data point x of the data set. Since we

condition on x during sampling, pθ(z|x) effectively reduces to pθ(x, z) as we focus only on the sampling
of z. To sample z through an integrator scheme, we need to know the gradient of the distribution
pθ(z|x). By computing the gradient of the joint distribution pθ(x, z), we can also compute the gradient
of the true posterior distribution. Also, pθ(x, z) = pθ(x|z)qprior(z) where pθ(x|z) is the distribution
corresponding to the decoder network and qprior(z) is the prior distribution of the latent variables z.
The equation 2.3 with this new change now becomes:

Hx(z, ρ) = − log pθ(x, z, ρ) = Ux(z) +
1

2
log

(
(2π)d detM

)
+

1

2
ρTM−1ρ (2.6)

where the potential energy Ux(z) is equal to − log pθ(x, z), defined for each data point x of the data set.
Applying K iterations of the integrator 2.5, we get the values (zK , ρK). This particular transformation
of position and momentum can be defined by the following mapping:

Φ◦(l+1)
ϵ,x = Φ◦(l)

ϵ,x ◦ Φ◦(1)
ϵ,x (2.7)

4



where Φ
◦(l)
ϵ,x : Rd × Rd → Rd × Rd, Φ◦(0)

ϵ,x = Id.

In the Hamiltonian variational auto-encoder[47], the Stormer-Verlet integrator 2.5 was used along
with a tempering step[52] to sample (zK , ρK). For tempering, we start out from an initial temperature
β0 and update it iteratively according to the following equation:

√
βk =

((
1− 1√

β0

)
k2

K2
+

1√
β0

)−1

(2.8)

The momentum ρ is scaled down by a factor of
√

βk−1

βk
after each step k of the integrator. As per the

work [53], the reparametrization trick can’t be used when using the acceptance/rejection step. So this
step is skipped. Overall, this leads to an invertible transformation Ĥx which maps (z0, ρ0) ∈ Rd × Rd

to (zK , ρK) ∈ Rd ×Rd with each step k involving running the integrator 2.12 followed by a tempering
step.

2.3 Riemannian Hamiltonian Markov Chain Monte Carlo

Assuming the latent variables to be residing in a Riemannian manifold and the manifold being at-
tached with the metric G, the idea of Hamiltonian Markov Chain Monte Carlo can be extended to
Reimannian manifolds too as shown in [48][49]. The momentum is now sampled from N (0,G(z)) in-
stead of just sampling it from a constant matrix M . Using the earlier relations 2.3 2.6, we can compute
the Riemannian Hamiltonian as:

HRiem
x (z, ρ) = − log pθ(x, z, ρ) = Ux(z) +

1

2
log

(
(2π)d detG(z)

)
+

1

2
ρTG(z)−1ρ (2.9)

The kinetic energy κ is now a function of both z and ρ and based on equation 2.9 it becomes as
follows:

κ(z, ρ) =
1

2
log

(
(2π)d detG(z)

)
+

1

2
ρTG(z)−1ρ (2.10)

To get the Hamilton’s equations, we differentiate equation 2.9 to get the following set of equations
[49]:

δzi
δt

=
δHRiem

x

δρi
=

(
G−1(z)ρ

)
i

(2.11a)

dρi
dt

= −∂HRiem
x

∂zi
=

δ log πx(z)

δzi
− 1

2
tr

(
G−1 δG(z)

δzi

)
+

1

2
ρTG−1(z)

δG(z)

δzi
G−1(z)ρ (2.11b)

The integration scheme in equation 2.5 will not be volume preserving in this particular case as ρ is
not independent from z. A different integration scheme satisfying the three conditions was proposed
and is given by the following set of equations:

5



ρ (t+ ϵ/2) = ρ(t)− ϵ

2
· ∇zH

Riem
x (z(t), ρ(t+ ϵ/2)) (2.12a)

z (t+ ϵ) = z(t) +
ϵ

2
·
[
∇ρH

Riem
x (z(t), ρ(t+ ϵ/2)) +∇ρH

Riem
x (z(t+ ϵ), ρ(t+ ϵ/2))

]
(2.12b)

ρ (t+ ϵ) = ρ(t+ ϵ/2)− ϵ

2
· ∇zH

Riem
x (z(t+ ϵ), ρ(t+ ϵ/2)) (2.12c)

The equations 2.12 are referred to as the generalised leapfrog integrator, and it ensures the Hamilto-
nian preservation i.e H(zt, ρt) = H(z0, ρ0). As per [50][51], the integrator 2.12 is volume preserving
and time reversible. Similar to the Hamiltonian Variational Autoencoder[47], we get an invertible map-
ping ĤRiem

x which maps (z0, ρ0) to (zK , ρK). The key difference though is that the latent space is
assumed to have a non-euclidean structure in case of the Riemannian Variational Autoencoder, i.e z

is assumed to reside in a Riemmanian manifold attached with a metric G(z). Also, the generalised
leapfrog integrator is used instead of Stormer-Verlet integrator in case of Riemannian Variational Au-
toencoder. Similar to earlier, we remove the acceptance/rejection step which makes the mapping ĤRiem

x

differentiable, hence the reparametrization trick can be used.

2.4 Details about the metric

The metric G involved in the equation 2.9 is parameterized according to the following relation:

G−1(z) =
N∑
i=1

Lψi
LTψi

exp
(−||z − ci||22

T 2

)
+ λId (2.13)

where N is the number of samples, Lψi
are lower triangular matrices being learnt from the input

data points xi, T is the temperature and λ is the regularization factor. ci = µ(xi) are the mean of
the probability distributions associated with the latent variables z0i ∼ qϕ(z

0
i |xi) = N (µϕ(xi),Σϕ(xi)).

Lψi
can be learnt with the help of multilayer perceptron network that maps the data point xi to lower

triangular matrices Lψi
.
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Chapter 3

Methods

In the ‘Data’ subsection, the data sets used for training models are described. In the following
subsection ‘Featurization’, we describe the methodology used to generate the voxelized grid for the
seed molecule and the calculation of its pharmacophoric features that can be used for conditioning
the decoder network. Subsection ‘Models’ describes details on the variational autoencoder utilizing
Riemannian Geometry for latent space (called ‘RHVAE’) and recurring neural network (RNN) used
for generating novel molecules (called ‘Captioning Network’). In the subsection ‘Model Traning’, we
detail the some technical details of training the models. The final subection ‘Modes of Generation’ gives
details of the three proposed schemes for generating new compounds.

3.1 Data

Our models were trained on two independent sets of data randomly drawn from the ZINC-15[29]
database. The first set consisted of 8000 SMILES strings and the second set consisted of approximately
9.23 million SMILES strings. The first set was used to train the molecular shape generation task and
the second set was used to train the captioning task. For the purpose of evaluation, a test set of 53112
SMILES strings were drawn randomly. This set was independent from the previous two sets.

3.2 Featurization

The input SMILES string was converted to 3 dimensional conformers via RDKit[30] and optimized
using the MMFF94 force field[31]. The resulting molecular configurations were then featurized as 3D
grids. To convert molecules to a grid, each atom was assigned a type based on the following prop-
erty channels: hydrophobicity, aromaticity, H-bond donors, H-bond acceptors, and heavy atoms. The
contribution of each atom with van der Waals radius rvdw to a voxel is defined as follows:

n(r) = 1− exp
(
−
(rvdw

r

)12) (3.1)

7



where r is the Euclidean distance between the atom and the center of grid. These values were com-
puted on a fixed 24Å sized 3D cubic grid centered on the geometric center of the ligand. The grid
was discretized as 1Å sized voxels. Similar to the earlier work[26], three feature types were chosen
in the calculation of the pharmacophoric points: centers of aromatic rings, H-bond donors, H-bond
acceptors. These three feature types were passed as conditional inputs. To account for the lack of ro-
tation and translation invariance, the molecules were randomly rotated and translated before sending it
to the voxelisation routine for data enhancement. The molecules were voxelised using the moleculekit
framework[32].

3.3 Models

This section describes details on the variational autoencoder utilizing Riemannian Geometry for
latent space (called ‘RHVAE’) and recurring neural network (RNN) used for generating novel molecules
(called ‘Captioning Network’).

3.3.1 RHVAE network

The VAE model employed to generate autoencoded ligand shapes was derived from Riemann Hamil-
tonian Variational Autoencoder(RHVAE) [27]; the latent space of the VAE is modelled as a Riemannian
manifold (Rd, g) where d is the dimension of the manifold and g is the associated Riemannian metric.
The metric tensor G is described by the following equation:

G−1(z) =

N∑
i=1

Lψi
LTψi

exp
(−||z − ci||22

T 2

)
+ λId (3.2)

where N is the number of samples, Lψi
are lower triangular matrices being learnt from the input voxel

data, T is the temperature and λ is the regularization factor. ci = µ(xi) are the mean of the probability
distributions associated with the latent variables z0i ∼ qϕ(z

0
i |xi) = N (µϕ(xi),Σϕ(xi)). The VAE

model was trained on the following loss function:

LV AE(θ, ϕ) = Ez0i ∼qϕ(z0i |xi)
[
log

pθ(xi, z
k
i , ρ

k
i )

qϕ(z
0
i |xi)

]
(3.3)

where xi are the input voxel grids, (zki , ρki ) are the positions and the momentum calculated after pass-
ing the initial states (z0i , ρ0i ) to the generalized leapfrog integrator, the integrator being run k times.
log pθ(xi, z

k
i , ρ

k
i ) can be expanded to

log pθ(xi, z
k
i , ρ

k
i ) = log pθ(xi, z

k
i ) + log pθ(ρ

k
i )

= log pθ(xi|zki ) ∗ log pθ(zki ) + log pθ(ρ
k
i )

(3.4)

where x′i ∼ pθ(xi|zki ) (autoencoded voxel grids). Ez0i ∼qϕ(z0i |x)
[
log p(xi|zki )

]
is estimated using bi-

nary cross entropy loss since maximizing log likelihood of the expectation reduces to minimizing re-
construction error L(xi, x

′
i). Computing Ez0i ∼qϕ(z0i |xi)

[
log pθ(z

k
i )
]

and Ez0i ∼qϕ(z0i |xi)
[
log pθ(ρ

k
i )
]

is
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trivial as the variables zki , ρ
k
i are sampled from prior distributions N (0, Id) and N (0,G(z)) respec-

tively. By plugging these quantities in equation 3.4, the numerator in the loss function can be esti-
mated. Similarly, the denominator in the loss function can be estimated by taking the log likelihood of
qϕ(z

0
i |xi) ∼ N (µϕ(xi),Σϕ(xi)).

(zki , ρki ) can be defined by the following mapping: (zki , ρki ) = ĤRiemannian(z
0
i , ρ

0
i ), where ĤRiemannian

can be seen as normalizing flows with Riemannian Hamiltonian equations[27] applied to the initial state.
The Riemannian Hamiltonian equations for the current state (z, ρ) are as follows:

dzj
dt

=
∂HRiem

x

∂ρj
(3.5a)

dρj
dt

= −∂HRiem
x

∂zj
(3.5b)

where the Hamiltonian HRiem
x (z, ρ) is given by:

HRiem
x (z, ρ) = − log pθ(x, z, ρ)

= − log pθ(x, z) +
1

2
log

(
(2π)d detG(z)

)
+

1

2
ρTG−1(z)ρ

(3.6)

The RHVAE model consisted of three networks: A multilayer perceptron network to learn the matrix
Lψi

, an encoder network to learn the latent space variables z0i ∼ qϕ(z
0
i |xi) and a decoder network to

learn the reconstructed ligand shapes x′i ∼ pθ(xi|zki ). Figure 3.1 shows the RHVAE network pipeline
to get reconstructed grids starting out from the input grids of seed molecules.

3.3.2 Captioning Network

The shape captioning pipeline was derived from the image captioning networks, which outputs a
caption for a particular image. In particular, our network was inspired from Show, Attend and Tell [33]
which describes an attention based model that learns to describe the content of images. Figure 3.2 shows
the pipeline for generating molecules with the captioning network given some input grid xi.

First the grid representation of the molecule gets passed to the encoder layer. The encoder layer then
outputs the feature map of the input, a reduced representation of the input grid. At the time of training
the network, the feature map along with the SMILES representation of the input molecule gets passed
on to the decoder network as inputs (teacher forcing). But at the time of inference, only the feature map
is passed as input to generate molecules.

At each decode step, an attention-weighted encoding of the 3D grid is generated via the attention
network which tells the decoder network which spatial region of the grid it should focus on at a particular
timestep t. The attention-weighted encoding then gets passed through a gate. The gate is a function
of the decoder’s previous hidden state ht−1. The concatenated representation of the gated attention-
weighted encoding and the embedding of the previous token is passed to a LSTMCell to generate the
current hidden state ht. The hidden state ht then gets passed to a linear layer to generate scores for every
token of the vocabulary.

9
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Figure 3.1: RHVAE network pipeline to obtain the reconstructed grid x′i starting out from the input grid

xi of the seed molecule. Lψi
, qϕ(z0i |xi), pθ(xi|zki ) represent the Reimannian metric, the encoder net-

work and the decoder network of the VAE respectively. The decode phase of the network is conditioned

on prior pharmacophoric requirements to get the output grid.

At the time of inference, the molecules are generated through the decode phase of the captioning
network(see Figure 3.2). The decode phase generates a token St at each step and terminates when
an end token gets selected as the output token. All tokens except for the end token are concatenated
sequentially to get the output SMILES. To predict a diverse set of molecules similar to the seed molecule,
beam search is used. This allows us to keep track of top k(beam size) SMILES strings at each timestep
t, which then get passed on to the subsequent timesteps. At each timestep t, combination of the top k

strings at timestep t − 1 with the k generated tokens is considered. These combinations are sorted out
by the additive scores and top k strings gets picked for the next step. At the end of a beam search, we
get k number of molecules per seed molecule sorted by their scores.

The captioning network is trained on a sum of 2 terms: a crossentropy loss to minimize the distance
between target and input and a ”doubly stochastic regularization” to encourage the model to pay equal
attention to each spatial region of the grid.

Lcaption = − 1

N

N∑
i=1

C∑
j=1

yij log(pij) +
λ

N

N∑
i=1

∑
v

(1−
T ′∑
t

αitv)
2 (3.7)

In the above equation, i spans the minibatch dimension, C is the number of tokens in the vocabulary,v
spans the voxel grid dimension, T ′ is the number of timesteps, α are the weights outputted by the
attention network and λ is a regularization parameter.

The captioning network comprises of an encoder and a decoder. The encoder was based off on the
VGG-16[34] adapted to the 3D inputs. The decoder network was an attentive RNN network.

3.4 Model Training

Both the networks(RHVAE and captioning network) were optimized with the ADAM optimizer[35]
using following momentum parameters: β = (0.9, 0.999). A batch size of 16 and a learning rate of 10−4
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Figure 3.2: Compound generation pipeline via the captioning network at the time of inference. The

tokens St generated at each timestep t are concatenated (barring the < END > token) to get the output

SMILES string.

was picked for the RHVAE network. For the captioning network, the values were 128 and 10−3. The
RHVAE network and the captioning network were trained for 25000 and 40000 iterations respectively.
The training took approximately a day on a single NVIDIA GeForce GTX 1080Ti GPU for each of the
models. The code was written in PyTorch[36] deep learning framework. The details of the architecture
and the hyperparameters used for the networks can be found in the Supporting Information.

3.5 Modes of generation

3.5.1 Direct Generation

This method is used to generate molecules which are minor modifications of the seed molecule. The
seed molecule is converted to a 3D conformer, which then gets converted to a voxelised grid. This
voxelised grid gets passed to the encoder network, whose output is then passed to the decoder network
to generate SMILES strings(see Figure 3.2). We note that that different grid representations of the same
input molecule can result in different SMILES input.

3.5.2 Autoencoded Generation

This method is used to introduce relatively bigger changes in the seed molecule, similar to the earlier
work[26]. The autoencoded representation of the input voxel grid is used as input for the captioning
network instead of directly feeding the input grid (which is named direct generation in the above sub-
section). The autoencoded voxel grid(generated in Figure 3.1) is computed by passing the input grid to
the RHVAE network along with the pharmacophoric points. This autoencoded voxel grid gets passed to
the captioning network to generate SMILES strings.
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3.5.3 Sampled Generation

All the earlier works for compound generation modelled the latent space as a prior distribution to
generate new compounds. This approach is not always optimal since the prior may represent the latent
space poorly. Also, when working with smaller datasets, sampling this way can result in outputs that
are not meaningful. To address these limitations, we discuss a recently proposed approach: Hamiltonian
Monte Carlo[37] and Random walk Monte Carlo to sample data from the latent space. In this study,
the initial position for MCMC sampling is not obtainied by running the encoder phase of RHVAE, but
it is sampled randomly from the the encoded distribution of latent variables; the encoded distribution is
obtained from the distribution formed during the training phase. Both these methods involve evolving
the position z using classic MCMC sampling, but use a different Hamiltonian function for the dynamics.
The evolved z along with the pharmacophoric requirements is passed to the decoder network pθ of the
RHVAE to get the sampled grid(see decoder phase of Figure 3.1). This sampled grid gets passed to the
captioning network to generate SMILES strings.

Hamiltonian Monte Carlo (HMC): Instead of sampling from a prior distribution to generate new
samples, we use Hamiltonian Monte Carlo sampler to sample z. This is done so as to better capture the
intrinsic latent structure of the data. Given a random variable v ∼ N(0, Id) independent from z, we
use Hamiltonian dynamics to update the values for z. z and v can be loosely referred to as the position
and velocity of a physical system with the potential energy U(z) and kinetic energy K(v) given by the
following equations:

U(z) = − log ptarget(z) (3.8a)

K(v) =
1

2
vT v (3.8b)

The sum of these energies gives us the Hamiltonian H(z, v)[37]

H(z, v) = U(z) +K(v) ∝ −1

2
log detG−1(z) +

1

2
vT v (3.9)

The evolution of (z(t), v(t)) is given by the following equations:

dzj
dt

=
∂H

∂vj
(3.10a)

dvj
dt

= −∂H

∂zj
(3.10b)

To sample from the target density function ptarget, MCMC sampling scheme is employed. Given
zn0 , the current state of the Markov chain (zn), an initial velocity v0 is sampled from N(0, Id). The
leapfrog integrator is run l times to get the state (znl , vl). The proposed state znl is then accepted with

the probability α = min

(
1,

exp(−H(znl ,vl))
exp(−H(zn0 ,v0))

)
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Random Walk Monte Carlo (RWMC): In this approach, we compute the trajectory for the po-
sition z and momentum ρ through Hamiltonian dynamics. The trajectory is computed for some fixed
number of steps. The evolution of (z(t), ρ(t)) is given by the following equations:

dzj
dt

=
∂H

∂ρj
(3.11a)

dρj
dt

= −∂H

∂zj
(3.11b)

The following system of PDE is approximated through the following equations:

ρ (t+ ϵ/2) = ρ(t)− ϵ

2
· ∇zH (z(t), ρ(t)) (3.12a)

z (t+ ϵ/2) = z(t) +
ϵ

2
· ∇ρH (z(t), ρ(t)) (3.12b)

ρ (t+ ϵ) = ρ(t)− ϵ · ∇zH (z(t+ ϵ/2), ρ(t+ ϵ/2)) (3.12c)

z (t+ ϵ) = z(t) + ϵ · ∇ρH (z(t+ ϵ/2), ρ(t+ ϵ/2)) (3.12d)

The equation for calculating the Hamiltonian H(z, ρ)

H(z, ρ) =
1

2
ρTG−1(z)ρ (3.13)

The leapfrog integrator is run l times to get the final state of the position and momentum trajectory. The
random walk is simulated by running the MCMC for a fixed number of steps. The proposed state znl is

accepted with the probability α = min

(
1,

√
detG−1(znl )√
detG−1(zn0 )

)
where zn0 is the initial state after completion

of n steps.
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Chapter 4

Results and Discussions

In this section, we discuss the results from three different modes of generating novel compounds
starting out from a seed compound or some pharmacophore conditions. The test set of 53112 ligands
was used in two of the generation tasks: direct generation and autoencoded generation. The earlier work
is referred as ShapeVAE[26] in the upcoming sections.

4.1 Direct Generation:

For direct generation of molecules, a beam size of k = 5 was taken i.e for each seed molecule five
SMILES strings were generated via the captioning network. Out of the 53112 ∗ k = 265560 SMILES
strings generated, 25192 were invalid (9.48%) according to the default parser present in RDKit. Filtering
out the duplicates among all valid strings, we were able to generate 238545 (89.82%) unique SMILES
strings. To study the similarity to the seed molecule, mean Tanimoto similarity of Morgan fingerprints
was calculated among the k generated valid structures.

Figure 4.1 shows the distribution of the mean similarity of generated molecules to the seed molecule
and the absolute difference in property counts for the following properties: Aromatic, H-bond accep-
tor/donor. Out of all the generated compounds, 91.888%, 64.07% and 88.59% of them had the same
property count as the seed molecule for the aromatic, H-bond acceptor and H-bond donor properties
respectively. The model was able to retrieve the same property count most of the times except for the
case of H-bond acceptor groups where same property count was harder to achieve. The generated com-
pound was rarely ever the same as the seed molecule, demonstrating that our captioning network was
not overfit during the training phase.

4.2 Autoencoded Generation

Similar to direct generation, beam size k = 5 is used for the autoencoded generation of molecules.
For calculating similarity of the generated compounds to the seed molecule, the compound with the
maximum Tanimoto similarity is picked. In Figure 4.2, we can observe the peak for Tanimoto similarity
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Figure 4.1: Statistics of the generated molecules using the direct method.(left) Mean Tanimoto similarity

between the generated molecules and the seed molecule.(right)Absolute difference in property counts

between the generated molecule and the seed molecule.

is around 0.33 for our work and 0.26 in the earlier work. 91.5%, 46.9% and 75.3% of all the generated
compounds had the same property count for the aromatic, H-bond acceptor and H-bond donor properties
respectively(Figure 4.3, right). For the earlier work, following values were observed: 95.9%, 47.02%,
75.51%(Figure 4.3, left). In both the cases, we observe that H-bond acceptor count was the toughest to
retrieve.

4.3 Sampled Generation

In case of ShapeVAE, when passing the pharmacophoric points along with a random z, the generated
shapes were not meaningful. The shape surfaces generated either had negligible overlap with the phar-
macophoric points or no spatial points were generated corresponding to the pharmacophoric conditions.
In comparison to this, RHVAE was able to efficiently sample ligand shapes conditioned on the pharma-
cophoric points through three sampling schemes: HMC, Random Walk Monte Carlo and prior sampling.
Figure 4.5 shows the similarity of the sampled voxel array to the pharmacophoric points(Jaccard index)
for the following three channels: Aromatic, H-Acceptor and H-Donor. The sampled ligand shapes had
a reasonable similarity with the pharmacophoric points in all of the three sampling methods. Figure
4.6 shows an example of the compounds generated through the three sampling methods given some
input pharmacophoric points. We observed that HMC and prior sampling had better retention of the
pharmacophoric requirements relative to RWMC sampling, which introduced more randomness in the
generated molecules.
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Figure 4.2: Tanimoto similarity between the generated molecules and the seed molecule for Shape-

VAE(yellow) and RHVAE(blue). The reconstructed grid along with the pharmacophoric requirements

were passed to the captioning network to generate molecules.
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Figure 4.3: Comparison of absolute difference in property counts between the generated molecule and

the seed molecule with the left plot showing ShapeVAE and the right plot showing RHVAE. The re-

constructed grid along with the pharmacophoric requirements were passed to the captioning network to

generate molecules.

Figure 4.4: Jaccard index comparison between RHVAE(blue), ShapeVAE trained on a reduced dataset of

8000 ligands(green), ShapeVAE on the original dataset(yellow). Jaccard index was computed between

the input grid and the reconstructed grid for all 5 channels. A threshold of 0.75 was used to evaluate the

index.

17



Figure 4.5: Jaccard index comparison between different sampling methods(RHVAE). Jaccard index was

computed between the input grid and the sampled grid for aromatic, H-bond Acceptor and H-bond donor

channels. A threshold of 0.75 was used to evaluate the index.

4.4 Strengths and Limitations

Our RHVAE model was able to efficiently reconstruct ligand shapes from a small training set of 8000
molecules. This is in contrast to the earlier work, where the VAE network was trained in conjunction
with the captioning network on 26.88 million molecules. To highlight the strength of our RHVAE
model, the VAE model of the earlier work was trained independently on the same dataset of 8000
molecules used by our model. In Figure 4.4, we can see that the jaccard index for the following channels:
Hydrophobic, Aromatic and Occupancy were significantly lower in case of Reduced ShapeVAE (trained
on our reduced dataset of 8000 molecules) in comparison to our RHVAE model. The jaccard index
for the RHVAE model was slightly lesser than the ShapeVAE(trained on 26.88 million molecules) for
all the channels. This is acceptable because the RHVAE model was trained on a significantly lesser
number of examples: 8000 in comparison to 26.88 million examples for ShapeVAE. Apart from this,
the RHVAE model was able to efficiently sample in latent space through different sampling methods
discussed earlier. In case of ShapeVAE, sampling in latent space didn’t yield meaningful shapes.

In case of Reduced ShapeVAE, the shapes generated via reconstruction/sampling had a high rate
of generating invalid strings when passed to the captioning network since the VAE was not able to
reconstruct the input shape effectively. Our method overcomes this limitation as our captioning network
despite being trained independently from the RHVAE network was still able to generate valid SMILES

18



(a) Pharmacophore Conditions (b) Hamiltonian Monte Carlo

(c) Random Walk Monte Carlo (d) Prior

Figure 4.6: Some of the molecules generated using HMC, Random Walk Monte Carlo and Prior sam-

pling given some input pharmacophore conditions (aromatic rings, H-bond acceptor and H-bond donor

channels in pink, yellow and orange respectively).

strings at a high rate when passed the reconstructed shapes. This shows that the shapes reconstructed
were meaningful.

Our work offers multiple ways of generating molecules, namely direct generation, autoencoded gen-
eration and pharmacophoric generation but is still limited because all these methods require some in-
formation of the ligand as input. For example, when sampling ligand shapes, we need to feed pharma-
cophoric points as conditional input to the decoder model. Removing the pharmacophoric information
from the decoder model leads to loss of information in H-bond acceptor and H-bond donor channels.
We attribute this problem to the sparse nature of the input grid. An extensive hyperparameter search and
using a alternate loss formulation[38, 39] might overcome this limitation.

4.5 Choice of the latent dimension

When training a VAE model, the size of the latent code becomes crucial. We observe that increasing
the latent dimension aided in the reconstruction process of the ligand shape but it came at the cost
of introducing numerical instability when sampling. This was because the determinant of the inverse
metric G−1(z) collapsed to 0 and computing G(z) became infeasible. To overcome this, we chose a
low dimensional latent code of d = 10 to aid in sampling from the latent space. This led to a slight
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increase in the reconstruction error but enabled us to generate compounds through various sampling
methods.

4.6 Evaluation on DUDE Dataset

In this section, we evaluate the model performance on the DUDE dataset[40]. In particular, we com-
pare performance of the earlier work and our work on 482 known actives for adenosine A2A receptor
(AA2AR set). For each of these 482 seed molecules, upto 10 compounds were generated by passing
autoencoded ligand shapes to the captioning network. The comparison was done on the following prop-
erties: logP [41], quantitative estimate of drug-likeness (QED)[42], similarity to the seed molecule and
mean similarity within the generated molecules per seed molecule. Figure 4.7 shows the plots for these
properties. We observe the distribution of the properties is similar for ShapeVAE and RHVAE. This
shows that our RHVAE model was efficient at reconstructing ligand shapes even though it was trained
on a significantly smaller training set of 8000 ligands.
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Figure 4.7: Comparison of properties of generated molecules starting out from 482 known actives for

adenosine A2A receptor. For each of the actives, upto 10 molecules were generated and the property

calculations were done on this.
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Chapter 5

Conclusion

In this work, we developed three methods to generate molecules, namely direct generation, autoen-
coded generation and sampled generation via HMC/RWMC sampling (see Software Availibility and
training data chapter for code and data availability). The three discussed methods allowed us to gener-
ate novel molecules with desirable properties starting out from some grid representation of a molecule.
Our approach used Reimannian Hamiltonian Varitional Autoencoder along with an attentive captioning
network to generate various molecules, similar in properties of the seed molecule. The autoencoder
network used in our work was able to efficiently reconstruct grids, even though it was trained on a small
dataset. This was a major improvement from the earlier work[26], where the autoencoder network
was jointly trained with the captioning network on a significantly larger dataset. Apart from this, our
autoencoder network was also efficient at sampling grids as they had a decent overlap with the pharma-
cophoric requirements, again an improvement from the earlier work[26] where the sampled grids were
not meaningful.

Even though our proposed method allows us to generate a diverse set of novel molecules, it still
has limitations. For example, it uses only information of ligands for the drug discovery process. As
an improvement to this, we could generate ligand shapes conditioned on the protein pocket[43]. As an
extension to the current work, we could train an optimizer to predict properties of molecules given the
latent code z as input; this would allow us to traverse the continuous latent space to find latent repre-
sentations corresponding to molecules with the optimal properties. Chemical VAE[10] used Bayesian
optimization to find the optimal latent codes that correspond to molecules with a high drug-likeness and
synthetic accessibility. Conditional β-VAE[16] used Molecular Swarm Optimization[45] to optimize
properties like pLogP, QED with a reduced latency compared to Bayesian optimization. Future work
will incorporate these models into the proposed method in this work. Another limitation of this work is
that the captioning network maps the three dimensional grid to a SMILES string, thereby abandoning
the three dimensional information of the ligand. Recent works [44] have proposed ways to generate 3D
molecular structures conditioned on a receptor’s binding site to address this shortcoming. Coupling the
sampling schemes discussed in our work with this can be a direction for future work.
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Chapter 6

Supporting Information

6.1 Model Architectures

The attention block of the captioning network consists of 3 linear layers. The first two linear layer
transform the encoded image(feature map)(N, 243,encoder dimension) and the hidden state to the same
output dimension i.e the attention dimension. The outputs of these layers are then added and passed
through ReLU activation. This then gets passed to a final linear layer that transforms the output to a
dimension of 1, which then gets passed to a softmax layer to generate the weights alpha.

The attention-weighted encoding is generated with weights alpha at each time step t. The attention-
weighted encoding then gets passed through a sigmoid activated gate. The gated attention-weighted
encoding along with the embedding of the previous word gets passed to a LSTMCell to get the new
hidden state. A final linear layer transforms the hidden state output dimension to the vocab size. The
hidden state is initialised through a linear layer transforming the input encoder dimension to the hidden
state dimension.
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6.1.1 Hyperparameters

Table S1: Captioning Network Hyperparameters

Parameter name Value

Encoder dimension 128

Initial layer input, output dimension (128,512)

Embedding dimension 512

Hidden state dimension 512

Attention dimension 512

Gate input, output dimension (512,128)

LSTMCell input, output dimension (640,512)

Vocab size 29

Table S2: RHVAE Hyperparameters

Parameter name Value

Latent dimension(d) 10

Temperature(T ) 1.5

Regularization factor(λ) 0.01

Number of steps(nlf ) 3

Step size(ϵlf ) 0.001
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Figure S2: RHVAE Network consisting of a Metric MLP, an encoder and a decoder.
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6.2 Loss Plots

Figure S3: (Above) Training loss of the captioning network plotted against number of iterations passed.

(Below) Training loss of the RHVAE network plotted against number of iterations passed.

27



6.3 Direct Generation

Figure S4: Examples of Direct Generation where seed molecule is shown above and the generated

molecules are shown below it.
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6.4 Autoencoded Generation

Figure S5: Examples of Autoencoded Generation where seed molecule is shown above and the gener-

ated molecules are shown below it.
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6.5 Sampled Generation

6.5.1 Hamiltonian Monte Carlo

Figure S6: Examples of compounds generated through HMC sampling where the sampled grid (Occu-

pancy, H-bond acceptor and H-bond donor channels in yellow, pink and blue respectively.) is shown

above and the generated molecules are shown below it.
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6.5.2 Random Walk Monte Carlo

Figure S7: Examples of compounds generated through Random Walk Monte Carlo sampling where

the sampled grid (Occupancy, H-bond acceptor and H-bond donor channels in yellow, pink and blue

respectively.) is shown above and the generated molecules are shown below it.

31



6.5.3 Prior

Figure S8: Examples of compounds generated through prior sampling where the sampled grid (Occu-

pancy, H-bond acceptor and H-bond donor channels in yellow, pink and blue respectively.) is shown

above and the generated molecules are shown below it.
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Software Availibility and training data

The source for running the RHVAE and the captioning network can be found at the following
git repository: https://github.com/shikhar2333/3-way-de-novo-generation. The
training data is available on the Zenodo Website: https://zenodo.org/record/7007889.
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