
Design and Implementation of Efficient Personal

Health-Records Sharing in IoMT using Searchable

Symmetric Encryption, Blockchain and IPFS

Thesis submitted in partial fulfillment

of the requirements for the degree of

(Master of Science in Computer Science and Engineering by

Research)

by

ABHISHEK BISHT

2021202014

abhishek.bisht@research.iiit.ac.in

International Institute of Information Technology

Hyderabad - 500 032, INDIA

February 2024

Copyright © ABHISHEK BISHT, 2024

All Rights Reserved

International Institute of Information Technology

Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Design and Implementation of

Efficient Personal Health-Records Sharing in IoMT using Searchable Symmetric Encryp-

tion, Blockchain and IPFS” by Abhishek Bisht, has been carried out under my supervision

and is not submitted elsewhere for a degree.

Date Adviser: Dr. Ashok Kumar Das

Dedicated to my family

Acknowledgments
The completion of this MS thesis would not have been possible without people who

guided and supported me directly and indirectly throughout my MS journey. I take this

opportunity to thank and acknowledge them sincerely.

I am deeply grateful to my MS advisor, Dr. Ashok Kumar Das, who guided and

supported me by providing timely and valuable feedback on my work. With his constant

guidance and support, the completion of this thesis became possible.

Next, I would like to thank my parents and family for their unconditional support

throughout the duration of my MS program. Without them, this accomplishment would

not have been possible.

I am also thankful for the support from the senior students under Dr. Ashok Kumar

Das and the Center for Security Theory and Algorithmic Research Teaching staff, who

helped me complete my thesis work.

Lastly, I am sincerely grateful to all the non-teaching staff of the International

Institute of Information Technology, Hyderabad, especially the staff of Kadamba Niwas

and Kadamba Mess, for their support.

Place : IIIT Hyderabad Abhishek Bisht

MS Student

Date: Roll No. 2021202014

Center for Security, Theory and Algorithmic Research

International Institute of Information Technology

Hyderabad 500 032, INDIA

Abstract

In this thesis, we focus on the secure storage and sharing of Personal Health Records

(PHRs) in Internet of Medical Things (IoMT). Due to the high value of personal health

information, PHRs are one of the favorite targets of cyber attackers worldwide. Over

the years, many solutions, including those based on blockchain, have been proposed;

however, most solutions are inefficient for practical applications. For instance, several

existing schemes rely on bilinear pairings, which incur high computational costs. To

mitigate these issues, we propose a novel PHR-sharing scheme that is dynamic, efficient,

and practical. Specifically, we combine searchable symmetric encryption, blockchain

technology, and a decentralized storage system known as the Inter-Planetary File System

(IPFS) to guarantee the confidentiality of PHRs, verifiability of search results, and

forward security. We start by introducing cloud and blockchain and then provide a

detailed literature survey of existing works that make use of these technologies for storage

and sharing of health records. We then propose our own scheme which provides better

security and better efficiency than existing schemes for storage and sharing of PHRs.

Moreover, we provide formal security proofs for the proposed scheme and also provide

extensive test-bed experimental results which demonstrate that the proposed scheme can

be used in practical scenarios related to the IoMT environment.

Keywords: Healthcare system, Searchable encryption, Blockchain, Cloud computing,

Personal Health Records (PHRs), Secure storage, Security, Internet of Medical Things

(IoMT), Inter-Planetary File System (IPFS) decentralized storage.

Dissemination of Work

Chapter #3.

Abhishek Bisht, Ashok Kumar Das, and Debasis Giri. “Personal Health

Record Storage and Sharing using Searchable Encryption and Blockchain: A

Comprehensive Survey,” in Security and Privacy (Wiley), 2023, DOI:

10.1002/spy2.351. (2022 SCI Impact Factor: 1.9)

Chapter #4.

Abhishek Bisht, Ashok Kumar Das, Dusit Niyato, and YoungHo Park. “Ef-

ficient Personal-Health-Records Sharing in Internet of Medical Things using

Searchable Symmetric Encryption, Blockchain and IPFS,” in IEEE Open

Journal of the Communications Society , Vol. 4, pp. 2225-2244, 2023,

DOI: 10.1109/OJCOMS.2023.3316922. (2022 SCI Impact Factor: 7.9)

Contents

1 Introduction 1

1.1 Cloud computing . 2

1.1.1 On-demand services . 3

1.1.2 Scalability and elasticity . 3

1.1.3 Multi tenancy . 4

1.1.4 High availability . 5

1.1.5 Infrastructure as a Service (IAAS) 6

1.1.6 Platform as a Service (PAAS) . 6

1.1.7 Software as a Service (SAAS) . 7

1.2 Blockchain . 7

1.2.1 Consensus algorithms . 9

1.2.2 Types of blockchain . 10

1.2.3 Smart contract . 11

1.2.4 Advantages of blockchain . 12

1.3 Searchable encryption . 12

1.4 Personal health records . 13

1.5 Internet of Medical Things (IoMT) . 14

1.6 Inter-Planetary File System (IPFS) . 15

1.7 Motivation and objective of the work . 15

1.8 Summary of contributions . 16

2 Mathematical Background 19

2.1 Preliminaries . 19

2.1.1 Pseudo random generator . 19

2.1.2 Pseudo random function . 20

2.1.3 Bilinear maps . 20

ii CONTENTS

2.1.4 Collision resistant hash functions 21

2.1.5 Bloom filters . 22

2.1.6 Standard blockchain model . 22

2.1.7 Dictionary . 23

2.1.8 Inter-Planetary File System (IPFS) 23

2.1.9 Hyperledger sawtooth . 23

2.1.10 Merkle-Radix (MR) tree . 25

2.1.11 Elliptic curve integrated encryption scheme (ECIES) 27

2.1.12 AES-OCB3 . 28

2.2 Summary . 29

3 Literature Survey 31

3.1 Existing surveys . 31

3.2 Related works . 34

3.2.1 Searchable encryption . 34

3.2.2 Blockchain-based SE schemes . 37

3.2.3 PHR sharing using blockchain . 38

3.2.4 PHR sharing using SE and blockchain 38

3.2.5 Important observations . 39

3.3 Searchable encryption in detail . 40

3.3.1 System models for SE . 40

3.3.2 Cryptographic primitives for SE . 42

3.3.3 Security models for SE . 44

3.3.4 Attacks on SE schemes . 46

3.3.5 Threat model . 47

3.4 Existing schemes for PHR sharing . 48

3.4.1 Existing schemes . 49

3.4.2 Comparative study . 55

3.5 Summary . 56

4 Personal-Health-Records Sharing in IoMT 57

4.1 System model . 57

4.2 Proposed scheme . 61

4.2.1 Definitions . 61

4.2.2 Overview . 62

CONTENTS iii

4.2.3 Phases . 64

4.3 Security analysis . 75

4.3.1 Threat model . 75

4.3.2 Security definitions . 76

4.3.3 Security claims . 78

4.3.4 Security against other attacks . 82

4.4 Performance evaluation . 85

4.5 Theoretical analysis . 85

4.6 Test-bed setup and organization . 86

4.6.1 Experimental results . 87

4.6.2 Comparative analysis . 93

4.7 Summary . 94

5 Conclusion and Open Research Challenges 95

5.1 Research contributions . 95

5.2 Open research problems . 95

5.3 Future works . 96

5.3.1 Support for parallelization . 96

5.3.2 Conjunctive multi-keyword search support 96

List of Figures

1.1 Various applications of blockchain (Adopted from [1]) 8

2.1 Hyperledger sawtooth architecture (Adopted from [2]) 24

2.2 Merkle Radix tree used in hyperledger sawtooth (Adopted from [3]) 26

3.1 Searchable encryption without blockchain 41

3.2 Searchable encryption with blockchain (Type 1) 42

3.3 Searchable encryption with blockchain (Type 2) 43

4.1 System model . 58

4.2 Flowcharts for PHR generation and keyword search 63

4.3 PHR generation sequence diagram . 66

4.4 A single entry of the conceptual encrypted index 67

4.5 Search process . 74

4.6 Implementation of simulator . 80

4.7 Experimental setup 1 . 83

4.8 Experimental setup 2 . 84

4.9 Logs output - PHR addition . 84

4.10 Logs output - Keyword search . 85

4.11 Experimental setup organization . 87

4.12 Experiment 1: Results . 88

4.13 Experiment 2: Results . 90

4.14 Experiment 3: Results . 90

4.15 Experiment 4: Results . 91

4.16 Experiment 5: Results . 92

4.17 Experiment 6: Results . 92

List of Tables

1.1 Comparative study among various blockchain consensus protocols [4] . . . 11

3.1 Abbreviations . 32

3.2 Existing surveys . 34

3.3 Features comparison of various blockchain-based EHR sharing schemes . . 56

4.1 Notations and their definitions . 60

4.2 Communication cost . 86

4.3 Timings of core operations . 89

4.4 Comparison of security and functional features 93

4.5 Time complexity comparison . 94

Chapter 1

Introduction

Blockchain has been one of the most popular technologies over the past decade and has

found applications in broad areas far from its first application - cryptocurrency. One such

area is searchable encryption, which aims to provide an efficient and secure encryption

mechanism to allow authorized users to search over the data encrypted by the data owner

and stored on a remote storage such as the cloud. Searchable encryption has various

applications, one of which is tied to health care. Hospitals prefer to store patients’ health

records digitally because it allows efficient management and quick information retrieval.

However, maintaining local storage for high-volume data is a non-trivial and expensive

task. Hence, outsourcing the data to third-party storage providers is the preferred way to

store the records. But again, outsourcing the records as plain text to some storage service

provider is a direct breach of privacy as the third-party service provider cannot be trusted.

Therefore, health records are typically encrypted and then stored on remote storage at

the expense of efficient information retrieval. A significant advantage of electronic health

records is lost due to a lack of query functionality over encrypted data. This is where

searchable encryption comes into play, which lets users query encrypted data securely.

Moreover, the cloud, a traditional storage medium, has a disadvantage in that the

cloud server needs to be trusted against any dishonesty, such as returning false data for

cost savings. To counteract this issue, various existing works [5, 6, 7, 8], have incorporated

blockchain as a mechanism to detect dishonest behavior by cloud service providers. In

some instances, the entire cloud server has been replaced by a distributed blockchain net-

work, storing health records as transactions. In the blockchain environment, transactions

are immutable, and the validity of any block can be easily verified. This characteristic

2 Introduction

ensures that health records stored in the form of transactions on the blockchain network

remain tamper-proof, addressing concerns related to data integrity and security.

In this chapter, we describe the various technologies mentioned above in detail, so that

the subsequent discussion of the application of SE and blockchain in healthcare become

easier to understand.

1.1 Cloud computing

Cloud computing is the practice of delivering computing resources such as computing,

storage, databases, network and analytics through a pay-as-you-go model over the internet

without managing or setting up physical infrastructure [9]. It is an on-demand provision

of services by cloud service providers, such as “Amazon Web Service (AWS)”, “Microsoft

Azure”, “Google Cloud Platform”, and “IBM Cloud Services” to the users with a service

level agreement(SLA) to ensure robust delivery of resources.

According to the “National Institute of Standards and Technology (NIST), USA”,

cloud computing can be defined as follows [10]:

“A model for enabling ubiquitous, convenient, on-demand network access to a

shared pool of configurable computing resources (e.g., networks, servers, stor-

age, applications, and services) that can be rapidly provisioned and released

with minimal management effort or service provider interaction.”

This cloud model consists of five necessary characteristics - on-demand self-service, broad

network access, resource pooling, rapid elasticity and measured service; four deployment

models - public cloud, private cloud, community cloud and hybrid cloud; and three service

models - Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as

a Service (SaaS).

Cloud Computing is a cost-effective and reliable solution for those who want to reduce

the hassle of physically setting up the whole infrastructure. It is highly scalable within no

time. Based on consumption, users can increase the resources within a couple of minutes.

Moreover, with cloud resources, security is also taken care of by Cloud Service Providers

(CSPs).

Following are the characteristics of cloud computing listed in detail.

1.1 Cloud computing 3

1.1.1 On-demand services

Cloud on-demand service typically refers to cloud computing services available for imme-

diate usage as needed without requiring a long-term commitment or upfront investment.

In other words, it is a pay-as-you- go model for cloud resources and services. Cloud

on-demand services allow businesses and individuals to access a wide range of comput-

ing resources, including virtual machines, storage, databases, and software applications,

without purchasing and maintaining their physical infrastructure. Users can scale their

resources up or down as their needs change and are only charged for the resources they

use. These flexibility and scalability make cloud on-demand services attractive for various

purposes, such as hosting websites, running software applications, storing and managing

data, and more. Leading cloud service providers like Amazon Web Services (AWS), Mi-

crosoft Azure and Google Cloud offer on-demand services that have become essential for

modern computing and IT infrastructure.

1.1.2 Scalability and elasticity

Scalability and elasticity are two critical features in cloud computing that allow businesses

and organizations to effectively manage their computing resources based on demand and

optimize performance, cost-efficiency, and user experience.

• Scalability: Scalability refers to the ability of a system, application, or service to

handle an increasing amount of work or traffic. In cloud computing, scalability is

typically categorized into two types:

– Vertical scaling - Increasing the capacity of a single machine or resource, such

as adding more CPU, RAM, or storage to an existing server. However, this

has limitations and can become costly.

– Horizontal scaling - It involves adding more machines or nodes to a system,

effectively distributing the workload across a cluster of smaller, interconnected

devices. This approach is more flexible and cost-effective for handling larger

workloads.

Cloud platforms enable both types of scalability. Horizontal scalability is funda-

mental, allowing applications to scale dynamically by adding or removing instances

as demand fluctuates. It ensures the application remains responsive and performs

well under varying usage levels.

4 Introduction

• Elasticity: Elasticity is an extension of scalability and refers to the ability to auto-

matically provision and de-provision resources based on actual usage requirements.

It ensures that the system can adapt to the real-time workload changes, providing

optimal performance and cost-efficiency. Critical aspects of elasticity include the

following:

– Automatic scaling: The ability to automatically adjust resources based on

predefined policies, such as scaling up during peak demand and down during

off-peak periods.

– Cost management: Elasticity helps optimize cost by allocating resources as

needed, preventing over-provisioning, and minimizing unnecessary expenses.

– Resource management: Cloud platforms can monitor usage patterns and pre-

dict when additional resources are needed, scaling up in anticipation of in-

creased demand.

Elasticity is essential for applications and services with unpredictable or fluctuating

workloads, because it ensures that the required resources are available and can be

released when no longer necessary. This approach helps organizations optimize their

cloud spend and maintain high-performance levels even during traffic spikes.

1.1.3 Multi tenancy

In cloud computing, Multi-tenancy refers to a model where multiple customers, called

tenants, share the same infrastructure and computing resources within a cloud environ-

ment. These tenants could be individual users, businesses, or organizations, each with

their applications, data, and virtual instances running on a shared pool of resources.

Multi-tenancy is a core feature of public cloud services that major cloud providers like

Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP) pro-

vide. These providers offer services that allow multiple customers to use shared resources

while maintaining robust security and tenant isolation. However, it requires robust se-

curity and isolation measures. Security controls, such as encryption, access control, and

network segmentation, are critical to maintaining the privacy and security of tenant data.

The following are some advantages of multi-tenancy:

• Cost-efficiency: Multiple tenants can benefit from economies of scale by sharing the

1.1 Cloud computing 5

same underlying infrastructure. This reduces hardware, maintenance, and manage-

ment costs since the expenses are spread across multiple users.

• Scalability: Multi-tenancy allows for easy scaling of resources, accommodating cus-

tomers’ changing needs without significant lead times or resource provisioning.

• Flexibility: Tenants can provision and manage their own virtual instances, storage,

and applications, with the ability to customize their environments while still sharing

the underlying infrastructure.

• Resource isolation: While tenants share resources, cloud providers implement robust

isolation mechanisms to ensure customer data security. It helps in preventing data

leakage and maintain privacy.

1.1.4 High availability

In cloud computing, high availability refers to the design and implementation of systems,

applications, and infrastructure in a way that minimizes downtime and ensures continuous,

reliable access to services and resources. It aims to keep services up and running even

in the face of hardware failures, software issues, network problems, or other disruptions.

It is critical for mission-critical applications and services, and cloud computing provides

the infrastructure and tools needed to achieve it. However, achieving it requires careful

architecture, redundancy, regular testing, and ongoing monitoring and maintenance to

ensure that services remain resilient and accessible. Cloud computing provides a robust

platform for achieving high availability through various strategies and practices listed as

follows:

• Redundancy: Redundancy involves duplicating critical components (such as servers,

storage, and networking) to ensure that if one component fails, another can take

over seamlessly. Cloud environments offer load balancers and auto-scaling groups

that distribute traffic and workloads across multiple instances or data centers.

• Load balancing: Load balancers distribute incoming network traffic or requests

across multiple servers or resources to prevent overloading any single component. It

enhances performance and ensures that others can handle the traffic if one server

fails.

6 Introduction

• Auto-scaling: Auto-scaling allows cloud resources to adjust to changing workloads

automatically. Additional instances are provisioned for increased demands, and

extra instances are terminated when demand decreases. It helps maintain consistent

performance during traffic spikes and minimizes costs during quiet periods.

• Geographic distribution: Cloud providers can replicate resources and data across

multiple geographic regions. This geographic redundancy ensures that services can

be seamlessly shifted to another location if a data center or area experiences an

outage.

• Fault tolerance: Cloud services and infrastructure are designed with fault tolerance

in mind. It means that even if a component fails, there are mechanisms to ensure

service continuity without manual intervention.

Cloud computing can be divided into the following models based on the service pro-

vided by them.

1.1.5 Infrastructure as a Service (IAAS)

IAAS, also known as Hardware as a Service, is the provision of cloud computing infrastruc-

tures like servers, storage, operating systems, and networks as a service. These services are

available to users based on demand and can be scaled whenever required based on load.

Through this service model, companies can buy high processing power CPUs, memory,

etc, without spending much time and capital expenditure on setting up physical servers

and infrastructure. Some of the IAAS offering examples are “Rackspace, Amazon Web

Services (AWS) DigitalOcean, Cisco Metapod, Google Compute Engine (GCE), Linode,

and Microsoft Azure”.

1.1.6 Platform as a Service (PAAS)

PAAS delivers cloud platform services, i.e., a runtime environment over which applications

can be built, tested, and deployed. PAAS services provide a framework for developers

to develop their software further. These services include both Infrastructure as a Ser-

vice (IAAS) and Platform as a service (PAAS). Using PAAS offerings, developers can

directly concentrate on building and designing applications without putting much effort

into runtime environment maintenance, software updates, underlined operating systems,

1.2 Blockchain 7

and infrastructure. PAAS providers, such as “Azure, Google App Engine, Force.com,

etc.” provide application frameworks, databases, programming languages, etc.

1.1.7 Software as a Service (SAAS)

SAAS, also known as “On Demand Software,” offers cloud applications services which

include end-to-end ready software to use. In these services, cloud providers provide in-

frastructure, platforms, and software and maintain all technical aspects of the offering,

such as data, middleware, storage, and servers. Through SAAS services, users can reduce

the time spent on installing, updating, and maintaining software on individual systems.

Rather, everything can be accessed and managed through a central location on the cloud.

SAAS providers, such as Salesforce, Netflix, Google Workspace apps, etc., provide offer-

ings like cloud based mail services, social networks, and collaborative document sharing.

1.2 Blockchain

Blockchain was first introduced in Satoshi Nakamoto’s white paper [11] as the technology

upon which Bitcoin (the first cryptocurrency) is based. Following that, the researchers

started exploring the applications of blockchain in other areas. In recent years, blockchain

has found application in many areas, such as healthcare applications [12, 13, 14, 15, 16, 17],

crowdsourcing system [18], Industrial Cyber-Physical Systems (ICPS) [19], Internet of

Drones (IoD) [20, 21, 22, 23, 24], Internet of Things (IoT)-enabled smart agriculture [25,

26, 4], Internet of Vehicles (IoV) and Vehicular Adhoc Network (VANET) [27, 28, 29, 30],

Software-Defined Network (SDN) [31, 32], Industrial Internet of Things (IIoT) [33, 34],

Internet of Everything (IoE) [35], smart-grid system [36], supply chains [37], Cognitive

Internet of Things (CIoT) [38, 39, 40], and so on. The various applications of blockchain

technology are also illustrated in Figure 1.1.

Blockchain acts as a distributed ledger that records immutable transactions. However,

it is not limited to financial transactions as in Bitcoin. It can record any other type of

data that can be represented in the form of a transaction, such as the occurrence of

an event of any sort. The primary benefit of blockchain is that once a transaction has

been recorded, it is immutable. To nullify the effect of a previous transaction, one will

have to create a new transaction. These transactions are stored in the form of a block

where a single block may contain an arbitrary number of transactions depending on the

8 Introduction

Applications of

Blockchain

Supply chain

Internet of drone

Foods industry

E-healthcare

VANET

Precision
agriculture

Cognitive Internet of thingsSmart grid

Figure 1.1: Various applications of blockchain (Adopted from [1])

requirement and context in which the blockchain is being used. A blockchain network

contains many independent nodes which interact with each other and make decisions

based on an agreement algorithm, known as a consensus algorithm.

A block is nothing but binary data which is divided into two parts: 1) header and

2) payload. The header stores meta-data related to the block, one of which is the hash

of the previous block, and the payload contains the data specific to a transaction. Since

each block (except the first one) has the hash of its predecessor, all the blocks together

form a chain, and hence, the data structure got its name as blockchain. The first block,

which does not have any predecessor, is known as genesis block. Each node participating

in the blockchain network has its copy of the blocks. The longest chain in the network

is considered to be the valid chain by all the nodes. Any modification to a partnership

requires that all the blocks ahead of it in the chain be modified. A malicious entity

will have to alter the contents of the majority of the nodes in the network by breaching

them, which is almost impossible to do if independent entities control the nodes. Thus,

when a malicious entity tries to alter the contents stored on a block, it gets detected very

easily and other nodes involved in the maintenance of the blockchain can take appropriate

1.2 Blockchain 9

action.

When a node wants to add a new block to the chain, it broadcasts this block to all

the nodes in the network and each node verifies the integrity of this block before adding

it to its local copy. Further, to decide upon the node that will be allowed to add the new

block in the network, the consensus algorithm is used.

1.2.1 Consensus algorithms

Consensus is one of the fundamental problems associated with distributed systems. Many

of the algorithms used in distributed systems rely on the consensus algorithm for their cor-

rectness. Faulty nodes can also be of two types - crash faulty and byzantine faulty. Crash

faulty processes can crash in real-time. However, faulty Byzantine processes can behave

as a malicious entity that tries to prevent other processes from reaching a consensus.

In the following, we list some popular consensus algorithms.

• Proof of Work (PoW): In this algorithm [41], a hard problem is selected and given

to every node. The node that solves this problem earliest gets the chance to add

a new block to the chain. This algorithm is used in Bitcoin. However, it is very

energy inefficient, and hence, alternative solutions to it are being considered now.

• Practical Byzantine Fault Tolerance (PBFT): This algorithm [42] guarantees that

a consensus is reached if the number of faulty nodes is at most n−1
3
, where n is the

total number of nodes in the blockchain network. It is an energy-efficient algorithm.

However, it does not scale well to a large number of nodes, as the communication

overhead is relatively high.

• Proof of Elapsed Time (PoET): This algorithm was developed by Intel Corp. It

follows a lottery system in which each node randomly sleeps for a random period

called wait time. The node with the smallest wait time wins the lottery and gets a

chance to add a new block to the chain. This algorithm relies on secure computing,

as the sleep algorithm must run in a tamper-proof way so that a malicious node

does not alter the randomness of sleep time for its benefit.

• Raft: Raft [43] is equivalent to an earlier class of algorithms called Paxos [44] but is

easier to understand and is proven to be safe, unlike Paxos. The algorithm selects

a leader among the nodes in the network, and the leader has a tenure after which

10 Introduction

elections for a new leader are held. Once a leader is elected, it is responsible for the

coordination of all the nodes.

• Ripple Protocol Consensus Algorithm (RCPA): In the network running Ripple algo-

rithm [45], each server/node maintains a Unique Node List (UNL), which consists

of the nodes that this node queries when determining consensus. Each node runs

the Ripple algorithm every few seconds, and if 80% of a node’s UNL agrees on a

transaction, then it is applied.

• Proof of Stake (PoS): Under this algorithm [46], each node stakes some amount

of cryptocurrency to become a candidate for the validator in the network. An

algorithm then selects one node out of the candidate set based on a combination of

the amount of cryptocurrency staked along with some other factors. It assigns it as

the validator for the next block. The validator then validates the next block and

adds it to the network in exchange for a fee.

• Proof of Vote (PoV): This algorithm [47] is used in case of consortium blockchain

1.2.2. There are four major roles in this algorithm - “Commissioner”, “Butler”,

“Butler-candidate” and “Ordinary User”. The commissioner is part of the con-

sortium committee of the network and verifies each block that is generated in the

network. Butlers specialize in the production of blocks and are elected by the com-

missioner for a specific tenure , which expires after a certain period. The next role

- butler-candidate, participates in the election for becoming butler. Ordinary users,

on the other hand, can join or exit the network anytime without any authorization.

A comparative study among various blockchain consensus protocols is summarized in

Table 1.1.

1.2.2 Types of blockchain

We can categorize blockchain into three types based on the relation between the nodes

participating in the blockchain network.

• Private blockchain: In this type of blockchain, all the nodes belong to a sin-

gle organization, and any external node cannot join the network without getting

permission from the organization. An example of private blockchain includes the

healthcare [54].

1.2 Blockchain 11

Table 1.1: Comparative study among various blockchain consensus protocols [4]

Consensus Protocol Concept Applied Resource Used Application Areas

PoW Hashing Computations
Ethereum [48]
Bitcoin [11]

PoS
Digital

signatures Currency

SnowWhite [49]
PeerCoin [50]
Ouroboros [51]

PBFT Voting No resource Tendermint [52]

Ripple
Voting occur in
multiple rounds No resource XRP ledger [53]

PoET
Generation of random

numbers Intel SGX Hyperledger Sawtooth [2]

• Public blockchain: In Public blockchain, the nodes can belong to different indi-

viduals and organizations. The most popular blockchain network - Bitcoin, is an

example of a public blockchain [11].

• Consortium blockchain: Consortium blockchain is a mixture of the first two

types. It consists of a core set of nodes that have exclusive rights to validate a

new transaction and add a new block to the chain. All other participants can only

submit transactions and necessarily participate in block forwarding. An example of

consortium blockchain includes Intelligent Transportation System (ITS) [55].

1.2.3 Smart contract

As described earlier, blockchain stores data in the form of transactions that are immutable

once committed. This data need not be passive. Instead, it can also be active, such

as some piece of code. Because of the immutable property of a transaction, the code

cannot be modified by any malicious entity unless it controls the majority of the nodes

in the blockchain. Further, this code runs only when certain conditions are met. These

conditions are set by the contract’s creator and embedded in the code itself. Because

of smart contracts, blockchain can be used for various applications. Ethereum originally

introduced smart contracts [56], which is a public blockchain platform. Now, there are

even alternatives to smart contracts that are more efficient and flexible. One of those is

the Hyperledger Sawtooth, which uses transaction processors instead of smart contracts

to achieve the same functionality.

12 Introduction

1.2.4 Advantages of blockchain

Blockchain has several advantages over cloud that are listed below.

• Transparency: All the nodes participating in the blockchain network hold a copy of

the blocks, making the transactions transparent to all the nodes.

• Security: Once a transaction is committed to a block, it cannot be mutated by

anyone, i.e., immutable. This blockchain property ensures that the data stored in

the blocks is secure from any malicious entity.

• Decentralization: Blockchain is a distributed network in which each participating

node has equal power. There is no central authority; hence, a single point of failure

is eliminated.

• Traceability: All the blocks are linked in the form of a chain, which makes it very

easy to trace the transactions that have occurred up to any depth. This property of

blockchain, which makes it very easy to trace previous transactions, has applications

in many areas, a major one of which is supply chain management [57].

• Immutability: The immutable property is achieved on the transactions that need

to be agreed upon as well as shared across the blockchain network. Now, if the

transactions are connected to the blockchain, it becomes difficult to modify or erase

them [58].

1.3 Searchable encryption

With the ubiquitous presence of cloud storage, in order to mitigate the risk of data leak-

age, one would prefer to encrypt the data and then upload it to a cloud server. However,

this results in the loss of many desirable functionalities, out of which a prominent one

is the search for the stored data. Searchable Encryption (SE) mitigates this loss by en-

crypting data in such a way that one can search for keywords in the stored data without

actually decrypting it. Research in the SE domain was pioneered by Song et al. [59] in

the year 2000. They proposed the first searchable encryption scheme, which used a linear

search technique in which the entire encrypted document needs to be processed during

the search. However, it could be more efficient when the size of document and document

sets becomes large. A second approach was suggested in the work by Song et al., and later

1.4 Personal health records 13

used by many subsequent works, which creates an index over the encrypted files that are

then used during the search to look for the files where this keyword occurs. The latter

approach is significantly faster than the former one and was therefore studied in more

detail later on by other researchers. The original linear scan technique by Song et al.,

being very naive and inefficient, is not considered for further study. Later, other forms

of searchable encryption, such as homomorphic encryption-based searchable encryption,

fuzzy keyword-based search and public key encryption using conjunctive keyword search

were also introduced. However, index-based searchable encryption remains the most effi-

cient one, and much work has been done in this direction.

SE can be widely categorized as static and dynamic. Static SE refers to the case where

the files are encrypted as a batch, and after encryption, files cannot be added or deleted

without requiring a re-encryption of the modified set of files. Dynamic SE, on the other

hand, allows efficient addition and deletion of files without needing a re-encryption. SE

can also be categorized as symmetric or asymmetric based on the encryption type that

lies at its core. Moreover, depending on the number of keywords that can searched, SE

is categorized as single-keyword or multi-keyword. Multi-keyword search is more desir-

able; however, it is challenging to construct schemes supporting it without leaking more

information.

1.4 Personal health records

A Personal Health Record (PHR), is a digitized form of a patient’s medical record that

contains the entire medical history of the patient and is maintained by the patient. Ideally,

a patient can grant access to other users, such as medical institutions and insurance

companies, as per his or her requirements. PHRs make it easier to share and access the

medical history of a patient in an efficient manner that saves time and cost for both

the patient and the medical institution. In an emergency, PHRs can be very helpful as

the previous medical history is often needed before giving any treatment. People often

get confused with “Electronic Medical Records (EMRs)” and “Personal Health Records

(PHRs)”. PHR and EMR differ in the sense that the patient himself maintains the former,

and the latter is created and maintained by the hospital or medical institute. However,

the difference between PHR and EMR can be subtle. It can, however, be clarified by

considering the difference between the terms ‘medical’ and ‘health’. An EMR is a narrow

view of a patient’s medical history created by a doctor to diagnose the current disease.

14 Introduction

On the other hand, a PHR is a comprehensive medical history of the patient related to

the diagnosis of current conditions and past ailments. However, the two terms are often

used interchangeably.

1.5 Internet of Medical Things (IoMT)

The Internet of Medical Things (IoMT) is a subset of the broader Internet of Things (IoT).

It revolves around interconnecting various medical smart devices to create a network that

provides many essential healthcare services. IoMT holds tremendous promise in revolu-

tionizing how we approach healthcare, offering a range of advantages spanning remote

patient care to enhanced diagnostic capabilities. At its core, IoMT leverages the power of

connectivity to create an ecosystem where medical devices, from wearable health moni-

tors to sophisticated diagnostic equipment, can communicate and collaborate seamlessly.

This interconnectedness paves the way for numerous advantages that can revolutionize

healthcare as we know it. One of the most significant benefits is the provision of remote

patient care. IoMT enables healthcare professionals to remotely monitor patients’ vital

signs, chronic conditions, and overall health status. It enhances the quality of care and

reduces the need for patients to make frequent and often time-consuming in-person visits

to healthcare facilities. Furthermore, IoMT dramatically improves the speed and effi-

ciency of diagnosis. With real-time data collection and analysis, healthcare providers can

swiftly identify and respond to medical issues, leading to faster and more accurate diag-

noses. It, in turn, can significantly improve a patient’s outcomes and reduce the burden

on healthcare systems.

Despite the benefits, IoMT has a significant caveat: the inherent vulnerability of such

interconnected systems to cyberattacks. Despite these promising advantages, IoMT is not

immune to the perils of the digital age. The interconnected nature of IoMT devices makes

them appealing targets for cybercriminals seeking to exploit vulnerabilities for their gain.

The potential consequences of inadequate security measures are dire, as they can result in

severe patient privacy breaches. Among the concerns, leaking sensitive patient informa-

tion, including payment details, is a particularly alarming possibility. Unauthorized access

to this information can lead to financial losses, identity theft, and profound breaches of

trust within the healthcare system. Given these vulnerabilities and risks, it is paramount

to prioritize security in IoMT implementations. Robust cybersecurity measures must be

integrated into every aspect of IoMT devices and networks. It includes encryption of

1.6 Inter-Planetary File System (IPFS) 15

data transmission, authentication protocols to ensure only authorized users can access

the system, and constant monitoring for suspicious activities. Additionally, healthcare

organizations should stay vigilant by keeping software and firmware up to date to patch

known vulnerabilities. Therefore, an effective implementation of IoMT necessitates robust

emphasis on security measures to safeguard patient information and privacy, preventing

potential breaches such as the leakage of sensitive payment details.

A multidisciplinary approach is required to ensure the successful adoption of IoMT

while safeguarding a patient’s privacy. Collaboration between technology experts, health-

care professionals, and policymakers is essential. Moreover, regulatory frameworks must

evolve to address the unique challenges IoMT poses, setting clear security and privacy

standards. IoMT holds immense potential to revolutionize healthcare by enabling remote

patient care and enhancing diagnostic capabilities. However, this promising technology

has its challenges. The interconnected nature of IoMT devices makes them attractive

targets for cyberattacks, threatening patient privacy and security. To fully realize the

benefits of IoMT while mitigating these risks, a strong emphasis on security measures

and collaboration among stakeholders is essential. By incorporating IoMT smart devices

into the healthcare infrastructure in a secure manner, we can harness the power of con-

nectivity to improve patient care without compromising privacy and data security.

1.6 Inter-Planetary File System (IPFS)

Inter-Planetary File System (IPFS) [60] is a protocol and peer-to-peer file sharing network

to store files in a decentralized database. It uses content-based hashing to identify a file

in its storage uniquely. Data is divided into small chunks of 256 KB (known as IPFS

objects) and stored on its decentralized system. It also provides versioning of the files.

Whenever a file is modified, a separate copy of the modified IPFS objects is created while

retaining the original ones. It means that IPFS provides immutability to the files stored

on it.

1.7 Motivation and objective of the work

PHRs have always been high-value targets for cyber-attacks; therefore, securing them

proves to be a significant challenge. The ability to share health records with selected

16 Introduction

parties, such as doctors and insurance companies, further augments the risk of health

data leakage. It has led to the requirement of schemes that can not only store health

records securely but also allow the secure sharing of health data. Such a scheme requires

a guarantee of confidentiality of the PHRs, verifiability of the correctness of the results

returned to the end user 1 and efficiency in terms of time and space complexity. Moreover,

with the increase in usage of the IoMT, it has become crucial to integrate the healthcare

infrastructure with IoMT securely.

Over the years, many solutions have been proposed in the literature for health record

storage and sharing [54, 61, 62, 63, 64, 65]. However, some schemes leak too much in-

formation during their operations, other schemes do not guarantee the verifiability of the

search results, most do not provide any proof for forward security, and most are inefficient

because of the use of bilinear pairings, which have high computational costs. Addition-

ally, most of the schemes make use of centralized storage for PHRs, which makes them

unreliable in case of an attack on the centralized storage. We identified that most of the

existing schemes for PHR sharing use asymmetric SE, and there are not enough works

that have explored the usage of symmetric SE for designing a robust PHR sharing scheme

with keyword search. Therefore, in this thesis we aim to propose a novel scheme for PHR

sharing, by using SSE, blockchain technology and IPFS, that is verifiable, forward secure,

efficient, and decentralized.

1.8 Summary of contributions

Our main contribution through this work is to present an efficient PHR-sharing solu-

tion by combining SSE, blockchain technology, and IPFS. The existing schemes that use

blockchain or IPFS are either inefficient or lack forward security. To the best of our

knowledge, no existing schemes have proposed an approach for health data storage and

sharing that is verifiable, forward secure, efficient, and decentralized by combining these

three. The following are the main contributions made in this thesis work.

• We develop a PHR sharing scheme that maintains the confidentiality of PHRs by

proving that it is semantically secure against an adaptive adversary. We prove it

to be forward secure and verifiable. Confidentiality is guaranteed by using SSE for

1It differs from data integrity, which only ensures that the data is not tampered with after being sent

and before being received.

1.8 Summary of contributions 17

PHRs and other private metadata. By using the “Elliptic Curve Integrated En-

cryption Scheme (ECIES)” [66] we ensure that communication channels are secure.

Verifiability of the results returned to the user is guaranteed by blockchain, and

the use of symmetric key encryption ensures that the proposed scheme is efficient.

Finally, forward security is ensured by the design of our scheme. Subsequently, we

provide rigorous proofs to support our claims as well.

• For the storage of PHRs, we use a decentralized content-addressable file system,

IPFS. The hash of its contents uniquely identifies any file stored in IPFS. Our

designed scheme relies on this content-hash identity (id) for operation. IPFS has

many advantages over centralized storage, such as greater fault tolerance, resistance

to Denial of Service (DoS) attacks, and better scalability.

• We then perform extensive experiments using different consensus algorithms, namely

“Practical Byzantine Fault Tolerance (PBFT)”, Raft, and “Proof of Elapsed

Time(PoET)” to demonstrate that our scheme is practical.

• Finally, through the real test-bed experiments, we show that the proposed scheme

can be applied in the real-life IoMT-based healthcare applications.

Chapter 2

Mathematical Background

In this chapter, we discuss the following basic mathematical preliminaries that are essential

to describe and analyze the security protocols and also for the discussion of the proposed

scheme.

2.1 Preliminaries

2.1.1 Pseudo random generator

Suppose f is a function from {0, 1}n → {0, 1}l(n), that is, f : {0, 1}n → {0, 1}l(n), where it
takes an n-bit string x ∈ {0, 1}n as an input and produces an l(n)-bit string, say y = f(x)

∈ {0, 1}l(n) as an output. Now, f is called a pseudo random generator (PRG), if the

following properties are valid [67]:

• Expansion: For every n, l(n) > n. In other words, the length of the output must

be greater than that of input.

• Indistinguishability: For any “probabilistic polynomial time distinguisher, D”, there
is a negligible function such that

|Pr[D(G(s)) = 1]− Pr[D(r) = 1]| ≤ negl(n).

Here, the seed s ∈ {0, 1}n is chosen uniformly randomly, r ∈ {0, 1}l(n) is chosen

uniformly randomly and Pr[X] represents the probability of a random event X.

Moreover, the probabilities are considered over the “random coins used by D and

20 Mathematical Background

the choice of r and s”. In addition, the function l(·) is known as the “expansion

factor of G”.

A PRG is then considered as a deterministic algorithm that takes a “short truly random

seed” and then stretches it into a “long string that is pseudo random”.

2.1.2 Pseudo random function

Suppose that Funcn is the set of all functions from {0, 1}n → {0, 1}n and F : {0, 1}∗ →
{0, 1}∗ is a keyed function that is also length preserving. F is called a pseudo random

function (PRF), if there exists a negligible function negl, for all probabilistic polynomial

time distinguishers D, such that the following property holds [67]:

|Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]| ≤ negl(n)

Here, the key k is chosen uniformly at random from the set {0, 1}n and f is chosen

uniformly at random from the set Funcn.

In cryptography, the PRFs become a very important building block for a number of

various cryptographic constructions. For instance, there are efficient primitives, known

as block ciphers, that are assumed to act as PRFs.

2.1.3 Bilinear maps

Let G1 and G2 represent an “additive cyclic group” and a “multiplicative cyclic group”

with a prime order p. Assume that g1 is a generator of G1. A mapping e : G1×G1 → G2

is called a “bilinear map”, if it fulfils the following properties [68, 69]:

• Bi-linearity: ∀u, v ∈ G1 and ∀a, b ∈ Zp, e(u
a, vb) = e(u, v)ab holds, where Zp =

{0, 1, 2, · · · , p− 1}.

• Non-degeneracy: e(g1, g1) ̸= 1, where the identity in G2 is 1.

• Computability: ∀u, v ∈ G1, e(u, v) is efficiently computable.

The map e is called as an admissible bilinear map if e(g1, g1) generates G2 as well as e is

also efficiently computable.

We have the following computational problems in the bilinear pairing setting.

2.1 Preliminaries 21

Definition 2.1 (Bilinear Diffie-Hellman Problem (BDHP)). If G is a “multiplicative

cyclic group that is generated by g of prime order p”, and given a tuple (a, ga, gb, gc) for

a, b, c ∈ Zp, compute e(g, g)abc.

Definition 2.2 (Weak Diffie-Hellman Problem (WDHP)). Assume that G is a “multi-

plicative cyclic group generated by g of prime order p”. If (g, h, ga) for a ∈ Zp are given,

compute ha. The problem is called a weak Diffie-Hellman problem due to the fact that

e(ga, h) = e(g, h)a = e(g, ha).

2.1.4 Collision resistant hash functions

It is a “cryptographic function” that takes an input of a variable length and produces an

output of a fixed length, called a hash value or message digest. Mathematically, it can be

expressed as a mapping as h: A→ B, where the set A = {0, 1}∗ consists of all the strings
of variable length and the set B = {0, 1}lh consists of the strings of fixed length lh [70].

The formal definition of a one way hash function is as follows [70].

Definition 2.3 (Collision-resistant one-way hash function). A collision resistant one-way

hash function h: {0, 1}∗ → {0, 1}lh is a deterministic function which takes an arbitrary

length binary string α ∈ {0, 1}∗ as input and returns a fixed-length binary string of lh bits

as β = h(α) ∈ {0, 1}lh, called the output. The advantage AdvHASH
A (tp) of an adversary A

in finding the hash collision in polynomial time tp is given by

AdvHASH
A (tp) = Pr[(α, α′)← A : α ̸= α′ andh(α) = h(α′)]

where Pr[X] denotes probability of random event X, and (α, α′) ← A represents that

the pair (α, α′) is randomly picked by A. By an “(ψ, tp)-adversary A attacking the col-

lision resistance of h(·)”, we mean that the “runtime of A is bounded by tp and that

AdvHASH
A (tp) ≤ ψ.”

A hash function has the following properties [70]:

• One way hash functions are easy to compute, that is, given an input α ∈ A it is easy

to compute h(α) ∈ B, but computing the inverse of the function is computationally

22 Mathematical Background

infeasible. Thus, given the hash value h(α) of any input α, the computation of the

original input α is computationally infeasible. This property is known as pre-image

resistant.

• For any given α ∈ A, there exists no feasible way in polynomial time to find out

another input α′ ∈ A such that h(α) = h(α′). This property is called weak collision

resistant property.

• It is computationally infeasible to find any two inputs α, α′ ∈ A, such that α ̸= α′

with h(α) = h(α′). This property is known as strong collision resistant property.

Some examples of secure collision-resistant hash functions include “Secure Hash Algorithm

(SHA-1) and its variants SHA-224, SHA-256, SHA-384, and SHA-512 [71].”

2.1.5 Bloom filters

A Bloom filter [72] is a data structure that is used to test set membership of an element. It

can give false-positive results with some probability but never False-negatives. It consists

of a set of n elements S = {s1, . . . , sn} represented by array of m bits. All the bits of

array are initially 0. A set of r independent hash functions h1, . . . , hr are used by the filter

where hi : {0, 1}∗ → [1,m]∀i ∈ [1, r]. The bits at position h1(s), . . . , hr(s) of the array

are set to 1 for each element s ∈ S. We can set a location to 1 multiple times, however,

only the first one is significant. Further, to determine if set S contains an element a, we

check whether all the bits at positions h1(a), . . . , hr(a) are 1 or not. If they are all 1s,

then a ∈ S. As a result, with some probability false positive may occur because some

other element other than a may also set the same location.

2.1.6 Standard blockchain model

To formally analyze security schemes that use blockchain, Kosba et al. [73] proposed the

standard blockchain model. It treats blockchain as a trusted entity that is guarantees

correctness and availability but cannot be trusted for privacy. This is because all the

transactions can be read by every participating node thus privacy cannot be guaranteed

by the blockchain unless the transactions are encrypted in some form. However, without

the consensus of majority of nodes a transaction cannot be modified, therefore, cannot be

modified by them.

2.1 Preliminaries 23

2.1.7 Dictionary

A dictionary is an abstract data type that is used to store key-value pairs such that every

key occurs only once. It is also known as map, associative array or symbol table. A

dictionary must support the following basic operations:

• Insertion: It requires a key-value pair as its input and stores it in the dictionary.

The key-value pair is also called an element of of the dictionary. If an element with

the same key exists, then its value is overridden by the new input value.

• Deletion: It requires the element’s key to be deleted as the input and removes the

corresponding key-value pair from the dictionary.

• Lookup: It requires a key as its input and returns the corresponding value. An error

or default value is returned if the key is not present in the dictionary.

2.1.8 Inter-Planetary File System (IPFS)

It is a content-based distributed file system [60] where the data is identified through

the hash of the contents rather than giving them an independent identifier. IPFS is

also a decentralized protocol designed to change how we store and share data online.

Unlike traditional web hosting, where data is stored on centralized servers, IPFS utilizes

a distributed network of nodes to store and retrieve content. Each file is given a unique

cryptographic hash, making it immutable and resistant to censorship. IPFS enhances data

security and improves content delivery, as files can be cached locally, reducing latency.

This technology can potentially create a more resilient and user-centric internet, where

information is accessible, permanent, and free from the vulnerabilities of traditional server-

based systems.

2.1.9 Hyperledger sawtooth

It is a blockchain framework maintained by Hyperledger foundation and provides a flexible

solution for developing decentralized applications [74]. It allows the programmers to

implement application logic in a variety of languages, including Python and JAVA unlike

other platforms such as Ethereum, which restricts the programmer to Solidity. Each

node in a Sawtooth network runs a process known as transaction processor. It needs

to be implemented by the application developer for processing the transactions of his

24 Mathematical Background

Figure 2.1: Hyperledger sawtooth architecture (Adopted from [2])

application. A sawtooth node can run multiple transaction processors for different families

of transactions. Figure 2.1 shows the architecture of the sawtooth with five nodes. The

different components of each node are described below.

• Validator: Responsible for validating transactions and proposing new blocks to the

network.

• Transaction Processor: Executes transactions within the node, interacting with the

Transaction Execution Engine.

• Consensus Engine: Coordinates the chosen consensus algorithm for the network.

• Transaction Execution Engine (TEE): Executes smart contracts or Transaction

Families, updating the global state.

• REST API: Provides an interface for submitting transactions and querying the

blockchain state.

2.1 Preliminaries 25

• Network Interface: Handles communication with other nodes, facilitating transac-

tion and block propagation.

• Block Publisher: Creates new blocks by selecting a set of valid transactions.

• Identity and Access Management: Manages participant identity and controls access

within the network.

• Configuration Management: Manages node-specific configuration settings.

• Event System: Allows monitoring of blockchain events with subscription capabili-

ties.

• Consensus API Interface: Provides an interface for integrating custom consensus

algorithms into the node.

2.1.10 Merkle-Radix (MR) tree

A Merkle Radix tree [3], sometimes called a Merkle Patricia tree, is a data structure

used in blockchain and distributed ledger technologies to store and verify large data sets

efficiently. It is an extension of the more common Merkle tree structure, designed to

work effectively with key-value pairs, particularly in cryptocurrencies like Ethereum. The

Merkle Radix tree is well-suited for scenarios with similar keys, such as in blockchain or

distributed ledger systems, where accounts or contracts may have addresses that share

common prefixes. It efficiently stores and verifies the state of these accounts and provides

a secure and compact representation of the data. Figure 2.2 shows the structure of merkle

radix tree for hyerledger sawtooth.

Given below are its components and its working:

• Radix tree structure: At its core, the Merkle Radix Tree is a radix tree, a tree

structure used for representing strings, where common prefixes of keys are shared

among nodes. It is handy for efficiently storing and retrieving key-value pairs with

similar keys (common prefixes).

• Merkle tree hashing: Each node in the tree contains a cryptographic hash of its

children. It is similar to a regular Merkle Tree, where leaf nodes are data blocks,

and each non-leaf node is a hash of its children. In the case of Merkle Radix Trees,

26 Mathematical Background

Figure 2.2: Merkle Radix tree used in hyperledger sawtooth (Adopted from [3])

2.1 Preliminaries 27

the nodes might represent a series of characters in the key, and the cryptographic

hash is calculated over the concatenation of the hashes of child nodes.

• Key-Value storage: Besides the hash values, each node in the Merkle Radix Tree

stores a partial key and its associated value. The partial key is a segment of the full

key. It allows for efficient key-value storage and retrieval and the ability to look up

keys with common prefixes without duplicating information.

• Path compression: One of the main features of the Merkle Radix Tree is its ability to

compress common prefixes, significantly reducing the amount of storage required.

When keys share a common prefix, the tree structure allows these prefixes to be

stored only once, while differentiating values are stored in separate branches.

• Cryptographic security: Using cryptographic hashes at each tree level ensures data

integrity and security. Any change in the data at any tree level would result in a

different root hash, making it easy to detect tampering.

2.1.11 Elliptic curve integrated encryption scheme (ECIES)

The Elliptic Curve Integrated Encryption Scheme (ECIES) is a hybrid encryption scheme

that combines the properties of elliptic curve cryptography (ECC) and symmetric-key

cryptography to provide secure and efficient public-key encryption. It was proposed by

Victor Shoup [66]. ECIES uses an elliptic curve key agreement protocol, such as ECDH,

and a symmetric encryption scheme. The key agreement protocol derives the shared secret

for the sender, which is then used to encrypt the data to be transferred. The encrypted

data is sent to the receiver along with the information by which the receiver can derive

the shared secret. The receiver can then use this information to recover the original

plaintext. ECIES is commonly used to secure data in transit, such as communications

and encryption for technologies like blockchain and digital currencies. ECIES offers several

advantages, including robust security, efficient encryption and decryption, and the ability

to secure data so that only the intended recipient can access it. It’s widely used in various

secure communication protocols, including secure messaging apps and the encryption of

cryptocurrency transactions in blockchain systems. ECIES is just one example of a hybrid

encryption scheme, and the exact implementation may vary depending on the specific use

case and the cryptographic libraries or protocols being used. Given below is a brief

overview of the components and working of ECIES:

28 Mathematical Background

• Elliptic Curve Cryptography (ECC): ECC is a type of public-key cryptography that

uses the mathematics of elliptic curves to provide strong security with relatively

short key lengths. ECIES leverages ECC for the key exchange phase of encryption.

It allows the two parties (sender and receiver) to establish a shared secret key

without revealing sensitive information to each other.

• Symmetric-key cryptography: ECIES uses symmetric-key cryptography for the ac-

tual encryption and decryption of the data. A shared secret key, derived from the

ECC key exchange, is used to encrypt and decrypt the message.

• Key derivation function (KDF): A key derivation function derives the shared se-

cret key from the ECC key exchange. It ensures that the key used for symmetric

encryption is unpredictable and secure.

• Encryption: The sender uses the derived shared secret key to encrypt the plaintext

message with a symmetric encryption algorithm (e.g., Advanced Encryption Stan-

dard (AES) algorithm [75]). This symmetric encryption is often faster and more

efficient for encrypting the message.

• Message authentication code (MAC): To ensure the integrity and authenticity of the

message, a MAC is often generated from the plaintext message and attached to it.

The MAC is used to detect any tampering with the message during transit.

• Recipient public key: The sender typically encrypts the symmetric key used for

encryption with the recipient’s public key to ensure that only the recipient can

decrypt the message.

• Decryption: The recipient, who possesses the corresponding private key for their

public key, can use it to decrypt the symmetric key. With the symmetric key in

hand, they can decrypt the message and verify the MAC.

2.1.12 AES-OCB3

The “Advanced Encryption Standard Offset Codebook v3 (AES-OCB3)” [75] is a sym-

metric key encryption algorithm that is the result of using the “Advanced Encryption

Standard (AES)” in Offset Codebook v3 (OCB3) mode. OCB mode integrates MAC

with the operations of AES in block-cipher mode. It eliminates the need for explicitly

2.2 Summary 29

using an authentication mechanism. by providing encryption and data authentication in a

single pass. AES-OCB3 is known for its efficiency, as it combines encryption and authen-

tication into one step, reducing computational overhead compared to separate encryption

and authentication modes. It was designed to offer strong security while minimizing

complexity and computational requirements.

AES-OCB3 is used in various applications requiring authenticated encryption, such as

in network security protocols, secure messaging, data storage, and more. However, as with

any cryptographic system, it is crucial to implement it correctly and securely, including

properly handling keys and nonces, to ensure its effectiveness in practice. Following are

the key features of AES-OCB3:

• Authenticated encryption: AES-OCB3 encrypts data while simultaneously generat-

ing an authentication tag that ensures the integrity of the ciphertext. This makes

it suitable for securing both confidentiality and data integrity.

• Low overhead: Unlike other encryption modes, AES-OCB3 requires minimal addi-

tional data for authentication. This results in less overhead and a smaller ciphertext

size.

• Parallel processing: OCB3 is designed to be parallelizable, making it suitable for

hardware acceleration and efficient on modern computer systems.

• Security: AES-OCB3 is considered secure and has undergone extensive cryptanaly-

sis. It is designed to protect against various cryptographic attacks, including plain-

text attacks and ciphertext attacks.

• Speed: It is known for its high speed and efficiency, making it suitable for applica-

tions where encryption and authentication must be performed quickly.

• Patent-free: Unlike some encryption modes, AES-OCB3 is not encumbered by

patents, making it freely available for use in various software and systems.

2.2 Summary

This chapter discussed various mathematical preliminaries required for understanding

PHR sharing and storage using searchable encryption, blockchain, and IPFS. We discussed

low-level primitives, such as pseudo-random generators and pseudo-random functions and

30 Mathematical Background

relatively high-level primitives such as Advanced Encryption Standard (AES) and Elliptic

Curve Integrated Encryption Scheme (ECIES). Such primitives are the base of any secu-

rity scheme; thus, a good understanding of them is necessary. Additionally, we discussed

the data structures required, namely, dictionary, Bloom filter, and Merkle radix tree. We

also discussed some of the frameworks we have used in our work, namely, Hyperledger

sawtooth and IPFS. These preliminaries are building blocks for securing and efficiently

managing sensitive healthcare data. In conclusion, this chapter equipped us with the

foundational knowledge and tools to delve deeper into the intricacies of PHR sharing and

storage using cutting-edge technologies, like searchable encryption, blockchain, and IPFS.

Chapter 3

Literature Survey

In this chapter, we will explore various existing works that have been done over SSE and

blockchain. We will then provide a detailed overview of how these two technologies have

been combined over the years to provide solutions for the storage and sharing of health

data, and list their pros and cons. To make this thesis easier to read, we have provided a

list of abbreviations used, in Table 3.1.

3.1 Existing surveys

Over the years, several survey works over searchable encryption (SE) have been done. We

present the findings of these survey works in this section and also compare them with our

survey.

• Bosch et al. [76] (2014): This survey gives an overview of the works in searchable

encryption done till 2014. They have categorized the different SE schemes under four

categories - 1) “Single Writer/Single Reader”, 2) “Single Writer/Multiple Reader”,

3) “Multi Writer/Single Reader”, and 4) “Multi Writer/Multi Reader”. Here, the

writer refers to data owner who generates the data to be secured and the reader

refers to data users. This is a detailed survey of SE schemes; however, it does not

include any SE schemes that make use of blockchain. The main reason for this is

that till 2014 there were hardly any works in the direction of SE and blockchain.

• Wang et al. [77] (2016): This survey is mainly focussed on two of the standard

SE techniques - “Searchable Symmetric Encryption (SSE)” and “Public Key En-

32 Literature Survey

Table 3.1: Abbreviations

Abbreviation Full Form

ABKS Attribute Based Encryption with Keyword Search

API Application Programming Interface

BN Blockchain Node

CHD Current Head Dictionary

D Doctor

DO Data Owner

CS Cloud Server

DU Data User

ECDH Elliptic Curve Diffie-Hellman

ECIES Elliptic Curve Integrated Encryption Scheme

H Hospital

HS Hospital Server

IPFS Inter Planetary File System

MR Merkle Radix

P Patient

PEKS Public Key Encryption with Keyword Search

PHR Personal Health Record

PRES Proxy Re-encryption with Keyword search

REST Representational State Transfer

SE Searchable Encryption

SSE Searchable Symmetric Encryption

cryption with Keyword Search (PEKS)”. The authors have compared the schemes

based on index size, search time, security and dynamism (for SSE), and security

assumptions (for PEKS).

• Poh et al. [78] (2017): This is a detailed survey that gives a good insight into the

3.1 Existing surveys 33

workings of SE schemes. The authors have categorized the existing schemes based on

principals involved, operations, security models, entity setups, query functionalities,

cryptographic primitives, scheme structure, performance and characteristics. It is

targeted towards readers having intermediate background in security. It indeed

covers most of the literature of SE; however, it does not include schemes that make

use of blockchain.

• Zhang et al. [79] (2018): In this survey, the authors explore the applica-

tion of SE in healthcare industry. They have presented four scenarios in which

SE can be used to secure health records, namely, owner as reader/writer, Single

reader/Single writer, One writer/many readers, authorization delegation. Reader

and Writer refer to health data producer and health data consumer. They also

provide an overview of the standard SE techniques, namely, “Searchable Symmetric

Encryption (SSE)”, “Attribute Based Encryption with Keyword Search (ABKS)”,

“Public Key Encryption with Keyword Search(PEKS)” and “Proxy Re-encryption

with Keyword Search(PRES)”. This work, however, lacks a discussion and compar-

ison of existing SE schemes for healthcare and also does not describe schemes that

use blockchain.

• Pham et al. [80] (2019): In this work, the authors have provided a general

overview of the system architecture involved in a SE scheme. They have categorized

the schemes, based on the type of search, into - 1) “Keyword Search”, 2) “Regular

Expression Search”, and 3) “Semantic Search”. On the basis of security levels they

have categorized the schemes into - 1) Somewhat secure, 2) Semi secure, 3) Secure

and 4) Fully Secure. This work also explores the application areas of SE such as

healthcare, law enforcement and text editors. However, this work too does not

include SE schemes that use blockchain.

• Andola et al. [81] (2022): This work is geared towards survey of application of

SE in storage in cloud. On the basis of the search type the authors have classified

SE on the cloud into “sequential search, index-based search, rank based search,

fuzzy keyword search, conjunctive keyword search and access-control-based search”.

Further, they have also discussed cryptographic primitives used in these categories of

SE. However, on downside, no SE schemes using blockchain have been covered in this

survey. We note that this paper requires reader to have basic security background.

34 Literature Survey

Year Survey Scope Requirement

2014 Bosch et al. [76] SE Basic Security Background

2016 Wang et al. [77] SSE and PEKS Basic Security Background

2017 Poh et al. [78] SE Intermediate Security Background

2018 Zhang et al. [79] SE for Healthcare Intermediate Security Background

2019 Pham et al. [80] SE System Architecture Basic Security Background

2022 Andola et al. [81] SE with cloud storage Basic Security Background

Table 3.2: Existing surveys

In summary, in Table 3.2, we have provided the above discussed survey works with

their scopes and requirements.

3.2 Related works

3.2.1 Searchable encryption

Song et al. [59] in 2000 took the first step toward constructing an efficient searchable

encryption scheme. Earlier works [82] made use of Oblivious RAMs (ORAMs), and gave a

complete and general solution to the problem of searchable encryption. However, ORAMs

are quite expensive in terms of time and space. Therefore, researchers started looking

for alternative solutions that would be efficient. The scheme proposed by Song et al.

[59] encrypts each word in the file using a deterministic algorithm. Later during search

operation, a linear scan is performed over the encrypted file to search for keywords.

Although the work in [59] is more efficient than ORAM, it was linear in the total number

of keywords in document collection, and hence, it is unsuitable for practical applications.

To overcome these limitations, Goh et al. [83] in 2003 proposed an alternative so-

lution using an index based approach. They constructed a secure inverted index and

demonstrated its application in SE through a scheme with constant search time. In their

proposed scheme the data owner generates a secure index over the files that are to be

encrypted. This secure index is uploaded to the cloud server along with the data files

which are encrypted using some standard symmetric encryption algorithm such as AES.

3.2 Related works 35

They also introduced a security model known as “semantic security against adaptive cho-

sen keyword attack (IND-CKA) and its stronger variant IND2-CKA.” In IND-CKA, A

challenger C gives an adversary A two documents V0 and V1 such that their lengths are

equal, along with an encrypted index. The adversary A is then challenged to determine

which document is encoded in the index. Hardness of deducing whether the index is of

V0 or V1 implies the hardness of using the index to find a word such that V0 and V1 do

not have it in common. In the same work they also proposed Z-IDX, which is an efficient

IND-CKA secure index construction, using “PRFs” and “Bloom Filters”. To make search

time linear in terms of number of documents, a bloom filter is created for each document

in the proposed scheme. Their scheme, unfortunately, had a weak security model which

was subsequently improved upon by Curtmola et al. [84] in 2006.

Searchable encryption was extended to public key setting in 2004 by Boneh et al.[85]

who took a mail server as the reference for their scheme and proposed the first public key

encryption with keyword search (PEKS) scheme. PEKS uses Identity based encryption

(IBE) [86] with the keyword as the identity. The sender encrypts his/her message using

any standard public key system such as RSA or EC and then appends the PEKS of

each keyword w1, w2, w3, . . . , wm with it. To obtain the PEKS, a publicly known string is

encrypted using public key associated with keyword as identity. The ciphertext obtained

is of the form shown below:

EKpub
∥C1 = PEKS(Kpub, w1)∥ . . . ∥Cm = PEKS(Kpub, wm)

To search for a keyword the receiver derives a secret key from the keyword it wants to

search using the master key. This secret key is the trapdoor that is sent to the server,

which then attempts to decrypt the IBE cipher-texts. If the decryption results in a

publicly known string, then it is successful and it can be concluded that the attacked

encrypted message contains the keyword.

Previous works in SE lacked a robust security model so in 2005 Chang et al. [87]

proposed a real-ideal simulation model which is now widely used in subsequent works

over searchable encryption.

Later, in 2006, Curtmola et al. [84] proved that IND-CKA and IND2-CKA security

models were not strong enough and introduced two new security models for SSE, namely,

non-adaptive model and adaptive model, which become the standards for securing SE

schemes, and also provided two schemes: SSE-1 and SSE-2 against the proposed secu-

rity models respectively. However, their scheme was static, and therefore it had limited

practical applications.

36 Literature Survey

Next major breakthrough in SE was in 2012, when Kamara et al. [88] extended the

work of Curtmola et al.and introduced “dynamic searchable encryption (DSE)” scheme

which allows addition and deletion of new files efficiently.

Even though a lot of research on SE had been done by that time, Islam et al. [89]

pointed out that there had been no proper study of attacks on SE schemes. Their work

showed that various attacks were possible due access pattern disclosure in SE schemes and

emphasised on the need of forward security on SE schemes. Forward security refers to the

notion that an adversary should not learn anything new when a new file is added. There

was a growing need for forward security after Islam et al.’s work. Based on this Stefanov

et al. [90] presented the first forward secure SE scheme in 2013. They attempted to

find a balance between security and efficiency through their scheme. However, due heavy

dependency on client side computation, its practical applications were limited. Advancing

in the direction of efficient searchable encryption Kamara et al. [91] proposed a Parallel

and “dynamic searchable encryption scheme”. In this they have used a Red-Black tree to

create a keyword Red Black (KRB) tree data structure.

Nevertheless, scalability was still an issue as most of the schemes supported only

single keyword search. Working in this direction, Cash et al. [92] introduced a scheme

that supported conjunctive keyword search along with the Boolean queries. Another

issue that needed to be addressed in SE was that none of the works had ever attempted

to formalize the data leakage occurring during the operations. Cash et al. [93] in 2015

provided formalization of leakages in SE schemes along with possible attacks due to these

leakages, for the first time. Prior to that, no other work had focused on the study of

attacks on SE schemes. It formalized the leakages and classified the existing schemes

based on four levels of leakage.

Later, it was identified that in order to save the computational costs, a server can

return partial or wrong results to the data user. To address this issue, the requirement of

verifiability was added to SE schemes. Therefore, in 2016 the notion of verifiability was

introduced by Bost et al. [94] by improving Stefanov et al.’s scheme. Verifiability refers

to whether the results returned to the end user by the cloud server are correct or not. For

example, during lack of verifiability a server can return partial results to the end user to

save computation costs.

With time, the need for more features was identified in SE schemes – one of which

was backward privacy. It ensures that after deletion of data, future queries cannot be

performed on it. The first scheme to support backward privacy was introduced by Bost

3.2 Related works 37

et al. [95] in 2017. Backward privacy refers to the leakage that can occur after deletion

of a file from the server that was previously queried. In the same year, Kim et al. [96]

introduced a dynamic SE scheme with a primary focus on data deletion, which previous

schemes mainly had overlooked. In the following year, an efficient, forward secure and

parallelizable DSE scheme was proposed by et al. [97] which has performance on par with

previous non-forward secure DSE schemes. However, a security flaw in backward privacy

for a special case was discovered in Etemad’s scheme in 2022 by Watanabe et al. [98]

which was also patched by them.

Based on these works we observed that there is a trade-off between security and

efficiency in searchable encryption schemes. These trade-offs have been presented in the

work by Ashrov et al. [99].

Many of the subsequent works [96, 100, 101, 102, 103, 104] have focused on providing

schemes that guarantee forward and backward secrecy but also efficiency at the same

time. Additionally, there are other schemes, such as the scheme proposed in [105] which

have focused on providing additional features such as data de-duplication and conjunctive

queries while maintaining required properties of forward and backward security.

3.2.2 Blockchain-based SE schemes

As discussed earlier, for practical applications of searchable encryption, there is a need

to verify whether the server returns correct results or not. A malicious server could

return the wrong results in order to save costs and still receive full payment from the

user. Many of the works since 2018 have incorporated blockchain into SE schemes to

provide verifiability. Hu et al. [8] proposed the first work that made use of blockchain

in searchable encryption in 2018. They eliminated the use of a central server for data

storage and instead used Blockchain as its replacement. Their work aimed to introduce

a searchable symmetric encryption scheme in which the results returned by a potentially

malicious server are verifiable by the data user. By utilizing smart contracts they provided

a solution in which the results returned to the user were always correct and all the parties

received the correct payment. This scheme, however, has a significant shortcoming in that

Blockchain is not designed to handle a large amount of data and using it to store large

files results in impractical latency.

In the same year, the work of Cai et al. [5] sought to prevent dishonesty both at client

and server side regarding payment for search results by recording the logs of transactions

38 Literature Survey

in a public Blockchain. This scheme, however, requires explicit verification of the results

by the client from the blockchain.

Since then several schemes [6, 7] have been proposed that did not eliminate the central

server but instead used Ethereum smart contracts to ensure fairness between client and

server. The smart contract is designed in such as way that until both parties agree, the

payment will not be released.

To enable forward security in blockchain-based searchable schemes, in 2020, Guo et

al.[106] suggested a verifiable and forward secure encrypted search which also leveraged

the blockchain technology. In the same year Du et al.[107] also published a similar work

that provided forward as well as backward secrecy along with verified results.

3.2.3 PHR sharing using blockchain

After the success of Bitcoin which was proposed in 2008 [11], the researchers began to

find the application of blockchain in other areas, one of which was healthcare. An early

work for application of blockchain in healthcare was proposed by Azaria et al. [108] in

2016. It focused on taking advantage of transparency and immutability of blockchain by

storing references of medical data onto blockchain and leverage its to ensure data integrity,

verifiability, and data sharing. Another work proposed by Yue et al. [109] focused on an

app called “Healthcare Data Gateway (HDG)” which uses blockchain to let users exercise

full control over their medical records.

Subsequently, one of the early works that specifically targeted secure sharing of health

records by using immutability and autonomy of blockchain was proposed by Xia et al. [110]

in 2017. They attempted to address the access control problems associated with health

records using the immutability and autonomy provided by blockchain.

Next, Fan et al. [111] improved upon the scheme proposed by Xia et al. [110] by

providing efficient access and retrieval mechanisms and addressed the problems related to

privacy originated by sharing health data with third parties.

3.2.4 PHR sharing using SE and blockchain

Zhang et al. [54] in 2018 proposed that used blockchain as well as searchable encryp-

tion for sharing of health records. Their scheme, called “Blockchain-based Secure and

Privacy-preserving PHI sharing (BSPP)”, that makes use of both private blockchain and

consortium blockchain along with public encryption with keyword search (PEKS) to build

3.2 Related works 39

blockchain-based secure and privacy-preserving PHI sharing (BSPP) scheme. However, it

is inefficient due to heavy dependency on bilinear pairing.

Next in 2021, Wang et al. [61] made use of a decentralized storage called Inter-planetary

File System (IPFS) to store the PHRs. However, these schemes rely on bi-linear pairing

which increases its computation time. In the past few years, there have been works [62, 63]

that make use of proxy re-encryption based SE for health record sharing. Yet again, these

schemes rely on bilinear pairings thereby requiring higher computation power. On the

basis of SSE there have been lesser number of for health record sharing such as that of

Chen et al. [64] and the one proposed by Tang et al. [65].

In addition, some of the schemes [112, 113, 114, 115] have used attribute-based en-

cryption to have better access control over sharing of PHR. However, all these schemes

rely on bilinear maps for security, making them inefficient. Additionally, there has not

been any focus on forward security in these schemes, and many are not dynamic. Unlike

the schemes discussed so far, recently, in 2021, Tang et al. [65] proposed a PHR sharing

scheme based on searchable symmetric encryption (SSE) and blockchain. However, it

requires the concerned hospitals to store the data on a local server, which is not a realistic

assumption. A recent scheme proposed by Nie et al. [116] uses IPFS to store the encrypted

cipher-texts and blockchain for meta-data. However, it is not dynamic in nature, i.e., all

the health records are encrypted at a time and there is no mechanism to add the health

records later. We have described these scheme in detail later in Section 3.4.

3.2.5 Important observations

We observed that there are many schemes that make use of asymmetric searchable encryp-

tion for health data sharing. However, the use of symmetric searchable encryption for the

same has not been explored well enough, even though the literature of SSE is quite strong.

Our work tries to fill this research gap by providing a symmetric searchable encryption

based health data storage and sharing scheme using blockchain technology and IPFS. The

proposed scheme is able to provide confidentiality of PHRs and other private metadata,

secure communication channels, verifiability using blockchain, forward security, and also

efficiency using symmetric key encryption.

40 Literature Survey

3.3 Searchable encryption in detail

3.3.1 System models for SE

Here we discuss the different types of system models employed by researchers for search-

able encryption. Broadly, there are two types of systems that have been used in the

literature. First one is the traditional SE system model which involves a data owner,

cloud server and data user. Second one additionally uses blockchain to provide more

features such as verifiability.

In the following, we describe both models: 1) SE without blockchain and 2) SE with

blockchain, and the benefits of using SE with blockchain over SE without blockchain.

• SE without blockchain: Figure 3.1 shows the general system model for searchable

encryption when blockchain is not involved. There are three entities in this model -

1) Data Owner (DO), 2) Data User(DU) and 3) Cloud Server (CS). First, the data

owner generates an encrypted index and encrypted files from the plaintext files and

sends them to the could server. The encrypted index is used by the cloud server

to search for documents containing a given keyword. To search for a keyword, the

data user requests the data owner to for a token/trapdoor, which it then sends to

the cloud server. The cloud server upon receiving the trapdoor searches for any

document containing the keyword hidden in the trapdoor and returns the results to

the user.

• SE with blockchain: By utilizing the immutability property of blockchain, search-

able encryption schemes which have intrinsic verifiability can be constructed. There

are multiple ways in which blockchain has been used along with searchable encryp-

tion. However, here we have shown two of those ways. Figure 3.2 shows the first

method in which the cloud server is entirely replaced with blockchain. The en-

crypted documents as well as the encrypted index are all stored on the blockchain.

Hu et al. [8] were the first to use this technique.

The second method has been show in Figure 3.3. In this method, the data is

stored on a storage server which can be cloud or a distributed file system such as

IPFS [117]. Blockchain is used to store metadata such as encrypted index. This

reduces the overhead of processing large files on the blockchain. The data owner

first encrypts the files/documents and uploads them to the storage server. The

storage server provides him the unique file identifiers for the uploaded files. The

3.3 Searchable encryption in detail 41

Figure 3.1: Searchable encryption without blockchain

DO then uses these identifiers and the original files to create an encrypted index.

This encrypted index is then uploaded to the blockchain.

When a user wants to search for a keyword, he requests the data owner for a trapdoor

corresponding to his/her query. The user then sends this trapdoor to the blockchain

to obtain the file ids which contains the keyword. Finally, the user uses the received

file ids to download the files from the storage server. A typical use of this technique

can be seen in the paper by Guo et al. [106].

42 Literature Survey

Figure 3.2: Searchable encryption with blockchain (Type 1)

3.3.2 Cryptographic primitives for SE

Based on the cryptographic primitives used, SE schemes can be categorized into two

categories:

• Searchable Symmetric Encryption (SSE): This is the most widely studied form of

searchable encryption pioneered by Song et al. [59] in 2000. It relies on symmetric

key cryptography, hence the name. There are many variants of SSE such as sequen-

tial search based, inverted index based and tree based. However, the most popular

one is inverted index based due its simplicity and sub-linear search time.

• Public Key Encryption with Keyword Search (PEKS): This searchable encryption

technique allows keyword search over data encrypted using asymmetric cryptogra-

3.3 Searchable encryption in detail 43

Figure 3.3: Searchable encryption with blockchain (Type 2)

phy. It was first introduced by Boneh et al. [85] to allow encrypted search over mails

sent to a user. In usual case, multiple people can send mails to the user by encrypt-

ing them using his/her public key and the user will have to encrypt each of the

mails to filter out relevant content. However, PEKS allows the user to filter his/her

mails without actually decrypting them, thereby enabling the user to decrypt and

read only those mails that he/she is interested in.

• Attribute Based Encryption with Keyword Search (ABKS): Attribute based en-

cryption allows encryption of data in a manner such that only a person who has

attributes that satisfy certain set of conditions (know as a policy) can decrypt it.

For example, in an organization, attributes can be given to employees on the basis

of their rank in the organization and the policy can be made in a way that higher

44 Literature Survey

ranked employees can read the encrypted messages sent to lower ranked but not

vice-versa. The first attribute based encryption scheme was proposed by Zhao et

al. [118] in 2011.

• Proxy Re-encryption with Keyword Search (PRES): Proxy re-encryption is a tech-

nique which allows an entity, called proxy, to re-encrypt a message encrypted using

public key of original recipient, into a message which can only be decrypted by a

person chosen by the original recipient. In short, the original recipient delegates his

decryption capability to another person on his behalf. To re-encrypt the original

message, the proxy entity needs a re-encryption key and the public key of the del-

egate. The re-encryption is generated using the secret key of the original receiver

but cannot be used to disclose the original receiver’s secret key. An example where

this is useful is when an official of an organization wants to delegate some of his

messages to his/her secretary.

This technique was combined with encrypted keyword search for the first time by

Shao et al. [119]. In the use case presented by them, the proxy entity was a mail

server which could re-encrypt the message intended for a recipient into message for

a delegate.

3.3.3 Security models for SE

The first formal threat model for SE schemes was proposed by Goh [83]. The author

proposed semantic security against chosen-keyword-attack through a threat model which

he termed IND-CKA. This model aimed to cover the notion of security in which an

adversary cannot deduce any partial information about the contents of a document from

its index other than what it already knows from external sources. IND-CKA provided

security only when the size of all the documents involved in creation of index is equal. This

shortcoming was overcome by proposing a stronger model IND-CKA2 in which the size

of the documents need not be equal. However, none of the two security models required

trapdoors to be secure and therefore failed to model real world scenario for searchable

encryption.

In 2006, Curtmola et al. [84] provided an alternative security model for SE, which

since then has become a standard. They proposed two security models - 1) Non-Adaptive

Semantic Security 2) Adaptive Semantic Security. The setting is that of a client and

server, where the client generates a secure index and upload it to server along with the

3.3 Searchable encryption in detail 45

encrypted files. The adversary is assumed to have the access to all the data that is leaked

to the server during operations. Before understanding the security models in detail, we

need to define some terminologies that will be used in to define them. We use informal

definitions to describe them for the ease of understanding. To read the formal definitions

we suggest the reader to go through the original paper [84]. Note that the security model

proposed by Curtmola et al. [84] was designed for SSE, however, it can be modified for

other SE techniques.

• History: It is defined as a tuple of collection of documents and set of queries that

a user has made over them.

• Access pattern: For a given history access pattern is the set of document identifiers

that were revealed by the queries present in the history.

• Search pattern: For a given history containing q queries, search pattern tells

whether any two documents contain the same keyword or not. It is represented

by using a binary matrix of size q × q where value at ith row and jth column is 1, if

wi = wj; else, it is 0.

• Trace: The length of each document in the collection along with search pattern

and access pattern for the trace of a given history.

• Non-singular history: A history is said to be non-singular if at least one history

exists such that trace of both the histories is equal and such a history can be found

in polynomial time. Trace is the information that we can allow to be leaked to

We now describe the security models presented by Curtmola et al.. In both the models,

history must be non-singular.

• Non-adaptive semantic security: In this security model, the adversary is allowed

to generate histories but only at once. Moreover, it is not allowed access to the

secure index, document collection or the trapdoors of any of the queries until it

has generated the histories. The scheme is considered secure if an adversary cannot

distinguish between two histories that it has generated after getting access to se-

cure index, trapdoors and encrypted documents. The authors have also provided a

simulation based definition for non-adaptive security and proved it to be equivalent

to the indistinguishability based definition.

46 Literature Survey

• Adaptive semantic security: The adaptive security model is similar to the non-

adaptive one except that the adversary can choose the histories adaptively. Specifi-

cally, the challenger randomly selects a bit b and asks the adversary to provide two

documents D0 and D1. Following which, the challenger generates secure index Ib

and provides it to the adversary. Next, the challenger asks the adversary to provide

two keywords w0 and w1 and then returns trapdoor for the word wb to the adver-

sary. The adversary is allowed to repeat this query process polynomial number of

times. After that, the adversary is challenged to output a bit b′. The scheme is

considered secure if the adversary cannot distinguish between b and b′ except with

some negligible probability.

It is clear from the description above that adaptive semantic security is harder to achieve,

it but guarantees greater security.

3.3.4 Attacks on SE schemes

The main security threats in searchable encryption scheme arise from the leakage that

occurs during operations such as build and search. The first work to demonstrate a

successful attack on SE schemes was presented by Islam et al. [89] in 2012. Their work

exploited the leakage pattern and some prior knowledge to successfully disclose sensitive

information. It demonstrated the need for a formalisation of leakages by SE schemes.

Working in this direction Cash et al. [93] presented a formalisation of leakages in SE

schemes They categorized SE schemes into four levels - L1, L2, L3 and L4, where L1

denotes least amount of leakage and L4 denotes highest.

Attacks on SE due to leakages can be divided into the following categories: [77]

• Keyword Guessing Attack (KGA): In this attack the adversary tries to decipher

the token/trapdoor in order to recover the keyword that is being searched. This

is possible because in practice the words in a document are from a low entropy

message space and brute force can be used to encrypt each of the words in message

space and compare with the received encrypted keyword. Based on the nature of

the attacker, it can further be classified into the following two categories:

– Inside KGA: In inside KGA [120], the cloud server on which the encrypted

data and encrypted index is stored is itself malicious. Since the attacker has

access to all the search queries, it is easy for them to launch the KGA attack.

3.3 Searchable encryption in detail 47

– Outside KGA: In outside KGA, the attacker is an external entity and has no

relation with the user or cloud server. The attacker captures the data while it

is being uploaded to the server and then later on tries to guess the keyword

contained in a search query by comparing with word selected from the message

space.

• Inference attacks: In this attack, the attacker tries to use the encrypted indexes to

decipher keyword plaintext. Following are the commonly used methods.

– Frequency analysis attack: In this attack the frequency of keywords present

in the cipher-text and encrypted ranking information [121] in the outsourced

data is analysed by the attacker to get the keyword plaintext.

– Sorting attack: This type of attack is extremely effective for dense distribu-

tion. The attacker uses “keyword in the ciphertext to get plaintext from the

encrypted indexes and tries to compute the encrypted ciphertext frequency.”

– Counting attack: This attack is based on the fact that a large fraction of

keywords will match against a unique number of documents [93]. The adversary

can then count the number of documents returned corresponding to a keyword

and match it with number of documents matched by the query. The pattern

of keywords across returned documents can be deducted if multiple keywords

return same number of documents.

• Access pattern attack: Any information that can be used by an attacker to determine

the frequency at which files are accessed or their association with the query is known

as access pattern [80]. In this type of attack the attacker uses access pattern to guess

the keywords from the trapdoor.

• Search analysis attack: Any information that can be used by the attacker to deter-

mine if random queries are related to keywords is known as search pattern[80]. In

this type of attack the attacker usually tries to determine if a new trapdoor and

previous trapdoor are derived from the same keyword.

3.3.5 Threat model

We follow the widely-accepted Dolev-Yao (DY) threat model [122] as it was used in secu-

rity protocols for other networking environments. Under the DY-model, an adversary A

48 Literature Survey

will have an opportunity to tamper with the communicating data, such as reading, mod-

ifying, deleting or even inserting fake data during the communications of the transmitted

messages among the entities in the network. Additionally, as discussed in Section 3.3.4, A
can launch various attacks apart from traditional attacks (replay, man-in-the-middle and

impersonation attacks), like KGA, inference, access pattern and search analysis attacks.

Furthermore, based on the DY-model, the end point entities are not fully trusted. We

assume that once the data in put into the blockchain, A can not tamper with the data in-

side blocks, because of inherent properties of the blockchain technology (decentralization,

transparency and immutability). Finally, we assume that the cloud servers are treated as

semi-trusted nodes in the network.

3.4 Existing schemes for PHR sharing

In this section, we describe various schemes for PHR sharing that leverage searchable

encryption and blockchain.

Since computers became mainstream, researchers and industrialists have been trying to

digitize the entire record keeping of health records and like every other digital information,

PHRs have been prone to cyber attacks of various kinds especially due to the high value

of the health data that they store. However, with the advent of blockchain many paths

have opened up to tackle the shortcomings of the previous health data storage and sharing

schemes. Application of searchable encryption over blockchain in healthcare is a new and

active area of research. Most of the schemes using searchable encryption and blockchain,

that have been proposed till date, have assumed their own model of the health care

infrastructure. However, all of them follow one of the following described approaches.

The first approach uses blockchain as a storage for PHRs as well as secure indexes. It is

similar to the system model described in Figure 3.2. The second one uses blockchain only

for storing secure indexes and metadata related to search and leave the storage of PHRs

to a cloud server or a distributed database. It is similar to the system model described

in figure 3.3.

Most of the schemes have three main entities - patient, hospital and blockchain net-

work. A patient visits a hospital and registers himself to receive his unique id and security

keys depending on the type of encryption used. The hospital creates an PHR for the pa-

tient based on the diagnosis provided by the doctor. The PHR is then encrypted and

uploaded to the blockchain network after the required processing for generating secure

3.4 Existing schemes for PHR sharing 49

indexes is done. It is important to note that the doctor may access the medical history of

the patient by asking for a token from the patient that allows him to query the blockchain

network for the past medical records of the patient. This is possible because the PHRs

are encrypted using searchable encryption scheme that allows authorized users to access

the encrypted data. The exact details of the scheme vary depending on the assumptions

that have been made about the network and storage infrastructure of the hospitals. Many

of the searchable encryption scheme also use Attribute Based Encryption (ABE) [123] in

order to have a fine-grained access control over the encrypted data. In those schemes

access control structures such as AND-gate structure, tree-based structure and threshold

structure are used.

3.4.1 Existing schemes

We now briefly describe the existing schemes for PHR sharing using SE and blockchain.

• Zhang et al. [54] (2018): The first specific solution to the PHR problem using

blockchain and searchable encryption was proposed in 2018 by Zhang et al. [54]. It

is based on “Public Key Encryption with Keyword Search (PEKS)”. Their scheme,

called Blockchain based Personal Health Information Sharing (BSPP), targets effi-

cient sharing of health information of patients for improvement in diagnosis. They

have used public key encryption which allows other users to access the patient’s

data with the help of a search token. This scheme however allows only single key-

word search. Both the PHRs and the meta-data related to searching is stored on

blockchain. However, they have used two blockchain networks, one of which is pri-

vate and the other is consortium. Private blockchain stores the PHRs in encrypted

form, while consortium blockchain stores the secure indexes and other metadata of

the encrypted PHRs.

The proposed scheme contains three phases - 1) “System Setup”, 2) “Data Gener-

ation and Storage”, and 3) “Data Search and Access”. During the system setup

phase, the user and doctors executes key generation algorithm to generate their

public private key pairs and GlobalSetup algorithm is run to generate system pa-

rameter GP = (P1, P2, ê, H0, H1, H2, H3, H4, H5, H6). P1 and P2 are generators of

cyclic groups of prime order, ê is bilinear mapping and Hi,∀i ∈ 0, ..., 6, are hash

functions. When a user i registers himself with the hospital k, he receives β ∈ {0, 1}∗

through a secure channel. The hospital server also selects a doctor j for the user

50 Literature Survey

and sends µ = H1(β) to the doctor. The doctor uses this value to authorize the user

when he/she visits him/her. The doctor j generates a health record m ∈ {0, 1}∗ for
the patient i and also selects w ∈ {0, 1}∗ from the standard keyword set. m and w

are encrypted by doctor using public key pki of the user. The encryption algorithm

gives c = (ci0 , ci1 , ci2) as output, where ci1 is the ciphertext for searchable keyword

and ci2 is the evidence required for proof of conformance algorithm proposed in

this paper. ci0 is stored in the hospital server and the hash value of ci0 is stored

in blockchain. To search the user generates two trapdoors, the first one is identity

searching trapdoor Td and second one is keyword trapdoor Tw for word w. Td is

required to search for the specific user and Tw is required to search for the specific

word. Both are sent to the doctor.

• Chen et al. [64] (2019): In 2019, Chen et al. [64] proposed an Ethereum

based searchable encryption scheme for PHRs. It uses SSE and allows queries

with complex expressions. This is a bit different from the traditional searchable

encryption scheme as the documents that are being encrypted are of MongoDB and

the queries are not keywords, but instead they are expressions used to search the

MongoDB. In this scheme, all the PHRs are scanned and the records that satisfy

condition expression X = {X1, X2, ..., Xm} (Xi is a conditional expression that can

be used to search over a Mongo DB document) are extracted and idij is computed

corresponding to document Dij that satisfy Xi. Based on these extracted identifiers

the index I is built which is uploaded to the blockchain and he encrypted documents

are outsourced to a decentralized file system such IPFS.

To search over an PHR a user authenticates himself/herself to the data owner and

obtains a trapdoor/search-token. The user sends this trapdoor to the smart-contract

on blockchain which returns the file identifiers on which the corresponding keyword

is present. The user can then contact the storage server on which the encrypted

files are stored and use the identifiers received from the smart contract to download

them.

The authors describe their goals as fairness, soundness and confidentiality. Fairness

ensures that user will get accurate results if he pays for it. Soundness ensures that a

dishonest party will be detected and will obtain no rewards. Confidentiality ensures

that the PHRs are secure.

• Niu et al. [114] (2019): In 2019, Niu et al. [114] proposed a scheme using

3.4 Existing schemes for PHR sharing 51

Attribute Based Encryption using Keyword Search (ABKS) and blockchain. It is

based on permissioned blockchain model and uses private key encryption and sup-

ports multiple keyword search. The scheme consists of three phases - 1) “System

Setup”, 2) “Data Generation and Storage”, and 3) “Data Search and Access”.

In the system setup phase, the system parameters PP =

(p, e, g1, g2, g
α
2 , g

β
2 , g

β
α
1 , G1, G2, H1, H2, H3, H4) are generated along with master

secret key msk = (α, β) Here, G1 and G2 are multiplicative cyclic groups with

generators p, g1 and g2 are two generators of G1, e : G1×G1 → G2 is an admissible

bilinear map. α, β ∈ Z∗
p are randomly selected by the system and Hi is a hash

function for i ∈ 1, 2, 3, 4.

In data generation phase, the patient P visits hospital and is randomly assigned

h ∈ Z∗
p through a secure channel and also assigned a doctor D. Next, µ = H3(h)

is generated and reserved by the server. The patient P chooses an access control

structure Γ which is in the form of a tree and runs Share(Γ, h) for each leaf node

to obtain secret value hv(0) for the leaf node v and calculates Av = g
hv(0)
2 , Bv =

g
H1(sv)hv(0)
2 for each leaf node attribute sv. These values are sent to the doctor D,

which runs an encryption algorithm to compute ciphertext C and keyword index I.

The encryption algorithm Enc(PP,Γ,W,M)→ (I, C) takes public parameters PP ,

access control structure Γ of the patient, a keyword set W = w1, w2, ..., wm of the

shared PHRs and PHRsM as input and returns the keyword index I and ciphertext

C as output. The doctor D then uploads C and I to the hospital database server.

In data search and access phase, data users construct the trapdoor of keywordsW ′ =

{w′
1, w

′
2, ..., w

′
n} where n ≤ m. The trapdoor algorithm Trapdoor(PP,W ′, sk) →

TW ′ takes the public parameters, search keywords set W ′ and secret key sk as input

and outputs the trapdoor TW ′ . Next, the participants in the permissoned blockchain

run the search algorithm Search(I, TW ′) which takes keyword index I and trapdoor

TW ′ and outputs ciphertext C. Finally the user upon receiving C decrypts the

ciphertext using Decrypt(PP, sk, C)→M algorithm to obtain the message M .

• Wang et al. [62] (2019): In 2019 Wang et al. proposed a electronic health

record sharing scheme using “Proxy Re-encryption with Keyword Search (PRES)”

and blockchain. It consists of five entities - “Data Owner(DO)”, “Data provider

(DP)”, “Cloud Server (CS)”, “Blockchain (BS)” and “Data Requester (DR)”. The

proposed scheme has three layers - 1) “Data Generation Layer”, 2) “Data Storage

52 Literature Survey

Layer” and 3) “Data Sharing Layer”.

A patient requires to create an account for consortium blockchain when visiting

a hospital. During registration, a patient i receives an account address Ai and a

private key from the consortium blockchain. The doctor is the data provider and

he/she generates PHR m for the patient and extracts a list of keywords wi from it.

He/She then encrypts m using public key pki of the patient, private key xk of the

doctor and keyword wi to generate cipher text Cm. The doctor also encrypts the

keywords wi using his/her public key Xk to generate the keyword ciphertext Cw.

Next, v1 = (Cm||Cw||Ai) is uploaded to the cloud server and the receives file location

Fi as the response from the server, which is then send to the patient. The doctor

also sends data packet v2 = (Cw||Ai||Ck) to the blockchain. Here, Ck is doctor’s

signature for proof of conformance for the blockchain.

In this work, the search query is approved by the doctor instead of the patient

unlike in most other works. When a doctor receives a keyword for search, he/she

generates a trapdoor TQ corresponding to it. Using the trapdoor, the data requester

(DR) can search for the required PHR and account address Ai of the patient on the

blockchain. Next DR sends V3 = (Ij||pkj||Xk||Aj) to the data owner, that is, patient.

Here, Ij is identity of data requester, pkj is his/her public key, Aj is his/her account

address, andXk is doctor’s public key. Upon receiving, the request from DR, patient

authorizes it and sends the file location Fi and keyword set wi to DR. Moreover, the

patient also sends a re-encryption key rk to CS which carries out proxy re-encryption

for the ciphertext required. Finally, the re-encrypted ciphertext is decrypted by the

DR using his private key skj.

• Sun et al. [113] (2020): In 2020, Sun et al. [113] proposed a solution for the

problem of secure storage and sharing of Personal Health Records(PHRs) using

Attribute based Encryption with Keyword Search (ABKS). In this work they have

used Inter Planetary File System (IPFS) [117] to store the records. IPFS is a

distributed file system that assigns a unique identifier to each file that is stored on

it. The hash of the record is stored on Ethereum based blockchain network which

ensures authenticity and integrity of the data. The encryption type used is private

key, however, this scheme does not support multi-keyword search.

The scheme consists of three parts - 1) System Establishment, 2) Medical Data

Generation and Storage, and 3) Data Search and Access. In the system establish-

3.4 Existing schemes for PHR sharing 53

ment phase, the doctor generates public key PK for the system using algorithm

GlobalSetup(λ). Here λ is the security parameter. The algorithm selects α, β ∈ Z∗
p

and a hash function H : {0, 1}∗ → G0 and computes A = e(g0, g0)
α, B = gβ0 where

e : G0 × G0 → G1 is a symmetric bilinear map, G0, G1 are multiplicative cyclic

groups and g0 is generator of G0. Further ξ ∈ Z∗
p is selected randomly and the

search private key is set as sku = {ξ}. Additionally, each patient i ∈ U selects

yi ∈ Z∗
p randomly and sets its as his/her private key ski and announces public key

as pki = gyi0 . Similarly, each doctor j ∈ D selects xj ∈ Z∗
p randomly and sets it as

his/her private key and announces public key as pkj = g
xj

0 .

During data generation and storage phase, for each patient i, a value φi ∈ Z∗
p is

randomly selected by hospital k and is then sent to patient i securely along with

assigning a doctor j for the patient. The server calculates µi = H(φi) which is used

to authorize the patient. The doctor then generates PHR m and a set of keywords

Wm associated with m. He/She then encrypts m andWm based on the access policy

negotiated with the patient and generates ciphertext CT and encrypted index index.

When a data user wants access to the medical records of the patient, he/she sends

a request to access the records along with his Ethereum public key to the doctor.

The doctor assigns some attributes to the user and adds his account address to the

list of authorized users after verifying his/her identity.

• Tang et al. [65] (2021): Tang [65] proposed another blockchain based SSE

scheme for medical record sharing in 2021. First, the authors have presented a

solution in which the entire medical record of the patient is retrieved on searching

i.e without fine grained access control and then have presented a modification to the

original scheme to allow fine-grained access over the medical records of the patient.

Their scheme consists of four entities - 1) hospital collection, 2) patient collection, 3)

Blockchain system and 4) authority. It has the following phases - 1) Index-building,

2) Data retrieval, 3) Integrity verification, 4) Data addition, and 5) Data deletion.

The data addition and deletion property make this scheme dynamic in nature. It

also provides forward security which ensures that previous search queries do not

leak any information about the PHRs that are being added later.

During system initialization, smart contracts are deployed and the entities involved

generate their keys and security parameters. During index building phase, a pa-

tient Oi visits hospital Hj where a doctor generates the medical records denoted

54 Literature Survey

by PHRi,j,c for the patient. Here, c denotes the serial number of medical record.

Hospital Hj summarizes the records for the patient Oi when they reach a certain

number and generate a secret key using global identifier of the patient Oi. This

secret key is used to build encrypted search index and verification index which are

uploaded to the blockchain network using smart contract. During data retrieval

phase, a doctor employed at another hospital Hk tries to retrieve medical history of

Oi for diagnosis. Oi gives the required data for trapdoor generation to the hospital

which then retrieves the PHR identifiers from the encrypted index using smart con-

tract. The hospital then requests the corresponding hospital to send the encrypted

medical records. The received records are decrypted and checked for integrity and

accuracy using the verification index. After diagnosis is over new PHRs after gen-

erated by Hk and corresponding entries are added to the encrypted search index

and verification index. The patient Oi also updates his locally stored information so

that a new trapdoor could be generated in the future. This is important for forward

security of the scheme.

• Wang et al. [61] (2022): This scheme proposed by Wang et al. [61] is based on

ABKS. They have combined consortium blockchain with a distributed file system

IPFS for secure storage and sharing of PHRs. They have used attribute base en-

cryption to allow a fine-grained access control mechanism over the PHRs and have

used zero-knowledge proof for storage evidence of PHRs. The proposed scheme

consists of five main entities - 1) Data Source (DS), 2) Data Owner (DO), 3) Data

User (DU), 4) Blockchain Client (BC) and a 5) Blockchain Network (BN). Their

main goal are - 1) Data Security, 2) Secure Search, 3) Collusion-Resistant Privacy

Preservation and 4) Personalized Access Control.

The scheme proposed by the authors consists of the following phases 1) System Ini-

tialization, 2) Data Generation and 3) Data Sharing phases. Data generation further

has the following sub-phases - 1) Cipher-text Generation, 2) Storage Proof Genera-

tion, 3) Keyword Ciphertext Generation, 4) Symmetric Key Cipher-text Generation

and 5) Smart Contract Generation. During System Initialization phase, system pa-

rameters such as master public key and master secret key are setup. In Cipher-text

Generation phase, DO encrypts the PHR using symmetric key encryption. This is

followed by storage proof generation where, DO uploads encrypted PHR to IPFS

and receives a unique identifier which is used as input for zero-knowledge proof to

3.4 Existing schemes for PHR sharing 55

compute storage proof. In verify and consensus phase, the storage proof is sent as a

transaction to the blockchain network which uses Practical Byzantine Fault Toler-

ance (PBFT) as the consensus algorithm. Next, DO chooses a set of keywords from

the PHR and a set of attributes consisting of personal information of the owner and

uses them to generate keyword ciphertext. This is followed by encryption of sym-

metric key used to generate the ciphertext of PHR. Finally, DO writes symmetric

key ciphertext, identifier of PHR ciphertext and required incentive fee into a smart

contract.

In the data sharing phase, DU requests for attribute key from attribute agency by

providing his/her attributes. This attribute key can be used to generate trapdoor

for a set of keywords that the DU wants to search for. This is done by sending the

attribute key and trapdoor to the smart contract which validates both and returns

PHR identifier and the symmetric key to decrypt the PHR. DU can then download

the encrypted PHR from IPFS using the identifier and decrypt it using the key

received from smart contract.

3.4.2 Comparative study

In this section, a comparison of the schemes discussed above has been provided. Generic

parameters have been chosen for comparison of features that are offered by the schemes

considered above. It consists of type of cryptographic primitive used, type of blockchain

model used, type of keyword search and dynamism. There are four types of crypto-

graphic primitives as discussed in Section 3.3.2, namely - “Searchable Symmetric En-

cryption (SSE), Public key Encryption with Keyword Search (PEKS), Attribute based

Encryption with Keyword Search (ABKS) and Proxy Re-encryption with Keyword Search

(PRES)”. We refer Type-1 and Type-2 for the system model as shown in Figures 3.2 and

3.3, respectively. The type of blockchain model can be public, private or consortium as

described in Section 1.2.2. The type of keyword search refers to the type of queries allowed

in the search. Single keyword search and multiple keyword search are two possible types

of keyword searches. However, some schemes also use database query expressions such as

that of Chen et al. [64] instead of the standard keyword search.

Table 3.3 shows a comparative study on various features supported by the schemes

under consideration as per the criteria discussed above.

56 Literature Survey

Table 3.3: Features comparison of various blockchain-based EHR sharing schemes

Year Scheme Cryptographic Blockchain Keyword Search Dynamic System

Primitive Type Type Model

2018 Zhang et al. [54] PEKS Private Single No Type-1

+ Consortium

2019 Chen et al. [64] SSE Public MongoDB query No Type-2

expressions

2019 Niu et al. [114] ABKS Private Multiple No Type-2

2019 Wang et al. [62] PRES Consortium Single No Type-2

2020 Sun et al. [113] ABKS Public Single No Type-2

2021 Tang et al. [65] SSE Public Single (for Yes Type-2

fine-grained search)

2022 Wang et al. [61] ABKS Consortium Single No Type-2

3.5 Summary

In this chapter, we described searchable encryption and blockchain which are currently

leading technologies. We explained how search over encrypted data can be achieved and

provided an understanding of the blockchain technology which has been steadily growing

in use over the past decade. Additionally, we provided a description of PHRs and the

benefits of using them. Furthermore, we described how we can combine SE and blockchain

together, and use them to create secure systems that are capable of secure storage and

sharing of PHRs. We also discussed the latest works that have used SE and blockchain

for PHRs storage and sharing. Finally, we conclude that both of these technologies show

great promise for the future advancements in healthcare technologies.

Chapter 4

Efficient PHR Sharing in IoMT

using Searchable Symmetric

Encryption, Blockchain and IPFS

In this chapter we propose and elaborate an efficient solution for sharing and storage

of personal health records using searchable encryption, blockchain and IPFS. We first

discuss the system model which consists of the details of various entities involved and the

inter-links between them. We then describe the protocol between these entities followed

by formal security proofs and test-bed experimental results.

4.1 System model

In this section, we discuss the system architecture and threat model used in the develop-

ment of the proposed scheme.

The system model proposed in this work consists of various patients, hospitals, a

blockchain network consisting of peer nodes maintained by hospitals, and an IPFS network

that is accessible through the Internet. Figure 4.1 shows a diagrammatic representation of

our system model. It shows two hospital instances designated as Hospital 1 and Hospital

2. Each hospital contains a hospital server, a Blockchain node, several doctor devices and

several medical devices. In practice there will be more number of hospitals; however, for

clarity we have shown only two hospitals. Further, there are two patients designated as

58 Personal-Health-Records Sharing in IoMT

Figure 4.1: System model

Patient 1 and Patient 2. In practice, there will be many patients and each patient can

visit any of the hospitals for diagnosis but for simplicity, we have shown only two patients.

Patient 1 visits Hospital 1 and Patient 2 visits Hospital 2. A patient is alternatively called

4.1 System model 59

data owner. Further, we have an instance of data user in the model. A data user can

interact with any of the hospitals and data owners. The exact nature of this interaction

will become clear in subsequent sections.

Figure 4.1 shows the blockchain and IPFS networks. Each hospital is also a part of

the consortium blockchain network. It is used to store meta-data such as the encrypted

index. IPFS, on the other hand, is independent of the hospitals and used to store the

actual PHRs in encrypted form. We can say that the PHRs are stored in an off-chain

structure that is decentralized; thereby providing more reliability.

Apart from presenting the different entities involved in our system model, Figure 4.1

also describes the network model of our system. The connector lines in the figure represent

communication channels between the entities. Bidirectional arrows denote the fact that

the channels are bidirectional. The channels shown using black lines are built over the

Internet while the channels denoted using blue lines are built over local network of the

entity in which they are contained. For instance, the communication channel between

Patient 1 and Hospital Server is shown using a black line, while that of Doctor Device 1

and Hospital Server is shown using a blue line.

We have shown the various messages that are passed between the entities in the system

during its operation. These messages are shown using the color pink and numbered in a

sequential manner so as to describe the flow of information in the system. Note that the

messages are not shown for Patient 2 and Hospital 2 as they would be similar to that of

Patient 1 and Hospital 1. Additionally, each entity in the system generates its own pair

of elliptic curve keys which are then used for secure communication with other entities

using “Elliptic Curve Integrated Encryption Scheme (ECIES)”.

We describe each of the entities present in the system model in detail.

• Patient (P): A patient is a person who visits a hospital for medical diagnosis and

is also called the data owner.

• Hospital Server (HS): We define hospital to be a medical institution that provides

services to a patient. Each hospital that is part of our system should also maintain a

server (denoted by HS) that handles all the requests from patients and a blockchain

node (BN) that connects the hospital to the blockchain network.

• Doctor (D): Every instance of a hospital has several doctors associated with it and

each doctor is provided a device through which he/she can access the hospital’s IT

infrastructure.

60 Personal-Health-Records Sharing in IoMT

• Data User (DU): Any entity that wants to make use of the data uploaded into

the system by data owners is called a data user. A patient itself can also become

a data user. Another common instance of a data user is a doctor who requires a

patient’s medical history for diagnosis. Moreover, insurance companies can also be

categorized as data users.

• Blockchain Node (BN): In our scheme, every hospital in the ecosystem should be

a part of the consortium blockchain network, and thus should maintain a blockchain

node that takes part in the consensus mechanism.

• IPFS: It is used by patients to store their PHRs (in encrypted form). It can be

accessed through the Internet.

• Medical devices: Each hospital has a set of medical devices to diagnose patients and

are connected to the local network of the hospital. A few examples of such devices

are “Electrocardiogram (ECG) device”, “Electroencephalogram (EEG) device” and

“Magnetic Resonance Imaging (MRI) device”, etc. A doctor can use these devices

to generate data to be included in the PHR.

Table 4.1: Notations and their definitions

Notation Definition

h(·) Collision-resistant hash function

MK A patient’s master key

TS Timestamp

EPK(·) Probabilistic ECIES encryption using public key PK

ESK
k (·) Probabilistic symmetric encryption using key k

X[k] Accessing element of dictionary X using key k

Xi Accessing ith element of list X

∥ Concatenation

U Universal set for keywords

4.2 Proposed scheme 61

4.2 Proposed scheme

Till now, we have discussed about individual entities in our system. We now move ahead

and describe the interactions between these entities which forms the core of our proposed

scheme. First, we define the various components essential for understanding the scheme

and then provide its overview followed by a detailed description.

The proposed scheme provides dynamic updates by allowing addition of new PHRs

without having to rebuild the index. It is important to note that our scheme does not

provide the functionality to update the contents of an individual PHR. It only allows

addition of new PHRs dynamically, i.e., without having to rebuild the index. PHR records

are generated by a doctor; therefore, a data owner does not need the facility to themselves

update an individual PHR. Moreover, the literary works have only focused on addition of

new PHRs and not on updating an individual PHR. Here, we also focus on the same. After

PHR addition, a data user can search for PHRs containing specific keywords with consent

from the data owner. For ease of understanding, we have provided a list of notations used

to describe our scheme, in Table 4.1.

4.2.1 Definitions

Definition 4.1 (PHR). A PHR is a text file containing the diagnosis report generated

by a doctor.

Definition 4.2 (Keyword). A keyword is a sequence of characters that is delimited by a

special character such as a blank space.

Definition 4.3 (Secure Entries Dictionary). It is a dictionary denoted by ∆ and is used

to store the entries of the encrypted search index.

More details about ∆ are presented in Section 4.2.3.

Definition 4.4 (Trapdoor). A trapdoor is a special search token that is issued by data

owner to a data user when the latter wants to search for the PHRs containing a given

keyword.

The exact structure of a trapdoor is provided in Section 4.2.3.

62 Personal-Health-Records Sharing in IoMT

Definition 4.5 (PHR Sharing Scheme). We define our scheme as a tuple Σ = (KwExt,

SEGen, PHRAdd, TrapGen, Search, RetId) where the algorithms are described as fol-

lows:

• W ← KwExt(PHR): KwExt algorithm takes a PHR as input and returns a list

W of unique keywords present in the PHR.

• ∆ ← SEGen(W): SEGen algorithm takes a set of unique keywords W as input

and returns a secure entries dictionary ∆ as the output.

• s ← PHRAdd(∆): PHRAdd algorithm takes a secure entries dictionary as in-

put and stores its content on the blockchain MR-tree. It returns the status of the

operation denoted by s which can be either success or failure.

• t← TrapGen(w): TrapGen algorithm takes a keyword w as input and returns the

corresponding trapdoor t for search.

• Γ ← Search(t): Search algorithm takes a trapdoor t as input and returns a list Γ

of encrypted identifiers of PHRs containing the keyword corresponding to t.

• Υ← RetId(Γ): RetId algorithm takes search result Γ as the input and returns the

actual PHR identifiers Υ.

4.2.2 Overview

Our scheme consists of the following phases: 1) setup, 2) patient registration, 3) PHR

generation and addition, and 4) keyword search.

We first give an overview of the scheme in this section and then describe each phase

in detail.

In the setup phase, the entities select security parameters, such as public-private key

pairs and other secret values. This phase is executed only once during the system ini-

tialization. The second phase, patient registration, is executed by a patient whenever

he/she visits a hospital for the first time. After completion of this phase, the patient

4.2 Proposed scheme 63

Figure 4.2: Flowcharts for PHR generation and keyword search

receives a globally unique identifier and password. The patient uses the same identifier

and password when visiting any other hospital later.

The third phase, PHR generation and addition, is initiated by a patient when he/she

requires health diagnosis. The patient retrieves the list of doctors from the hospital and

selects a doctor for treatment. He/she then sends a request to the chosen doctor via HS

to retrieve the doctor’s public key. Finally, he/she sends a token to the doctor via HS.

The token is later used to authenticate the patient when he/she visits the doctor.

Upon connecting with the doctor, the patient is authenticated using the token. The

doctor diagnoses him/her only if the token provided by the patient matches the one it

received earlier. Diagnosis involves collecting data from the IoMT smart devices and

64 Personal-Health-Records Sharing in IoMT

giving medical prescriptions based on the patient’s condition. The doctor then constructs

a PHR of the patient containing all this information and sends it to the patient securely 1.

Upon receiving the PHR, the patient runs KwExt algorithm to retrieve unique keywords

from the PHR. The patient then uploads the PHR to IPFS and receives a unique content-

id for it denoted by idphr. Finally, the patient runs SEGen algorithm and sends the

output ∆ from the algorithm, to the hospital server. The hospital server sends this data

to its BN , which submits it as an add transaction to the blockchain network. Finally,

this transaction is processed and added to blockchain by the peers. A flowchart of PHR

generation process from the perspective of a patient can be seen in Figure 4.2.

The fourth and final phase, keyword search, starts when a data user wants to search

for PHR containing a particular keyword. He/she requests for a trapdoor corresponding

to the keyword to be searched from the patient. The data user sends this trapdoor to the

hospital server, which, in turn, runs the search algorithm and returns search results con-

taining encrypted ids of the PHRs containing the given keyword along with some possible

dummy entries. The dummy entries are a means to provide security to our scheme (see

Section 4.2.3 for details). The data user can get actual PHR ids and decryption keys by

sending the search results to the patient/data owner. After obtaining the decrypted PHR

id from the patient, the user can then directly query IPFS and download the encrypted

PHRs. Since the PHRs are stored in encrypted form, the data user first needs to decrypt

them using the key sent by patient along with the actual PHR id. A flowchart of this

process from the perspective of data user is also shown in Figure 4.2.

4.2.3 Phases

We now describe the phases mentioned above, in detail.

1) Setup

In this phase, the entities generate security parameters such as public-private key pairs.

It has the following sub-phases.

• Global Setup: A non-singular elliptic curve Ep(a, b) of the form: y2 = x3 + ax + b

(mod p) is chosen where p is a large prime, and a, b ∈ Zp = {0, 1, 2, · · · , p − 1}
such that 4a3 +27b2 ̸= 0 (mod p) is satisfied. Additionally, a generator G is chosen

1Channels are secured using ECIES encryption

4.2 Proposed scheme 65

from Ep(a, b) whose order will be as large as p. Next, a “collision-resistant one-way

cryptographic hash function, h(·)” with output length l is chosen which acts as a

random oracle O. A security parameter n is also chosen. The keyword space which

contains all the valid keywords that can be present in a PHR is denoted by U .

Finally, for ECIES encryption, ECDH key exchange and probabilistic AES-OCB3

encryption [75] are chosen as the underlying components.

• Patient Setup: Each patient (device) randomly selects an integer kp ∈ Z∗
p as its

private key, where Z∗
p = {1, 2, · · · , p−1}. The corresponding public key is computed

as Kp = kp · G where (·) represents elliptic curve scalar multiplication, that is,

kp · G = G + G + · · · + G, kp times. In addition to public-private key pair, each

patient randomly selects a master key MK ∈ {0, 1}n. Further, each patient device

maintains a dictionary which we term as “Current Head Dictionary (CHD)”. It

takes a keyword (sequence of characters) as its key and stores a PHR id as the

corresponding value. Patient device also maintains a reverse look-up dictionary

RLD which maps encrypted PHR ids to actual PHR ids and the PHR decryption

keys. The significance of these dictionaries will become clear in the PHR generation

(see Section 4.2.3).

• Hospital Setup: In a similar manner to a patient device, HS randomly selects its

private key kh ∈ Z∗
p and computes public key as Kh = kh · G. It is important to

note that blockchain node, BN , will also use this key because HS and BN are

maintained by the same entity (i.e., hospital). HS also maintains a dictionary that

we term as “User Dictionary (UD)” which takes the patient’s unique id as the key

and the patient’s public key as the value. It is used to retrieve the public key of the

patient for encryption when HS wants to send some data to the patient.

• Doctor Setup: A doctor device is assumed to be maintained by each doctor. Doctor

device randomly selects its private key kd ∈ Z∗
p and computes the public key as

Kd = kd · G. Each doctor has a unique identity idDi
for the hospital where he/she

is employed.

• Data User Setup: Any data user that wants to interact with the system must select

a private key ku randomly from Z∗
p and compute the corresponding public key as

Ku = ku ·G.

66 Personal-Health-Records Sharing in IoMT

Figure 4.3: PHR generation sequence diagram

2) Patient registration

Suppose a patient, P wants to visit a hospital H. He/she registers himself/herself by

providing the public key Kp to HS and then selecting a unique id and password. This

id and password combination is used by the patient to authenticate himself or herself

while communicating with HS. Upon completion of registration, the patient receives the

public key Kh of the hospital server HS. Note that there are other ways the patients

can receive Kh (for example, the hospital can list its public key on its website and use a

certificate authority for its validation). However, to avoid providing unnecessary details

and to simplify the scheme, we have assumed that the hospital server will simply send its

public key back to the patients during registration. We have used similar ways to share

public keys throughout our scheme, but if required they can listed on a public platform.

It does not have any impact on the security of the scheme.

4.2 Proposed scheme 67

3) PHR generation

An overview of the PHR generation process is given in Figure 4.3. We describe the entire

process in detail in this section.

• Initiation: To initiate PHR generation, a patient P requests an updated list of

doctors from the HS. The patient P generates τ ∈ {0, 1}∗ as a token and then

selects a doctor D from the list and sends a request to D through HS to get D’s

public key. P then encrypts τ using public key of D and sends it to him/her via

HS.

Algorithm 1: Keyword extraction

Input: PHR

Initialize a set ks

for each keyword w in PHR do

insert(ks, w)

end

Convert ks to list l

return l

Figure 4.4: A single entry of the conceptual encrypted index

Later, when the patient interacts with D 2, he/she sends the token τ to the doctor

for verification. If it matches the token previously sent by the patient to the doctor,

then the doctor diagnoses the patient. If required, the doctor collects data from the

medical devices and generates a PHR. Doctor device then encrypts the PHR using

public key Kp of the patient. This encrypted PHR is finally sent to the patient P .

• Secure Entries Generation: P upon receiving the encrypted PHR, decrypts it

using his/her private key and then runs Algorithm 2, which is an implementation of

2Patient has the option to interact in-person or remotely depending on the need.

68 Personal-Health-Records Sharing in IoMT

SEGen, over the PHR to get secure entries dictionary ∆. Algorithm 2 is explained

below in detail.

• PHR upload: Algorithm 2 first generates the PHR encryption key kphr = h(MK ∥
TS), where MK is P ’s master key and TS is the current time stamp. Next, the

algorithm executes Algorithm 1, an implementation of KwExt, to generate the list

of unique keywords, W = {w0, w2, · · · , wn−1}, present in the PHR. It then encrypts

the PHR using the generated key and uploads it to IPFS, which returns a content

id, denoted by idphr. This id is encrypted as id′phr = ESK
kphr

(idphr) to store it in

the encrypted index. The encryption is necessary to prevent leakage of information

to hospital. During implementation the encryption function ESK(·) is replaced by

AES-OCB3.

P finally stores the actual PHR id idphr and PHR decryption key kphr in the reverse

lookup dictionary RLD by using id′phr as the key. RLD is used to map an encrypted

PHR id to an actual PHR id and the decryption key during keyword search (more

details are provided in Section 4.2.3).

• Noise Addition: Instead of using the original set of keywords W to generate the

secure entries, we first add some noise to it by merging Q with W . Q is a subset of

the keyword space U . The new keyword set is denoted by V . This addition of noise

is required in order to prevent attacks against our scheme (see Section 4.3.4).

• Encrypted Search Index: Before going any further into explanation of Algorithm 2,

we need to understand the structure of the encrypted search index and how it

is stored in the Blockchain. The encrypted search index can be considered as a

dictionary with a unique keyword w as the key and a linked list as the corresponding

value. The linked list stores the encrypted identifiers of the PHRs that contain

keyword w. This encrypted search index is partially stored on the patient device

and partially in the blockchain’s Merkle-Radix (MR) tree. Specifically, the key-set

of this dictionary is stored on the patient’s device in the form of CHD dictionary;

while the value-set, which is essentially a set of linked lists, is stored in the MR-tree.

This division is essential for the security of the search index, because generation of

trapdoor is dependent on the key-set. If we store it on the blockchain, anyone can

publicly access it and generate the trapdoor corresponding to a keyword. This would

defeat the purpose of having a trapdoor.

4.2 Proposed scheme 69

Algorithm 2: Secure entries generation
Input: PHR,Q

TS ← Current Timestamp

kphr ← h(MK ∥ TS)

W ← KwExt(PHR)

Upload ESK
kphr

(PHR) to IPFS and receive idphr

id′phr ← ESK
kphr

(idphr)

RLD[id′phr] = (idphr, kphr)

V ← Q ∪W

for 0 ≤ i < |V | do

kw ← h(MK ∥ Vi)

addr ← h(kw ∥ idphr ∥ 0)

k ← h(kw ∥ idphr ∥ 1)

if CHD[Vi] = null then

addrprev ← null

kprev ← null

else

idprevphr ← CHD[Vi]

addrprev ← h(kw ∥ idprevphr ∥ 0)

kprev ← h(kw ∥ idprevphr ∥ 1)

end

if Vi ∈W then

c← ESK
k (addrprev, kprev, id′phr)

else

r
$← {0, 1}lidphr

c← ESK
k (addrprev, kprev, ESK

kphr
(r))

end

∆[addr]← c

CHD[Vi]← idphr

end

return ∆

70 Personal-Health-Records Sharing in IoMT

Figure 4.4 shows one entry of this conceptual dictionary. Recall that CHD is a

dictionary maintained by the client device. Specifically, CHD[w] stores the id of

the PHR that contains w in it and was added most recently to the system. This PHR

identifier forms the head node of the linked list associated with keyword w along

with some dummy nodes (discussed in part - Node Generation). As mentioned

earlier, the linked-list corresponding to key w is used to store the identifiers of all

the PHRs that contain w. Therefore, there is a linked list corresponding to every

unique keyword contained in the set of PHRs of a patient. Each node of a linked list

is stored individually in the MR-tree of the blockchain and has a unique MR-tree

address. A node is linked to the next one by storing the MR-tree address of the

next node in the current node. We have used a linked-list over other data structures,

such as an array, because by design it ensures forward security (details are provided

in proof of Theorem 4.2).

• Node Generation: As discussed earlier, each keyword present in V should have

a corresponding linked list. The next part of the algorithm generates the nodes

for these linked lists. For each keyword w ∈ V a new node for the linked list

corresponding to w will be created. This node is added to the front of the linked

list and becomes the new head node. Adding the node from front, rather than back,

is required to ensure forward security. In ith iteration of the for loop present in

the algorithm, a new head node for the linked list corresponding to keyword Vi is

created. Specifically, for 0 ≤ i < |V |, the algorithm generates kw, addr and k as

follows: kw = h(MK ∥ Vi); addr = h(kwi ∥ idphr ∥ 0); k = h(kw ∥ idphr ∥ 1). Here,

kw is an intermediate expression, addr is the MR-tree address where the node will

be stored and k is the key which will be used to encrypt the contents of the node.

Before constructing the new head node, the address and decryption key of the

current head node are required. Therefore, the algorithm obtains the PHR id that

forms the current head node from CHD as idprevphr = CHD[Vi]. This id is then used

to generate the MR-tree address of the new head node and the decryption key for

the contents of new head node as follows:

addrprev = h(kw ∥ idprevphr ∥ 0)

kprev = h(kw ∥ idprevphr ∥ 1).

If CHD does not contain an entry for Vi, then addrprev and kprev are set to null

value.

4.2 Proposed scheme 71

Finally, the algorithm calculates c. If the keyword Vi is present in the PHR, then c

is computed as follows.

c = ESK
k (addrprev, kprev, id′phr).

Otherwise, the value of id′phr is replaced by encryption of a random value r of same

length as idphr as follows.

c = ESK
k (addrprev, kprev, ESK

kphr
(r)).

The condition above is necessary to find the correct PHR identifiers during keyword

search. Details are present in Keyword Search Section 4.2.3.

Now, c is the new head node of the linked list corresponding to the keyword Vi. It

contains three values: a) address of the previous head, b) key of the previous head,

and c) encrypted PHR id or encrypted random value. Also note that, in Figure 4.4

we have not shown dummy nodes for the sake of simplicity. However, in practice

there will be dummy nodes mixed with the valid nodes.

All new head nodes denoted by {ci | i ∈ {0, 1, 2, . . . , |V |−1}} are stored in dictionary

∆ by using addri as the key. The algorithm returns ∆ as its output.

• Uploading to Blockchain: After generating ∆ Patient P sends it to HS which for-

wards it to the “Blockchain Node (BN)”. BN runs Algorithm 3 over ∆ which

Algorithm 3: PHR addition

Input: ∆

for (addr, val) ∈ ∆ do

state.set(addr, val)

end

Signal completion of the event to HS

retrieves each key values pair (addr, c) and stores c at address addr of the MR-tree,

and records this transaction in a block. Upon completion of this operation, BN

notifies HS about the successful execution of the transaction, which in turn shares

the success response with P .

72 Personal-Health-Records Sharing in IoMT

3) Keyword search

An overview of the keyword search process is given in Figure 4.5. This section describes

the search process in detail.

Algorithm 4: Trapdoor generation

Input: w

kw ← h(MK ∥ w)

if CHD[w] = null then

idheadphr ← null

else

idheadphr ← CHD[w]

end

addr ← h(kw ∥ idheadphr ∥ 0)

key ← h(kw ∥ idheadphr ∥ 1)

t← addr ∥ key

return t

• Trapdoor generation: Suppose a data user (DU) wants to search for a PHR of

a patient P that contains a specific keyword w. DU sends the keyword w to P

to receive a trapdoor t corresponding to w. For this, P runs Algorithm 4 which

calculates kw = h(MK ∥ w). It then retrieves the PHR id stored in head node of

the linked list corresponding to w as follows:

idheadphr = CHD[w]

The algorithm then calculates the address and key of the head node as follows:

addr = h(kw ∥ idheadphr ∥ 0)

k = h(kw ∥ idheadphr ∥ 1)

addr is the MR-tree address of the head node of the linked list corresponding to w

and k is the symmetric key using which contents of the head node were encrypted.

The algorithm returns t = addr ∥ k as its output which is then sent by P as the

trapdoor to DU .

4.2 Proposed scheme 73

Algorithm 5: Keyword search

Input: t

addr, key ← Parse t

Initialize a list Γ

while True do

Send a request to the blockchain node to get data at addr

Store the response in res

if res.code = ok then

C ← res.content

addrprev, kprev, x← Dkey(C)

Append(Γ, x)

if addrprev = null then
break

end

addr ← addrprev

key ← kprev

else

return (not-found, null)

end

end

c← EKh
(Γ)

return (ok, c)

• Search: DU then sends the trapdoor t and its own public key toHS after encrypting

it using Kh
3. HS then executes Algorithm 5 which directly queries the state of

the blockchain’s MR-tree using REST API. Specifically, using the trapdoor t, HS

obtains the address addr and key k required to obtain the head node of the linked list.

HS sends a request using the blockchain’s REST API to retrieve data at the address

addr of the MR-tree. The response of the request is C = ESK
k (addrprev, kprev, x),

3Kh can be obtained directly from hospital

74 Personal-Health-Records Sharing in IoMT

Algorithm 6: Retrieve identifiers

Input: Γ

Initialize list Υ

for 0 ≤ i < |Γ| do

if RLD contains Γi then

idphr, kphr ← RLD[Γi]

append(Υ, (idphr, kphr))

end

end

return Υ

Figure 4.5: Search process

where x can be either id′phr or E
SK
kphr

(r). x is appended to a list Γ by the HS. addrprev

4.3 Security analysis 75

and kprev are then used as the new values to obtain the previous node. This process

continues until addrprev or kprev is not null. After completion of Algorithm 5, HS

sends Γ to DU after encrypting it using DU ’s public key. Note that, for simplicity,

we assume that HTTP protocol is being used for communication. Therefore, we have

used some of the HTTP status codes like “ok” and “not-found” in the algorithm to

denote the status of responses.

• PHR identifier retrieval: DU sends Γ to P in order to obtain the actual PHR

identifiers. P runs Algorithm 6 to retrieve the actual identifiers of PHRs that

contain w. The algorithm uses reverse lookup dictionary RLD for this purpose. If

Γi denotes an element in Γ, then P checks if an entry corresponding to Γi exists in

RLD. If it exists, then actual PHR identifier and decryption key are retrieved as

idphr, kphr ← RLD[Γi] and are appended to list Υ along with the PHR decryption

key kphr. Finally, the list Υ is sent to DU which can then retrieve the encrypted

PHR from IPFS and decrypt them.

4.3 Security analysis

For proving the security of our scheme, we use the real-ideal simulation paradigm [124]

that is used in most of the previous searchable encryption works [84], [88], [97] and

prove that our scheme provides semantic security against an adaptive adversary in a

semi-honest setting. First, we define the threat model under which our system is secure.

This is followed by definition of information leakage of our scheme in the form of leakage

functions. We then show that a simulator that takes these leakage functions as its inputs

is indistinguishable from the real protocol for the adversary. This is followed by a proof

that our scheme provides forward secrecy and is also verifiable.

4.3.1 Threat model

We evaluate security our proposed scheme by considering hospital as the adversary. All

the important data in the system flows through the hospital, therefore, if we can show

that our scheme is secure against an adversary with capabilities of hospital, we can be

sure that it is secure against any adversary with lesser capabilities.

We consider a hospital to be honest-but-curious. It executes the protocol honestly,

76 Personal-Health-Records Sharing in IoMT

but can try to learn about the information it is unauthorized to access. It can do so by

using the data leaked to the hospital server or the Blockchain node during execution of

the protocol. We collectively represent this leakage in the form of leakage-functions which

are described in Section 4.3.2.

We assume a doctor to be trusted, because he/she is the entity which generates the

contents of the PHRs. Moreover, by securing the communication between any two entities

in the system using ECIES encryption, we can ensure that a doctor is not impersonated

by an adversary.

4.3.2 Security definitions

Definition 4.6 (Search Pattern). A search pattern describes whether a keyword previously

searched for is searched again. Formally, if m is the number of search queries that have

been made, the search pattern is a matrix Z of dimensions m×m such that the value Zi,j

is 1 if wi = wj; otherwise, it is 0. Here, wi is the keyword searched during ith query of a

data user.

Definition 4.7 (Leakage). The leakage for Σ is defined as a tuple L =

(LSEGen, LPHRAdd, LSearch) where LSEGen, LPHRAdd and LSearch are leakages that occur

during the secure entry generation, addition and search, respectively. These leakages are

inherent in all the efficient searchable encryption schemes present till now. Note that,

our scheme does not leak anything during the setup phase, because there is no interaction

between the entities during this phase. Each entity performs the setup offline, and as a

result, there is no possibility of any leakage except through physical means.

We define LSEGen, LPHRAdd and LSearch as follows:

• LSEGen: SEGen takes a PHR as input and gives secure entries dictionary ∆ as the

output. In SEGen, the length (or size) of the PHR is leaked during its upload to

the IPFS. Since the PHR is encrypted, no other information is leaked but the length

can still be figured out from the ciphertext. We denote the length of the PHR by m.

Thus, LSEGen is defined as a function that takes a PHR as input and outputs m.

4.3 Security analysis 77

• LPHRAdd: During the addition of a PHR, the only information that is leaked by our

scheme is the number of entries in ∆. This is because we give only ∆ to the HS.

Since the key is output of a hash function and the value is output of a probabilistic

encryption function, HS can only figure out its size (the number of entries in ∆)

but not the actual content. Thus, LPHRAdd takes a set of these keywords W as input

and outputs α.

• LSearch: During search corresponding to a keyword w, the information that is leaked

to the server is the number of files containing the keyword w, denoted by β, and

search pattern Z. Formally, LSearch takes a keyword w as input and outputs (β, Z).

Definition 4.8 (Adaptive Semantic Security for Σ). We define security of our scheme

similar to [97]. Let n ∈ N be a security parameter and m = poly(n) be a positive integer,

where N is the set of natural numbers. For simplicity of proof we assume that patient acts

as a data owner as well as a data user. This does not affect the security of the scheme as

data user is considered trusted.

Consider the experiments IdealF ,S,Ψ and RealΣF ,A,Ψ executed between stateful adver-

sary A and stateful simulator S using leakage functions LPHRAdd and LSearch.

• IdealF ,S,Ψ : Environment Ψ asks the data owner to run SEGen, Add or Search

operation by giving it the required information. For SEGen, Ψ gives a PHR as input.

For Add, Ψ gives secure-entries to be added to blockchain as input and for Search it

gives a keyword. Data owner sends the operation to ideal functionality F . F gives

the corresponding leakage to S which returns either abort or continue to F . For

SEGen, it returns abort or secure entries dictionary. For Add, it returns abort or

“done” and for Search, it returns abort or list of encrypted PHR/dummy identifiers.

Ψ observes the output and finally returns a bit b as the output.

• RealΣF ,A,Ψ : Environment Ψ asks the data owner to run SEGen, Add or Search

operation and provides the required information. For SEGen, it provides a PHR.

78 Personal-Health-Records Sharing in IoMT

For Add, it provides a secure entries dictionary and for Search it provides a key-

word. Data Owner executes the corresponding operation in presence of a real world

adversary A. Data Owner outputs either abort or secure entries dictionary for

SEGen. For Add it outputs abort or ’Done’ and for Search, it outputs abort or

list of encrypted PHR/dummy identifiers . Ψ observes the data owner’s output and

finally returns a bit b as the output.

We say that a scheme ΣF emulates an ideal functionality F if for all real world PPT

adversary A, there exists a PPT simulator S such that for all polynomial time environ-

ments Ψ there exists a negligible function negl(n) such that:

|Pr[RealΣF ,A,Ψ(n) = 1]− Pr[IdealF ,S,Ψ(n) = 1]| ≤ negl(n)

Definition 4.9 (Forward Security). A scheme Σ = (KwExt, SEGen, PHRAdd,

TrapGen, Search, RetId) is forward secure [90], if the leakage that occurs due to previ-

ous Add and Search operations do not reveal any partial information about a newly added

PHR except what is revealed by leakage L.

Definition 4.10 (Verifiability). A scheme Σ = (KwExt, SEGen, PHRAdd, TrapGen,

Search, RetId) is said to be verifiable, if the results returned to the user through the

search operation are valid.

4.3.3 Security claims

1) Adaptive-semantic security

The correctness of Theorem 4.1 ensures that our scheme is confidential against a PPT

adversary in semi-honest model. Once proven secure against hospital, we can be sure that

our scheme is also secure against any other adversary that does not have access to all the

leaked information.

Theorem 4.1. If h is a hash function and ESK(·) is a CPA secure encryption scheme,

then our PHR sharing scheme Σ is secure based on Definition 4.8 under random oracle

model.

4.3 Security analysis 79

Proof. To prove that the real game and ideal game are indistinguishable by any PPT

distinguisher, we provide an implementation of PPT Simulator S that takes only the

information provided by leakage functions as input to simulate patient behaviour in a

way that is indistinguishable from real patient. S initializes two dictionaries LenDict and

ResDict. LenDict uses a keyword as the key and stores an integer as the value. ResDict

uses a keyword as the key and stores a list as the value.

For SEGen, S returns a secure-entries dictionary by executing the SSEGen routine de-

scribed in Figure 4.6. The routine takes α = |V | as the input. S obtains V using W ∪Q,

whereW can be easily obtained from the PHR and Q is known publicly. The routine sim-

ply creates α number of random entries for the dictionary ∆ and returns it as the output.

The key is a randomly chosen from {0, 1}l and the value is probabilistic encryption of

0(l+n+lidphr). Here, l is the output length of hash function, n is the security parameter and

lidphr is the length of PHR identifier. The key and value of each entry are indistinguishable

based on random oracle model and the CPA security of ESK , respectively. Thus, Ψ is

unable to distinguish between the real and ideal games using the SEGen operation.

During Add S simply returns ’Done’ because the addition of a PHR in real game

does not return anything besides abort or ’Done’. During Search S must return a list of

encrypted PHR/dummy identifiers. For this S executes the routine described in Fig 4.6.

It takes an input β which is the length of the list of encrypted PHR/dummy identifiers.

This information is provided to S by the leakage function LSearch. S uses LenDict to keep

track of the length of the list that is to be returned as output when keyword w is searched.

When w is searched for the first time, and the leakage corresponding to it is β then a

new entry (w, β) is created in LenDict. ResDict also gets a new entry with w as the key

and a list containing β encryptions of 0lidphr (lidphr is the length of the PHR identifier,

which depends on the hash function used by IPFS). This list is returned as the output.

Each entry of the list is indistinguishable based on the CPA-Security of ESK . When w

is searched again, the same list is returned. Now, for the case when w is searched after

addition of one or more PHR, the simulator just adds the number of entries equal to the

difference between β and LenDict[w]. LenDict[w] is then updated to β and ResDict[w]

80 Personal-Health-Records Sharing in IoMT

SSEGen(α)

1 : Initialize dictionary ∆

2 : for 1 ≤ j ≤ α

3 : addr
$← {0, 1}l

4 : k
$← {0, 1}l

5 : ∆[addr] = ESK
k (0

(l+n+lidphr))

6 : endfor

7 : return ∆

SSearch(β,w)

1 : if LenDict[w] = null

2 : LenDict[w]← β

3 : Initialize ResDict[w] as an empty list

4 : for 0 ≤ i < β

5 : k ← {0, 1}n

6 : append(ResDict[w], ESK
k (0

lidphr))

7 : endfor

8 : endif

9 : if β ̸= LenDict[w]

10 : for 0 ≤ i < (β − LenDict[w])

11 : append(ResDict[w], ESK
k (0

lidphr))

12 : endfor

13 : LenDict[w]← β

14 : endif

15 : return ResDict[w]

Figure 4.6: Implementation of simulator

4.3 Security analysis 81

is returned. Thus, in every case, Ψ gets consistent results and it is therefore unable to

distinguish the ideal game from real game.

2) Forward security

It is an important property of any SE scheme. It ensures that the data leaked during

the operations of the proposed scheme do not reveal any partial information about the

PHRs that will be added in the future. For example, if an adversary knows that a PHR

contains a certain keyword, he/she must not be able to determine if a PHR that is added

later contains the same keyword or not.

Theorem 4.2. Our scheme Σ is forward-secure in semi-honest model under the random

oracle model.

Proof. When a new PHR is added, the address is computed as h(kw ∥ idphr ∥ 0) (see

Section 4.2.3). Here, idphr is computed by taking the hash of the contents of the PHR

and therefore is unique for each PHR. Thus, even for a keyword that occurs multiple

times in different PHRs, the address generated will always be a random value output by

the random oracle h. Further, new nodes are added to the head of the linked list in the

existing encrypted index. This ensures that upon addition of a new PHR id to the same

list does not require any modification in the encrypted index. Even in an extreme scenario

where an adversary has once queried all the keywords whose entries are in the encrypted

index4, the adversary will not be able to figure out which keywords are present in the

newly added PHR. Hence, our scheme is forward secure.

3) Verifiability

Verifiability refers to the fact that the results returned by the hospital to the user are

correct. For example, an adversary can return only partial results to the data user in

order to save computational cost. Out of total number of PHRs containing a given

keyword, the server may return only a fraction of those. A data sharing scheme must be

safeguarded against such types of attacks.

4This can happen when the adversary has some pre-knowledge about the patient’s disease

82 Personal-Health-Records Sharing in IoMT

Theorem 4.3. Our scheme Σ is verifiable under the standard blockchain model.

Proof. According to the standard blockchain model [73], a blockchain is trusted for cor-

rectness and availability, but not privacy. Since a hospital server is part of a consortium

blockchain network and is honest but curious, we can be sure that once the hospital re-

ceives a search request, it will forward it to the blockchain node. The blockchain node

will return the correct search results from the distributed ledger by using Algorithm 5

because it is a trusted for correctness under the standard blockchain model. Therefore,

the results received by the user will always be guaranteed to be valid.

4.3.4 Security against other attacks

1) Query recovery using file injection attack

In 2016, Zhang et al. [125] proposed a query recovery attack that could retrieve all the

query made by the user. This devastating attack works on the schemes where the ad-

versary is able to inject files of their own choice and the query pattern is leaked to the

adversary during search. This attack is prominent in cases such as application of SE over

emails where the adversary can just send an email containing keywords of their own choice

to the data owner.

In our case, however, this attack is resisted by the use of dummy entries (see Algo-

rithm 2). The attack relies on the knowledge of a subset of keyword space (denoted by

Q) and the access pattern (the set of identifiers of files that contain the keyword be-

ing searched), however, our scheme hides the access pattern from the hospital by adding

dummy entries from keyword space in the secure entries dictionary. Now, if the adversary

somehow manages to inject a file with keywords of their own choice, then when a data

user searches for a keyword w from Q, the search results (which consists of encrypted

PHR/dummy identifiers) returned do not actually reveal if the PHR contains w or not.

This is because the result returned can be a dummy encryption. The data user will have

to query the data owner to get the actual results. This way the adversary won’t be able

to learn the access pattern better than guessing.

4.3 Security analysis 83

2) Content recovery using known keyword set attack

This is an attack specific to SE schemes that allows addition of single files to the system

instead of adding as a batch. If the adversary knows a keyword setW ′ ⊂ U , which contains

some or all of the keywords in the keyword set W of the PHR, then after addition of a

PHR the adversary can immediately search for all the keywords in W ′ and determine the

content of the PHR with high accuracy. This attack is very devastating ifW ′ andW have

large number of keywords in common.

Our scheme provides protection against this attack by merging a large enough set of

keywords Q ⊆ U with the set of keywordsW present in the PHR (see Algorithm 2). After

getting the search results, the data user has to request data owner to execute Algorithm 6

over the search results to get the actual PHR identifiers. This ensures that an adversary

cannot gets the actual PHR identifiers unless he/she impersonates the data user. The

impersonation will be possible only if the adversary can steal the private key of the data

user. Therefore, just as in previous attack, the adversary will not be able to determine

if the search results obtained are valid or just some dummy entries. Thus, our scheme is

secure against PHR recovery using known keyword set attack.

Figure 4.7: Experimental setup 1

84 Personal-Health-Records Sharing in IoMT

Figure 4.8: Experimental setup 2

Figure 4.9: Logs output - PHR addition

4.4 Performance evaluation 85

Figure 4.10: Logs output - Keyword search

4.4 Performance evaluation

In this section, we present the results of evaluation of the proposed scheme under different

conditions, and also provide a comparative study with the existing competing schemes.

4.5 Theoretical analysis

We provide an asymptotic analysis of various algorithms presented in our scheme.

• Keyword extraction: This algorithm iterates over all the keywords present in the

PHR. Therefore, it has time complexity of O(|W |), where, |W | is the number of

keywords present in the PHR.

• Secure entries generation: The most time consuming operation in this algorithm is

the for-loop which iterates over the set of keywords V . Therefore, the complexity is

O(|V |).

• Trapdoor generation: All the operations present in this algorithm have constant

execution time. Therefore, the time complexity is O(1).

86 Personal-Health-Records Sharing in IoMT

Table 4.2: Communication cost

Phase Cost (in bytes)

PHR request 32 +m

Add PHR upload m+ 32

Secure entries upload 80|∆|

Trapdoor request |w|+ 33 + 48

Search Search request 48 + (32 + 80)|Γ| + 32|Γ|

Identifier retrieval 2× 32|Γ|

PHR retrieval 32 +m

• Keyword search: The most time consuming operation here is the while-loop which

runs till the complete list of nodes is extracted. Hence, the time complexity is O(|Γ|)
where Γ is the set identifiers corresponding to a keyword in the encrypted index.

• Retrieve identifiers: In this algorithm, the most time consuming operation is the

for-loop which iterates over each element of Γ. Hence, the time complexity is O(|Γ|).

In Table 4.2, we show the total communication overhead of our scheme. Here, 32 is

the size of a key of the index ∆, or the size of the PHR identifier, 33 is the size of public

key, 48 is the size of trapdoor, 80 is the size of each entry in ∆ or the size of contents of

a node in encrypted index and m is the size of PHR.

4.6 Test-bed setup and organization

Figure 4.11 shows the organization of our test-bed setup. We used four desktop systems

shown in Figure 4.7 and a laptop shown in Figure 4.8 as the computing hardware for our

simulation. Each of the desktops had an Intel core i5 12400 processor, 16 GB RAM, and

1TB SSD, and the laptop had an Intel core i7-9750H processor, 16 GB RAM, and 256

GB SSD. Each of the desktops ran Ubuntu Server 22.04 LTS and had Docker (version

20.10.22) installed on it. Docker was used to simulate the Hyperledger Sawtooth nodes

and IPFS nodes. The laptop used Ubuntu Desktop 22.04 LTS as the Operating System

(OS). It ran an instance of the hospital server, doctor device, and patient device. All the

4.6 Test-bed setup and organization 87

Figure 4.11: Experimental setup organization

systems were part of the same LAN. The entire test-bed setup took around 4000 lines

of code written mainly in Python (version 3.10.6). We used the cryptography Python

library for various cryptographic operations. Figures 4.9 and 4.10 show the outputs logs

during execution of our scheme. The entire code-base and instructions on how to run it

are available at the following url - https://github.com/abhishekbisht1429/phr-ss-system

4.6.1 Experimental results

We used the Secure Hash Algorithm (SHA-256) as the replacement of the hash function

h. For ECIES, we use the combination of ECDH key exchange and Advanced Encryption

Standard (AES), wherein ECDH uses the standard SECP256-R1 curve specified by the

“National Institute of Standards and Technology (NIST)” and AES uses offset codebook

https://github.com/abhishekbisht1429/phr-ss-system

88 Personal-Health-Records Sharing in IoMT

Figure 4.12: Experiment 1: Results

version 3 (OCB3) mode. For symmetric key encryption and decryption, AES in OCB3

mode is used. Table 4.3 shows the timings of the core operations that have been used.

The timings shown in this table were calculated by taking the average over timings of

1000 executions for an input size of 256 bytes, and the hardware used was Intel Core

i7-9750H @ 2.60 Hz, 16 GB RAM, and 256 GB solid-state drive (SSD).

Next, we present the extensive simulation results for our scheme by presenting the

results of six experiments that we carried out after the implementation of the proposed

scheme. For the experiments, we have taken a minimum number of unique keywords

in a PHR to be 200. This value is based on the Heaps’ law [126] for English text (with

K = 3.67 and β = 0.69 5), and on the fact that a standard A4 page on an average contains

350 – 450 words. Moreover, due to limitations of computational hardware available to us,

the maximum number of blockchain nodes that we were able to use for the experiments

was 40. Beyond that number, other factors such as context switching would influence the

actual results to a large extent.

5Note: β here is not related to the scheme, but is a part of the formula in Heaps’ law.

4.6 Test-bed setup and organization 89

Table 4.3: Timings of core operations

Operation Time (ms)

SHA-256 0.0014

AES-OCB3 Encryption 0.0161

AES-OCB3 Decryption 0.0149

ECIES Encryption (ECDH + AES-OCB3) 0.3425

ECIES Decryption (ECDH + AES-OCB3) 0.6801

1) Experiment 1

For this, we used a PHR with 200 unique keywords and recorded the overall time taken

to add it to the system by varying the number of nodes in the blockchain network. We

recorded the observations for three different state-of-the-art consensus algorithms: 1)

PBFT, 2) PoET, and 3) Raft, and presented the results in Figure 4.12. For the number

of nodes less than 20, PBFT performs better than the other two algorithms. On further

increasing the number of nodes, the performance of PBFT and Raft declines exponentially.

However, for a larger number of nodes, PoET works quite well.

2) Experiment 2

We added a PHR containing 200 unique keywords to the system for this. We then searched

for a keyword and recorded the time taken by the search algorithm against the number

of blockchain nodes. Figure 4.13 shows the results using PBFT, PoET, and Raft. It can

be seen that the increase in the number of nodes does not affect the search time. This

is because our search algorithm directly queries the state of the blockchain using REST

API and thus does not has to be processed as a transaction by the blockchain nodes.

3) Experiment 3

In this experiment, we fixed the number of blockchain nodes to 8 and then recorded

the time taken to complete PHR addition against the number of keywords in the PHR.

Figure 4.14 shows the results using PBFT, PoET, and Raft. The results show that the

addition time increases linearly with the number of keywords. However, PBFT performs

90 Personal-Health-Records Sharing in IoMT

Figure 4.13: Experiment 2: Results

Figure 4.14: Experiment 3: Results

better than the other two algorithms.

4.6 Test-bed setup and organization 91

Figure 4.15: Experiment 4: Results

4) Experiment 4

We fixed the number of blockchain nodes to 8, added a PHR, and recorded the time to

search a keyword against the number of unique keywords in the PHR. For this experiment,

we have taken a list of size one by adding only one PHR to obtain consistent results. The

reason is that the asymptotic complexity of the search is linear in terms of entries in the

linked list corresponding to the keyword being searched. So, having a linked list of different

sizes will affect the search results, eventually leading to inconsistent figures. Figure 4.15

shows the results obtained using PBFT, PoET, and Raft, and it can be concluded that

search time is not affected by the number of keywords present in the PHR. This is because

the MR-tree used by sawtooth has a constant lookup time.

5) Experiment 5

In this experiment, we measured the effect of change in the number of IPFS nodes on

PHR upload time. Figure 4.16 shows that it remains unaffected by the change.

92 Personal-Health-Records Sharing in IoMT

Figure 4.16: Experiment 5: Results

Figure 4.17: Experiment 6: Results

6) Experiment 6

Here, we measured the effect of the change in the number of IPFS nodes on PHR download

time. Figure 4.17 shows that it remains unaffected by the change.

4.6 Test-bed setup and organization 93

4.6.2 Comparative analysis

Although there is a plethora of work on SSE using blockchain, there are only few works on

its application in PHR sharing. However, many PHR-sharing schemes are based on public

key-based searchable encryption. A strict comparison is not possible due to the different

cryptographic parameters used by these schemes. Nevertheless, in Table 4.4, we have

tried to compare these schemes with our scheme based on the expected features from a

PHR sharing scheme. An exception to the above is a scheme proposed by Tang et al.[65],

which is based on symmetric searchable encryption and uses a technique similar to our

scheme for adding PHRs to the system. However, it relies on the local storage of hospitals,

unlike our scheme, which uses the decentralized storage, and thus, it has limited practical

applications. Our scheme, though primarily based on symmetric searchable encryption,

uses elliptic curve cryptography for communication between entities and, therefore, can

be categorized as a hybrid scheme.

Table 4.4: Comparison of security and functional features

Scheme A1 A2 A3 A4 A5 A6 A7 A8

Wang et al. [61] Asymmetric ✓ ✓ ✕ ✓ ✓ ✓ ✕

Sun et al. [113] Asymmetric ✓ ✓ ✕ ✓ ✓ ✓ ✕

Zhang et al. [6] Asymmetric ✓ ✕ ✕ ✕ ✓ ✓ ✕

Tang et al. [65] Symmetric ✓ ✓ ✓ ✓ ✓ ✕ ✓

Proposed Symmetric ✓ ✓ ✓ ✓ ✓ ✓ ✓

Note: A1: Encryption Type, A2: Confidentiality, A3: Dynamic, A4: Forward Secure, A5:

Verifiable, A6: Blockchain Based, A7: Decentralized Storage, A8: Efficient

In Table 4.5, we show a comparative analysis on the time complexities of various

operations involved in the proposed scheme and other existing schemes. For the setup

phase, the time complexity for each scheme is constant. However, the asymmetric schemes

will be comparatively slower because of the use of bilinear pairings.

All other schemes than the scheme proposed in [6], which generates index only once

at the beginning, can dynamically add PHRs as and when required. W represents the set

of unique keywords in a PHR and D is the set of PHRs used during the build phase. A

94 Personal-Health-Records Sharing in IoMT

Table 4.5: Time complexity comparison

Scheme Setup Build Add Search

Wang et al. [61] O(1) − O(|W |+ |A|) O(|W |+ |A|)

Sun et al. [113] O(1) − O(|W |) O(|A|

Zhang et al. [6] O(1) O(|D| · |W |) − O(|D|)

Tang et al. [65] O(1) − O(|W | O(|Γ|)

Proposed O(1) − O(|V |) O(|Γ|)

presents in complexities of some of the schemes is related to attribute based encryption,

where it denotes the set of attributes. In case of our scheme, V denotes the super-set

of keyword set W and Γ is the set of file identifiers corresponding to a single keyword

in the index. For most of the patients, the PHRs will not be very large in number, and

therefore, comparatively our scheme is quite efficient during search.

4.7 Summary

With the growing dependency of healthcare on IoMT infrastructure, we require a secure

system that not only provides confidentiality and privacy to the patients’ health data,

but also allows its secure sharing with other parties in the healthcare ecosystem. We

attempted to provide a solution by proposing a novel scheme for PHR sharing that is dy-

namic, efficient and practically implementable. Our design considered various entities into

consideration, including IoMT smart devices, and provided a carefully designed protocol

for their interactions. We proved the proposed scheme to be forward secure, verifiable and

semantically secure against an adaptive adversary. Moreover, we based our scheme on

top of a decentralized file system (IPFS) in order to make our scheme fault tolerant and

robust against attacks targeting centralized systems. Additionally, we provided various

insights into how this scheme can be extended to support parallelization and conjunctive

multi-keyword search.

Chapter 5

Conclusion and Open Research

Challenges

5.1 Research contributions

In this thesis, we discussed about the importance of security and privacy of health data

and discussed current technologies that are in use for their storage and sharing. We

provided a detailed survey of existing works on sharing and storage of health data using

SSE and blockchain. We discussed the shortcomings of these schemes in terms of security

and efficiency and then proposed a novel scheme with better security and better efficiency

using SSE, blockchain and IPFS. We have provided formal security proofs for our scheme

that prove it to be forward secure, verifiable and semantically secure against an adaptive

adversary. The use of decentralized file system (IPFS) makes our scheme secure against

attacks targeting centralized systems. Moreover, we have provided test-bed experiment

results that demonstrate practicality of our proposed solution.

5.2 Open research problems

Searchable encryption with blockchain has opened up avenues for construction of health

care systems that not only allow secure storage, but also secure sharing of health records

under the control of the data owner. The goal of research in this domain should be to

construct a universal healthcare infrastructure that is easily adaptable and is convenient

96 Conclusion and Open Research Challenges

to use for the users apart from being secure. However, there are still many open challenges

that need to be tackled before we reach to this goal. We discuss some of them as follows:

1. There is a need for a universal standard for the format of personal health records

(PHRs). It will be easier to share PHRs between different medical institutions and

other third parties involved.

2. We emphasis on the need for SE schemes that will allow more expressive queries

rather than a single keyword search and still maintain the security of the PHRs.

3. There is also need for more SE schemes that should leverage the advantage of parallel

computation as well.

5.3 Future works

In this section, we list the following future research directions that we would like to work

in our future study.

5.3.1 Support for parallelization

The addition of PHR in our scheme supports parallelization. As seen in“Uploading to

blockchain” part of Section 4.2.3, the addition of (addr, val) pairs to the state of the

blockchain are independent of each other. Therefore, it can be modified to leverage

parallelization, significantly decreasing PHR addition time. However, the algorithm must

run as a part of a transaction processor. As a result, all the blockchain peers must have

parallelization capability; otherwise, a single peer without parallelization would create a

bottleneck for the entire system.

5.3.2 Conjunctive multi-keyword search support

Our scheme can be modified to support multi-keyword search, but at the expense of

more leakage. The modified scheme would require the PHR ids to be encrypted using a

deterministic algorithm. The search algorithm executed by the hospital server can take

a set of keywords as input and obtain the linked lists corresponding to the keywords.

Subsequently, it can find the common encrypted PHR ids and return them to the user.

5.3 Future works 97

Moreover, the process to obtain the linked lists can be made parallel because each can be

obtained independently of the other.

Bibliography

[1] B. Bera, “Design and Analysis of Blockchain-Based Access Control Protocols for

Internet of Drones,” Ph.D. dissertation, International Institute of Information Tech-

nology, Hyderabad, India, Center for Security, Theory and Algorithmic Research,

November 2022.

[2] “Hyperledger Sawtooth Architecture Guide, Intel Corporation,” 2020, https://

sawtooth.hyperledger.org/docs/1.2/. Accessed on June 2023.

[3] “Global State — sawtooth.hyperledger.org,” https://sawtooth.hyperledger.org/

docs/1.2/architecture/global state.html, accessed on April 2023.

[4] A. Vangala, A. K. Das, N. Kumar, and M. Alazab, “Smart Secure Sensing for IoT-

Based Agriculture: Blockchain Perspective,” IEEE Sensors Journal, vol. 21, no. 16,

pp. 17 591–17 607, 2021.

[5] C. Cai, J. Weng, X. Yuan, and C. Wang, “Enabling reliable keyword search in

encrypted decentralized storage with fairness,” IEEE Transactions on Dependable

and Secure Computing, vol. 18, no. 1, pp. 131–144, 2018.

[6] Y. Zhang, R. H. Deng, J. Shu, K. Yang, and D. Zheng, “TKSE: Trustworthy keyword

search over encrypted data with two-side verifiability via blockchain,” IEEE Access,

vol. 6, pp. 31 077–31 087, 2018.

[7] H. Li, H. Tian, F. Zhang, and J. He, “Blockchain-based searchable symmetric en-

cryption scheme,” Computers & Electrical Engineering, vol. 73, pp. 32–45, 2019.

[8] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching an Encrypted

Cloud Meets Blockchain: A Decentralized, Reliable and Fair Realization,” in IEEE

Conference on Computer Communications (INFOCOM’18), Honolulu, HI, USA,

2018, pp. 792–800.

https://sawtooth.hyperledger.org/docs/1.2/
https://sawtooth.hyperledger.org/docs/1.2/
https://sawtooth.hyperledger.org/docs/1.2/architecture/global_state.html
https://sawtooth.hyperledger.org/docs/1.2/architecture/global_state.html

100 BIBLIOGRAPHY

[9] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,

D. A. Patterson, A. Rabkin, I. Stoica et al., “Above the clouds: A berkeley view

of cloud computing,” Technical Report UCB/EECS-2009-28, EECS Department,

University of California . . . , Tech. Rep., 2009.

[10] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” 2011-09-28

2011.

[11] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” Cryptography

Mailing list at https://metzdowd.com, March 2009.

[12] B. Bera, A. Mitra, A. K. Das, D. Puthal, and Y. Park, “Private Blockchain-Based

AI-Envisioned Home Monitoring Framework in IoMT-Enabled COVID-19 Environ-

ment,” IEEE Consumer Electronics Magazine, vol. 12, no. 3, pp. 62–71, 2023.

[13] M. Wazid, A. K. Das, and Y. Park, “Blockchain-enabled secure communication

mechanism for IoT-driven personal health records,” Transactions on Emerging

Telecommunications Technologies, vol. 33, no. 4, p. e4421, 2022.

[14] B. Bera, A. K. Das, and S. K. Das, “Search on Encrypted COVID-19 Healthcare

Data in Blockchain-Assisted Distributed Cloud Storage,” IEEE Internet of Things

Magazine, vol. 4, no. 4, pp. 127–132, 2021.

[15] A. K. Das, B. Bera, and D. Giri, “AI and Blockchain-Based Cloud-Assisted Se-

cure Vaccine Distribution and Tracking in IoMT-Enabled COVID-19 Environment,”

IEEE Internet of Things Magazine, vol. 4, no. 2, pp. 26–32, 2021.

[16] S. Son, J. Lee, M. Kim, S. Yu, A. K. Das, and Y. Park, “Design of Secure Authen-

tication Protocol for Cloud-Assisted Telecare Medical Information System Using

Blockchain,” IEEE Access, vol. 8, pp. 192 177–192 191, 2020.

[17] M. Wazid, B. Bera, A. Mitra, A. K. Das, and R. Ali, “Private Blockchain-Envisioned

Security Framework for AI-Enabled IoT-Based Drone-Aided Healthcare Services,”

in 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for

5G and Beyond (DroneCom’20), London, United Kingdom, 2020, pp. 37–42.

[18] M. Wazid, A. K. Das, R. Hussain, N. Kumar, and S. Roy, “BUAKA-CS: Blockchain-

enabled user authentication and key agreement scheme for crowdsourcing system,”

Journal of Systems Architecture, vol. 123, p. 102370, 2022.

BIBLIOGRAPHY 101

[19] A. K. Das, B. Bera, S. Saha, N. Kumar, I. You, and H.-C. Chao, “AI-

Envisioned Blockchain-Enabled Signature-Based Key Management Scheme for In-

dustrial Cyber-Physical Systems,” IEEE Internet of Things Journal, vol. 9, no. 9,

pp. 6374–6388, 2022.

[20] M. Wazid, B. Bera, A. K. Das, S. Garg, D. Niyato, and M. S. Hossain, “Secure

Communication Framework for Blockchain-Based Internet of Drones-Enabled Aerial

Computing Deployment,” IEEE Internet of Things Magazine, vol. 4, no. 3, pp. 120–

126, 2021.

[21] B. Bera, M. Wazid, A. K. Das, and J. J. P. C. Rodrigues, “Securing Internet of

Drones Networks Using AI-Envisioned Smart-Contract-Based Blockchain,” IEEE

Internet of Things Magazine, vol. 4, no. 4, pp. 68–73, 2021.

[22] B. Bera, A. K. Das, and A. K. Sutrala, “Private blockchain-based access control

mechanism for unauthorized UAV detection and mitigation in Internet of Drones

environment,” Computer Communications, vol. 166, pp. 91–109, 2021.

[23] B. Bera, D. Chattaraj, and A. K. Das, “Designing secure blockchain-based access

control scheme in IoT-enabled Internet of Drones deployment,” Computer Commu-

nications, vol. 153, pp. 229–249, 2020.

[24] A. Mitra, B. Bera, and A. K. Das, “Design and Testbed Experiments of Pub-

lic Blockchain-Based Security Framework for IoT-Enabled Drone-Assisted Wildlife

Monitoring,” ser. IEEE INFOCOM 2021 - IEEE Conference on Computer Commu-

nications Workshops (INFOCOM WKSHPS), 2021, pp. 1–6.

[25] B. Bera, A. Vangala, A. K. Das, P. Lorenz, and M. K. Khan, “Private blockchain-

envisioned drones-assisted authentication scheme in IoT-enabled agricultural envi-

ronment,” Computer Standards & Interfaces, vol. 80, p. 103567, 2022.

[26] A. Vangala, A. K. Sutrala, A. K. Das, and M. Jo, “Smart Contract-Based

Blockchain-Envisioned Authentication Scheme for Smart Farming,” IEEE Internet

of Things Journal, vol. 8, no. 13, pp. 10 792–10 806, 2021.

[27] D. Chattaraj, B. Bera, A. K. Das, S. Saha, P. Lorenz, and Y. Park, “Block-CLAP:

Blockchain-Assisted Certificateless Key Agreement Protocol for Internet of Vehicles

102 BIBLIOGRAPHY

in Smart Transportation,” IEEE Transactions on Vehicular Technology, vol. 70,

no. 8, pp. 8092–8107, 2021.

[28] A. Vangala, B. Bera, S. Saha, A. K. Das, N. Kumar, and Y. Park, “Blockchain-

Enabled Certificate-Based Authentication for Vehicle Accident Detection and No-

tification in Intelligent Transportation Systems,” IEEE Sensors Journal, vol. 21,

no. 14, pp. 15 824–15 838, 2021.

[29] P. Bagga, A. K. Sutrala, A. K. Das, and P. Vijayakumar, “Blockchain-based batch

authentication protocol for Internet of Vehicles,” Journal of Systems Architecture,

vol. 113, p. 101877, 2021.

[30] B. Bera, S. Saha, A. K. Das, N. Kumar, P. Lorenz, and M. Alazab, “Blockchain-

Envisioned Secure Data Delivery and Collection Scheme for 5G-Based IoT-Enabled

Internet of Drones Environment,” IEEE Transactions on Vehicular Technology,

vol. 69, no. 8, pp. 9097–9111, 2020.

[31] D. Chattaraj, B. Bera, A. K. Das, J. J. P. C. Rodrigues, and Y. Park, “De-

signing Fine-Grained Access Control for Software-Defined Networks Using Private

Blockchain,” IEEE Internet of Things Journal, vol. 9, no. 2, pp. 1542–1559, 2022.

[32] R. Shashidhara, N. Ahuja, M. Lajuvanthi, S. Akhila, A. K. Das, and J. J. P. C.

Rodrigues, “SDN-chain: Privacy-preserving protocol for software defined networks

using blockchain,” Security and Privacy, vol. 4, no. 6, p. e178, 2021.

[33] S. Banerjee, B. Bera, A. K. Das, S. Chattopadhyay, M. K. Khan, and J. J. Rodrigues,

“Private blockchain-envisioned multi-authority CP-ABE-based user access control

scheme in IIoT,” Computer Communications, vol. 169, pp. 99–113, 2021.

[34] S. Saha, D. Chattaraj, B. Bera, and A. Kumar Das, “Consortium blockchain-enabled

access control mechanism in edge computing based generic Internet of Things en-

vironment,” Transactions on Emerging Telecommunications Technologies, vol. 32,

no. 6, p. e3995, 2021.

[35] B. Bera, A. K. Das, M. S. Obaidat, P. Vijayakumar, K.-F. Hsiao, and Y. Park,

“AI-Enabled Blockchain-Based Access Control for Malicious Attacks Detection and

Mitigation in IoE,” IEEE Consumer Electronics Magazine, vol. 10, no. 5, pp. 82–92,

2021.

BIBLIOGRAPHY 103

[36] B. Bera, S. Saha, A. K. Das, and A. V. Vasilakos, “Designing Blockchain-Based

Access Control Protocol in IoT-Enabled Smart-Grid System,” IEEE Internet of

Things Journal, vol. 8, no. 7, pp. 5744–5761, 2021.

[37] S. Jangirala, A. K. Das, and A. V. Vasilakos, “Designing Secure Lightweight

Blockchain-Enabled RFID-Based Authentication Protocol for Supply Chains in 5G

Mobile Edge Computing Environment,” IEEE Transactions on Industrial Informat-

ics, vol. 16, no. 11, pp. 7081–7093, 2020.

[38] Y. Qian, Y. Jiang, L. Hu, M. S. Hossain, M. Alrashoud, and M. Al-Hammadi,

“Blockchain-Based Privacy-Aware Content Caching in Cognitive Internet of Vehi-

cles,” IEEE Network, vol. 34, no. 2, pp. 46–51, 2020.

[39] A. M. Saghiri, M. Vahdati, K. Gholizadeh, M. R. Meybodi, M. Dehghan, and

H. Rashidi, “A framework for cognitive Internet of Things based on blockchain,”

ser. 4th International Conference on Web Research (ICWR’18), Tehran, Iran, 2018,

pp. 138–143.

[40] M. Vahdati, K. Gholizadeh HamlAbadi, A. M. Saghiri, and H. Rashidi, “A Self-

Organized Framework for Insurance Based on Internet of Things and Blockchain,”

ser. IEEE 6th International Conference on Future Internet of Things and Cloud

(FiCloud’18), Barcelona, Spain, 2018, pp. 169–175.

[41] M. Jakobsson and A. Juels, Proofs of Work and Bread Pudding Protocols, ser. Secure

Information Networks: Communications and Multimedia Security IFIP TC6/TC11

Joint Working Conference on Communications and Multimedia Security (CMS’99)

September 20–21, 1999, Leuven, Belgium, Boston, MA, 1999, pp. 258–272.

[42] M. Castro and B. Liskov, “Practical Byzantine fault tolerance and proactive recov-

ery,” ACM Transactions on Computer Systems, vol. 20, no. 4, pp. 398–461, 2002.

[43] D. Ongaro and J. Ousterhout, “In search of an understandable consensus algo-

rithm,” ser. USENIX Annual Technical Conference (Usenix ATC 14), Philadelphia,

PA, USA, 2014, pp. 305–319.

[44] M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the presence of

faults,” Journal of the ACM, vol. 27, no. 2, pp. 228–234, 1980.

104 BIBLIOGRAPHY

[45] D. Schwartz, N. Youngs, A. Britto et al., “The ripple protocol consensus algorithm,”

Ripple Labs Inc White Paper, vol. 5, no. 8, p. 151, 2014.

[46] F. Saleh, “Blockchain without waste: Proof-of-stake,” The Review of Financial

Studies, vol. 34, no. 3, pp. 1156–1190, 2021.

[47] K. Li, H. Li, H. Hou, K. Li, and Y. Chen, “Proof of Vote: A High-Performance Con-

sensus Protocol Based on Vote Mechanism amp; Consortium Blockchain,” ser. IEEE

19th International Conference on High Performance Computing and Communica-

tions; IEEE 15th International Conference on Smart City; IEEE 3rd International

Conference on Data Science and Systems (HPCC/SmartCity/DSS), Bangkok, Thai-

land, 2017, pp. 466–473.

[48] G. Wood et al., “Ethereum: A Secure Decentralised Generalised Transaction

Ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.

[49] I. Bentov, R. Pass, and E. Shi, “Snow White: Provably Secure Proofs of Stake,”

IACR Cryptology ePrint Archive, vol. 2016, no. 919, 2016.

[50] S. King and S. Nadal, “PPCoin: Peer-to-Peer Crypto-Currency with Proof-

of-Stake,” 2012. [Online]. Available: https://api.semanticscholar.org/CorpusID:

42319203

[51] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A provably secure

proof-of-stake blockchain protocol,” ser. Advances in Cryptology (CRYPTO’17),

Santa Barbara, CA, USA, 2017, pp. 357–388.

[52] J. Kwon, “Tendermint: Consensus without mining,” Self-Published Paper (Draft

v.0.6), vol. 1, no. 11, 2014, accessed on April 2023. [Online]. Available:

https://tendermint.com/static/docs/tendermint.pdf

[53] “The XRP Ledger,” 2014, accessed on March 2023. [Online]. Available:

https://xrpl.org/consensus-principles-and-rules.html

[54] A. Zhang and X. Lin, “Towards secure and privacy-preserving data sharing in e-

health systems via consortium blockchain,” Journal of Medical Systems, vol. 42,

no. 8, pp. 1–18, 2018.

https://api.semanticscholar.org/CorpusID:42319203
https://api.semanticscholar.org/CorpusID:42319203
https://tendermint.com/static/docs/tendermint.pdf
https://xrpl.org/consensus-principles-and-rules.html

BIBLIOGRAPHY 105

[55] M. B. Mollah, J. Zhao, D. Niyato, Y. L. Guan, C. Yuen, S. Sun, K.-Y. Lam, and L. H.

Koh, “Blockchain for the Internet of Vehicles Towards Intelligent Transportation

Systems: A Survey,” IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4157–4185,

2021.

[56] V. B. et al., “A next-generation smart contract and decentralized application plat-

form,” White Paper, vol. 3, no. 37, pp. 2–1, 2014.

[57] J. S. Sara Saberi, Mahtab Kouhizadeh and L. Shen, “Blockchain technology and

its relationships to sustainable supply chain management,” International Journal

of Production Research, vol. 57, no. 7, pp. 2117–2135, 2019. [Online]. Available:

https://doi.org/10.1080/00207543.2018.1533261

[58] J. Golosova and A. Romanovs, “The Advantages and Disadvantages of the

Blockchain Technology,” ser. 6th IEEEWorkshop on Advances in Information, Elec-

tronic and Electrical Engineering (AIEEE). Vilnius, Lithuania, 2018, pp. 1–6.

[59] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on en-

crypted data,” in IEEE Symposium on Security and Privacy (S&P’00), Berkeley,

California, USA, 2000, pp. 44–55.

[60] J. Benet, “IPFS - Content Addressed, Versioned, P2P File System,” arXiv, 2014,

accessed on February 2023. [Online]. Available: https://arxiv.org/abs/1407.3561

[61] Y. Wang, A. Zhang, P. Zhang, Y. Qu, and S. Yu, “Security-Aware and Privacy-

Preserving Personal Health Record Sharing Using Consortium Blockchain,” IEEE

Internet of Things Journal, vol. 9, no. 14, pp. 12 014–12 028, 2022.

[62] Y. Wang, A. Zhang, P. Zhang, and H. Wang, “Cloud-assisted EHR sharing with

security and privacy preservation via consortium blockchain,” IEEE Access, vol. 7,

pp. 136 704–136 719, 2019.

[63] M. Alsayegh, T. Moulahi, A. Alabdulatif, and P. Lorenz, “Towards Secure Search-

able Electronic Health Records Using Consortium Blockchain,” Network, vol. 2,

no. 2, pp. 239–256, 2022.

[64] L. Chen, W.-K. Lee, C.-C. Chang, K.-K. R. Choo, and N. Zhang, “Blockchain

based searchable encryption for electronic health record sharing,” Future Generation

Computer Systems, vol. 95, pp. 420–429, 2019.

https://doi.org/10.1080/00207543.2018.1533261
https://arxiv.org/abs/1407.3561

106 BIBLIOGRAPHY

[65] X. Tang, C. Guo, K.-K. R. Choo, Y. Liu, and L. Li, “A secure and trustworthy

medical record sharing scheme based on searchable encryption and blockchain,”

Computer Networks, vol. 200, p. 108540, 2021.

[66] V. Shoup, “A Proposal for an ISO Standard for Public Key Encryption,”

Cryptology ePrint Archive, Paper 2001/112, 2001, accessed on November 2022.

[Online]. Available: https://eprint.iacr.org/2001/112

[67] J. Katz and Y. Lindell, Introduction to Modern Cryptography. CRC press, 2020.

[68] D. Boneh, “Pairing-based cryptography: Past, present, and future,” in Advances in

Cryptology – ASIACRYPT 2012, X. Wang and K. Sako, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2012, p. 1.

[69] A. Menezes, “An Introduction to Pairing-Based Cryptography,” 2013, https://www.

math.uwaterloo.ca/∼ajmeneze/publications. Accessed on May 2020.

[70] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital

Signatures and Public-Key Cryptosystems,” vol. 21, no. 2, p. 120–126, feb 1978.

[Online]. Available: https://doi.org/10.1145/359340.359342

[71] W. E. May, “Secure Hash Standard,” 2015, http://nvlpubs.nist.gov/nistpubs/

FIPS/NIST.FIPS.180-4.pdf. Accessed on May 2022.

[72] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Com-

munications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[73] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The blockchain

model of cryptography and privacy-preserving smart contracts,” ser. 2016 IEEE

symposium on security and privacy (SP). San Jose, CA, USA: IEEE, 2016, pp.

839–858.

[74] “Sawtooth — hyperledger.org,” https://www.hyperledger.org/projects/sawtooth,

accessed on April 2023.

[75] T. Krovetz and P. Rogaway, “The OCB Authenticated-Encryption Algorithm,”

RFC 7253, May 2014, accessed on November 2022. [Online]. Available:

https://www.rfc-editor.org/info/rfc7253

https://eprint.iacr.org/2001/112
https://www. math. uwaterloo. ca/~ajmeneze/publications
https://www. math. uwaterloo. ca/~ajmeneze/publications
https://doi.org/10.1145/359340.359342
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://www.hyperledger.org/projects/sawtooth
https://www.rfc-editor.org/info/rfc7253

BIBLIOGRAPHY 107

[76] C. Bösch, P. Hartel, W. Jonker, and A. Peter, “A Survey of Provably Secure Search-

able Encryption,” ACM Computing Surveys, vol. 47, no. 2, August 2014.

[77] Y. Wang, J. Wang, and X. Chen, “Secure searchable encryption: a survey,” Journal

of Communications and Information Networks, vol. 1, pp. 52–65, 2016.

[78] G. S. Poh, J.-J. Chin, W.-C. Yau, K.-K. R. Choo, and M. S. Mohamad, “Searchable

Symmetric Encryption: Designs and Challenges,” ACM Computing Surveys, vol. 50,

no. 3, pp. 1–37, 2017, Article No. 40.

[79] R. Zhang, R. Xue, and L. Liu, “Searchable Encryption for Healthcare Clouds: A

Survey,” IEEE Transactions on Services Computing, vol. 11, no. 6, pp. 978–996,

2018.

[80] H. Pham, J. Woodworth, and M. Amini Salehi, “Survey on secure search over

encrypted data on the cloud,” Concurrency and Computation: Practice and Expe-

rience, vol. 31, no. 17, p. e5284, 2019.

[81] N. Andola, R. Gahlot, V. K. Yadav, S. Venkatesan, and S. Verma, “Searchable

encryption on the cloud: a survey,” The Journal of Supercomputing, vol. 78, no. 7,

pp. 9952–9984, 2022.

[82] O. Goldreich and R. Ostrovsky, “Software Protection and Simulation on Oblivious

RAMs,” Journal of the ACM, vol. 43, no. 3, pp. 431–473, May 1996.

[83] E.-J. Goh, “Secure Indexes,” Cryptology ePrint Archive, Paper 2003/216, 2003,

accessed on May 2022. [Online]. Available: https://eprint.iacr.org/2003/216

[84] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric en-

cryption: improved definitions and efficient constructions,” Journal of Computer

Security, vol. 19, no. 5, pp. 895–934, 2011.

[85] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public Key Encryption

with Keyword Search,” ser. International Conference on the Theory and Applica-

tions of Cryptographic Techniques – Advances in Cryptology (EUROCRYPT’04),

C. Cachin and J. L. Camenisch, Eds., Interlaken, Switzerland, 2004, pp. 506–522.

[86] D. Boneh and M. Franklin, “Identity-Based Encryption from the Weil Pairing,”

ser. 21st Annual International Cryptology Conference – Advances in Cryptology

(CRYPTO’01), J. Kilian, Ed., Santa Barbara, California, USA, 2001, pp. 213–229.

https://eprint.iacr.org/2003/216

108 BIBLIOGRAPHY

[87] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword searches on re-

mote encrypted data,” ser. International Conference on Applied Cryptography and

Network Security (ACNS’05), New York, NY, USA, 2005, pp. 442–455.

[88] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable symmetric

encryption,” ser. ACM conference on Computer and Communications Security

(CCS’12), Raleigh, North Carolina, USA, 2012, pp. 965–976.

[89] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access Pattern disclosure on

Searchable Encryption: Ramification, Attack and Mitigation,” in Network and

Distributed System Security Symposium. Citeseer, 2012, pp. 1–12, accessed

on January 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:

12703012

[90] E. Stefanov, C. Papamanthou, and E. Shi, “Practical Dynamic Searchable En-

cryption with Small Leakage,” Cryptology ePrint Archive, Paper 2013/832, 2013,

https://eprint.iacr.org/2013/832. Accessed on March 2022.

[91] S. Kamara and C. Papamanthou, “Parallel and dynamic searchable symmetric en-

cryption,” ser. International Conference on Financial Cryptography and Data Se-

curity. Okinawa, Japan: Springer, 2013, pp. 258–274.

[92] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner, “Highly-

scalable searchable symmetric encryption with support for boolean queries,” in An-

nual Cryptology Conference (CRYPTO’13), Santa Barbara, California, USA, 2013,

pp. 353–373.

[93] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks against

searchable encryption,” ser. 22nd ACM Conference on Computer and Communica-

tions Security (CCS), Denver, Colorado, USA, 2015, pp. 668–679.

[94] R. Bost, P.-A. Fouque, and D. Pointcheval, “Verifiable Dynamic Symmetric

Searchable Encryption: Optimality and Forward Security,” Cryptology ePrint

Archive, Paper 2016/062, 2016, accessed on May 2023. [Online]. Available:

https://eprint.iacr.org/2016/062

[95] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward private search-

able encryption from constrained cryptographic primitives,” ser. Proceedings of the

https://api.semanticscholar.org/CorpusID:12703012
https://api.semanticscholar.org/CorpusID:12703012
https://eprint.iacr.org/2013/832
https://eprint.iacr.org/2016/062

BIBLIOGRAPHY 109

2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas,

Texas, USA, 2017, pp. 1465–1482.

[96] K. S. Kim, M. Kim, D. Lee, J. H. Park, and W.-H. Kim, “Forward secure dynamic

searchable symmetric encryption with efficient updates,” ser. ACM Conference on

Computer and Communications Security (CCS), Dallas, TX, USA, 2017, pp. 1449–

1463.

[97] M. Etemad, A. Küpçü, C. Papamanthou, and D. Evans, “Efficient Dynamic

Searchable Encryption with Forward Privacy,” Proceedings on Privacy Enhancing

Technologies, vol. 2018, pp. 20 – 5, 2017, accessed on May 2023. [Online]. Available:

https://api.semanticscholar.org/CorpusID:3836548

[98] Y. Watanabe, K. Ohara, M. Iwamoto, and K. Ohta, “Efficient Dynamic Search-

able Encryption with Forward Privacy under the Decent Leakage,” ser. Proceedings

of the Twelveth ACM Conference on Data and Application Security and Privacy,

Baltimore, MD, USA, 2022, pp. 312–323.

[99] G. Asharov, G. Segev, and I. Shahaf, “Tight tradeoffs in searchable symmetric

encryption,” Journal of Cryptology, vol. 34, no. 2, pp. 1–37, 2021.

[100] C. Zuo, S.-F. Sun, J. K. Liu, J. Shao, and J. Pieprzyk, “Dynamic searchable symmet-

ric encryption schemes supporting range queries with forward (and backward) secu-

rity,” ser. European Symposium on Research in Computer Security (ESORICS’18).

Barcelona, Spain: Springer, 2018, pp. 228–246.

[101] X. Song, C. Dong, D. Yuan, Q. Xu, and M. Zhao, “Forward private searchable sym-

metric encryption with optimized I/O efficiency,” IEEE Transactions on Dependable

and Secure Computing, vol. 17, no. 5, pp. 912–927, 2018.

[102] J. Ghareh Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili, “New con-

structions for forward and backward private symmetric searchable encryption,”

ser. ACM Conference on Computer and Communications Security (CCS), Toronto,

Canada, 2018, pp. 1038–1055.

[103] J. Li, Y. Huang, Y. Wei, S. Lv, Z. Liu, C. Dong, and W. Lou, “Searchable symmetric

encryption with forward search privacy,” IEEE Transactions on Dependable and

Secure Computing, vol. 18, no. 1, pp. 460–474, 2019.

https://api.semanticscholar.org/CorpusID:3836548

110 BIBLIOGRAPHY

[104] C. Zuo, S.-F. Sun, J. K. Liu, J. Shao, and J. Pieprzyk, “Dynamic searchable sym-

metric encryption with forward and stronger backward privacy,” ser. European Sym-

posium on Research in Computer Security (ESORICS’19). Luxembourg: Springer,

2019, pp. 283–303.

[105] L. Chen, J. Li, and J. Li, “Toward Forward and Backward Private Dynamic

Searchable Symmetric Encryption Supporting Data Deduplication and Conjunc-

tive Queries,” IEEE Internet of Things Journal, vol. 10, no. 19, pp. 17 408–17 423,

2023.

[106] Y. Guo, C. Zhang, and X. Jia, “Verifiable and Forward-secure Encrypted Search

Using Blockchain Techniques,” in ICC 2020 - 2020 IEEE International Conference

on Communications (ICC), 2020, pp. 1–7.

[107] R. Du and Y. Wang, “Verifiable Blockchain-Based Searchable Encryption with for-

ward and backward privacy,” ser. 16th International Conference on Mobility, Sensing

and Networking (MSN). Tokyo, Japan: IEEE, 2020, pp. 630–635.

[108] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, “Medrec: Using blockchain

for medical data access and permission management,” ser. 2016 2nd international

conference on open and big data (OBD). Vienna, Austria: IEEE, 2016, pp. 25–30.

[109] X. Yue, H. Wang, D. Jin, M. Li, and W. Jiang, “Healthcare data gateways: found

healthcare intelligence on blockchain with novel privacy risk control,” Journal of

Medical Systems, vol. 40, no. 10, pp. 1–8, 2016.

[110] Q. Xia, E. B. Sifah, A. Smahi, S. Amofa, and X. Zhang, “BBDS: Blockchain-based

data sharing for electronic medical records in cloud environments,” Information,

vol. 8, no. 2, p. 44, 2017.

[111] K. Fan, S. Wang, Y. Ren, H. Li, and Y. Yang, “Medblock: Efficient and secure

medical data sharing via blockchain,” Journal of Medical Systems, vol. 42, no. 8,

pp. 1–11, 2018.

[112] H. Qian, J. Li, Y. Zhang, and J. Han, “Privacy-preserving personal health record

using multi-authority attribute-based encryption with revocation,” International

Journal of Information Security, vol. 14, no. 6, pp. 487–497, Nov 2015.

BIBLIOGRAPHY 111

[113] J. Sun, L. Ren, S. Wang, and X. Yao, “A blockchain-based framework for elec-

tronic medical records sharing with fine-grained access control,” PLOS ONE, vol. 15,

no. 10, p. e0239946, 2020.

[114] S. Niu, L. Chen, J. Wang, and F. Yu, “Electronic health record sharing scheme

with searchable attribute-based encryption on blockchain,” IEEE Access, vol. 8, pp.

7195–7204, 2019.

[115] S. Wang, D. Zhang, and Y. Zhang, “Blockchain-based personal health records shar-

ing scheme with data integrity verifiable,” IEEE Access, vol. 7, pp. 102 887–102 901,

2019.

[116] X. Nie, A. Zhang, J. Chen, Y. Qu, and S. Yu, “Time-Enabled and Verifiable Se-

cure Search for Blockchain-Empowered Electronic Health Record Sharing in IoT,”

Security and Communication Networks, vol. 2022, p. 1103863, Dec 2022.

[117] J. Benet, “IPFS-content addressed, Versioned, P2P File system,” arXiv

preprint arXiv:1407.3561, 2014, accessed on July 2022. [Online]. Available:

https://arxiv.org/abs/1407.3561

[118] F. Zhao, T. Nishide, and K. Sakurai, “Multi-user keyword search scheme for se-

cure data sharing with fine-grained access control,” ser. Information Security and

Cryptology-ICISC 2011: 14th International Conference, Seoul, Korea, November

30-December 2, 2011. Revised Selected Papers 14. Springer, 2012, pp. 406–418.

[119] J. Shao, Z. Cao, X. Liang, and H. Lin, “Proxy re-encryption with keyword search,”

Information Sciences, vol. 180, no. 13, pp. 2576–2587, 2010.

[120] Q. Huang and H. Li, “An Efficient Public-Key Searchable Encryption Scheme Secure

against inside Keyword Guessing Attacks,” Information Science, vol. 403, no. C, pp.

1–14, 2017.

[121] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure Ranked Keyword Search over

Encrypted Cloud Data,” ser. IEEE 30th International Conference on Distributed

Computing Systems (ICDCS’10), Genoa, Italy, 2010, pp. 253–262.

[122] D. Dolev and A. Yao, “On the security of public key protocols,” IEEE Transactions

on Information Theory, vol. 29, no. 2, pp. 198–208, 1983.

https://arxiv.org/abs/1407.3561

112 BIBLIOGRAPHY

[123] A. Sahai and B. Waters, “Fuzzy Identity-Based Encryption,” ser. Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques –

Advances in Cryptology (EUROCRYPT’05). Aarhus, Denmark: Springer, 2005,

pp. 457–473.

[124] Y. Lindell, How to Simulate It – A Tutorial on the Simulation Proof Technique.

Cham: Springer International Publishing, 2017, pp. 277–346. [Online]. Available:

https://doi.org/10.1007/978-3-319-57048-8 6

[125] Y. Zhang, J. Katz, and C. Papamanthou, “All Your Queries Are Belong to Us: The

Power of File-Injection Attacks on Searchable Encryption,” in Proceedings of the

25th USENIX Conference on Security Symposium, ser. SEC’16. USA: USENIX

Association, 2016, pp. 707–720.

[126] H. S. Heaps, Information Retrieval, Computational and Theoretical Aspects. Aca-

demic Press, 1978.

https://doi.org/10.1007/978-3-319-57048-8_6

Publications from this Thesis Work

Journal Papers

1. Abhishek Bisht, Ashok Kumar Das, Dusit Niyato, and YoungHo Park. “Efficient

Personal-Health-Records Sharing in Internet of Medical Things using Searchable

Symmetric Encryption, Blockchain and IPFS,” in IEEE Open Journal of the

Communications Society , Vol. 4, pp. 2225-2244, 2023, DOI: 10.1109/OJ-

COMS.2023.3316922. (2022 SCI Impact Factor: 7.9)

2. Abhishek Bisht, Ashok Kumar Das, and Debasis Giri. “Personal Health Record

Storage and Sharing using Searchable Encryption and Blockchain: A Comprehensive

Survey,” in Security and Privacy (Wiley), 2023, DOI: 10.1002/spy2.351. (2022

SCI Impact Factor: 1.9)

Other Publications

Journal Papers

1. Sudeep Ghosh, SK Hafizul Islam, Abhishek Bisht, and Ashok Kumar Das. “Prov-

ably Secure Public Key Encryption with Keyword Search for Data Outsourcing in

Cloud Environments,” in Journal of Systems Architecture (Elsevier), Vol.

139, Article No. 102876, pp. 1-17, 2023, DOI: 10.1016/j.sysarc.2023.102876. (2022

SCI Impact Factor: 4.5)

2. JoonYoung Lee, MyeongHyun Kim, KiSung Park, SungKee Noh, Abhishek Bisht,

Ashok Kumar Das, and Youngho Park. “Blockchain-based Data Access Control and

Key Agreement System in IoT Environment,” in Sensors , Vol. 23, No. 11, Article

ID: 5173, pp. 1-19, 2023, DOI: 10.3390/s23115173. (2022 SCI Impact Factor: 3.9)

	Introduction
	Cloud computing
	On-demand services
	Scalability and elasticity
	Multi tenancy
	High availability
	Infrastructure as a Service (IAAS)
	Platform as a Service (PAAS)
	Software as a Service (SAAS)

	Blockchain
	Consensus algorithms
	Types of blockchain
	Smart contract
	Advantages of blockchain

	Searchable encryption
	Personal health records
	Internet of Medical Things (IoMT)
	Inter-Planetary File System (IPFS)
	Motivation and objective of the work
	Summary of contributions

	Mathematical Background
	Preliminaries
	Pseudo random generator
	Pseudo random function
	Bilinear maps
	Collision resistant hash functions
	Bloom filters
	Standard blockchain model
	Dictionary
	Inter-Planetary File System (IPFS)
	Hyperledger sawtooth
	Merkle-Radix (MR) tree
	Elliptic curve integrated encryption scheme (ECIES)
	AES-OCB3

	Summary

	Literature Survey
	Existing surveys
	Related works
	Searchable encryption
	Blockchain-based SE schemes
	PHR sharing using blockchain
	PHR sharing using SE and blockchain
	Important observations

	Searchable encryption in detail
	System models for SE
	Cryptographic primitives for SE
	Security models for SE
	Attacks on SE schemes
	Threat model

	Existing schemes for PHR sharing
	Existing schemes
	Comparative study

	Summary

	Personal-Health-Records Sharing in IoMT
	System model
	Proposed scheme
	Definitions
	Overview
	Phases

	Security analysis
	Threat model
	Security definitions
	Security claims
	Security against other attacks

	Performance evaluation
	Theoretical analysis
	Test-bed setup and organization
	Experimental results
	Comparative analysis

	Summary

	Conclusion and Open Research Challenges
	Research contributions
	Open research problems
	Future works
	Support for parallelization
	Conjunctive multi-keyword search support

