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Abstract

Sports video data is recorded for nearly every major tournament but remains archived and inaccessi-
ble to large scale data mining and analytics. However, Sports videos have a inherent temporal structure,
due to the nature of sports themselves. For instance, tennis, comprises of points, games and sets played
between the two players/teams. Recent attempts in sports analytics are not fully automatic for finer
details or have a human in the loop for high level understanding of the game and, therefore, have limited
practical applications to large scale data analysis. Many of these applications depend on specialized
camera setups and wearable devices which are costly and unwieldy for players and coaches, specially in
a resource constrained environments like India. Utilizing very simple and non-intrusive sensor(s) (like
a single camera) along with computer vision models is necessary to build indexing and analytics sys-
tems. Such systems can be used to sort through huge swathes of data, help coaches look at interesting
video segments quickly, mine player data and even generate automatic reports and insights for a coach
to monitor.

Firstly, we demonstrate a score based indexing approach for broadcast video data. Given a broadcast
sport video, we index all the video segments with their scores to create a navigable and searchable
match. Even though our method is extensible to any sport with scores, we evaluate our approach on
broadcast tennis videos. Our approach temporally segments the rallies in the video and then recognizes
the scores from each of the segments, before refining the scores using the knowledge of the tennis
scoring system. We finally build an interface to effortlessly retrieve and view the relevant video segments
by also automatically tagging the segmented rallies with human accessible tags such as ‘fault’ and
‘deuce’. The efficiency of our approach is demonstrated on broadcast tennis videos from two major
tennis tournaments.

Secondly, we propose an end-to-end framework for automatic attributes tagging and analysis of
broadcast sport videos. We use commonly available broadcast videos of badminton matches and, un-
like previous approaches, we do not rely on special camera setups or additional sensors. We propose a
method to analyze a large corpus of broadcast videos by segmenting the points played, tracking and rec-
ognizing the players in each point and annotating their respective strokes. We evaluate the performance
on 10 Olympic badminton matches with 20 players and achieved 95.44% point segmentation accuracy,
97.38% player detection score (mAP@0.5), 97.98% player identification accuracy, and stroke segmenta-
tion edit scores of 80.48%. We further show that the automatically annotated videos alone could enable
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the gameplay analysis and inference by computing understandable metrics such as player’s reaction
time, speed, and footwork around the court, etc.

Lastly, we adapt our proposed framework for tennis games to mine spatiotemporal and event data
from large set of broadcast videos. Our broadcast videos include all Grand Slam matches played be-
tween Roger Federer, Rafael Nadal and Novac Djokovic. Using this data, we demonstrate that we can
infer the playing styles and strategies of tennis players. Specifically, we study the evolution of famous
rivalries of Federer, Nadal, and Djokovic across time. We compare and validate our inferences with
expert opinions of their playing styles.
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Chapter 1

Introduction

The marriage of technology and sports has been observed with both interest and skepticism in the
recent years. With the advent of Hawkeye and similar proprietary systems made for umpires, players
and coaches, the commercial impact on the sports themselves has been immense. New technological
innovations have permeated into the rules of the sports themselves, such as “HawkEye challenges” in
tennis, “3rd Umpire” in cricket, or “Goal-Line Technology” in football, and these innovations have
permanently changed how the sport is both played and enjoyed.

However, the use of technology in sports has been restricted to certain specific applications and have
been inaccessible in nature. For instance, goal line technology is so expensive that only top European
Leagues have adopted it. 1 Another problem is that the applications have been restricted, with deployed
systems heavily geared towards referee-decision making. However, Sports analytics is one space that
has seen some progress but due to the proprietary nature of the systems and data, high cost, manual or
semi-automated analyses requiring expertise, penetration has been low and out of the reach from most
amateur players. Similarly, even with the advent of the interactive web, it’s very surprising to note that
our sports media streaming websites lack any “smart” features like semantic indexing, and they stream
videos exactly as our televisions did.

Injecting intelligence to real world applications through the use of machine learning and AI is thus
of growing importance. To democratize sports intelligence, utilizing very simple and non-intrusive
sensor(s) (like a single camera) along with computer vision models is necessary to build sports indexing
and analytics systems. Such systems can be used to sort through huge swathes of data, help coaches
look at interesting video segments quickly, mine player data and even generate automatic reports and
insights for a coach to monitor. In this thesis, we focus on leveraging easily available broadcast video
data to generate annotations that can be used to mine such insights automatically. Such systems also
make it possible to analyze players and matches from an era when more advanced setups did not exist,
leveraging thousands of hours of archived video data.

1Goal-line technology ‘unaffordable’ for Scottish Premiership, BBC (https://www.bbc.co.uk/sport/

football/42504610)
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1.1 Problem Scope

We define the scope of the problems tackled in this thesis. It is important to note that there are many
problems tackled in the space of sports analytics, from generating highlights, to forecasting players
outcomes, to building hardware and wearable devices for use in sports, however, we realized that there
has been little work in constructing systems which automatically provide rich semantic annotations to
broadcast videos and thus enrich them for later analysis by players, coaches and enable richer viewing
experiences for viewers of these broadcasts.

Automatic semantic indexing and retrieval in videos is a huge problem in Computer Vision, however,
we narrow our focus to semantic labeling of domain-specific videos like sports videos. Sports videos
have a inherent temporal structure, due to the nature of sports themselves. For instance, cricket is struc-
tured as a sequence of overs and each over is in itself a sequence of balls bowled while the opponent bats.
Or tennis, which comprises of points, games and sets played between the two players/teams. Moreover,
the sports in themselves are embedded with terminologies corresponding to semantic information in
itself, like ‘off drive’ or ‘short pitch delivery’ etc in cricket and ‘backhand shot’ or ‘duece’ in tennis.
These features of sports videos make it easy for us to imagine semantic labeling and indexing systems,
either through scores and other forms of events, which can be very useful for various applications.

Moreover, such semantic information is also useful if the semantics are associated with the gameplay
itself. For instance, it would be very informative to know if a batsmen has a particular inclination for
‘off drives’ over and above an average player. Player analytics is boosted if we are able to extract finer
level semantics such as action and movement information. Such data is also amenable to automated
analysis and strategy planning techniques.

1.2 An Overview of Racket Sports Rules

In this section, we explain some of the basic mechanism and terminology used in racket sports (with
specific terms mentioned for either tennis or badminton, as necessary), which would be used throughout
the thesis.

• The game is played between two or four players on a rectangular court with a net in between.
The surface type, dimensions and positioning of the net depends on the sport, see Fig 1.1 for the
schematic in tennis.

• A match is composed of sets and points. A set comprises of multiple points. In tennis, a points
are also bunched into games, which are further bunched into a set. When a player wins majority
of the sets, they win the match.

• A badminton match is usually comprised of maximum three sets of with the first player who
scores either eleven or twenty one points with a two point difference wins that set. A tie-breaker
is played out in case the set is tied.
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Figure 1.1: Schematic of a Tennis court with associated dimensions. (Source: Wikimedia)

• A tennis match comprises of maximum three or five sets, with a player who wins at least 6 games
with a two game advantage wins the set. A player wins the game, if they win four points with a
two point advantage. In the absence of two point advantage, the player must win two points in
succession to win the game. A tie-breaker is played out in case the set is tied.

• A point is the most granular level of score keeping. A point consists of a sequence of back and
forth shots (called strokes in badminton) between players, also known as rally.

• In a rally, a serve is the opening shot (stroke in badminton). The rally is continued through returns
until one of the player commits an error. The serving side and opponent are bound to certain parts
of the court depending on the sport (See Fig. 1.2 for the case in Badminton).

• In tennis, the server continues serving the ball to the receiver until the set has ended. After the set
has ended, the receiver will become the server and serve the ball until the next set has ended. In
badminton, serve is won along with the point, i.e. if the opponent was serving in the last rally, the
serve is passed; if the server won, they keep on serving.

1.3 Challenges

Sports data and particularly broadcast sports data present a lot of challenges, namely,

• Temporal Cluttering in Broadcast Videos Broadcast videos are curated in such a way to make
the game exciting to watch for the viewer to satiate commercial interests. For instance, a cool
tennis shot is replayed from many angles, focusing on the players and their expressions. Also,
consider advertisements played during the rest periods of a match. All these temporal sections of
the video are not very important for analysis as it’s very hard to mine player information from and
thus need to be automatically discarded.
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Figure 1.2: The legal bounds of a badminton court during various stages of a rally for singles and doubles games.

Red player indicates active player (making a shot), while players in gray are the other players (Source: Wikimedia)

• Speed and Motion Blur Both Badminton and Tennis are very fast paced sports with intermittent
and complex actions. Also, the tennis balls and shuttlecock are exchanged at a very rapid pace,
the shuttlecock touching highest speeds of 400km/h and tennis ball of 250km/h respectively 2.
The players thus move very very quickly to play catch up against each other. All these factors
introduce a lot of motion blur in broadcast video, even when the video is recorded at a higher
FPS.

• Shape Variation For the players to play a certain stroke, like forehand or smash, the associated
motion can be very difficult and awkward looking due to the very fast paced nature of the game.
Players push themselves to the last extent to make sure they hit the shuttlecock/ball and that results
in huge shape variations, even in actions that belong to the same class.

• Occlusion The high speed nature and the small court size of badminton means both the players
sometimes play very near to the net, introducing a lot of occlusion in the process, covering the far
player’s actions. Occlusion is less common in Tennis, however, the camera viewpoint due to the
larger court size introduces other issues.

2Shuttlecock and balls: The fastest moving objects in sport, Olympic Canada, https://olympic.ca/2014/09/

11/shuttlecock-and-balls-the-fastest-moving-objects-in-sport/
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• Camera Viewpoint and Movement The camera viewpoint of the game play segments in both
tennis and badminton are from behind the baseline of the court. This viewpoint results in two
issues - the far off player is much smaller than the near player and the near player’s back faces the
camera. Thus, recognizing the actions of the far off player is difficult due to the lower resolution
while the near player’s actions are difficult to decipher due of the occlusion. Moreover, the camera
viewpoint change across tournaments, panning and other movements need to be accounted for
when registering the court lines.

• Temporal Ambiguity of Actions Badminton and Tennis are very fast paced sports. The back
and forth strokes are a blink and miss for most viewers, however, more importantly, it’s very
difficult to define the temporal extent of each stroke because of the pace of the sport itself. These
leads to inherent ambiguity while modeling and evaluating the action segmentation tasks. This
is consistent with recent research in action segmentation [79] that suggests there’s an inherent
ambiguity in precisely localizing activities and that evaluation metrics must account for this.

1.4 Contributions

The major contributions of this thesis are,

1. We propose frameworks aimed at macro-understanding and micro-understanding of racket sports.
The first is a score based indexing system, to navigate and retrieve segments from large volumes
of video data with considerable ease. The second is an end-to-end framework to automatically
annotate videos with player information. Unlike previous approaches, our methods do not rely on
special camera setup or additional sensors and work with broadcast video data.

2. We introduce two datasets for evaluating our proposed frameworks. The first is a dataset of broad-
cast tennis videos sourced from two tournaments, London Olympics and French Open, annotated
with the point segments and the scores for each points. The second dataset is a large collec-
tion of badminton broadcast videos from London Olympics with match level point segments and
scores/outcomes as well as frame level players’ tracks and their strokes.

3. We propose an effective score recognition algorithm using domain knowledge which can be
adapted for different games. Here, we do our experiments on tennis videos by leveraging the
specifics of the tennis scoring system. We demonstrate one such application of the indexing sys-
tem, through human accessible event tagging.

4. For understanding finer nuances of the players from sports videos, we predict game point seg-
ments and the outcome of each segment, players’ movement tracks as well as annotate each of
their strokes. We demonstrate the utility of recent advancements in object detection, action recog-
nition and temporal segmentation, for our tasks.
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5. We identify various understandable metrics, computed using our framework, for match and player
analysis as well as qualitative understanding of badminton games. Further, we utilize our frame-
work to study three tennis players (on a large set of tennis match videos) and obtain inferences
which are comparable to a large crowd-sourced dataset.

1.5 Thesis Layout

The organization of the thesis is as follows. In the following chapter, we discuss computer vision
in the context of sports and discuss some of the machine learning methods we utilize in the further
chapters. In chapter 3, we propose a novel framework for semantically indexing broadcast sports videos
by exploiting domain specific information about the sports. In chapter 4, a novel data mining and
extraction framework is proposed for mining player information such as feet location and strokes solely
from broadcast videos without any additional cameras or sensors.
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Chapter 2

Background

In this chapter, we take a closer look at some of the computer vision and machine learning tech-
niques and strategies we have utilized throughout this thesis. Section 2.1 describes the proliferation
of technology into different sports and focuses more on computer vision and associated technological
advances. Section 2.2 describes deep learning architectures and strategies for computer vision tasks
for scene text recognition, object detection and action segmentation, which have been used to detect
scorecards, players and strokes respectively.

2.1 Computer Vision in Sports

Computer Vision community has been interested in problems pertaining to sports for a long while.
There have been numerous applications in various sports, like cricket [76], soccer [14, 75], volley-
ball [36], basketball [13, 66], tennis [60, 70, 90, 91, 104], badminton [16] and hockey [94] among other
sports. Moreover, sports has emerged as a popular proxy task for evaluating computer vision algorithms
due to complex nature of most sports. In this thesis, we restrict our focus on tennis and badminton as
the sports of interest.

Some of the major applications of computer vision in the context of sports are usually in the space
of video summarization, highlight generation [25], automatic broadcasting tools from multiple camera
feeds [13, 14], as coaching aids [60, 70], player’s fitness, weaknesses and strengths assessment [4],
player data mining and analysis, among other applications. Problems involving sports forecasting is an-
other upcoming area of interest, with works like Felsen et al. [24] who proposed a method for forecasting
future events in team sports videos directly from visual inputs.

Despite these advancements, recent attempts in sports analytics are not fully automatic for finer
details [16, 104] or have a human in the loop for high level understanding of the game [1, 16] and,
therefore, have limited practical applications to large scale data analysis. Many of these applications
depend on specialized camera setups and wearable devices which are costly and unwieldy for players
and coaches, specially in a resource constrained environments like India. Though previous work has
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elaborated on generic representations for broadcast sports video analysis [21], such attempts have not
focused on automating player analyses.

The diversity of actions and situations along with the fast paced nature of sports make them very
good benchmarks for a variety of computer vision tasks. Video classification [40], activity and event
recognition [36, 66, 94], pose estimation [39], multi object tracking [50, 53, 54, 103] are a few of the
numerous tasks which have been benchmarked on sports images and videos.

2.1.1 Football

Event detection and summarization has been a popular task for video analysis of football. Jiang et
al. [38] utilized a CNN to extract global features from football videos and an RNN temporally traversed
a video to detect actions in football. Chen et al. [15] propose a method to detect events in amateur
videos of American football games (e.g. offense, defense, kickoff, punt, etc). It should be noted that
American Football is not the same as Football (which is known as Soccer in that country). To mitigate
the issue of small and nonstandard datasets used for football analytics, Giancola et al. [26] proposed a
large dataset for action spotting in long videos. The dataset consists of 500 complete football games
with 6637 temporal annotations sourced from online match reports at a one minute resolution for three
main classes of events (Goal, Yellow/Red Card, and Substitution).

There has been few other tasks that are starting to be explored in the space of Football, due to
advent of deep learning methods and improvement in availability of large scale datasets. Homayounfar
et al. [34] and Sharma et al. [75] proposed methods for automatic localization and registration of the
football field from broadcast video sequences. Le el al. [45] present a data driven “ghosting” method
trained on soccer tracking data which can provide insights about defensive plays between different
teams. Chen et al. [14] propose a method to select the best camera from multiple feeds to create a
football video broadcast.

2.1.2 Cricket

Hawk-Eye has become a mainstream part of cricket analytics by utilizing a multi camera setup to
track the players and ball in the ground with applications like LBW prediction and player profiling.
Along with these developments, there have been some strides in automated video understanding in the
context of cricket. Sharma et al. [76] align textual commentaries to broadcast cricket videos which
enables retrieval of specific actions associated with batsmen and bowler. This work builds up on Sankar
et al. [72] who performed temporal segmentation of video shots and highlight generation from broadcast
cricket videos using aligned textual commentaries. Kolekar et al [41] present a event detection and
classification method that operates cricket video sequences.
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2.1.3 Basketball

Bertasius et al. [4] assessed a basketball player’s performance using first person videos from wearable
devices. Ramanathan et al. [66] detected key actors and special events in basketball games by tracking
players and classifying events using RNNs with attention mechanism. Bettadapura et al. [5] leveraged
multimodal data to generate highlights for basketball by handcrafting features and then learning the
excitement score for play sequences. Lucey et al. [51] utilize proprietary tracking data by representing a
team play as “roles” to look at the spatiotemporal changes in a teams formation. The role representation
further allows for large-scale retrieval of plays by using the tracking data.

2.1.4 Racket Sports

In this thesis, we focus on outdoor racket sports, namely tennis and badminton. Racket sports have
received a lot of attention in this area with strides made in video summarization and highlight generation.
For instance, Hanjalic et al. [28] was one of the first attempts at generating highlights automatically
which have been superseded by other technqiues [25, 35]. We will now focus on works more specific to
each of the sports themselves.

2.1.4.1 Tennis

Sukhwani et al. [90] generated descriptions for broadcast tennis shots automatically and also pro-
posed [91] a dictionary learning method for frame level fine grained annotations for a given video clip,
but their annotations are also computed at the level of actions, useful in the context of computing player
statistics. Liu et al. [49] performed mutlimodal analysis to generate tennis video highlights while Con-
naghan et al. [17] attempted to segment out game into point, game and set, however, performed no score
keeping and used multiple cameras to perform the task. Yan et al. [104] and Mentzelopoulos et al [56]
worked on creating frameworks for annotating players while Xu et al. [102] and Miyamori et al. [59]
focused on semantic annotations exploiting tennis domain knowledge to build retrieval systems based
on positions and actions. Mlakar et al. [60] performed shot classification into forehand, backhand and
serve using a wearable device for players.

Ball tracking has been another space with lots of prior work. For instance, Yan et al. [103] proposed a
ball tracking method by proposing an all pairs shortest path formulation over spatiotemporal ball candi-
date tracks while Zhou et al. [107] generate a set of short trajectories using a shift token transfer method
and then apply a dynamic programming based splice method to a directed acyclic graph consisting of
these short trajectories. Reno et al. [70] proposed a platform for tennis which extract 3D ball trajectories
using a specialized camera setup. In the space of spatiotemporal analytics, Wei et al. [100] performed
an in-point analysis of rallies, predicted serve trajectory class [98] by leveraging player style priors, and,
finally, predicted shot outcomes [99] by modeling player information through the style priors.
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2.1.4.2 Badminton

Yoshikawa et al. [105] performed serve scene detection for badminton games with a specialized
overhead camera setup. Chu et al. [16] performed semi-automatic badminton video analysis by detect-
ing the court and players, classifying strokes and clustering player strategy into offensive or defensive.
Careelmont [11] performed shot classification using a baseline camera similar to our scenario, however,
worked with trimmed videos (unlike unconstrained broadcast videos in our scenario) and followed an
approach wherein they tried to extract shuttlecock trajectories by following a two step procedure, firstly,
they extracted 2d shuttle trajectories, then they assumed a theoretical model for modelling shuttle tra-
jectories (defined by a set of initial parameters P), then found the parameter set closest to the extracted
shuttle trajectory through an exhaustive search. Similar to Careelmont’s work, Dierickx [19] extracted
shuttlecock trajectories from badminton videos improving on the model Careelmont [11] proposed. Fur-
ther, they identified shot type based on extrapolating the shuttle trajectory to its expected landing point.

2.2 Machine Learning for Computer Vision

2.2.1 Transfer Learning using CNN’s

Consider a neural network φ parameterized by θ which takes an input sample x and categorizes the
sample into one of C classes, or yi ∈ C. This network is trained using gradient descent by optimizing
the loss function over a large set of samples (xi, yi),

L(θ) =
N∑
i=1

L(φθ(xi), yi)

Now, say, the network is a sequential composition of functions, φ = {φ1, φ2..φL} and say the
weights are θ = {θ1, θ2..θL}. Given that we have a slightly different task, we can reuse the weights in
a couple of ways,

1. Fixed Feature Extractor: Consider the first K layers of the CNN φ, we forward propagate
each image xi to obtain feature φ1:K(xi). Now, this feature can be used to learn a classifier (or
essentially any other task, like clustering) and it has been observed that this strategy is very potent
for most visual recognition tasks [74]. In our work, we use the SpatialCNN network from Two
Stream Convolutional Network [81] trained on UCF101 dataset [86] to extract stroke features for
the action segmentation task, described in detail later.

2. Fine Tuning: Consider a network φ′ = {φ1, φ2..φK , φ′K+1, φ
′
K+2..φ

′
L′}, i.e first K layers corre-

spond to φ. Now, let’s say we initialize the weights θ′ = {θ1, θ2..θK , ξ(φ′K+1), ξ(φ
′
K+2)..ξ(φ

′
L′)}

where ξ is an appropriate random weights initialization function. Now, we train the network using
gradient descent for the new task. In our work, for instance, we have fine tuned Faster R-CNN [68]

10



for player detection by fine tuning the model with weights initialized from a VGG classification
network [82] trained on the ImageNet dataset, described in detail later.

2.2.2 Person Detection and Tracking

The object detection problem is a widely studied problem in computer vision, with a lot of interest
in the space of building trackers and detectors for people [63]. The general problem is simply, given an
image, annotate a tight bounding box over each object of interest. Usually the objects of interest are a
predefined set of classes. Tracking involves tracking an object over a sequence of frames.

In the context of sports analysis, many specific player detection and tracking methods have been
proposed [56, 78, 104]. We adapt a popular object detection, called Faster R-CNN for this task.

2.2.2.1 Faster R-CNN

The Faster R-CNN [68] network comprises of three main submodules, as explained below,

1. A base convolutional neural network (such as VGG [82]) is used to extract a convolutional acti-
vation map from the input image.

2. Anchor points are defined for each spatial position in the convolution map (thus, separated by r
pixels in the original image), and fixed sized boxes of different sizes and scales are generated for
each anchor point, let’s call them each of them an anchor proposal. The convolutional activation
map is given as input to the Region Proposal Network (RPN), which has two outputs, the first
is the objectness score per anchor proposal and the other is the adjustment to be applied to the
anchor proposal. After that, non maximal suppression is applied to the anchor proposals and top
N (=2000) proposals are kept.

3. Finally, a Region CNN (R-CNN) is defined to classify each proposal into an object class. How-
ever, the input to the Region CNN needs to be fixed sized. An ROI Pooling Layer is defined, this
layer takes in the section of the input feature map that corresponds to the proposal and scales it to
some pre-defined size by applying max-pool to nearly equal sized sections.

In the original implementation [68], the Base Network, the RPN and R-CNN were trained separately
and then fine-tuned, however, recent implementations jointly train the model1.

2.2.3 Scene Text Detection and Recognition

Text recognition has traditionally focused on document images, where OCR techniques are well
suited to digitize documents. However, when applied to natural images, OCR techniques fail as they are

1In our work, we have utilized the following implementation: https://github.com/longcw/faster_rcnn_

pytorch.
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tuned for line spaced black-and-white documents. Scene text images have huge variation in appearance
and layout, ranging from fonts and styles, inconsistent lighting, occlusions, orientations, noise. More-
over, background object may cause spurious false-positive detections. In this section, we discuss the
two approaches we experimented with for the scene text recognition task in the context of identifying
scores from scorecards in Chapter 3.

2.2.3.1 Textspot

Gupta et al [27] proposed a new method for text detection in natural images. They created a synthetic
dataset by overlaying text to existing background images in a natural way.

They construct a fixed field of predictors centered at (u, v) for different values of u and v, say φuv and
is tasked to prediction objects within a ball (x, y) ∈ Bp(u, v). Each predictor, φuv predicts the presence
of the object c ∈ R and the pose p = (x − u, y − v, w, h) where (x, y) is the location and (w, h)

denotes the size of the bounding box. Each detector φuv predicts directly object occurrences. However,
unlike YOLO detector [67], detectors φuv are local and translation invariant, sharing parameters. They
implement this field of predictors as the output of the last layer of a deep CNN, obtaining a fully-
convolutional regression network (FCRN). The recognition is performed by the intermediary stage of
the pipeline based on the lexicon-encoding CNN from Jaderberg et al [37].

2.2.3.2 CRNN

The CRNN, proposed by Shi et al [77], is designed to recognize text in images. For an input image,
the convolutional layers are used to extract the feature sequence. Then a deep-bidirectional LSTM is
fed the feature sequence to recognize the word in the image. As the length of the input sequence needn’t
be equal to the size of the word (predictions are made for each feature input), Connectionist Temporal
Classification loss is used to train the model end-to-end. More details are present in Chapter 3.

2.2.4 Action Recognition and Segmentation

Action recognition, specially in the context of recognizing human actions and activities has been a
widely studied problem by the computer vision community. The temporal nature of the videos provides
an additional clue over the static image representations for recognizing actions. Many variants of the
problems have received immense interest, however, we focus on two very popular tasks in this space.
The first task is action classification, given a video containing one action, we wish to classify the video
into one of the many categories. The second task is known as action segmentation, where, given a video
consisting of a sequence of actions (overlapping or non-overlapping), we wish to recognize the category
and the temporal extent of each action. In our work, we model the stroke recognition task as an action
segmentation task with non-overlapping actions.
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2.2.4.1 Two Stream Convolutional Networks

Two stream convolutional networks [81] divide the video into two streams, the spatial stream and
temporal stream. Spatial stream Convolutional Network operates on individual video frames, perform-
ing action recognition from still images. However, the input of the temporal stream Convolutional
Network is formed by stacking optical flow displacement fields between several consecutive frames.
Softmax predictions of both the streams are then aggregated at the end, which significantly improves
the accuracy. We utilize the Spatial stream CNN as a fixed feature extractor in our work and specific
details are discussed in Chapter 3.

2.2.4.2 Temporal Convolutional Networks

Action segmentation can be thought of as a sequence labelling problem, considering the video
frames/features as the input sequence and the action label for each frame as the output sequence. Thus,
popular approaches to the general problem involve utilizing recurrent architectures such as LSTM. How-
ever, it has been noted that simple convolutional architectures outperform these recurrent architectures
in certain tasks [3]. Temporal Convolutional Networks are a family of architectures, which can take a
sequence of any length and map it to an output sequence of the same length, just as with an RNN with
simple modifications to work in both causal and acausal modes. In our work, we utilize two variants
described by Lea et al [47] for the action segmentation tasks, the ED-TCN and the Dil-TCN. These
architectures have been described in detail in Chapter 4.

2.2.5 SVM’s for Classification

Consider the binary classification problem, and K training samples, {(xi, yi); i = 1, 2...K} where
xi ∈ Rd and yi ∈ {−1, 1}. Let’s assume that the two classes are linearly separable. We assume that
there’s a hyperplane (w, b) that divides the two classes.

Now, there are many hyperplanes which may satisfy the above condition, however, an optimal hyper-
plane is defined as the one which maximizes the margin between the two classes. Consider two parallel
hyperplanes, parallel to (w, b), that go through the point closest to the hyperplane on the either side,

xT
pw + b = 1 & xT

nw + b = −1

Points for which this equality holds are called the support vectors. Thus, every sample will have to
satisfy yi(xT

i w+b) ≥ 1 and the distance between two parallel hyperplanes will be 2
||w|| , which we need

to maximize. The problem can be written as,

minimize
w,b

1

2
wTw

subject to yi(x
T
i w + b) ≥ 1 ∀i
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We can convert this problem to an unconstrained optimization problem by using lagrangian multi-
pliers,

L(w, b, α) =
1

2
wTw +

∑
i

αi(1− yi(xT
i w + b))

Using KKT conditions, we can convert this to the dual problem,

maximize L(α) =
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjx
T
i xj

subject to αi ≥ 0,
∑
i

αiyi = 0 ∀i

where our hyperplane is w =
∑

j αjyjxj. The important point to note here is that the optimization
doesn’t depend on xi and xj and only depends on the inner product between any of the two samples.
Thus, we can generalize the formulation by introducing a kernel function K and a mapping φ. Inner
product in the earlier case was defined as < xi,xj >= xT

i xj. Instead apply a kernel function K,

K(xi,xj) = φ(xi)
Tφ(xj)

where φ is the kernel’s implicit mapping and need not be explicitly defined. Now, the optimization
can be rewritten as,

maximize L(α) =
∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjK(xi,xj)

subject to αi ≥ 0,
∑
i

αiyi = 0 ∀i

and our classifier is now,

f(x) = φ(x)Tw + b =
∑
i

αiyiK(x,xi) + b

This kernelizing procedure thus introduces non-linearity into the sample space which may help in
improving the separability of the classes. In our work, we deal with polynomial kernels (Kd(x,y) =

(xTy + c)d) and χ-squared kernels (Kγ(x,y) = exp(−γ
∑

i
(xi−yi)2
xi+yi

)).
Further, to remove the assumption of linear separability, for each sample (xi, yi), consider a slack

variable ξi. Instead of assuming that every sample is situated beyond the margins, we penalize the
distance they are within the margin. Mathematically,

minimize
w,b

1

2
wTw + C

∑
i

ξi

subject to yi(x
T
i w + b) ≥ 1− ξi ∀i

where C is a hyperparameter that needs to be tuned. This is called a C-SVM and the resulting dual
is very similar to the dual problem detailed earlier.
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2.2.6 Gaussian Mixture Model for Clustering

Clustering is the task of grouping a set of instances in such a way that instances in the same group
(called a cluster) are more similar to each other than to those in other clusters. The notion of similarity
and the number of clusters usually need to be specified. In our work, we use a soft assignment based
clustering method popularly known as a Gaussian Mixture Model which is described below.

Let’s assume that the set of samples {xj ∈ Rd, j = 1, 2...N} have to be grouped into K clusters. In
a gaussian mixture model, we assume that there are K gaussian distributions (or components, wi) with
a mean vector µi and covariance Σi and samples are generated from these distributions. Thus, it can
be said that each sample xi was generated by randomly choosing wi from {1, ...,K}, and then xi was
drawn from one ofK Gaussians depending on wi. To estimate the parameters here, we will be using the
Expectation Maximization algorithm. For brevity we assume that parameters can be written as (where
pi(t) denotes pwi(t)),

λt = {µ1(t)..µK(t),Σ1(t)..ΣK(t), p1(t)..pK(t)}

There are two steps to the EM algorithm, the first is called the E-step, which involves computing the
expected component for all samples of each component. Consider at timestep t,

P (wi|xj , λt) =
G(xj |wi, µi(t),Σi(t))pi(t)∑K
l=1G(xj |wl, µl(t),Σl(t))pl(t)

Now, in the M step, we re-estimate the parameter set from the expected values,

µi(t+ 1) =

∑
j P (wi|xj , λt)xj∑
j P (wi|xj , λt)

Σi(t+ 1) =

∑
j P (wi|xj , λt)[xj − µi(t+ 1)][xj − µi(t+ 1)]T∑

j P (wi|xj , λt)

pi(t+ 1) =

∑
j P (wi|xj , λt)

N

The EM algorithm is guaranteed to converge to a local optima under mild continuity conditions [101],
however, the proof is outside the scope of the thesis.
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Chapter 3

SmartTennisTV: Automatically Indexing Tennis Videos

3.1 Introduction

Sports streaming websites are very popular with many services like TennisTV and WatchESPN of-
fering full game replays on demand. Millions of users use these services for entertainment, education
and other purposes. However, tennis matches are usually very long, often running into hours. It’s very
hard to infer playing styles and patterns of players without investing hundreds of hours of viewing time.
Thus, it’s cumbersome to find “useful” parts. Streaming websites provide the video as-is, i.e. it’s only
possible to access the video stream sequentially. However, in case of sports and other event-rich video
streams, an useful extension is to provide random access (like accessing an array) grounded in events
along with sequential access, so that extensions like skipping to next event, filtering events etc can be
provided.

In this chapter, we focus on constructing a point wise index of a tennis match and thus providing
random access to the match. We propose a method to segment out the match into a set of rallies, then
automatically extract the scorecard and the scores.Using tennis domain knowledge, we construct a novel
algorithm to refine our extracted scores. We then demonstrate the utility of the automatically constructed
index by building an interface to quickly and effortlessly retrieve and view the relevant point, game and
set segments along with providing human accessible tags.

There are multiple challenges in this scenario. The tennis match videos are recorded from multiple
camera angles and edited to have different kind of shots, to capture various emotions and drama along
with the game play. With respect to extracting scores, the score board is never at a fixed position or in a
specific format and the score digits are not constrained by font, size, and color.

The major contributions of this chapter are,

1. An effective score recognition algorithm using domain knowledge which can be adapted for dif-
ferent games. Here, we do our experiments on tennis videos by using the tennis domain knowl-
edge.

16



Figure 3.1: We aim to provide random access to tennis match videos and construct a point wise index of a tennis

match so that a user can access, jump and skip “points”, “games” and “sets”.

2. We propose a score based indexing system, to navigate and retrieve segments from large volumes
of video data with considerable ease.

3. Our method also enables many applications of indexing, we demonstrate one such application,
human accessible event tagging.

Section 3.2 discusses advances and related work in literature. Section 3.3 forms the core of the paper,
describing our core approach. Lastly, Section 3.4 provides a brief background of tennis and a high level
description of our dataset(s), describes the implementation details and the experiments we performed
along with obtained results.

3.2 Related Work

Sports Understanding: Using domain specific cues, several researchers have previously worked on
improving sports understanding (specially tennis), with strides made in video summarization and auto-
matically generating highlights [25, 28, 35], generating descriptions [90] and automatically segmenting
coarse temporal scenes [106], annotating players [56, 104] and tracking the ball [103, 107].

Sports Video Indexing and Applications: Xu et al. [102] and Miyamori et al. [59] focus on
semantic annotations exploiting tennis domain knowledge to build retrieval systems based on positions
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Figure 3.2: Our approach is illustrated in this figure. We start by temporally segmenting out the rallies, extracting

the scoreboard and then recognizing the scores where we use contextual and domain knowledge to refine the

recognized scores.

and actions. Sukhwani et al. [91] proposed a dictionary learning method for frame level fine grained
annotations for a given video clip, but their annotations are also computed at the level of actions, useful
in the context of computing player statistics. Kolekar et al. [42] use audio features to detect events in
soccer scenes and generate highlights. Liu et al. [49] perform mutlimodal analysis to generate tennis
video highlights while Connaghan et al. [17] attempt to segment out game into point, game and set,
however, perform no score keeping and use multiple cameras to perform the task. However, these
methods do not attempt to robustly index point level information to enable retrieval from the point of
view of a viewer. Our work differs from all of these as we attempt to annotate point level information
for a match.

Scorecard and Score Extraction: Liao et al. [48] focus only on detecting the scorecard while
Miao et al. [58] focuses on both detection and extraction of scores, however the algorithm is specific for
Basketball. Tesseract [85] is the commonly used OCR pipeline to detect text from images and documents
which have a plain background. Convolutional Recurrent Neural Network (CRNN) [77] is applicable
for performing end-to-end scene text recognition while Textspot [27] introduces a Fully Convolutional
Regression Network (FCRN) which performs end-to-end scene text detection and for recognition, uses
the intermediary stage of the pipeline based on the lexicon-encoding CNN from Jaderberg et al. [37].

3.3 Approach

Our goal is to automatically create an index for tennis videos. We begin by describing a method to
automatically segment rallies. Then we detect and localize the scorecard in each of these rallies and
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Figure 3.3: (a) depicts some of the extracted scorecards from different matches from our dataset. As one can see,

the scorecards detected are of different sizes and formats, and differences across tournaments is noticeable. We

have also included some of our failure cases, (v) and (vi) have extra regions that have been detected. (b) depicts

the tennis point automaton that can be constructed from the tennis scoring system which is used to refine our

extracted scores.

recognize the text to abstract out the game score state to annotate the video with the accessible tags. An
overview of our pipeline can be seen in Fig. 5.1.

3.3.1 Rally Segmentation

Our method of segmenting out rallies stems from the observation that in BTV’s, the camera is only
overhead when the rally is in play and nowhere else. The background is mostly static after the serve
begins, and remains the same till a player wins a point. HOG features are appropriate in such a scenario,
so we extract frames from the Segment Dataset, downscale them, and extract HOG features. We then
learn a χ-squared kernel SVM to label a frame either as a rally frame or a non-rally frame. Then, we use
this learned classifier to label each frame of the BTV as part of a rally or otherwise and smoothen this
sequence using Kalman filter to remove any false positives/negatives to obtain the segmented rallies.

3.3.2 Scorecard Extraction

We utilize the observation that the scorecard position is stationary in a rally, while the camera pans
and moves around to cover the game. However, the scorecard may disappear and is not necessarily of
the same size across the game as opposed to the assumptions in [58]. So, to overcome these issues,
we extract the scorecard independently from each rally segment instead of assuming a single scorecard
template.
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We adapt the method described in [48]. We start by finding the gradient for each frame (say
Ix(i, j, t)) using the sobel filter, and then calculate the normalized temporal sum for each frame using,
Inorm(i, j, n) = 1

n

∑n
t=1 Ix(i, j, t). Then, we subtract Ix and Inorm to obtain the temporally correlated

regions Ig. Further, we binarize the image using the following equation,

Ir(i, j, t) = (1− Ix(i, j, t)

maxt,i,j(Ix)
)Inorm(i, j, t) (3.1)

Empirically, the scorecard is found in one of the corners of the frame, we identify the four regions
of size (h/5, w/2) in the corners as the regions to search for the scorecard. Note, w and h are the
width and height of the frame respectively. We identify the coarse scorecard region by selecting the
region with the maximum number of white pixels in the specified regions in Ir(i, j, t) summed over
time. Further, after we have identified the coarse region, we apply morphological operators to remove
small aberrations present and fit a rectangle which encloses the scorecard area. Our qualitative results
can be seen in Fig. 3.3 (a).

3.3.3 Score Recognition

Traditional OCR based methods like Tesseract [85] can recognize text printed on a clear background
however need the image to be preprocessed if the background is textured and shaded, and the contrast in
the text fragments varies widely. However, with the advent of deep learning based OCR and scene text
detection methods, a more general approach can be formulated.

To recognize scores, we experiment with three different methods, Tesseract, CRNN and Textspot.
Textspot combines FCRN [27] which is an end to end text detection network, which constructs a field
of predictors where each predictor is responsible for detecting a word if the word centre falls within the
corresponding cell, akin to the YOLO network architecture. The recognition is performed by the inter-
mediary stage of the pipeline based on the lexicon-encoding CNN from Jaderberg et al [37]. CRNN [77]
is a scene text recognition network which treats the image as a sequence of strips. It proceeds by treating
a CNN as a feature extractor to extract feature maps and construct a sequence of feature vectors. The
sequence is fed into a bi-directional LSTM to obtain label sequence probabilities and CTC loss is em-
ployed to obtain labels. We adapt and perform a comparison of the various score recognition baselines
in Section 3.4.

3.3.4 Score Refinement

To further refine our recognized scores, we use the knowledge of the tennis scoring system. As any
structured game, score keeping in tennis is governed by a set of rules and thus, can be modeled as a
finite automaton. Tennis in specific can be modeled as 3 automatons, one each for tracking the point,
game and set score (See Fig. 3.3 (b)). Also, the vocabularies for point, game and set are restricted, so,
we find errors by checking if the value belongs to the vocabulary or not. For instance, the the vocabulary
for a point score is restricted to {0, 15, 30, 40, AD}.
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Figure 3.4: The developed interface supports the indexing and retrieval of a match as a point, game and set.

Let J = (game1, set1, point1, game2, set2, point2) be the score state where game, set and point
have the same meanings as in tennis. Firstly, we exploit the fact that the game and set scores are usually
remain constant in a window, and thus replace errors with the mode of the value in the temporal window
(with exceptions for score change within the window).

Consider the tennis scoring automaton T which is composed of score states and the transition func-
tion is constructed using the tennis scoring rules. Then we define a function nextStates(s) which
returns all possible states for the next game state. Likewise, previousStates(s) provides the set of
originating states for the current state s. For instance, from Fig. 3.3 (b), if we assume that we are at state
s = (0, 0, 30, 0, 0, 30) (referred to as 30 all in the figure), the function previousStates(s) will return
{(0, 0, 30, 0, 0, 15), (0, 0, 15, 0, 0, 30)} and nextStates(s) would return {(0, 0, 40, 0, 0, 30), (0, 0, 30, 0, 0, 40)}.

Assuming that the set of scores is S = {s1, s2...sn}, and that si is erroneous (using vocabulary
constraints), we compute the set P = nextStates(si−1) ∩ previousStates(si+1), then we find the
corrected score using,

s′i = arg max
p∈P

1

|J |
∑
j∈J

δ(si(j), pi(j)) (3.2)

where J is the set of game score states and δ is the Kronecker delta function. This equation is only
needed if there are more than one possible score. It is to be noted that this method is extensible to any
game which follows a structured scoring system like tennis.
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Table 3.1: Averaged Edit Distance for score recognition (Lower is better)

Match Textspot CRNN Tesseract-P

Match 1 (186 rallies) 0.2070 0.4272 0.2612

Match 2 (218 rallies) 0.2178 0.4476 0.3780

3.4 Experiments and Results

3.4.1 Dataset

A tennis match is divided into sets, each set is divided into games and each game has certain number
of points or rallies. We restrict ourselves to “singles” matches and work with broadcast tennis video
(BTV) recordings at 720p for 10 matches. 5 matches are taken from the French Open 2017 and remaining
matches are from London Olympics 2012 for all our experiments. For performing rally segmentation,
we created a ”Rally Dataset” by manually annotating 2 matches into rally and non rally segments. The
training and test set images are derived by dividing all the images in a 50-50 split. For evaluating score
extraction, we further annotated 4 matches with score of each segment using the automated segmented
rallies from our described algorithm. All together, we have annotated 1011 rallies to create the ”Match
Scores Dataset”.

3.4.2 Rally Segmentation

For learning the rally segmentation classifier, we extracted every 10th frame from Rally Dataset and
cross validated using a 0.8 split to find the optimal values of the hyper-parameters C and the period of
the χ-squared kernel. The optimal value of C is 0.05 and the period of the χ-squared kernel SVM is
found to be 3.

The mean F1 score on the test set for the task was found to be 97.46%, the precision for the non-rally
segments was 98.94% and the rally segments was 95.41%.

3.4.3 Score Recognition

For employing Tesseract, we carefully preprocess the scorecard image and threshold the image man-
ually. For each tournament such a preprocessing step needs to be manually defined. To train the CRNN,
which is constrained to recognize words as sequences, we divided the scorecard to two parts horizon-
tally. For employing Textspot, we don’t train the network and use the model trained on “SynthText
in the Wild” dataset as [27] note state-of-the-art performance on standard benchmarks. However, we
post-process the text detection boxes and sort them to extract the scores. We used edit distance instead
of the usual text recognition metrics because the “spaces” between scores (in the recognized string) are
relevant in our case. For instance, CRNN removes repetitions of numbers, which causes the decrease in
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Table 3.2: Averaged Score Accuracy AC(R) for our method and the defined baseline, FCRN (Higher is better)

Match Textspot Ours

Match 1 (186 rallies) 79.30% 91.66%

Match 2 (218 rallies) 77.90% 80.58%

Match 3 (201 rallies) 92.45% 95.19%

Match 4 (194 rallies) 85.22% 92.18%

accuracy. Table 3.1 here presents our experimental results on a subset of the matches and as we can see,
Textspot performed the best and thus, for the next set of experiments we use that as our baseline.

3.4.4 Score Refinement

It is important to reiterate that our aim is not to recognize the text in the scorecard, but rather capture
the game score state. To evaluate our results, we formulate a new metric, which inputs computed game
state Ci and the actual game state Gi, and computes the following (for a set of rallies say R),

AC(R) =
∑
i∈R

1

|J |
∑
j∈J

δ(Ci(j), Gi(j)) (3.3)

where J and δ as defined earlier.

As can be seen from Table 3.2, our refinement algorithm shows a consistent improvement in the aver-
aged score accuracy across matches over the best performing baseline method, Textspot [27]. However,
as it is apparent, the performance of our method is dependent on the performance of the baseline score
recognition and that is possibly the reason in the relatively meager improvements in score accuracy in
the second match.

3.4.5 Event Tagging

Further, we automatically tagged common tennis events of importance to viewers such as “fault”,
“deuce” and “advantage” using simple rules which define these tennis terms and our extracted scores.
We compare our accuracy with and without score refinement and can observe that there is an improve-
ment corresponding to improvement in the score accuracy. Accuracy for each tag per match (the matches
are same as Table 3.2) can be seen in Table 3.3.
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Table 3.3: Averaged Accuracy score of automatic event tagging (in percentage)

Match 1 Match 2 Match 3 Match 4

Textspot Ours Textspot Ours Textspot Ours Textspot Ours

Fault 66.66 70.83 52.24 56.71 87.87 90.90 84.44 84.44

Deuce 100.0 100.0 73.68 78.94 100.0 100.0 94.73 94.73

Advantage 100.0 100.0 77.77 77.77 100.0 100.0 95.65 95.65

Overall 75.00 79.41 60.58 64.43 92.45 94.33 89.65 89.65

3.5 Conclusion

In this chapter, we have presented an approach to create a tennis match index based on recognizing
rallies and scores, supporting random access of “points” (Fig. 3.4) tagged with common tennis events.
Further extensions to this work are numerous, such as providing point based semantic search and per-
forming player analytics using videos instead of expensive sensor-based technologies.
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Chapter 4

A Framework for Analyzing Broadcast Badminton Videos

4.1 Introduction

Sports analytics has been a major interest of computer vision community for a long time. Appli-
cations of sport analytic system include video summarization, highlight generation [25], aid in coach-
ing [60, 70], player’s fitness, weaknesses and strengths assessment, etc. Sports videos, intended for live
viewing, are commonly available for consumption in the form of broadcast videos. Today, there are
several thousand hours worth of broadcast videos available on the web. Sport broadcast videos are often
long and captured in the wild setting from multiple viewpoints. Additionally, these videos are usually
edited and overlayed with animations or graphics. Automatic understanding of broadcast videos is dif-
ficult due to its ‘unstructured’ nature coupled with the fast changing appearance and complex human
pose and motion. These challenges have limited the scope of various existing sports analytics methods.

Even today the analysis of sport videos is mostly done by human sports experts [1] which is expensive
and time consuming. Other techniques rely on special camera setup [70] or additional sensors [60] which
adds to the cost as well as limits their utility. Deep learning based techniques have enabled a significant
rise in the performance of various tasks such as object detection and recognition [30, 68, 82], action
recognition [97], and temporal segmentation [47, 83]. Despite these advancements, recent attempts in
sports analytics are not fully automatic for finer details [16, 104] or have a human in the loop for high
level understanding of the game [1, 16] and, therefore, have limited practical applications to large scale
data analysis.

In this work, we aim to perform automatic annotation and provide informative analytics of sports
broadcast videos, in particular, badminton games (refer to Fig. 4.1). We detect players, points, and
strokes for each frame in a match to enable fast indexing and efficient retrieval. We, further, use these
fine annotations to compute understandable metrics (e.g., player’s reaction time, dominance, position-
ing and footwork around the court, etc.) for higher level analytics. Similar to many other sports, bad-
minton has specific game grammar (turn-based strokes, winning points, etc.), well separated playing
areas (courts), structured as a series of events (points, rallies, and winning points), and therefore, are
suited well for performing analytics at a very large scale. There are several benefits of such systems.
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 Lee Chong Wei (MAS)

Lin Dan (CHN) 

* *

Color coded strokes * point scored

Dominance

Current position

Figure 4.1: We aim to automatically detect players, their tracks, points and strokes in broadcast videos of bad-

minton games. This enables rich and informative analysis (reaction time, dominance, positioning, etc.) of each

player at point as well as match level.

Quantitative scores summarizes player’s performance while qualitative game analysis enriches view-
ing experience. Player’s strategy, strengths, and weaknesses could be mined and easily highlighted for
training. It automates several aspects of analysis traditionally done manually by experts and coaches.

Badminton poses different difficulties for its automatic analysis. The actions (or strokes) are inter-
mittent, fast paced, have complex movements, and sometimes occluded by the other player. Further, the
best players employ various subtle deception strategies to fool the human opponent. The task becomes
even more difficult with unstructured broadcast videos. The cameras have an oblique or overhead view
of players and certain crucial aspects such as wrist and leg movements of both players may not be visible
in the same frame. Tracking players across different views makes the problem even more complicated.
We discard the highlights and process only clips from behind the baseline views which focus on both
players and have minimal camera movements. For players detection, we rely on robust deep learning de-
tection techniques. Our frame level stroke recognition module makes use of deep learned discriminative
features within each player’s spatio-temporal cuboid.

The major contributions of this chapter are
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Figure 4.2: We propose to perform automatic annotation of various gameplay statistics in a badminton game to

provide informative analytics. We model this task as players’ detection and identification followed by temporal

segmentation of each scored points. To enable deeper analytics, we perform dense temporal segmentation of

player’s strokes for each player independently.

1. We propose an end-to-end framework to automatically annotate badminton broadcast videos. Un-
like previous approaches, our method does not rely on special camera setup or additional sensors.

2. Leveraging recent advancements in object detection, action recognition and temporal segmen-
taion, we predict game points and its outcome, players’ tracks as well as their strokes.

3. We identify various understandable metrics, computed using our framework, for match and player
analysis as well as qualitative understanding of badminton games.

4. We introduce a large collection of badminton broadcast videos with match level point segments
and outcomes as well as frame level players’ tracks and their strokes. We use the official broadcast
videos of matches played in London Olympics 2012.

4.2 Related Work

Sports Understanding and Applications: Several researchers have worked on improving sports un-
derstanding using domain specific cues in the past [15, 73]. Racket sports have received a lot of attention
in this area with strides made in video summarization and highlight generation [25, 28] and generating
text descriptions [90]. Reno et al. [70] proposed a platform for tennis which extract 3D ball trajectories
using a specialized camera setup. Yoshikawa et al. [105] performed serve scene detection for badminton
games with a specialized overhead camera setup. Chu et al. [16] performed semi-automatic badminton
video analysis by detecting the court and players, classifying strokes and clustering player strategy into
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offensive or defensive. Mlakar et al. [60] performed shot classification while Bertasius et al. [4] as-
sessed a basketball player’s performance using videos from wearable devices. Unlike these approaches,
our method does not rely on human inputs, special camera setup or additional sensors. Similar to our
case, Sukhwani et al. [91] computed frame level annotations in broadcast tennis videos, however, they
used a dictionary learning method to co-cluster available textual descriptions.

Action Recognition and Segmentation: Deep neural network based approaches such as Two Stream
CNN [81], C3D [95], and it’s derivatives [83, 97] have been instrumental in elevating the benchmark re-
sults in action recognition and segmentation. RNNs and LSTMs [33] have also been explored extensively
[6, 22, 46] for this task owing to its representation power of long sequence data. Recently, Lea et al. [47]
proposed temporal 1D convolution networks variants which are fast to train and perform competitively
to other approaches on standard benchmarks for various temporal segmentation tasks.

In the context of sports activity recognition, Ramanathan et al. [66] detected key actors and special
events in basketball games by tracking players and classifying events using RNNs with attention mech-
anism. Ibrahim et al. [36] proposed to recognize multi-person actions in volleyball games by using
LSTMs to understand the dynamics of players as well as to aggregate information from various players.
Action recognition in extreme sports with trajectory aligned features have also been studied by Singh et
al. [84].

Person Detection and Tracking: An exhaustive survey of this area can be found in [63]. Specific
methods for sports videos [56, 78, 104] and especially for handling occlusions [32] have also been
proposed in the past. In the context of applications involving player tracking data, Wang et al. [96] used
tracking data of basketball matches to perform offensive playcall classification while Cervone et al. [12]
did point-wise predictions and discussed defensive metrics.

4.3 Badminton Olympic Dataset

We work on a collection of 27 badminton match videos taken from the official Olympic channel on
YouTube1. We focus on “singles” matches played between two players for two or three sets and are
typically around an hour long. Statistics of the proposed dataset used in our experiments are provided in
Table 4.1. Please refer to the supplementary materials for the full list of matches and the corresponding
broadcast videos. We plan to release our dataset and annotations publicly post acceptance of the work.

Matches: To train and validate our approach, we manually annotate a subset of 10 matches. For this,
we select only one match per player which means no player plays more than one match against any
other player. We choose this criteria to incorporate maximum gameplay variations in our dataset as well
as to avoid overfitting to any specific player for any of the tasks. We divide the 10 matches into training

1https://www.youtube.com/user/olympic/
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Figure 4.3: Representative “strokes” of bottom and top players for each class taken from our Badminton Olympic

Dataset. The images have been automatically cropped using bounding boxes obtained from the player detection

model. Top player appear smaller and have more complex background than the bottom player, therefore, are more

difficult to detect and recognize strokes.

set of 7 matches and a test set of 3 matches. Note that this setup is identical to leave-N-subjects-out
criteria which is followed in various temporal segmentation tasks [23, 83, 88]. Evaluation across pairs
of unseen players also emphasize the generality of our approach.

Points: In order to localize the temporal locations of when points are scored in a match, we annotate
751 points and obtain sections that are corresponding to point and non-point segments. We annotate
the current score, and the identity of the bottom player (to indicate the court switch after sets/between
final set). Apart from this, we also annotate the serving and the winner of all the points in each set for
validating outcome prediction.

Player bounding boxes: We focus on “singles” badminton matches of two players. The players
switch court after each set and midway between the final set. In a common broadcast viewpoint one
player plays in the court near to the camera while the other player in the distant court (see Fig. 4.1),
which we refer to as bottom and top player respectively. We randomly sample and annotate 150 frames
with bounding boxes for both players in each match (total around 3000 boxes) and use this for the player
detection task. The players are occasionally mired by occlusion and the large playing area induces
sudden fast player movements. As the game is very fast-paced, large pose and scale variations exist
along with severe motion blur for both players.
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Component Classes Total Train Test

Matches NA 10 7 3

Players NA 20 14 6

Player bboxes 2 2988 2094 894

Point segments 2 751 495 256

Strokes 12 15327 9904 5423

Table 4.1: Various statistics of our Badminton Olympic Dataset. Each match is typically one hour long. Train

and test columns represents number of annotations used in respective split for experiments. Note that there is no

overlap of players between train and test splits.

Strokes: The badminton strokes can be broadly categorized as “serve”, “forehand”, “backhand”,
“lob”, and “smash” (refer to Figure 4.3 for representative images). Apart from this we identify one
more class, “react” for the purpose of player’s gameplay analysis. A player can only perform one of
five standard strokes when the shuttle is in his/her court while the opponent player waits and prepare
for response stroke. After each stroke the time gap for response from other player is labeled as “react”.
Also, we differentiate between the stroke classes of the top player and the bottom player to identify two
classes per stroke (say, “smash-top” and “smash-bottom”). We also add a “none” class for segments
when there is no specific action occurring. We manually annotate all strokes of 10 matches for both
players as one of the mentioned 12 (5 · 2 + 2) classes.

The “react” class is an important and unique aspect of our dataset. When a player plays aggressively,
that allows very short duration for the opponent to decide and react. It is considered to be advantageous
for the player as the opponent often fails to react in time or make a mistake in this short critical time. To
the best of our knowledge, ours is the only temporal segmentation dataset with such property due to the
rules of the game. This aspect is evident in racket sports as a player plays only a single stroke (in a well
separated playing space) at a time.

Sports videos have been an excellent benchmarks for action recognition techniques and many datasets
have been proposed in the past [36, 40, 66, 86]. However, these datasets are either trimmed [40, 86] or
focused on team based sports [36, 66] (multi-person actions with high occlusions). On the contrary, for
racket sports (multi-person actions with relatively less occlusion) there is no publicly available dataset.
Our dataset is also significant for evaluation of temporal segmentation techniques since precise boundary
of each action and processing each frame is of equal importance unlike existing temporal segmentation
datasets [23, 84, 88] which often have long non-informative background class. Sports videos exhibit
uncertain sequence of actions (depending on player’s strategy, deceptions, injury etc.), in contrast to
sequences in other domains (e.g. cooking activity follows a fixed recipe). Therefore, sports videos are
excellent benchmarks for forecasting tasks.
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4.4 Extracting Player Data

We start by finding the video segments that correspond to the play in badminton, discarding replays
and other non-relevant sections. We then proceed to detect, track and identify players across these play
segments. Lastly, we recognize the strokes played by the players in each play segment. We use these
predictions to generate a set of statistics for effective analysis of game play.

4.4.1 Point Segmentation

We segment out badminton “points” from the match by observing that usually the camera is behind
the baseline during the play and involves minimal camera panning. Other camera views are discarded
by our setup. The replays are usually recorded from a closer angle and focus more on the drama of the
stroke rather than the game in itself (however, rarely, points are also recorded from this view), and thus
adds little or no extra information for further analysis. We extract HOG features from every 10th frame
of the video and learn a χ2 kernel SVM to label the frames either as a “point frame” or a “non-point
frame”. We use this learned classifier to label each frame of the dataset as a “point frame” or otherwise
and smoothen this sequence using a Kalman filter.

Evaluation The average F1 score for the two classes for optimal parameters (C and order) is 95.44%.
The precision and recall for the point class are 97.83% and 91.02% respectively.

4.4.2 Player Tracking and Identification

We finetune a FasterRCNN [68] network for two classes, “PlayerTop” and “PlayerBottom” with
manually annotated players bounding boxes. The “top player” corresponds to the player on the far side
of the court and while the “bottom player” corresponds to the player on the near side of the court w.r.t
to the viewpoint of the camera, and we use this notation for brevity. For the rest of the frames, we
obtain the bounding boxes for both the players using the trained model. This approach absolves us from
explicitly tracking the players with more complex multi-object trackers.

We further find the players’ correspondences across points, as the players change court sides after
each set (and the middle of the third set). For performing player level analysis it is important to know
the identity of the player across points. The players wear the same colored jersey across a match and
it is dissimilar from the opponent’s jersey. We segment the background from the foreground regions
using moving average background subtraction method [31]. We then extract color histogram features
from the detected bounding box after applying the foreground mask, and take it as our feature. Now,
for each point, we randomly average 10 player features corresponding to the point segments to create
2 player features per point. We cluster the features using a Gaussian Mixture Model into 2 clusters for
each match. We then label one cluster as the first player and the other cluster as the second player. This
approach is not extensible to tournaments where both the players are wearing a standard tournament kit.
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Figure 4.4: For a representative point, segment level strokes obtained from experiments are shown. Each action

label has been color coded. (Best viewed in color)

Evaluation For evaluating the efficacy of the learned player detection model, we compute themAP@0.5

values on the test set and obtain 97.85% for the bottom player, and 96.90% for the top player.

For evaluating the player correspondences, we compare the identity assignments obtained from the
clusters with the manual annotations of player identity for each point. As our method is unsupervised,
we evaluate the assignments for all the points in 10 matches. The method described above yield an
average accuracy of 97.98%.

4.4.3 Player Stroke Segmentation

We employ and adapt the Temporal Convolutional Network (TCN) variants described by Lea et
al. [47] for this task. The first kind, Encoder Decoder TCN (ED-TCN), is similar to the SegNet [2]
architecture (used for semantic segmentation tasks), the encoder layers consist of, in order, temporal
convolutional filters, non linear activation function and temporal max-pooling. The decoder is analo-
gous to the encoder instead it employs upsampling rather than pooling, and the order of operations is
reversed. The filter count of each encoder-decoder layer is maintained to achieve symmetry w.r.t. archi-
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ED-TCN Metric d=5 d=10 d=15 d=20

HOG
Acc 71.02 72.56 71.98 71.61

Edit 76.10 80.52 80.12 79.66

SpatialCNN
Acc 69.19 68.92 71.31 71.49

Edit 77.63 80.48 80.45 80.40

Dilated TCN Metric s=1 s=2 s=4 s=8

HOG
Acc 70.24 68.08 68.25 67.31

Edit 70.11 70.72 73.68 73.29

SpatialCNN
Acc 69.59 69.75 69.37 67.03

Edit 59.98 69.46 74.17 71.86

Table 4.2: We evaluate the player stroke segmentation by experimenting with filter size ‘d’ and sample rate ‘s’

respectively. Acc corresponds to per time step accuracy while Edit corresponds to edit score.

tecture. The prediction of the network is the probability of each class per time-step obtained by applying
the softmax function.

The second kind, Dilated TCN is analogous to the WaveNet [64] architecture (used in speech syn-
thesis tasks). A series of blocks are defined (say B), each containing L convolutional layers, with the
same number of filters Fw. Each layer has a set of dilated convolutions with rate parameter s, activation
and residual connection that combines the input and the convolution signal, with the activation in the lth

layer and the jth block is denoted as S(j,l). Assuming that the filters are parameterized by W (1), W (2),
b along with residual weight and bias parameters V and e,

Ŝ
(j,l)
t = f(W (1)Sj,l−1t−s +W (2)Sj,l−1t + b)

S
(j,l)
t = S

(j,l−1)
t + V Ŝ

(j,l)
t + e

The output of each block is summed using a set of skipped connections by adding up the activations
and applying theReLU activation, say Z0

t = ReLU(
∑B

j=1 S(t)
(j,L). A latent state is defined as Z(1)

t =

ReLU(VrZ
(0)
t + er) where Vr and er are learned weight and bias parameters. The predictions are then

given by applying the softmax function on Z(1)
t .

To learn the parameters, the loss employed is categorical cross-entropy with SGD updates. We use
balanced class weighting for both the models in the cross entropy loss to reduce the effect of class
imbalance.

We experiment with two different feature types, HOG and a deep learned. Inspired by the use of HOG

features by [16] for performing stroke recognition, we study the performance of HOG features on our
dataset. The HOG features are extracted with a cell size of 64. As [47] benchmark use trained Spatial
CNN features and other recent benchmarks use convolutional neural networks, we employ the Spatial
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Figure 4.5: The serving player is indicated in red. It can be observed that the serving player is usually closer to

the mid-line than the receiver who centers himself in the opposite court. Also, the positions of the players in the

second point w.r.t. to the first point indicate that the bottom player has won the last point (as the serve is switched).

(Best viewed in color)

CNN from the two stream convolution network model [81] to extract video features. However, instead
of extracting features globally, we instead utilize the earlier obtained player tracks and extract the image
region of input scale (454 × 340) centered at player track centroid for each time step. The players
detections in each frame is then resized to 224 × 224. We then independently extract features for both
the players and concatenate the obtained features per frame. The Spatial CNN used is trained on the
UCF101 dataset, and we experiment with the output of FC7 layer as our features.

We use the default parameters for training the TCN variants as reported in [47]. We experiment the
effect of dilation by setting the sample rate (s) at 1, 2, 4, and 8 fps for Dilated TCN. For ED-TCN we vary
the convolutional filter size (say d) of 5, 10, 15 and 20 (setting s = 2). We employ acausal convolution
for ED-TCN by convolving from Xt− d

2
to Xt+ d

2
. For the Dilated TCN case, we add the term W (2)Sj,l−1t+s

to the update equation mentioned earlier [47]. Here, X is the set of features per point and t is the time
step.

Evaluation We employ the per frame accuracy and edit score metric used commonly for segmental
tasks [47], and the results can be seen in Table. 4.2. We also experimented with causal models by
convolving from Xt−d to Xt but observed that the performance of those models is not comparable to
acausal models and thus did not report those results. The low performance of causal models can be
attributed to the fact that badminton is fast-paced and unpredictable in nature. ED-TCN outperforms
Dilated TCN which is consistent with benchmarking on other datasets [47]. We can observe that the
filter size of 10 is most appropriate for the ED-TCN while the sample rate of 4 is most appropriate for
Dilated TCN.
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From Fig 4.4, it can be seen that the backhand and forehand strokes are prone to confusion, also
smash and forehand strokes. In Fig. 4.4 note that the right shots do not look like a classical forehand
shot and thus get confused with smashes. Similarly, the top and bottom right shots are hard to classify
as backhand since first player is left-handed (most players are right handed), while the other’s shot is
visually hard to decipher. Please refer to the supplementary materials for more exhaustive and detailed
results.

4.5 Detecting Point Outcome

The badminton scoring system is simple to follow and incorporate into our system. At the beginning
of the game (score 0 — 0) or when the serving player’s score is even, the serving player serves from the
right service court, otherwise, from the left service court. If the serving player wins a rally, they score
a point and continues to serve from the alternate service court. If the receiving player wins a rally, the
receiving player scores a point and becomes the next serving player.

We exploit this game rule and its relationship to players’ spatial positions on the court for auto-
matically predicting point outcomes. Consider point video segments obtained from point segmentation
(Section 4.4.1), we record predicted players’ positions, and strokes played in each frame. At the start of
next rally segment, the player performing the “serve” stroke is inferred as the winner of previous rally
and point is awarded accordingly. We, therefore, know the point assignment history of each point by
following this procedure from the start and until the end of the set. Also, it should be noted that for a
badminton game the spatial position of both the serving and the receiving players is intrinsically linked
to their positions on the court (See Fig. 4.5 for a detailed explanation). While similar observations have
been used earlier by [105] to detect serve scenes, we detect both the serving player and the winning
player (by exploiting the game rules) without any specialized setup.

We formulate the outcome detection problem as a binary classification task by classifying who is the
serving player, i.e. either the top player is serving or the bottom player is serving. Thus, we employ a
kernel SVM as our classifier, experimenting with polynomial kernel. The input features are simply the
concatenated player tracks extracted earlier i.e. for the first k frames in a point segment, we extract the
player tracks for both the players to construct a vector of length 8k.

We varied the number of frames and the degree of polynomial kernel for our experiments and tested
on the 3 test matches as described earlier. We observed that the averaged accuracy was found to be
94.14% when the player bounding boxes of the first 50 frames are taken and the degree of the kernel is
six.

4.6 Analyzing Points

The player tracks and stroke segments can be utilized in various ways for data analysis. For in-
stance, the simplest method would be the creation of a pictorial point summary. For a given point
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(see Fig. 4.6), we plot the “center-bottom” bounding box positions of the players in the top court co-
ordinates by computing the homography. We then color code the position markers depending on the
“action”/“reaction” they were performing then. From Fig. 4.6, it is evident that the bottom player defi-
nitely had an upper hand in this point as the top player’s positions are scattered around the court. These
kind of visualizations are useful to quickly review a match and gain insight into player tactics.

We attempt to extract some meaningful statistics from our data. The temporal structure of Badminton
as a sport is characterized by short intermittent actions and high intensity [65]. The pace of badminton
is swift and the court situation is always continuously evolving, and difficulty of the game is bolstered
by the complexity and precision of player movements. The decisive factor for the games is found to be
speed [65], and it’s constituents,

– Speed of an individual movement

– Frequency of movements

– Reaction Time

In light of such analysis of the badminton game, we define and automatically compute relevant
measures that can be extracted to quantitatively and qualitatively analyze player performance in a point
and characterize match segments. We use the statistics presented in Fig. 4.8 for a match as an example.

1. Set Dominance We utilize the detected outcomes and the player identification details to define
dominance of a player. We start the set with no player dominating over the other and we define
a player as dominating if they have won consecutive points in a set and add one mark to the
dominator and subtract one mark from the opponent likewise. We then plot the time sequence to
find both “close” and “dominating” sections of a match.

For instance, in Fig. 4.8, which are statistics computed for a match, it’s apparent that the initial
half of the first set was not dominated by either players and afterwards one of the players took the
lead. The same player continued to dominate in the second set and win the game.

2. Number of strokes in a point A good proxy for aggressive play is the number of strokes being
played by the two players. Aggressive and interesting play usually results in long rallies and
multiple back-and-forth plays before culminating in a point scored for one or the other players.
To approximate, we count the number of strokes in a point. Interestingly, it can be observed in
Fig. 4.8 that the stroke count is higher during the points none of the players are dominating in the
match we have taken as example.

3. Average speed in a point To find the average speed of the players in a point, we utilize our
player tracks. However, displacement of both the players would manifest differently in the camera
coordinates. Thus we detect the court lines in the video frame and find the homography with
the camera view (i.e. behind the baseline view) of the court. We then use the bottom of the
player bounding boxes as proxy for feet and track that point in the camera view. Using a Kalman
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Filter, we compute displacement and thus speed in the overhead view (taking velocity into account
through the observations matrix) and normalize the values. This would act as a proxy for intensity
within a point.

4. Average Reaction Time We approximate reaction time by averaging the time for react class
separately for both the players and then normalizing the values. We assume that the reaction time
for the next stroke corresponds to the player who is performing it (See Fig. 4.4) to disambiguate
between the reactions. This measure could be seen as the leeway the opponent provides the player.

4.7 Discussions

Rare short term strategies (e.g., deception) and long term strategies (e.g., footwork around the court)
can be inferred with varying degree of confidence but not automatically detected in our current approach.
To detect deception strategy, which could fool humans (players as well as annotator), a robust fine-
grained action recognition technique would be needed. Whereas, predicting footwork requires long term
memory of game states. These aspects of analysis are out of scope of this work. Another challenging
task is forecasting player’s reaction or position. It’s specially challenging for sports videos due to the
fast paced nature of game play, complex strategies as well as unique playing styles.
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Figure 4.6: We show the frame level players’ positions and footwork around the court corresponding to game

play of a single point won by the bottom player. The color index correspond to the stroke being played. Note

that, footwork of bottom player is more dense compared to that of top player indicating the dominance of bottom

player. (Best viewed in color)
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Figure 4.7: The computed statistics for a match, where each row corresponds to a set. It should be noted that

green corresponds to the first player, while blue corresponds to second player. The first player won the match.

(Best viewed in color)

Set 1

Set 2

Set 3

Figure 4.8: The computed statistics for a match, where each row corresponds to a set. It should be noted that

green corresponds to the first player, while blue corresponds to second player. The first player won the match.

(Best viewed in color)
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Chapter 5

Mining Tennis Strategies from Broadcast Videos

5.1 Introduction

In recent years, there has been a great interest in utilizing machine learning and artificial intelligent
techniques for applications in the physical world. Examples include building autonomous vehicles and
health monitoring systems where perception modules have enabled reasoning. In the domain of sports
and games, there has been great advances in building autonomous agents to play simple and structured
games like Chess, Go [80] and multi-agent systems to play robot-soccer [9, 55]. Moreover, several
multimedia systems have been deployed to archive and capture gameplay for both mainstream [61] and
non-traditional sports [18].

However, that success has not translated to injecting machine intelligence into real world sports
cheaply and ubiquitously. This is primarily due to lack of multimedia tools to extract sports data needed
for reasoning, and planning. Though previous work has elaborated on generic representations for broad-
cast sports video analysis [21], such attempts have not focused on automating player analyses. Similarly,
there have been previous attempts at developing analytics and data mining tools for sports and coach-
ing [73], however, most of these systems or the generated data are proprietary [100] and [96]. Moreover,
the data acquisition methods involve special camera setups further increasing the cost and complexity of
the systems, making them out of reach from most players. Intrusion is another challenge in this space,
with players asked to wear wearable devices for automated analyses [60]. For many sports, hours of
game play time is analyzed by experts. These factors make sports analysis largely inaccessible.

To democratize sports intelligence, utilizing very simple and non-intrusive sensor(s) (like a single
camera) is necessary to build a multimedia analytics system. Such a system can be used to mine sports
or player data and generate automatic reports and insights for a coach to monitor. In this chapter, we
focus on leveraging easily available broadcast video data to generate such insights automatically. Such
a method also makes it possible to analyze players and matches from an era when more advanced setups
did not exist, leveraging the thousand of hours of archived video data. We restrict our focus to tennis
and investigate methods to mine tennis gameplay data from the broadcast video of the match. Finally,
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Figure 5.1: Data Mining Approach: The match video is segmented into rallies. Within a rally, we detect player

locations and transform the observations wrt standard tennis court. We also detect the in-rally strokes from the

visual data.

we analyze tennis players and their rivalries through a series of quantitative and qualitative experiments
to prove the efficacy of the data in analyzing players.

Tennis as a sport is fast paced. It has opponent dependent strategic elements. For instance, some
players show a preference to certain shot types and positions, which may be exploited by opponents.
Likewise, players morph their game depending on this information and play to their advantage. Numer-
ous variables, along with aforementioned issues affect play, such as court surface type, humidity and
wind. These factors make the game challenging for analysis. However, as every player has a distinctive
style of play, makes it ripe for the spatiotemporal data to be discernible.

We demonstrate that the gameplay data extracted from the broadcast videos can be used for further
analysis through our extensive qualitative experiments to discover insights about the chosen players.
We also demonstrate that the inferences made from the data extracted is comparable to a crowd-sourced
(and manual) sports data collection project, Tennis Abstract [71], previously leveraged for tennis ana-
lytics [44].

5.2 Related Work

Multimedia Systems and Sports: Various multimedia applications have been proposed utilizing
sports videos. Duan et al. [21] proposed a mid-level Representation Framework for Semantic Sports
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Video Analysis. Bettadapura et al [5] and Merler et al [57] have utilized multimodal data to generate
highlights for basketball, and golf respectively while there have been attempts to generate commentary
from broadcast sports videos [90]. Destelle et al [18] present a multimodal 3D capturing plarform for
preserving traditional sports and games like Gaelic and Basque sports. Monaghan et al [61] propose a
low cost motion-capture system to understand player performance. For tennis analytics, many multiple-
camera [54, 62, 69, 104] systems have been proposed. The constraint of only utilizing broadcast videos
also differentiates this chapter from previous work on sports analytics using computer vision. However,
tracking [20], recognition [87] and classification [40] problems in Computer Vision are some examples
of the extensive use of sports videos for the proxy tasks.

Computer Vision and Sports: Recent advances in computer vision have utilized large scale datasets
and deep learning approaches for many tasks, like video classification [40], scene understanding [30]
and object detection [68]. In sports vision, there have been attempts to perform multi-person action
recognition and event detection in volleyball [36] and basketball [66]. Sha et al. [73] perform analysis
of swimmers from recorded video. Zhu et al [108] and Teachabarikiti et al [93] perform tracking, ball
detection and stroke recognition (for near player) in broadcast videos. However, their videos are manu-
ally trimmed (for each point and action), and the corpus used is not very large and does not account for
variation of players and tournaments. In this work, we benefit from breakthroughs in object detection by
Faster R-CNN [68] and in action segmentation by Temporal Convolutional Networks [47] (recognizing
and segmenting multiple actions in untrimmed videos).

Spatiotemporal Analytics in Sports: There has been previous work in many sports on spatiotempo-
ral analytics, with the assumption of an available data source, usually from a proprietary system. In the
space of Tennis, Wei et al. [100] performed an in-point analysis of rallies and predicted serve trajectory
class [98] leveraging player style priors. Other sports like Football [8, 45, 52] and Basketball [4, 51]
have also recently seen developments in player and team level analysis.

5.3 Preliminaries

5.3.1 Primer on Tennis

Here, we explain a few terms derived from the tennis vocabulary, which would be used throughout
the chapter. These terms are in italics whenever mentioned in the context of tennis.

1. A tennis match is composed of points, games and sets. A set comprises of games which in turn
consists of points.

2. When a player wins majority of the sets, they win the match. A set is won when the player has
won a minimum of six games with at least a two game advantage. A tie-breaker is played out in
case the set is tied at six games per player.

42



3. A player wins the game, if they win four points with a two point advantage. In the absence of two
point advantage, the player must win two points in succession to win the game.

4. A point is the most granular level of scoring in tennis. A point consists of a sequence of back and
forth shots between players, also known as rally.

5. In a rally, a serve is the opening shot. The rally is continued through returns until one of the
player commits an error. The return shot of the non-serving player to the serve can also be termed
as the serve-return.

6. While hitting a return, a right handed player is said to be in their forehand position or a left handed
player is said to be in their backhand position if they are positioned at the right side of lower half
of the court or left side of the upper half of the court respectively.

5.3.2 Scope

Tennis Players have distinctive styles of play and the gameplay analysis is usually performed by
experts who have years of experience. They are able to pinpoint the player characteristics responsible
for the player’s dominance. For example, Rafael Nadal is considered to have a strong forehand and
is thought to be the best player in the world on clay. For our analysis, we focus on the “Big Three”
players [7], considered among the best in the world, Novak Djokovic, Roger Federer and Rafael Nadal.
For brevity, we will use shorthands to represent Federer (F), Nadal (N) and Djokovic (D) in our figures.
We wish to ask and answer the following relevant questions,

• Can broadcast videos be leveraged to mine data and characterize player style?

• How does player style manifests in the positioning and strategy of each player?

• Does the court type provide an advantage or a disadvantage to a certain player? Can we pinpoint
specific characteristics?

• How does the strategy of a player evolve over time? Are there any striking differences that can be
measured?

5.3.3 Dataset

Our dataset consists of 35 broadcast match videos, corresponding to Grand Slam matches (40 matches)
played amongst Federer, Nadal and Djokovic from 2005 to 2017. We excluded 2 walkovers and for 3

matches, we were unable to find an appropriate source. These matches were played on all the three
surface types: “grass”, “hard” and “clay”; based on the Grand Slam. The resolution of the videos ranges
from 360p to 720p with a minimum frame-rate of 25 frames per second.
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We automatically extract the start and end timestamps of the whole rally/point from the match video.
We do so by extracting HOG features for each frame and classifying as a ”rally-frame” using a χ-
squared SVM. Further, we annotate player bounding boxes which are classified as ‘PlayerTop’ and
‘PlayerBottom’ depending on the player position in the frame. Similarly, we annotate 4 stroke classes,
‘serveTop’, ‘hitTop’, ‘serveBottom’ and ‘hitBottom’ by providing the start and end timestamps for each
action in the rally. We plan to release the mined spatiotemporal data and code post publication.

5.4 Mining Data from Videos

Our approach (see Figure 5.1) starts by stabilizing each rally segment and estimating the plane ho-
mography of the tennis court from the video. We then detect and track the positions of the players.
Finally, we detect strokes in-rallies by classifying player actions to obtain spatio-temporal data.

5.4.1 Rally Stabilization and Homography Estimation

We first stabilize each rally segment. Then we estimate homography to transform points in camera
coordinates to top-view standard coordinates. We stabilize the segment by finding a rigid transformation
from previous to current frame using optical flow for all frames. The accumulated trajectories are then
smoothened out using a sliding window.

Now, for the homography, we assume that the tennis court is a symmetrically located 2D object in a
frontal plane which is tilted by an unknown angle θ. We find the gradient of each frame and use Hough
transform to detect court lines and find the intersecting corner points (see Figure 5.2) [10]. Once the four
correspondences are found, we interpolate the rest of the court points [89] and refine the homography
using RANSAC [29]. We apply this method on all the frames of the rally after modifying the region of
interest for the next frame by taking into account the locations of the points in the current frame (see
Figure 5.1).

Evaluation: We successfully estimated the homography in 96.3% of the rallies. Due to peculiar
camera views, rarely, the estimator fails to detect the required lines and points, thus resulting in an error.
We discard such failure cases from our further analyses.

5.4.2 Player Detection and Re-Identification

To detect and track the two players in our obtained point segments, we utilize a Faster R-CNN net-
work [68] and train it to detect two-player classes, ‘PlayerTop’ and ‘PlayerBottom’.We run the detec-
tor on every frame, and thus did not require to explicitly use a multi-object tracker. We consider the
“bottom-center” point of the bounding box as a proxy to feet position. We assume that this feet proxy is
in the plane of the tennis court. Then we use the learnt homography estimate to transform the point to
standard coordinates which is suitable for analysis.
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Figure 5.2: Homography Estimation: We detect intersecting court lines and thus point correspondences, and

estimate the homography to the standard court coordinates.

However, Player level analyses requires us to build correspondence of players across the points in
a match. This is due to the fact that, in a match, the players change court sides during designated
intervals and in-match events. Thus it becomes important to re-identify them. We exploit the fact that
the Players’ outfit have distinct patterns and remains largely consistent through out the match. We
segment the player foreground regions by subtracting the background obtained using moving average
background subtraction method [31]. We extract color histograms of the player foreground regions from
10 random frames in each point to create 2 player features per point. We cluster these features using
Gaussian Mixture Model into 2 clusters, one for each player in a match. The method is ineffective in
Wimbledon matches due to the tournament rules which enforces a white dress code for the players. In
those match videos, we resort to manual annotations.

Evaluation: The precision and recall of player detection model is respectively 98.3% and 99.7%.
The failure cases involve ball boys getting detected as players. We discard such detections by measuring
the distance from all the previous frame detections and setting an empirical threshold over that distance.
The accuracy after evaluating player re-identification model on our dataset excluding the Wimbledon
matches is 97.2%.

5.4.3 Stroke Recognition

We adapt the Temporal Convolutional Network (TCN) variants described by [47] to classify player
strokes (see Figure 5.1). Specifically, we employ the Encoder Decoder TCN (ED-TCN) as the authors
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Figure 5.3: Qualitative Results (Stroke Detection): It can be observed that the model is able to localize temporally

and accurately classify player strokes. (Best viewed in Color)

note superior performance over the Dilated TCN variant and is arguably a simpler model [47]. The
encoder network hierarchically convolves on the temporal input feature (extracted for each frame) and
max-pools the outputs from the ReLU activation function. The decoder network hierarchically performs
deconvolutions over the upsampled outputs from the encoder network. The decoder output is then
classified into individual classes using a softmax activation. The network is trained using the categorical
cross entropy loss with weighted classes. For every frame, we extract HOG features from a fixed sized
box centered at both the player bounding boxes and concatenate them. The video frame is rescaled to
640 × 480. HOG features are extracted from a 112 × 112 box centered at centroid of the ‘PlayerTop’
bounding box and similarly a 224 × 224 box centered at ‘PlayerBottom’ bounding box to account for
perceptive size differences. The cell sizes used are 64 and 32 respectively.

As we aim to obtain a robust model for further analysis, we restricted the stroke classes to serve and
hit by either players, instead of finer action categories. The proposed model works well for temporal
localization of strokes. (see Figure 5.3).

Evaluation: The filter size d = 5 and sample rate s = 4 were found to be the optimal parameters
for ED-TCN. The per-frame classification accuracy of model is 84.19% and the segmental edit score is
88.98% . It should be noted that the temporal extents of player actions are subjective in nature.
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Figure 5.4: Aggregated and discretized player locations: D, F and N stand for Djokovic, Federer and Nadal

respectively and the top positions depict the opponent. It can be observed that the three players have a distinctive

style in terms of positioning and placement.

(a) (b)

Figure 5.5: Confusion matrices: (a) identifying the winner of each set and (b) identifying the winner and the

opponent in each set (first player in the label is the set winner)
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(iii) 2017:Set 5(ii) 2017(i) 2014 (iii) Fed Wins(ii) Nadal Wins(i) All (vi) Fed Wins(v) Nadal Wins(iv) All

(a) Australian Open 2014 & 2017 (b) Wimbledon and French Open 2007

Figure 5.6: Federer vs Nadal Heatmaps for (a-i) All sets, 2014 Australian Open Semifinals (a-ii) All sets, 2017

Australian Open Finals (a-iii) 5th set, 2017 Australian Open Finals (b-i) All rallies, 2007 Wimbledon Finals (b-ii)

All rallies won by Nadal (b-iii) All rallies won by Federer (b-iv) All rallies, 2007 French Open Finals (b-v) All

rallies won by Nadal (b-vi) All rallies won by Federer (Best Viewed in Color)

5.5 Individuality of Players

Before we attempt to analyze the mined data, the first question that arises is, if the data itself can
be used to discriminate between players strategies. In the absence of strategy labels, it is very hard
to evaluate the efficacy of the data. Inspired by Lucey et al [52] work on evaluating team behavior
without such labels, we attempt at identifying the identity of the winner and the opponent given the
spatiotemporal data of the players.

We first extract both the players’ locations when they hit a shot (midpoint of the hit segment) and
exclude the serve locations. We homogenize the data for the winner of a set by marking all their
locations on the bottom half of the court. We now divide the court into a grid of size k×k and aggregate
the player locations (see Figure 5.4). The histograms are aggregated and normalized for each set for
the identification problem. We perform MaxAbs scaling of each feature and apply PCA to reduce the
dimensionality to 35 dimensions.

To evaluate our hypothesis, we classified the identity of the winning player of the set given this fea-
ture vector. We employed a 3 : 1 train-test split. We used a RBF-SVM and our model is 80.0% accurate
(random predictor is accurate to 32.6% on the test data). Using the same method, jointly identifying
both the winner and the opponent in the set resulted in model accuracy of 80.0% (random predictor is
accurate to 16% on the test data), implying that the players have distinctive strengths and weaknesses
which partially manifest in their footwork. We plot the confusion matrix for both the experiments in
Figure 5.5. The optimal k is 12, the SVM parameters C and γ are 105 and 10−3 respectively. We per-
form two more experiments. Excluding the opponent locations resulted in a lower accuracy of 74.29%

and only considering the locations (of both players) at the last shot meant the accuracy went down to
63.86%. Thus, we can infer that the opponent’s positioning holds discriminative information and the
hits preceding to the winning hit are strategically important [99].
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5.6 Spatiotemporal Analysis of Rivalries

5.6.1 Player Position Heatmaps

We observed that player positions are a discriminative aspect of player style, and wished to visualize
these patterns and analyze them in a match. Inspired by Wei et al [100]’s visualizations, we gather the
player position data at their respective last hits in the rally based on the rally winner and set winner.
We then learn probability distribution functions (pdf’s) using these data-points and generate position
heatmaps.

5.6.1.1 Federer vs Nadal, Australian Open, 2014 and 2017

Nadal won the 2014 Semifinals, while Federer won the 2017 Finals and our observations from the
heatmaps include (see Figure 5.6-(a)),

• Federer is more aggressive in approaching the net in 2017 and was not pushed to his backhand
position as often (see Figure 5.6-(a) (i) and (ii)) .

• Surprisingly when Federer is pushed to his backhand position in the final set (see Figure 5.6-
(a) (iii)), he still prevailed. This can be attributed to his improved backhand shot (Discussed in
Section 5.8.2)

5.6.1.2 Federer vs Nadal, French Open and Wimbledon, 2007

Federer won the 2007 Wimbledon Finals against Nadal, while he lost the 2007 French Open Finals.

• Federer’s playing style was more aggressive in Wimbledon where he approached the net more
often (see Figure 5.6-(b) (i) and (iii)) when compared to his positions in the French Open match
(see Figure 5.6-(b) (iv) and (vi))

• Federer was pushed towards his backhand position in French Open when he lost (see Figure 5.6-
(b) (v)) when compared to Wimbledon (see Figure 5.6-(b) (ii)). The trends reverse for Nadal in
French Open and Wimbledon respectively (see Figure 5.6-(b) (iii) and (vi)).

5.6.2 Relationship Between Court Coverage and Player Speed

We wish to understand the relationship between player speed and court coverage, do fast players also
cover a lot of ground? Further, we attempt to observe patterns in the deciding sets and the correlation
between the average speeds and court coverage.

For calculating court coverage, we follow the method similar to [62]. We utilize our court grid
aggregations and calculate the fraction of grids that were covered by the player in their half of the court.
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Figure 5.7: Court Coverage and Player Speed: (a) Averaged over matches in a year (b) For each set of 2017

Australian Open Finals (Best Viewed in Color)

Next, we calculate the speed of the players of a rally using the coordinates extracted from a rally by
employing an extended Kalman Filter. Our major observations include,

1. We observe that Djokovic has the slowest average speed while Nadal has the highest among the
three (see Figure 5.7 (a)). However, despite his slow speed, it does not considerably affect the
average court coverage.

2. Taking 2017 Australian Open Finals as an example, we can make few observations (Figure 5.7
(b)). Excluding the last set, we observe that the highest area covered and average speed in a set
correspond to the set winner. This is possibly because players strategize to conserve energy for
further play. Also, we can observe an increase in game intensity in the final set, both in terms of
area covered and average speeds.
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Figure 5.8: Rally Length Analysis - Grand Slams: Plotting the win percentage rally length for each Slam (a) Our

Mined Data (b) Tennis Abstract Data (c) Disparity in rally lengths in 2008 Wimbledon from other Wimbledon

matches (Best Viewed in Color)

5.7 Rally Length Analysis

Rally lengths are an important factor in understanding player styles. Players with longer rally lengths
are expected to have strong returns while players with shorter rallies are expected to have strong
serves [43]. We measure the number of shots in a rally by counting the player stroke predictions in
a rally.

5.7.1 Contrast among Grand Slams

We computed the rally length distribution for all matches in each Grand Slam (see Figure 5.8 (a)).
Based on our analysis, we observe that the rally lengths relate inversely to the pace of the sport in
each Grand Slam i.e., Wimbledon (Grass Court), US Open and Australian Open (Hard Courts), French
Open (Clay Court), in the decreasing order [43]. We also plotted the rally length graph from the Tennis
Abstract Data [71] (see Figure 5.8 (b)), and can observe a correspondence in the trends.

5.7.2 Player Inferences

We wish to understand the differences in playing style of the Big Three and how it effects rally
lengths. We should note that the serving player always has an advantage, and thus we measure the win
percentage in three cases, for each player, (a) irrespective of who serves, (b) serving player wins and (c)
non-serving player wins. From our analysis, following observations can be made,

1. We can clearly observe the advantage that a server holds from Figure 5.9. For a non-server,
creating an advantageous situation means reducing the server’s advantage and thus engaging in
longer rallies. Conversely, a player with stronger serves would prefer short rallies.
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Figure 5.9: Rally length Analysis - The Big Three: We can observe the clear distinction in playing styles with

Federer and Nadal with Federer preferring shorter rallies while Nadal prefers drawn out rallies. (Best Viewed in

Color)
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Tournament Federer Nadal Djokovic

Wimbledon 14 7 10

US Open 14 4 14

Aus Open 10 13 9

Roland Garros 7 27 11

Total 45 51 44

Table 5.1: The Big Three: Head-to-Head. Sets won by each player in all Grand Slam matches in dataset

2. We note that Federer has the highest percentage of short rally wins, which follows from the fact
that he is considered a strong server. Nadal and Djokovic, however, show a preference for longer
rallies, typical for players considered strong returners.

3. Federer’s strong serves biases him to prefer shorter rallies, thus Wimbledon and French Open
(Section 5.7.1) are the best and least suited tournaments respectively (See Table 5.1 for winning
statistics). Similar inference can be extended to Nadal, for whom French Open and Wimbledon
are the best and least suited tournaments respectively.

4. The Curious Case of 2008 Wimbledon Final: Federer is the favorite at Wimbledon matches,
however he lost to Nadal in the 2008 final. We can observe a 6% decrease from the Wimbledon
average (52% vis-à-vis 58% in our dataset) in the win percentage of very short rallies ((Figure 5.8
(c))) and a corresponding 5% increase in longer rallies. Thus, it can be inferred that Nadal played
a game to his strengths (strong returns) and capitalized to win the match.

5.8 Case Studies

5.8.1 Return Pressure

In this section, we analyze the return pressure exerted by players on a server, which is defined as the
average amount of time the returner gives the server to react to their first shot [43], lowering his serve
advantage. We measure the time difference between the returnee’s first shot and server’s second shot in
a rally. Lower the time difference, higher is the return pressure.

As we can observe in Figure 5.10, Djokovic fares considerably better compared to Federer and Nadal
respectively (in concurrence with [43]). Nadal applies the least return pressure among the three which
may be attributed to his preference to stay far behind the court baseline on most serves.
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Figure 5.10: Return Pressure: We plot the return pressure (in ms) using box plots and mark the median over all

matches for each player. Djokovic proves to be a better returner with higher return pressure.

5.8.2 Federer’s backhand 2014-2017

One of the major factors discussed in Federer’s win over Nadal in 2017 Australian Open Finals was
his improved backhand. Federer credited his switch to a bigger racket frame that he started using in
the year 2014 [92]. In the absence of fine-grained information about the shots at forehand or backhand
classes, we utilize the notion of dominant positions. We try to analyze improvement in his backhand by
measuring the number of times an opponent serves to Federer’s backhand position against his forehand
position.

We measure the difference between Federer’s horizontal coordinates at the opponent’s serve and at
Federer’s serve-return. If the difference is positive, we classify that the return is played from a forehand
position. If the difference is negative, then it is played from a backhand position. The sign of the
direction is dependent on which side of the player faces the camera, i.e. upper/lower half of court.

We can observe that the percentage of serves made to Federer’s backhand position was higher ear-
lier and has dropped significantly, indicating that the opponents have caught on that his backhand has
improved. Further, we obtained the actual shot data for the serve-returns from Tennis Abstract [71] for
the matches and plotted that trend along with our data in Figure 5.11 and observe that the trend is pretty
similar in both cases.
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Figure 5.11: Percentage of serves to Federer’s backhand position: (a) By Djokovic (b) By Nadal. Concurrently,

we have plotted the percentage of actual backhand and forehand serve-returns played by Federer (from Tennis

Abstract Data)

5.9 Discussions

We have demonstrated the effectiveness of computer vision methods to perform data mining of
broadcast videos, we can characterize minute differences between playing styles and thus analyze both
matches and players. In summary, we observe that players have distinctive styles of play. Players with
strong serves (like Federer) try to play shorter rallies and thus prefer faster courts which promote such
play. Similarly, strong returners (like Nadal) prefer courts which promote longer rallies. However,
strong returners may have different characteristics (such as return pressure) depending on their court
preference, as observed in disparity between Djokovic and Nadal.

Our approach is a an important step towards research in the direction of sports reasoning, planning
and generating recommendations for sports. Such methods can provide corrective course of action and
defensive strategy against the opponents. Lastly, computer vision based analytics methods are cost-
effective. These can be extended to other sports and deployed to provide real-time insights for amateur
players with minor modifications to the approach.
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Chapter 6

Conclusions

The frameworks that we have presented in this thesis address the problem of sports video analytics
and retrieval. Our methods operate on broadcast videos and do not require any specialized equipments
or sensors. We have restricted our focus to tennis and badminton sports, however, the computer vision
approaches can be applied to different sports with modifications. In Section 2.1 we discussed some of
the other work in the space of computer vision and sports while in Section 2.2 we discussed some of the
machine learning techniques that we put to use while building our frameworks.

Chapter 3 presents an automatic way to index broadcast videos of tennis matches. The method relies
on extracting play segments by exploiting the property that the camera is behind the baseline while
the sport is being played. Then the scorecard is extracted automatically by exploiting the fact that the
scorecard is static in the video segment. The score are extracted using popular scene text spotting and
recognition pipelines. Our major contribution is a scores refinement algorithm that takes in raw outputs
of the scene text recognition algorithm, and then utilizes the scoring system modeled as an automaton
to fix errors in the scores. Section 3.4 provides an evaluation of different parts of our method and
demonstrate a simple application of automated event tagging.

In Chapter 4, we present an end-to-end framework for automatic analysis of broadcast badminton
videos. We build our pipeline on off-the-shelf object detection [68], action recognition and segmen-
tation [47] modules. Analytics for different sports rely on these modules making our pipeline generic
for various sports, especially racket sports (tennis, badminton, table tennis, etc.). Although these mod-
ules are trained, fine-tuned, and used independently, we could compute various useful as well as easily
understandable metrics, from each of these modules, for higher-level analytics. The metrics could be
computed or used differently for different sports but the underlying modules rarely change. This is
because broadcast videos of different sports share the similar challenges.

In Chapter 5, we have demonstrated the effectiveness our framework to perform data mining of
broadcast videos. Through the mined data, we are able to characterize minute differences between
playing styles of different players and thus analyze both matches and players. Our framework is cost-
effective and can be extended to other sports and deployed to provide real-time insights for amateur
players with minor modifications to the approach.

56



Related Publications

1. SmartTennisTV: Automatic indexing of tennis videos, Anurag Ghosh, C.V. Jawahar, National
Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG),
2017 (Best Paper Award)

2. Towards structured analysis of broadcast badminton videos, Anurag Ghosh, Suriya Singh, C.V.
Jawahar, Winter Conference on Applications of Computer Vision (WACV), 2018

3. Mining and Analyzing Tennis and Badminton Strategies from Broadcast Videos, Anurag Ghosh∗,
Rakesh Jasti∗, Suriya Singh, C.V. Jawahar, 2018 (Under Preparation) (∗Joint work)

57



Bibliography

[1] Dartfish: Sports performance analysis. http://dartfish.com/. 7, 25
[2] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convolutional encoder-decoder architecture

for image segmentation. TPAMI, 2017. 32
[3] S. Bai, J. Z. Kolter, and V. Koltun. An empirical evaluation of generic convolutional and recurrent networks

for sequence modeling. arXiv preprint arXiv:1803.01271, 2018. 13
[4] G. Bertasius, H. S. Park, X. Y. Stella, and J. Shi. Am i a baller? basketball performance assessment from

first-person videos. In Proc. ICCV, 2017. 7, 9, 28, 42
[5] V. Bettadapura, C. Pantofaru, and I. Essa. Leveraging contextual cues for generating basketball highlights.

In Proc. ACMMM, 2016. 9, 42
[6] B. L. Bhatnagar, S. Singh, C. Arora, and C. V. Jawahar. Unsupervised learning of deep feature representa-

tion for clustering egocentric actions. In Proc. IJCAI, 2017. 28
[7] C. Bialik and N. Silver. Tennis has a big three-and-a-half, 2014. https://fivethirtyeight.com/features/andy-

murray-tennis-big-four/. 43
[8] A. Bialkowski, P. Lucey, P. Carr, Y. Yue, S. Sridharan, and I. Matthews. Large-scale analysis of soccer

matches using spatiotemporal tracking data. In Proc. ICDM, 2014. 42
[9] J. Biswas, J. P. Mendoza, D. Zhu, B. Choi, S. Klee, and M. Veloso. Opponent-driven planning and

execution for pass, attack, and defense in a multi-robot soccer team. In Proc. AAMAS, 2014. 40
[10] C. Calvo, A. Micarelli, and E. Sangineto. Automatic annotation of tennis video sequences. In Joint Pattern

Recognition Symposium, 2002. 44
[11] S. Careelmont. Badminton shot classification in compressed video with baseline angled camera. 2013. 10
[12] D. Cervone, A. DAmour, L. Bornn, and K. Goldsberry. Pointwise: Predicting points and valuing decisions

in real time with nba optical tracking data. In Proc. MITSSAC, 2014. 28
[13] J. Chen, H. M. Le, P. Carr, Y. Yue, and J. J. Little. Learning online smooth predictors for realtime camera

planning using recurrent decision trees. In Proc. CVPR, 2016. 7
[14] J. Chen, L. Meng, and J. J. Little. Camera selection for broadcasting soccer games. In Proc. WACV, 2018.

7, 8
[15] S. Chen, Z. Feng, Q. Lu, B. Mahasseni, T. Fiez, A. Fern, and S. Todorovic. Play type recognition in

real-world football video. In Proc. WACV, 2014. 8, 27
[16] W.-T. Chu and S. Situmeang. Badminton Video Analysis based on Spatiotemporal and Stroke Features. In

Proc. ICMR, 2017. 7, 10, 25, 27, 33
[17] D. Connaghan, P. Kelly, and N. E. O’Connor. Game, shot and match: Event-based indexing of tennis. In

Proc. CBMI, 2011. 9, 18

58

http://dartfish.com/


[18] F. Destelle, A. Ahmadi, K. Moran, N. E. O’Connor, N. Zioulis, A. Chatzitofis, D. Zarpalas, P. Daras,

L. Unzueta, J. Goenetxea, et al. A multi-modal 3d capturing platform for learning and preservation of

traditional sports and games. In Proc. ACM Multimedia, 2015. 40, 42
[19] T. Dierickx. Badminton game analysis from video sequences. 2014. 10
[20] T. D’Orazio, M. Leo, N. Mosca, P. Spagnolo, and P. L. Mazzeo. A semi-automatic system for ground truth

generation of soccer video sequences. In Proc. AVSS. IEEE. 42
[21] L.-Y. Duan, M. Xu, T.-S. Chua, Q. Tian, and C.-S. Xu. A mid-level representation framework for semantic

sports video analysis. In Proc. ACM Multimedia, 2003. 8, 40, 41
[22] A. Fathi and J. M. Rehg. Modeling actions through state changes. In Proc. CVPR, 2013. 28
[23] A. Fathi, X. Ren, and J. M. Rehg. Learning to recognize objects in egocentric activities. In Proc. CVPR,

2011. 29, 30
[24] P. Felsen, P. Agrawal, and J. Malik. What will happen next? forecasting player moves in sports videos. In

Proc. ICCV, 2017. 7
[25] B. Ghanem, M. Kreidieh, M. Farra, and T. Zhang. Context-aware learning for automatic sports highlight

recognition. In Proc. ICPR, 2012. 7, 9, 17, 25, 27
[26] S. Giancola, M. Amine, T. Dghaily, and B. Ghanem. Soccernet: A scalable dataset for action spotting in

soccer videos. In Proc. CVPR Workshops, 2018. 8
[27] A. Gupta, A. Vedaldi, and A. Zisserman. Synthetic data for text localisation in natural images. In Proc.

CVPR, 2016. 12, 18, 20, 22, 23
[28] A. Hanjalic. Generic approach to highlights extraction from a sport video. In Proc. ICIP, 2003. 9, 17, 27
[29] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press,

2004. 44
[30] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc. CVPR, 2016.

25, 42
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