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Abstract

Well designed search algorithms can be used to search databases in computational chemistry to
identify unknown compounds and their structures based on their observable attributes that are stored
in the databases. Apart from an inherent problem of the lack of diversity within individual databases,
algorithms that depend on database searches are inaccessible to researchers who are unable to access
or have their own copy of these enormous databases. This thesis focuses on removing the database
dependency for algorithms that depend on database searches for structure prediction in two areas within
computational chemistry - molecular structure elucidation from molecular spectra, and tertiary structure
prediction of RNA (Ribonucleic acid) molecules from their sequence.

Molecular spectroscopy studies the interaction of molecules with electromagnetic radiation, and in-
terpreting the resultant spectra is invaluable for deducing the molecular structures. However, predicting
the molecular structure from spectroscopic data is a strenuous task that requires highly specific domain
knowledge. DeepSPInN is a deep reinforcement learning method that predicts the molecular structure
when given Infrared and 13C Nuclear magnetic resonance spectra by formulating the molecular struc-
ture prediction problem as a Markov decision process (MDP) and employs Monte-Carlo tree search to
explore and choose the actions in the formulated MDP. On the QM9 dataset, DeepSPInN is able to pre-
dict the correct molecular structure for 91.5% of the input spectra in an average time of 77 seconds for
molecules with less than 10 heavy atoms. This study is the first of its kind that uses only infrared and
13C nuclear magnetic resonance spectra for molecular structure prediction without referring to any pre-
existing spectral databases or molecular fragment knowledge bases, and is a leap forward in automated
molecular spectral analysis.

RNA molecules play a significant role in many biological pathways and have diverse functional
roles, which is a result of their structural flexibility to fold into diverse conformations. This structural
flexibility makes it challenging to obtain the structures of RNAs experimentally. Deep learning can
be used to predict the secondary structures of RNA and other properties such as the backbone torsion
angles, to be used as restraints for the computational optimization of the tertiary structures of RNA.
TorRNA is a transformer encoder-decoder model, that takes an input RNA sequence and predicts the
(pseudo)torsion angles of each nucleotide with a pre-trained RNA-FM model as the encoder. TorRNA
is able to achieve a performance boost of 2%− 16% over the previous (pseudo)torsion angle prediction
method for RNAs. We also demonstrate that TorRNA can used as a tool for model quality assessment
of candidate RNA structures.
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Chapter 1

Introduction

Chemical structures of molecules and macromolecules play a critical role in determining the form
and function of those molecules. The chemical structures can be thought of as Nature’s blueprints to
design molecules and macromolecules that take part in complex chemical and biological mechanisms
[1]. Understanding these blueprints can help us design molecules with particular properties and inter-
actions for applications like drug discovery, optoelectronics, energy storage, and designing better ways
to synthesize compounds. A big step towards understanding these blueprints, is to gather data and learn
about the chemical structures of currently useful molecules and their functionality.

In both experimental and computational chemistry, researchers have always sought to increase the
amount of high-quality labelled data while ensuring its underlying diversity. Databases in chemistry
contain data spanning a wide range of information ranging from materials and their properties to the re-
sults of computational simulations. Although these databases individually store a wealth of information,
they all contain information that belongs to their own “niche” [2]. Users who require a diverse database
would need to consolidate multiple individual databases, which proves to be a difficult task due to the
high degree of variability of data formats [3] and heterogeneity of softwares used to obtain computa-
tional results [4]. Although there are efforts to encourage the usage of standard data formats, they are
still works in progress and would require continued worldwide efforts. Databases should ideally ac-
companied with informative metadata and be built by following the findable, accessible, interoperable,
recyclable (FAIR) principles, but building databases in such a way is not the norm yet [5].

These databases can serve as references to access first-principles results about the entries, or can be
used in conjunction with well designed search algorithms to identify unknown compounds and their
structures based on their observable attributes. Apart from the inherent problem of the lack of diversity
within individual databases, algorithms that depend on database searches are inaccessible to researchers
who are unable to access or have their own copy of these enormous databases. This thesis focuses on
algorithms that depend on database searches for structure prediction in two areas within computational
chemistry - molecular structure elucidation from molecular spectra, and tertiary structure prediction of
RNA (Ribonucleic acid) molecules from their sequence.
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Molecular spectroscopy is a frequently used analytical technique to identify the chemical structure
of a compound. The spectroscopic data can be used as an ’address’ or ’zip code’ to locate entries in
structure databases [6], resulting in a way to elucidate the structures based on molecular spectra. Current
CASE (Computer Aided Structure Elucidation) programs provide good results for structure elucidation,
but they are not automated and have heavy requirements on both the number of types of spectra and
the pre-processing done on them [7]. Many of these CASE systems also rely on extensive databases of
chemical structures and their molecular spectra. Even the largest spectroscopy databases currently in
existence cover only a small percentage of all molecules with chemical or biological relevance. These
databases do not represent the complexity or diversity of the vast chemical space, and can contain
spectral data recorded in varying experimental settings. Methods that search through these databases
can potentially not recognize unseen structural motifs [7] and would have trouble identifying unknown
compounds, like truly novel drug metabolites [8].

To address this need for structure elucidation methods that do not depend on spectral databases
and extensive preprocessing of the spectra, Chapter 2 of this thesis describes DeepSPInN - a Deep
reinforcement learning method for molecular Structure Prediction from Infrared and 13C NMR spectra
[9]. On the QM9 dataset [10, 11], DeepSPInN is able to predict the correct molecular structure for
91.5% of the input spectra in an average time of 77 seconds for molecules with < 10 heavy atoms.

Another area of computational chemistry where algorithms depend on database searches is for the
tertiary structure prediction of macromolecules, with this thesis focusing on RNA molecules. Relatively
recently, works like AlphaFold2 [12] have achieved near-experimental accuracy for protein structure
prediction. This superior performance is attributed to the works’ reliance on multiple sequence align-
ments (MSAs). MSAs provide co-evolution information of the input protein sequence, which is impor-
tant for protein structure prediction [13]. MSAs can simply be seen as a list of protein sequences of
the same length that are similar to the target protein chain sequence and share evolutionary information.
These MSA-based algorithms see a decline in their performance when the quality of MSA degrades,
and the step of searching for MSAs becomes a bottleneck in the structure prediction process. To remove
this dependency on MSAs for protein structure predictions, some works [14] used a protein language
model to learn the co-evolution information that is typically obtained from MSAs, or use representa-
tions of MSAs [15]. Recently, language models have been developed for RNAs [16] and have been used
for end-to-end prediction of RNA structures [17], and demonstrate the potential of using these RNA
language models for other RNA-related tasks.

To make further progress towards addressing the need of methods that predict the tertiary structure
of RNA without performing computationally-heavy MSA, Chapter 3 of this thesis describes TorRNA -
a method for improved prediction of Torsion angles of RNA. TorRNA is a transformer encoder-decoder
model, that takes an input RNA sequence and predicts the (pseudo)torsion angles of each nucleotide with
a pre-trained RNA language model as the transformer encoder. TorRNA is able to achieve a performance
boost of 2%− 16% over the previous (pseudo)torsion angle prediction method and consequently shows
an improved performance over a random baseline predictor as well.
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Chapter 2

DeepSPInN - Deep reinforcement learning for molecular Structure

Prediction from Infrared and 13C NMR spectra

2.1 Introduction

Molecular spectroscopy is the analysis of the electronic, vibrational, and rotational excitations of
the nuclei of molecules as they interact with electromagnetic radiation. It is widely used as a tool to
identify and characterize molecules for quantitative and qualitative analysis of materials. The spectrum
of a molecule is the measured absorption or emission of the incident electromagnetic radiation. Each
molecule produces a unique spectrum for a particular spectroscopic method, allowing the spectrum to
be used as a fingerprint of the molecule.

Infrared (IR) spectroscopy is a spectroscopic technique that sheds light on the vibrational modes
of a molecule that changes its dipole moment [18]. These vibrational modes cause the molecules to
absorb electromagnetic radiation in the Infrared spectral region, lying in the range of wavenumbers
4000−400 cm−1. Functional groups have unique absorbances in the region of peaks beyond 1500 cm−1

called the functional group region [19]. Peaks with wavenumbers < 1500 cm−1 are considered to be in
the fingerprint region [19] since the elaborate patterns of peaks here are highly specific to a molecule
and are often too complex to interpret.

Nuclear magnetic resonance (NMR) spectroscopy is another widely used spectroscopic technique to
characterize the structure of molecules [20]. In NMR spectroscopy, an external magnetic field is applied
to a molecule and the nuclei of some isotopes (e.g. 1H , 13C) absorb radio waves of specific frequencies
to change their nuclear spin. In 13C NMR for example, any small changes in the local environment
of the atom in the molecule cause the 13C nuclei to absorb radio waves of different frequencies. The
relative differences of these frequencies against a reference 13C NMR frequency of tetramethylsilane
(TMS) are measured in parts per million (ppm) [21] to give the chemical shifts of the nuclei. The
spin-spin coupling of the adjacent protons of the 13C nuclei cause the splitting of the corresponding
NMR signal and allows the calculation of the multiplicity of each peak. This chemical split of each
13C nuclei’s chemical shift is indicative of the number of directly attached hydrogen atoms. Together,
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the chemical shift and chemical split values of a 13C NMR spectrum allow the deduction of the atom
type and chemical environment of each carbon atom, and subsequently the complete structure of the
molecule. The chemical split values however are difficult to obtain experimentally [22], and are not
used by DeepSPInN.

For a structure to be elucidated from molecular spectra, all structural fragments are identified by
interpreting the peaks in the spectra as the first step. These structural fragments are combined to list the
possible molecular structures that can be made. These structures are then verified by cross-referencing
the expected peaks of the functional groups in the input spectra, or by comparing their predicted spectra
with the input spectra. CASE (Computer Aided Structure Elucidation) programs have evolved a lot since
their introduction and have made good progress for structure elucidation from spectra, but they are still
expected to have a degree of intervention from chemists and spectrometrists [23]. These programs
also typically require 2D spectra in addition to any 1D IR, NMR, and MS spectra as the input [24].
Even today, most computational methods to identify a substance from its spectral data rely on matching
against a database of already known spectra or by searching through knowledge bases of substructures
[25, 26, 27, 28, 29, 30, 31, 32, 33]. Such methods restrict their applicability to the cases where the
molecule’s spectra is already stored in the database, or cases where the structural motifs are adequately
represented in the dataset. These database methods are also sensitive to variations in the experimental
conditions while collecting the spectra [31], and might fail if there are incorrect entries in the database
[34].

Recently, new methods have made use of Machine learning (ML) algorithms to solve problems in
computational chemistry such as predicting new drug molecules [35, 36, 37], performing molecular
dynamics simulations [38, 39, 40], protein stability and binding site prediction [41, 42], and predicting
physical molecular properties [43, 44, 45]. Efforts for finding correlations between the spectral features
of molecules and their structural features using ML can be dated back to the 1990s [46]. Interpretation
of spectra to understand the complex relationship between a spectrum and the molecular structure is a
difficult task. Recent developments in deep learning open new avenues to explore the mapping between
the molecular structure and the information-rich spectral data.

The forward problem for molecular structure elucidation can be defined as the prediction of the spec-
tra of a given molecular structure, and the corresponding inverse problem is generating the molecular
structure given the spectra (Figure 2.1). Although they are computationally intensive, quantum me-
chanical methods can be used to obtain various molecular spectra. Many recent works made progress in
solving the forward problem of predicting the spectra of a molecule where they utilize ML for predicting
IR [47, 48, 49, 50, 51], NMR [52, 53, 54], UV-visible [55], and photoionization [56, 57] spectra.

There have been works demonstrating how deep learning can solve inverse problems [58] in various
domains. For the inverse problem in molecular structure elucidation, there have been works that aimed
to automate the process of interpretation of IR spectra [59, 60]. Many of them use only the functional
group region of the spectra for their interpretation. Wang et al. [59] use a support vector machine to do
multi-class classification for spectra from the OMNIC FTIR spectral library. The trained support vector
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Figure 2.1: The IR and 13C NMR spectra of 3-methyloxane-2-carbaldehyde to highlight the definitions

of a forward problem and its corresponding inverse problem
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machine identified 16 functional groups with a prediction accuracy of 93.3%. Fine et al. [60] introduce a
multi-label neural network to identify functional groups present in a sample using a combination of FTIR
and MS spectra. Jonas [61] and Howarth et al. [62] used a deep neural network that works with proton-
coupled 13C NMR to predict the molecular structure. Zhang et al. [63] use ChemTS [64] to identify a
molecule from its NMR spectrum using Monte Carlo tree search (MCTS) guided by a recurrent neural
network (RNN). Huang et al. [22] propose an ML-based algorithm that takes 1H and 13C NMR as input
and predicts the correct molecule as the top scoring candidate molecule with an accuracy of 67.4%.
Pesek et al. [7] introduce a rule based combinatorial approach in which the framework uses 1H and 13C

NMR, IR, and mass spectra to elucidate the structure of an unknown compound and emphasises that
the approach does not depend on database searches. Although this method does not use any spectral
databases, it involves a step to pick 1H NMR peaks and their multiplicities, which is subject to user
interpretation and is heavily dependent on the correctness of the peak-picking step [22]. Such knowledge
engineering and rule based approaches would limit the capability of the solution since they inherit the
biases of the rules programmed [31], and might not contain the data for fragments that are appropriate
for the given input spectra [65]. This highlights the need for molecular structure elucidation methods
that do not depend on spectral databases, while also not requiring any knowledge engineering.

Elyashberg and Argyropoulos [23] predict that using deep learning algorithms would improve the
performance and robustness of CASE systems. They also highlight AlphaZero’s success in mastering
games [66] as a testament to how deep learning can learn to perform complicated tasks. A concurrent
work [67] proposes a transformer model that utilizes IR spectra to achieve a top-1 accuracy of ∼ 55%

on molecules with less than 10 heavy atoms. Another similar concurrent work [68] utilizes both 1H

and 13C NMR spectra to achieve a top–1 accuracy of ∼ 70% on molecules with less than 10 heavy
atoms. It has recently been shown that a Monte-Carlo tree search (MCTS) algorithm can be used for the
elucidation of molecular structure from 13C NMR chemical shifts and splits, achieving a top-1 accuracy
of 57.2% [69] for molecules with less than 10 heavy atoms on the nmrshiftdb2 [70] dataset that contains
experimentally calculated 13C NMR spectra of 2134 molecules.

In this thesis chapter, the main contribution is a framework that utilizes IR and 13C NMR spectra
to accurately identify the molecular structure without any knowledge engineering or database searches.
The proposed framework predicts the connectivity between the atoms, i.e. predicts the constitutional
isomer of the molecular formula that corresponds to the input spectra. DeepSPInN formulates the molec-
ular structure prediction problem as an MDP and employs MCTS to generate and traverse a search tree
while using a set of pre-trained Graph Convolution Networks [71] to guide the tree search. DeepSPInN
is able to achieve an accuracy of 91.5% on molecules with less than 10 heavy atoms, outperforming
previous and concurrent works on structure elucidation from molecular spectra.
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2.2 Methods

2.2.1 Dataset

The QM9 [10, 11] dataset is a subset of the GDB-17 [72] chemical universe and consists of 134k
stable small organic molecules with up to nine heavy atoms (CNOF). We first identified molecules in
the QM9 dataset for which IR and 13C NMR spectra were calculated using the Gaussian 09 [73] suite
of programs. We were able to calculate both IR and 13C NMR spectra for 119,062 molecules. We then
chose molecules where the smallest ring (if any ring(s) exist(s)) in the molecule has at least 5 atoms to
account for ring strain, and molecules where none of the atoms have any formal charge. This left us
with about 50k molecules to use as the input data for this thesis. A train-val-test split of 80-10-20 was
used to make the train, validation, and test dataset of molecules. We used the validation set to choose
hyperparameters for DeepSPInN, which we used for evaluating DeepSPInN on the test set.

To calculate the IR absorbance spectra, the geometrical optimization and the subsequent calcula-
tion of the vibrational frequencies were done using the B3LYP density functional methods with a 6-
31g(2df,p) basis set in the gas phase. The spectra from these DFT calculations for each molecule is
a set of frequency-intensity pairs. These infinitely sharp stick spectra were broadened to mimic actual
gas-phase spectra using a peak broadening function as described and trained by McGill et al. [74]. This
function is a two-layer fully connected neural network followed by an exponential transform, and takes
frequency-intensity pairs to give a continuous spectrum. Following previous methods that predicted in-
frared spectra [74], the intensities of the resulting spectra were binned with a bin-width of 2 cm−1 in the
spectral range from 400 − 4000 cm−1 to accommodate the available datasets of experimental infrared
spectra. This results in the gas-phase IR absorbance spectrum for each molecule being represented by a
1801-length vector.

To analyse the congruence of the simulated and experimental IR spectra, we compare the simulated
and experimental IR spectra of the molecules from our dataset that are also in the NIST Quantitative In-
frared Database [75] and present this in the appendix. Due to the shortcomings of the DFT calculations
and the peak expansion, the simulated spectra are not sufficiently similar to the experimental spectra
to be considered as replacements for the experimental spectra. However, they reflect the complexity of
experimental spectra by being able to account for the signatures of functional groups and by containing
realistic peak shapes [76, 74]. If DeepSPInN performs well by learning to capture relevant character-
istics of simulated infrared spectra, it could similarly interpret and learn from experimental infrared
spectra.

To make a dataset of 13C NMR spectra, the peak positions (chemical shift) were obtained from
the QM9-NMR dataset [77]. The QM9-NMR dataset has the gas phase mPW1PW91/6-311+G(2d,p)-
level atom-wise isotropic shielding for the QM9 dataset. These 13C isotropic shielding (σiso) values
were converted to 13C chemical shifts (δiso) through δiso = σreference

iso − σiso [78], where σreference
iso is

the reference value for tetramethylsilane (TMS), which is a standard reference compound. The root
mean square error (RMSE) between the 13C NMR spectra obtained in this way against spectra from
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the experimental nmrshiftdb2 [70] database for the common molecules is 2.55 ppm per peak. As a
reference, 13C NMR shift values are typically between 0-200 ppm. The state-of-the-art ML-based 13C

NMR shift prediction methods achieve an RMSE of 1-5 ppm [53, 79, 80], and DFT calculated 13C

NMR shift values have RMSE values ranging between 2.5–8.0 ppm [81]. An RMSE of 2.5 ppm shows
great congruence between experimental 13C NMR and the simulated 13C NMR spectra that we use.

2.2.2 DeepSpInN Framework

The methods section is divided into five parts to explain the proposed framework:

i. description of how molecular structure prediction can be modelled as a Markov decision process
(MDP)

ii. description of how MCTS can be used to generate a search tree of molecules and refine the policy
at each state

iii. explanation of the architecture of the prior and value model used by DeepSPInN

iv. explanation of how 13C NMR split values are used to prune the MCTS search tree

v. description of the training methodology used to train the prior and value model

2.2.2.1 MDP formulation

The problem of molecular structure prediction can be modelled as a finite Markov decision process
(MDP) [82, 83] in a way similar to the formulation in Sridharan et al. [69]. An MDP is defined as a
tuple ⟨S,A, {Ps}, R⟩ with states S, actions A, policy {Ps}, and reward function R [84]. The goal is to
learn the policies Ps which gives the transition probabilities over the action space A at a particular state
s ∈ S.

Each state s ∈ S consists of a molecular graph m and the target IR spectrum yIR. A molecular graph
represents a molecule where the atoms and bonds are mapped to nodes and edges in a graph. m also has
the information about the target 13C NMR spectrum encoded as node-wise features. In the initial state,
the molecular graph is a null graph with nodes representing each atom in the molecular formula and no
edges. The molecule mols at a state s is the largest connected component in the molecular graph. The
remaining individual nodes in m might join mols after taking an action a ∈ A. In the initial state, mols
is just a single carbon atom corresponding to any of the nodes in m.

An action a ∈ A adds an edge between two nodes inm, which is equivalent to the addition of a bond
between two atoms. Since the QM9 dataset has molecules that have a maximum of 9 atoms (number
of nodes) and since there are 3 types of bonds (edges), the action space A has 9 ∗ 9 ∗ 3 = 243 actions.
For the molecular graphs to represent chemically valid molecules, only a subset of these actions can be
considered to be valid. If a state has no valid actions that can be taken to reach any children states, it is
a terminal state. In the action space for a state s, the valid actions are those that satisfy these conditions:
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• Out of the two nodes that the action adds an edge between, at least one of the nodes must belong
to the largest connected component (mols) of the molecular graph, i.e. the current molecule of
the state.

• The edge added by the action should satisfy the chemical valency rules of the two nodes. If all the
edges of a node do not satisfy the octet of the corresponding atom type, it is implicitly assumed
that hydrogen atoms contribute to the octet.

• The action should not create a self-loop since atoms do not form bonds with themselves.

• The action does not add an edge between two nodes that already belong to the same cycle.

• The action does not create a cycle whose length is less than 5, since rings with less than 5 atoms
have high ring strain if they have double or triple bonds.

The reward function R returns a non-zero reward for all terminal states and a zero reward for all
non-terminal states. For the terminal states, the reward is a function of the spectral distance between
the input IR spectrum and the IR spectrum of mols as predicted by Chemprop-IR [74]. Chemprop-IR is
an extension to the Chemprop [85] architecture and uses a Directed Message Passing Neural Network
[86](D-MPNN) to predict the IR spectrum of an input molecular graph. R is the Spectral Information
Similarity [74] (SIS) metric which is calculated by rescaling the spectral divergence between two IR
spectra found by their Spectral Information Divergence [87] (SID). The reward function R is given by:

R = SIS(A,B) =
1

1 + SID(A,B)
=

(
1 +

∑
i

(Ai ln
Ai

Bi
+Bi ln

Bi

Ai
)

)−1

where A and B are two IR spectra.

2.2.2.2 Generating and exploring the search tree with MCTS

With this MDP formulation, we can use search algorithms to build a tree of state-labelled nodes
[88, 89]. We can build such a tree by repeatedly starting at the root state and reaching children states
by taking any of the valid actions at each state. We use MCTS to estimate the optimal policy for the
modelled reinforcement learning (RL) task [90].

Starting from a root node, MCTS has 4 stages - selection, expansion, roll-out, and back-propagation
(see Figure 2.2). In the selection stage, the algorithm chooses actions with probabilities proportional to
their UCT [88] (Upper Confidence Bound applied to trees) values, until it reaches a leaf node. The UCT
value of an action a at state s is given by

UCT(s, a) = Q(s, a) + cpuct · πas ·
√∑

bN(s, b) + 1

N(s, a) + 1

where Q(s, a) is the expected reward of taking action a from state s, cpuct is a parameter to balance
exploration and exploitation in the tree search, πas is the probability of taking action a from state s
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Figure 2.2: MCTS progresses in 4 stages to generate the search tree. a) Selection: starting from the root

node of the tree, choose actions based on the UCT values b) Expansion: when the tree search reaches

a leaf node, add a new child state to the tree c) Rollout: calculate the expected reward of the new child

state through a series of random roll-outs d) Backpropagation: update the UCT values of all ancestors

of the new child state

according to the policy returned by a prior model, N(s, a) is the number of times action a has been
taken from state s, and

∑
bN(s, b) is the number of times state s has been reached.

In the process of traversing the search tree according to the UCT values, the algorithm would reach a
point where taking an action a from state s would lead to a state s′ that does not exist in the search tree.
This leads to the expansion stage of MCTS where the new state s′ is added to the search tree.

Once a new child node s′ is added in the expansion stage, the rollout stage is used to evaluate the
value of s′. An ideal way to calculate this value is to calculate the expected reward by a series of random
rollouts. Due to the computational complexity of calculating the expected reward in the ideal way, we
approximate the value using an offline-trained value model [66, 91]. The value of s′ is recursively back-
propagated through all its parent nodes till the root node to update the ancestors’ values and visitation
counts. If s is a terminal state that already exists in the tree, the reward of s is back-propagated to update
the values of all ancestor nodes. A state s is considered to be terminal if it has no valid actions, or if
its reward exceeds a particular threshold (explained in the appendix). All 4 MCTS stages are repeated
nmcts number of times which is a hyper-parameter of DeepSPInN. After nmcts repetitions of the above 4
MCTS stages, a true action is taken according to the final policy at this state.

2.2.2.3 Description of the prior and value model

To featurize the built molecule at each state, both the prior and value model use a Message Passing
Neural Network [71, 92] (MPNN) that run for three time steps (see Figure 2.3). Consider a molecular

1Used only for the experiment with proton-coupled 13C NMR spectra
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Figure 2.3: A prior model and a value model are used with the MCTS algorithm to get the probabilities

over the action space and to predict the value of a particular state. An MPNN uses the initial node-

wise features that contain the 13C NMR spectrum to give node-wise embeddings after three message

passing steps. The prior model uses the pair-wise node embeddings and the IR spectrum to predict the

probability of each pair of nodes having a single, double, or triple bond between them. The value model

uses the sumpooled node-wise embeddings and the IR spectrum to predict the value of a particular state.
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Table 2.1: Featurization of nodes and edges in the molecular graph

Node Feature Description

Element Type one-hot of [C,N,O,F]

Hybridization one-hot of [sp, sp2, sp3]

Implicit Valency one-hot of [0,1,2,3,4]

Radical Electrons one-hot of [0,1,2]

Formal Charge one-hot of [-2, -1, 0, 1, 2]
13C NMR split one-hot of [0,1,2,3] 1

13C NMR shift
a gaussian with σ = 2 centered at
the chemical shift value discretized into 64 bins

Edge Feature Description

Bond Type one-hot of [single, double, triple, aromatic]

Bond Conjugation boolean of whether the bond is conjugated

Presence in a Ring boolean of whether the bond is in a ring

graph G(V,E) where each node has initial node features xv,∀v ∈ V . Each xv is a vector of length 88
and contains the chemical description of the atom and the 13C NMR peak of the atom corresponding to
node v as listed in Table 2.1. Each node v also has hidden features hv that are initialized to xv, with the
MPNN updating these hidden features in each time step of the forward pass. All edges in the molecular
graph have edge features evw,∀v, w ∈ V as listed in Table 2.1. The forward pass of an MPNN has
T message passing time steps and a final gathering step. The message passing steps use a message
function Mt to form messages from the hidden features of neighbouring nodes N(v) and the features
of their corresponding edges. An update function Ut updates the hidden features of a node based on its
current hidden features and the messages it received from its neighbouring nodes.

mt+1
v =

∑
w∈N(v)

Mt(h
t
v, h

t
w, evw)

ht+1
v = Ut(h

t
v,m

t+1
v )

After T message passing steps, a gathering function GT uses the initial node features xv and the final
hidden features hv to give the node-wise features Fv.

Fv = GT (xv, h
t
v)

In DeepSPInN, Mt and Ut are fully connected neural neural networks, and GT is an element-wise
addition operation.
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Using the node-wise features from the MPNN, the prior model generates all possible pairs of nodes
and concatenates the node-wise features of all these pairs of nodes to get pair-wise features. yIR is
compressed into 100-length vectors by passing through a two-layer fully connected neural network to
give y′IR and is appended to all these pair-wise features. The product of this concatenation is passed
through another two-layer fully connected neural network Prmodel to predict the probabilities of a bond
of each of the three types (single, double, triple) existing between the pair of nodes. The prior model
works as follows

Pbond = Prmodel
(
[Fv, Fu, y

′
IR]
)

, for each pair of nodes u, v ∈ V

where, “[ ]” represents a concatenation operation, Prmodel is the prior model, and Pbond is a 3-tuple
giving the probabilities of nodes u and v having a single, double, and triple bond respectively.

The value model first performs a sum-pooling operation on the node-wise features obtained from the
MPNN. It then appends the compressed IR spectrum to the sum-pooled feature vector of the molecule
and passes this through a two-layer fully connected neural network Vmodel to predict the value of this
state. The value model works as follows

Vs = Vmodel

([∑
i

Fi, y
′
IR

])
where,

∑
i
Fi is the result of the sum-pooling operation of all node-wise features in the molecular

graph.

2.2.2.4 Training Methodology

The prior and value model are trained on a set of experiences generated from a guided tree search
on the molecules in the training dataset. These experiences are generated by building and exploring
the search tree with MCTS, but with a modified reward function. Since the target molecule is known
while training, the reward function is replaced with a binary function that returns a value depending
on whether the molecule built at the current state is subgraph isomorphic to the molecular graph of the
target molecule. The reward for taking an action a from state s to reach state s′ is:

r(s, a) =

1 if S(mols′ ,moltarget)

0 otherwise

where mols′ is the molecular graph of the molecule at state s′, moltarget is the molecular graph of the
target molecule, and S(mols′ ,moltarget) is RDKit’s [93] substructure search that does a subgraph iso-
morphism check and returns a boolean value.

The policies and values of each state in the trees built during the training period are stored and are
used to train the prior and value models. We use the Adam optimizer [94] with a learning rate of 1e− 5

to train the models. The entire training took about 45 hours on a system with a Intel Xeon E5-2640 v4
processor and a GeForce GTX 1080 Ti GPU.
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2.2.2.5 Choosing the hyperparameters nmcts and number of episodes

We test multiple values of the nmcts hyperparameter and the number of episodes for each set of input
spectra to choose the best values. Each episode builds the MCTS tree from scratch by going through
all four phases of MCTS nmcts times and returns a final molecule. All the unique candidate molecules
from these episodes are then ranked using the reward function as a scoring function. To choose the best
hyperparameters, we consider the Top N metrics where each Top N metric denotes whether the target
molecule was present in the top N ranked candidate molecules.

For the nmcts hyperparameter, we test the values 200, 400, and 800 on the validation set where each
set of input spectra goes through a maximum of 40 episodes. The Top N metrics for each value of
nmcts is shown in table 2.2. Across the various nmcts values, the Top 1 (%) accuracy increases as nmcts

increases. There is a stark increase in the Top 1 (%) accuracy between nmcts = 200, 400, but there is
only a marginal difference between nmcts = 400, 800. This shows that increasing nmcts further will
result in diminishing increase in performance while taking a disproportionately greater amount of time
as shown in figure 2.5b. We use nmcts = 400 to show the best results of DeepSPInN, and nmcts = 200

to run various experiments in a reasonable time. To choose the number of episodes, we analyse the
number of episodes that are taken when a molecule is correctly predicted. For the correctly predicted
molecules, the right molecule was found within 10 episodes 86% of the time. The right molecule was
found 99.9% of the time when DeepSPInN is run for 32 episodes, which we found to be the ideal
number of episodes for running further experiments. Further information regarding this is provided in
the appendix.

Table 2.2: Top N metrics for varying nmcts values with 40 episodes on the validation set

IR+13C NMR

nmcts 200 400 800

Top 1 (%) 86.47 91.42 91.56

Top 3 (%) 87.05 92.13 92.49

Top 5 (%) 87.20 92.19 95.57

Top 10 (%) 87.39 92.33 96.07

2.3 Results

To rigorously evaluate DeepSPInN, we present the results of a few experiments in the following
subsections. The first subsection compares the performance of DeepSPInN for different nmcts values.
The next subsection compares the final rewards for correctly and incorrectly predicted molecules. In
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Table 2.3: Top N metrics for varying nmcts on the test set

IR+13C NMR

nmcts 200 400

Top 1 (%) 86.91 91.46

Top 3 (%) 87.54 92.16

Top 5 (%) 87.60 92.22

Top 10 (%) 87.62 92.24

the following subsection, the time taken to predict the molecules for different nmcts values is analyzed.
In the subsequent subsection, performance of the model is discussed when only one of IR or 13C NMR
spectrum is given as the input. The final subsection describes and presents the results of an experiment
to check the generalizability of DeepSPInN.

2.3.1 Performance of DeepSPInN for varying nmcts values

Table 2.3 compares the results for different values of nmcts when given both IR and 13C NMR
spectra. For nmcts = 400, DeepSPInN correctly identifies the target molecule ∼ 91.5% of the time as
the top candidate molecule. Even with nmcts = 200, DeepSPInN is able to outperform the previous
MCTS-based structure elucidation method [69] that has a best Top 1 (%) accuracy of ∼ 60% compared
to DeepSPInN’s Top 1 (%) accuracy of ∼ 86.9% for nmcts = 200.

Even within each nmcts value, the Top N (%) metrics increase marginally starting from Top 1 (%) to
Top 10 (%). The increases across the Top N (%) metrics are due to an imperfect scoring function being
used to rank all the candidate molecules. If the correct target molecule is not ranked as the top candidate
molecule, it would contribute to one of the Top N (%) metrics. Still, we observe that the scoring function
proposed in DeepSPInN is significantly better than the one used in Sridharan et al. [69] since they report
great differences across the Top N (%) metrics. DeepSPInN does not show such great differences in the
Top N metrics, illustrating that the scoring function used here performs better in ranking the candidate
molecules. In DeepSPInN, if the correct molecule is found to be one of the candidate molecules, it is
almost always ranked as the top candidate.

2.3.2 Comparison of rewards for correctly and incorrectly predicted molecules

Figure 2.4 contains the histograms of the rewards for the cases when DeepSPInN was and was not
able to predict the correct molecule as the top candidate. The histogram of the rewards for the correctly
predicted molecules has a very narrow distribution and has an average reward of 0.975. It is also left-
skewed with most of the correctly predicted molecules receiving a higher reward when compared to the
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Figure 2.4: Histogram of the rewards of molecules that had the correct and incorrect structure as the top

ranked candidate molecule for nmcts = 400

incorrectly predicted molecules. The histogram of the rewards for the incorrectly predicted molecules
has a broader distribution with an average reward of 0.808. 88.56% of the correctly predicted molecules
had a reward ≥ 0.95 while only 8.9% of the incorrectly predicted molecules had a reward ≥ 0.95. Deep-
SPInN would allow researchers to use the final reward as a confidence measure of the correctness of the
prediction. When DeepSPInN gives a final reward ≥ 0.95 for a set of input spectra, the top candidate is
the target molecule 99.9% of the time. The top candidate molecules even for these incorrectly predicted
molecules are structurally similar to the correct molecule, with the average Tanimoto similarity between
the correct molecule and the top candidate molecule being 0.954 for the test set.
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(a) Histograms of the time taken to predict each

molecule when given both IR and 13C NMR spectra

for varying nmcts values

(b) Histograms of the time taken to predict each

molecule when given either IR or 13C NMR spectra

for nmcts = 200

Figure 2.5: Histograms of time taken to predict each molecule when given both IR and 13C NMR

spectra or either one spectrum
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Table 2.4: Performance of IR-and-NMR-trained, IR-trained, and NMR-trained models for nmcts = 200

IR and NMR Only IR Only NMR

Top 1 (%) 86.91 73.15 29.37

Top 3 (%) 87.54 73.31 37.99

Top 5 (%) 87.60 73.32 39.76

Top 10 (%) 87.62 73.32 40.66

2.3.3 Analysis of the time taken for the predictions

Figure 2.5a shows the distribution of times taken for DeepSPInN to predict candidate molecules for
input IR and 13C NMR spectra for different values of nmcts. For nmcts = 400, the average time taken
is 77 seconds with 95% of the test molecules taking less than 130 seconds. Figure 2.5b shows the
distributions of times taken by IR-and-NMR-trained, IR-trained, and NMR-trained models to predict
candidate molecules for nmcts = 200. The NMR-trained model has the fastest average prediction time
of 24 seconds, while the IR-trained model has the slowest average prediction time of 82 seconds. The
IR-and-NMR-trained model has an average prediction time of 49 seconds. The NMR-trained model
is the fastest because the model is smaller due to the IR spectrum compression neural networks being
removed. The IR-trained model is the slowest since DeepSPInN has to explore more of the search tree
in each episode, when compared to the IR-and-NMR-trained model that also has the 13C NMR shift
values as the input.

2.3.4 Importance of having both IR and 13C NMR spectra as input

To compare the distinguishing ability of IR and 13C NMR and to compare the utility of having both
IR and 13C NMR spectra as the input, we performed ablation studies where we ran the model with either
one of the spectra as the input for nmcts = 200. Table 2.4 shows the Top N metrics for the models that
received both IR and NMR, only IR, and only NMR spectra as input. The IR-and-NMR-trained model
has a Top 1 accuracy of 86.9% while the IR-trained and NMR-trained models have a Top 1 accuracy
of 73.15% and 29.37% respectively. All Top N metrics for the IR-and-NMR-trained model are greater
than the models that work with either one of the spectra. This implies that the model is able to learn
complementary information from both the spectra and subsequently performs better than the models
with either one of the spectra as the input. Among the models that work on either one of the spectra, the
IR-trained model performed significantly better than the NMR-trained model in all the Top N metrics.
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Table 2.5: Training on molecules with ≤ 7 atoms and testing on molecules with ≥ 8 atoms for nmcts =

200

≥ 8 atom molecules 8-atom molecules 9-atom molecules

Top 1 (%) 68.52 89.88 64.63

Top 3 (%) 68.92 90.14 65.05

Top 5 (%) 69.0 90.27 65.12

Top 10 (%) 69.06 90.27 65.19

2.3.5 Generalizability of DeepSPInN in understanding the action space

To understand how well DeepSPInN generalizes learning about the actions, the prior and value mod-
els were first trained on all molecules with less than 8 heavy atoms. It was then tested on a subset
of molecules with 8 or more heavy atoms using these prior and value models. Table 2.5 shows the
Top N metrics for this subset of test molecules, and the Top N metric for 8-atom molecules and 9-
atom molecules in this subset. DeepSPInN achieves a Top 1 accuracy of 68.52% even when all the
test molecules have more heavy atoms than the molecules that DeepSPInN was trained on. The Top 1
accuracy on molecules with 8 and 9 heavy atoms is 89.88% and 64.63% respectively. The decreased
accuracy when compared to the original model might be because there were very few molecules for
training the prior and value models in this experiment. When DeepSPInN is trained on molecules with
≤ 7 atoms, it might perform worse on bigger molecules since they have more combinations of functional
groups in each test molecule than it has seen in the molecules used for the training. We study whether
DeepSPInN is able to predict some functional groups better than the others by calculating the Top N for
molecules that contain various functional groups. More details and results of both these experiments
are available in the appendix. In another experiment shown in the appendix, the current DeepSPInN
model trained on simulated spectra does not perform well on elucidating structures from experimental
spectra. DeepSPInN is able to learn the complexity of spectra, as seen by its performance on simulated
spectra, and can be generalized to perform well on unseen experimental spectra when it is also trained
on experimental spectra.

2.3.6 Structural complexity of molecules resolved by DeepSPInN

To demonstrate the structural complexity addressed by DeepSPInN in elucidating molecular struc-
tures from Infrared and 13C NMR spectra, we show 20 complex molecules that were the top candidate
molecule as predicted by DeepSPInN in Figure 2.6. We quantified the complexity of molecules using
the Bertz Complexity [95] descriptor implemented in RDKit [93].
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Figure 2.6: 20 complex molecules successfully predicted by DeepSPInN, demonstrating the structural

complexity addressed by DeepSPInN
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Chapter 3

TorRNA - improved prediction of Torsion angles of RNA by leveraging

large language models

3.1 Introduction

RNA molecules play a significant role in modulating many biological pathways, ranging from acting
as catalytic ribozymes [96] to controlling gene expression via transcriptional regulation [97]. Recent
advances in generation [98] and delivery [99] of RNA make it more feasible for RNA molecules to be
used as therapeutic agents [100] to address the underlying pathology of diseases rather than treating the
symptomology as done by small molecule-based therapeutics [101]. RNA that are involved in disease
pathways can also serve as druggable targets for small molecules to bind to the RNA and modulate their
function [102], increasing the number of ways we can interfere with pathological mechanisms. This
functional diversity of RNA molecules is closely tied to their structure, with their ability to fold into
various conformations impacting how they interact with other molecules [103, 104, 105]. Determining
the structures of RNA is important for understanding their mechanisms and to be able to exploit them
as therapeutic agents and targets.

RNA molecules fold hierarchically with their secondary structure elements being folded first, which
then interact and result in the tertiary structure [106]. RNA molecules fold into their secondary struc-
tures and specific sub-structures based on hydrogen bonding between the nucleotides and their stacking,
to form helices and unique RNA loops like hairpin loops and pseudoknots. These secondary structure
elements interact and form the tertiary structure, and result in the great structural plasticity exhibited
by RNA molecules. Determining the tertiary structures of these RNA molecules through experimental
means such as nuclear magnetic resonance and X-ray crystallography is challenging due to the resolu-
tion limits of these methods and the intrinsic structural plasticity of RNA molecules [107, 108].

To alleviate the struggles of determining the structure of RNA molecules experimentally, a number
of computational approaches based on thermodynamic models and Watson-Crick-Franklin (WCF) in-
teractions have been developed to determine the secondary structure of RNA molecules over the years
[109, 110, 111, 112, 113, 114]. Recently, new methods have made use of Machine learning (ML) al-
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gorithms to solve problems in computational chemistry such as predicting and synthesizing new drug
molecules [35, 36, 37, 9], performing molecular dynamics simulations [38, 39, 40], protein stability and
binding site prediction [41, 42], and predicting physical molecular properties [43, 44, 45]. ML has been
employed to predict the secondary structure of RNA as early as the 1990s [115, 116, 117].

Recent advances in deep learning have resulted in improved prediction of macromolecular structures
like proteins [12, 118] and RNA [119, 120, 121]. The breakthroughs in protein structure prediction
by deep learning are due to the improved prediction of contact maps and backbone structures, which
are used as restraints for modelling the structures. However, there are only a few studies that predict
such restraints for RNA molecules [119, 122]. With existing methods optimizing the tertiary structure of
RNA molecules when given the secondary structures, deep learning can be used to solve the downgraded
problem of predicting the secondary structures and other structural properties [16] that can be used as
restraints for the optimization. Presented in this thesis, TorRNA focuses on accurate prediction of
the backbone structure of RNA molecules by predicting the torsion and pseudotorsion angles that can
characterize the backbone of an RNA molecule.

In proteins, the backbone configuration can be described by only two backbone conformational pa-
rameters ϕ and ψ. For nucleic acid structures like RNA and DNA however, the phosphodiester backbone
is best characterized by 6 torsion angles (α, β, γ, δ, ϵ, and ζ), and a torsion angle χ that quantifies the
orientation of the base with respect to the sugar. For a nucleotide indexed i and the next nucleotide along
the 5′−3′ direction indexed as i+1, these 7 torsion angles as shown in Figure 3.1 can be described as the
dihedral angle between the atoms O3′i−1−Pi−O5′i−C5′i(α), Pi−O5′i−C5′i−C4′i(β), O5′i−C5′i−
C4′i−C3′i(γ), C5′i−C4′i−C3′i−O3′i(δ), C4

′
i−C3′i−O3′i−Pi+1(ϵ), C3′i−O3′i−Pi+1−O5′i+1(ζ),

and O4′i − C1′i − (N9i/N1i) − (C2i/C4i)(χ). To simplify the representation of the RNA backbone
configuration, two pseudotorsion angles eta (η) and theta (θ) can be used to describe the RNA backbone
configuration [103, 123] similar to how ϕ and ψ are used to describe backbone configuration of proteins.
These pseudotorsion angles as shown in Figure 3.1 can be described as the dihedral angle between the
atoms C4′i−1 − Pi − C4′i − Pi+1(η) and Pi − C4′i − Pi+1 − C4′i+1(θ) where i − 1, i, and i + 1 are
the indices of three nucleotides in the 5′ − 3′ direction. These 9 torsion and pseudotorsion angles are
depicted in Figure 3.1 and are henceforth referred to as (pseudo)torsion in the rest of the manuscript.

SPOT-RNA-1D [122] employed a residual dilated convolutional neural network architecture [124,
125] to predict seven torsion and two pseudotorsion angles, and was able to beat a random baseline
predictor by achieving a mean absolute error (MAE) between 14◦ and 44◦ for the nine (pseudo)torsion
angles. The design choice of using a dilated convolutional neural network architecture is justified by
the architecture’s ability to learn long-range interactions between nucleotides. However, SPOT-RNA-
1D and other methods that predict secondary structures of RNA employ variations of CNNs since the
properties they predict are represented by two-dimensional matrices - such as contact maps.

When compared to proteins, PDB [126] has fewer 3D RNA structures. This lack of RNA sequence-
structure datapoints is one of the greatest challenge in developing ML-based sequence to structure
methods for RNA. The RNA foundation model (RNA-FM) [16] is a foundation model trained in a
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Figure 3.1: RNA backbone torsion (α, β, γ, δ, ϵ, ζ, χ) and pseudotorsion (η, θ) angles.

self-supervised manner to learn any patterns in the RNA sequences and generates sequence encodings
that potentially capture the underlying evolutionary, structural, and functional information of the corre-
sponding RNA molecules from their sequences. RNA-FM implicitly learns the co-evolutionary infor-
mation of RNA sequences from 23 million unlabeled non-coding RNA sequences and performed well
in downstream tasks like RNA secondary structure prediction and 3D contact map prediction. RNA-FM
has been used by E2Efold-3D [17] to develop the first end-to-end deep learning approach to predict 3D
RNA structures directly from the sequence, highlighting the importance of the information contained in
the RNA-FM encodings.

In this thesis, we present TorRNA - a method that focuses on predicting the (pseudo)torsion angles
of each residue by using a transformer [127] architecture to predict the (pseudo)torsion angles. TorRNA
uses the encodings of all nucleotides of an input RNA sequence as generated by a pre-trained RNA-FM
model and predicts the (pseudo)torsion angles using a transformer decoder architecture. The choice of
using a transformer is consistent with the choice of using a dilated convolutional neural network since a

23



transformer also contains residual connections [128] to help learn the long-range interactions between
nucleotides.

3.2 Methods

3.2.1 Dataset

SPOT-RNA-1D’s [122] training dataset contains 286 RNA chains, with the validation and test dataset
containing 30 and 147 RNA chains respectively. However, this dataset was constructed by downloading
all RNA structures from PDB [126] with a suitable X-ray resolution on October 3, 2020. To train and
test TorRNA, we sought to create a new dataset that contains the RNA structures uploaded to PDB [126]
in the recent years.

The dataset of RNAs used for training and testing TorRNA was curated with data from RCSB Protein
Data Bank (PDB) [126] and BGSU RNA Representative Sets [129]. More specifically, we assembled
the PDB identifiers of RNA structures that were available with a resolution of < 4Å from PDB on July
4, 2023 and from Release 3.288 of BGSU RNA Representative Sets. The structures of these RNAs
were downloaded from PDB [126] using their PDB identifiers. The downloaded PDB structures are
processed using the Biopython [130] package to obtain the structures of individual RNA chains.

We follow the same methodology as SPOT-RNA [119] to make the train, validation, and test splits
of the dataset. To remove the redundancies in the dataset, the sequences of all the RNA chains with
< 500 nucleotides were clustered using CD-HIT-EST [131] with a sequence identity threshold of 80%.
The RNA sequences that do not belong to any clusters are assigned to a noncluster set (NCS), and the
clustered RNA sequences are assigned to a cluster set (CS). To ensure an even stronger nonredundancy
between NCS and CS, we run the BLAST-N [132] tool on the RNA sequences with an e-value cutoff
of 10. Sequences in CS that have hits with sequences in NCS are removed to ensure that sequence
homologies between CS and NCS are minimal. The resulting CS is used as the training data, and NCS
is randomly divided into validation and test dataset with a 20-80 split.

While dividing NCS into the validation and test datasets, we maintained the RNA sequences from the
RNA-Puzzles benchmarking test set [133, 134, 135, 136, 137] exclusively in the test dataset for TorRNA
to run further experiments on these RNAs as described in the 3.3. The final training, validation, and test
datasets have 767, 42, and 172 RNAs respectively. When comparing the performance of TorRNA with
SPOT-RNA-1D [122] in the Results section, we use the same dataset splits used by SPOT-RNA-1D
[122] in one of the results. For the list of curated PDB IDs, we use the DSSR [138, 139] software tool
to calculate the native torsion angles and to identify the structural regions from the 3D structures. The
final dataset is available on our code repository.
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3.2.2 Architecture of TorRNA

TorRNA’s overall architecture is a transformer encoder-decoder as shown in Figure 3.2a, that takes
an input RNA sequence and predicts the (pseudo)torsion angles of each nucleotide. TorRNA utilizes a
pre-trained RNA-FM [16] model’s embedding layer and subsequent transformer encoder blocks [127,
140] to obtain encodings for each residue of an RNA sequence. RNA-FM’s [16] model architecture as
shown in Figure 3.2b is a stack of 12 transformer encoder blocks, similar to the BERT [140] language
model architecture. Each encoder block has a hidden size of 640 and 20 self-attention heads, with
layer normalization and residual connections being applied before and after every block. For an RNA
sequence as the input, RNA-FM first tokenizes the sequence into the individual nucleotide tokens (‘A’,
‘U’, ‘G’, and ‘C’ among others). An initial embedding layer maps each of these sequential nucleotide
tokens to 640-dimensional vectors. These initial embeddings are passed through the stack of 12 encoder
blocks to give final encodings of the same size for each nucleotide. These final encodings of each
nucleotide contain information aggregated from the entire RNA sequence.

The final encodings of each nucleotide computed by the pre-trained RNA-FM model are then passed
to a stack of 3 transformer decoder blocks [127] along with the embeddings of the nucleotides computed
by the pre-trained embedding layer of RNA-FM. These decoder blocks as shown in Figure 3.2b use
the embeddings of each nucleotide and perform cross-attention over the RNA-FM encodings to finally
predict the (pseudo)torsion angles for each nucleotide. Since these angles are in the range [−180◦, 180◦],
TorRNA predicts the sine and cosine values of the (pseudo)torsion angles instead of predicting the angles
directly to handle the periodicity of the angles as done in previous works that predict torsion angles for
RNA and proteins [122, 141]. The predicted sine and cosine values can be used to calculate the angle
using the inverse tangent function.

angle = tan−1

(
sin(angle)
cos(angle)

)

The transformer decoder layers of TorRNA are trained to minimize the Mean Squared Error (MSE)
of the sine and cosine of the (pseudo)torsion angles using the Adam optimizer [94] with the hyperpa-
rameters as chosen in Table 3.1. The training and testing of TorRNA was done on a system with a Intel
Xeon E5-2640 v4 processor and a GeForce RTX 2080 Ti GPU.

To choose the best hyperparameters for TorRNA’s architecture and training procedure, we conduct
grid search of the hyperparameters presented in Table 3.1. We chose the best values for the hyperpa-
rameters when the error of predicting the (pseudo)torsion angles was the lowest for the RNAs in the
validation dataset.

The code and datasets for TorRNA are available at https://github.com/devalab/torrna.
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(a) Overall architecture of TorRNA is a transformer encoder-decoder that takes an input RNA sequence and

predicts the (pseudo)torsion angles of each nucleotide.

(b) Details of the RNA-FM encoder blocks and the TorRNA decoder blocks that shows how the RNA-FM embed-

dings are used by the decoder blocks to predict the (pseudo)torsion angles.

Figure 3.2: Overall architecture of TorRNA.

3.3 Results

To evaluate the performance of TorRNA, we use the Mean Absolute Error (MAE), which is the
average absolute error between the predicted and ground truth (pseudo)torsion angles. To handle the
periodicity of the angles in the MAE calculation, we consider min(d, 360◦ − d), where d is the absolute
difference between two angles. We compare the results of TorRNA with SPOT-RNA-1D [122] and a
random predictor. The random predictor works by constructing a histogram of the native angles from
the RNAs in the training dataset with a bin-width of 2◦, and returns the mean of 100 random predictions
using the normalized frequency of each bin as the discrete probability distribution for the center of each
bin.
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Table 3.1: Search space and the best value for the various hyperparameters for TorRNA

Hyperparameter Search Space Best Value

Learning Rate [0.0001, 0.0002] 0.0002

Hidden Dimension [256, 512] 256

Number of Attention Heads [4, 8] 4

Number of Transformer Decoder Layers [2, 3, 4, 5, 6, 7] 3

Dropout [0.1, 0.2] 0.2

Tolerance [3, 5] 5

3.3.1 TorRNA outperforms SPOT-RNA-1D and the random baseline predictor

Table 3.2 and Figure 3.3 compare the performance of TorRNA, SPOT-RNA-1D, and the random
baseline predictor in predicting the (pseudo)torsion angles. To provide a direct comparison with SPOT-
RNA-1D , we show the performance of TorRNA when trained and tested on dataset splits curated in this
thesis in Table 3.2, and on the dataset splits used by SPOT-RNA-1D in Table 3.3.

TorRNA shows improved performance in predicting all torsion angles (α, β, γ, δ, χ, ϵ, ζ) and both
pseudotorsion angles (η, θ) when compared to both SPOT-RNA-1D and the random baseline predictor.
The common trend exhibited by the ML-based prediction methods is that the prediction of the angle
delta (δ) has the least average error and the angle alpha (α) has the highest average error. TorRNA
and SPOT-RNA-1D have MAEs of 14.26◦ and 17.1◦ when predicting the angle delta (δ), and MAEs of
42.1◦ and 46.1◦ when predicting the angle alpha (α) . TorRNA predicts the angle delta (δ) with the least
error, followed by the angles epsilon (ϵ), chi (χ), beta (β), zeta (ζ), gamma (γ), and alpha (α). When
compared to SPOT-RNA-1D, TorRNA achieves an improvement ranging from 2.7% for angle beta (β)
to 16.5% for angle delta (δ).

Since the available source code for SPOT-RNA-1D does not allow the model to be retrained with new
dataset splits, to obtain a direct comparision, we retrain and test TorRNA on the same RNA molecules
on which SPOT-RNA-1D was trained and tested. The performance of the retrained TorRNA and SPOT-
RNA-1D are presented in Table 3.3, which show that TorRNA has better predictions of 8/9 of the
(pseudo)torsion angles when compared to SPOT-RNA-1D. In the Supplementary Information, we com-
pare TorRNA against other predictors submitted to RNA-Puzzles [133, 134, 135, 136, 137]. TorRNA
consistently performs the best in predicting the torsion angles for most puzzles, and gives comparable
predictions to the top RNA puzzle predictor in the remaining puzzles.
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Table 3.2: MAE of TorRNA compared with SPOT-RNA-1D and the random baseline method for all

(pseudo)torsion angles on TorRNA dataset splits

(pseudo)torsion angle
Prediction Method

TorRNA SPOT-RNA-1D Random Baseline

alpha (α) 42.052 46.079 73.044

beta (β) 20.626 21.209 123.877

gamma (γ) 36.443 37.958 59.064

delta (δ) 14.257 17.081 19.538

chi (χ) 20.11 21.999 46.129

epsilon (ϵ) 19.306 20.311 36.209

zeta (ζ) 29.182 30.545 50.646

eta (η) 25.124 29.114 79.595

theta (θ) 28.82 30.725 67.517

3.3.2 Correlation between TorRNA’s prediction errors and (pseudo)torsion angle distri-

butions

The boxplot of the prediction errors of the (pseudo)torsion angles shown in Figure 3.3 shows the
distribution of the errors whose averages are presented as the MAEs in Table 3.2. TorRNA’s prediction
errors follow the same trend as SPOT-RNA-1D where the difficulty of predicting the (pesudo)torsion
angles depends on the distribution of the (pseudo)torsion angle. As seen in Figure 3.4, the ground truth
values of the angle delta (δ) have a narrow distribution, which explains the low prediction error and the
narrow range of the errors in predicting this angle in Figure 3.3. The wide distribution of the ground
truth values of the angle alpha (α) explain the prediction errors having a wide range in Figure 3.3 and a
high MAE as reported in Table 3.2.

3.3.3 TorRNA’s predictive ability for various structural regions of RNA molecules

We investigate TorRNA’s (pseudo)torsion angle predictions of nucleotides with various secondary
and tertiary interactions with other nucleotides within an RNA molecule. The DSSR [138, 139] soft-
ware tool marks each nucleotide with the type of interaction in which it is involved. Table 3.4 shows
the MAEs obtained by averaging TorRNA’s prediction errors for the nucleotides in various structural
regions. Figure 3.5 shows the various structural regions that we consider in Table 3.4.
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Table 3.3: MAE of TorRNA compared with SPOT-RNA-1D and the random baseline method for all

(pseudo)torsion angles on SPOT-RNA-1D dataset splits

(pseudo)torsion angle
Prediction Method

TorRNA SPOT-RNA-1D Random Baseline

alpha (α) 38.87 40.371 72.968

beta (β) 19.677 19.82 123.241

gamma (γ) 31.289 32.149 55.059

delta (δ) 12.668 14.71 17.396

chi (χ) 16.407 18.159 48.259

epsilon (ϵ) 19.956 19.798 33.564

zeta (ζ) 27.033 28.034 49.241

eta (η) 22.677 26.537 76.677

theta (θ) 25.788 27.887 65.929

The (pseudo)torsion angles of nucleotides that are unpaired (∼ 28%) or are part of hairpin loops
(∼ 12%) are the hardest to predict. The difficulty in predicting the (pseudo)torsion angles of these
regions could be due to the unpaired nucleotides being very flexible, and TorRNA having no geometric
information to infer the nucleotides in hairpin loops which have a distribution of angles away from the
remaining nucleotides. Nucleotides that are a part of canonical nested pairs make up ∼ 47% of all
nucleotides and are the easiest to predict. As seen in Table 3.4, TorRNA predicts all (pseudo)torsion
angles better than SPOT-RNA-1D across most structural region, and gives comparable results to SPOT-
RNA-1D in the remaining cases.

3.3.4 TorRNA’s robustness to the length of RNA sequences

The lengths of the longest RNA sequence in the training, validation, and test sets varying greatly
could potentially affect the performance of TorRNA on long RNA molecules. To analyse this, Figure
3.6 shows the MAEs of all (pseudo)torsion angles for RNA molecules of varying sequence lengths. All
the (pseudo)torsion angles largely have the same MAEs for RNAs of all lengths. It can also be noted
that there is no clear loss in performance in predicting the (pseudo)torsion angles of RNAs of greater
lengths, with some angles even having their lowest prediction errors for the longest RNAs in the test
dataset.
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Figure 3.3: Boxplot of the prediction errors of the (pseudo)torsion angles to compare the distribution of

the errors of TorRNA, SPOT-RNA-1D, and the random baseline predictor.

3.3.5 Using TorRNA as a model evaluator

While developing Ribonucleic Acids Statistical Potential (RASP) [142] - an all-atom knowledge-
based potential for the assessment of 3D RNA structures - the authors use 500 decoy models for each
of the 85 native RNA structures in a dataset that they name randstr decoy set to test the knowledge-
based potential they developed. These decoys were built with the MODELLER computer program
[143] using an increasingly smaller subset of Gaussian potentials as restraints on the dihedral angles
and atomic distances.

Out of these 85 RNAs, 2 RNAs are present in the testing dataset of TorRNA and are non-redundant
with the training dataset. We use these 2 RNAs to explore the connection between the prediction er-
rors of TorRNA and the structural accuracy of the models measured by the root-mean-square deviation
(RMSD) and global distance test (GDT) score [144] to their native structures. Figure 3.7 plots the MAEs
between the (pseudo)torsion angles predicted by TorRNA and the angles of the decoy models against
the structural accuracy of the models for the PDB IDs 1MZP (Chain B) and 387D (Chain A). The MAE
of the predictions increase as the structural accuracy of the models decrease, i.e. as the RMSD increases
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Figure 3.4: Histograms of ground truth (pseudo)torsion angles and those predicted by TorRNA and

SPOT-RNA-1D. The Y-axis uses a logarithmic scale to show the frequency of each frequency bin in the

histogram.

31



(a) Canonical Base Paired

Residues.

(b) Canonical Nested Base Paired

Residues.

(c) Non-Canonical Base Paired

Residues.

(d) Hairpin Loop Residues. (e) Unpaired Residues. (f) Lone Base Paired Residues.

(g) Pseudoknot Residues. (h) Multiplet Residues.

Figure 3.5: The various structural regions of RNA molecules that we consider. The specific residues are

highlighted in red when the region is ambiguous from the figure.
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Table 3.4: MAE of angles predicted by TorRNA in various regions of an RNA molecule with the MAE

of the predictions by SPOT-RNA-1D in the parenthesis. SPOT-RNA-1D MAEs are in bold when they

are lower than the corresponding MAE of TorRNA.

Region
(% of all nucleotides present in this region) alpha (α) beta (β) gamma (γ) delta (δ) chi (χ) epsilon (ϵ) zeta (ζ) eta (η) theta (θ)

All Canonical Pairs (50.51%)
29.51

(32.72)
15.06

(15.66)
27.54

(28.26)
7.82

(11.66)
9.37

(12.15)
13.80

(15.44)
15.18

(16.28)
11.10

(15.48)
14.43

(16.05)

Canonical Nested Pairs (46.49%)
33.32

(36.56)
16.89

(17.33)
30.45

(31.25)
9.01

(12.41)
12.43

(14.54)
15.13

(16.73)
18.51

(19.47)
13.95

(17.94)
17.30

(18.79)

Non-Canonical Pairs (25.61%)
47.24

(50.10)
24.14

(24.64)
41.32

(41.66)
15.58

(17.91)
24.48

(25.48)
22.42

(22.66)
37.94

(38.76)
25.94

(28.14)
33.89

(34.86)

Hairpin Loops (11.72%)
62.57

(62.66)
26.55

(27.14)
42.77

(42.92)
22.75

(23.57)
28.52

( 28.47 )
26.57

( 26.55 )
46.18

(46.69)
48.98

(51.52)
45.43

(46.73)

Unpaired (27.77%)
61.56

(63.52)
29.32

(29.97)
48.21

(48.91)
22.45

(23.69)
32.14

(32.58)
26.75

(26.79)
46.76

(47.87)
48.18

(50.83)
48.83

(50.05)

Lone Pairs (5.99%)
44.43

(46.32)
22.18

(23.19)
37.18

(37.55)
16.28

(18.67)
22.48

(23.55)
22.96

( 22.73 )
42.93

(43.84)
25.10

(27.46)
36.16

(36.57)

Pseudoknots (2.71%)
38.30

(40.46)
18.51

(18.61)
30.23

(31.47)
11.88

(13.76)
13.38

(14.58)
18.73

(18.80)
27.96

(28.78)
23.60

(25.31)
27.61

(28.30)

Multiplets (9.24%)
50.89

(53.55)
24.89

(25.33)
42.53

(42.99)
17.36

(18.81)
25.07

(25.29)
22.88

( 22.78 )
42.60

(42.76)
27.60

(28.56)
37.04

(37.53)

and the GDT decreases. This shows that the MAE of the predictions can serve as an effective proxy
when the RMSD and GDT scores are not available, which is the case when generating the structure of a
novel RNA.

In Figure 3.8a, we plot the distribution of the MAEs between the (pseudo)torsion angles predicted by
TorRNA and the angles of the decoy models for the decoy models that have the minimum and maximum
MAE for each RNA in the randstr decoy set. Figure 3.8b plots the distributions of the RMSDs of decoy
models that have the minimum and maximum MAEs against the angles predicted by TorRNA. Both
these figures show that the MAEs and RMSDs of the decoy models with minimum and maximum
MAEs show disjoint distributions, implying that the MAE calculated against the (pseudo)torsion angles
by TorRNA is a good metric to assess the quality of the decoy models. Figure 3.9 shows the best (green)
and worst (red) decoy models against the native structure (black) of 3 RNAs.

These results show that the difference of the (pseudo)torsion angles predicted by TorRNA from the
angles of a candidate model structure could be used as a model quality assessment of the candidate 3D
structure of the RNA molecule. TorRNA’s MAEs can be used to distinguish and correctly rank candidate
models of RNA structures, even when the candidate models have minimal structural deviation. TorRNA
can work as a powerful RNA model quality assessment tool to rank candidate models generated by
ML-based methods or through other methods.
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Figure 3.6: MAEs of the (pseudo)torsion angles for various RNA sequence lengths. The X-axis labels

describe the length bins along with the number of RNAs that are in each length bin.
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Figure 3.7: MAE vs RMSD and MAE vs GDT scatterplots for PDB ID 1MZP (Chain B) (a, b) and

387D (Chain A) (c, d)
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Figure 3.8: The MAE of a model’s angles against TorRNA’s predictions separates the best and worst

decoy models both in terms of the MAE, and also in terms of the RMSD of the decoy structures with

the native structure.
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(a) Best model for PDB ID 1Z43 (Chain

A) according to TorRNA. RMSD -

0.405 Å; MAE - 284◦.

(b) Worst model for PDB ID 1Z43

(Chain A) according to TorRNA.

RMSD - 4.582 Å; MAE - 608◦.

(c) Best model for PDB ID 3CPW

(Chain 9) according to TorRNA. RMSD

- 0.687 Å; MAE - 207◦.

(d) Worst model for PDB ID 3CPW

(Chain 9) according to TorRNA. RMSD

- 4.626 Å; MAE - 583◦.

(e) Best model for PDB ID 3F1H

(Chain B) according to TorRNA.

RMSD - 0.605 Å; MAE - 169◦.

(f) Worst model for PDB ID 3F1H

(Chain B) according to TorRNA.

RMSD - 4.667 Å; MAE - 622◦.

Figure 3.9: The native structure (black) of various RNAs and the decoy model with the lowest (green)

and highest MAE (red) against the angles predicted by TorRNA to show TorRNA’s potential to be used

as a model quality assessment tool. The caption of each subfigure also contains the RMSD of the decoy

model to the native structure, and the sum of MAE between TorRNA’s predictions and the decoy model’s

(pseudo)torsion angles.
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Chapter 4

Conclusions

DeepSPInN predicts the molecular structure when given an input IR and 13C NMR spectra without
searching any pre-existing spectral databases or enumerating the possible structural motifs present in
the input spectra. After formulating the molecular structure prediction problem as an MDP, DeepSPInN
employs MCTS to explore and choose the actions in the MDP. After building a null molecular graph
from the molecular formula, DeepSPInN builds the molecular graph by treating the addition of each
edge as an action in the MDP with the help of offline-trained GCNs to featurize each state in the MDP.
DeepSPInN is able to correctly predict the molecular structure for 91.5% of input IR and 13C NMR
spectra in an average time of 77 seconds for molecules with < 10 heavy atoms.

DeepSPInN currently works on molecules that have less than 10 heavy atoms and future work could
extend DeepSPInN to work on bigger molecules, or perhaps introduce other approaches that can easily
be extended to bigger molecules. Since the number of molecules increases exponentially as the number
of heavy atoms increase, future work could try to have a subset of molecules for different number of
heavy atoms rather than trying to exhaustively train on all possible molecules of greater sizes. Deep-
SPInN currently requires the molecular formula to be inferred from another chemical characterization
technique apart from the input spectra. Removing this requirement is an aspect that can be explored in
the future. We demonstrated the capability of our method to effectively learn to characterize simulated
IR and 13C NMR spectra, which reflect the complexity of experimental spectra. This paves the way for
future works to build datasets of experimental spectra and validate our method on them. Additionally, it
will be interesting to see if DeepSPInN’s accuracy improves with the addition of other spectral informa-
tion such as UV-Vis spectra and mass spectra. We believe that DeepSPInN is a valuable demonstration
of how machine learning can contribute to molecular structure prediction, and that it would help spur
further research in the application of deep learning in high-throughput synthesis to enable faster and
more efficient drug discovery pipelines.

TorRNA is a transformer encoder-decoder model, that takes an input RNA sequence and predicts
the (pseudo)torsion angles of each nucleotide with a pre-trained RNA-FM model as the transformer
encoder. Since the secondary structure being predicted are the (pseudo)torsion angles, TorRNA is able to
employ a transformer decoder that takes the encodings from a pre-trained transformer encoder. This sets
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TorRNA apart from other works that use a CNN-based architecture to predict the secondary structure
of proteins and nucleic acids from encodings derived by foundation models. TorRNA also curates new
dataset splits of the RNAs that have high-resolution 3D structures available, to take into the account
new data that might have been gathered since the previous (pseudo)torsion angle prediction method was
released.

TorRNA is able to achieve a performance boost of 2%−16% over the previous (pseudo)torsion angle
prediction method SPOT-RNA-1D and consequently shows an improved performance over a random
baseline predictor as well. TorRNA is also robust in terms of predicting the (pseudo)torsion angles for
RNAs of various sizes, and for nucleotides in various structural regions of the RNA molecules. With
this improved prediction of the (pseudo)torsion angles, these predictions can be used as restraints on
the dihedrals for the optimization of unrefined RNA structures. We also demonstrate the potential of
TorRNA to be used as a tool for model quality assessment of candidate RNA structures for a given RNA
sequence.

We believe that TorRNA is a valuable contribution that would help spur further research in improving
sequence to structure methods for RNA molecules and take a step towards unleashing the therapeutic
value of RNA molecules to develop better drugs.

This thesis removes the database requirement for algorithms that depend on database searches for
structure prediction in two areas within computational chemistry - molecular structure elucidation from
molecular spectra, and tertiary structure prediction of RNA (Ribonucleic acid) molecules from their
sequence by proposing the methods DeepSPInN and TorRNA. This thesis makes progress in address-
ing the problem of a lack of diversity within individual databases, and makes these algorithms more
accessible to researchers who are unable to access or have their own copy of enormous databases.
Hopefully, this thesis brings attention to the inaccessibility and bias for algorithms that depend on
database searches, and spurs further work into developing machine learning algorithms that learn from
the databases but do not depend on the database search algorithms.
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Appendix A

Related Publications

1. Devata, Sriram, Sridharan, B., Mehta, S., Pathak, Y., Laghuvarapu, S., Varma, G., & Priyakumar,
U. D. (2024). DeepSPInN – deep reinforcement learning for molecular structure prediction from
infrared and 13C NMR spectra. Digital Discovery, 3, 818–829. doi:10.1039/D4DD00008K

2. Devata, Sriram and Priyakumar, U. D. (2024). “TorRNA - Improved Prediction of Backbone Tor-
sion Angles of RNA by Leveraging Large Language Models.” ChemRxiv. doi:10.26434/chemrxiv-
2024-cj4r0 This content is a preprint and has not been peer-reviewed.
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Appendix B

Supplementary Information for DeepSPInN

B.1 Statistics for the dataset

To understand the distribution of the molecules in the dataset, Figures B.1 and B.2 show the distri-
bution of the molecular weights and the counts of molecules that have the heavy atoms C, N, O, and
F.

B.2 Congruence of simulated and experimental Infrared spectra

Of the 40 molecules whose infrared spectra we were able to download from the NIST Quantitative
Infrared Database, we had the simulated spectra of 15 molecules. The average SIS of the experimental
and simulate infrared spectra is 0.2241. Although predictions are expected to have SIS in the range
0.40–0.70 to even be considered as loosely predictive, the simulated spectra should not be considered
as replacements for experimental spectra.

B.3 Threshold reward for MCTS

MCTS will continue finding child nodes to the search tree until it reaches a terminal state. For a state
to be considered a terminal, at least one of these following termination criteria have to be met:

1. There are no more valid actions

2. The reward of this state is greater than a particular threshold

3. The NMR split values of the current state are such that the target NMR split values can never be
reached

If there are no valid actions that can be taken from a state, it has to be terminal since there are no
possible child nodes. If a state has a molecular graph where there are no individual nodes, further actions
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Figure B.1: Distribution of the molecular weights in the dataset

Figure B.2: Number of molecules that contain each element
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Figure B.3: Experimental and Simulated IR spectra

will just continue adding bonds within the molecule. In such a case, the environment checks if the NMR
split values of a state can still allow further addition of bonds. If a state’s NMR split values are such
that the target NMR split values cannot be reached via the addition of more bonds, then the state is
considered to be terminal.

In addition to these termination criteria, we want the framework to stop the tree search when it is
confident that the target molecule has been reached. We use the reward function to get the reward for
each state, and if the reward is greater than a particular threshold, the state is terminal. To choose this
threshold value, we sampled 10,000 molecules from the test set and found the SIS between their IR
spectrum and the predicted IR spectrum from Chemprop-IR. These rewards are plotted in Fig. B.4.
88.63% of molecules have their self-rewards above 0.95. We sampled another 100 molecules and for
each molecule, we found the SIS between the molecule’s IR spectrum and the Chemprop-IR predicted
spectrum of the other 99 molecules. These rewards are plotted in Fig. B.5. All these rewards are below
0.95. Choosing 0.95 as a reward threshold means that states with a reward greater than this threshold
are very likely to be the target molecules themselves. This allows the framework to stop the tree search
at this point.
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Figure B.4: Distribution of rewards of the same molecules

Figure B.5: Distribution of rewards between different molecules
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B.4 SIS Loss

The original SIS description performs a Gaussian convolution to allow for any minor deviations
in the spectral peak locations. This Gaussian convolution allows spectra with minor differences in
the peak locations and intensities to have a relatively high SIS score. We do not perform this Gaussian
convolution while calculating SIS since the dataset used in this work already has broadened stick spectra
and Chemprop-IR also predicts broadened IR spectra.

B.5 Training on molecules with ≤ 7 heavy atoms and testing on molecules

with 8 or 9 heavy atoms

For the generalization study where the framework was trained on molecules with up to 7 heavy
atoms, and tested on molecules with 8 or 9 heavy atoms, the test-train split of the dataset was heavily
unbalanced. There are a total of 2,099 molecules with ≤ 7 heavy atoms, with all these molecules making
the training set. The remaining 47,650 molecules have either 8 or 9 heavy atoms and these molecules
make up the testing set. Due to computational constraints of testing the framework on the entire set, the
framework was tested on a random subset of 5000 molecules that contain either 8 or 9 heavy atoms. Out
of these 5000 molecules, 771 molecules have 8 heavy atoms and 4,229 have 9 heavy atoms.

B.6 Choosing the number of episodes hyperparameter

Due to the way we parallelized DeepSPInN and with the resources that we used, it takes the same
amount of time to run the number of episodes that is the next closest multiple of 8. For example, it takes
the same amount of time to run 22 episodes and 24 episodes. This is why we chose 32 episodes even
though running for 28 episodes has a negligible decrease in the fraction of correctly predicted molecules
when compared to 32.

B.7 Top N metrics for various functional groups/structural motifs

To identify if DeepSPInN has any affinity to predict the molecular structures that contain specific
functional groups better than others, we analyzed the Top N metrics of the molecules that contain differ-
ent functional groups. DeepSPInN performs well for molecules with ketones, with a Top 1 (%) accuracy
of 96.24%, and performs the worst for molecules with amines with a Top 1 (%) accuracy of 86.99%.
Table B.1 shows the Top N (%) metrics of other functional groups as well as the number of molecules
in the test set that contained these functional groups.
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Figure B.6: Cumulative plot of the fraction of correctly predicted molecules and the number of episodes

that were taken to find the right molecule

Table B.1: Top N metrics for molecules that have specific functional groups

Functional Group
(Number of molecules)

Alcohols
(2987)

Aldehydes
(1214)

Amines
(1983)

Ester
(437)

Ketone
(1064)

Phenol
(556)

Top 1 (%) 92.37 93.49 86.99 93.82 96.24 90.83

Top 3 (%) 93.34 94.48 87.59 94.51 97.27 91.01

Top 5 (%) 93.40 94.65 87.64 94.51 97.37 91.01

Top 10 (%) 93.44 94.65 87.70 94.51 97.37 91.01

B.8 Using proton-coupled 13C NMR spectra

In an experiment where we assume that we also have the 13C NMR split values, we use these values
to help prune the search tree by identifying molecules that are invalid according to the input NMR
spectrum and nullify the rewards for these molecules. This discourages the tree search from exploring
these molecules. The NMR split values for the NMR shift of each carbon atom are equivalent to the
number of hydrogen atoms attached to it. Each carbon atom can be either a singlet (S, quarternary),
doublet (D, tertiary), triplet (T, secondary), or a quartet (Q, primary) atom with each of these denoted
by S, D, T, and Q respectively. Since each valid action is defined as the addition of a bond between two
atoms in the MDP reformulation, each valid action can only convert the carbon atoms from Q → T →
D → S. If the target Q-splits are more than the Q-splits at one such state, this state is not valuable
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Table B.2: Top N metrics for varying nmcts values

IR+NMR

nmcts 100 200 400 800

Top 1 (%) 82.311 90.773 94.934 95.980

Top 3 (%) 82.874 91.597 95.839 96.925

Top 5 (%) 82.994 91.778 96.060 97.106

Top 10 (%) 83.015 91.798 96.120 97.166

Top 40 (%) 83.015 91.798 96.120 97.206

Table B.3: Performance of IR-and-NMR-trained, IR-trained, and NMR-trained models for nmcts = 400

IR and NMR Only IR Only NMR

Top 1 (%) 94.934 74.075 40.462

Top 3 (%) 95.839 74.396 61.849

Top 5 (%) 96.060 74.396 68.201

Top 10 (%) 96.120 74.396 73.105

Top 40 (%) 96.120 74.423 74.472

since no valid action from this state would be able to increase the count of Q-splits. If the Q-splits
match, checking the T and D-splits subsequently in the same way further identify more states that get
zero-rewards.

Tables B.2, B.3, and B.4 present the same results from the main paper, but with the 13C NMR split
values being used. The dataset split is different from the main paper, with a 80-20 split being used for
the train and test sets.

B.9 Testing DeepSPInN checkpoints trained on simulated spectra to elu-

cidate experimental spectra

The simulated Infrared and 13C NMR spectra used to train and test DeepSPInN reflect the com-
plexity of experimental spectra but can not serve as replacement for the experimental spectra. Since
DeepSPInN is able to work with simulated spectra, it can analogously learn to work with experimental
spectra.
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Table B.4: Training on molecules with ≤ 7 atoms and testing on molecules with ≥ 8 atoms for nmcts =

400

≥ 8 atom molecules 8-atom molecules 9-atom molecules

Top 1 (%) 80.971 96.024 77.948

Top 3 (%) 82.046 97.247 78.992

Top 5 (%) 82.148 97.247 79.115

Top 10 (%) 82.199 97.247 79.176

Top 40 (%) 82.250 97.247 79.238

With this thesis focusing on the development of DeepSPInN as a proof of concept, the current Deep-
SPInN model checkpoints can not (should not) be used for testing on experimental data since it was
only trained on simulated data. DeepSPInN is able to learn the complexity of spectra, as seen by its
performance on simulated spectra, and would perform well on unseen experimental spectra when it is
also trained on experimental spectra. Future works would be able to construct databases of experimen-
tal Infrared and 13C NMR spectra to train checkpoints of DeepSPInN that would work well on new
experimental data.

We demonstrate that the current DeepSPInN checkpoints do not perform well on elucidating the
structures of experimental spectra by gathering the experimental Infrared and 13C NMR spectra of 14
molecules from the databases NIST Quantitative Infrared Database and nmrshiftdb2. In Table B.5, we
show the top candidate molecules of some of these molecules as predicted by DeepSPInN. As expected,
DeepSPInN did not perform well and was only able to resolve 3/14 of the molecules.
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Table B.5: Top candidate molecules and the rewards when given experimental IR and 13C NMR spectra

as input to a DeepSPInN model trained on simulated spectra

Target Molecule Top 5 Candidate Molecules

(and their final rewards)
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Appendix C

Supplementary Information for TorRNA

C.1 Comparison of TorRNA with the top RNA Puzzles submissions

While making the dataset splits, all the RNA molecules that were a part of the RNA-Puzzles were
maintained in TorRNA’s test dataset. With these RNAs being non-redundant with the training dataset
of TorRNA, we calculated the MAEs of the (pseudo)torsion angles between the puzzle’s solution and
submissions for 9 RNA puzzles. We compare the closeness of the angles of the 3D structures given
by the predictors for these RNA puzzles and the angles predicted by TorRNA to their experimentally
determined native structures in Table C.1. TorRNA consistently performs the best in predicting the
torsion angles for most puzzles, and gives comparable predictions to the top RNA puzzle predictor in
the remaining puzzles.

50



Table C.1: MAE of (pseudo)torsion angles from structures predicted by submissions to the RNA Puzzles

competition when compared to TorRNA’s predicted (pseudo)torsion angles

Submission alpha (α) beta (β) gamma (γ) delta (δ) chi (χ) epsilon (ϵ) zeta (ζ) eta (η) theta (θ)

rp19

TorRNA 31.50 12.79 23.72 13.34 12.71 11.38 16.47 19.68 25.57

19 RW3D 45.63 19.24 30.84 13.93 16.98 19.72 26.17 28.59 33.63

19 Das Human 39.07 23.32 30.23 11.05 12.81 19.99 25.18 20.19 29.86

19 SimRNA 50.34 21.96 33.75 15.13 19.00 22.39 44.70 33.98 40.79

19 Ding Human 37.55 18.05 28.31 16.77 15.15 13.41 20.80 23.42 31.44

19 3dRNA 64.21 37.15 53.03 30.67 18.18 38.71 42.04 33.17 38.45

19 Dokholyan 49.47 20.29 51.30 14.85 18.40 12.67 23.71 29.31 34.16

19 LeeServer 34.73 17.87 28.32 25.31 24.20 29.19 24.57 25.22 33.43

19 Chen Human 46.04 26.70 31.61 12.76 19.13 31.90 40.17 20.00 22.34

19 RNAComposer Human 42.44 26.11 36.06 12.56 18.59 17.17 32.34 21.37 38.04

19 RNAComposer 44.57 27.30 38.11 13.70 18.07 16.53 32.79 19.53 35.78

19 Bujnicki Human 39.57 18.03 36.00 16.88 15.30 18.23 20.90 22.64 27.44

rp21

TorRNA 53.03 22.00 41.33 18.02 20.91 18.68 37.12 19.77 35.66

21 Das 61.72 31.70 53.55 15.39 20.99 23.91 41.21 26.72 28.30

21 Sanbonmatsu 61.46 45.81 56.49 29.20 29.01 42.09 45.34 31.58 55.01

21 RNAComposer 68.03 36.22 65.71 22.83 32.43 28.24 51.74 36.60 48.72

21 ChenHighLig 57.25 24.79 43.52 19.22 25.20 28.32 43.28 25.30 38.02

21 Bujnicki 65.21 27.26 46.95 24.02 25.26 24.38 42.75 29.74 40.39

21 RW3D 70.28 29.41 54.25 18.59 23.43 28.03 46.50 35.31 47.68

21 ChenLowLig 57.27 24.77 43.52 19.21 25.19 28.34 43.26 25.30 38.02

21 simRNA 58.74 27.14 55.74 18.88 22.48 26.36 46.95 32.88 44.75

21 DasLORES 61.72 31.70 53.55 15.39 20.99 23.91 41.21 26.72 28.30

21 Adamiak 74.02 25.64 58.76 21.00 25.06 27.79 50.23 32.42 43.39

rp15

TorRNA 22.04 10.48 17.74 11.64 10.71 11.58 23.83 20.01 23.71

15 RNAComposerAS1 25.71 15.97 19.46 7.89 12.90 13.94 21.49 14.05 19.74

15 Chen 30.79 15.84 18.88 9.26 15.82 20.79 29.55 16.27 18.51

15 RW3DAS1 42.33 25.82 23.31 10.03 13.05 17.53 27.53 21.20 28.34

15 Adamiak 23.85 18.00 24.57 8.47 15.42 17.75 27.29 15.23 24.71

15 SimRNAAS1 51.04 23.12 27.81 12.48 11.61 18.40 34.12 30.04 29.17

15 SimRNAAS2 45.00 24.87 31.28 10.96 13.47 22.10 36.72 27.40 33.25

15 RW3DAS2 36.70 26.80 28.95 10.57 13.74 20.31 28.91 25.14 31.50

15 RNAComposerAS2 33.55 18.05 26.23 11.78 17.45 17.01 33.29 23.98 25.96

15 3dRNAAS2 57.32 29.09 56.08 27.89 24.26 38.73 49.05 32.37 40.11

rp18

TorRNA 28.72 16.06 25.11 14.42 12.15 11.83 15.29 20.75 22.76

18 3dRNA 58.13 28.02 41.99 27.54 20.08 33.63 29.53 32.87 29.45

18 Dokholyan 58.70 20.70 56.70 19.49 17.06 17.01 26.33 32.46 35.61

18 LeeASmodel 32.74 20.65 22.23 15.52 22.50 19.74 24.77 27.13 30.49

18 Chen 45.62 23.46 29.48 12.41 15.48 34.77 37.96 21.22 22.79

18 SimRNA 42.58 25.09 29.84 14.26 19.69 20.72 31.25 26.77 30.57

18 Lee 32.74 20.65 22.23 15.52 22.50 19.74 24.77 27.13 30.49

18 RW3D 34.46 21.39 25.49 12.76 13.45 13.88 17.69 22.96 22.27

18 RNAComposer 35.11 23.00 31.00 14.01 17.47 21.78 31.24 26.24 33.13

18 YagoubAli 59.66 25.32 41.62 13.64 17.01 26.69 33.67 29.17 37.34

18 Das 34.83 23.32 25.47 7.50 12.61 14.66 18.08 13.65 12.79

18 Ding 42.59 22.21 33.80 17.38 18.65 15.64 21.13 28.01 28.68

rp07

TorRNA 38.87 17.76 28.41 11.69 14.41 13.62 23.66 21.46 25.11

7 Adamiak 56.06 31.90 43.78 15.18 20.46 20.70 38.97 27.76 37.74

7 Ding 49.32 20.82 44.12 13.80 21.24 21.57 36.47 29.91 36.74

7 Dokholyan 59.24 21.73 55.14 17.86 20.25 18.49 33.31 35.54 35.88

7 Chen 40.27 23.02 31.37 9.70 15.49 21.29 32.23 18.60 30.01

rp11

TorRNA 32.31 15.88 29.29 8.71 12.79 10.83 15.63 13.97 23.56

11 Xiao 56.07 24.57 39.79 11.95 14.26 28.47 31.87 24.94 28.56

11 Ding 48.16 18.68 45.85 12.53 15.99 21.44 25.54 24.17 33.19

11 Adamiak 54.68 30.76 47.30 7.51 19.18 25.06 29.17 24.16 30.47

11 Das 36.17 21.53 32.38 7.73 16.29 15.45 23.47 14.45 21.74

11 Chen 38.62 21.74 30.69 12.21 15.61 26.63 35.87 28.12 28.98

11 Bujnicki 35.26 18.47 37.21 14.92 16.19 18.44 24.22 18.13 33.06

rp04

TorRNA 41.14 20.47 33.41 6.97 15.23 23.42 22.84 19.52 22.05

4 santalucia 41.44 26.44 31.04 6.70 19.27 26.54 26.58 9.08 10.96

4 adamiak 45.71 32.24 36.41 6.65 19.12 24.92 26.77 12.33 17.01

4 major 55.23 32.11 36.95 11.92 17.72 30.68 26.94 15.30 15.30

4 das 34.02 21.59 25.63 6.22 13.74 19.14 20.62 7.05 8.95

4 mikolajczak 51.90 27.88 40.37 7.22 19.84 29.52 35.05 18.52 22.90

4 bujnicki 36.84 22.39 29.26 6.35 16.63 25.32 25.16 10.01 14.90

4 dokholyan 38.80 19.97 31.64 6.53 15.47 20.03 21.28 11.94 14.34

4 chen 34.59 18.60 25.49 6.47 12.35 20.39 19.87 7.52 9.52

rp09

TorRNA 34.52 13.74 29.98 18.50 17.88 16.71 35.39 27.33 35.91

9 Bujnicki 48.74 23.07 40.30 24.92 23.29 26.10 33.81 33.70 34.71

9 Das 44.02 20.05 32.80 11.08 15.85 16.34 21.27 18.15 25.49

9 Dokholyan 62.25 18.21 61.37 19.72 20.89 19.22 37.42 35.69 48.96

9 Chen 43.37 18.47 33.57 14.51 20.37 18.57 23.62 28.39 30.12

9 Ding 51.52 21.42 44.02 17.74 19.95 22.00 37.42 35.51 37.28

rp08

TorRNA 31.66 12.79 23.25 6.57 10.73 14.09 27.66 19.83 23.64

8 Bujnicki 45.12 21.01 35.56 13.05 17.51 24.51 29.55 21.26 26.02

8 Das 40.19 20.56 32.50 6.65 12.08 20.57 25.98 14.41 21.49

8 Adamiak 48.42 24.83 37.34 9.47 18.05 24.29 34.31 19.72 30.67

8 Ding 49.11 20.79 38.26 11.82 14.75 19.63 38.18 32.91 34.27

8 Chen 48.50 22.54 37.30 9.94 15.48 25.51 33.81 23.39 26.84

8 Dokholyan 66.87 22.16 59.96 10.56 17.25 19.64 41.87 29.14 44.06
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