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Abstract

Cocaine use disorder (CUD) is a compulsive urge to seek and consume cocaine despite the inim-
ical consequences. MRI studies from different modalities have shown that CUD patients exhibit
structural and/or functional connectivity pathology among several brain regions. Nevertheless,
both connectivities are commonly studied and analyzed separately, which may potentially ob-
scure its relationship between them, and with the clinical pathology. Here, we compare and
contrast structural and functional brain networks in CUD patients and healthy controls (HC).
The existing body of research has predominantly concentrated on studying substance abuse
within the Caucasian population. Gaining a comprehensive understanding of the distinctive
challenges and cultural environments in which substance abuse disorders emerge among vari-
ous populations is essential. For this study, we recruited 105 individuals of Mexican descent
and carefully examined the T1-weighted, diffusion weighted imaging, resting-state fc-fMRI se-
quences and clinical metrics of these participants.

Based on the previous work [53], we identified regions of interest (ROIs) that are known to
have altered structural connectivity in CUD patients and examined their pairwise functional
connectivity. The results demonstrated that CUD exhibited stronger connection between the
right Posterior Cingulate and right Postcentral than HC which could suggest an increase in
interoception potentially associated with compulsion behavior.

We computed a battery of graph-based measures from multi-shell diffusion-weighted imaging
(tc-dMRI) and resting state fc-fMRI to quantify local and global connectivity. We investigated
the differences in functional and structural modalities between the two groups independently.
Unimodal analysis showed an increase in the participation coefficient in Striatum among CUD
compared to HC in the fc-fMRI modality which has been previously linked to the compulsive
drug-seeking behavior observed in CUD.

Multimodal fusion is a data driven approach that involves fusion of different brain modalities
to gain a more comprehensive understanding of the brain’s structure and function. Multimodal
fusion has played an important role in investigating joint functional and structural changes in
neurological disorders like Alzheimer’s disease, schizophrenia, and epilepsy. This is the first
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study that uses multimodal fusion of graph theoretical measures to investigate topological
alterations in CUD patients.

We specifically used multimodal canonical component analysis plus joint independent compo-
nent analysis (mCCA+jICA) to evaluate group differences and their association with clinical
scores. When performing multimodal fusion analysis, we observed a higher betweenness central-
ity and lower participation coefficient in CUD patients indicating reorganization of functional
networks. In addition to altered straiatal connectivity revealed by the unimodal approach,
multimodal fusion revealed latent information about brain regions involved in impairment due
to cocaine abuse.

Overall, results revealed by our study not only concord with previous research in the field but
also uncovered findings which could help in understanding the pathology of CUD and develop
better pre-treatment/post-treatment intervention design.
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Chapter 1

Introduction

1.1 Motivation

Substance abuse disorders (SUDs) are a major public health concern, affecting millions of
people worldwide. SUDs are characterized by a persistent pattern of use of a substance, despite
negative consequences. One of the key challenges in treating SUDs is understanding how
substance use affects brain function. Recent advances in neuroimaging techniques have made
it possible to investigate the neural mechanisms underlying SUDs and to identify potential
targets for treatment. One of the key features of SUDs is the development of tolerance and
dependence. Tolerance refers to the need for increasing amounts of a substance to achieve the
same effect, while dependence refers to the development of withdrawal symptoms when the
substance is discontinued. By identifying the neural mechanisms underlying SUDs, researchers
can identify potential targets for treatment and develop interventions to improve brain function
in individuals with SUDs.

Cocaine use disorder (CUD) is a substance use disorder (SUD), described as a compulsive urge
to seek and consume cocaine despite the inimical consequences. CUD causes a gradual decline in
the patient’s cognitive and behavioral health [68], along with greater health and socioeconomic
issues. Chronic cocaine use is suggested to cause a lack of control over consumption, leading
to impulsive behaviors, medical complications, pleasure-reinforced compulsions, psychosocial
problems and an intense feeling of wanting during drug abstinence (craving) [12] [43].

Understanding the unique challenges and cultural contexts in which substance abuse disor-
ders manifest among different populations is crucial for effective prevention, intervention, and
treatment strategies. However, most of the research literature has primarily focused on the
Caucasian population. In this study we worked on a dataset that comes from a cross-sectional
case-control study carried out in Mexico city.
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Brain modalities are frequently examined and analysed separately but by combining differ-
ent modalities, researchers can identify brain abnormalities associated with disorders such as
Alzheimer’s disease, schizophrenia, and epilepsy. This approach is called multimodal fusion and
it has been instrumental in studying neurological disorders. We employed multimodal fusion to
identify specific regions and circuits in the brain impacted by substance use disorders for the
identification of biomarkers and to build medical interventions.

Research on the function and structure of the human brain in SUDs has been motivated by
several factors. Firstly, addiction is a chronic disease that often leads to relapse, and there is
a pressing need for more effective treatments. Secondly, advances in neuroscience techniques
have enabled researchers to investigate the brain at the molecular, cellular, and systems level,
providing unprecedented insights into the underlying mechanisms of addiction. Finally, the
societal and economic impact of addiction is enormous, with costs related to healthcare, criminal
justice, and lost productivity estimated to be in the billions of dollars.

1.2 Research Gap

MRI studies from different modalities have shown that CUD patients exhibit structural and/or
functional connectivity pathology among a wide variety of regions such as frontal (orbitofrontal,
prefrontal, cingulate cortex and insula), parietal (precuneus), temporal gyri (superior and mid-
dle temporal gyrus) and subcortical regions (ventral tegmental area, hippocampus, striatum and
amygdala), including white matter tracts that connect these regions [27][21]. A recent meta-
analysis showed that CUD patients display lower volume in the orbitofrontal cortex, temporal
pole, anterior insula, anterior thalamic radiation, cingulum, inferior occipito-frontal fascicle
and acoustic radiation [47]. Some studies also highlight brain network pathology using graph
theory in CUD with non-consistent significant results [10] [75] [69]. Nevertheless, structural
and functional pathology is commonly studied and analyzed separately, which may potentially
obscure the relationship between them and with clinical pathology.

Fusing modalities provides a means to reveal complicated hidden relationships between modal-
ities and weak latent effects in high-dimensional data by taking advantage of the presence of
cross-information in cross-individual variance [59] [7]. For example, structural MRI can reveal
changes in brain volume and cortical thickness, while functional MRI can be used to study
brain activity during different tasks or in resting state. Diffusion-weighted imaging can provide
information about the integrity of white matter tracts, which are critical for communication
between different brain regions. By fusing these different types of MRI data, researchers can
identify specific regions and circuits in the brain that are affected by substance use disorders,
as well as changes in connectivity between these regions. This information can provide insights
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into the underlying neural mechanisms of addiction and inform the development of targeted
interventions.

Furthermore, multimodal fusion has the added benefit of increased robustness to modality-
specific noise [7] and has been used in different brain pathologies like schizophrenia, bipolar
and obsessive-compulsive disorders [60] [44] [25]. A recent study by Meade et al. [37] explored
multimodal fusion techniques, namely multimodal canonical component analysis (mCCA) in
conjunction with joint independent component analysis (jICA) on a CUD group using whole-
brain voxel-wise maps and their relation with the delay discounting process.

The relevance of multimodal fusion techniques can be leveraged to develop models that exploit
the data and minimize incorrect conclusions in psychiatric disorders [59] [7].

1.3 Research Objectives

Through this thesis, we aim to

• Understand intramodal relationships by analyzing tc-dMRI and resting state fc-fMRI
independently.

– Assess the reliability of the results revealed by Rasgado-Toledo et al [53] by perform-
ing seed based functional connectivity analysis

– Investigate topological alterations in the structure and function of the brain using
graph theory

• Find network-based connectivity differences using graph theory, between patients with co-
caine use disorder (CUD) and matched healthy controls (HC) using tc-dMRI and resting-
state fc-fMRI to reveal hidden relationships between the modalities using multimodal
fusion.

1.4 Research Overview

1.5 Contributions

The central problem of this thesis is “Structural and functional pathology in cocaine use disorder
with polysubstance use”. We used resting-statefc-fMRI and tc-dMRI data and systematically
analyzed it to identify the group differences between CUD patients and HC. The major contri-
butions of this thesis are as follows:

• Unimodal analysis was performed to investigate brain network differences from the per-
spective of each modality (resting-state fc-fMRI and tc-dMRI). Global and local graph
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Figure 1.1 Overview of the modalities that are fused to obtain a holistic view of brain dynamics

arising from structure and function, modulated by behavioural factors.
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measures were analyzed to understand the functional and structural connectivity of the
different brain regions. The global and local graph measures within each modality were
tested for differences between CUD and HC using the Mann-Whitney-Wilcoxon test for
independent two-samples. Spearman correlation between the graph measures and their
corresponding clinical scores within each modality was performed. The results showed
that the left Caudate exhibited a significant decrease in PC among CUD compared to HC
in the resting-state fc-fMRI modality.

• We examined the macroscopic network-based differences using graph theory, between pa-
tients with cocaine use disorder (CUD) and matched healthy controls (HC) by combining
resting-state fc-fMRI and tc-dMRI imaging modalities. While multimodal fusion has been
carried out in other studies, to our knowledge, this is the first multimodal-fusion study
that uses graph theory to explore topological alterations in CUD patients. Multimodal
fusion analysis was performed using Multimodal canonical component analysis plus joint
independent component analysis (mCCA+jICA). The results revealed a higher centrality
of the interrelationship and a lower participation coefficient in patients with CUD. In
contrast to the unimodal approach, the multimodal fusion method was able to reveal la-
tent information about brain regions involved in impairment due to cocaine abuse. These
results could help in understanding the pathology of CUD in order to develop better
pre-treatment/post-treatment intervention designs.

1.6 Thesis Overview

Magnetic Resonance Imaging (MRI) studies can provide valuable insights into the neurological
effects of cocaine use disorders (CUD. In this thesis, we discuss the findings of unimodal and
multimodal analysis of CUD patients and healthy controls (HC).

• Chapter 2 provides an overview of the existing CUD literature and delves into relevant
MRI studies. It also provides an overview of techniques such as multimodal fusion analysis,
which have been used to leverage multimodal information to improve the accuracy and
specificity of MRI-based neuro-ailment diagnosis, with a focus on CUD research.

• In Chapter 3, the image acquisition and pre-processing steps for the data used in this
thesis are elaborated. The pre-processing method is vital for MRI studies as there are
numerous confounding factors that can affect the observations. The fMRIprep pipeline
(21) is explained, and demographic information for CUD and HC subjects is presented.
Furthermore, we have provided an overview of the various tools and techniques used in
the subsequent chapters. These include the various graph theoretical measures (global
and local measures), along with their significance. We have also given an overview of the
algorithms used to calculate these graph measures.
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• In Chapter 4, the unimodal analysis of CUD and HC groups is discussed. It is based
on the analysis of static connectivity. Both diffusion-based structural connectivity (tc-
dMRI) and resting state functional connectivity (rs-fMRI) are abstracted as graphs, where
each connection denotes the association between the two regions. We used several graph
theoretical measures like Assortativity (r), Network efficiency (Eglobal), Modularity (M),
Smallworld index (σ), and Hierarchy (β). Local measures include Betweenness Centrality
(BC), Degree Centrality (DC), Participation Coefficient (PC), Nodal Local Efficiency
(NLE) and Nodal clustering Coefficient (NCC) to identify differences between CUD and
HC.

• In Chapter 5, we demonstrate a multimodal fusion of graph theoretical measures computed
on tc-dMRI and rs-fMRI modalities, an alternative way of quantifying network changes
in CUD and HC using resting state data. We used joint independent component analysis
(jICA) and Multimodal canonical component analysis plus joint independent component
analysis (mCCA+jICA) to compare between techniques. We then used statistical tests
to evaluate group differences and their association with clinical alterations. Using a
multimodal approach, we understand the structural and functional pathology in CUD
and its relationship with clinical manifestations

• Chapter 7 ends by addressing the limitations of this study as well as potential future
applications.
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Chapter 2

Background

In the last decade, neuroimaging has grown tremendously as a research method and a clinical
tool in the field of substance abuse. As a result, we identified studies that looked into the effects
of SUDs on structural and/or functional connectivity. This chapter provides an overview of the
existing literature on such research.

2.1 NeuroImaging Techniques

The functioning of the brain is complex, and different non-invasive neuroimaging techniques
(fMRI, MEG, EEG etc.) can offer a wide range of visual representations as well as a quantitative
understanding of the anatomy, electrical activity, oxygen consumption and a variety of other
physiological activities inside the central nervous system. Neuroimaging has evolved into a
promising technique for disease diagnosis and assessing brain health, in addition to investigating
how the brain function. In the subsequent sections, we discuss the two neuroimaging techniques
(i.e. fMRI and DTI) used in this study.

2.1.1 Diffusion Tractography Imaging (DTI

Diffusion tractography imaging (DTI) is a non-invasive technique used to investigate the struc-
tural connectivity of the brain. By mapping the diffusion of water molecules in brain tissue,
DTI can identify white matter tracts that connect different brain regions. DTI has emerged as
a valuable tool for investigating the structural organization of the brain and has numerous po-
tential applications in both clinical and research settings. One of the key advantages of DTI is
its ability to investigate the structural connectivity of the brain in vivo. Structural connectivity
refers to the physical connections between different regions of the brain, as opposed to functional
connectivity, which refers to the degree to which neural activity in different regions of the brain
is correlated. DTI can identify the white matter tracts that connect different brain regions and
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provide information about the strength and directionality of these connections. DTI has been
used to investigate a wide range of neurological and psychiatric disorders, including traumatic
brain injury, stroke, multiple sclerosis, and schizophrenia. For example, studies using DTI have
identified alterations in white matter tracts in individuals with schizophrenia, particularly in
the corpus callosum, a key white matter tract that connects the two hemispheres of the brain
[26]. It has also been used to investigate the structural connectivity of the brain in substance
abuse disorders. Studies using DTI have identified alterations in white matter tracts in indi-
viduals with substance abuse disorders, particularly in regions involved in reward processing
and executive control. For example, individuals with substance abuse disorders show decreased
white matter integrity in the prefrontal cortex, a key region involved in executive control [30]

2.1.2 Functional Magnetic Resonance Imaging (fMRI)

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive imaging technique used to
visualize changes in the blood oxygenation level-dependent (BOLD) signal in the brain. This
technique has revolutionized the field of cognitive neuroscience by allowing researchers to inves-
tigate brain function in healthy and clinical populations. The BOLD signal in fMRI is thought
to reflect changes in neural activity due to the brain’s metabolic demands. When neurons be-
come active, they require more oxygen and glucose, leading to an increase in blood flow to the
active region. This increase in blood flow leads to an increase in oxyhemoglobin concentration
relative to deoxyhemoglobin, which can be detected by fMRI.

fMRI has been used to investigate a wide range of cognitive and perceptual processes, including
attention, memory, language, emotion, and perception. One of the key strengths of fMRI is
its ability to localize brain activity with high spatial resolution. Using fMRI, researchers can
identify specific brain regions that are involved in different cognitive processes and investigate
the interactions between these regions. It has also been used to investigate brain function in
clinical populations, such as patients with neurological and psychiatric disorders. By identifying
changes in brain function in these populations, researchers can gain insights into the underlying
neural mechanisms of these disorders and potentially develop new treatments. One of the key
advantages of fMRI is its ability to investigate functional connectivity (Fc) between different
brain regions. Fc is the degree to which neural activity in different brain regions is correlated.

The two commonly used paradigms of fMRI are task-based and resting-state fMRI. Resting-
state functional magnetic resonance imaging (rs-fMRI) is a technique used to study the intrinsic
functional organization of the brain, independent of any specific task or stimulus. Whereas,
Task-based functional magnetic resonance imaging (fMRI) is a technique used to investigate
changes in brain activity in response to specific tasks or stimuli. Both approaches have proven
to be valuable tools for investigating the neural mechanisms underlying different neurological
and psychiatric disorders.
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2.2 Literature Review of studies using Functional Connectivity

Resting-state functional Magnetic Resonance Imaging (rs-fMRI) and task-based functional
Magnetic Resonance Imaging (ts-fMRI) are two commonly used techniques for investigating
functional connectivity in the brain.

2.2.1 Resting-state functional Magnetic Resonance Imaging (rs-fMRI)

Several studies have used rs-fMRI to investigate the effects of cocaine use disorder on brain
function. According to the earliest study by Li et al. [28] that investigated resting-state
functional connectivity (rsFC) in relation to addiction, significant decreases in connectivity
were observed within the primary visual and motor cortices after administering cocaine to
individuals with addiction. Several studies have used rs-fMRI to investigate the effects of
cocaine use disorder. For example, Hanlon et al. [21] found that cocaine users had increased
connectivity between the anterior and posterior regions of the DMN, which was associated with
greater craving for cocaine.

A study by Kelly et al. [24] has reported altered connectivity within the salience network SN
and executive control network (ECN) in individuals with CUD. For instance, A study by Ray
et al. [54] found enhanced Resting State Functional Connectivity (RSFC) within the sensory-
motor cortex and the left frontal-parietal network in cocaine users compared to controls. An
increased inter-network RSFC between frontal-temporal and frontal-parietal brain regions and
a decreased RSFC between parietal-parietal, occipital-limbic, occipital-occipital, and occipital-
parietal brain regions was also found in cocaine users. Furthermore, the study discovered that
the sensory-motor cortex’s intra-network connectivity strength was negatively correlated with
years of cocaine use, whereas the inter-network connectivity strength between occipital-limbic
brain areas was positively correlated with years of cocaine use.

When comparing cocaine[20] [62][70], prescription opioid [63] and heroin-dependent individuals
with matched, non-drug using controls, changes in rsFC strength between the ventral striatum
and various subcortical and cortical regions were observed. Specifically, [20] revealed that
cocaine addicts had lower rsFC strength between the amygdala and an area of medial PreFrontal
Cortex (PFC), including portions of ventromedial PFC and rostral Anterior Cingulate Cortex.

Similarly, a study [8] discovered increased positive connectivity between the ACC and the dlPFC
in a sample of 27 active cocaine users. While the direction of this connectivity change appears
counter-intuitive and contradictory to the previous results, greater rsFC in this ACC-dlPFC
circuit was associated with poorer task performance during reversal learning.
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2.2.2 Task-based functional Magnetic Resonance Imaging (ts-fMRI)

Task-based fMRI studies have been widely used to investigate functional connectivity in indi-
viduals with CUD. The results of the study conducted by Albein-Urios et al.[2] showed that
cocaine-dependent individuals (CDI) had increased activation in the right dorsolateral pre-
frontal cortex and bilateral temporoparietal junction during the Maintain condition as compared
to the Observe condition. In contrast, CDI showed decreased activation in the right inferior
frontal gyrus, posterior cingulate cortex, insula, and fusiform gyrus during the Suppress con-
dition as compared to the Maintain condition. Additionally, the study found that CDI had
increased functional coupling between the dorsolateral prefrontal cortex and emotion-related
regions during the Maintain condition and decreased functional coupling between the right infe-
rior frontal gyrus and the amygdala during the Suppress condition and suggests that CDI have
dysfunctional corticolimbic activation and connectivity during negative emotion experiences
and re-appraisal.

Hanlon et al. [22] found that cocaine users had weaker connectivity in the frontal-striatal circuits
compared to healthy controls. However, connectivity between different cortical regions was not
affected. Moreover, the strength of the connection between the supplementary motor area
and the caudate (a region in the striatum) was correlated with reaction time in finger tapping
task in cocaine users, indicating that impaired connectivity may contribute to sensorimotor
dysfunction in these individuals. These findings suggest that chronic cocaine use may result in
fundamental deficits in information processing, which can have an impact on complex cognitive
processes.

Ma et al. [33] showed that during the Hard NoGo task, the effective connectivity from right
dorsolateral prefrontal cortex (DLPFC) to the left caudate became more positive, and the
effective connectivity from right ventrolateral prefrontal cortex (VLPFC) to left caudate became
more negative in the controls. In contrast, in Cocaine Dependent (CD) subjects, the effective
connectivity from left anterior cingulate cortex (ACC) to left caudate became more negative
during the Hard NoGo tasks. These results suggest that during Hard NoGo trials, the ACC
rather than DLPFC or VLPFC influences caudate activity during response inhibition in CD
individuals.

The study conducted by Mitchell et al. [40] found that cocaine-dependent patients had less
intrinsic connectivity in cortical and sub-cortical regions compared to non-addicted individuals.
The cocaine-dependent group also displayed relatively greater Stroop-related connectivity in
regions implicated in motivational processes in addictions. Furthermore, non-mean-adjusted
intrinsic-connectivity measures in the midbrain, thalamus, ventral striatum, substantia nigra,
insula, and hippocampus negatively correlated with measures of cocaine abstinence, indicating
the potential of connectivity as a treatment target.
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2.3 Literature Review of studies using Structural Connectivity

Structural Magnetic Resonance Imaging (sMRI) and diffusion tensor imaging (DTI) are two
commonly used techniques for investigating structural connectivity in the brain.

2.3.1 Structural Magnetic Resonance Imaging (sMRI)

Several studies have used sMRI to investigate the effects of cocaine use disorder on brain struc-
ture. A study by Ersche et al. [15] revealed that cocaine dependence was associated with
decreased grey matter volume in the orbitofrontal, cingulate, insular, temporoparietal, and
cerebellar cortex and with an increase in grey matter volume in the basal ganglia. Greater
duration of cocaine dependence was correlated with greater grey matter volume reduction in
orbitofrontal, cingulate, and insular cortex. Greater impairment of attentional control was
associated with reduced volume in insular cortex and increased volume of caudate nucleus.
Greater compulsivity of drug use was associated with reduced volume in orbitofrontal cortex.
Cocaine-dependent individuals had abnormal structure of corticostriatal systems, and variabil-
ity in the extent of anatomical changes in orbitofrontal, insular, and striatal structures was
related to individual differences in duration of dependence, inattention, and compulsivity of
cocaine consumption.

Similarly, Konova et al. [41] found that the group of individuals with impaired insight CUD
had lower activity in the error-induced rostral anterior cingulate cortex (rACC), which was
associated with more frequent cocaine use, less gray matter within the rACC, and lower lev-
els of emotional awareness compared to controls. Similarly, Gardini et al. [17] showed that
cocaine-dependent patients had lower grey matter values in the left middle occipital gyrus,
right putamen, and insula, while heroin-dependent patients had lower grey matter values in the
right insula. Both cocaine and heroin-dependent patients showed reduced grey matter in the
right posterior insular cortex. The direct comparison between the two addiction groups showed
that cocaine abusers had less grey matter in the right posterior cingulate, medio-temporal, and
cerebellar regions, while heroin abusers showed less grey matter in parietal regions on both
sides, including postcentral gyrus and inferior parietal lobule. Vaquero et al. [66] revealed that
Cocaine- Dependent patients showed increased gray matter volume (GMV) in the caudate and
the orbitofrontal cortex.

Similarly, Bachi et al. [4] investigated the contribution of childhood trauma to gray matter
concentration (GMC) effects in individuals with cocaine use disorder and found that individuals
with high childhood trauma had reduced GMC in the right lateral orbitofrontal cortex (OFC)
compared to controls, while no significant differences were found between individuals with
low childhood trauma and controls. Childhood trauma accounted for a significant amount of
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variance in the GMC in the right lateral OFC, even after controlling for demographics, drug
use, constraint, and depression.

2.3.2 Diffusion Tractography Imaging (DTI)

Diffusion tensor imaging (DTI) is a neuroimaging technique that measures the diffusion of water
molecules in the brain. It provides information about the structural connectivity of white matter
tracts in the brain and have been used to investigate the effects of chronic cocaine use on the
structural connectivity of brain. For instance, in a study by Romero et al [55] showed that
cocaine-dependent subjects had significantly lower fractional anisotropy values in the inferior
frontal white matter at the anterior-posterior commissure plane and higher anterior cingulate
white matter values than control subjects. These findings suggest that cocaine dependence
may involve a disruption of orbitofrontal connectivity and that the anterior cingulate brain
area might play a role in the motivation to change.

In a study by Morie et al. [42], region of interest analyses for anisotropy estimates derived from
the crossing-fibre model revealed significant group differences for secondary fibers. Reduced
anisotropy was observed among Prenatal cocaine exposure (PCE) adolescents compared to
prenatally non-exposed youth in the right cingulum and the left superior longitudinal fasciculus
(SLF).

Similarly, Lim et al. [31] showed that cocaine users had lower Fractional Anisotropy (FA)
compared to controls, specifically in inferior frontal white matter and revealed that both gray
and white matter inferior frontal volumes were found to be smaller in the cocaine group. The
results indicated The findings revealed that the duration of use was associated with decreased
gray and white matter volumes. In cocaine users, FA and grey matter volume were found to
be correlated.

In a premliminary study conducted by Ma et al. [35] found that Cocaine Use Disorder (CocUD)
subjects had a significantly greater change in fractional anisotropy (ΔFA) than controls in the
left splenium of the corpus callosum after ten weeks. Greater ΔFA (Scan 1 FA minus scan 2
FA) in this region was associated with shorter lifetime cocaine use and a greater number of
positive cocaine urine samples collected during the treatment.

2.4 Literature Review of studies using Graph Theory

In substance abuse disorders, the brain undergoes significant changes in connectivity and func-
tion, leading to addiction and other behavioral abnormalities. Graph theory analysis can pro-
vide insights into the structural and functional changes that occur in the brain during substance
abuse disorders.
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Schweitzer et al. [57] performed network analysis underlying visuospatial working memory
(VSWM) performance and showed that the prenatal drug exposure (PDE) group had lower
global efficiency than the non-exposed group and a trend-level reduction in local efficiency.
The network node corresponding to the middle frontal gyrus (MFG) group by task interaction
showed reduced nodal efficiency and fewer direct connections to other nodes in the network. In
a study conducted by Wang et al. [69], graph theoretical analysis was used to assess Functional
Connectome (FCM), and the results showed that polydrug users whose primary diagnosis was
cocaine dependence (DRUG) exhibited stronger functional connectivity among the assessed 90
brain subdivisions compared to non-drug using healthy controls (CTL). However, after control-
ling for functional connectivity differences and network density, DRUG showed reduced com-
munication efficiency and reduced small-worldness. This suggests a loss of normal inter-regional
communications and topology features, making it difficult to inhibit drug-seeking behavior.

Pacheco et al. [45] showed that the Betweenness centrality (BC) had higher values in the
(Inhaled Substance Abuse Disorder) ISAD population across regions of different subnetworks.
This might be an indicator that the structural organization of the network, which underlies
functional connectivity networks, is altered. The generalized greater values of the BC may be
an adaptation of the network in order for it not to lose function at the cost of a less efficient
information transfer.

2.5 Literature Review of studies using Multimodal Fusion

Multimodal fusion analysis of the brain involves combining data from multiple sources, such as
neuroimaging, genetics, and clinical assessments, to gain a more comprehensive understanding
of the substance use disorder. Meade et al. [37] used multimodal canonical component analysis
plus joint independent component analysis to identify co-alterations in brain structure and
function with delay discounting as the reference. The results of their study revealed that
participants with CUD had higher delay discounting compared to those without CUD and
identified one joint component that correlated with delay discounting across all modalities,
involving regions in the thalamus, dorsal striatum, frontopolar cortex, occipital lobe, and corpus
callosum. The components were negatively correlated with delay discounting, such that weaker
loadings were associated with higher discounting. The component loadings were lower in persons
with CUD, meaning the component was expressed less strongly. The findings reveal structural
and functional co-alterations linked to delay discounting, particularly in brain regions involved
in reward salience, executive control, and visual attention and connecting white matter tracts.
These multimodal networks were weaker in persons with CUD, indicating less cognitive control
that may contribute to impulsive behaviors.

13



Chapter 3

Dataset and Methods

3.1 Participants

The sample consisted of 63 (8 females) cocaine use disorder patients (CUD) and 42 (9 females)
healthy controls (HC), part of the SUDMEX CONN database [3]. The database comprised a
set of CUD patients and controls paired by age, sex, handedness and education. We included
participants who had T1-weighted, diffusion-weighted imaging and resting-state fc-fMRI se-
quences for this study. Due to analysis failures, three CUD patients and one HC subject were
eliminated from the analysis. Demographic characteristics are shown in Table 1. According to
the Declaration of Helsinki, the study was approved by the local ethics committee and carried
out at the Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz” in Mexico City, Mex-
ico. All participants provided verbal and written informed consent. Recruitment criteria and
full sample details are described in Angeles-Valdez [3].

3.2 Data Acquisition

Magnetic Resonance Imaging sequences were acquired using a Philips Ingenia 3T system (Philips
Healthcare, Best, The Netherlands, and Boston, MA, USA) with a 32-channel dS Head coil.
Resting-state images (rs-fMRI) were acquired using a gradient recalled (GE) echo planar imag-
ing (EPI) sequence with the following parameters: repetition time (TR) = 2000, echo time
(TE) = 30.001ms, flip angle = 75°, matrix = 80x80, FOV = 240mm2, voxel size = 3x3x3mm,
number of slices=36, phase encoding direction = AP. T1-weighted (T1w) were acquired using
a three-dimensional FFE SENSE sequence, TR = 7, TE = 3.5�ms, FOV = 240mm2, matrix =
240×240�mm, number of slices = 180, gap = 0, plane = sagittal, voxel = 1x1x1�mm. Subjects
were instructed to keep eyes open and stare at a fixation cross presented. High Angular Res-
olution Diffusion Imaging (DWI-HARDI) used a SE sequence, TR = 8600 TE = 126.78 ms,
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Table 3.1 Demographic characteristics of participants.
CUD (n = 63) HC(n=42) Stats

Age 32(18− 50) 30(18− 48) t = −0.5,p = 0.6

Education Middle School High School χ2 = 10, p = 0.04

Handedness * (n = 63) (n = 42)

Right 56 35

Left 4 4

Ambidextrous 3 3

Onset age of consumption 20 (12 - 41) na

Years consuming 10 (1 - 28) na

Average consumption per intake * (n = 55) na

< 0.8 gm 0 na

1.6 - 2.4 gm 7 na

3.2 - 5.6 gm 11 na

8 - 9 gm 26 na

9 - 10 gm 6 na

> 10 gm 10 na
Notes: Median (min–max) for all except * = count. CUD = Cocaine Use Disorder, HC = Healthy controls, n

= due to the absence of data, we show each sample size per variable, na = not applicable, gm = grams, Stats =

statistics, t = t-value, χ2 = chi-squared.

FOV = 224, matrix = 112x112�mm, number of slices = 50 , gap = 0, plane = axial, voxel = 2 x
2 x 2�mm, directions: 8 = b0, 36 = b-value 1,000 s/mm² and 92 = b-value 3,000 s/mm², total
= 136 directions. The MRI order of acquisition was: 1) rs-MRI, 2) T1w and 3) DWI-HARDI.
The total scanning time lasted around 50 minutes.

3.3 Clinical measures

Participants were evaluated using a battery of paper-based clinical questionnaires before MRI
scanning. For this study, the CUD group was assessed using the Cocaine Craving Questionnaire
(CCQ-General) and (CCQ-Now) to rate their craving over the previous week and at the time
of MRI scanning. This questionnaire includes questions about the desire to use cocaine, the
anticipation of positive outcomes and relief from withdrawal [46]. For evaluating functional im-
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pairments or disabilities in psychiatric patients, the CUD group was assessed by World Health
Organization Disability Assessment Schedule 2.0 (WHODAS 2.0). This instrument has been
widely used in different countries for health and disabilities, finding high consistency rates [64].
Meanwhile, the CUD group was assessed by Addiction Severity Index (ASIP) for consumption
status and addiction severity. This instrument is a semi-structured interview that evaluates
several functional domains like medical status, employment, alcohol use, drugs use, family/so-
cial life and psychiatric status [36]. Impulsivity was also assessed using Barratt Impulsiveness
Scale Version 11 (BIS-11), which is a self-report scale that assesses three categories of personal-
ity/behavioral impulsivity: cognitive (i.e. inability to focus attention), motor (i.e. act without
thinking), and non-planning impulsiveness (i.e. lack of forethought) [49]. For information on
other clinical measures that were recorded along with the above-mentioned, see Angeles-Valdez
[3].

3.4 Overview of Methods

In Figure 3.1 illustrates an overview of the current study. A) Data from 66 (8 females) cocaine
use disorder patients (CUD) and 43 (9 females) healthy controls (HC), B) Data preprocessing of
Resting-state and T1-weighted MRI images were performed using fMRIprep pipeline followed by
XCPengine pipeline, and FSL DWI preprocessing, C) Connectivity analysis based on Graph-
based approach along with correlation with clinical measures, D) mCCA+jICA multimodal
fusion based on local graph-based measures.

3.5 Clinical measures

Data preprocessing of Resting-state and T1-weighted MRI images was performed using fM-
RIprep pipeline [16]. Structural T1 steps included a volume correction of intensity non-
uniformity, skull-stripped, brain tissue segmentation, and a spatial normalization onto MNI
common brain space (MNI152NLin2009cAsym). Functional preprocessing steps included cor-
rection for intensity, slice-timing and head motion, spatial smoothing with an isotropic Gaussian
kernel of 6 mm full width at half maximum (FWHM), framewise displacement threshold of 0.5,
distortion estimation using a field map, skull-stripped, and a spatial normalization to MNI
brain space. Resting-state time series were then processed using XCP Engine v. 1.2.1 [9] with
nuisance regression using the pipeline described in Power et al. [51]. Shortly, nuisance strategy
included: 1) inhomogeneities correction, 2) dummies removal (4 initial volumes), 3) realignment
of all volumes to reference, 4) demeaning and removal of trends, 5) co-registration, 6) removal
of global, white matter and cerebrospinal confounding signals, 7) motion scrubbing and 8)
temporal filtering with a first-order Butterworth filter using a bandpass between 0.01 and 0.08
Hz. DWI-MRI preprocessing consisted in the correction of eddy current artifacts and motion
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Figure 3.1 Overview of Methods

noise using eddy correct from FSL 6.0.11 (https://fsl.fmrib.ox.ac.uk). Gradients were rotated
to match the affine transformation applied in the eddy step; subsequently, skull stripping was
performed using the brain extraction tool from FSL. Finally, using Advanced Normalization
Tools (ANTs) registration, MNI brain space was transformed into individual subject space to
map all the ROI into subject space.

3.6 Global Signal Regression

fMRI data is noisy and contains unwanted signals that can affect the accuracy and reliability
of the results.One of the preprocessing techniques that have gained popularity in recent years
is Global Signal Regression (GSR). GSR is a technique that removes the global signal. GSR
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is a preprocessing technique that removes the global signal from the fMRI data. The global
signal represents the average signal across the entire brain and is considered to be a source of
non-neural noise in the data. GSR involves regressing out the global signal from the fMRI data
to reduce this non-neural noise.GSR removes non-neural noise from the fMRI data, such as
scanner drift, physiological noise, and motion artifacts. This leads to cleaner data and reduces
the impact of these unwanted signals on subsequent analysis. GSR can enhance the signal-to-
noise ratio in the fMRI data. By removing non-neural noise, GSR increases the proportion of
neural signal in the data, making it easier to detect subtle changes in brain activity. However,
GSR can remove neural signal from the fMRI data, leading to a loss of information. The global
signal contains some neural information, and removing it can affect the accuracy and reliability
of subsequent analysis. GSR can also introduce negative correlations between brain regions that
are not present in the original data which can lead to erroneous interpretations of functional
connectivity between brain regions. We used fMRI data with GSR as well as without GSR in
our analyses.

3.7 Connectivity Analyses

3.7.1 Structural Connectome

The diffusion connectivity (tc-dmri) matrices were computed using the Harvard-Oxford (HO)
cortical and subcortical atlases (112 regions) and with the Desikan Killiany (DK, 86 regions)
atlas through fibre-counting. For DK atlas regions, T1w structural data were processed us-
ing Freesurfer, which performed intensity bias correction, non-brain tissue discard, and tissue
segmentation before performing entire brain parcellation using spherical transformation and
surface-based registration with the Desikan-Killiany atlas. Connectivity maps were constructed
by whole-brain streamline fiber tractography on native space using MRtrix v.3 (24). All ROIs
in each atlas in sequence 1 to n-regions and the probabilistic connectome values represent the
connectivity fiber counts between the source and destination ROIs. All fibers that start or
end in GM-ROIs were taken into the fiber count. Normalization of all values was performed
by summing the number of voxels from the source and destination ROIs. The main analysis
presented here is based on the Harvard-Oxford atlas. The analysis using the Desikan Killiany
atlas is presented in the Supplementary material.

3.7.2 Functional Connectome

The functional connectivity (fc-fmri) matrices were computed using the HO cortical and subcor-
tical atlases, DK atlas. The mean time series was extracted from each region, and the functional
connectivity matrix was estimated by computing pairwise Pearson correlations. Following this,
the FC matrices were thresholded to generate a binary adjacency matrix that represents the
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presence or absence of functional connectivity. The thresholding and binarization procedures
help reduce weaker connections and result in undirected, unweighted, binary matrices where the
correlations above a certain threshold are represented by 1 and 0 otherwise. Since the choice
of threshold can be arbitrary, we generated several binarized adjacency matrices by varying
the cut-off to include the top 5% to 50% with increments of 5%. The main analysis presented
here is based on the Harvard-Oxford atlas. The analysis using the DK atlas is presented in the
Supplemental Material.

3.8 Graphical Understanding of Brain

Recent advances in neuroimaging techniques have made it possible to investigate the struc-
tural and functional connectivity of the brain in great detail. One approach to exploring the
connectivity of the brain is through the use of graphical models. Graphical models are math-
ematical tools used to represent the connectivity of complex systems. In the context of the
brain, graphical models can represent structural connectivity, which refers to the physical con-
nections between different brain regions and functional connectivity, which refers to the degree
to which neural activity in different brain regions is correlated. The graph nodes represent
brain regions, and the edges represent their connections. An appropriate parcellation or tem-
plate must be chosen in order to build these graphs for the brain. The brain is segmented into
non-overlapping, homogeneous areas through parcellations. After non-linear registration and
averaging of T1 scans from numerous subjects, the standard templates are created (MNI152 is
a standard template used). These regions subsequently serve as the graph’s nodes or vertices.
These are commonly used parcellations:

• The Automated Anatomical Labelling (AAL) 90-node parcellation.

• The Harvard-Oxford (HO) atlas with 112 areas.

• The Desikan-Killany parcellation with 86 areas.

• The Power atlas with 264 areas.

By analyzing the graphical structure of the brain, researchers can identify patterns of connec-
tivity that may be associated with specific cognitive processes or behaviours. Graphical models
have also been used to investigate alterations in brain connectivity in several neurological and
psychiatric disorders.

3.9 Graph-Based Connectivity Measures

Graph theory analyses are performed on the binarized adjacency matrices using Matlab v.
2019b and the Graph Theoretical Network Analysis (GRETNA) toolbox (25). The computed
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graph measures were classified into two categories based on the type of connectivity they signify
global and local graph measures. These graph measures enable us to understand properties
like connectivity or topology at whole-brain and region levels, respectively. Global measures
comprise Assortativity (r), Network efficiency (Eglobal), Modularity (M), Smallworld index (σ),
Hierarchy (β). Local measures include Betweenness Centrality (BC), Degree Centrality (DC),
Participation Coefficient (PC), Nodal Local Efficiency (NLE) and Nodal clustering Coefficient
(NCC). These measures are discussed below.

3.9.1 Assortativity

The Assortativity (r) is also known as assortative mixing and is a network property that mea-
sures the preference of nodes in a network to connect to others that are similar to them in some
way. It is the correlation between the degree of a node and the average degree of the node’s
neighbors. A positive correlation indicates an assortative network, whereas a negative corre-
lation indicates a disassortative network. Disassortative networks indicate strong hierarchical
configurations.

r =
m−1

∑
i ji · ki −

[
m−1

∑
i 0.5(ji + ki)

]2
m−1

∑
i 0.5(j

2
i + k2i )− [m−1

∑
i 0.5(ji + ki)]

2 (3.1)

ji and ki represent the degrees of the vertices j and k connecting the ith edge, with i = 1,2, ..m;
where m is the total number of edges.

3.9.2 Network efficiency

The Network efficiency (Eglobal(G)) is defined as the average inverse shortest path length in a
network. Network efficiency for network G is as follows. Network efficiency measures quantify
the efficiency of information transmitted across a network.

Eglobal(G) =
1

N(N − 1)

∑
a6=b∈G

1

Lab
(3.2)

Lab is the shortest path between nodes a and b in the network G. N is the total number of
nodes in the network.

3.9.3 Modularity

The Modularity (Q) is a statistic used to distinguish between the number of intra-module
connections of an existing network and randomly connected edges in a random network; it
tells us how good the clustering is. Modularity is a measure of the degree to which a network
can be divided into non-overlapping subgroups based on the connections between nodes. The
modularity index measures the difference between the number of edges within communities
and the expected number of edges in a null model where edges are placed at random while
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preserving the network’s degree distribution [24]. Modularity is computed based on a greedy
agglomerative method [13]

Q =
1

2m
∗
∑
ij

(aij −
(ki ∗ kj)
2 ∗m

) ∗ δ(σi, σj) (3.3)

Where aij is the adjacency matrix of the network, ki and kj are the degrees of nodes i and j,
m is the total number of edges in the network and (j,j) is the Kronecker delta function that
takes the value 1 if nodes i and j belong to the same community (i.e., have the same community
assignment) and 0 otherwise.

3.9.4 Small world index

The Small World Index is defined as the ratio of normalized clustering coefficient and normalized
characteristic path length. A Small-world network has high clustering and short path lengths.

SWI(σ) =
γ

λ
; γ =

CC

CCrand
;λ =

CPL

CPLrand
CPLrand =

∑
i

∑
j Lij

N · (N − 1)
(3.4)

CC and CPL are the clustering coefficient and characteristic path length of the actual brain net-
work, whereas CCrand and CPLrand are generated using 100 random networks by the Markov-
chain algorithm. Here Lij is the shortest path between node i and node j.

3.9.5 Hierarchical Coefficient

The hierarchical coefficient (β) quantifies the presence of the hierarchical organization in a
network. It is a measure of the extent to which a node in a network is connected to nodes of
higher or lower degree.

β =
2m− 3k

(k − 1)2
(3.5)

where m is the number of connections in the network, and k is the degree of the measured node.
(β) close to 1 indicates that the node is connected to other nodes of a higher degree, while (β)

close to 0 indicates that the node is connected to other nodes of similar or lower degree.

3.9.6 Synchronization

The Synchronization is defined as the ratio of the second smallest Eigenvalue to the largest
Eigenvalue obtained through the coupling matrix of a network G.

3.9.7 Betweenness Centrality

The Betweenness Centrality of a node (v) is defined as the ratio of the number of shortest paths
passing through the node between any two given nodes σab(v) to the total number of shortest
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paths between the two given nodes is σab. If the betweenness centrality is high, it means the
information flow through that node is high.

Bc(v) =
∑

a6=v 6=b

σab(v)

σab
(3.6)

3.9.8 Degree Centrality

The Degree Centrality of a node(v) is defined as the ratio of the degree of the node (dv) to the
maximum possible degree of the node. If the degree centrality of a node is high, it means it is
more central. Nodes with a high degree of centrality are often considered to be crucial in the
network as they have many connections and are potentially able to transmit information to a
large number of other nodes.

Dc(v) =
dv

(N − 1)
(3.7)

Where N is the total number of nodes in the network.

3.9.9 Participation Coefficient

The Participation coefficient of a node(v) reflects the within-module and intermodular commu-
nication.

Pc(v) = 1− 1

Ns

Ns∑
d=1

(
dvs
dv

)2

(3.8)

Ns is the number of modules, dvs is the degree of a node ‘v’ to the nodes in module ‘s’, dv is
the total degree of node ‘ V ’ is 0 when there are no intermodular connections.

3.9.10 Nodal Local Efficiency

The Nodal local efficiency is a measure of the efficiency of information transfer between a
node and its neighbors in a network. It is similar to network efficiency but computed in the
neighborhood of a node. It is defined as the average inverse shortest path length between the
node and its neighbors.

Elocal(G) =
1

n− 1

∑
a6=b∈G

1

Lab
(3.9)

Lab is the shortest path between nodes a and b in the network G. n is the total number of
neighbors of node ‘a’ in the network. The Elocal(G) values range from 0 to 1, where a value of
1 indicates that the node and its neighbors form a complete subgraph.
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3.9.11 Clustering coefficient

The clustering coefficient of a node(v) is defined as the ratio of the number of connections
between the neighbors of the node (ev) to the total number of possible connections among (Kv)
neighbors of the node. If the clustering coefficient of a node is high, it means the neighbors of
the node are well connected. It measures the cohesiveness in a network.

Ncc(v) =
2ev

K(v)K(v − 1)
(3.10)

The above graph measures also quantify network segregation (Nodal clustering coefficient,
Nodal local efficiency, small world index and modularity), network integration (Global effi-
ciency, assortativity and participation coefficient) and node centrality (Betweenness Centrality
and Degree centrality) [38].

3.10 Statistical Methods

3.10.1 Spearman Rank Correlation

When it comes to understanding relationships between variables, correlations are one of the
most widely used statistical measures. Among the various types of correlation coefficients, the
Spearman rank correlation coefficient is a commonly used method to measure the strength and
direction of the relationship between two variables. The Spearman rank correlation, also known
as Spearman’s rho or Spearman’s rank correlation coefficient, is a non-parametric measure of
correlation between two variables. It is a measure of the monotonic relationship between the
two variables. It works by assigning ranks to the values of the two variables being compared.
The ranks are then used to calculate the correlation coefficient, which ranges from -1 to 1. A
correlation coefficient of -1 indicates a perfect negative correlation, 0 indicates no correlation,
and 1 indicates a perfect positive correlation. Unlike other correlation coefficients, the Spearman
rank correlation does not assume that the relationship between the variables is linear or that
the variables follow a normal distribution. It is also robust to outliers and does not assume a
linear relationship between the variables.

ρ = 1−
6
∑n

i=1(di)
2

n · (n− 1)2
(3.11)

Where di is the difference between the two ranks of each observation and n is the total number
of observation

3.10.2 Pearson Correlation

The Pearson correlation, also known as the Pearson product-moment correlation coefficient, is
a statistical measure that quantifies the relationship between two variables. This coefficient
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is widely used in social sciences, economics, and engineering to understand the strength and
direction of a linear relationship between two variables. Pearson correlation is a measure of
the linear association between two continuous variables. The value of the correlation coefficient
ranges from -1 to 1. If the correlation coefficient is positive, it indicates a positive linear rela-
tionship between the two variables, while a negative coefficient indicates a negative relationship.
A correlation coefficient of 0 indicates no relationship between the two variables. It can be used
to identify the strength and direction of a linear relationship between two variables and is not
affected by the scale of measurement of the variables.It can only measure linear relationships
between two variables. It assumes that the relationship between the two variables is symmetric
and is sensitive to outliers and can be affected by them.

r =

∑n
i=1(xi − x̄)2 · (yi − ȳ)√∑n

i=1(xi − x̄)2 ·
∑n

i=1(yi − ȳ)2
(3.12)

Where xi value of the ith observation of the first variable x, and x is the mean of the first
variable x. yi value of the ith observation of the first variable y, and y is the mean of the first
variable y.

3.10.3 Mann-Whitney-U test

One of the most common tests used in nonparametric statistics is the Mann-Whitney U test,
which is also known as the Wilcoxon rank-sum test. This test is used to compare two groups
and determine whether there is a significant difference between them. It assumes that the
two groups are independent, the observations in each group are needed to be independent and
identically distributed, and the dependent variable is ordinal or continuous. It also assumes
homogeneity of variances across the two groups. It is a nonparametric test that does not require
the data to be normally distributed. It is a robust test that is not affected by outliers or extreme
values. The p-value obtained from the Mann-Whitney U test is compared to the significance
level (alpha) to determine whether to reject or fail to reject the null hypothesis. If the p-value is
less than alpha, the null hypothesis is rejected, and it can be concluded that there is a significant
difference between the two groups. If the p-value is greater than alpha, the null hypothesis is
failed to reject, and it can be concluded that there is no significant difference between the two
groups.

U1 =
n1 · (n1 + 1)

2
; U2 =

n2 · (n2 + 1)

2
; U = U1 + U2 (3.13)

The smallest among U1 and U2 is used for generating P-value. n1 and n2 are the sample sizes
of two groups, respectively

3.10.4 Benjamini-Hochberg Correction

The Benjamini-Hochberg correction is a statistical procedure used to control for the false discov-
ery rate (FDR), which is a type of error that occurs when a statistical test incorrectly identifies
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a null hypothesis as significant in multiple testing situations. It is named after its inventors,
Yoav Benjamini and Yosef Hochberg. This correction is widely used in the field of genomics
and other areas of biomedical research, where large-scale hypothesis testing is common. The
Benjamini-Hochberg correction is a procedure used to control for FDR in multiple testing situa-
tions. It is a step-up method that involves ranking all the p-values obtained from the statistical
tests and comparing them to a threshold value. The threshold value is determined by a false
discovery rate (FDR) threshold, which is usually set to 0.05 or 0.01. The Benjamini-Hochberg
correction works by computing the critical p-value, which is the p-value threshold at which the
FDR is equal to the specified FDR threshold. The critical p-value is then used to determine
which hypotheses are significant and which are not.

Critical Pvalue =
(
rank of PvalueTotal

number of Tests

)
× FDR (3.14)

3.11 Independent Component Analysis

The Independent Component Analysis is a statistical technique used for separating a multi-
variate signal into independent, non-Gaussian components. In other words, ICA allows us to
decompose a complex signal into simpler and more interpretable components. ICA finds a
linear transformation of the data such that the transformed variables are statistically indepen-
dent. This is achieved by assuming that the sources are non-Gaussian and that they are mixed
linearly. Formally, let x be a d-dimensional observed vector, and let A be a d×d matrix that
represents the mixing process. The goal of ICA is to find a matrix W such that the trans-
formed variables y = Wx are statistically independent. The matrix W is the inverse of the
mixing matrix A, that is, W = A−1.

3.11.1 Fast-ICA

The ICA algorithm is computationally expensive for high-dimensional datasets, and several fast
ICA algorithms have been proposed to address this issue. One such algorithm is the FastICA
algorithm, which is based on the concept of non-quadratic optimization. The FastICA algorithm
uses a contrast function to measure non-Gaussianity and iteratively updates the weights until
convergence.

The contrast function used in the FastICA algorithm with the tanh nonlinearity is given by:

G(y) = tanh(βy) (3.15)

where y is the output of the mixing matrix multiplied by the observed data, and β is a parameter
that controls the shape of the tanh function.The FastICA algorithm with the tanh contrast
function can be summarized in the following steps:
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(a) Compute the output y = Wx, where x is the whitened data.

(b) Compute the contrast function G(y) and its derivative g(y) = (1− tanh2(y)).

(c) Update the weight matrix using the formula:

Wnew = E[G(y)yT ]− E[g(y)]Wold (3.16)

where E[·] denotes the expectation operator, and Wold is the weight matrix from the
previous iteration.

(d) Orthogonalize the weight matrix using the Gram-Schmidt orthogonalization procedure.

(e) Repeat steps a-d until convergence

3.11.2 Minimum Description Length

One way to estimate the number of sources in ICA is to use the Minimum Description Length
(MDL) criterion, which selects the model that provides the least coding length among a set
of candidate models. The MDL criterion can be derived using information theory. The basic
idea is to encode the data using a model that assumes N independent components and to
compare the length of the encoded data with the length of the data itself. The MDL criterion
balances the goodness of fit of the independent component to the data with the complexity
of the independent component. The MDL criterion for ICA can be derived as follows. Let
X be a mixed signal of T observations, where each observation is a linear combination of K
independent components:

X = W∗ S+ E

where W is a K-by-K mixing matrix, S is a K-by-T matrix of independent components, and
E is a K-by-T matrix of errors. The goal of ICA is to estimate the independent components
S and the mixing matrix W from the observed signal X. The MDL criterion for ICA can be
expressed as the sum of the lengths of the encoded data, the mixing matrix, and the independent
component, where the length is defined as the number of bits required to encode the object.
The MDL criterion is given by:

MDL(K) = L( data | model ) + L(W) + L(S)

where L (data|model) is the length of the encoded data given the model, L(W) is the length of
the encoded mixing matrix, and L(S) is the length of the encoded independent component.

The length of the encoded data can be estimated using the Shannon entropy of the data, which
measures the average amount of information required to encode each observation. The length
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of the encoded data is given by:

L( data | model ) = T∗H(X | model )

where H(X | model ) is the entropy of the data given the model.

The length of the mixing matrix and the independent component can be estimated using the
Kolmogorov complexity of the object, which measures the length of the shortest program that
generates the object. The length of the mixing matrix and the independent component are
given by: L(W) = C(W) L(S) = C(S) where C(W) is the Kolmogorov complexity of the mixing
matrix and C(S) is the Kolmogorov complexity of the independent component. The MDL
criterion can be simplified by using the following approximation:

MDL(K) ≈ T∗H(X | model ) +
(
K∧2 +K

)
∗ log(T)/2

where the first term represents the length of the encoded data and the second term represents
the complexity of the model. The best estimate of the number of independent components K
is the one that minimizes the MDL criterion:

K∗ = argmin(K)MDL(K)

By minimizing the MDL criterion, ICA can be used to uncover the underlying independent
components of complex data sets, providing insights into the underlying structure of the data.

3.11.3 Multimodal Canonical Component Analysis (mCCA) + Joint Inde-

pendent Component Analysis (jICA)

Figure 3.2 depicts the pipeline of our multimodal fusion analysis. The minimum description
length (MDL) method (Li et al., 2007) was used to determine the amount of independent
components (M) to preserve for each local graph metric in both fc-fMRI and tc-dMRI modal-
ities. Next, mCCA analysis was performed on fc-fMRI and tc-dMRI to produce canonical
variates (CVfc−fMRIandCVtc−dMRI) and canonical components (CCfc−fMRIandCCtc−dMRI)
.CCfc−fMRIandCCtc−dMRI were concatenated and subjected to joint ICA, yielding mixing
profiles (MM),unmixing profiles (umm), stability indices (IQ), and independent component
loadings (IC). MATLAB v. 2019b (23) was used to calculate the mCCA and jICA analyses
with custom scripts and the ICASSO toolbox (24). Effective mixing profiles were calculated for
group comparisons using the following equations:

emmfc−fMRI = [MM ]× CVfc−fMRI ; emmtc−dMRI = [MM ]× CVtc−dMRI (3.17)
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Figure 3.2 Workflow of the 2-way multimodal fusion
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Chapter 4

Unimodal Analysis

The Unimodal analysis was performed to investigate brain network differences from the perspec-
tive of each modality (fc-fMRI and tc-dMRI). Global and local graph measures were analyzed
to understand the functional and structural connectivity of the different brain regions. The
global and local graph measures within each modality were tested for differences between CUD
and HC using the Mann-Whitney-U test for independent two-samples. Spearman correlation
between the graph measures and their corresponding clinical scores within each modality was
performed. To account for multiple comparisons, we used FDR at 5% via the Benjamini-
Hochberg procedure. R programming language version 4.1 was used for the statistical analysis.
By performing unimodal analysis, we can gain insights into the underlying patterns and trends
in our data and make informed decisions based on the results.

4.1 Threshold Averaged Global Graph measures

The average network measures across thresholds between 0.5%-50% (proportional) are com-
puted using global signal regressed out rs-fMRI data, fMRI data without GSR and tc-dMRI
data. The functional and structural connectome is computed using and Harvard Oxford Atlas.
Figure 4.1 shows the graph-based global measures like Assortativity, Hierarchy, Modularity,

Network Efficiency, Small World Index and Synchronization. In Figure 4.1.A the global graph-
based measures are computed using rs-fMRI data without GSR with Harvard Oxford Atlas as
the parcellation scheme. In 4.1.B the global graph-based measures are computed using rs-fMRI
data with GSR with Harvard Oxford Atlas as the parcellation scheme.

Figure 4.2 shows the graph-based global measures like Assortativity, Hierarchy, Modularity,
Network Efficiency, Small World Index and Synchronization. All the global graph-based mea-
sures are computed using tc-dMRI data with Harvard Oxford Atlas as the Parcellation scheme.
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Figure 4.1 Graph-based global measures computed using rs-fMRI

4.1.1 Statistical Analysis

No significant differences were observed between CUD and HC groups for the global measures
computed using Harvard Atlas in the fc-fMRI modality. For either modalities, there were no
significant correlations between global graph measures and clinical scores.

4.2 Threshold Averaged Local Graph measures

Local graph measures, such as Betweenness Centrality, Participation Coefficient, Nodal Local
Efficiency, Nodal Clustering Coefficient, and Degree Centrality, are calculated using the same
thresholds utilized in determining the global graph measures. No significant differences were
observed between CUD and HC groups for the global measures in the tc-dMRI modality. On the
other hand, only the left Caudate exhibited a significant decrease in Participation Coefficient
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among CUD compared to HC in the fc-fMRI modality (U =1880, p=0.0027, pfdr=0.030) (Refer
Figure 4.3).No significant correlations were observed between local graph measures and their
corresponding clinical scores.

4.3 Summary of Unimodal Analysis

Unimodal analysis of the fc-fMRI modality revealed that individuals with cocaine use disorder
(CUD) had a reduced contribution of the left caudate to inter-modular communication com-
pared to the healthy control (HC) group. The caudate nucleus, which is part of the striatum,
is known to play a crucial role in habit learning, motor behavior, and compulsive drug-seeking
behavior. The reduced inter-modular communication of the caudate nucleus in individuals with
CUD may contribute to their compulsive drug-seeking behavior.
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Figure 4.2 Graph-based global measures computed using tc-dMRI
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Figure 4.3 Group comparison of Participation Coefficient from unimodal analysis, significant

on left Caudate.
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Chapter 5

Multimodal Analysis

Sui et al, [59] outline several multimodal fusion methods and divide them into three different
categories based on their objectives: finding flexible connections between modalities, separat-
ing sources and discovering the common mixing profiles, and examining both flexible modality
connections and distinct sources. The several outlined blind source separation methods were
evaluated by simulating their performances on a generated dataset of 100 noisy (random Gaus-
sian noise was added) images with fMRI and EEG signals as the two modalities. Based on
various metrics, it was evident that jICA and mCCA are good at source separation and modal-
ity associations, respectively. Whereas, mCCA+jICA had more reliability in estimating the
modality relations (high or low correlations) along with good source separation and robustness
to noise. Hence, our multimodal fusion analysis was performed using the above-mentioned
approach, that is, mCCA+jICA.

5.1 Multimodal Fusion

Our multimodal fusion analysis pipeline is illustrated in Figure 3.2. Age was regressed out from
the local graph-based measures calculated for each modality. Prioritizing age as a covariate is
grounded in its established significance in literature [73]. Notably, the dataset lacked complete
information on sex, education and average consumption per intake varied, necessitating the use
of imputation, which introduces a potential bias. Furthermore, the age range of participants,
spanning from 18 to 50 for individuals with Cocaine Use Disorder (CUD) and 18 to 48 for
the Healthy Controls (HC), rationalizes the decision to regress out the influence of age. The
minimum description length (MDL) for each local graph metric is as follows: MBC = 4,MDC =

10,MNCC = 13,MNLE = 19,MPC = 9; in both fc-fMRI and tc-dMRI modalities. All ICs values
were normalized to Z-scores. In order to investigate regions with the highest contribution for
the mixing profiles, we used a threshold of Z± 2.3. The effective mixing profiles (emmfc−fMRI

and emmtc−dMRI) of those ICs with an IQ > 0.8 were considered. Based on the previous
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research [1], these mixing profiles were further correlated with each other along with their
corresponding clinical measures using Spearman correlation. Mann–Whitney–Wilcoxon test for
independent two-samples was computed to reveal group differences between CUD and HC for
each emmmodality. All results were corrected for multiple comparisons using FDR (Benjamini-
Hochberg) at 5%.

5.2 Results

The local graph measures of integration, betweenness centrality (BC), and participation coeffi-
cient (PC), had IQ > 0.8, resulting in one IC in the case of BC (IC2) and two for PC (IC1 and
IC4). Only the fc-fMRI modality showed significant group differences, with BC (pvalue=0.028,
pfdr=0.042 ) having greater values in the CUD sample and PC (pvalue=0.026,pfdr=0.042) hav-
ing lower values in the CUD sample. In fc-fMRI modality, the significance of the BC (IC2)
suggests that the independent component was expressed more strongly in the CUD group com-
pared to the HC group, thus resulting in a lesser number of shortest pathways via nodes (Table
5.1). For PC, the independent component (IC4) that corresponds to the fc-fMRI modality was
stronger in the CUD group than the HC, suggesting a higher level of node participation in their
own communities (Table 5.2). The joint-IC2 of BC was characterized by the contributions of
the left Temporal pole, left Middle Temporal gyrus and bilateral Anterior Cingulate gyrus in
fc-fMRI modality along with bilateral Thalamus and bilateral Putamen in tc-dMRI modality
(Table 5.2). In the tc-dMRI modality, the joint-IC4 of PC revealed significant connectivity in
the left Parahippocampal gyrus and the right Occipital Fusiform gyrus, as well as the bilateral
Posterior Cingulate gyrus, left Cuneal cortex, and bilateral Caudate in the fc-fMRI modality
(Figure 5.1 and Table 5.2). it is to be noted that Figure 5.1 illustrates the regions that
contribute to the joint independent components in fMRI modality for Betweenness Central-
ity and Participation Coefficient. For visualization purposes, we opted to include the regions
contributing to the joint independent components tc-dMRI modality within Figure 5.1. It is
important to acknowledge that, in contrast to fc-fMRI modality, these regions did not attain
statistical significance in terms of group differences but demonstrated positive associations with
the regions identified in the fc-fmri modality. Figure 5.2 depicts a positive correlation between
the effective mixing profiles (emmfc−fMRI and emmtc−dMRI) of joint IC2 and joint IC4 for
BC and PC, respectively. This demonstrates a strong association between the regions that
contribute to the joint independent component in both the fc-fMRI and tc-dMRI modalities for
BC and PC. There were no significant correlations with the clinical measures.
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Table 5.1 Group comparison in ICn loadings (IQ > 0.8 ), median effective mixing profiles of

CUD and HC and statistics of each graph metric
IC HC(n = 42) CUD(n = 63) Statistic p value pfdr

Betweenness

Centrality
fc-fMRI IC2 -0.0094 0.0088 W = 987 0.028∗ 0.042∗

tc-dMRI IC2 0.0006 -0.0001 W = 1325 0.992 0.992

Participation

Coefficient
fc-fMRI IC1 -0.0111 -0.0112 W = 1352 0.852 0.852

IC4 0.0104 0.0027 W = 1664 0.026∗ 0.042∗

tc-dMRI IC1 -0.0038 0.0018 W = 1143 0.24 0.720

IC4 -0.0015 -0.0011 W = 1235 0.567 0.850

Table 5.2 Regions in joint ICn at Z± 2.3
Anatomical regions Z-score

Betweenness Centrality

fc-fMRI IC2 Left Temporal Pole 2.885

Right Middle Temporal Gyrus, temporo-occipital -2.92

Right Cingulate Gyrus, anterior division 2.610

Left Cingulate Gyrus, anterior division 3.684

tc-dMRI IC2 Right Thalamus -4.792

Left Thalamus -4.662

Right Putamen -3.957

Left Putamen -3.868

Participation Coefficient

fc-fMRI IC4 Right Cingulate Gyrus, posterior division -2.340

Left Cingulate Gyrus, posterior division -2.321

Left Cuneal Cortex 2.478

Left Caudate 2.315

Right Caudate 2.489

tc-dMRI IC4 Left Parahippocampal Gyrus, anterior division 2.638

Right Occipital Fusiform Gyrus 2.694
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Figure 5.1 Multimodal group-discriminating BC-IC2 and PC-IC4. TP.L = left Temporal Pole,

TO2.L = right middle Temporal gyrus, temporo-occipital, CGa.L = left Cingulate Gyrus, an-

terior division, CGa.R = right Cingulate Gyrus, anterior division, Thal.L = left Thalamus,

Thal.R = right Thalamus, Put.L = left Putamen, Put.R = right Putamen, CGp.L = left Cin-

gulate Gyrus, posterior division, CGp.R = right Cingulate Gyrus, posterior division, CN.L =

left Cuneal Cortex, Caud.L = left Caudate, Caud.R = right Caudate, PHa.L = left Parahip-

pocampal Gyrus, anterior division, OF.R = right Occipital Fusiform Gyrus.
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Figure 5.2 Association between effective mixing matrices of fMRI and dMRI Independent

components. A) Association of emmfc-fMRI and emmtc-dMRI for betweenness centrality (BC

IC2) with a significant correlation (r = 0.196, pfdrr = 0.045), B) Association of emmfc−fMRI

and emmtc−dMRI for participation coefficient (PC IC4) with a significant correlation (r =0.223,

pfdr = 0.044). 38



5.3 Summary of Multimodal fusion analysis

The results indicated that the BC and PC measures showed significant differences between the
CUD and HC groups only in the fc-fMRI modality. BC had higher values in the CUD sample,
while PC had lower values. This suggests that the independent component associated with
BC was more pronounced in the CUD group, resulting in fewer shortest pathways via nodes.
On the other hand, the independent component linked to PC was stronger in the CUD group,
indicating a higher level of node participation in their own communities. Furthermore, a pos-
itive correlation was observed between the effective mixing profiles of joint BC and joint PC
in fc-fMRI and tc-dMRI modalities. This indicates a strong association between the regions
contributing to the joint independent component for BC and PC. Overall, the multimodal anal-
ysis revealed that individuals with CUD exhibit altered brain connectivity patterns compared
to healthy individuals, particularly in terms of betweenness centrality and participation coef-
ficient measured through fc-fMRI. These findings provide insights into the neural mechanisms
underlying CUD and may contribute to a better understanding of the disorder.

39



Chapter 6

Conclusion

In this study, we examined the macroscopic network-based differences using graph theory, be-
tween patients with cocaine use disorder (CUD) and matched healthy controls (HC) by combin-
ing fc-fMRI and tc-dMRI imaging modalities. While multimodal fusion has been carried out in
other studies, to our knowledge, this is the first multimodal-fusion study that uses graph theory
to explore topological alterations in CUD patients. First, we evaluated the differences between
the two groups in functional and structural modalities separately. Subsequently, we performed
a multimodal fusion of fc-fMRI and tc-dMRI modalities, which enabled us to understand net-
work patterns conveyed by both modalities, leveraging a well-defined mathematical framework
(i.e. graph theory). While this study was exploratory in nature, post rigorous multiple compar-
ison corrections, our study identified brain regions that not only agrees with earlier studies but
also revealed interesting observations that may contribute to a better understanding of CUD
patients. We found impairment in inter-module communication (i.e., participation coefficient)
in CUD in individual and joint modalities. However, impairment in internode information com-
munication was observed in CUD only in joint modalities. These results demonstrate the utility
of multimodal fusion in unearthing latent network patterns which would otherwise be lost if
done separately.

Unimodal analysis indicated a reduced contribution of left caudate to inter-modular communi-
cation among the CUD when compared to HC in the fc-fMRI modality. The caudate nucleus,
a part of the striatum, has been described as a core region involved in habit learning, motor
behavior, and compulsive drug-seeking behavior [32]. This structure is the major integration
site of the cortico-basal ganglia-thalamic circuit in which psychostimulants such as cocaine in-
duce cellular, molecular and connectivity adaptations through the shifting of the predominance
of neuronal signaling, leading to the continued drug use [72]. The present findings are in line
with previous MRI studies which have found striatum alteration in CUD patients such as a re-
duced striatal volume [5] [47], morphological and microstructural changes [19][53], and altered
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functional connectivity[74] [23]. A lower inter-modular communication of the caudate nucleus
in CUD may be related to compulsive drug-seeking behavior.

Similar to our results, modeling pairwise relations between brain regions using topological
metrics in CUD patients has not been as clear to unravel network structure damage [75] [69]
[10]. However, using graph-theory-based multimodal fusion analysis, we found other subcortical
regions appearing in addition to the caudate nucleus found in the unimodal analysis. The joint
components involved subcortical nodes such as the putamen and thalamus, as well as in cerebral
cortex such as the anterior/posterior cingulate, parahippocampus, medial temporal, occipital
fusiform gyrus, and cuneal cortex, which are commonly associated with CUD [27] [50].

Brain networks of CUD patients revealed a lesser number of shortest pathways via nodes,
reflected by higher betweenness centrality (BC) in fc-fMRI modality (i.e. the contribution
rate of nodes in the information interchange with other nodes). This could be understood
better by taking into account the structural connectivity, as previously suggested by Ma et al.,
(2015) [34], Pacheco et al.[45], and described by Meade et al., (2021) [37]. A lower BC was
observed in the Temporo-occipital part of the middle temporal gyrus (TO2) in CUD, a region
related to multimodal sensory integration [39] and cognitively implicated in the organization
of communicative information [48], emotion recognition, empathic arousal, and retrieval of
relevant schemas (i.e. moral judgments) [18]. This region has also been shown to be impaired
in CUD [53][8] and associated with cue reactivity/craving in cocaine and other SUDs [11][61][65]
[71]. Regular cocaine abuse could negatively affect cognitive processing as well as high-level
socio-affective processes (i.e. moral judgments) that could lead to insensitivity toward negative
stimuli and antisocial behaviors [6].

On the other hand, the disruption of the bilateral anterior cingulate gyrus (ACC) in terms of
connectivity has been extensively observed in CUD patients [11][61][65] [71] [6] [58]. In recent
years, ACC is considered one of the main potential biomarkers and targets for brain stimulation
treatments, such as repetitive transcranial magnetic stimulation, due to the strong structural
and functional connectivity with the reward system and executive-salience networks [67] [76].
As reflected by our results, the disturbances in the communication of this region could lead to
the reorganization of brain networks observed in CUD [76]. Overall, the higher BC observed in
certain regions of CUD patients could be indicative of an alteration in the organization of the
functional networks. While the unimodal analysis did not reveal these functional changes, the
multimodal analysis resulted in identifying these alterations.

Although there have been few studies that have investigated the role of brain regions in inter-
network communication particularly, it is noteworthy that we found a lower participation coeffi-
cient (PC) in the caudate nucleus among the CUD when compared to HC in both unimodal and
multimodal analyses. The reduced participation coefficient displayed by the caudate nucleus
along with the posterior cingulate cortex (PCC) (internally oriented processing), an important
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region of the default mode network, suggests a reduced role they both play in inter-module in-
formation transfer in CUD when compared to HC. Previously, Liang et al.[29] reported a lower
PC of both anterior and posterior cingulate cortex in CUD, and connected with regions associ-
ated with executive control network (externally oriented executive functioning), explaining the
cognitive difficulties in these patients they also found a close connection of the caudate nucleus
over different brain networks altered in CUD [29][38]. Several studies have highlighted both
regions as critical hubs vulnerable to cocaine misuse and other SUDs [62][56]. One of the main
reasons may be the high metabolic costs involved in the process of integration and information
exchange within brain networks, both implicated and affected not only in SUD pathology, but
also in Alzheimer’s-type neurodegeneration, dementia and depression [29].

Employing graph theory analysis in a multimodal setting offered profound insights into the
connectivity changes. Previously, Schweitzer et al.[57] observed that individuals with prenatal
drug exposure (PDE) displayed lower global efficiency and a tendency towards reduced local
efficiency, particularly in the middle frontal gyrus (MFG). Additionally, Wang et al. [69] used
graph theoretical analysis to examine the Functional Connectome (FCM) in polydrug users,
primarily cocaine-dependent, finding enhanced functional connectivity across various brain re-
gions but decreased communication efficiency and diminished small-world characteristics. This
indicates a compromise in standard inter-regional communications and topology. Pacheco et al.
[45] demonstrated that in individuals with Inhaled Substance Abuse Disorder (ISAD), there is
an increase in BC across various subnetworks. Although the above studies employ unimodal
methodologies, their insights are instrumental in corroborating findings from the multimodal
fusion of graph-based measures. Our study showed an increased BC in several brain regions
in CUD patients, which aligns with the existing literature. Overall, These results might indi-
cate that the structural organization of the network, which underlies functional connectivity
networks, is altered. It is also evident that in substance abuse scenarios, the brain prioritizes
function, albeit with lessened efficiency. We can potentially conclude that nodes or brain re-
gions begin to play a more diffused and less efficient role in information communication and
functioning in disorders, especially in the case of substance abuse.

6.1 Limitations

Despite the findings, there are two main limitations in the present study. The first one is the
missed significance in tc-dMRI independent components and the other limitation is related to
the lack of correlation with clinical metrics. The no-group differences in the tc-dMRI modality
were observed in unimodal or multimodal analyses, which could be attributed to metrics based
on graph theory, which are used to detect higher-order relationships in the brain. In both
unimodal and multimodal analyses, these higher-order dependencies were manifested as distinct
functional differences. Furthermore, this could also explain the lack of correlations with clinical
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measures. In addition, the existence of a subclinical and/or cognitive profile within the CUD
group could also explain the lack of correlations with clinical measures. Since our aim is to
investigate broader patterns of connectivity across large brain regions with better granularity
we performed all the analyses using Harvard Oxford atlas. The choice of a specific parcellation
scheme influences the identification of connections, characterization of functional networks, and
insights into brain function and disorders. Furthermore, future studies can incorporate insights
gained by comparing connectivity patterns derived from various parcellation schemes.

6.2 Conclusion

In summary, we found unimodal and multimodal cocaine impairment on inter-module com-
munication and internode exchange communication only in a multimodal manner. Unimodal
results show a striatal decrease of the participation coefficient, but the applied supervised data
fusion could reveal other regions with cocaine-related impairments on joint-functional commu-
nication. Further research applying the combination of modalities, as in longitudinal protocols
is needed to develop better pre-treatment/post-treatment intervention designs and to provide
new insights into the neurobiological mechanisms of the SUDs.
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Chapter 7

Supplementary Study

7.1 Seed-based Connectivity

In a previous study by Rasgado-Toledo et al.[53], we found white and gray matter pathol-
ogy among interconnections between frontal hemispheres, frontal to parieto-temporal lobes and
subcortical regions. In this study, we expanded the results by investigating variability in func-
tional connectivity (FC) between regions identified with gray and white matter pathology in
cocaine use disorder patients (CUD). We included 63 CUD patients along with 42 matched
non-dependent healthy controls (HC), paired by age, sex, handedness and education, recruited
as part of the SUDMEXCONN database see Angeles-Valdez et al. [3]. FC was computed us-
ing time-series data based on the Desikan Killiany Atlas. We performed the Mann-Whitney
test for the identification of significant differences between groups. These were further checked
using a non-parametric permutation test (10,000 permutations). Results revealed significantly
greater FC between the right posterior cingulate (PCC) and postcentral gyrus for CUD than
HC. Although this region is outside the commonly studied mesolimbic-cortical system, this is
consistent with previous cocaine cue-craving-related task fMRI activations in PCC [14], and
higher activations to inhibition tasks within the postcentral gyrus for patients with positive
cocaine use [52]. We also found significantly decreased FC for CUD among several right hemi-
spheric regions of the prefrontal, subcortical and cerebellum, suggesting a pathological network
state. Interestingly, the higher connectivity between the PCC, a node of the default mode
network, and the postcentral gyrus, the primary somatosensory cortex, may imply an increase
in interoception possibly related to compulsive behaviour.

7.1.1 Connectivity Analysis

Functional connectivity was computed for selected regions based on the Desikan Killiany (86
regions). After an extensive literature survey, we identified 19 brain regions (refer table 7.1)
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that showed significant differences in connectivity at the group level. At an individual level,
for these 19 selected regions, the mean time series was extracted from each region, and the
functional connectivity was estimated by computing all pairwise Pearson correlations. Subse-
quently, we performed a non-parametric statistical test of difference called the Mann-Whitney
U test at the group level and identified significant group differences. We additionally estimated
the significance of the observed differences via a non-parametric permutation test (10,000 per-
mutations).

Results (Table 7.2) revealed that significantly greater connectivity was observed between the
right Posterior Cingulate and right Postcentral is higher for CUD than HC. On the other hand,
significantly decreased FC was observed between several right hemispheric regions for the CUD.

Figure 7.1 illustrates the connections between the node pairs that exhibited significant group
differences. The lower connectivity between prefrontal, subcortical and cerebellum regions
suggests a pathological network state. Interestingly, the higher connectivity between Posterior
Cingulate Cortex, a node of the default mode network, and the PostCentral gyrus, the primary
somatosensory cortex, may imply an increase in interoception possibly related to compulsion
behaviour.
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Table 7.1 Regions of Interest

Region of Interest Abbreviation
MNI coordinates

(X)

MNI coordinates

(Y)

MNI coordinates

(Z)

Left Lateral Orbitofrontal l.Lateralorbitofrontal -24.788431 28.715777 -16.968762

Left Middle Temporal l.middletemporal -57.751067 -30.2239 -13.290262

Left Parahippocampal l.parahippocampal -23.907604 -33.142327 -19.249481

Left ParsOpercularis l.parsopercularis -45.746763 14.555066 11.852166

Left ParsTriangularis l.parstriangularis -44.017232 30.266616 0.805347

Left rostral middle Frontal rMFG-L 33.96575 42.836306 17.683447

Left superior frontal l.superiortemporal -53.401526 -15.660875 -4.006122

Right Inferior Parietal IPG-R 44.34569 -61.781892 28.633137

Right Inferior Temporal r.inferiortemporal 50.781852 -31.732182 -26.194109

Right LateralOrbitofrontal LOC-R 24.236422 29.349355 -17.996568

Right ParsTriangularis r.parstriangularis 46.623897 29.45939 3.342318

Right Post Central PoG-R 42.365002 -22.476359 44.557213

Right Posterior Cingulate pCg-R 5.685813 -17.196104 38.859022

Right rostral middle Frontal rMFG-R 33.96575 42.836306 17.683447

Right Supramarginal SMG-R 52.104994 -33.127594 31.196859

Left Thalamus Thal-L 12 -18 9

Left Pallidum Pall-L 21 -3 0

Right Cerebellum Cerebellum-R -24 -65 -48

Right Thalamus Thal-R -12 -18 9
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Table 7.2 Pair-wise Mean Connectivity Differences
Node Pair(A-B) CUD HC P-value(Man Whitney) pfdr(Man Whitney)

rMFG.L-Pall.L 0.134 0.240 0.0177 0.035

IPG.R -Thal.R 0.149 0.294 0.008 0.0267

LOC.R-SMG.R 0.311 0.402 0.0475 0.0475

LOC.R-Cerebellum.R 0.366 0.488 0.0075 0.0267

PoG.R-PCG.R 0.335 0.233 0.0271 0.0387

pCg.R-Thal.R 0.171 0.266 0.0424 0.0471

rMFG.R-Thal.R 0.170 0.278 0.0339 0.0424

Thal.L-Cerebellum.R 0.137 0.243 0.0248 0.0387

Pall.L-Cerebellum.R 0.114 0.235 0.0071 0.0267

Cerebellum.R-Thal.R 0.161 0.278 0.0126 0.0315
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Figure 7.1 Seed-based Connectivity. The Black edge indicates a stronger connection in the

HC whereas the red edge represents a stronger connection in CUD.
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