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Abstract 

 

Evapotranspiration (ET) is one of the prominent hydrologic variables affecting water and 

energy balances and critical factors for crop water requirements and irrigation scheduling. ET 

is a complex hydrological variable defined by various hydro climatological variables. The 

major forms of ET which are widely applicable in hydrological, water balance, drought 

assessments and other ecological assessments are Potential (PET) and Actual 

Evapotranspiration (AET). PET represents the atmospheric water demand with a focus on 

climatological variables. AET is influenced by climate, vegetation, soil moisture, and the 

amount of available water and presents the annual water balance between precipitation and 

latent heat exchange. Various empirical formulations have been developed to estimate PET and 

AET depending upon the availability of hydrometeorological variables. These empirical 

formulations are region-specific and developed for particular climatic conditions. Furthermore, 

the empirical family of models has a major limitation as they require a large number of 

hydrometeorological inputs, limiting their utility in data-scarce areas of ungauged basins.  

 In this context, empirical and mathematical models have emerged as simple and readily 

implementable for estimating PET and AET with measured hydrometeorological parameters 

as independent variables. Such mathematical models can be valuable to predict PET and AET 

when climate data is insufficient. The present study compared various empirical models and 

data-driven algorithms to predict PET and AET using various hydroclimatic variables.  Four 

empirical methods, such as FAO-based Penman-Monteith method, temperature-based 

Hargreaves method, and radiation-based Turc, and Priestley-Taylor method, were used to 

estimate PET at a daily time scale. Five data-driven algorithms, such as Long short-term 

memory neural networks (LSTM), Artificial Neural Network (ANN), Gradient Boosting 

Regressor (GBR), Random Forest (RF) and Support Vector Regression (SVR), were 

implemented. Two empirical AET models, such as Budyko and Turc methods, were utilized in 

estimating AET. These models were evaluated over two different climatic regions, Hyderabad, 

the largest city of the Indian state, Telangana and Waipara in New Zealand, both with semi-

arid climates. Dataset consists of daily meteorological data of maximum and minimum air 

temperature, relative humidity, solar radiation, and wind speed over a period of 51 years (1965 

- 2015) for Hyderabad and for a period of 6 years (2010- 2016) for Waipara station. 



 
 
 

  

The Penman-Monteith method was considered as the standard method to compare the different 

models and various empirical models of PET. The models were trained and tested with climate 

variables as input variables and various empirical models as reference models. The most 

influencing climate variables on PET were found in the order of temperature, solar radiation, 

wind speed, and relative humidity, which formed as the basis to choose different datasets to 

train over models and compare the results to validate. Temperature and radiation-based models 

of Turc and Priestley-Taylor methods can be used to estimate PET when all other climate 

variables are not available as they are also promising with the Penman-Monteith method. The 

results indicated that 99% accuracy could be achieved with all climatic input, whereas accuracy 

drops to 86% with limited data.  Both LSTM and ANN models have been noted as the most 

robust models for estimating PET with minimal climate data. Even though the excellent 

performance can be achievable when all input variables are used, the study, however, found 

that even a three-parameter combination (temperature, wind speed and relative humidity 

values) or two-parameter combination (temperature and relative humidity, temperature and 

wind speed) can also be promising in PET estimation for a semi-arid climate.  

 The AET over semi-arid climatic conditions of Hyderabad, Telangana, India and 

Waipara (New Zealand) was estimated using modelled and different empirical methods-based 

PET using Budyko and Turc models. The proposed empirical-based AET models, Budyko and 

Turc, showed that the AET process has the potential to be estimated by structurally simple 

methods. Equation-based AET methods made it possible to extract useful information about 

the hydrological process. It was observed that the meteorological variables of temperature and 

solar radiation have more significant contributions than other variables in the estimation of 

AET. In addition, the effects of the meteorological variables were found to be essential and 

effective in the estimation of AET. The research findings of the study reveal that under limited 

data availability, the best input combinations were identified as temperature and wind speed 

for estimating PET; temperature, wind speed and precipitation for estimating AET for semi-

arid climatology. Overall, the research findings of the study stress on the use of limited data in 

understanding the complex hydrological processes such as PET and AET using data-driven 

and empirical-based approaches for diverse climatological conditions.  
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Chapter1 

Introduction 

1.1 Background 

Among the many issues associated with prolonged drought is plants inability to extract water at a rate 

fast enough to keep up with the rates of Evapotranspiration (the combined loss of water from plant 

transpiration and soil evapotranspiration) that atmospheric conditions allow.  Evapotranspiration (ET) 

is when water starting from an expansive scope of sources is moved from the soil and vegetation layer 

to the atmosphere. Water loss from a vegetative surface through the consolidated cycles of plant 

transpiration, soil and atmospheric evaporation. ET from the land surface is critical for maintaining the 

balance of land surface water-lakes-reservoirs as well as the energy balance of the earth's surface. The 

best possible assessment of ET is an essential issue in food security research, land management 

frameworks, contamination recognition, irrigation planning and scheduling, hydrological balance 

studies, and watershed hydrology. Knowledge of ET is essential while managing water resources and 

management problems, such as the stipulation of the water for irrigation, agriculture, drinking and 

industrial use, or water reserve management.  ET also offers potential advantages for irrigation 

management. Many studies have also shown that at least 70% of surface precipitation returns to the 

atmosphere via ET, with the figure rising to over 90% in drought areas. Accurate ET estimations have 

critical applications in water resource assessment, vegetation drought monitoring, and ecological water 

use.  

1.2 Motivation 

Many researchers are interested in monitoring and simulating various hydrological processes in 

different regions [1]. The various hydrological processes that drive the hydrology of different regions 

can be simulated as a single system, which is complicated by the interdependence of the various 

processes. By monitoring and simulating these processes, one can gain a better understanding of 

hydrology and allow the implementation of more efficient water resource management and future 

reclamation designs. ET is a necessary hydrological process that must be monitored and modelled. 

Almost 62 percent of the precipitation that falls on continents is returned to the atmosphere via ET [2]. 

ET is the most significant annual loss of water in the sub-humid climate of northern Alberta 

[3],demonstrating its critical role in the hydrological system. ET can be expressed conceptually as either 

potential or actual Evapotranspiration. The maximum loss of water from a short green crop under 

specific climatic conditions when unlimited water is available is referred to as potential 
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evapotranspiration (PET). The rate of Evapotranspiration from a well-defined reference environment is 

defined as reference evapotranspiration (ET0), a commonly used concept in engineering and scientific 

practises (e.g., well-watered short grass). The actual evapotranspiration (AET) rate is the rate at which 

water is removed from a surface to the atmosphere as a result of the evapotranspiration process. In 

hydrological analysis, AET is the preferred form of ET because, in most cases, limited water is available 

for ET, and the actual rate of water loss is of interest. 

AET and PET are critical from a variety of perspectives, including reliable quantification of 

hydrological water balance, hydrological design, water resource planning and management, irrigation 

system design, and crop yield simulation. The understanding of the temporal variations of PET and 

AET time series, as well as the meteorological variables influencing them, can be considered a step 

forward in the overall goal of better understanding and management of hydrological systems. Hence, 

the exact calculation of PET and AET is fundamental in improving irrigation efficiency, water reuse 

and seepage control [4], [5]. Motivated by the increased number of ML models and neural networks 

involved in environmental and hydrological monitoring, the study proposed a method to estimate PET 

and AET from limited climate data using ML algorithms. There are several modifications to the 

standard FAO Penman-Monteith equation that enables us to use limited climatic data for estimating 

PET. However, these equations have to be adjusted locally depending on the different climatic 

conditions. This study has used five different ML models in order to determine the uncertainty of 

different models that explain PET and AET processes. AET and PET were modelled, estimated, and 

analysed for two different climatic stations to study the suitability of the models and input variables for 

diverse climatic conditions. More specifically, the uncertainties of hydrological data limitations and 

implementation of state-of-the-art ML models to estimate ET with a focus on region-specific parameters 

has formed the basis for the present study. The primary motivation of the study is to address the 

uncertainty due to limited hydrological data in estimating ET, the most prominent hydrological variable 

using the state-of-the-art ML models. The main hypothesis of the study is that compared to standard 

empirical-based models, which are region-specific and require various hydro climatological data, ML 

models can be promising in estimating ET, which can serve as a basis for many hydrological 

applications. The proposed hypothesis was studied by comparing the PET and AET estimates resulting 

from various empirical models and ML models for two different climatic regions of Hyderabad (India) 

and Waipara (New Zealand) under limited data scenarios. 

1.3 Introduction 

Evapotranspiration (ET) is one of the most critical components of the hydrological water cycle affecting 

terrestrial water-energy balances. AET is a significant component of the water balance and is generally 

utilised in agronomy, hydrology, climatology, meteorology, ecology and environmental sciences [6]–
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[9]. Two more closely related types of ET are PET and reference evapotranspiration (ET0). Although 

both PET and ET0 provide estimates of atmospheric evaporative demand, they are based on different 

ideas, concepts, application fields and have different equations that can help to differentiate the terms. 

However, many researchers have treated PET and ET0 as identical concepts and used similar equations 

for their estimation [8], [10]–[12]. Designers and specialists of hydrology presented the PET idea in the 

last part of the 1970s and mid-80s to stay away from the ambiguity that existed in the definition of PET 

[13]. The first idea of PET was proposed by Thornthwaite [14],and that core idea with improvements 

are being used now. The PET was characterized by Penman [15] as the maximal water amount moved 

to the climate, from vegetation spread in a condition of full physiological activity and unlimited water 

and supplement accessibility [14]. PET has been applied primarily in hydrology, meteorology, 

climatology, agronomy, agriculture, irrigation, and ecology. The accurate estimation of PET is essential 

in irrigation planning, scheduling, hydrological balance studies, and watershed hydrology [16], [17]. It 

has a broader significance in numerous fields of research, including crop yield simulation, optimization 

of water loss, management and irrigation system design, water usage improvement in agriculture, and 

hydrologic water balance. 

The laws of mass or energy conservation or both were always associated with the evaluation of 

PET. In recent years, various PET estimating procedures and modelling methods are available in the 

literature. The PET equations were classified as temperature, radiation, and pan-evaporation based on 

[6]. PET assessments can be performed utilizing distinctive exploratory methods, for example, the leaf 

(porometer), an individual plant (for example, lysimeter), at the field scale (for example, field water 

balance, Bowen proportion, scintillometer) and landscape scale (for instance eddy correlation and 

catchment water balance) [18]. However, some of these techniques are not practical over a vast region 

because of regular maintenance and significant expense [19]. Allen [10]referenced that the main factor 

influencing PET is climatic variables so that PET can be surveyed by experimental and semi-

experimental equations from meteorological data. Numerous strategies dependent on climatic data have 

already been proposed. However, the FAO suggested that the Penman-Monteith model can be utilized 

as the standard method to assess PET [10]. This equation has been utilized worldwide for benchmark 

ET assessments [10]. Nonetheless, when computing PET by the Penman-Monteith model, loads of 

climatic factors, including temperature, wind speed, solar radiation, and relative humidity, are required, 

which can be considered as significant limitations. In some cases, these factors are incomplete or not 

accessible in a given meteorological station, particularly in developing nations [20]. Consequently, it is 

fundamental to build up a more precise methodology that could compute PET with high accuracy, 

particularly in data-scarce regions. 

Explicit standardized equations and procedures are being suggested for PET estimates and are typically 

modelled utilizing climate data and algorithms that depict surface vitality and aerodynamic qualities of 

the vegetation.  Several empirical models for assessing PET with limited data can also be categorized 
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as mass exchange-based, temperature-based, radiation-based, pan-evaporation based, and combination 

type [20]. Penman[15]inferred a model for measuring evaporation from open surfaces by the mix of 

vitality offset with mass exchange techniques. Priestley & Taylor [21] proposed the radiation-based 

Priest-ley–Taylor model, a rearrangement of the Penman model. George H. Hargreaves & Zohrab A. 

Samani [22]proposed the temperature-based Hargreaves model, which was perhaps the least 

complicated strategy. Eleven temperature-based PET techniques like Thornthwaite [14]Mc cloud [23], 

Hamon [24], Hamon [25], Oudin [26], Baier and Robertson[27], Papadakis [28], Malmström [29], 

Hargreaves and Samani, Camargo [30]were evaluated for assessing PET and were discovered that the 

Hargreaves method gave an excellent performance in arid, semi-arid, temperate, cold, and polar 

atmospheres [13]. Because of the reliance on different climatic components, several researchers 

considered the calculation of PET as a complicated non-direct regression process and have progressed 

the assessment of PET models using computing procedures, for example, prepared Artificial 

Intelligence (AI), Machine learning models, and statistical regression approaches [31]. 

 1.4 Problem definition 

Evapotranspiration is one of the least measured components of the water cycle due to the expensive and 

time-consuming requirements for direct measurement methods [32]. As a result, for estimating PET, 

indirect methods ranging from empirical relationships to complex combined equations like Soil water 

balance, Weighing lysimeters, Micrometeorological approaches, Energy balance and  Bowen ratio, 

Aerodynamic method, Eddy covariance plant physiology approaches, Sap flow method, Chambers 

System, Penman-Monteith, crop coefficient methods are used. 

PET measurement methods are based on concepts that can be critical in semi-arid environments for a 

variety of reasons, including representativeness (for example, the weighing lysimeter), instrumentation 

(for example, air humidity sensors), microclimate (advection regime), and the hypothesis of 

applicability for the simplified aerodynamic method. Thus, in order to determine the degree of accuracy 

of the obtained PET measurement and the validity of a method, all of these parameters must be 

considered. Estimation methods based on an analytical approach may be very accurate, but they are 

usually insufficiently practical. AET is dependent on available soil moisture and, as a result, is region-

specific, making its modelling or estimation more difficult than PET. AET is currently estimated 

indirectly and in relation to PET estimation models, using approaches that require soil moisture 

information in order to account for the water supply deficit in the estimation of the AET. However, in 

many cases, soil moisture is not readily available, limiting the applicability of this method. Given the 

drawbacks and limitations of current PET and AET modelling methods, there is an urgent need to 

develop techniques that can accurately estimate PET and AET values based on conventionally and 

readily available meteorological variables while also being simple to implement. Furthermore, it is 
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challenging to develop mechanistic models for some complex hydrological processes, such as PET and 

AET, because the underlying physics of the PET and AET processes can sometimes be too complicated 

to be accurately represented in a physically based manner. As a result, the data-driven modelling 

approach that can provide a model to predict and investigate the process without requiring a complete 

understanding can be helpful. The knowledge discovery property of the modelling approach is also 

appealing. Using machine learning models, one can extract useful implicit information from large 

amounts of data and improve one's understanding of the underlying process. 

Machine learning (ML) techniques are modern data-driven modelling methods that arose as a result of 

advancements in computer technology and mathematical algorithms. These techniques are typically 

used to characterise complex systems that are difficult to understand, analyse, and model. Artificial 

neural networks (ANNs), Long Short term memory (LSTM), Random Forest (RF), Support vector 

regression (SVR), Gradient boosting regression (GBR) are few ML techniques that use artificial 

intelligence to model complex systems. These are the computational models that simulate the functional 

aspects and can be used to model complex relationships. These have been frequently employed in the 

characterization of the PET/AET process, and in the selection of limited inputs and in the selection of 

the best method to be employed in estimating PET/AET. The current study gives a comparison of five 

ML-based models to discover the best model for assessing daily PET and generating AET using the 

modelled PET under the state of minimal input variables in the semi-arid atmospheres in two unique 

areas, for example, Hyderabad, India and Waipara, New Zealand. 

 

1.5 Objectives of the Thesis 

 

The overarching goal of this research is to model and analyse the PET and AET hydrological process 

using data-driven techniques under limited input combinations. The purpose of this research is to 

develop different ML models, SVR, LSTM, RF and GBR, for modelling PET in Hyderabad and 

Waipara Stations and to assess the performance and stability of these models with different input 

combinations over the two stations. The purpose is also to find an appropriate approach to boost the 

modelling performance under the limited input factors condition. It would also be interesting to see if 

data-driven models can reveal anything about the PET and AET function and its most influential 

variables. The contribution of meteorological variables to PET and AET is also of interest and will be 

investigated using four different machine learning models as a modelling input determination approach. 

The study's specific goals are as follows: 

1) To assess the applicability and validity of different empirical based-PET methods such as Priestley-

Taylor, Hargreaves, and Turc methods in comparison with the standard Penman-Monteith model 

estimates for two different climatological regions. 



 
 
 

6  

2) To assess the applicability of different ML models, ANN, SVR, LSTM, RF and GBR in comparison 

with the standard Penman-Monteith model estimates for two different climatological regions. 

3) To utilise and assess the best performance of the modelled PET in estimating AET for two different 

climatological stations. 

4) To identify the most prominent meteorological variables influencing the PET and AET process under 

diverse climatic conditions 

5) To find an appropriate empirical and ML approach to boost the modelling performance under the 

limited input factors condition. 

 

1.6 Scope of the Study 

 

The current study aims to create a framework for better understanding the dynamics of various 

hydrological functions that drive hydrology in different climatic regions. The overall findings of this 

study will aid the scientists in developing a better understanding of the hydrological processes and their 

need in estimating the terms of hydrological processes under limited data. 

1.7 Thesis Organisation: 

This thesis is organised into five chapters as follows: 

• Chapter 1 provides a background, introduction to PET and AET and its motivation and 

objectives. 

• Chapter 2 contains the detailed literature on PET and AET and the methods to estimate them. 

It also contained the detailed literature on the machine learning models employed in estimating 

PET and AET. 

• Chapter 3 contains an introduction to the study area and the datasets. 

• Chapter 4 contains different ML models used in the study. 

• Chapter 5 contains estimation of PET using ML models and empirical methods in the context 

of limited data for different stations and their comparison to find the best method to be utilised 

to estimate PET under limited data. 

• Chapter 6 contains an estimation of AET utilising the modelled PET from chapter 5 and their 

comparison between the two AET methods. 
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• Chapter 7 summarizes the study's research findings and discusses the applications, conclusions 

and potential extensions to the study. 
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Chapter 2 

Literature Review 

2.1 Introduction 

Water availability is an essential factor in almost every other economic activity, including industry, the 

energy sector, and public use. Water availability has become an issue in recent years in most parts of 

the world, as periods of prolonged drought have stressed both agricultural and non-agricultural sectors. 

Since the 1980s, global water consumption has increased by about 1% per year, owing to a combination 

of population growth, socio-economic development, and changing consumption patterns. Stress levels 

will continue to rise as water demand rises and the effects of climate change worsen [33]. As a result of 

this increase, groundwater supplies have been depleted, which worsens during droughts as industries 

that usually use surface water switch to subsurface aquifers for water. In agricultural water management 

also the water availability and demand of crops play a major role. Water is naturally provided to crops 

through precipitation and subsurface moisture, but when these supplies are insufficient for crop use, 

agricultural water managers must resort to irrigation. Agricultural water managers must understand the 

environmental demand for surface water in order to schedule irrigation properly. This surface water 

loss is primarily caused by evapotranspiration (ET). Thornthwaite [14]defined evapotranspiration, both 

actual and potential, in 1944, and the term became widely known and used following his 1948 

publication, in which PET was calculated as a complex empirical function of air temperature and day 

length. However, the word first appeared in print in 1937, albeit without explanation or definition and 

in a hyphenated form. 

ET is the process of returning water to the atmosphere via evaporation from open water, soil, and plant 

surfaces, as well as transpiration from plants [34]. In theory, evaporation is a diffusive process that 

obeys Fick's first law and can be expressed as a function of vapour pressure deficit (at the evaporating 

surface and overlying air) and wind speed. Evaporation causes heat loss from the evaporating surface 

in the form of latent heat, which can be compensated for by radiative or sensible-heat transfer or by heat 

transfer from within the evaporating body to the surface [35]. Energy availability, water availability, 

vapour pressure gradient, wind, and atmospheric conductance are the four basic factors involving the 

evaporation mechanism. Any other parameters such as atmospheric pressure, water quality, water depth 

and soil type also affect the evaporation process [36]. 

Transpiration is the evaporation of water from a plant's vascular system into the atmosphere as a result 

of photosynthesis. Water is absorbed from the soil through the roots and transported to the leaves via 

the vascular system of the roots, stem, and branches. The water is then transferred from the leaf's 

vascular system to the stomatal walls, where it evaporates. Water vapour is then released into the 
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atmosphere via the leaf's openings known as stomata. Energy availability, water availability, humidity, 

temperature, ambient CO2 concentration, and wind speed all limit transpiration. Plant species play a 

role by influencing the leaf conductance and the plant adaptation to water availability [35]. 

Evaporation component, including the return of water to the atmosphere via direct evaporative loss from 

the soil surface, standing water (depression storage), and water on surfaces  (intercepted water) such as 

leaves or roofs, can be combinedly termed as Evapotranspiration (ET) [37]. Evaporation and 

transpiration happen simultaneously, and there is no easy way to tell them apart. Aside from water 

availability in the topsoil, evaporation from a cropped soil is primarily determined by the fraction of 

solar radiation that reaches the soil surface. As the crop develops and the crop canopy shades more and 

more of the ground area, this fraction decreases over the growing season. When the crop is small, water 

is lost primarily through soil evaporation; however, once the crop is mature and completely covers the 

soil, transpiration becomes the primary process. Because of the importance of ET in the water cycle and 

hydrological management, as well as the high cost and sensitivity of measuring equipment, extensive 

efforts have been made to model the ET mechanism. Many methods for estimating ET in various 

climatic conditions using various predictor variables have been developed, revised, and proposed. There 

are numerous methods for estimating evapotranspiration, ranging from those that account for 

evaporation from the water surface to a variety of PET estimates, but the majority of them only consider 

evapotranspiration from a single underlying surface, such as water, bare soil, or vegetation, while 

ignoring water balance. These methods treat evapotranspiration as a static quantity to be estimated 

rather than as an important process of the hydrological cycle. Recent advances in remote sensing 

methods can estimate basin-scale evapotranspiration, but due to technological limitations, this 

estimation is difficult to meet the diverse spatiotemporal scale requirement. 

A related concept is PET, which is simply the amount of water lost from the surface to the atmosphere 

if the soil/vegetation mass had an infinite supply of water [34], [35], [37]. PET is the sum of soil 

evaporation and plant transpiration. It only happens at the potential rate when the amount of water 

available for this process is unlimited. The rate of evaporation is affected by climatic conditions, 

specifically the sun's radiative energy, wind, the air's vapour deficit, and temperature. The Penman-

Monteith equation is frequently used to calculate PET from these measurements. It can also be estimated 

from readily available rainfall and temperature data using simple equations like Thornthwaite's, which 

has been done for over sixty years. Open pan evaporation measurements are another source of 

information [14]. Because PET assumes that water availability is not an issue, vegetation would never 

wilt (the point where there is not enough water left in the soil for a plant to transpire). As a result, the 

only limitation to the plant's transpiration rate is due to the plant's physiology, not to any atmospheric 

or soil moisture restrictions [34]. As a result, PET is defined as the maximum ET rate achievable with 

a given set of meteorological and physical parameters [35]. 
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Another major form of ET which has wide application in water balance and crop water assessment 

studies is Actual Evapotranspiration (AET). AET is the rate at which water is removed from a surface 

to the atmosphere as a result of the evapotranspiration process. In hydrological analysis, AET is the 

preferred form of ET because, in most cases, limited water is available for evapotranspiration and the 

actual rate of water loss is of interest. Estimates of AET based on hydrological models take into account 

the influence of water and energy and can be calculated at various spatial and temporal scales, allowing 

the results of such estimations to meet the demand for water resource assessment and management [38]. 

There are numerous ET estimation methods based on existing hydrological models, each with its own 

set of data input requirements. Simultaneously, the accuracy of their output results is rarely compared. 

Several variables influence the AET process, such as (solar radiation, temperature, humidity, and wind 

speed [10], [35], [39]. Furthermore, the physical characteristics of the vegetation and soil play an 

important role in the ET process. Leaf shape, growth stage, crop height, and leaf albedo, for example, 

are all important factors in controlling transpiration functions [10]. Furthermore, stomatal resistance is 

an important factor. Stomatal resistance is defined as the restriction of water vapour diffusion back to 

the atmosphere by the guard cells surrounding the stomatal opening [39]. Finally, soil properties such 

as heat capacity, albedo, and soil chemistry can all impact ET [10]. These factors, together with stomatal 

resistance, are referred to as bulk surface resistance [10]. 

2.2 Developments in Estimation of Potential Evapotranspiration 

As previously stated, PET is the ET from a vegetated surface with an infinite supply of water. However, 

because PET is still dependent on vegetation-specific characteristics (as previously mentioned) rather 

than solely meteorological variables, there was a determined need for a reference surface that was 

independent of vegetation and soil characteristics [10], [40]. This reference surface would allow for the 

analysis of the "atmospheric evaporative demand," leaving only meteorological factors to be considered 

[10], [40]. 

This simplifies ET calculation by generating a single surface against which other surfaces (e.g., different 

vegetation types) can be compared. Furthermore, using such an ET term would eliminate the need to 

vary the ET equation at various stages of vegetative growth [10]. This new type of ET referred to as 

PET, simply “expresses the evaporating power of the atmosphere at a specific location and time of year” 

[10]. PET is a term in which the transpiring vegetation has explicitly been defined. 

Short, clipped grass and alfalfa have been used as common reference surfaces [10], [15], [40]–[46]. The 

reference surface (grass) has typically been chosen by researchers based on the availability of relevant 

data. Grass has bulk stomatal resistance and exchange values similar to many agricultural crops, but 

short, clipped grass has more experimental data. As a result, the FAO chose grass as the primary 

reference surface for international use [47]. It was also debated which model should be used as the 
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standard model for computing PET. Doorenbos [43]proposed four methods (FAO-24 Blaney-Criddle, 

FAO-24 Penman, FAO 24 Radiation, and FAO-24 Pan Evaporation) for estimation of PET. Smith 

[48]was the first to advocate using the Penman-Monteith model as the primary model for computing 

PET. This recommendation was made based on the model's previous performance and the model's 

incorporation of plant physiological and aerodynamic micrometeorological factors [10], [40], [44]. 

With the publication of Penman-Monteith in 1998, the Penman-Monteith equation was officially 

adopted as the FAO-recommended model [10]. 

With the Penman-Monteith equation chosen as the most dependent PET equation, the physical, 

physiological, and aerodynamic parameters for the reference grass had to be determined. The FAO 

selected parameters for a hypothetical grass with a crop height of 0.12 m, an albedo of 0.23, and a fixed 

surface resistance value of 70 s m -1[10]. These parameters are very similar to the parameters of clipped 

Alfa fescue grass found in the weighing lysimeters in Davis, California- a site used extensively in PET 

research [10], [42].The Penman-Monteith model was chosen as the PET standard, and the fixed 

hypothetical parameters standardizing the calculation of PET. As a result, the plant physiological and 

soil factors are ignored in the PET calculation. Furthermore, a baseline value of PET is calculated, 

allowing for objective comparison of PET across climates. It also allows for the simplified calculation 

of crop coefficients for various crop varieties, which are used to adjust ET to a value specific to a 

specific crop at a specific time in the crop's growth [10]. 

The modified Penman-Monteith 56 equation being recommended for the calculation of PET and 

calibration of other equations by various international organizations such as the United Nations Food 

and Agriculture Organization (FAO) and World Meteorological Organization [10], [49]. The Penman-

Monteith equation has two critical advantages. First, it can be used in a wide variety of environments 

and climate scenarios without any local calibrations because of its physical basis. Second, it is a well-

documented method that has been validated using lysimeters under a wide range of climate conditions 

[50]. The main drawback of this equation is that it requires data on a large number of climate variables 

that are unavailable in many regions. The major limitation to the Penman family of models is that they 

require many meteorological inputs, thereby limiting their utility in data-sparse areas [35], [37]. The 

equation employs aerodynamic and surface resistance terms, with the aerodynamic resistance being 

relatively simple to calculate. Surface resistance, on the other hand, is difficult to calculate. According 

to the researchers [51],using the Penman-Monteith equation in advective conditions would 

underestimate PET because the equation is not completely capable of incorporating the horizontal flow 

of sensible heat flux. 

Apart from the Penman-Monteith model, various PET methods have been developed and are being 

utilized, depending upon the availability of meteorological variables. Empirical models for PET 

estimation, i.e., statistical functions of approximation between meteorological variables and values, can 

overcome the difficulties associated with data availability for ET estimation [52], [53]. Among these, 
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Priestley-Taylor [21], Thorn Waite[14], Hargreaves [42], Turc (1954) are well-established models. 

These empirical models vary in terms of solar radiation, temperature considering the physical processes 

of radiation and transport characteristics of natural surfaces. An empirical model such as The Priestley-

Taylor equation [21]can estimate regional monthly ET provided that the adjustment factor is adapted to 

different site conditions [54]. The Hargreaves and Samani equation is an empirical approximation of 

the PET  calculation based on maximum and minimum temperatures and extra-terrestrial radiation data 

[42]. The Hargreaves model has conceptually similar versions, both of which are intended to be 

computationally simple and applicable to a wide range of climates using only commonly available 

meteorological data. This model was designed to simplify previous versions even further by limiting 

the amount of measured meteorological data to air temperature and by substituting extra-terrestrial 

radiation (Ra) for measured sunshine or radiation data [10], [42]. The FAO later adopted the Hargreaves 

and Samani model for use in areas where air temperature alone is insufficient. 

Nevertheless, the superiority of the Penman-Monteith method over the Priestley Taylor equation has 

recently been demonstrated carried out surface polynomial regression analysis using hourly solar 

radiation, air temperature, and relative humidity (RH) to estimate PET [55], [56]. A much simpler 

alternative is the Thornthwaite scheme [14],as it requires only temperature as input data. However, this 

approach has been found to underestimate PET  under arid conditions and overestimate in a humid 

climate [57]. 

To this end, over the last 50 years, numerous scientists and specialists worldwide have 

developed a large number of more or less empirical methods for estimating PET from various climatic 

variables. Relationships were frequently subjected to stringent local calibrations and were found to 

have limited global validity. Testing the accuracy of the methods under new conditions is time-

consuming, labour-intensive, and expensive, yet evapotranspiration data are frequently required on 

short notice for project planning or irrigation scheduling design. Guidelines were developed and 

published in the FAO Irrigation and Drainage Paper No. 24 'Crop water requirements' to meet this need. 

To accommodate users with varying data availability, four methods for calculating PET were presented: 

the Blaney-Criddle, radiation, modified penman, and pan evaporation methods. In comparison to a 

living grass reference crop, the modified Penman method was thought to provide the best results with 

the least amount of error. The pan method was expected to provide reasonable estimates depending on 

the location of the pan. The radiation method was proposed for areas where available climatic data 

included measured air temperature, sunshine, cloudiness, or radiation but not measured wind speed or 

air humidity. 

Several researchers examined the performance of the four methods (Blaney-Criddle, radiation, 

modified penman, and pan evaporation) in various locations. Although the results of such analyses 

could have been influenced by site or measurement conditions or by bias in weather data collection, it 

became clear that the proposed methods do not behave consistently across the globe [15], [41], [58]. 
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Deviations from computed to observed values were frequently found to exceed FAO ranges. For low 

evaporative conditions, the modified Penman-Monteith was frequently found to overestimate PET by 

up to 20%. The other FAO-recommended equations demonstrated varying adherence to the standard 

PET. The comparative studies also summarised that to achieve satisfactory results; the penman methods 

may necessitate local calibration of the wind function. The radiation methods perform well in humid 

climates where the aerodynamic term is small, but in arid conditions, the performance is erratic and 

tends to underestimate PET. Temperature methods are still empirical and require local calibration to 

produce acceptable results. A possible exception is the Hargreaves method from 1985, which has 

produced reasonable PET results with global validity. The shortcomings of predicting PET from open 

water evapotranspiration are clearly reflected in pan evapotranspiration methods. 

As the Penman-Monteith model has come to be accepted as the standard PET equation, many studies 

are looking into how other PET models, particularly those with fewer data requirements, compare to 

the PM model. Amatya [59]used data collected intermittently from 1982 to 1994 to compare 

Hargreaves-Samani, Priestley-Taylor, Makkink, and Turc to penman-Monteith at three sites in North 

Carolina. Amatya [59]discovered that Turc was the best model for simulating PET estimates at annual 

and monthly time scales comparable to the Penman-Monteith model. On a daily basis, Turc performed 

best at one site, while Priestley-Taylor and Makkink performed best at the other two sites. It was also 

discovered that the Makkink underpredicted PET during peak months, whereas temperature-based 

methods (including Hargreaves-Samani) overpredicted PET [59]. PET models typically outperform in 

the climates for which they were designed. According to Amatya [59], while the Makkink model 

performed well overall in North Carolina, it underestimated PET during the peak months of summer. 

Nonetheless, the Makkink model performs admirably in Western Europe, where it was developed, both 

in comparison to Penman-Monteith and measured PET data [32], [38], [60]. This observation is 

supported by research by [11], [61]. The implication is that some models, such as Makkink, may not 

perform well in humid climates. This may not be true in all circumstances. Several authors [11], [59], 

[62] demonstrated that the Turc model, designed in Western Europe [40],performs well in warm, humid 

climates such as those found in North Carolina [59], India [62], and Florida [11].The best model to 

simulate the Penman-Monteith method is frequently determined by data availability. George 

[62]investigated a decision support system that chose the best PET model based on data availability and 

the climate of the location under consideration. They discovered that specific models, such as 

Hargreaves-Samani, perform best when only maximum and minimum air temperature data are 

available. George [62]also looked at PET estimation at three different locations, with daily and monthly 

comparisons in India and Davis, California, and a monthly-only site in India. Both sites in India have 

humid climates, whereas Davis has an arid climate [62]. 

When compared to the Penman-Monteith model, the FAO 24 Radiation model overestimated PET for 

Davis, while Priestley-Taylor and Turc both underestimated PET [62]. The results of [62]show that the 
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FAO 24 Blaney-Criddle model overestimated the Penman-Monteith method, whereas the Hargreaves-

Samani model was within 1% of the penman model. The results of [62]show that the FAO 24 Blaney-

Criddle model overestimated the penman method, whereas the Hargreaves-Samani model was within 

1% of the Penman model. This is not surprising given that Hargreaves-Samani was created using Davis 

data [11], [62]. Priestley-Taylor and Turc tended to underestimate PET at the Indian sites, with the 

behaviour of the remaining models being site-dependent [62]. The study by [62]is similar to that of 

[11],which looks at the performance of PET models in Gainesville, Florida. The conclusions were 

similar, with the recommendation that most temperature models need to be calibrated locally if they 

were not designed for the climate in which they were used. Irmak [11]also pointed out that model 

selection is heavily influenced by the availability and quality of meteorological data. It should also be 

noted that while  Irmak provides an informative study of  PET models in a humid climate, the study 

only uses data from one location. Ravazzani[63]also compared the  Hargreaves 

and  Samani  (1985)  equation to the Penman-Monteith equation for daily time steps in alpine river 

basins and found the Penman-Monteith method performed well in India to calculate PET. They found 

that  Penman’s method seemed more realistic in estimating the mean annual  PET distribution over 

India.  The advantage of the Blaney Criddle method is the simplicity, and the disadvantage is that it 

underestimates PET grossly compared to the measured PET values [64]. The empirical models have the 

advantage of being simple and employing a limited number of meteorological variables; however, 

reasonable estimation of model parameters is required for local applications. This is regarded as a 

limitation of empirical PET prediction models. 

2.3 Estimation of PET using Machine Learning Models 

Most hydrologists and modellers are concerned with improving the predictive ability to understand the 

important terms of hydrological processes [65]. These data-driven modelling techniques have been 

developed as a new approach for simulation and prediction resulting from recent developments in 

hydrology using computer technologies and new mathematical algorithms [66]. In the past decades, 

there has been a widespread interest in the application of data-driven modelling and ML techniques in 

the field of water resources and hydrology [67], [68]. 

Although several methods for predicting PET have been developed around the world, there are 

only a few models for estimating PET when meteorological data is limited or insufficient. Empirical 

models can be the best choice for estimating the PET given the availability of meteorological variables. 

As a result, to overcome this limitation, several researchers considered the calculation of PET as a 

complicated non-direct regression process and have progressed the assessment of PET models using 

computing procedures, for example, Artificial Intelligence (AI), Machine learning models, and 

statistical regression approaches. Extensive research has been conducted in order to develop more 
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reliable and efficient models to estimate PET. The major types of ML models used for PET estimation 

were based on Artificial Neural Network (ANN), Support vector regression (SVR), Gradient boosting 

methods (GBR), Random forest methods (RF), Long short term memory (LSTM), deep learning 

models, gene expression programming, etc. Granata (Granata, 2019) applied Support Vector Regression 

(SVR) and Regression Trees to predict wastewater quality indicators in urban catchments. Tree models 

were used to evaluate sediment transport [69], to predict flood[38], to make predictions of the mean 

annual flood [70], to estimate scour depth due to waves [71], to forecast sediment yield in rivers [72]. 

Ensemble methods were employed to tackle wastewater hydraulics problems[73]. Further examples of 

relevant applications of machine learning techniques to hydrological prediction problems are provided 

by the works of [38], [73]–[78].RF models are also one of the have supervised ML approaches, which 

are popular in ML [69], [79]–[82] and are frequently used in hydrology [7], [83], [84]. They tend to 

have a low bias; also, you can increase the depth to decrease bias error. In several research studies, 

SVR, which is focused on systemic risk minimization to prevent overfitting [84]. SVR was adopted 

over ANN due to the solution's uniqueness and globalization [85]. The SVR has been commonly used 

in engineering [79], [86], [87]. Its evapotranspiration applications are also quite impressive[74], [88]. 

Dibike [2]firstly applied the SVM approach for rainfall-runoff modelling in hydrology. As a data-driven 

technique, ANNs can determine the critical model inputs [89]. The Artificial Neural Network (ANN) 

has also been a widely applied machine learning algorithm in water resources engineering, including 

PET [67]. 

In recent years, ANN algorithms have largely been applied in the field of  PET  estimation. 

Kumar [67]developed ANN models for the estimation of PET  and found that the ANNs could predict 

PET better than the conventional empirical methods. More recently, Ehteram [90]investigated the 

modelling of PET using ANNs with the Levenberg Marquardt training algorithm and inferred that 

ANNs could be employed successfully in modelling PET from available climate data. Jain 

[91]interpreted the physical meanings of ANNs for PET estimation. Some of them utilized the 

comparable climatic data required for the application of the FAO Penman-Monteith method [47], [92], 

[93]. These researchers reported that the ANN can anticipate PET ever better than the FAO Penman-

Monteith conventional method. [94], [95]simplified the input variables, and PET was evaluated as a 

function of air temperature, extra-terrestrial solar radiation, and daylight hours. The performance of 

four climate-based methods and Artificial Neural Networks (ANNs) was compared for PET estimation 

when input climatic parameters are insufficient to apply the FAO Penman-Monteith method [96]. They 

concluded that ANN models performed better than the PET climatic methods. Suryavanshi 

[97]examined the trend in temperature and PET over the Betwa basin, India. In another study, 

Rahimikhoob [98]applied the different ML techniques to estimate PET based on air temperature data 

under humid subtropical conditions on the southern coast of the Caspian Sea situated in the north of 

Iran. The study showed that ANN successfully estimated the daily PET better than the Hargreaves 
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classical equation. Adamala [99]made a comparison of developed models with the artificial neural 

network models and also with the linear and wavelet regression and conventional methods to estimate 

PET using temperature-based generalized wavelet-neural network models. 

Moreover, Traore[31]detailed gene expression programming (GEP), with its capacity to represent 

algebraic equations, to be a reliable procedure for modelling the decadal PET of six districts in Burkina 

Faso. Citakoglu [100]found a versatile neuro-fuzzy inference system (ANFIS) that outperformed 

Artificial neural networks (ANN) in modelling the monthly mean PET. Additionally, Kisi 

[101]evaluated the ANN, GEP, and ANFIS-grid partitioning (ANFIS-GP) models to display monthly 

PET, discovered that the ANFIS-GP model performed well compared to other models. Yassin 

[78]discovered ANN models to give more superior accuracy than GEP models in comparing GEP and 

ANN for modelling daily ET. Moreover, Patil [102],assessing week by week PET at Pali and Jodhpur, 

India, related the performance of ANN, least-square SVM, and extreme learning machine (ELM) 

approaches. The ELM gave preferable PET estimates over the other two models. Antonopoulos 

[103]found that the ANN model gives preferred outcomes over the experimental conditions in assessing 

ANN's performance and four empirical methods for demonstrating everyday PET at the Amineto 

climate station in Greece. Granata[73]assessed the PET in Florida, USA, utilizing M5P regression tree, 

SVR, and RF procedures and announced that these techniques were all prepared to model PET in the 

study area. Nourani [104]used ANFIS, feed-forward neural networks (FFNN), and SVR ensemble-

based models to model PET at 14 stations in Iran, Iraq, Libya, Turkey, and Cyprus. They found the 

ensemble techniques improved the performance of traditional ML models. PET demonstrating methods 

that likewise incorporate SVR and RF were applied by [36], [88], [101], [105], [106]. Assessment of 

the precision of regression and machine learning approaches recommends that such methodologies 

estimate better PET over empirical models, such as the Thornthwaite and Hargreaves, which utilized 

limited meteorological factors. Chauhan and Cobaner [96], [107]compared the performance of four 

atmosphere-based methods and ANNs to assess PET when input climatic parameters were insufficient 

to apply the FAO Penman-Monteith method. They inferred that ANN models performed superior to 

climatic techniques. Suryavanshi [97]inspected the temperature and PET pattern over the Betwa bowl, 

India. Sonali and Nagesh [93]examined the pattern of minimum and maximum temperature of yearly, 

monthly, winter, pre-monsoon, monsoon, and post-monsoon. Assessment of the PET of Punjab was 

done by Saggi [108]dependent on different machine learning models, including Deep Learning-

Multilayer Perceptron’s (DL), Generalized Linear Model (GLM), Random Forest (RF), and Gradient-

Boosting Machine (GBM) models. It was compared in predicting daily ET with the deep learning 

model's performance and was compared with the Penman-Monteith model and found that deep learning 

models performed superior to the considered models for training, validation and testing sets. Pal 

[109]examined the unique data-driven based regression approaches to deal with daily PET modelling 

utilizing four data inputs, including average air temperature, average wind speed, average relative 
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humidity, and solar radiation. Results from their examination proposed that the unique data-driven and 

AI models could effectively be utilized in modelling the PET. [106]investigated the viability of the 

deep learning neural network (DLNN) for estimating the PET. Most of the existing studies [78], [86], 

[90] have used machine learning models, such as Artificial Neural Network (ANN), Fu (ANFIS),Fuzzy 

Logic, Gene Expression Programming (GEP), Multivariate Adaptive Regression Splines (MARS), 

Decision Tree (DT), Random Forests (RFs), Support Vector Machine (SVM), Extreme Learning 

Machine (ELM) and Adaptive Neuro-fuzzy Inference System (ANFIS) to estimate PET. Different 

studies used ML models to estimate PET, but the present study emphasised on to estimate PET using 

ML models under limited climate data to achieve best input combination for diverse climatic 

conditions. To this end, machine learning methods have been promising in data-scarce regions under 

limitations of the empirical methods and as the Penman-Monteith equation requires a large amount of 

data input, which is not available in many ungauged basins.  

 

2.4 Estimation of AET from ML models 

 

AET is the quantity of water that is actually removed from a surface due to the evaporation and 

transpiration processes. It explains how water and energy are exchanged between the soil, land surface, 

and atmosphere. Improved characterization of AET is significant for modelling and management of 

water resources and related ecosystem services, such as provisioning, supporting, and regulating 

services and addressing global climate change. Because climate change affects AET rates, soil moisture, 

vegetation productivity, the carbon cycle, and water budgets may all be impacted [110]. The rising 

water demand across the regions also highlights the importance of finding alternative methods to 

quantify AET. 

Earlier studies have estimated AET using time-consuming, labour-intensive methods such as water-

balance, energy-balance, Bowen-ratio (EBBR), eddy-covariance (EC), and a few modelled based 

methods. The modelled based methods include Thornthwaite and Mather equation, Coutagne, Penman, 

Serra, Cappus, Kessler, Jensen and Haise, Blaney and Criddle, and Papadakis [111]. AET has been 

recently measured using the eddy-covariance (EC) method [112]. Although this method has proven to 

be a reliable technique, it is costly and still rarely available worldwide. Weighing lysimeters have also 

been considered as a viable tool for measuring AET [113]. However, most of the studies focus on the 

use of weighing lysimeters [113], whose construction and operation is still costly. For that matter, some 

authors have constructed volumetric lysimeters as a lower-cost alternative [114], [115].When due to 

their high cost, complex installation, and/or intensive maintenance, no measurement techniques are 

available, estimating AET can be a valuable alternative for agricultural or hydrological studies. AET 

estimation is also difficult because it is influenced by climate, vegetation, soil moisture, and the amount 
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of available water, among other factors. Thus, there are various methods, including the water balance, 

the energy balance, and hydrological models. The water balance has been used as a reference method 

to estimate AET globally. However, closing the water balance requires not only the measurement of 

precipitation and discharge but also, in some cases, the measurement of other variables that are difficult 

to quantify. Also, such water balance estimates work efficiently at higher temporal time scales such as 

annual. Such traditional methods for estimating AET at catchment scales uses the water balance 

equation, which is commonly referred to as observed AET. However, the water balance AET estimates 

are inapplicable for analysing the spatial variability across large study areas. Various modelling 

approaches based on readily available hydro-meteorological data have been developed to estimate AET. 

Such approaches are based on first estimating PET and then applying a limiting factor to account for 

water availability [116], [117]. However, AET modelling approaches are region-specific for a given set 

of climatological conditions, and implementation of such models necessitates parameter calibration 

[58]. Catchment parameter estimation dynamically with precipitation, evapotranspiration and runoff 

using machine learning algorithms was done for semi-arid river basin of India by Sireesha[118]. Ochoa 

[119]estimated AET using the following methods: eddy-covariance (EC), volumetric lysimeters (Lys), 

water balance (WB), energy balance (EB), the calibrated Penman-Monteith equation (PMCal), and two 

hydrological models [the Probability Distribution Model (PDM) and the Hydrologiska Byran's 

Vattenbalans Avdelning model (HBV-light)]. 

As the vast majority of studies in the literature have focused on modelling of the PET process, in which 

evaporation occurs from soil and plant surfaces under no water stress. However, AET occurs under 

actual water supply conditions. AET can now be quantified using time-consuming and labour-intensive 

methods such as water-balance, energy-balance-Bowen-ratio (EBBR), and eddy-covariance (EC), 

Micrometeorological estimation (observation) methods such as EBBR and EC [120]. Because 

theoretical modelling of the AET mechanism is difficult, its values are currently estimated using 

available PET models, crop coefficient (Kc) (as an indicator of actual vegetation), and soil moisture 

information. This method essentially adjusts the estimated PET values for the actual plant and soil water 

conditions investigated. 

In comparison to PET, there were few studies in the literature that investigated the modelling of the 

AET mechanism. Slabbers [121]developed a simplified method for predicting AET based on PET, crop-

dependent critical leaf water potential, and the fraction of available soil moisture. Poulovassilis 

[122]used meteorological, crop, and soil data to develop a simple semi-empirical approach for 

estimating AET. AET was also estimated using the relationships developed between AET and pan 

evaporation [45], [123], [124] and between AET and Penman's potential evaporation. According to 

Slabbers [121],the concept of AET is frequently restricted to semi-empirical models [125], [126], which 

have several limitations. Some equation-based PET models, such as the Penman-Monteith equation and 

Shuttleworth and Wallace's work, have also been adapted for AET estimation (1985). In cases where 
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the theoretical assumptions of the Penman-Monteith method are not valid, the model parameters (e.g. 

aerodynamic resistance of leaf surface) should be specified in the Penman-Monteith method for the 

estimation of AET (e.g., low soil moisture conditions). The Priestley-Taylor (PT) method was also 

modified to estimate AET using an empirical parameter [127]. Gavin [128]discovered a strong 

relationship between the empirical parameter of the Priestley Taylor method and the soil moisture 

condition. The proposed AET models necessitate many predictor variables, including meteorological 

parameters, soil moisture information, leaf area, and canopy aerodynamic characteristics. The most 

common issue encountered in the application of currently available models is a lack of required 

information. According to [122],determining critical parameters (e.g., threshold soil moisture and 

threshold leaf water potential) is also a significant challenge in estimating AET using available models. 

In this context, some efforts were made on the use of ML models to estimate AET. In this context, 

[1]modelled the AET process using GP and ANN as a function of net radiation, ground temperature, 

air temperature, wind speed, and relative humidity. Their analysis revealed that the effects of net 

radiation and ground temperature on AET outweighed the effects of other variables. The majority of 

studies have focused on modelling potential and reference crop evapotranspiration rather than actual 

evapotranspiration (AET). Most of the existing studies by [1], [73], [94]have also used  ML models like 

support vector regression, random forest and regression trees to estimate AET. Different studies used 

different ML models to estimate PET, but the present study has highlighted the use of ML modelled 

PET for estimating AET under limited climate data for distinct climatic conditions. Currently, very little 

is known about which methods are suitable for accurately measuring or estimating AET at many 

regions, and studies have not compared AET by implementing several methods simultaneously at the 

same regions under limited data. 

2.5 Conclusions 

Despite its importance in water balance, evapotranspiration is one of the least measured components of 

the water cycle, most likely due to the expensive and time-consuming requirements for direct 

measurement methods. As a result, indirect methods ranging from empirical relationships to complex 

combined equations have been used for estimating ET. The major forms of ET in understanding the 

hydrological process are PET and AET. PET represents the atmospheric water demand with a focus on 

climatological variables. Whereas AET is dependent on available soil moisture and, as a result, is 

region-specific, making its modelling or estimation more difficult than PET. PET is currently estimated 

by considering Penman-Monteith developed by FAO as the standard model, which requires various 

climatological information. Whereas AET is currently estimated indirectly using approaches that 

require soil moisture information in order to account for the water supply deficits. To use these methods, 

users must make reasonable estimates for some of the parameters which involve some uncertainties and 
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may not yield reliable PET and AET estimates. Furthermore, in many cases, soil moisture and other 

vast climatological variables are not readily available, limiting the applicability of conventional PET 

and AET methods. Given the drawbacks and limitations of current modelling methods, there is an urgent 

need to develop techniques that can accurately estimate PET and AET values based on readily available 

meteorological variables while also being simple to implement. It is challenging to develop mechanistic 

models for complex hydrological processes, such as AET/PET, because the underlying physics of the 

AET/PET process are too complicated to be accurately represented in a physically based manner. As a 

result, an inductive (data-driven) modelling approach that can provide a model to predict and investigate 

the process without requiring a complete understanding of it can be useful. In literature, there has been 

wide usage of PET to estimate AET, but the usage of modelled PET from machine learning models has 

been limited. Furthermore, how the limited data availability can impact the PET and AET estimates for 

diverse climatological conditions has not been explored. Therefore, the present study made use of 

different ML models to estimate PET and AET under limited data for two different climatic regions.  

Penman-Monteith method is a well-known empirical method and has been widely used in the 

past for data mining and function estimation problems. Despite significant advancements in data-driven 

modelling, penman-monteith remains popular and is used for a variety of modelling and model 

comparison problems. In this study, this technique was used as a benchmark modelling method. 

Artificial neural networks (ANNs), Support Vector Regression (SVR), Random Forest (RF), Gradient 

Boosting Regression (GBR), Long short term Memory (LSTM) are a few such robust machine learning 

(ML) techniques that were used to model PET. These are the computational models that simulate the 

functional aspects of biological neural networks and can be used to model complex relationships 

between various meteorological variables and PET/AET. These techniques have been widely used for 

modelling the PET process but not significantly in the generation of AET. The current study gives a 

comparison of five ML-based models to discover the best model for assessing daily PET under the state 

of minimal input variables in the semi-arid atmospheres in two unique climatic conditions, for example, 

Hyderabad, India and Waipara, New Zealand. By utilising available time-series data and data-driven 

algorithms, we can also improve our understanding of PET and AET as well as its correlation with the 

interacting meteorological variables. More importantly, the study made efforts to use data-driven 

algorithms in the prediction of PET and AET with limited data, which are more promising with the 

standard modelling approaches for various climatic conditions.  
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Chapter 3 

Study Area and Data 

3.1 Study Area 

The study has selected two weather stations with diverse climatological conditions. The first one is 

Hyderabad which is the largest city of the Indian state of Telangana which lies between 

latitude 17.3850°N, 78.4867°E located on the Deccan Plateau in the northern part of South India and 

covers an area of 650 square kilometres (250 sq. mi) at an elevation of 542m (Figure 3.1). Based on the 

Koppen climate classification, the climate is tropical wet and dry bordering on a hot semi-arid, with an 

average annual precipitation of about 171 mm(https://en.climate-data.org/asia/india/hyderabad). Much 

of Hyderabad is built on hilly terrain around artificial lakes, including the Hussain Sagar lake, which 

predates the city's founding and is located north of the city centre. According to the 2011 Census of 

India, Hyderabad is the fourth-most populous city in India, with a population of 6.9 million within city 

limits and a population of 9.7 million in the metropolitan region, making it the sixth-most populous 

metropolitan area in India. Hyderabad has the fifth-largest urban economy in India, with a GDP of US 

$74 billion. 

 

 

Figure 3.1: Case study: Hyderabad, Telangana, India 

https://en.climate-data.org/asia/india/hyderabad
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The next station was at the Waipara experimental catchment (WARVEX), situated in the South Island 

of New Zealand, in the Waipara River (Figure 3.2). The annual average weather data of the 

meteorological station is introduced in Table 2 (McMillan et al., 2011; Singh et al., 2017) provides a 

detailed overview of the basin and its monitoring network. Only a description of those elements of the 

basin important to the current study is given here.  WARVEX is set up in Langs gully. 

The catchment area of the Langs gully is 0.7 km2. The elevation varies between 500 m and 723 m above 

sea level. The annual rainfall varies from 500 to 1100 mm/yr. It contains a surface slope of 0.22-34 

degrees with a mean slope of 17 degrees. Soils are gravelly sandy loam, depth ranges from 0.25 to 1.5 

m and averages 0.5 m. Grass and exotic forests are the primary vegetation. An ephemeral stream flows 

approximately from late March through early November. The catchment has fairly regular frosts and 

occasional snow in winter. 

 

 

Figure 3.2: Case study: Waipara, New Zealand. 

 

3.2 Data sets 

3.2.1 Hyderabad Data Set 

Daily meteorological data were obtained from January 1965 through December 2015 (51 years) 

(612 months) from weather station situated in Professor Jayashankar Telangana State Agricultural 
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University, Rajendran agar Mandal Hyderabad, Telangana. The annual average weather data of the 

meteorological station is presented in Table 3. 1. Six meteorological variables were recorded at a daily 

time scale, including (1) maximum air temperature (Tx °C) (2) minimum air temperature (Tn °C) (3) 

minimum relative humidity (RH, %) (4) wind speed (U2, m s−1) and (5) solar radiation (Rs, MJ m—2 d—

1). Measurements were carried out at 2 m (air temperature and relative humidity) and 10 m (wind speed) 

above the soil's surface.  Data on wind speeds at 2 m (U2) were obtained from those taken at 10 m using 

the log-wind profile equation.  

On an average, throughout the year, rainfall duration exists for 64 days in Hyderabad, collecting up to 

828.5mm (32.62") of precipitation. February has the most sunshine of the year in Hyderabad, with an 

average of 9.6 hours of sunshine per day. March through September have the highest UV index, with 

an average maximum UV index of 12. April is the least humid month in Hyderabad, India, with an 

average relative humidity of 37%. May has the highest average high temperature of 39°C (102.2°F) and 

the lowest average temperature of 26.2°C (79.2°F). June has the longest days of the year in Hyderabad, 

India, with an average of 13.2 hours of daylight. With an average relative humidity of 74%, August is 

the wettest month in Hyderabad, India. The month with the most rainfall is August, when it rains for 

14.1 days and averages 178.7 mm (7.04 inches) in the form of precipitation. August has the least amount 

of sunshine in Hyderabad, with an average of 4.4 hours. December is the coldest month in Hyderabad, 

with an average high temperature of 28°C (82.4°F) and a low temperature of 14.5°C (58.1°F). December 

has the least amount of rain for an average of about 0.7 days with a total of 5.9 mm (0.23 inches). 

December has the shortest days of the year, with an average of 11.1 hours of daylight. 

3.2.2 Waipara Data Set 

Field data from Lang gully was collected from 2010 to 2016. All data were stored in data loggers and 

had temporal resolutions of 10 minutes and have been aggregated to the hourly time series for this study 

to match the model time step. The annual average weather data of the meteorological station is presented 

in Table 3.2. For more details please see  [70], [129].Seasons in the Waipara, as in the rest of 

Canterbury, vary dramatically due to the influence of the Southern Alps. Three mesoscale wind systems 

characterize the region: westerly fronts blowing from the Tasman Sea that bring rainfall across the 

Southern Alps to the western parts of the catchment, moist southerly cold wind blowing across the 

Tasman Sea and the Southern Ocean across the South Island, and easterly fronts typically blowing from 

the north over the Pacific Ocean. Long dry spells are common in summer when hot, dry north-westerly 

winds blow, leaving temperatures ranging from 21°C to 32°C, creating dry microclimatic conditions 

that are frequently cooled by a north-easterly sea breeze. Snow is also common in the mountains during 

the winter, lowering daytime winter temperatures to around 7°C to 

14°C(http://www.northcanterbury.co.nz/NorthCanterbury/location-climate/) 

http://www.northcanterbury.co.nz/NorthCanterbury/location-climate/
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Table 3.1: Statistical values of available meteorological variables and PET at Hyderabad station. 

 

Parameters Tx (oC) Tn RH Rs U2 PET 

Maximum 45.5 33.0 139 14.45 36.00 13.17 

Minimum 17.6 5.00 10 4.0 0.00 0.48 

Mean 32.37 19.88 60.70 9.32 4.69 3.76 

Standard deviation 4.1 4.79 14.93 2.44 4.62 1.72 

 

 

Table 3.2: Statistical values of available meteorological variables and PET at Waipara station. 

 

Parameters Tx Tn RH Rs U2 PET 

Maximum 24.32 24.15 93.54 47.00 6.00 8.27 

Minimum -3.00 -3.00 0.00 0.00 0.00 0.00 

Mean 10.17 9.95 65.61 15.29 1.75 1.50 

Standard deviation 4.92 4.88 15.27 10.11 0.82 1.18 
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Table 3.3: Climate classification according to Aridity Index. 

 

Climate Type Aridity Index (AI) 

Hyper arid AI < 0.05 

Arid 0.05 ≤ AI < 0.2 

Semi-arid 0.2 ≤ AI < 0.5 

Dry Subhumid 0.5 ≤ AI < 0.65 

Humid AI > 0.65 

 

 

Table 3.4: Climatic classification of Hyderabad and Waipara Stations 

 

Station Precipitation PET P/PET 

(calculated) 

P/PET 

(original) 

Hyderabad 384.24 434.42 0.33 0.2-0.5 

(Semi-arid) 

Waipara 146.98 1596.38 0.24 0.2-0.5 

(Semi-arid) 

 

3.2.3 Climate classification 

The Aridity Index (AI) is a simple but useful numerical indicator of aridity that is calculated as the 

P/PET ratio and is based on long-term climatic water deficits. The AI is a widely used measure of the 

dryness of a given location's climate. The AI classifies arid lands or drylands into six subtypes: cold, 

hyper-arid, arid, semi-arid, dry sub-humid, and humid. 

                                                                     AI = 
P

PET
                                                                         (3.1)  

Where P-precipitation, PET-potential evapotranspiration. 

In reference to Table 3.3, it was observed that both the stations fall under semi-arid regions (Table 4). 

The Food and Agriculture Organization, Agro-Ecological Zone concept, classifies parts of the world as 
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semi-arid if the annual precipitation totals between one fifth and one half of the PET (i.e., 0.2 < P/PET 

≤ 0.5) from Table 3.4 . This equates to 60 to 180 days of plant growth opportunity on average. It is the 

climate of a region with precipitation that is less than PET but not as low as a desert climate. 

3.3 Conclusions 

The study has selected two different climatic regions of Hyderabad and Waipara. The study has 

concluded that the climatic zones fall under the semi-arid category for both the stations. However, the 

conditions vary from extremely wet on the West Coast of the South Island to almost semi-arid in Central 

Otago and subtropical in the Northland of New Zealand. It was observed that minimum temperatures 

have varied predominantly. It was also concluded that they both are different climatological conditions 

as they may not follow the same months of higher temperatures and rainfall. Due to the diverse 

climatological conditions of these two stations, the present study considered Hyderabad and Waipara 

as case studies to understand the complex phenomenon of  PET and various climatological variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/West_Coast,_New_Zealand
https://en.wikipedia.org/wiki/South_Island
https://en.wikipedia.org/wiki/Semi-arid_climate
https://en.wikipedia.org/wiki/Central_Otago
https://en.wikipedia.org/wiki/Central_Otago
https://en.wikipedia.org/wiki/Subtropical
https://en.wikipedia.org/wiki/North_Auckland_Peninsula
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Chapter 4 

Machine Learning Models 

Data-driven modelling techniques have been developed as a new approach for simulation and prediction 

of various natural and artificial phenomena due to recent developments in computer technologies and 

new mathematical algorithms. These new techniques are especially relevant in hydrological modelling, 

which is widely used to simulate complex and poorly understood natural processes. ANNs, SVR, GBR, 

RF, LSTM are few data-driven techniques that do not require a thorough understanding of the physics 

of the processes under investigation. These machine learning techniques used in this study for modelling 

the PET process are listed. Using these techniques for modelling and predicting various complex 

processes has been studied in the literature and is promising. Furthermore, in the literature review, a 

brief history of each technique's development is provided to highlight the long road acquisition 

(measuring) methods; these modelling techniques are becoming even more popular. 

4.1 PRE-PROCESSING METHODS 

To determine the ranking of the feature set and to normalize the data set, variable variance and linear 

methods such as Principal Component Analysis (PCA), Pearson Correlation (COR) were applied to 

abstract the most correlated variables. The data were first normalized to within a range of [0-1] using : 

                                                                    Xn=
Xi−Xmin

Xmax−Xmin
               (4.1) 

4.1.1 Pearson Correlation (COR) 

The Pearson's Correlation Coefficient is also known as the Pearson Product-Moment Correlation 

Coefficient. It is a measure of the linear relationship between two random variables, x and y. It is the 

covariance of two variables divided by the product of their standard deviations.  

                                                                    COR = 
Σ(Xi−Xmean)(Yi−Ymean)

√Σ(Xi−Xmean)2Σ(Yi−Ymean)2
                                (4.2) 

Xi-values of the x-variable in a sample, Xmean-mean of the values of the x-variable, Yi-Values of y-

variable in a sample, Ymean- mean of the values of the y-variable 

4.1.2 Principal Component Analysis 

PCA is a statistical procedure employed in extracting variables in the form of components from a broad 

set of variables within a dataset, and the resultant component is the linear composition of the main 

variables. PCA is commonly used to reduce the data dimension (i.e., the number of variables measured 
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per view) using the communication description between variables, thereby drawing complete 

information from the original data set while maintaining a minimal error between the original data set 

and the new dimensions obtained. 

The PCA extracts a set with a low dimension of features from one of high dimension. In doing so, 

variables in a multimode correlated area are a collection of non-correlated components, each of which 

is a linear combination of the main variables. In general, the PCA method is mainly applied to reduce 

the number of variables and find the relationship structure between similarly classified variables. In 

doing so, the primary input is converted to new variables that are non-correlated, i.e., the resultant 

component is a linear composition of the primary variable [130]. The PCA will have changed the input 

variables to main components that are independent and linear combinations of the input variables, 

thereby suffering minimal losses in the main components [131]. The critical advantage of this method 

is to eliminate the linear model contained within the models, given the many influential variables in the 

model. In the present study, the main components of the first component, which bore at least eighty 

percent of the total variance in the data, served as the input to the estimation models. 

The kth principal component of a data vector x(i) can be given as a score tk(i) = x(i) ⋅ w(k) in the 

transformed coordinates, or as the corresponding vector in the space of the original variables, {x(i) ⋅ 

w(k)} w(k), where w(k) is the kth eigenvector of XTX. 

 

4.1.3 LASSOMODEL 

 

In statistics and machine learning, lasso (least absolute shrinkage and selection operator; also LASSO 

is a regression analysis method that performs both variable selection and regularization to enhance the 

prediction accuracy and interpretability of the statistical model it produces. Though originally defined 

for least squares, lasso regularization is easily extended to a wide variety of statistical models, including 

generalized linear models, generalized estimating equations, proportional hazards models, and M-

estimators, in a straightforward fashion. Lasso's ability to perform subset selection relies on the form of 

the constraint and has a variety of interpretations, including in terms of geometry, Bayesian statistics, 

and convex analysis. 

The goal of Lasso Regression is to obtain the subset of predictors that minimizes the prediction error 

for a quantitative response variable. The lasso does this by imposing a constraint on the model 

parameters that causes regression coefficients for some variables to shrink toward zero. Variables with 

a regression coefficient equal to zero after the shrinkage process are excluded from the model. Variables 

with non-zero regression coefficient variables are most strongly associated with the response variable. 

Therefore, when you conduct a regression model, it can be helpful to do a lasso regression to predict 

how many variables your model should contain. 
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4.2 Artificial Neural Network (ANN) 

 

ANNs are massive networks of parallel information processing systems that resemble (simulate) the 

analytical function of the human brain, and they have an inherent ability to learn and recognize highly 

nonlinear and complex relationships through experience. It is a computational model inspired by 

networks of biological neurons, wherein the neurons compute output values from inputs. It learns from 

its past experience and errors in a nonlinear parallel processing manner. ANNs are fully connected 

neural nets that consist of an input layer, hidden layers (multiple or single), output layer. Each node can 

be considered as a neuron. It is also composed of a large number of highly interconnected processing 

elements (neurons) working in unison to solve a specific problem. The neuron is the primary calculating 

entity that computes from several inputs and delivers one output compared with a threshold value and 

turned on (fired). 

Neurons: 

Biological Neurons (also called nerve cells) or simply neurons are the fundamental units of the brain 

and nervous system, the cells responsible for receiving sensory input from the external world via 

dendrites, process it and give the output through Axons. 

Activation Function: 

The activation function decides whether a neuron should be activated or not by calculating the weighted 

sum and further adding bias to it. The motive is to introduce non-linearity into the output of a neuron. 

The computational processing is done by internal structural arrangement consisting of hidden layers 

that utilize the backpropagation and feed-forward mechanism to deliver output close to accuracy. Fully 

connected neural nets are those where each node in a layer is connected to every other node in the next 

layer (right). Each node takes the weighted sum of its inputs which then passes through a nonlinear 

activation function (like RELU, sigmoid, tanh, etc.), which then becomes the input of other nodes in 

the next layer. In Eq.4, the function, f, represents the activation function and w is the weight matrix, X 

is the set of input vectors.(https://medium.com/@ariesiitr/an-artificial-neural-network-ann-is-a-

computational-model-that-is-inspired-by-the-way-biological-c17b07166d4c) 

 

                                Z = f(x . w) = f(∑ xiwi
n
i=1 )                  x ∈ d1×n,w ∈  dn×1, z ∈  d1×1,              (4.3) 

https://medium.com/@ariesiitr/an-artificial-neural-network-ann-is-a-computational-model-that-is-inspired-by-the-way-biological-c17b07166d4c
https://medium.com/@ariesiitr/an-artificial-neural-network-ann-is-a-computational-model-that-is-inspired-by-the-way-biological-c17b07166d4c
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Figure 4.1: Structure of ANN used for training a model with hidden layer and weights and the output 

layer showing a feed-forward pass.xiwi 

 

This study used a feed-forward backpropagation neural network. The weights are initially randomly 

assigned. The train: test spilt on the dataset is 7:3. A forward pass is performed for every training data 

using the current weights, and the output is calculated for each node. At the last node, the final output 

is acquired, and the error is calculated with a loss function. Now, a backward pass is performed to 

calculate the contribution of each node in error calculated. The error is propagated to every single node 

using backpropagation. Once the contribution of each node has been calculated, the weights are adjusted 

accordingly using gradient descent. The present study used gradient descent with momentum and 

adaptive linear regression. The procedure is repeated until the loss function gives an error that is less 

than the threshold value, and the weights and bias of the required network are thus obtained. Thus, the 

model converges, and a definite result can be obtained for any type of testing dataset.  

The data from 1951-2015 were randomly divided into two subsets of training and testing using the 

earlier approach. The employed approach for splitting the data ensured that the sub-datasets were fairly 

representing the population to be modelled. The training subset was used for optimizing the connection 

weight matrices and bias vectors of the network. Once the network was trained, the generalization and 

predictive ability of the network was evaluated using a completely unseen subset called the testing 

subset. 

No prior knowledge of the physics of the PET mechanism or the relationships between variables was 

assumed in this approach. As ANN model input sets, all possible combinations of input variables, a 

total of 26 combinations, were considered. Using the model development approach described earlier, 
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separate optimal ANN models were developed and trained for each input combination set. The 

prediction accuracy of the developed ANN models was compared to identify the most appropriate and 

efficient combinations of inputs for PET estimation. This method is known as a trial-and-error 

procedure, and it falls under the category of heuristic approaches. 

 

4.3 Gradient Boosting Regressor (GBR) 

 

Gradient Boosting for regression, GB builds an additive model in a forward stage-wise fashion. It allows 

for the optimization of arbitrary differentiable loss functions. In each stage, a regression tree is fit on 

the negative gradient of the given loss function. Gradient boosting involves three elements: A loss 

function to be optimized, A weak learner to make predictions and an additive model to add weak 

learners to minimize the loss function.  

Gradient Boosting is a greedy algorithm and can overfit a training dataset quickly. It can benefit from 

regularization a method that penalize various algorithm parts and improves the algorithm's performance 

by reducing overfitting. There are four improvements primary gradient boosting: 

1. Tree Constraints 

2. Shrinkage 

3. Random Sampling 

4. Penalized learning 

Gradient Boosting trains many models in a gradual, additive and sequential manner. The significant 

difference between AdaBoost and Gradient Boosting Algorithms is how the two algorithms identify 

the shortcomings of weak learners (e.g., decision trees). While the AdaBoost model identifies the 

shortcomings by using high weight data points, gradient boosting performs the same by using 

gradients in the loss function (y=ax+b+e, e needs a special mention as it is the error term).  

The loss function is a measure indicating how good a model's coefficients are at fitting the 

underlying data. A logical understanding of loss function would depend on what we are trying to 

optimize.  

For example, if we try to predict the sales prices using a regression, then the loss function would be 

based on the error between actual and predicted house prices. Similarly, if our goal is to classify 

credit defaults, then the loss function would be a measure of how good our predictive model is at 

classifying bad loans.  

One of the biggest motivations of using gradient boosting is that it allows one to optimize a user-

specified cost function instead of a loss function that usually offers less control and does not 

essentially correspond with real-world applications. 
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4.4 Random Forest (RF) 

A Random Forest is an ensemble technique capable of performing regression and classification tasks 

using multiple decision trees and a technique called Bootstrap Aggregation, commonly known as 

bagging. The Sum of Squared Error (SSE) has been calculated between the observed values and the 

predicted values. This procedure will recursively continue until the entire data is being covered. The 

model can be written as: 

 

                                                                f(x) = f0(x) + f1(x) + f2(x) + ⋯                          (4.4) 

 

Where the ultimate model f is the sum of simple base models fi. Where each base regressor portion is 

the simple decision tree.  

The basic idea behind this is to combine multiple decision trees in determining the final output rather 

than relying on individual decision trees. 

Approach: 

1. Pick at random K data points from the training set. 

2. Build the decision tree associated with those K data points. 

3. Choose the number Ntree of trees you want to build and repeat steps 1 & 2. 

4. For a new data point, make each one of your Ntree trees predict the value of Y for the data 

point, and assign the new data point the average across all of the predicted Y values. 

Random forests or random decision forests are an ensemble learning method for classification, 

regression and other tasks that operate by constructing a multitude of decision trees at training time and 

outputting the class that is the mode of the classes (classification) or mean prediction (regression) of 

the individual trees. Random decision forests correct for decision trees' habit of overfitting to their 

training set. 

Each Decision Tree in the Extra Trees Forest is constructed from the original training sample. Then, at 

each test node, each tree is provided with a random sample of k features from the feature-set from which 

each decision tree must select the best feature to split the data based on some mathematical criteria 

(typically the Gini Index). This random sample of features leads to the creation of multiple de-correlated 

decision trees. 

 

4.5 SUPPORT VECTOR REGRESSION (SVR) 

Support Vector Machines (SVMs) are well known in classification problems. When SVM is used for 

regression, these types of models are known as Support Vector Regression (SVR). SVR gives us the 

flexibility to define how much error is acceptable in our model and will find an appropriate line to fit 
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the data. SVR can learn and model nonlinear relationships between the input and output data in a higher 

dimension, thereby minimizing the observed training error and distribution error sufficiently. SVR 

implements the principle of inductive minimization of the structural error to attain a general optimal 

solution.  

 

Figure 4.2: Structure of SVR 

In simple regression, we try to minimize the error rate. While in SVR, we try to fit the error within a 

certain threshold.  

Our objective when we are moving on with SVR is to consider the points that are within the boundary 

line, basically. Our best fit line is the line hyperplane that has a maximum number of points. 

In the case of regression, a margin of tolerance (epsilon) is set in approximation to the SVM, which 

would have already been requested from the problem. But besides this fact, there is also a more 

complicated reason; the algorithm is more complicated, therefore to be taken into consideration. 

However, the main idea is always the same: to minimize error, to individualize the hyperplane, which 

maximizes the margin, keeping in mind that part of the error is tolerated. The goal of linear regression 

is to minimize the error between the prediction and data. In SVR, the goal is to make sure that the errors 

do not exceed the threshold. 

SVRs are today known as efficient and robust ML algorithms for predictions. When the training 

data of {(x1, y1), … … . . (xn, yn)} with n patterns, a function f(x) will be identified with the consideration 

of the deviation from the actually observed target variables yi for all the training data (Lima et al., 2012). 

Using a nonlinear mapping function φ, X will be mapping the input variables to a higher dimensional 

feature space.  

 

                                                               f(x; w) =< 𝑊, 𝜑(x) > +𝑏              (4.5) 
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where W and b are the regression coefficients and <, > denotes the inner product. SVR uses the ∈-

insensitive error to measure the error between 𝑓(𝑥) and the observed values of 𝑦.  

 

 

                                           |f(x; w) − y|∈ = {
0,        𝑖𝑓|f(x; w) − y| < ∈

|f(x; w) − y|− ∈,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
                (4.6) 

 

Using the training data of (xi, yi) the values of w and b are calculated by minimizing the objective 

function: 

 

                                                      F =
C

N
∑ |f(xi

n

i=1
, w) − yi|∈ +

1

2
||w||2                           (4.7) 

 

Where ∈ and C are the hyper-parameters. The minimization of the objective function, F, uses the 

Lagrange multiplier method. The ultimate regression equation with kernel function K(X, X′) can be in 

the form:  

 

                                                                       f(X) =  ∑ K(X, Xi) + bi                            (4.8) 

 

Based on earlier studies (Y. Dibike et al., 2001), the kernel function RBF was chosen to measure the 

performance of the model for the PET. A complete overview of the SVR method may be found in (Y. 

Dibike et al., 2001). 

 

4.6 Long short-term memory (LSTM) 

Long short-term memory neural networks are similar to Recurrent neural networks (RNN), which have 

the capability to learn more significant data compared to normal RNNs. This is done by controlling the 

hidden state in LSTM and solving the vanishing gradient problem. LSTM has feedback connections. 

An LSTM unit has an input gate, an output gate, and a forget gate (Figure 5). LSTM calculates a gate's 

values using the previous cell value Ct-1, previously hidden values ht-1, and input xt. 
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Figure 4.3: Overview diagram of Long short-term memory (LSTM).  

Where 𝑓, 𝑖, 𝑎𝑛𝑑 𝑜 denotes the forget gate, input gate, an output gate, ℎ𝑡 denotes hidden state, 𝑐𝑡 

denotes cell state, 𝜎is the sigmoid function, g is the activation function. 

 

                                                 it =  F(Wxixt + Whiht−1 + WciCt−1 + biasi)              (4.9) 

                                                 ot =  F(Wxoxt + Whoht−1 + WcoCt−1 + biaso)                        (4.10) 

                                                 ft =  F(Wxfxt + Whfht−1 + WcfCt−1 + biasf)            (4.11) 

And the cell value is calculated using  

                                                  Ct =  ftCt−1 + itF(Wxcxt + Whcht−1 + biasc)            (4.12) 

                                                                     ht = ottanh (Ct)              (4.13) 

LSTM is like RNN, but by using the three gates, it can process longer lengths of data, and it is also 

able to solve the vanishing gradient problem. 

4.7 Model evaluation 

The accuracy of the ML models was calculated using the coefficient of determination (R2) (4.14), the 

root mean squared error (RMSE) (4.15), and the mean absolute error (MAE) (4.16). The equations are 

as follows:            

                                                               R2 =  1 − 
∑(PETsim−PETobs)2

∑(ETobs−ETmean)2                                       (4.14) 
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                                                        RMSE = √MSE = √
∑ (PETsim−PETobs)2n

i=1

n
                    (4.15) 

 

                                                            MAE =  
1

N
∑ (n

i=1 PETsim − PETobs)                               (4.16) 

 

where PETsimis the simulated PET at time step i in mm/day; PETobs is the observed PET at time 

step i in; PETmean is the average PET at time step i in mm/day; n is the number of data pairs, 

respectively.  

4.8 Conclusions 

As a new approach for the simulation and prediction of PET, the use of ML models has been increased 

gradually. Five different ML regression models were implemented for modelling the PET of Hyderabad 

station and Waipara station. The study compared various PET simulations based on Long Short Term 

memory (LSTM), Artificial Neural Networks (ANN) regressor, Gradient boosting regression (GBR), 

Support Vector regressor (SVR) and Random Forest (RF) regressor as discussed in the present chapter 

for two stations. As the performance of any modelling technique is dependent upon the selection of 

predictors, the machine learning models are applied by using data pre-processing techniques, which are: 

Random Forests, Principal Component Analysis, Pearson Correlation to find optimal parameters for the 

model and also to give the ranking on features. The methodology, use and limitations of the pre-

processing methods were discussed. The model’s performance criteria was validated using different 

standard statistical methods, such as coefficient of Determination (R2), Root Mean Square Error 

(RMSE), and the Mean Absolute Error (MAE) as validation criteria for selecting the best model as 

discussed in the present Chapter. Various empirical models used in the estimation of PET and AET 

were discussed in the Chapter 5&6. 
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Chapter -5 

Estimation of potential evapotranspiration using machine 

learning models with limited data. 

 

5.1  Introduction 

 

PET is the enormous water flux representing the climatic demand of the water and the second most 

significant component of the terrestrial hydrological cycle next to rainfall. It is the process of returning 

water to the atmosphere via evaporation from open water, soil, and plant surfaces, as well as 

transpiration from plants. Water is absorbed from the soil through the roots and transported to the leaves 

via the vascular system of the roots, stem, and branches. The water is then transferred from the leaf's 

13 vascular system to the stomatal walls. PET is affected by climatic conditions, specifically the sun's 

radiative energy, wind, the air's vapour deficit, and temperature. PET is used with precipitation data to 

calculate water balances. Changes in values enable the impact of land-use change to be seen. PET 

calculations help to calculate plant water requirements and also the losses of water to evaporation from 

open areas such as irrigated fields and reservoirs. As it relates to climate change and food security, 

organizations such as the World Meteorological Organization and the Food and Agriculture 

Organization have already used PET in various ways. 

Figure 5.1: Flowchart for the estimation of PET using ML models 
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5.2 Estimation of Potential Evapotranspiration using empirical methods 

PET is a measure of the ability of the atmosphere to remove water from the surface through the 

processes of evaporation and transpiration, assuming no control over the water supply. PET can be 

estimated based on energy balance and water vapour mass flux transfer methodologies. These empirical 

models vary in terms of solar radiation, temperature considering the physical processes of radiation and 

transport characteristics of natural surfaces.  

 

 5.2.1 FAO Penman-Monteith method 

 

The Food and Agriculture Organization of the United Nations (FAO) suggested that the Penman-

Monteith be utilized as the standard method to assess PET. This equation has picked up the parcel of 

acknowledgement and utilized worldwide for benchmark evapotranspiration assessments [10]. 

Nonetheless, when computing PET by Penman-Monteith model, loads of climatic factors, including 

temperature, wind speed, solar radiation, and relative humidity, are required. 

                                                       P𝐸T  = 
0.408D(Rn−G)+g(

900

T+273
)U2(es−ea)

D+g(1+0.34U2)
                                       (5.1) 

 

Where, Rn = net radiation (MJ m-2 d-1), G = soil heat flux (MJ m-2 d-1), T = average temperature at 2 

m height (°C), U2 = wind speed measured at 2 m height [m s-1], (es - ea.) = pressure deficit for 

measurement at 2 m height [k Pa], D = slope vapor pressure curve [k pa°C-1], g = psychrometric 

constant [k pa°C-1], 900 = coefficient for the reference crop [l J-1 Kg K d-1], 0.34 = wind coefficient 

for the reference crop [s m-1](http://www.fao.org/3/x0490e/x0490e06.htm#TopOfPage). 

 

5.2.2 Turc Method 

Turc developed an equation to simplify an older equation [40]for calculating daily PET as a function of 

air temperature, relative humidity and solar radiation. The Turc method estimates PET based on mean 

temperature and solar radiation on the daily time scale. The equation is given by: 

 

                                                         PET = 0.013
Tm

Tm+15
(23.88Rs + 50)                                         (5.2) 

 

where Tm is mean temperature (°C), solar radiation (Rs) is [0.25 + 0.5 (n/N)] Ra, Ra is extra-terrestrial 

radiation ( mm⁄d), n is actual hours of bright sunshine (hrs), N is maximum possible hours of sunshine 

(hrs). 

 

http://www.fao.org/3/x0490e/x0490e06.htm#TopOfPage
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5.2.3 Priestly and Taylor method 

The Priestley-Taylor model is essentially a condensed version of the original Penman combination 

equation, which was developed in [21].The model's original purpose was to be used in large-scale 

numerical modelling where it is assumed that because advection is negligible, the aerodynamic 

component of the original Penman equation can be ignored. This method is calculated using net 

radiation and latent heat of vaporization on a daily time scale. The equation is given by: 

 

                                                            PET = A (
D

D+g
) (

Rn−G

L
)                                                                   (5.3) 

 

                                                              D = 
4098[0.6108exp (

17.27∗Tm

Tm+237.3
)

(Tm+237.3)2              (5.4) 

 

Where D is slope vapour pressure curve [k pa°C-1], g is psychrometric constant [k pa°C-1], Rn is the 

net radiation at crop surface (MJ m-2 d-1), A is a calibration constant 1.26, L is the latent heat of 

vaporization and can be considered as 2.45 (MJ/kg) which is constant. 

 

5.2.4 Hargreaves Method  

 

The Hargreaves-Samani 1985 model is one of the more well-known versions of an older 

evapotranspiration model [42]. The Hargreaves method estimates PET based on maximum and 

minimum air temperature on a daily time scale.  

 

                                                               PET = 0.0023𝑅𝑎 (
Tm

2
+17.8) (𝑇𝑑0.5)                                    (5.5)                                                  

 

Where, Td = difference between maximum temperature and min temperature (°C), Tm = mean 

temperature (°C), Ra = extra-terrestrial radiation (mm⁄d) 

 

5.3 Modelling of Potential Evapotranspiration using machine learning models 

 

Data-driven modelling techniques have been developed as a new approach for simulation and prediction 

of various natural and artificial phenomena due to recent developments in computer technologies and 

new mathematical algorithms. These new techniques are especially relevant in hydrological modelling, 

which is widely used to simulate complex and poorly understood natural processes. ANNs, SVR, GBR, 

RF, LSTM are few data-driven techniques that do not require a thorough understanding of the physics 
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of the processes under investigation. These machine learning techniques used in this study for modelling 

the PET process are listed. Using these techniques for modelling and predicting various complex 

processes has been studied in the literature and is promising. Furthermore, in the literature review, a 

brief history of each technique's development is provided to highlight the long road acquisition 

(measuring) methods; these modelling techniques are becoming even more popular. 

5.4 RESULTS AND DISCUSSIONS 

The current study analysed the performance of LSTM, ANN, SVR, GBR, and RF models in estimating 

daily PET. The PET was calculated using different empirical methods for Hyderabad and Waipara 

stations. To study data emerging from nonlinear phenomena, the determination of ideal model inputs is 

a critical problem. The four pre-processing data methods, i.e. Pearson correlation, Principal component 

analysis (PCA), Lasso model, and Random forest pre-processing methods, were evaluated to select the 

best set of input variables. In the present study, the main components of the first component, which bore 

at least eighty percent of the total variance in the data, served as the input to the estimation models. The 

climate variables considered for estimating daily PET using five different models and Penman-Monteith 

methods were the daily maximum temperature, minimum temperature, relative humidity, and solar 

radiation. The four various optimal input combinations for modelling this daily PET were all available 

meteorological parameters; temperature, wind speed, and relative humidity; temperature and wind 

speed; and temperature and relative humidity. Similarly, for the Turc and corresponding ML models, 

the input variable considered is the mean temperature. Whereas, for the Hargreaves and corresponding 

ML models, the input variables considered are maximum and minimum temperatures. The two optimal 

input combinations for modelling daily PET for the Hargreaves and Turc methods were all available 

meteorological parameters; minimum temperature and solar radiation. Furthermore, for the Priestly 

Taylor method, the input variables used in ML models are temperature, solar radiation, and relative 

humidity. The three various optimal input combinations for modelling daily PET for the Priestley 

Taylor method were all available meteorological parameters; temperature, wind speed, and relative 

humidity; temperature, and solar radiation and temperature and relative humidity. The models were run 

using the above input combinations as parameters for 500 iterations. Convergence was obtained for the 

datasets of all four empirical methods. The prediction values have been calculated by fitting the test 

data on the trained model. As the number of meteorological variables for each empirical method is 

different, therefore, for each empirical model, the five different ML models were trained, and results 

were tested. Input vector has the features considered in each method (Penman, Hargreaves, Turc, and 

Priestley-Taylor) have been used for each method, and the output vector is the expected PET value 

calculated from each method. The performance criteria considered were MAE, RMSE, and R2 values 

from a test sample. In this study, ML models were trained, and statistical parameters were calculated 
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using only the whole test data set after each training run. The training period considered is from 1965 

to 2000, and the testing period is considered from 2001 to 2015 for Hyderabad station. The training and 

testing data was divided into 70% training data and 30% testing data for the two stations.  The validity 

and efficiency of the model can be seen when the training dataset is fit on the trained model, and high 

accuracy and minimal values of RMSE were obtained. The performance of each empirical model 

corresponding with the different ML models in terms of R2, RMSE, and MAE was listed in Tables 4-7. 

Figures 7-10  shows the comparison between daily PET values from empirical models of Penman-

Monteith, Priestley-Taylor, Hargreaves, Turc, and ML methodologies for the testing datasets. 
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Table 5.1: Performance of Random Forest (RF), Support Vector Regressor (SVR), Gradient Boosting Regressor (GBR), Long Short-Term Memory (LSTM) 

and Artificial Neural Network (ANN) for Penman-Monteith Method. 

 

Parameters Model 

Hyderabad Waipara 

Calibration Validation Calibration Validation 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

All parameters 

RF 0.99 0.06 0.03 0.99 0.12 0.08 0.99 0.07 0.04 0.96 0.24 0.16 

SVR 0.99 0.16 0.11 0.99 0.15 0.11 0.99 0.08 0.06 0.99 0.11 0.08 

GBR 0.99 0.16 0.12 0.98 0.18 0.13 0.98 0.12 0.09 0.96 0.22 0.16 

LSTM 0.99 0.04 0.07 0.99 0.11 0.07 0.99 0.06 0.03 0.99 0.07 0.05 

ANN 0.99 0.06 0.05 0.99 0.06 0.05 0.98 0.15 0.11 0.97 0.17 0.12 

Temperature, Wind Speed, 

Relative Humidity 

RF 0.98 0.18 0.10 0.91 0.43 0.26 0.95 0.26 0.18 0.54 0.79 0.57 

SVR 0.92 0.46 0.27 0.92 0.42 0.26 0.74 0.59 0.41 0.59 0.74 0.54 

GBR 0.93 0.45 0.28 0.90 0.45 0.29 0.78 0.54 0.41 0.61 0.73 0.56 

LSTM 0.93 0.47 0.29 0.93 0.44 0.28 0.73 0.42 0.31 0.64 0.49 0.37 

ANN 0.93 0.46 0.28 0.92 0.40 0.22 0.76 0.57 0.42 0.65 0.69 0.51 

Temperature and Wind Speed 

RF 0.88 0.60 0.39 0.50 1.06 0.68 0.77 0.56 0.38 0.31 0.97 0.77 

SVR 0.71 0.93 0.62 0.55 1.00 0.64 0.45 0.86 0.60 0.35 0.94 0.74 

GBR 0.73 0.90 0.61 0.57 0.98 0.63 0.57 0.76 0.57 0.41 0.90 0.73 
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LSTM 0.72 0.91 0.60 0.60 0.85 0.60 0.48 0.59 0.46 0.37 0.66 0.54 

ANN 0.72 0.93 0.62 0.58 0.96 0.62 0.51 0.80 0.60 0.37 0.93 0.75 

Temperature and Relative 

Humidity 

RF 0.73 0.92 0.67 0.19 1.36 1.03 0.86 0.42 0.29 0.49 0.83 0.59 

SVR 0.53 1.21 0.90 0.39 1.18 0.91 0.71 0.63 0.45 0.62 0.73 0.54 

GBR 0.55 1.19 0.89 0.37 1.20 0.94 0.77 0.56 0.42 0.58 0.76 0.57 

LSTM 0.50 1.45 0.98 0.46 1.09 0.85 0.47 0.58 0.45 0.36 0.65 0.54 

ANN 0.53 1.20 0.90 0.359 1.22 0.94 0.731 0.607 0.46 0.621 0.72 0.55 

 

 

Table 5.2: Performance of Random Forest (RF), Support Vector Regressor (SVR), Gradient Boosting Regressor (GBR), and Long Short-Term Memory 

(LSTM), Artificial Neural Network, and Artificial Neural Network (ANN) for Priestley Taylor Method. 

 

Parameters Model 

Hyderabad Waipara 

Calibration Validation Calibration Validation 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

All parameters 

RF 0.99 0.04 0.02 0.97 0.13 0.08 0.99 0.08 0.04 0.96 0.27 0.15 

SVR 0.96 0.15 0.07 0.98 0.11 0.08 0.98 0.18 0.12 0.96 0.26 0.14 

GBR 0.97 0.12 0.08 0.97 0.14 0.09 0.98 0.15 0.11 0.96 0.28 0.18 

LSTM 0.99 0.03 0.02 0.99 0.03 0.02 0.99 0.06 0.03 0.99 0.07 0.05 
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ANN 0.98 0.09 0.06 0.98 0.10 0.07 0.99 0.13 0.08 0.98 0.19 0.10 

Temperature and Rs 

RF 0.60 0.51 0.40 0.32 0.68 0.53 0.62 0.42 0.24 0.39 0.86 0.51 

SVR 0.46 0.60 0.46 0.43 0.62 0.48 0.35 0.62 0.37 0.37 0.76 0.46 

GBR 0.50 0.58 0.46 0.44 0.61 0.49 0.47 0.76 0.32 0.36 0.90 0.46 

LSTM 0.54 0.44 0.33 0.56 0.44 0.34 0.68 0.39 0.34 0.50 0.52 0.34 

ANN 0.49 0.58 0.47 0.43 0.62 0.49 0.59 0.49 0.35 0.45 0.55 0.44 

Temperature and Relative Humidity 

RF 0.46 0.6 0.42 0.13 0.7 0.46 0.81 1.15 0.56 0.64 1.31 0.94 

SVR 0.28 0.69 0.50 0.23 0.72 0.54 0.78 1.07 0.76 0.72 1.15 0.83 

GBR 0.32 0.67 0.49 0.23 0.72 0.54 0.84 0.96 0.71 0.73 1.16 0.88 

LSTM 0.55 0.64 0.47 0.52 0.63 0.46 0.81 1.02 0.65 0.78 1.08 0.78 

ANN 0.30 0.69 0.50 0.23 0.72 0.54 0.79 1.05 0.77 0.72 1.11 0.85 

 

Table 5.3: Performance of Random Forest (RF), Support Vector Regressor (SVR), Gradient Boosting Regressor (GBR), and Long Short-Term Memory 

(LSTM), Artificial Neural Network, and Artificial Neural Network (ANN) for Hargreaves Method. 

 

Parameters Model 

Hyderabad Waipara 

Calibration Validation Calibration Validation 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

All parameters RF 0.99 0.01 0.03 0.99 0.03 0.12 0.99 0.02 0.008 0.80 0.15 0.05 



 
 
 

45  

SVR 0.98 0.10 0.08 0.98 0.11 0.09 0.54 0.20 0.20 0.20 0.11 0.20 

GBR 0.99 0.05 0.03 0.99 0.07 0.04 0.78 0.13 0.10 0.66 0.19 0.14 

LSTM 0.99 0.04 0.02 0.99 0.05 0.03 0.98 0.04 0.03 0.97 0.04 0.03 

ANN 0.99 0.04 0.03 0.99 0.04 0.031 0.97 0.05 0.03 0.96 0.06 0.04 

Minimum Temperature , Rs 

RF 0.76 0.45 0.33 0.39 0.76 0.57 0.42 0.22 0.15 0.37 0.40 0.30 

SVR 0.53 0.63 0.48 0.46 0.71 0.53 0.45 0.30 0.26 0.42 0.34 0.30 

GBR 0.56 0.62 0.47 0.50 0.69 0.51 0.49 0.27 0.21 0.35 0.37 0.29 

LSTM 0.33 0.62 0.46 0.29 0.65 0.48 0.89 0.08 0.19 0.86 0.34 0.21 

ANN 0.73 0.63 0.49 0.49 0.69 0.52 0.68 0.29 0.22 0.49 0.34 0.28 

 

 

Table 5.4: Performance of Random Forest (RF), Support Vector Regressor (SVR), Gradient Boosting Regressor (GBR), and Long Short-Term Memory 

(LSTM), Artificial Neural Network, and Artificial Neural Network (ANN) for Turc Method. 

 

Parameters Model 

Hyderabad Waipara 

Calibration Validation Calibration Validation 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

All parameters 
RF 0.99 0.02 0.01 0.99 0.03 0.01 0.99 0.02 0.07 0.99 0.05 0.02 

SVR 0.97 0.07 0.06 0.98 0.06 0.05 0.99 0.13 0.11 0.99 0.13 0.11 
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GBR 0.99 0.01 0.09 0.99 0.01 0.09 0.99 0.05 0.03 0.99 0.08 0.05 

LSTM 0.99 0.03 0.02 0.99 0.02 0.01 0.99 0.04 0.02 0.99 0.03 0.02 

ANN 0.99 0.01 0.01 0.99 0.01 0.11 0.99 0.08 0.06 0.99 0.10 0.06 

Minimum Temperature, Rs 

RF 0.99 0.02 0.01 0.99 0.03 0.02 0.99 0.03 0.01 0.99 0.06 0.04 

SVR 0.98 0.06 0.04 0.98 0.06 0.05 0.99 0.11 0.08 0.99 0.10 0.09 

GBR 0.99 0.03 0.03 0.99 0.03 0.03 0.99 0.05 0.04 0.99 0.09 0.05 

LSTM 0.60 0.41 0.33 0.99 0.02 0.03 0.97 0.04 0.02 0.98 0.05 0.02 

ANN 0.99 0.04 0.03 0.99 0.04 0.03 0.99 0.10 0.06 0.99 0.11 0.07 
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5.4.1 ML models performance with various input combinations 

The performance of the LSTM, ANN, SVR, GBR, and RF models for the two stations for the Penman-

Monteith method was provided in Table 5.1. Table 5.1 demonstrated that the tested models generally 

had comparable performance over the two stations. Figure 5.1 shows the comparisons between observed 

PET and model estimated values in the box plot form during the testing periods. The models LSTM, 

ANN and SVR estimated values showed closer agreement with those of observed PET (based on 

Penman-Monteith), and the LSTM and ANN models performed marginally better than the GBR, with 

estimated R2 values of the two stations being 0.990 (LSTM), 0.998 (ANN), 0.990 (SVR) and 0.990 

(GBR), 0.990 (RF). From Table 5, the LSTM and ANN models, for the most part, accomplished 

excellent performances trailed by SVR for all parameter input combinations. The performances being 

LSTM (RMSE: 0.02 mm⁄d, MAE: 0. 01 mm⁄d , and R2: 0.990), ANN (RMSE:  0.06 mm⁄d, MAE: 

0.05 mm⁄d, and  R2:0.998), SVR (RMSE: 0.155 mm⁄d, MAE: 0.11 mm⁄d, and R2: 0.990). The GBR 

model could likewise accomplish good results with (RMSE:0.183  mm⁄d, MAE: 0.13 mm⁄d, and R2: 

0.987), while the RF model also showed excellent performance with (RMSE: 0.123 mm⁄d, MAE: 0.08 

mm⁄d, and R2: 0.990). 

The performance of the LSTM, ANN, SVR, GBR and RF models at two stations for the Priestley Taylor 

method was provided in Table 5.2. Table 5.2 demonstrated that the tested models generally had 

comparable performance over the two stations. Figure 5.2 shows the comparisons between observed 

PET and model estimated values in the box plot form during the testing periods. The model's LSTM, 

ANN and SVR estimated values showed closer agreement with those of observed PET, and the LSTM 

and ANN models performed marginally better than the GBR, with estimated R2 values of the two 

stations being 0.990 (LSTM), 0.985 (ANN), 0.98 (SVR) and 0.97(GBR), 0.97 (RF). From Table 6, the 

LSTM and ANN models, for the most part, accomplished excellent performances trailed by the SVR 

model for all parameter input combinations. The performances being LSTM (RMSE: 0.03 mm⁄d, MAE: 

0.024 mm⁄d, and R2: 0.990), ANN (RMSE:0.10 mm⁄d, MAE:0.07 mm⁄d, R2:0.985), SVR (RMSE: 0.115 

mm⁄d, MAE: 0.08 mm⁄d, and R2: 0.98). The GBR model could likewise accomplish good results with 

(RMSE: 0.14 mm⁄d, MAE: 0.09 mm⁄d and R2: 0.97), while the RF model also showed good performance 

with (RMSE: 0.13 mm⁄d, MAE: 0.08 mm⁄d, and R2: 0.97). 

The performance of the LSTM, ANN, SVR, GBR, and RF models at the two stations for the Hargreaves 

and Turc methods were provided in Tables 5.1-5.2. Tables 5.1-5.2 demonstrated that the tested models 

generally had comparable performance over the two stations. Figures 5.1-5.2 showed the comparisons 

between observed PET and model estimated values in the box plot from all input combinations during 

the testing periods. The model's LSTM, ANN and SVR estimated values showed closer agreement with 

those of observed PET, and the LSTM and ANN models performed marginally better than the GBR, 

with estimated R2 values of the two stations being 0.990 (LSTM), 0.99 (ANN), 0.99 (SVR) and 0.986 
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(GBR), 0.99 (RF) for Hargreaves and 0.990 (LSTM), 0.99 (ANN), 0.99 (SVR), 0.986 (GBR), 0.99 (RF) 

for Turc method. For the Hargreaves method, from Table 5.3, the LSTM and ANN models, for the most 

part, accomplished excellent performances trailed by SVR for all parameter input combinations. The 

performances being LSTM (RMSE: 0.05 mm⁄d, MAE: 0.03 mm⁄d, and R2: 0.990), ANN (RMSE:0.04 

mm⁄d, MAE:0.03 mm⁄d, and R2:0.99), SVR (RMSE: 0.11 mm⁄d, MAE: 0.09 mm⁄d, and R2: 0.986). The 

GBR model could likewise accomplish good results with (RMSE: 0.012 mm⁄d, MAE: 0.09 mm⁄d, and 

R2: 0.99), while the RF model also showed acceptable performance with (RMSE: 0.03 mm⁄d, MAE: 

0.017 mm⁄d, and R2: 0.99).For Turc method from Table 5.4, the LSTM and ANN models, for the most 

part, accomplished excellent performances trailed by SVR for all parameter input combinations. The 

performances being LSTM (RMSE: 0.02 mm⁄d, MAE: 0.019 mm⁄d, and R2: 0.990), ANN (RMSE:0.018 

mm⁄d, MAE:0.011 mm⁄d, and R2:0.99), SVR (RMSE: 0.06 mm⁄d, MAE: 0.05 mm⁄d, and R2: 0.986).The 

GBR model could likewise accomplish sufficient results with (RMSE: 0.012 mm⁄d, MAE: 0.09 mm⁄d, 

and R2:0.99), while the RF model also showed acceptable performance with (RMSE: 0.03 mm⁄d, 

MAE:0.017  mm⁄d, and R2: 0.99). 
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Figure 5.2: Comparison of observed and estimated PET by different models (GBR, ANN, LSTM, 

RF, and SVR) with varying parameters of input for the validation period at Hyderabad (Top) and 

Waipara Stations (Bottom) for Penman-Monteith method. 
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     Figure 5.3: Comparison of observed and estimated PET by different models (GBR, ANN, LSTM, 

RF, and SVR) with varying parameters of input for the validation period at Hyderabad (Top) and 

Waipara Stations (Bottom) for Priestley Taylor method. 
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Figure 5.4: Comparison of observed and estimated PET by different models (GBR, ANN, LSTM, 

RF, and SVR) with varying parameters of input for the validation period at Hyderabad (Top) and 

Waipara Stations (Bottom) for Hargreaves method. 
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Figure 5.5: Comparison of observed and estimated PET by different models (GBR, ANN, LSTM, 

RF, and SVR) with varying parameters of input for the validation period at Hyderabad (Top) and 

Waipara Stations (Bottom) for Turc method. 

 

During the validation stage at Hyderabad station, the input combinations like temperature, relative 

humidity, and wind speed ranging it results from (MAE: 0.07–0.13 mm⁄d, RMSE: 0.11-0.18 mm⁄d, R2: 

0.98–0.99) played out the best for all the methods. However, all parameters input combinations 

outperformed in all the PET methods. Models accomplished the generally low performance when 

temperature and wind speed data was taken as input with (RMSE: 0.85–1.06 mm⁄d, MAE: 0.28–0.60 

mm⁄d, and R2: 0.55–0.60), trailed by models with temperature and relative humidity taken as input 

(RMSE: 1.09–1.36 mm⁄d, MAE: 0.85–1.035 mm⁄d, R2: 0.19–0.46) for Penman-Monteith method. For 

the Priestley Taylor method, the ML models accomplished generally low performance when 

temperature and solar radiation was taken as input (RMSE: 0.44–068 mm⁄d, MAE: 0.34–0.53 mm⁄d, 

and R2: 0.32–0.56), followed by models dependent on temperature and relative humidity as input 

(RMSE: 0.63–0.725  mm⁄d, MAE: 0.438–0.560 mm⁄d, and R2: 0.23–0.50). For Hargreaves and Turc 

methods, the minimum temperature and solar radiation input combination performed equally as all 
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parameters input combination. It is worth seeing that models that are blends of temperature data with 

relative humidity and wind speed, individually, could accomplish preferred performance over models 

dependent on temperature and relative humidity input. The input combination of temperature and solar 

radiation could also accomplish outstanding performance compared to temperature and relative 

humidity for the Priestley Taylor method. It was also observed that the models dependent on 

temperature, relative humidity, wind speed and solar radiation could acquire slightly preferred 

performance over models dependent on three input parameter combinations. The outcomes 

demonstrated that LSTM and ANN performed superior to RF, SVR, and GBR when temperature and 

wind speed was taken as input under limited data. Furthermore, the LSTM model showed the most 

remarkable performance when temperature, wind speed, and relative humidity data were accessible for 

Penman-Monteith and when temperature and solar radiation were used as input for Priestley, 

Hargreaves and Turc methods. Among the five ML models, ANN came second, trailed by SVR. RF 

and GBR models were not as proficient as LSTM and ANN models. Hence, LSTM and ANN models 

came the best among any input combination, whereas other models performed low when the input 

parameters were reduced.    

It was also observed that in all the PET methods, the results when Penman-Monteith was used as a 

reference method were remarkable, followed by the Priestley method. In Hargreaves and Turc methods, 

the inputs being the same, Turc has shown much better performance under limited combinations when 

compared to Hargreaves. This can be confirmed from the box plots in figures 5.4-5.6. 

Tables 5.1-5.4 showed the summary of the LSTM, ANN, SVR, GBR, and RF model performances at 

Waipara station for different PET methods. The performance ranking of different ML models and PET 

methods was equivalent to the Hyderabad station. The ranking was given as 

LSTM>ANN>SVR>GBR>RF. Models obtained the best performance when all parameters were used 

as input combination with its results ranging from (RMSE: 0.11–0.242 mm⁄d, MAE: 0.07–0.163 mm⁄d, 

and R2: 0.98–0.990) compared to other input combinations. During the validation stage at Waipara 

station, the input combinations like temperature, relative humidity, and wind speed with (RMSE: 0.49–

0.79 mm⁄d, MAE: 0.37–0.574 mm⁄d, R2: 0.548–0.64) played out the best for the Penman-Monteith 

method. The input combinations of temperature, relative humidity and solar radiation (RMSE: 1.11–

1.31 mm⁄d, MAE: 0.28–0.6 mm⁄d, and R2: 0.64–0.72) played out the best for the Priestley method. In 

Hargreaves and Turc, the performances of all input combinations were almost the same, but in 

Hargreaves, ANN and LSTM performed much better than GBR and RF models. It is recommended to 

use LSTM or ANN to model PET while using the Hargreaves method. 

Taking the observations from Tables 5.4-5.4 into account, the LSTM and ANN models are the 

most robust among the five ML models regardless of under which station or input combination, trailed 

by SVR and GBR models, which could generally accomplish agreeable accuracy. LSTM, ANN and 
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SVR models depend on just temperature, relative humidity, and solar radiation data to accomplish 

acceptable accuracy with the least meteorological variables. This can be considered more financially 

useful and helpful for advancement and application. The LSTM and ANN models built up in this study 

can accomplish higher performance than the other two models, and LSTM played out a little better than 

the ANN model under all inputs and much better under fewer input combinations. They both are 

successfully able to simulate PET where meteorological information is inadequate.  

In this study, the stability comparison employed primarily focuses on LSTM, ANN, SVR, RF, 

GBR models. Among the models studied, the LSTM model achieved the lowest and the most 

concentrated distribution of RMSE values independent of the input combinations. It showed that the 

LSTM model had the best precision stability with an accuracy of 99.10 %, trailed by ANN with 92.70 

% accuracy. The stability of the other two models is almost the same; therefore, when selecting one 

model for estimating PET between these two models, modelling accuracy should be the primary 

consideration. However, the accuracy of the models varies according to the number of inputs and the 

prediction of the time step. In terms of the input combinations effect, taking LSTM models as an 

example, the RMSE values of the LSTM model based on all parameters input combination gained the 

lowest fluctuation of (RMSE: 0.02–1.36 mm⁄d) across two stations. This was followed by models based 

on temperature, wind speed, relative humidity; temperature, relative humidity; temperature, wind speed 

for the Penman-Monteith method. The input combination of temperature, solar radiation, relative 

humidity, and temperature, solar radiation was observed to have the lowest RMSE values for the 

Priestley method. It was also worth noticing that although the accuracy of models with all parameters 

input combination was the highest in each station. Even if all parameter information is not available in 

a particular station, the discussed three parameters input combination or the two-parameter input 

combinations such as temperature and relative humidity or temperature and wind speed values could be 

used.  

As shown in Figures 5.6-5.9, taking LSTM models as examples for Hyderabad station, the average 

RMSE values for input combinations of temperature, wind speed, relative humidity, and temperature 

and wind speed ranged from 0.11–1.36 mm⁄d and 0.07–1.065 mm⁄d, respectively. Using RH could make 

the average RMSE value decrease by less percentage, while using U2 could decrease it by more 

percentage. It is evident that (T, U2) or (T, Rs) performed even better than (T, RH). So, it can be 

reasoned that wind speed and solar radiation can improve the temperature-based accuracy for different 

models. These results generally can be relatively stable from the station's meteorological conditions in 

the study area and PET results from the coupling effect of other meteorological variables. Hence, 

temperature includes more comprehensive data and a PET pattern of the variance than the single 

determined RH. 
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Figure 5.6: Comparison of RMSE values for Hyderabad (Top) and Waipara station (Bottom) for 

different input combinations for Penman-Monteith Method. 

 



 
 
 

56  

 

 

 

 

Figure 5.7: Comparison of RMSE values for Hyderabad (Top) and Waipara station (Bottom) for 

different input combinations for Priestley Taylor Method. 
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Figure 5.8: Comparison of RMSE values for Hyderabad (Top) and Waipara station (Bottom) for 

different input combinations for Hargreaves Method. 
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Figure 5.9: Comparison of RMSE values for Hyderabad (Top) and Waipara station (Bottom) for 

different input combinations for Turc Method. 
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Figure 5.10: Correlation of main meteorological parameters such as temperature, relative humidity, 

solar radiation, wind speed to PET. 

As shown in Figure 5.10, the temperature and wind speed followed by solar radiation have the most 

substantial influence on PET estimations based on the Penman-Monteith model. It was also observed 

from the study that the temperature, wind speed and solar radiation have greater than or equal to zero 

values. This means that these features are more practical while predicting PET value than relative 

humidity, which was a negative value.  It was also observed that maximum temperature, minimum 

temperature, wind speed and relative humidity contribute more to the output variable PET. Therefore, 

the ML models derived based on temperature, solar radiation, wind speed as input and the PET from 

Penman-Monteith, Priestley Taylor, Hargreaves, and Turc methods as output variables gave a 

remarkable performance. The ML model results, when using only three (T, WS, Rs) from the four 

essential meteorological variables as input, seldom show the same values of coefficient of 

determination (R2). The observed results prove that relative humidity has a meagre contribution to PET 

when using ML models. The overall accuracies of most models were found to be similar to each other. 
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5.4.2 Discussions 

 

This study investigated the five ML models in estimating daily PET, including LSTM, ANN, GBR, RF, 

and SVR, for four different empirical methods under various input combinations for semi-arid climate 

conditions of Hyderabad and Waipara Stations. The study has reportedly found that LSTM and ANN 

performed the best at two stations. Three other models like SVR, GBR and RF, were also used to 

estimate PET. It was seen that they have also produced lower RMSE values and accurate R2 values for 

these stations. Various studies in literature by (Carter & Liang, 2019; Chen et al., 2020; Raza et al., 

2020; Saggi & Jain, 2019; T. Wu et al., 2020), which used ANN, LSTM, RF, SVR for PET estimation, 

reportedly found ANN, LSTM, and SVR performed best. The present study also acts as a proof for the 

performance of these models. The present study also observed that LSTM outperformed, followed by 

ANN, SVR and GBR. The use of different input combinations was observed in the study, and it was 

concluded that even when two parameters input combinations like temperature and wind speed are used, 

LSTM works well. 

It was observed that while some of the ML models perform well in terms of both accuracy and 

computational demand, which can be seen clearly in the case of LSTM and ANN. The LSTM model is 

appealing due to its efficiency and low test RMSE, irrespective of input combination. Notably, the 

multi-layer neural networks tested in this study performed better than the other machine learning 

models. The multi neural networks and deep learning models showed more evidence of overfitting than 

other mentioned ML models, and it is worth noticing the performance metrics for LSTM and ANN 

ranging R2  values to 0.99. Comparison of different machine learning and deep learning models and 

their performance when inputs were reduced showed the lowest performance in the case of RF and GBR 

models. The two input combinations, temperature and relative humidity, did not work well with other 

models, but they worked comparatively well with LSTM. So, LSTM can be used even if there are two 

input combinations followed by the ANN model. It has also shown that this study resembles the 

assessment of PET found by (Raza et al., 2020) where SVR, was found to be used as an alternative PET 

estimation model to the subsistence of conventional methods. Whereas the other two model's RF and 

GBR, performed best when more inputs were used, and their performance gradually reduced when 

inputs combinations were brought down. The strategy shown in the current investigation can be 

embraced in different domains and regions as done in this study, namely Hyderabad(India) and 

Waipara(New Zealand). It was also seen that among all empirical models, the Penman-Monteith has 

been predicted well with the ML models followed by the Priestley Taylor method. In the other two PET 

methods, whose inputs are the same, Turc performed better than the Hargreaves method. It can be said 

that when we have more available data, Penman or Priestley can be used to estimate PET, and when 

there is less data, Turc can be used to estimate PET. The results obtained in this study can be compared 

with other empirical methods and computational models in future studies. The analysis of this presented 
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study contributes essential guidance to use these models in PET estimations, where partial 

meteorological variables and topographical data are absent. This results in providing ease for 

agriculturists, water resources management and hydrological engineers. In the future, proposed models 

can be applied for irrigation scheduling, evaluating the crop coefficients for crop water modelling and 

in estimating AET. 

To summarize, in the present study, the result of using RH with only temperature data for assessing 

PET was the same as previous studies. As a parameter for calculating RH, with limited inputs, U2 and 

Rs could increase modelling accuracy and be even better than RH. Hence, models based on U2 and Rs 

as input and LSTM model can be suggested for calculating PET in the light of data unavailability and 

models based on any combination, whether it be based on RH, ANN model can be suggested to calculate 

PET. 

The results of the study reveal that temperature and solar radiation as the most influencing variables 

compared to relative humidity and wind speed for semi-arid climate conditions, as demonstrated in the 

present study. Given the intense data requirements for applying the Penman-Monteith model, Priestley 

model, Hargreaves and Turc models, the study employed ML models with minimum input variables 

such as temperature, solar radiation, and relative humidity. The trained and tested ML models 

developed based on empirical models can be valuable tools to predict PET for limited data case studies. 

Analysing the sensitivity of each climate variable on PET and testing their statistical dependencies, 

data pre-processing to acquire relevant information before developing such ML models is of most 

importance in the implementation. Analysis of compensating accuracies with limited climate input 

variables in the PET estimates compared to standard empirical models can be a potential area of 

research.  

 

5.5 Conclusions 

 

The daily PET over semi-arid climatic conditions over Hyderabad, Telangana, India and Waipara (New 

Zealand) were modelled using empirical and ML models. The Penman-Monteith model estimates of 

PET were considered as standard reference models for various temperature and radiation-based 

empirical methods as well as for data-driven models. The daily PET rates were estimated with five 

different modelling techniques, namely LSTM, ANN, SVR, GBR, RF using four input combinations 

such as maximum and minimum air temperatures, relative humidity and solar radiation, wind speed; 

three variable input combinations such as average air temperature, relative humidity, and solar 

radiation; two input variables combinations such as temperature and solar radiation; temperature and 

wind speed. The study investigated that the best performance was when all input variables were used. 

The study, however, finds that even three input variable combinations (temperature, wind speed and 

relative humidity values) or two combination input variables combination (temperature and relative 
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humidity, temperature and wind Speed) also can provide practically identical results. The results were 

discussed with the results of alternative methods of PET calculation, such as the combination-based 

method of Penman-Monteith, the radiation-based methods of Priestley-Taylor, the temperature-based 

methods of Hargreaves and Turc. The correlation coefficient values suggest that temperature is the most 

important factor, followed by solar radiation, wind speed, and relative humidity, respectively. LSTM 

and ANN with all-climate variables as input were able to simulate PET values estimated using the 

Penman-Monteith method. Temperature and solar radiation have a maximum correlation with PET 

estimates of Penman-Monteith models compared to relative humidity and wind speed. The Turc model 

uses temperature and solar radiation as input variables and has high accuracy with all ML models. In 

contrast, relative humidity has the least correlation with the PET estimates. The Priestly-Taylor model 

considers relative humidity, temperature, and solar radiation as input variables. Due to the lower 

dependency of relative humidity on the PET estimates, the Priestly-Taylor model has lower accuracy 

with ML models than the Turc model. The results also showed that the LSTM and ANN models could 

offer the most remarkable performance among five tested models regardless of station or input 

combination, trailed by SVR and GBR models, which could likewise accomplish moderately good 

performance. LSTM, ANN, and SVR models depend on just temperature, relative humidity, and wind 

speed data to achieve good performance with the fewest meteorological variables, which can be viewed 

as more practical and helpful for advancement and application. Then comes the combination of 

temperature and wind speed, followed by temperature and relative humidity. The study concludes that 

the empirical models work well with data-driven algorithms that consider the climate variables having 

high dependency with the standard PET estimates. Such. Further, it can be concluded that when a 

parameter or an input variable with a lower correlation is added to the set of features for training over 

ML models, the accuracy of prediction will be decreased. The results showed that LSTM and 

ANN  models provide pretty good agreement with the PET obtained by the Penman-Monteith method. 

The study demonstrated that the modelling of PET through the LSTM and ANN techniques gave better 

estimates that proved their performance criterion as R2: 0.99. The study concludes that the performance 

of the models varies according to the number of inputs and the predicted time step. Overall, results are 

of significant practical use when limited climate data is available to estimate the PET. So, it can be 

concluded that even if not all parameter information is available in a particular station, this study proved 

that this three-parameter input combination or the two combinations, which are temperature and wind 

speed or temperature and relative humidity values, can be used to estimate PET. At spatiotemporal 

scales, LSTM and ANN models demonstrated extraordinary pertinence in displaying PET and can be 

strongly suggested for assessing PET when meteorological information is fragmented or restricted. 
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Chapter-6 

Estimation of Actual Evapotranspiration with Limited 

Data 

 

6.1 Introduction 

A key aspect in the water budget is estimates of the spatial and temporal values PET. This term has 

been studied and modelled in Chapter 5 for different empirical methods and ML models. The 

uncertainties in PET estimates limits the reliability of hydrologic and restoration analyses, water 

resources management and planning. Along with PET estimates, hydrological implications necessitate 

AET estimates as well to get an actual water budget. Most of the AET empirical models depend on 

precipitation and PET as a limiting factor. Furthermore, due to the ambiguities in the definitions of PET 

and their dependency on large amounts of data, PET is not sufficient to understand the hydrology. AET 

expresses the annual water balance between precipitation and latent heat exchange, which is the variable 

most frequently correlated with biodiversity at the continental scales. Because of the close relationship 

between production and climatic factors, AET is also regarded as a surrogate for net primary production 

(Leith, 1975). The vast majority of studies in the literature have focused on modelling the PET process, 

in which evaporation occurs from soil and plant surfaces under no water stress. However, AET occurs 

under actual water supply conditions. Earlier studies have estimated AET using time-consuming and 

labour-intensive methods such as water-balance, energy-balance, Bowen-ratio (EBBR), and eddy-

covariance (EC), and few modelled based methods. The modelled based methods include, Thornthwaite 

and Mather equation, Coutagne, Penman, Serra, Cappus, Kessler, Jensen and Haise, Blaney and 

Criddle, and Papadakis (Gudulas et al., 2013). These methods are mainly empirical and the common 

issue in these methods is the calculation of certain components of the water balance based on various 

factors such as temperature, precipitation, humidity, etc. So, the need to estimate AET using limited 

data has become important. The Budyko and Turc methods appear to be the most appropriate; however, 

their application is heavily influenced by the regional conditions prevalent in a given area. Furthermore, 

the more sensitive an area or station and the corresponding environmental pressures, the more important 

it is to apply the appropriate methods for estimating the important terms of hydrological cycle and 

developing an efficient water resources management plan. This study essentially adjusts the estimated 

PET values for the generation of AET. There are several studies which attempted to estimate AET using 

various empirical methods (as explained in Chapter 5), however, estimation of AET using the PET 

estimates in the context of limited data availability has not been addressed. The present study made an 

attempt to estimate AET for two different climatological conditions of Hyderabad and Waipara in the 
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context of limited data which can serve as input to hydrological models of ungauged river basins. In 

this context, estimating AET given the PET estimates under limited data availability, as demonstrated 

in Chapter 5 will be valuable in the water balance assessment studies for ungauged basins. 

Figure 6.1: Flowchart for estimation of AET using modelled PET 

 

6.2 Methods to Estimate Actual Evapotranspiration 

AET is constrained by the availability of energy, water, and the resistance provided by the atmosphere 

and vegetation. Because of these constraints, AET measurement methodologies such as 

micrometeorological methods (energy-budget Bowen ratio or eddy correlation), and lysimeter-based 

techniques are costly and labour-intensive. To approximate AET over the two different stations, low-

cost and simple alternatives are required. This study has provided alternatives based on PET equations 

to estimate AET under limited data conditions for two different climatic regions. The study has used 

PET from Chapter 5, the PET which was modelled using different machine learning models taking the 

Penman Monteith as reference method. The PET estimates from various ML models such as LSTM, 

ANN, RF, SVR, and GBR were utilized in place of PET in the Budyko and Turc methods. The Budyko 

and the Turc methods are the models used in this study to estimate AET. The meteorological variables 

used in estimating PET were given in Chapter 5, and the variables affecting AET are discussed in this 

chapter. This methodology gives us the clarity on estimating AET with readily available PET and 

precipitation under limited data conditions.  
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6.2.1 Budyko method 

To estimate AET with readily available and modelled operational hydro-meteorological variables of P 

and PET, the study adopted the Budyko (1958) equation. Budyko Equation is a classic model for 

estimating AET by relating long-term-average water and energy balances at catchment scales using 

precipitation and PET. Budyko established a relationship between three hydro-climatic variables for a 

basin: precipitation (P), PET and AET. The Budyko formulation depends on the relationship between 

three hydro-meteorological variables: P, PET and AET, which states that the ratio of the AET over 

precipitation (AET/P) is fundamentally related to the ratio of the PET over precipitation (PET/P) (Wang 

et al., 2017), (Y. Zhang et al., 2015) as follows: 

 

                                                              
ET

P
= 1 +

PET

P
− (1 + (

PET

P
)

ω
)

(1/ω)

                          (6.1) 

 

The parameter ‘𝜔’ accounts for the basin characteristics such as soil, vegetation, terrain, etc. ((McVicar 

et al., 2012). The original Budyko equation (Eq.23) was developed for a long-time scale such as annual 

with the parameter ‘’, representing the combined effect of climate and land surface. For a reasonable 

application of  Budyko equation for short-term scales, the original Budyko formulation (Eq. 23) has 

been modified by several researchers (e.g., (Schreiber, 1904)) and one of the widely used formulation 

is as implemented by Zhang et al., (2012) for estimating the AET, as follows: 

 

                                    AETBudyko = [P (1 − exp (
−PET

P
)) PET tanh (

P

PET
)]

0.5

              (6.2) 

 

6.2.2 Turc Method 

 

Another well accepted and widely used AET model which considers precipitation and PET along with 

soil and vegetative characteristics implicitly is Turc model (Turc, 1954). It is also one of the widely 

used AET models in hydrological applications [58], [132], [133]. 

 

                                                                  AETTurc =  
P

√0.9+
P2

PET2

                                                       (6.3) 

 

6.3 RESULTS 

The modelled PET from Chapter 5 using five different ML models like LSTM, GBR, RF, ANN, SVR 

were considered in this analysis to estimate AET using Budyko and Turc methods. The PET modelling 



 
 
 

66  

was done on empirical methods such as Penman, Hargreaves, Priestley and Turc. These empirical 

approaches use precipitation, temperature, solar radiation, wind speed, relative humidity as parameters 

to determine PET. The two AET methods of Budyko and Turc use precipitation, and the PET estimates 

do determine AET. The input combinations were replicated from the estimation of PET to estimate 

different modelled combinations of AET as given in Tables 9-12.The best empirical AET methods were 

recorded corresponding to the four ML models and their input combinations in terms of R2, RMSE, and 

MAE for four empirical methods. These were listed in Tables 9, 10, 11, 12  for the Hyderabad and 

Waipara Stations. 
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Table 6.1: Performance of Budyko and Turc methods in estimating AET using PET modelled from Random Forest (RF), Support Vector Regressor (SVR), 

Gradient Boosting Regressor (GBR), Long Short-Term Memory (LSTM) and Artificial Neural Network(ANN) for Penman-Monteith Method under different 

input combinations. 

 

Parameters Model 

Hyderabad Waipara 

Budyko Turc Budyko Turc 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

All parameters 

RF 0.99 0.05 0.01 0.99 0.06 0.01 0.99 0.03 0.04 0.99 0.02 0.01 

SVR 0.99 0.04 0.02 0.99 0.04 0.02 0.98 0.02 0.01 0.98 0.03 0.04 

GBR 0.99 0.09 0.02 0.99 0.09 0.02 0.98 0.03 0.04 0.99 0.03 0.04 

LSTM 0.99 0.05 0.01 0.99 0.06 0.01 0.95 0.22 0.01 0.97 0.23 0.05 

ANN 0.99 0.04 0.01 0.99 0.04 0.01 0.98 0.02 0.01 0.98 0.03 0.01 

Temperature, Wind Speed, 

Relative Humidity 

RF 0.91 0.51 0.17 0.91 0.18 0.26 0.95 0.06 0.01 0.95 0.06 0.01 

SVR 0.92 0.47 0.14 0.91 0.50 0.16 0.95 0.05 0.03 0.95 0.05 0.06 

GBR 0.91 0.47 0.14 0.91 0.45 0.15 0.95 0.05 0.01 0.96 0.06 0.01 

LSTM 0.92 0.38 0.09 0.92 0.49 0.15 0.96 0.19 0.05 0.96 0.20 0.05 

ANN 0.92 0.48 0.15 0.91 0.40 0.09 0.96 0.06 0.02 0.96 0.06 0.01 

Temperature and Wind Speed 
RF 0.90 0.69 0.26 0.89 0.72 0.27 0.79 0.19 0.05 0.79 0.20 0.05 

SVR 0.91 0.57 0.22 0.91 0.58 0.22 0.89 0.14 0.03 0.89 0.14 0.04 
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GBR 0.92 0.56 0.21 0.91 0.58 0.22 0.85 0.17 0.05 0.85 0.18 0.05 

LSTM 0.92 0.52 0.18 0.93 0.59 0.23 0.77 0.21 0.06 0.77 0.22 0.06 

ANN 0.920 0.56 0.21 0.92 0.54 0.19 0.86 0.18 0.05 0.85 0.19 0.05 

Temperature and Relative 

Humidity 

RF 0.84 0.64 0.19 0.84 0.66 0.20 0.95 0.07 0.05 0.92 0.08 0.06 

SVR 0.88 0.54 0.18 0.88 0.60 0.21 0.92 0.05 0.07 0.95 0.06 0.07 

GBR 0.881 0.58 0.21 0.88 0.60 0.21 0.92 0.06 0.05 0.99 0.06 0.01 

LSTM 0.85 0.48 0.15 0.85 0.56 0.18 0.95 0.19 0.05 0.77 0.20 0.05 

ANN 0.88 0.58 0.20 0.87 0.50 0.15 0.95 0.06 0.01 0.95 0.06 0.01 

 

Table 6.2: Performance of Budyko and Turc methods in estimating AET using PET modelled from Random Forest (RF), Support Vector Regressor (SVR), 

Gradient Boosting Regressor (GBR), Long Short-Term Memory (LSTM) and Artificial Neural Network(ANN) for Priestley Taylor Method under different 

input combinations. 

 

Parameters Model 

Hyderabad Waipara 

Budyko Turc Budyko Turc 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

All parameters 

RF 0.94 0.09 0.02 0.94 0.20 0.03 0.93 0.04 0.04 0.93 0.04 0.05 

SVR 0.96 0.08 0.04 0.96 0.18 0.04 0.88 0.06 0.02 0.88 0.06 0.09 

GBR 0.96 0.06 0.02 0.96 0.01 0.01 0.88 0.06 0.03 0.88 0.06 0.03 
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LSTM 0.99 0.01 0.022 0.99 0.03 0.024 0.92 0.05 0.03 0.92 0.05 0.08 

ANN 0.95 0.07 0.03 0.95 0.17 0.03 0.92 0.05 0.08 0.92 0.05 0.08 

Temperature and Rs 

RF 0.92 0.23 0.03 0.92 0.24 0.03 0.49 0.18 0.03 0.49 0.19 0.03 

SVR 0.93 0.22 0.06 0.93 0.23 0.06 0.53 0.16 0.03 0.53 0.17 0.03 

GBR 0.93 0.22 0.05 0.93 0.23 0.05 0.54 0.17 0.04 0.54 0.18 0.04 

LSTM 0.86 0.30 0.04 0.86 0.31 0.05 0.54 0.17 0.03 0.54 0.17 0.03 

ANN 0.93 0.21 0.05 0.93 0.22 0.05 0.53 0.17 0.03 0.53 0.18 0.03 

Temperature and Relative 

Humidity 

RF 0.89 0.26 0.04 0.89 0.28 0.04 0.58 0.16 0.03 0.57 0.17 0.03 

SVR 0.93 0.21 0.04 0.93 0.22 0.04 0.60 0.13 0.03 0.60 0.14 0.01 

GBR 0.93 0.22 0.03 0.92 0.23 0.04 0.60 0.15 0.03 0.60 0.16 0.03 

LSTM 0.97 0.11 0.02 0.97 0.63 0.12 0.03 0.15 0.03 0.61 0.16 0.03 

ANN 0.93 0.22 0.03 0.93 0.28 0.05 0.59 0.15 0.03 0.59 0.16 0.03 
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Table 6.3: Performance of Budyko and Turc methods in estimating AET using PET modelled from Random Forest (RF), Support Vector Regressor (SVR), 

Gradient Boosting Regressor (GBR), Long Short-Term Memory (LSTM) and Artificial Neural Network(ANN) for Hargreaves Method under different input 

combinations. 

 

Parameters Model 

Hyderabad Waipara 

Budyko Turc Budyko Turc 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

All parameters 

RF 0.99 0.01 0.01 0.99 0.01 0.02 0.97 0.07 0.02 0.97 0.07 0.02 

SVR 0.98 0.04 0.02 0.98 0.04 0.02 0.99 0.02 0.06 0.99 0.02 0.06 

GBR 0.99 0.01 0.03 0.99 0.01 0.04 0.97 0.07 0.02 0.98 0.07 0.02 

LSTM 0.99 0.01 0.02 0.99 0.01 0.01 0.97 0.02 0.03 0.97 0.02 0.08 

ANN 0.99 0.01 0.03 0.99 0.01 0.01 0.99 0.02 0.07 0.99 0.02 0.08 

Minimum Temperature, Rs 

RF 0.99 0.25 0.05 0.99 0.29 0.05 0.97 0.04 0.08 0.97 0.07 0.05 

SVR 0.98 0.13 0.03 0.98 0.13 0.04 0.99 0.02 0.06 0.98 0.02 0.06 

GBR 0.99 0.13 0.02 0.98 0.13 0.02 0.99 0.06 0.02 0.99 0.07 0.02 

LSTM 0.99 0.20 0.02 0.99 0.21 0.02 0.97 0.02 0.04 0.97 0.02 0.04 

ANN 0.99 0.13 0.02 0.98 0.14 0.03 0.99 0.02 0.05 0.99 0.02 0.06 
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Table 6.4: Performance of Budyko and Turc methods in estimating AET using PET modelled from Random Forest (RF), Support Vector Regressor (SVR), 

Gradient Boosting Regressor (GBR), Long Short-Term Memory (LSTM) and Artificial Neural Network(ANN) for Turc Method under different input 

combinations. 

 

Parameters Model 

Hyderabad Waipara 

Budyko Turc Budyko Turc 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

R2 RMSE 

(mm/d) 

MAE  

(mm/d) 

All parameters 

RF 0.99 0.02 0.01 0.99 0.04 0.05 0.99 0.06 0.04 0.99 0.06 0.04 

SVR 0.99 0.02 0.01 0.98 0.03 0.01 0.99 0.01 0.04 0.99 0.01 0.04 

GBR 0.99 0.04 0.04 0.99 0.05 0.04 0.99 0.01 0.04 0.99 0.01 0.04 

LSTM 0.99 0.01 0.02 0.99 0.01 0.03 0.99 0.02 0.01 0.99 0.02 0.01 

ANN 0.99 0.07 0.01 0.99 0.07 0.01 0.99 0.02 0.01 0.99 0.02 0.01 

Minimum Temperature, Rs 

RF 0.99 0.01 0.01 0.99 0.01 0.04 0.93 0.10 0.01 0.93 0.10 0.01 

SVR 0.98 0.02 0.04 0.98 0.02 0.04 0.99 0.08 0.01 0.99 0.09 0.01 

GBR 0.99 0.08 0.04 0.99 0.08 0.04 0.95 0.08 0.01 0.95 0.09 0.01 

LSTM 0.95 0.04 0.03 0.95 0.21 0.03 0.99 0.09 0.01 0.98 0.10 0.01 

ANN 0.99 0.08 0.04 0.99 0.08 0.01 0.99 0.09 0.01 0.99 0.10 0.01 
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6.3.1 ML models performance with various AET methods under different Input 

combinations 

The performance of the two AET methods, Budyko and Turc, using PET obtained from ML models 

such as LSTM, ANN, SVR, GBR, and RF  for the two stations of Hyderabad and Waipara using the 

Penman-Monteith method was provided in Table 6.1.The results demonstrated that the tested models 

generally had comparable performance over the two stations. Figure 6.1 shows the comparisons 

between observed AET using PET from Penman-Monteith and the AET estimated using modelled PET 

values in the form of a box plot for both the AET methods with all parameters as input combinations. 

The model estimated values using LSTM, ANN and SVR models showed closer agreement with 

observed AET estimates. Also during the testing period the LSTM and ANN models performed 

marginally better than the GBR, with estimated R2 values of the two stations being  Hyderabad 0.990 

(LSTM), 0.998 (ANN), 0.990 (SVR) and 0.990 (GBR), 0.990 (RF) and for Waipara 0.990 (LSTM), 

0.998 (ANN), 0.990 (SVR) and 0.990 (GBR), 0.990 (RF) .For Hyderabad station, the results were the 

same for both the AET methods; it was seen that both Budyko and Turc performed well. It was also 

observed from the study that, among the evaluated models, LSTM and ANN models with all input 

combinations accomplished excellent performances, trailed by SVR. The performances for the models 

being LSTM (RMSE: 0.06 mm⁄d,  MAE: 0.01 mm⁄d, and  R2: 0.990)  for Budyko method and (RMSE: 

0.04 mm⁄d,  MAE: 0.01 mm⁄d, and R2: 0.998) for Turc method, ANN (RMSE: 0.04 mm⁄d, MAE: 0.01 

mm⁄d, and R2:0.998) , SVR (RMSE :0.04 mm⁄d, MAE: 0.02 mm⁄d, and R2: 0.990), for Budyko as well 

as Turc methods. The GBR model could likewise accomplish good results with (RMSE: 0.09 mm⁄d, 

MAE: 0.02 mm⁄d, and R2: 0.987), while the RF model had also shown promising performance with 

(RMSE: 0.05 mm⁄d,  MAE: 0.01 mm⁄d, and R2: 0.980). 

The performances of the five ML models and the two AET methods for the Priestley Taylor method 

was provided in Table 6.2. Table 6.2 demonstrated that the tested models generally had comparable 

performance over the two stations. Figures 6.3-6.4 shows the comparisons between observed AET and 

model estimated values in the form of a box plot for two AET based methods under different input 

combinations for both the stations. From Table 10 for the Priestley method also results were same with 

the models LSTM, ANN and SVR estimated values showing closer agreement with those of observed 

AET followed by GBR and RF. 

The performance of these ML models and the two AET methods for the Hargreaves and Turc methods 

was provided in Tables 6.3-6.4 for both the stations. Tables 6.3-6.4 demonstrated that the tested models 

generally had comparable performance over the two stations. Figures 6.4-6.9 shows the comparisons 

between observed AET and model estimated values in the form of a box plot for two AET based 

methods under different input combinations for Hargreaves and Turc methods. From Tables 6.3-6.4 the 

ranking of the models remained the same as Penman-Monteith and Priestley methods. We have 



 
 
 

73  

observed that when limited data combination PET from Chapter 5 was utilised to estimate AET, the 

results have been phenomenal, this can be seen in the Tables 6.3-6.9 for all the methods with their 

R2  values ranging from 0.98-0.99. 

 

Figure 6.2: Comparison of observed and estimated AET using different models (GBR, ANN, LSTM, 

RF, and SVR) with varying parameters of input for the validation period for Budyko(Top) and Turc 

methods (Bottom) at Hyderabad station for Penman-Monteith method 
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Figure 6.3: Comparison of observed and estimated AET using different models (GBR, ANN, LSTM, 

RF, and SVR) with varying parameters of input for the validation period for Budyko(Top) and Turc 

methods (Bottom) at Waipara station for penman monteith method. 

 



 
 
 

75  

 

Figure 6.4: Comparison of observed and estimated AET using different models (GBR, ANN, LSTM, 

RF, and SVR) with varying parameters of input for the validation period for Budyko(Top) and Turc 

methods (Bottom) at Hyderabad station for Priestley method. 
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Figure 6.5: Comparison of observed and estimated AET using different models (GBR, ANN, LSTM, 

RF, and SVR) with varying parameters of input for the validation period for Budyko(Top) and Turc 

methods (Bottom) at Waipara station for Priestley method. 
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Figure 6.6: Comparison of observed and estimated AET using different models (GBR, ANN, LSTM, 

RF, and SVR) with varying parameters of input for the validation period for Budyko(Top) and Turc 

methods (Bottom) at Hyderabad station for Hargreaves method.
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Figure 6.7: Comparison of observed and estimated AET using different models (GBR, ANN, LSTM, 

RF, and SVR) with varying parameters of input for the validation period for Budyko(left) and Turc 

methods (right) at Waipara station for Hargreaves method. 
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Figure 6.8: Comparison of observed and estimated AET using different models (GBR, ANN, LSTM, 

RF, and SVR) with varying parameters of input for the validation period for Budyko(Top) and Turc 

methods (bottom) at Hyderabad station for Turc method. 
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Figure 6.9: Comparison of observed and estimated AET using different models (GBR, ANN, LSTM, 

RF, and SVR) with varying parameters of input for the validation period for Budyko(Top) and Turc 

methods (bottom) at Waipara station for Turc method. 
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During the validation stage at Hyderabad station, the PET using the input combinations like 

temperature, relative humidity, and wind speed ranging results from (MAE: 0.01–0.09mm⁄d, RMSE 

:0.01-0.05 mm⁄d, and R2: 0.98–0.99) played out the best for both the AET methods of Budyko and 

Turc. However, all parameter input combinations outperformed among all input combinations. Methods 

using models with temperature and wind speed data as input combinations generally accomplished low 

performance of (RMSE: 0.56–058 mm⁄d, MAE: 0.17–0.21 mm⁄d, and R2: 0.88–0.90), trailed by 

methods dependent on temperature and relative humidity input (RMSE: 0.516-0.56 mm⁄d, MAE: 0.15-

0.21 mm⁄d, and R2: 0.87- 0.88) for Penman-Monteith method. For the Priestley Taylor method, the 

AET methods generally accomplished low performance with temperature and solar radiation as input 

(RMSE: 0.21–0.31 mm⁄d, MAE: 0.04–0.12 mm⁄d, and R2: 0.865–0.939), followed by dependent on 

temperature and relative humidity input (RMSE: 0.23–0.31 mm⁄d, MAE: 0.04–0.21mm⁄d, and R2: 

0.93–0.97). For Hargreaves and Turc methods, the minimum temperature and solar radiation 

combination performed the same as all parameters input combination for both the AET methods. It is 

worth to note that even for the AET estimates, the models which are blends of temperature data with 

relative humidity and wind speed, individually, could accomplish preferred performance over models 

dependent on temperature and relative humidity input. And the combination of temperature and solar 

radiation could also accomplish excellent performance compared to temperature and relative humidity 

while for the Priestley method. The outcomes demonstrated that the AET methods using PET modelled 

from LSTM and ANN performed superior to RF, SVR, and GBR, with temperature and wind speed as 

input combination. Furthermore, the AET with LSTM model showed the most remarkable performance 

when temperature, wind speed, and relative humidity data were accessible for the Penman-Monteith 

method and temperature and solar radiation when used for Priestley, Hargreaves and Turc methods. 

Among the five ML models performing in estimating AET, the second best model was noted as ANN, 

followed by SVR, RF, and GBR. Hence, LSTM and ANN can be concluded as the best ML models 

among any input combination which can be employed in calculating AET, whereas other models 

performed low when the input combinations were reduced. It was also noted that the two AET methods 

showed similar performance in all the used cases. 

 It was also observed that in all the AET methods, the results for the Penman-Monteith method 

were reasonable followed by the Priestley method. In Hargreaves and Turc methods, the inputs being 

the same, AET estimated using Turc method PET has shown much better performance under limited 

combinations when compared to Hargreaves. It was also confirmed that the Turc and Hargreaves 

methods showed better performance in estimating AET when compared to the Priestley method. 

Tables 9-12 showed the summary of the Budyko and Turc methods AET estimates using modelled PET 

at Waipara station. The performance ranking of different ML models and AET methods was similar to 

the Hyderabad station, whereas the LSTM performed the best and RF as the worst. AET estimated using 

PET from all parameters as input combinations performed better compared to other input combinations 
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with its results ranging from (RMSE: 0.01–0.242mm⁄d, MAE: 0.02-0.07mm⁄d, and R2: 0.98–0.990). 

During the validation stage at Waipara station, the different input combinations like temperature, 

relative humidity, and wind speed (RMSE: 0.01–0.59mm⁄d, MAE: 0.02–0.08mm⁄d, and R2: 0.77–0.85) 

played out the best in estimating AET for Penman-Monteith method and temperature, relative humidity 

and solar radiation (RMSE: 0.01–0.561mm⁄d, MAE: 0.05–0.09mm⁄d, and R2: 0.76–0.84) played out the 

best for the Priestley method. In Hargreaves and Turc methods, the performances of all input 

combinations were almost the same, though the AET resulting from ANN, and LSTM performed much 

better than GBR and RF models. Hence, it is recommended to use either of these two PET models in 

estimating AET. 

Taking into account the above-observed results from Tables 9-12 and Figures17-24, the AET 

estimated using LSTM and ANN models are the most robust among the five ML modelled PET 

regardless of under which station or input combination, trailed by SVR and GBR modelled PET, which 

could generally accomplish agreeable accuracy in estimating AET. LSTM and ANN are both able to 

simulate AET where meteorological information is inadequate. Both the AET methods of Budyko and 

Turc gave outstanding performance. It can be concluded that the different ML modelled PET estimates 

employed in estimating AET at two different stations have performed promising when compared to the 

standard ET estimates. 

With respect to the ML models, it can be concluded that ANN and LSTM can be preferred to 

model PET and AET with all parameters input combination as the first preference followed by three 

parameters input combination and then two parameters input combination. It can also be concluded that 

AET is highly sensitive to the number of input parameters used in the PET estimation. It's also worth 

noticing that the accuracy of the AET (Budyko and Turc) methods with all parameters input 

combination was the highest in each station. However, one can use the three input combination 

parameters or the two input combination parameters (e.g. temperature and relative humidity or 

temperature and wind speed) in PET and AET estimations under limited data.  

This study has attempted to estimate AET from ML modelled PET and concluded that this 

could be used in future for different case studies. Using the five different ML models: ANN, LSTM, 

GBR, SVR, RF and different empirical methods, different AET estimates were developed. The models 

were analysed and compared in terms of prediction accuracy, generalization ability, 

complexity/simplicity of the modelling approach, and model usage. The comparison was conducted to 

identify the most efficient technique out of the studied five ML techniques to predict the PET in 

developing AET estimates. The results of the ML models were compared with those of the five 

empirical methods and two AET modelled methods to identify the possible advantages of the proposed 

models over one of the available methods for the estimation of AET under limited data. Although the 

generated models, based on error measures, are performing well and relatively similar, they use different 

combinations of inputs with different mathematical structures. This demonstrates that precise 
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identification of the meteorological variables driving the AET process is not a straightforward task, 

where different combinations of inputs may result in relatively good AET estimates. 

 

6.3.2 Discussions 

 

Among the proposed models in this study, Budyko and Turc are both equation-based methods. Such 

explicit equation-based methods are more appealing to hydrological practitioners because of the 

transparency and the simplicity of their application. The parameters that were observed to have the most 

significant contribution in modelling PET for generating AET were almost the same for both AET 

methods. This was observed using five different ML models, which could adequately capture the most 

relevant meteorological variables. According to the observed two AET methods, the meteorological 

variables that were found to be most important in predicting AET variations (mainly large-scale) were 

net Precipitation (P), Radiation (Rn) and Temperature (T). Rn is a well-known variable that serves as 

an energy source and is one of the critical components of the ET mechanism. The surface soil moisture, 

surface soil temperature, and turbulent sensible heat flux are few other essential elements that shape the 

physics of AET (Z. Wang et al., 2017). 

The physical description of the AET mechanism, which can be found in many papers and 

literature ((Dingman, 2015; Z. Wang et al., 2017)), adequately explains the importance of soil moisture 

and its complex interaction with other land-atmosphere variables in the AET process. At daily time 

scales, it was interesting to investigate the level of cause and relationship between meteorological 

variables such as temperature, relative humidity, solar radiation and wind speed involved in AET 

variations. To make this comparison, the time series of PET and AET using temperature, relative 

humidity, solar radiation and wind speed were visually compared over a typical time window. The 

comparison was carried out on daily time series data for both stations. It can be concluded that 

temperature varies slightly over time compared to other variables. It can also be noted that the 

temperature and solar radiation gradually decreases over time, resulting in a lower value. As a result, it 

is clear that precipitation and temperature influence the AET estimation over a daily time scale. Because 

the process of AET is not fully understood, it is challenging to mechanistically capture the interactions 

that exist among the state variables to present a mathematical relationship between AET and highly 

correlated meteorological variables. Explicit ML models demonstrated their ability to efficiently 

capture PET variations in estimating AET and to induce symbolic estimation models, which are 

primarily dominated by net radiation, temperature and wind speed. 
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6.4 Conclusions 

 

The AET over semi-arid climatic conditions of Hyderabad, Telangana, (India) and Waipara (New 

Zealand) was estimated using ML modelled PET with different empirical methods. This PET was 

utilised in estimating AET from Budyko and Turc methods. The Penman-Monteith model-based AET 

was considered as the standard reference method. The daily AET rates were estimated using PET 

obtained from five different ML techniques, namely LSTM, ANN, SVR, GBR, RF, using different input 

combinations. The four input variable combinations such as maximum and minimum air temperature, 

relative humidity, solar radiation, and wind speed; three input variable combinations such as average 

air temperature, relative humidity, and solar radiation; two input variable combinations such as 

temperature and solar radiation; and temperature and wind speed. The study investigated that the best 

performance was when all input variable combinations were used. However, the study also found that 

even three input variable combinations or two combination input variable combinations can provide 

practically identical results. The study also investigated that the two methods Turc and Budyko 

performed equally well with good R2 values. The results were discussed and compared with the results 

of alternative methods of PET calculation, such as the radiation-based methods of Priestly-Taylor, the 

temperature-based methods of Hargreaves, and Turc. The correlation coefficient values suggest that 

precipitation and temperature are the most important factors, followed by solar radiation, wind speed, 

and relative humidity, respectively for both the regions. For both the regions, LSTM and ANN were 

found to be more effective than the other techniques in identifying the most relevant meteorological 

predictors. It can be concluded that for the two regions, temperature and solar radiation have a maximum 

correlation with AET estimates of Penman-Monteith models compared to relative humidity and wind 

speed. The Turc model used temperature and solar radiation as input variables and showed high 

accuracy with all ML models in estimating AET. In contrast, relative humidity has the least correlation 

with the AET estimates. Due to the lower dependency of relative humidity on the AET estimates, the 

Priestly-Taylor model has lower accuracy with ML models compared to the Turc model. The results 

also showed that the AET obtained from PET using LSTM and ANN models could offer the most 

remarkable performance among four tested models regardless of station or input combination, trailed 

by  SVR and GBR models, which could likewise accomplish moderately good performance. The study 

concludes that the empirical models work well with data-driven algorithms that consider the climate 

variables having high dependency with the standard PET estimates in calculating AET. Such studies 

can be implemented for the development of ML models statistically dependent on PET in AET 

estimates. The study demonstrated that the modelling of PET through the LSTM and ANN techniques 

gave better AET estimates that proved with their performance criterion, i.e., R2 as 0.99. The study 

concluded that the performance of the AET methods varies according to the number of inputs and the 

predicted time step. Overall, results are of significant practical use when limited climate data is available 
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to estimate the AET. So, it can be concluded that even if not all parameter information is available in a 

particular station, the three-parameter combination can be used, or the two combinations, which are 

temperature and wind speed or temperature and relative humidity values, to calculate AET using 

modelled PET. It was also concluded that the equation-based methods Budyko and Turc, which was 

presented in this study, are not the only capacity of the methods as an evolutionary methodology that 

uses ML techniques. However, they can also be implemented to evolve program-based models and 

estimate AET in different regions. These ML models effectively determine the best input variables for 

modelling small and large scale PET variations in generating AET. Further, the modelled PET was 

efficient in estimating AET for two different stations. However, they have the potential to provide deep 

insight into the larger-scale variations of AET, such as diurnal variations. It should also be noted that 

no single ML technique can capture all complex processes at all times. As a result, various techniques 

may be capable of accurately predicting various challenging components of hydrology. 
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Chapter 7 

Conclusions 

Understanding the various hydrological processes is critical for the improvement and development of 

water resources management systems. In this study, one of the major components of the hydrological 

cycle, PET and AET were modelled using data-driven modelling techniques in two different climatic 

regions. The selection of the most appropriate and efficient ML model is critical for the accurate 

assessment of PET and AET. The proposed data-driven models can be used to estimate the PET and 

AET in different climatic regions using standard meteorological variables. Using the developed 

modelled-based PET, the values of AET can be estimated using a limited number of meteorological 

variables that are typically measured or can be measured in most weather stations. The PET and AET 

methods used in this study were developed based on region specific climatological conditions and can 

be implementable on similar climatological conditions. Evaluation of the performance of the locally 

proposed models on other regions and climate zones can be potential areas of research. Data-driven 

techniques can be easily implementable to develop local PET models which can serve as input to AET 

models. This type of modelling may be more efficient and straightforward than physically-based and 

empirical modelling approaches. The research findings of the present study demonstrated the utility of 

ML models as a tool for this purpose. This study also demonstrated the significance of taking into 

account the time-scale of variations in the analysis and modelling of hydrological time series. The 

research effort of the present thesis has the potential to improve the current understanding of PET and 

AET variations, as well as their relation with various climatological variables, which can be very useful 

in the interpretation of prediction models. This type of information can be used to analyse and model 

any hydrological time series, which improves the success of the modelling procedures and, as a result, 

the understanding and monitoring of the hydrology and its processes. The proposed methodology was 

demonstrated on two different stations, namely Hyderabad (India) and Waipara (New Zealand). The 

research findings of the study are summarised as follows. 

• The study estimated the PET using different empirical methods such as Penman-Monteith 

method, Priestley Taylor method, Hargreaves method and Turc at two different stations, namely 

Hyderabad and Waipara Stations. The Penman-Monteith model estimates of PET were 

considered as standard reference models for various temperature and radiation-based empirical 

models and also for data-driven models. 

• The daily PET estimates were modelled using five different modelling techniques, namely 

LSTM, ANN, SVR, GBR, RF using four input variables as maximum and minimum air 

temperatures, relative humidity and solar radiation, wind speed; three input variables as average 
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air temperature, relative humidity, and solar radiation; two input variables as temperature and 

solar radiation; two input variables as temperature and wind speed. 

• The study concluded that the best performance can be achieved when all meteorological 

variables were used; the study, however, finds that even three input variable combinations 

(temperature, wind speed and relative humidity values) or two combination input variables 

(temperature and relative humidity, temperature and wind speed) also can provide practically 

identical results as using all data. 

• The study concluded that temperature is the most important factor followed by solar radiation, 

wind speed, and relative humidity, respectively. Temperature and solar radiation have a 

maximum correlation with PET estimates of Penman-Monteith models as compared to relative 

humidity and wind speed. Relative humidity has a lower dependency on the PET estimates. 

• The results also showed that the LSTM and ANN models showing (LSTM (RMSE: 0.02 mm⁄d, 

MAE: 0. 01 mm⁄d , and R2: 0.990), ANN (RMSE:  0.06 mm⁄d, MAE:  0.05 mm⁄d, and 

R2:0.998),could offer the most remarkable performance among four tested models regardless 

of station or input combination, trailed by SVR and GBR models, which could likewise 

accomplish moderately good performance. 

• Among the tested models, LSTM and ANN model not only achieved the smallest average RMSE 

value, but also the most concentrated distribution of RMSE values independent  of the input 

combinations, which indicated that these two models had the best precision stability with 

accuracy of 99.10 %. Followed by SVR with 92.70 % accuracy. 

• The study concludes that the performance of the models varies according to the number of 

inputs as well as the predicted time step. Overall, results are of significant practical use when 

limited climate data is available to estimate PET. So, it can be concluded that even if not all 

parameter information is available over a particular region, this study proved that the three- 

parameter or two-parameter combinations, which are temperature and wind speed or 

temperature and relative humidity values, can be used to estimate PET. 

• The study used the most promising data-driven modelling techniques achieved in the 

estimation of PET in estimating the AET mechanism using two empirical based models of 

Budyko and Turc. 

• The proposed empirical-based AET models, Budyko and Turc, showed that the AET process 

has the potential to be estimated by structurally simple methods. Equation-based AET 

methods made it possible to extract useful information about the hydrological process. It was 

observed that the meteorological variables of temperature and solar radiation have more 

significant contributions than other variables in the estimation of AET. In addition, the effects 
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of the meteorological variables were found to be essential and effective in the estimation of 

AET. 

• It was also concluded that under limited data availability, the best method to be employed to 

estimate PET among empirical is Turc method and among machine learning models is LSTM 

and ANN. 

• It was also concluded that under limited data availability, input combinations were identified 

as temperature and wind speed for estimating PET; temperature, wind speed and 

precipitation for estimating AET for semi-arid climatology. 

• Overall, the research findings of the study stress on the use of limited data in understanding 

the complex hydrological processes such as PET and AET using data-driven and empirical 

based approaches and suitability of best method for diverse climatological conditions. 
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