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Abstract

This thesis is driven by the imperative to enhance efficiency and precision in warehouse management
systems. The first part introduces MVRackLay, an innovative solution employing multi-view analysis
to accurately estimate complex layouts of racks and shelves in warehouses, offering a comprehensive
3D rendering of the scene from a single monocular camera. In the second part, Imagine2Servo revo-
lutionizes visual servoing algorithms by generating intermediate goal images through diffusion-based
editing techniques, enabling precise control in object-reaching tasks in warehouses and tasks like long-
range navigation and manipulation. Through real-world validation, these innovations mark significant
advancements in warehouse automation and robotic control systems, promising transformative impacts
across various domains.

In the first part of this thesis (chapter 3), we showcase MVRackLay, a monocular multi-view layout
estimation for warehouse racks and shelves. Unlike typical layout estimation methods, MVRackLay
estimates multi-layered layouts across multiple views, wherein each layer corresponds to the layout of
a shelf within a rack. Given a sequence of images of a warehouse scene, our model outputs segmented
racks and each shelf’s front and top view layout within a rack. Further, MVRackLay shows superior
performance vis-a-vis its single view counterparts in layout accuracy, quantized in terms of the mean IoU
and mAP metrics. We also showcase multi-view stitching of the 3D layouts, resulting in a representation
of the warehouse scene concerning a global reference frame akin to a rendering of the scene from a
SLAM pipeline. To the best of our knowledge, this is the first such work to portray a 3D rendering of a
warehouse scene in terms of its semantic components - Racks, Shelves and Objects - all from a single
monocular camera.

In the second part of this thesis (chapter 4), we introduce Imagine2Servo, an innovative approach
leveraging diffusion-based image editing techniques to enhance visual servoing algorithms by generat-
ing intermediate goal images. Visual servoing, the method of controlling robot motion through feedback
from visual sensors, has seen significant advancements with the integration of optical flow-based meth-
ods. However, its application remains limited by inherent challenges, such as the necessity for a target
image at test time, the requirement of substantial overlap between initial and target images, and the
reliance on feedback from a single camera. Imagine2Servo allows for the extension of visual servoing
applications beyond traditional constraints, enabling tasks like long-range navigation and manipulation
without pre-defined goal images. We show its applicability in precisely performing different warehouse
tasks, navigation tasks and manipulation tasks. We propose a pipeline that synthesizes subgoal images
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grounded in the task at hand, facilitating servoing in scenarios with minimal initial and target image
overlap and integrating multi-camera feedback for comprehensive task execution. Our contributions
demonstrate a novel application of image generation to robotic control, significantly broadening the ca-
pabilities of visual servoing systems. Real-world experiments validate the effectiveness and versatility
of the Imagine2Servo framework in accomplishing a variety of tasks, marking a notable advancement
in the field of visual servoing.
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Chapter 1

Introduction

1.1 Motivation

In today’s fast-paced world of technology and efficiency demands, there’s a clear call for continuous
research in warehouse automation. As businesses worldwide struggle to meet rising consumer expecta-
tions and manage intricate supply chains, finding smart solutions to streamline warehouse operations is
crucial. The push for warehouse automation is growing rapidly, with predictions that robots could soon
manage entire warehouses with minimal human intervention [10]. Yet, it’s notable that around 30% of
warehouses still lack essential warehouse management systems (WMS) [11].

The issue of warehouse automation carries equal significance both in warehouses lacking WMS and
in situations where automated robotic agents interact with shelf spaces. Performing actions like retriev-
ing an item from a shelf, given the language command, can be significantly expedited through automated
systems. Before engaging with an item on the shelf, the initial step involves reaching the object from
within the warehouse. When provided with language instruction, the robot is expected to autonomously
navigate and reach the desired target without human intervention. Motivated by this need, in Chap-
ter 4, we introduce Imagine2Servo†, an intelligent visual servoing-based controller designed to guide
robots in reaching specific stacks of objects on shelves. This model isn’t solely intended for warehouse
automation; it’s also tailored for various manipulation and long-range navigation tasks. Another key
motivation behind the development of the Imagine2Servo model is to offer a significant enhancement to
Image-based Visual Servoing (IBVS) algorithms. Traditional visual servoing algorithms rely on having
a predefined goal image during testing. In Imagine2Servo, we innovate by generating a task-specific
sub-goal image, which is then utilized by an IBVS controller to perform actions aimed at achieving the
desired objective.

While an autonomous agent operates within a warehouse space, it is also crucial to complement its
actions with a semantic comprehension of the rack layout. This understanding, particularly regarding
objects positioned on shelves, aids in addressing subsequent tasks such as determining object counts
and estimating available space. To tackle this challenge, layout prediction comes into play, entailing

†Project Page: https://brunda02.github.io/RRC/
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the segmentation of all shelves within a rack at varying heights. While RackLay [1] provides layout
estimation for racks, its scope is limited to predicting the layout of the predominant rack visible in the
image. While suitable for constrained scenarios, this method inherently lacks scalability and adaptabil-
ity, even after finetuning it for a dynamic warehouse setting where multiple racks may be concurrently
present and only partially visible across a sequence of images. To tackle these challenges comprehen-
sively, in chapter 3, we introduce MVRackLay§, a multi-view layout estimation for all partly or wholly
visible racks in the image. Furthermore, we leverage past observations to integrate spatial data over
time, enhancing the accuracy of layout estimation.

1.2 Research problems Tackled

We discuss two research problems tacked in this thesis below. First, the problem of predicting top-
view and front-view occupancy layouts for all racks and shelves from an input sequence of monocular
RGB warehouse images is addressed in Sec. 1.2.1. The second problem of generating intermediate goal
images for the IBVS algorithms to servo to the desired target view based on the language instruction is
addressed in Sec. 1.2.2.

1.2.1 MVRackLay: Monocular Multi-View Layout Estimation for Warehouse Racks

and Shelves

We introduce a simple yet efficient network architecture called MVRackLay (chapter 3), which gen-
erates both the top-view and front-view layouts of all shelves within each rack. These layouts are derived
from monocular RGB images of a warehouse, which constitute frames of a video sequence. It’s impor-
tant to note that racks may only be partially visible in some frames (Fig. 1.1). The network learns
layouts in the canonical frame centered on the shelf, called the shelf-centric layout.

An essential point to note is that the problem is not a direct application of a standard formulation of
object recognition, semantic segmentation or layout estimation. While the above methods can be applied
to objects on rack shelves [12, 9], present methods cannot be adapted directly to localize rack shelves,
as shown in our baseline comparisons in Sec. 3.4.3. While typical layout formulations estimate layouts
with reference to a single dominant plane (such as the ground plane) [13], warehouse rack shelves take
the form of disconnected planar segments, each present at different heights above the ground plane.
Furthermore, they often appear occluded and diffused in warehouse scenes. Thus, an important novelty
of our formulation is the adaptation of deep architectures to the problem of multi-view layout estimation
over multiple shelves and racks, as well as shelf contents.

MVRackLay leverages, using Convolutional LSTM layers, the temporal data across images and ex-
tends the layout prediction problem to a wider scope in a warehouse setting. Unlike RackLay[1], where
the model predicts the layouts only for the rack in focus, we design our model to predict the layouts

§Project Page: https://pranjali-pathre.github.io/MVRackLay/
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Figure 1.1: We introduce MVRackLay, a deep neural architecture, which, given a sequence of monocular RGB

images of racks in a warehouse scene, predicts the top-view and front-view occupancy layouts for all the racks

and shelves, partly or completely visible, in a shelf-centric frame. Fusing these shelf-centric layouts provides a

3D reconstruction of the rack, and stitching together all the racks across frames produces a 3D reconstruction of

the warehouse.

for all the racks in the image, whether visible fully or partially in frame. Additionally, to leverage the
temporal information across image sequences, we propose the multiview and multilayer layout predic-
tion mechanism for MVRackLay, where layouts are predicted over a sequence of images. Furthermore,
through the downstream application of layout stitching across multiple views, we demonstrate that an
explicit 3D model of the warehouse can be reconstructed from the predicted layouts.

Real-world public datasets for warehouses are few and not comprehensive. To alleviate the issue
of obtaining sufficient training data, we utilize the open-sourced synthetic data generation pipeline
WareSynth proposed in [14], an extended and improved version of the pipeline introduced in [1]. Us-
ing domain randomization in WareSynth we generate a huge variety of synthetic warehouses, suitably
emulating any real-world warehouse. We train and evaluate the performance of MVRackLay on such
synthetic warehouse scenes. The monocular image sequences obtained from WareSynth involve transla-
tion of the camera along a predefined path, facing a row of racks and at a fixed distance from them. The
annotations for these sequences are fed into the deep MVRackLay network.

1.2.1.1 Contributions

Our contributions in Chapter 3 are summarised as follows:

• It presents a notable improvement over the formerly proposed RackLay [1] architecture, the
keynote of which is the use of Convolutional LSTM Layers, which enable the network to train
on a monocular image sequence, rather than discrete images of racks. The network uses this
previously-missing spatial data to improve shelf-centric layout predictions in each frame, specifi-
cally when racks and shelves are only partially visible in the image.

3
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Figure 1.2: Given a single eye-in-hand camera input and the language instruction to perform a task, we introduce

Imagine2Servo, a pipeline that generates intermediate goal images for the image-based visual servoing (IBVS)

algorithms to servo to the desired target location. The loop of generating a sub-goal image and execution of the

action by an IBVS controller is continued until we reach the final target. We show the application of our pipeline

to long-range navigation as well as manipulation tasks.

• Moreover, we showcase an application that employs these layout representations. Layout-enabled
multi-view 3D warehouse reconstruction is a novel use case discussed in Sec. 3.5. Most impor-
tantly, we show that the use of Convolutional LSTM layers to predict 3D representations of racks
in each frame enables them to be stitched together into a 3D reconstruction of the warehouse in a
global reference frame, similar to the rendering of a scene from a SLAM pipeline.

• We demonstrate significant performance gain on popular rubrics compared to previous methods
[8, 9] adapted to the estimation of shelf layouts. Equally important, we showcase notable improve-
ment in layout estimation over the single-view estimator [1]. Moreover, we compile and present
results of several ablations involving variations in architecture which establish the superiority of
MVRackLay.

1.2.2 Imagine2Servo: Intelligent Visual Servoing with Diffusion-Driven Goal Genera-

tion for Robotic Tasks

The visual servoing problem [15] involves the challenge of controlling the motion of a robot by
utilizing feedback from visual sensors, typically cameras, to adjust its actions in real-time. This process
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entails the robot’s ability to interpret visual data to determine its relative position and orientation with
respect to target objects or locations within its environment. The core objective is to enable the robot
to perform precise movements or reach specific goals by continuously comparing the current visual
scene against a desired configuration or outcome. This approach requires sophisticated algorithms for
image processing and control theory to bridge the gap between visual perception and mechanical action,
thereby allowing the robot to adapt its movements based on the visual feedback it receives.

Recently, there has been a lot of progress in optical flow-based visual servoing methods [2, 16, 17,
18, 19]. These methods are shown to be highly precise in reaching their goals with some guarantees of
convergence. However, the utility of visual servoing has remained limited due to major limitations com-
mon to all servoing algorithms: 1) They necessarily require a goal image during test time. This makes it
quite tough for visual servoing algorithms to be applied in real-world navigation or manipulation since
if we already have a map of the environment, there are better ways to reach the goal pose than through
a target image. 2) Visual Servoing cannot work if there is not much overlap between the initial and
target image. 3) Visual Servoing can only accommodate feedback from a single camera. To tackle these
challenges, we introduce Imagine2Servo, a diffusion-guided visual servoing approach. We demonstrate
its effectiveness not only in reaching tasks within warehouse environments but also in a wider array of
navigation and manipulation tasks.

Solving the problems faced by visual servoing can greatly enhance the utility of visual servoing
methods. For example, solving the problem of final image generation based on the skill the robot
is executing can make servoing quite useful for real-world tasks. Imagine a drone mounted with a
monocular camera trying to cross a door. The robot will first have to visualise the approximate position
of the door just before it crosses it; then, it will have to visually servo to the imagined image and then
apply a simple hardcoded skill to cross the door.

This pattern of imagining a goal, servoing to the goal and applying a hardcoded skill can be repeated
for quite a lot of skills, both in navigation as well as manipulation. Another good example of a skill
we can solve using servoing is the ‘reaching’ skill, which is a part of several manipulation tasks. For
instance, take the example of ‘unplugging the charger’, where the robot has to ‘reach’ a particular
grasping pose before applying a hardcoded policy. In chapter 4, we leverage the recent advancements
in diffusion-based image editing to provide a much-needed and major update to servoing algorithms.

1.2.2.1 Contributions

Our contributions in Chapter 4 can be stated as follows:

• We first introduce the notion of final image generation for servoing, grounded in the skill we
are trying to execute. We then introduce our Imagine2Servo pipeline, which takes as input the
current view of the camera and outputs a subgoal for the servoing algorithm to reach. We also
demonstrate how feedback from multiple cameras can be incorporated.
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• We show that the Imagine2Servo pipeline can be used to solve the problems where traditional
servoing fails even with a target image in place. This is especially pertinent when the initial
image and target image don’t have much overlap.

• We then go on to show how we can apply the same framework to solve multiple other skills
which follow the reach and act framework. We show the applicability of Imagine2Servo to long-
range servoing, reaching tasks in warehouses, and different navigation and manipulation tasks in
a variety of simulators such as Habitat [4], RLBench [5], PyBullet [3] and Unity [6].

• We show real-robot results of our method to further demonstrate its efficacy.

1.3 Thesis Layout

C1 This chapter (chapter 1) serves as an introduction, outlining the scope of the research conducted
in this thesis within the realm of monocular layout estimation for warehouse shelves and the
challenges encountered by visual servoing methods. We delineate the issues we aim to resolve
and provide rationale for the methodologies we will develop in subsequent chapters.

C2 Chapter 2 provides an introduction to the essential background information and terminology uti-
lized throughout this study.

C3 Chapter 3 introduces MVRackLay: Monocular Multi-View Layout Estimation for Warehouse
Racks and Shelves, a method designed to forecast the occupancy layouts, both top and front views
for all racks and shelves. Through comprehensive experimentation within the Unity simulator
[6], we showcase its enhanced performance compared to its single-view counterpart, RackLay[1].
Additionally, we present a 3D reconstruction of the entire warehouse utilizing the predicted lay-
outs.

C4 Chapter 4 delves into the Imagine2Servo: Intelligent Visual Servoing with Diffusion-Driven Goal
Generation for Robotic Tasks method, focusing on its innovative approach to generating sub-
goals for visual servoing tasks. Through thorough experimentation across various simulators, we
demonstrate significant enhancements compared to alternative baseline methods.

C5 Chapter 5 ends with a recapitulation of the methods and results covered in this thesis, the practical
applications of these methodologies, and the potential avenues for extending this research in the
future.
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Chapter 2

Background

In this chapter, we will provide a concise overview of the current body of literature concerning
layout estimation, image-based diffusion for visual servoing, and other relevant research pertaining to
the addressed problems.

2.1 Layout Estimation

In recent times, there has been a surge in interest surrounding the learning of scene layouts and the
direct acquisition of volumetric representations from RGB images. Deep learning techniques have sig-
nificantly improved in reliability and accuracy across various computer vision tasks, including semantic
segmentation, object detection, and depth estimation. However, even the amalgamation of these funda-
mental solutions falls short when addressing more complex tasks such as shelf-layout estimation within
warehouse management systems, which demands multi-layer top-view layout estimation. In light of
this, we review existing approaches and highlight the distinctions of our methodology from others in the
field.

2.1.1 Related work

2.1.1.1 Object detection methods

The literature review of object detection methods for warehouse estimation reveals various tech-
niques to optimize inventory management and operational efficiency. Traditional approaches, such as
handcrafted feature extraction coupled with classifiers like Support Vector Machines (SVM)[20] or Ran-
dom Forests [21], have paved the way for more sophisticated deep learning architectures. Convolutional
Neural Networks (CNNs) have emerged as dominant players in this field, demonstrating remarkable
performance in detecting and localizing objects within warehouse environments. Researchers have ex-
plored various CNN architectures, including Faster R-CNN [22], YOLO (You Only Look Once) [23],
and SSD (Single Shot MultiBox Detector) [24], tailoring them to the unique challenges posed by ware-
house settings such as varying lighting conditions, occlusions, and diverse object types.
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Furthermore, recent studies have focused on leveraging transfer learning and domain adaptation tech-
niques to enhance the generalization capabilities of object detection models across different warehouse
scenarios. By pre-training large-scale datasets like COCO (Common Objects in Context) [25] or Im-
ageNet [26] and fine-tuning domain-specific data, these approaches have shown promising results in
improving detection accuracy and robustness. Additionally, integrating sensor fusion methodologies,
combining data from multiple sources such as RGB cameras, LiDAR, and depth sensors, has garnered
attention for its potential to provide richer contextual information and mitigate challenges associated
with individual sensor modalities. A significant part of our problem involves localizing semantic classes
like shelves and boxes/cartons in a 3D scene. Several approaches exist to detect object layouts in 3D.
Some of these [27, 28] combine information from images and LiDAR, while others [13, 7] first convert
images to bird’s eye view representations, followed by object detection.

2.1.1.2 Bird’s eye view (BEV) representation

Bird’s eye view estimation is crucial in warehouse management systems, enabling efficient resource
allocation, inventory tracking, and layout planning. Various computer vision and sensor fusion tech-
niques have been explored to generate accurate bird’s eye views of warehouse environments. These
methods often involve integrating data from overhead cameras, LiDAR, and other sensors to reconstruct
a top-down perspective of the warehouse space. For instance, approaches based on structure-from-
motion (SfM) algorithms utilize images captured from multiple viewpoints to estimate the 3D structure
of the scene, subsequently transforming it into a bird’s eye view representation. Schulter [29] proposed
one of the first approaches to estimate an occlusion-reasoned BEV road layout from a single color im-
age. Wang [30] build on top of [29] to infer parameterized road layouts. In contrast, our approach is
non-parametric and, hence, more flexible than such parametric models, which may not account for all
possible layouts. We take inspiration from MonoLayout [31] (which can be trained end to end on colour
images, reasons beyond occlusion boundaries and being non-parameterized, need not be actuated with
these additional inputs) and extend it to multiple planes.

2.1.1.3 Single-view layout estimation

RackLay [1] introduced a layout estimation technique tailored to the specific scenario where only one
rack is in focus and completely visible within a single monocular image. While effective for such con-
strained setups, this approach inherently limits scalability and adaptability, particularly in dynamic ware-
house environments where multiple racks may be simultaneously present and partially visible across a
sequence of images. We propose MVRackLay, a more flexible and accurate solution for shelf layout
prediction in monocular image sequences, to address this limitation. MVRackLay offers enhanced flex-
ibility by extending the capability to predict shelf layouts not only for racks fully visible in a single
frame but also for those partially visible or obscured by objects or other racks. By leveraging infor-
mation from consecutive frames in the input video sequence, MVRackLay incorporates spatial data
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of warehouse racks over time, enabling the network to infer more comprehensive and accurate layout
estimations across multiple racks simultaneously.

This incorporation of temporal information allows MVRackLay to capture the dynamic nature of
warehouse environments, where objects may be moved, added, or removed over time. By analyzing
the evolution of rack configurations across frames, MVRackLay can adaptively adjust its predictions,
resulting in more robust and reliable shelf layout estimations compared to methods solely reliant on
single-frame analysis. In summary, MVRackLay represents a significant advancement over RackLay
[1], offering greater flexibility and accuracy in predicting shelf layouts across monocular image se-
quences of warehouse environments. By harnessing spatial data from consecutive frames, MVRackLay
demonstrates superior performance in handling dynamic scenarios, making it a valuable tool for ware-
house management and optimization tasks.

2.1.1.4 Warehouse Datasets

Warehouse datasets play a pivotal role in the development and evaluation of algorithms and mod-
els for various warehouse-related tasks, including object detection, layout estimation, and inventory
management. Publicly available datasets for warehouse settings are far and in between. Real-world
datasets like LOCO [32] exist for scene understanding in warehouse logistics, but they provide a limited
number of images, along with corresponding 2D annotations. Furthermore, there are only a handful
of general-purpose synthetic data simulators for generating photo-realistic images, like NVIDIA Isaac
[33], which provide warehouse scenes. However, there is no straightforward way to modify them to
generate annotations needed for the task at hand.

2.2 Diffusion Models and Visual Servoing

The application of diffusion models for image-to-image diffusion tasks has garnered substantial at-
tention in recent years. Pioneering works in this domain have demonstrated the efficacy of diffusion-
based frameworks for various image-processing tasks. These works underscore the versatility and ef-
fectiveness of diffusion models for a wide range of image-to-image diffusion tasks, paving the way for
further advancements in the field.

Advancements in image-based visual servoing have significantly enhanced the capabilities and ap-
plicability of robotic systems across various domains. One notable advancement lies in integrating deep
learning techniques, revolutionizing visual perception by enabling robots to interpret and understand
complex visual scenes with unprecedented accuracy and robustness. In image-based visual servoing,
the target image is a crucial reference for guiding the robotic system towards achieving a desired task
or goal. Without a target image, the system lacks a clear objective to pursue, hindering its ability to
perform tasks effectively.
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2.2.1 Related work

2.2.1.1 Diffusion Models

In recent years, the landscape of diffusion models has undergone a remarkable evolution, marked
by rapid advancements and a proliferation of applications. Building upon foundational contributions
laid out in seminal works such as [34, 35, 36, 37], diffusion models have emerged as versatile tools
with broad utility across diverse domains. These models have been effectively harnessed for an array of
tasks, spanning text-driven image generation [38, 39], depth estimation [40, 41], image inpainting [42],
and even video editing [43]. Notably, the scope of diffusion models has expanded beyond traditional
domains, with the burgeoning interest in their application within the realm of robot learning [44, 45,
46, 47]. However, amidst this expansive landscape, recent attention has been particularly drawn towards
the fusion of diffusion techniques with smart data collection strategies, yielding promising outcomes in
the domain of image editing [48, 49, 50].

In this study, we delve into the niche of image editing models that leverage diffusion techniques, with
a keen focus on their potential to drive high-quality image synthesis. Specifically, we explore the efficacy
of instruct-pix2pix [48], among other innovative approaches, as a means to produce images that serve
as exemplary representations of desired objectives for servoing models to pursue. By amalgamating
the power of diffusion models with strategic data collection methodologies, we aim to unravel novel
pathways towards the creation of visually compelling and goal-oriented images, thereby paving the way
for enhanced performance and adaptability in the realm of image-driven robotic tasks.

2.2.1.2 Visual Servoing

Image-based visual servoing (IBVS) has gained significant attention in robotics for its ability to
control the motion of a robotic system based on visual feedback from cameras. Numerous studies have
explored different aspects of IBVS, including feature extraction methods [51], control strategies [52],
camera calibration techniques [53], and applications in various robotic tasks [54]. Recent advancements
have focused on improving the robustness and efficiency of IBVS systems through techniques such as
deep learning-based visual features [55], adaptive control algorithms [56], and real-time implementation
frameworks [57]. Despite these advancements, challenges remain in handling complex environments,
handling occlusions, and ensuring real-time performance.

Deep learning-based visual servoing approaches have emerged as an alternative to traditional meth-
ods reliant on hand-crafted features. In the last few years, optical flow-based visual servoing al-
gorithms [2, 16, 17, 18, 19] have gained a lot of traction. They use off-the-shelf optical flow net-
works [58, 59] as a feature for the servoing controller to optimize. These algorithms have been shown
to be quite robust and have been applied to a variety of tasks, from large building avoidance [60] to
dynamic grasping [61]. However, they still require a target image to servo to, which limits their applica-
bility in a lot of real-world tasks where the goal image is not available. In contrast, our Imagine2Servo
framework generates the subgoal for the servoing to reach to. We show in our results that not only our
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skill-grounded Imagine2Servo framework is able to beat traditional servoing algorithms, even in cases
where the servoing methods have a final image to go to, but can also be applied to other tasks which fall
in the reach and execute category.

2.2.1.3 Other Related Works

A work notably related to ours is SuSIE [62], which employs the InstructPix2Pix [48] architec-
ture in tandem with reinforcement learning (RL) policies for solving manipulation tasks. While SuSIE
represents a significant contribution, our research primarily focuses on providing a substantial update to
servoing models. Furthermore, RL approaches are known for their considerable computational demands
and sample inefficiency, posing challenges in training models without assured convergence towards the
objective. In contrast, our servoing controller is designed for broader applicability without the need
for fine-tuning to specific datasets. This attribute significantly enhances its deployability across various
environments and real-world scenarios, offering a more efficient and flexible solution. Visual servouing
algorithms

Another pertinent work is Robotap [63], which employs keypoint tracking combined with a visual
servoing algorithm for certain manipulation challenges. However, Robotap’s application scope is lim-
ited by its reliance on well-defined key points, rendering it ineffective for tasks where key points cannot
be easily identified, such as navigating through a door. In contrast, our model’s versatility allows it
to address a broader spectrum of tasks, bypassing the limitations inherent in keypoint-dependent ap-
proaches. Visual foresight models [64, 65] are another line of work which are similar to our primary
motivation; however, they require to learn a model, which is hard to do in image space. We employ
a simpler yet effective model-free approach to combine diffusion-based foresight with servoing, which
not only enhances the utility of servoing but also provides a pipeline which can be used to solve a lot of
skills. In the realm of diffusion-based navigation, several recent works have contributed significantly to
the field, showcasing novel approaches and methodologies. Notably, the NoMaD [66] framework stands
out as a parallel work in this domain. NoMaD leverages diffusion-based strategies to navigate complex
environments effectively.
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Chapter 3

MVRackLay: Monocular Multi-View Layout Estimation for Warehouse

Racks and Shelves

3.1 Introduction

Figure 3.1: Qualitative depiction of the regions of interest targeted by Racklay [1] and our model MVRackLay. In

contrast to RackLay, which exclusively predicts the layout of the dominant rack in the input image, MVRackLay

extends this capability to encompass layout prediction for all racks depicted within the image while also inferring

the individual rack boundaries. Additionally, we enhance the accuracy of layout prediction by integrating temporal

data from previous frames.

This chapter presents MVRackLay, a deep neural architecture designed for Monocular Multi-View
Layout Estimation in warehouse environments. Although RackLay [1] offers layout estimation specifi-
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cally for racks, its functionality is restricted to predicting the layout of the most prominent rack visible
in an image (refer to fig. 3.1). While effective in certain constrained situations, this approach inherently
lacks scalability and adaptability, particularly in dynamic warehouse environments where numerous
racks may coexist simultaneously and only be partially visible across a sequence of images. Given a
sequence of monocular RGB images capturing racks within a warehouse scene, MVRackLay predicts
the occupancy layouts for both top-view and front-view perspectives for all visible or partially visible
racks and shelves.

We commence with an overview of our approach, including problem formulation and architecture
details. Subsequently, we detail the dataset used for training and testing, followed by a thorough exam-
ination of experimental outcomes and results analysis. Our discussion encompasses the model’s perfor-
mance across diverse warehouse scenarios alongside a comparative study against relevant methods and
an ablation analysis. Lastly, we demonstrate the practical utility of our model through 3D reconstruction
facilitated by the generated layouts.

3.2 Approach

3.2.1 Problem Formulation

Given a sequence of RGB images I1, I2,..., In of racks in warehouses in perspective view, we aim
to predict the top-view (bird’s eye view) and front-view layout for each rack present in each frame of
the input video sequence.

We consider R to be a rectangular area in a top-down orthographic view of the scene. The camera is
placed at the mid-point of the lower side of the rectangle, directly facing the racks such that the image
plane is orthogonal to the ground plane. (Fig. 3.2). Concretely, we want our network to generate top-
view and front-view layouts for all the racks visible in each frame It, within a region of interest Ω. Our
network predicts shelf-centric layouts where we map Ω to a rectangular area. In shelf-centric layout
representation, we consider Ω to be a rectangular area, positioned such that its centre coincides with the
centre of the shelves spanning across all the racks visible in the image, as shown in Fig. 3.2. This layout
is, hence with respect to the rack and is view-point agnostic.

Our model predicts top-view and front-view layout representations for each frame in the sequence.
Top-view layouts predict the bird’s eye view occupancy of each shelf on the rack. Each pixel in the
layout can either be classified as occupied, unoccupied, or background. A pixel is said to be occupied
when it is a part of the object on the shelf, unoccupied when it represents the empty space on the rack,
and background when it denotes the region which is not occupied by the shelf.

Consider a right-handed coordinate frame where the X axis points to the right, the Y axis points
downwards, and the Z axis points into the plane. For top-view layouts, the coordinate frame is positioned
at the centre of the shelves, spanning across all racks for layouts. Hence, the top-view layouts are parallel
to the X-Z plane, as in fig. 3.2 (and the ground plane) at corresponding shelf heights. In the case of
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Figure 3.2: Top-view layout representation: The plane orthogonal to the camera plane (red box) is mapped to

the shelf frame. In the shelf frame, the centre of the layout coincides with the centre shelves spanning across all

the racks visible in the image.
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Figure 3.3: Front-view layout representation: The image plane is mapped to the shelf frame. In the shelf frame,

the centre of the layout coincides with the centre shelves spanning across all the racks visible in the image.

front-view layouts, the centre of the coordinate frame is positioned at the centre of shelves in X and Y
directions. Front view layouts are, therefore, orthogonal to the ground plane, as in fig. 3.3.

As an additional task, we demonstrate Multi-view Stitching - combining the representation from
the top-view and front-view layouts to obtain a 3D reconstruction of all racks in the warehouse in the
global shelf frame (Fig. 3.9). This can be further used for 3D spatial reasoning tasks. We infer the X and
Z coordinates from the top view and the Y coordinates from the front view. We further explore these
applications in Sec. 3.5.
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Figure 3.4: Architecture: The figure shows the architecture diagram for MVRackLay-disc. It comprises a context

encoder, a Convolutional LSTM for encoding temporal information, and multi-channel decoders and adversarial

discriminators. (Refer to Sec. 3.2.2).

3.2.2 MVRackLay Architecture

We build a double-decoder MVRackLay architecture (Fig. 3.4) which takes as input a sequence of
RGB images I1, I2,..., In and predicts the top-view and front-view layouts. The components of the
model are described in detail below.

1) A context encoder which uses a ResNet-18 backbone pre-trained on ImageNet [67] to retrieve
relevant 3D scene and semantic components from the monocular input It. This feature extractor learns
low-level features C1, C2,..., Cn that help reason about the occupancy of the scene points.

2) A stacked Convolutional LSTM submodule uses the encoder extracted features C1, C2,..., Ct and
in turn encodes a temporal representation to capture motion across input frames. We use this Spatio-
temporal prediction to estimate consistent layouts by consolidating the information from the past frames
to predict the current frame. The number of previous frames used in this prediction is a hyperparameter,
the value of which is varied in our ablation studies (Refer to Sec. 3.4.4). The output of this block is an
encoded representation that better reasons the scene points as occupied, unoccupied, and background.

3) A top-view decoder and front-view decoder that generates layouts respectively for top-view and
front-view from the temporal representation learned by the Convolutional LSTM submodule. It consists
of upsampling layers to output an R × D × D grid which represents the layout, where R is the number
of output channels and D is the resolution of the output layouts.

4) Identical discriminators following top-view and front-view decoders, respectively, are adversarial
regularizers that rectify the layouts further by homogenizing their distributions to be similar to the true
distribution of plausible layouts. The layout predicted by the decoder is the input to this submodule
which outputs the final refined predictions.
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3.2.3 Loss function

We describe here the loss function of our MVRackLay architecture for top-view layout estimation.
We use stochastic gradient descent to optimize over the network parameters ϕ, ψ, θ of the context
encoder, convolutional LSTM, and the decoder.

Lsup(T̂ ;ϕ, ψ) =
N∑
j=1

R∑
i=1

f
(
T̂ j
i , T

j
i

)
Ladv(T̂ ;ϕ, ψ, θ) =θ∼pfake [(T̂ (θ)− 1)2]
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Ldiscr(T̂ ; θ) =θ∼ptrue [(T̂ (θ)− 1)2] +θ∼pfake [(T̂ (θ))
2]

Ltotal = Lsup + Lshort + Llong + Ladv + Ldiscr

Here T̂ is the predicted top-view layout of each shelf, T is the ground truth top-view layout of each
shelf,R is the maximum number of shelves considered, and N is the mini-batch size.
Lsup is the per-pixel cross-entropy loss which penalizes variation of the predicted output labels (T̂ )

from corresponding ground-truth values (T ). The adversarial lossLadv enables the distribution of layout
estimates from the top-view decoder (pfake) to be similar to the actual data distribution (ptrue). Ldiscr

enforces the discriminator to accurately classify the network-generated top-view layouts sampled from
the true data distribution [68]. Lshort is the short-range consistency loss, and Llong is the long-range
consistency loss. Finally, we minimize the total loss over the network parameters ϕ, ψ, θ and use it to
back-propagate gradients through the network. Equivalent expressions are defined for front-view layout
prediction as well.

3.3 Warehouse Dataset

For training and testing our network, we generated a diverse dataset with 20k images spanning 400
sequences with 50 images per sequence, using WareSynth described in [14]. It is split into 360/20/20
for training/testing/validation. All the results discussed are on the test set of this dataset. The dataset is
highly varied and spans multiple warehouse scenes. The variety demonstrates the generality of MVRack-
Lay and is useful to evaluate the performance of our model in varied warehouse settings. The video
sequences captured using WareSynth resemble the data captured by a manual camera movement or a
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mechanized system performing the task in an actual warehouse. Various scene elements were diversi-
fied during data generation to impart assortment in generated scenes so that the synthetically developed
warehouses mimic their real-world counterparts. We describe these randomizations below.

Domain Randomization: We show the randomizations we introduce using 3 randomly selected
images from our dataset through Fig. 3.5 (referred throughout this section):

• Boxes exhibit variability in terms of size, texture, rotations, colour, and reflective properties.

• Placement of boxes varies from densely packed arrangements to moderate spacing to sparse con-
figurations.

• Racks’ colour and texture are randomized to introduce diversity.

• The vertical stacking height of boxes is randomized to simulate realistic stacking scenarios.

• Background settings include options such as a solid wall backdrop or a bustling warehouse envi-
ronment.

• Floors and walls feature randomized colours and textures to add visual complexity.

• The camera’s positioning relative to the rack is adjusted within a specified range to capture differ-
ent numbers of shelves in each frame.

• Camera movement is orchestrated to ensure varying numbers of racks are visible across consecu-
tive frames, enhancing the diversity of captured scenes.

The extensive diversity within our dataset has proven instrumental in preventing the network from
overfitting solely to synthetic data domains. Instead, it has facilitated the learning of features that closely
mimic real-world scenes..

3.4 Experiments and Analysis

3.4.1 Evaluated Methods and Metrics

We compare the following variants of MVRackLay:

• MVRackLay-Disc-4: Double decoder architecture with discriminators for both front-view and
top-view, with a sequence length of 4 used in the ConvLSTM module.

• MVRackLay-Disc-8: Double decoder architecture with discriminators for both front-view and
top-view, with a sequence length of 8 used in the ConvLSTM module.

• MVRackLay-4: Double decoder architecture for both front-view and top-view without discrimi-
nators, with a sequence length of 4 used in the ConvLSTM module.
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We report Mean Intersection-Over-Union (mIoU) and Mean Average-Precision (mAP) scores in this
task as the previously proposed methods also evaluate the model on the same criterion.

3.4.2 Results

We first trained MVRackLay-4 for top-view and front-view. Having achieved superior results com-
pared to baselines, we further trained MVRackLay-Disc-4 for both front-view and top-view to capture
the distribution of our layouts, which led to the best results. We observed performance gains as dis-
cussed in Sec. 3.4.4. We further trained MVRackLay-Disc-8 to capture the performance of the model
for higher sequence length (discussed in Sec. 3.4.4). Overall, MVRackLay-Disc-4 showed the best
overall performance (refer Table 3.1).

Fig. 3.5 summarizes the results of MVRackLay-disc-4 tested on domain randomized data. Our best
network is able to predict all the racks present in the image with clean boundaries separating them and
precisely estimate the space between two racks and two objects on the shelf. MVRackLay can rightly
predict the layouts for the racks in the foreground, even in the presence of background clutter in the
image. It can also reason for the narrow spaces in densely packed shelves.

The results show that MVRackLay can significantly benefit downstream warehouse tasks. Sec. 3.5
demonstrates one such task of 3D warehouse reconstruction using a multiview layout predicted by the
network. The generality and superiority of the results show that our model can easily be transferred to
warehouses with diverse arrangements of racks and objects on shelves.

3.4.3 Comparison with baselines

RackLay: RackLay [1] was proposed to solve the problem of layout prediction for the dominant rack
present in the input RGB image. We trained it for the task of layout prediction for all the racks present
over the video sequence. From Table 3.1 it is clear that MVRackLay-Disc-4 performs significantly better
than RackLay-D-disc quantitatively. Comparing qualitatively, Fig. 3.6 summarizes the improvements
of our network over RackLay. RackLay often fails to demarcate an exact boundary between two racks
present in an image (row 1). In row 2, observe that RackLay is unable to predict a sharp boundary of both
box and shelf as in the corresponding output of MVRackLay-Disc-4. RackLay often incorrectly predicts
the presence of the box on racks (rows 1, 2) or suffers from noisy predictions of boxes in regions with
no objects as well as of the shelf (row 2). Our model not only extends RackLay’s functionality to image
sequences but also improves upon its liabilities. We predict sharper and more accurate shelf and object
boundaries and reduce false box predictions.

PseudoLidar-PointRCNN: PointRCNN [8] is a 3D object detector that uses the raw point cloud as
input. Hence we use the PseudoLidar[7] information to detect 3D objects using PointRCNN. As this
method considers a single dominant plane and is employed for birds-eye view prediction, we report
metrics for the bottommost shelf (refer to Table 3.1) and the top-view prediction only. Accounting for
the single-dominant layer assumption, it is clear from Table 3.1 that our model performs better as it
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Top View Front View

Rack Box Rack Box

Method mIoU mAP mIoU mAP mIoU mAP mIoU mAP

MVRackLay-Disc-4 (ours) 96.44 98.01 86.89 92.70 94.98 97.14 88.02 93.49

MVRackLay-Disc-8 (ours) 95.84 98.12 85.98 88.35 93.78 96.98 86.49 88.76

MVRackLay-4 (ours) 95.94 97.94 86.66 89.31 93.73 96.58 86.72 89.16

RackLay-D-disc 93.44 94.98 82.80 85.47 91.75 93.10 83.28 85.49

PseudoLidar-PointRCNN[8] 73.28 77.40 55.77 81.26 − − 63.05 89.45

MaskRCNN-GTdepth[9] − − 35.57 47.44 − − 76.48 82.48

Table 3.1: Quantitative results: We benchmark the 3 different versions of our network - MVRackLay-

Disc-4, MVRackLay-Disc-8 and MVRackLay-4, along with three baselines- RackLay-D-disc[1] PseudoLidar-

PointRCNN[7, 8] and MaskRCNN-GTdepth[9] (as described in Sec. 3.4.1).

performs multilayer, front-view, and top-view layout predictions that can also reason about the inter-
shelf distance.

Mask R-CNN: We select Mask R-CNN[9] as one of our baselines to test the instance segmen-
tation method for multi-layer layout prediction in the warehouse setting for the sequential data. We
subsequently integrate the Mask R-CNN segmented instances with the depth maps and project on a
horizontal plane to segment the boxes shelf-wise, using the fact that a set of boxes on a particular shelf
will be situated on the same plane located at some elevation from the ground plane. From the exper-
iment, it is observed that Mask R-CNN fails to detect the precise boundary of the rack due to its thin
structures. If multiple racks are present in the image, Mask R-CNN also fails to mark a clear distinction
between them. The results summarized in Table 3.1 prove that our model performs better quantitatively
too. Since Mask R-CNN can only claim regarding the points visible in the image, it is evident that
our model accomplishes better results with amodal estimation to reason beyond the visual elements that
structurally characterize racks and objects.

3.4.4 Ablation studies

To thoroughly comprehend the underlying effect of different components, we perform ablation stud-
ies over the model’s architecture and examine its effect on performance.

1) Convolutional LSTM sequence length: We varied the time steps used in the stacked Convolu-
tional LSTM submodule. We observed that MVRackLay-Disc-4 was able to converge faster and improve
qualitatively over MVRackLay-Disc-8. Although quantitatively MVRackLay-Disc-4 and MVRackLay-
Disc-8 perform alike (refer to Table 3.1), from fig. 3.7 considerable qualitative improvements can be
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observed. MVRackLay-Disc-4 performs better in identifying precise object boundaries and distinguish-
ing between the closely spaced objects on the rack. A lower sequence length enabled the model to
compile only relevant details from past frames and avoid spurious noise.

2) Adversarial learning: In MVRackLay-Disc-4, we add discriminators after decoders in MVRackLay-
4 to capture the distribution of plausible layouts. We observed a substantial improvement both quan-
titatively (refer to Table 3.1) and qualitatively (Fig. 3.8). Layouts have become sharper, and most
notably, using a discriminator diminished the stray pixels wrongly categorized as boxes. The actual
distance between the boxes positioned near the end of the shelf is difficult to estimate as they are im-
aged obliquely. In such cases, MVRackLay-Disc-4 remarkably improved the prediction of the boxes and
generated cleaner layouts.

3.5 Applications

Multi View Stitching: We illustrate the process of 3D warehouse reconstruction using the layout
predictions of MVRackLay-Disc-4. This task also aids in subsequent tasks, including estimating free
space and determining object counts on the racks. From the layout prediction of a particular frame It,
we first obtain the 2D bounding boxes of all shelves and boxes detected in the front-view and top-view
layout. The detections from the top-view and front-view layouts correspond to identify the matching.
Once we have a map, we generate the 3D bounding box for all the mapped racks and objects using
the dimension information from front-view and top-view layout predictions. Finally, we combine these
representations of each shelf to get a 3D reconstruction ft of all the racks in the frame. This process is
repeated for all the frames in the sequence.

Given two consecutive 3D reconstructions ft and ft+1, we initially find all the corresponding match-
ing boxes. We then calculate the shift between them; using this shift, we discern the direction of the
motion. Finally, we consider the last box in frame ft in the direction of motion and check its corre-
sponding box in frame ft+1. If the size of the box in ft+1 is larger, we increase the size of the shelf and
boxes in ft accordingly. If there is an addition of a new box or shelf in ft+1, the same is included in the
ft reconstruction. Eventually, we obtain the merged layouts of ft and ft+1 in ft frame. If Ft denotes
the merged 3D representation from f1 to ft, ft+1 is merged into Ft using the method described above.
Fig. 3.9 shows the 3D reconstruction of a single warehouse with 4 racks, obtained from the multi-view
stitching of predicted layouts of 4 sequences with 70 frames per sequence.
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Figure 3.5: MVRackLay-Disc-4 Results: Here, we present the results of our network tested on domain random-

ized data. The bottom-most shelf layout is shown in the left-most column, followed by the middle and top shelf

(if visible). Observe the diversity of warehouse scenes captured (detailed in 3.3) and the top-view and front-view

layouts predicted for the same.
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Figure 3.6: RackLay vs. MVRackLay-Disc-4: Above, we compare qualitatively the results of RackLay and our

MVRackLay-Disc-4. The shelf in focus is highlighted with a red border. Observe that our model removes the false

positive in row 1, removes noise in row 2, and increases the sharpness of both box boundaries (both rows) and

shelf edges (row 2).

.
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Figure 3.7: MVRackLay-Disc-4 vs. MVRackLay-Disc-8: The shelf in focus is highlighted with a red border.

Better demarcations between adjoining boxes and less joining of abreast layouts are observed in the output of

MVRackLay-Disc-4 compared to its counterpart.
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Figure 3.8: MVRackLay-4 vs. MVRackLay-Disc-4: The shelf in focus is highlighted with a red border. Observe

how using a discriminator fixes the false negative in row 1 and improves predicted box boundaries and shelf

boundaries in row 2.
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Figure 3.9: Multi View Reconstruction of the entire warehouse using four sequences covering 280 frames (70

frames each), using the layouts predicted by MVRackLay-Disc-4.
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Chapter 4

Imagine2Servo: Intelligent Visual Servoing with Diffusion-Driven Goal

Generation for Robotic Tasks

4.1 Introduction

In the preceding chapter, our focus was on addressing the challenge of estimating layouts for racks
within warehouse settings. In this chapter, we broaden our scope by delving into the automation of
object-reaching tasks within warehouses. Moreover, we extend our pipeline beyond the confines of
warehouses to encompass manipulation and long-range navigation tasks, offering a more generalized
approach. This chapter presents Imagine2Servo, an innovative framework for Intelligent Visual Ser-
voing featuring Diffusion-Driven Goal Generation tailored for various robotic and warehouse tasks.
This pipeline facilitates the generation of intermediate goal images, optimizing the image-based visual
servoing (IBVS) algorithms to effectively guide robotic systems towards desired target locations.

We commence with a concise introduction outlining our approach, problem formulation, and the
architectural components of Imagine2Servo, delving into training and implementation specifics. Subse-
quently, we introduce the datasets generated and utilized for training and testing purposes, followed by
a comprehensive examination of experimental outcomes and results analysis. Our discussion encom-
passes both quantitative and qualitative assessments of the model’s performance across diverse manip-
ulation and navigation tasks. Furthermore, we conduct a thorough baseline study of methods pertinent
to our work and showcase real-world experiments, culminating in an ablation study to further elucidate
the efficacy of our approach.

4.2 Approach

4.2.1 Problem Formulation

At any given moment, our system receives an RGB image It from the robot’s camera sensor, along
with a textual prompt P that specifies the task to be accomplished. Our objective is to accurately predict
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Figure 4.1: Our method employs an alternating loop of intermediate goal generation by the foresight model and

execution of actions by the flow-based IBVS controller to perform the action described in the language instruction.

The foresight model is a diffusion-based image-to-image translation model conditioned on the current monocular

eye-in-hand camera input and any additional image observations available in the scene. The visual servoing

controller consists of a flow-feature-based RTVS [2] controller that predicts subsequent actions in 6 DOF to reach

the intermediate goal. This loop is continued until we solve the task.

and implement the necessary control commands, denoted as [vt, ωt], to fulfil the task described in the
prompt. Tasks vary, ranging from navigating through a doorway to disconnecting a charger. Note that in
traditional servoing algorithms, the final image Ig is usually provided to perform the task. This greatly
limits the utility of the visual servoing models. To address this challenge, we divide our approach into
two distinct phases. Initially, our framework is designed to conceptualize a subgoal Ig based on the
task and current feedback from the camera It. Subsequently, we aim to attain this subgoal image Ig
by employing a servoing algorithm. In the forthcoming sections, we will elaborate on the components
of our Imagine2Servo framework. We begin by introducing our foresight model in Section 4.2.2.1,
which leverages an image-editing algorithm to predict a subgoal image. Following this, we discuss the
mechanics of our servoing framework 4.2.2.2, which facilitates reaching the subgoal. We then describe
our overall framework in 4.2.3, our dataset in 4.3 and training details in 4.2.4. Our overall pipeline is
summarised using Fig. 4.1.

4.2.2 Imagine2Servo Architecture

4.2.2.1 Visual foresight model

We see the task of generating the next subgoal for the servoing as editing the pixels of the cur-
rent input image. Given the current image It and task description P , we aim to generate the subgoal
image Ig using our foresight model or imagination module p(Ig|It, P ). To achieve this task, we use
Instructpix2pix [48], an image editing framework, though any other image editing model can be used.
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Instructpix2pix gives a good initialisation of the denoising model conditioned on the text prompt and
the input image. We utilize the pretrained weights of this model and fine-tune it further to fit our task of
learning visual foresight.

One significant benefit of this approach is the ability to integrate auxiliary camera data into the de-
noising process. This enhancement proves invaluable in scenarios where a solitary camera’s perspective
is inadequate for generating the necessary subgoal. An illustrative example of this is when the camera
is affixed to the end-effector of a manipulator; in such instances, auxiliary image information Iaux from
alternative viewpoints can significantly augment the planning of subgoals. Our empirical results demon-
strate that the inclusion of auxiliary views markedly enhances the algorithm’s efficacy, particularly in
manipulation tasks. This methodology facilitates the incorporation of multi-camera feedback into the
servoing algorithm, a capability that traditional servoing frameworks do not possess.

4.2.2.2 Image Based Visual Servoing Controller

In our approach, we employ RTVS [2] (Real-Time Visual Servoing) as the Image-Based Visual
Servoing (IBVS) controller to reach the subgoals predicted by the foresight module. We use the RTVS
servoing algorithm without any fine-tuning to the newer environments. RTVS is an iterative algorithm.
At every timestep k, it seeks to optimize camera motion velocities (linear and angular) vk to minimize
the difference between the velocity-induced optical flow F̂(vk), and F(Ik, Ig), the optical flow of the
current image Ik to the given subgoal image Ig.

v∗
k = ||F̂(vk)−F(Ik, Ig)||22 (4.1)

In RTVS, this optimization is performed by inference on a pre-trained motion generation network
(see [2] for details). F̂(vk) is calculated using the interaction matrix L(Zt) (described in Equation 4.2),
which relates the camera velocity to the corresponding flow in the image plane.

L(Zt) =

[
−1/Zt 0 x/Zt xy −(1 + x2) y

0 −1/Zt y/Zt 1 + y2 −xy −x

]
(4.2)

This matrix is a function of the depth Zt and the image coordinates (x, y), encapsulating the geomet-
ric relationship between motion in the robot’s operational space and its projection onto the image plane.
We used the FlowDepth trick described in [2] to use flow as a proxy for depth, thereby preventing the
need for depth information for our pipeline. The cycle of optimizing the camera velocity, moving the
camera by that velocity, and then computing the optical flow from the new observed image to the sub-
goal image is repeated until convergence, i.e. until the photometric error between the current observed
image and the subgoal image is less than a threshold.
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4.2.3 Overall Imagine2Servo Framework

Our Imagine2Servo framework is described in Algorithm 1. Given a task prompt P that specifies the
desired task in natural language, the algorithm leverages the current observation It to initiate a process
that dynamically guides the robot towards achieving the specified task. This is facilitated through the
use of an Image Foresight Model p(Ig|It, P ) described in Section 4.2.2.1, which generates a series of
intermediate goal images Ig. These images act as visual targets for the robot to pursue, effectively
bridging the gap between the high-level task description and the robot’s moment-to-moment actions.

At each time step, the algorithm assesses the alignment between the generated goal image and the
current observation using a predefined convergence criterion ϵp. If the current goal is deemed to have
been reached, the model generates a new goal image based on the updated observation and the initial
task prompt P . This process repeats, with the robot making progress towards the final objective through
a series of intermediate steps.

The action execution phase is managed by an Image-Based Visual Servoing (IBVS) controller ϕ(It, I∗g ),
which adjusts the robot’s actions to minimize the difference between its current state and the target state
represented by the goal image as described in Section 4.2.2.2. This methodology allows the robot to nav-
igate and manipulate objects within its environment effectively, translating high-level language prompts
into a sequence of actionable visual goals. By continually updating these goals based on real-time
feedback from the environment, our algorithm ensures adaptability and efficiency in the robot’s task
execution, demonstrating a novel approach to integrating language-based task instructions with robotic
control mechanisms.

4.2.4 Training and implementation details

Imagine2Servo is trained on input-output image tuples with a corresponding text description. We
use the pre-trained weights of InstructPix2Pix [48] and fine-tune their model. We train our model on a
single 12 GB RTX 3090 GPU for 30,000 training steps with a learning rate of 5×10−5 and 500 learning
rate warm-up steps. We use a batch size of 4 with 4 gradient accumulation steps. We use images of
dimensions of 256 x 256, and the rest of the hyperparameters are similar to InstructPix2Pix. At test time,
we use 100 inference steps with 1.5 and 7.5 as our image and text guidance parameters, respectively.

4.3 Dataset

Now, we describe the data collection process for training our Imagine2Servo framework. We collect
our dataset using a variety of environments in different simulators in Pybullet [3], Unity [6], Habitat [4]
and RLbench [5]. 1) Door crossing: Using the door samples from the PartNet-Mobility dataset [69] and
the scenes in Habitat-sim[4], we generate a dataset of 720 and 400 video sequences, respectively, of a
drone crossing the door, with 9 frames per sequence. The captured video sequences resemble that of a
drone trying to cross a door frame. From every consecutive image pair of a trajectory, we sample input-
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Algorithm 1 Imagine and Servo, Test-Time execution

Require: Test time t, language prompt P, current observation It, Image foresight model p(I∗g |It,l),

IBVS controller ϕ(It, I∗g ), convergence constant for foresight model ϵp, convergence constant for

IBVS controller ϵϕ

1: t← 0

2: dist←∞

3: Sample Ig ∼ p(Ig|It,P) ▷ Generate next intermediate goal

4: while dist ≥ ϵp do ▷ Check if the last generated goal is the same generated goal.

5: I lastg ← Ig

6: while ||Ig − It|| ≤ ϵϕ do ▷ Convergence criterion for IBVS

7: Ft := predict-target-flow (Ig, It) ▷ Predict the flow using the flow network

8: Lt := calculate-interaction-data (F(Ig, It)) ▷ Calculate the interaction matrix

9: Execute vt+1 := relative-pose-network (Lt,Ft) ▷ Predict and execute action on the robot

10: It+1 ← robot-observation ▷ Get the current observation after action execution

11: t← t+ 1

12: end while

13: Sample Ig ∼ p(Ig|It,l) ▷ Generate the next intermediate goal.

14: dist← ||I lastg − Ig|

15: end while
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output image tuples. The text prompt is expected by the InstructPix2Pix backbone, which describes
the task being performed, for example, to “cross the door”. We diversify the scene elements during
video creation to create a synthetic scene resembling its real-world counterpart. We randomly sample
the initial pose and randomize lighting conditions, wall textures, and floors in every video we generate.
2) Reaching tasks in RLBench [5]: We choose 17 tasks from RLbench and collect 100 demonstrations
for every variation of a task. Every task in RLBench is a composition of reaching and manipulating
actions. So, we collect data to learn reaching by discarding manipulation actions like grasping from
the demonstrations. The text prompt is set to “reach the object”. Reaching tasks in Unity [6]: Our
methodology involves the creation of a dataset comprising 8,000 trajectories, each consisting of 15
frames per trajectory. Utilizing textual descriptions such as “Go to the first stack on the second shelf
of the third rack”, we generate trajectories simulating a drone’s approach to the specified target from
various starting positions. Our model was fine-tuned for 70,000 steps on this data.

We sample 20 novel eye-in-hand camera viewpoints in Habitat and pybullet (with domain random-
ization) during test time evaluation. For RLbench, we use unseen demonstrations during training. We
sample 20 novel arrangements for each variation of a task during test-time evaluation. For warehouse
scenes in Unity, We generate 10 new warehouses with randomized conditions (as described in 3.3) and
test on 20 unseen viewpoints (2 per warehouse scene).

4.4 Experiments and Analysis

We evaluate the performance of Imagine2Servo for two different tasks: 1) Door crossing. This
tests the ability of our algorithm to perform long-range servoing. Experiments are conducted in two
simulation environments: PyBullet [3] and Habitat [4]. 2) Reaching. This tests the applicability of
our algorithm to manipulation tasks in RLBench [5] and on a real robot. Experiments are performed
both in simulation (RLBench [5]) and on a real robot setup. Furthermore, we demonstrate the utility
of our approach in simulating object-reaching tasks within warehouse environments in the Unity [6]
simulator. Please note that we select three equally spaced sub-goals generated by the foresight model to
demonstrate the qualitative results of our model in fig 4.3, 4.4, 4.8, 4.5.

4.4.1 Baselines

We compare our Imagine2Servo framework with the following approaches:

• RTVS [2] is an MPC-based formulation with multi-step ahead prediction. To RTVS, we provide
the privileged real final image as the target image and report the success rate.

• In Pose-Diffusion, we implement a simplified version of the Diffusion Policy [70] to predict the
next action, conditioned on the current eye-in-hand camera observation.
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PyBullet Habitat-Sim RLBench Unity

Success Rate
Success

Rate

Trans.

Error

Rot.

Error

Success

Rate

Trans.

Error

Rot.

Error

RTVS[2] 0.45 0.5 0.25 0.18 0.38 0.35 0.15 0.26

Pose-Diffusion 0.4 0.2 0.2 0.27 0.45 0.25 0.31 0.29

Cam-Axis 0.2 0.1 0.1 0.39 0.71 0.15 0.35 0.26

Imagine2Servo-Single-View (Ours) 0.9 0.95 0.65 0.09 0.08 0.75 0.12 0.05

Imagine2Servo-Multi-View (Ours) - - 0.75 0.03 0.02 - - -

Table 4.1: Quantitative results: We benchmark the two different versions of our network - Imagine2Servo-

Single-View and Imagine2Servo-Multi-View, along with three baselines- RTVS[2], Pose-Diffusion and Cam-Axis

(as described in Section 4.4). We report the average success rate for all tasks, and additionally, 6 DOF pose

error for manipulation tasks in RLBench[5]. Imagine2Servo achieves the best success rate, demonstrating its

applicability in different tasks. Imagine2Servo-Single-View outperforms other baselines in navigation task while

Imagine2Servo-Multi-View performs the best in the manipulation tasks in RLBench [5].

• In the Cam-Axis baseline, we implement a simple controller that moves the camera along the
camera axis from the initial pose.

We compare these baselines to two versions of our algorithm. Imagine2Servo-Single-View uses the
current eye-in-hand camera view as the only conditional image input. In Imagine2Servo-Multi-View,
we train Imagine2Servo to use additional input from the overhead camera as the conditional input to the
foresight model, along with the eye-in-hand monocular camera input.

4.4.2 Quantitative Comparison

We measure the performance of all algorithms in terms of success rate. For door crossing, the camera
is modelled as if it were mounted on a cylindrical drone of radius 15 cm. If the camera crosses the door,
the trial is marked successful. For reaching tasks, we report the linear and angular errors as well as the
success rate. The angular error is measured as the norm of quaternion difference. If the linear error
< 3 cm and angular error < 0.03, the trial is considered successful. For both tasks, we also check for
collision after every controller step and, upon collision, declare the trial a failure. We show success rate
comparisons in table 4.1.

Imagine2Servo-Single-View outperforms all the other baselines with a significant improvement in
navigation tasks. It attains 90% and 95% success rates, respectively, in navigating doors in PyBullet [3]
and Habitat-Sim [4] environments, with 45% absolute improvement over RTVS[2], which employs a
single target view to servo to the target. Additionally, we attain a 75% success rate in object-reaching
tasks within the warehouse scenes simulated in Unity [6]. Imagine2Servo-Single-View also outper-
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Figure 4.2: (a) We compare the photometric error convergence for each baseline. Imagine2Servo converges to

each of the subgoals (where the error becomes close to zero) while other methods fail to converge. (b) Evolution

of the magnitude of the translational velocity in each step. (c) Evolution of the magnitude of the rotational velocity

in each step.

forms Pose-Diffusion, which directly predicts the next action instead of the next image. Since our
model reasons in image space, it has the advantage of using a strong diffusion backbone trained on
millions of images which is not the case for pose-diffusion baseline. For reach tasks in RLBench [5],
Imagine2Servo-Multiview-View outdoes other baselines with a 75% success rate, a 10% increase over
Imagine2Servo-Single-View owing to the extra information provided by the additional camera views. It
achieves the lowest linear and angular error, thereby performing precise alignments, which is an impor-
tant factor in manipulation tasks.

To further analyze the overall performance of our model, we perform a comparative study of pho-
tometric error convergence (fig. 4.2(a)) and evolution of translational and rotational velocities (fig.
4.2(b),(c)) in each step. These experiments are performed on HM3D [71] scene (e.g. 3 in fig. 4.3). The
photometric error of Imagine2Servo smoothly converges without any oscillations to below 300 (for all
sub-goals), while other baselines fail to converge beyond the error of 4000. We also observe a bounded
velocity profile in Imagine2Servo while sudden accelerations are observed in RTVS [2]. The initial tra-
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jectory along the Cam-Axis baseline tries to move in the right direction towards the goal but eventually
collides with the front wall. Pose-Diffusion at first converges, but as it approaches the target, it fails to
generate appropriate velocity commands and stalls in the same place before diverging. Imagine2Servo
gradually decelerates as it approaches the sub-goal image, giving us a smooth motion profile.

4.4.3 Qualitative Results

Fig. 4.3 and 4.4 show qualitative results for door crossing and reaching, respectively. Despite en-
countering significant variations in translations, with distances spanning up to 10 meters and rotations
up to 80 degrees in roll, pitch, and yaw, our system reliably accomplishes the challenging task of cross-
ing the door. This resilience demonstrates the robustness and adaptability of our approach to handling
diverse real-world conditions, paving the way for versatile applications in various environments. For
manipulation tasks, we conduct experiments in RlBench [5], which is a well-established benchmark for
manipulation policies. We pick 3 RLBench tasks with varying complexities to demonstrate the wider
applicability of our model. With sub-goal guidance, even when the window is partially visible in the
initial image (e.g. 2 in fig. 4.4), Imagine2Servo-Single-View achieves precise final alignment of the
end-effector. It also correctly interprets the text input to perform necessary action when multiple objects
are present in the scene. For the task of shape sorter, the foresight model is able to correctly reason
between different objects (e.g. 3, 4 in fig. 4.4) to generate the next sub-goal.

Figure 4.5 provides a comprehensive overview of the outcomes yielded by our model within the
Unity [6] Simulator environment. We present results obtained across diverse warehouse scenes, each
characterized by distinct lighting conditions. Notably, Imagine2Servo is tasked with accurately de-
ducing the layout of racks, shelves, and stacks within the given instruction to successfully execute the
assigned task. Our model adeptly identifies the pertinent elements, including the rack structure, the spe-
cific shelf situated on the rack, and the targeted stack as specified in the textual instruction. Noteworthy
is our model’s capability to navigate successfully even when confronted with limited visibility of details
in the initial view, as exemplified in row 3 of Figure 4.5. Through the strategic utilization of sub-goals
generated by the foresight model, our framework demonstrates iterative convergence towards the desired
target, showcasing its robustness and adaptability in navigating complex warehouse environments.

Fig 4.6 summarizes the improvements of Imagine2Servo-Multi-View over the Imagine2Servo-Single-
View baseline. Imagine2Servo-Multi-View correctly predicts the next sub-goal when the target object
is not visible (row 2, 3, 4 in fig 4.6) in the current view or is occluded behind other objects (row 1 in
fig 4.6) in the scene. In such cases, Imagine2Servo-Single-View diverges as the foresight model fails
to generate the next relevant sub-goal. Using the auxiliary information from the overhead camera view,
the multi-view model correctly generates the next intermediate view and guides the controller towards
the target.

The qualitative results described above show the applicability of Imagine2Servo in navigation as
well as manipulation tasks. Our model can significantly benefit applications where a robot needs to
precisely navigate the space with occlusion. Even in poorly textured environments, our flow-based
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Figure 4.3: We visualize the foresight model generated sub-goals and the pose reached after the execution

of actions by the controller for the task of navigation through a door in PyBullet [3] and Habitat-Sim [4].

Imagine2Servo-Single-View successfully converges for large translations and rotations of the initial view with

respect to the target pose.
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Figure 4.4: We visualize the sub-goals generated by the foresight model and the pose reached after the execution

of actions by the controller for three different tasks in RLBench [5]. Imagine2Servo-Single-View converges even

when the target object is partially visible in the scene. When multiple objects are present in the scene, we correctly

differentiate between ”cube” and ”star” to reach the target object.
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: Executed sub-goals: Generated sub-goals

Initial View Intermediate Observations Final Target

Figure 4.5: We visualize the sub-goals generated by the foresight model and the pose reached after the execution

of actions by the controller for three different instructions in Unity simulator [6]. Imagine2Servo-Single-View

identifies the correct rack and shelf and generates the correct subgoals to reach the target.
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Figure 4.6: We qualitatively compare the performance of Imagine2Servo-Single-View and Imagine2Servo-Multi-

View for the task of ”Reach the handle of the window” (row 1, 2) and ”reach the charger charger” (row 3, 4) in RL-

Bench [5]. When the target is not visible or is occluded behind other objects in the initial image, Imagine2Servo-

Single-View fails to converge, whereas Imagine2Servo-Multi-View generates sub-goals that converge to the final

target.
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Figure 4.7: Real-world setup: We use UFACTORY xARM7 and eye-in-hand Intel RealSense D455 sensor input

for real-world experiments.

IBVS controller extracts the necessary features to perform the required task. Flow-based IBVS con-
troller compensates for errors in the foresight model and executes necessary actions to complete the
task successfully.

4.4.4 Real World

We set up manipulation experiments* in the real world on UFACTORY xARM7 with an Intel Re-
alSense D455 sensor fixed on its end-effector (fig 4.7). We demonstrate the following tasks: 1. Placing
a shape in the shape sorter 2. Shape stacking. We generate 300 trajectories with 15 frames per trajectory
for each shape and finetune our model by sampling input-output image tuples from the above video
demonstrations with a language prompt explaining the task. Unseen poses and randomized positions
are used during test time. Our model performs reasonably well, achieving success rates of 8/10 for task
1 and 7/10 for task 2. Please see the supplementary material for videos.

Imagine2Servo captures the semantic information in the scene and correctly sorts circles and squares
in the respective shape sorters (rows 1, 2 in fig 4.8). For the task of stacking the shape where precise
alignment is important to successfully stack the object, our model performs exceptionally well. Even
when the stacker and the sorter are partially visible in the initial image, the foresight model generates

*Would like to acknowledge Gunjan Gupta for establishing the servoing pipeline on xARM7 and for overseeing the data

collection process for various tasks on the physical robot. Gunjan’s contributions have been invaluable in conducting a range

of experiments in real-world settings.
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relevant sub-goals and converges to the final target. Despite the actuation noise in the real-world setup,
our method adapts well and converges successfully in the execution of the task.

4.4.5 Ablation Study

We perform ablation experiments to comprehend the advantage of using sub-goals in image-based
servoing. At test time, we expect the flow-based IBVS controller to proficiently match the features of the
current and the goal images generated by the foresight model. Optical flow calculations are constrained
by the motion between two consecutive image frames. Therefore foresight model should be trained to
predict the next sub-goal, which would give us good features for servoing. We study the convergence of
Imagine2Servo as we uniformly sample n frames per trajectory to form the training set S = {I1, ..., In}.
The consecutive frames from this subset are then used to train the image foresight model.

From fig. 4.9, we see that as n increases, the optical flow features between the current and the
generated image become more prominent and lead to an increase in success rate (fig. 4.10). For n = 2,
we directly predict the final goal image without predicting any sub-goals. In this case, the target image
is often incorrect as the foresight doesn’t have enough information from the current view to directly
generate the target view. Even if the target view is correct, the IBVS controller fails to converge to the
desired target location. With the increase in the value n, from n=4, the foresight model output becomes
more grounded, yet the IBVS controller fails to converge due to the lack of good flow features. For n
= 9, the IBVS controller converges to the final target with balanced in-range sub-goal generations by
the foresight model. This shows that predicting sub-goals instead of one final goal helps ground the
foresight model and makes the controller more robust as it also learns to compensate for any error in the
generated sub-goals (e.g. 2 in fig 4.3). Further increasing the value of n leads to very little improvement
in the success rate as it stabilizes for values of n ≥ 9.
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Figure 4.8: For real-world tasks, visualize the target reached with the sub-goals and executions for the task of

placing the shape in the shape sorter and stacking the shape. We achieve a precise end-effector pose and drop the

shape correctly in its shape sorter.
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Figure 4.9: Results of qualitative comparison of sub-goal generations and IBVS controller convergence with the

change in the value of n (n is the sampling frequency used to generate the training set). We show results for the

task of reaching the door in PyBullet [3]. For a given current view, we compare the foresight model predictions

for varying values of n. As n increases, the accuracy of the foresight model predictions improves. For n = 2, 4, the

IBVS controller fails to reach the sub-goal, leading to divergence from the final target. However, as n increases,

the state achieved after the execution of the IBVS controller aligns more closely with the target image generated

by the foresight model. Refer to 4.4.5 for more details.
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Figure 4.10: Ablation study to elucidate the impact of altering the sampling frequency of the training set, denoted

by n, on the success rate (refer to Section 4.4.5).
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Chapter 5

Conclusions

In the initial segment of this thesis, we introduce MVRackLay, an innovative framework tailored to
undertake multi-view and multi-layered layout estimation for all racks discernible in each frame of a
monocular image sequence. Setting itself apart from existing approaches, MVRackLay leverages tem-
poral information across image frames to augment the accuracy of layout predictions. Additionally, we
unveil a comprehensive pipeline designed for reconstructing the entire warehouse in 3D based on the
predicted shelf-centric layouts. The versatility of MVRackLay is underscored by experimental find-
ings across a spectrum of warehouse scenarios, demonstrating its substantial superiority over previous
baselines adapted for comparable tasks.

Improving MVRackLay’s resilience to the dynamic shifts inherent in warehouse settings, such as the
movement of objects, stands as a fundamental requirement for its effective deployment in real-world
contexts. Subsequent research endeavours may concentrate on crafting algorithms adept at identify-
ing and adjusting to these dynamic elements within the scene, thereby ensuring precise layout estima-
tions even amidst challenging circumstances. Additionally, forthcoming investigations might delve into
methodologies that jointly infer the arrangement of racks while pinpointing the exact locations of indi-
vidual items within the scene, drawing upon both geometric principles and appearance-driven insights.

Moreover, enhancing MVRackLay’s capacity to comprehend semantic contexts within warehouse
scenes, including the discernment and categorization of diverse objects and spatial regions, holds promise
for facilitating more nuanced applications. Prospective efforts could integrate advanced techniques
like semantic segmentation and object recognition into the framework, enriching scene annotations and
streamlining higher-level decision-making processes. Thorough validation and benchmarking initia-
tives, conducted on expansive real-world datasets encompassing a spectrum of warehouse environments,
offer an avenue to glean valuable insights into MVRackLay’s adaptability and performance across varied
conditions. This future research may entail the meticulous curation and annotation of datasets represen-
tative of diverse warehouse layouts, object configurations, and environmental factors, thus providing a
comprehensive evaluation of MVRackLay’s robustness and scalability.

In the latter portion of this thesis, we unveil Imagine2Servo, an innovative framework poised to
substantially enhance the capabilities of visual servoing. By dynamically generating intermediate goal
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images, Imagine2Servo enables robust task execution across diverse environments, eliminating the need
for predefined goal imagery. This approach effectively mitigates key limitations inherent in traditional
visual servoing methods, including the necessity of goal images, challenges stemming from limited
overlap between initial and target views, and reliance on single-camera feedback. Our empirical find-
ings showcase the vast potential of Imagine2Servo in elevating robotic navigation and manipulation
abilities, leveraging diffusion-based image editing to generate subgoals with precision. This advance-
ment positions Imagine2Servo as a pioneering benchmark in the field of visual servoing, charting a
course towards more autonomous and adaptable robotic systems.

While Imagine2Servo shows promising results in basic tasks, expanding its capabilities to handle
complex manipulation scenarios could significantly enhance its performance and adaptability in real-
world applications. Future research could focus on joint training of the foresight model and IBVS
controller to make diffusion more aware of the capabilities of the IBVS controller and vice versa. Ad-
ditionally, investigating the integration of machine learning techniques presents an opportunity to lever-
age past experiences and adapt the strategies of a model accordingly. This could entail training neu-
ral networks to anticipate optimal subgoals based on environmental cues and robot dynamics, thereby
enhancing task execution efficiency and enabling adaptation to novel scenarios. Moreover, optimizing
Imagine2Servo for real-time performance is imperative for its practical deployment in real-world robotic
systems. Future efforts could concentrate on developing streamlined algorithms and parallel computing
techniques to facilitate rapid computation of intermediate goal images, ensuring seamless integration
with high-speed robotic control systems.

While empirical evidence showcases Imagine2Servo’s efficacy in navigation and basic manipulation
tasks, there’s potential to broaden its capabilities to encompass more intricate manipulation scenarios.
This expansion could encompass tasks involving object interactions, tool manipulation, or delicate ob-
ject handling, requiring the formulation of strategies to generate subgoals that factor in object dynamics,
contact constraints, and task-specific objectives. Additionally, despite Imagine2Servo’s advancements
over single-camera feedback systems, there’s room for further improvement through the integration of
feedback from multiple sensors such as depth sensors, LiDAR, or inertial measurement units (IMUs).
Exploring fusion techniques to seamlessly incorporate multi-sensor data into the framework could bol-
ster Imagine2Servo’s robustness and adaptability in complex environments, thus enhancing its overall
performance and utility in real-world applications.
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