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Abstract

The objective of this study is to examine the interdependence between scene representation and
robust autonomy of mobile robots such as quadrotors and cars. It addresses crucial issues with the
motion planning and SLAM components in the navigation system.

Voxel Grids built from range sensors have been a popular choice of world representation for motion
planning. The planners query the map for distance to collision and gradients, the planner uses these
measurements to generate a smooth and safe trajectory through trajectory optimization. However, these
methods assume the presence of zero sensor noise, such an assumption is severely violated when the
maps are built through RGBD cameras, the noise in the point clouds are transferred to the occupancy
maps through a non-linear transform and is further propagated to the distance and gradient field which
results in a non-parametric noise. The performance of the deterministic planners that rely on such
inaccurate gradients was found to decrease. As an antidote we propose CCO-VOXEL the very first
chance-constrained optimization (CCO) algorithm that can compute trajectory plans with probabilis-
tic safety guarantees in real-time directly on the voxel-grid representation of the world. We leverage
the notion of Hilbert Space embedding of distributions and Maximum Mean Discrepancy (MMD) and
gradient free Cross-Entropy Method for obtaining its minimum. We also show how a combination of
low-dimensional feature embedding and pre-caching of Kernel Matrices of MMD allows us to achieve
real-time performance in simulations as well as in implementations on on-board commodity hardware
that controls the quadrotor flight.

Voxel maps are not robust to outliers and fail to capture the world geometry when built from a highly
noisy and sparse point cloud, such as those generated from triangulation through monocular visual-
inertial SLAM (VI-SLAM ). Inaccurate maps like these can significantly decrease the performance of the
motion planner. We propose UrbanFly , a quadrotor planning framework for navigation in a planar
urban high-rise environment. The core importance of UrbanFly is its ability to handle sparse and noisy
point clouds built from VI-SLAM. Based on the insight that the sky-scrappers are planar, we derived
an Uncertainty-Integrated Cuboidal (UIC) representation of the world and developed an uncertainty-
aware planner that can interpret and leverage the benefits of UIC to generate safe trajectories in real
time. UrbanFly demonstrates a 3.5 times improvement in safety metrics compared to state-of- the-art
algorithms.

Points clouds generated from LiDAR need a lot of memory to store and transfer and lack structure,
making it hard to extract spatial features. This makes it challenging to deploy lidar based Loop Detection
and Closure (LDC) for distributed collaborative SLAM. To address this, we present FinderNet, a 6-DOF
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distributed LDC system. We develop a novel DEM representation to reveal the underlying geometric
structure of the point clouds, and an auto-encoder decoder structure to compress the point clouds. LDC
is performed in the compressed space, allowing deployment in a multi-agent setting. Our approach
provides view-invariance through a process of canonicalization and differentiable alignment, which is
different from existing methods that rely on feature aggregation or overlap estimation. FinderNet has
been evaluated on real-world datasets such as Kitti, GPR, and Oxford Robot Car.
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Chapter 1

Introduction

Mobile robots are increasingly being utilized in a diverse range of applications, including manufac-
turing, logistics, and rescue operations. For these robots to effectively carry out tasks and contribute
to our daily lives, it is crucial that they have a robust autonomous navigation system. This system, or
navigation stack, consists of three main components. First, the robot is equipped with sensors such as
LiDAR and RGBD cameras that allow it to perceive the external world. This data is then processed
by the scene representation layer, where algorithms are developed to create a computational model of
the world and understand the 3D environment in which the robot operates. Finally, the action module
interprets the world model to perform tasks such as state estimation (SLAM) and trajectory planning.

The navigation stack relies on a model of the world, rather than raw sensor data, to make decisions.
However, until now 3D scene representation and navigation have been treated as independent opera-
tions. Such an organization leads to sub-optimal performance for two reasons, (1) The navigation stack
is unaware of the uncertainties and inaccuracies in the scene representation. (2) The available scene
representations are not action oriented and lack rich mathematical properties that could be leveraged by
the action module. To improve performance, it is necessary to adopt a more tightly coupled approach
that integrates 3D scene representation and navigation. This work studies the interplay between the 3D
scene representation and autonomous navigation, specifically enhancing the robustness of the motion
planning and state estimation modules within the navigation system as detailed below.

1.0.1 Motion Planning

Quadrotor motion planning involves generating a collision free and dynamically feasible trajectory
from start to goal. The planner relies on the range sensors within the perception system to estimate
the presence of obstacles in the vicinity of the robot. RGBD cameras have become a favored perception
modality for quadrotors due to their compact and lightweight design, additionally, Voxel Grids have
emerged as a widely used world representation due to their simplicity in construction and scalability.
However, often the point clouds generated through these RGBD cameras are noisy comprising of spu-
rious points, and the voxel grids representation is not agnostic to the underlying noise within the point
clouds, as depicted in Fig. 1.1 (a). Noisy occupancy maps would result in inaccurate measurements
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Figure 1.1: The point clouds obtained from RGBD cameras are noisy and voxel grid are not agnostic
to the noise. (a) depicts the Octomap [29] (voxel grids) observe that the spurious points present in the
point clouds are present in the voxel grids without any filtering. (c) The gradients derived from the noisy
voxel grids are not consistent as in case of a noiseless map as depicted (d).

of the distance to the nearest obstacle and gradient fields. This, in turn, would adversely impact the
performance of deterministic motion planners [82, 83, 81] as they rely on these measurements for op-
timizing trajectories. As a solution we propose CCO-VOXEL [27] (Section 3), an uncertainty aware
motion planner that is agnostic to inaccuracies within the voxel grid representations.

The performance of the motion planners are further sensitive to the choice of perception modality.
Although RGBD cameras are noisy it outputs a dense point clouds enabling the Voxel Grids to reconstruct
a continuous environment. However, the point clouds generated through triangulation from monocular
VI-SLAM are sparse and noisy, making a continuous reconstruction of the world impossible. Through
our work in UrbanFly we demonstrate that voxel grids are not robust to handling outliers, and further
propose an Uncertainty Integrated Cuboidal (UIC) a continuous planar representation that is robust to
noise. We further develop an uncertainty aware planner that leverages the mathematical properties of
the UIC to compute a safe and dynamically feasible trajectory.

1.0.2 State Estimation

The navigation stack’s state estimation module is a critical component that determines the robot’s
pose at every moment and creates a mapped representation of the environment. Although LiDAR

measurements are highly precise and have a long-range sensing capability, processing and extracting
meaningful information from unstructured point clouds can be challenging. Additionally, the cost of
storing and transmitting LiDAR point clouds limits their use in Collaborative SLAM. To address these
challenges, we propose the DEM (Section 5.1.1), a representation that exposes the underlying structure
of point clouds in 6-DOF motion and can be compressed to improve storage efficiency.

We utilize the advantages of DEM in LiDAR loop detection and closure for distributed collaborative
SLAM through FinderNet [25]. Our encoder-decoder architecture enables compression-decompression
of the DEM and transmission. Loop detection and closure operations are performed in the latent (com-

2



pressed) space of the point clouds. Unlike current literature that either uses feature aggregation [8, 74,
79, 68] for view invariance or estimates point cloud overlaps for LDC [9, 44], we provide an alternate
approach where view invariance is achieved through canonicalization and differentiable alignment. For
a detailed explanation of our methodology, refer to Section 4.

1.1 Contributions

The core contributions of the thesis can be summarized as given below:

Quadrotor Motion Planning

1. A new trajectory planner has been proposed [27] that ensures probabilistic safety and is indepen-
dent of the obstacle’s geometry and non-parametric noise.

2. The trajectory planning problem has been approached in a unique way by formulating it as a distri-
bution matching problem, where the target distribution can be represented by the dirac function.
Additionally, optimization is carried out using a gradient-free method known as Cross Entropy
Minimization.

3. Extensive evaluation of [27] through simulation and real-world field testing.

4. Formulation of a novel Uncertainty Integrated Cuboidal representation for single camera based
uncertainty aware quadrotor trajectory planning [26].

LiDAR SLAM

1. Formulation of Loop Detection and Closure (LDC) for LiDAR SLAM as a canonicalization and
differentiable alignment problem [25].

2. Development of a multi-functional pipeline that performs LDC in the compressed space of point
clouds with a 6-DOF displacement.

3. Development of attention based self-supervised modules that enables training with minimal su-
pervision and eliminates data-augmentation requirements.

4. Integration of [25] into Lio-SAM [64] and evaluation of real world datasets.

1.2 Thesis Organization

This thesis studies the interactions between perceptual scene representation and robust autonomy,
specifically we enhance the performance of the motion planning and state estimation modules with
the navigation stack. The necessary background and terminologies used in the work is introduced in
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Chapter 2. Chapter 3 is a detailed description of CCO-VOXEL [27] a gradient free uncertainty aware
planner for navigation in a voxel-grid world. In Chapter 5 we introduce UrbanFly, a motion planning
algorithm designed to generate safe trajectories for navigating among high-rise buildings. Our work
related to Loop Detection and Closure (LDC) for LiDAR SLAM has been presented in chapter 4. Finally,
the concluding remarks and suggestions for future research directions is presented in chapter 6.
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Chapter 2

Background

2.1 Volumetric Mapping & Quadrotor Motion Planning

Volumetric mapping is used to generate a 3D model of the environment in which the robot operates.
Typically, the environment is discretized into 3D grids known as voxels. Volumetric maps can store
information such as occupancy, distance fields and derived measurements such as gradients. Motion
planning is task of generating a trajectory from a given start to goal location, the planning algorithms
use the underlying volumetric maps to detect obstacles and avoid them, furthermore, many methods use
the distance fields and gradients to perform trajectory optimization for improved performance. In the
context of motion planning this thesis explores the relation between the inaccurate volumetric maps and
motion planning.

2.1.1 3D Occupancy maps

Occupancy maps indicate the probability that a given voxel in space is occupied, typically, these
methods assume that the robot has an accurate state estimation systems and is equipped with a range
measurement sensor such as LiDAR or RGBD cameras. The approach for integrating the range sensor
measurements into the probabilistic map was given by [47], where the probability that a voxel n is
occupied given a history of sensor reading z1:t is given by Eq. 2.1, where P (n) is probablity that a
given voxel is occupied known as a prior (the initial value of P (n) = 0.5).

P (n/z1:t) =

[
1 +

1− P (n/zt)

P (n/zt)

1− P (n/z1:t−1)

P (n/z1:t−1)

P (n)

1− P (n)

]−1

(2.1)

Using the log-adds form of Eq. 2.1, the multiplications can be replaced with additions leading to
faster updates, the resulting log-odds formulation is given by Eq. 2.2

Lo(n/z1:t) = Lo(n/z1:t−1) + Lo(n/zt) (2.2)
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Where
Lo = log

P (n)

1− P (n)

After the update of the occupancy, a threshold is set on P (n/z1:t) to ultimately decide if the cell is
occupied or free. However, Eq. 2.2 has a a major drawbacks, it can be observed that to change the state
we must observe the same voxel has many times as it has been observed previously, such a requirement
limits the real time adaptability of the method.

For real-time occupancy mapping [77] introduced Eq. 2.3, where the lower and upper limits of the
log-adds value is given by lmin and lmax respectively. Such a formulation leads to better adaptability
and enables compact representation [29].

Lo = max (min (Lo(n/z1:t−1) + Lo(n/zt), lmax), lmin) (2.3)

Building upon the basic formulation of occupancy mapping given above, Octomap [29] builds a
comapct Octree based data-structure for volumetric mapping. [29] checks for occupancy at multiple
resolutions, it mode in the octree represents a voxel and each voxel has been subdivided into 8 equal
sub-volumes until the least specified resolution is reached. For our work [27] we choose Octomap [29]
to generate the volumetric map of the environment.

2.1.2 Distance Fields

While many sample based classical global planners such as RRT, RRT*, A* etc. have been developed
that operate directly on the occupancy maps, these methods are not real-time. Modern real-time local
planning algorithms [82, 67, 81] achieve real-time performance through trajectory optimization, such
planning algorithms query the volumetric representation of the environment for distance and gradient
measurements. A distance field is a continuous function represented as f(x) : R3 7→ R, the function
f(x) return the distance from the query point x in R3, to the closest point on the surface of the function.
The motion planners query the continuous function f(.) for the distance to collision measurement and
to obtain the gradients to perform trajectory optimization.

Euclidean Signed Distance Field ESDF [51] is popular choice of distance fields representation, in
an ESDF the distance to the closest surface is represented with opposite signs based on the position
of query x relative to the surface (either can be inside a surface or outside), if x is on the surface a 0

is returned. Similar to ESDF is the Euclidean Distance Transform EDT, here all distance to all points
outside the surface is represented by a positive sign and all points within and on the surface is assigned
a 0. ESDF and EDT can be built given a occupancy map and in our implementation of [27] we use the
EDT distance field built over an Octomap [29] as the underlying world representation.
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2.1.3 Motion Planning for Quadrotors

Trajectory planning for quadrotor systems has a long history in the areas of optimal trajectory gen-
eration [19, 3, 46] and integrated perception and navigation [59, 69]. Gradient based planning over
voxel representations have become popular in recent years [82, 81, 67, 83], these methods obtain a safe-
trajectory through optimization. The general structure of such methods include an initial guess trajectory
obtained from a sampling based planner that queries the environment only for occupancy (and not dis-
tances or gradients), this trajectory is further improved through gradient based trajectory optimization
techniques.

Uncertainity aware motion planning: The gradient based trajectory optimizers assume zero sensor
noise while creating the map, and in a noisy environment in the absence of consistent gradients the opti-
mization methods fail to generate safe trajectories. Meanwhile, Chance Constrained Optimization with
suitable surrogates too have been well studied, however their inadequacy in handling non-parametric
uncertainty was detailed in [54, 23]. Specifically there appears no known methods that handle non
parametric uncertainty of discretized volumetric voxel grids other than the proposed [27]. While [33]
provides for a chance constrained framework for nearest distance to obstacle it formulates over well
defined obstacle shapes and not over voxel grids. Moreover, its computation of safe trajectories runs
into minutes while the proposed method [27] is in the order of tens of milliseconds.

Monocular SLAM based Planners: Literature dealing with trajectory planning and/or navigation with
monocular SLAM is sparse when compared with a much larger volume of literature that deals with
planning with SLAM [39]. A large part of planning with SLAM focuses on actively moving to places
where the state uncertainty (often measured as the trace of the state co-variance) is low [39], [30].
In contrast, the Monocular SLAM frameworks tend to rely on heuristics [49] due to the difficulty of
estimating accurate co-variance in a monocular setting. In [13] photometric co-variance is considered
with state co-variance propagated over the tangent manifold. Nonetheless, this technique relies on
Gaussian noise models, which we relax in our current work. Our approach also goes beyond [1] that
shows navigation with a camera but does not consider the underlying uncertainty during planning.

Only recently, the notion of CCO was extended to settings where the world is described through a
voxel-grid representation of the world derived from point clouds [27]. Our work UrbanFly [26] extends
this line of work further to a more challenging setting where the point clouds generated by the perception
system are very sparse and noisy.

2.2 Point Cloud based Loop Detection & Closure

2.2.1 Simultaneous localization and Mapping

SLAM is a problem of jointly estimating the map of the environment and the pose of the mobile robot,
In this work we focus on LiDAR based SLAM systems. The architecture of SLAM can be divided into
two parts namely, the front-end and back-end. The front-end, of SLAM is mainly concerned with the task
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Figure 2.1: The architecture of a typical SLAM system. The backend can further provide supportive
information to the front end to help it detect loop candidates.

of sensor data collection and creation of graphical models. The back-end leverages on the abstractions
created by the front end and performs inference for state estimation. An overview of SLAM architecture
is given in Fig. 2.1.

The front-end of SLAM extracts features and handles both short and long-term correspondences. It
matches 2D/3D features between consecutive keyframes for short-term correspondence, and handles
loop detection and closure for long-term correspondence. SLAM has been popularly modelled as a
Maximum A Posteriori estimation problem and factor graph inference techniques are used to perform
inference over the graphs. Factor graph optimization for sate estimation has been extensively studied, I
refer the reader to [6] [24] for a detailed review.

Loop Detection and Closure (LDC) is central to SLAM that enables a robot to recognize a place which
it had previously visited (loop detection/place recognition) and localize (loop closure) itself within a
built map, without LDC SLAM would reduce to pure odometry, furtheremore, loop closures enable to
the robot to better understand the topology of the environment in which it operates.

2.2.2 LiDAR sensor

Light Detection and Ranging (LiDAR) is a popular perception modality present in the autonomous
navigation stack of cars and drones. It uses light to measure distances to objects in the environment,
laser beams are transmitted by the sensor and are reflected by the objects the time of flight between the
transmission and reception of beams is measured and the distance to the object is obtained given the
time and speed of light. The LiDAR sensor continuously spins emitting beams in all directions and
creating a point cloud of the cars surrounding. Point clouds obtained from LiDAR is a geometric set
of points, which is essentially a collection of 3D points in Euclidean Space. Point clouds are typically
represented by their (x, y, z) coordinates in space, and operations on these point clouds are expected to
be invariant to the permutation of the members in the set.

2.2.3 Loop Detection and Closure using LiDAR sensors

The SLAM literature has not extensively explored LiDAR based LDC as compared to its image based
counterpart.
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Handcrafted Feature Descriptors: [35, 43, 70] rely on handcrafted feature descriptors to extract local
geometric information and aggregate it to obtain a global descriptor suitable for loop detection and
closure. [35, 43] assume presence of a dominant ground plane to detect and close loops. [35] follows a
polar representation, where the ground is discretized into bins by splitting in both radial and azimuthal
directions, and each bin storing the maximum height present in the vertical volume. [43] discretizes the
ground plane into rectangular cells in a Cartesian form, and each cell storing it’s point cloud density.
Our representation of DEM is a discrete Cartesian representation of the ground plane, where each grid
cell stores the maximum height of the points present in it. However, unlike [43, 35], we perform a
complete 6-DOF estimation and loop closure.

Learning Based Approaches for Loop Detection: PointNet [55] proposes a neural network model
that directly consumes point clouds while maintaining permutation invariance. PointNetVLAD [68] uses
[55] and NetVLAD[2] to generate global descriptors for place recognition. PCAN [79] uses [55] as
the backbone architecture to extract local features and the corresponding attention maps along with
[2] for feature aggregation. However, both [68, 79] uses PointNet as a backbone architecture, which
processes each point separately via a MLP, not capturing local neighbourhood information. Recently,
Retriever[72] detects loops directly in the compressed feature representation using Perceiver [32] based
mechanism to aggregate the local features. All the above methods use aggregated local features, to
compute a global descriptor that is viewpoint invariant. We propose a canonicalization procedure in
order to explicitly enforce viewpoint invariance. Furthermore, in contrast to [68, 79, 72] which only
perform loop detection, our method performs LDC.

Learning Based Approaches for LDC: LCDNet [8] proposes an end-to-end trainable system, with
a Unbalanced Optimal Transport algorithm to estimate 6-DOF relative transform between two point
clouds. DH3D [15] aggregates local features using hierarchical network to obtain global features for
loop detection. Both [8, 15] rely on an expensive 6-DOF data augmentation of the input point cloud in
order to achieve orientation invariance. The proposed framework bypasses data augmentation through
explicit roll-pich canonicalization followed by yaw alignment. Unlike [8, 15], we operate on highly
compressed point cloud representation, making our approach suitable for data transmission in a multi-
agent setting. Overlap-based approaches such as OverlapNet [9] and OverlapTransformer [44] are
trained using explicit overlap information on range images [4]. OREOS [61] proposes two separate
branches: one for loop closure and other for loop detection. Unlike [9, 44, 61] that only estimate the
relative yaw between the input point clouds, we estimate the full 6-DOF relative pose.
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Chapter 3

CCO-VOXEL: Chance Constrained Optimization over Uncertain

Voxel-Grid Representation for Safe Trajectory Planning

Many aerial navigation systems use compute trajectories over Octomap [29], or Euclidean Signed-
distance field (ESDF) [51] derived from a three-dimensional voxel grid representation of the world.
These approaches assume accurate sensor readings during the process of map creation. However, sen-
sor measurements (e.g., point clouds) are noisy and non-parametric in nature. These noisy measure-
ments get translated to incorrect estimates of the distance to the closest obstacle and gradient field.
Consequently, deterministic planners [82, 83, 67, 81] who rely on these two pieces of information being
accurate are expected to lose their performance and safety guarantees under perception noise. For exam-
ple, noisy gradients coupled with an incorrect estimate of the distance to the nearest obstacle can result
in the UAV moving towards the obstacle and colliding. This work proposes a chance-constrained opti-
mization (CCO) over VOXEL grids as an antidote to this duress. CCO-VOXEL acknowledges that the
distance to the closest occupied voxel is noisy and consequently takes this uncertainty into account while
computing optimal trajectory plans. As a result, CCO-VOXEL avoids collisions where gradient-based
deterministic planner fails (Fig. 3.1).

Previous methods leveraging CCO for handling sensor noise had to rely on the assumption that the
underlying random variables that constitute the chance constraint function are parametric or Gaussian
[3, 22, 21, 85]. However, as seen in Fig. (3.2) the distribution over the nearest voxel occupancy is non-
parametric. Moreover, existing works on CCO such as [85] assume that the obstacles have a pre-defined
shape which is crucial for obtaining tractable reformulations of the chance constraints. In this work, we
relax both the assumptions of parametric uncertainty and the analytical collision model. Yet, we main-
tain real-time performance in both simulation and hardware experiments with on-board computation.
The core innovations behind our approach are summarized below.

Algorithmic Contribution: For the first time, we present a CCO-based probabilistically safe trajectory
planning that is agnostic to both the nature of the underlying uncertainty and the obstacle geometry. In-
spired by our prior works [54, 23], we use the notion of distribution embedding in Reproducing Kernel
Hilbert Space (RKHS) and Maximum Mean Discrepancy (MMD) to reformulate CCO as a distribution
matching problem. However, we overcome one of the key limitations of [54, 23]: estimating the so-
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Figure 3.1: Overview: Accurate gradient and distance to closest obstacles cannot be extracted from
uncertain voxel grid representation built from noisy sensors. Fig.(a) illustrates this effect, wherein the
gradient at a given point can be in any one of the directions shown by arrows. Similarly, the distribu-
tion of distance is shown as a confidence interval band. The noisy gradients and distance estimation
tend to guide the trajectory towards the obstacle leading to a collision as shown in (b) (the collision is
highlighted by a white circle) . We propose CCO-VOXEL, a method that accounts for the uncertainty
in the distance measurements and obtains an optimal solution through a gradient free Cross Entropy
Minimization technique resulting in a safe and optimal trajectories as shown in (c).

Figure 3.2: The error (difference between the true collision distance and the measured value) distribution
histogram that is obtained from a noisy voxel grid. The OptiTrack Motion Capture system was used to
determine the ground truth distance. Octomap with Euclidean Distance Transform (dynamicEDT3D) is
used for collision distance measurements.

called desired (or target) distribution for computing the distribution matching cost. We show that by
embedding the distribution of constraint violation in RKHS instead of collision avoidance constraint
themselves, as done in [54, 23], we can by-pass the need to estimate the desired distribution. Further-
more, distribution of constraint violation induces efficient structure in the algebraic form for MMD,
allowing for pre-computation and caching of most computationally expensive parts. We also improve
the computational performance of our approach by projecting the samples drawn from the distribution
of constraint violations into some latent dimension before computing the MMD. We learn this projection
through auto-encoder-based supervised learning. Finally, we minimize a combination of MMD and kin-
odynamic costs through the Cross-Entropy Method (CEM) to compute a smooth and probabilistically
safe trajectory.

State-of-the-art Performance: We show tangible performance gain over deterministic gradient plan-
ners [82] and methods that handle uncertainty by growing the obstacle map by the co-variance of the
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distribution [12, 65]. The benefits are seen in the form of almost negligible collisions under the duress
of varying levels of sensor noise even as the previous methods reports high collision rates.

3.1 Problem Formulation

Assumptions: We assume that the robot has precise motion capabilities but noisy perception. As a
result, the built ESDF has imprecise information about the gradient field and distance to the closest
obstacle. The distribution over the distance has the form d = dmeasured + ϵi, where ϵi are samples
drawn from some black-box distribution whose parametric form is not known.

Trajectory Parametrization: We parametrize quadrotor trajectory in the following manner
x(t1)

x(t2)

. . .

x(tn)

 = Pcx,


ẋ(t1)

ẋ(t2)

. . .

ẋ(tn)

 = Ṗcx,


ẍ(t1)

ẍ(t2)

. . .

ẍ(tn)

 = P̈cx. (3.1)

where, P, Ṗ, P̈ are matrices formed with time-dependent basis functions (e.g polynomials) and cx are
the coefficients associated with the basis functions. Similar expressions can be written for y(t), z(t) as
well in terms of coefficients cy, cz , respectively.

Safe Motion Planning: Using the parametrization discussed above, we formulate our probabilistically
safe motion planning as the following optimization problem, wherein P (·) represents probability.

min l(cx, cy, cz) (3.2a)

P (f(d) ≤ 0) ≥ η,∀t (3.2b)

f(d) = rsafe − d(cx, cy, cz, t) (3.3)

Our cost function (3.2a) encourages smoothness in the trajectory by mapping the trajectory coefficients
to penalties on higher-order motion derivatives such as jerk and penalising the violation of accelera-
tion and velocity limit. The algebraic form is similar to that used in [82]. The function d(·) in (3.3)
maps the coefficients to distance to the closest obstacle at a given time t. Consequently, the inequality
(3.2b) ensures that the probability of the closest obstacle distance being less than safe value rsafe is
below some specified threshold η. Constraints of the form (3.2b) are known as chance constraints [7].
Generally, chance-constrained optimization (CCO) are considered computationally intractable. Thus,
existing works focuses on deriving tractable approximations of (3.2b) under two predominant assump-
tion. Firstly, the obstacles are assumed to have defined geometric shapes (e.g ellipsoid) and as a result
it becomes possible to derive an analytical expression for d(cx, cy, cz, t). Second, the perception uncer-
tainty are often assumed to be Gaussian. When both the assumptions are made simultaneously it even
becomes possible to formulate a convex approximation of (3.2b) [85], [5].
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(a) The setting from [54] where the goal
is to bring the distribution pf to the left
of f(d) = 0. This is achieved by con-
structing a desired distribution pfdes and
minimizing the distance of pf from it in
RKHS. Importantly, estimation of pfdes
required solving an optimization problem

(b) We work with the distribution of the
collision constraint violation rather than
the constraint themselves. As a result, the
desired distribution in our case is simply
the Dirac Delta distribution pδ. The dis-
tribution pf approaches the desired Dirac
function pδ for an optimal cx, cy, cz

Figure 3.3: An intuitive understanding of the RKHS embedding of [54] and our proposed method

Our work relaxes both the above mentioned assumptions and thus substantially expands the applica-
bility of chance-constrained optimization based motion planning in real-world environment. We handle
chance-constraints on collision avoidance by treating d(cx, cy, cz, t) as a black-box model that can only
be queried from a voxel-grid representation of the world. Secondly, we make no assumption on the
underlying perception uncertainty.

Reformulation from [54], [23] and Limitations: Let pf represent the probability distribution of f(d),
i.e pf = P (f(d)). Our prior work [54], [23] imagined CCO as the problem of choosing an appropriate
(cx, cy, cz) such that the pf at any given time t takes on an appropriate shape. This naturally gives rise to
the notion of desired distribution pfdes , i.e a distribution that pf should resemble as closely as possible
( Fig. 3.3 (a) ). The entire mass of the pfdes lies to the left of f(d) = 0. As pf becomes similar to pfdes ,
its mass starts getting shifted to the left and the probability of P (f(d) ≤ 0) goes up. This intuition led
to the following reformulation of optimization (3.2a)-(3.2b)

min l(cx, cy, cz) + wldist(pf , pfdes), (3.4)

where, ldist is a cost that quantifies the similarity between two distributions. The constant w controls
the trade-off between minimizing the distribution similarity (or probability of collision avoidance) with
the primary cost. We discuss suitable form for ldist in the next section.

The main limitation of [54], [23] is that it requires one to solve an optimization problem to estimate
pfdes . While tractable, in a reactive one-step setting, this estimation process becomes highly challenging
for multi-step trajectory planning such as the one considered in this work. In the next section, we
introduce our main algorithmic results: a novel RKHS reformulation of the CCO (3.3)-(3.2b) that does
not require us to estimate pfdes .
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3.2 Main Algorithmic Results

3.2.1 Distribution over Constraint Violations

Our main idea is to work with the distribution of violations of the collision avoidance constraints rather
than the constraints themselves. More precisely, let f be the constraint violation function defined as

f = max(0, f(d(cx, cy, cz, t))) (3.5)

A distribution over d can be mapped to f and we represent it as pf . Although, computing the analytical
form for pf is intractable, we can make the following remark regarding the best possible shape that it
can take in the context of collision avoidance.

Remark 1. The best possible shape of pf is given by a Dirac Delta distribution pδ . In other words, pδ

acts as the desired distribution for pf

Remark 2. As pf becomes more and more similar to pδ, the probability of collision avoidance goes up.

Remark 1 and 2 elucidates our motivation behind shifting from the distribution of constraints, as done in
[54], [23], to distribution of constraint violations. The desired distribution in our case is always fixed and
most importantly, exactly known. Remark 2 forms the basis of the following proposed reformulation of
CCO.

min
cx,cy ,cz

l(cx, cy, cz) + wldist(pf , pδ) (3.6)

Note that pf is in fact a function of d which in turn is a function of the trajectory coefficients (cx, cy, cz)

3.2.2 Maximum Mean Discrepancy and Sample Approximation

A common method to quantify similarity between two distributions is through Kullback Liebler Diver-
gence (KLD). However, it requires us to know the analytical form for the distributions under consider-
ation and thus is not suitable to quantify the similarity between pf and pδ. One possible workaround
is provided by the notion of Maximum Mean Discrepancy (MMD) that quantifies the similarity of
two distributions in Reproducing Kernel Hilbert Space (RKHS). Importantly, both the embedding into
RKHS and MMD can be obtained by just sample level information of distributions. To this end,
let µpf and µpδ represent the RKHS embedding of pf and pδ computed in the following manner.

µpf
=

N∑
i=0

αik(f(di), ·) (3.7) µpδ =

N∑
i=0

βik(0, ·) (3.8)

where, di refers to the ith sample drawn from the distribution of d for a given (cx, cy, cz, t). Please note
that (3.8) follows from the fact the samples from a Dirac Delta distribution are all zeroes. Using (3.7)
and (3.8), we can formulate ldist in the following manner.

ldist =
∥∥∥µpf

− µpδ

∥∥∥2
2

(3.9)
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It is worth reiterating that MMD (3.9) is a function of (cx, cy, cz, t). Each possible choice leads to a
different distribution of d and consequently MMD. Thus the goal is to come up with the right trajectory
coefficients which minimizes both MMD and the primary cost function. We achieved this through
Cross-Entropy Method [48] [53] and is discussed in Sec. 3.2.4.

3.2.3 Pre-Computation and Improving Sample Complexity

Computing MMD through Kernel Matrices: Let d0, d1, d2, . . . , dn be the samples drawn from the
distribution of the closest obstacle at any given time t for a given cx, cy, cz . The distance samples can
then be mapped to samples from pf through (3.5). In this part, we derive the matrix representation of
the MMD (3.8) to show how various parts of it can be pre-computed and cached. To this end, we expand
(3.9) in the following manner.

∥µpf − µpδ∥
2=⟨µpf (d), µpf (d)⟩ − 2⟨µpf , µpδ⟩+

⟨µpδ , µpδ⟩ (3.10)

Substituting kernel mean functions (3.7) and (3.8) in (3.10)

⟨µpf
(d), µpf

(d)⟩ = ⟨
N∑
i=0

αik(f(di), ·),
N∑
j=0

αjk(f(dj), ·)⟩ (3.11a)

⟨µpf
(d), µpδ⟩ = ⟨

N∑
i=0

αik(f(di), ·),
N∑
j=0

βjk(0, ·)⟩ (3.11b)

⟨µpδ , µpδ⟩ = ⟨
N∑
i=0

βik(0, ·),
N∑
j=0

βjk(0, ·)⟩ (3.11c)

Using the kernel trick Eq. (3.11) can be reduced to a matrix form and can be expressed as

∥µpf
− µpδ∥2= CαKf fC

T
α − 2CαKf0C

T
β +CβK00C

T
β (3.12)

where Cα and Cβ are the weight vectors given by

Cα =
[
α0, α1, ..., αn

]
;Cβ =

[
β0, β1, ..., βn

]
and Kff , Kfδ and Kδδ are matrices defined as

Kf f =


k(f(d0), f(d0)) . . . k(f(d0), f(dn))

k(f(d1), f(d0)) . . . k(f(d1), f(dn))

...
. . .

...

k(f(dn), f(d0)) . . . k(f(dn), f(dn))
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Kfδ =


k(f(d0), 0) . . . k(f(d0), 0)

k(f(d1), 0) . . . k(f(d1), 0)

...
. . .

...

k(f(dn), 0) . . . k(f(dn), 0)



Kδδ = 1n×n

We use Radial Basis Functions (RBF) during implementation. The use of the Dirac-Delta function as
the desired function leverages us with two key properties which would further decrease the computation
time.

1. Pre computing matrices: The matrix Kδδ is essentially a set of ones and it does not need explicit
computation at run time. Furthermore, if a polynomial kernel is used the matrix Kf̄ δ would also
reduce to set of ones and only one matrix needs computation at run time.

2. Symmetric matrix: It can be observed the kernel matrices are square and symmetric, this implies
that we can compute values only for one triangle of the matrix and copy the values into the other
triangle.

The use of these techniques in addition to feature space embedding, and vectorized matrix-algebra
enables the computation of MMD in real-time.

Feature space embedding of distance measurements: We need a total of n samples of f to compute
its embedding in RKHS and consequently MMD. A large n (≈ 100) gives a good estimate of MMD but
at the same time increases the computational burden (the size of Kernel matrix in (3.12) increases). In
this part, we use an auto-encoder to improve the sample and computation complexity. More concretely,
we stack the n samples of f at a given point on the trajectory and project it into a low dimensional latent
space. Our auto-encoder based embedding can be seen as the more sophisticated version of reduced-set
method used in [54].

We learn the low-dimensional mapping through supervised learning. Formally, we seek to determine
an encoder W1 and decoder W2 pair such that they perform an identity operation. The training is per-
formed by optimizing the loss function given in (3.13) using Stochastic Gradient Descent.The training
data consists of n sets of f , each with m samples, stacked to form the data matrix D of dimension
Rn×m.

min
W1,W2

∥DW1W2 − D∥2 (3.13)

The final latent space dimension where MMD would be computed is given by DW1
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3.2.4 Trajectory Optimization

We minimize (3.6) in two steps. At the first step, we use graph-search technique to find a trajectory that
approximately minimizes (3.6). This resulting trajectory is used to initialize the Cross Entropy Method
(CEM) optimizer for computing an optimal solution of (3.6).

Initial Trajectory Search: Our initial trajectory search builds on Kinodynamic A* proposed in [82]
but with a crucial difference that we use MMD as a part of the Edge Cost that connects two nodes of the
graph. The typical process is as follows. Several motion primitives are generated by sampling different
control inputs ut (acceleration). These primitives are then assigned an edge-cost (3.14), wherein ∆M

(3.15) is the difference between MMD at the current, and the next node and τ is the time for which the
control input is applied. The constant ρ trades-off control costs with time. Apart from the edge cost,
there is also a heuristic cost that measures the goal-reaching aspect of each primitive. The primitive with
the best edge and heuristic cost combination is chosen for expansion in the next iteration.

In contrast to our approach, [82] uses the distance to the closest obstacle (or simply occupancy in
an inflated map) to filter out unsafe primitives while the edge-cost only has the first two terms from
(3.14). As mentioned earlier, if this distance information is noisy, the A* process itself can lead to
unsafe trajectories (see Table 3.3).

ec = (∥ut∥2+ρ)τ +∆M (3.14) ∆M =Mi+1 −Mi (3.15)

CEM Based Refinement: The trajectory produced by the graph search can be sub-optimal and might
have a higher arc length. We use Cross Entropy Minimization (CEM) to further refine the trajectory and
improve its smoothness while maintaining clearance from the obstacle. The various steps of CEM are
summarized in Algorithm 1. The input to the CEM is the sub-optimal trajectory obtained from graph-
search. The initial trajectory is converted into an initial estimate for trajectory coefficients (cx, cy, cz)
through simple curve-fitting (line 4). The first step in Algorithm 1 is drawing N samples of trajectory
coefficients, leading to N possible trajectories (line 8). At each point of every sampled trajectory, we
computed the cost function (3.6) (line 10). Note that as shown section 3.2.3, the MMD evaluation itself
requires drawing n samples from the collision distance distribution at each point of all the sampled N
trajectories. We select the top q trajectory coefficient samples (line 13) that led to lowest cost and use
them to compute the mean and variance for the next iteration of CEM (line 15). The output of the CEM
is the coefficients of the optimal trajectory.

In a standard CEM implementation after every iteration of the inner loop (line 8 to 13) all the elite
samples are discarded. This decreases the efficiency and increases the convergence time. Authors in
[53] propose CEM with memory where a small subset of the elite set is stored and added to the pool of
samples for the next iteration. Our CEM uses this insight in line 14 of Algorithm 1.
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3.3 Experiments and Validation

In this section, we demonstrate the advantages of CCO-VOXEL over deterministic methods and other
conservative approaches to handle uncertainty through qualitative and quantitative comparisons. We
further show that with the convergence of CEM to an optimal solution the collision constraint violation
distribution will also converge to the dirac delta function. Ablations confirm the real-time competency
of CCO-VOXEL, while the actual experimental runs indicate its robustness and efficacy for on-board
implementations.

Benchmark Comparisons: We benchmark our CCO-VOXEL against fast planner [82] and bounding
volume [12, 65] algorithms. The comparison is done on two highly cluttered simulation environments
named Box Cylinder world and Wall Grid World (Fig. 3.7) of dimensions 30× 30× 7 and 7× 30× 7

respectively. Over 200 trials were conducted and the results presented in Table 3.1 are the cumulative
statistics of these trials in both the testing environments. Maximum velocity and acceleration were set
to 2m/s and 3m/s2 respectively.

We sample 50 random trajectories at every iteration of CEM, CCO-VOXEL is implemented in
C++11, and used the PX4 SITL (Software in the Loop) for simulations. During simulation, a Gaus-
sian noise of zero mean and 0.2m variance is added into the point cloud for testing purposes. Note that
although the point cloud noise is Gaussian, its mapping to the distribution of the closest obstacle will be
non-parametric.

The Fast-Planner [82] is a state-of-the-art algorithm known to generate optimal and safe trajectories.
However, in a cluttered and noisy environment the distance to obstacle measurements are no longer
reliable. Furthermore, the gradients are noisy and can push the trajectory towards the obstacle leading
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Figure 3.4: The image to the left is the custom built quadrotor used for flight testing. The center image
is taken during the flight, the computed and tracked trajectory is shown in the right.

to a collision (Fig. 3.1(a) and 3.1(b)) and a drop in the success rate and increase in the smoothness cost
of the trajectory. On other hand, CCO-VOXEL is gradient free, and the MMD formulation takes into
account the noise uncertainty in the collision distance (Fig. 3.1(c)). As a result, it achieves a higher
success rate and a lower smoothness cost.

A possible approach to account for uncertainty is to construct a bounding volume around the obsta-
cle, which is obtained by increasing the robot’s footprint by the size of the covariance of the distance
distribution. This technique has been used in several approaches such as [12]. Due to the increase in a
safety margin, the bounding volume approaches have a higher accuracy in comparison to the fast planner
[82], but they tend to generate conservative trajectories. Furthermore, this method prevents the planner
from navigating in narrow spaces where it is difficult to maintain an appropriate safe margin after the
covariance-based inflation.

As shown in Table 3.1 the proposed method out performs both the benchmarks by a fair margin.
The results of our experiments demonstrate a 33.17% and 44.94% decrease in the overall trajectory
smoothness cost in comparison to Fast-Planner and bounding volume based approaches respectively.
Furthermore, the success rate of CCO-VOXEL is approximately 3 times higher in comparison to the
benchmarked approaches. But our method has a slightly higher computation time, due to the relatively
high computation requirement of the evaluating the MMD cost in CEM.

Real World Autonomous Flight We have conducted a fully autonomous flight test in unknown and
cluttered environment. The video demonstration results can be found here1. We used a customized self
developed quadrotor platform , which is equipped with an Intel Realsense D415 depth camera [58],
a Pixhawk flight controller is used along with the PX4 firmware, all the computation modules which
include mapping, state estimation and motion planning is conducted online on a Intel NUC 10 board
[50] with Core i7-10710U Processor,1.1 GHz – 4.7 GHz Turbo, 6 core, the system is equipped with a
16GB RAM and 1TB SSD. Fig. 3.4 depicts the quadrotor and images from the hardware flight testing.

1https://github.com/sudarshan-s-harithas/CCO-VOXEL/tree/main/Demo
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Table 3.1: Benchmark Comparison

Method Computation Smoothness Success
Time(s) (m2/s5) %

mean: 0.0853 12.45 100
Proposed

std: 0.014

mean: 0.012 18.63 32.37
FastPlanner

std: 0.026

mean: 0.007 22.54 36.76
Bounding Volumes

std: 0.001

Figure 3.5: With every iteration of our CEM based trajectory optimization we observe that the distri-
bution of the collision-constraint violation approaches the Dirac delta function and therefore the MMD
cost is minimized. Note that since plotting is based on approximate kernel density estimation from finite
samples, a tiny part of distribution appears to the left of 0 as well.

3.3.1 Convergence analysis

Cross Entropy Minimization: In this section we demonstrate the ability of the CEM to compute the
minimum of our unconstrained reformulation of CCO (3.6). The CEM takes the output of the initial
trajectory search and further refines it. The convergence of CEM is validated in Fig. 3.6. The figure
presents the cost profile of the mean trajectory after every iteration; it can be seen that the optimal
solution can be obtained in around four iterations with an average computation time less than 0.015s.
The convergence can be verified by observing the variance updates after every iteration. A monotonic
decrease in variance implies that after every iteration it converges to low-cost region and thus it is more
useful to sample trajectories close to mean trajectory.

Convergence of the Constraint Violation: We demonstrate that the convergence of CEM (and mini-
mization of MMD) implies a greater match between the distribution of collision constraint violation and
the Dirac Delta function. This in turn leads to an increased probability of collision avoidance (recall
Remark 4). We observe from Fig. 3.5 that five iterations were enough for the constraint violation dis-
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Figure 3.6: CEM Optimization: We observe that the normalized cost and the trace of the covariance has
monotonically decreased and the trajectory has converged to an optimal solution

tribution to converge to the Dirac distribution. This convergence results have been empirically verified
over a large number of trials.

3.3.2 Ablation Study

To study the impact of each component of our approach, we conducted an ablation study between the
possible methods.

MMD Computation: In Sec. 3.2.3 we described the use of an auto-encoder architecture to decrease the
sample complexity and consequently time required for an MMD computation. As presented in Table 3.2
we compare this approach against the baseline method where RKHS embedding (Eq. 3.12) are directly
computed for a large number of samples without any low dimensional projection. It can be observed that
the use of an auto-encoder decreases the computation time by approximately 12 times. Furthermore,
we observe from Fig.3.5 that the increase in computation time did not compromise the performance, we
were still able to minimize the probability of constraint violations within a very few iterations of CEM.

Table 3.2: Comparison between MMD computation methods

Method Computation Time(s)

Autoencoder Embedding 0.00012

Traditional Method 0.00146
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Figure 3.7: Gazebo Environment (a) Wall Grid World (b) Box Cylinder World

Initial Trajectory Searching Algorithm: Here, we validate the effectiveness of using MMD as the
edge-cost in A* based initial trajectory search. To this end, we compare it against the standard kino-
dynamic A* used in [82]. As shown in Table 3.3, while our inclusion of MMD as edge cost increases
the computation time, it comes up with a massive 2.82 times improvement in success rate. It is worth
recalling that our computation time is higher because MMD is computed over the several samples of
closest distance to the obstacle drawn from a black-box distribution.

Table 3.3: Initial Trajectory Searching Comparison

Method Computation Time(s) Success %

Kinodynamic A* with MMD 0.0798 100

Kinodynamic A* [82] 0.017 35.4

3.4 Chapter Summary

Through CCO-VOXEL [27] we make a fundamental contribution towards bringing the benefits of
CCO-based safe trajectory planning to real-world settings commonly encountered in quadrotor navi-
gation. Our CCO formulation works directly on the voxel grid representation of the world, wherein
the collision constraints are not known in analytical form but rather in the form of a black-box query
function. Existing approaches that assume known parametric nature in the underlying uncertainty and
geometric collision avoidance models are not equipped to work under such minimalist assumptions.
We outperformed state-of-the-art deterministic planners in success rate and smoothness metric. In the
upcoming chapter, we will continue to take advantage of the benefits provided by our MMD and CEM
formulation to generate trajectories that are both safe and dynamically feasible. However, we will also
examine the impact of perception modality on our motion planning abilities, and suggest new perceptual
representations specifically designed for quadrotor motion planning.
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Chapter 4

UrbanFly: Uncertainty-Aware Planning for Navigation Amongst

High-Rises with Monocular Visual-Inertial SLAM maps

As Urban Air Mobility (UAM) becomes more likely in the future, quadrotors will need to navigate
through urban areas with tall buildings. Monocular vision, which is a common perception modality for
quadrotors due to its lightweight and long-lasting nature, can be used to create maps through a technique
called monocular SLAM. However, unlike the RGBD cameras as used in [27] these maps can be sparse,
noisy and not to metric scale. To achieve accurate scale, we integrate an IMU sensor that provides
metric information. When performing SLAM with a sensor setup that includes a monocular camera
and an IMU, it’s known as Visual Inertial SLAM (VI-SLAM) [57]. Despite this, uncertainty and sparsity
in the maps remain a problem, making it crucial to account for this uncertainty in trajectory planning
as illustrated in Fig. 4.1 (a)(b), it is therefore, crucial to account for the uncertainity during planning.
Unfortunately, current algorithms for uncertainty-aware planning are not designed to work with systems
that rely on monocular vision-based perception, and often assume that obstacle geometries are known
[33, 85] or require depth sensors during operation [82, 67, 27, 83].

We introduce UrbanFly, a new planning method that can use monocular vision-based perception
while addressing uncertainty. Our approach has two main elements: (i) a representation of the environ-
ment that incorporates uncertainty, and (ii) trajectory optimizers that are tailored to this representation.
The unique features and advantages of our approach are highlighted below.

Algorithmic Contribution: UrbanFly uses a data-driven neural network to segment the high-rises in
the image into their planar constituents. The resulting plane masks along with the point cloud obtained
from the triangulation from monocular VI-SLAM are used to build an Uncertainty Integrated cuboid
UIC representation of the obstacles (skyscrapers). We show how the non-parametric point cloud uncer-
tainty can be mapped to the uncertainty in the parameters of the cuboid and finally to the distribution
over distance to the closest obstacle. The sample estimates of closest obstacle distance can be coupled
with the notion of distribution embedding in Reproducing Kernel Hilbert Space (RKHS) to estimate col-
lision probability. We propose a trajectory optimizer capable of minimizing this estimate along with the
conventional smoothness cost. Our optimizer uses the gradient-free cross-entropy method to compute
trajectories that explicitly trade-off collision risk and smoothness cost.
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Figure 4.1: Overview: Accurate distance measurement to the closest obstacle and associated gradient
cannot be expected from a noisy and sparse voxel grid representation built from the triangulated point
cloud of a monocular visual-inertial SLAM system (VI-SLAM). This, in turn, poses a critical challenge
for trajectory planning. Fig (a) and Fig(b) show that only a few key points that belong to feature-rich
regions of the building are detected and tracked by the VI-SLAM resulting in a sparse point cloud (green
cuboids in Fig. (a) represent the sparse triangulated point cloud as a discrete voxel). This motivates us
to use planes to represent the obstacle instead of the commonly used voxel-grid representation derived
from point clouds. Fig. (d) CCO-VOXEL [27], which plans on voxel-grid representation, fails to plan
the trajectory using the triangulated point cloud from VI-SLAM [57]. CCO-VOXEL uses Octomap as
the voxel grid representation, shown as green cubes. The transparent elongated cuboids are the ground
truth location of the buildings (obtained from the simulator), and the building in which CCO-VOXEL
has collided is highlighted in purple. Fig. (e) UrbanFly’s CEM planner successfully plans a collision-
free trajectory while considering the uncertainty-integrated cuboid obstacle representation. Fig. (c) The
SquareStreet simulation environment that we created to test our planner. Please refer to our †Project
page for the simulation results.
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Advancements over CCO-VOXEL: Although our previous work [27] addressed trajectory planning in
an uncertain distance field, it expected dense point clouds from the RGBD camera and could not handle
sparse point clouds. In contrast, through UrbanFly, we have relaxed this requirement and developed a
planner that can handle extremely sparse and noisy point clouds generated through triangulation from
VI-SLAM. Furthermore, Voxel-Grids were the primary world representation in [27], here we demonstrate
that given a VI-SLAM setup our proposed cuboidal representation is more effective in capturing the
world geometry in comparison to the voxel grids. Lastly, we show that the cuboidal representation
allows for faster retrieval of distance to collision measurements in comparison to voxel grids.

4.1 Pipeline Overview

Perception Module: Our perception module (detailed in section 4.2) satisfies a two-fold objective:

1. State estimation: An on-board monocular VI-SLAM (VINS-Mono) [57] is used to perform state
estimation. The state includes the 6DOF pose of the quadrotor and an upto scale 3D key point
locations.

2. Uncertainty aware Mapping: The sparse and noisy point clouds from monocular VI-SLAM
are used to represent the obstacles in the environment as axis-aligned cuboids. The perception
module also quantifies the uncertainty in cuboid parameters.

Planning Module: The planning module has a single objective: to perform uncertainty aware trajectory
planning by leveraging upon the cuboid representation (UIC) of the world obtained from the percep-
tion module. Our trajectory optimizer follows the stochastic chance-constrained optimization paradigm
and formulates a trade-off between probabilistic safety and smoothness cost. We use the gradient-free
CEM to solve the resulting optimization problem. The formulation of our trajectory optimizer has been
detailed in section 4.3.

4.2 Monocular Visual-Inertial SLAM based Obstacle Reconstruction

4.2.1 Monocular visual-inertial SLAM

Although a detailed description of monocular visual-inertial SLAM [57] is beyond the scope of this
thesis, we briefly describe the steps involved in estimating the odometry from images and IMU.

The system starts with measurement pre-processing, wherein 2D key points are extracted and tracked.
Simultaneously, we obtain the relative motion constraints from the IMU through a process popularly
known as IMU pre-integration in SLAM literature [18]. Then the initialization procedure provides all
necessary values, including pose, velocity, gravity vector, gyroscope bias, and three-dimensional (3D)
key points (the point clouds), for bootstrapping the subsequent sliding-window-based nonlinear opti-
mization. Finally, the drift is minimized through a global pose graph optimization. We use the resulting
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camera pose to transfer the 3D key points into the world frame that are subsequently used in step 4.2.2
for plane reconstruction.

Assumption

We assume that the buildings are planar and feature-rich. We expect a reliable state estimate from the
SLAM but acknowledge the uncertainty in the estimated 3D planes obtained from the sparse triangulated
point clouds of the monocular visual-inertial SLAM. We also assume that the VI-SLAM estimate of the
gravity axis is sufficiently accurate.

4.2.2 3D plane reconstruction

Notations: In the section 4.2.2.1 and 4.2.2.2, we use the symbols n,p, s to refer to the normal, 2D
plane origin and size of the plane respectively. However, the nominal plane estimates are denoted by
n0,p0, s0. Furthermore, in section 4.2.2.2 where we sample multiple planes, the parameters of the
individual samples are represented by the symbols ni,pi, si (i ∈ 1,2, .., N ).

There are two key steps in the uncertainty aware plane modelling or (UIC reconstruction), we first
estimate the nominal plane parameters and in the second step we model the SE(2) uncertainty using
these nominal parameters as an initialization.

There are two key procedural steps to obtain the nominal estimates of the plane. Firstly, we have
access to the plane masks obtained through PlaneRCNN [40] and associate each 3D key-point obtained
from the triangulation of VI-SLAM to be associated with a particular plane if the corresponding 2D
feature is within the plane masks. This results in the clustering of the 3D point clouds. After clustering,
we run a RANSAC algorithm on each cluster to estimate the nominal plane parameters.

The plane has been parameterized through three quantities namely: the plane normal (n0 = [n0x, n0y, n0z]),
2D-plane origin (p0 ∈ R2) obtained by projecting the center of the building plane onto the ground plane,
and the length and height of the plane which is referred to as the size (s = [l, w]) (where l is length and
w is width of the plane).

4.2.2.1 Modelling and Analysis of the SE(2) Uncertainty in 3D planes

The triangulated point cloud from the monocular VI-SLAM is highly noisy and can lead to inaccurate
detection of planes. We map the uncertainty present in the triangulated point cloud to the uncertainty
in the parameters of the estimated plane. To this end, we assume that building facades in the scene are
vertical. This results in only SE(2) (a 3DOF) movement for the building plane viz. 2D planar translation
along the ground plane and a 1D yaw rotation along the axis perpendicular to the ground plane.

As explained previously, the plane is modeled through three parameters, the normal (n), plane origin
p, and size s. To model the error, we need access to the ground truth parameters of the plane; we set
up an experiment in Unreal [16], a high-fidelity gaming engine, to obtain the ground truth parameters
of the plane through simulation. To determine the error, a human pilot would fly the quadrotor through
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the simulation environment (the environment details are given in section 4.4.2), and the procedure men-
tioned in the previous section would be performed to obtain the nominal plane estimates. The difference
between the observed (the nominal values) and ground truth measurements would be used to model the
error. The uncertainty in each of the plane parameters is modeled as follows:

(i) Normal n: The normal determines the orientation of the plane, and from our SE(2) assumption,
we notice that this orientation is the 1D yaw (viz., the rotation along the axis perpendicular to the
ground plane). Therefore, we parameterize the uncertainty in the normal through the error in the
yaw (orientation) denoted by ∆ψ. Through simulation, we obtain the ground truth orientation of
the plane denoted by ψGT , and we further obtain the nominal plane estimates; we measure the
observed orientation given by ψ0. Where ψ0 = arctan

n0y

n0x
for the observed plane normal n0. and

∆ψ = ψ0 − ψGT . From Fig. 4.3 (top right) we observe that this error is non-parametric.

(ii) Size s: The size of the plane refers to the length and width of the plane and it is measured in
meters. Through the simulator, we obtain the ground truth size of the plane, and the nominal
plane parameters are obtained as explained above. The difference between them would result in
the error histogram shown in Fig. 4.3 (bottom row). We further observe that the size distribution
does not follow the parametric Gaussian form.

(iii) Plane origin p: The error in the plane origin is represented by a vector in R2. It is obtained by
taking the difference between the true plane origin (obtained from simulation) and the observed
plane origin. The distribution of plane origin is also non-Gaussian, as shown in Fig. 4.3 (top left)
(for ease of illustration, we only show the error in one of the dimensions in R2, the distribution of
error on the other axis is similar).

4.2.2.2 Sampling multiple planes

Assume that we can fit a non-parametric distribution to the plane parameters and sample ∆ψi ,∆si

and ∆pi from that. Note the fitted form need not be even analytically known. We can generate multiple
samples of the plane parameters through (4.1). The process of sampling multiple planes by perturbing
individual plane parameters and combining them is shown in Fig. 4.2

ψi = ψ0 +∆ψi , si = s0 +∆si ,pi = p0 +∆pi (4.1)

4.2.2.3 Cuboid approximation of the 3D plane segment

The primary objective of modeling the uncertainty in the plane is to exploit its properties in a down-
stream task such as trajectory planning. Performing collision checks is of key importance in trajectory
planning and can be rapidly performed by querying an analytical Signed Distance Function (SDF). To
take advantage of the geometrical properties of the SDF, we consider each finite plane as a cuboid of
infinitesimal thickness.
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Figure 4.2: In the top view, a plane appears as a line, as shown in the extreme left (the thick line with
three green dots indicates the nominal plane estimate). Perturbing each plane parameters individually
can distort the plane in different ways, as shown through the middle blocks. The symbol ∪ represents
an union of all the random perturbations that results in a total of nψ × ns × no samples of the plane; an
illustration of the sample set is shown on the extreme right.

Figure 4.3: Error Histogram for the plane parameters, the yaw error is shown in top-right, the origin error
is shown in the top left, and the bottom row refers to the error in size length and width, respectively.

4.3 Uncertainty aware Trajectory Planning

4.3.1 Distance Queries to Cuboid

The distance to the surface can be obtained by querying the analytical SDF as given in (4.2); this
allows for rapid collision checks. For a given query point q = [x, y, z] (measured in world frame),
the resulting distance dijk represents the distance measured to the cube using the ith sample from the
yaw angle distribution ψi, the jth sample from the size distribution sj and kth sample from the origin
distribution pk, the matrix Ti is a transformation matrix defined by (4.3) that transforms a given query
point from the world frame to the local frame of the cuboid, |.| denotes the absolute value function. The
max function would perform the element-wise maximum operation and would return a zero vector if
the query point is on or within the cuboid. The ..2 would compute the l2 norm of the resulting vector.

dijk = max
((

|T(ψi,pk)q| − sj
)
,03×1

)
2

(4.2)

Ti =

 RT
i −RT

i pk

01×3 1

 RT
i =


cosψi − sinψi 0

sinψi cosψi 0

0 0 1

 (4.3)
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Since we draw nψ, ns and no samples from the black-box error distribution of the yaw, size and
origin uncertainties, we get a total of nψ × ns × no distance measurements for each query point. The
process of relating distance queries as collision constrains is described in the next section 4.3.2 .

4.3.2 Surrogate for Collision Probability

Distribution over Constraint Violations: Our vision-based perception module enforces some addi-
tional requirements on the planning side. It is not merely enough to maintain a large conservative
distance from the obstacles (sky-scrapers) as in that case, we lose the coarse features that are present at
the boundaries of the obstacles. On the other hand, flying very close to the obstacles may compromise
safety. We thus propose to bound the distance estimates dijk between rmin and rmax. To this end, we
formulate the following constraint violation function.

f ijk = max(dijk − rmax, 0) + max(rmin − dijk, 0) (4.4)

Now, as explained in Section 4.3.1, dijk are in fact sample approximations of some unknown true
estimate of distance d̂ to the closest obstacle. Thus, (4.4) maps the distribution over distance estimates
to distribution of constraint violation. Moreover, f ijk are the sample approximations of the true dis-
tribution of f which we henceforth call as pf . Although computing the exact analytical shape of the
distribution pf is intractable we can make the following remarks about its shape.

Remark

Remark 3. The best possible shape of pf is given by a Dirac Delta distribution pδ .

Remark 4. As pf becomes increasingly similar to pδ, the probability that the quadrotor is at-least rmin

away from the obstacle an at-most rmax away from the obstacle increases.

Probabilistic Safety : Remarks 3, 4 forms the basis of our notion of probabilistic safety. Instead of
directly measuring the probability of collision avoidance; we define the following surrogate.

Definition 1. Let ldist(pf , pδ) be a positive semi-definite function that quantifies the similarity between

the pf , and pδ. That is, ldist decreases as the distribution becomes similar. Then, ldist can act as an

estimate of the probability of collision avoidance.

4.3.3 Maximum Mean Discrepancy as ldist
The Maximum Mean Discrepancy or MMD is a popular approach to quantify the similarity between
two distributions in Reproducing Kernel Hilbert Space (RKHS) using just the sample level information.
Thus, it can be a potential option for ldist. To this end, let µpf and µpδ represent the RKHS embedding
of pf and pδ computed in the following manner.
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µp
f
=

nψ,ns,no∑
i,j,k=1

αiβjγkk(f ijk, ·) (4.5)

µpδ =

nψ ,ns,no∑
i,j,k=1

λiφjθkk(0, ·) (4.6)

Where k(., .) is the kernel function (we use an Radial Basis Function (RBF) kernel) , f ijk represents
the constraint violation function defined in (4.4). The constants αi, βj and γk are the weights associated
with the f ijk sample of the constraint violation function. Similarly, λi, φj and θk are the weights
associated with the sample of the Dirac-Delta distribution. Typically, these weights can be just set to
1
n . Alternately, we can adopt a more sophisticated approach based on a reduced set or Auto-Encoder-
based dimensionality reduction [27]. Please note that (4.6) follows from the fact that the samples from
a Dirac-Delta distribution are all zeros. Using (4.5) and 4.6 we will proceed to derive the following
algebraic form for (ldist ) as given in (4.7).

ldist =
∥∥∥µpf

− µpδ

∥∥∥2
2

(4.7)

It is worth noting that MMD is a function of the dijk, which in turn is a function of the query point.
In the context of planning, the query points will belong to the trajectory.

4.3.4 Matrix Form of MMD

We can efficiently evaluate ldist through the so-called kernel trick. To show how, we expand (4.7) as
follows

∥µpf − µpδ∥
2=⟨µpf , µpf ⟩ − 2⟨µpf , µpδ⟩+ ⟨µpδ , µpδ⟩ (4.8)

Substituting the kernel mean functions 4.5 and 4.6 in 4.8

⟨µp
f
, µp

f
⟩ = ⟨

nψ,ns,no∑
i,j,k=1

αiβjγkk(f ijk, ·),
nψ,ns,no∑
i,j,k=1

αiβjγkk(f ijk, ·)⟩ (4.9a)

⟨µp
f
, µpδ ⟩ = ⟨

nψ,ns,no∑
i,j,k=1

αiβjγkk(f ijk, ·),
nψ,ns,no∑
i,j,k=1

λpφjθkk(0, ·)⟩ (4.9b)

⟨µpδ , µpδ ⟩ = ⟨
nψ,ns,no∑
i,j,k=1

λiφjθkk(0, ·),
nψ,ns,no∑
i,j,k=1

λiφjθkk(0, ·)⟩ (4.9c)

Using the kernel trick, (4.9) can be expressed in matrix form as given below

∥µpf − µpδ∥
2=

no∑
k=1

Cαβ/γkK
k
ff
CT
αβ/γk

−

2Cαβ/γkK
k
fδ
CT
λφ/θk

+Cλφ/θkK
k
δδC

T
λφ/θk

(4.10)
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where Cαβ/γk and Cλφ/θk are the weight vectors

Cαβ/γk =
[
α0β0γk, α0β1γk, ..., αnβnγk

]
;

Cλφ/θk =
[
λ0φ0θk, λ0φ1θk, ..., λnφnθk

]

Kk
ff

=


Kk

00 Kk
01 . . . Kk

0n

Kk
10 Kk

11 . . . Kk
1n

...
...

. . .
...

Kk
n0 Kk

n1 . . . Kk
nn

 Kk
fδ

=


Kk
δ00 Kk

δ01 . . . Kk
δ0n

Kk
δ10 Kk

δ11 . . . Kk
δ1n

...
...

. . .
...

Kk
δn0 Kk

δn1 . . . Kk
δnn



Kk
ab =


k(fa0k, fb0k) . . . k(fank, fb0k)

k(fa0k, fb1k) . . . k(fank, fb1k)

...
. . .

...

k(fa0k, fbnk) . . . k(fank, fbnk)



Kk
δab =


k(fa0k, 0) k(fa1k, 0) . . . k(fank, 0)

k(fa0k, 0) k(fa1k, 0) . . . k(fank, 0)

...
...

. . .
...

k(fa0k, 0) k(fa1k, 0) . . . k(fank, 0)


Kk
δδ = 1nψns×nψns

Furthermore, [27] proposes an effective method to utilize supervised learning to map distance mea-
surements to a low dimension feature space, this was found to increase the computational speed signifi-
cantly. Here we adopt a similar approach for the computation of MMD.

4.3.5 CEM Planner

4.3.5.1 Trajectory Parameterization

The CEM Planner uses a polynomial parameterization of the trajectory, defined as
x(t1)

x(t2)

. . .

x(tn)

 = Pcx,


ẋ(t1)

ẋ(t2)

. . .

ẋ(tn)

 = Ṗcx,


ẍ(t1)

ẍ(t2)

. . .

ẍ(tn)

 = P̈cx. (4.11)
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where, P, Ṗ, P̈ are matrices formed with time-dependent basis functions (x(ti)) (e.g polynomials) and cx
are the coefficients associated with the basis functions. Similar expressions can be written for y(t), z(t)
in terms of coefficients cy, cz , respectively.

4.3.5.2 Optimization Problem

The CEM-based planner minimizes the following cost function, for a given weight w.

min
cx,cy ,cz

l(cx, cy, cz) + wldist(pf , pδ) (4.12)

The function l(cx, cy, cz) maps trajectory coefficients to penalties on higher-order motion derivatives
such as jerk. It also penalizes violations of acceleration and velocity limits. The second term in (4.12)
is the MMD-based distribution matching cost derived in the previous subsection. Please note ldist as
presented in (4.7) is a function of dijk which in turn is a function of the query point. In the context
of trajectory optimization, the query points belong to the planned trajectory and are thus a function of
(cx, cy, cz). In other words, different values of trajectory coefficients will map to distribution matching
cost ldist.

We solve (4.12) through gradient-free CEM following closely the steps outlined in [27] and [53].
We provide only a brief overview here. We first draw different random values of (cx, cy, cz) from a
Gaussian Distribution and evaluate the cost (4.12) on all of these generated samples. We then identify
some best-performing samples and then fit a new Gaussian distribution on them for sampling in the
subsequent iteration.

4.4 Experiments and Validation

In this section, we demonstrate that voxel-grid representations can be ineffective in a monocular
setting due to the inherent sparsity and noise in the triangulated point clouds. Furthermore, we show that
UrbanFly can generate long-range smooth trajectories and execute them without the failure or drift in
VI-SLAM. Finally, we provide an empirical analysis of the convergence of CEM. Simulation videos can
be found in the project page https://github.com/sudarshan-s-harithas/UrbanFly

4.4.1 Simulation Setup

We used Airsim [63], a state-of-the-art simulation framework which implements a physics engine, flight
controller, and photorealistic scene for multirotor. Airsim runs inside Unreal Engine [16] Editor. Our
planners are implemented on a computer with 16GB RAM, core i7-10710 CPU. A dedicated simula-
tion server equipped with NVIDIA-1070 graphics card, AMD Ryzen 7 3800x 8-core processor × 16
CPU, and 64GB RAM is used to run the Unreal Engine. The mapping module and CEM planner are
programmed in C++.
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4.4.2 Simulation Environments

Our methods are validated on the following two datasets:

4.4.2.1 SquareStreet (Synthetic Dataset)

Our approach was facilitated by the use of Unreal Engine (UE) Editor [16]. With it, we created a
custom street scene in the shape of a square, as shown in Figure 4.1(c). This scene featured 47 buildings
over an area of 0.16 square kilometers. The environment is rich in features, making it a suitable option
for testing monocular vision-based perception and planning pipelines. Additionally, the environment is
modular and can be easily modified to suit specific needs.

4.4.2.2 Yingrenshi (Real city model)

The UrbanScene3D [41] dataset offers a unique collection of both real and virtual city models that
can be integrated into the Unreal Engine. One of the featured models is the Yingrenshi, as seen in
figure 4.4(b) . This virtual replica comprises 252 buildings within an area of 1 square kilometer. It’s an
replication of actual buildings and streets which serves as a valuable tool for testing our approach in a
realistic setting.

4.4.3 Baseline Comparison and Performance Analysis

We compare the performance of UrbanFly with voxel grid based planners [27, 82]. More than 100
trials were conducted in each simulation environment with various start and goal configurations.

CCO-VOXEL [27] is a robust planning framework agnostic to the underlying uncertainty in the
noisy distance map. FastPlanner [82] is one of the state-of-the-art motion planning algorithms known to
generate optimal and safe trajectories in noiseless environments. However, both [27], and [82] require
dense point clouds to generate voxel maps, whereas the point cloud from a monocular VI-SLAM is
sparse.

Both the UrbanFly optimizers demonstrated superior performance over the competing baselines pri-
marily due to two reasons. Firstly, the VI-SLAM pipeline would not faithfully reconstruct the featureless
regions of the buildings, leading to an incorrect perception of the world. Specifically, the planner will
falsely consider all the unoccupied regions as free and generate a trajectory through the walls. Secondly,
the noisy point clouds would lead to smearing of voxels; this leads to an increase in the clutter level,
and the planner would fail, this situation is depicted in Fig. 4.1 (d). On the other hand, our trajectory
optimizers work with the polygonal representation of the world while accounting for the uncertainty in
its estimation Fig. 4.1(e). Hence it can generate a safe and smooth trajectory.

Table 4.1 compares the performance of our trajectory optimizers with voxel grid-based planners
[27, 82], the latter being a deterministic planner that operates under the assumption of zero perception
noise. For SquareStreet environment, we observed that both our CEM planner was able to achieve more

33



(a) Demonstration of obstacle reconstruc-
tion and trajectory execution of the the
proposed planners in Yingrenshi

(b)The visualization of the trajectories
(top-left) in Yingrenshi

Figure 4.4: Qualitative Results: (a) demonstrate the ability of UrbanFly to reconstruct planar obstacle
boundaries from triangulated point clouds and plan trajectories in real-time. In these figures, CEM
trajectories are shown in Blue. In (b), the top-left tile shows the top view of the scene and the executed
trajectory of 160m. Other tiles show three different viewpoints along the trajectory while avoiding large
buildings.

than 4 times improvement in success-rate over [27, 82]. The improvement in smoothness achieved by
both stands at 39.34% and 42.43%. A similar trend can be observed for the Yingrenshi environment in
Table 4.1. CEM planners outperform the competing baselines by 3.5 times in terms of success rate and
demonstrated an improvement of close to 13% in terms of smoothness cost.

We also evaluated our planners and the baselines regarding how far they enable the quadrotor to
traverse before a failure of VI-SLAM. The results are summarized in the sixth and seventh columns of
Table 4.1. Our trajectory optimizer achieved similar performance and were 8 times better than [27, 82].

The computation time (5th column Table 4.1) of our CEM-based trajectory optimizer is comparable
with the closest baseline [27] that also performs uncertainty-aware planning. Both approaches used a
similar number of distance queries, which were obtained using different methods. While our approach
used analytical SDF (4.2), [27] relied on distance queries from a voxel grid representation of the envi-
ronment. Thus, our approach is expected to scale better if the problem complexity demands an increase
in the sample size of CEM. The SCP-MMD planner is faster than [33] while unsuprisingly the determin-
istic planner [82] has the lowest run-time. The qualitative demonstration of UrbanFly in UrbanScene is
depicted in Fig 4.4 and on SquareStreet in Fig. 4.1(e) .
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Table 4.1: Benchmark Comparison

Environment Method Smoothness Success Compute time Traversed Length

(m2/s5) % time (s) mean(m) std(m)

SquareStreet

Ours (CEM) 8.82 86.666 0.095 52.44 12.37

Ours (SCP-MMD) 18.63 82.51 0.015 51.35 10.23

CCO Voxel [27] 14.54 16.66 0.097 6.44 1.37

FastPlanner [82] 15.32 9.66 0.018 9.44 2.87

Yingrenshi

Ours (CEM) 10.82 83.87 0.103 150.214 16.304

Ours (SCP-MMD) 20.85 80.47 0.030 133.82 21.53

CCO Voxel [27] 12.54 18.42 0.089 46.44 1.37

FastPlanner [82] 13.54 11.36 0.016 35.44 4.67

4.4.4 CEM Convergence Analysis

Here we empirically validate the ability of CEM to minimize the cost function and obtain an optimal
trajectory. The convergence of CEM is shown in Fig. 4.6 where the cost profile of the mean trajectory
has converged after 6 iterations. Furthermore, a monotonic decrease in variance implies that with every
iteration, the optimizer needs to progressively sample closer to the mean trajectory to find low-cost
regions.

Fig. 4.6 depicts the convergence of distribution of constraint violation function (defined in (4.4))
to the Dirac-Delta distribution (the ideal distribution as defined in Remark 3) over the CEM iterations.
These convergence results have been empirically verified over large number of trials and validates the
observations made in Remark 4.

4.4.5 Ablations

Here we demonstrate a key advantage of the polygonal representation; fast distance queries. The polyg-
onal obstacle representation allows us to query an analytical function (4.2)) to perform rapid collision
checking. Fig. 4.5 depicts the results of the querying experiment. Our batch querying formulation pro-
vides a significant improvement in querying speed over the traditional Euclidian Distance Transform
(EDT) (dynamicEDT3D) .

4.5 Chapter Summary

In this chapter through UrbanFly [26], we demonstrated that constructing a polygonal representation
of the world can significantly help to counter the inherent sparsity and uncertainty of the point clouds
generated by the VI-SLAM system. We developed a trajectory optimizer that can leverage our world
model and obtain fast distance queries which was key in deriving an optimal and smooth trajectory in
real-time. Our optimizer showed improvement over several strong baselines in terms of success rate,
trajectory smoothness, arc length, etc. In the next chapter, we will be exploring the relationship between
scene representation and autonomy further. However, we will be shifting our focus to the state estimation
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Figure 4.5: The query times recorded for both EDT and cuboid representation for multiple query points
and multiple planes. In Case 1 we test with 50000 query points, similarly for Case 2 and Case 3 we
record the computation time for 100000 and 150000 query points respectively.

Figure 4.6: Left Figure: The normalized cost decreases and converges as iterations progress. With every
iteration, we observe that the distribution of the collision-constraint violation approaches the Dirac
delta function and therefore the MMD cost (4.7) is minimized. Note that since plotting is based on
approximate kernel density estimation from finite samples, a tiny part of the distribution appears to the
left of 0 as well.

module within the navigation stack and would aim to build a robust Loop Detection and Closure system
for LiDAR SLAM.
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Chapter 5

FinderNet: A Novel Technique for LiDAR based 6DOF Distributed Loop

Detection and Closure

The previous chapters detail the development of motion planning frameworks that are resilient to
the inaccuracies within the perceptual representation. Through FinderNet we now turn our attention to
the state estimation component and develop a robust a Loop detection and closure module for LiDAR
SLAM (Simultaneous Localization And Mapping) pipeline, which is critical to reduce accumulated drift
in the estimation process. As single-agent SLAM systems have matured, the research community is
increasingly focusing on multi-agent scenarios, and collaborative SLAM [62, 37, 38]. Since, transmitting
large point clouds between agents is impractical, judicious use of the limited bandwidth is necessary for
distributed Loop Detection and Closure (LDC) [38, 11, 10]. This paper focuses on robust, and data
efficient distributed LDC. Though, most components of our pipeline applies to generic point clouds, we
assume LiDAR as the essential sensing modality.

LDC techniques are broadly split into two styles: (1) those focusing solely on loop detection (and
not closure) and generating viewpoint-invariant global descriptors by performing feature aggregation of
the local descriptors, and (2) those performing joint LDC (both detection and closure) [8, 61, 9]. These
methods include an invariant branch whose features are used for loop detection and an equivariant
branch whose features are used for loop closure. Typically, both of the above styles rely on massive
data augmentation, and apply randomly sampled rigid transforms to the input point clouds to achieve
viewpoint invariance. We take an original approach and leverage canonical representations exposing
rich spatial structure, and achieve viewpoint invariance. This allows us to train our model without any
data augmentation.

The cornerstone of our efforts is a Roll and Pitch (RP) canonicalizer and a Differentiable Yaw Trans-
former (DYT). The RP Canonicalizer makes use of the dominant ground plane hypothesis (commonly
encountered in autonomous driving and drone applications) [42, 35, 9, 61, 43] to compensate for the
roll and pitch between two point clouds. The roll and pitch canonicalized point clouds are converted
into a Digital Elevation Map (DEM), a visual explanation of the process is given in Fig. 5.1. We further
develop a Differentiable Yaw Transformer (DYT) that operates on the latent feature embeddings of the
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Roll and Pitch Canonicalizer

DEM Generator

Figure 5.1: We observe that raw LiDAR point clouds (first row) lack spatial structure for robust dis-
tributed loop detection and closure (LDC). We perform local roll and pitch canonicalization (second
row), followed by discretization along the z-axis (third row), which leads to output similar to digital
elevation maps (DEMs) and exposes rich scene structure in the input. Our model performs LDC on such
DEMs, leading to high data efficiency, robustness, and generalizability to 6-DOF viewpoint variations.

DEM to achieve yaw invariance, and provide viewpoint invariant loop detection with 6-DOF (SO(3))
relative motion. This is in contrast to existing techniques focusing only on yaw rotation [35, 75, 9, 34].

Contributions: (1) Novel Pipeline: Instead of directly operating on the raw point clouds that inherently
lack structure, we convert the point clouds into a regularly spaced DEM via a roll and pitch canonical-
izer with only the yaw to further deal with. The canonicalized DEM representation provides a structure
that CNN backbones can readily process, bypassing equivariance issues that typically plague point cloud
representations. While Pointnet [55] and its variants [56] handle equivariance, the superiority of the
proposed pipeline over Pointnet inspired architectures [68, 79, 74] is tabulated in the Results Section
over a diverse set of LDC related performance metrics.
(2) Multi Functionality: By enabling LDC on the compressed latent space, we provide for low band-

width data transfer, which is critical in a multi-agent setting. The querying agent is not required to
transmit its entire point cloud, but only its compressed latent embedding. Moreover, the proposed archi-
tecture provides for multiple functionalities such as Low Bandwidth Data Efficiency, 6-DOF invariance
and LDC unlike prior art.
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Method Venue DE VI NDA LD LC

[9] RSS’20 ✗ ✗ ✗ ✓ ✓(Yaw)
[35] IROS’18 ✗ ✗ NA ✓ ✓(Yaw)
[71] RAL’22 ✓ ✓ NA ✗ ✓
[72] ICRA’22 ✓ ✓ ✗ ✓ ✗
[73] RAL’21 ✓ ✓ ✗ ✗ ✗
[8] TRO’22 ✗ ✗ ✗ ✓ ✓
[61] IROS’19 ✗ ✗ ✗ ✓ ✓(Yaw)
[68] CVPR’18 ✗ ✓ ✗ ✓ ✗
[79] CVPR’19 ✗ ✓ ✗ ✓ ✗
[74] CVPR’21 ✗ ✓ ✗ ✓ ✗
[15] ECCV’20 ✗ ✗ ✗ ✓ ✓

Ours ****’23 ✓ ✓ ✓ ✓ ✓

Table 5.1: Comparison with SOTA. Acronyms: DE: Data Efficiency though learnt embeddings, VI: 6-
DOF View Invariance, NDA: No large Data Augmentation requirement, LD: Loop Detection capability,
LC: Loop Closure capability, NA: Not Applicable.

(3) 6-DOF recovery: Unlike previous approaches that show loop closure only as a SE(2) alignment,
the proposed method recovers 6-DOF pose between the two candidate point clouds, even as it precludes
the need for data augmentation, exploiting the inherent viewpoint invariance of the pipeline. The pro-
posed framework goes beyond SOTA on a number of public datasets such as KITTI [20], GPR [78] and
Oxford RobotCar [45] on established performance metrics for LDC. Specifically, the proposed frame-
work is the best performing on 6-DOF pose recovery and it outperforms most prior art on the SE(2)
LDC task. 5.1 gives a conceptual comparison of our method with contemporary techniques.

5.1 Methodology

Our goal is to develop a 6-DOF viewpoint invariant place recognition framework for 3D point clouds
for LDC. The overview of our method is shown in 5.2. We first canonicalize the point cloud, and then
discretize it to get a DEM representation (5.1.1). We use an autoencoder style encoder-decoder network
to learn the compressed latent representation for the DEM (5.1.2). The latent representation is transferred
between the agents for loop detection and closure, which reduces the data bandwidth requirement

To achieve yaw invariance for loop detection in the compressed space, we have designed a Differ-
entiable Yaw Transformer (DYT), it transforms the latent query embedding to rotationally align with
the latent embedding of the database sample (5.1.3).The output of the DYT is used in conjunction with
the agent dataset for loop detection . Once a loop is detected, the decoders decompress the latent DEM
representation and use the decoded DEM from the query and dataset to estimate a 6-DOF relative pose
for the loop closure .
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Figure 5.2: The figure demonstrates the overview of our pipeline; the two point clouds in the extreme
left are the input query and database sample; the DEM Generator (section 5.1.1) generates a discredited
top view of the point cloud; and the autoencoder structure further compresses the DEM (section 5.1.2).
The Differentiable Yaw Transformer (DYT) (section 5.1.3) is used for the yaw alignment, the operations
within the DYT include CPC, Horizontal padding of polar embedding, and Correlation; each of these
are explained in section 5.1.3. The complete set of operations is shown as a single orange hexagon;
the result of these operations is a scalar yaw value, which is fed into the rotation sampler. We design
a network to perform loop detection (section 5.1.4) and closure (section 5.1.5) using these compressed
embeddings without the need for explicit decompression.

5.1.1 DEM Generation

DEMs are digital representations of an input point cloud, capturing the elevation of the terrain or
overlaying objects. DEMs have rich representation power, preserving the feature rich regions like edges
and corners, and at the same time conserve bandwidth by allowing for aggressive compression and
recovery at high quality. Moreover, unlike range images that preserve only yaw [9], DEMs preserve both
yaw and planar translation, making them a useful representation for 6-DOF point cloud registration.

Plane Parameterization: Consider an input point cloud Pc with its corresponding ground plane rc,
and the world ground-plane rw. We aim to align the planes rc and rw by estimating the relative roll and
pitch (RP) between them. We center the input point cloud (Pc) and extract the ground plane rc using
RANSAC. The ground plane is parameterized by (nc, Cc), where nc ∈ R3 is a unit vector perpendicular
to the plane and Cc = {cci | i = {1...n}} ∈ Rn×3 is the set of points cci ∈ R3, s.t. cci lies on rc and
∥cci∥ = 1. The world ground plane rw is parameterized similarly as (nw, Cw), where nw = [0, 0, 1] and
Cw = {cwi | i = {1...n}} ∈ Rn×3 is the set of points cwi ∈ R3, s.t. cwi lies on rw and ∥cwi ∥ = 1. Note
that the world ground plane is not estimated through data, instead is a constructed canonical plane of
reference. The canonicalization for roll (α), and pitch (β) involves two steps. First we obtain a coarse
estimate of (α) and (β) by aligning the normals nc and nw. Post that, we do a finer estimate through
Iterative Closest Point (ICP).
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Figure 5.3: The image to the extreme left shows a sample DEM latent space in Cartesian form. The
image in the center depicts the same embedding in a polar form; the image to the right is the result of
flipping and concatenation operation.

Coarse RP Canonicalization: Given the normals nc = [nc,x, nc,y, nc,z] from RANSAC, and nw =

[0, 0, 1], we estimate the relative roll α and pitch β by solving:

00
1

 =

 cos(α) 0 sin(α)

sin(β) sin(α) cos(β) − cos(α) sin(β)

− cos(β) sin(α) sin(β) cos(α) cos(β)


nc,xnc,y

nc,z

 .
The obtained closed-form solution is given as:

α = arctan

(
−nc,x
nc,z

)
, and

β = arctan

(
nc,y

nc,z cos(α)− nc,x sin(α)

)
.

Fine Grained Canonicalization with ICP: We use the coarse estimates of α and β as described above,
and refine them using ICP (initialized with coarse estimates) as:

R(α, β) = argmin
(α,β)

||Cw −R(α, β)Cc||2

Top-view Discretization: After performing the roll and pitch canonicalization, the top-view of the point
cloud is discretized into uniform 2D grid cells to obtain the DEMDc of point cloud Pc. We define a grid
G of dimension Gw ×Gh, and resolution dg. Each grid cell gi ∈ G is assigned a set of points P gi based
on the resolution dg, and given a height value hgi = max(h(p) | p ∈ P gi ), where h(p) is the height of
the point p, thus converting a point cloud to a DEM. Such a grid representation can be readily assimilated
by Deep Networks ideally suited to exploit such structural information.
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Anchor Embedding Positive Sample Embedding  Anchor Embedding post DYT

Figure 5.4: Visualization of the yaw alignment using DYT. Note that the anchor and the positive sample
are not yaw aligned initially, however, post the DYT operation the two embeddings are aligned. We
show the first channel of the feature volume as a binary image for ease of visualization.

5.1.2 Learning Compressed Latent Representation

We intend to use the DEMs to perform the LDC task, and an autoencoder architecture is used to gen-
erate compressed latent embeddings of a DEM. The Encoder consists of sequentially stacked CNN layers
for feature extraction, and the encoding process acts as a compressor, resulting in a feature volume (la-
tent embedding) requiring significantly less memory to store and transmit, in comparison to the original
DEM (or its corresponding point cloud). We use ϕ to denote the embedding, and ϕ ∈ R4×125×125. Loop
detection module is designed to perform view-point invariant place recognition using ϕ. However, for
loop closure, we decode ϕ back to the DEM before performing pose estimation. Detailed architecture of
our encoder-decoder is given below

The DEM is reconstructed in its original dimension at the receiver, aiding the Loop Closure module.
The AutoEncoder architecture is shown in Table 5.2.

Operator Stride Filter Padding
Output
Shape

Conv2D (1,1) (3,3) (1,1) 500× 500
MaxPool2D (1,1) (2,2) (0,0) 250× 250

Conv2D (1,1) (3,3) (1,1) 250× 250
MaxPool2D (1,1) (2,2) (0,0) 125× 125

Conv2DTrans (2,2) (2,2) - 250× 250
Conv2DTrans (2,2) (2,2) - 500× 500

Table 5.2: First four rows show the encoder, and next two rows the decoder. Conv2DTranspose
refers to the convolution 2D transpose operation within PyTorch[52] that is used for convolution with
upsampling.

ResNet[28] based CNN layers have been used before the Difference Layer, to extract features the
anchor’s (positive or negative) yaw aligned embedding. As explained in Sect. 5.1.4, the output Fdiff of
the Difference Layer is sent to a CNN to get a scalar value indicating the distance between the two DEMs.
The architecture of the CNN is shown in Table 5.3, the input to this part of the model is a feature volume
of size 10× 1024× 1024.
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Operator Stride Filter Padding
Output
Shape

Conv2D (2,2) (5,5) (0,0) 64× 510× 510
Conv2D (2,2) (5,5) (0,0) 32× 253× 253
Conv2D (2,2) (1,1) (0,0) 4× 127× 127
Linear - - - 1× 64516
Linear - - - 1× 100
Linear - - - 1× 10

Table 5.3: Architecture of the CNN used after the Difference Layer.

5.1.3 Differentiable Yaw Transformer (DYT)

Viewpoint invariance is an important property for robust place recognition/loop detection. Previous
methods [8, 61] try to achieve this through data augmentation, where they rotate an input point cloud
through randomly selected rotation angles. However, such methods do not generalize to complex se-
quences or large changes in viewpoint. [8] acknowledges that data augmentation by itself need not
be sufficient for viewpoint invariance. Therefore, we propose a Differentiable Yaw Transformer (DYT)
module that achieves viewpoint invariance without the need for explicit data augmentation. It achieves
this by receiving the latent embedding of anchor and positive (or negative) DEM (denoted as ϕA, ϕp, and
ϕn respectively) as its input and returning the relative yaw denoted by ψ ∈ R at the output. Then, it
rotates the anchor DEM so that the relative yaw between the anchor and positive is zero. The operations
within the DYT are detailed below.

Cartesian to Polar Conversion (CPC): Let G be a group of rotation transformations (in SO(2))
parameterized by ψ s.t. Tψ : Rd → Rd,∀Tψ ∈ SO(2). We define canonical coordinate for G such that
a rotation by Tψ in the Cartesian coordinates appears as a translation by ψ in the canonical coordinates.
The polar coordinate system forms such canonical coordinates for the group of rotation transformations
[66, 17], and can be obtained from Cartesian coordinates x : (x1, x2) as:

ρ(x) =

(
arctan

x2
x1
,
√
x21 + x22

)
. (5.1)

We perform the CPC independently for each channel of latent embedding tensor ϕ, and generate an
output tensor of the same size. The visualization of the CPC process is shown in the first two columns
of Fig. 5.3

Horizontally Padding Polar Embedding: As described above two embeddings related by a yaw ro-
tation in the Cartesian coordinates are related by a translation after conversion to polar coordinates.
However, if we try to estimate translation directly, the estimation process can only correlate between
the overlapping regions. We observe that the horizontal axis of the polar latent embedding lies within
the range [−π, π] and is cyclic. The cyclic property allows us to pad the embedding by copying the em-
bedding, flipping it (the flipped embedding will be within the range [π,−π] ), and then use the flipped
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version to horizontally pad the embedding. The resulting embedding is shown in 5.3 (extreme right).
The operation doubles the size of the latent embedding to 4 × 125 × 250, and allows us to use full
embedding for translation estimation.

Correlation Layer: After padding the polar embedding from the positive (negative) embedding, we
try to locate anchor embedding in it using correlation. We implement the layer as a convolutional
layer with polar latent embedding of the anchor as a kernel, and perform cross-correlation over the
horizontally padded polar feature volume of the positive/negative sample. This results in a 1D output of
size 1 × 1 × 126. The output of the correlation layer divides the 360 degrees of rotation into 126 bins,
each of resolution 2.85 degrees (approximately). We apply softmax over the correlation score output
to convert the score vector to the probability vector for various candidate translations. The predicted
translation is multiplied by 2.85 to convert to predicted rotation angle.

Rotation Sampler: We construct a rotation matrix Rψ ∈ SO(2) from the predicted yaw angle (ψ) as
determined from the previous step. Similar to [31], we use Rψ to differentiably sample from the input
feature volume and produce a warped output feature map, denoted as ϕ̂. The operation is denoted as ⊗
in 5.2. Note that the operation is performed on 4×125×125 dimensional embedding tensor in Cartesian
coordinates. 5.4 depicts the result of the DYTmodule, it may be seen that the anchor and positive sample
do not share the same orientation at the input of DYT. However, post-DYT, they have same orientation.
For simplicity of illustration, we only show the first channel of the 4 × 125 × 125 tensor. The warped
anchor tensor is sent to the next module for loop detection.

5.1.4 Loop Detection

Our pipeline achieves rotation invariance through the RP canonicalizer and the DYT, the difference
layer in the loop detection module achieves translation invariance and quantifies the similarity between
the two yaw aligned DEMs. A fully convolutional network (CNN) is translation-equivariant. Our loop
detection module consists of shared CNN layers to extract features Fa ∈ RH×W×C from the anchor and
Fp/n ∈ RH×W×C features from the positive or negative sample DEM. The difference layer takes the two
feature volumes as input and computes all pairs absolute differences between the pixels. To implement
all pairs absolute difference we first construct a tile tensor Ta ∈ RHW×HW×C by first reshaping Fa to
a HW × 1×C tensor, and then repeating first column in each channel by HW times. Mathematically:
∀i ∈ {0, 1, 2, ..,H − 1} and j ∈ {0, 1, 2, ..,W − 1}.

Ta(iW + j, k, c) = Fa(i, j, c), ∀k ∈ [0, HW − 1].

We compute Tp and Tn similarly, but additionally transpose each channel of the tensor at the end. This
is equivalent to:

Tp/n(k, iW + j, c) = Fp/n(i, j, c), ∀k ∈ [0, HW − 1].
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Ta and Tp/n allow us to compute all pair difference as: Fdiff = |Ta − Tp/n|.
The difference layer results in a feature volume Fdiff that quantifies the shared information between

the two DEMs. Fdiff is passed through proposed CNN architecture, resulting in a single scalar value
indicating the distance between the two DEMs. A low value indicates loop detection. We train the
proposed loop detection module using triplet based contrastive loss:

Ltriplet = max
(
0, d

(
ϕ̂a, ϕp

)
− d

(
ϕ̂a, ϕn

)
+ ξ

)
, (5.2)

where ϕ is the DEM encoding, ϕ̂ is the yaw aligned DEM encoding, d is the distance between the two
encoding computed by the loop detection module, and ξ is the margin for the triplet loss.

It should be noted that during back-propagation, the DEM encoder receives gradient both from the
MSE loss of the autoencoder, as well as from the above triplet loss. Whereas the decoder is trained only
using the MSE loss.

5.1.5 Loop Closure

After completing the loop detection process, we aim to estimate rigid body transform, SE(3), to
align the query and retrieved point cloud. This process is known as loop closure (or point cloud regis-
tration). Let Pq be the query point cloud, with pose Tw

q , centered at Oq. Let Pr be the retrieved point
cloud, centered at origin Or with a pose Tw

r . Refer to the loop closure block in the extreme right of 5.2.
Both Tw

q and Tw
r (denoted in dotted blue) are in the world frame of reference, and are unknown. We aim

to find the relative transformation Tq
r (in solid yellow) that aligns Pq and Pr. We estimate the relative

pose through a two-step process. First we estimate the relative SE(2) transform between Pq and Pr.
Post that, we combine the SE(2) estimate with the initially estimated roll and pitch canonicalization to
obtain the SE(3) pose estimation.

To estimate the relative SE(2) transform we decode the query and retrieved DEMs from their re-
spective encoding. Then, key-points and correspondences between the query and retrieved DEMs is
obtained using [14, 60]. An optimization problem is formulated as shown below to extract the relative
SE(2) pose:

argmin
ψ,tcqcr

∥ (R(ψ)cqcrai + tcqcr)− bi∥2. (5.3)

Here, ai, and bi are the corresponding points on the query and target DEM respectively. The rotation
matrix R(ψ)cqcr ∈ SO(2) is parameterized by the yaw angle ψ and the translation vector is denoted by
tcqcr ∈ R2. The translation vector is scaled to the metric scale using the grid resolution dg (c.f. Top-view
Discretization within 5.1.1). The yaw angle ψ for the optimization is initialized using the yaw estimates
from the DYT module. Let R(αq, βq)

q
cq and R(αr, βr)

r
cr (shown in pink in Loop Closure module of 5.2)

be the rotation matrices that align the query (Pq) and retrieved point cloud (Pr) to their respective roll-
pitch compensated frames Oq and Or. To estimate the SO(3) rotation matrix, we combine Rq

cq,R
cq
cr

and Rq
cr:

Rq
r = Rq

cqR
cq
cr(R

r
cr)

−1.
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We obtain the translation tqr by combining tcqcr and dr − dq: where dr and dq are the distance of the
LiDAR from the estimated ground plane obtained (it is esimated along with the ground plane parameters
through RANSAC).

tqr = [tcqcr(0), t
cq
cr(1), dr − dq]

5.2 Datasets and Implementation Details

We use PyTorch, and train on a single NVIDIA GeForce GTX 1080 GPU, using a batch size of 12
and ADAM [36] as optimizer for 200 epochs for 8 hours. The learning rate is initialized to 4×10−4 and
halved every 50 epochs. A 50m× 50m point cloud is converted to a linearly scaled DEM representation
of size 500× 500 pixels. The triplet margin, k, in triplet is set to 0.75. Unlike [8, 9], we do not perform
any augmentation on the input point clouds.

The model is evaluated on three publicly available datasets: (1) GPR[78]: This dataset consists
a total of 15 sequences. We use sequence 1, 2, 3, 4, 5, 6, 8, 9, 11, 12 for training and report evaluation
results on sequence 10 and 15. (2) KITTI [20]: It consists of 11 sequences, similar to [8] we train on
05, 06, 07, 09 and test on 00 and 08. (3) Oxford RobotCar[45]: The dataset consists of a total of 44
sequences, we use train and test split of the data as recommended by [68]. Similar to [8] we consider
two point clouds to form a loop when the ground truth distance between them is less than 4m. This
rule allows us to sample triplets for training, an anchor and positive pair is formed when the distance
between their poses is less than 4m, anchor and negative pair is formed when distance is between 4m

to 10m. We report results for KITTI [20] and GPR [78] datasets in the next section. Results on Oxford
Robotcar [45] are given in Section 5.3.3.

5.3 Experiments and Results

This section demonstrates the multifunctional abilities of our pipeline. We quantitatively and quali-
tatively demonstrate the superior efficacy of our method to perform 6-DOF LDC in a compressed point
cloud space. The experiments are aimed at testing the algorithmic robustness and include challenging
scenarios such as Loop Detection with a 6-DOF change in viewpoint and Loop Closure without any
initial guess. We measure the bandwidth gained through our DEM encoding procedure. Furthermore, to
measure the efficacy of our pipeline, we integrate it with LIO-SAM [64] and report the performance.

5.3.1 Loop Detection Results

We benchmark against both learning and handcrafted feature based approaches. LCDNet [8], Point-
NetVLAD [68], PCAN [79] and OverlapNet [9] are the SOTA deep learning based methods for loop
detection, however they lack robustness and are unable to capture loops with a large change in view-
point. Moreover, they are trained with significant augmentation which limits generalization. We use
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(a) GPR 15 (b) Kitti 08 (c) Kitti 00 (d) GPR 10

Figure 5.5: The image depicts the recall of our method on various sequences. For each of the four sequences, the point
cloud in the orange box (top left) is the query point cloud, and the one within the green box (top right) is the top retrieved
one. The point clouds in the red box (second row) are the second and third retrieved point clouds (left to right). This figure
demonstrates the ability of our network to learn spatial priors. Note that the top-retrieved results are correct in all cases.

the official code and pre-trained models released by the respective authors. For fairness in comparison
we retrain the model on datasets for which the pretrained model was not available. We also benchmark
against a classical feature based approach, ScanContext [35].

We use Precision-Recall (PR) curves that are proven to be an effective metric to evaluate the loop
detection [8, 9]. We follow protocol 2 suggested by [8] to measure the Average Precision (AP). Here
we briefly describe the procedure: for a given query point cloud A we check all the point clouds in
the database {B}. For a given pair of scans (A,Bi), we determine their distance (note that, lower the
distance, greater the similarity) through the method explained in 5.1.4. If the distance is lesser than
a fixed threshold then its considered to be a loop. We then check the Euclidean distance between the
ground truth poses of the LiDAR scans, if the poses are less than 4m then we consider them as a true
positive, if it happens to be greater than 4m then its a false positive. By varying this fixed threshold we
can get multiple values of precision-recall which we use to plot the curve. This form of evaluation is
proved to be effective in benchmarking algorithms for challenging scenarios such as a large change in
viewpoint [8] .

The results are presented in 5.4 and the corresponding PR curves are depicted in 5.6. We show PR
plots for one sequence from KITTI and and GPR. LCDNet [8] is the SOTA LDC method on the KITTI
Dataset. We observe that on KITTI08, a challenging sequence which involves opposite views, our
performance is better than LCDNet by approximately 10%. On the KITTI00 sequence our performance
is second best to SOTA (lower by approximately 1%). Similarly on both the GPR sequences (10, 15) our
method has the highest AP beating the closest LCDNet by approximately 9% and 1% respectively. Our
method outperforms all the other competing benchmarks by a significant margin on both the datasets.

To demonstrate the ability of the DEM to learn the underlying spatial structure of the point clouds, in
5.5 we show the top 3 recalled point clouds for a given query. In addition to recovering the correct point
cloud, it is important to note that the model has learnt to identify similar spatial structure. For instance,
in the GPR15 sequence there are trees in both the input (query) and the matched/recalled point cloud.
A similar trend can be observed in KITTI08, where the query is a junction on the road and the retrieved

47



Method
KITTI GPR

KITTI-00 KITTI-08 GPR-10 GPR-15
LCDNet [8] 0.89 0.76 0.82 0.88
OverlapNet [9] 0.61 0.22 0.75 0.57
PointNetVLAD [68] 0.40 0.39 0.50 0.54
PCAN [79] 0.46 0.20 0.39 0.20
ScanContext [35] 0.49 0.20 0.66 0.62
SOE-Net [74] 0.52 0.47 0.74 0.73
Ours 0.88 0.84 0.91 0.92

Table 5.4: AP Comparison for loop detection with SOTA.

point clouds also comprise of junctions. This shows that DEM is capturing appropriate representation
that expose spatial structure of the point clouds which can be further encoded by a CNN model.

5.3.2 Loop Closure Evaluation

In this section we compare the proposed point cloud registration method against three categories
of algorithms: (1) Loop Detection and only yaw estmation approaches such as ScanContext [35],
OverlapNet [9] only estimate the yaw and not the complete 6-DOF pose. (2) Loop Detection and
6-DOF Pose Estimation: LCDNet [8] is a SOTA method in the 6-DOF LDC task and we choose to
compare against it. (3) Only 6-DOF relative pose estimation: We compare with the SOTA point cloud
registration technique (they do not perform loop detection), TEASER++ [76]. We also benchmark
against classical method, ICP [80].

The official code open-sourced by the authors is used to benchmark [35, 9, 76, 8]. We use Open3d
[84] implementation of ICP. Our experimental results are shown in 5.5, we evaluate our method based
on Average translation error (ATE) in meters and Average Rotation Error (ARE) in degrees. Our method
has the lowest ATE on the KITTI dataset (both the sequences) and on the GPR10 sequence. It also has
the lowest rotation error on KITTI08, GPR10 and GPR15. On KITTI00 sequence, our method has an
error of 0.910 which is higher than LCDNet. It is important to note that methods such as [80, 76, 8]
work on the entire point clouds and are not suitable for a multi-agent (or distributed) setting, as it would
require transfer of large point clouds to close the loop. Our results can be further improved by the use
of outlier resilient robust ICP formulation.

The 6-DOF Experiment: A portion of literature solely work on loop detection for SE(2) motion
[9, 44, 35, 75], and recent methods such as LCDNet that work on 6-DOF. However, there is no explicit
experiment designed to validate the performance of these algorithms on 6-DOF. Therefore, we design a
novel experiment to validate the performance of the loop detection algorithm for a large 6-DOF change
in viewpoint. The experimental setup is as follows, a query point cloud A is to be matched against a
database set of point clouds {B}. We apply a synthetic roll, pitch and yaw rotations to both A and {B},
and use the augmented query and database point clouds to perform loop detection. Average Precision
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Method
KITTI GPR

KITTI-00 KITTI-08 GPR-10 GPR-15
LCDNet [8] 0.77/1.07 1.62/3.13 1.44/1.14 0.50/4.81
OverlapNet* [9] −/3.6 −/65.29 −/7.85 −/6.25
Teaser++ [76] 2.93/16.13 3.24/28.98 2.68/16.87 2.47/20.34
ScanContext* [35] −/1.89 −/3.20 −/4.37 −/4.26
ICP [80] 2.23/9.12 2.31/161.16 2.32/7.81 2.87/8.36
Ours 0.72/1.98 1.35/2.96 0.95/0.85 0.82/1.14

Table 5.5: Point Cloud Registration Comparison with SOTA. Result format: TE(meters)/RE(degrees). *
are algorithms that only estimate yaw, and they are not directly comparable with our 6-DOF method. -
indicates not applicable.

Figure 5.6: Comparison of various loop detection algorithms on the KITTI and GPR datasets. Our
method performs best on KITTI08 which involves loops with opposite direction, and GPR10 and 15
sequences. Our method is second best to LCDNet [8] on KITTI00 by less than 1%.

is used as the evaluation metric. The test is conducted on six levels of increasing difficulty. In the first
stage a random Roll and Pitch rotation between (−10, 10) is applied, in the second we apply a random
rotation between (−20, 20) and so-on until the sixth where a random rotation between (−60, 60) is
applied. The rotated set of point clouds are fed into each of the algorithms and the resulting Average
Precision is recorded at every level. [8, 74, 79, 68] are chosen for benchmarking as they are expected
to work with 6-DOF motion and KITTI and GPR are used for testing. The results obtained are shown in
5.7. We observe that with the increase in the value of synthetic rotation all the baselines see a monotonic
drop in performance. However, our method has a constant value of AP even for larger values of rotation.
The use of the canonicalization procedure is the primary reason for the superior performance of our
method. This experiment demonstrates the robustness of our pipeline for large change in viewpoints.
It further highlights that pure data-augmentation during training need not result in a good performance
in all scenarios. Note that although randomly sampled rotations are used, we apply the same value of
rotation to all the algorithms. Even with a large rotation, such as 60 degrees, our method performs better
than LCDNet on an average by upto 90%.
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Figure 5.7: The plots demonstrate the results for the 6DOF Experiment. It can be clearly seen that while
other methods’ AP values monotonically decrease, our method is robust to large changes in viewpoint
and has a constant value.

5.3.3 Ablation Study

To evaluate the performance of RP Canonicalizer and DYT, we conducted ablation studies. The
presence of the RP-Canonicalizer provided two critical advantages. Firstly, it allowed our method to
operate on point clouds in 6-DOF motion, as demonstrated in the LDC results on LUF dataset (Tab. 5.4
and Tab. 5.5). Secondly, in the absence of the canonicalizer, we had to rely on methods such as [80, 76]
to estimate the 6-DOF relative pose. However, we observed from Tab. 5.5 our loop closure pipeline
provided improved accuracy over [80, 76]. Furthermore, we independently study the performance of
the RP-Canonicalizer, we record that the Coarse RP Canonicalizer had an error of 3.249/4.1582 (R/P)
degrees, while the fine alignment had an error of 1.2598/1.352 (R/P) degrees.

DYT Resolution Analysis:

The DYT module is designed to achieve yaw invariance. The predicted yaw is a multiple of the
fixed resolution 2.85◦ (refer Sect . 5.1.3). Note that resolution is directly proportional to the spatial
extent of the embedding (width × height). In Table 5.6, we analyse the effect of resolution on memory
requirement, along with the effect on Loop Detection’s performance, on KITTI-08 .

Increase in resolution (decreasing the bin size) leads to quadratic increase in the spatial extent (width
× height) of the feature volume. This makes it impractical to train high resolution models (1◦), to make
the model GPU compatible we further increase the number of layers in ResNet architecture to reduce the
spatial extent (area of the embedding). This lead to lower resolution (increasing bin size, from 1◦ to 5◦),
and a tradeoff between yaw error(degrading) and average precision(improving). Further decreasing the
resolution (increasing the bin size, from 5◦ to 10◦) leads to a training failure where the model does not
converge. Through this analysis we choose the DYT architecture with a resolution of 2.85◦, which can
be trained effectively on a GPU, and leads to an optimal average precision of 0.84 with an acceptable
error of 3.12◦ on KITTI-08 .
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Resolution (bin size) Memory
Requirement (↓)

Yaw
Error (↓)

Average
Precision (↑)

1◦ 1100 1.62◦ 0.68
5◦ 100 6.44◦ 0.78
10◦ 5 - -

2.85◦ 600 3.12◦ 0.84

Table 5.6: Effect of resolution on Memory Requirement (in kB), Yaw Error and Average Precision on
KITTI-08 . For 2.85◦, the spatial extent of latent embedding is 125× 125. -: training fails to converge.

Benchmark on the Oxford Robot Car Dataset : We provide additional results in this section on
Oxford Robot Car [45], KITTI-00 [20] and GPR-15 [78] 1. The results on Oxford Robot Car [45]
dataset is shown in Table 5.7. In Fig. 5.8, we show case the PR curve for KITTI-00 [20], GPR-15 [78]
and Oxford Robot Car [45]. In GPR-15 our method is better than LCDNet by 4% and the KITTI-00
sequence we are the second best to LCDNet by less than 1%. In Fig. 5.12, we show qualitative results
for Loop Closure on GPR-10 [78] and KITTI-08 [20].

Method Oxford Robot Car [45]
PointNetVLAD [68] 0.47
PCAN [79] 0.63
ScanContext [35] 0.50
SOE-Net [74] 0.64
Ours 0.72

Table 5.7: Average Precision(AP) comparison for Loop Detection with SOTA on Oxford Robot Car [45]
dataset.

Figure 5.8: Comparison of the proposed approach with SOTA on Loop Detection on (left to right) GPR-
15 [78], KITTI-00 [20] and Oxford Robot Car [45] .

5.3.4 Integration with Lio-SAM

We integrate the proposed pipeline with a backend LiDAR based SLAM system to test its efficacy.
LIO-SAM [64] is a tightly coupled LiDAR Inertial SLAM with a factor graph based backend optimiza-

1We use the GPR dataset that is given in this link GPR Dataset

51

https://github.com/MetaSLAM/GPR_Competition


Figure 5.9: The figure depicts the RMSE obtained by integrating multiple LDC methods with LIO-
SAM [64]. The RMSE of the total trajectory without LDC (right) is 48.79m, if the Euclidean Distance
based LDC (original full LIO-SAM center image ) an RMSE of 35.69m is observed. However, with the
integration of FinderNet (left) the RMSE reduces to 29.96m.

tion. It is a SOTA method and has been shown to provide robust state estimates. We integrate the
proposed pipeline with LIO-SAM to show that it is able to successfully detect and close loops.

Our experimental procedure is as follows, similar to [9, 35] we utilize the geometry of the factor
graph for the LDC task, for every new state xi+1 added to the factor graph a local area of 15m is
searched and the closest subset of possible matches is recovered. Our pipeline robustly estimates a
viewpoint invariant loop from these initial set of matches. We measure the distance (as explained in
Section 5.1.5) between the query all the point clouds in the subset, if the sample with the closest
distance is lesser than a fixed threshold it is considered as a loop and a new link would be added into
the graph for optimization. We test the integration of LIO-SAM[64] on KITTI-08 [20] sequence and is
depicted in Fig. 5.9. KITTI-08 [20] is a challenging sequence consisting of loops with a large change
in view point such as those with 90◦ and 180◦ (opposite side). Our method is capable of handling such
large changes in viewpoint, a qualitative sample of the DYT response is shown in Fig. 5.11.

To evaluate the efficacy of the integration of FinderNet with LioSAM we benchmark it against the
default Euclidian Distance based LDC within LioSAM. The results are shown in Fig. 5.9, where the use
of FinderNet leads to a 16% decrease in RMSE in comparison to the LIO-SAM’s L2 distance based LDC
[64]. This experiment further proves that our system can operate in real time.

5.3.4.1 Canonicalizer and DYT Performance Analysis

We independently evaluate the performance of the canonicalizer and DYT in this section. The experi-
mental procedure is as follows: (1) 100 pairs of point clouds from the GPR dataset is sampled with poses
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Figure 5.10: Qualitative results for Integration with Lio-SAM [64] experiment, the top left image shows
the car approaching the loop, the image to the top right-shows the accumulated drift in the z-axis (axis
perpendicular to the ground plane). The image in the bottom left shows the resulting detection by
FinderNet, the pose post correction is shown in bottom right.
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Figure 5.11: DYT response visualization of the latent embedding. It can be observed that the DYT
predicts accurate yaw angles even and is able to transform the latent embedding even for large rotation
such as 90◦ or 180◦. Observe that for the 180◦ change in viewpoint the latent space appears to be flipped
post DYT.

less than 4m is sampled. (2) A random yet known synthetic 3-DOF rotation of up-to 60◦ (in roll, pitch
and yaw) magnitude is applied both the point clouds. (3) The canonicalization procedure is performed
and the estimated relative rotation is recorded. (4) The estimated values are compared with the known
rotations and the mean of the absolute error values are obtained.. The coarse RP canonicalization had
an error of 3.249/4.1582 (R/P) degrees while the fine alignment works with an error of 1.2598/1.352
(R/P) degrees respectively. The DYT was able to estimate the yaw with a error of 3.12◦.

5.3.4.2 Memory Analysis

Our method bypasses the computationally expensive decompression procedure for LDC. To measure
the true gain in bandwidth we benchmark our method against other point cloud compression techniques.
In Table 5.8 we report the bandwidth required to transfer 100 point clouds (100 as it is practical number
of point clouds that needs to transferred between agents) which is of 500000 kB in size. The process of
DEM creation itself, has lead to a compression by a factor close to 166 (the DEM requires 3000 (kB) of
space) , and the latent embedding further compresses this by five times, leading to a representation that
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GPR10 Kitti08

Figure 5.12: Qualitative Results for Loop Closure on GPR-10 (left) [78] and KITTI-08 (right)[20]. The
query point cloud is shown in the orange, the retrieved point cloud is shown in blue. Observe that our
method is able to register point clouds even with large displacements of 90◦ between the query and
retrieved point clouds. Note: The color given to the point clouds are only for visual appeal and does not
have a specific meaning.

requires 830 times less bandwidth in comparison to the original point cloud (the embedding is of size
600 (kB)). Our method further leads to closely 1.6 times better compression than [73]. Range Images
are a popular form of point cloud representation [9], a DEM is a sparse representation in comparison
to a Range Image and leads to an improvement of 1.50 times. Methods such as [8] are not meant for
distributed setting, we however compare against their latent space and observe a massive improvement
by a factor of 7000.

Table 5.8: Memory Benchmark Comparison (kB) Acronyms: R Range Image, D DEM, E Latent Em-
bedding

Input Size [73] [8] R D E

500000 1000 4220000 4500 3000 600

5.3.4.3 The LiDAR UrbanFly Dataset

Using the Unreal Editor [16] we create a custom environment consisting of a buildings, trees and
uneven roads to evaluate LDC methods. The environment is scanned by a 64 channel LiDAR mounted
on a quadrotor in 6-DOF motion. We create four such environments as shown in Fig. 5.13, Sequence
(1, 2, 3) are used for training and 4 for testing. The resulting PR curves are shown in Fig. 5.14. This
experiment directly evaluates the performance of our method with 6-DOF viewpoint changes, we obtain
a 10% improvement in average precision over LCDNet [8].
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Sequence 1 Sequence 2 Sequence 3 Sequence 4

Figure 5.13: A glimpse of the Lidar-UrbanFly Dataset (LUF) Environment that we created. Sequence 1 to 3 were used to
train the model and Sequence 4 was the test environment.

Figure 5.14: The PR Curves for the LUF sequence. The Average Precision of the benchmark methods
are as follows, LCDNet[8] 0.69, PointNetVLAD[68] 0.67, PCAN[79] 0.58, SOE-Net[74] 0.50 and Find-
erNet 0.76.

5.4 Chapter Summary

FinderNet proposes a novel method for 6-DOF LDC which works on the latent (compressed) point-
cloud representation. Our method is driven by the effective application of the canonicalization and
DYT which allows us to achieve 6-DOF viewpoint invariance for large rotation angles. Furthermore,
unlike the previous works our method does not require data-augmentation for training. Through our
experiments we demonstrate significant improvement in performance on the real-world datasets.
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Chapter 6

Conclusions

Through this work we explore the interactions between scene representation and robust autonomy.
In CCO-VOXEL [27] we demonstrate that the non-parametric uncertainty in the distance to collision
measurement and gradient field is responsible for the reduction in safety guarantees in deterministic
planners. In response, we propose a planning framework that is robust to the distance and gradient inac-
curacies present in voxel grids. The presence of uncertainty yields an optimization problem with prob-
abilistic constraints known as chance-constrained optimization (CCO), but solving CCO is intractable
in low-compute environments such as a quadrotor. In a novel approach, we reformulated CCO as a
distribution matching problem that operates in a low-dimensional feature space learned through a deep
auto-encoder. Such a surrogate formulation achieves real time performance with safety guarantees. We
further developed a gradient-free trajectory optimization procedure to overcome the noise in the gradient
field. CCO-VOXEL demonstrated a significant threefold improvement in safety metrics compared to
benchmark algorithms. We also performed extensive work on real-world field testing of CCO-VOXEL.

In UrbanFly, we demonstrate that voxel grids are ineffective in representing sparse and noisy point
clouds obtained from triangulation within a monocular VI-SLAM setup. As an alternative, we propose
the Uncertainty Integrated Cuboidal (UIC) representation and show how it can be used to perform safe
trajectory planning.

With FinderNet, our goal is to perform 6-DOF Loop Detection and Closure in a distributed collab-
orative SLAM setting. We found that a DEM representation effectively exposes the underlying structure
and geometry within point clouds. Additionally, we have developed a DYT that can be trained with
minimal supervision and no data augmentation.

Although progress has been made in robust autonomy, there is still a significant need for further
research at the intersection of scene representation and navigation. For example, [27] could be studied
in greater depth to enable uncertainty-aware safe navigation with probabilistic guarantees in dynamic
environments. FinderNet [25] assumes that the ground plane is common between agents, research can
be conducted towards relaxing this assumption by developing methods to directly extract geometric
features from the point clouds without an intermediate DEM.
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