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Abstract

Speech constitutes a fundamental aspect of human communication. Therefore, the ability of com-
puters to synthesize speech is paramount for achieving more natural human-computer interactions and
increased accessibility, particularly for individuals with reading limitations. Recent advancements in
AI and machine learning technologies, alongside generative AI techniques, have significantly improved
speech synthesis quality. Text input serves as a common modality for speech synthesis, and Text-to-
Speech (TTS) systems have achieved notable milestones in terms of intelligibility and naturalness. In
this thesis, we propose a system to synthesize speech directly from lip movements and explore the idea
of a unified speech synthesis model that can synthesize speech from different modalities, like text-only,
video-only or combined text and video inputs. This facilitates applications in dubbing and accessi-
bility initiatives aimed at providing voice to individuals who are unable to vocalize. This innovation
promises streamlined communication in noisy environments as well. We propose a novel system for
lip-to-speech synthesis that achieves state-of-the-art performance by leveraging advancements in self-
supervised learning and sequence-to-sequence networks. This enables the generation of highly intelli-
gible and natural-sounding speech even with limited data.

Existing lip-to-speech systems primarily focus on directly synthesizing speech or mel-spectrograms
from lip movements. This often leads to compromised intelligibility and naturalness due to the entan-
glement of speech content with ambient information and speaker characteristics. We propose a modu-
larized approach that uses representations that disentangle speech content from speaker characteristics,
leading to superior performance. Our work sheds light on the information-rich nature of embedding
spaces compared to tokenized representations. The system maps lip movement representations to dis-
entangled speech representations, which are then fed into a vocoder for speech generation. Recognizing
the potential applications in dubbing and the importance of synthesizing accurate speech, we explore a
multimodal input setting by incorporating text alongside lip movements.

Through extensive experimentation and evaluation across various datasets and metrics, we demon-
strate the superior performance achieved by our proposed method. Our approach demonstrates high
correctness and intelligibility, paving the way for practical deployment in real-world scenarios. Our
work contributes significantly to advancing the field of lip-to-speech synthesis, offering a robust and
versatile solution for generating natural-sounding speech from silent videos with broader implications
for accessibility, human-computer interaction, and communication technology.

vi



Contents

Chapter Page

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Speech synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Speech Representation - Acoustic Modelling . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Video Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Self-Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Sequence Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Objectives and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Lip-to-Speech synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Self-supervised representation for Lip-to-Speechsynthesis . . . . . . . . . . . . . . . . 14
2.3 Speech Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 RobustL2S: Speaker-Specific Lip-to-Speech Synthesis exploiting Self-Supervised Representations 18
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Seq2Seq model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Speech Vocoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.3 Evaluation metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.1 Need for Seq2Seq model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 RobustL2S in Constrained settings . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.3 RobustL2S in Unconstrained settings . . . . . . . . . . . . . . . . . . . . . . 27
3.4.4 Subjective evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 OmniSpeak: Towards a Unified Speech Generation Model . . . . . . . . . . . . . . . . . . . 31
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Both text and video as input . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vii



viii CONTENTS

4.2.2 Text input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.3 Video as input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.4 Unified Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.2 Dataset Preprocessong . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.3 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.2 Comparison on Lip2Wav-Chem dataset . . . . . . . . . . . . . . . . . . . . . 39

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



List of Figures

Figure Page

1.1 Speech synthesis based on lip movements captured by a camera. . . . . . . . . . . . . 2
1.2 Block diagram depicting main components in a TTS system. . . . . . . . . . . . . . . 3
1.3 Pretraining of masked language model. . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Block diagram of Encoder-Decoder architecture employed for machine translation task. 9

3.1 The proposed RobustL2S model utilizes lip encoder and speech encoder to extract SSL
representations from lip sequences and their corresponding speech. A Seq2Seq model
maps the lip representations to speech representations, which are then decoded to syn-
thesize speech. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Masked prediction based SSL pretraining for speech - HuBERT pretraining model ar-
chitecture [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Architecture of proposed seq2seq model . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 MOS scores on Intelligibility, Quality, and Naturalness with their 95 % confidence in-

terval computed from their t-distribution on GRID-4S dataset . . . . . . . . . . . . . . 29
3.5 MOS scores on Intelligibility, Quality and Naturalness with their 95 % confidence in-

terval computed from their t-distribution on Lip2Wav dataset . . . . . . . . . . . . . . 29

4.1 Proposing a unified model for multimodal input - speech synthesis tasks. Instead of
training separate TTS or Lip2Speech or Combined input-based models, train one unified
model to handle all input types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Proposed architecture to merge text and video at input for combined speech synthesis . 33
4.3 Proposed architecture for unified speech synthesis model. Model alternates between

different inputs (1,2,3) during training. . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Spectrograms of ground-truth and synthesised speech for text, video and for combined

speech synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

ix



List of Tables

Table Page

3.1 Performance comparison: Seq2Seq model vs. evaluated variations vs. no Seq2Seq model
employed on chemistry speaker of Lip2Wav dataset. . . . . . . . . . . . . . . . . . . 25

3.2 Performance comparison in constrained-speaker setting on GRID-4S dataset . . . . . . 26
3.3 Performance comparison in constrained-speaker setting on TCD-TIMIT-3S dataset . . 27
3.4 Performance comparison in speaker-dependent setting on Lip2Wav dataset . . . . . . . 28

4.1 WER evaluations on different combinations of datasets and input combinations. . . . . 37
4.2 Comparison of proposed OmniSpeak results to existing single-modality based speech

synthesis models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

x



Chapter 1

Introduction

Speech synthesis is a technology that enables computers and other devices to generate human-like
speech. It has revolutionized the way humans interact with computers and devices. Traditionally, text
serves as the primary input, but the future holds immense potential for incorporating additional modali-
ties. Humans can infer speech content from various modalities such as lip movements, videos, whispers,
hand gestures, and body language. Expanding the scope of speech synthesis to incorporate these modal-
ities opens up a plethora of applications that enhance human-computer interaction experiences, fostering
a more intuitive and natural experience and improve accessibility for speech-disabled individuals. Imag-
ine a system that can synthesize speech by analyzing lip movements in videos, capturing the essence
of a whispered conversation, or even interpreting hand gestures and body language. In this thesis, we
explore how we can use modalities like lip movements, text, or both to synthesise speech. One such
scenario, where a person can look into the camera, which will capture their lip movements and con-
vert them to speech, is depicted in Fig. 1.1. This can be used in a scenario where the person wants to
communicate in a crowded loud place or if the person is someone with speaking disability.

Speech synthesis has already made significant strides in improving accessibility. Tools that convert
text to speech have empowered people with speech disabilities to communicate more effectively. A
famous example is the late physicist Stephen Hawking, who relied on a speech synthesizer to deliver his
groundbreaking ideas despite his condition. Beyond accessibility, speech synthesis plays a crucial role
in various applications. It has applications in the realm of entertainment, dubbing, video conferencing,
surveillance, etc. As the technology continues to evolve and incorporate additional modalities, we
can expect even more transformative applications to emerge, shaping the future of communication and
interaction.

1



Model input

RobustL2S

I hope I’m 
audible!

Speech output

Figure 1.1: Speech synthesis based on lip movements captured by a camera.

1.1 Speech synthesis

Text-to-speech (TTS) synthesis is the process of generating speech from text. It has evolved signifi-
cantly over the years, transitioning from mechanical methods to electrical and mathematical approaches
and finally to neural network methods. Early attempts at TTS relied on mechanical methods, such
as phonographs equipped with bellows and resonators or reeds to mimic the human vocal tract [1].
Later, electrical means were explored. Homer Dudley [2] developed keyboard-operated synthesizers
called Voder. While ingenious for their time, these efforts produced artificial-sounding speech with
limited expressiveness. Methods involving breaking down speech into its constituent components, such
as phonemes, and using rules and algorithms to generate speech based on these components were de-
veloped. Concatenative synthesis gained popularity. While these approaches represented significant
progress, they still struggled to produce natural-sounding speech, often lacking natural intonation and
prosody.
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Normalization, linguistic analysis

Phoneme Analysis
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Linguistic  Features
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Mel, speaker or acoustic feature extractor

Acoustic  Features

Vocoder

Speech

Figure 1.2: Block diagram depicting main components in a TTS system.

With the rise of machine learning, statistical methods emerged as a dominant force. Hidden Markov
Models (HMMs) [3], [4] were employed to model the sequential nature of speech, leading to improve-
ments in naturalness. However, these methods still struggled to capture the complex nuances of human
speech, resulting in a robotic quality. The advent of deep learning, particularly Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs), ushered in a new era for TTS. These pow-
erful architectures excel at capturing complex relationships within data, making them ideal for learning
the intricacies of human speech production. Pioneering work by van den Oord et al.[5] - WaveNet, a
deep convolutional network, demonstrated the potential of neural networks for generating high-fidelity
speech. WaveNet directly models the raw waveform of speech, resulting in unprecedented naturalness
and expressiveness. Since then, various neural network architectures have been explored, each with its
own strengths and weaknesses. A modern TTS system typically comprises three main components as
depicted in Fig. 1.2:

• Linguistic Model: This component analyzes the text, understanding its grammatical structure,
meaning, and intended emphasis. It can leverage techniques like natural language processing
(NLP) to extract relevant information for speech generation.

3



• Acoustic Model: This component translates the linguistic representation into an acoustic repre-
sentation, such as a spectrogram or mel-cepstral coefficients. Such accoustic representations are
discussed in further sections.

• Vocoder: This component converts the acoustic representation back into an actual audio wave-
form. Recent advancements have seen the rise of Generative Adversarial Networks (GANs) [6]
and Diffusion-based vocoders [7]. They demonstrate remarkable performance in synthesizing
clear, human-sounding speech.

The future of speech synthesis extends beyond just text input. Researchers are actively exploring the
possibility of synthesizing speech based on visual cues, like lip movements extracted from videos. For
this, researchers have explored building linguistic models specifically tailored to these modalities. This
entails learning relevant representations of lip movements using neural networks. This would be partic-
ularly valuable for applications like dubbing videos or creating speech interfaces for robots that rely on
visual communication.

1.2 Speech Representation - Acoustic Modelling

Humans synthesize speech through a complex process involving the coordination of various speech
organs, including the lungs, vocal cords, mouth, and tongue. Air from the lungs passes through the vocal
cords, where vibrations create sound. The mouth and tongue shape this sound into specific phonemes,
which are the building blocks of speech. Finally, the brain coordinates these movements and selects
appropriate words and grammar to convey meaning. Speech, in the physical world, is a product of
rapid air pressure fluctuations, resulting in audible sound waves. For computer processing and analysis,
speech requires digital representation. This involves discretizing the continuous signal into a sequence
of amplitude values sampled at a specific frequency (e.g. 8 kHz, 16 kHz). While convenient for storage
and manipulation, this one-dimensional representation presents challenges for efficient processing due
to the data volume and inherent redundancy within the speech signal itself. To address these limita-
tions, researchers have explored various techniques for representing speech signals in a more compact
and informative manner. These methods aim to capture the essential characteristics of speech while
minimizing redundancy and data volume, ultimately facilitating more efficient processing and analysis.
Some of the most prevalent traditional representations include:

• Linear predictive coding (LPC): This technique analyzes the speech signal as a sequence of vocal
tract filters, extracting information about the formants (resonant frequencies) that shape the sound.
LPC is particularly useful for representing voiced sounds, where formants play a key role in
distinguishing different vowels.

• Mel-frequency cepstral coefficients (MFCCs): This method mimics the human auditory system
by focusing on frequencies relevant to human speech perception. MFCCs capture the spectral en-
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velope of the speech signal, which carries information about the vocal tract shape and contributes
significantly to vowel sounds.

• Mel spectrogram: It captures how sound energy distributes across perceived frequencies. It is a
representation of sound that visualizes the frequency content of an audio signal over time, with
frequencies on the y-axis and time on the x-axis. Mel spectrogram is widely used in speech and
audio processing tasks, such as speech recognition and music analysis, as it better approximates
how humans perceive sound. This includes all the information in the audio signal, such as speech
content, speaker voice information, background noise if present, etc.

These traditional representations laid the groundwork for significant advancements in speech pro-
cessing. Their efficiency and interpretability continue to make them valuable tools in various applica-
tions, particularly in resource-constrained scenarios or when dealing with smaller datasets.

Deep learning techniques have revolutionized speech representation by automatically learning infor-
mative features directly from the raw audio data. This has led to the development of a diverse range
of speech representations, each tailored for specific tasks and offering distinct advantages. i-vectors
and d-vectors were among the early attempts to learn speaker embeddings for speaker verification tasks.
These representations, derived from factor analysis techniques like Joint Factor Analysis and Deep Neu-
ral Networks (DNNs), have proven highly effective for speaker verification. Self-supervised learning
techniques have emerged as a powerful approach for learning speech representations without requiring
labelled data. HuBERT [8] is an example of a self-supervised model designed to capture rich content in-
formation from speech signals. By training on large amounts of unlabeled speech data, HuBERT learns
to extract features that are informative for automatic speech recognition (ASR) downstream task while
also disentangling content from other factors like speaker identity or background noise. This ”disentan-
glement” between speaker identity and the actual message spoken allows for superior performance in
tasks like speech recognition and natural language processing when combined with downstream fine-
tuning. Disentanglement refers to the ability of a representation to separate different factors of variation
in the data. Better disentanglement between content and other information in speech audio enhances the
robustness and generalization of speech processing systems. The development of these diverse speech
representations offers several key benefits:

• Improved Performance: More informative representations improve performance in various speech
processing tasks, including speaker recognition, speech synthesis, and automatic speech recogni-
tion (ASR).

• Reduced Computational Cost: Compact representations with lower dimensionality require less
processing power, enabling more efficient algorithms and real-time applications.

• Enhanced Generalizability: Representations that capture the essence of speech content are less
susceptible to variations in speaker characteristics or background noise, leading to more robust
models.
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The exploration of new speech representations continues to be an active area of research. As deep
learning techniques evolve and incorporate new modalities beyond audio, we can expect even more so-
phisticated and versatile representations to emerge, further unlocking the potential of speech processing
for a wide range of applications. Further research is needed to explore advanced techniques for disen-
tanglement and representation learning in speech processing. Challenges include handling variability
across languages and dialects, as well as developing models that are robust to environmental factors and
speaker variations.

1.3 Video Representation

Videos have become a ubiquitous part of our lives. However, their inherent complexity, consisting
of dynamic sequences and rich visual information, poses challenges for computers to process and un-
derstand them efficiently. This is where video representations come to the forefront, acting as a crucial
bridge between the raw video data and the needs of various applications.

At the most fundamental level, a video can be simply represented as a sequence of individual frames,
static images capturing a single moment in time. Videos can be represented as a sequence of images,
which is a 2-dimensional matrix of intensity values. However, this basic approach fails to capture
the essence of the moving world. More sophisticated techniques delve deeper, extracting features like
motion information, object recognition, and even the semantic meaning conveyed within the video.

• Motion Information: Understanding movement is crucial for comprehending video sequences.
This information is valuable for tasks like action recognition and video stabilization.

• Object Recognition: Identifying objects within the video frames is another critical step. This en-
ables applications like video surveillance, where objects of interest can be automatically detected
and tracked, or video editing, where specific objects can be easily selected and manipulated.

• Semantic Understanding: Extracting the higher-level meaning conveyed by the video involves
techniques that go beyond individual frames and objects. Natural language processing (NLP)
combined with deep learning approaches can analyze the video content in conjunction with any
accompanying audio or text (captions, narration) to understand the overall message or story being
told. This paves the way for tasks like video summarization, where key points and events are
automatically extracted, or video question answering, where the system can answer questions
about the video content.

Some of the methods used to learn these video representations include : Optical Flow: Estimates
the apparent motion of pixels between frames, capturing the direction and speed of objects in the scene.
3D Convolutional Neural Networks (3D-CNNs): Process video data as a 3D volume, which considers
each frame’s spatial information (width and height) along with the temporal dimension (sequence of
frames). By learning patterns across these 3 dimensions, 3D-CNNs can effectively capture both spatial
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features (objects, shapes) and temporal information (motion) in videos. Residual Networks (ResNets):
Introduced skip connections, facilitating better gradient flow and enabling training deeper networks for
complex video tasks like action recognition or video segmentation. Self-supervised Learning (SSL):
The model learns video representations by itself from unlabeled videos. Contrastive Learning: This
approach focuses on pulling closer video clips from the same category while pushing apart those from
different categories, allowing the model to learn discriminative representations. These are just a few ex-
amples, and the field of video representation is constantly evolving. By combining these techniques and
exploring new avenues, researchers are continuously improving the ability of computers to understand
the rich information within videos.

To synthesize speech from lip movements, we need to be able to identify the lip region in the video.
This can be done by simple methods like keypoint detection. Then, we need to learn the movements and
how these movements relate to sounds that are produced by mouth. Methods like 3D-CNNs, ResNets,
SSL and transformers are explored for this.

1.4 Self-Supervised Learning

In machine learning, labelled data – meticulously categorized and annotated by human experts –
plays an essential role. However, the process of acquiring such data can be a significant impediment
to progress. The laborious and time-consuming nature of human labelling often creates a bottleneck,
hindering the development and application of machine learning models. This is where self-supervised
learning (SSL) emerges as a game-changer. Unlike supervised learning, which relies solely on labelled
data for training, SSL cleverly leverages the vast amount of unlabeled data. By ingeniously crafting
tasks and extracting implicit labels from the data itself, SSL empowers models to learn meaningful
representations and perform well on downstream tasks that traditionally require labelled data.

Imagine a child learning to identify objects in the world. They don’t need someone explicitly point-
ing and labelling every object they encounter. Instead, they learn by observing the world around them,
making connections, and drawing inferences. SSL operates in a similar fashion. By setting up tasks
like predicting the next word in a sentence, identifying the colour of an object in a distorted image, or
reconstructing a masked portion of a video, the model essentially ”plays” with the data, uncovering hid-
den patterns and relationships within it. Though not explicitly labelled by humans, these self-generated
supervisory signals guide the model’s learning process, enabling it to develop a strong understanding
of the underlying data structure. The benefits of SSL are manifold. Firstly, it tackles the data scarcity
problem, allowing us to utilize the abundance of unlabeled data that often goes untapped. Secondly,
it offers increased learning efficiency, requiring significantly less labelled data compared to traditional
supervised learning. Finally, by fostering the ability to learn from diverse and unconstrained data, SSL
empowers models to develop a more generalizable understanding that can adapt to new situations and
unseen data. SSL holds immense potential for revolutionizing various fields, including computer vision,
natural language processing, and recommendation systems.
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[CLS] how are doing [SEP]

You, they, your ….You has the highest probability
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Input

Figure 1.3: Pretraining of masked language model.

In Natural Language Processing (NLP), SSL leverages unlabeled text data to train models by crafting
pretext tasks that guide the learning process. Here are some common examples of SSL techniques in
NLP:

• Masked Language Modeling (MLM): This technique as depicted in Fig. 1.3 involves randomly
masking words in a sentence and training the model to predict the masked words based on the sur-
rounding context. This helps the model learn the relationships between words and their semantic
meaning.

• Next Sentence Prediction (NSP): Given two sentences, the model is tasked with predicting whether
the second sentence is a logical continuation of the first. This helps the model understand sentence
coherence and relationships between ideas.

• Contrastive Learning: This is a specific SSL technique that focuses on pulling similar data points
closer together in a latent representation space, while pushing dissimilar data points further apart.
This allows the model to identify important features and relationships within the data, even with-
out explicit labels.

SSL has emerged as a powerful tool in NLP, paving the way for advancements in various appli-
cations like machine translation, chatbots, and information retrieval. The success of self-supervised
learning (SSL) in the realm of natural language processing (NLP) has spurred its exploration in other
domains, including speech and vision. One promising approach in speech processing involves adapting
the masked language modelling technique used in NLP. Here, the core concept remains the same: the
model encounters masked portions of the data and attempts to predict the missing elements. However,
in speech applications, the masked data points would be specific frames within the speech signal rather
than words in a sentence. Instead of predicting the raw speech amplitude values of the masked frames,
the model would operate on mel-spectrograms or iteratively learned speech representations. This allows
the model to focus on the underlying structure and relationships within the speech data. As research in

8



SSL continues to flourish, we can expect even more innovative applications to emerge across various
modalities, paving the way for a new era of robust and versatile machine-learning models.

1.5 Sequence Modelling

Sequence modelling is a technique designed to handle sequential data, which could be either at the
input or at the output. Sequence-to-Sequence (Seq2Seq) models take in one sequence of input (words,
letters, video frames) and output another sequence of output (next words, text in different language,
caption). Seq2Seq models have revolutionized the field of machine learning by enabling tasks involv-
ing the conversion of one sequence of data to another. Seq2seq models have become a powerful tool
for various time domain tasks. From machine translation and text summarization to chatbots, speech
recognition and music synthesis, these models have become the backbone of numerous applications
that interact with and understand human language. Their ability to handle sequential data and capture
temporal dependencies makes them valuable for time-domain applications.

I am a human

म" भी इंसान हँू

Encoder

DecoderContext vector

Figure 1.4: Block diagram of Encoder-Decoder architecture employed for machine translation task.

Some of the earlier approaches for seq2seq modelling include Hidden Markov Models (HMMs),
Finite State Machines (FSMs), and rule-based systems.

• Hidden Markov Models (HMMs): HMMs were an early attempt at capturing sequential data.
They model the probability of transitioning between states, allowing for the generation of se-
quences.
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• Statistical Machine Translation (SMT): This rule-based approach relied on translation dictionaries
and linguistic rules to translate sentences.

These approaches often struggled with capturing complex patterns and long-range dependencies
in sequential data. However, with the introduction of recurrent neural networks (RNNs), particularly
with the Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures, Seq2Seq
modelling gained significant traction. These neural network-based approaches revolutionized sequence-
to-sequence tasks by allowing for more effective learning of sequential patterns and handling of variable-
length input and output sequences.

• Recurrent Neural Networks (RNNs): RNNs have internal loops that allow them to process sequen-
tial data and maintain information about previous elements in the sequence. However, traditional
RNNs suffer from the vanishing gradient problem, making learning long-term dependencies in
long sequences difficult. To overcome the limitations of traditional RNNs, several variants were
developed.

• Long Short-Term Memory (LSTM) networks: LSTMs address the vanishing gradient problem by
introducing memory cells that can store information for longer durations. This allows them to
effectively capture long-range dependencies in sequences, making them well-suited for Seq2Seq
tasks.

• Gated Recurrent Units (GRUs): Similar to LSTMs, GRUs are another RNN variant designed to
address the vanishing gradient problem. They utilize a simpler gating mechanism compared to
LSTMs, making them computationally more efficient.

• Encoder-Decoder Architecture: This core architecture, as depicted in Fig. 1.4, became the foun-
dation for modern Seq2Seq models. The encoder takes the input sequence and processes it into a
context vector, capturing the essential information. The decoder then utilizes this context vector
to generate the output sequence one step at a time, relying on an attention mechanism to focus on
relevant parts of the input sequence during the decoding process.

• Attention Mechanisms: Transformer models have significantly improved the ability of models to
focus on specific parts of the input sequence, leading to more accurate and nuanced outputs.

• Conditional Seq2Seq Models: These models incorporate additional information beyond the input
sequence, such as labels or specific tasks, to guide the generation process, enabling applications
like text summarization with specific keywords or sentiment analysis.

• Pre-trained Language Models (PLMs): Large, pre-trained models like BERT [9] and GPT-3 [10]
are being leveraged as encoders in Seq2Seq models, further enhancing their ability to capture
complex semantic relationships and generate human-quality text.
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Seq2Seq models play a great role in shaping the future of human-computer interaction and natural
language processing. As research advances, we can expect even more powerful and versatile Seq2Seq
models to emerge, shaping the future of various applications that rely on understanding and manipulat-
ing sequential data.

1.6 Objectives and contributions

This thesis investigates the potential of multimodal speech synthesis, where different modalities
beyond just text are incorporated as input to the model. The key objective and contributions of the thesis
are as follows:

• Delve into speech synthesis based on lip movements in a video, by leveraging self-supervised
learning representations.

• Can multiple modalities be used as input to one speech synthesis model? How can we bring all
modalities to one common space?

• What could be the potential applications of this?

By addressing these questions, this thesis aims to contribute to the advancement of speech synthe-
sis by exploring the potential of multimodal fusion for speech generation. Developing techniques to
effectively incorporate diverse modalities into the synthesis process. The findings from this research
will provide valuable insights into how multimodal information can be leveraged to generate speech,
opening doors for new applications and improved user experiences in various domains.

Chapter 2 details the related works in the field of speech synthesis, lip reading and SSL in the
speech and video domain, which have been leveraged in the multimodal speech synthesis framework.
This chapter lays the foundation for our research by exploring the existing body of work relevant to
multimodal speech synthesis. Chapter 3 explores a method to utilize powerful SSL representations
for Lip2Speech synthesis task. Chapter 4 delves into how different modalities can be used for speech
synthesis in one common model. Concluding Chapter 5 summarizes the thesis and proposes possible
directions for future research.
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Chapter 2

Related Works

This chapter explores existing research on Lip-to-Speech (Lip2Speech) synthesis and multimodal
speech synthesis. Lip2Speech tackles the challenging task of generating realistic speech by analyzing
silent videos of a person speaking. This technology bridges the gap between visual and auditory in-
formation, offering potential applications like adding speech to silent videos or aiding individuals with
speech difficulties. Early research in Lip2Speech often relied on constrained datasets where a limited
number of speakers uttered specific sentences. They were recorded in controlled environments, with
frontal faces always visible in the video and had limited vocabulary, hampering the model’s ability to
generalize to real-world scenarios. Datasets collected from real-world YouTube videos form the uncon-
strained datasets. These videos capture people speaking in real-world scenarios and have various head
poses and a large vocabulary, with a natural speaking style containing fillers and pauses. This chap-
ter will delve into existing methods for both constrained and unconstrained settings. These methods
are usually end-to-end or supervised ML models. Furthermore, we will explore recent advancements
in representation learning and Self-Supervised Learning (SSL) that have been applied to Lip2Speech
synthesis. These techniques aim to achieve faster and more efficient training on large, unconstrained
datasets, paving the way for more robust and scalable Lip2Speech models. Later, recent advancements
in LLM-based TTS and multimodal speech synthesis frameworks are discussed briefly.

2.1 Lip-to-Speech synthesis

• Constrained Lip-to-Speech synthesis

Constrained lip-to-speech synthesis tackles speech generation from videos with limited vocabu-
lary and minimal head movement [11, 12]. Pioneering works focused on building models to trans-
late silent video directly into speech features. Ephrat et al.[13] introduced a CNN-based approach
to predict Linear Predictive Coding (LPC) features from silent talking videos. This approach
laid the groundwork for Lip2Speech synthesis. They later enhanced their model to a two-tower
CNN-based encoder-decoder architecture [14], encoding raw frames and optical flows separately.
The CNN generates multiple mel-scale spectrograms, which are converted by a post-processing
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network to a longer-range linear-scale spectrogram. Phase reconstruction is done to transform the
long-range spectrogram into a waveform. With the development of autoencoders, which excel at
compressing and decompressing information, researchers explored combining them with lipread-
ing networks to better capture the nuances of audio and visual data. [15] propose a combination
of an autoencoder for extracting bottleneck features from audio spectrograms and a lipreading
network comprising CNN, LSTM, and fully connected layers, for visual feature extraction. On
the other hand, [16] utilizes a stochastic modelling approach employing a variational autoencoder.
A variational autoencoder is a type of autoencoder that injects some randomness for better gen-
eralization and a more probabilistic approach to synthesis. [17] achieves zero-shot lip-to-speech
synthesis using a variational autoencoder to disentangle speaker and content information and a
face identity encoder for unseen speakers. Other methods [18, 19, 20, 21] employ Generative
Adversarial Networks (GANs) to synthesize speech from video frames. GANs are known for
their ability to generate realistic data. [22] train an attention-based encoder-decoder model to
reconstruct speech from silent facial movement sequences without human annotations. [23] per-
forms multi-modal supervision, leveraging text and audio to complement the insufficient word
representations to reconstruct speech with correct contents from the input lip movements. While
these previous works work well on limited datasets, they struggle to handle unconstrained datasets
with significant head movements and a wide vocabulary, limiting their real-world applications. In
contrast, our model primarily focuses on unconstrained lip-to-speech synthesis while also demon-
strating its capabilities on small constrained datasets like GRID-4S and TCD-TIMIT.

• Unconstrained Lip-to-Speech synthesis

Unconstrained lip-to-speech synthesis aims to generate natural speech from real-world videos
featuring extensive vocabulary, diverse speakers, and significant head movements. This section
reviews recent advancements in this field, highlighting key methodologies and their strengths
and limitations in the context of the thesis. Pioneering work Lip2Wav by Prajwal et al. [24]
introduced a model comprising a 3D Convolutional Neural Network (3D-CNN) for video fea-
ture learning and an LSTM-based autoregressive (AR) sequence-to-sequence architecture in-
spired by Tacotron2 [25] for single-speaker lip-to-speech synthesis. Their model generates mel-
spectrograms, a compressed representation of speech, based on the input video frames. They
also released a dataset comprising YouTube lecture videos of five different speakers, the largest
single-speaker unconstrained audio-visual dataset at that point. This paved the way for further ex-
ploration into unconstrained Lip2Speech synthesis. He et al. [26] proposed a non-autoregressive
(NAR) architecture to address the slow inference times associated with autoregressive models like
Lip2Wav. Their model utilizes 3D convolutional blocks, a transformer-based condition module,
and a Glow decoder module [27] for efficient mel-spectrogram refinement. Flow-based generative
models, like the Glow model, use invertible transformations to create complex data distributions
from simpler ones, enabling both efficient training and high-quality sample generation. This ap-
proach prioritizes faster inference speed, a crucial factor for real-world applications. Varshney et
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al. [28] built upon Lip2Wav work by training a transformer model to learn a joint latent distri-
bution for speech generation. This approach aims to capture the shared characteristics between
speech and visual features for improved synthesis. Additionally, the VV-Memory architecture
[29] tackles speaker independence by combining audio and visual information using a key-value
memory structure. This enables video-to-speech reconstruction and speaker-independent speech
retrieval.

Recent Advancements - End-to-End NAR and Self-Supervised Learning: Wang et al. [30] pro-
posed a novel end-to-end NAR transformer for directly synthesizing speech from unconstrained
videos. Their architecture incorporates a visual encoder, an acoustic decoder, and a GAN-based
vocoder for generating audio from mel-spectrograms. This eliminates the intermediate step of
mel-spectrogram generation. LipSound2 [22] investigated a different approach focusing on cross-
modal self-supervised pre-training. Their encoder-decoder architecture utilizes a location-aware
attention mechanism to map face image sequences to mel-scale spectrograms. This leverages
self-supervised learning for feature extraction without explicit audio supervision. [31] utilize a
diffusion model to capture speaker characteristics, a lip-reading model to infer text, and employ
a diffusion vocoder to synthesize audio by combining these pieces of information. In contrast,
our proposed differs by using content-rich SSL representations [32] and learning target speech
representations from lip sequences.

2.2 Self-supervised representation for Lip-to-Speechsynthesis

Traditional approaches to Lip-to-Speech synthesis typically involve encoding lip or facial sequences
into hidden states, which are then decoded to generate Mel-spectrograms. These spectrograms are sub-
sequently transformed into time-domain waves by an independently trained vocoder. However, this
method faces challenges due to the high correlation among Mel frames along both the time and fre-
quency axes, potentially leading to performance degradation in the overall Lip-to-Speech synthesis pro-
cess [33]. Furthermore, these Mel-spectrograms exhibit higher variance than the quantised speech SSL
representations. This increased variance complicates the training process of a Speech Synthesis Trans-
former model. Consequently, despite the recent emergence of SSL representations, their utilization
in lip-to-speech synthesis remains limited. As researchers continue to explore and refine these tech-
niques, addressing these challenges will be crucial for advancing the effectiveness and efficiency of
Lip-to-Speech synthesis systems. Self-supervised learning (SSL) has emerged as a powerful technique
for learning informative representations from unlabeled data. In the context of speech, SSL models
can learn meaningful representations directly from audio waveforms, capturing the underlying structure
of speech without requiring explicit labels. While SSL offers promising advantages, its application in
lip-to-speech synthesis is still in its early stages. This limited adoption can be attributed to the chal-
lenges mentioned above with Mel-spectrograms, which are often used as an intermediate representation
between lip movements and speech.
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VCVTS (Vector Quantized Contrastive Predictive Coding Transformer System) by Wang et al. [34]
offers a novel approach to lip-to-speech synthesis. VCVTS utilizes Vector Quantized Contrastive Predic-
tive Coding (VQCPC) to extract informative features from lip movements. VQCPC can be understood
as a two-part process: Vector Quantization: This step involves converting the raw lip image features
into a sequence of discrete codes. Imagine a large dictionary containing various lip shape patterns.
VQCPC identifies the code in the dictionary that most closely resembles the current lip image, essen-
tially compressing the information into a more manageable form. Contrastive Predictive Coding: Here,
the system attempts to predict the next code in the sequence based on the current one. This prediction
encourages the model to learn the temporal relationships between different lip shapes, which are crucial
for capturing the dynamics of speech. VCVTS incorporates a separate speaker encoder. This encoder
analyzes additional information, likely speaker identity or voice characteristics, to ensure the generated
speech aligns with the target speaker. Additionally, a pitch predictor estimates the fundamental fre-
quency of the speech signal, which is important for controlling the perceived highness or lowness of
the voice. The extracted lip features (VQCPC codes), speaker information, and predicted pitch are then
fed into a decoder network. This decoder aims to infer Mel-spectrograms, which represent the speech
signal in terms of frequency and power. As discussed earlier, Mel-spectrograms have limitations, but
in VCVTS, they serve as an intermediate step for speech generation. VCVTS employs a distinct voice
conversion model. This model likely transforms the Mel-spectrogram and speaker information into a
speaker-specific representation. Finally, a vocoder converts the processed Mel-spectrogram into the final
time-domain waveform, which is the actual audible speech.

Revise [35] explores using self-supervised learning (SSL) for speech enhancement. They tackle the
challenge of making speech clearer and more understandable, regardless of background noise or distor-
tions. Revise uses a pre-trained model called AV-HuBERT. Unlike traditional models that need labelled
speech data, AV-HuBERT learns from vast amounts of unlabeled videos, capturing the connection be-
tween audio and lip movements. This AV-HuBERT model forms the basis for a module called P-AVSR
(combined audio-visual speech recognition). Given silent video input, P-AVSR predicts a sequence of
discrete units, like building blocks of speech, based on the combined audio and visual information. An-
other module, P-TTS (modified text-to-speech synthesis), takes these predicted units and reconstructs
the original speech waveform using a modified HiFi-GAN architecture [32]. Here, P-TTS acts like a
regular text-to-speech system, but it receives the predicted speech units instead of text. Overall, Revise
aims to enhance speech quality by leveraging the power of SSL representations learned from unlabeled
data. P-AVSR can potentially identify and compensate for noise or distortions, while P-TTS generates
a cleaner speech waveform. While AV-HuBERT provides a strong foundation, Revise acknowledges its
limitations. To further refine speech generation, P-TTS is fine-tuned on a speech dataset like LJSpeech
[36], helping it adapt to the natural speech patterns in the data. By combining audio-visual information
with predicted speech units, Revise demonstrates the potential of SSL representations for improving
speech quality from silent videos.
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Our research builds upon the promising application of self-supervised learning (SSL) representa-
tions for lip-to-speech synthesis, as demonstrated in Revise. Both approaches leverage the power of
SSL models trained on vast amounts of unlabeled data to overcome limitations associated with tradi-
tional methods requiring labelled speech data. However, our work introduces key distinctions that aim to
improve upon Revise: Disentangled Feature Extraction: While Revise utilizes a combined audio-visual
SSL model (AV-HuBERT), we employ separate features extracted from disentangled AV-HuBERT and
HuBERT models [8]. This allows us to potentially capture richer information compared to a combined
model. AV-HuBERT, by design, might learn some modality-agnostic representations, while separate
models like HuBERT (focusing on audio) and the audio stream of AV-HuBERT can provide more spe-
cific auditory details. This potentially leads to a more comprehensive understanding of the speech
information present in silent videos. Decoupled Training Procedure: Revise employs a combined train-
ing approach for their P-AVSR and P-TTS modules. We propose a decoupled training procedure for our
lip-to-speech synthesis model. This separation can offer several advantages. First, it allows for inde-
pendent optimization of each module, potentially leading to improved performance. Second, it provides
more flexibility for future modifications or integrations with different modules in the pipeline. Focus
on Speaker-Specificity: While Revise demonstrates the effectiveness of SSL for speech enhancement,
existing works, including Revise, haven’t fully explored its potential for speaker-specific lip-to-speech
generation. Our research specifically addresses this gap. We aim to achieve speaker-specific speech
synthesis directly from silent videos using SSL representations. This focus on speaker-specificity can
lead to more natural and realistic speech generation, as the synthesized speech will resemble the voice
characteristics of the person in the video. By incorporating these advancements, our work seeks to
contribute significantly to the field of lip-to-speech synthesis. We leverage the power of SSL repre-
sentations while addressing the limitations of previous approaches, ultimately aiming to achieve more
natural, speaker-faithful speech generation from silent videos.

2.3 Speech Synthesis

In recent years, self-supervised learning (SSL) has emerged as a game-changer in text-to-speech
(TTS) tasks. This approach allows models to learn informative representations from vast amounts of
unlabeled data, circumventing the limitations of traditional methods that require large quantities of la-
belled speech data. This shift towards SSL offers exciting possibilities for improved speech synthesis
quality and efficiency. Several recent advancements have solidified the potential of SSL for TTS. Pi-
oneering works like SoundStream [37] and Encodec [38] have demonstrated the effectiveness of SSL
representations in generating high-fidelity speech. These methods, alongside established models like
HuBERT and Wav2Vec [39], contribute to a growing trend where researchers leverage the power of
unlabeled data to achieve superior TTS performance.

The recent work on Vall-E [40] showcases another exciting development. Vall-E employs discrete
representations during training, allowing the model to utilize massive datasets effectively. This approach
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is evident in Vall-E’s training on a staggering 60,000 hours of audio data, highlighting the potential of
large-scale unlabeled data for achieving impressive TTS quality.

ParrotTTS [41] further emphasizes the power of HuBERT representations in TTS. This work har-
nesses HuBERT’s capabilities to enhance speech synthesis and conducts comprehensive comparisons
with other SSL techniques, providing valuable insights into the effectiveness of different approaches.
BASE TTS [42] pushes the boundaries of TTS by incorporating a GPT architecture into the training
process. This innovative approach leverages a vast corpus of text and speech data exceeding 100,000
hours. Additionally, BASE TTS introduces a novel speech tokenization method, further expanding the
capabilities of TTS models. By combining these advancements, BASE TTS exemplifies the continuous
evolution of TTS methodologies.

The developments mentioned above showcase the dynamic landscape of TTS research. The in-
creasing adoption of SSL, exploration of large-scale datasets, and integration of novel architectures like
GPT-based approaches all hold immense promise for the future of TTS. As research continues to expand
upon these trends, we can expect even more impressive advancements in speech synthesis, leading to
more natural, human-like speech generation.

While self-supervised learning (SSL) is revolutionizing text-to-speech (TTS), another exciting area
is AI dubbing. This technology focuses on automatically generating dubbed speech that aligns with
the lip movements of a person in a video, often based on a text script. Several promising approaches
have emerged in AI dubbing. VDTTS [43] stands out for its ability to generate high-quality speech
while maintaining temporal coherence with the visual cues in the video. NeuralDubber [44] demon-
strates the potential of deep learning for realistic and expressive dubbing. HPMDubbing [45] takes
a learning-based approach, focusing on generating high-fidelity speech while preserving the speaker’s
emotional characteristics. However, a key limitation exists with many current AI dubbing methods.
These models are often designed for specific input modalities. For example, a system trained on text
scripts might struggle to adapt to other inputs. This lack of flexibility hinders the broad applicability of
these techniques. Recent research is addressing this limitation.

In contrast, our research endeavours to pioneer a unified speech synthesis model capable of accom-
modating various input modalities. This model aims to combine the strengths of SSL representations for
speech and Lip2Speech techniques, allowing it to handle various input modalities, including text alone,
lip movements alone, or a combination of both. By exploring the integration of multiple modalities and
employing mechanisms such as multi-head attention (MHA), we aim to develop a versatile speech syn-
thesis framework. This offers greater flexibility and applicability compared to existing methods, which
are limited to specific modalities.
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Chapter 3

RobustL2S: Speaker-Specific Lip-to-Speech Synthesis exploiting

Self-Supervised Representations

3.1 Introduction

Understanding lip movements offers a distinct advantage in situations where auditory cues are un-
available. It proves particularly valuable for individuals with hearing impairments, and speech disorders
and aids in speech rehabilitation by providing visual feedback [46]. The synthesis of accurate speech
from lip movements can assist in tasks such as movie dubbing [45], language learning, forensic investi-
gations [47], video conferencing in noisy conditions (Fig. 1.1), voice inpainting [48] or giving artificial
voice to people who cannot produce intelligible sound.

The problem of Lip-to-Speech synthesis is inherently ill-posed because a sequence of lip movements
can correspond to multiple possible speech utterances [24]. Additional challenges arise from factors
such as head pose movements, non-verbal facial expressions, variations in capture quality, and ambient
noise, which further complicate the problem. Reliance on contextual information, such as environment,
place, topic, etc., can help alleviate the Lipreading challenges [49, 50]; however, such information may
not always be available.

Most existing approaches constitute an encoder-decoder architecture; the encoder maps the lip se-
quence to intermediate representations, which are then directly decoded into mel-spectrograms. The
major drawback of this approach is that apart from speech content, the decoder is also forced to pre-
dict the time-varying speaker and ambient noise characteristics present in the ground truth Mel. We
hypothesize that this dependence hurts the model’s performance in terms of speech intelligibility, re-
ducing its usability for various downstream applications [51]. Our work addresses these limitations by
taking a modularized approach, exploiting the advances in Self-supervised learning (SSL) in audio and
audio-visual scenarios.
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Figure 3.1: The proposed RobustL2S model utilizes lip encoder and speech encoder to extract SSL

representations from lip sequences and their corresponding speech. A Seq2Seq model maps the lip

representations to speech representations, which are then decoded to synthesize speech.

In contrast to direct mel prediction from lip features, we take a two-staged approach as depicted in the
Fig. 3.1. The first step extracts SSL representations of lip sequences and maps them to corresponding
speech SSL representations using a sequence-to-sequence (Seq2Seq) model. The key idea is to use
speech embeddings that disentangle the content from the speaker and ambient information. The second
stage maps the content-rich speech embeddings to raw speech using a speaker-conditioned vocoder.
The proposed RobustL2S framework simplifies training and brings robustness to variations in head-
pose, ambient noise, and time-varying speaker characteristics, leading to significant gains in speech
intelligibility. To validate the efficacy of our approach, we perform comprehensive experiments on
GRID [11], TCD-TIMIT [12] and Lip2Wav [24] datasets. The quantitative measures and MOS scores
show that the synthesized speech generated by our method accurately represents the intended content
and improves on the intelligibility/naturalness compared to current state-of-the-art methods [30, 34] on
all three datasets.

More formally, our work makes the following contributions: (1) We propose a novel modularized
framework for Lip-to-Speech synthesis exploiting self-supervised embeddings for both lip and speech
sequences (2) A Seq2Seq network for cross-modal knowledge transfer to map lip SSL representations
to speech SSL representations; and (3) Thorough experimental results demonstrating that RobustL2S is
capable of synthesizing high-quality speech, achieving state-of-the-art results in objective and subjective
evaluation without requiring additional data augmentation [30].
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3.2 Method

3.2.1 Preliminaries

Fig. 3.1 illustrates the proposed RobustL2S framework. RobustL2S consists of four modules: two
encoders - an encoder that extracts lip representation from video sequences and a pre-trained HuBERT
model that generates speech features for corresponding speech sequences, a Seq2Seq model that maps
lip representations to speech representations, and a modified HiFi-GAN vocoder that synthesize speech
using the speech representations. We introduce four functions as follows:

• fl : L
T×W×H 7→ Lssl, which maps the input lip sequence to its corresponding SSL representation.

Here, T represents the number of time steps (frames), and H and W correspond to the spatial
dimensions of the frames.

• fs : X 7→ Sssl, which maps the ground-truth raw speech to its corresponding SSL representation.
• fs2s : Lssl 7→ Sssl, which maps the lip representation to its corresponding speech representation.
• fvoc : Sssl 7→ X̂ , which maps the speech representation to the synthesized speech X̂ .

3.2.2 Encoder

We use HuBERT [8] for fs, to extract speech representation of target speech signals. HuBERT rep-
resentation is content rich [32] and agnostic to other variations. Although our framework is compatible
with various off-the-shelf SSL models, we specifically utilize AV-HuBERT [52] for fl, our video en-
coder to extract lip representations. This choice is based on the similarity in training methods between
AV-HuBERT and HuBERT, ensuring content-rich representations for improved intelligibility, which
aligns with our goals.

Figure 3.2: Masked prediction based SSL pretraining for speech - HuBERT pretraining model architec-

ture [8].
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HuBERT pretraining framework is depicted in Fig 3.2. The HuBERT and AV-HuBERT models
are trained using a masked-prediction loss to predict cluster IDs, which are learned using k-means
clustering. The labels for the first iteration are derived by clustering MFCC features derived from
acoustic frames. For subsequent iterations, more complex features derived from an audio or audio-
visual encoder, depending on the specific model being used, are clustered. AV-HuBERT incorporates
a modified ResNet [53, 54] as its frontend, coupled with a transformer encoder. We also finetune the
pretrained AV-HuBERT using an attention-based Seq2Seq cross-entropy loss as in [52].

3.2.3 Seq2Seq model

In recent years, Seq2Seq models have gained significant attention in the field of cross-domain gener-
ation. The core concept of our approach is to align representations from two different domains - visual
and audio, that share a common generating process. By recovering correspondences between these
domains, we facilitate the transfer of knowledge from one domain to the other.

Video SSL
embeddings

Figure 3.3: Architecture of proposed seq2seq model

Our Seq2Seq model 3.3, denoted as fs2s, adopts a non-autoregressive-based encoder-decoder ar-
chitecture to map lip representations to their corresponding speech representations. The encoder and
decoder consist of feed-forward transformer blocks with self-attention [55], along with 1-dimensional

21



convolutions inspired by Fastspeech2 [56]. A transposed convolution layer is used at the encoder to
match the rate of video and audio representations. The encoder takes the lip representation Lssl and
encodes it into a sequence of fixed-dimensional vectors. The decoder generates predictions for all rep-
resentations of Sssl simultaneously. We train three versions of the Seq2Seq model:

• fs2s-units: This encoder-decoder architecture utilizes Cross-Entropy (CE) loss to train the model
on the decoded speech units. The input to the architecture consists of cluster IDs from the video
encoder, and the decoder predicts the corresponding HuBERT cluster IDs for the audio. The
objective can be written as:

LCE = −
N∑
i=1

Sssl units i log(Ŝssl units i), (3.1)

where Sssl units are the ground-truth speech units, Ŝssl units are the decoded speech units, and N are
the number of HuBERT units.

• fs2s-features: Here the model learns mapping from audio-visual feature to corresponding speech
feature vectors. This model utilizes L1 loss, quantifying the difference between the decoded
features and ground-truth speech features. The objective can be written as:

LL1 =
1

T

T∑
i=1

|Sssl features i − Ŝssl features i|, (3.2)

where Sssl features are the ground-truth speech features, Ŝssl features are the decoded speech features,
and T is the time-steps.

• fs2s-features-ctc: This architecture follows the same structure as fs2s-features, but also includes an
additional fully connected linear head to predict CTC tokens after the encoder layer. For given
input lip representation Lssl ∈ RTxD of length T and dimension D, let Encssl be the output of the
encoder. The goal is to minimize the negative log-likelihood by using PCTC(Sssl|Encssl) to train
the model effectively using the CTC approach and is defined as:

LCTC := − logPCTC(Sssl|Encssl). (3.3)

By weighted summing the L1 and CTC loss functions, the objective function can be formulated
as:

LTot = αCTC ∗ LCTC + αL1 ∗ LL1, (3.4)

where αCTC ∈ R and αL1 ∈ R are the hyperparameter that balances the influence between two
loss.
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3.2.4 Speech Vocoder

We use a modified version of HiFiGAN-v2 [6] to synthesize speech. It has a generator G and a
discriminator D. G runs Sssl through transposed convolutions for upsampling to recover the original
sampling rate followed by residual block with dilations to increase the receptive field to synthesize the
signal, X̂ := G(Sssl).

The discriminator in our model has the task of distinguishing the synthesized signal X̂ from the
original signal X . It is evaluated using two sets of discriminator networks. The multi-period discrim-
inators operate on equally spaced samples of the signals, focusing on capturing temporal patterns and
characteristics. On the other hand, the multi-scale discriminators analyze the input signal at different
scales, enabling the model to capture both fine-grained details and global structure. The primary objec-
tive of the model is to minimize the discrepancy, measured by D(X, X̂), between the original signal and
the synthesized signal. This optimization process applies to all the parameters of the speech decoder,
improving its overall performance and fidelity.

3.3 Experiments

3.3.1 Datasets

• Lip2Wav: The Lip2Wav dataset [24] is a large, person-specific, unconstrained dataset, commonly
used for learning Lip-to-Speech synthesis for individual speakers. It consists of real-world lecture
videos featuring 5 different speakers. Each speaker has approximately 20 hours of video data, and
the vocabulary size exceeds 5000 words for each speaker. We do experiments on all five speakers:
Chess Analysis (chess), Chemistry Lectures (chem), Hardware Security (hs), Deep Learning (dl),
and Ethical Hacking (eh).

• GRID-4S: The GRID-4S is a subset of the GRID audio-visual dataset [11] specifically designed
for constrained Lip-to-Speech synthesis. This subset includes two male speakers (s1, s2) and two
female speakers (s4, s29), which are frequently used in the literature [20, 24]. The videos in the
dataset were captured in an artificial environment. The vocabulary used in GRID-4S is limited
to only 51 words. The sentences in the dataset follow a restricted grammar, with each sentence
containing 6 to 10 words.

• TCD-TIMIT-3S: The TCD-TIMIT-3S is a subset of the TCD-TIMIT dataset, which comprises
recordings of 62 speakers captured under studio conditions. Among these speakers, three are
trained lip-speakers. The primary objective of selecting this subset was to enable comparison
with previous studies [20, 24]. Our focus was solely on the audio-visual data generated by these
three lip-speakers. Each lip-speaker delivers 375 distinct sentences that exhibit phonetic diversity.
Additionally, all three lip-speakers speak two sentences.
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3.3.2 Implementation details

• Data preparation: For the GRID-4S and TCD-TIMIT-3S datasets, we adhere to the convention
of randomly selecting 90% data for training, 5% for validation, and 5% for testing, as estab-
lished in previous works [57, 24, 18, 30]. For Lip2Wav, we adopt the official data split [24].
For consistency, in line with previous works, we evaluated RobustL2S on the Lip2Wav dataset
using a speaker-dependent setting [24, 14, 29]. This involved training the network separately with
individual speakers. However, for the GRID-4S and TCD-TIMIT-3S datasets, we evaluated Ro-
bustL2S in a constrained (seen) speaker setting [57, 24, 18]. The video sequences are resampled
to a frame rate of 25 frames per second (fps), while the raw audio is sampled at 16 kHz. We
utilize the SFD [58] face detector to detect 68 key points, allowing us to crop a mouth-centered
region-of-interest measuring 96×96 pixels. In order to solely assess the advantages of using SSL
representation in our proposed setup, we opt not to employ any data augmentation techniques to
enhance the quality of synthesized speech. The Lip2Wav dataset does not provide transcripts, so
we rely on the Whisper small model [59] to extract transcripts. These transcripts are then used to
fine-tune the AV-HuBERT model.

• SSL representation: We utilize the official fairseq repository implementation of the BASE mod-
els AV-HuBERT [52] and HuBERT [8] for our experiments. We fine-tune the AV-HuBERT pre-
trained model with an attention-based STS cross-entropy loss for visual speech recognition [52].
To achieve this, a transformer decoder is added to the pre-trained model, which autoregressively
decodes the AV-HuBERT features to target character probabilities. The fine-tuned AV-HuBERT
model extracts SSL representations for lip sequences, while HuBERT is employed to extract rep-
resentations from speech signals. Both models provide 768-dimensional features. For fs2s-units

model, following the approach in [52, 8], the lip features are clustered into 2000 AV-HuBERT
units, while the speech features are clustered into 100 HuBERT units, using k-means cluster-
ing. For fs2s-features model, the output features from HuBERT and AV-HuBERT models are used
directly.

• Seq2Seq model: Our model comprises a 6-layer transformer encoder and decoder with a hidden
dimension of 512 and 2 attention heads. we set the batch size to 32 and the maximum number of
steps to 20, 000. We employ the Adam optimizer with an initial learning rate of 4.4 x 10−2, along
with an annealing rate of 0.3 and annealing steps at [3000, 4000, 5000]. The HuBERT model
encodes speech into features at a frame rate of 50 Hz, while the SSL unit from AV-HuBERT is
encoded at 25 Hz. To match these rates, we incorporate a lightweight transposed convolution
layer with a kernel size of [4, 3] and a stride length of [2, 1]. We set αCTC and αL1 mentioned in
(3.4) to 0.001 and 1, respectively.
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• Speech Vocoder: We train modified HiFiGAN-v21 to generate audio from speech SSL represen-
tations for all speakers. This model employs encoding of raw audio into a sequence of discrete
tokens from a set of 100 possible HuBERT tokens, with a code hop size of 160 raw audio sam-
ples. We set the batch size to 16, the learning rate to 2x10−4, the number of embeddings to 100,
the embedding dimension to 128, and the model input dimension to 256. We train the model up
to 300k steps. Following the approach in [60], F0 is not used as a feature in our training pro-
cess. The aforementioned vocoder configuration is effective for speech units. However, for our
investigated feature-based models, fs2s-features and fs2s-features-ctc, we apply a pre-trained k-means2

clustering model trained on HuBERT features. During the inference phase, the generated features
undergo k-means clustering to obtain discrete speech units, which are then passed through the
speech vocoder. We train the vocoders for the three datasets separately.

3.3.3 Evaluation metric

During our evaluation, we employ several metrics to assess the quality of the synthesized speech.
These include: Word Error Rate (WER), Short-Time Objective Intelligibility (STOI) [61], and Extended
Short-Time Objective Intelligibility (ESTOI) [62]. Additionally, we conduct subjective evaluations us-
ing Mean Opinion Score (MOS), where human evaluators rate the quality, intelligibility, and naturalness
of the synthesized speech based on their subjective perception.

3.4 Results

3.4.1 Need for Seq2Seq model

Table 3.1: Performance comparison: Seq2Seq model vs. evaluated variations vs. no Seq2Seq model

employed on chemistry speaker of Lip2Wav dataset.

Baseline (Ours) STOI ↑ ESTOI ↑

fl(pre-trained) + fvoc 0.447 0.22

fl(finetuned) + fvoc 0.50 0.27

fl(finetuned) + fs2s-units + fvoc 0.18 0.013

fl(finetuned) + fs2s-features + fvoc 0.583 0.397

fl(finetuned) + fs2s-features-ctc + fvoc 0.557 0.368

1https://github.com/facebookresearch/speech-resynthesis
2https://github.com/facebookresearch/fairseq/tree/main/examples/

textless nlp/gslm/speech2unit
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We tested our hypothesis of using a Seq2Seq model on the Lip2Wav dataset, specifically for a
chemistry speaker, and report our findings in Table 3.1. Fine-tuning the AV-HuBERT model using
transcripts consistently improved objective metrics by approximately 0.05 units on both the metrics
compared to the pre-trained version. Deploying the Seq2Seq model on the finetuned AV-HuBERT fea-
tures (fl(finetuned) + fs2s-features + fvoc) resulted in an increase of approximately 0.08 and 0.12 units
in STOI and ESTOI metrics, respectively, compared to not using the Seq2Seq model (fl(finetuned) +
fvoc). These results highlight the effectiveness of our Seq2Seq approach using SSL representations for
Lip-to-Speech synthesis. The significant performance gap (approximately 0.39 units on both metrics)
between the Seq2Seq model using SSL features and the model using SSL units on both evaluated met-
rics approximates the amount of information lost in speech reconstruction when audio-visual sequences
are represented as SSL units instead of SSL features. From now on, we will refer to fl(finetuned) +
fs2s-features + fvoc as RobustL2S. The inclusion of CTC loss in our fl(finetuned) + fs2s-features-ctc model
resulted in a statistically insignificant decrease of approximately 0.02 units in STOI compared to the
model without CTC loss, fl(finetuned) + fs2s-features. The decrease may be due to the lack of ground-truth
transcripts in the Lip2Wav dataset. However, when evaluating our model using CTC loss on datasets
(GRID-4S and TCD-TIMIT-3S) with ground-truth transcripts, we observed a slight increase of 0.02

units. Nevertheless, our focus is on working with datasets in the wild that generally lack ground-truth
transcripts, so we proceed with experiments excluding the CTC loss.

3.4.2 RobustL2S in Constrained settings

Table 3.2: Performance comparison in constrained-speaker setting on GRID-4S dataset

Method STOI ↑ ESTOI ↑ WER ↓

Vid2speech [13] 0.491 0.335 44.92 %

Lip2AudSpec [15] 0.513 0.352 32.51 %

1D GAN-based [18] 0.564 0.361 26.64 %

Vocoder-based [57] 0.648 0.455 23.33 %

Ephrat et al. [14] 0.659 0.376 27.83 %

Lip2Wav [24] 0.731 0.535 14.08 %

VAE-based [16] 0.724 0.540 -

VCA-GAN [20] 0.724 0.609 12.25 %

kim et al. [29, 63] 0.738 0.579 -

RobustL2S 0.754 0.571 11.21 %
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Table 3.3: Performance comparison in constrained-speaker setting on TCD-TIMIT-3S dataset

Method STOI ↑ ESTOI ↑ WER ↓

Vid2speech [13] 0.451 0.298 75.52 %

Lip2AudSpec [15] 0.450 0.316 61.86 %

1D GAN-based [18] 0.511 0.321 49.13 %

Ephrat et al. [14] 0.487 0.310 53.52 %

Lip2Wav [24] 0.558 0.365 31.26 %

VCA-GAN [20] 0.584 0.401 -

RobustL2S 0.596 0.452 29.03 %

Table 3.2 and 3.3 summarizes the performance of our RobustL2S in the context of Lip-to-Speech syn-
thesis using constrained datasets: GRID-4S and TCD-TIMIT-3S. We compare our results with existing
Lip-to-Speech synthesis works, including state-of-the-art approaches. We report the mean test scores
on all four speakers of the GRID-4S dataset and all three speakers of the TCD-TIMIT-3S dataset, as
documented in previous works. Remarkably, our RobustL2S approach demonstrates significant im-
provements in terms of STOI and WER metrics when compared to other approaches. This improvement
is particularly noticeable on the TCD-TIMIT-3S dataset, which contains a larger number of novel words
that were unseen during training. This observation highlights the ability of our RobustL2S to accurately
pronounce new words and effectively capture semantic information from lip movements, resulting in
the generation of more intelligible speech.

3.4.3 RobustL2S in Unconstrained settings

Table 3.4 provides a synopsis of RobustL2S’s performance on the Lip2Wav dataset. This dataset
includes a significant amount of silences between words, and RobustL2S shows a notable improvement
across all metrics. Despite Lip2Wav’s data asynchrony issues, which may affect the quality of the gen-
erated speech, RobustL2S demonstrates substantial performance gains in objective metrics, highlighting
its overall superiority in producing intelligible speech. However, it is worth noting that RobustL2S per-
forms similarly or slightly worse than [29] on the hs and eh ESTOI metric. This could potentially
be attributed to the poor resolution (480p and 360p) of the original videos, making it challenging to
accurately recognize lip regions.
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Table 3.4: Performance comparison in speaker-dependent setting on Lip2Wav dataset

Speaker Method STOI ↑ ESTOI ↑

Chemistry

Lectures

(chem)

Ephrat et al. [24] 0.165 0.087

GAN-based [64] 0.192 0.132

Lip2Wav [24] 0.416 0.284

Hong et al. [29] 0.566 0.429

RobustL2S 0.583 0.397

Chess

Analysis

(chess)

Ephrat et al. [24] 0.184 0.098

GAN-based [64] 0.195 0.104

Lip2Wav [24] 0.418 0.290

Hong et al. [29] 0.506 0.334

RobustL2S 0.517 0.340

Deep

Learning

(dl)

Ephrat et al. [24] 0.112 0.043

GAN-based [64] 0.144 0.070

Lip2Wav [24] 0.282 0.183

Hong et al. [29] 0.576 0.402

RobustL2S 0.627 0.419

Hardware

Security

(hs)

Ephrat et al. [24] 0.192 0.064

GAN-based [64] 0.251 0.110

Lip2Wav [24] 0.446 0.311

Hong et al. [29] 0.504 0.337

RobustL2S 0.511 0.337

Ethical

Hacking

(eh)

Ephrat et al. [24] 0.143 0.064

GAN-based [64] 0.171 0.089

Lip2Wav [24] 0.369 0.220

Hong et al. [29] 0.463 0.304

RobustL2S 0.493 0.277
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Figure 3.4: MOS scores on Intelligibility, Quality, and Naturalness with their 95 % confidence interval

computed from their t-distribution on GRID-4S dataset
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Figure 3.5: MOS scores on Intelligibility, Quality and Naturalness with their 95 % confidence interval

computed from their t-distribution on Lip2Wav dataset

3.4.4 Subjective evaluation

Fig. 3.4 and Fig. 3.5 shows the MOS scores on intelligibility (MOS(I)), quality (MOS(Q)), and natu-
ralness (MOS(N)) of synthesized speech from evaluated methods on Grid-4S and Lip2Wav datasets. We
requested ten English-proficient subjects to score five randomly selected samples from different meth-
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ods on the Lip2Wav and GRID-4S datasets. It can be observed that our model outperforms the evaluated
methods, exhibiting higher Mean Opinion Score (MOS) values. This demonstrates that the proposed
approach inherits the advantages of disentangled SSL features and the mapping of lip sequences to
content-specific information. As a result, our model not only inherently improves the intelligibility
aspect of synthesized speech but also generates speech that is highly natural and of high quality.

3.5 Conclusions

We propose a novel framework for Lip-to-Speech system, called RobustL2S, which accurately syn-
thesizes spoken content from silent videos. This is accomplished by utilizing a non-autoregressive based
sequence-to-sequence model to establish an inter-modality mapping, allowing us to learn a suitable
decoding space from the lips’ self-supervised (SSL) representations. We further demonstrate the ef-
fectiveness of mapping SSL features rather than SSL units for synthesizing intelligible speech. Both
quantitative and qualitative results showcase state-of-the-art performance in constrained settings (such
as GRID and TCD-TIMIT) and unconstrained settings (like Lip2Wav). In our future work, we aim to
introduce emotive effects in the synthesized speech, considering that HuBERT embeddings are known
to lack prosody information. Additionally, we plan to explore diffusion-based speech vocoders and their
application in a multi-lingual setup.

30



Chapter 4

OmniSpeak: Towards a Unified Speech Generation Model

4.1 Introduction

The human experience with language is multifaceted. We effortlessly integrate textual information
with visual cues, like lip movements, to create clear and nuanced communication. In dubbing, for ex-
ample, actors flawlessly synchronize their speech with the on-screen character’s lip movements based
on the script. This remarkable ability highlights the interconnectedness of speech and visual informa-
tion in our communication. Natural Language Processing (NLP) has mirrored this human capability
with advancements in Text-to-Speech (TTS) and Lip-to-Speech (Lip2Speech) models. However, these
models currently function independently, hindering their potential in applications that demand seamless
text and visual information merging.

TTS

Lip2Speech

OmniSpeak
Speech

Video

Text

Text and video

Figure 4.1: Proposing a unified model for multimodal input - speech synthesis tasks. Instead of training

separate TTS or Lip2Speech or Combined input-based models, train one unified model to handle all

input types.
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The recent advancements in Self-Supervised Learning (SSL) have yielded powerful representa-
tions that are transforming various Natural Language Processing (NLP) tasks. This progress has also
spurred significant development in speech generation, with Text-to-Speech (TTS) and Lip-to-Speech
(Lip2Speech) models achieving impressive results. However, these models typically operate in iso-
lation, requiring separate training and storage resources. The possibility of creating a unified speech
generation model that integrates these modalities into a single, cohesive system capable of bridging the
gap between textual input, visual cues, and spoken output is explored here. This model would be capable
of: Text-to-Speech (TTS): Generating natural-sounding speech from a given text input. Lip-to-Speech
(Lip2Speech): Synthesizing speech based solely on visual information of lip movements. Combined
(Text & Lips)-to-Speech: Combining both text and lip movements to generate synchronized speech.

The proposed combined model as depicted in Fig. 4.1, holds immense potential for various applica-
tions across industries. Applications like automatic voice-over in dubbing can significantly benefit from
a model that synchronizes speech with lip movements, with or without a given script. This model could
automate the generation of realistic-sounding dubbed speech, eliminating the need for laborious post-
production adjustments. Moreover, in educational settings, the model could facilitate language learning
by providing feedback on pronunciation and lip synchronization, enhancing the efficacy of language
acquisition tools. By combining multiple speech generation modalities, this model would eliminate
the need for separate TTS and Lip2Speech systems in various applications. This would improve effi-
ciency by reducing storage and training resources. Recent research suggests the possibility of creating
lightweight TTS models like ParrotTTS [41]. Expanding on such a model to integrate visual cues en-
sures a unified yet lightweight model. The lightweight nature of the proposed model ensures that it
can be deployed across a wide range of devices, democratizing access to advanced speech synthesis
technology. This expands the reach of such technology and opens avenues for innovative applications
in fields such as accessibility, entertainment, and human-computer interaction.

4.2 Method

4.2.1 Both text and video as input

A crucial aspect of creating a unified speech generation model is effectively combining text and video
inputs. This allows the model to leverage the complementary information present in both modalities,
ultimately leading to improved lip synchronization and speech quality. Inspired by the HPMDubbing
[45], we propose using a Multi-Head Attention (MHA) layer to fuse the textual and visual features,
as depicted in Figure 4.2. This layer learns to selectively attend to specific parts of the text (keys and
values) based on the relevant video information (queries). In this way, the model can focus on textual
segments corresponding to the video’s visualised lip movements.
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Figure 4.2: Proposed architecture to merge text and video at input for combined speech synthesis

Prior to feeding the text into the MHA layer, we perform essential preprocessing steps. This includes
cleaning the text to remove unnecessary characters or punctuation. Additionally, for the English lan-
guage, we convert the cleaned text into phonemes, which are the basic units of speech sound. This step
helps the model better understand the pronunciation of the text and map it to the corresponding visual
cues in the video. For the video input, we utilize AV-HuBERT features as used in RobustL2S in the
previous chapter. These features capture the relationship between audio and visual information in the
video, making them ideal for our task. Similar to existing works, we employ a transposed convolution
layer to project these features onto the desired audio duration. This ensures that the generated speech
aligns temporally with the visual cues in the video.

Drawing inspiration from ParrotTTS, we utilize HuBERT cluster IDs instead of raw HuBERT fea-
tures. Since phonemes are involved along with video, this approach provides a more compact and
content-rich representation of speech compared to raw features.

4.2.2 Text input

The text-to-speech framework is similar to ParrotTTS. The text input is cleaned to remove any un-
necessary characters or punctuation. In the case of English text, phonemization is performed. Phonemes
are the basic building blocks of spoken language, representing the individual sounds that make up words.
By converting the text into phonemes, we provide the model with a more granular understanding of the
pronunciation. We leverage the Montreal Forced Aligner (MFA) tool to achieve accurate phoneme ex-
traction. This tool aligns a text transcript with a corresponding audio recording, providing the phonemes
and their individual durations. Post this, based on the number of samples in a HuBERT frame, the du-
ration (in terms of the number of times the phoneme needs to be repeated to achieve the desired audio
duration) corresponding to each phoneme is extracted and saved. Here too, HuBERT cluster IDs are
used as speech representation. Inspired by FastSpeech2 [56], we incorporate a duration prediction mod-
ule within our model.
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4.2.3 Video as input

Similar to the approach taken in RobustL2S, we extract video features using AV-HuBERT. Inspired
by ParrotTTS, and as we are trying to build a unified model, we use HuBERT cluster IDs as speech
representation. This provides a more content-rich representation compared to raw features. This en-
riched representation ultimately leads to a more accurate and natural-sounding output when combined
with the text information. Since we need to combine the modalities at the input, the duration predictor
from the previous section is used here also instead of using transposed-convolution layers as in some of
the previous works, to match the input video dimension to that of the output speech dimension.

By employing the duration predictor and content-rich HuBERT cluster IDs, our model establishes
a stronger link between the visual cues in the video and the generated speech. The duration predictor
ensures that the generated speech aligns temporally with the lip movements, while the HuBERT cluster
IDs provide crucial semantic context, leading to a more natural and cohesive final output.

4.2.4 Unified Model

A transformer encoder-decoder architecture similar to the one employed in ParrotTTS is used for
learning sequence-to-sequence mapping between the input modalities and the output speech modal-
ity mentioned in the above sections. This architecture is well-suited for tasks involving sequence-to-
sequence learning.

Figure 4.3: Proposed architecture for unified speech synthesis model. Model alternates between differ-

ent inputs (1,2,3) during training.

To facilitate effective learning from both text and video modalities, our model employs an alternating
training strategy. A random number predictor is used to dynamically choose which modality (text or
video or combined) serves as the primary input for each training iteration. This approach encourages
the model to learn independently from each modality while also fostering the ability to integrate them
seamlessly.
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When the model encounters video input, either alone or combined with text, the desired duration
for the generated speech is directly derived from the video length. Similar to the approach used in
RobustL2S, we can achieve this by replicating each input feature within the video twice. This ensures the
generated speech temporally aligns with the visual cues in the video. On the other hand, when only text
input is provided, the model relies on the duration information extracted during the text preprocessing
stage, as detailed in the ”Text Input” section. This information is typically obtained using tools like
Montreal Forced Aligner (MFA).

To optimize the training process, we employ a combination of loss functions. For predicting Hu-
BERT cluster IDs, we utilize cross-entropy loss. This loss function measures the dissimilarity between
predicted and actual probability distributions of speech representation. It penalizes incorrect predictions
with higher magnitudes, guiding the model towards more accurate cluster ID prediction. Furthermore,
we employ the mean squared error (MSE) loss function for duration prediction. The loss is employed
on log duration predictions. This choice is appropriate because we aim for the predicted log duration
to closely match the desired log duration. By minimizing the MSE loss, the model learns to accurately
predict the temporal requirements for the generated speech. Therefore the loss function is:

L = α ∗ LCE + β ∗ LMSE (4.1)

LCE = −
N∑
i=1

C∑
c=1

yi,c log(pi,c) (4.2)

LMSE =
1

N

N∑
i=1

(di − d̂i)
2 (4.3)

α and β are scaling factors, di is log-duration, yi represents the true HuBERT unit and pi represents
the predicted unit, and C in this case is 100, it is the distinct HuBERT IDs present in data.

Modified HiFi-GAN based vocoder is trained to convert the discrete speech representations to speech
signal.

In summary, the alternating training strategy, combined with the integration of the duration predic-
tor and appropriate loss functions, allows our unified model to effectively learn from text, video and
combined modalities.

4.3 Experiments

4.3.1 Datasets

English Dataset: To train and evaluate our unified speech generation model for English, we utilize the
Lip2Wav-Chemistry dataset released by neuralDubber. This dataset comprises YouTube lecture video
recordings, providing a rich source of synchronized audio and visual speech information. It serves as
a valuable resource for training a model capable of generating speech that aligns with lip movements.

35



During our initial experiments, we observed that relying solely on the Lip2Wav-Chemistry dataset was
insufficient for training a robust TTS system in English. This limitation could be attributed to two poten-
tial factors: Data Quantity and quality (transcript inaccuracy). The Lip2Wav-Chemistry dataset might
not contain a sufficient volume of data to fully train the model and capture the complexities of natural
speech. There might be inconsistencies between the provided transcripts and the actual audio content.
Perfect alignment is crucial for training the model to map text to accurate speech representations. To
address these limitations, we incorporate an additional dataset, LJSpeech, into the training process.
LJSpeech is a well-established English speech dataset, of a person reading newspaper, known for its
high quality and accurate transcripts. By including LJSpeech, we provide the model with additional
high-quality training data for TTS.

Multilingual Dataset: To explore the multilingual capabilities of our approach, we acquire a Hindi
dataset. Video lectures on Deep Learning from NPTEL channel were downloaded. The videos were
clipped to create 5 second long video clips. Audio was extracted and these audio files were then tran-
scribed using Whisper Hindi ASR, an automatic speech recognition tool.

4.3.2 Dataset Preprocessong

The videos are sampled to 25 frames per second (fps). For the video datasets, we employ a prepro-
cessing step to extract lip regions. We leverage the s3fd face detection algorithm to locate faces within
the video frames. Once the face is detected, we focus on the mouth area and crop a region centred around
the mouth. This cropped region is then used to extract AV-HuBERT features. The extraction process
is based on the implementation provided in the fairseq GitHub repository, ensuring compatibility with
existing frameworks.

Audio is sampled at 16 kHz, and its HuBERT features are extracted using implementation available
in fairseq repository. A pre-trained K-means clustering model is used to cluster the HuBERT features,
to get the HuBERT cluster ids.

For English language, the text is phonemized. For the Hindi language, the characters themselves are
used as the textual input. Due to high error rate in Hindi data transcripts, we did not train a TTS for this
explicitly for the experiments here. The whisper Hindi ASR itself has a WER of 17. Montreal Forced
aligner is used to extract phoneme level durations. This is then mapped to the durations corresponding
to HuBERT representations and saved.

4.3.3 Evaluation metrics

To objectively assess the quality and effectiveness of our unified model, we employ several estab-
lished metrics:

• Word Error Rate (WER): This metric provides a quantitative measure of the intelligibility of
the generated speech. WER calculates the number of errors made when comparing the generated
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word sequence against the ground truth reference transcript. A lower WER indicates better speech
intelligibility, signifying that the generated speech closely matches the intended words.

• Speech Quality Assessment: While WER focuses on intelligibility, we also evaluate the overall
quality and naturalness of the generated speech. We achieve this by utilizing three common speech
quality assessment metrics:

– Short-Time Objective Intelligibility (STOI): This metric specifically measures the intelli-
gibility of speech. It analyzes the similarity between ground truth and synthesized speech
signals, offering insights into how well the generated speech can be understood.

– Extended Short-Time Objective Intelligibility (ESTOI): Building upon STOI, ESTOI incor-
porates additional features to provide a more comprehensive assessment of speech intelligi-
bility. It considers factors like spectral distortion and reverberation, offering a more nuanced
evaluation of quality.

– Perceptual Evaluation of Speech Quality (PESQ): This metric aims to simulate human per-
ception of speech quality. PESQ provides a score that reflects how natural and pleasant
the generated speech sounds to human listeners by comparing the generated speech to a
high-quality reference signal.

By considering both WER and these speech quality metrics, we understand how well our model
generates intelligible and quality speech that aligns with the visual cues in the video.

4.4 Results and Discussion

4.4.1 Analysis

Table 4.1: WER evaluations on different combinations of datasets and input combinations.

Language Training Inference WER

Dataset Lang — Dataset Text-input Video-input (text & video) input

English

LJSpeech (23.9h),

Chem(9.2h)
Eng. — Chem 15.55 54.49 51.77

LJSpeech (13.56h),

Chem(9.2h)
Eng. — Chem 19.17 51.40 42.49

English and LJSpeech (13.56h), Eng. — Chem 19.62 56.83 57.51

Hindi Chem (9.2h), Hindi (18.03h) Hindi 117.57 71.05 72.04
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The presented Table 4.1 provides valuable insights into the performance of our unified speech gen-
eration model, as measured by Word Error Rate (WER). We can analyze these results through the lens
of data usage and modality combination.

English Language Models:

The first two rows explore the impact of data discrepancy between LJSpeech and Lip2Wav-Chemistry
datasets. Training on full LJSpeech data (more text-speech data) leads to better TTS performance com-
pared to using similar durations of text and text-video data. In the first row, where the entire 24 hours of
LJSpeceh data and only 9 hours of Chem dataset are used, the model prioritizes learning TTS due to the
abundance of textual information. This can be interpreted as a form of overfitting to the text modality.
However, the second row presents a more balanced approach, where instead of using the entire LJSpeech
dataset, only 13 hours of LJSpeech dataset along with 9 hours of Chem dataset is used for training. By
incorporating this, a slight decline in TTS performance (increase in WER) is observed. This is likely due
to the model having to learn from a wider variety of inputs, potentially leading to a trade-off between
pure TTS and video-based speech generation. Nevertheless, video-based performance (reduced WER
for video-only input) improves in this scenario. This highlights the model’s ability to leverage visual
cues more effectively when trained with a balanced dataset. Furthermore, the significant reduction in
WER when introducing text alongside video (compared to video-only) underscores the model’s capacity
to leverage textual information to enhance the accuracy of speech generation even when aligned with
visual cues.

Multilingual Performance:

The inclusion of Hindi for combined training introduces a new language element. This can explain the
decline in English results compared to English-only models. The model must adapt to the additional
language, potentially leading to a performance decrease compared to a well-trained English model.
Moreover, as noted earlier, the absence of Hindi data for text-only training likely contributes to the very
poor TTS performance observed for Hindi. This finding suggests that when video is present, the model
prioritizes the visual modality even with the alternating training strategy. If explicit text-based training
is not conducted for a specific language, the model struggles to perform TTS in that language. This
highlights the importance of balanced training data across all modalities for optimal performance in
multilingual settings.

These results demonstrate the importance of balanced training data for optimal performance in mul-
timodal TTS systems. Data balance and modality distribution within the training dataset play a cru-
cial role in influencing the model’s focus on text-based TTS or video-based speech generation. When
video data is present, the model seems to prioritize visual cues over textual information, particularly for
languages not extensively trained for text-to-speech generation. Introducing a new language requires
additional training to achieve optimal performance. These findings underscore the need for carefully
constructed training datasets and potentially exploring language-specific training strategies to maximize
the effectiveness of our unified speech generation model across multiple languages. Future work could
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explore methods to encourage a more balanced attention mechanism across modalities for improved
performance in multilingual and multimodal settings.

Figure 4.4: Spectrograms of ground-truth and synthesised speech for text, video and for combined

speech synthesis

Another point to note is the working of duration predictor module. A spectrogram 4.4 is displayed
showcasing that for the same text, without reference video, there is an alignment mismatch between
the synthesised speech and ground truth speech, whereas in the case of Lip2Speech or Combined to
speech, the ground-truth mel spectrogram and the synthesised speech spectrograms are aligned, as they
are video guided synthesis. The model might struggle to predict precise timing based on text alone, for a
corresponding speaker style. However, when video information is available (Lip2Speech or Combined
mode), the duration prediction becomes more robust. The model can leverage visual cues from the video
to estimate phoneme durations more accurately. In the spectrogram, you’ll see a closer match between
the formants (darker regions) of the synthesized and natural speech, indicating temporally accurate
speech generation. This video-guided approach allows the model to synthesize speech that is temporally
aligned with the lip movements in the video, creating a more natural and believable experience.

4.4.2 Comparison on Lip2Wav-Chem dataset

This section delves into the comparative analysis of our unified speech synthesis model, OmniS-
peak, against existing models. The presented Table 4.2 summarizes the performance across various
approaches, including:

• ParrotTTS: A state-of-the-art text-to-speech model,

• Lip2Speech Models: Lip2Wav, RobustL2S and combined text and video-to-speech synthesis
model, NeuralDubber.
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Table 4.2: Comparison of proposed OmniSpeak results to existing single-modality based speech syn-

thesis models.

Input

Modality
Model STOI↑ ESTOI↑ PESQ↑ WER↓

Text

Ground truth 1 1 4.548 2.42%

ParrotTTS 0.170 0.005 1.135 14.79%

OmniSpeak (Proposed) 0.168 0.010 1.141 19.17%

Video

Lip2Wav 0.282 0.176 1.194 72.70%

RobustL2S 0.583 0.429 1.120 32.03%

OmniSpeak (Proposed) 0.415 0.229 1.194 51.40

Text and

Video Combined

NeuralDubber 0.467 0.308 1.250 18.01%

OmniSpeak (Proposed) 0.423 0.232 1.192 42.49

• Text-to-Speech Performance: The results indicate that OmniSpeak achieves comparable perfor-
mance with existing, dedicated TTS models like ParrotTTS in the text-only domain. This demon-
strates that OmniSpeak effectively learns the core functionalities of text-to-speech conversion,
generating high-quality speech from textual input.

• Video-to-Speech Performance: When evaluating performance on video-only input, OmniSpeak
significantly outperforms 3D-CNN and LSTM-based Lip2Speech models like Lip2Wav. This
superiority is evident across the intelligibility-related metrics, highlighting OmniSpeak’s ability
to accurately map visual cues from videos to corresponding speech. However, RobustL2S, another
Lip2Speech model, exhibits slightly better performance than OmniSpeak. Several factors might
contribute to this observation. Video Feature Quality: RobustL2S potentially leverages superior
video features due to a fine-tuning process not implemented in OmniSpeak. This could lead to
more robust visual information extraction and ultimately impact speech generation accuracy. Loss
Function: OmniSpeak utilizes HuBERT speech features with a Mean Squared Error (MSE) loss
function. Further exploration of loss functions specifically designed for this task could potentially
improve OmniSpeak’s performance.

• Combined Input Performance: While OmniSpeak demonstrates promising results in both text-
only and video-only scenarios, it doesn’t yet surpass the current state-of-the-art (SOTA) models
in the combined text-and-video input-to-speech domain.

The benchmarking results demonstrate that OmniSpeak effectively performs TTS and video-to-
speech models on video-only input. While not yet surpassing the current SOTA in combined input
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scenarios, the model exhibits significant potential. By addressing potential limitations through video
feature fine-tuning and exploring alternative loss functions, OmniSpeak can be further optimized to
become a leading model in the unified speech synthesis domain.

4.5 Conclusion

This work presents the development and evaluation of OmniSpeak, a unified speech generation
model. OmniSpeak tackles the challenge of synthesizing speech from various input modalities, in-
cluding text alone, video alone, or a combination of both. The model achieved comparable performance
to existing text-to-speech models in the text-only domain, and lip-to-speech models in the video-only
domain, demonstrating its proficiency. While OmniSpeak also achieved promising results with com-
bined text and video input, it did not yet surpass the current state-of-the-art models in this area. Further
exploration of video feature fine-tuning techniques and alternative loss functions specifically designed
for multimodal training has the potential to bridge this gap. Additionally, investigating the impact of dif-
ferent languages and the amount of training data for each language could lead to enhanced multilingual
performance through language-specific training strategies.

OmniSpeak represents a significant advancement in the development of unified speech generation
models. Its ability to learn from textual and visual information opens doors to a wide range of ap-
plications. By addressing its limitations through further research and development, OmniSpeak has
the potential to become a cornerstone technology for generating high-quality, natural-sounding speech
across diverse modalities.
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Chapter 5

Conclusions and Future Work

This thesis has explored two innovative approaches to speech synthesis. The first part focused on a
method for synthesizing speech from lip movements in videos. It leveraged the power of Self-Supervised
Learning (SSL) to capture meaningful representations from videos and speech. By employing a trans-
former architecture, the model effectively mapped the visual features to the corresponding speech in-
formation. Furthermore, the utilization of a modified HiFi-GAN vocoder ensured the generated speech
maintained high fidelity and naturalness. This approach achieved state-of-the-art results in terms of
intelligibility and speech quality, demonstrating its effectiveness in converting visual cues into high-
quality audio.

The second part of the thesis ventured into the development of a universal speech synthesis model,
with the potential to handle various input modalities. This model aimed at achieving broader versatility,
functioning as a Text-To-Speech (TTS) system, a Lip2Speech system, and even a combined (text and
lip) to speech system. To achieve this multimodal capability, the model employed Multi-Head Attention
(MHA) as a powerful tool for fusing information from different modalities. Additionally, an alternating
training strategy was implemented, where the model focused on learning from any of the modalities
during each training iteration. While further research is needed to refine the multimodal model, its
initial success demonstrates the exciting possibilities for creating a truly flexible and versatile speech
synthesis system.

5.1 Future Works

The presented approaches hold immense potential for further exploration. The lip-to-speech synthe-
sis method could be enhanced by incorporating speaker identity information, allowing for the generation
of speech with unique characteristics. Additionally, exploring emotional speech synthesis could enable
the model to convey a range of emotions. The future of the universal speech synthesis model lies in
expanding its capabilities. Delving into more sophisticated multimodal training strategies could sig-
nificantly improve the model’s ability to learn from a combination of text and video input. Language
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expansion would allow the model to handle multiple languages effectively. Finally, optimizing the
model for real-time speech synthesis would enable exciting applications.

These advancements in speech synthesis pave the way for a more inclusive and interactive world.
The potential applications extend to the entertainment industry. This thesis has laid a strong foundation
for further exploration, and the future of speech synthesis holds immense promise for the creation of
more accessible and interactive technologies.
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