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Abstract

The ability to accurately identify the direction-of-arrival (DOA) and other signal parameters of an
incoming radio signal is crucial in many applications, such as military and commercial communication
systems. To meet this need, this paper proposes a system for direction finding and pulse parameter
estimation that has been designed and implemented using a novel real-time multi-channel parallel Fast
Fourier Transform (FFT) on a Field Programmable Gate Array (FPGA).

The proposed system employs a unique approach that allows for the implementation of the FFT
operation 5.5 times faster than the traditional IP-core-based implementation, with fewer arithmetic op-
erations and a throughput of 1.35 Giga samples per second (Gsps). The parallel processing capabilities
of the FPGA are utilized to enable the system to process multiple signals simultaneously in real-time.

To achieve high precision in DOA estimation, the system employs the sum-difference monopulse
technique. This technique utilizes the difference in the amplitudes of two signals received by two an-
tennas. By comparing the amplitude difference with the sum of the signals, the angle of arrival of the
incoming radio signal can be estimated with high precision, up to 1 degree .

The proposed system’s hardware implementation has been thoroughly studied and verified experi-
mentally through the development of a real-time prototype of the DOA estimation system. The prototype
is capable of processing multiple signals in real-time and accurately estimating the direction-of-arrival
of the incoming radio signal.

Overall, the proposed system provides an efficient and reliable solution for direction finding and
pulse parameter estimation in various commercial and military applications. The use of a novel real-
time multi-channel parallel FFT on an FPGA enables fast and accurate signal processing, while the
sum-difference monopulse technique ensures high precision in DOA estimation. This makes the sys-
tem suitable for use in various fields, including communication systems, radar systems, and electronic
warfare systems.
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Chapter 1

Introduction

Radar technology has improved substantially over the years, resulting in the development of increas-
ingly sophisticated and capable radar systems. Modern radar systems are complicated electronic devices
that detect and track objects. They can operate in a variety of modes, including pulse, continuous wave,
and frequency modulated, which allows for enhanced range, accuracy, and target discrimination. Fur-
thermore, modern radar systems can operate in a variety of environments, including air, ground, and sea,
and can be deployed on a variety of platforms, such as aircraft, ships, and ground vehicles. In addition
to their traditional role in air traffic control and military applications, modern radar systems are also
used in a wide range of civilian applications, including weather monitoring, maritime surveillance, and
ground-based surveillance.

1.1 Problem Statement

The research was carried out at the behest of the Research Center Imarat (RCI) and will be addressed
to either the user or client in the following paragraphs. The RCI provided the problem statement below
as the framework within which the research will be constrained.

The project’s primary objective is to develop a radar system capable of simultaneously detecting and
tracking up to 6 threat radars. The radar system must operate within the frequency range of 1-18 GHz,
which is a wide frequency range that includes both X-band and Ku-band frequencies commonly used
by military and commercial radar systems. The project’s objectives and requirements are detailed in the
subsequent section. The project will involve the development of sophisticated signal processing algo-
rithms that can accurately estimate the Direction of Arrival (DOA) of incoming radar signals and also
involve estimating pulse parameters critical for identifying the type of radar system and its capabilities,
such as its range and target tracking capabilities. This project requires a comprehensive understanding
of radar systems and signal processing techniques. It will involve developing and testing advanced al-
gorithms to achieve accurate DOA and pulse parameter estimations, critical capabilities for detecting
and tracking multiple threat radars simultaneously.
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1.2 Objectives & Requirements

1.2.1 Objectives:

• Detection of 6 targets simultaneously in the bandwidth 1-18 GHz frequency.

• Classification of Radar types: Pulsed, CW, FMCW.

• Estimation of Pulse Parameters of detected radar(s).

1.2.2 Scope:

• We intend to develop and implement an optimal detection of threat radar targets, direction of
arrival and pulse parameters estimation algorithm for a passive wideband radar system.

• The system is designed using multiple receive antennas for simultaneous detection of 6 emitters
(targets) in the Frequency Range 1-18 GHz.

• First, a MATLAB code for the specified estimator is developed to verify the functionality.

• Later, a Verilog code is developed to port the designed system into custom-made hardware devices
(FPGA Board).

1.2.3 Requirements

A radar system consists of a set of antennas, a receiver, an ADC and a signal processor board. For
our project, we have used TI’s ADC10D1500CIUT, which has a max 1.5 Gsps throughput with 10-bit
resolution. To obtain the frequency resolution ≤ 3 MHz & pulse-width resolution ≤ 500ns, the ADC
is configured to 1350 MHz sampling frequency (i.e., it converts 1350 Mega Samples Per Second), and
a 512-point FFT is performed.To classify a CW signal, we need 1350000 samples. Since the Virtex-7
FPGA board has a maximum operating frequency of 400 MHZ, the 80 bits of data are sent at 168.75
MHz frequency (i,e. 8 samples at 168.75 MHz), which constitutes the sampling frequency (1350 MHz).
The radar signal processing requirements have been summarized in table 1.1.

1.3 Key Contributions

The key contributions in this thesis are as follows:

• We developed an algorithm for detecting and estimating the direction of the arrival of radars,
verified the functionality using MATLAB software and implemented it on hardware.

2



Table 1.1: Requirements for a radar application

Parameter Requirement

FFT size 512-point FFT

Input Data Rate 80 bits/cycle

Input Clock Rate 168 MHz

Min no. of samples required 1350000 samples

Frequency Resolution fr<3 MHz

Pulse width Resolution <500 ns

FPGA Technology Virtex 7 FPGA

• Designed and Implemented a real-time parallel FFT to achieve high throughput and avoid data
loss.

• Test the designed system with MATLAB-generated static and real-time data generated using a
signal generator and horn antennas.

1.4 Thesis Organisation

Chapter 2 gives a briefing on different types of radar systems present, Direction of Arrival (DOA)
techniques, and other information required to design a direction-finding system. Chapter 3 gives an
overview of the architecture of the radar system and explains the functionality of various blocks present
in the system. Chapter 4 focuses on the importance of the FFT operation in the radar system, various
previously implemented architectures, problems faced during the real-time implementation of the sys-
tem, and how we overcame the problems using our proposed 2-dimensional parallel FFT architecture.
Chapter 5 explains the experimental setup we used to test the designed system. The various methods of
testing we used to verify the functionality of the system are discussed. Chapter 6 discusses the results
obtained from the above testing. Lastly, chapter 7 concludes the thesis and suggests a possible direction
for future research.

3



Chapter 2

Literature Survey

2.1 Electronic Warfare

Electronic Warfare (EW) uses electromagnetic (EM) energy to gain a military advantage over an
adversary. One of the critical components of EW is radar systems, which are used both for detection
and as a source of EM energy to disrupt or deceive enemy systems. Electronic warfare (EW) can be
classified into three distinct groups: electronic attack (EA), electronic protection (EP), and EW support
measure (ESM), as shown in the Fig. 2.1. [2]

2.1.1 Electronic Attack (EA)

The electronic attack involves using electromagnetic energy, directed energy, or anti-radiation weapons
to disable or destroy enemy facilities or equipment, intending to weaken their combat capabilities. Elec-
tronic attack comprises measures to disrupt or hinder an adversary from effectively employing the elec-
tromagnetic spectrum, such as jamming and electromagnetic deception.

2.1.2 Electronic Protection (EP)

Electronic Protection (EP) involves strategies and techniques to safeguard friendly electronic systems
and personnel against an adversary’s electronic attack or exploitation. EP measures include the use of
encryption or frequency hopping to protect electronic signals from being intercepted or disrupted.

2.1.3 Electronic Support Measure (ESM)

Electronic support measures (ESM) involve utilizing electronic signals to detect, intercept, and iden-
tify an adversary’s signals. A passive ESM attempts to provide information about an enemy’s electronic
systems, such as their geolocation, frequencies, and modulation, to enable the user to better understand
their operations and objectives. All the information is stored in the form of pulse descriptive words
(PDWs) and sent to EA systems for combat assistance or to provide situational awareness. ESM can
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also be used to identify and track an enemy force’s electronic emissions, such as radar or communica-
tions signals, and to warn of potential threats.

Figure 2.1: Classification of Electronic Warfare

Radar systems are particularly useful in EW due to their ability to detect and track targets at long
ranges, even in adverse weather conditions. In addition, modern radar systems can use advanced signal
processing techniques to improve their ability to detect and track targets in cluttered environments,
making them an effective tool for offensive and defensive EW operations. Our current work mainly
focuses on developing a radar system for ESM according to the user requirements as given in table 1.1.

2.2 Types of Radar Systems

There are several types of radar, each with unique capabilities and applications. Any radar can
broadly be classified into two categories: continuous wave radar and pulsed radar.

2.2.1 Continous Wave (CW) Radars

A continuous wave radar system transmits an electromagnetic wave with a fixed frequency continu-
ously through its antenna. The radar receiver continuously receives the reflected signal, which requires
at least two antennas - one for transmission and one for reception. The antennas must be properly
isolated to prevent energy from leaking into the receiving antenna, which can result in the transmitted
signal interfering with the received signal. Since perfect isolation is impossible, CW radars typically
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have lower transmit power compared to pulsed radars. This limits their range and makes them more
suitable for short-range applications.

2.2.1.1 Frequency modulated continous radar (FMCW)

The primary limitation of continuous wave (CW) radar is that it cannot measure the radial range of
a target due to the absence of time referencing in the signal. However, the use of frequency modulated
continuous wave (FMCW) radar allows for the measurement of the radial range of stationary objects
by periodically adjusting the frequency of the transmitted signal to create a time reference in the signal.
FMCW radar uses the offset in frequency of the received signal, similar to a pulsed radar, to determine
the delay offset. While it is possible to transmit signals with complex frequency patterns, basic ramp
and triangular modulation are typically used in FMCW radar.

2.2.2 Pulsed Radars

In a pulsed radar system, electromagnetic waves are transmitted in pulses with periods of time in be-
tween to listen for echoes of the transmitted pulses. The range and directional information of a detected
target is provided by simple pulsed radars. The directional information of the target is determined using
the radiation direction of the rotating antenna when the echo is received. The transmit time of the pulse
is referred to as the pulse width (τ ) or pulse duration (PD). The time between the leading edge of one
pulse to the leading edge of the next is the pulse repetition interval (PRI). The pulse repetition frequency
(PRF) is the inverse of the PRI and indicates the number of times per second that a radar completes the
transmit or receive cycle. The PRI of a radar plays a significant role in its performance.

Figure 2.2: Classification of Electronic Warfare

Pulsed radar systems operate with different pulse repetition frequency (PRF) regimes: low, medium,
and high. Low PRF radars receive echoes from all ranges of interest before transmitting the next pulse,
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making range measurements unambiguous and suitable for use as search radars. High PRF radars
receive echoes with Doppler shifts less than the PRF, allowing for unambiguous velocity measurements.
Medium PRF radars receive target echoes after several PRIs elapse and have Doppler shifts several
times greater than the PRF, resulting in ambiguous range and velocity measurements. Low PRF radars
are typically used as moving target indicator radars, while high and medium PRF radars are usually
pulsed Doppler radars.

2.3 Direction of Arrival (DOA)

The direction of arrival (DOA) refers to the direction from which an electromagnetic wave arrives at
a receiving antenna. In the context of radar systems, DOA estimation is the process of determining the
direction of a target relative to the radar antenna.

There are several methods for DOA estimation, including time-of-arrival (TOA) estimation, ampli-
tude comparison monopulse, phase comparison monopulse, and Array-based estimation.

2.3.1 TOA Based Estimation

TOA estimation involves measuring the time difference of arrival between signals received by mul-
tiple antennas to determine the angle of arrival.

2.3.2 Amplitude comparision & Phase comparision Monopulse

Amplitude comparison monopulse compares the amplitude of signals received by two antennas to
determine the direction of the target, whereas,Phase comparison monopulse compares the phase of
signals received by two antennas to determine the direction of the target. Detailed implementation of
the amplitude comparison monopulse algorithm is further discussed in chapter 3

2.3.3 Array Based DOA Estimation Techniques

There are four types of array-based DoA estimation techniques: conventional techniques, subspace-
based techniques, maximum likelihood techniques, and integrated techniques.

2.3.3.1 Conventional Techniques

Conventional techniques are based on the principles of null steering & beamforming, and obtain-
ing high resolution, typically requires large number of antenna elements. Conventional methods for
estimating DoA involve electronically steering beams in every direction possible and search for output
power peaks[37] . The delay-and-sum approach and Capon’s minimum variance method are the most
widely used conventional techniques.
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2.3.3.2 Subspace Techniques

Although many classic beamforming-based techniques, such as Capon’s minimum variance method,
are widely used, they have some fundamental resolution limitations. Subspace techniques are high-
resolution sub-optimal approaches that take advantage of the eigenstructure of the input data matrix.
Schmidt [38] and Bienvenu & Kopp[32] were the first to take advantage of a more precise data model
structure for a sensor array of any shape. In addition to Schmidt’s Multiple Signal Classification (MU-
SIC) algorithm[5, 40], Roy et al.’s Estimation of Signal Parameters via Rotational Invariance Technique
(ESPRIT) algorithm [34, 33] also made a significant contribution to the subspace-based techniques.

2.3.3.3 Maximum Likelihood Techniques

Maximum likelihood Techniques are computationally intensive techniques that work best in environ-
ments with a low signal-to-noise ratio. The computational complexity of ML approaches makes them
less popular than suboptimal subspace techniques. However, in terms of performance, ML techniques
outperform subspace-based techniques, particularly when the signal-to-noise ratio is low or the number
of samples is limited.[46]

2.3.3.4 Integrated Techniques

The integrated approach separates various signals and estimates their spatial fingerprints, from which
their arrival directions can be identified using subspace techniques.

Table 2.1: MATLAB Simulation-Based performance comparision of various DoA Algorithms

Algorithm Time Taken No. Of Computations

Beam Scan 0.00785 Sec 9×e6

Capon’s MVDR 0.01422 Sec 8×e7

MUSIC 0.02215 Sec 14×e8

ESPRIT 0.0158 Sec 5×e5

MonoPulse 0.00942 Sec 9×e4

We have considered Beam-scan, MVDR, MUSIC, ESPIRIT, and Monopulse algorithms for our
project and compared them based on MATLAB simulation-based performances. Conventional algo-
rithms such as beam scan and MVDR have poor resolution compared to other algorithms such as MUSIC
and ESPIRIT. In contrast, while providing much higher resolution, the MUSIC and ESPIRIT algorithms
are computationally intensive and time-consuming. Thus, based on the MATLAB simulation results ta-
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ble 2.1, we conclude that the monopulse algorithm estimates DoA with fewer computations and the least
execution time. [20]

2.3.4 Recent Trends in DOA Estimation

In recent times, significant advancements have been observed in the direction of arrival (DOA) esti-
mation field, showcasing several emerging trends. One prominent trend is the application of deep learn-
ing techniques, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs),
which have shown promising results in achieving accurate DOA estimation [24]. The utilization of
compressed sensing techniques to attain accurate DOA estimation with fewer measurements is another
area of research. Integrating data from multiple sensor modalities, multimodal DOA estimation, has
emerged as a recent trend [6]. Finally, real-time and distributed DOA estimation algorithms have gained
attention to cater to the demands of real-time applications and distributed sensor networks.

2.4 PRI

A pulsed radar emits EM waves in pulses, separated by a period which provides information about
the direction and range of a detected target.[2] When the echo is received, the radiation direction of the
revolving antenna estimates the target’s direction. The interval between the leading edge of one pulse
and the leading edge of the next is known as the pulse repetition interval (PRI), and the transit time of
the pulse is known as the pulse width (t) or pulse duration (PD). The number of times a radar completes
the transmit/receive cycle in one second is known as the pulse repetition frequency (PRF), which is the
inverse of the PRI. Thus PRI, PRF plays an essential role in identifying the type of radar and its range.

Accidental variations in PRI are unavoidable due to the ambiguities present in the transmitter, ampli-
fier, and oscillator. However, on some occasions, the PRI of radar is varied intentionally. By switching
between PRIs, the radar system can operate at various unambiguous ranges and velocity values at any
given time or even unfold the unambiguous range and velocity observations. Hence an ESM system
needs to estimate the PRI of the radar to classify the radar.

2.4.1 Various PRI Schemes

The most commonly used PRI schemes in pulsed radar systems are: constant, jittered, dwell and
switch, stagger, sliding, etc. Our system is designed to estimate constant, staggered, and jittered PRI
schemes as shown in the Fig. 2.3
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Figure 2.3: MATLAB simulation of the PRI Schemes used for in the project. a) Constant PRI scheme

where there is no variation in PRI. b) Staggered PRI where the 2 or more PRIs repeat periodically. c)

Jittered PRI where it follows the constant PRI scheme with 10% - 30% Random fluctuations.

2.4.1.1 Constant PRI

A constant PRI scheme is one with no variations in the PRI. If variations exist, they are uninten-
tional and account for less than 1% Fig.2.3(a) depicts a continuous PRI pulse train.

2.4.1.2 Staggered PRI

A staggered PRI scheme is a periodic series of two or more PRIs. A stagger sequence may comprise
multiple PRI instances. Staggered PRI schemes are grouped based on the number of ’positions’ or ’lev-
els’. Before it repeats itself, the number of PRIs in a sequence is expressed by positions, while levels
give the number of different PRI elements present in the sequence. Fig.2.3(b) depicts a staggered PRI
pulse train with varying intervals between pulses.
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2.4.1.3 Jittered PRI

Radars that use a jittered PRI add random fluctuations to their PRI for each pulse. Since their PRI is
constantly changing, this type of PRI scheme is utilized in radars as a form of electronic defense against
some types of jamming. The parameters of interest for a jittered PRI radar are identical to those for a
constant PRI radar; however, more emphasis should be placed on the jitter pulse train and the pulse train
statistics as shown in Fig.2.3(c). The mean PRI of the pulse train, the jitter distribution curve, and the
PRI range are a few critical parameters.

2.4.2 Deinterleaving

Nowadays, the environment consists of many emitters ranging from a very low PRF to a very high
PRF acting simultaneously. Hence it is important to differentiate the various signals and map them to
their respective emitters. This is known as signal sorting or signal de-interleaving. Even though there are
many de-interleaving algorithms, the most relevant algorithms applicable for our project are sequence
search, TOA difference histogram, CDIF, SDIF, CDIF with SS & SDIF with SS.

2.4.2.1 Sequence Search (SS)

One of the most straightforward TOA-based deinterleaving techniques is the sequence search (SS)
algorithm. It offers more reliability and precision than histogramming-based deinterleaving techniques
[26, 27] at the expense of processing efficiency. The algorithm compares estimated pulse trains to
the received pulse train by estimating pulse trains with all possible PRI values, gradually rising from
smallest to greatest. When the number of received pulses that match the estimated sequence reaches a
predefined threshold, it is considered to have found an emitter with a constant PRI equal to the estimated
pulse train’s PRI. The identified sequence is then taken out of the received pulse train, and the procedure
is repeated using fewer pulses. This algorithm is highly susceptible to interference and noise pulses.
Hence, a more robust algorithm is required [26, 27].

2.4.2.2 TOA Difference Histogram

The TOA difference histogram, also called an all-difference histogram, is generated by grouping
the differences in TOA between every combination of TOAs in a set of TOAs [26, 27]. This method
is well-suited for fast processing since it involves subtractions and summations. When applied to an
interleaved pulse train, the technique produces peaks in the histogram at the PRIs corresponding to the
EW environment emitters. The peaks are detected using an exponentially decaying threshold level on
the histogram, determined by the total time interval of the estimated TOA differences, the PRI being
tested, and an experimentally determined parameter.
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2.4.2.3 Cumulative Difference (CDIF) Histogramming

CDIF histogramming, called Cross-Difference of Arrival histogramming, is used to de-interleave
pulse trains. The CDIF histogram algorithm is an improvement over the TOA difference histogram
method. This algorithm creates a histogram using various levels, or depths, of TOA differences. The
first level difference is the TOA difference between any pulse and the preceding pulse. The nth level
difference refers to the TOA differences between any pulse and the nth pulse that arrived before it.[26,
39] This technique uses the cross-correlation function between pairs of received pulses to construct the
CDIF histogram. The cross-correlation between pairs of received pulses makes it possible to estimate
the time difference of arrival (TDOA) between the two pulses. These TDOA values can then be used to
construct a histogram, where the peaks correspond to the PRIs associated with the emitters in the EW
environment.

Initially, the algorithm constructs a histogram by binning the first-level difference values. If the
frequency of a bin exceeds a predetermined threshold, an emitter with a constant PRI associated with
that bin is assumed to be detected. The algorithm then removes the pulses corresponding to the detected
PRI and begins again without those pulses.

In cases where none of the bins exceed the predetermined threshold, the algorithm creates a new
histogram by binning all the TOA differences calculated so far and the next level of TOA differences.
Creating histograms with increasing difference levels continues until an emitter is detected or the algo-
rithm stops at a specified difference level.

The threshold is determined for each level of the CDIF histogram based on the number of bins, the
current difference level, the number of differences binned, and two experimentally determined param-
eters [26, 39]. The first-level difference histogram has a predetermined number of bins and determines
the bin size by dividing the range of first-level difference values by the number of bins. While draw-
ing histograms for higher-level differences, the number of bins can vary, but the bin size remains the
same. One advantage of CDIF histogramming is that it is less noise-sensitive than other de-interleaving
techniques. However, it requires a higher computational overhead than other methods, which can disad-
vantage specific applications.

2.4.2.4 Sequential Difference (SDIF) Histogramming

The SDIF (Sequential Difference) histogram is an improved version of the CDIF (Cumulative Dif-
ference) histogram. This technique is more robust against missing or false pulses. The SDIF histogram
algorithm is similar to the CDIF histogram algorithm but has a different histogram redrawing approach.
In SDIF histogramming, when a histogram is constructed for a specific difference level, only the differ-
ence values for that level are considered while creating the new histogram. All previous difference-level
values are discarded [25].
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2.4.2.5 CDIF with SS

It is a two-pass weighted-search de-interleaving method that combines a histogramming-based al-
gorithm with the sequence search (SS) algorithm[26]. This approach helps reduce the SS algorithm’s
processing time while maintaining reliability and accuracy. In the first pass of this algorithm, a his-
togramming based deinterleaving algorithm is employed to obtain the probable PRIs quickly. These
PRIs are then passed to the SS algorithm for further processing in the second pass. The SS algorithm
tests only these probable PRIs, which reduces the overall processing time and computational complexity
of the algorithm [26]. The weighting factor used in this algorithm is experimentally determined to bal-
ance the trade-off between the processing time and the algorithm’s accuracy. We have used the CDIF-SS
algorithm to deinterleave and estimate the emitter’s PRI.

2.4.3 Recent Trends in FPGA based PRI Estimation

FPGA-based PRI estimation implementations typically involve the design of custom hardware ar-
chitectures and utilizing digital signal processing techniques. One approach is implementing PRI esti-
mation algorithms using FPGA-based digital signal processing blocks, such as finite impulse response
(FIR) filters, fast Fourier transforms (FFTs), and correlation modules, which can be interconnected
and optimized for efficient processing [10]. Another approach is to leverage FPGA vendor-specific IP
cores or libraries to accelerate PRI estimation by integrating pre-designed and optimized modules into
the FPGA design. Furthermore, researchers have explored parallel processing techniques and hard-
ware optimizations, such as pipelining and resource sharing, to enhance PRI estimation performance on
FPGAs[43].
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Chapter 3

Architecture Overview

In this chapter, we outline the architecture of the system, and various blocks present in the architec-
ture and explain its functionality. An ESM system generates a Pulse Descriptive word (PDW) which
contains all the information of the incoming signals from various emitters in a multi-emitter-dense en-
vironment. The generated PDW is later sent to the base station for further classification of the emitters.
The various blocks involved in generating the PDW are explained in the following section.

An ESM system consists of antennas, a receiver, an ADC, and a signal processor board, as shown
in Fig.3.1. The antennas constantly sweep across the bandwidth to detect enemy targets. Hence, the
receiver continuously receives the high-frequency analog signal and down-converts it into an IF signal.
The analog IF signal is then converted into digital data with the help of high-speed ADCs and sent to
the signal processing unit. [18] The signal processing unit is the system’s heart and is responsible for
estimating and identifying the signal parameters. The SPU consists of various other blocks implemented
on a Xilinx Vertex 7 FPGA, each having a unique functionality and generating a PDW. We will discuss
the blocks in detail in the following sections.

3.1 Antenna Elements

The proposed system consists of 4 antenna array elements placed 90° apart, as shown in Fig.3.2a.
In our system, we used Vivaldi antennas as antenna elements, where elements 1 and 3 are used for
elevation angle estimation, and elements 2 and 4 are used for azimuth angle estimation. The antenna
elements are placed with a squint angle w.r.t the axis perpendicular to the plane consisting of all four
antenna elements, shown in Fig.3.2b.

3.2 Receiver

Recent improvements in digital processor speed and analog-to-digital converter (ADC) technology
have allowed development of relatively wide-band digital channelized receivers. [36, 12], The antennas
continuously sweep high-frequency bands (L band to Ku band) to detect enemy targets. The entire
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bandwidth is divided into several frequency bands and searched for threat emitters.The receiver has two
modes of operation: continuous search/tracking and scan.[22, 19]

Figure 3.1: 4-channel ESM System Architecture

(a) The Front View of Placement of Vivaldi An-

tenna’s. Here, Elements 1,3 gives azimuthal Angle

whereas Elements 2,4 are responsible for the esti-

mation of elevation angle

(b) The Side View of Placement of Vivaldi An-

tenna’s. Here, the antennas are placed at a squint

angle ϕ, which is later used in calculating the

monopulse Ratio

Figure 3.2: Placement of Vivaldi Antennas

In tracking mode, the receiver is locked to a specific frequency band, and the antennas continuously
detect radars only present in that frequency range. In scan mode, the receiver constantly sweeps all
frequency bands for a fixed duration. As a result, the receiver continuously receives high-frequency
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analog signals and converts them to IF signals. The converted IF is later sent to the analog to digital
converter (ADC), where it is converted into digital data and sent to a signal processor board.

3.3 ADC Interface

Since there are 4 antenna elements, we have used 2 2-channel ADCs to convert the received IF signal
into digital data. Each channel of dual channel ADC operates at 1/4th of the sampling clock at the
dual data rate (DDR), providing 2 data interfaces for delayed and non-delayed samples.[19, 18, 12]Our
system used TI’s ADC10D1500 ADC board configured as DDR and Non-DES mode with SPI Interface.
The ADC10D1500 is a recent addition to TI’s Ultra-High-Speed ADC series. This low-power, high-
performance CMOS analog-to-digital converter digitizes signals at 10-bit resolution for dual channels at
sampling rates up to 1.5 GSPS (Non-DES Mode) or up to 3.0 GSPS for a single channel (DES Mode).

3.3.1 Design flow

The differential signals I and Q inputs of length 10 bits of each channel of an ADC are fed to the
select-IO interface wizard with double data rate (DDR) selected. Hence the output of the select-IO
wizard is doubled, i.e., it receives 40-bit output. We have configured the sampling frequency to 1350
MHz, and each ADC is operated at 337.5 MHz. The input clock for the select-IO wizard is 337.5 MHz
applied from the clocking wizard, which is generated from the input Differential Converter Sampling
Clock (337.5 Mhz). The flow from input to FFT (DI & DQ Values) is shown in the Fig.3.3. Thus a total
of 80-bit data is sent to the signal processor board at 168.75 MHz frequency, which constitutes a 1350
MHz sampling frequency.

For our project, we have used Xilinx’s virtex7 FPGA to implement the pulse parameter estimation
& Direction finding systems for the proposed ESM system. To obtain the frequency resolution ≤ 2.67
MHz & pulse-width resolution ≤ 379ns, the ADC is configured to 1350 MHz sampling frequency (i.e.,
it converts 1350 Mega Samples Per Second), and a 512-point FFT is performed. We need 1350000
samples (1 msec data) to classify a signal as CW. Since the Virtex-7 FPGA board has a maximum
operating frequency of 400 MHz, the 80 bits of data are sent at 168.75 MHz frequency (i,e. 8 samples at
168.75 MHz simultaneously), which constitutes the sampling frequency (1350 MHz). The radar signal
processing requirements have been summarized in table 1.1

3.4 FFT Block

Since the received signal is unknown, performing an FFT operation is the most reliable approach to
estimating the signal characteristics. In the past decades, implementing FFT on hardware has been a key
area of research. To meet the high performance and real-time requirements, hardware engineers have
been trying to implement an efficient architecture for FFT calculation [45, 29, 28, 17, 7, 11, 35].
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Figure 3.3: ADC design flow: IF Inputs to FFT Input

Efficient implementation primarily focuses on achieving high performance, low utilization, or low
power consumption. Throughput is a key performance metric for streaming architectures. The ADC
converts the received IF signal into 80-bit data and sends it to the signal processing board, i.e., an
FPGA at 168.75 MHz. Since we are sampling the signal at 1350 MHz, to achieve frequency resolution
≤ 3MHz & pulse width resolution ≤ 0.5µs, we performed a 512-point FFT operation on the incoming
signal. The various ways of implementing FFT on hardware, challenges faced during implementing FFT
for a real-time system, and how our proposed FFT architecture has resolved our issues are explained in
detail in the following chapter 4. This chapter contributes to the majority of the research work

3.5 Pulse Parameter Estimation

To determine the nature of the incoming IF signal, we need to estimate the characteristics of the
signal. The FFT module’s output consists of the signal’s frequency information. This output signal is
passed through the pulse parameter estimation module to estimate the various pulse parameters such as
Amplitude, Bandwidth, and Pulse Width. This module consists of various sub-modules, each having its
functionality as shown in the fig.3.4.[30]

Figure 3.4: Pulse Parameter Estimation Block
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3.5.1 Amplitude Estimation Module

Since we performed a 512-point FFT on a signal sampled at 1350 MHz, the frequency resolution of
the signal is 2.67 MHz. Spectral leakage occurs if the input signal frequency is not a multiple of the
frequency resolution. When spectral leakage occurs, the signal’s energy spreads into multiple adjacent
bins. Using proper windowing methods, we can reduce spectral leakage. The most commonly used
windows are Rectangular, Hanning, Blackman, etc.[30] In our project, we are considering only 512
samples at a time. Thus, the window length is 512, and the same rectangular window is shifted with
time. Each window is assigned a window number based on the ”tlast” signal obtained from the FFT
module. The FFT output and the window number are sent to the detector module to identify the number
of valid signals present in it. The detector compares the obtained signal’s power with a pre-calculated
threshold value to determine whether or not the signal is valid. The threshold of the signal depends
upon reciever sensitivity, noise floor, FFT processing gain, radiation losses, cable losses, IF gain etc.
Considering all the above parameters, we have set a finite value as a system threshold value.

3.5.2 Bandwidth Estimation Module

Once the valid signals are detected from the FFT output, the bandwidth of the detected signals is
estimated. We know that when FFT operation is performed on an FMCW signal, signal power spreads
across the adjacent frequency bins due to change in frequencies. Bandwidth can be obtained by counting
the number of frequency bins that are adjacent to each other.

Bandwidth = Nf × (Fs/N)

Nf is the number of adjacent frequency bins, (Fs/N ) is the frequency resolution of the FFT output.
It means that they originate from a single radar source. If any two frequencies are far away, the signals
correspond to different bands and originate from different radar sources. This method works for chirp,
FMCW radar signals.

3.5.3 Pulse Width Estimation Module

For our project, we consider 512 FFT samples each time in a window making the window length
379.5 ns. The pulse width module counts the total no. of consecutive windows the signal is detected.[30]
If there is any discontinuity, the counter stops and resets for that frequency, indicating the end of the
pulse. According to the project requirements given in table 1.1, to classify any signal as a CW signal,
the pulse width of the signal should be greater than 1 msec, i.e., the frequency should be continuously
detected for at least 2365 window numbers. If a signal is CW, the check cw flag in the system goes
high. Fig.3.5 shows pulse width estimation using a state transition diagram.
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Figure 3.5: State flow of Pulse Width Estimation Block

3.6 Direction of Arrival Estimation Module

Earlier in chapter 2, we understood the importance of DOA and various techniques used to estimate
the DOA. After comparing the metrics of various techniques, based on the requirement and resources
available, we have chosen the amplitude comparison monopulse algorithm to estimate the DOA for our
project.

3.6.1 Monopulse Algorithm

The most commonly used MUSIC algorithm has the best resolution and accuracy.[20] However,
the drawback of the MUSIC algorithm is that the number of antenna array elements must be greater
than the maximum number of targets the system can track or detect. Also, the MUSIC algorithm is
computationally intense because it involves computing the Covariance matrix and Eigenvectors.[20]
The alternative to the subspace methods is the Monopulse algorithm.
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Figure 3.6: Simultaneous amplitude comparision

3.6.1.1 Amplitude-Comparision Monopulse Algorithm

By comparing the amplitudes of simultaneous echos (V0, V1) as they are received on two slightly
offset beams, as shown in Fig.3.6, it is possible to determine an accurate angle of the source under
the assumption that the amplitude of a target’s echoes from repeated pulse transmission stays relatively
constant. The constant amplitude assumption, however, is unrealistic as, in reality, echo strengths vary
quickly from one pulse transmission to the next. Depending on its angle of arrival, the echo projects dif-
ferently on the receive beams. As a result, the amplitude and phase components of V0 and V1 that rely on
the angle of arrival are different. In contrast, amplitude and phase components produced by parameters
outside the radar, such as target range, target cross-section, and medium losses, are the same for both
V0 and V1. By taking a ratio of the two voltages, the components that occur identically for two voltages
cancel out, but the angle-dependent components are retained.

ϵv = f (V0/V1)

The value ϵv, known as the error voltage, carries purely directional information. Though it does not
directly communicate the information in an angular form, it can be converted with the help of a mapping
function called a monopulse response curve (MRC), given in terms of the error voltage.
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Figure 3.7: Approximated monopulse response curve for 8 GHz radar signal

From Fig.3.2b, we can depict that, for a particular angle of incidence θ w.r.t axis ’a’ angle of inci-
dence of the signal on to the antenna array element 1 is (θ − ϕ) and antenna array element 3 is (θ + ϕ).
Assuming ’P’ as the power of incident radar signal and G1 and G2 are the gains of the array elements
1 & 3, the total power received at the antenna elements 1 & 3 is PxG1 & PxG2, respectively. Thus the
sum-difference monopulse ratio can be obtained as

m =
P ×G2 − P ×G1

P ×G2 + P ×G1
=

G2 −G1

G2 +G1
(3.1)

3.6.1.2 Linear Regression Model

For our project, we have used a Machine Learning model to evaluate the direction of arrival of an
emitter. Since the monopulse ratios obtained do not give direct angular information, we need to convert
them into angular data by mapping them using an MRC modeled by a linear regression algorithm. Here
the monopulse ratio Eq.(3.1) is calculated for a radar signal of 8 GHz frequency arriving at various
angles and plotted in Fig.3.7 (represented by Dots). The obtained DoA vs. monopulse ratio plot is mod-
eled with an nth degree polynomial using mathematical linear regression techniques and is represented
as a line in Fig.3.7. similarly, MRC is obtained for various other frequency bands,as shown in Fig.3.8
and coefficients are estimated for each frequency band. These coefficients are stored in a BRAM and
are selected based on the receiver configuration. Using the coefficients of the regression model, we
estimated the DoA of various real-time radar signals.
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Figure 3.8: MATLAB simulation showing the variation in the approximated monopulse response curve

for various frequency bands

DoA = Pn ×mn + Pn−1 ×mn−1 + Pn−2 ×mn−2

...P2 ×m2 + P1 ×m1 + P0 (3.2)

Where Pn, Pn−1, . . . . . . ,P1, P0 are the polynomial coefficients, n is the order of the polynomial,
and m is the monopulse ratio. The polynomial degree n is selected such that the polynomial has a
95% confidence bound. Hence 5th degree polynomial or higher is used to achieve the curve-fitting
constraints.

3.7 Pulse Repetitive Interval Estimation Module

The Pulse repetition interval module identifies the type of PRI and estimates the value of the PRI.
The module uses the time of arrival information, which is obtained from the window number generated
after the FFT module. The Basic idea behind the PRI module is to perform a histogram of the difference
between the time of arrival of any two pulses. The pattern by which we take the difference is given by
the flow chart diagram, as shown in the figure3.9.
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Figure 3.9: Flowchart for PRI estimation

In this module, the final PDW is generated containing the information of all the Pulse Parameters,
Direction of arrival, PRI & PRI Type. Here, the module is divided into two parts. First, it de-interleaves
the interleaved signal and then estimates the PRI and PRI type based on the difference in the TOA
histogram method. The module is operated at 168 MHz frequency, and the output PDW is 116 bits.
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Chapter 4

FFT Implementation

4.1 Introduction

The demand for high-speed signal processing systems in space and radar systems has risen dramati-
cally in recent years. Unlike in the past, space/airborne systems plan to shift the data processing unit on
board using FPGAs. Onboard data processing systems have their own set of problems. Since the data
being processed is in real-time, the data’s sampled rate is critical to the accuracy of the results. The FFT
core is an essential part of onboard DSP. The FFT core’s performance determines the system’s overall
performance.

The Discrete Fourier Transform (DFT) plays a crucial role in digital signal processing. Fast Fourier
Transform is an efficient way of DFT which is used in sectors like signal processing [8], Image Pro-
cessing [23, 3], Radar signal processing[13, 21, 29], radio astronomy [28, 44], and other fields. FFT
algorithms can be broadly classified into two main categories: (i) composite/non-prime length FFT
such as Cooley-Tukey[14] and (ii) prime length FFT such as winograd[41]. In the past decades, the
implementation of FFT on hardware has been a key area of research. To meet the high performance
and real-time requirements, hardware engineers have been trying to implement an efficient architec-
ture for FFT calculation [45, 29, 28, 17, 7, 11, 35]. Efficient implementation primarily focuses on
achieving high performance, low resource utilization, or low power consumption. Throughput is a key
performance metric for streaming architectures. A high-throughput, energy-efficient parallel FFT archi-
tecture using a periodic memory activation scheme is proposed by Ren Chen in[11]. By optimizing the
intermediate data processing and first stage pipelining, Yupu Zhao proposed a high-performance and
resource-efficient FFT architecture in [45]. The CORDIC algorithm-based multiplication scheme has
greatly reduced the overall resource utilization and system latency. Mario Garrido explains the concept
of pipelining in hardware architecture and further classifies it into serial and parallel architectures based
on the complexity of the input [17]. If the input data is a 2-dimensional data type, such as an image,
we need to implement a 2-dimensional FFT. A parallel 2D FFT is performed on a real-time MRI data
in [23]. We can also perform a 1D FFT by interpreting the 1D signal as 2D data. An N-point FFT is
implemented by transforming the data into N1 rows & N2 columns or vice versa and performing FFT
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in both dimensions [28, 41]. A similar method is used to develop a real-time multichannel FFT for a
radio spectrometer in [44].

4.2 Background

4.2.1 Discrete Fourier Transform

Discrete Fourier transform is a method where discrete-time domain inputs are converted into discrete-
frequency domain outputs. FFT is the fast algorithm of DFT. The most common method of implement-
ing FFT is using the Cooley-Tukey algorithm. Mathematically, the DFT of a sequence x(n):x0, x1, ...
xN−1 of length N can be expressed as :

Xk =

N−1∑
l=0

xlW
lk
N , k = 0, 1, 2...N − 1. (4.1)

From Eq: 4.1, it is understood that each Xk requires n − 1 complex additions and n complex multi-
plications. N complex multiplications can be achieved by performing 4N real multiplications and 2N

real additions, whereas N complex additions can be achieved by performing 2(N − 1) simple additions.
Therefore, each Xk computation requires 4N real multiplications and 4N-2 real additions. Hence, to
compute a DFT of length N, we need to perform 4N2 real multiplications and 4N2−2N real additions.
As we increase the length of the sequence N, the computational complexity increases and is difficult to
realize on hardware. Thus, it is necessary to reduce the computational complexity of DFT. Using the
symmetrical and periodic properties of twiddle factors, Cooley & Tukey proposed a new algorithm that
greatly reduced arithmetic operations from θ(N2) to Θ(Nlog2N).

4.2.2 Cooley Tukey algorithm

FFT is the fast algorithm for performing DFT on signals. Among the various FFT algorithms avail-
able, the most widely used FFT algorithm was proposed by Cooley and Tukey. [14]. By definition,
radix-2 DIT FFT divides the DFT of size N into size N/2 for every recursive stage. FFT algorithms
are represented by their flow graphs; at each stage of the graph, butterflies and rotations are calculated.
The number of stages in an FFT is given by n = log2N . The signal flow graphs of FFT are either of
DIT or DIF composition, where the difference is the rotations at each stage. In this paper, we are using
radix-2 DIT butterflies and radix-4 DIT butterflies as basic structures, as shown in Fig: 4.1, Fig: 4.2
respectively.
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4.2.2.1 Radix-2 DIT FFT

The radix-2 DIT equation can be obtained by rewriting Eq: 4.1 as

Xk =

N/2−1∑
l=0

x2lW
k(2l)
N +W k

N

N/2−1∑
l=0

x2l+1W
k(2l)
N k = 0...N − 1. (4.2)

Using identity WN/2 = W 2
N ,

Xk =

N/2−1∑
l=0

x2lW
kl
N/2 +W k

N

N/2−1∑
l=0

x2l+1W
kl
N/2 k = 0...N − 1. (4.3)

Since WN/2 can be denoted as W 2
N , we need to compute only the sums for k= x0, x1, ..., xN/2−1,i.e

each summation can be interpreted as a small DFT of size N/2. Defining yk = x2k, zk = x2k+1 and
replacing N with N/2, we can rewrite Eq: 4.3 as

Yk =

N/2−1∑
l=0

ylW
kl
N/2

Zk =

N/2−1∑
l=0

zlW
kl
N/2

Xk = Yk +W k
N ∗ Zk,

Xk+N/2 = Yk −W k
N ∗ Zk

k = 0...N/2− 1. (4.4)

The Eq: 4.4 can be graphically represented as the Cooley-Tukey butterfly model, as shown in the Fig:
4.1

Figure 4.1: Radix-2 Butterfly diagram

4.2.2.2 Radix-4 DIT FFT

A sequence of the form N = 22n can be represented as N = 4n. Thus, implementing FFT in radix-4
reduces the total arithmetic cost. The radix-4 DIT equation can be obtained by rewriting Eq: 4.1 as
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Xk =

N/4−1∑
l=0

x4lW
k(4l)
N +

N/4−1∑
l=0

x4l+1W
k(4l)
N +

N/4−1∑
l=0

x4l+1W
k(4l+2)
N

N/4−1∑
l=0

x4l+1W
k(4l+3)
N

k = 0...N − 1. (4.5)

Since WN/4 can be denoted as W 4
N , we need to compute only the sums for k= x0, x1, ..., xN/4−1,i.e

each summation can be interpreted as a small DFTs size N/4.Defining yk = x4k, zk = x4k+1,gk =

x4k+2,hk = x4k+3 and replacing N with N/2, we can rewrite Eq: 4.5 as

Yk =

N/4−1∑
l=0

ylW
kl
N/4,

Zk =

N/4−1∑
l=0

zlW
kl
N/4,

Gk =

N/4−1∑
l=0

glW
kl
N/4,

Hk =

N/4−1∑
l=0

hlW
kl
N/4

k = 0...N/2− 1. (4.6)

using the identities WN/4
N = e−j(π/2) = −j, WN/4

N = (−j)2 = −1, W 3N/4
N = (−j)3 = j, we can

simplify the equations as

Xk = Yk +W k
NZk +W 2k

N Gk +W 3k
N Hk

XkN/4 = Yk − j ∗W k
NZk −W 2k

N Gk + j ∗W 3k
N Hk

XkN/2 = Yk −W k
NZk +W 2k

N Gk −W 3k
N Hk

Xk3N/4 = Yk + j ∗W k
NZk −W 2k

N Gk − j ∗W 3k
N Hk

(4.7)

The Eq: 4.7 can be graphically represented as Cooley-Tukey butterfly model, as shown in the Fig: 4.2.

Figure 4.2: Radix-4 Butterfly diagram
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4.2.3 1-D FFT

A 1-D FFT is a simple Fast Fourier transform performed on a one-dimensional signal. The FFT
algorithm can be implemented in two architectures that optimize throughput or area. As we perform
an FFT on real-time data, we need a pipelined architecture to process the data accurately. Since the
incoming data is either row-wise or column-wise, we execute a 1D FFT row-wise or column-wise.

4.2.3.1 Streaming architecture

This architecture is used in high-throughput applications and supports scalar and vector inputs. Using
vector inputs, we can achieve a throughput of Giga samples per second (GSPS).

4.2.3.2 Burst architecture

This architecture accepts only scalar inputs and is known for minimum resource implementation,
especially with the large FFT sizes. The system must be able to handle burst data and high latency to
implement burst architecture.

4.2.3.3 Pipelined architecture

A pipelined architecture can consist of n stages where the data flow happens from one stage to
another. Here, each stage calculates all the computations of one stage of the FFT algorithm. As soon as
the data moves out of one stage, a new data set is processed, making it a streamlined architecture. Fig:
4.3 shows the general structure of the pipelined architecture.

Figure 4.3: n-stage Parallel Pipelined Architecture

If the incoming signal is a two-dimensional matrix, such as an image, we must use a two-dimensional
FFT rather than a one-dimensional FFT. Using several 1-D FFTs on multiple processors is a simple
technique for implementing a 2-D FFT.

4.2.4 2-D FFT

The 2-D DFT of a two dimensional array or a matrix x can be defined by the Eq:4.8,where x can be
denoted as xl1,l2
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Xk1,k2 =

N1−1∑
l1=0

N2−1∑
l2=0

xl1,l2W
k1l1
N1

W k2l2
N2

k1, k2 = 0, 1, 2...N − 1. (4.8)

The arithmetic operations required to compute Eq:4.13 yield a cost O(n2
1n

2
2) which can be signif-

icantly reduced by implementing 2D DFTs using a series of 1D DFFTs, implemented in a 1D FFT
algorithm as shown in 4.4. The Cooley-Tukey algorithm proposed the following steps for performing
FFT on a composite size N = N1XN2 for a two-dimensional input:

• Perform N1 DFTs of size N2.

• Multiply by twiddle factors

• Transpose rows to columns

• Perform N2 DFTs of size N1.

Xk1,k2 =

N1−1∑
l1=0

N2−1∑
l2=0

xl1,l2W
l1k1
N1

W l2k2
N2

=

N1−1∑
l1=0

W l1k1
N1

N2−1∑
l2=0

xl1,l2W
l2k2
N2


=

N1−1∑
l1=0

(Xl1,K1)W
l1k1
N1

k1, k2 = 0, 1, 2...N − 1. (4.9)

Figure 4.4: Implementation of 2D FFT using a set of 1D FFTs

4.2.4.1 Importance of transpose operation in a 2D FFT

The data received in a real-time radar application is mostly in one dimension. To implement a 2D
FFT, we need to convert this one-dimensional array into a two-dimensional array. To achieve consec-
utive memory access through its addresses, the data are placed in either row-major or column-major
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format, as shown in the Fig:4.5 The row-major scheme dictates that mem[l] = A[p, q] where l =

L0+(p∗Q+q), and the column-major scheme dictates that mem[l] = A[p, q] where l = L0+(q∗P+p).

Figure 4.5: Storage of data in Row Major & Column Major Formats

If a vector of length N = PXQ, is stored in a 2D array A[P,Q],in a column major format, then
xl = A[p, q], where l = qXP + p. The DFT of the vector can be expressed as

Xk =

N−1∑
l=0

xlzl, wherez = W k
N

=
P−1∑
p=0

Q−1∑
q=0

A[p, q]z(qXP+p)

k = 0, 1, 2...N − 1. (4.10)

since we can represent WP
N = WN/P = WQ, ZP can be represented as ZP =

(
W k

N

)P
= wk

Q. Thus,
Eq:4.10 can be modified as

Xk =
P−1∑
p=0

Q−1∑
q=0

A[p, q]z(qXP+p)

=
P−1∑
p=0

Q−1∑
q=0

A[p, q]
(
zP
)q zp

=

P−1∑
p=0

Q−1∑
q=0

A[p, q]
(
W k

Q

)q(wk
N

)p
k = 0, 1, 2...N − 1. (4.11)

The above equation still requires N2+NP number of arithmetic operations to compute all Xk. Since
input vector x is stored column by column in A[P, Q], to reduce the number of arithmetic operations,
we can store the output vector Xk of length N = PXQ in the same manner in B[Q, P].
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Xk = B[p̂, q̂]

where k = p̂Q+ q̂ , WQ
Q = 1 and W k

Q = W p̂Q+q̂
Q = W q̂

Q

Xk = Xp̂Q+q̂

=
P−1∑
p=0

Q−1∑
q=0

A[p, q]
(
W k

Q

)q(wk
N

)p

=
P−1∑
p=0

Q−1∑
q=0

A[p, q]
(
W q̂

Q

)q(wp̂Q+q̂
N

)p
(4.12)

It is observed that the inner sum in Eq:4.12 is independent of the index p̂,hence can be pre-computed.
The total arithmetic operations required to perform 2D FFT after transpose is N(P +Q). Thus, storing
input vector X in A[P, Q] column by column and storing the output vector X in B[Q, P] has significantly
reduced the number of operations computed. Hence, the transpose operation plays an important role
in computing a 2D FFT on a vector of size N=PxQ. According to [7, 23], BRAMs or any storage
elements are used to perform transpose operations using BRAM or storage element, increasing resource
utilization, latency, and design complexity.

4.3 Existing Methods

4.3.1 Data Processing using a sequential FFT IP Core

FFT IP core is a logical unit the FPGA manufacturers provide to perform FFT operations on the
signals. There are certain limitations in using the FFT IP core for real-time streaming data in a pipelined
structure. It can implement multiple N-point FFTs on multiple-channel data considering a single channel
at a time. However, it cannot implement a single N-point FFT on multiple channels combined. In radar
application, as mentioned in table 1.1, 80 bits of parallel data (i.e., 8 samples) is received at 168.75 MHz.
To process the incoming data, we need to convert parallel data to serial and perform FFT calculations
at a higher rate, as shown in the Fig:4.6. In our application, we are receiving 8 samples per clock cycle.
After converting into serial data, the data rate of serial output should be 8 times the input data rate to
avoid data loss. Therefore, the FFT IP core should operate at 8*168.75 MHz which is practically not
possible due to the limitations on FPGA processing speed and resource availability[42].

If the FFT is to be computed at the same input data frequency, the excess data must be stored in a
memory element such as BRAM/FIFO and operate the IP core in streaming mode, as shown in Fig:4.6.
As per the requirements in table 1.1, we must process 1350000 samples without any loss to achieve the
functionality, which is not possible due to the resource constraints.
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Figure 4.6: Implementation FFT using Conventional Xilinx FFT IP on parallel incoming data

4.3.2 Interpreting 1D as 2D signal

By storing 1D signal of N point data as 2D signal of N1xN2 point data, we can perform 2D FFT
on it to get N point FFT output. The 2D FFT of a 2D array or a matrix can be defined by the Eq:4.13,
where xl1,l2 is the data point stored on row l1 and column l2. This implies that 2D FFT can be realised
as multiple 1D FFTs on rows & columns of the matrix with computing cost of O(N1N2log2(N1N2)) or
O(N2log2(N)) when N1 = N2 = N. Here twiddle factors are derivatives of W l

N1
and W l

N2
but for the

calculation of N point 1D FFT using this equation, it should be the derivative of W l
N [16].

Xk1,k2 =

N1−1∑
l1=0

N2−1∑
l2=0

xl1,l2W
k2l2
N2

W k1l1
N1

k1, k2 = 0, 1, 2...N − 1. (4.13)

4.3.2.1 Transpose Split Method

The Transport Split method is based on the row-column 2D FFT algorithm, where multiple indepen-
dent processors are assigned to each row or column, as shown in the Fig:4.7 [9]. Once the FFT operation
is performed in one direction, the data is re-aligned, and another set of 1D FFT is performed on trans-
posed data in the same direction. One significant drawback of this architecture is that it only applies
to square matrices. Due to the use of multiple threads/processors, the architecture has more resource
utilization, and latency increases due to the use of storage elements to perform transpose operations.

32



Figure 4.7: Architecture of Transpose split method with 8 parallel data channels implementing a 8x8

2D FFT

4.3.2.2 Six-Step Algorithm

This algorithm is best suited for distributed systems where the algorithm decomposes N-point FFT
into N1 point & N2 point FFTs [4, 28]. Here, the input data is distributed into parallel channels and
process a small portion of row-wise data simultaneously. Later, the data is transposed and perform a
column-wise data. This data is again converted to a 1D signal. The six-step algorithm is designed
to exploit parallelism in FFT to enhance the speed and efficiency of processing large data sets.The
implementation of this algorithm depends upon various factors like hardware architecture, size of the
data set, data rates etc. As depicted in the Fig:4.8,the six-step algorithm is implemented as follows:

Figure 4.8: Architecture of Transpose split method with 8 parallel data channels implementing a 8x8

2D FFT

• Transpose the input data set (N1 ×N2) to (N2 ×N1).

• Perform N1 individual N2 point 1D FFT.

• Multiply the resultant N2 ×N1 complex matrix by W k
n
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• Transpose resultant N2 ×N1 matrix to N1 ×N2.

• Perform N2 individual N1 point 1D FFT.

• Transpose resultant N1 ×N2 matrix to N2 ×N1.

4.4 Proposed Method

In the proposed method, we have addressed all the issues that are faced in the existing methods for
calculating real-time FFT on very high-speed ADC data for wideband radar systems on FPGA. We have
implemented a parallel pipelined architecture that processes multiple inputs simultaneously to avoid the
usage of FIFOs for parallel to serial data conversion and, hence, the data loss. To eliminate the use of
transpose operations on the input and the output stage as in the six-step algorithm, we have arranged
the input data in column-major format and accepted output data in row-major format to further reduce
resource utilization and latency. We have used an external phase correction module to reuse Xilinx’s
FFT IP Cores, hence enabling the ease of re-configuring the FFT length. As the radar pulse parameter
algorithm is independent of the order of the data in a window, we have replaced the transpose operation
between both dimensions of FFT like in six step algorithm, with a simple parallel to serial data converter
and moved it from the FFT algorithm to the peak detector modules.

Figure 4.9: Implementation of a 512-point FFT by processing 64 data frames on 8 parallel channels

using the proposed architecture.
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If an input data of length N = N1×N2, is stored in a 2D array A[N1, N2] in a column major format
such that al = A[n1, n2] where l = n1 + n2 × N1, the N-point DFT of the array A can be given by
Eq:4.1 as,

br =
N−1∑
l=0

al(W
r
N )l (4.14)

which can be further written as,

br =

N1−1∑
n1=0

(
N2−1∑
n2=0

an1+n2N1(W
r
N2

)n2

)
(W r

N )n1 (4.15)

which is still an Θ(N2) algorithm as it requires N2 multiply-adds to compute each inner sum element
and N1 multiply-adds to compute each br. Thus, requiring total of N(N1 × N2 + N1) multiply-adds
operations. But if we accept the DFT output in a row major format in a 2D array B[N1, N2] such that
br = B[k1, k2] where r = k1 × N2 + k2[15], the N-point DFT of the array A now can be given by
rewriting Eq:4.15 as,

bk1N2+k2 =

N1−1∑
n1=0

(
N2−1∑
n2=0

an1+n2N1(W
k1N2+k2
N2

)n2

)
(W k1N2+k2

N )n1

=

N1−1∑
n1=0

(
N2−1∑
n2=0

an1+n2N1(W
k2
N2

)n2

)
(W k1N2+k2

N )n1

(4.16)

in which inner sum is independent of the index k1 and hence it can be pre-computed for all n1 and k2

and requires only total of N(N1 + N2) multiply-adds operations. On further simplifying Eq:4.16, we
can write

bk1N2+k2 =

N1−1∑
n1=0

(W k2
N )n1

(
N2−1∑
n2=0

an1+n2N1(W
k2
N2

)n2

)
(W k1

N1
)n1

= DFTN1(TFN ×DFTN2(an1+n2N1))

(4.17)

which can be used to explain the three main steps of the proposed architecture. The first step is to
compute N1 N2-point DFTs, multiplying the results with Twiddle Factors (TF) of derivative N and then
computing N2 N1-point DFTs on the results. In order to reduce the arithmetic complexity, we used
FFTs over DFTs. For first step, we used sequential 1D DIF-FFT using fully pipelined and radix-2 based
algorithm as given in Eq:4.2. The rotation vectors/twiddle factors were pre-calculated and stored in
ROM for multiplication with the intermediate FFT results. For final step, we used parallel 1D DIT-FFT
using fully pipelined and radix-22 based algorithm as given in Eq:4.5 to generate the final N1 × N2

point FFT, as shown in the Fig:4.9. Here, the N1 dimension constitutes the parallelism factor of the
architecture, and the N2 dimension is chosen based on the number of frames received in one window.
To meet the requirements of the given radar signal processing application, as mentioned in the table 1.1,
we implemented a 512-point FFT using the proposed architecture.
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4.4.1 Significance of N1 & N2 dimensions:

Using the row-column decomposition technique, N is divided into N1 × N2 where N1 constitutes
to the parallelism factor and N2 determines the frame count in one window. According to Fig4.10, the
optimal frame size to perform 512-point FFT of 1D signal using 2D arrangement consuming minimal
resources is 16x32 or 8x64. Increasing N1, which is the parallelism factor, increases overall resource
utilization of the system and complexity of parallel 1D FFT used to calculate N2 N1-point FFTs, but
decreases overall latency of the system and vice-versa for increasing N2, i.e., the number of frames in
one window. Since we receive 8 samples of data per clock cycle, we have 8 parallel channels (N1) and
perform a 64-point FFT on each channel. Since the ADC is configured to 1350 MHz sample frequency
to compute 8 parallel channels, the maximum operable frequency for an 8 × 64 point FFT is 168.75
MHZ.

Figure 4.10: Comparison of total number of arithmetic operations of DFT required for various values of

N1 & N2
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Chapter 5

Experimental Setup

The functionality of the proposed system is tested by first implementing in MATLAB and later
implementing it on hardware.

5.1 MATLAB Implementation

We have developed the direction-finding algorithm in MATLAB, as shown in Fig.5.1 We have tested
the code by simulating the dense radar environment and feeding it as an input to the system. The
algorithms were fed time of arrival (TOA) values of pulses from the simulated EW environments in
sequential order. The parameters of the EW environments were modified to see how they affected
the algorithm’s performance. An EW receiver cannot completely intercept all pulses in congested EW
surroundings, referred to as missing pulses[1]. Spurious pulses are pulses received by the EW receiver
but are not of interest. The percentage of random pulses associated with each emitter not detected by
the EW receiver (missing pulses) varied from zero to 10 percent in the simulated EW environments.
Missing pulses owing to an antenna beam rotating are not considered here.

As a part of our project, we have constructed a complex virtual radar environment consisting up to
6 radar emitters with different pulse widths, DoA, PRI, and PRI-type, interleaved together through a
single channel. The interleaved signal is passed through the algorithm, and we determine the DoA of
each emitter simultaneously. When testing the deinterleaving performance of algorithms, the number
of emitters in the environment was varied between 1 and 6. Each emitter transmitted 10 times the
maximum time period of all emitters.
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Figure 5.1: Workflow of the architecture in MATLAB38



5.2 Hardware Implementation

Once we have verified the algorithm’s functionality in MATLAB, we have replicated the system
on hardware using verilog HDL. Each block of the system was implemented and verified individually.
Later combined all the blocks as an integrated system and tested by feeding the inputs in 3 different
methods.

5.2.1 Static Data Testing

In this mode of testing, we implemented the system on Xilinx Virtex 7 FPGA VC707 evaluation
platform and tested its functionality by feeding the Matlab simulated static data. Here, we have con-
verted the MATLAB input into a 32 bit data (16-bit real & 16-bit imaginary) and stored into a BRAM to
feed it to other modules at 100 MHz clock frequency. The data set consists of 6 emitters ranging from
frequencies 750 MHz to 1250 MHz, interleaved with different pulse widths and different PRI Schemes.
To satisfy the requirements given in the table 1.1, we have taken up-to 2-lakh samples to verify the
functionality. The results obtained from the static input data is discussed further in section.

5.2.1.1 Challenges faced during Static Data testing

Data of width 32 bits is given as input to FFT IP using a single port BRAM at 200 MHz clock
frequency. Since we are trying to read a huge number of samples (around − 2lakh) at a very high
speed, the data is getting corrupted while reading from BRAM. We have resolved this issue by reducing
the clock frequency and improving synchronization.

5.2.2 Radiation Mode Testing

In radiation mode testing, the input is fed to a horn antenna setup in a radiation chamber using a signal
generator. As the horn antennae radiate the signals, the set of Vivaldi antennas of the system receives
the incoming RF signals, down-convert it into the IF signal, and sends it to the ADC module. Here the
digitized input is further fed to the signal processing board to test its functionality. The Injection mode
testing was carried out for up to 2 emitters in-band as well as out-of-band -500 MHz. A continuous test
signal and pulsed test signal with different PRI values are fed, and the results obtained are discussed
further in the section.

5.2.2.1 Challenges faced during Real-time Integration

Here, in our system, we are sampling the incoming signal with a 168.75 MHz sampling frequency
and generating 80 bits of data per second. Since the sampling rate is very high and 80 bits of data is sent
at an instance, we cannot store such a large amount of data in a FIFO or BRAM due to FPGA resource
constraints.
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Chapter 6

Implementation Results

This section presents some MATLAB simulation results to demonstrate the FFT architecture func-
tionality and the system’s functionality. Later, we also presented the hardware implementation results
of the FFT architecture & ESM, on two boards: 1) Xilinx Virtex 7 FPGA evaluation board using static
MATLAB inputs, 2) custom board by providing input using a signal generator (Injection Mode Testing)
and using Horn Antenna (Radiation Mode Testing).

6.1 Parallel FFT Implementation Results

In our tests, according to table1.1 requirements, the incoming data is sampled at 1.350 Gsps, and
data is sent in 8 parallel channels to the FPGA at a 168.75 MHz frequency. Each parallel data channel is
processed into a single channel, and an FFT operation is performed for this single channel in MATLAB
(shown in Fig:6.1a ) using the FFT IP. We also realized the 8-channel proposed architecture in MATLAB
(shown in Fig:6.1b). We compared the MATLAB results of both the conventional FFT method and the
proposed architecture (shown in Fig:6.1) and later implemented it on an FPGA. Before working with
real-time data, we simulated a radar environment in MATLAB and generated a set of static data, which
we used to test the system functionality.

(a) A direct 512-point FFT result in

MATLAB

(b) MATLAB simulation result of 512-

point FFT using parallel architecture

Figure 6.1: MATLAB simulation results of implementing a 512-point FFT. The peak is obtained at the

1 GHz frequency
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Fig:6.2(a,b,c) show the implementation of 512-point FFT on FPGA using conventional Xilinx IP-
core method using MATLAB generated static data as well as the proposed architecture using both static
data and real-time data. Here, we can see that the peaks are obtained at the respective frequency index of
1 GHz input signal. Since the incoming data rate of the static data is very low, we were able to achieve
system functionality by implementing a 512-point FFT using Xilinx logic-core IP. However, it was not
applicable for real-time data, as the inputs are sampled at a much faster rate, and storing the samples has
become a challenging task. Fig:6.2 shows that the proposed architecture is able to implement the FFT
and has results similar to the conventional FFT.

Figure 6.2: Comparison of the FPGA Implementation results implementing 512-point FFT using (a)

Xilinx IP-core with Static data (b) Proposed architecture with Static data (c) Proposed architecture with

Real-time data. Here The peaks are obtained at frequency index of 1 GHz signal

In Fig:6.3(a), FREQ sfifo signal shows that for a few window numbers (given in Win num sfifo),
a few data packets are missing due to high input writing speed, which causes the FIFO to overflow. The
proposed architecture successfully solves the problem, as seen in Fig: 6.3(b). Here, FREQ sfifo is
continuous for all the window numbers (given in Win num sfifo). We may, therefore, assert that the
proposed architecture can handle real-time data processing.
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Figure 6.3: Implementation results of both Xilinx IP-core based method (a) explaining the data loss due

to the FIFO overflow and proposed architecture (b) resolving the issue.

Table 6.1: Comparison of latency & the no. of clock cycles required to compute 1 512-point FFT

Architecture No. Of Clock Cycles Latency real-time

Conventional Xilinx

IP-based FFT

1133 cycles 6.744 µs real-time

Proposed parallel FFT 220 cycles 1.309 µs real-time

On a Virtex-7 FPGA board, we implemented a 512-point FFT using both the traditional IP core and
the proposed architecture methods. Table6.1 presents a comparison of the processing speeds of two
designs. The processing speed (time from the first raw data entering to the last transformation data
output leaving) is expressed by the number of clock cycles, and the total time is calculated by a working
clock of 168.75 MHz. Table 6.1 shows that the processing speed of the proposed parallel architecture is
913 clock cycles faster than that of the IP-based FFT [31].

Using the formulas used in Eq:4.2, Eq:4.5, we calculated the total number of complex multipli-
cations & additions required to implement the proposed architecture. Table6.2 compares the number
of arithmetic operations, multipliers, and adders/subtractors required to perform the FFT by the two
architectures. As mentioned in the table, the proposed parallel architecture requires fewer arithmetic
operations than the conventional Xilinx IP-based FFT implementation. Compared to the IP-based im-
plementation, the proposed parallel architecture requires 240 fewer complex multiplications and 1412
less complex additions.
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Architecture Xilinx IP-based FFT Proposed parallel FFT % Improvement

Complex

Multiplications

2304 2064 10.42%

Complex Additions 4608 3196 30.64%

Multipliers 9216 8256 10.42%

Adders 13824 10520 23.90%

Table 6.2: Arithmetic operations table

6.2 ESM Architecture Implementation Results

6.2.1 MATLAB Implementation Results:

We tested the system using an interleaved signal comprised of six emitters with different pulse pa-
rameters. The table 6.3 lists the characteristics of each emitter.

Table 6.3: Static Data Inputs given to the system

Frequency (GHz) Pulse Width (µs) PRI (µs) PRI Scheme

862 6 9 Constant(1)

750 1.3 12 Staggered(2)

920 5 9 Jittered(3)

1100 2.4 12.5 Staggered (2)

800 4.3 8.6 Constant(1)

990 3.3 6.6 Jittered(3)

In the first step, we performed a 512-point windowing FFT on the interleaved signal to get the
frequency components. Fig.6.4a gives the time domain representation of an LFM signal in MATLAB.
The output of the FFT consists of multiple peaks, and each peak in the FFT output corresponds to an
emitter existing at that frequency. Here in Fig.6.4b, we obtained 6 peaks at different frequencies ranging
from 750 MHz - 1250 MHz, indicating the presence of 6 emitters in the interleaved signal.
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(a) Interleaved LFM Signal

(b) Frequency Response of an Interleaved signal

Figure 6.4: Interleaved LFM signal MATLAB plot and its respective Frequency Response

The amplitudes obtained are compared to the threshold value to filter out valid signals from the
FFT result. The valid signals are later sent to the pulse width estimation block and DoA block to
obtain the pulse parameters. According to the design flow given in Fig.5.1, the interleaved signal is
de-interleaved based on window number, frequency, amplitude, and direction of arrival. Fig.6.5 shows
the 6 de-interleaved emitters. The de-interleaved signals are sent simultaneously to the PRI estimation
block to estimate the PRI & PRI type of the signal. Here, we evaluated the system for several test cases,
including PRI, pulse-on-pulse scenarios, two emitters with the same pulse width, etc., and obtained
promising results. Table 6.4 summarizes the outputs obtained for the inputs given in the table 6.3.

Since we are de-interleaving the system based on window number, DoA & Frequency, we can also
identify frequency-agile radars. The total simulation time was further reduced by performing PRI esti-
mation on each de-interleaved signal simultaneously.
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Table 6.4: Outputs obtained from the MATLAB Implementation of the Architecture

Window

Number

Frequency

(MHz)

Pulse

Width

(µs)

Amplitude

(DBm)

DoA

(deg)

TOA

(µs)

PRI

(µs)

PRF

(GHz)

PRI

TYPE

1 751.46 1 49.1 4.97 0 12 0.083 2

1 801.56 4.2 49.2 20.45 0 8.6 0.116 1

1 863.5 5.5 49.1 -12.64 0 9 0.111 1

1 921.5 4.5 48.8 -18.35 0 7.8 0.128 3

18 991.4 3 49.4 -2.81 1.7 7.3 0.136 3

1 1100.8 2.2 49.4 9.42 0 12.5 0.08 2

Figure 6.5: De-interleaving of emitters based on the frequency and DoA. Here, the cluster of dots

represent the presence of each emitter
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6.2.2 Hardware Implementation Results:

6.2.2.1 Static Data Test Results

We have implemented the system on FPGA and tested the system with the same set of inputs as
given in table 6.3. We have performed a 512-point FFT having a window length of 512 samples which
constitutes 379.5 ns. The frequency of an emitter based on the frequency index can be achieved using
the eq:6.1.

findex = 256± (f − 675MHz)

2.67MHz

f = 675MHz ∓ (findex − 256) ∗ 2.67MHz (6.1)

Fig.6.6a, shows the peaks obtained after performing the FFT operation, indicating the presence
of emitters. Here, Outputs are obtained at frequency indexes 95,163,185,209,228,136 whose corre-
sponding frequencies are 1104 MHz, 923 MHz, 864 MHz, 800 MHz,749 MHz, 995 MHz respectfully.
Fig.6.6b gives the estimated pulse width of the input signal. The pulse widths obtained for the frequen-
cies at frequency indexes 95,163,185,209,228 is 6, 13, 15, 12, 3 respectively. The output of the PRI
module is shown in Fig.6.6c, where the PRI of the signals at indexes 95,163,185,209,228,136 is 32, 13,
26, 36, 32, 22 respectively. The overall inputs and outputs are summarized in the table 6.5. Thus, we
concluded the designed system is working for a given set of test inputs and verified with the MATLAB
results.

Table 6.5: Comparision of the Static Data Inputs and Outputs captured using ILA

Inputs Outputs

Frequency

(MHz)

Pulse Width

(µs)

PRI

(µs)

PRI

TYPE

Pulse Width

(µs)

PRI

(µs)

PRI

TYPE

751.46 1.3 12 2 1 12 2

801.56 4.3 8.6 1 4.2 8.6 1

863.5 6 9 1 5.5 9 1

921.5 5 9 3 4.5 7.8 3

991.4 3.3 6.6 3 3 7.3 3

1100.8 2.4 12.5 2 2.2 12.5 2
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(a) Output of FFT IP-core indicating the presence of Various emitters. Each emitter is represented by a peak.

(b) ILA capturing the Pulse width of the emitters present in the LFM. Here, pulse width is represented as multiples

of window length (379.5 ns)

(c) ILA capturing the PRI of the emitters present in the LFM. Here, PRI is represented as multiples of window

length (379.5 ns)

Figure 6.6: Hardware Implementation of the ESM System using Static Data
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6.2.2.2 Real-time Data Test Results

Once the functionality of the system is proved using the static data, we tested the system by passing
a stream of real-time data using a signal generator (injection mode testing) and using a horn antenna
(radiation mode testing). Due to the unavailability of a multi-emitters simulator, we have tested the
system with only single emitter frequency. Using our new proposed parallel-FFT architecture, we were
able to implement 512-point FFT on the incoming real-time data stream.

Table 6.6: Comparison of inputs and outputs of a signal by varying Pulse width and PRI

INPUTS OUTPUTS

Pulse Width

(µs)

PRI

(µs)
PRI Type

Pulse Width

( × 379ns)

PRI

(× 379ns)

PRI TYPE

(1-

constant )

LOW PRI

0.5 1 Constant 1 2 1

1 2 Constant 3 4 1

5 10 Constant 13 26 1

MEDIUM PRI

10 20 Constant 26 52 1

15 30 Constant 40 78 1

15 45 Constant 40 118 1

HIGH PRI

60 120 Constant 158 316 1

45 120 Constant 119 316 1

200 400 Constant 527 1054 1

The peaks obtained at frequency index 378 in fig. 6.7a indicate the presence of an emitter with 1
GHz frequency. These IF frequencies are converted into RF frequencies by using LO frequency & band
information. Initially, a continuous sinusoidal signal is fed as an input to the system. The check cw flag
in fig. 6.7b indicating the incoming signal is from a continuous radar. Later, a 1 GHz pulsed signal with
pulse width 100 µs and PRI 200 µs is sent to the receiver. The pulse width and PRI estimated by the
system are captured by an ILA and is given in fig. 6.7c. The ILA probes out the pulse width as 262 and
PRI as 526, corresponding to 99.46 µs and 199.61 µs, respectively as shown in fig. 6.7c. The system is
also tested by varying the signal pulse width & PRI values and are tabulated in table 6.6
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6.2.3 FFT architecture Results

(a) Output of FFT IP-core indicating the presence of an emitters, represented by a peak.

(b) ILA capturing the Pulse width of the continuous signal. Here, Check cw flag is high indicating the emitter as

continuous radar

(c) ILA capturing the Pulse width and PRI of the emitters present in the LFM. Here, pulse width & PRI is

represented as multiples of window length (379.5 ns)

Figure 6.7: Hardware Implementation of the ESM System using real-time Data
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Chapter 7

Conclusions and Future Work

The ESM system presented in the paper is designed to process real-time data and estimate the di-
rection of arrival of multiple emitters simultaneously with an absolute error of less than 1 degree, a fre-
quency resolution of 2.67 MHz, and a pulse width resolution of 379 nanoseconds. The system achieves
this by implementing an N-point FFT on multiple parallel channels, allowing for efficient incoming
signal processing. One key innovation in the system is its FFT architecture, which can implement a
512-point FFT five times faster than a conventional IP-based approach while requiring fewer arithmetic
operations. The new FFT architecture makes the system more efficient and faster than other existing
approaches. Another critical aspect of the system is its use of a linear regression algorithm to obtain
the monopulse ratio curve (MRC), which is used to calculate the direction of arrival. This approach
helps to reduce the absolute error to less than 1 degree, making the system highly accurate. The system
has been implemented on a Virtex-7 FPGA, and its functionality has been verified using both static and
real-time data. Overall, the ESM system presented in the paper is an innovative and efficient approach
to processing real-time data and estimating the direction of arrival of multiple emitters simultaneously.

In conclusion, the ESM system presented in this paper provides a significant improvement in the real-
time processing of data and estimation of the direction of arrival of multiple emitters. However, there is
still scope for further research and development in this field. One potential area for future exploration is
the incorporation of machine learning algorithms to improve the accuracy and efficiency of the system
further. Additionally, the system’s performance could be evaluated under more challenging conditions,
such as in the presence of interference or in a dynamic environment. Overall, the ESM system has
the potential to benefit a wide range of applications, including military surveillance, radar systems, and
telecommunications, and future research in this field can lead to even more significant advancements.
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