Optimizing Forensic Data Availability and Retention of SDN Forensic
Logs by Using Bloom Filter

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science
in

Computer Science and Engineering by Research

by

Varun Sharma
201150846

varun.sharma@research.iiit.ac.in

i

International Institute of Information Technology
Hyderabad - 500 032, INDIA
April 2023

Copyright (©) Varun Sharma, 2023
All Rights Reserved

International Institute of Information Technology
Hyderabad, India

CERTIFICATE

It is certified that the work contained in this thesis, titled “Optimizing Forensic Data Availability and
Retention of SDN Forensic Logs by Using Bloom Filter” by Varun Sharma, has been carried out under
my supervision and is not submitted elsewhere for a degree.

Date Adviser: Prof. Shatrunjay Rawat

To my parents and brother

Acknowledgments

I would like to express my deepest gratitude to my mentor, my guru, Prof. Shatrunjay Rawat. This
project would have been impossible without his persistent support and guidance. His extraordinary
attention to details and personal generosity have meant so much to me than is possible to express. He is
a person of great thoughts and discipline and his meticulous manner of working is something to emulate.
I shall forever remain indebted to him for his valuable insights and expertise. Apart from our several
meetings and discussions, he has been kind enough to help me sail through the challenging times of
pandemic.

My sincere thanks to the management of IIIT Hyderabad, the premier institute which is serving
the society as a host of excellent knowledge source. I have always been an admirer of this wonderful
institution which is dedicated towards meaningful research and academia.

I also wish to thank the almighty for providing me sound physical and mental health. Thank you,
Saurabh for helping me through the technical discussions, resolving my queries and providing his valu-
able feedback. My sincere thanks to Kishore for his cheerful support which helped me to smoothly pur-
sue my studies alongside my office work.

For my baa, my parents, Shri Ajay Shanker Sharma and Shrimati Hemlata Sharma, and my brother,
Aditya Sharma. They helped me survive all the stress and not letting me give up during the adversities.
I was able to wean off my bouts of procrastination only with their gentle persuasion and motivation
throughout this journey. Thank you so much for always being my biggest support system.

Abstract

To perform network forensic analysis on an incident in software defined networking (SDN), logs are
of the utmost importance. Without any logs, an investigator will not be able to complete and justify the
forensic analysis. With the advancement of network and communication technologies, the volume of
logs that needs to be collected and retained is growing exponentially big. The network administrators
face the problems in maintaining such huge logs for longer period of time for forensic analysis. Net-
work Providers rely on purging data based on a certain stipulated duration expected by the local rules
for forensics evidence. SDN providers have limitations in managing such big data since the expense
involved is commensurate with the duration of data retention. Here, in this work we propose a novel
idea to reduce and summarize large forensic data sets for faster querying as well as reducing its space
complexity by using bloom filters. Through this work we aim to propose a system which can deliver

more optimized forensic data availability in SDN platform compared to existing systems.

vi

Contents

1 Introduction
1.1 Motivation
1.2 Research Contribution

1.3 Thesis Structure

2 Background
2.1 Network Forensics
2.2 Categories of Network Forensics
2.3 SDN Forensics Data
2.3.1 Logs Data Sources
2.3.2 Data Collection
2.3.3 Compression
2.3.4 SDN System Security
2.3.5 Forensic Data Availability
2.3.6 Admissible Network Forensics Evidence
2.3.7 Forensic Data Retention Policy

2.3.8 Expense

3 Related Work
3.1 Security Approaches
3.2 Effective Network Data Collection

3.3 Usage of Blockchain to Protect Data

vil

10

10

11

13

14

15

15

17

17

19

3.4 Logs Availability for Analysis,

Proposed System Architecture

4.1 Logs Collection and Structure
4.1.1 RollingLogs.
4.1.2 Detailed System Simulation

4.2 Bloom Filter Integration
4.2.1 Bloom Filter Implementation
4.2.2 Analyze Optimum Hash Functions

4.3 Complexity Analysis
4.3.1 Space complexity Analysis

4.3.2 Time complexity Analysis

Evaluation
5.1 System Execution and Results

5.2 Cybersecurity Analysis of Designed System

Conclusions

6.1 Thesis Summary and Future Work

viii

27

32

32

32

37

37

37

39

39

40

41

41

52

56

List of Figures

10

11

12

13

14

15

16

17

Sample Open vSwitch Logs
SDN Architecture with Logs Flow
Proposed System Flow Chart - Admissible Evidence
Designed System Lo
Simulation Experiment Topology
Logs Collection
Network Dump
Network Linkso
SDN Controller Activation
Ping Test on Sitmulated Network: hl->s3->s1->s2->s6->h4 .
Parsed Data o
Compression Analysis of 1024 GB sample data
Parsing pcap Files
Files After Parsing
.pcap Files and Corresponding .bin Files
Querying the Elements

Bloom Filter Sample Structure of Experiment

ix

List of Tables

1 SDN Security Approaches 21
2 Effective Network Data Collection 23
3 Logs Availability for Analysis 26
4 Data Storage Analysis 29
5 Number of hash functions used for various false positive prob-
abilitieso 38
6 Probability of false positives with hash functions 38

7 Probability of false positives with number of items in Bloomfilter 39
8 Probability of false positives with number of bits in filter . . . 39

9 Time Complexity 40

Abbreviations

Following abbreviations are used in the thesis, including diagrams ::

IT — Information Technology

SDN — Software Defined Networking
IoT — Internet of Things

IP — Internet Protocol

ICMP — Internet Control Message Protocol
IDS — Intrusion Detection System

IPS — Intrusion Prevention System

BF — Bloom Filter

FPP — False Positive Probability
WLAN — Wireless Local Area Network
SAN — Storage Area Network

WAN — Wide Area Network

xi

1 Introduction

1.1 Motivation

Network Forensics is a stream of forensic science which deals with forensic
activity in the area of computer networks which mainly involves identifying
sources and paths of cyber-attacks. This is the most important part of
any cybercrime investigation and forensics. It primarily involves detecting
all sources of attacks in the network, it can also be used as a proactive
method to monitor and identify issues in the network infrastructure, overall
performance, and bandwidth usage.

Security concerns in the network might start as something simple as
traffic spikes or bottlenecks. These are, however, often ignored, especially
in developing organizations, assumed to be caused by application growth or
increase in the number of users. But neglecting these issues can result in data
breaches, loss of customer data, device crashing, etc. With the exponential
increase in network traffic every minute. There has been a proportional
increase in the number of cyber-attacks or malfunctions across the globe. To
deal with such attacks and malfunctions, we need to capture and store the
data for forensic data analysis.

We have a wide variety of network systems like WLAN, SAN, WAN, etc.
of which SDN is the upcoming future of network system. SDN is gaining
momentum in the networking industry due to its multiple advantages such
as centralized, flexible, and programmable network management. The SDN
framework consists of diverse devices like IoT devices, data centers and in-
ternet service providers spread across vast geographical areas. Each of these
devices produce logs, which need to be analyzed and monitored to provide
effective solutions for network security and comply with the regulations.

Current information systems are crowded with log files, created in mul-
tiple places (e.g., network servers, user monitoring applications, system ser-
vices and utilities) for multiple purposes like maintenance, security issues,
traffic analysis, legal data, and forensic analysis. Log files in such complex
systems can grow quickly to humongous proportions causing difficulty to re-
tain, monitor, control, and secure them for forensic analysis. Often they are
required for prolonged periods of time.

Due to the overhead in managing archived data and expenses, data older
than a certain retention period is purged in current systems. While analyzing
the critical forensic incident to trace back and identify the potential source
of attack, if the forensic data required is slightly older than the certain
retention period policy and is purged already, we might completely miss out
on gathering potential evidences for analyzing the source of the cyber attack
path. This area is crucially based on the exigency of the threat forensic
experts deal with, and attracts our attention to provide a solution to this
problem using the bloom filters.

The important factors that need to be considered in terms of forensic data
collection in SDN platform necessary for forensic analysis are system secu-
rity, information security, confidentiality, and expense. System security deals
with hardening of systems which should be tolerant of any security breach.
Information security deals with ensuring the safety of collected network data
while, confidentiality deals with maintenance of sensitive or private informa-
tion in the collected network data. In these scenarios, enormous quantities
of information need to be gathered for analytical or archive purposes. This
requires the streamlining of the quantity of data to minimize data transfer
bandwidth utilization, maximize search throughput and reduce storage space
requirements.

The expenses involved in network data storage is an important factor
that should be considered in data availability in SDN platform for network
forensics analysis. SDN providers cannot keep collecting all network data
forever and since the expense is commensurate with the duration of data
retention, a system should be well designed by paying attention to the overall
expenses involved.

Most of the local government policies on network log retention are based
on the feasibility of the ISP /network providers’ capacity to hold logs for cer-
tain period of time. This capacity is based on multiple challenges involved
in the process like network log data management, data security, hardware
requirements, expenses incurred. With our system, duration to hold the
forensic network logs can be enhanced to more than double the current ca-
pacity using almost similar hardware. This positively opens the scope for the
local governments to consider this as an opportunity and may revise such
retention policies in crucial systems which currently varies from 1 month
to 3 months in moderately busy network systems. We discuss more on the
challenges involved in the data retention in next chapters.

The previous research works conducted under the guidance of our es-
teemed Professor, which employed BF as a key methodology, have served as
a significant motivating factor for us to extend the scope of our own research
using BF, and after undergoing a series of iterations to identify the problems
and derive their corresponding solutions, we have arrived at the decision to
venture deeper into this area and explore its potential to a greater extent.

1.2 Research Contribution

Below are the Research Contribution:

e In this work, we introduce a framework which can hold additional SDN
forensics data compared to traditional network data storage systems.

e We employ a hashed data approach provided by bloom filters.

e Network data logs integrated in bloom filter provide more forensics data
storage which can be used as potential evidence to track path traversed
by a packet for a longer duration of time compared to existing SDN
systems.

e We simulate our framework on the network data using ‘Mininet’ and
evaluate the results.

1.3 Thesis Structure

This thesis is organized as follows: ‘Chapter 2’ provides the background
of Network Forensics, its categories, SDN forensics data, complexity to
deal with forensic evidences, SDN logs sources, data collection, compression
strategies, I'T and system security, forensic data availability and acceptabil-
ity, data retention policy and expenses concerns involved with data storage
and management along with the fundamentals of data availability as a crucial
parameter for cyber-crime evidences.

‘Chapter 3’ shows the related work done in solving some of the topics listed
in ‘Chapter 2’ like data security approaches. Next, we discuss effective
data collection in fast growing SDN system. And the usage of blockchain to
achieve data protection and how the system is designed for logs availability.

‘Chapter 4’ deals with the proposed system architecture along with the
experiment which contain details of system like logs collection, integrating
bloom filter and space & time complexities evaluation.

‘Chapter 5’ discusses the evaluations of experiment simulations, results and
analysis.

‘Chapter 6’ deals with the Conclusion and future work which contains
conclusion drawn from this thesis and the expected work in future.

2 Background

2.1 Network Forensics

Network Forensics is a branch of digital forensic science which is related
to monitoring and analysis of computer network traffic. This is required
to perform future analysis and to detect vulnerabilities exploited. Network
forensics consist of steps like capturing, recording and analyzing network
data for determining attack source. This information about the source of
cyberattack is crucial and can be presented in the court of law as evidence.

We need to perform forensic analysis on the data flowing through the
network with respect to occurrence of the attack. This activity could involve
extracting data from saved packets data. While doing so, we are risking the
privacy of internet users as a lot of confidential information flows through
the network. So, there is a need to preserve data in a way that is precise
and at the same time does not reveal the information of its contents.

[18] Network analysis is one of the good methods to detect the cybercrime
that had taken place. Network forensics can also be used to secure and pro-
tect a system by finding about the uncommon or malicious activities in the
network [14]. Unlike every other domains of digital forensics, this branch
deals with the unstable and volatile information and thus it is a proactive
investigation. In addition, various case studies have been added to make
the concept easier and highlight the benefit of network forensics. Network
Forensics can be defined as the procedure to capture, record, filter, analyse
and extract network packets for finding out about the source of attack that
has occurred in or against a particular network security framework. Network
Forensics can also be used to detect the pattern and target of a particular
attack [15]. It gathers information from various locales and distinctive net-
work hardware, for example, Firewalls and IDS to dissect the network traffic
information. Moreover, network forensics can be utilized to screen, forestall,
and dissect likely assaults.

Network forensics can be used to collect various data present in network
like packets, firewalls, log files, addresses etc. In recent years, there is a very
huge change in the occurrence and types of Cyber-attack against or between
network securities. So, network forensics is highly important now. The most
important work of network administrators today is to analyse and observe

traffic in the network by analyzing each and every packet transmitting in
a network, if they are a danger to a secure system and what would be the
instant response in case of breach in security.

There are various limiting factors that could be huge challenge for inves-
tigators [16]. Network analysis is sometimes challenging as there are many
limiting factors such as access to IP addresses, data integration and privacy,
storage in network device, lack of advance tools, management of high-speed
data transmission. A person who works with a network can identify if there
has been an attack, type of attack, damage it can cause and how to fix it as
soon as possible. However, growth and advancement of network forensics is
one of the reliable methodologies in the field of cyber-crime.

A general Network analysis used in forensic investigation includes steps
such as:

e Identification where the investigator recognizes the network indica-
tors.

e Preservation is done in the next step where the isolation and securing
of physical or logical evidence are done to prevent it from altering.

e Collection: Investigating officers record the physical scene and dupli-
cate evidence in case of the primary being corrupted.

e Examination: Search of the evidence relating to the attack in/on the
network and includes detailed documentation also for further analysis.
in-depth systematic search of evidence relating to the network attack.

e Analysis: Determine significance and reconstruct packets present in
the network traffic data and lead to conclusions based on evidence
analyzed.

e Presentation: Summarize and concludes results based on the evi-
dence.

e Incident Response: The response to the intrusion detected is initi-
ated based on the information gathered by the evidence [17].

Digital evidence that is presented in a court of law has to be well-
organized, proving that the fact is un-tampered and data privacy has not
been compromised.

Most of the earlier work to traceback the attacker was done majorly using
‘IP Traceback’ methods. [2] Other methods may involve logging of entire
network data and later data-mining techniques are applied to determine if
the attack packet has passed through the router/switch. Few of the current
network forensics techniques being used to traceback the attack source are
as follows.

o IP Traceback: 1t is based on the volatile routing tables to traceback
the attack path. Routing table is referred to back track the packet
from the victim host to attackers’ network. But in real time, this
technique has its own limitations and cannot be used except for a very
short time traceback because an attacker can potentially manipulate
the path/ packet by introducing a rouge router in a weak network and
the routing table also may change because of change in the network
condition (topology, traffic, etc.)

e Input Debugging: In this method, when a victim recognizes that it is
being attacked, the victim develops an attack signature that describes
a common feature contained in all the attack packets. The victim
communicates this attack signature to the upstream router that sends
the packets. Based on this signature, the upstream router employs
filters that prevent the attack packets from being forwarded through
an egress port and determines which ingress port they arrived at. The
process is then repeated recursively on the upstream routers, until the
originating site is reached. This method can only be used in real-time
when an attack is in progress with the Internet Service Provider (ISP)
coordination.

e Controlled Flooding: The victim uses a pre-generated map of the
Internet topology to iteratively select hosts that could be forced to
flood each of the incoming links of the upstream router. Router has
a common buffer that is shared by packets coming across all the in-
coming links. So, the attack packets have a higher probability of being
dropped due to this flooding. By observing changes in the rate of pack-
ets received from the attacker, the victim infers the link through which
the attack packet would have come. This basic testing procedure is
then recursively applied on all the upstream routers until the source is
reached. Here the approach itself will to a denial-of-service attack on
the routers.

e Logging: In this approach, all the packets are logged at each router
and data mining is used to determine if the packet has passed though
the router. This will lead to privacy concerns because packets are
logged at each router. Also it is not practically feasible because of the
limited storage available at each router.

e ICMP Traceback: Every router will sample (or choose few of them)
the packets it is forwarding, with a low probability (like 0.00005). Con-
tent of sampled packet is copied into an ICMP traceback message along
with the information about adjacent routers and the message will be
sent to the destination (or host). This information will be used by
host to determine the attack path. This approach would be more use-
ful for the flooding type of attack, so that the receiver gets enough
messages about the routers in the path to reconstruct the attack path.
This technique is more likely to be applicable for attacks that originate
from a few sources and would involve overhead of ICMP messages sent
to destination hosts.

e Basic Packet Marking: In this technique, each router marks its
IP information into the packet before forwarding the packet, so that
traceback can be completed by the victim. Since Packet Record Route
can hold Maximum of 10 IP address this will enable to capture only
few routers traversed in the path.

e Probabilistic Packet Marking: Upon receiving a packet, a router
chooses to mark its own address on the packet with a probability p.
Given that enough packets would be sent by the attacker and the route
remains stable; the victim would receive at least one sample for every
router to construct attack path.

We observed that the network data is of utmost importance for forensic
analysis. This brings the known challenges associated with retaining this
big data for a longer duration of time. Forensic analysis system requires
optimum space and time complexity design to deal with such a huge amount
of data and the processing of it. Below we briefly discuss challenges involved
in retaining the network traffic logs for forensic analysis.

2.2 Categories of Network Forensics

There are majorly two types of network forensics, Investigation Mode and
Data Processing Mode. Based on investigation mode, network forensics are
further classified as, online and offline network forensics. This type of inves-
tigation depends on the time of the investigation.

e Online / Live Network Forensics:

This type of network forensics is also known as dynamic forensics,
where the investigation is conducted during its flow. Forensics of this
type is generally suitable for large, distributed networks. Implementa-
tion of this strategy requires more computational resources and huge
amount of storage.

e Offline Network Forensics:

This type of network forensics is also known as static forensics. Static
forensics is a type of network forensics in which network data is cap-
tured, recorded, and analyzed after an attack has occurred. As a result
of storage space limitations, existing data might be overwritten even
though each occurrence is correctly recorded from network logs and
intruders’ behavior is briefly and accurately monitored.

And majorly there are two categories of network forensics, based on the
data processing mode. They are defined as proactive and reactive network
forensics.

e Proactive Network Forensics:

This is used in real time investigation of the incident. This is imple-
mented by automating the devices while reducing user interaction. It
provides more accurate and precise data. It also offers early detection
of network attacks and reduces the possibility for intruders to delete the
evidence after attack. However, in terms of attack patterns detection,
it elevates processing overhead and storage.

e Reactive Network Forensics:

This is a postmortem method which deals with investigating an at-
tack after it has occurred. To ferret out the root cause of the attack,

investigate the malicious incident with reduced processing, correlate
the attacker to the attack, and mitigate the impact of the attack, it
sifts the network vulnerabilities by storing, detecting, gathering and
analyzing digital evidence collected from the network.

2.3 SDN Forensics Data

It is the data generated from SDN network system which can be used for
network forensic analysis and can be produced in the court of law or in-
vestigating agencies as potential evidence in case of cybercrime. Currently
with minimal number of contributions forensics is still at an early stage in
SDN. As SDN allows the safe preservation of network activity traces, it pro-
vides support for digital forensics and root cause analysis. SDN controllers
provides centralized control over the network and data storage which are
generated from all data plane devices.

According to IT Act Rules, there are certain evidence acceptance criterion
in the court of law, based on which it is considered as valid evidence, like
if the raw data is hashed then both the data (raw and hashed) should yield
the identical observations. One of the acceptable electronic types of evidence
rule states:

“To derive or reconstruct the original electronic record from the hash re-
sult produced by the algorithm”. We are focusing more on this criteria where
the hash data and raw data should reconstruct the same forensic results upon
analysis, as shown in

Proposed system with admissible evidence in court of law system flow is
shown in ‘Figure 3’.

2.3.1 Logs Data Sources

SDN logs are gathered from different network devices like network switches
and routers generated in centralized network controller. The SDN controller
is the ‘brain’ of the network. It is possible and very common these days
to deploy multiple controllers in the network, each responsible for different
tasks. In fact, to make it more complicated, some network operators decide
to deploy multiple controllers, managed by a single master controller, giving

10

us the challenge of running and managing many ‘brains’ in our network.
Before we even tackle the orchestration and management issues, we need to
discover if there are any issues in our network caused by either controller
performance bottlenecks or networking equipment failure.

The control plane is composed of an SDN controller or a set of controllers.
It is possible to understand the controller’s behavior and performance by
looking at the logs produced by it. The SDN controller will contain most of
the important information about the state of the network that can be used
later in troubleshooting or debugging.

OvS is a production quality virtual switch, licensed under the open
source Apache 2.0 license. It is designed to enable large scale network au-
tomation, while supporting standard management interfaces and protocols.
By default, the ‘OvS’ sends log data to files in the server’s “/var/log/open-
vswitch” directory.

ovs-openvswitchd.log — ‘switchd’ is a daemon that manages and controls
any number of ‘Open vSwitch’ devices on the local machine. This log holds
information about the data paths set up, configuration updates, switch to
controller connection status and per port information. Link failures are also
logged to openvswitchd.log as part of ‘Open vSwitch’ link monitoring. These
logs are collected in a centralized system and retained for offline forensic
analysis. Sample logs are shown in ‘Figure 1’

2.3.2 Data Collection

Software Defined Networking (SDN) [1] is one of the most promising options
for network management and the future of next-generation networks (Future
Networks). SDN possesses an intelligent configuration, better flexibility to
accommodate innovative networks, and high-performance architecture. The
SDN mainly consists of 3 main components:

e The Data Plane / Infrastructure layer is the network architecture
layer that physically handles the traffic based on the configurations
supplied from the Control Plane.

e The Control Plane / layer refers to the network architecture com-
ponent that defines the traffic routing and network topology.

11

2022-05-30T23:08:45.6217100095 |bridge| INFOIbridge s4: added interface s4-ethl on port
2022-05-30T23:08:45.6227100096 | bridge | INFOIbridge s4: added interface s4-eth2 on port
2022-05-30T23:08:45.6227100097 |bridge| INFOIbridge s3: added interface s3-ethl on port
2022-05-30T23:08:45.622Z100098 |bridge| INFOIbridge s3: added interface s3-eth3 on port
2022-05-30T23:08:45.6227100099 |bridgel INFOlbridge s3: added interface s3-eth2 on port
2022-05-30T23:08:45.6227100100 | bridge| INFOIbridge s3: added interface s3-eth4 on port
2022-05-30T23:08:45.6252100101|bridgel INFOIbridge s2: added interface s2-eth4 on port
2022-05-30T23:08:45.6252100102 | bridge| INFOIbridge s2: added interface s2-eth2 on port
2022-05-30T23:08:45.6257100103 |bridge| INFOIbridge s2: added interface s2-eth3 on port
2022-05-30T23:08:45.625Z2100104 |bridge| INFOIbridge s2: added interface s2-ethl on port
2022-05-30T23:08:45.646Z100105 | rconn| INFOIsl<->tcp:127.0.0.1:6653: connecting...
2022-05-30T23:08:45.6472100106 | connmgr | INFOIs1: added primary controller "tcp:127.0.0.
2022-05-30T23:08:45.648Z100107 | connmgr | INFOIs1: removed service controller "ptcp:6654"
2022-05-30T23:08:45.650Z100108 | rconn| INFOIsl<->tcp:127.0.0.1:6653: connected
2022-05-30T23:08:45.6642100109 | rconn| INFOIs2<->tcp:127.0.0.1:6653: connecting...
2022-05-30T23:08:45.6682100110| connmgr | INFOIs2: added primary controller "tcp:127.0.0.1:6653"
2022-05-30T23:08:45.668Z100111| connmgr | INFOIs2: removed service controller "ptcp:6655"

2022-05-30T23:08:45.6682100112 | rconn| INFOIs2<->tcp:127.0.0.1:6653: connected

2022-05-30T23:08:45.6772100113 | rconn| INFOIs3<->tcp:127.0.0.1:6653: connecting...

2022-05-30T23:08 6772100114 | connmgr | INFOIs3: added primary controller "tcp:127.0.0.1:6653"

2022-05-30T23:08 6772100115 connmgr | INFOIs3: removed service controller "ptcp:6656"

2022-05-30T23:08:45.680Z100116| rconn| INFO|s3<->tcp:127.0.0.1:6653: connected
2022-05-30T23:08:45.686Z100117 | rconn| INFO|s4<->tcp:127.0.0.1:6653: connecting...
2022-05-30T23:08:45.686Z100118 | connmgr | INFO|s4: added primary controller "tcp:127.0.0.1:6653"
2022-05-30T23:08:45.686Z100119| connmgr | INFOIs4: removed service controller "ptcp:6657"
2022-05-30T23:08:45.686Z100120| rconn| INFO|s4<->tcp:127.0.0.1:6653: connected
2022-05-30T23:14:28.660Z100121 | connmgr | INFOIs1<->unix#2: 1 flow_mods in the last @ s (1 adds)
2022-05-30T23:14:34.8772100122 | connmgr | INFO| s2<->unix#5: 1 flow_mods in the last @ s (1 adds)
2022-05-30T23:14:40.850Z100123 | connmgr | INFO|s3<->unix#8: 1 flow_mods in the last @ s (1 adds)
2022-05-30T23:14:44.879Z100124 | connmgr | INFO| s4<->unix#11: 1 flow_mods in the last @ s (1 adds)
2022-05-30T23:28:35.653Z100125| ofp_match | INFOInormalization changed ofp_match, details:
2022-05-30T23:28:35.6537100126 | ofp_match | INFO| pre: arp,in_port=1,vlan_tci=0x0000,d1l_src=5e:96:48:6e:61:cb,dl_dst=32:30:7b
:a9:ec:33,arp_spa=10.0.0.7,arp_tpa=10.0.0.5,arp_op=2,nw_tos=0,tp_src=0,tp_dst=0
2022-05-30T23:28:35.653Z2100127 | ofp_match | INFOIpost: arp,in_port=1,vlan_tci=0x0000,d1l_src=5e:96:48:6e:61:cb,dl_dst=32:30:7b
:a9:ec:33,arp_spa=10.0.0.7,arp_tpa=10.0.0.5,arp_op=2

2022-05-30T23:28:35.6537100128 | of p_match | INFOInormalization changed ofp_match, details:
2022-05-30T23:28:35.6532100129 | ofp_match | INFOI pre: arp,in_port=1,vlan_tci=0x0000,d1l_src=5e:96:48:6e:61:cb,dl_dst=32:30:7b
:a9:ec:33,arp_spa=10.0.0.7,arp_tpa=10.0.0.5,arp_op=2,nw_tos=0,tp_src=0,tp_dst=0
2022-05-30T23:28:35.6537100130 | ofp_match | INFOIpost: arp,in_port=1,vlan_tci=0x0000,dl_src=5e:96:48:6e:61:cb,dl_dst=32:30:7b

PWNRBRNWRNRE

Figure 1: Sample Open vSwitch Logs

e The Management Plane / Application layer takes care of the
wider network configuration, monitoring and management processes
across all layers of the network stack.

‘Figure 2’ shows the flow of a network in a typical SDN system and
forensics logs collection. Like most software systems, the SDN controller is
typically equipped with logging features that can be used at run time to
provide insight into the behavior of the software and the hardware that it
is running on. The amount of logging depends on developer style, but typi-
cally it will log the occurrence of all major SDN functions such as flow table
modification, network component connection status and topology character-
istics. The SDN controller log files contain valuable raw information about
the network events processed by the software modules.

Ideally, the collected data should be processed for analysis in real-time
and in a non-invasive style, having negligible impact on the overall system
performance. One of the solutions is to use the log analysis tools residing
in the cloud to analyze logs from SDN controllers and switches. It requires

12

extensive knowledge of logging, log analysis, network behavior and SDN
domain-specific knowledge.

Current data storage system has data in text format / raw logs, com-
pressed logs or archived and the data is retained for a certain stipulated
period of time. With the acceleration of the 5G technologies and the pro-
motion of the Internet of things (IoT) services, large scale and high-speed
networks become the focus of current research and development. In order
to collect and analyze network logs effectively, researchers and operators
proposed many systems and applications as discussed in ‘Chapter 3.

ooo

Network) 500 000 o0
= 000 000 0og
O .

Applications

Control Plane / . . . ‘

Forensic Logs
retention

Data Plane

Figure 2: SDN Architecture with Logs Flow

2.3.3 Compression

Current systems store the data using the typical compression algorithms.
All real time logs collection is done in the raw format and used for real time
analysis in preventive threat detection. Old logs are retained in compressed
format like zip, gzip, bz2, tar(+gz) algorithms, which can be restored to raw
format for forensics analysis when needed.

13

2.3.4 SDN System Security

IT and system /network security are important aspects of securing data from
vulnerabilities. Referring [1], To identify the hidden details of attacks and
their causes, network forensics is a preferred technique for network secu-
rity. Network forensic is a process of the identification, compilation, stor-
age, examination, and reporting of network digital evidence. The technique
adopted by various network administrators to investigate the source of at-
tacks is called network forensics. A forensic investigation must be able to
detect attack attempts regardless of whether they are successful, in order to
ensure that networks (servers, end-hosts, and other related devices) are se-
cure. Additionally, simple anomalous patterns must also be recognized for a
solution to detect as many ways of attack and malicious activity as possible.
In general, SDN forensic solutions provide a reasonable solution to network
and cloud security.

The utilization of SDN in network forensics is worth studying for efficient
networks. Majorly, there are two approaches defined for SDN security which
are Content Inspection and Traffic Monitoring & Auditing

e Content Inspection: To inspect the contents of each packet of data
on a network is known as content inspection. Using IDS, content in-
spection can be enhanced through flow level security and deep packet
inspection. As SDN enables flow-level security for the network security
systems, the flow of data is analyzed during the content inspection, and
selected packets are then used for the content inspection. The role of
an (IDS/IPS) is to stop or allow packets based on a thorough packet
survey using pattern recognition, data mining or signature matching
with an established threat inventory. In real-time, the SDN IDS can
use a huge amount of flow-based knowledge.

e Traffic Monitoring and Auditing: Besides other fundamental net-
work management tasks of SDN, network traffic monitoring promotes
anomaly detection, network forensic analysis, and user application
identification. Monitoring and auditing are very important instruments
for certain security tests when we talk about forensics.

Besides the above-mentioned security approaches for SDN, there are
other security approaches which are also used in various cases, which include

14

Flow Sampling, Access Control, Network Resilience, Security of Middle-
Boxes, and Security-Defined Networking.

2.3.5 Forensic Data Availability

Data availability is a major concern in any forensic analysis system. All
forensic analysis approaches become meaningful only when we have the data.
Due to certain challenges in holding the data, it has become a costly affair
as it requires a lot of hardware resources and operational working hours
to manage the data. In SDN system, since it is centrally managed and
controlled, we need to have a strong system to hold the data and then utilize
it in forensic analysis.

2.3.6 Admissible Network Forensics Evidence

‘Network forensics [By Yong Guan, in Computer and Information Security
Handbook (Third Edition), 2013]’ can be generally defined as a science of dis-
covering and retrieving evidential information in a networked environment
about a crime in such a way as to make it admissible in court. Different
from intrusion detection, all the techniques used for the purpose of network
forensics should satisfy both legal and technical requirements. For example,
it is important to guarantee whether the developed network forensics solu-
tions are practical and fast enough to be used in high-speed networks with
heterogeneous network architecture and devices. More importantly, they
need to satisfy general forensics principles such as the rules of evidence and
the criteria for admissibility of novel scientific evidence. The five rules of
evidence are as follows:

Admissible. Must be able to be used in court or elsewhere.

Authentic. Evidence relates to incident in a relevant way.

e Complete. No tunnel vision, exculpatory evidence for alternative
suspects.

e Reliable. No question about authenticity and veracity.

Believable. Clear, easy to understand, and believable by a jury.

15

The evidence and the investigative network forensics techniques should
satisfy the criteria for admissibility of novel scientific evidence (Daubert v.

Merrell):

e Whether the theory or technique has been reliably tested.

e Whether the theory or technique has been subject to peer review and
publication.

What is the known or potential rate of error of the method used?

Whether the theory or method has been generally accepted by the
scientific community.

The investigation of a cyber-crime often involves cases related to home-
land security, corporate espionage, child pornography, traditional crime as-
sisted by computer and network technology, employee monitoring, or medical
records, where privacy plays an important role.

There are at least three distinct communities within digital forensics: law
enforcement, military, and business & industry, each of which has its own
objectives and priorities. For example, prosecution is the primary objective
of the law enforcement agencies and their practitioners and is often done
after the act. In military operations, primary objective is to guarantee the
continuity of services, which often have strict real-time requirements. Busi-
ness and industry’s primary objectives vary significantly, many of which want
to guarantee the availability of services and put prosecution as a secondary
objective.

Usually there are three types of people who use digital evidence from
network forensics investigations: police investigators, public investigators,
and private investigators. The following are some examples:

e Criminal prosecutors. Incriminating documents related to homi-
cide, financial fraud, drug-related records.

e Insurance companies. Records of bill, cost, services to prove fraud
in medical bills and accidents.

e xLaw enforcement officials. Require assistance in search warrant
preparation and in handling seized computer equipment.

16

e Individuals. To support a possible claim of wrongful termination,
sexual harassment, or age discrimination.

The primary activities of network forensics are investigative in nature.
The investigative process encompasses Identification, Preservation, Collec-
tion, Examination, Analysis, Presentation and last is Decision.

In ‘Figure 3’, the proposed system flow chart illustrates the admissible
evidence that can be presented in a court of law for forensic analysis.

2.3.7 Forensic Data Retention Policy

All organizations, institutions, Internet Service Providers, etc. abide by a
certain network log retention policy based on the local government guide-
lines. These retention policies are made based upon the challenges involved
in holding the big data for forensic analysis. From the network provider’s
perspective, this stream is a complete investment, so we need to deal with
the resources and budget limitations accordingly.

For an example, In India, Section 69 of the IT Act allows the interception,
monitoring and decryption of information for a limited period of 2 months.
Even in the US, there is no mandatory data retention law. Under the ‘Flec-
tronics Communications Transactional Records Act’, the ISPs in the US are
required to retain data for a maximum period of 90 days, and only upon the
request of a government entity. As a result, there are no safeguards what-
soever for mass surveillance; there is no time limit on the period for which
the surveillance can continue, no restriction on the type of data that can be
collected and who it can be collected from.

2.3.8 Expense

The expense of network data collection [3] is also an important factor that
should be considered in terms of data collection performance. Investigators
and operators strive to develop an effective and low cost system for data col-
lection. In a large-scale data collection process, each extra component in an
individual thread could cause big redundancy. Typically, the expense of data
collection consists of development expenses and maintenance cost. So, we

17

need a data collection mechanism that is well designed by paying attention
to the costs of development and maintenance. Deployment difficulty and
application of expensive equipment in data collection can shoot up the ex-
penses. A Trade-off should be designed and developed in order to solve this
problem. Maintenance Expense (ME) heavily depends on update cycle and
error probability. For example, to achieve high accuracy, we often use pat-
tern matching method based on expert’s knowledge where data is frequently
updated and revised, which causes high maintenance expenses. However,
the use of a precise and adaptive mechanism for data collection may reduce
maintenance expenses due to its small maintenance requirement.

We have considered this as an important factor in dealing with forensic
data storage and management as it attracts our attention to this area and
also motivates our research. We analyzed the existing system end to end
and designed a system which can solve the problem of handling data older
than 3 months or more.

18

3 Related Work

3.1 Security Approaches

In [1], authors emphasize on the evolution and continuous adaptability of
SDN in the current network systems. Authors have discussed the various
advantages in SDN paradigm like ease of management, handling centralized
connectivity across the nodes, cloud and network security concerns. This
research work is aimed at providing the basics of SDN forensics and its
advantages in cloud architecture.

Authors highlight challenges and Issues of SDN in Network Forensics.
The centralized control of SDN draws attackers to exploit various network
devices by taking illegal control of the controller by hijacking the controller
itself. In the development years of SDN, the security initially was not con-
sidered as a key characteristic of SDN architecture, but with time and due
to the centralized nature of the SDN, they are vulnerable to various attack-
ers. Therefore, the security of SDN is given more priority. In the newly
evolving SDN architecture, investigating attacks is a tiring and demanding
task. Eventually, SDN seems to be the most intriguing development platform
for future networks. SDN still faces many challenges and problems, despite
its impressive advantages, particularly when it comes to a network security
problem. The goal of SDN network measurement is to understand and quan-
tify different aspects of network activity to promote network management,
monitor the anomalies and the development of security mechanisms, and
network troubleshooting.

Authors recommend designing the below-mentioned security-related
primitives to be considered for a better and efficient network and cloud-
based forensic.

e To prevent disruption and protection compromises, SDN security ref-
erence models and approaches based on protecting network entities
should be introduced.

e Using the control channel, traffic tracking of the application-controller
and identification of irregularities in particular avenues, such as cloud
setups can be implemented.

19

e Various methods and tools should be implemented to provide strong
security in different forensic process stages.

e Different techniques should be used to provide strong security at dif-
ferent layers of SDN.

e It is possible to store and retrieve network/state data for post-event
and forensic analysis for efficiency.

e Developing frameworks for the cloud forensic having ease to detect the
attacks.

e Enhance the security, content inspection, traffic monitoring, auditing,
and attack detection in cloud forensic.

e Creating enhanced Intrusion detection systems and improve their uti-
lization in SDN.

Advantages:

e Focuses on an emerging technology (SDN) for network forensic analy-
sis.

e Proposes a framework for conducting SDN forensic analysis.

e Provides a case study to evaluate the effectiveness of the framework.
Drawbacks:

e Limited discussion of the limitations and potential drawbacks of using
SDN for forensic analysis.

e The proposed framework is not evaluated on a large-scale or in a real-
world scenario.

Overall, the authors provide a useful overview of the potential benefits
and challenges of using SDN for forensic analysis, as well as a framework
for conducting such analysis. However, it could benefit from a more in-
depth discussion of the limitations and potential drawbacks of using SDN for
forensic analysis. The table above lists various techniques for SDN forensic
analysis, along with their advantages and drawbacks, which could be useful
for researchers and practitioners in the field.

20

Table 1: SDN Security Approaches

Technique Advantages Drawbacks
Network Provides insight into Requires a
Traffic network behavior large amount of data
Analysis and potential security | processing and analysis
threats
Flow-Based | Allows for the Limited visibility
Analysis identification and into overall
analysis of specific network behavior
network flows
Protocol Provides insight May not detect
Analysis into the behavior new or unknown
of specific network protocols
protocols
Signature- Can detect known May not detect
Based network attacks new or unknown
Analysis and threats threats
Anomaly- Can detect May generate
Based unknown or novel a high number
Analysis threats of false positives

3.2 Effective Network Data Collection

In [3], The authors provide a comprehensive survey of the various techniques
and tools used for network data collection. They discuss the advantages and
drawbacks of each technique and provide an overview of the current state of
the field.

As a fundamental procedure of network security measurement, network
data collection executes real time network monitoring, supports network per-
formance evaluation, assists network billing, and helps traffic testing and
filtering. It plays a crucial and essential role while dealing with network in-
trusion detection and unwanted traffic control. But an adaptive and effective
data collection mechanism that can be pervasively applied into heterogeneous
networks is still lacking.

Authors introduce three basic types of network data collection methods ,
which are packet based data collection, flow based data collection, log based

21

data collection. Based on the types of the data collection authors evaluated
the system performance by instantaneity, effectiveness, scalability, expense,
network performance, resource occupation, system security, adaptability and
evaluated the information security by integrity, confidentiality, availability,
traceability and authenticity. Furthermore, they figured out some open is-
sues based on several investigations and did forecast the direction for future
research.

In terms of techniques for network data collection, the authors discuss
packet sniffing, flow-based data collection, and telemetry-based approaches.
They also cover various tools for network data collection, such as Wireshark,
tcpdump, ntop, and NetFlow.

One of the main advantages of packet sniffing is that it provides a com-
plete view of all traffic on the network. However, it can be resource-intensive
and may not scale well to large networks. Flow-based data collection, on the
other hand, provides a more lightweight approach that can scale well but
may not capture all traffic.

Telemetry-based approaches, which rely on network devices to provide
data, offer a more efficient approach that can capture a wide range of data.
However, this approach may require specialized hardware and may not cap-
ture all relevant data.

The authors also highlight the importance of considering privacy and
security concerns when collecting network data. They discuss various tech-
niques for anonymizing and securing data, as well as potential legal and
ethical issues related to network data collection.

Overall, the authors provide a useful overview of the techniques and tools
available for network data collection. They highlight the advantages and
drawbacks of each approach and emphasize the importance of considering
privacy and security concerns when collecting network data.

Below is a table summarizing the advantages and drawbacks of the dif-
ferent techniques discussed in the research work:

22

Table 2: Effective Network Data Collection

Technique Advantages Drawbacks
Packet Provides complete Resource-intensive;
Sniffing view of all traffic may not scale well
to large networks
Flow-Based Lightweight approach | May not capture
Collection that can scale well all traffic

Telemetry-based

Efficient approach
that can capture
a wide range of data

May require
specialized hardware;
may not capture all

relevant data

3.3 Usage of Blockchain to Protect Data

In [12], The authors propose a system called SDNLog-Foren that uses
blockchain technology to ensure the integrity and tamper resistance of log
files used for SDN forensics. They argue that traditional logging mechanisms
may be vulnerable to tampering or deletion, compromising the integrity of
the log data. Authors emphasize securing the forensic logs and implement-
ing blockchain based approach to improve the security of log management
in SDN platform and named this approach SDNLog-Foren. Authors further
compare this system with other prevailing systems to prove its worth and
advantages over others. This work throws light on cyber security concerns
while dealing with data. There are various attacks targeting a range of vul-
nerabilities on vital elements of this paradigm such as controller, Northbound
and Southbound interfaces. In addition to solutions of security enhancement,
it is important to build mechanisms for digital forensics in SDN which pro-
vide the ability to investigate and evaluate the security of the whole network
system.

It provides features of identifying, collecting and analyzing log files and
detailed information about network devices and their traffic. However, upon
penetrating a machine or device, hackers can edit, even delete log files to
remove the evidence about their presence and actions in the system. In
this case, securing log files with fine-grained access control in proper storage
without any modification plays a crucial role in digital forensics and cyberse-
curity. This model is also evaluated with different experiments to prove that
it can help organizations keep sensitive log data of their network system in

23

a secure way regardless of being compromised at some different components
of SDN.

SDNLog-Foren works by storing log data in a blockchain, which is dis-
tributed across a network of nodes. The blockchain provides a tamper-
resistant record of the log data, allowing for the verification of the integrity
of the data at any point in time.

The authors highlight the advantages of using blockchain technology for
SDN forensics, including the ability to detect tampering, the immutability
of the log data, and the ability to provide a verifiable chain of custody for
the log data.

One of the main advantages of SDNLog-Foren is that it provides a
tamper-resistant and immutable record of log data, which is essential for
forensic investigations. However, the system requires significant computa-
tional resources to maintain the blockchain, which may be a challenge for
smaller organizations.

The authors also discuss the limitations of SDNLog-Foren, including the
potential for delays in updating the blockchain due to the consensus mech-
anisms used by the blockchain. They also note that the system does not
address all potential threats to the integrity of log data, such as attacks on
individual loggers or sensors.

Overall, the authors propose an innovative approach to addressing the
challenges associated with log data integrity in SDN forensics. They pro-
vide a useful overview of the advantages and drawbacks of using blockchain
technology for this purpose.

3.4 Logs Availability for Analysis

In [13], authors have put the emphasis on how logs are important while deal-
ing with run-time behavior of the software systems like debugging, system
comprehensions and anomaly detection. To manage the unstructured nature
and large size of logs, authors propose the solution with their system called
LogAssist which assists administrators with log analysis. It significantly re-
duces the log size and improves the time required to analyze the logs. This
research work opens up the channel to think in this direction and design

24

more optimized solutions.

It is a novel approach for assisting practitioners with log analysis, which
aims to address all the three above-mentioned challenges. First, it parses
the raw logs into abstracted log events (i.e., addressing the challenge related
to unstructured logs). Then, it untangles the raw logs into meaningful event
sequences (i.e., workflows) using certain grouping IDs commonly available in
logs, to address the challenge related to intermixed event sequences. Finally,
it leverages n-gram models to identify common event sequences and further
uses the identified sequences to compress the logs into a much more concise
representation (i.e., addressing the challenge related to the large size of logs).
In addition, it allows practitioners to expand and explore the compressed
form on demand, providing practitioners the flexibility to access the complete
information in the logs.

Their research results demonstrate that it can compress the raw logs into
a much more concise representation, while allowing practitioners to access
the complete information of logs only when necessary. It significantly simpli-
fies log analysis tasks and improves practitioners’ log analysis experiences.
Authors document their experiences and lessons learned while developing
and adopting their approach in practice, which can provide insights for re-
searchers and practitioners who wish to develop similar tools to assist with
log analysis tasks. It can be leveraged as a basis and starting point to further
advance interactive log analysis techniques.

The conclusion of the research summarizes the key contributions of the
paper and highlights the advantages of the LogAssist algorithm over other
state-of-the-art log summarization algorithms. The authors also discuss the
limitations of their work and suggest directions for future research.

Overall, authors provide a clear and well-written introduction to log anal-
ysis and summarization, proposes a novel algorithm for log summarization,
and provides a thorough evaluation of the algorithm using two datasets. The
paper could be improved by providing more details on the limitations of the
LogAssist algorithm and potential areas for improvement. Here is a table
listing various techniques, along with their advantages and drawbacks, used
for log analysis and summarization:

25

Table 3: Logs Availability for Analysis

Technique Advantages | Drawbacks
Log Accurate and | Time-consuming
parsing detailed and labor-intensive
Log Groups Requires prior
clustering similar logs knowledge of
together log structure
Log pattern Identifies Limited
mining frequent and | to predefined
important log patterns
log patterns
Log Reduces log May lose
summarization | volume and important
complexity details
Log anomaly Detects Requires
detection abnormal labeled data

log behavior

for training

26

4 Proposed System Architecture

Here we discuss our proposed system architecture in detail. We propose
a system that leverages the strategy of integrating the data in BF. Our
proposed system offers a great advantage in retaining the forensic logs for a
much longer duration. ‘Figure 3 shows the proposed system flow chart.

Bloom filters are simple, space efficient data structures which work on
the basis of a probabilistic algorithm to test membership in a huge set of
hash functions. Bloom filters by design is a hashed data structure, hence
we can rely on the system for reliability and safety of data. The system
does not need any customised firewall systems or security systems to secure
confidential forensic data.

BF do not store the items themselves hence they use less storage space
than the lower theoretical limit required to store the data correctly. BF
exhibit an error rate which is inversely proportional to its size. The limited
space available for BF may cause high rate of false positives, but they do
not have false negatives. The one-sidedness of this error turns out to be our
benefit. When the BF reports the item as ‘Found/Present’, there is a small
chance that it is not telling the truth, but when it reports the item as ‘Not
Found/Not Present’, we know it’s telling the truth. Most of the time, in the
context where the query answer is expected to be Not Present, Bloom filters
offer great accuracy along with space-saving benefits.

Alongside being storage efficient, time efficient and secured data struc-
ture, it is admissible IT evidence as per the local rules, since it complies with
the requirement of the hashed data should produce same results as the raw
data, to achieve this we have optimized the data sets and size of BF which
is explained in ‘Chapter 4.2.2’.

By analyzing the details as per the experimental values in ‘Table 4’ &
‘Figure 12’ we can say that the proposed system offers promising results.
System integrated with Raw Data, zip compressed data and data integrated
in BF enhances the availability of forensic logs with the similar hardware
resources. It positively concludes that the introduced system can withhold
comparatively more data as compared to the existing forensic data storage
mechanisms. One method is to store the entire string to compare it with an-
other string. This will be a O(m+n) comparison. Some of very common data
structures that adapt to the string data type pretty easily are Tries(multiple

27

Logs collected in
.pcap files

y
Parse .pcap files
Into .txt files
Contains
source, destination, size, and
total number of packets

\ Integrate parsed .txt
files in bloom filter
to create .bin files

\ 4

Excerpt query in raw .txt file Excerpt query in .bin file
Y A
Packet Path Search Packet Path Search
Results Results

N

Same Path Traverse
results

|

Proves That The Files
Integrated in Bloom Filter are
Admissible Evidence

Figure 3: Proposed System Flow Chart - Admissible Evidence

28

try calls), Suffix trees, Binary Trees etc. These data structures have good
complexity in theory, but it is not an easy task to optimise them for a given
problem per se. The more efficient way is to store the hash of these strings.
In practice, Hashing has one of the best complexities with a fantastic O(1)
constant search time. We can take a quick look at disk size comparison done
in ‘Table 4’ for the Data Size (GB). We may consider each file size of 200
MB in the directory as shown in ‘Figure 6’.

Table 4: Data Storage Analysis

Data Size(GB) | Zip (GB) | Bz2 (GB) | Bloom Filter (MB)
128 1.94 1.33 12.7
512 7.75 5.33 25
1024 15.5 10.67 52

In current systems, network administrators rely on purging the data older
than a certain stipulated time expected by governmental guidelines and or-
ganizational rules. In addition, considering the retention period of logs for
forensic analysis as constant factor, the rate at which the log volume is grow-
ing, it becomes a crucial factor in the system design for forensic analysis. In
existing systems, the data storage capacities in network devices are very less,
which is not ideal to hold historical data for more than a couple of months.

After studying/ examining related research works and open problems, we
propose a system which can accommodate more network forensics data in a
similar set of resources.

Generally, we choose convenient network packet capturing tools for data
collection and further analysis. ‘ WireShark and TCPdump’ are two classic
applications of them. They rely on ‘libpcap’ library and ‘Berkeley Packet
Filter (BPF')’. Similarly, Network Intrusion Detection Systems (NIDS), such
as ‘Snort and ‘Bro’ collect data by packet capturing based on ‘libpcap and
BPF”’ for detecting malicious traffic and further processing. ¢ WireShark and
TCPdump’ tools are passive software-based packet capturing mechanisms.

The Proposed system is designed for SDN platform, where a controller is
configured in such a way that each node/device in data plane keeps logging
in a dedicated directory and keeps rolling these logs. The directories contain

29

the data of each device in pcap (from tcpdump) format.

After the stipulated time in our system, instead of purging the data,
we integrate it in BF. As per design, each node (device) generates its log
and these log files are parsed and fetched with valuable information like
packet size, packets count, source and destination IPs and hexdump of each
packet considered as elements to be put in BF. This set of elements can
be queried with sample packet data to verify if the file is present in any of
the nodes’(devices) log directories (bloom filters). This results in either the
elements definitely not present in the logs directory (set of elements) of the
node(device) or maybe present. We can rely on the definitely not present
response. This is accepted as valid evidence in terms of determining the
packet traversal path. Though the scope of our proposed system is limited
to demonstrate the optimized data availability and retention of SDN forensic
logs, we try to touch the base of space and time complexity of data integrated
with bloom filter.

With the reduced space and time complexity (refer ‘Table 9’), inherited
by design of bloom filter which states that a Bloom filter with 1% false
positive rate requires only about 9.6 bits per element regardless of element
size, the false positive rate can be reduced by a factor of ten each time 4.8
bits per element are added. By observing the less space utilization, its safe
to claim that the expense involved in log collection and retention for network
forensics logs are optimized by implementing bloom filter in current systems.

From our experimental results we have observed and verified to accom-
modate atleast 10 times more forensic data i.e., retention of data for longer
duration, using the same resources and maintenance expenses as compared
to existing systems.

Designed system stages are shown in ‘Figure 4’.

30

Logs collection in
.pcap files & Store

Y
Parse log files Into .txt files
Containing
source, destination, size, and
total number of packets
Integrate parsed .txt files in bloom filter
to create .bin files and purge
corresponding .txt files (on-the-go)

Y

Optimized forensic data
available in .bin file

A\ 4

Excerpt Query
to check membership
of event in Set

v

IF Packet Traversed
from device

YES/NO
YES NO

Packet has not
traversed
through this Device

Packet traversed
through this Device

Figure 4: Designed System

31

4.1 Logs Collection and Structure

In our proposed system, data processing is done on the collected and struc-
tured data in a specified structured format. The structured data is used to
generate the expected results. To achieve this, we apply the log rolling and
parsing the meaningful information from the logs (tcpdump packet capture
data in pcap files).

4.1.1 Rolling Logs

The logs are collected and arranged in a format where each directory repre-
sents the logs collected from respective devices. In our controlled experiment,
we specified that each file in the directory should not exceed 2 GB with a
maximum limit (general industry standard log rolling fashion).

4.1.2 Detailed System Simulation

In our simulated system, the directory contains the log files of each device
interface. In our experiment we use the Mininet to simulate a SDN network
with 1 controller, 6 switches and 4 hosts as shown in ‘Figure 5’. Controller is
named as c0, switches are named as s1, s2, s3, s4, s5, s6 and hosts are named
as hl, h2, h3, h4. We simulate a hybrid network topology by combining tree
and mesh topology. All logs are centrally collected in a directory experi-
ment with interfaces in their file names as shown in ‘Figure 6’. Different files
are created with names, ‘si-ethl.pcap, sl-eth2.pcap, etc. which contain the
packet captures of each interface of devices respectively. Simulated network
dump and links are shown in ‘Figure 7’ and ‘Figure 8’ respectively.

‘The pox controller’ (SDN controller simulator used in our experiment)
activation to handle hybrid network with mesh topology to avoid loops is
shown in ‘Figure 9. SDN Controller is simulated to run at port 6635.

Once we have the system set up and running as shown above, we now
run a ping test from h1 to h4 to validate functional system simulation. Upon
the successful ping test we can see the path traversed by the icmp packets:

s3 -> sl -> s2-> s6

32

File Edit Run Help

Stap im

Figure 5: Simulation Experiment Topology

Complete ping test with the tcpdump captures enabled in all interfaces
terminal can be seen in ‘Figure 10’. Packets detailed path with interfaces
are recorded as hl-ethO -> s3-eth3 -> s3-ethl -> sl-ethl -> sl-eth2
-> s2-ethl -> s2-eth3 -> s6-ethl -> s6-eth3 -> h4-ethO .

Upon successfully testing the network setup and smooth ping connec-
tivity in all hosts we now extend the experiment with a web server serving
on h4 and hl being the client. We have setup h4 as a python http server
which is serving the traffic at port 80 and h1 as client downloading a FILE of
95 MB from h4(web server) using ‘wget’ (wget http://10.0.0.4:80/FILE -o
FILE). This experiment is run with active tcpdump captures at all interfaces
of devices. After the FILE is downloaded at client hl, directory structure
looks like as shown in ‘Figure 6’

Now logs are arranged in a well defined and meaningful format. We parse
each tcpdump pcap file and fetch important information of each packet like
source of the packet, destination of the packet, size of the packet and total
number of packets as shown in ‘Figure 11’. Next we focus on how to integrate
this data in BF, then design the query to find if the element exists in the BF
or not and conclude the results.

33

-rW-r--r-- tcpdump
-rW-r--r-- tcpdump
-rW-r--r-- tcpdump
-rw-r--r-- tcpdump
-rW-r--r-- tcpdump
-rW-r--r-- tcpdump
-rW-r--r-- tcpdump
-rW-r--r-- tcpdump
-rw-r--r-- tcpdump
-rW-r--r-- tcpdump
-rW-r--r-- tcpdump
-rW-r--r-- tcpdump
-rw-r--r-- tcpdump
-rW-r--r-- tcpdump
-rW-r--r-- tcpdump
-rw-r--r-- tcpdump
-rw-r--r-- tcpdump
-rW-r--r-- tcpdump
-rW-r--r-- tcpdump
-rW-r--r-- tcpdump
-rw-r--r-- 1 tcpdump
-rW-r--r-- tcpdump

Imininet> dump

<Host h4: h4-etho:
<Host hl: hl-eth@:
<Host h3: h3-eth@:
<Host h2: h2-eth@:
<customOvs sl1: lo:

<customOvs s5: lo:

<customOvs s6:

<customOvs s2: lo:
<customOvs s3: lo:
<customOvs s4: lo:
<RemoteController

tcpdump
tcpdump
tcpdump
tcpdump
tcpdump
tcpdump
tcpdump
tcpdump
tcpdump
tcpdump
tcpdump
tcpdump
tcpdump
tcpdump
tcpdump
tcpdump
tcpdump
tcpdump
tcpdump
tcpdump
tcpdump
tcpdump

187M
(]
187M

s6-eth3.
s6-eth2.
s6-ethl.
s5-eth4.
s5-eth3.
s5-eth2.
s5-ethl.
s4-eth4.
s4-eth3.
s4-eth2.
s4-ethl.
s3-eth3.
s3-eth2.
s3-ethl.
s2-eth3.
s2-eth2.
s2-ethl.
sl-eth3.
sl-eth2.
sl-ethl.
h4-eth@.
h2-etho.

Figure 6: Logs Collection

.1,s1-eth1l:None,sl-eth2:None,sl-eth3:None pid=56968>
.1,s5-ethl:None,s5-eth2:None,s5-eth3:None,s5-eth4:None pid=56971>
.1,s6-ethl:None,s6-eth2:None,s6-eth3:None pid=56978>
.0.1,s2-ethl:None,s2-eth2:None,s2-eth3:None pid=56985>
.0.1,s3-ethl:None,s3-eth2:None,s3-eth3:None pid=56990>
.1,s4-ethl:None,s4-eth2:None,s4-eth3:None,s4-eth4:None pid=56993>

Figure 7: Network Dump

34

mininet> links

s3-ethl<->sl-ethl
sl-eth2<->s2-ethl
sZ2-eth2<->s5-ethl
s2-eth3<->s6-ethl
sb6-eth2<->s5-eth2

sl-eth3<->s4-ethl
s3-eth2<->s4-eth2
s4-eth3<->s5-eth3
s3-eth3<->hl-eth@®
s4-eth4<->h2-eth@®
s5-eth4<->h3-eth@®
s6-eth3<->h4-eth@®

Figure 8: Network Links

root@mininet-vm: /home/mininet/mininet/custom/pox# ./pox.py forwarding.12_learning openflow.spanning_tree --no-flood --hold-down log.level --DEBUG)
samples.pretty_log openflow.discovery host_tracker
.0 (gar) / Copyright 2011-2020 James McCauley, et al.
anning_tree] Spanning tree component ready
r host_tracker ready
POX ©.7.0 (gar) going up...
Running on CPython (3.8.5/Jul 28 2020 12:59:40)
Platform is Linux-5.4.0-42-generic-x86_64-with-glibc2.29
Support for Python 3 is experimental.
POX ©.7.0 (gar) is up.
Listening on 0.0.0.0:6633
[00-00-00-00-00-01 1] connected
Installing flow for 00-00-00-00-00-01
[forwarding.12_learning] Connection [00-00-60-00-60-01 1]
[openflow.spanning_tree] Disabling flooding for 4 ports
[op [00-00-00-00-00-03 2] connected
[openflow.discovery Installing flow for 00-00-00-00-00-03
[forwarding.12_ i Connection [00-00-00-00-00-03 2]
Disabling flooding for 7 ports
link detected: 00-00-00-00-00-01.3 -> 00-00-00-00-00-03.2
[00-00-00-00-00-02 3] connected
Installing flow for 00-00-00-00-00-02
[forwarding.12_learning] Connection [00-00-00-00-00-02 3]
[openflow.spanning_tree] Disabling flooding for 5 ports
link detected: 00-00-00-00-00-01.1 -> 00-00-00-00-00-02.1
link detected: 00-00-00-00-00-03.3 -> 00-00-00-00-00-02.2
[00-00-00-00-00-04 4] connected
& Installing flow for 00-00-00-00-00-04
[forwarding.12_learning] Connection [00-00-00-00-00-04 4]
[openflow.spanning_tree] Disabling flooding for 4 ports
link detected:
link detected:
link detected:
Llink detected:
link detected:
link detected:

Figure 9: SDN Controller Activation

35

os0:2208075 1P 100045 100,03 108 v el 16 559,
seq 1, len
54230123 usw'n 7 10.0.0.12 100.0.6 10P ach raqest,

14 5e600)

2:Jﬂ?732 1 10.0,0.4 > 10.0.0.11 10 echo reply, 1 5505,

2. asasss 1P 10.0,0.1 > 10,0.0.4: 1CHP echo reauest.

oo Lo

u: ossm 1P 10,0,0.4 > 10,0,0.1: ICHP echo reply, 1d 53603,
h 61

14 56509)

rootinininet-ums/hone/nininet/mininet /exsnelest tophap i <2
% or

tn ot

VI8 L0709 1 10,004 > 100011 109 ech reply, 10 5609, s 1, ||V ot B o i atocol do

TR 10004 W00 P e vl 1S s L LS e g, e o for ol prtac| stz ss ethi, lirk-tipe ENLO (Etharnet), copture =
! 0.0.0.0> 10.0.0.42 10 echo 2

5015 1P 10,001 10.0.0.4: 109 aco g - 0,15 10.0.0.4 10 echo ren

FEEIRLAT P 10,005 10.0.0.15 109 cho reply, 14 568

reply, id

i!'wl" w 06 0, 0. n 5 roquest,
015 x wv;n TP 10.0.0.1 > 10.0.0,45 10 acho recuest, id 5980 S e

"
eoiiniet-o e nninet it /smplet i i i 3 24,099706 1P 10.0.0.4 > 10.0,0.1: 10HP echo reply, 1d
ange 7 2a 3, lenath 64

14 5660 Jsoiia.

Cepr

i o bose vt s o e ull protoctd,
| oo o4

Liztening cn sd-ethd, lirk-tupe ENIOHB (Ethernet), capture size 2§ 569

42037 17 m $10.4> 100,12 10P ocho reply, 145 44 bues L Gol decode -~ o
oti020.03k0 1 s o —— .zi;xivgm o1, Link-tupe DU (Ethrret), coptee size
u cpdap: srbose cuout suppressed, use v or w for full prol
g
o o7 Seni o seth, Lik-tipe DN (Etbrret), capure
o pcters ot i e Foses bl
0 packets received by filter s bone/nininet/miniret /exaplest tcpdmp -ni 56
o Picis e o hernet 5 - A s 751 o
tanininet-vn:, /mmrrlrmmmehemmlexl t(pdm N SR tes erbose output SUPre for full prot
[t et port a0 r L - s ‘; DTS th 10 0.1 100 e rolPiTITEt/miiet om0 tdmp i 54 [~ ocol
lirhorats et e v o o o a0, s ocho ref . B Hnininet - ron/niniat inint/exwgles tephap -ni 56152 I n $6-eth2, lirk-tupe BRI (Ethernet), capure size
bt sppesssd, use ~ or < for ful prot 2 T e
5 70 TP 100,000 > 10,0.0.42 109 ach ro formoe > for fll peoocol
52 ?‘3°> 01 100] 1415 DU G cries iz s R s s o Rl o
o re lirk-type ENLOWB (Ethernet) eSSt

Fening on s5-eth?. capture sif
bats ode

L>n 0.4

1pe ENIONB (Etherre

 capture size 262144

o 3 w 0.t > 10.0.0.42 10 echo reqest, 16 5605, 2
0.0.4> 10.0.0.1: 10 echo reply, 1 5610
—_— 3 0.0.0> 10.0.0.42 108 acho roqest, 16 5660,
[cotniioe-wn rms it it xmples phnp i s-thL o : o
Gniniet-vn/bne/niietmininet/ranplest teshmp i S5tk PG LSS ADIRS 1P 10.0.0.4 > 10.0.0.5 0 cho oply, 10 50809, 500
erbose autput. sppressad, use ~v or - for full rotocol wm..,. i i 2 Lo ¢
erbose ot superessed e v or w for full protacal daol 69 1P 10.0.0.1 > 10.0.0.65 0P echo reuest, 10 56509, o
baret), coptir size 25214 (s not
stening on s5-e83, Link-tipe ENLOND (Etharna), coptire size 26214403 704 1P 10.0.0.4 > 10.0.0.11 10 echo reply, 1d 50609, se9
s e = B
3 b herna!
it vt dunp nt s3-e = N g
icodo: Verbose output suppressed, uss -v or -w for full protocelc o et on it it el e oot nininet-un:/bone/nininet/mininet /examplese [
Sieid port 8 o sop
Lo on s-st2, Likctipe B0 (Etherrn), capure e 2[R SAge PEE R TI0 o o
st coine: (orbone o sipeessed for full
u K2, Lirk-type ENIOHB (Ethe B Node
- rcot@nininet-wn/rame/minivet/niniret/exanplosh tepdnp -ni s5-e
z e rctraron 75-61 o ten
ey 0,152 e Lcdne: erhcte cutpt mperesced, uso - cr ~w for full protec

64 bytes Fron 10.0.0.4:
i

10,0.0.4 ping statistic

received, 01 ket Loss, tine S00ns
= 0.0773,217/18,5
oo intorat-unermone gt hininet/acamplash pirg 10.0.0.4 -3
:w, 10054 Ti0.0:0.0) (64 it o v

e

£i bikes from
64 bites Fron 10.00.4:

10.0,0,4 ping statistics
5 ket brovimieieh, 3 reseivad, Of pckat, lgss, e 2icdns
i v /o = 008177 207/15, 46076,

Lootnininet-

capture

ening cn s5-othi,
ezidd butes
0

lirk-tipe EXIOND (Ethernat),

obinietn: o ininet et exanplet tcpdnp i 12
o ot 3o
erbose oitput, wppressed, use v or w for ull prot

tcrda
ocol Sacode
i

. irk-tupe ENLONE (Etherret), capture size

Figure 10: Ping

’

’

’

’

)

-

)

-

’

-

3

4
1
4
4
1
1
4
1
4,
1
4
1
4
1
4
o,
4
1

-

>

(SIS TS IS IS TS IS IS S IS IS IS B TS IS IS TS IS TS IS I

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

PhPRr PR PAPARPAPARPPREARDIEARDAEDARRER AR
PR R RERERRRRRRRRR R R R
SRS RS R EEEEEEEEEESE

(SIS IS IS IS IS B I IS TGS S IS IS IS S IS IS IS RS IS |

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

7
7
6
2
6
2
6
4
6
,4410,11297
6
4
6
1
6
ar
6
8

$ cat sl-ethl.pcap@-packet-data.txt

05 11297
6,11297
71,11297
6, 11297
410,11297
6,11297

6,11297
410,11297
6,11297
514,11297
6,11297
1650,11297
6,11297
754,11297

.4,00,11297
.1,8754,11297
.1,11650,11297

Figure 11: Parsed Data

36

4.2 Bloom Filter Integration

Now we integrate the parsed data as shown in ‘Figure 11’ in bloom filter.

4.2.1 Bloom Filter Implementation

As explained above in ‘Chapter 4.1.1° and ‘Chapter 4.1.2°, we add the col-
lected data into bloom filters. We put the values fetched from each packet
like packet size, packets count, source and destination IP of each packet into
the bloom filters and then we query to check if that specific packet exists in
any of the device pcap files. In ‘Chapter 4.2.2” we analyse and create the
bloom filters that can avoid the saturation and deliver the optimised results.
Upon reaching the threshold to hit the bloom filter saturation, the system
creates another .bin (bloom filter) file and so on in rolling fashion.

4.2.2 Analyze Optimum Hash Functions

We have analyzed the optimum hash functions in the experiment and for
the scaled use case. As we increase the number of hash functions, the false
positive probability goes low as shown in the space efficiency of a bloom

filter:
kn k
FP = (1 — (1 — ;)) ~ (1 — eFn/myk) (1)

The false positive probability ‘p’ is a function of number of elements ‘n’
in the filter and the filter size ‘m’. An optimal number of hash functions
has been assumed. FE.g., please refer ‘Table 5°, ‘Table 6’, ‘Table 7’ and
‘Table 8 for selecting the number of hash functions to be implemented in
bloom filter for the respective false positive probability. In the experiments
we have implemented bloom filters with 10 hash functions and a false positive
probability of 0.001.

k= (m/n)ln2 (2)

37

Table 5: Number of hash functions used for various false positive probabilities

Suggested FPP of Bloom Filter (p) | Hash Functions (k)
3% 5
1% 7
0.1%* 10*
0.01% 13
0.001% 17

Table 6: Probability of false positives with hash functions

Items in BF(n) | hash function(k) | bits in filter(m) FPP (p)
1 million 1 100 MB 1 in 801
1 million 3 100 MB 1 in 19 million
1 million* 5* 100 MB 1 in 106 billion*

38

‘Table 7’ illustrates the behavior of FPP with the number of items in
bloom filter. In this experiment we observed that the data with 1 million
items in bloom filter, 5 hashes and 100 MB bits in filter (size) is actually
much more fault tolerant which is 1 false positive in 106 billion queries.

Table 7: Probability of false positives with number of items in Bloomfilter

Items in BF(n) | hash function(k) | bits in filter(m) FPP (p)
1 million* 5* 100 MB 1 in 106 billion*
2 million 5 100 MB 1 in 3 billion
3 million 5 100 MB 1 in 452 million
4 million 5 100 MB 1 in 108 million
10 million 5 100 MB 1 in 1 million

‘Table 8 illustrates the behavior of FPP with the bits in filter (size).
During the experiments we analyzed that we can create an optimized data
structure using the bit size of 2000MB with 1 million items and 10 hashes.

Table 8: Probability of false positives with number of bits in filter

Items in BF(n)

hash functions(k)

bits in filter(m)

FPP (p)

1 million) 1000 MB 1 in 10 Quadri
1 million) 2000 MB* 1 in 335 Quadri
1 million 5 3000 MB 1 in 2 Quinti
1 million 5 10000 MB 1in 1 Sexti

4.3 Complexity Analysis

4.3.1

Space complexity Analysis

By analyzing the details as per the experimental values in ‘Table 5’ & ‘Figure
12’ the proposed system excludes the bz2 compression strategy due to the

39

costlier time complexity algorithm. System integrated with raw data, zip
compressed data and data added in bloom filter enhances the availability of
forensic logs with similar hardware resources. This derives the conclusion
that the introduced system can hold substantially more forensic data as
compared to existing forensic data storage mechanisms.

4.3.2 Time complexity Analysis

In practice Hashing has one of the best complexities with a fantastic O(1)
constant search time. ‘Table 9’ illustrates the time complexity of the queries
on the organized data in bloom filter. We observed that 10,000 items in
bloom filter produces considerably optimized search results with around 5
seconds for the query.

Table 9: Time Complexity

Number of Items in BF (n) | Time Taken to search (ms)
1000 1000
5000 2500
10000* 5100*
20000 11500
30000 17300

40

5 Evaluation

5.1 System Execution and Results

We successfully simulated a ‘hybrid network topology’ network as shown in
‘Figure 5’. We have performed experiments to compare the proposed system
with existing systems. Refer to ‘Table 5’ for disk space utilization ratio for
storing the logs with different compression algorithms and for the compara-
tive analysis.

‘Figure 12’ compares the compression algorithms applied to 1024 GB of
sample log directories of 50 MB files each. Important thing to note here is
that the disk size utilized by bloom filter does not depend on log file size,
instead each element in bloom filter occupies around 5 Bytes of disk space
for storing a file of size 200 MB assuming the number of hash function as 7
or 10. Our experiments are done on diverse directory sizes of 128 GB, 512
GB and 1024 GB with rolling file size of 50 MB / 200 MB / 1GB / 2 GB.

18
16
14
12
10

Data Size in GB

= S L~ T - -]

zip bz2 bloom filter
Compression Strategy

Figure 12: Compression Analysis of 1024 GB sample data

The experiment execution is demonstrated in the figures below with step-
by-step explanation.

41

total 977048
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
-rw-r--r--
drwxr-xr-x
-rw-r--r--
-rw-r--r--
-rw-r--r-

-rw-r--r--
-rw-r--r--
-rw-r--pr-

-rw-r--r--
-rw-r--r--

root root 4096 Jun 15 14:09 ./
mininet mininet 4096 Jun 15 10:28 ../
root root 4096 Jun 15 09:59 /
root root 3773 Jun 15 09:51 example.py
root root 4096 Jun 15 09:49 /
root root 3198 Jun 15 ©9:49 .gitignore
root root 195678208 Jun 15 10:12 h4-eth@.pcap
root root 1067 Jun 15 09:49 LICENSE
root root 2057 Jun 15 10:10 pro_bloom.py
root root 8104 Jun 15 09:49 README.md
root root 195678208 Jun 15 10:11 sl-ethl.pcap
root root 195678208 Jun 15 10:11 s2-ethl.pcap
root root 195678208 Jun 15 10:11 s3-ethl.pcap
root root 195825664 Jun 15 10:11 s6-ethl.pcap
mininet mininet 7663616 Jun 15 10:28 sample2.pcap
mininet mininet 6558055 Jun 15 10:28 sample3.pcap
mininet mininet 7655424 Jun 15 10:28 sample4.pcap
root root 912 Jun 14 11:15 sample.pcap
root root 508 Jun 15 09:59 scalable_bloom_filter.bin
root root 1078 Jun 15 09:49 setup.py
root root 1569 Jun 15 14:09 sort2.py
root@mininet-vm:/home/mininet/code/experiment/simple-bloom-filter# vi sort2.py
root@mininet-vm:/home/mininet/code/experiment/simple-bloom-filter# python3 -I sort2.py
packet data of sl-ethl.pcap
packet data of s2-ethl.pcap
--Fetching packet data of s3-ethl.pcap
--Fetching packet data of s6-ethl.pcap
packet data of sample.pcap
--Fetching packet data of sample2.pcap
--Fetching packet data of sample3.pcap
packet data of sample4.pcap
packet data of h4-eth@.pcap
root@mlnlnet—vm:/home/mininet/code/experiment/simple—bloom—filter#|

SPN= sl

=rW-r--r--

RPRRPRPRPRRRPPRPRRPRPPRPRPRPPORWHRSN

Figure 13: Parsing pcap Files

‘Figure 13’ shows the code execution to parse the pcap files into text files
with all necessary elements.

‘Figure 14’ shows how the directory look post processing the raw pcap
files into txt files.

42

total 959M

drwxr-xr-x root root 3 ¢ 7

drwxr-xr-x 4 mininet mininet 4. : /Z

drwxr-xr-x root root ; : /

“rW=P-=r-- root root “ : example.py

drwxr-xr-x root root 3 2 74

-rW-r--r-- root root s s .gitignore

SPW=r=sra= root root : h4-eth@.pcap

NS - - root root : h4-eth@.pcap@-packet-data.
-rw-r--r-- root root 8 ¥ LICENSE

-rw-r--r-- root root 4 otherfile

=PW-r--r-- root root . A pro_bloom.py

=PW-r--r-- root root 3 : README .md

-rw-r--r-- root root $ sl-ethl.pcap

-rW-r--r-- root root : sl-ethl.pcap@-packet-data.txt
-PW-r--n-- root root : s2-ethl.pcap

-PW-r--n-- root root : s2-ethl.pcap@-packet-data.txt
-rw-r--r-- root root ! s3-ethl.pcap

SPWS - - e root root : s3-ethl.pcap@-packet-data.txt
-rw-r--r-- root root : s6-ethl.pcap

-rW-r--r-- root root : s6-ethl.pcap@-packet-data.txt
-rW-r--r-- mininet mininet 7. 3 sample2.pcap

-rW-r--r-- root root : sample2.pcap@-packet-data.txt
-rw-r--r-- mininet mininet 6. : sample3.pcap

-PW-r--n-- root root 3 sample3.pcap@-packet-data.txt
-rw-r--r-- 1 mininet mininet 7. 3 sample4.pcap

=PW=I'==P== root root : sample4.pcap@-packet-data.txt
-rw-r--r-- root root q sample.pcap

=PW-r--po2 root root - sample.pcap@-packet-data.txt
-rw-r--r-- root root 5 S setup.py

=PW-r--r-- root root : : sort2.py

Figure 14: Files After Parsing

‘Figure 15’ shows the processing of data to add elements from txt files
into BF. We can observe the space utilization of pcap files vs bin files.

‘Figure 16’ shows the query results. Query data is any line of txt file
parsed for interfaces ‘(" s1-ethl1.pcap0-packet-data.txt / s6-ethl.pcap0-packet-
data.txt / s3-ethl.pcapO-packet-data.txt / s2-ethl.pcapO-packet-data.txt)
which is queried upon bloom filter bin files created for each interface to check
if the packet passed through. We also parsed a couple of random sample.pcap
files (downloaded from hitps:/ /www.wireshark.org/download/automated/captures/)
and elements are put in txt files. The data from (sample.pcap0-packet-
data.txt / sample2.pcap0-packet-data.txt / sample3.pcap0-packet-data.tat /
sample4.pcap0-packet-data.txt) files is then queried against any of generated
bin file from our experiment topology interfaces and the results are shown
in ‘Figure 16’.

43

total 959M

drwxr-xr-x root root 5 5 7/

drwxr-xr-x 4 mininet mininet 4. 8 /

drwxr-xr-x root root 3 8 /

-rw-r--r-- root root 5 3 example.py

drwxr-xr-x root root

-rw-r--r-- root root ; 5 .gitignore

-rw-r--r-- root root s h4-eth@.pcap

-rW-r--r-- root root 3 h4-eth@.pcap@-packet-data.
-rw-r--r-- root root : 2 LICENSE

-rw-r--r-- root root 5 otherfile

-rw-r--r-- root root . s pro_bloom.py

-r'w-r--r-- root root 0 .pro_bloom.py.swp

-rw-r--pr-- root root : g README .md

-rw-r--r-- root root . > sl-ethl-bloom_filter.bin
-rw-r--r-- root root 5 sl-ethl.pcap

-r'w-r--r-- root root - sl-ethl.pcap@-packet-data.txt
-rw-r--r-- root root : s sl-ethl.pcap@-packet-data.txt.
-rw-r--r-- root root 2 s2-ethl.pcap

-rW-r--r-- root root 5 s2-ethl.pcap@-packet-data.txt
-rw-r--r-- root root . 5 s2-ethl.pcap@-packet-data.txt.
-rW-r--r-- root root > s3-ethl.pcap

-rW-r--r-- root root s s3-ethl.pcap@-packet-data.txt
-r'W-r--r-- root root v 3 s3-ethl.pcap@-packet-data.txt.
-rw-r--r-- root root ¥ s6-ethl.pcap

-rw-r--r-- root root : s6-ethl.pcap@-packet-data.txt
CrW-r--r-- root root . 5 s6-ethl.pcap@-packet-data.txt.
-rw-r--r-- 1 mininet mininet s sample2.pcap

-rw-r--r-- root root : sample2.pcap@-packet-data.txt
-rw-r--r-- 1 mininet mininet B sample3.pcap

-r'W-r--r-- root root 8 sample3.pcap@-packet-data.txt
-rw-r--r-- 1 mininet mininet : sample4.pcap

-rw-r--r-- root root 3 sample4.pcap@-packet-data.txt
) 0 0 root root 8 sample.pcap

-rw-r--r-- root root 5 sample.pcap@-packet-data.txt
-rw-r--r-- root root = g setup.py

Sl Bl e e root root 3 sort2.py

Figure 15: .pcap Files and Corresponding .bin Files

Code snippet for parsing and sorting the pcap files.

import argparse

import os

import sys

from scapy.utils import RawPcapReader
from scapy.all import *

def get_pack_data(kk):
count = 0
fileName = os.path.basename(kk) + str(count)
with open(’{}-packet-data.txt’.format(fileName), ’w’) as
filel: # write mode
for p in pcap:
count += 1
if p.haslayer (IP) == 1:
sl = p[IP].fields[’src’]

44

d1 p[IP].fields[’dst’]
sd = (format(sl)+’,’+ format(dl))
psize = (format(len(p)))

filel.write(sd +"," + psize +",")
filel.write(format (len(pcap))+"\n")
if __name__ == "__main__":

pcap_path = ["sl-ethl.pcap", "s2-ethl.pcap", "s3-ethl.pcap"
"s6-ethl.pcap", "sample.pcap", "sample2.pcap", "sample3.
pcap", "sampled.pcap", "h4d-ethO.pcap"]

for k in pcap_path:
pcap = rdpcap (k)
print(?--------------- Fetching packet data of ’> + k)
get_pack_data (k)

" is PROBABLY IN the filter i.e. passed through s6-ethl.pcap@-packet-data.
10.0.0.1,10.0.0.4,66,11309
is PROBABLY IN the filter i.e. passed through s6-ethl.pcap@-packet-data.
10.0.0.4,10.0.0.1,65226,11309
is PROBABLY IN the filter i.e. passed through s6-ethl.pcap@-packet-data.
10.0.0.1,10.0.0.4,66,11309
is PROBABLY IN the filter i.e. passed through s6-ethl.pcap@-packet-data.
10.0.0.4,10.0.0.1,442,11309
is PROBABLY IN the filter i.e. passed through s6-ethl.pcap@-packet-data.
10.0.0.1,10.0.0.4,66,11309
is PROBABLY IN the filter i.e. passed through s6-ethl.pcap@-packet-data.
10.0.0.4,10.0.0.1,65226,11309
is PROBABLY IN the filter i.e. passed through s6-ethl.pcap@-packet-data.
10.0.0.1,10.0.0.4,66,11309
" is PROBABLY IN the filter i.e. passed through s6-ethl.pcap@-packet-data.
"10.0.0.4,10.0.0.1,442,11309
is PROBABLY IN the filter i.e. passed through s6-ethl.pcap@-packet-data.
10.0.0.1,10.0.0.4,66,11309
is PROBABLY IN the filter i.e. has passed through s6-ethl.pcap@-packet-data.
10.0.0.4,10.0.0.1,14988,11309
is PROBABLY IN the filter i.e. has passed through s6-ethl.pcap@-packet-data.
19039
is DEFINITELY NOT IN the filter as expected and has not passed through s6-ethl.pcap@-packet-data.
192.168.0.1,192.168.0.2,94,19039
is DEFINITELY NOT IN the filter expected has not passed through s6-ethl.pcap@-packet-data.
.168.0.2,192.232.0.1,82,19039
DEFINITELY NOT IN the filter expected has not passed through s6-ethl.pcap@-packet-data.
.168.0.1,192.168.0.2,94,19039
DEFINITELY NOT IN the filter expected has not passed through s6-ethl.pcap@-packet-data.
.168.0.2,192.168.0.1,82,19039
DEFINITELY NOT IN the filter expected has not passed through s6-ethl.pcap@-packet-data.
.168.0.2,192.168.0.1,82,19039
DEFINITELY NOT IN the filter expected has not passed through s6-ethl.pcap@-packet-data.
.168.0.1,192.168.0.2,94,19039
DEFINITELY NOT IN the filter expected has not passed through s6-ethl.pcap@-packet-data.
.168.0.2,192.168.0.1,82,19039
DEFINITELY NOT IN the filter expected has not passed through s6-ethl.pcap@-packet-data.
9039
is DEFINITELY NOT IN the filter expected has not passed through s6-ethl.pcap@-packet-data.
"192.168.0.2,192.168.0.1,82,19039
" is DEFINITELY NOT IN the filter expected has not passed through s6-ethl.pcap@-packet-data.
19039
is DEFINITELY NOT IN the filter expected has not passed thro s6-ethl.pcap@-packet-data.
19039
is DEFINITELY NOT IN the filter expected has not passed through s6-ethl.pcap@-packet-data.
"192.168.0.1,192.168.0.2,94,19039

Figure 16: Querying the Elements

45

and ‘Figure 17’ shows the bloom filter structure designed for our experi-
ment.

This successfully demonstrates that we can optimize forensic data avail-
ability and retention of SDN forensic logs by using bloom filter in the pro-
posed system.

== == Bloom Filter Structure ==
+ Capacity: 500 item(s)
+ Number of inserted items: 102

+ Number of Bloom filters: 2
+ Total size of filters: 16862 bit(s)
+ False Positive probability: 1.8999999096269704e-07

Figure 17: Bloom Filter Sample Structure of Experiment

Code Snippet of Bloom Filter integration & excerpt query and excerpt
query in text raw parsed data. Both code snippets are mentioned below.

Code Snippet of string search in text format raw parsed data.

from bloomfilter import BloomFilter
import os

import time

import sys

N

6 # Define the directory containing the text files
7 directory = ’./final_dir/’

9 # Define the string to search for
10 argl = sys.argv[1]

12 search_string = argl
1

14 # Create an empty list to store the file names
15 file_list = []

17 # Loop through the files in the directory

18 for filename in os.listdir (directory):

19 # Check if the file is a text file

20 if filename.endswith(’.txt’):

21 # Append the file name to the list

22 file_list.append(os.path.join(directory, filename))

o2
23
2

1 # Create a variable to store the total time taken

46

total_time = 0

Loop through the files in the 1list
for file_name in file_list:
Open the file

with open(file_name, ’r’) as file:
Read the contents of the file
contents = file.read()

Start the timer
start_time = time.time ()

Search for the string in the file
if search_string in contents:

print (f’{search_string} found in {file_namel}’)
else:

print (f’{search_string} not found in {file_name}’)

Stop the timer and calculate the elapsed time
elapsed_time = time.time() - start_time

end_time = time.time ()
Add the elapsed time to the total time
total_time += elapsed_time
#total_time = end_time - start_time

Print the total time taken
print (£’Total time taken: {total_time:.10f} seconds’)

Code snippet of BF integration and excerpt query in .bin files

import os
import hashlib
import argparse
import time

class BloomFilter:

def __init__(self, size, hash_count):
self.size = size
self .hash_count = hash_count
self .bit_array = [0] * size

def add(self, string):
for seed in range(self.hash_count):

result = hash(string + str(seed)) 7 self.size
self .bit_array[result] = 1
def __contains__(self, string):
for seed in range(self.hash_count):
result = hash(string + str(seed)) % self.size

47

48

if self.bit_array[result] == O0:
return False
return True

def create_bloom_filter (file_path):

if

Read the contents of the text file
with open(file_path, "r") as file:
lines = file.readlines ()

Create a new bloom filter with a size proportional to the
number of lines in the file
bloom_filter = BloomFilter (len(lines) * 10, 5)

Add each line of the file to the bloom filter
for line in lines:
bloom_filter.add(line.strip())

Write the bloom filter to a binary file
bloom_filter_file = os.path.splitext(file_path)[0] + ".bin"
with open(bloom_filter_file, "wb") as file:
for bit in bloom_filter.bit_array:
file.write(bit.to_bytes(1l, byteorder="big"))

print (f"Bloom filter created for {file_path} -> {
bloom_filter_filel}")

__name__ == "__main__":

Create an argument parser to get the search string and

directory path from the command line

parser = argparse.ArgumentParser (description="Create Bloom

filter binary files and search for a string")
parser.add_argument ("search_string", help="the string to
search for")

parser.add_argument ("directory_path", help="the path to the
directory containing the text files")

args = parser.parse_args ()

Create a bloom filter binary file for each text file in
the directory
for filename in os.listdir(args.directory_path):
if filename.endswith(".txt"):
file_path = os.path.join(args.directory_path,
filename)
create_bloom_filter (file_path)

start_time = time.time ()

print (start_time)
Search for the string in each bloom filter binary file in
the directory

48

60
61
62

63
64

66
67
68

69

70
71

72

~ SN)

®

o B S B T B |

3

85
86

87

N

for filename in os.listdir (args.directory_path):
if filename.endswith(".bin"):
file_path = os.path.join(args.directory_path,
filename)

Read the contents of the bloom filter binary file
with open(file_path, "rb") as file:
bit_array = []
byte = file.read (1)
while byte:
bit_array.append(int.from_bytes (byte,
byteorder="big"))
byte = file.read (1)

Initialize the bloom filter with the same size
and hash count as the original bloom filter

bloom_filter = BloomFilter (len(bit_array), 5)

bloom_filter.bit_array = bit_array

Check if the search string is in the bloom filter
if args.search_string in bloom_filter:
end_time = time.time ()
time_taken = end_time - start_time
print (f"’{args.search_stringl}’ may be present
in {file_path}") # (time taken: {time_taken:.10f} seconds)

IV)
else:
end_time = time.time ()
time_taken = end_time - start_time

print (f"’{args.search_stringl}’ is not present
in {file_path}") # (time taken: {time_taken:.10f} seconds)

n)
end_time = time.time ()
print (end_time)
time_taken = end_time - start_time

print (f"Total time taken: {time_taken:.10f} seconds")
Result of experiment while search in raw text

Varuns -Mlpro:experiments_final varun$ python 2
_final_bloom_raw_search.py 10.0.0.1,10.0.0.4,74,11309

10.0.0.1,10.0.0.4,74,11309 not found in ./final_dir/testil.txt

10.0.0.1,10.0.0.4,74,11309 not found in ./final_dir/sample3.
pcapO -packet -data. txt

10.0.0.1,10.0.0.4,74,11309 not found in ./final_dir/sl-ethl.
pcapO -packet -data. txt

10.0.0.1,10.0.0.4,74,11309 found in ./final_dir/s6-ethl.pcapO-
packet -data. txt

49

10

N

10

16

10.0.0.1,10.0.0.4,74,11309 not found in ./final_dir/s3-ethil.
pcapO-packet -data. txt

10.0.0.1,10.0.0.4,74,11309 not found in ./final_dir/sample.
pcapO -packet -data. txt

10.0.0.1,10.0.0.4,74,11309 not found in ./final_dir/sampleQ.
pcapO-packet -data. txt

10.0.0.1,10.0.0.4,74,11309 not found in ./final_dir/sample4.
pcapO -packet -data.txt

10.0.0.1,10.0.0.4,74,11309 not found in ./final_dir/s2-ethl.
pcapO -packet -data. txt

10.0.0.1,10.0.0.4,74,11309 not found in ./final_dir/h4-ethO.
pcapO-packet -data. txt

Result of experiment while search in binary files (using BF)

Varuns -Mlpro:experiments_final varun$ python 1
_final_bloom_search_time.py 10.0.0.1,10.0.0.4,74,11309
final_dir

Bloom filter created for final_dir/testl.txt -> final_dir/testl
.bin

Bloom filter created for final_dir/sample3.pcapO-packet-data.
txt -> final_dir/sample3.pcapO-packet-data.bin

Bloom filter created for final_dir/sl-ethl.pcapO-packet-data.
txt -> final_dir/sl-ethl.pcapO-packet-data.bin

Bloom filter created for final_dir/s6-ethl.pcapO-packet-data.
txt -> final_dir/s6-ethl.pcapO-packet-data.bin

Bloom filter created for final_dir/s3-ethl.pcapO-packet-data.
txt -> final_dir/s3-ethl.pcapO-packet-data.bin

Bloom filter created for final_dir/sample.pcapO-packet-data.txt

-> final_dir/sample.pcapO-packet-data.bin

Bloom filter created for final_dir/sample2.pcapO-packet-data.
txt -> final_dir/sample2.pcapO-packet-data.bin

Bloom filter created for final_dir/sample4.pcapO-packet-data.
txt -> final_dir/sample4.pcapO-packet-data.bin

Bloom filter created for final_dir/s2-ethl.pcapO-packet-data.
txt -> final_dir/s2-ethl.pcapO-packet-data.bin

Bloom filter created for final_dir/h4-ethO.pcapO-packet-data.
txt -> final_dir/h4-ethO.pcapO-packet-data.bin

’10.0.0.1,10.0.0.4,74,11309° is not present in final_dir/testl.
bin

’10.0.0.1,10.0.0.4,74,11309’ is not present in final_dir/
sample3.pcap0O-packet-data.bin

’10.0.0.1,10.0.0.4,74,11309° is not present in final_dir/sl-
ethl.pcapO-packet-data.bin

’10.0.0.1,10.0.0.4,74,11309°’ may be present in final_dir/s6-
ethl.pcap0O-packet-data.bin

’10.0.0.1,10.0.0.4,74,11309’ is not present in final_dir/s3-
ethl.pcapO-packet -data.bin

50

8

20

V)

1

N
N

’10.0.0.1,10.0.0.4,74,11309° is not present in final_dir/sample

.pcap0 -packet -data.bin

’10.0.0.1,10.0.0.4,74,11309’ is not present in final_dir/

sample2.pcapO-packet -data.bin

’10.0.0.1,10.0.0.4,74,11309’ is not present in final_dir/

sample4 .pcap0O-packet -data.bin

’10.0.0.1,10.0.0.4,74,11309’ is not present in final_dir/s2-

ethl.pcapO-packet -data.bin

’10.0.0.1,10.0.0.4,74,11309’ is not present in final_dir/h4-

ethO.pcap0O-packet -data.bin

e Our designed system optimize large SDN forensic data sets by reducing

its space complexity as well as faster querying by using bloom filters.

e In addition to the current logging strategies, network packet data

(parsed) older than system retention period is integrated in bloom
filter (one bloom filter is made for each device’s data) and used as
forensic data.

e Query the bloom filter later to search whether a particular data was

seen before or not.

e [t offers a great advantage in retaining the forensic logs for a much

longer duration (at least 5 times more forensic data).

e By suitably modifying the value of disk size and bloom filter we may

alter the duration of forensic data retention as per the operational need.

e In our designed system, we traced the path of the network packet while

downloading a sample file from a server into the client in a simulated
SDN with hybrid network with mesh topology using mininet.

e Parse each captured tcpdump (pcap) file and fetch important informa-

tion of each packet like source of the packet, destination of the packet,
size of the packet and total number of packets.

e Integrate packets data in bloom filter creating “bin” files for respective

devices, then query to find if the element(packet data) exists in the
bloom filter(device) or not to conclude the results.

o We repeated the experiment to trace the path of a packet using the raw

log files and then searching (excerpt query) with the data integrated
in bloom filter. Both result the same path. Experiments outputs are
shown above.

51

e Data integrated with Bloom filter requires significantly less space, and
the search time complexity is also lower, with a complexity of O(1)
compared to O(m+n).

According to the design, once data is integrated into a bloom filter, it
becomes irreversible and unrecoverable, but it has the potential to prove that
an element does not exist in a set. Our approach utilizes the architecture
of bloom filter to provide acceptable evidence with significantly less data
storage requirements. While it may not offer exact log details in the event
of an incident, it can offer potential evidence in identifying the attack path
if older forensic data is integrated into our proposed design instead of being
purged.

Assuming an SDN system generates 100 GB of logs per month and the
available disk space in a traditional system is 500 GB, we cannot store any
data older than five months. Our proposed system, with a disk size of 510 GB
(10 GB more), can store five months of raw data in the traditional format and
around five months of forensic hashed data that is added in bloom filter. By
adjusting the disk size and bloom filter values, we can modify the duration
of forensic data retention to meet operational needs.

5.2 Cybersecurity Analysis of Designed System

e Bloom filters are data structures that are commonly used in computer
science to efficiently test the membership of an element in a set. Bloom
filters are often implemented as binary files, which are susceptible to
cybersecurity threats.

e One of the main cybersecurity risks associated with bloom filter bi-
nary files is the possibility of a malicious actor tampering with the
contents of the file. This could tamper the search results in bloom
filter integrated files, which can mislead the packet traverse path.

e To mitigate these risks, it is important to implement strong security
measures when handling bloom filter binary files. This may include
access controls, and monitoring for any unauthorized access or mod-
ifications to the file. Additionally, it is important to ensure that the
bloom filter is designed to resist common attacks, such as hash collision
attacks, which could be used to manipulate the contents of the filter.

92

e Overall, cybersecurity is an important consideration when working
with bloom filter binary files, and appropriate security measures should
be taken to protect against potential threats.

Referring to the flow chart shown in ‘Figure 4’ of our designed system,
To begin with, data collection and storage is the initial step. Following
that, we parse the gathered data (.pcap files) to create .tzt files and
these files are integrated into the BF to create binary (.bin) files, the
.txt files are purged at the same time and only the binary (.bin) files
are retained as optimized forensic data in the system, as the second
step. Third step is optimized forensic data storage. Finally, we perform
the excerpt query to verify the existence of a subset in the binary files
generated to track the path traversed by the packet.

Our designed system processes and transforms data older than the stip-
ulated retention period into optimized forensic data before purging the
original data from traditional storage systems. Below, we will delve
into the various cybersecurity threats that pose a risk to this process.

Logs Collection: The logs are collected centrally into traditional
storage systems. This could involve configuring the SDN controllers to
forward logs to a central log server or using a SIEM (Security Informa-
tion and Event Management) tool to aggregate and analyze the logs. It
is a software solution that combines security information management
(SIM) and security event management (SEM) capabilities to provide
real-time analysis of security alerts generated by network hardware
and applications. SIEM tools are used to collect and analyze security-
related data from multiple sources within an organization’s IT infras-
tructure. SIEM solutions typically use a combination of rule-based and
statistical analysis to detect and respond to security events.

Logs / data storage is exposed to the potential attacks such as unau-
thorized access attempts or changes to device configurations. Based
on the analysis of the SDN logs, we may need to implement additional
security controls to prevent future incidents. This could include de-
ploying intrusion detection systems, tightening access controls, or im-
plementing network segmentation to limit the impact of an incident.
It is important to continuously monitor and evaluate the SDN logs
to identify new security threats and assess the effectiveness of exist-
ing security controls. This could involve regularly reviewing log files,

93

conducting vulnerability scans, and performing penetration testing to
identify potential weaknesses in the network. It is an ongoing pro-
cess that requires continuous monitoring and evaluation to effectively
mitigate potential security threats.

Some of the security risks that may arise during data transmission from
various devices (routers or switches) in SDN system to storage servers
include interception, eavesdropping, and data manipulation. Attackers
may intercept data packets as they travel over the network, allowing
them to gain unauthorized access to sensitive information. Eavesdrop-
ping involves monitoring network traffic to collect information about
the communication between two devices. Data manipulation occurs
when an attacker alters the data being transmitted to gain unautho-
rized access or cause harm. In our system, since the data is hashed the
information is secured and not exposed to attacker to alter.

To mitigate these risks, designed system is required to ensure the confi-
dentiality, integrity, and availability of the data, hence various security
measures can be implemented, such as encryption, firewalls, and intru-
sion detection systems. Encryption involves encoding the data in such
a way that only authorized parties can access and read it. Firewalls are
used to prevent unauthorized access to the network, while intrusion de-
tection systems monitor network traffic for signs of suspicious activity
and alert security personnel when necessary. Data transmission in the
designed system is done using scp (Secured Copy : SCP-294 version)

Data Storage System: Network logs may contain sensitive informa-
tion, such as user credentials, IP addresses, and device configurations.
To comply with integrity in our system, logs are encrypted (integrated
in BF) during storage and transmission, and access should be restricted
to authorized personnel only. To maintain integrity, logs should be
protected from unauthorized modification or deletion. The minimum
possible session timeout should be adhered to by users when access-
ing the system. Network logs may be subject to legal or regulatory
requirements for retention, and may need to be kept for extended pe-
riods of time. To maintain compliance, logs are stored in a secure
and tamper-proof storage solution that supports retention policies and
secure deletion after the data is encrypted using BF. It is necessary
to ensure Full Disk Encryption (FDE) is applied when storing binary
files.

Backup and recovery procedures should be established to ensure that

o4

data can be restored in case of data loss or a security incident. The
network infrastructure that connects the storage servers should be se-
cured with firewalls, intrusion detection systems, and other network
security measures.

Excerpt Query:

Excerpt BF query is a technique used to search for specific data subsets
in large data sets using a compressed data structure called a Bloom
filter. Excerpt BF query can be vulnerable to several cybersecurity
exposures, which can potentially compromise the confidentiality, in-
tegrity, and availability of sensitive data subsets. Some of the potential
security exposure are:

Unauthorized Access - Unauthorized access to the proposed system can
potentially compromise the integrity of the data sets stored in it. We
ensure unauthorized access is barred.

Integrity - The integrity of the data sets stored in the BF should be
maintained to prevent unauthorized modifications or tampering.

Network Security - The network infrastructure that connects to the
optimized data storage should be secured with firewalls, intrusion de-
tection systems, and other network security measures.

Physical Security - Physical security measures are implemented to pro-
tect the optimized data from physical threats, such as theft, vandalism,
or environmental damage.

Packet Traversed Path:

Achieving this result is critical for the designed system, and to do so,
it is essential to address all the cybersecurity vulnerabilities mentioned
above. Any compromise, manipulation or alteration of the data can
lead to inaccurate or invalid results that cannot be used as evidence.

95

6 Conclusions

6.1 Thesis Summary and Future Work

After analyzing our experimental results, we can confidently state that the
proposed system has the capability to store at least ten times more forensic
data compared to existing systems. By implementing our system, we have
found that we no longer need to delete all data from storage systems that are
older than a specific retention period. In fact, we have noticed an improve-
ment in forensic data availability, which could potentially serve as evidence
in a court of law to analyze the path of the packet.

e Post evaluation of our experimental results, it is safe to conclude that
the proposed system can withhold significantly more forensic data as
compared to existing systems.

e We have observed that utilizing the proposed system eliminates the
need to delete all data from storage systems that are past their reten-
tion period. Rather, this approach improves forensic data availability,
which could be admissible as potential evidence in a court of law for
analyzing the path taken by the packet.

e Cybersecurity: The use of hashing is deliberate, as it helps to ensure
that data stored on servers and cloud storage systems cannot be read
by hackers. Therefore, we can infer that our optimized data is secure
/ unreadable unless the binary files are tampered.

e Our research work is published in International Conference ICOIN
2023.

e https://www.computer.org/csdl/proceedings-article/icoin/2023/
10048908/ 1KYsMyFrrFK

As part of future work, we can experiment with optimizing the bloom
filter application by utilizing enhanced multiple layered hashing, counting
bloom filter, and cuckoo filter. This could lead to the design of a more agile
and robust system capable of automatically handling logs and rolling files in
an organized manner for various types of SDN traffic.

o6

https://www.computer.org/csdl/proceedings-article/icoin/2023/10048908/1KYsMyFrrFK
https://www.computer.org/csdl/proceedings-article/icoin/2023/10048908/1KYsMyFrrFK

The proposed system can be improved and adapted to other network
systems that generate large volumes of logs. This expands the potential
for optimizing the availability of forensic data in various existing systems.
Further experiments could be conducted to demonstrate and compare time
complexity across different systems.

o7

References

1

2]

3]

4]

15]

[6]

7]

18]

Q. Waseem, S. S. Alshamrani, K. Nisar, W. I. S. Wan Din,
and A. S. Alghamdi, “Future Technology: Software-Defined
Network (SDN) Forensic,” Symmetry, vol. 13, no. 5, p. 767,
Apr. 2021, doi: 10.3390/sym13050767. [Online|. Available:
http://dx.doi.org/10.3390 /sym13050767

S. S. B. Renukuntla and S. Rawat, “Optimization of excerpt query
process for Packet Attribution System,” 2014 10th International Con-
ference on Information Assurance and Security, 2014, pp. 41-46, doi:
10.1109/ISTAS.2014.7064618.

Donghao Zhou, Zheng Yan, Yulong Fu, Zhen Yao, “A sur-
vey on network data collection,” Journal of Network and Com-
puter Applications, Volume 116, 2018, Pages 9-23, ISSN 1084-8045,
https://doi.org/10.1016/j.jnca.2018.05.004.

B. Celesova, J. Val’ko, R. Grezo and P. Helebrandt, “Enhancing security
of SDN focusing on control plane and data plane,” 2019 7th Interna-
tional Symposium on Digital Forensics and Security (ISDFS), 2019, pp.
1-6, doi: 10.1109/ISDFS.2019.8757542.

V. Varadharajan, K. Karmakar, U. Tupakula and M. Hitchens, “A
Policy-Based Security Architecture for Software-Defined Networks,” in

IEEFE Transactions on Information Forensics and Security, vol. 14, no.
4, pp. 897-912, April 2019, doi: 10.1109/TTFS.2018.2868220.

I. Ahmad, S. Namal, M. Ylianttila and A. Gurtov, “Security in Soft-
ware Defined Networks: A Survey,” in IEEE Communications Sur-
veys Tutorials, vol. 17, no. 4, pp. 2317-2346, Fourthquarter 2015, doi:
10.1109/COMST.2015.2474118.

D. Kumar and A. Girdhar, “Network monitoring and analysis along
with comparative study of honeypots,” 2017 International Conference
on Intelligent Sustainable Systems (ICISS), 2017, pp. 736-739, doi:
10.1109/1SS1.2017.8389270.

J. S. Marean, M. Losavio and I. Imam, “A Research Configuration for
a Digital Network Forensic Lab,” 2008 Third International Workshop
on Systematic Approaches to Digital Forensic Engineering, 2008, pp.
141-142, doi: 10.1109/SADFE.2008.23.

o8

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

R. Lu and L. Li, “Research on Forensic Model of Online Social Network,”
2019 IEEE 4th International Conference on Cloud Computing and
Big Data Analysis (ICCCBDA), 2019, pp. 116-119, doi: 10.1109/IC-
CCBDA.2019.8725746.

B. Siniarski, C. Olariu, P. Perry, T. Parsons and J. Murphy, “Real-
time monitoring of SDN networks using non-invasive cloud-based log-
ging platforms,” 2016 IEEE 27th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC), 2016,
pp. 1-6, doi: 10.1109/PIMRC.2016.7794973.

A. Asaduzzaman, A. Almohaimeed and K. K. Chidella, “Shared Entry
Logger to Eliminate Duplicate Requests to SDN Controller,” 2019 IEEE

9th Annual Computing and Communication Workshop and Conference
(CCWC), 2019, pp. 0579-0584, doi: 10.1109/CCWC.2019.8666595.

P. T. Duy, H. Do Hoang, D. T. Thu Hien, N. Ba Khanh, V. Pham,
“SDNLog-Foren: Ensuring the Integrity and Tamper Resistance of Log
Files for SDN Forensics using Blockchain,” 2019 6th NAFOSTED Con-
ference on Information and Computer Science (NICS), 2019, pp. 416-
421, doi: 10.1109/NICS48868.2019.9023852.

S. Locke, H. Li, T. -H. P. Chen, W. Shang, W. Liu, “LogAssist: Assisting
Log Analysis Through Log Summarization,” in IEEFE Transactions on
Software Engineering, doi: 10.1109/TSE.2021.3083715.

Patil, Rachana Y., and Satish R. Devane, “Network Forensic Investiga-
tion Protocol to Identify True Origin of Cyber Crime,” Journal of King
Saud University-Computer and Information Sciences (2019).

Kotsiuba, Igor, at el., “Basic Forensic Procedures for Cyber Crime In-
vestigation in Smart Grid Networks,” In 2019 IEEE International Con-
ference on Big Data (Big Data), pp. 4255-4264. IEEE, 2019.

G. Palmer, “A Road Map for Digital Forensic Research,” Techni-
cal Report (DTR-T001-01) for Digital Forensic Research Workshop
(DFRWS), New York, 2001.

Montasari, Reza, Pekka Peltola, and David Evans, “Integrated computer
forensics investigation process model (ICFIPM) for computer crime in-
vestigations.” In International Conference on Global Security, Safety,
and Sustainability, pp. 83-95. Springer, Cham, 2015.

99

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

A. Mishra, C. Singh, A. Dwivedi, D. Singh and A. K. Biswal,
“Network Forensics: An approach towards detecting Cyber Crime,”
2021 International Conference in Advances in Power, Signal, and
Information Technology (APSIT), 2021, pp. 1-6, doi: 10.1109/AP-
SIT52773.2021.9641399.

Wikipedia contributors. (2021, August 28). Bloom filter. In
Wikipedia, The Free Encyclopedia. Retrieved 19:23, September 24,
2021, from https://en.wikipedia.org/w/index.php?title=Bloom_
filter&oldid=1041007243

Abomhara, M., and Koien, G. M., “(2015) Forensic investigation of
cyber-attacks: A systematic review,” Journal of Network and Computer
Applications, 50, 45-65.

Alazab, M., Venkatraman, S., and Slay, J., “(2017) An overview of cyber-
crime investigation: A systematic literature review,” Journal of Network
and Computer Applications, 82, 30-47.

Baggili, I., Breitinger, F., and Marrington, A., “(2012) Investigating net-
work forensic automatic event reconstruction through correlation anal-
ysis,” Digital Investigation, 9(1), 30-41.

Bhatt, M., and Kaur, P., “(2018). Network forensics: A comprehensive
review,” Computers & Security, 79, 98-120.

Rathi, M., and Kaur, P., “(2018). Network forensics: A systematic re-
view,” Journal of Ambient Intelligence and Humanized Computing,
9(2), 461-476.

Richard, J., and Le-Khac, N. A.; “(2019). Network forensics: An
overview,” Journal of Information Security and Applications, 47, 77-

87.

Singh, D., Singh, N., and Verma, A. K., “(2018). A comprehensive re-
view of network forensics techniques and tools,” Journal of Ambient
Intelligence and Humanized Computing, 9(2), 389-403.

Firdausi, I. K., and Kartit, S., “(2017). A survey on packet attribution
techniques for network forensics,” International Journal of Computer
Applications, 160(9), 35-42.

60

https://en.wikipedia.org/w/index.php?title=Bloom_filter&oldid=1041007243
https://en.wikipedia.org/w/index.php?title=Bloom_filter&oldid=1041007243

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

He, X., Zhu, S., and Zhang, Y., “(2019). Lightweight packet attribution
based on deep learning for encrypted network traffic,” IEEFE Access, 7,
148836-148848.

Huang, T., and Lee, K., “(2019). An efficient query processing approach
for forensic analysis of big network data,” Journal of Ambient Intelli-
gence and Humanized Computing, 10(2), 157-767.

Javadi, H. H., and Rahmani, A. M., “(2016). A survey on network foren-
sic techniques based on packet sniffing,” International Journal of Com-
puter Science and Mobile Computing, 5(2), 184-189.

Shen, Y., and Wu, S., “(2016). A query processing approach for packet
attribution in network forensics,” IEEE Transactions on Information
Forensics and Security, 11(11), 2453-2466.

Wang, J., Zhang, J., and Li, X., “(2018). An efficient packet attribution
scheme based on multi-level Bloom filter,” International Journal of
Communication Systems, 31(11), e3631.

Al-azzawi, A., and Abdullah, A.; “(2019). A review of network data
collection and monitoring techniques,” IEEE Access, 7, 41612-41625.

Alharbi, F., and Fortino, G., “(2021). A survey on data collection tech-
niques and protocols in wireless sensor networks,” Journal of Network
and Computer Applications, 172, 102913.

Bhattacharyya, D., and De, S., “(2016). A review on data collection
schemes in wireless sensor networks,” International Journal of Com-
puter Applications, 145(1), 1-5.

Ding, L., Luo, X., Mao, Y., and Zhao, L., “(2020). A survey on data
collection techniques in Internet of Things,” IEEE Access, 8, 164663-
164676.

Wang, X., Li, X., Zhu, S., and Zhang, X., “(2019). A survey on data col-
lection and analysis for mobile crowdsensing,” IEEE Access, 7, 72038-
72060.

Yang, Z., He, J., Li, C., and Gao, F., “(2019). A survey of big data
collection, storage, and analytics in smart grids,” Journal of Network
and Computer Applications, 181, 1-16.

61

	Introduction
	Motivation
	Research Contribution
	Thesis Structure

	Background
	Network Forensics
	Categories of Network Forensics
	SDN Forensics Data
	Logs Data Sources
	Data Collection
	Compression
	SDN System Security
	Forensic Data Availability
	Admissible Network Forensics Evidence
	Forensic Data Retention Policy
	Expense

	Related Work
	Security Approaches
	Effective Network Data Collection
	Usage of Blockchain to Protect Data
	Logs Availability for Analysis

	Proposed System Architecture
	Logs Collection and Structure
	Rolling Logs
	Detailed System Simulation

	Bloom Filter Integration
	Bloom Filter Implementation
	Analyze Optimum Hash Functions

	Complexity Analysis
	Space complexity Analysis
	Time complexity Analysis

	Evaluation
	System Execution and Results
	Cybersecurity Analysis of Designed System

	Conclusions
	Thesis Summary and Future Work

