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Abstract

Autonomous driving (AD) systems require a comprehensive understanding of their surroundings to
navigate safely without human intervention. This involves interpreting intricate scenes, including object
interactions and anticipating future implications, which are essential for making informed decisions.
However, existing AD systems often depend on task-specific models trained on limited datasets, limiting
their adaptability to diverse real-world scenarios. Recent advancements in Large Language and Large
Vision Language models (LLMs and LVLMs) offer a promising solution to overcome these limitations
by providing general-purpose scene understanding capabilities.

This work introduces Talk2BEV, a large vision-language model interface designed for bird’s-eye
view (BEV) maps in autonomous driving contexts. While previous perception systems for autonomous
driving have mainly focused on predefined (closed) sets of object categories and driving scenarios,
Talk2BEV integrates recent advances in general-purpose language and vision models with BEV map
representations. This integration eliminates the need for task-specific models, allowing a single system
to handle various autonomous driving tasks, including visual and spatial reasoning, predicting traffic
actors’ intentions, and decision-making based on visual cues. Talk2BEV has been extensively evaluated
on a wide range of scene understanding tasks that require the interpretation of free-form natural language
queries and grounding these queries to the visual context embedded in the language-enhanced BEV map.
Notably, this approach requires no additional training, offering flexibility and enabling rapid deployment
across different domains and tasks.

Additionally, this work extends to a lightweight Vision Language Network (VLN) aimed at address-
ing the challenge of estimating a goal point location based on a given language command as an inter-
mediate representation. A generalized open-set LLM or a human driver can understand an autonomous
driving scenario and suggest an appropriate action, which can then be consumed by the VLN to pre-
dict an optimized associated goal point, subsequently used by downstream planners. This extension
enhances explainability and efficiency in autonomous driving tasks as we have the action and goal-point
as an intermediate input/output.

These contributions aim to advance the development of generalizable perception systems for au-
tonomous vehicles by emphasizing the integration of language understanding with visual reasoning
capabilities.
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Chapter 1

Introduction

For safe navigation without human intervention, autonomous driving (AD) systems must understand
the visual world to make informed decisions. This involves not only recognizing specific object cate-
gories but also understanding their interactions with the environment, both currently and in the future. A
crucial aspect of autonomous driving is comprehensive scene understanding to interpret information for
reasoning and decision-making. Many critical tasks in autonomous driving require detailed scene com-
prehension, especially to handle unforeseen scenarios. This includes understanding local details like
objects’ properties and semantics, as well as global aspects such as their spatial orientation and location
relative to markers like lanes and traffic lights. Therefore, perception systems need general-purpose
representations that work across a wide range of scenarios. It is essential for AD systems to effectively
learn and integrate object- and scene-level information for visual reasoning, spatial understanding, and
decision-making.

In autonomous driving, Bird’s Eye View (BEV) maps are very popular. Figure 1.1 represents a
conventional BEV map in autonomous driving. It is a segmentation image of the top view of the region
near the ego-vehicle. In a standard BEV map, the ego-vehicle is located at the center and includes layout
information about objects from different semantic classes such as vehicles, pedestrians, and drivable
regions. BEV maps are commonly used because they can be predicted directly using multi-view images
from the ego-vehicle and provide accurate spatial information about the layout. The precision of BEV
maps is well-defined; for example, in NuScenes [4], the resolution is 0.5 meters per pixel, allowing
rough determination of object locations relative to the ego-vehicle. This information can be used for
navigation and planning.

However, BEV maps are highly abstracted and lose intricate details present in perspective images,
preserving information only for semantic classes. Given just the BEV map, you cannot discern details
about the actual vehicle apart from its class, since the perspective information is lost, making it impos-
sible to differentiate or further describe vehicle classes. In a way, there is a decoupling where spatial
information is well-present in BEV maps, but intricate perspective details are missing. These details are
present in front camera images, but they do not capture spatial information that well.

1



Figure 1.1 Absence of Intricate Details in BEV Maps: The figure illustrates the information loss in
Bird’s Eye View (BEV) maps compared to camera images from the vehicle. BEV maps, while providing
accurate spatial information about the layout of objects relative to the ego-vehicle, are highly abstracted
and lack intricate perspective details. As seen in the figure, the semantic class only conveys the presence
of a vehicle on the map; however, the rich intricate details of different objects are lost.

We aim to create a representation that enables more holistic scene understanding. This will allow
us to enhance conventional BEV maps by incorporating perspective information. By consolidating all
relevant information from both the perspective and spatial domains in one place, we can tackle visual
question-answering (VQA) tasks that require information from both camera data and BEV maps (as
shown in Fig. 1.2). To address this problem, we plan to leverage recently developed vision-language
models that have shown impressive capabilities.

Recent advances in large language models (LLMs) [5, 6, 7, 8, 9] and large vision-language models
(LVLMs) [3, 10, 11, 12] offer a promising alternative for perception in AD. These models, pretrained
on web-scale data, can perform all the aforementioned tasks and more, particularly by handling unfore-
seen scenarios. They demonstrate the potential to build general-purpose image understanding systems
capable of interpreting and reasoning about both object- and scene-level information. Fine-tuned on
human instructions, these models possess common sense reasoning and can follow natural language in-
structions. They can interpret human intent, reason based on visual cues, and make sensible decisions.
Additionally, these models are vision-language aligned, enabling zero-shot capabilities and knowledge
transfer to novel objects, tasks, and diverse unseen scenarios encountered in the real world.

Hence, one core motivation of the work presented is how to most efficiently integrate the capabilities
of LLMs with the scene representations traditionally used in autonomous driving, making the perception
stack more generalizable and introducing reasoning.

To this end, I worked on a pipeline called Talk2BEV, which leverages LLMs and LVLMs to generate
language-enhanced maps for AD that enable holistic scene understanding and reasoning across a broad
range of road scenarios. Our framework interfaces LVLMs with bird’s-eye view (BEV) maps—top-
down semantic maps of the road plane and traffic actors that are widely used in AD systems [13, 14, 15,
16]—to enable visual reasoning, spatial understanding, and decision-making. A BEV map is augmented

2
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Figure 1.2 Talk2BEV constructs language-enhanced bird’s-eye view (BEV) maps using (a) BEV rep-
resentations constructed from vehicle sensors (Multi-View Images, LiDAR), and (b) Aligned vision-
language features for each object, which can be directly used as context within large vision-language
models (LVLMs) to query and interact with the objects in the scene. These maps embed knowledge
about object semantics, material properties, affordances, and spatial concepts and can be queried for
visual reasoning, spatial understanding, and making decisions about potential future scenarios, crucial
for autonomous driving applications. Furthermore, we introduce the first benchmark Talk2BEV-Bench
for evaluating LVLMs in AD applications, covering a diverse set of question categories with human-
annotated ground truth.

with aligned image-language features for each object in the scene. These features can then be directly
passed as (visual) context to an LLM, enabling the model to answer a wide range of questions about the
scene and make decisions about potential future scenarios using the vast knowledge base acquired by the
LVLM during training. It is observed that these LVLMs can interpret object semantics, material proper-
ties, affordances, and spatial concepts, making them an ideal alternative to domain-specific models and
allowing us to present a unified framework for AD instead of using separate closed-set components.

Notably, this approach does not require any BEV-specific or vision-language training/finetuning;
it uses existing pretrained LLMs and LVLMs. This allows our approach to be flexibly and rapidly
deployed across a wide range of domains and tasks, and to easily adapt to newer LLMs and LVLMs as
better models become available. This also prevents our approach from being task-specific or dataset-
dependent and enables generalization to diverse scenarios encountered in the real world. To objectively
evaluate LVLMs for perception in the AD context and to expedite further research, I also developed
Talk2BEV-Bench: a benchmark for the evaluation of large vision and language models for autonomous
driving systems on a range of tasks, encompassing object-level and scene-level visual understanding.

However, for tasks such as goal point prediction or trajectory prediction, LLMs and LVLMs may lead
to infeasible outputs due to the inability to perform optimized mathematics. Instead, a simpler approach
would be to gain an intermediate representation that is interpretable. Following this line of thought,
in further extensions, I noticed from Talk2BEV that LLMs are able to reason out and suggest action
commands. Afterwards, the aim was to explore a goal-oriented approach where LLM-suggested high-
level language commands can be mapped to a desired goal. The advantages of such an approach, similar
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to those discussed in [17, 18, 19], are that goal-directed planning improves explainability in autonomous
driving. Predicting just the goal position allows the use of smaller and lightweight networks, requiring
less data for training and resulting in faster inference times.

Hence, I also worked on a lightweight Vision Language Network (VLN) that takes in an instruction
command along with the front camera image and predicts the associated goal point on the image along
with some additional predictions. The visual grounding of the goal point is achieved by utilizing a
transformer-based model inspired by [20] that accepts the embedding of multimodal input obtained
from a pretrained LLM and outputs a language-aligned region along with a goal state. The VLN can
also be extended to make additional predictions, such as identifying the need to come to a rest state and
any references based on the language command, which can be useful to any downstream planner. To
enhance the reasoning capability of our model, I experimented with its integration with a VQA model,
which automates the navigation instructions as an extended application.

In summary, the work discussed in the thesis is as follows:

• The Talk2BEV pipeline, which augments BEV maps with language to enable general-purpose
visuolinguistic reasoning for AD scenarios.

• This framework does not require any training or fine-tuning, relying instead on pretrained image-
language models. This allows for generalization to a diverse collection of models, scenarios,
and tasks. It seamlessly works in tandem with modern LLMs to enable scene understanding and
decision-making for potential future situations critical for autonomous driving.

• The Talk2BEV-Bench, a benchmark for evaluating LVLMs for AD applications with human-
annotated ground truth for object attributes, semantics, visual reasoning, spatial understanding,
and decision-making.

• A VLN that takes guiding action commands and predicts a relevant goal point on the image along
with some additional predictions. This VLN pipeline can be preceded by an LLM to generate the
suggested action and can be followed by a downstream planner to generate the trajectory to the
predicted goal point.
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Chapter 2

Related Work

2.1 Large Vision Language Models

The recent advancements in Large Language Models (LLMs) have spurred the development of Large
Vision Language Models (LVLMs) [5, 6, 7, 8, 9]. These LVLMs are specifically tailored to tackle vision-
language tasks by integrating both textual and visual information. Unlike traditional language models
that primarily process text, LVLMs can comprehend and generate text based on accompanying images.

To gauge the effectiveness and performance of LVLMs, several evaluation frameworks have been
devised. Prominent among them are Multimodal Model Evaluation (MME) [21], Multimodal Model
Benchmark (MMBench) [22], LVLM-Ehub [23], and SEED-Bench [24]. These frameworks employ
diverse evaluation metrics, including question answering and image captioning tasks, to assess the
LVLMs’ capabilities across different dimensions such as existence, color, count, and position.

Our evaluation methodology follows a similar vein to SEED-Bench [24] and MMBench [22]. We
leverage GPT-4, a cutting-edge language model, to facilitate both question formulation and evaluation
processes. By harnessing GPT-4’s natural language processing capabilities, we aim to conduct compre-
hensive assessments of LVLMs, shedding light on their strengths and areas for potential enhancement.

2.2 3D Vision-Language Models

LVLMs have also started to be employed in scene understanding tasks such as object localization [25,
26, 27], scene captioning [28, 29], and 3D Visual Question Answering utilizing multi-view images [30,
31] or point clouds [32, 33]. The 3D-LLM [34] integrates LLMs into point clouds generated from
multi-view images, bridging 2D models to 3D, thereby aiding in object spatial reasoning and geometry
understanding. In contrast, the Point-LLM [35] is trained exclusively on point clouds, eliminating the
need for images in the training process.
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2.3 Vision-Language Models for Autonomous Driving

Language prompts have recently been applied to autonomous driving to improve scene understanding
from a human standpoint. One of the primary tasks in autonomous driving is object segmentation
referring. Approaches like CityScapes-Ref [36] and Talk2Car [37] attempt it on CityScapes [38] and
NuScenes [4] respectively. ReferKITTI [39] accumulates temporal information and performs object
referral along with Multi-Object Tracking (MOT) on the KITTI dataset. NuPrompt [40] extends it to
3D by generating language prompts referring to 3D bounding boxes in the scene. They use RoBERTa
[41] as their language encoder and perform end-to-end training. Unlike ReferKITTI and NuPrompt,
we do not use temporal information and use inputs from the current time step only. Our work offers
substantial improvements over this by blending state-of-the-art LLMs and LVLMs with BEV maps,
while requiring no training or fine-tuning.

2.4 Visual Grounding in Scene Understanding and Navigation

Visual grounding aims to associate a natural language query with the most relevant visual elements
or objects in a visual scene. Visual grounding tasks were previously approached as referring expression
comprehension (REC), which involved localizing a bounding box based on the natural language expres-
sion. Traditional REC approaches typically involve two phases [42, 43, 44, 45]. Initially, they identify
candidate regions within the input image using pre-trained object detectors [46, 47]. Subsequently, they
select the most suitable candidate region based on the provided referring expression. Conversely, one-
stage methods [48, 49, 50, 51, 52] integrate linguistic and visual features within a network and directly
predict the target box [50, 48, 49]. However, bounding box prediction is imprecise in capturing the
shape of the region and is insufficient for navigation tasks. Another approach is to localize the objects
by their pixel-level segmentation mask, formally known as Referring Image Segmentation (RIS). RIS
methods also use different strategies to fuse information from different modalities [53, 54, 55, 56]. [20]
uses an RIS approach for the task of identifying navigable regions on the drivable areas based on a lan-
guage command. However, the work is limited to scene understanding and does not include navigation
simulations, as trajectory planning relies on precise goal-point location, which they do not address.

2.5 Concurrent Work

Efforts such as NuScenes-QA [57] address Visual Question Answering (VQA) in autonomous driv-
ing by crafting scene graphs and question templates. Their evaluation demands end-to-end training
and exact answer matching. Other efforts have focused on training end-to-end vision-language-action
models [58] on large amounts of aligned multimodal data.

Additionally, existing works [59, 60, 61, 62, 63, 64, 65] utilize LLMs to reason about driving scenes
and predict control inputs. The majority of such works attempt to directly estimate the control actions.
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However, these approaches are susceptible to errors due to their heavy reliance on VLMs’ capability to
give optimized control outputs. This reliance may lead to non-smooth motion for intricate cases such as
parking or highway merging, which require complex combinations of control actions.

In contrast to concurrent work, the Talk2BEV pipeline represents a significant advancement by pro-
viding zero-shot scene comprehension through the utilization of Large Vision and Language Models
(LVLMs) designed for autonomous driving. It also introduces a comprehensive benchmark, named
Talk2BEV-Bench, aimed at evaluating LVLMs’ effectiveness in scene understanding in autonomous
driving scenarios. Additionally, unlike existing visual grounding approaches, we extend our framework
to include goal-point prediction for autonomous driving along with the preexisting segmentation mask
prediction using the RIS technique. We demonstrate that the predicted goal-point is reasonable and
can be used for planning. Moreover, the model is well-suited for autonomous driving since it provides
additional contextual states such as final velocity and identifying object references based on the textual
command, which might be helpful for downstream tasks.
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Chapter 3

Language-Enhanced Bird’s Eye View Maps

The conventional Bird’s Eye View (BEV) maps offer a comprehensive top-down perspective, dis-
playing the positions of both dynamic and static objects within a scene. They provide a spatial un-
derstanding of objects across different semantic classes to efficiently convey the required semantic in-
formation crucial for navigation and planning. However, they lack the intricate details and contextual
information present in perspective images. Unlike perspective images, which offer specific viewpoints
of a scene, layout maps present a simplified, abstract representation, often at the expense of fine-grained
visual cues. These details are indispensable for tasks requiring precise comprehension and interpretation
of the environment, such as scene understanding and interaction with the environment.

I worked on a pipeline that we named Talk2BEV, which acts as an end-to-end framework enabling
communication with a Bird’s Eye View (BEV) map for visual reasoning about objects and spatial as-
pects. Our framework facilitates conversation with entities within the BEV to enhance comprehension
of their attributes and features, fostering a holistic understanding of the map. Additionally, our spatial
module allows for the calculation and solving of feasible tasks based on the current map. Fig. 3.1
provides an overview of our pipeline.

3.1 Introductory Overview

The key idea of Talk2BEV is to enhance the conventional bird’s-eye view (BEV) map with general-
purpose vision-language features derived from pretrained LVLMs. A BEV map, denoted O, is a top-
view multi-channel grid encoding semantic information of various relevant classes such as vehicles,
pedestrians, lanes, and lane markings. In this work, we use only the vehicle and pedestrian classes to
extract LVLM features, and the road classes are shown only for visualization purposes. In a standard
BEV frame, the ego-vehicle is represented at the origin, which is assumed to be the center of the BEV
image. Given multi-view RGB images I and a LiDAR point cloud X , a BEV can be obtained using a
number of off-the-shelf approaches such as [13, 16, 14, 66, 67].

We then further enhance this conventional BEV map with LVLM features, which can serve as context
for responding to various user queries q. The BEV representationsO are enriched with scene and object
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Figure 3.1 Overall Talk2BEV Pipeline: We first predict the bird’s-eye view (BEV) map from multi-
view images using a standard off-the-shelf model. Then, we construct the language-enhanced map
by augmenting the predicted BEV with aligned image-language features for each object from large
vision-language models (LVLMs). To achieve this, for each object in the BEV, we project it onto the
image (using LiDAR-camera extrinsics), extract a bounding box, and caption the cropped bounding box
using an off-the-shelf LVLM. Each object in the language-enhanced map now encodes geometric cues
(position, area, centroid), and semantic cues (object and image descriptions). These joint features can
then be used as context for the LLMs to answer object-level and scene-level queries.

descriptions to create a Language-Enhanced map L(O). We utilize powerful LVLMs such as BLIP-
2 [10], MiniGPT-4 [11], and InstructBLIP-2 [12] to generate free-form captions and descriptions for
different object crops and complete perspective images in a zero-shot manner. To achieve this, our
three-phase pipeline (refer to Fig. 3.1) operates as follows:

1. We first predict a BEV map using a standard off-the-shelf model [13], which takes as input multi-
view images captured by vehicle sensors.

2. For each object oi in this BEV map, we generate aligned image-language features using an
LVLM [10, 12, 11]. These features are then passed into the language model of an LVLM to
extract object metadata. The object data, along with geometric information present in the BEV,
forms the language-enhanced map, L(O).

3. Finally, given a user query, we prompt an LLM (e.g., GPT-4 [3]) to interpret the query, parse the
language-enhanced BEV as needed, and produce a response to the query.

These steps will now be discussed in detail in the later subsections.

3.2 Language-Enhanced Maps

Generating BEV: To begin, we have N multi-view images I = {In} of the scene, where n ∈
{1, . . . , N}, and the corresponding LiDAR scan X . We use these images and LiDAR scan as in-
put and first predict a BEV representation using the LSS (Lift-Splat-Shoot) method [13]. LSS takes
N multi-view images of a scene as input and generates corresponding BEV segmentation map O.
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BEV-Image Correspondence: Next, we localize each object in the predicted BEV within the multi-
view images used to generate the BEV map. Given a LiDAR scan (a point cloud) X and the positions of
the objects in the Bird’s Eye View, for each object, we select the K points xk ∈ X , where k ranges from
1 to K, that are closest to the object’s segmentation mask center. These points are then transformed
from the LiDAR frame to the camera frame and projected onto the camera image with the best overlap
to obtain the correspondence between the object patch in the BEV map and the image region.

Language Enhancement: We then use a point-queryable segmentation model, such as FastSAM [68],
with the point prompt as the mean of the projected image points to generate image masks specific to the
BEV segmentation patches. For each object mask, we crop a tightly fitting bounding box bi around it.
Both the cropped image and original image are then passed onto the LVLM to generate object descrip-
tions. At this stage, we only pass these images through the visual encoders to obtain image-language
features that may later be passed as context tokens into language decoders. The descriptions for each
object encompass both object-level and scene-level details as explained later. These generated metadata
are then augmented with the BEV map in the form of a text entry (see a sample JSON-structured entry
in Fig. 3.3).

Object Descriptions: Our language-enhanced map augments additional object details in a BEV by
computing the image regions corresponding to each object and deriving textual descriptions to combine
with the pre-existing spatial details in the conventional BEV. For each object i, we then have (a) dis-
placement along the BEV X and Y axes (in m) from the ego-vehicle, (b) object area (in m2), (c) a text
description of the object, and (d) a text description of the background. LVLMs are specifically prompted
to generate detailed descriptions of objects, and their outputs typically encode the type, color, and util-
ity of the vehicle, status of the vehicle indicators, any text displayed on the vehicle, etc., along with a
detailed summary of the entire perspective image, which includes details on weather, traffic conditions,
any anomalies, etc.

To obtain rich captions for our images, we utilize state-of-the-art Large Vision Language Models
(LVLMs) such as BLIP-2 [10], MiniGPT-4 [11], InstructBLIP-2 [12], etc. These models feature a frozen
visual encoder (ViT/Q-former), a language backbone (Vicuna), and a linear projection layer, typically
used for fine-tuning. These LVLMs demonstrate excellent zero-shot generalization capabilities across
various vision-language-based tasks, including complex reasoning and conversation. Given a region
crop ri, these networks provide crop-level details ci as described earlier in a zero-shot manner. We later
demonstrate in detail that for our task, all LVLMs exhibit similar performance, and any LVLM of choice
can be used.

The obtained language-enhanced BEV maps contain both spatial and perspective information, facil-
itating free-form question answering, visual and spatial reasoning, and the execution of potential tasks
using spatial operators. Additionally, this information is encoded in a serialized JSON data format that
a Large-Language-Model (LLM) like GPT4 can parse. When presented with a user query, the LLM can
use this data for general-purpose reasoning and decision-making regarding present and potential future
situations across various autonomous driving scenarios.
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Figure 3.2 Sample serialized JSON structure to display the information extracted from the BEV and
perspective images for a particular object. Each object is associated with one JSON, and the entire scene
is a list of such JSONs. As discussed earlier, for each object, we extract the position, area, and crop
descriptions, which are presented in more detail in Fig 3.3.

Figure 3.3 Sample instance of crop and background descriptions associated with an object. The
crop description includes a brief description of the object, status of vehicle indicators, the vehicle di-
rection/view in the image, any visible text using OCR, and a general background description with the
weather and any anomalies.
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Language Enhancement Talk2BEV-Bench

Spatial Reasoning

Instance Attribute

Visual Reasoning

Instance Counting

Q. What is to the left of 
ego-vehicle?
Answer: White Car

Q. What is the color of vehicle 
in front of ego vehicle?
(A) Green (B) Red
(C) Black (D) Blue
Answer: (A) Black

Q. How many cars are in in front of 
ego-vehicle?
(A) 5 (B) 2
(C) 6 (D) 7
Answer: (B) 2

Q. What is the weather 
condition in the scene?
Answer: Sunny

LLM

Ground Truth BEV
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This is a white van.

Crop Proposals 

LLaVa - Initial captions

GRiT - Dense Captioner

Empty road

PaddleOCR - Text Recognition

Human Verification

Language-Enhanced 

Ground Truth BEV

Generated Questions

Images

LiDAR

White van

Figure 3.4 Talk2BEV-Bench Creation: To develop this benchmark, we use the NuScenes Ground Truth
BEV annotations and generate object and scene-level descriptions using dense Captioners (GRiT [1]),
and Text-Recognition (PaddleOCR [2]) models. The Ground Truth BEV is then passed to an LLM like
GPT4 to generate diverse questions including, but not limited to- Spatial Reasoning, Instance Attribute,
Visual Reasoning and Instance Counting.

3.3 Interfacing with LLMs

Type of queries: The Talk2BEV system can handle multiple types of user queries. In this study, we
categorize these queries into three distinct categories: free-form text queries, multiple-choice questions
(MCQs) with a single correct answer, and spatial reasoning queries expressed through textual descrip-
tions. Free-form text queries and spatial reasoning queries simulate the natural conversational interface
intended for interaction with Talk2BEV, reflecting how users might naturally communicate with the
system. Conversely, MCQs provide a structured format for assessment, enabling us to conduct objec-
tive evaluations of the system’s performance. This evaluation methodology aligns with the standardized
approach outlined in SEEDBench [24], ensuring consistency and comparability across evaluations.

Response format: Instead of directly generating free-form text outputs, we instruct the LLM used
in Talk2BEV to produce a JSON-formatted output with four fields: (i) inferred query, which
rephrases the user query, providing the LLM’s interpretation; (ii) query achievable, indicating
whether the query is achievable; (iii) spatial reasoning functions, denoting whether spatial
reasoning functions are needed; and (iv) explanation, containing a brief explanation of how the
LLM addressed the provided task. Figure 3.5 specifies the system prompts provided to the LLM, with
GPT-4 as the specific model used. Employing this format presents dual advantages: firstly, it ensures
that the LLM delivers information in an organized manner, structured into key-value pairs. Secondly,
it facilitates chain-of-thought reasoning [69] by outlining the intermediate steps that lead to the final
response, enhancing interpretability and user confidence in the system’s outputs.

Spatial Operators: To facilitate spatial queries, we have implemented a set of primitive spatial oper-
ators [70] capable of performing simple spatial calculations on entities of the language-enhanced map
L(O). These modules primarily take as input the object id of the referenced objects, and optionally
the distance (m) as input. The list of spatial operators is detailed in Table 3.1. Based on their return
type, they fall into two main categories: (i) returning a list (of object IDs), and (ii) returning a distance.
To enable the LLM to accurately perform spatial reasoning, we provide access to an API of primitive
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f"""You will be given, as input a 2D road scene in Bird's Eye View, as a list. The ego-vehicle is at (0,0) 
facing along the positive X-axis.  Each entry in the list describes one object in the scene. Please ask the 
user to input JSON. Once you have parsed the JSON and are ready to generate questions about the 
scene. Create a multi-choice questions about the image, and provide the choices and answer. Each 
question should have 4 options, out of which only 1 should be correct.
{type-specific-prompt}
"""

(a) Question Generation System Prompt (Generic)

Evaluation 
Dimension

type-specific-prompt

Spatial 
Reasoning

"The question should be about spatial relations between two objects. The 
questions should be mainly based on the coordinates of the two objects. To 
answer the questions, one should find the two mentioned objects, and find their 
relative spatial relation to answer the question."

Instance Attribute "The questions should be about the attribute of a certain object, such as its color, 
shape or fine-grained type."

Instance 
Counting

"The questions should involve the number of appearance of a certain object. 
Start with ”How many ....”. The choices of the question should be numbers. To 
answer the question, one should find and count all of the mentioned objects in 
the image."

Visual Reasoning

"Create complex questions beyond describing the scene. To answer such 
questions, one should first understanding the visual content, then based on the 
background knowledge or reasoning, either explain why the things are 
happening that way, or provide guides and help to user’s request. Make the 
question challenging by not including the visual content details in the question so 
that the user needs to reason about that first."

f""The input to the model is a 2D road scene in Bird's Eye View, described in a JSON format. The 
ego-vehicle is at (0,0) facing along the positive Y-axis. The "scene" key will have a list. Each entry in the 
list describes one object in the scene. Ask the user to user to prompt JSON. Once you have parsed the 
JSON and are ready to answer questions about the scene, say "I'm ready". The user will then begin to 
ask questions, and the task is to answer. For each user question, respond as:
{response-format}
"""

Response Format JSON (you here refers to GPT-4)

key key description provided to GPT-4

inferred_query your interpretation of the user query in a succinct form

query_achievable whether or not the user-specified query is achievable
using the objects and descriptions provided in the scene

spatial_reasoning_functions
If the query needs calling one or more spatial reasoning 
functions, this field contains a list of function calls  that conform 
to the API above. Else, this field contains an empty list.

explanation A brief explanation of what the most relevant object is, and how 
it addresses the task.

(b) Response Generation System Prompt

(c) Type Specific Prompts (d) Response Format JSON

Figure 3.5 LLM System Prompts: (a) Generic question generation prompt for the LLM [3]. (b)
System prompt for response generation. (c) Details the type-specific commands added to generate ques-
tions along each evaluation dimension. (d) Displays the response format JSON with a brief explanation
provided to the LLM on how to fill each key of the JSON.

bev_area 14.75 bev_centroid [9.0, -7.5]
brief label This is a yellow Caterpillar bulldozer.
background a large yellow construction machine driving 

down a city street

bev_area 12.25 bev_centroid [9.5, -0.5]

brief label This is a white truck, which is pulling a 
semi-trailer consisting of materials.

background A black car a truck are driving down a busy 
city street. There is a bridge in background.

Q: Find distance between construction vehicle and 
the truck carrying materials?

inferred_query: Distance between yellow bulldozer 
and white truck with semi-trailer.
query_achievable: true
spatial_reasoning_functions: [find_dist(5, 2)]

explanation: The distance between the yellow 
bulldozer (object_id: 5) and the white truck carrying a 
semi-trailer (object_id: 2) can be calculated using the 
provided spatial reasoning function.

object id: 5

object id: 2

CAM_FRONT_RIGHT

CAM_REAR

BEV

Figure 3.6 Spatial Operators: To compute the distance between the bulldozer and the white truck,
the Language Enhanced Maps for the objects are interpreted by an LLM like GPT4 to invoke relevant
spatial operators in our framework with appropriate object IDs as arguments.

13



spatial operators. The LLM’s task is to parse the complex natural language spatial reasoning queries qsp
into a set of sequential spatial operations and invoke the relevant functions in correct order to find the
answer. Whenever a user query involves spatial reasoning (locations, distances, orientations), the model
is instructed to generate API calls that directly invoke relevant spatial operators, rather than attempting
to calculate the output itself. We design their metrics based on their return type, as described in the later
subsection. This also simplifies the evaluation and scoring of these LVLMs and establishes a standard
format for it. An example usage of spatial operators is illustrated in Fig. 3.6, where we capture the
distance between the construction vehicle and the truck carrying materials. Importantly, these vehicles
are never co-visible in the same camera and require a BEV map for reasoning about them jointly.

3.4 Implementation Details

To generate Bird’s Eye View (BEV) maps from multi-view images, we utilize the Lift-Splat-Shoot
model [13]. Each BEV comprises a grid measuring 200× 200, with each cell corresponding to a spatial
resolution of 0.5m. It’s noteworthy that all our ground-truth BEV maps, used for evaluation purposes,
maintain uniform resolution and grid dimensions.

In our experimentation, we explore the effectiveness of various Language Vision and Language Mod-
els (LVLMs) in augmenting different object captions within our Language Enhanced Maps L(O) with
relevant visual features. Specifically, we consider BLIP-2 [10], MiniGPT-4 [11], and InstructBLIP-
2 [12]. These visual features serve as contextual information for the language decoder of LVLM, aiding
in the generation of descriptive object representations. For BLIP-2, we utilize the Flan5XXL [71]
language decoder, while for InstructBLIP-2 and MiniGPT-4, we employ the Vicuna-13b language de-
coder [72].

Furthermore, user queries regarding the language-enhanced BEVs are addressed using GPT-4 for
question answering tasks. Across all experiments, a temperature value of 0.7 is consistently used for
LVLMs, while GPT-4 operates at a temperature of 0.0. All inferences are carried out using NVIDIA
A100 hardware for efficient processing.

3.5 Dataset and Benchmarking

To evaluate the quality of our language-enhanced map and assess the spatial understanding and visual
reasoning capabilities of our framework, we introduce Talk2BEV-Bench. This is the first benchmark
designed specifically for evaluating Language Vision and Language Models (LVLMs) in the context of
autonomous driving applications.

We start by generating ground-truth language-enhanced maps for 1000 scenes sourced from the
NuScenes dataset [4]. Additionally, we create over 20,000 human-verified question-answer pairs as
part of the SEEDBench [24]. In SEEDBench, each question comes with multiple answer choices,
among which only one is correct. These questions are carefully crafted to assess various aspects such
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Method Description

front filter(objs) Objects to the front

left filter(objs) Objects to the left

right filter(objs) Objects to the right

rear filter(objs) Objects to the rear

dist filter(objs, X) Objects within ”X” meters

k closest(objs, k) k closest objects

k farthest(objs, k) k farthest objects

objs in dist(objs, id, dist) Objects within distance ”dist” to oid

k closest to obj(objs, id, k) k closest objects to oid

k farthest to obj(objs, id, k) k farthest objects to oid

obj distance(objs, id) Distance (in meters) to oid

find dist(objs, id1, id2) Distance between objects oid1 and oid2

Table 3.1 List of spatial operators: Here, objs denotes the list of objects in the BEV, and oid refers
to the object with object id equal to id. Operators that do not require object id as input operate
on the ego-vehicle.

as understanding of object attributes, instance counting, visual reasoning, decision making, and spatial
reasoning relevant to autonomous driving tasks.

It’s important to note that we deliberately exclude any free-form query qff or its corresponding
answer. Instead, we focus solely on structured queries and responses, restricting free-form queries to
qualitative analysis.

The process of generating questions and responses involves several steps. Initially, we extract
ground-truth Bird’s Eye View (BEV) maps from the NuScenes dataset. For each object in these maps,
we obtain captions through a refinement process carried out by human annotators. Subsequently, we
utilize GPT-4, a state-of-the-art language model, to generate questions and initial responses for each
question based on the extracted captions. These questions and responses undergo further validation by
human annotators to ensure accuracy and relevance. The final set of Multiple Choice Questions (MCQs)
produced through this iterative process forms the basis of our benchmark.

This question and answer curation approach is visually depicted in Fig. 3.4, where an example set of
generated questions is presented alongside a ground-truth language-enhanced BEV map.
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3.5.1 Ground-truth language-enhanced maps

We start by using the BEV maps provided in the NuScenes ground-truth dataset to identify objects
of interest and obtain their corresponding image crops through LiDAR-camera projection. For each
object oi and its associated region ri, we employ the following approach to extract the image-language
description.

Crop captions: To initiate our description generation, we utilize LLaVA [73] and GRiT [1]. These
tools assist in capturing intricate object details within the local crop. Additionally, we integrate the text-
recognition model PaddleOCR [2] into our pipeline. This model aids in detecting and extracting text
from the body of numerous vehicles, enhancing our understanding of the vehicle’s type and category.
This comprehensive process ultimately improves the benchmark quality.

Background information: In addition to extracting crop-level features, we also gather crucial con-
textual information from the complete camera image. This information, which may not be visible in
the BEV segmentation and object-level crops, holds significant importance in an autonomous driving
context. Examples of this additional information include street/road signs, barriers/cones, weather con-
ditions, time of day, and any other unusual elements within the scene.

At this stage, we proceed with human verification. Human annotators play a pivotal role in combin-
ing and refining the generated foreground and background captions. The caption generation process is
further elucidated in Figure 3.4.

3.5.2 Question Generation and Evaluation Metrics

In our evaluation, we focus on four types of tasks related to visual and spatial understanding:

• Instance Attributes: These questions inquire about objects and their attributes, such as color, size,
or shape.

• Instance Counting: This task involves determining the number of objects described in the query,
which helps assess the model’s ability to comprehend quantities.

• Visual Reasoning: These questions test general visual understanding beyond specific attributes or
counting, encompassing tasks like identifying patterns or relationships among objects.

• Spatial Reasoning: This category involves questions related to spatial concepts such as location,
distance, or orientation, which are crucial for understanding scenes and environments accurately.

The evaluation benchmark, known as Talk2BEV-Bench, primarily comprises two question types:

• qmcq (Multiple-Choice Questions): These questions cover all categories except spatial operators.
The benchmark provides the correct answer for each multiple-choice question.
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• qsp (Spatial Queries): For spatial queries, the benchmark returns either a list of objects or a
distance value, depending on the query. When the return type is a list, it contains objects extracted
from the ground truth BEV along with relevant spatial operators. When it’s a distance, it provides
the precise distance of the query from a reference point.

We use different evaluation metrics based on the type of questions:

1. Multiple-Choice Questions (qmcq):

• Accuracy: We evaluate the accuracy of the model’s response by comparing it with the single
correct option provided by the benchmark.

2. Spatial Reasoning (qsp):

• Return Type: List:

– Intersection-Over-Union (IoU): This metric measures the degree of overlap between
the list obtained during evaluation and the ground truth list, providing insights into the
model’s ability to identify spatial relationships accurately.

• Return Type: Distance:

– Distance Error: We utilize a linear relative error metric, ranging between 0 and 1,
to quantify the difference between the distance obtained from the benchmark and the
distance response generated during evaluation. This metric helps assess the precision
of spatial distance estimation by the model.

Each metric yields a score between 0 and 1, indicating the model’s performance on the respective
task. For multiple-choice questions (qmcq), the generated response is compared against the correct
option from the benchmark to determine accuracy. For spatial queries (qsp), the response can be either
a list of objects or distances, depending on the nature of the query. When the return type is a list, we
use the Intersection-Over-Union (IoU) metric to evaluate spatial relationships, whereas for distances,
we employ Distance Error to assess the accuracy of distance estimation.

3.6 Results

For our Talk2BEV pipeline, we evaluate quantitatively on questions from Talk2BEV-Bench and find
that:

1. Talk2BEV addresses a broad set of visual and spatial understanding tasks by leveraging language-
enhanced maps.

2. Access to an API of primitive spatial operators significantly improves performance on spatial
reasoning tasks.

17



BEV Map Front Camera Image

The ego-vehicle wants to move forward 20m. What 
should the ego-vehicle take care of?

Here are the precautions that the ego-vehicle should take
Reduce speed and be prepared to come to a complete 
stop.
Keep a close eye on Object 8 to anticipate any potential 
encroachment into the lane.
Maintain a safe following distance from surrounding 
vehicles.

The ego-vehicle needs to be particularly cautious about 
other vehicles when considering a forward motion of 
20m. Specifically, Object 8, a black car at [2.0, 17.0], Its 
message indicates it's in reverse with rear park lights on.
 
While it's slightly outside the lane boundary, its reversing 
motion and proximity to the lane edge are significant 
concerns.

What precautions should the ego-vehicle take?

What actually happens in the scene?

t=0s t=1s t=2s t=3s

Target point         
Ego vehicle
Vehicle in current lane

Figure 3.7 Talk2BEV in free-form conversation. We illustrate a free-form query qff and a sequential
conversation with our Talk2BEV framework. There is a car in front of the ego-vehicle (highlighted in
red) that is reversing into a parking spot. Talk2BEV identifies that the parking lights are on and, based
on this visual information and the spatial location of the car in front, deems it unsafe to continue moving
forward.

3. The zero-shot nature of Talk2BEV allows seamless switching of LVLMs, enabling easy integra-
tion across more performant LVLMs.

We also present qualitative results on challenging scenarios from NuScenes [4], indicating the ability
of Talk2BEV to interpret the BEV layout at a granularity that allows predicting potential risky driving
maneuvers and recourse.

We also present goal point qualitative results on the CARLA dataset. We show that the model is able
to predict reasonable outputs for different kinds of commands. It can identify various lanes, other traffic
actors, different objects on the roadside, and road signs.

3.6.1 Quantitative Results

We first assess the performance of Talk2BEV on questions from Talk2BEV-Bench. In Table 3.2,
we report the performance across task subsets and LVLMs used. To distinguish errors originating from
incorrect BEV predictions versus inaccurate LVLM captions, we also present results from an oracle
approach that leverages the ground-truth BEV map.

When using BEV maps output by LSS [13], we find that InstructBLIP-2 achieves the best perfor-
mance in instance attribute recognition and visual reasoning compared to BLIP-2 and MiniGPT-4. In
contrast, for instance counting, the MiniGPT-4 based L(O) map achieves the best accuracy. Overall,
we notice that MiniGPT-4 achieves the best average performance across different types of questions.

We observe that instance attribute and visual reasoning tasks are more sensitive to the quality of
LVLM captions compared to other question categories, which is expected given the complexity of these
tasks compared to instance counting.
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We also note that errors in the BEV have only a minor impact on performance (3%). This is mainly
because, although predicted BEVs may not capture the exact shape of different traffic actors in the BEV
map, there is still significant overlap, and the predicted area and the BEV-to-image projection correctly
land on the object region for most objects.

BEV LVLM Instance Attribute Instance Counting Visual Reasoning Avg

BLIP-2 0.50 0.83 0.47 0.60
LSS InstructBLIP-2 0.54 0.80 0.50 0.62

MiniGPT-4 0.50 0.90 0.49 0.63

BLIP-2 0.51 0.83 0.47 0.60
GT InstructBLIP-2 0.55 0.80 0.50 0.62

MiniGPT-4 0.55 0.91 0.51 0.66

Table 3.2 Overall Accuracy on MCQ Queries (qmcq). Performance of Talk2BEV with Language En-
hanced Map constructed with different LVLMs (BLIP-2, InstructBLIP-2, MiniGPT-4) and BEV variants
(LSS and GT) on Multiple Choice Questions (MCQs).

Performance across Object Categories: To assess variance in performance across object categories,
we report per-category statistics in Table 3.3. We note that 2-Wheeler vehicles, including bicycles and
motorcycles, consistently showed lower performance compared to other categories. This is mainly due
to their smaller BEV segmentation predictions, making it more difficult to accurately back-project when
there are minor inconsistencies in the predicted positions. On the contrary, larger vehicles such as trucks
and construction vehicles consistently outperformed cars in most cases. This can be attributed to their
larger BEV segmentations, which enable more accurate back projections.

BEV LVLM 2-Wheeler Cars Trucks Construction

LSS

BLIP-2 0.56 0.60 0.67 0.67
InstructBLIP-2 0.52 0.58 0.73 0.61

MiniGPT-4 0.48 0.59 0.67 0.72
Average 0.52 0.59 0.69 0.67

GT

BLIP-2 0.56 0.60 0.68 0.67
InstructBLIP-2 0.56 0.58 0.74 0.67

MiniGPT-4 0.56 0.66 0.72 0.72
Average 0.56 0.61 0.71 0.68

Table 3.3 Object Category-wise Evaluation: Performance of Talk2BEV with Language-Enhanced
Map constructed with different LVLMs (BLIP-2, InstructBLIP-2, MiniGPT-4) and BEV variants (LSS
and GT) on queries qmcq for different vehicle categories.

Impact of weather conditions: The NuScenes dataset mainly comprises sunny daytime frames, but our
evaluation also considered rainy and cloudy conditions. As shown in Table 3.4, the performance drops
significantly with BLIP-2 under rainy conditions compared to sunny conditions. However, there is only
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bev_area 11.25 bev_centroid [-25.5, -2.5]
foreground This is a white SUV.
background This is a city street with a building in the distance.

bev_area 17.5 bev_centroid [-30.5, -21]

foreground This is a white van.

background This is a city street with a traffic light. 

Q: Find the nearest two vehicles in front of the 
ego vehicle.

inferred_query: "Two objects in front of the 
ego-vehicle closest to the ego-vehicle.", 
query_achievable: true
spatial_reasoning_functions:[kClosest(filterFront(),2)]
explanation: The objects i front can be obtained 
through filterFront and it can be used to find out the 
two closest objects to the ego vehicle (object_id: 3 and 
object_id: 4).

object id: 4

object id: 3

CAM_FRONT

CAM_FRONT_RIGHT

BEV

Figure 3.8 Composition of Spatial Operators: To find the nearest 2 vehicles in front, LLM like GPT-4
composes the spatial operators.

a slight decline in the performance of InstructBLIP-2 and MiniGPT-4 under rainy conditions compared
to sunny weather. The decline in performance can be attributed to SAM’s challenges in object boundary
segmentation from reduced visibility and LVLMs’ struggles with unclear object crops. These issues
compromise the accuracy of the Language-Enhanced map, leading to decreased overall performance,
with BLIP-2 witnessing a more significant decline compared to other models.

BEV LVLM Rain/Cloudy Clear Weather

BLIP-2 0.46 0.61
LSS InstructBLIP-2 0.60 0.62

MiniGPT-4 0.60 0.63

BLIP-2 0.48 0.61
GT InstructBLIP-2 0.61 0.62

MiniGPT-4 0.64 0.66

Table 3.4 Accuracy vs Weather: Accuracy of various pairs of LVLMs and BEV variants on MCQ
queries qmcq across different weather conditions.

Spatial Operators: To assess the impact of explicit spatial operators available to our model via an API,
we evaluate the performance of our system with and without spatial operators in Table 3.5. For refer-
ence, we also implement a baseline method, Random, which uniformly randomly guesses distances and
relevant objects. Note that spatial reasoning queries are evaluated using the Jaccard index or distance
error based on the nature of the query as explained in Sec. 3.5.2. While Talk2BEV without spatial op-
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Jaccard Index ↑ Distance Error ↓

Random 0.16 0.44
Talk2BEV w/o SO* 0.25 0.22
Talk2BEV with SO* 0.83 0.13

*SO: Spatial Operators

Table 3.5 Impact of Spatial Operators: When relying directly on the LLM’s abilities to reason about
distances, orientations, and areas, we notice a significant performance drop (Talk2BEV w/o SO). Pro-
viding access to primitive spatial operators via API calls enables strong performance in terms of Jaccard
index (higher is better) and distance error (lower is better) metrics.

erators demonstrates markedly better performance compared to the Random baseline, the model seems
to struggle with spatial reasoning queries, often encountering large errors. We see that Talk2BEV in-
tegrated with our spatial operators achieves significant performance improvements (58% improvement
in Jaccard index, 0.09 m reduction in distance error) compared to directly using the LLM (here, GPT-
4 [3]) for spatial reasoning. Hence, incorporating spatial operators enhances Talk2BEV’s capability to
tackle spatial reasoning challenges, providing the LLM with contextual depth and directing its attention
to relevant components.

3.6.2 Qualitative Results

Fig. 3.7 illustrates a free-form back-and-forth conversation with the LLM. In this scene, the user
intends to move forward by 20 m and thus asks the LLM about potential obstructions. In front of
the ego-vehicle, a vehicle is reversing and parking into a spot. The Language-Enhanced map L has
the information embedded that its reverse light is on, and also its position in the BEV. Based on these
factors, the LLM is able to reason its intention accurately and warn the user to take caution regarding
the SUV. The LLM’s prediction is verified by the activity of the vehicle visualized into the future, t = 0

to t = 3s.
Fig. 4.3 displays results with captions for all LVLM baselines: BLIP-2 [10], InstructBLIP-2 [12],

and MiniGPT-4 [11]. We highlight two objects from the BEV, which are significant from an autonomous
driving standpoint: a police car with ”Police” written on its bonnet, parked in front of the ego-vehicle,
and an orange construction truck with a crane located to the rear right of the ego-vehicle. We notice that
the map constructed with BLIP-2 identifies both objects as white trucks, leading to incorrect answers
to Talk2BEV-Bench questions. In contrast, maps constructed with both MiniGPT-4 and InstructBLIP-2
identify the foreground object correctly, leading to comparatively more correct answers than the BLIP-2
variant. This indicates that the language-enhanced map encoding object attributes, especially for the ob-
ject crop, is critical for overall performance. For the crane, the detail from the InstructBLIP-2-based map
is more specific (i.e., ’Orange Crane with cab’) than ’Large Orange Crane’ from the MiniGPT-4 variant.
This distinction also leads to the InstructBLIP-2 variant answering a question correctly under ’Instance
Counting’ about the count of white cars, while the other two models provide incorrect answers. This
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Lift-Splat-Shoot BEV

BLIP-2 Large white truck

MiniGPT-4 Police car  

InstructBLIP-2 White police car 

BLIP-2 A white truck

MiniGPT-4 Large Orange Crane

InstructBLIP-2 Orange Crane with cab

#1

Q: What could be the purpose of the object directly in 
front-left of the ego-vehicle?
A) Cargo transportation
B) Passenger transportation
C) Lifting and moving heavy objects
D) Law enforcement or security

Q: How many white cars are there in the scene?
(A) 5
(B) 2
(C) 1
(D) 3

LBLIP-2    (D) LMiniGPT-4  (C) LInstructBLIP-2  (B)LBLIP-2    (B) LMiniGPT-4  (D) LInstructBLIP-2  (D)

Q: Based on the scene, which is a probable concern 
for the ego-vehicle?
A) Navigating in the rain
B) Avoiding wildlife on the road
C) Ensuring safe distance from heavy machinery 
D) Finding a parking space in a parking lot

LBLIP-2    (D) LMiniGPT-4  (C) LInstructBLIP-2  (C)

Q: Which vehicle's function is primarily related to 
construction or heavy-duty tasks?
A) The object directly in front-left
B) The blue vehicle
C) The large vehicle behind and to right side
D) No such vehicle in the scene

LBLIP-2    (D) LMiniGPT-4  (C) LInstructBLIP-2  (C)

LLM

Input Language Enhancement MCQ Question Answering (from Talk2BEV-Bench)ego-vehicle

Figure 3.9 Qualitative Results: A BEV corresponding to a scene with multiple vehicles at an in-
terchange. Talk2BEV is able to identify emergency vehicles (such as the police car shown here). The
captions for a police car and a construction vehicle from Language-Enhanced maps constructed with dif-
ferent LVLMs (BLIP-2, InstructBLIP-2, MiniGPT-4) have been visualized. We show the corresponding
BEV captions produced by various LVLMs and their performance across 4 questions from Talk2BEV-
Bench relevant to these 2 objects. The correct answer for each question is highlighted in green.

demonstrates that our proposed workflow successfully leverages the aligned visual features obtained
from LVLMs and that the features embed enough object-level semantics within the language-enhanced
map to correctly answer questions.

3.7 Chapter Summary

In this work, I focused on improving Bird’s Eye View (BEV) maps for autonomous driving by inte-
grating perspective information. The method involved using vision language models to create Language-
Enhanced BEV maps. This included associating objects in the BEV map with corresponding image
crops and generating captions for foreground and background elements using language models.

To assess the effectiveness of the enhanced BEV maps, we conducted visual question answering tasks
covering various query types, including free-form questions, multiple-choice questions, and spatial rea-
soning queries. The results showed moderate accuracy across tasks, with larger vehicles demonstrating
better performance due to more precise lidar projection. Additionally, we successfully addressed spatial
reasoning queries by utilizing pre-implemented functions to break down queries into smaller tasks.

Overall, the study provides a comprehensive approach to improving BEV maps in autonomous driv-
ing applications, with the aim of consolidating spatial and perspective information to enhance scene
understanding capabilities.

22



Chapter 4

Grounding Action Commands to Goal Points

In my next work, I focused on developing a vision-language model designed to process a front camera
image and an action command to produce a goal point on the image. This work extends the foundational
efforts in the Talk2BEV pipeline, which primarily emphasized scene understanding. By integrating
this new model with the previous pipeline, we aimed to leverage Talk2BEV’s scene understanding
capabilities and then use the vision-language network to convert the LLM-suggested actions into optimal
goal points for downstream tasks such as planning.

4.1 Introduction & Overview

Most of the efforts and results in the Talk2BEV pipeline focused on scene understanding. Naturally,
our idea was to extend this work to include navigation and planning. We experimented with stacking
language-enhanced BEV JSONs of the last few frames so they could encode the relative motion of other
vehicles with respect to the ego vehicle. Then we prompted the Large Language Model to understand
the scene, select the best action, and provide an optimal goal point or trajectory suited for the scene.

However, it was observed that while the LLM could select the best action, it failed to provide opti-
mally located goal points. This shortcoming arises because LLMs are based on next-token prediction
and are not optimized for complex calculations such as determining goal points in a navigation setting.
To address this, I developed a separate vision-language model that takes a front camera image from
the ego vehicle and a language command to predict a goal point on the image corresponding to the
command.

Our plan is to eventually integrate the Talk2BEV pipeline with this vision-language network. In
this integrated system, the optimal action can be reasoned out by Talk2BEV, and the VLN network
can predict a goal point for that action. This predicted goal point can then be used for planning and
navigation tasks, ensuring that the vehicle can navigate effectively based on the scene understanding
and the given language commands.
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Figure 4.1 Overall pipeline of the proposed approach: Given the visual frame and a linguistic action
command, the network predicts a segmentation map corresponding to the referenced navigable region
and an associated goal point.

4.2 Goal Point Prediction

Our vision-language network takes two inputs: an image from the front camera and a corresponding
linguistic command. The aim is to identify a navigable goal-point on the front camera image based on
the provided action command. Fig. 4.1 shows the network architecture in detail. A detailed explanation
follows below.

To encode the given navigation command, we tokenize the linguistic command using CLIP tokenizer
and pass it through CLIP text encoder to obtain text embeddings T. To get the image features from the
given front camera image, we utilize the CLIP image encoder with ResNet-101 backbone. Hierarchical
features are known to be beneficial for semantic segmentation; hence, we extract different visual feature
Vi ∈ RCi×Hi×Wi where i ∈ {2, 3, 4} after the 2nd, 3rd, and 4th layers of the ResNet backbone. Each
Vi is passed through convolutional blocks ConvBlocki to bring them into a standard size with equal
channel sizes, heights, and widths.

To capture the multi-modal context from the image and text features, we further use a transformer
encoder adopted from the DETR architecture. All features T, V2, V3, V4 are flattened, and text
features are concatenated with different Vi individually to get multimodal features Mi = Vi ⊕T. The
Mi is then individually passed to the transformer encoder where the multi-headed self-attention layer
helps in cross-modality interaction between the different kinds of features to obtain Xi as the encoder
output with the same shape as Mi.

We have two decoder heads, one each for the segmentation mask prediction and the goal point predic-
tion task respectively. To predict the segmentation mask, Xi undergoes further reshape and restructure
operations to reshape it into RC×H×W , resulting in Zi. For the segmentation mask prediction, we stack
the Zi from all layers to shape RC+C+C×H×W .

Both prediction heads use ASPP decoders from [74]. For segmentation mask prediction, ASPP out-
puts pass through a convolutional upsampling block that includes bilinear upsampling at specified stages
to increase spatial resolution. The output finally undergoes sigmoid activation to produce binary masks.
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In the goal point prediction decoder, it consists of convolutional layers followed by fully connected
layers with the output reshaped to R2×1 representing a pixel location on the image.

First, the segmentation mask prediction head is trained end-to-end with BCE loss between the pre-
dicted segmentation mask and the human-annotated ground truth segmentation mask. After a few
epochs, the goal point prediction head is trained similarly end-to-end with a smooth L1 loss between
the predicted goal point and human annotated ground truth goal point.

4.3 Additional Predictions

The results from the goal point prediction can be utilized for downstream tasks such as path planning.
Path planning involves determining a feasible path for a vehicle or agent to follow. One method to
achieve this is by using a neural network that predicts the path based on the current state and the final
goal point, as well as the positions of other traffic agents in the bird’s eye view (BEV) over the past few
frames. However, trajectory predictions generated by such neural networks do not guarantee adherence
to specific constraints, such as the final position, velocity, and other state variables.

To address this issue, we can employ optimization-based planners. These planners take into account
the current state of the vehicle, along with additional constraints such as the desired final position and
velocity. By solving for the least-cost trajectory, these planners ensure that the resulting path meets all
specified requirements and constraints.

Since we used optimization-based planners in the downstream tasks, it was beneficial to predict ad-
ditional final states to provide to the optimizer, thereby reducing its solution space. Predicting more
information can streamline the optimization process, making it more efficient and accurate. Addition-
ally, it is useful to determine whether the linguistic command refers to a stationary or non-stationary
goal point. If the goal point is non-stationary, it may move over time, requiring us to query the goal
point again after a few iterations to ensure accuracy.

To address these considerations, our goal-point prediction network also predicts two additional bi-
nary quantities: whether the final velocity is zero or non-zero, and whether another object is being
referenced. The final velocity prediction can be inferred from the linguistic command since commands
using ”park,” ”stop,” etc., require a final velocity of zero, while commands like ”change lane,” ”turn,”
”follow,” etc., generally imply a non-zero velocity. Predicting the final velocity helps the optimizer
by providing more detailed information about the desired state at the end of the trajectory. Predict-
ing whether an object is referenced allows the system to understand the context better, distinguishing
between stationary and non-stationary goal points, and adjusting the planning process accordingly.

To ensure optimal performance in binary prediction tasks, we employ similar PyTorch classes to
develop decoders utilizing the output features from the transformer encoder. These decoders have an
input size of 1536 and consist of four hidden layers. The output layer, with a size of 1, is suitable
for binary classification tasks. Each decoder comprises fully connected layers with ReLU activations,
followed by a sigmoid activation to generate the final output.
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The original goal prediction model remains static, while both decoder heads are trained using the
Binary Cross-Entropy (BCE) loss function, which is tailored for binary classification challenges. This
framework facilitates effective learning for distinguishing between zero and non-zero velocities, as well
as between stationary and non-stationary goal points.

4.4 Complex Commands and Scene Understanding

To handle composite instructions serving cases where the final goal location is not visible in the
current frame, we adapted this approach by decomposing the complex command into a list of atomic
commands that need to be followed sequentially. For example, ”switch to the left lane and then follow
the black car” can be decomposed into ”switch to the left lane” and ”follow the black car”. To decom-
pose such complex commands, we constructed a list of atomic commands L, covering a wide range of
simple actions such as lane changes, turns, speed adjustments, and object references. Upon receiving
a complex command, we utilized the few-shot learning technique to prompt an LLM to decompose the
given complex command into a sequential list of atomic commands li, from L. These atomic com-
mands are then executed iteratively with our pipeline, with the predicted goal-point location serving as
intermediate waypoints to help us reach the final goal point.

To generate high-level driving instructions tailored to the current scene, we can utilize powerful Large
Vision-Language Models such as GPT-4V. By providing a front camera image along with a carefully
crafted prompt that explains the driving context and available actions, GPT-4V can generate a suggested
instruction command based on its analysis. This command is then forwarded to our pipeline for goal
point prediction.

4.5 Transforming to BEV for Downstream Tasks

Usually, tasks like planning and navigation are handled not in the image space, but in a different
representation such as Bird’s Eye View or the local frame. Due to this, once the model has predicted a
relevant goal point on the front camera image associated with the given command, we transform it to
the local frame so it can be used for downstream tasks such as path planning and obstacle avoidance.
For this transformation, we have two options available which are discussed below.

Since the dataset was created in Carla, a simulated environment, the road was flat everywhere without
any bumps, and the height of the camera was known and constant. This uniformity allows us to use an
inverse projection technique. By using the camera matrix, we can transform the 2D image coordinates
into 3D homogeneous coordinates. In this method, we obtain the exact 3D coordinate by knowing the
height coordinate and scaling the other coordinates proportionately. This method is precise in controlled
environments where the terrain is predictable.

However, this method won’t work in real-world datasets such as NuScenes, where the road is not
always guaranteed to be perfectly flat. In these scenarios, the back projection might give incorrect
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Figure 4.2 Scene Understanding: Pairing the goal-point prediction with a Large Vision-Language
Model such as GPT-4V on the front camera image allows the system to operate in a self-reliant mode,
eliminating the need for the user to assess and select the most suitable action. The vision-language model
is capable of determining the optimal course of action from a variety of potential driving maneuvers. In
the illustrated example, it accurately identifies an obstruction ahead and suggests ”switching to the left
lane” to continue moving forward safely.

coordinates because the height of the road can vary from point to point. In such cases, using the inverse
projection could lead to significant errors in the derived 3D coordinates.

To address this issue, we utilize the available LiDAR data in NuScenes. LiDAR provides high-
resolution 3D point clouds of the environment. We can project all the LiDAR points onto the front
camera image where the goal point is predicted. By identifying the LiDAR point that lies closest to the
predicted goal point on the image, we can determine the goal point’s 3D coordinates in the local frame.
This method leverages the dense nature of LiDAR scans to ensure accuracy. Although this method is
not absolutely precise, it works well in practice because the density of the LiDAR data minimizes the
error when selecting the nearest point.

4.6 Results

For goal-point prediction, comparing with the ground truth annotations in the test data is not mean-
ingful. This is because L2 comparisons are not suitable in this context since there can be multiple
acceptable goal points for a given command. Therefore, we evaluated the goal-point prediction results
extensively through qualitative analysis.

Regarding the additional predictions, we observed an average accuracy of 91% in final velocity
state prediction and 95% in identifying object references. These high accuracies are primarily due
to our limited vocabulary, which allows the network to effectively identify the keywords and syntax it
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encountered during training. This familiarity with the training data’s vocabulary and syntax significantly
contributes to the network’s ability to classify these tasks accurately.

Figure 4.3 Model Predictions: The goal-point is shown in green and segmentation masks are shown
in red. The model can predict reasonable outputs for different kinds of commands, identifying various
lanes, other traffic actors, different objects on the roadside, and road signs.

Fig. 4.3 illustrates qualitative examples from the goal point prediction model applied to test scenes.
The model demonstrates an understanding of lane concepts, including the implications of driving within
the current lane or switching to the left or right lane. Additionally, it can accurately identify and respond
to objects such as food stalls, bus stops, and benches, which have been annotated with similar commands
in the training dataset. Moreover, the model predicts plausible positions for various driving maneuvers,
such as stopping at a crosswalk or parking behind another vehicle. Given the limited vocabulary on
which the model has been trained, it performs reasonably well and consistently generates collision-free
goal points.
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Figure 4.4 Complex command: The closed-loop simulation illustrates a compound command divided
into two atomic commands, executed sequentially. Navigation initially follows the first atomic com-
mand. After reaching the first goal, the second atomic command is executed to reach the final goal.

Integration with Scene Understanding Modules: As illustrated in Fig. 4.2, the vision-language model
evaluates the situation and determines the best course of action from various potential driving maneu-
vers. In the example, the model identifies an obstruction ahead and recommends ”switching to the
left lane” to safely continue forward. This recommendation is then used by our pipeline to predict a
collision-free goal point. Hence, paired with the scene understanding module, the complete pipeline is
able to deduce the best action on its own and decide on the optimal goal point to move to without the
human providing any help. The output ensures that the vehicle can navigate the environment effectively,
avoiding obstacles and making safe driving decisions.

Handling Complex Commands: As illustrated in Fig. 4.4, we can handle complex commands step by
step. Given the command, the LLM breaks it into two smaller commands. The first action is taking the
right turn. We determine an appropriate goal point and then navigate to it. Once reached, the next action
is stopping near the food stall. Since it is visible in the current frame, we obtain the expected goal point
and plan and navigate to it successfully. Hence, we are able to navigate to the food stall even though it
was not visible in the starting frame.

4.7 Chapter Summary

In this project, I worked on integrating vision and language in the context of autonomous driving sys-
tems, specifically focusing on predicting goal points for navigation tasks based on linguistic commands
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and visual input from a front camera. The work builds upon the Talk2BEV pipeline, which primarily
deals with scene understanding, and extends it to encompass planning aspects.

The proposed vision-language model is designed to take two inputs: a front camera image and
a corresponding linguistic action command. It aims to predict a navigable segmentation mask and
goal point on the image based on the provided command. To achieve this, the model architecture is
detailed, involving the use of CLIP for tokenizing linguistic commands and extracting text embeddings,
and a modified version of the DETR architecture to fuse image and text features for prediction tasks.
Furthermore, the chapter addresses the need for additional predictions to enhance downstream tasks
such as path planning. These predictions include determining whether the final state should be a rest
state and whether any other vehicle is referenced in that command. By incorporating these predictions,
the system can provide more detailed information to the planners, thereby reducing their solution space
and improving efficiency.

Complex commands, where the final goal location may not be visible in the current frame, are han-
dled by decomposing them into a sequence of atomic commands. This decomposition, facilitated by
a few-shot learning technique and a large vision-language model like GPT-4V, enables the system to
iteratively execute atomic commands, utilizing predicted goal points as intermediate waypoints to reach
the final destination.
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Chapter 5

Conclusion

For my thesis work at the Robotics Research Center, I primarily focused on two submissions.

In the first project, we introduced the Talk2BEV pipeline, a language interface for Bird’s Eye View
(BEV) maps used in autonomous driving systems. Leveraging recent advances in Large Language Mod-
els (LLMs) and Large Vision-Language Models (LVLMs), Talk2BEV supports a variety of autonomous
driving tasks. These tasks include visual and spatial reasoning, predicting unsafe traffic interactions,
and plotting alternative routes. This approach promises to advance the real-world applicability of au-
tonomous driving systems. Talk2BEV not only expands the range of scenarios an autonomous driving
system can handle but also bridges the gap between traditional autonomous driving models and the
extensive capabilities of pre-trained image-language models. As we integrate large pre-trained models
into autonomous driving systems, we emphasize the necessity of safety and alignment research before
deploying these models in safety-critical environments. Additionally, we introduced Talk2BEV-Bench,
a benchmark designed to evaluate future work in LVLMs for autonomous driving applications. This
benchmark provides a foundational step for rigorously assessing the role and effectiveness of image-
language models in autonomous driving. Our findings suggest that the future of autonomous driving
systems is leaning towards more integrated, adaptable, and intelligent models.

In the second project, we addressed the Visual Language Navigation task of grounding naviga-
ble goal points based on linguistic commands to guide autonomous vehicles. We proposed a novel
transformer-based model and conducted comprehensive experiments to demonstrate the effectiveness
of our approach. This model can predict reasonable goal points along with other relevant predictions
for downstream tasks. We demonstrated how the goal points predicted from front camera images are
suitable for autonomous driving applications. In a separate effort, my teammate also showed that end-
to-end training with a planner in the pipeline enhances the goal point network’s ability to predict more
reachable goal points. In this work, we focused on grounding within single frames; however, future
research could explore grounding at the video level. This would be more realistic for commands with
temporal constraints and could illustrate the evolution of goal points based on the presence of dynamic
objects in the scene.
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As a combined effort from both pipelines, future work could focus on extracting image features from
peripheral camera images and embedding them into the BEV maps to provide rich context from cameras,
rather than just semantic class information. This can be achieved by projecting image features, such as
those from LSeg, onto the BEV. However, a challenge arises in that such context-rich BEV might result
in a very large input size. For instance, if the BEV is 200×200 pixels and the image feature vectors have
a length of 512, the resulting context-rich BEV would be 200 × 200 × 512, which is a large input for
any deep learning model. This issue might be addressed by filtering out embeddings from non-driving
objects and passing the feature vectors of driving-related objects through another encoder to reduce the
size. Such a perception-rich BEV could be used directly for tasks like scene understanding and goal
point prediction, which are crucial for autonomous driving.
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