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Abstract

Consider an autonomous agent capable of obeying the following instruction ”Go and clean the coffee
spilled on the dining table”. To perfectly execute this instruction, the agent needs to have a precise
understanding of its dynamic 3D environment. The final task can be broken down into the following
sub-tasks; 3D grounding, 3D semantic understanding, and 3D motion planning. To excel in all these
tasks, 3D representation learning plays an important role. Motivated to contribute towards creating
systems that can perceive and act in real 3D words, in this thesis, we propose two novel methods for 3D
representation learning.

The first portion of this thesis focuses on the tasks of unsupervised domain adaptation (UDA) for 3D
point clouds. The point cloud data acquisition procedures manifest themselves as significant domain
discrepancies and geometric variations among both similar and dissimilar classes. The standard domain
adaptation methods developed for images do not directly translate to point cloud data because of their
complex geometric nature. Existing works mainly focused on designing a self-supervised task to im-
prove adaptation performance. We propose a new UDA architecture for point cloud classification that
benefits from multimodal contrastive learning to get better class separation in both domains individu-
ally. Further, the use of optimal transport aims at learning source and target data distributions jointly to
reduce the cross-domain shift and provide a better alignment. We conduct a comprehensive empirical
study on PointDA 10 and GraspNetPC-10 and show that our method achieves state-of-the-art perfor-
mance on GraspNetPC-10 (with ≈ 4-12% margin) and best average performance on PointDA-10. Our
ablation studies and decision boundary analysis also validate the significance of our contrastive learning
module and OT alignment.

In the second portion of the thesis, we explore learning Wasserstein embeddings for point clouds
towards multiple downstream tasks. As learning embeddings of any data largely depends on the ability
of the target space, we propose to embed point clouds as discrete probability distributions in Wasser-
stein space. We build a contrastive learning setup to learn Wasserstein embeddings that can be used
as a pre-training method with or without supervision towards any downstream task. We show that the
features captured by Wasserstein embeddings are better in preserving the point cloud geometry, includ-
ing both global and local information, thus resulting in improved quality embeddings. We perform
exhaustive experiments and demonstrate the effectiveness of our method for point cloud classification,
transfer learning, segmentation, and interpolation tasks over multiple datasets, including synthetic and
real-world objects. We also compare against recent methods that use Wasserstein space and show that
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our method outperforms them in all downstream tasks. Additionally, our study reveals a promising inter-
pretation of capturing critical points of point clouds that makes our proposed method self-explainable.

We hope this work motivates future research in utilizing optimal transport for understanding the real
3D world. We also hope that the self-supervised approaches proposed in this thesis will act as a step
towards in this direction.
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Chapter 1

Introduction to 3D Representation Learning

Over the past few decades, representation learning has undergone a profound evolution, revolu-
tionizing the way machines interpret and process data. Initially dominated by handcrafted features
and shallow learning techniques, the field has witnessed a transformative shift with the advent of deep
learning. This paradigm change empowers algorithms to automatically extract hierarchical and abstract
features from raw data, offering unprecedented capabilities in tasks such as image recognition, natural
language understanding, and audio recognition. Despite the remarkable progress, existing approaches
to representation learning face inherent limitations, particularly when confronted with the intricacies
of three-dimensional (3D) data. Traditional methods, designed for two-dimensional data, struggle to
capture the richness and complexity inherent in 3D structures. As technology continues to leverage 3D
representations in applications ranging from virtual reality to medical imaging, the need for innovative
solutions to address these limitations becomes increasingly evident.

The importance of 3D representation learning extends far beyond theoretical curiosity, finding practi-
cal applications in various domains. In computer vision, where interpreting visual scenes is fundamental,
the ability to accurately represent 3D structures is a critical determinant of success. Robotics [22] heav-
ily relies on spatial awareness for navigation and object manipulation, tasks that necessitate a robust
understanding of three-dimensional environments. Animation [26] is another area that has unprece-
dented advantages if driven by automated systems that understand motion dynamics rather than manual
labor. Applications like shape synthesis and modeling [43], autonomous driving [21], and indoor navi-
gation [45] also need an understanding of 3D scenes. Furthermore, virtual reality (VR) and augmented
reality (AR) applications, designed to immerse users in lifelike experiences, demand advanced 3D rep-
resentation capabilities. Consequently, the development of effective and versatile 3D representation
learning methodologies is pivotal for unlocking the full potential of these technologies.

Depending on the application, there are many popular and preferred ways to represent 3D data; some
of them are shown in Figure 1.1 and are introduced below

1. Voxel grid: This 3D representation is the direct extension of images, where the 2D image grid
is extended in another orthogonal direction, making it a 3D volumetric grid. In most cases, it is
not efficient for 3D deep learning as it represents both occupied and non-occupied parts of the
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Figure 1.1: Popular types of representations for 3D data, them being, Voxel grid, Polygonal mesh, and

Point cloud (from left to right).

scene, which establishes an enormous amount of unnecessary memory storage. Earlier methods
processed 3D data by converting them into regular structures like voxel grids [22, 41] to employ
well-explored powerful convolutional techniques. However, the transformations to voxel grids
either incur loss of information or require high memory and computational complexity. The level
of surface detail highly depends on the resolution of the volumetric grid. Retaining high geometry
details demands high voxel resolution that increases memory usage; on the other hand, reducing
the resolution impacts in loss of geometric details.

2. Polygonal mesh: It consists of polygons called faces that are described with a set of vertices and
edges that define the surface of any 3D scene. On one hand, these edges give extra information by
providing local connectivity but also make it challenging to check the properties of a mesh (e.g.
manifoldness) for ease of running any algorithms on them. MeshCNN [16] proposes a carefully
designed method to perform convolution over mesh edges, however, it only works on meshes
having a fixed resolution. DiffusionNet [33] introduces a diffusion layer that is highly effective for
spatial communication making the networks automatically robust to changes in mesh resolution
or remeshing.

3. Point cloud: Unlike a polygonal mesh, point cloud do not contain any connectivity information.
It only consists of a set of points in 3D space that describe the surface of any 3D scene. Methods
have been developed to learn representations by directly using raw point clouds [28, 29, 38]. [28]
introduces the first method to learn directly on raw point clouds, where each point from a point
cloud is passed separately through a permutation invariant function to extract its point features.
[29] builds upon the previous work by incorporating neighborhood information and extracting
hierarchical features. Further, [38] improves on these works by extracting point features using
local graphs. Advancements in scanning technologies have made getting 3D point clouds of any
scene very simple. Though capturing scenes has become easy, there are various challenges to
work with point cloud data. These challenges are discussed in Section 1.2.
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Figure 1.2: Common 3D recognition tasks performed for 3D understanding demonstrated in [28].

1.1 Common tasks performed towards 3D point cloud understanding

In order to understand a given point cloud, some common tasks are listed below and are shown in
Figure 1.2. [28] proposes the first method to directly take raw point clouds as input and perform these
3D recognition tasks.

1. 3D classification: The most basic task that one can think of for understanding a given point
cloud is identifying what that point cloud is! More formally, predicting a class label for a given
point cloud is called as 3D classification. The prediction can be based on the global geometric
appearance or even based on features aggregated from local appearances.

2. 3D part segmentation: Going a step forward for understanding a point cloud, in 3D part seg-
mentation, we aim to predict labels for each point in the point cloud. These point labels determine
which part the point belongs to. To determine different parts in the point cloud, both global and
local understanding is required.

3. 3D semantic segmentation: Along the same lines, in 3D semantic segmentation, the predicted
labels for each point belong to some semantic category in the 3D scene. The 3D scene can either
be an indoor or outdoor scene, having pre-defined semantic categories. Recently, methods have
been developed to handle open-vocabulary semantic categories as well.

1.2 What are the challenges when working with point clouds?

In this thesis, we focus on point cloud representation for 3D data. Point clouds do not require any
extra measures for processing; for example, unlike meshes, there is no traversal needed, as all points are
independent. However, with its simplicity, it also poses various challenges to deal with for understanding
3D point clouds.

3



1. Handling noise: Point clouds scanned with iPhone or costly LiDAR sensors often contain lots
of erroneous points. This noise arises due to inaccuracy in the sensory device or even due to
environmental factors. Handling noise becomes essential for algorithms to run as expected.

2. Irregular density: Surface density variation is another crucial problem to handle, as the algorithm
might only give importance to regions with high point density and neglect other areas.

3. Missing regions: Unscanned regions of the scene, called and holes, also pose serious challenge.
Limited sensor visibility or occlusions can be the reasons for incomplete data. The algorithm
should be able to reason from the surroundings and be able to handle these holes.

4. Unstructured: Unlike 2D images that have a fixed grid, point clouds do not have any fixed grid.
Hence, widely used convolution networks cannot be directly used here. Thus, point clouds need
different deep-learning algorithms to be designed for them.

5. Unordered: The un-orderness mainly causes a problem for deep-learning based algorithms. As
all the point order permutations represent the same scene/shape, the network should map all these
point order permutations to a single point. Thus, the network should be carefully designed to obey
this property.

Along with these primary challenges, another very crucial challenge to handle is domain adaptation
(DA). We discuss about this next.

1.3 Why do we need domain adaptation for point clouds?

Let’s say a network is trained on a dataset for the task of 3D point cloud classification and is then
evaluated on the test set of the same dataset. In this case, the network performs exceedingly well
as the distribution of the test set is the same as that of the train set. However, to test the limits of
the network, if we evaluate its performance on the test set of some other dataset (having the same
classes), we observe a drop in the performance. Even if the classes are the same, even when both
datasets (or domains) are synthetically produced, why does this happen? This is in part due to the
significant differences in underlying structures (i.e., different backgrounds, orientations, illuminations,
etc. obtained from a variety of data acquisition methods and devices), which in turn manifest themselves
as geometric variations and discrepancies between the source and target point cloud domains.

Also, an important aspect of achieving cross-domain adaptation is to leverage the trained model
on simulated data (easy-to-get annotations) and generalize it to real-world data for which obtaining
labels is a cumbersome task. The problem persists even in controlled simulated environments. For
example, in VR environments, a chair’s visual representation can vary significantly between a game
and architectural design software. In the more demanding setting of unsupervised domain adaptation
(UDA) for classification, the source domain consists of labeled point clouds, while the target domain is
completely unlabeled.
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While a majority of the point cloud representation learning works have focused on improving per-
formance in supervised and unsupervised tasks [28, 35, 40], very few have focused on the task of DA
between disparate point cloud datasets. Towards addressing this challenging task, we propose a method
for UDA on point cloud data for classification task, which is explained in Chapter 3. We also explore
learning Wasserstein embeddings for 3D point clouds; we discuss about it next.

1.4 Need of going beyond Euclidean space

Euclidean space is the most commonly used space in learning methods. It has been realized that
Euclidean space is constrained in its ability to represent complex relations and hierarchies. Yet, very
limited work has been done in this direction, specifically for point clouds. Motivated by this, we propose
our method for extracting 3D Wasserstein embeddings for 3D point clouds in Chapter 4. In Section
4.4, we show improvements in various downstream tasks with Wasserstein embeddings as compared to
Euclidean ones.

1.5 Contributions

As mentioned in the previous sections, this thesis focuses on 3D representation learning. In partic-
ular, for point cloud domain adaptation and learning representation in Wasserstein spaces. To this end,
the following are our core contributions:

1. For our first work, to the best of our knowledge, we are the first to propose the use of multimodal
contrastive learning within individual domains along with optimal transport for domain alignment
for 3D point cloud domain adaptation.

2. We build an end-to-end framework with two contrastive losses between 3D point cloud augmen-
tations and between a point cloud and its 2D image projections. We also include optimal transport
loss for domain alignment.

3. We perform an exhaustive empirical study on two popular benchmarks called PointDA-10 and
GraspNetPC-10. Our method achieves state-of-the-art performance on GraspNetPC-10 (with ≈ 4-
12% margin) and the best average performance on PointDA-10. Our method outperforms existing
methods in the majority of cases with significant margins on challenging real-world datasets. We
also conduct an ablation study and explore decision boundaries for our self-supervised contrastive
and OT losses to elucidate the individual contributions of each component in our method.

4. For our second work, to the best of our knowledge, we are the first to propose the use of OT metric
as a distance measure in contrastive learning for point cloud data. Unlike, Euclidean embeddings,
we represent a point cloud as a discrete distribution in the embedding space.
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Figure 1.3: Point cloud samples from PointDA-10 dataset. Point clouds in orange are synthetically

generated (ModelNet), and point clouds in blue are taken from real-world scans (ScanNet). The fig-

ure shows the difference in point cloud geometry that arises between synthetic and real-world

domains.

5. Using this representation, we design a framework for learning Wasserstein embeddings for 3D
point clouds endowed by contrastive learning with Sliced Wasserstein distances.

6. We perform exhaustive experiments on a wide variety of downstream tasks over four popular
datasets to validate the effectiveness of these embeddings over Euclidean ones and other baselines.
We also illustrate the efficacy of Wasserstein embeddings by visualizing the 3D features captured
by the model.

1.6 Previous attempts on 3D domain adaptation

Domain adaptation task is an under-explored problem for 3D point clouds as compared to work done
on it for 2D images. Recent works [1,30,34,46] propose various interesting strategies for 3D point cloud
domain adaptation. [30] proposes the first benchmark dataset for point cloud domain adaptation called
PointDA-10, visualizations of a few samples from the dataset are shown in Figure 1.3. This dataset
consists of 3D objects/scenes extracted from 3 popular datasets, namely, ModelNet [41], ShapeNet [4],
and ScanNet [9]. Among these, ModelNet and Shapenet are synthetic datasets, while ScanNet is built
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from real-world scans. This gives a total of 6 possible source-target domain combinations for evaluation.
[30] also proposes a method called PointDAN, where the idea is to find global alignment as well as local
alignments between point clouds. [1] proposes a method called DefRec, that mainly has two task heads.
The first task head has a supervised classification branch for only the source domain. It also leverages the
advantages of the PointMixup [6] idea. The second head contains a self-supervised branch that is mainly
responsible for extracting similar features for the same classes across domains and takes both domains
as input. As a self-supervision task, they propose to deform some local region from the point cloud and
then reconstruct back the original point cloud. Along similar directions, [46] propose a method called
GAST, which has a supervised branch for the source domain and two self-supervised branches for both
domains. As the self-supervision tasks, GAST includes point cloud rotation angle prediction to bring
the point cloud into an upright orientation and distortion local prediction. Along with these branches,
it also includes the SPST strategy that is explained in Section 3.2.3. [34] proposes a new dataset called
GraspNet-10 mainly to evaluate adaptation performance from synthetic-real and real-real domains. The
dataset includes point clouds from synthetic and two real-world domains. The real-world scans are
acquired from two different sensors, namely Kinect and Realsense. [34] uses learning geometry-aware
implicit representation as the self-supervision task for domain adaptation.

These works mainly focus on designing a self-supervision task to improve domain adaptation. How-
ever, we take a different approach, where along with our self-supervision task, we also optimize for
explicit alignment of domains. Our idea and method are explained in detail in Chapter 3.
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1.7 Organization of the Thesis

The rest of the thesis is organised as follows:

1. In Chapter 2, we commence with a succinct introduction to Optimal Transport, followed by an
examination of diverse distance metrics derived from it. These metrics hold significance for the
upcoming chapters.

2. In Chapter 3, we propose our method for point cloud domain adaptation that uses contrastive
learning and optimal transport (COT). Further, we show evaluation on multiple datasets and show
the effectiveness of our method by achieving state-of-the-art performance on GraspNetPC-10.

3. In Chapter 4, we explore learning Wasserstein embeddings for 3D point clouds. We propose
a contrastive framework and show improvements in multiple downstream tasks as compared to
Euclidean metrics.
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Chapter 2

Optimal Transport and Wasserstein Distance

In this chapter, we first have a brief introduction to Optimal Transport and then discuss various
distance metrics derived using it, which are useful for the next chapters.

A famous example used to informally explain Optimal Transport (OT) given by the French math-
ematician Gaspard Monge is: An individual equipped with a shovel is tasked with relocating a large
pile of sand situated at a construction site. The objective for the worker is to assemble the sand into a
designated configuration or a target pile, such as that of a sandcastle. Instinctively, the worker aims to
reduce his overall efforts, measured, for example, by the total distance or time invested in transporting
shovel loads of sand.

Mathematicians interested in OT frame this problem as a comparison between two probability dis-
tributions—essentially, two distinct sand piles with identical volumes. They examine all of the many
potential ways to transform, transport, or modify the initial pile into the second one, and assign a global
cost to each of these transportation scenarios, using a local perspective of how expensive moving an
individual grain of sand from one location to another would be. Mathematicians are interested in the
characteristics of the most economical transportation (least costly transport) and developing efficient
computational (least time/computation complexity) techniques for it. The minimal cost not only estab-
lishes a distance metric between distributions but also imparts a complex geometric structure on the
space of probability distributions. Instead of moving one item from a source to a target location, the
problem of moving several items (or a distribution) to a target configuration has concrete connections
with our daily lives. The process of transportation, whether it pertains to individuals, goods, or informa-
tion, rarely revolves around the movement of a singular item. In significant economic challenges such
as logistics, production planning, or network routing, the focal point is the movement of distributions
rather than isolated entities. Tolstoy [1930], Hitchcock [1941], and Kantorovich [1942] initially worked
on optimal transport driven by practical considerations. However, it wasn’t until the post-1980s era,
particularly with the contributions of Brenier [1991] and others, that mathematicians recognized the the-
ory’s profound potential for research. This discovery unveiled intricate connections to convexity, partial
differential equations, and statistics. As the new millennium approached, professionals in computer
science, imaging, and broader data sciences grasped the transformative capabilities of optimal transport
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theory. It provided robust tools for studying distributions in a distinct and more abstract context, partic-
ularly in comparing readily available distributions in the form of bags-of-features or descriptors. In the
coming chapters, we explore the power of optimal transport and design novel methods for 3D represen-
tation learning and show its advantage in different learning settings and various downstream tasks. We
next explain the different metrics that we use in our methods derived using OT.

2.1 p-Wasserstein Distance

Optimal transport offers a way to compare two probability distributions irrespective of whether the
measures have common support. It aims to find the most efficient way of transferring mass between two
probability distributions, considering the underlying geometry of the probability space. Formally, given
two probability distributions µ and ν on a metric space X , for p ≥ 1, the p-Wasserstein distance [37] is
given by

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
X×X

c(x, y)pdπ(x, y)

)1/p

(2.1)

where π is a transport plan that defines a flow between mass from µ to locations in ν, Π(µ, ν) is the
joint probability distribution with the marginals µ and ν and c(x, y) is the ground metric which assigns
a cost of moving a unit of mass x ∈ X from µ to some location y ∈ X in ν.

For the discrete case, given two discrete distributions µ̂ =
∑m

i=1 aiδ(xi) and ν̂ =
∑n

j=1 bjδ(yj),
where {ai}mi=1 and {bj}nj=1 are the probability masses that should sum to 1, {xi}mi=1 and {yj}nj=1 are
the support points in Rd with m and n being the number of points in each measure. The discrete form
of the above equation can be given as

Wp(µ̂, ν̂) =

(
min

ψ∈U(a,b)
⟨Cp, ψ⟩F

)1/p

(2.2)

where ⟨·, ·⟩F denotes the Frobenius dot-product, Cp ∈ Rm×n
+ is the pairwise ground metric distance,

ψ is the coupling matrix and U is the set of all possible valid coupling matrices, i.e. U(a, b) = {ψ ∈
Rm×n : ψ1n = a, ψ⊤1m = b}.

2.2 Sliced-Wasserstein Distance

Interestingly, there exists a closed-form solution for Wasserstein distance only when the distributions
are one-dimensional measures with Lp norm as the cost function. The closed-form for Wasserstein
distance in 1-D is [27]

Wp(µ, ν) =

(∫ 1

0
|F−1
µ (t)− F−1

ν (t)|pdt
)1/p

(2.3)

where, F−1
µ and F−1

ν are the inverse cumulative distribution functions of µ and ν.
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Generally, we are more interested in dimensions greater than one. Thus, we cannot use this closed-
form solution directly to solve the OT problem efficiently. Instead, the Wasserstein distance between
two measures on Rd can be approximated by aggregating the 1-D Wasserstein distance between their
projections over multiple directions on a unit sphere, which is called the Sliced Wasserstein distance
[27]:

SWp(µ, ν) =

(∫
Sd−1

Wp(Pθ,#µ, Pθ,#ν)
pdθ

)1/p

(2.4)

where, Sd−1 = {θ ∈ Rd : ∥θ∥ = 1} is the d-dimensional unit sphere and Pθ : Rd → R is the projection.
Since the projections are now 1-D measures, we can use the closed-form solution given by Equation 2.3.
When m = n, the Sliced Wasserstein distance can be easily computed by simply sorting points in 1-D
measures and can be given by:

SWp(µ̂, ν̂) =

(
1

D

D∑
k=1

m∑
i=1

|xαθk
(i) − yβθk (i)

|p
)1/p

(2.5)

where, αθk and βθk are the permutation ordering in the increasing order of the support points projected to
the direction θk with D being the total number of slicing directions. In Chapter 4, Figure 4.2 pictorially
demonstrates the computation of Sliced-Wasserstein distance.

2.3 Summary

In this chapter, we first introduced the concept of Optimal Transport and saw how this theory evolved
from solving basic daily practical problems to helping in scientific and important research problems. We
then explained two distance metrics, them being p-Wasserstein and Sliced-Wasserstein distance. We use
these distance measures in the coming chapters to build our method for 3D representation learning. In
the next chapter, we explain our method for 3D point cloud domain adaptation, where the main idea is
to synergize the working of contrastive learning and optimal transport.
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Chapter 3

Synergizing Contrastive Learning and Optimal Transport for 3D Point

Cloud Domain Adaptation

Figure 3.1: Overview of our method for UDA. Contrastive learning (CL) and optimal transport (OT)

are designed to complement each other synergistically. CL establishes class clusters, while OT aligns

objects across domains. The colors of data points denote different classes.

In this chapter, we first motivate using optimal transport and multimodal inputs for 3D point cloud
domain adaptation (Section 3.1). Then explain our proposed method COT (Section 3.2). We then ex-
plain the experimental setup (Section 4.3), quantitative results (Section 3.4), and lastly present extensive
ablation studies (Section 3.5).
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3.1 The Motivation of using Optimal Transport and Multimodal Inputs

While a majority of the point cloud representation learning works have focused on improving per-
formance in supervised and unsupervised tasks [28, 35, 40], very few have focused on the task of do-
main adaptation between disparate point cloud datasets. Recent works focus on incorporating self-
supervised learning (SSL) approaches to learn similar features for both domains, along with a regular
source domain supervision [1, 34, 46]. [1] introduces a self-supervised approach based on deformation
reconstruction and leverages PointMixup [6]. [46] learns a domain-shared representation of semantic
categories by leveraging two self-supervised geometric learning tasks as feature regularizers. [34] pro-
poses a self-supervised task of learning geometry-aware implicits for domain-specific variations. These
works mainly focus on designing a self-supervision task that can improve domain adaptation. The point
clouds belonging to the same class must not only be closer in each individual domain but also achieve
cross-domain alignment. However, our analysis reveals that explicit cross-domain alignment is under-
explored, given the significant margins between classification accuracies on source and target domains.

Based on our aforementioned observations, we draw inspiration from recent SSL contrastive learning
research [2, 5, 20], which has enjoyed major success in other domains such as image and text. We
propose a Contrastive SSL method on point clouds to improve class separation individually in both
source and target domains that share a common label space. In addition, optimal transport (OT) based
methods [10] have also shown promising results as they jointly learn the embeddings between both
domains by comparing their underlying probability distributions and exploiting the geometry of the
feature space. Thus, we employ OT to achieve better cross-domain alignment for domain adaptation.
Figure 3.1 provides a visual overview of our method (COT).

To further reduce the domain shift and learn high quality transferable point cloud embeddings, we
also leverage the idea of multi-modality within the source and target domains. As another source of
information, we use multiple 2D projections of a 3D point cloud. 2D projections aim to incorporate
correspondence understanding between 3D and 2D features for a shape. It explains the proficiency of
humans to map visual concepts from 2D images to understand the 3D world [31]. The idea is to learn
a unified space where a shape’s 2D features and transformation-agnostic 3D features are aligned. This
multimodal learning of 2D-3D features assists the network in extracting reliable discriminative features
and positively aids domain adaptation performance. Also, 2D projections can be seen as a form of
data augmentation for point clouds introducing more diversity in the training data and promoting better
generalization. 2D projections from various viewpoints allow capturing silhouette and surface boundary
information for shape understanding that is harder to derive from just point-wise distances. Moreover,
mature 2D CNNs provide valuable features which when aggregated and combined with 3D features,
provide informative global shape descriptors for the 3D point cloud.

Motivated by the aforementioned observations, we design an end-to-end framework that consists of
a multimodal self-supervised contrastive learning setup for both source and target domains individually
and OT loss for domain alignment. We explain our method for UDA next.
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3.2 Contrastive (+) Optimal Transport (COT)

3D
encoder

2D
encoder

View
Aggregation

Multi View Renderings

Source Domain 

Target Domain

Target C
lass

Prediction

Figure 3.2: Overview of our framework. Three main components: self-supervised contrastive training

(L3d, Lmm), self-supervised OT training between both domains (Lot) and a supervised training on

source domain (Lcls). Contrastive loss uses features from shared point cloud and image encoders with

point cloud augmentations and 2D image projections. OT and classifier losses takes features of original

point cloud samples from shared point cloud encoder.

This section describes our method for UDA of point clouds for classification task. Our method
is endowed by multimodal self-supervised contrastive learning and OT for domain alignment. The
self-supervised multi-modal contrastive learning module leverages both, the 3D information and their
corresponding 2D image projections of point clouds. It produces initial class clusters in the source and
target domains individually. Subsequently, our OT module better aligns the same class clusters across
domains. We additionally also train a classifier on the source domain to improve the class separation,
which in turn lessens the burden on our adaptation module. Our setup aims at learning high quality
embeddings, jointly for source and target domains, by exploiting both contrastive learning with aug-
mentations and the multimodal information of the input point clouds, while simultaneously reducing the
domain shift across the domains. Our architecture is illustrated in Figure 3.2.

Let a point cloud P = {x1, . . . , xn}, where xi ∈ R3, be a set of 3D points of cardinality n. Let
Ds = {P si , yi}

ns
i=1 denote the labeled source domain dataset, where P si denotes the i-th source point

cloud and yi its associated class label that takes values in Y = {1, . . . ,K}. Note that Y is a set of
shared class labels that is common to both the source and target domains. The target domain dataset
Dt = {P ti }

nt
i=1 contains unlabeled point clouds. The cardinality of Ds and Dt are ns and nt respectively.
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Then, the task of UDA for point cloud classification boils down to learning a domain invariant function
f : P → Y , where P is a union of unlabeled point clouds from both Ds and Dt.

3.2.1 Self-Supervised Contrastive Learning

Motivated by the advancement of contrastive learning [5,20], where the goal is to pull samples from
common classes closer in the embedding space, we build a method to extract 3D and 2D features of
point clouds and fuse this information to form initial domain class clusters.

We employ a contrastive loss between augmented versions of a point cloud, which we term as a
3D-modal association loss, to learn similar features for samples from the same class. This loss forces
the point cloud learning to be invariant to geometric transformations. Additionally, we introduce a con-
trastive loss between the 3D point cloud features and their corresponding projected 2D image features,
termed as multi-modal association loss. The intuition behind this multi-modal loss is to take advantage
of the rich multi-view latent 2D information inherent in the 3D point clouds. Next, we explain these
components in detail.

3.2.1.1 3D-modal association loss

Let Pb be a point cloud from a randomly drawn batch B of size k from either Ds or Dt. Given
a set of affine transformations T , we generate two augmented point clouds P t1b and P t2b , where t1
and t2 are compositions of transformations picked randomly from T . Additionally, we use random
point dropout and add random noise to each point in a point cloud individually to introduce object
surface distortions. These transformations introduce geometric variations, which are then used to curate
samples that serve as positive pairs. The augmented point clouds P t1b and P t2b are then mapped to a
d-dimensional feature space using a 3D encoder function producing embeddings z(P t1b ) and z(P t2b ),
respectively. These embeddings serve as positive pairs and therefore our objective is to place them
closer to one another in the feature space.

We define the similarity between the i-th embedding transformed by tx and the j-th embedding
transformed by tx, with x ∈ {1, 2}, as given in Eqn 3.1

⟨(i, tx), (j, tx)⟩ST = exp
(
s(z(P txi ), z(P txj ))/τ

)
(3.1)

where s denotes the cosine-similarity function and τ is the temperature hyperparameter.

Our 3D-modal association loss is then given as shown in Eqn 3.2

L3d = − log


⟨(i, t1), (i, t2)⟩ST

k∑
j=1

⟨(i, t1), (j, t1)⟩ST +
k∑

j=1

⟨(i, t1), (j, t2)⟩ST

 (3.2)

For both source and target, we randomly draw respective batches and perform 3D-modal association
separately. This method of self-supervised contrastive learning generates class clusters in both domains
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individually and has been shown to be useful especially for the target domain, as its supervision signal
is missing. We further guide the feature learning by introducing image modality in the optimization. We
explain our multi-modal association loss next.

3.2.1.2 Multi-modal association loss

We consider using point cloud projections in our method, as the image features can provide another
level of discriminative information. 2D projections from various viewpoints allow capturing silhouette
and surface boundary information for shape understanding that is harder to derive from just point-
wise distances. Breaking away from the common way of fusing multimodal information [3, 18] where
the embeddings of two modalities are fused by simply concatenating or averaging them, we instead
compute associative losses between 3D features and image features to establish 2D-3D correspondence
understanding helping to provide informative global representation.

As contrastive learning is known to be good for alignment tasks, we advocate using a contrastive
objective to fuse multimodal (3D and 2D) information. Let IP = {In}mn=1 be the set of m 2D image
projections of point cloud P . To generate these images, we set virtual cameras around the object in
a circular fashion to obtain views of the object from all directions. For a point cloud P , each of its
corresponding 2D images is passed to a 2D encoder, generating a d-dimensional embedding. Following
[15,35], we use a simple max-pooling operation to aggregate feature information from all views and get
a d-dimensional vector zIP . In order to fuse the 3D augmented point cloud embeddings (i.e., z(P t1) and
z(P t2)) with the 2D point cloud embedding zIP , we compute the average of the 3D augmented point
cloud embeddings to get zavg. We then use the zavg and zIP that contain summarized information from
3D and 2D modalities respectively in a self-supervised contrastive loss to maximize their similarity in
the embedding space. We define the similarity between the i-th embedding zi and the j-th embedding
z′j as ⟨zi, z′j⟩S = exp

(
s(zi, z

′
j)/τ

)
. Then, our multi-modal association loss is given by

Lmm = − log


⟨zavgi , zIPi ⟩S

k∑
j=1

⟨zavgi , zavgj ⟩S +
k∑
j=1

⟨zavgi , zIPj ⟩S

 (3.3)

The total self-supervised contrastive loss is given by adding the 3D-modal association loss (L3d) that
maximizes the similarity between augmentations of a point cloud and the multi-modal association loss
(Lmm) that maximizes the similarity between 3D and 2D features of a point cloud.

3.2.2 Domain Alignment via Optimal Transport

As explained in Section 3.2.1, contrastive learning generates class clusters in source and target do-
mains individually. The underlying idea is to further achieve alignment of point clouds belonging to
the same class across two domains. We leverage an OT based loss that uses point cloud features and
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source labels for domain alignment. The classifier g : Rd → Y that maps the point cloud embedding
from feature space to label space also needs to work well for the target domain. The OT flow is greatly
dependent on the choice of the cost function as shown by [8]. Here, as we want to jointly optimize the
feature and the classifier decision boundary learning, we define our cost function as

k∑
i=1

k∑
j=1

c(zsi , z
t
j) = α||zsi − ztj ||22 + β||ysi − g(ztj)||22 (3.4)

where superscripts s and t denote the source and target domains, respectively. α, β are the weight
coefficients. Here, the first term computes the squared-L2 distance between the embeddings of source
and target samples. The second term computes squared-L2 distance between the classifier’s target class
prediction and the source ground truth label. Jointly, these two terms play an important role in pulling or
keeping apart source and target samples for achieving domain alignment. For example, if a target sample
lies far from a source sample having the same class, the first term would give a high cost. However, for a
decently trained classifier, the distance between its target class prediction and source ground truth label
would be less, thus making the second term low. This indicates that these source and target samples
must be pulled closer. Conversely, if a target sample lies close to a source sample having a different
class, the first term would be low, and the second term would be high, indicating this sample should
be kept apart. As evident from the example, the second term is a guiding entity for inter-domain class
alignment. It penalizes source-target samples based on their classes and triggers a pulling mechanism.
The problem of finding optimal matching can be formulated as ψ∗ = minψ∈U(as,bt)⟨Cp, ψ⟩F , where
ψ∗ is the ideal coupling matrix, as and bt are the uniform marginal distributions of source and target
samples from a batch. The optimal coupling matrix ψ∗ is computed by freezing the weights of the 3D
encoder function and the classifier function g. The OT loss for domain alignment is given by

Lot =
k∑
i=1

k∑
j=1

ψ∗
ij(α||zsi − ztj ||22 + βLce(ysi , g(ztj)) (3.5)

where Lce is the cross-entropy loss.

3.2.3 Overall Training Loss

The overall pipeline of our unsupervised DA method is trained with the combination of the following
objective functions Ltotal = L3d +Lmm +Lot +Lscls. The loss consists of three self-supervised losses
(i.e., L3d, Lmm and Lot) and a supervised loss Lscls. Besides three SSL tasks, supervised learning is
performed based on source samples and labels. For this purpose, a regular cross-entropy loss or a mixup
variant can be applied [44]. We use a supervised loss (Lscls) inspired by the PointMixup method (PCM)
[6]. PCM is a data augmentation method for point clouds by computing interpolation between samples.
Augmentation strategies have proven to be effective and enhance the representation capabilities of the
model. Similarly, PCM has shown its potential to generalize across domains and robustness to noise
and geometric transformations.
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We also employ the self-paced self-training (SPST) strategy introduced by [46] to improve the align-
ment between domains. In SPST, pseudo-labels for the target samples are generated using the classifier’s
prediction and confidence threshold. The first step computes the pseudo labels for the target samples
depending on the confidence of their class predictions, while the next step updates the point cloud en-
coder and classifier with the computed pseudo labels for target and ground truth labels of source. In our
method, we use SPST strategy as a fine-tuning step for our models.

3.3 Experimental Setup

In this section, we explain our baselines, all the used datasets, and the implementation details with
the used hyperparameters.

3.3.1 Baslines

We conduct an exhaustive experimental study to show the effectiveness of the learned representa-
tions and the significance of our COT. We consider recent state-of-the-art self-supervised methods such
as DANN [14], PointDAN [30], RS [32], DefRec+PCM [1], GAST [46] and ImplicitPCDA [34] for
comparison. Additionally, we report results for the baseline without adaptation (unsupervised) which
trains the model using labels from the source domain and tests on the target domain. The supervised
method is the upper bound which takes labels from the target domain into consideration during training.

3.3.2 Datasets

3.3.2.1 PointDA-10

[30] introduces PointDA-10, which is a combination of ten common classes from ModelNet [40],
ShapeNet [4] and ScanNet [9]. ModelNet and ShapeNet are synthetic datasets sampled from 3D CAD
models, containing 4, 183 training, 856 test samples and 17, 378 training, 2, 492 test samples, respec-
tively. On the other hand, ScanNet consists of point clouds from scanned and reconstructed real-world
scenes and consists of 6, 110 training and 1, 769 test samples. Point clouds in ScanNet are usually
incomplete because of occlusion by surrounding objects in the scene or self-occlusion in addition to
realistic sensor noises. We follow the standard data preparation procedure used in [1, 30, 34, 46].

3.3.2.2 GraspNetPC-10

This dataset is proposed by [34], which consists of synthetic and real-world point clouds for ten ob-
ject classes. It is developed from GraspNet [11] by re-projecting raw depth scans to 3D space and apply-
ing object segmentation masks to crop out the corresponding point clouds. Raw depth scans are captured
by two different depth cameras, Kinect2 and Intel Realsense to generate real-world point clouds. In the
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Synthetic, Kinect, and RealSense domains, there are 12, 000 training, 10, 973 training, 2, 560 testing,
and 10, 698 training, 2, 560 testing point clouds, respectively. There exist different levels of geometric
distortions and missing parts. Unlike PointDA-10, point clouds in GraspNetPC-10 are not aligned and
all domains have almost uniform class distribution.

3.3.3 Implementation Details

For data pre-processing, we follow [1] and align the positiveZ axis of all point clouds from the whole
PointDA-10 dataset. We use the farthest point sampling algorithm to sample 1024 points uniformly
across the object surface. Further, all the point clouds are normalized and scaled to fit in a unit-sphere.
For getting renderings of point clouds from multiple views, we place orthographic cameras in a circular
rig. We set the number of views to 12 and the image size as 224 × 224. We set points color to white,
background color to black, points radius to 0.008, and points per pixel to 2. For getting two augmented
versions of the original point cloud used in self-supervised contrastive learning, we compose spatial
transformations picked from random point cloud scaling, rotation, and translation. The original point
cloud which is passed to the source classifier is only transformed with random jittering and random
rotation about its Z axis.

For a fair comparison with recent works [1, 34, 46] we use DGCNN [39] as our 3D encoder for
extracting global point cloud features. We choose a pre-trained ResNet-50 [17] as our image feature
extractor. Both 3D and 2D encoders embed their respective modality into a 256 dimensional feature
space for contrastive learning. Whereas, for the classification task, 1024 dimensional feature vector of
the original point cloud is used. We use a 3-layer MLP as our classifier, having (512, 256, 10) neurons
respectively. Please note that for testing the classification performance, we do not use 2D features and
only use the global features given by the 3D encoder. We set the temperature parameter τ used in
contrastive losses L3d (Eqn 3.2) and Lmm (Eqn 3.3) as 0.1. To solve the optimization problem of the
optimal coupling matrix, we use the POT library [12]. We do a grid search to find the best α and β
combination from Lot. For most of the dataset combinations, we set the hyperparameters α and β to
0.001 and 0.0001, respectively.

We perform all our experiments on NVIDIA RTX-2080Ti GPUs using the Pytorch framework for
implementing our models. We set the batch size to 32, learning rate as 0.001 with cosine annealing as
the learning rate scheduler and use Adam optimizer. We set weight decay to 0.00005 and momentum
to 0.9. In total, we train our models for 150 epochs on PointDA-10 and 120 epochs on GraspNetPC-10
dataset. We report results from the model with the best classification accuracy on source validation set,
as target labels are unavailable.
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3.4 Unsupervised DA: Classification

In Tables (3.1, 3.2), we compare the results of our COT with the existing point cloud domain adap-
tation methods [1, 30, 34, 46] on PointDA-10 and GraspNetPC-10 datasets respectively. Similar to [34]
and [46], we also test our methodology with SPST strategy. As shown in Table 3.1, COT achieves
SoTA performance in terms of the overall average performance on PointDA-10 dataset. We observe
that COT beats existing methods by a huge margin when the target dataset is synthetic. This is because
target point clouds have well-defined geometry, and the classifier can make accurate predictions with
high confidence, thus majorly helping alignment. As existing methods only propose to use self-learning
tasks, their performance is very low compared to our self-learning task with explicit domain alignment
endowed by OT. For the settings where the target dataset is real, it becomes harder for the classifier
to provide good predictions, making the alignment process noisy. In these settings, we achieve on-par
results compared to the existing methods. In S → M , our method with SPST strategy outperforms
existing methods ≈ 8%, and in M → S, we achieve on-par results compared to the existing methods.
For PointDA-10, we observe that when the target domain is synthetic, the learned features are distinc-
tive; however, when the target domain is real, the features lack distinctive power. This portrays the
challenging setting of synthetic to real adaptation. Overall we achieve the highest average accuracy on
PointDA-10 dataset showing effectiveness of COT.

Our method outperforms all the existing methods with a significant margin on all the combinations
of GraspNetPC-10 dataset, as shown in Table 3.2. COT beats existing methods in both with and with-
out SPST strategy; also, in some cases, it beats the supervised method (upper bound). It is interesting
to note the difference in behaviour of COT and other methods on real-world data in PointDA-10 and
GraspNetPC-10. PointDA-10, in general, has a very skewed class-wise sample distribution and has a
small set of real-world samples. Whereas, GraspNetPC-10 has almost uniform class-wise sample dis-
tribution with approximately double the size of ScanNet. COT performs significantly better with larger
datasets and almost equal class-wise sample distribution. Existing methods that propose classification-
based [46] or geometry-aware implicit learning-based [34] tasks fall short in terms of performance boost
compared to COT when real-world datasets are large and have uniform class distribution. This shows the
effectiveness of COT for unsupervised domain adaptation achieving SoTA performance on real-world
data from GraspNet-10 dataset.

3.4.1 Domain Alignment

In this section, we discuss our used sampling strategy for creating a batch and explain its working
in our Lot loss for domain alignment. For every iteration, we use random sampling to draw source and
target batches independently. Note that it does not ensure the coherence of source and target classes in
a batch. Using these batches, the OT flow finds the best one-to-one matching amongst both domains
using the defined cost function and updates both network’s (encoder and classifier) weights to minimize
the Lot loss. Even though we use random sampling we find that repeating this process for multiple
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Methods SPST M → S M → S* S → M S → S* S* → M S* → S Avg.

Supervised 93.9 ± 0.2 78.4 ± 0.6 96.2 ± 0.1 78.4 ± 0.6 96.2 ± 0.1 93.9 ± 0.2 89.5

Baseline(w/o adap.) 83.3 ± 0.7 43.8 ± 2.3 75.5 ± 1.8 42.5 ± 1.4 63.8 ± 3.9 64.2 ± 0.8 62.2

DANN [14] 74.8 ± 2.8 42.1 ± 0.6 57.5 ± 0.4 50.9 ± 1.0 43.7 ± 2.9 71.6 ± 1.0 56.8

PointDAN [30] 83.9 ± 0.3 44.8 ± 1.4 63.3 ± 1.1 45.7 ± 0.7 43.6 ± 2.0 56.4 ± 1.5 56.3

RS [32] 79.9 ± 0.8 46.7 ± 4.8 75.2 ± 2.0 51.4 ± 3.9 71.8 ± 2.3 71.2 ± 2.8 66.0

Defrec+PCM [1] 81.7 ± 0.6 51.8 ± 0.3 78.6 ± 0.7 54.5 ± 0.3 73.7 ± 1.6 71.1 ± 1.4 68.6

GAST [46]
83.9 ± 0.2 56.7 ± 0.3 76.4 ± 0.2 55.0 ± 0.2 73.4 ± 0.3 72.2 ± 0.2 69.5

✓ 84.8 ± 0.1 59.8 ± 0.2 80.8 ± 0.6 56.7 ± 0.2 81.1 ± 0.8 74.9 ± 0.5 73.0

ImplicitPCDA [34]
85.8 ± 0.3 55.3 ± 0.3 77.2 ± 0.4 55.4 ± 0.5 73.8± 0.6 72.4 ± 1.0 70.0

✓ 86.2 ± 0.2 58.6 ± 0.1 81.4 ± 0.4 56.9 ± 0.2 81.5 ± 0.5 74.4 ± 0.6 73.2

COT

83.2 ± 0.3 54.6 ± 0.1 78.5 ± 0.4 53.3 ± 1.1 79.4 ± 0.4 77.4 ± 0.5 71.0

✓ 84.7 ± 0.2 57.6 ± 0.2 89.6 ± 1.4 51.6 ± 0.8 85.5 ± 2.2 77.6 ± 0.5 74.4

Table 3.1: Classification accuracy (%) on the PointDA-10. M: ModelNet, S: ShapNet, S*: ScanNet; →

indicates the adaptation direction. SPST: self-paced self-training. Results in black and blue represent

accuracy without and with SPST strategy, respectively. Bold represents the best result and underlined

represents the second best for both the colors.

Methods SPST Syn. → Kin. Syn → RS. Kin. → RS. RS. → Kin. Avg.

Supervised 97.2 ± 0.8 95.6 ± 0.4 95.6 ± 0.3 97.2 ± 0.4 96.4

Baseline(w/o adap.) 61.3 ± 1.0 54.4 ± 0.9 53.4 ± 1.3 68.5 ± 0.5 59.4

DANN [14] 78.6 ± 0.3 70.3 ± 0.5 46.1 ± 2.2 67.9 ± 0.3 65.7

PointDAN [30] 77.0 ± 0.2 72.5 ± 0.3 65.9 ± 1.2 82.3 ± 0.5 74.4

RS [32] 67.3 ± 0.4 58.6 ± 0.8 55.7 ± 1.5 69.6 ± 0.4 62.8

Defrec+PCM [1] 80.7 ± 0.1 70.5 ± 0.4 65.1 ± 0.3 77.7 ± 1.2 73.5

GAST [46]
69.8 ± 0.4 61.3 ± 0.3 58.7 ± 1.0 70.6 ± 0.3 65.1

✓ 81.3± 1.8 72.3 ± 0.8 61.3 ± 0.9 80.1 ± 0.5 73.8

ImplicitPCDA [34]
81.2 ± 0.3 73.1 ± 0.2 66.4 ± 0.5 82.6 ± 0.4 75.8

✓ 94.6 ± 0.4 80.5 ± 0.2 76.8 ± 0.4 85.9 ± 0.3 84.4

COT
87.7 ± 0.7 80.2 ± 2.1 69.3 ± 5.2 85.8 ± 4.3 80.0

✓ 98.2 ± 0.5 83.7 ± 0.2 81.9 ± 2.1 98.0 ± 0.1 91.0

Table 3.2: Classification accuracy (%) on the GraspNet-10 dataset. Sys.: Synthetic domain, Kin.: Kinect

domain, RS.: Real domain; → indicates the adaptation direction. SPST: self-paced self-training. Results

in black and blue represent accuracy without and with SPST strategy, respectively. Bold represents the

best result and underlined represents the second best for both the colors.
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iterations eventually converges the overall alignment loss (Lot) giving discriminative features for classes
with aligned source and target distributions. For examining the distance between class clusters from the
source and target, we compute the maximum mean discrepancy (MMD) between learned point cloud
features. In Figure 3.3, we show class-wise MMD, where Figures 3.3a, 3.3b are for baseline (without
adaptation) and our COT respectively on ShapeNet to ModelNet. The diagonal of the matrix represents
MMD between the same classes from source and target, and the upper and lower triangular matrices
represent MMD between different classes for source and target. It is clearly evident that the MMD
matrix for our COT has higher distances in the upper and lower triangular regions than the baseline.
This shows that classes within the source and target individually are well separated. Further, the diagonal
values for our COT are lower than the baseline without adaptation, indicating that the same classes in
source and target are closer for features obtained from our method. Overall, we can see that point cloud
embeddings generated by COT have better inter-class distances and source and target class alignment.
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Figure 3.3: Class-wise MMD for S →M for (a) baseline (only PCM w/o adaptation), and (b) our COT

with SPST.

3.4.2 Discussion: Decision Boundary

We also examine the decision boundaries of our learned models. Figure 3.4 illustrates the decision
boundaries from early (top-row) and final (bottom-row) epochs for four variants of our model. For
this experiment, we select target samples from the hidden space of our trained models. We consider
four variants of our model, i.e., i) only PCM (no adaptation), ii) contrastive learning with PCM, iii)
contrastive learning and OT with PCM (our COT method), and iv) our COT fine-tuned with SPST
strategy. All the representations are retrieved with the labels predicted by our trained model. Next, we
fit the SVM and consider a “one-vs-rest strategy” to visualize the decision boundaries.
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(e) (f) (g) (h)

Figure 3.4: Early (top-row) and final (bottom-row) epochs decision boundaries on target samples for

One-vs-Rest (Monitor class) for S → M. (a), (e) Only PCM (without adaptation), (b), (f) Contrastive

learning with PCM, (c), (g) Optimal transport and contrastive learning with PCM (Our COT) and (d),

(h) Our COT fine-tuned with SPST.

From Figures 3.4a to 3.4d and 3.4e to 3.4h, we can clearly interpret that the baseline model with only
PCM and no adaptation leads to irregular boundaries in Figures 3.4a and 3.4e. The representations are
enhanced, and the boundary becomes smoother by applying contrastive learning to both the domains in
Figures 3.4b and 3.4f. In contrast, training the model with our COT, which includes the previous two
strategies (PCM and contrastive learning) along with OT loss further improves the decision boundaries
in Figures 3.4c and 3.4g. Finally, with the SPST strategy, which finetunes the COT with pseudo labels of
target samples, the region gets even more compact and smoother in Figures 3.4d and 3.4h. This shows
that contrastive learning separates the two classes which are improved by OT alignment. Also, SPST
further makes the classes more compact and achieves the best results.

3.5 Ablation Studies

We perform ablation studies to understand the significance of proposed losses in our method. In
Table 3.3, we compare the results of our COT trained with various components on PointDA-10. L3d is
always used as it is our base self-learning task for 3D point clouds. The significance of Lot can be seen
by comparing row 3 and row 2. When Lot is removed from COT, the performance drops on almost all
settings. Comparing row 3 and row 1, we can see the effect of Lmm as the performance decreases for
all settings when it is turned off. In both cases, the average accuracy also drops. This indicates positive
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contribution of both Lot and Lmm in the formulation of our COT. A similar trend is also observed with
the SPST strategy as well. Comparing row 6 with rows 4 and 5, we see the best performance when both
losses are used. Also, note that SPST increases the performance for all three settings shown. Overall,
these results suggest that both image modality and OT-based domain alignment are crucial for achieving
the best results.

L3d Lot Lmm SPST M → S M → S* S → M S → S* S* → M S* → S Avg.

✓ ✓ 82.50 53.82 74.65 47.26 75.35 71.39 67.5

✓ ✓ 82.66 46.64 78.50 53.82 82.24 75.40 69.9

✓ ✓ ✓ 83.20 54.61 78.50 53.30 79.44 77.41 71.0

✓ ✓ ✓ 84.91 56.76 84.93 47.26 77.22 73.07 70.7

✓ ✓ ✓ 84.91 54.32 85.51 53.31 86.0 75.92 73.3

✓ ✓ ✓ ✓ 84.71 57.66 89.60 51.61 85.50 77.69 74.4

Table 3.3: Ablation Study: Target classification accuracy for UDA task on PointDA-10 dataset. Bold

represents best results.

3.5.1 Class-wise Performance Analysis

In this section, we analyse the class-wise accuracy of COT on PointDA-10 and and GraspNetPC-10
datasets. Results for PointDA-10 and GraspNetPC-10 are show in Tables 3.4 and 3.5, respectively

Bathtub Bed Bookshelf Cabinet Chair Lamp Monitor Plant Sofa Table

S*→ M 0.98 0.98 0.99 0 0.98 0.9 0.86 0.9 0.97 0.98

S*→ S 0.86 0 0.98 0.05 0.96 0.67 0.65 0.8 0.36 0.95

M→ S 0.85 0.52 0.98 0 0.94 0.65 0.84 0.97 0.92 0.93

M→ S* 0.46 0.39 0.4 0.05 0.69 0.63 0.74 0.8 0.45 0.69

S→ S* 0.54 0 0.12 0 0.7 0.73 0.77 0.32 0.45 0.58

S→ M 1 0.99 0.62 0.57 0.99 0.95 1 0.91 0.98 1

Table 3.4: Class-wise accuracies of our COT (with SPST) on the PointDA-10 dataset

In the case of PointDA-10, in almost all cases, the cabinet class is the toughest to classify. In some
of the combinations, even a single example from this class is not classified correctly. In the case of
GraspNetPC-10, all the samples belonging to the class Dish are always classified correctly.
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Box Can Banana Drill Scissors Pear Dish Camer Mouse Shampoo

Syn→ Kin 1 1 0.98 0.99 0.92 1 1 1 1 1

Syn→ RS 0.95 0.97 0.28 0.84 0.96 0.69 1 1 1 0.65

Kin→ RS 1 0.78 0.63 0.98 0.9 0.31 1 0.83 0.99 0.96

Rs→ Kin 1 1 0.98 0.99 0.98 1 1 1 0.85 1

Table 3.5: Class-wise accuracies of our COT (with SPST) on the GraspNetPC-10 dataset

3.6 Summary

In this chapter, we presented a method to tackle the problem of domain adaptation on 3D point
clouds for classification. We introduced a novel methodology to synergize contrastive learning and
optimal transport for effective UDA. Our method focuses on reducing the domain shift and learning
high-quality transferable point cloud embeddings. Our empirical study reveals the effectiveness of COT
as it outperforms existing methods in overall average accuracy on one dataset, and achieves SoTA per-
formance on another. The conducted ablation studies demonstrate the significance of our proposed
method. We identify a limitation of our method, i.e., it currently assumes a fixed set of classes in both
domains that limits generalizability. Also, an area where our method can be significantly improved is
the domain matching cost function. The OT loss can be improved to get robust cross-domain matching.
An interesting future direction would be to extend our OT-based approach for UDA of point clouds on
more complex tasks like segmentation or object detection in indoor scenes. In the next chapter, we
discuss about how to use optimal transport to learn effective 3D point cloud representations towards any
downstream task.
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Chapter 4

Going Beyond Euclidean Space for Learning Point Cloud Representations

Figure 4.1: Critical points. The embedding of a point cloud is determined by the selected critical

points. Networks trained with different distance metrics yield different sets of critical points. (a), (b)

and (c) represent the original point cloud (first column), critical point set for Wasserstein space (second

column), and Euclidean space (third column) for three examples (Chair, Monitor & Bed). The network

trained in Wasserstein space captures better overall global geometry.

In this chapter, we first discuss the limitations of widely used Euclidean spaces (Section 4.1). We then
present a method endowed by contrastive learning to learn Wasserstein embeddings for 3D point clouds
(Section 4.2). We then explain the experimental setup (Section 4.3) and show experimental results on

26



various downstream tasks (Section 4.4). Finally, we show various ablation studies (Section 4.5) and
show an interesting study of our self-explainable method by capturing critical points of point clouds
better than embeddings in Euclidean space (Section 4.6).

4.1 The Motivation of Learning in Wasserstein Space

A common choice of recent 3D point cloud representation learning methods is to operate and repre-
sent point clouds as point vectors in Euclidean spaces. Where, for example, the relation between data
points is depicted by either angle or L-2 distance. It is well known that the embedding space largely
determines the quality of embeddings, as it depends on how well the target space can capture the un-
derlying structure present in the data. Euclidean space is confined in its potential to capture complex
structures and possible semantic relations. For example, if we consider a binary tree, the number of
nodes increases exponentially as the depth of the tree increases. On the other hand, the volume of the
ball in an Euclidean space grows polynomial with the radius. So, if we try to embed trees in Euclidean
space, the outermost leaves will become increasingly close to one another, and we will quickly run out
of space to embed the data. In contrast, in Hyperbolic space, the volume of balls grows exponentially
with the radius. Thus, a tree can be embedded with very low distortion in Hyperbolic space, but this is
not possible in Euclidean space. The selection of target space itself can give increasingly more room to
embed complex hierarchical data. Realizing these drawbacks, many works use Hyperbolic space [24,25]
to capture this uncertainty and asymmetric relationship for work and graph embeddings.

As Euclidean space is constrained in its ability to represent data structures, we need to go beyond
Euclidean space to get more expressive embeddings for point clouds. In this chapter, we advocate em-
bedding point clouds in Wasserstein space because of its nature of flexibility. The main motive of this
study is to examine the advantages of Wasserstein space over widely used Euclidean space for point
cloud data. Recent studies show that many spaces can be embedded into Wasserstein space with low
distortion [13], this reflects how flexible Wasserstein spaces are. Recently, [7] tries to mimic Wasser-
stein distance in Euclidean space for image embeddings to build efficient methods along with availing
the flexibility of Wasserstein space. There are also a few works that utilize the advantage of Wasserstein
space for learning point cloud embeddings, [19], motivated by [7], proposes a method to approximate
Wasserstein distance by Euclidean norm between two point cloud embeddings. Since Euclidean space
is known for its limited ability, finding isometric low-distortion point cloud embeddings is tough. An-
other work by [23] presents how Optimal Transport (OT) based distances for point cloud reconstruction
affect the quality of learnt embeddings. However, this method utilizes OT based distances only as a re-
construction loss, which is not enough to learn complex shapes and fails to capture fine details of point
clouds.

Motivated by the aforementioned limitations and inspired by [13], in this work, we advocate for
mapping point cloud as a discrete distribution in Wasserstein space. We explain our method in detail
next.
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4.2 Metric Learning using Optimal Transport
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Figure 4.2: Overview of our proposed method. The two main parts are, point cloud encoding as

discrete distribution (left) and computation of Sliced Wasserstein distance (right). The ground metric

space is R2. T1(P ) and T2(P ) are two instances of P after random transformations.

In this section, we discuss our method of computing Wasserstein embeddings for point clouds in
a contrastive learning setup as shown in Figure 4.2. Leveraging the idea of contrasting point clouds
against each other, we intend to learn common and distinctive features between same and different
distributions, respectively. It can be trained in either supervised or self-supervised manner and can be
used as a pre-training methodology for any downstream task. We use Sliced Wasserstein (SW) distance
which is a low-cost approximation of Wasserstein distance due to its high computational complexity.
The goal is to represent samples from same class closer than the samples from different classes in the
embedding space (larger inter-cluster and smaller intra-cluster distance). Here, the choice of embedding
space plays a key role in desirable performance, as individual metric spaces can embed data differently
and represent different types of semantic structure.

Let O = {(Pm, lm)}; m = 1 . . .M be a collection of point clouds Pm = {pi}; i = 1 . . . Nm ,
where, pi ∈ R3 with their corresponding class labels lm ∈ L, where L = {1, . . . C} is a set of class
labels. Each point cloud Pm contains Nm number of points defined by 3D space points in x, y and
z direction. For defining the batch-wise contrastive loss, we first randomly draw K samples from the
collection O, that form a batch B = {(Pm, lm)k}; k = 1 . . .K. For every point cloud Pm ∈ B, we
apply fixed set of random transformations T1 and T2 to get two instances of Pm (as shown in Figure
4.2), giving an augmented batch B′ = {(P ′

m, lm)k′}; k′ = 1 . . . 2K. The augmented batch is twice
the size of the original batch. The point clouds P ′

m indexed at k′ and k′ + 1 are augmented versions
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of the point cloud Pm indexed at k. As these are augmented versions of Pm[k], their class labels are
lm[k′] = lm[k′+1] = lm[k].

The input to the encoder is an augmented batch B′, from which all P ′
m needs to be mapped to

the embedding space depending on its geometric features and appearance, with samples having same
class label being closer. The encoder represents function f : RNm×3 → W(X ), that maps a point
cloud P ′

m to the Wasserstein space W(X ), with Wp being the distance metric on W(X ) and X being
the ground metric space. We choose R2, R4 and R8 to be our ground metric spaces, in which the
corresponding embedding z′m of P ′

m is represented as discrete distribution { 1
S ·xi}; i = 1 . . . S supported

by xi ∈ X with a total of S support points, all with uniform probability mass 1
S for simplicity. In our

implementation, we obtain z′m by reshaping the encoder’s output, to obtain the discrete distribution for
different ground metric spaces.

Generally, the computation for exact solution of Wp is costly. To make the computation of optimal
transport more tractable, we replace the distance metric Wp on Wasserstein space W(X ) by the Sliced
Wasserstein distance metric SW p. SW p is a low-cost approximation of Wasserstein distance with
computational complexity being O(S logS). For all our experiments, we set the value of p = 2 and
number of slices D = 300.

4.2.1 Supervised Contrastive Loss

In the supervised setting, for any P ′
m ∈ B′ indexed at k′ with corresponding label lm[k′], the positive

set is defined as A = {P ′
m ∈ B′ : P ′

m = lm[k′]}. We define our supervised contrastive loss for learning
point cloud Wasserstein embeddings as:

Lsup = −
2K∑
i=1

log

∑
j∈A
j ̸=i

exp(−SW 2
2 (zi, zj))∑

t̸=i exp(−SW 2
2 (zi, zt))

 (4.1)

The loss tries to minimize the Sliced Wasserstein distance between the embeddings represented as dis-
crete distribution of an anchor and all the samples having the same class in the augmented batch. This
can also be easily converted to a self-supervised version by making necessary modifications.

4.2.2 Self-Supervised Contrastive Loss

Contrary to the supervised setting, in self-supervised setting, the class label of point clouds cannot
be used in any way to train the encoder. Here, the positive set of any P ′

m ∈ B′ contains only the other
augmentation of P ′

m. If i ∈ {1 . . . 2K} be the index of any P ′
m ∈ B′, then, let j(i) be the index of

its other augmented sample. We define our self-supervised loss for learning point cloud Wasserstein
embeddings as:

Lself = −
2K∑
i=1

log

(
exp(−SW 2

2 (zi, zj(i)))∑
t̸=i exp(−SW 2

2 (zi, zt))

)
(4.2)
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Here, only the Sliced Wasserstein distance between embeddings of an anchor and its augmented sample
is minimized. Other than the augmented sample, the samples having the same class in the augmented
batch are treated as negatives, which might hinder the overall optimization process depending on the
batch size.

4.3 Experimental Setup

In this section, we explain the experimental setup for pre-training, all the used datasets, baselines
that we compare with, and the used hyperparameters.

4.3.1 Datasets

We use ModelNet10 (MN10) and ModelNet40 (MN40) [41] to perform experiments on classifica-
tion. MN40 consists of 12311 CAD models with a total of 40 categories, where 9843 objects are used for
training and 2468 for testing. We use the data provided by [29], from which we randomly sample 2048

points for each point cloud. MN10 is a subset of MN40 dataset having 10 categories. To evaluate how
the learned embeddings perform on real-world data, we also conduct experiments on ScanObjectNN
(SO) [36]. It contains object scans with partial occlusions and background, making it a challenging
dataset. Here, an object which is represented with 2048 points can also have points that belong to the
background. We do not use the mask label that indicates whether a point belongs to the foreground or
background in any of our experiments. This interpretation is completely left to the network to decide and
choose which points matter the most in order to classify a particular object. It has 2304 objects for train-
ing and 567 for testing from 15 categories. For part segmentation, we use ShapeNetPart (SN) [43] that
consists of 16681 point clouds from 16 categories and 50 part categories in total. As a pre-processing
step, we always normalize the coordinates of the point clouds and scale the object to bring it inside a
unit sphere. Note that, the point clouds are not explicitly aligned across all datasets.

4.3.2 Architecture and Pre-training

We use a 3-layer MLP network as our encoder for all the classification and segmentation tasks. The
number of neurons in each layer are (64, 128, 256) with batch-norm and ReLU activation after every
layer. Note that, the last layer’s output is not passed through the activation function. After the max-
pooling operation, the encoder gives a 256-dimensional vector, which is then converted into a discrete
distribution z′m depending on the selected ground metric space (R2,R4,R8). For example, if the selected
ground metric space is R2, then the 256-dimensional embedding vector is reshaped into (256/2) × 2,
giving us 128 support points in 2 dimensions. As we use a uniform distribution, each of the points have
the same weightage of (1/128), all effectively making it a discrete distribution in R2. For interpolation,
we use the encoder and decoder proposed by FoldingNet [42].
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In order to perform any downstream task on a particular dataset, the encoder is first pre-trained on
the dataset using the contrastive loss explained in Section 4.2 with different distance metrics, followed
by testing and evaluation of the desired task. Throughout the experiments, we refer the encoder trained
using our method as CL+SW2. We train CL+SW2 with ground metric dimensions 2, 4, and 8 and
report the results of the best-performing network. In the case of Euclidean distance metrics, the encoder
function f : RNm×3 → Rd maps a point cloud to d-dimensional space. We then apply L2-distance or
cosine similarity as distance measures on these d-dimensional embeddings. For the cosine similarity
metric, we remove the negative sign in the numerator for Eqs. 4.1 and 4.2. Also, note that when training
the encoder with cosine similarity, the embeddings are normalized. For Euclidean distances, we use the
256-dimensional vector straight away, and for the Wasserstein metric, we use the discrete representation.
For the transformations required in contrastive loss, intended towards forming augmented instances, we
sequentially compose random scaling, rotation, and point jittering. The scaling parameter is randomly
selected from a range of 0.8 to 1.25. For rotation, we only rotate the object about its Y -axis and
choose a rotation angle between 0◦ to 360◦. For points jittering, we first draw noise from a normal
distribution having 0 mean and standard deviation as 0.01. This noise is then added to each point
individually, introducing surface distortion. We compose these transformations by selecting two random
input parameters for each of them, resulting in T1 and T2.

4.3.3 Baselines

For computing Euclidean embeddings, we consider L2-distance and Cosine similarity as distance
measures. For these Euclidean metric baselines, we train the encoder using our loss (Eqs. 4.1, 4.2) by
replacing SW 2

2 (·, ·) with the respective metrics. We also consider WPCE [19] and SSW-AE [23] as our
baselines as they are recent techniques that use Wasserstein metric for learning point cloud embeddings
and are the closest comparable works to our approach. WPCE embeds Wasserstein space into Euclidean
space using a Siamese network. The network is trained in such a way that the Euclidean distance mimics
the Wasserstein distance between two point clouds. SSW-AE proposed to use SW distance and its
variants (max SW and adaptive SW) for reconstruction to learn point cloud embeddings. It examines
the effect of using different reconstruction metrics and losses for training an auto-encoder architecture
on the learnt embeddings. For a fair comparison, all reported results (apart from interpolation) of our
method and baselines are using the same encoder architecture.

4.3.4 Hyperparameters

We perform all our experiments on NVIDIA RTX-2080Ti GPUs using the PyTorch framework for
implementing our models. We set the batch size to 16, and the learning rate as 0.001 with a step learning
rate scheduler, where the learning rate is scaled by 0.7 after every 20 epoch. We use the Adam optimizer
and set weight decay to 0.0001 and momentum to 0.9.
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4.4 Downstream Tasks

To demonstrate the representation power of the learned Wasserstein embeddings compared to Eu-
clidean embeddings and other baselines, in this section, we present qualitative and quantitative evalua-
tions on multiple tasks: point cloud classification, transfer learning, point cloud segmentation, and point
cloud interpolation with both supervised and self-supervised pre-training settings.

Table 4.1: Results of 3D object classification with supervised and self-supervised pre-training on Mod-

elNet10, ModelNet40 and ScanObjectNN (referred as ScanObject) datasets. WPCE and SSW-AE are

unsupervised methods and cannot be evaluated for supervised pre-training (represented by “-”). Bold

represents the best result.

Method Supervised Pre-training Self-Supervised Pre-training

ModelNet10 ModelNet40 ScanObject ModelNet10 ModelNet40 ScanObject

CL+L2 90.85 84.64 62.82 90.63 84.72 63.51

CL+Cosine 85.90 70.42 56.11 85.90 72.64 56.45

WPCE - - - 89.97 78.84 52.83

SSW-AE - - - 88.88 76.86 51.29

CL+SW2 (Ours) 91.85 85.90 63.16 91.96 85.73 63.85

4.4.1 3D Object Classification

We extract point cloud embeddings from a pre-trained encoder and use a linear SVM as our classifier
for simplicity. Particularly, we fit a linear SVM classifier on the embeddings acquired by an encoder on
the train split and report the overall classification accuracy on the test split. In Figure 4.1, we can see
that features captured by Wasserstein embeddings effectively summarize the overall object geometry
compared to embeddings learned in Euclidean space. This property also reflects in the classification
performance shown in Table 4.1. We can observe that for both supervised and self-supervised settings,
the classification accuracy with embeddings extracted by the encoder trained with CL+SW2 is higher
than that of CL+L2 and CL+Cosine. Thus, compared to Euclidean space, the performance of SW2 is
consistently better on all the datasets, which implies that embeddings learnt in Wasserstein space can
increase classification accuracy.

We also show that our method is more effective compared to WPCE and SSW-AE. This improvement
can be explained by the difference in the approach of extracting Wasserstein embeddings, where in,
our methodology introduces usage of OT metric to directly operate in embedding space endowed by
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contrastive learning. It helps in learning better representations by exploiting the similarities between
distributions along with utilizing the flexibility of the target Wasserstein space.

4.4.2 Transfer Learning

We examine the generalizing ability of the embeddings acquired by encoders trained with different
distance metrics to unseen classes by performing transfer learning for point cloud classification. We
follow the same process as explained in Section 4.4.1 for reporting the overall classification accuracy.
The quantitative comparisons of transfer learning are shown in Table 4.2. We perform evaluation in two
transfer learning settings, MN10 to MN40 and SN to MN40. Here, the encoder is pre-trained on MN10
and SN, followed by evaluation on MN40. In both settings, the model generalizes to new unseen classes
by wielding the knowledge of geometry learned during training. We can see that CL+SW2 consistently
performs better than other distance measures and methods in both the transfer learning settings with and
without supervision. Results imply that Wasserstein embeddings are better in transferring the knowledge
of capturing geometry for yielding good classification performance.

Table 4.2: Results of 3D object classification with supervised and self-supervised pre-training for trans-

fer learning setup. WPCE and SSW-AE are unsupervised methods and cannot be evaluated for super-

vised pre-training (represented by “-”). Bold represents the best result.

Method Supervised Pre-training Self-Supervised Pre-training

MN10 to MN40 SN to MN40 MN10 to MN40 SN to MN40

CL+L2 85.37 85.81 84.27 83.83

CL+Cosine 74.51 69.12 75.32 71.47

WPCE - - 77.51 78.03

SSW-AE - - 76.05 76.66

CL+SW2 (Ours) 86.18 86.18 85.61 85.77

4.4.3 3D Object Part Segmentation

We train a 3-layer MLP network to predict a class label for all points in a point cloud, where the in-
put to this network is the embedding provided by a pre-trained encoder. The number of neurons in each
layer are (256, 128, 50), with batch-norm and ReLU after each layer except the last one. In particular,
part segmentation requires a fine-grained understanding of the local geometry of the objects. Along
with the global embedding of the point cloud, per-point embeddings acquired before max-pooling are
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stacked together and passed to the segmentation network. Note that only the segmentation network
weights are optimized using the standard cross-entropy loss, and the encoder’s weights are frozen. We
evaluate the performance using mIoU metric. For mIoU of each class, the IoUs of all parts from that
class are averaged. Instance average mIoU is calculated by taking the mean of IoUs for all the in-
stances. The comparison of average instance mIoU and per class average mIoU for both supervised
and self-supervised learning settings are shown in Table 4.3. We can see that our results outperform
other distance measures and methods, implying that Wasserstein embeddings are able to capture better
fine-grain local information required for the task.

Table 4.3: Results of part segmentation on ShapeNetPart dataset with supervised (Sup) and self-

supervised (S-Sup) pre-training. Bold represents the best results, and underline represents the second

best.

Method Pre-Train mIoU aero bag cup car chair
ear

phone
guitar knife lamp laptop motor mug pistol rocket

skate

board
table

CL+L2
Sup 77.61 73.54 62.76 72.41 64.75 82.42 65.41 88.95 83.01 75.83 93.52 43.03 83.25 74.87 46.01 62.39 77.54

S-Sup 78.94 75.40 62.74 72.67 67.73 84.73 68.02 89.19 83.35 76.98 94.48 43.15 84.19 75.11 49.60 67.81 77.91

CL+Cosine
Sup 74.75 67.80 62.13 78.66 66.26 80.00 61.14 86.47 79.34 74.25 92.24 48.70 84.91 70.82 45.63 63.97 73.12

S-Sup 78.49 72.51 68.09 71.44 68.35 84.47 63.38 88.69 80.30 75.94 94.45 48.81 88.56 74.08 47.37 69.12 77.90

WPCE S-Sup 79.92 77.47 69.06 74.22 66.59 86.79 66.23 89.30 81.77 75.97 94.60 42.29 88.71 74.33 41.05 67.39 79.28

SSW-AE S-Sup 75.20 68.83 59.61 69.65 64.23 81.98 62.00 86.92 80.27 73.70 92.82 38.46 85.12 68.26 43.97 60.65 73.69

CL+SW2 (Ours)
Sup 81.40 80.50 64.69 74.41 70.97 87.34 69.71 89.34 82.96 77.59 95.31 57.28 88.03 77.14 53.18 69.60 79.84

S-Sup 81.17 78.98 66.90 77.98 70.35 86.91 70.57 89.39 82.85 77.99 94.77 56.20 87.18 76.10 53.98 69.60 80.10

4.4.4 3D Shape Interpolation

We further examine the quality of our learnt space by performing shape interpolation between inter
and intra class point cloud instances. The main aim of conducting this task is to examine which learnt
space is capable of capturing geometric and structural information needed to generate consistent inter-
polations of 3D point clouds. One can inspect the quality of latent space by examining the smoothness
of an interpolation path or the quality of the in-between generated samples in terms of noise. As inter-
polation is a synthesis task, we need a decoder network to reconstruct the object given its embedding.
For this, we train an encoder-decoder network with our contrastive loss (Eq. 4.1) on the embeddings for
the encoder, along with a reconstruction loss for the decoder with 512 as the embedding size. We use
the encoder and decoder proposed by FoldingNet [42], which learns to deform a unit sphere and take
the shape of a 3D object’s surface. We found that optimizing the network for learning discriminative
features as well as detailed reconstruction is difficult. As our contrastive loss aims to pull point clouds
closer with similar global representations, it becomes difficult to accurately reconstruct the input point
cloud without fine-grain characteristic information. A simple way to deal with this issue is to assign
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Figure 4.3: Linear Interpolation between source and target for two examples (a) Car to Lamp, (b)

Chair to Chair from ShapeNet. The left and the right most represent original point clouds. The top

row of each example shows results of reconstruction after interpolating two point cloud embeddings in

Euclidean space. The bottom row of each example provides interpolation results in Wasserstein space.

All rows follow the ratio of 0.8, 0.6, 0.4, and 0.2 (from left to right) with respect to the source.

weightage to the individual loss terms, with the weights summing to 1. In order to train an encoder-
decoder network, the total effective loss is defined by taking a weighted sum of our contrastive loss and
a reconstruction loss, with weights being 0.2 and 0.8, respectively. We use Chamfer distance as the re-
construction loss. Interpolation results are shown in Figure 4.3. We can see that the interpolations done
using Wasserstein embeddings follow a smooth path with relatively less noisy points. For example, in
Figure 4.3 (a), we can see that for Euclidean (in step 2 to 3), the interpolated sample suddenly takes the
shape of a lamp. Whereas the interpolation path is smoother for Wasserstein. Similar trend can also be
observed in Figure 4.3 (b), where for Euclidean, the source chair suddenly transforms (in step 2 to 3) to
take the shape of the target chair, whereas in Wasserstein, legs of the chair smoothly morph to become
the base of target chair. We evaluate the quality of interpolated samples based on the noise present in
them. For each interpolated sample, we compute the noise measure given in Eqn 4.3.
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Lnoise =

√√√√ 1

Nm

Nm∑
i=1

∥∥∥∥pi − 1

ne

∑
N (pi)

∥∥∥∥2 (4.3)

where, N (pi) gives a set of neighboring points for pi that has a cardinality of ne = 20. For a
given point cloud, the noise measure computes neighborhood variation vectors around every point and
aggregates their squared norm to give an overall score of smoothness. A lower noise measure implies
that the point cloud has a smooth surface and has less noise. In Table 4.4, we report the noise measure
of the interpolated samples shown in Figure 4.3. Most of the interpolated samples from Wasserstein
space have lower values of noise measure. We provide more examples in Figure 4.5 and report their
noise measure results in Table 4.5.

Table 4.4: Noise measure for interpolation results shown in Figure 4.3. Bold values represent smoother

surfaces having less noise. The values are scaled by a factor of 103.

Figure Method Step 1 Step 2 Step 3 Step 4

4.3 (a)
Euclidean 30.2 35.6 36.7 35.4

Wasserstein 29.6 32.1 32.6 31.4

4.3 (b)
Euclidean 29.3 29.9 30.2 28.0

Wasserstein 29.7 29.1 29.4 27.7

Table 4.5: Noise measure for interpolation results shown in Figure 4.5. Bold values represent smoother

surfaces having less noise. The values are scaled by a factor of 103.

Figure Method Step 1 Step 2 Step 3 Step 4

4.5 (a)
Euclidean 31.5 36.8 34.6 30.5

Wasserstein 30.0 34.9 35.0 31.8

4.5 (b)
Euclidean 29.8 31.8 33.4 33.4

Wasserstein 29.1 30.1 33.0 34.5

4.5 (c)
Euclidean 25.0 24.3 23.3 22.3

Wasserstein 25.3 24.4 23.3 22.5

4.5 (d)
Euclidean 24.9 26.2 26.0 25.0

Wasserstein 23.2 24.7 25.1 25.3

36



0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Standard Deviation of Gaussian Noise

76

78

80

82

84

86

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 (%
)

CL+L 2

CL+SW2(
2)

CL+SW2(
4)

CL+SW2(
2)

8192 4096 2048 1024 512 256 128
Number of Points in a Point Cloud

55

60

65

70

75

80

85

90

Cl
as

sif
ica

tio
n 

Ac
cu

ra
cy

 (%
)

CL+L 2

CL+SW2(
2)

CL+SW2(
4)

CL+SW2(
2)

Figure 4.4: Ablation Study: Classification for noise model with Gaussian Noise (top) and points re-

moval using random sampling (bottom) for our method CL+SW2 and baseline CL+L2.

4.5 Ablation Study: Classification Task

We perform point perturbation and point density variation to test their effects on the encoders pre-
trained with different distance metrics and report the classification accuracy on Modelnet40 as shown in
Figure 4.4. For the point perturbation test, we add Gaussian noise to input point clouds, with a standard
deviation of noise varying from 0.01 to 0.1. We can observe that for all noise levels, even with severe
distortion, CL+SW2 performs well than that of CL+L2. This implies that discrete representation learnt
in Wasserstein space is less prone to performance degradation due to noise in inputs. Further, for varying
density test, we randomly sample 8192, 4096, 2048, 1024, 512, 256, and 128 points from input point
clouds and perform evaluation on them. We can observe that CL+SW2 consistently does better than
CL+L2. This shows Wasserstein embeddings are robust towards missing points in the input point cloud.

4.6 Explainability

We investigate what makes Wasserstein embeddings perform better, as shown in the downstream
tasks. We visualize and compare the features captured by Wasserstein embeddings and Euclidean em-
beddings in Figure 4.1. These features are called critical points, as shown by [28]. The embedding of a
point cloud is completely determined by these subset of points. The embedding for a point cloud would
be the same, as long as the set of critical points is unchanged. For a given point cloud, the critical points
are those 3D points that contribute to the global embeddings after the max pooling layer. This implies
that the number of critical points cannot be greater than that of the embedding size. The selection of
critical points is extremely important, as they solely decide the embedding of a point cloud. This makes
it clear that for good quality embeddings, critical points should best describe the given point cloud. In
Figure 4.1, we can see that the network intelligently tries to summarize the point cloud by choosing
boundary points as the critical points. Our Wasserstein embeddings are able to capture the full skeleton
structure of the given point cloud, whereas critical points captured by Euclidean embeddings are com-
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paratively poor with uneven distribution and missing parts. Thus, we can say that Wasserstein spaces
are indeed better at preserving and capturing geometric structures amenable to the optimization task.
We provide more example in Figure 4.6, 4.7.

Figure 4.5: Comparision of interpolation from source (leftmost) to target (rightmost) samples between

Euclidean embeddings and Wasserstein embeddings. For each sample, top row shows results from

reconstruction after interpolating two point cloud embeddings in Euclidean space. Likewise, bottom

row shows results obtained by Wasserstein embeddings. Weight ratio (0.8, 0.6, 0.4, 0.2) (from left to

right) with respect to the source.

38



Figure 4.6: Comparison of important points given by network trained with Wasserstein and Euclidean

metric. First column shows the original point cloud, second column shows the critical points set captured

by Wasserstein space, and third column shows the same for Euclidean space.
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Figure 4.7: Comparison of important points given by network trained with Wasserstein and Euclidean

metric. First column shows the original point cloud, second column shows the critical points set captured

by Wasserstein space, and third column shows the same for Euclidean space.
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4.7 Summary

In this chapter, we presented a contrastive learning method to learn Wasserstein embeddings for
3D point clouds. We proposed to represent point clouds as discrete probability distributions in the
Wasserstein space. Our proposed method can be used as a pre-trained model in supervised and self-
supervised settings for any downstream task. Empirically, we found that representations learnt using
our pre-training of contrastive learning with Sliced Wasserstein distance captured the structure and un-
derlying geometry better than standard Euclidean embeddings. With improved embeddings, our method
outperformed all the existing methods, including our baseline with L2 norm and Cosine similarity for all
the downstream tasks (classification, segmentation, transfer learning, interpolation). We also show an
interesting study of our self-explainable method by capturing critical points of point clouds better than
embeddings in Euclidean space. As a future direction, it would be interesting to study and explore how
to inject the properties of Wasserstein space as shown in our method in bigger models like transformers
and also explore how it would help more complex tasks like 3D reconstruction and 3D generation.
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Chapter 5

Conclusion

In this thesis, we proposed two methods for 3D representation learning endowed by Optimal Trans-
port. Particularly, we looked at the problem of point cloud domain adaptation and learning Wasserstein
embeddings for point clouds. Here is a summary of the thesis.

In Chapter 2, we give a brief introduction to Optimal Transport. We look at how this problem
of transportation evolved from practical use cases to more advance research use cases. We then de-
scribe multiple distance metrics derived from Optimal Transport, them being, p-Wasserstein distance
and Sliced-Wasserstein distance that are crucial to understanding our proposed methods in upcoming
chapters.

In Chapter 3, we first motivate the need for optimal transport and multimodal inputs towards solving
the task of point cloud domain adaptation. We then explain our method COT, where the main idea is
to synergize the working of contrastive learning and optimal transport for explicit domain alignment.
Finally, we show exhaustive experiments on multiple datasets and achieve SoTA results on one of them.
Our ablation studies also validates the importance of individual components used in our method. We
also perform an interesting experiment of visualizing the decision boundaries with and without our
method in action, both for early and final epochs.

In Chapter 4, we first discuss the limitations of Euclidean spaces and motivate the need to go beyond
them to learn effective point cloud embeddings. We then explain our method endowed by optimal
transport and contrastive learning to learn Wasserstein embeddings. To show the effectiveness of our
method, we perform multiple downstream tasks in both supervised and self-supervised settings and
compare with multiple baselines that use Euclidean as well as Wasserstein metric. Finally, we also
visualize and compare the features learned by the model trained with Euclidean and Wasserstein metrics.

To conclude, in this thesis, we propose two novel methods endowed by optimal transport for 3D point
cloud representation learning for multiple tasks in multiple settings, them being: unsupervised domain
adaptation, supervised and self-supervised settings. We hope this work will motivate the community to
carry out research on using the power of optimal transport for 3D understanding or even 3D generative
tasks.
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R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates,

Inc., 2019.

[31] S. A. Rose. Infants’ transfer of response between 2-dimensional and 3-dimensional stimuli. Child Devel-

opment, 1977.

[32] J. Sauder and B. Sievers. Self-supervised deep learning on point clouds by reconstructing space. In H. Wal-
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