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Abstract

Air pollution is a growing concern across the world. Long-term exposure to severe pollution can
cause serious health issues. Outdoor air pollution accounts for an estimated 4.2 million deaths per year,
primarily due to stroke, heart disease, lung cancer, and chronic respiratory diseases. Low and middle-
income countries suffer the most, especially in the Western Pacific and South-East Asia regions. A
significant cause of air pollution in urban areas worldwide is the high volume of road traffic. Studies
have shown that people are willing to choose greener routes when credible information is provided

One of the approaches to solve this problem is to design a transportation policy that balances multiple
objectives of

• Avoiding extreme pollution in any part of the road network

• Enabling short transit times for the vehicles that follow the policy

• Making effective use of the road capacities to route the traffic.

We propose a novel sampling-based approach for this problem. We provide the first construction of a
Markov Chain that can sample integer max flow solutions of a planar graph, with theoretical guarantees
that the probabilities depend on the aggregate transit length. We designed a traffic policy using diverse
samples and simulated traffic on real-world road maps using the SUMO traffic simulator. We designed
the MaxFlow-MCMC algorithm that used the Markov Chain to sample max flow solutions and generate
a k-optimal set. We observe a considerable decrease in areas with severe pollution when experimented
with maps of large cities across the world compared to other approaches.

Extending the above work, we also propose a significantly faster extension to the MaxFlow-MCMC
algorithm without compromising on the performance involving the following contributions.We provide
the first construction of a Markov Chain to sample a set of k-optimal max flow solutions directly from a
planar graph. We also provide theoretical guarantees that the stationary distribution probabilities depend
on both the k-optimality value and the aggregate transit length. We simulate traffic on large-scale real-
world roadmaps using the SUMO traffic simulator. We observe a significant speed improvement in the
range of 22 to 242 times in our experiments while obtaining lesser average pollution compared to the
MaxFlow-MCMC algorithm.

To summarize, we present two novel Markov Chain based algorithms to generate a diverse set of
max flow solutions from a planar graph, while being scalable to large road networks. We provide theo-
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retical guarantees for the Markov Chain and also provide simulation results to show that our algorithms
perfomred better than existing algorithms.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Air Pollution

Air pollution, a matter of growing global concern, poses a peril to human health and the delicate
balance of the environment. The World Health Organization (WHO) warns that most of the planet’s
population lives in areas where the air is more polluted than recommended levels [40]. This contami-
nation’s sources vary, including transportation, industry, and energy generation. Amongst these, road
traffic is considered a major contributor to air pollution in urban areas [16]. Inhaling these pollutants can
lead to various health problems, from respiratory and cardiovascular diseases to certain cancers. Fur-
thermore, air pollution can adversely affect the environment, contaminating soil and water and affecting
our planet’s biodiversity.

1.1.2 Long Term Exposure to Air Pollution

Long-term exposure to air pollution is especially problematic, as it heightens the risk of chronic
health conditions. Studies have revealed that those exposed to elevated levels of pollutants over ex-
tended periods are at a higher risk of developing conditions such as heart disease, stroke, lung cancer,
and chronic respiratory diseases [31]. Low and middle-income communities, particularly those in the
Western Pacific and South-East Asia regions, are especially vulnerable. Research has shown that pro-
viding credible information can encourage individuals to make greener choices, such as choosing more
eco-friendly modes of transportation [1].

1.1.3 Transportation Policy

In order to prevent the concentration of traffic-based pollution in specific pockets of an area, a trans-
portation policy that can distribute the traffic flow more evenly throughout the road network of an area or
a city was proposed in Kamishetty et al. (2020) [24]. The policy also ensured maximum throughput of
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traffic throughput via the usage of maximum flows [15] to guide the traffic flow. They use the concept of
k-optimality, which ensures that any two flows have at most ≤ k edges in common, and design a traffic
policy using multiple k-optimal maximum flow solutions to route traffic. These solutions can then be
used to route vehicles on different days or for reasonable timelines, thereby ensuring that the pollution
gets distributed over different routes during the timeline. The concept of k-optimality [30] is used to
capture the diversity among solutions. However, the proposed method could only be used for small areas
due to the high computational complexity. We aim to develop more computationally efficient methods
that can effectively distribute traffic flow evenly across the network and maintain reasonable path length
while also being scalable to large city-scale road networks.

1.2 Overview

This thesis builds upon the previous line of work to develop significantly faster methods for pollution-
aware traffic routing using a Markov Chain Monte Carlo (MCMC) [7, 19, 17, 6] based method to sample
integer max flow solutions from a planar graph and generate a k-Optimal set of max flow solutions
(hence named MaxFlow-MCMC). We extend the algorithm for sampling paths in planar graphs [28] and
provide proof of convergence to the stationary distribution, which assigns a higher probability to max
flow solutions with shorter aggregate path lengths.

We provide theoretical guarantees that the Markov chain will converge to a unique stationary distri-
bution, where the max flow solutions that have a lesser total path length have a higher probability. We
simulated the algorithms on large-scale real-world road networks of multiple cities using Simulation of
Urban Mobility (SUMO) [26], which is a traffic simulator in combination with OpenStreetMap (OSM)
[18], an open-source tool that helps to model traffic settings on real-world maps. We used the emission
modelling capability of SUMO to compare the pollution levels generated.

We also build upon the MaxFlow-MCMC method to design an even faster Markov chain that can
directly sample a set of diverse max flow solutions. We provide theoretical guarantees that the Markov
Chain converges to a unique stationary distribution, where a set of max flow solutions that have lesser
path length and more diversity will have a higher probability. We tested this algorithm, named kOpt-
MCMC, on the same real-world road networks using SUMO and provided a significant improvement
in runtime over the MaxFlow-MCMC method for parameters value that provide similar or less mean
pollution.

1.3 Contributions

In Summary, Our Key contributions are

1. We design a novel Markov Chain that can be used to sample a set of integer max flow solutions
from a planar graph proportional to its length.
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2. We use the MCMC method to obtain a set of diverse max flows, which serve as the basis for
directing vehicular traffic. Traffic routing using such a set of max flows ensures that

i) A diverse set of paths are used, which prevents the concentration of pollution,

ii) Vehicles are routed through shorter paths

iii) The capacity of the road network is fully utilized as it is a max flow.

3. We design a Markov Chain that can be used to sample a set of integer max flow solutions from
a planar graph with probabilities proportional to an exponential of a function combining both the
total length and the diversity of the solution set

4. We provide proofs of convergences for both of the above Markov Chains. These proofs provide
us with theoretical guarantees related to the quality of the Max Flow solution set generated.

5. We benchmark our method using the SUMO traffic simulator on real-world maps and show im-
provements in the concentration of pollution as well as order of magnitude improvements in the
runtime of the algorithm as compared to previous works

1.4 Thesis Organisation

The rest of the thesis is organized as follows:

• Chapter 2: Related Work provides an overview of the related work in the field, including max-
imum flow problems, pollution-aware routing, Markov Chain Monte Carlo methods etc.

• Chapter 3: MaxFlow-MCMC method discusses the theory and design of the MaxFlow-MCMC
method, which generates a k-optimal solution by sampling max flow solutions from a Markov
Chain, along with the proof of convergence of the Markov Chain along with the analysis of time
and memory complexity.

• Chapter 4: EMF-MCMC method discusses the theory and design of the EMF-MCMC method,
which samples a k-optimal solution set directly from a Markov Chain, along with the proof of
convergence of the Markov Chain along with the analysis of time and memory complexity.

• Chapter 5: Experimental Details provides details regarding the experimental setup. This section
discusses how our methods can be applied in the real world, along with details of the SUMO sim-
ulator, which was used to perform the simulations. This section also describes how we measure
the pollution to compare the algorithms along with the computational setup.

• Chapter 6: Results provides the experimental results for both the Algorithms. The first part of
the section compares the MaxFlow-MCMC Algorithm with existing work in the field. It shows

3



how Maxflow-MCMC performs better than existing methods in terms of time and memory com-
plexity. The rest of the section describes experiments conducted on large city-scale real-world
roadmaps for both MaxFlow-MCMC and EMF-MCMC, and shows that EMF-MCMC provides
similar performance to MaxFlow-MCMC in terms of pollution while being significantly faster.

• Chapter 7: Conclusions and Future Directions provides the conclusion for the work presented
in this thesis and discusses a few of the possible directions in which this work could be extended
in the future.
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Chapter 2

Related Works

2.1 Maximum Flow Problem

There are multiple algorithms to obtain a solution for the general maximum flow problem, including
the Ford-Fulkerson algorithm [15], which can compute the maximum flow between two given points in
a network including traffic networks [34]. The Ford-Fulkerson Algorithm computes the maximum flow
between a source and a sink by iteratively finding paths that have a residual capacity and adding flows
to them until no such paths can be found. However, most existing algorithms provide us with only a
single max flow solution for a given source and a sink in a network. We aim to develop an algorithm to
obtain multiple diverse max flow solutions between two points.

2.2 k-Optimality

The concept of k-optimality was initially proposed for the Distributed Constraint Optimization
(DCOP) problem [30, 5]. The concept of k-similarity in traffic settings for computing the shortest
paths between two nodes was introduced in [2]. We use a similar idea to define k-optimality, to ensure
a certain amount of diversity among the max flow solutions that would help to distribute the pollution
over more edges. We define a k-optimal set of max flow solutions as a set of max flow solutions where
any two solutions from the set have at most k common edges.

2.3 Pollution routing problem

The literature on the pollution routing problem has proposed mathematical models that account for
various factors, including greenhouse gas emissions, vehicle load, speed, and travel distance [3]. Sub-
sequent studies have further expanded upon this concept by incorporating a fleet of vehicles of varying
types [25]. However, none of these models has explicitly sought to maximize vehicle flow during rout-
ing. The development of solutions for the pollution routing problem has primarily been driven by data
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related to the dynamics of individual vehicles, such as the speed and acceleration profiles used by [22]
to predict and allocate energy-efficient routes. Other studies, such as those conducted by [12], have
developed solutions for deterministic shortest-path problems based on velocity, start time, and load.

2.4 k-opt Pareto Max Flow Algorithm (k-PMFA)

The k-Opt Pareto Max Flow algorithm [24] was the first algorithm to compute a set of k-optimal
max flow solutions where each max flow solution has at most k common edges with every other max
flow solution in the set. They first presented a Pareto Max Flow Algorithm (PMFA), which finds all the
possible max flow solutions between a given source and a given sink. They further present the k-opt
Pareto Max Flow Algorithm (k-PMFA), which starts with an empty k-optimal set and iterates through
the max flow solutions generated by the PMFA algorithm, checking for k-optimality and adding the
max flow solutions to the k-optimal set accordingly. However, the algorithm involves the computation
of simple paths from a given source to a given destination. A simple path is defined as a path between
two nodes where no node is visited more than once [11]. The number of simple paths in a graph can
be exponential in the size of the graph. Hence the algorithm requires exponential time. Our proposed
algorithm and the MaxFlow-MCMC method generate a k-optimal set without requiring us to find and
store all the simple paths and, therefore, will be more efficient in time and memory requirements.

2.5 Markov Chain Monte Carlo Methods

The Markov Chain Monte Carlo method is a popular method for generating combinatorial struc-
tures [23]. While such generation generally gives a uniform distribution over structures, we need to
sample from a non-uniform distribution [27]. The MCMC method works by designing a Markov Chain
whose stationary distribution is the probability distribution we desire to sample from. The Metropolis-
Hastings Algorithm [20] is a popular method for designing a Markov Chain. The algorithm decides
the transition probabilities from a state x to a state y based on the ratio of the stationary distribution
probabilities of x and y. In this thesis, we present two novel Markov Chains whose transitions were
designed similarly.

2.6 MCMC Method for sampling paths in a planar graph

Monatanari et al.(2015) [28] design an MCMC method for sampling simple paths in a planar graph.
The MaxFlow-MCMC method was inspired by them but required additional proof to show the irre-
ducibility of the Markov Chain. Their Markov Chain sampled paths from a planar graph proportional
to their length. The transitions of the Markov chain were achieved using the faces of the planar graph.
In this thesis, we present two novel Markov chains whose design was inspired by them. We present two
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novel Markov chains that can sample a max flow solution and a set of max flow solutions directly from
a planar graph. We also provide theoretical guarantees that both the Markov Chains will converge to the
desired stationary distribution.
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Chapter 3

MaxFlow-MCMC method

In this chapter, we will discuss the design of the Markov Chain and the theory behind the MaxFlow-
MCMC algorithm.

We consider the road network to be a planar graph G(V,E). Edges E of the graph will be the roads,
while nodes V will be the junctions where roads intersect or represent the end of roads. Each road in the
network has a length and a specific number of lanes used as the edge’s capacity since one vehicle can
travel through each lane at a particular time. Let s be the source node from which the vehicles travel to
the destination node t. We want to ensure that the maximum number of vehicles can travel from s to t

at any time and hence represent this as a maximum flow problem.

Our approach starts with an initial integer max flow solution and makes small random modifications
to it, resulting in a sample from a distribution over integer max flow solutions. This method is commonly
known as Monte Carlo Markov Chain (MCMC) method. The Ford Fulkerson Algorithm can find the
initial max flow or set of paths. The distribution will result in higher probabilities for max flows whose
aggregate length of paths is shorter.

Since we are designing a system to route vehicles, we focus on integer max flow solutions where the
flow through each edge is a non-negative integer. The Integrality Theorem [13], which is a corollary of
the Ford-Fulkerson Algorithm, states that there exists at least one integer max flow solution in a graph
where all the edge capacities are non-negative integers. Hence, we will have at least one integer max
flow solution for a road network.

3.1 A Markov Chain for Integer Max Flow

Let us represent an integer max flow solution as a set of mf number of paths, where mf is the
maximum flow value from s to t, and each path contains a flow of 1. Note that if an edge has a flow
value f , it will be part of exactly f paths. We define a Markov Chain Mflow, whose state space Ω is the
set of all integer max flow solutions. We define the total length of a max flow solution x denoted |x| as
the sum of the lengths of all the paths in it. The length of each path will be the sum of the lengths of all
the edges in the path. We can reroute a path of the max flow solution using a face if they have one or
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(a) (b)

(c) (d)

Figure 3.1: Example of a transition in the Markov chain. The underlying road network has 16 junctions

forming a grid with max flow value from 1 to 16 to be 2. The state space consists of all possible sets

of 7 max flows from 1 to 16. Each max flow can also be considered as a pair of 1 − 16 paths (marked

using arrows). The transition in Mflowset given in Algorithm 3, involves choosing one max flow solution

from the set. Let’s say the same max flow solution is selected for three consecutive transitions for the

purpose of this example. The transition involves choosing one of the paths p (marked in red) and one of

the faces f ∈ {f1, · · · f10} (marked as blue) of the planar graph at random and rerouting the path along

the face. The faces {f1 · · · f9} are marked in the graph and f10 is the outer face.
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Algorithm 1 Mflow(x) defines a step of the Markov Chain on current state x. See Figure 3.1, for an

example of its run.
1: faces = set of all faces in the planar graph

2: mf = the current integer max flow

3: paths = set of paths in x

4: b← Uniform({0, 1})

5: if b == 1 then

6: f← Uniform(faces), p← Uniform(paths)

7: if f, p do not share an edge or rerouting p through f violates capacity then

8: return x

9: else

10: y ← reroute(p, f)

11: return y with probability min{1, λ|y|

λ|x| } where |x| and |y| are the total lengths of x and y.

12: return x

13: end if

14: end if

more common edges, as shown in Figure 3.1. These transitions are inspired by [28], who built a similar
Markov Chain for sampling paths. The transitions rules of Mflow are given in Algorithm 3.

The algorithm has a hyperparameter λ that decides the preference given to the total length of a state.
If λ < 1, transitions to a state with a lesser total length will be more probable. Similarly, if λ > 1,
transitions to a state with a higher total length will be more probable. When λ = 1, the transition to all
neighbouring paths will have the same probability.

3.1.1 Convergence of the Markov Chain

We show that the Markov chain Mflow converges to a stationary distribution which has the property
that the probability of max flow x will be proportional to λ|x|. Setting λ < 1, allows us to sample max
flows with shorter aggregate lengths. First, we show that the distribution with the above property is a
stationary distribution.

Lemma 3.1.1. A stationary distribution of Mflow is

π(x) =
λ|x|

Z
where Z =

∑
y∈Ω

λ|y|
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Proof. We show that π satisfies the detailed balance condition. That is, for the transition probabilities

P (x, y) (from x to y), and ∀x, y ∈ Ω ,

π(x) · P (x, y) = π(y) · P (y, x)

For the case where x and y are states that differ by more than one face, P (x, y) = 0 according to our

transition rules, and therefore the detailed balance condition will be satisfied. Let us take two states, x,

and y, which differ only by one face. Let P (x, y) be the probability of transitioning from x to y. Let F

be the total number of faces in the graph. Now,

π(x) · P (x, y) =
λ|x|

Z
· 1
F
· 1

mf
·min

{
1,

λ|y|

λ|x|

}
Similarly,

π(y) · P (y, x) =
λ|y|

Z
· 1
F
· 1

mf
·min

{
1,

λ|x|

λ|y|

}
If λ|x|

λ|y| ≤ 1,

π(x) · P (x, y) =
λ|x|

Z
· 1
F
· 1

mf
· 1 =

λ|y|

Z
· 1
F
· 1

mf
· λ

|x|

λ|y|

= π(y) · P (y, x)

Similarly, If λ|x|

λ|y| > 1,

π(y) · P (y, x) =
λ|y|

Z
· 1
F
· 1

mf
· 1 =

λ|x|

Z
· 1
F
· 1

mf
· λ

|y|

λ|x|

= π(x) · P (x, y)

Therefore, Mflow satisfies the detailed balance condition, and π is its stationary distribution.

Next, we show that starting from any state, Mflow converges to π, by showing that it is Ergodic.
An Ergodic Markov Chain will have a unique stationary distribution and will converge to it [10]. For
Ergodicity, we need to show that it is i.) aperiodic and ii.) irreducible.

Aperiodicity

A Markov chain is said to be aperiodic if

∀x ∈ Ω, gcd{t ∈ N|P t(x, x) > 0} = 1. (3.1)

where P t is the t step transition probabilities. For Mflow, we defined transitions in such a way that there
is a self-loop with a probability of at least 1/2. Therefore, Mflow is aperiodic.
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Irreducibility

A Markov chain is said to be irreducible if

∀x, y ∈ Ω, ∃t ∈ N | Pt(x, y) > 0. (3.2)

That is, every state in the state space of Mflow can be reached from every other state with a finite
number of steps. It is shown in Montanari et al. (2015) [28] that we can reach any simple s − t path
from any other path by rerouting through the faces of the planar graph. However, in our case, we need
to ensure that the capacity constraints are not violated. We show this using the following definition and
proposition.

Definition 3.1.2 (Outer paths of an Integer Flow). We assume that the line joining s and t to be the

direction of positive x axis. We define the outer path of an integer flow in a planar graph as a path

between s and t with a non-zero flow, such that there is no other path in the flow with a non-zero flow

in between the path and the outer face of the graph. We define the top outer path as the outer path that

contains the node with the highest y-coordinate and the bottom outer path as the one that contains the

node with the least y-coordinate.

Lemma 3.1.3. There exists an outer path for every integer flow in a planar graph.

Proof. Let p be a path with a non-zero flow in the max flow. If p is not the outer path then there exists

a path p1 with a non-zero flow such that some part of p1 is between p and the outer face. We divide the

proof into 2 cases

• When p1 is completely in between p and the outer face. This means that p1 will be the new outer

path.

• When a part of p1 is between p and the outer face. Since we are working only with planar graphs,

the edges cannot cross over each other. Therefore, p1 and p must intersect at a node. Let n be

the node. Now our new path will be the path which has the edges of p from s to n and edges of

p1 from n to t. Since both p and p1 have non-zero flows, the new path will also have a non-zero

flow. We can keep repeating the above two steps until there is no such path p1.
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Lemma 3.1.4. Every max flow has at most 2 outer paths.

Proof. We represent the planar graph on the x-y plane such that s is the origin and t lies in the positive

x-axis. Let us define the top outer path as the outer path that contains the node with the highest y-

coordinate and the bottom outer path as the outer path that contains the node with the least y-coordinate.

By the definition of the outer path, we can say that there will not be any path with a non-zero flow below

the bottom outer path and above the top outer path. Since the direction of flow is in the direction of the

positive x-axis, there cannot be any paths that are completely to the left of s or completely to the right

of t. Therefore, there can be a maximum of 2 outer paths.

Proposition 3.1.5. We can reach any state in Mflow from any other state in a finite number of steps.

Proof. Let x and y be any two states in Ω and paths(x), paths(y) be the set of mf paths in x, y re-

spectively. Let opx ∈ paths(x) and opy ∈ paths(y) be the top outer paths of x and y respectively.

We transform opx and opy to the same s - t path using a sequence of reversible Mflow transitions.Let

s, v1 · · · , vr, t be common nodes of opx and opy. For each of the r + 1 subpaths between these nodes,

we convert the subpath in the lower one of opx, opy to the other. This is possible without violating

capacity constraints since there is no flow above the top outer paths by definition. Then we consider the

residual flow x′, y′ given by removing the unit flow through these paths from x, y. Then we repeat the

same process on x′, y′, until the residual flow becomes 0. A diagrammatic example of the above proof

is given in Figure 3.2

Since our Markov chain is both irreducible and aperiodic, it is ergodic and will have a unique sta-
tionary distribution to which it will converge irrespective of the initial state. As proved in Lemma 4.1.1,
the probability of a max flow solution x is proportional to λ|x| in the stationary distribution.

3.2 Traffic Routing using MaxFlow-MCMC

We propose to use the MaxFlow-MCMC algorithm (see Algorithm 2) to generate a k-Optimal max
flow solution set, which can be used for routing vehicles in such a way that the pollution is evenly
spread out. Even though our chain is not rapidly mixing, we can start sampling before the chain has
completely mixed as we do not need the solutions to follow the specific distribution for our use case
since we are just sampling to generate a k-optimal set of max flow solutions. We define the k-optimality
of our solution set similar to the definition of k-similarity in barrett2008engineering. A set of max flow
solutions is k-optimal when any two solutions from the set have at most k common edges.
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Figure 3.2: Let us consider the above planar graph which has a source node s, a destination node t and

seven other nodes labelled 1− 7. Let all the edges have a flow value of 1. The solid lines denote a flow

and dotted lines represent an edge without a flow. The first two diagrams represent the top outer paths

of two different max flow solutions. The common nodes between the two are s, 1, 4, 7, t, which gives

us four subpaths. For each of these subpaths, we convert the subpath in the lower one of the two to

the other, resulting in both of these paths becoming the path shown in the third diagram. For max flow

solutions with more than one path, we create the residual graph and repeat above the steps until both the

max flow solutions reach the same state. Since all our steps are reversible, we can reach any state from

any other state in a finite number of steps. to the other.
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Algorithm 2 x denotes current state of the Markov chain, FFA denotes Ford Fulkerson Algorithm,

mix iter denotes number of iterations for mixing, num iter denotes number of iterations for sam-

pling and sf denotes sampling frequency.
1: x← FFA(s,t), solutionset← ∅

2: while iter ≤ num iter + mix iter do

3: if iter > mix iter and iter% sf == 0 then

4: if KOpt(x,solutionset) then

5: solutionset← solutionset + x

6: end if

7: end if

8: x←Mflow(x) (See Algorithm 1)

9: iter← iter+1

10: end while

11: return solutionset

We use the Ford-Fulkerson Algorithm [15] to find one max flow solution for the starting state. We
initially let the Markov chain run for a few iterations without sampling to ensure that the initial state is
random when we start sampling. We sample a random max flow solution from the current distribution
every few iterations and check if it is k-optimal with the solution set. If it is, we append it to the solution
set. We keep repeating this until we reach the exit condition. The MaxFlow-MCMC Algorithm has
multiple parameters we can modify to suit our time and solution constraints, making it scalable for
larger maps.

3.3 Parameters for MaxFlow-MCMC

• Sampling Frequency: The number of iterations after which we sample a max flow solution from
the current distribution. If we want to increase the number of solutions in the solution set, we can
sample the solutions more frequently, and if the aim is to improve the runtime of the algorithm,
we can sample less frequently.

• Exit Condition: The User can decide the exit condition of the algorithm based on requirements.
The algorithm can be run for a fixed number of iterations, or it can be run until a solution set of
the required size is obtained.

• Lambda(λ): Affects the total length of the max flow solutions. A lesser value of lambda would
mean that the solutions obtained will typically have a lesser total path length. In comparison, a

15



higher value of lambda would mean that the solutions will also include paths of higher length
(which can allow sampling a large number of solutions).

• Value of k: Increasing the Value of k would decrease the time required to obtain a set of solutions
of the same size, but the set would have more common edges, leading to a lesser spread of pol-
lution in general. Similarly, decreasing the value of k will increase the time required to generate
the k-optimal set of the same size but the solutions obtained will be more diverse.

3.4 Complexity Analysis of MaxFlow-MCMC

3.4.1 Time Complexity.

The initial FFA step is of complexity O(|E| ∗mf), where |E| is the number of edges and mf is the
max flow. Calculating the faces needs O(kV ) on average, and O(V 2) in the worst-case [33]. At every
step of the algorithm, the following computations need to be done: (a) Randomly choosing a face needs
O(|F |) = O(|E|) since |F |+ |E|− |V | = 2 by Euler’s formula [38], where |F | and |V | are the number
of faces and nodes respectively. (b) Checking for max flow condition needs reasoning over the number
of edges in the path, i.e., O(|E|). (c) Rerouting involves O(|E|). (d) Checking for k-Optimality needs
to be done every sf steps needing O(num sol∗|E|2

sf ).

The overall worst-case time complexity would therefore be O(num iter∗num sol∗|E|2
sf + |V |2). There-

fore, worst case runtime of MaxFlow-MCMC will be polynomial in |E| and |V |, provided that num iter

and num sol are not very high, both of which can be tuned per need in the algorithm. Note that the
runtime for MaxFlow-MCMC does not include the time required for calculating the faces of the graph
since it was done as a prepossessing step. schneider2019finding proves that even this step can be com-
puted with an average complexity of O(k|V |) and, therefore, will not make a significant change to the
overall runtime.

3.4.2 Space Complexity.

Following are the key steps involved in the algorithm, which require: (a) A memory of O(|E|2) for
storing all the faces. (b) A memory of num sol ∗mf ∗ |E|) for storing the solution set. This leads to an
overall worst-case space complexity of O((num sol ∗mf ∗ |E|+ |E|2). In summary, our algorithm has
a time and space complexity that is tractable in the number of edges and, therefore, scalable to larger
networks.
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Chapter 4

EMF-MCMC method

In this chapter, we build upon the previous Markov Chain to design a significantly faster Markov
chain that can directly sample a set of diverse max flow solutions. The advantage of sampling a max
flow solution set directly is as follows:

• We can account for the diversity of the solution set alongside the path lengths within the Markov
Chain itself. Therefore, we can make it converge towards max flow sets with both higher diversity
and lesser path lengths. The previous Markov Chain could not account for diversity as we are
sampling max flow solutions individually and checking for k-optimality.

• The proposed EMF-MCMC method is an anytime algorithm. That is, we are guaranteed to obtain
a solution set of a given size n, whose solution quality increases over time. In addition, we can
stop the algorithm at any point in time and obtain a k-optimal set whose quality depends on the
amount of computation performed. With the previous Markov Chain we have to set the value of
k beforehand, but we will not know how long it will take for the Markov Chain to generate the
required number of solutions.

• The algorithm uses a set of n max flow solutions as the initial solution set and increases its quality
over time. Hence, we can obtain better-quality solutions if we have a better starting state. We can
create a good set of starting states by using max flow solutions obtained from different algorithms.

• Given the significant speed improvement over the MaxFlow-MCMC method, the EMF-MCMC
method will be especially useful when there are frequent changes in the network like roads getting
blocked.

The road network is specified by a graph G(V,E), where the nodes V correspond to road inter-
sections or the endpoint of roads, while the edges E represent roads. Each edge has a length, and the
number of lanes is specified as its capacity. One of our goals is to maximize the number of vehicles that
can travel from the source node s to the destination node t at any given time, and hence this objective
is represented as a maximum flow problem. Similar to the MaxFlow-MCMC method, we also want
the traffic/pollution to be distributed across multiple edges, for which we try to build a diverse set of

17



k-Optimal integer max flows. We define a k-optimal set of max flow solutions as a set of max flow
solutions where any two solutions from the set have at most k common edges.

4.1 A Markov Chain for sampling a set of Integer Max Flow solutions

As opposed to the MaxFlow-MCMC method in the previous chapter that uses a single max flow
solution, the EMF-MCMC method in this chapter expands the starting state to a set of n integer max
flow solutions. We make small random modifications to the initial set, which results in a distribution
over all the possible sets of n integer max flow solutions over time. Our proposed method starts by
initializing the algorithm with a set of solutions obtained from different max flow algorithms, such as
the Ford Fulkerson Algorithm (FFA), with augmenting paths found using Breadth-First Search (BFS)
and Dijkstra’s Algorithm.

The stationary distribution of our Markov Chain will set higher probabilities for max flows with
lesser aggregate path length and higher diversity based on the parameters we set. Similar to the previous
chapter, we limit our focus to integer max flow solutions as we are designing a system to route vehicles,
where the flow through each edge is a non-negative integer.

The integer max flow solutions are represented as a collection of mf paths, where mf is the max-
imum flow value from the source node s to the destination node t. Each path within the collection is
assigned a flow value of 1. It is important to note that if a particular edge has a flow value of f > 1, it
will be present in exactly f paths.

We define a Markov Chain, denoted as Mflowset, that has a state space Ω consisting of all feasible
max flow solution sets of a predefined size n. The total length of a max flow solution set x, represented
as |x|, is calculated as the aggregate of the lengths of all the paths in x, where the length of each path is
determined by the sum of the lengths of the edges composing it. Let λ be a predefined constant and x be
the current state (a set of n integer max flows). We can reroute a path of a max flow solution using a face
that shares one or more common edges with the path [28]. Figure 3.1 provides an example of a transition
in the Markov Chain. The transition rules of Mflowset are given in Algorithm 3. The transition rules
are designed using the Metropolis-Hastings method [20] so that the stationary distribution of Mflowset

assigns probabilities for each state x proportional to λf(x) where λ is a hyperparameter and f(x) is a
cost function.

We use a function of total path length and the diversity of the solution set to decide the stationary
distribution probability of a given state. The function is defined as follows.

f(x) = α ∗ |x|+ (1− α) ∗ k2 (4.1)

Here, k indicates the k-optimality value of the solution set, and α is a parameter between 0 and 1
that decides the priority trade-off between the total path length and the diversity of the solution set.
Increasing the value of α will result in a max flow solution set with a lesser path length at the cost of a
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higher k value, indicating that it will be less diverse. Similarly, decreasing the value of α will result in a
max flow solution set with a lesser value of k at the cost of a higher total path length.

We wanted to make sure that the value of k-optimality is not very high and hence use the square of
it in the equation to give a higher preference towards minimising it. Using a higher power of k resulted
in extremely large values, due to which we decided to use k2. The value of λ will decide the preference
given to the f(x) of a state x. If λ < 1, transitions to a state x with a lesser value of f(x) will be
more probable. Similarly, if λ > 1, transitions to a state x with a higher value of f(x) will be more
probable. When λ = 1, λf(y)

λf(x) = 1 and hence the transition to all neighbouring states will have the same
probability.

4.1.1 Properties of the Markov Chain.

We show that the Markov Chain Mflowset converges to a stationary distribution which has the property
that the probability of max flow set x will be proportional to λf(x). Setting λ < 1, allows us to sample
max flows with shorter aggregate lengths and lesser value of k.

First, we show that the distribution with the above property is a stationary distribution.

Lemma 4.1.1. A stationary distribution of Mflowset is

π(x) =
λf(x)

Z
where Z =

∑
y∈Ω

λf(y)

Proof. We show that π satisfies the detailed balance condition. That is, for the transition probabilities

P (x, y) (from x to y), and ∀x, y ∈ Ω, π(x) · P (x, y) = π(y) · P (y, x).

For the case where x and y are states that differ by more than one face in a single max flow solution or

differ in more than one max flow solution, P (x, y) = 0 according to our transition rules, and therefore

the detailed balance condition will be satisfied. Let us take two states, x, and y, which differ only by one

face in one max flow solution. Let P (x, y) be the probability of transitioning from x to y. Let F be the

total number of faces in the graph. Now,

π(x) · P (x, y) =
λf(x)

Z
· 1
n
· 1
F
· 1

mf
·min

{
1,

λf(y)

λ(x)

}

If λf(x)

λf(y) ≤ 1,

π(x) · P (x, y) =
λf(x)

Z
· 1
n
· 1
F
· 1

mf
· 1 =

λf(y)

Z
· 1
n
· 1
F
· 1

mf
· λ

f(x)

λf(y)

= π(y) · P (y, x)
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Algorithm 3 Mflowset(x) defines a step of the Markov Chain on current state x.

1: faces = set of all internal faces in the planar graph

2: mf set = the current set of integer max-flows

3: b← Uniform({0, 1})

4: if b == 1 then

5: mf ← Uniform(mf set)

6: paths = set of paths in mf

7: f← Uniform(faces), p← Uniform(paths)

8: if f, p do not share an edge or rerouting p through f violates capacity then

9: return x

10: else

11: y ← reroute(p, f)

12: return y with probability min{1, λf(y)

λf(x) } where f(x) and f(y) are calculated for x and y ac-

cording to equation 4.1

13: return x

14: end if

15: end if

Similarly, If λf(x)/λf(y) > 1,

π(x) · P (x, y) =
λf(x)

Z
· 1
n
· 1
F
· 1

mf
· λ

f(y)

λf(x)
=

λf(y)

Z
· 1
n
· 1
F
· 1

mf
· 1

= π(y) · P (y, x)

Therefore, Mflowset satisfies the detailed balance condition, and π is its stationary distribution.

Next, we show that starting from any state, Mflowset converges to π by showing that it is Ergodic. We
need to show that the chain is both aperiodic and irreducible.

Aperiodicity

For Mflowset, we defined transitions in such a way that there is a self-loop with a probability of at
least 1/2. Therefore, Mflowset is aperiodic as per the definition in Equation 3.1..

20



Irreducibility

In the previous chapter on the MaxFlow-MCMC Algorithm, we proved that the Markov Chain Mflow

is irreducible. This implies that we can reach from any integer max flow to any other integer max flow in
a finite number of steps. Since Mflowset has a set of n integer max flows, and all of them have a non-zero
probability of being selected for a transition, we can say that Mflowset is irreducible. This is because
we can serially do transitions between two states x and y such that the first max flow in x reaches the
first max flow in y, the same for the second, third till the last max flow of the set x reaches that of y.
Therefore, our Markov Chain is irreducible as per the definition in Equation 3.2.

Since our Markov Chain is both irreducible and aperiodic, it is ergodic and will have a unique sta-
tionary distribution to which it will converge irrespective of the initial state. As proved in Lemma 4.1.1,
in the stationary distribution, the probability of a max flow solution x is proportional to λf(x).

4.2 Traffic Routing using EMF-MCMC

We propose to use the Mflowset algorithm to generate a k-optimal max flow solution set, which can
be used for routing vehicles in a manner that promotes even distribution of pollution. The concept of
k-optimality is established by drawing parallels with the definition of k-similarity in [2]. A set of max
flow solutions is considered k-optimal if any two solutions from the set have no more than k common
edges.

We introduce two adaptations of the classic Ford-Fulkerson Algorithm [15] to initialize the Markov
Chain Mflowset. The first version, referred to as FFA(BFS), employs Breadth-First Search [41] to
identify augmenting paths in the network. The second version, referred to as FFA(Dijkstra), utilizes
Dijkstra’s Algorithm [9] to discover augmenting paths. These two versions of the algorithm serve as a
starting point for generating a set of max flow solutions in the Markov Chain.

We create our initial set of 7 max flows by using three solutions of FFA(BFS) and four solutions of
FFA(Dijkstra). We simulate our Markov Chain until the exit condition is reached. As the Markov Chain
converges to the stationary distribution over time, we are guaranteed to obtain better solutions over time.
We can modify the parameters for Mflowset based on our constraints.

In the MaxFlow-MCMC method, whenever a solution was sampled from the Markov Chain, the k-
optimality value with all the solutions in the set was checked. In contrast, the EMF-MCMC method
maintains a running tally of the k-optimality values between all pairs of max flow solutions in the set.
It updates them by considering only those edges that have been modified in the transition instead of
all the edges. This helps to optimize the computational efficiency and helps to avoid recalculating the
k-optimality at every step of the simulation.
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4.3 Parameters for EMF-MCMC

• Alpha (α): Affects the trade-off between total path length and the k-optimality value of the max
flow set. A higher value of α would give a higher priority towards reducing the path length, and
a lower value of α will give a higher priority towards reducing the k-optimality value, thereby
improving the distribution of pollution.

• Exit Condition: The user can decide the exit condition of the algorithm based on requirements.
The algorithm can be run for a fixed number of iterations or a fixed amount of time based on the
user’s constraints.

• Lambda(λ): Affects the importance given to the value of the function f for the probabilities of
the max flow solution sets. A lesser value of λ would mean that the solutions obtained will typi-
cally have a lesser value of f . In comparison, a higher value of λ would mean that the solutions
will also include sets with a higher value of f (which can allow the Markov Chain to explore over
a larger number of solutions).

4.4 Complexity Analysis of EMF-MCMC

4.4.1 Time Complexity.

The initial FFA step is of complexity O(|E| ∗mf), where |E| is the number of edges and mf is the
max flow. Calculating the faces needs O(kV ) on average, and O(V 2) in the worst-case [33]. At every
step of the algorithm, the following computations need to be done:

1. Randomly choosing a face needs O(|F |) = O(|E|) since |F | + |E| − |V | = 2 by Euler’s for-
mula. [38], where |F | and |V | are the number of faces and nodes respectively.

2. Randomly choosing for a path needs O(max flow ∗ num sol)

3. Checking for max flow condition needs reasoning over the number of edges in the path, i.e.,
O(|E|).

4. Rerouting involves O(|E|).

5. Updating the k-optimality value needs O(|E| ∗ num sol) since we only need to update the values
using those edges that are part of the face we chose.

The overall worst-case time complexity of one step of EMF-MCMC would therefore be O(|E| ∗
(num sol+max flow) ∗ num sol). Therefore, worst case runtime of EMF-MCMC will be O(num iter ∗
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(|E| + max flow) ∗ num sol), which is lesser than the complexity of MaxFlow-MCMC, which was
O(num iter∗num sol∗|E|2

sf + |V |2).

Since the Maximum flow value will usually be lesser than the total number of edges in the graph
(since we are dealing with large-scale road networks, where the number of edges will be high and
the max flow value will be small), for all practical purposes, we can assume the complexity of one
step of EMF-MCMC to be O(|E| ∗ num sol). Hence, the worst case runtime of EMF-MCMC will be
O(num iter ∗ |E| ∗ num sol),

Note that the runtime mentioned for both the EMF-MCMC and MaxFlow-MCMC does not include
the time required for calculating the faces of the graph since it was performed as a prepossessing step.
Schneider et al. (2015) [33] provide proof that even this step can be computed with an average com-
plexity of O(k|V |). Hence, the inclusion of this step will not make a significant change to the overall
runtime.

4.4.2 Space Complexity.

Following are the critical steps of the algorithm in terms of memory, which require:

1. A memory of O(|E|2) for storing all the faces.

2. A memory of O(num sol ∗mf ∗ |E|) for storing the current state of the Markov Chain (i.e., a set
of max flows).

This leads to an overall worst-case space complexity of O(num sol ∗ mf ∗ |E| + |E|2), which is
the same as that of MaxFlow-MCMC. In summary, our EMF-MCMC algorithm has a time complexity
lesser than that of MaxFlow-MCMC and a memory complexity similar to that of MaxFlow-MCMC.
The reduced time complexity, combined with the fact that the Markov Chain in EMF-MCMC explicitly
optimizes for the k-optimality value along with the path length, should lead to significant improvements
in efficiency as compared to MaxFlow-MCMC.
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Chapter 5

Experimental Details

In this chapter, we describe the details of the experiments performed. First, we mention the different
ways our experiments can be translated into real-world scenarios. We then describe the SUMO traffic
simulator, which we used to perform the simulations. We also describe the parameters used to evaluate
both the MaxFlow-MCMC and EMF-MCMC algorithms.

5.1 Implementing Policy in Simulation and Real World

By offering a set of diverse, k-optimal max flow solutions, both the MaxFlow-MCMC and EMF-
MCMC algorithms can be implemented in a variety of real-world scenarios.

• As described in [24], traffic police could utilize different max flow solutions for routing on differ-
ent days of the week.

• GPS software like Google Maps [8] could also utilize the algorithm to provide unique path sug-
gestions to different users, thus promoting an even distribution of vehicular traffic.

• The algorithm’s utilization can also be extended to autonomous vehicles, where vehicles could be
instructed to follow different max flow solutions.

5.2 Traffic Simulation using SUMO

Simulation of Urban MObility (SUMO) is an open source, microscopic and continuous traffic simula-
tion package designed to handle large networks. SUMO is equipped with a large set of tools for scenario
creation and simulation and can handle multiple aspects of traffic flow generation, including computa-
tion of acceleration, deceleration, emission modelling, congestion, the distance between vehicles, etc.,
resulting in realistic modelling.
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Parameter Value

Dimensions (length x width x height) 5 m x 1.8 m x 1.5 m

Minimum gap between vehicles 2.5 m

Maximum acceleration 2.6 m/s2

Maximum deceleration 4.5 m/s2

Emergency deceleration 9 m/s2

Maximum speed 200 km/h

Emission Class HBEFA3/PC G EU4

Table 5.1: Default vehicle parameters used by SUMO. Our simulations were performed using vehicles

with the above parameters

Map name Sq. km Edges Nodes s, t Pairs

Seattle 25.16 18699 14939 2

Berkeley 82.90 30808 24864 1

Kanpur 18.50 29956 20707 1

Islington 14.90 5382 2367 2

Table 5.2: Details of the maps used for the experiments.

Table 5.1 contains the default vehicle parameters used by SUMO. We used the same parameters for
our simulation. Besides the ones mentioned in Table 5.1, SUMO lets us assign departure and arrival-
related data for each individual vehicle. Each vehicle has a unique identifier, the route the vehicle
should take, the departure time etc. SUMO also allows us to modify other parameters related to the
speed, arrival and departure properties etc.

5.3 Experimental Setup

Both of the algorithms proposed in this thesis MaxFlow-MCMC method and the EMF-MCMC
method are applicable only for planar graphs. Therefore, we modified the real-world network to make
it planar by removing the non-planar components such as bridges. Since there can be cases of multiple
sources and destinations for vehicles, we performed experiments with more than one source and des-
tination also. We introduce a virtual source and a virtual destination node, connected to all the source
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Name λ num iter sf

MaxFlow-MCMC1 0.95 50000 25

MaxFlow-MCMC2 0.95 25000 25

MaxFlow-MCMC3 0.90 50000 25

MaxFlow-MCMC4 0.95 50000 50

MaxFlow-MCMCLarge 0.99 until 7 sol 25

MaxFlow-MCMCKanpur 0.95 until 7 sol 25

Table 5.3: Parameter values used for the MaxFlow-MCMC algorithm in the experiments. The first four

are used for comparison with k-PMFA and the last two are for large city-scale experiments.

Name λ num iter α

EMF-MCMC Berkeley 0.99 3000000 0.9

EMF-MCMC Islington 0.99 500000 0.9

EMF-MCMC Kanpur 0.95 5000000 0.9

EMF-MCMC Seattle 0.99 500000 0.9

Table 5.4: Parameter values used for the EMF-MCMC algorithm in the large city-scale experiments.

and sink nodes, respectively, using infinite capacity edges [4]. Algorithms were then used with vehicles
travelling from the virtual source to the virtual sink. For the large-scale experiments, we used four real-
world maps corresponding to Seattle, Berkeley, Kanpur and Islington. The details of the maps are given
in Table 5.2.

We tested both the algorithms for different values of the parameters and simulated traffic using the
SUMO simulator [26]. We used Sage Math [36] to find the faces of the roadmap. Vehicles were released
in waves, with a 5 second interval for the small map and a 15 second interval for the larger map, to create
a reasonable distance between vehicles. The number of vehicles per wave was equal to the maximum
flow from the source to the destination. We used the longer interval for the larger map due to roads
with different speed limits and to account for a potentially higher number of turns. In addition, vehicles
have to slow down at junctions for turns, and a longer path would potentially involve a larger number of
turns. We used NOx values to measure the pollution levels, as they have a high dependency on traffic
flow and adversely impact human health [37]. The results were visualized using matplotlib [21] and
seaborn [39].
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Due to the randomness involved in the MaxFlow-MCMC algorithm, different runs using the same
parameters may provide us with a different number of solutions. Hence, we used each solution of
the generated k-optimal set for 1 hour, which can correspond to one day in reality, and computed the
Normalised Mean pollution (NOxnm) to compare the different runs of the algorithm accurately. While
the EMF-MCMC method always provides us with a fixed number of max flow solutions, we use the
same metric to evaluate the performance as we want to compare it with that of MaxFlow-MCMC.

NOxnm =
Mean amount of NOx released per hour

Total number of edges with non-zero emissions

SUMO provides us with the amount of NOx released for every edge with non-zero emissions over the
simulation period. We calculate NOxnm by taking the mean pollution over all the edges and dividing
it by the size of the solution set we used, as we use one solution per hour. NOxnm helps us understand
how well the pollution is distributed over an area. This is due to the insight that to decrease NOxnm,
we need to reduce the mean amount of NOx released, or we have to increase the number of edges being
used. Since we are releasing the same number of vehicles per hour for all the simulations, NOxnm will
be highly dependent on the pollution spread.

Tables 5.3 and 5.4 show the different sets of parameters used in the experiments for MaxFlow-MCMC
and EMF-MCMC respectively. The values of λ were set to be close to 1, as the lengths of the paths were
measured in meters. The rationale behind this is that the probability of transitioning from one state
to another in the Markov Chain depends on the difference in the lengths of these states. If we set λ
to a lower value, such as 0.5, the probability of transitioning to a state with a length only 5 meters
longer would be close to 0.03 for the MaxFlow-MCMC algorithm. The same will be true EMF-MCMC
algorithm with α = 1.

The runtime results presented for all the algorithms were measured on an Intel E5-2640 processor on
an HP SL230s compute node. All the results were obtained by averaging over 30 runs of the algorithms
to represent the performance better.
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Chapter 6

Results

In this chapter, We benchmark the performance of both the MaxFlow-MCMC algorithm and the
EMF-MCMC algorithm. We first conduct experiments on a small map comparing the MaxFlow-MCMC
algorithm with the k-PMFA algorithm using the SUMO simulator. We also simulated our EMF-MCMC
and MaxFlow-MCMC algorithms on large-scale maps of many cities and compared them with the Ford
Fulkerson Algorithm (FFA). All the networks were obtained from OpenStreetMap [18].

6.1 Comparision of MaxFlow-MCMC with k-PMFA

Normalised Mean Pollution

C
ity

Traffic Length Pollution (NOxnm in mg)

Policy avg (m) avg max total

Sm
al

lM
ap

FFA(BFS) 213 4387 9644 61428

FFA(Dij) 198 4616 19884 73853

k-PMFA(7) 208 1853 11255 72262

MCMC(7) 207 1784 11776 69104

Table 6.1: Comparing the pollution values of k-PMFA and MCMC for the small map with k = 9. We

can observe that MaxFlow-MCMC gives a performance comparable to that of k-PMFA while still being

scalable to larger maps.

k-PMFA [24] is a pollution-aware routing algorithm that we compare within Table 6.1. The table
shows the performance of three algorithms, namely MaxFlow-MCMC, k-PMFA, and FFA. For both the
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Figure 6.1: Plot of Normalised mean pollution vs The number of max flow solutions used. The x-

axis represents the number of solutions in the k-optimal set, while the y-axis represents the normalised

mean pollution obtained by using all the solutions in the k-optimal set. The change in normalised mean

pollution reduces as we increase the number of solutions (obtained by increasing the value of k). While

there is a significant reduction up to 10, the benefits are lesser later. This indicates that we can obtain

good performance with a small solution set.

k-PMFA and MaxFlow-MCMC algorithm, we used a k value of 9. As shown, the Maxflow-MCMC gives
comparable results while being scalable.

Number of solutions

Figure 6.3 provides comparison results for the number of max flow solutions provided by the k-
PMFA and MaxFlow-MCMC algorithms. The x-axis of the figure shows the value of k while the y-axis
represents the average number of solutions in the k-optimal set. There are 5 lines in the figure that
corresponds to the four MCMC variants (as presented in Table 5.3) along with k-PMFA. The figure
shows that the MaxFlow-MCMC method serves as a very good approximation for k-PMFA. For exam-
ple, when the value of k is set to 10, k-PMFA provided a solution set of size 12, while the 4 variants of
MaxFlow-MCMC provided 11.03, 10.8, 10.33 and 10.83 solutions on average, with a maximum of 14,
13, 12, 12 and a minimum of 9, 9, 9 and 9 solutions respectively.

The graph also confirms the effect of the frequency of sampling, i.e., when we started sampling
more frequently while keeping the other parameters constant, the number of solutions obtained were in-
creased. We can see that MaxFlow-MCMC1 has a higher number of solutions as compared to MaxFlow-
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Figure 6.2: Runtime comparison of MaxFlow-MCMC vs k-PMFA. The x-axis represents the k-

optimality value used while the y axis represents the runtime of the algorithm in seconds. We can

observe that the runtime of k-PMFA is two orders of magnitude higher than MCMC, making it infea-

sible for road networks over a few sq km. Increasing the value of k increases the diversity while also

increasing the running time, especially after k = 10.

MCMC4 since we sample more frequently. Similarly, when the number of iterations were reduced
while keeping the other parameters constant, the number of solutions obtained for the same value of k
decreased. We can see that the number of solutions obtained by MaxFlow-MCMC2 is less than that of
MaxFlow-MCMC1 due to the lesser number of iterations.

Effect of hyperparameters

Figure 6.1 studies the effect of using multiple max flow solutions on the pollution level. We also ex-
periment with four different hyperparameter values of MaxFlow-MCMC as given in Table 5.3, denoted
as MaxFlow-MCMC 1-4. It shows that increasing the number of solutions after 7-10 does not signifi-
cantly change the NOxnm value across the different sets of parameters tested. A key insight from this
experiment is that for practical purposes, we can identify a set of, say 7 solutions and use one solution
per day of the week to route the vehicles and obtain a better distribution of pollution compared to the
FFA solution.
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Figure 6.3: Comparison of k vs Number of solutions. The x-axis represents the maximum number

of common edges between two max flow solutions and the y-axis represents the number of max flow

solutions obtained in the k-optimal set. Parameters for the MaxFlow-MCMC1−4 are provided in Table

5.3. At k=0, the size of the solution set will be 1 since no common edges are allowed between two max

flow solutions. The number of max flow solutions increases as we increase k. Plot also shows that the

number of solutions provided by MaxFlow-MCMC is very close to that of k-PMFA when the number

of solutions is small. Varying the parameters of MaxFlow-MCMC changes the size of the k-optimal set

obtained

Runtime

Figure 6.2 shows the runtime comparison results between MaxFlow-MCMC and k-PMFA. Although
MaxFlow-MCMC provides approximately the same number of solutions as k-PMFA, it is significantly
faster. For example, for k = 10 the runtime needed for k-PMFA is 110.07 seconds while the slowest
MCMC version has a runtime of 1.89 seconds. For values of k from 1 to 15, the slowest version of
MaxFlow-MCMC (MaxFlow-MCMC1) showed a speedup of 65x on average, and the fastest version
(MaxFlow-MCMC2) showed a speedup of 130x on average.

6.2 Pollution reduction in City Scale Road Networks

To demonstrate the scalability of our algorithms, we used four large real-world road networks that
were used to evaluate the MaxFlow-MCMC and EMF-MCMC Algorithms, namely Seattle, Berkeley,
Kanpur, and Islington (see Table 6.2). Table 5.2 provides details of the maps used. We used the re-
spective parameters from Table 5.4 for all the simulations. For the Kanpur map, we set the value of
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C
ity

Traffic Length Pollution (NOxnm in mg)

Policy avg (m) avg max * 10−3 total * 10−4

Se
at

tle

FFA(BFS) 3270 2402 18.2 57.6

FFA(Dij) 2133 1999 10.0 55.4

MCMC(3) 3914 ± 27 856 ± 11 12.8 ± 0.9 77.3 ± 1.2

MCMC(7) 4041 ± 24 512 ± 9 12.3 ± 0.8 83.6 ± 1.1

k-MCMC(7) 3533 ± 12 432 ± 5 9.7 ± 0.5 85.9 ± 0.9

K
an

pu
r

FFA(BFS) 4628 1152 8.8 48.0

FFA(Dij) 4248 922 8.8 44.2

MCMC(3) 4513 ± 4 597 ± 4 6.6 ± 0.1 50.6 ± 0.2

MCMC(7) 4512 ± 4 444 ± 2 5.9 ± 0.1 50.7 ± 0.1

k-MCMC(7) 4364 ± 6 266 ± 1 4.9 ± 0.1 53.9 ± 0.1

B
er

ke
le

y

FFA(BFS) 8528 945 10.2 57.4

FFA(Dij) 8001 718 8.5 54.3

MCMC(3) 9457 ± 40 462 ± 4 6.7 ± 0.2 66.5 ± 0.4

MCMC(7) 9456 ± 19 316 ± 2 5.7 ± 0.2 66.7 ± 0.2

k-MCMC(7) 8628 ± 18 242 ± 1.2 6.9 ± 0.3 67.8 ± 0.2

Is
lin

gt
on

FFA(BFS) 4723 2048 13.7 62.7

FFA(Dij) 4930 2047 13.7 65.3

MCMC(3) 4976 ± 10 1369 ± 5 8.0 ± 0.1 67.5 ± 0.2

MCMC(7) 4945 ± 7 1150 ± 4 7.6 ± 0.0 67.0 ± 0.1

k-MCMC(7) 4926 ± 6 1013 ± 3 8.4 ± 0.0 74.7 ± 0.1

Table 6.2: Comparison of lengths and pollution generated for different traffic policies and cities simu-

lated in SUMO. Since our MaxFlow-MCMC and EMF-MCMC policy is randomized, we provide mean

value and the standard error [14] from 30 runs. Avg. pollution decreases significantly in all cases. Max

pollution also reduces in most cases, helping our objective of distributing the pollution better. There is

some increase in distance travelled and hence the total pollution (summed up over all the links).
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Figure 6.4: Legend for the heatmaps. Each edge is assigned a colour based on its pollution value relative

to the highest pollution value in any edge among all the algorithms for the given map

Map Maxflow-MCMC(s) EMF-MCMC(s) Speed Improvement

Berkeley 80726 ± 8083 3565 ± 24 22.64 times

Islington 18462 ± 2578 76 ± 0 242.92 times

Seattle 17600 ± 3698 163 ± 1 107.97 times

Kanpur 53086 ± 6609 2292 ± 9 23.16 times

Table 6.3: Runtime comparison between MaxFlow-MCMC and EMF-MCMC. We can observe that the

EMF-MCMC algorithm is significantly faster than the MaxFlow-MCMC algorithm for all four maps

λ = 0.95 since it was used originally to test MaxFlow-MCMC, as λ = 0.99 was giving us longer paths.
We use two versions of FFA, which use Breadth First Search (BFS) and Dijkstra’s shortest path algo-
rithm, respectively, to find the augmenting paths. The difference between the two versions of FFA is that
BFS finds the shortest paths in terms of the number of edges, and Dijkstra’s finds them in terms of total
path length. We also use two versions of MaxFlow-MCMC, which samples 3 and 7 max flow solutions,
respectively.

We can observe in Table 6.2 that MaxFlow-MCMC and EMF-MCMC distribute pollution better than
both versions of the FFA algorithm. We can also observe that the performance of EMF-MCMC is similar
to that of the MaxFlow-MCMC method but only at a fraction of the runtime as observed from Table 6.3.

6.3 Heatmaps

Figures 6.5 and 6.6 show the NOx heatmap for all four algorithms for the multi-source and single-
source simulations, respectively. The heatmaps show that EMF-MCMC is similar to MaxFlow-MCMC
and distributes pollution over a larger area. In addition, it also reduces the concentration of pollution
in specific areas compared to FFA. In summary, the number of edges with higher values of pollution
decrease with the usage of the EMF-MCMC solution.
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6.4 Kernel Density Estimation plots

Kernel Density Estimation plots, also known as Parzen–Rosenblatt window method [29, 32], is a
method that estimates the probability density of a distribution using samples. We use this method to plot
the probability density of the pollution values of the edges in Figure 6.8. Note that the figure is plotted
in Logarithmic scale. A higher probability density indicates that there are more edges with the given
pollution value. We observe from the figure that FFA has a higher probability density at higher pollution
values, and EMF-MCMC and MaxFlow-MCMC have a higher probability density at lower pollution
values. This indicates that our algorithms are better at distributing pollution more evenly and preventing
a high concentration of pollution in any specific area. EMF-MCMC and MaxFlow-MCMC also have
a similar distribution, indicating that EMF-MCMC produces similar results while being significantly
faster. .

6.5 Effect of hyperparameters

Figure 6.7 shows the relation between the k-optimality value and path length for EMF-MCMC al-
gorithm for the four large city-scale maps. The data points were obtained by modifying the value of
α. Initially, α was set to 1 and was reduced in intervals of 0.1 to obtain the data points. For all four
maps, the experimental results supported our theoretical proof by showing that as α increases, the value
of path length increases while the value of k-optimality decreases. We performed experiments with four
different values for the number of iterations. The graph shows that we obtain better results as we in-
crease the number of iterations, showing that our algorithm is indeed an anytime algorithm. Each colour
represents a certain number of iterations in the figure, according to the legend at the top of the figure.

6.6 Runtime

Table 6.3 presents the runtime comparison results between EMF-MCMC and MaxFlow-MCMC for
the results presented in Table 6.2. We can observe a significant improvement in runtime for all the maps
with EMF-MCMC while the results are also favourable in terms of the mean pollution for all the maps.
The EMF-MCMC algorithm is a minimum of 22 times faster and a maximum of 242 times faster in our
experiments as observed from Table 6.3
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Figure 6.5: NOx heatmaps for different algorithms with multiple sources and sinks for Seattle and

Islington. The colour for each edge is based on the legend in Figure 6.4. For both MaxFlow-MCMC

[35] and EMF-MCMC, a set of 7 max flow solutions was used. We can see that EMF-MCMC, similar

to MaxFlow-MCMC, distributes the pollution more evenly throughout the area compared to the FFA

algorithms. Figure 6.8 provides the corresponding Kernel Density Estimation plots for this Figure,

which shows the distribution of pollution values among the edges.
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Figure 6.6: NOx heatmaps for different algorithms with a single source and sink for Berkeley and

Kanpur. The colour for each edge is based on the legend in Figure 6.4. For both MaxFlow-MCMC [35]

and EMF-MCMC, a set of 7 max flow solutions were used. The figure shows EMF-MCMC, similar

to MaxFlow-MCMC, distributes the pollution more evenly throughout the area compared to the FFA

algorithms. Figure 6.8 provides the corresponding Kernel Density Estimation plots for this Figure,

which shows the distribution of pollution values among the edges.

36



Figure 6.7: Plot of k-optimality value vs the Path Length for different values of the number of iterations.

The x-axis represents path length in kilometres, and the y-axis represents the k-optimality value multi-

plied by a factor of 10−2. The colours represent the number of iterations according to the legend at the

top of the figure. The data points (from left to right) were obtained by changing the α values from 1 in

decrements of 0.1. We can see that as the value of α decreases, the k-optimality value decreases, and

the path length increases. We can also see a significant reduction in k-optimality for a small increase in

path length when α is decreased from 1 to 0.9.
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Figure 6.8: KDE plots in logarithmic scale for the Pollution values in edges for FFA(BFS), MaxFlow-

MCMC [35] and EMF-MCMC corresponding to the Heatmaps shown in Figures 6.5 and 6.6. The x-axis

represents the value of pollution, and the y-axis represents the probability density. We can see from the

plots that EMF-MCMC and MaxFlow-MCMC have more edges with lesser pollution values, and FFA

has more edges with higher pollution values.
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Chapter 7

Conclusions and Future directions

7.1 Conclusions

In this thesis, we design two Markov Chain based algorithms that can prevent high concentrations
of pollution in any area. We first design a Markov Chain to sample integer max flow solutions for a
planar graph. We prove that the Markov Chain is ergodic and provide theoretical guarantees that the
Markov Chain converges to a stationary distribution that gives a higher probability to max flow solution
with a low path length. Since MCMC algorithms are very efficient, we are able to scale our experiments
to large cities. We also design a Markov Chain that can directly sample a set of k-opt integer max
flow solutions from a planar graph. We prove that the Markov Chain is ergodic and provide theoretical
guarantees that the Markov Chain converges to a stationary distribution that contains max flow solution
sets with a low path length and k-optimality value, based on the weights provided. We believe that the
sampling method for integer max flows can be of independent interest in solving other combinatorial
optimization problems.

We used both of the Markov Chains to build an urban traffic routing policy that prevents the concen-
tration of pollution in specific areas. Unlike the existing methods, we show that the MaxFlow-MCMC
method is scalable to larger graphs.We also show that the EMF-MCMC algorithm is a significantly
faster method to generate a k-optimal solution set as compared to MaxFlow-MCMC method without
compromising on the performance. We then tested the algorithm on 4 city-scale real-world road maps.
We observed that both the MaxFlow-MCMC and EMF-MCMC algorithms perform better than existing
methods when it comes to distributing the pollution over an area and preventing high concentration in
any area. We also show that the EMF-MCMC method was 22 to 242 times faster than the MaxFlow-
MCMC method.

7.2 Future Work

There are a few ways in which the world in this thesis can be expanded in the future.
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• The policy can be expanded to non-planar graphs since real-world maps can contain flyovers

• The problem can also be formulated as a multi-commodity max flow problem where we have
multiple sources and destinations with a fixed value of flow between each source and destination

• The methods can be modified with additional constraints. For example, public transport like buses
require to have multiple stops between the source and destination
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