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Abstract

GPCRs are the most prominent family of membrane proteins that serve as major targets
for one-third of the drugs produced. A detailed understanding of the molecular mechanism of
drug-induced activation and inhibition of GPCRs is crucial for the rational design of novel ther-
apeutics. The binding of the neurotransmitter adrenaline to the β2-adrenergic receptor (β2AR)
is known to induce a flight or fight cellular response, but much remains to be understood about
binding-induced dynamical changes in β2AR and adrenaline. In Chapter 3, we examine the
potential of mean force (PMF) for the unbinding of adrenaline from the orthosteric binding site
of β2AR and the associated dynamics using umbrella sampling and molecular dynamics (MD)
simulations. The calculated PMF reveals a global energy minimum, which corresponds to the
crystal structure of β2AR-adrenaline complex, and a meta-stable state in which the adrenaline
is moved slightly deeper into the binding pocket with a different orientation compared to that
in the crystal structure. The orientational and conformational changes in adrenaline during
the transition between these two states and the underlying driving forces of this transition are
also explored. Based on clustering of MD configurations and machine learning-based statistical
analyses of time series of relevant collective variables, the structures and stabilizing interac-
tions of these two states of the β2AR-adrenaline complex are also investigated. In Chapter 4,
the PMF of G-Protein dissociation, and GDP dissociation are studied. In order to study the
entire GPCR activation pathway, models have been constructed for 3 different states (inactive,
intermediate, and active states) of the G-Protein-β2AR complex. The results suggest that the
binding of GDP to G-Protein favours G-Protein dissociation from β2AR. In summary, the
findings enhance our understanding of GPCR activation and the advancement of new therapies
aimed at GPCRs by offering comprehensive insights into conformational changes, energetics,
and critical residues involved. The methodologies and discoveries presented in this study es-
tablish the groundwork for an automated process to explore ligand dynamics and interactions
between drugs and GPCRs, thereby facilitating future research endeavors in this domain.
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1.1 Proteins

Proteins are macro-molecules present in all living organisms and comprise one or more
amino acids [1]. They play an essential role in sustaining life, affecting nearly every biochemical
process [1, 2]. They have a wide range of functions as they serve as critical biomolecules,
including enzymes, hormones, receptors, antibodies, transporters, and catalysts for various
reactions occurring within organisms [1, 2]. A protein’s nature or distinct function is primarily
determined by its amino acid sequence, structure, three-dimensional shape, conformation, and
associated interactions within itself and the surrounding environment [1]. Proteins also belong
to one of three primary macronutrients required for the human body: carbohydrates, fats, and
proteins [3]. These macronutrients provide the body energy and play a vital role in its structure
and functioning.

Proteins in the human body are built by 20 different amino acids, of which nine amino
acids are considered essential and cannot be produced by the human body [1, 2]. These es-
sential amino acids have to be consumed externally through food and comprise the follow-
ing amino acids, histidine (HIS), isoleucine (ILE), leucine (LEU), lysine (LYS), methionine
(MET), phenylalanine (PHE), threonine (THR), tryptophan (TRP), and valine (VAL). The
non-essential amino acids comprise the other 11 amino acids that can be produced by the hu-
man body, namely alanine (ALA), arginine (ARG), asparagine (ASN), aspartic acid (ASP),
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Figure 1.1: Structures of 20 Common Amino Acids. Figure adapted from https://www.
compoundchem.com/2014/09/16/aminoacids/

cysteine (CYS), glutamic acid (GLU), glutamine (GLN), glycine (GLY), proline (PRO), serine
(SER), and tyrosine (TYR). [1, 2]

1.1.1 Central Dogma of Molecular Biology

The genetic code comprised of DNA (double-strand) or RNA (single-strand) consists of
the information required to build a protein from the amino acids [1, 2]. The "central dogma
of molecular biology" (Figure 1.2) encompasses the processes involving gene expression, the
information flow and the formation of proteins inside the cell [4]. It states that the information
flows from nucleic acid to nucleic acid, and from nucleic acid to protein. The information cannot
be transferred from protein back to either protein or a nucleic acid [4].

1.1.1.1 DNA Replication

During DNA replication, each strand of a DNA molecule is used as a template to create two
new DNA molecules, also known as semi-conservative replication [2]. (refer Figure 1.3) This
process primarily occurs during cell division, to ensure that each cell receives a copy of the
original DNA [2].
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Figure 1.2: Graphical illustration of gene expression and information flow in cells. It also
known as "Central Dogma of Molecular Biology" as coined by Francis Crick. [4] Created with
BioRender.com

Figure 1.3: In this process, the two strands of a DNA double helix are pulled apart, and each
serves as a template for synthesis of a new complementary strand. Figure and Caption adapted
from Alberts et al. [2]
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Figure 1.4: A given segment of this DNA guides the synthesis of many identical RNA transcripts,
which serve as working copies of the information stored in the archive. Many different sets of
RNA molecules can be made by transcribing different parts of a cell’s DNA sequences, allowing
different types of cells to use the same information store differently. Figure and Caption adapted
from [2]

1.1.1.2 Transcription

The process of copying a segment of DNA to RNA is called transcription [2]. (refer Figure
1.4) The hydrogen bonds between the two strands of the DNA double helix are broken, and
used as a template to create RNA [2]. The RNA which encodes for the creation of proteins
is called messenger RNA (mRNA) [2]. The mRNA generated leave the nucleus through the
nuclear pore [2].

1.1.1.3 Translation

Translation is the process of formation of proteins from the mRNA molecule. This process
occurs either in the ribosomes or the endoplasmic reticulum. The four different nucleotides
present in the mRNA molecule are read in the groups of 3, totaling 4 x 4 x 4 = 64 triplet
combinations [2]. Each of these triplet combination is called a codon. However, these codons
code for only 20 different amino acids, since multiple codons code for the same amino acid as
illustrated in Figure 1.1 [2].

1.1.2 Structure

On the basis of structure proteins can be classified into primary, secondary, tertiary, and
quaternary [1, 2]. The structure of a protein is primarily determined by its specific amino acid
sequence. The amino-acids form covalent bonds with each other at their C and N terminus.
This bond is more commonly referred as a peptide bond [2]. Upon the formation of multiple
such peptide bonds, a long unbranched chain of amino acids is formed, which is known as a
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Figure 1.5: Components of a protein. Figure and caption adapted from [2]

polypeptide. (refer Figure 1.5) This polypeptide obtained after translation is a an unfolded
conformation of protein, also referred to as the primary structure [2].

Other than peptide bonds, non-covalent interactions also contribute to the determination of
the protein structure. Hydrogen bonds, Polar (electrostatic), van der Waals, aromatic stack-
ing, disulphide bridges between Cysteine molecules, hydrophobic interactions are some of the
common forces involved in protein structure and conformation determination. These forces
contribute to the folding of the protein to make the protein biologically functional. The fold-
ing of a protein or a polypeptide primarily occurs in the cytoplasm. Special proteins called
chaperones accelerate the protein folding process [2].

1.1.3 Classification

Proteins can be classified primarily based on their function, structure, activity and location
within the cell [1, 2]. Each polypeptide chain consists of a N-terminus and a C-terminus [1,
2]. The secondary structure comprises a locally folded structure within a polypeptide. The
structure is usually a α-helix or β-sheet (stabilized primarily through the formation of hydrogen
bonds), while other structures, including the 3-10 helix and π helix, are rarely observed in
naturally formed proteins. The tertiary structure is a folded polypeptide structure formed by
multiple secondary structures. The quaternary structure is formed by two or more polypeptide
chains with spatially arranged tertiary structures [1, 2]. On the basis of their location within
the cell, proteins can be classified as intracellular, extracellular or membrane proteins. The
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Figure 1.6: The 20 common amino acids along with their 3-letter and 1-letter abbreviation.
There are 10 polar and 10 non-polar amino-acids. Figure adapted from [2]

membrane proteins can be either be permanently attached (integral) or temporarily attached
(peripheral) to the cell membrane. The permanently- attached integral membrane proteins can
further be classified based into (1) integral polytopic proteins (transmembrane proteins), and
(2) integral monotropic proteins. Similarly on the basis of their activity they can be classified
as active, inactive or partially active.

1.1.4 Receptors

Receptors are bio-chemical structures made up of proteins which receives and converts sig-
nals [2, 5]. The signaling molecule (ligand) binds to the receptor protein and produces a
physiological changes within the cell. Based on location the receptors can be classified into 2
categories:

1. Trans-membrane Receptor: They are also known as cell-surface receptors, and are embed-
ded in the plasma membrane. The G-Protein Coupled Receptors (GPCR), ligand-gated
ion channels, and hormone receptors [5].

2. Intracellular Receptor: They are present inside the cell. They include both the cytoplas-
mic receptors and the nuclear receptors [5].

The mechanism of signaling through the binding of extracellular signaling molecules to afore-
mentioned trans-membrane receptor and the intracellular receptor is illustrated in Figure 1.8.
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Figure 1.7: Protein Structure Classification. Figure adapted from https://en.wikipedia.
org/wiki/Protein_structure

1.2 G-Protein Coupled Receptor

The G-protein coupled receptor (GPCR), as its name implies, is a receptor intricately linked
to an intracellular heterotrimeric guanosine-nucleotide binding protein, commonly referred to
as G-protein [1]. These receptors are distinguished by their seven alpha-helical transmembrane
domains, hence known as 7-TM receptors. GPCRs are involved in mediating cellular responses
to a diverse range of stimuli, including hormones, neurotransmitters, odorants, tastants, and
other ligands, thereby regulating various physiological functions such as vision, smell, taste,
homeostasis, behavior, and mood [6–8].

With around 850 GPCRs encoded in the human genome, GPCRs constitute the largest
superfamily of cell surface receptors. Among these 850 GPCRs, ∼ 350 GPCRs detect hormones,
growth factors, and other endogenous ligands, while ∼ 500 GPCRs function as olfactory (smell)
and gustatory (taste) receptors [1]. The significance of GPCRs in human health becomes
evident while considering their involvement in myriad medical conditions and diseases such as
allergies, depression, blindness, diabetes, and cardiovascular defects. Furthermore, mutations
in GPCRs have been found in ∼ 20% of all cancers, cementing their essence in pathology [1].
Unsurprisingly, GPCRs serve as targets for approximately one-third of all manufactured drugs
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Figure 1.8: Simple mechanism of binding of extracellular signaling molecules to A) Transmem-
brane Receptor B) Intracellular Receptor. Figure adapted from [2]

[9–11]. Studying GPCRs and their associated mechanisms is paramount, given this substantial
therapeutic relevance. The 2012 Nobel Prize in Chemistry was granted to Brian Kobilka and
Robert Lefkowitz for their contributions to unraveling the structural and functional aspects of
GPCRs, providing insights into their activation and signaling processes [12]. GPCRs remain a
focal point in research, with eight other Nobel Prizes awarded for research on GPCR and the
associated G protein signaling.

A signaling molecule or a ligand acts as the first chemical messenger that initiates the ac-
tivation of a G-protein coupled receptor (GPCR) [1]. Upon ligand binding to the GPCR,
a cascade of intricate conformational changes is triggered within the GPCR. These confor-
mational changes also compel an allosteric transition to facilitate an interaction between the
GPCR and the G-protein [1]. Moreover, the GPCR activation also activates the G-Protein,
which in turn promotes the exchange of GDP (guanosine diphosphate) bound to the G-protein
with GTP (guanosine triphosphate) [1]. Following this exchange, the G-protein dissociates from
the GPCR, leading to the detachment of the Gα subunit, which remains bound to GTP, from
the Gβγ dimer. Subsequently, the detached Gα and Gβγ sub-units interact with effector en-
zymes/proteins, thereby modulating their activity [1]. This modulation instigates alterations in
the cytosolic concentration of small ions or molecules, including the 3 ′, 5 ′ − cyclic cyclic adeno-
sine monophosphate (cAMP) or Calcium (Ca2+) ions. These molecules function as secondary
messengers, consequently activating or inhibiting various targets, such as protein kinases, and
initiating further downstream signaling cascades [1].

1.2.0.1 Classification

The G-Protein Coupled Receptors (GPCRs) can be classified into distinct families based on
their structural and functional characteristics. A commonly used classification system is the A-
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F classification system which divides GPCRs into classes A, B, C, D, E, and F. However, a more
recently developed classification uses the GRAFS system denoting Glutamate (C), Rhodopsin
(A), Adhesion (B2), Frizzled/Taste2 (F), Secretin (B1) [13]. The human GPCR classification
and the crystal structures found as of 2015 is illustrated in the Figure 1.9.

Figure 1.9: Human GPCR classification and crystal structures (as of 2015). Classes D and
E do not exist in human, and are fungal mating pheromone receptors and cAMP receptors,
respectively. Figure and caption adapted from [14]

Each class exhibits unique structural features and signaling mechanisms, contributing to the
functional diversity of GPCRs across various physiological processes. The roles of each class in
classes A-F and class O/T:

1. Class A, also known as rhodopsin-like receptors, represents the largest group (85% of all
GPCRs) and includes receptors for neurotransmitters, hormones, and sensory stimuli.

2. Class B receptors are involved in peptide hormone signaling important for vasodilation,
Ca2+ homeostasis and blood glucose regulation [15, 16].

3. Class C receptors are characterized by their role in sensing amino acids and metabotropic
glutamate receptors.

4. Class D receptors consist of fungal mating pheromone receptors.

5. Class E receptors consist of cyclic AMP receptors present in Dictyostelium discoideum
(commonly referred as slime molds) which control its development [17–19].

6. Class F consists of the Frizzled GPCRs associate with the Wnt signaling pathway.

7. Class O/T originally grouped with Frizzled consists of Taste2 receptors associated with
Taste sensation.
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1.2.0.2 Numbering System

The most commonly used numbering systems [14] for GPCR classes are as follows: class A
utilizes the Ballesteros-Weinstein (BW) [20] numbering system, class B uses the Wootten [21]
numbering system, class C employs the Pin [22] numbering system, and class F utilizes the
Wang [23] numbering system. These systems are all based on the Ballesteros-Weinsteing system
which primarily has a number "a.b" for each residue in the TM helices, wherein a corresponds to
the trans-membrane helix number ranging from 1-7. The number b denotes the residue position
relative to the most conserved position at number 50. Alternative numbering systems proposed
for class A were given by Oliveira [24] and Baldwin/Schwartz [25, 26].

1.2.0.3 β2-Adrenergic Receptor

The β2-Adrenergic Receptor (β2AR) is a class A GPCR whose natural agonists are the
hormones and neurotansmiters, adrenaline and noradrenaline. It plays a crucial role in promot-
ing relaxation of smooth muscles found in the gastrointestinal tract, bronchi, urinary bladder,
uterus, and seminal tract. Additionally, it facilitates improved blood flow and vasodilation in
arteries while enhancing muscle contraction and motility in striated muscles. Moreover, it is
responsible for regulating the secretion of insulin and glucagon in the pancreas.

Upon binding of adrenaline, the β2AR is activated and the allosteric changes in the receptor-
Gs complex allows the GDP to be exchanged with GTP. The activated Gsα is separated from
the Gsβγ dimer and binds to the adenylyl cyclase enzyme. The adenylyl cyclase catalyzes the
formation of adenosine 3’, 5’ cyclic monophosphate (cAMP) and pyrophosphate from adenosine
triphosphate (ATP). (refer Figure 1.10) The cAMP is a secondary messenger whose increase
in concentration may lead to the activation of protein kinase A [27], Popdc (popeye domain
containing proteins) [28], exchange proteins like EPAC [29], and cyclic nucleotide-gated ion
channels [30]. PKA i a cAMP-dependen protein, when activate PKA phosphorylates eznymes
promoting muscle contraction in the heart, enzymes catalyzing glycogen to glucose conversion,
and transcription factors [31].

The agonists binding to the β2AR can be classified as
(i) SABA (Short-acting β2 agonists): Spasmolytics used for the treatment of asthma and

COPD (salbutamol, procaterol, isoprenaline) and tocolytic agents used to suppress premature
labour (fenoterol, salbutamol, isoxsuprine).

(ii) LABA (Long-acting β2 agonists): Spasmolytics used for the treatment of asthma and
COPD (salmeterol, formoterol, clenbuterol)

(iii) ultra-LABA: Spasmolytics used for the treatment of asthma and COPD (carmoterol,
indacaterol, olodaterol)
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Antagonists include beta-blockers (butoxamine, propranolol, ICI-118,551) which are used in
the management of abnormal heart rhythms, or prevention of immediate second heart attack
after an initial heart attack.

Figure 1.10: Transduction of the epinephrine signal: the β-adrenergic pathway. (a) The mech-
anism that couples binding of epinephrine to its receptor with activation of adenylyl cyclase;
the seven steps are discussed in the text. The same adenylyl cyclase molecule in the plasma
membrane may be regulated by a stimulatory G protein (Gs), as shown, or by an inhibitory G
protein (Gi, not shown). Gs and Gi are under the influence of different hormones. Hormones
that induce GTP binding to Gi cause inhibition of adenylyl cyclase, resulting in lower cellular
[cAMP]. (b) The combined action of the enzymes that catalyze steps and , synthesis and hy-
drolysis of cAMP by adenylyl cyclase and cAMP phosphodiesterase, respectively. Figure and
caption adapted from [1]
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1.3 G-Protein

Guanine nucleotide-binding proteins (G-Proteins), are molecular switches present within
the cells, and play an important role in signal transduction through the GPCRs. As the name
suggests, G-Proteins are bound to either the guanosine triphosphate (GTP) or the guanosine
diphosphate (GDP). The G-Proteins are considered active when the GTP is bound, and are
considered inactive when GDP is bound. G-proteins also belong to the broader group of enzymes
known as GTPases.

G-proteins can be divided into 2 classes:
(i) small G-proteins: Consists of monomeric Small GTPases, which are hydrolyzes GTP

molecule. They are homologous to the Gα sub-unit of a heterotrimeric G-Protein, but can
function individually. They contain the Ras superfamily which further contains the 7 sub-
families: Ras, Ral, Rit, Rap, Rheb, Rad, and Miro. Each sub-family has specific funtions,
cell proliferation (Ras), cell morphology (Rho), nuclear transport (Ran) and vesicle transport
(Rab).

(ii) Heterotrimeric G proteins: Coupled to the GPCRs, they are composed of three subunits:
Gα , Gβ, and Gγ. Upon activation of the GPCR, the Gα sub-unit binds and hydrolyzes GTP,
while the Gβ and Gγ sub-units remain associated as a stable dimeric complex. The Gα and the
Gβγ dimer bind to effector proteins/enzymes and regulate their activity. During termination of
the transduced signal, special proteins called RGS (Regulator of G protein signalling) proteins
help in the hydrolysis of the GTP to GDP, which in turn helps in ther reunification of Gα with
the Gβγ dimer. There are four significant G-protein families: Gi/Go, Gq, Gs, and G12/13 [32].
The roles of some of the heterotrimeric G-Protein families are illustrated in Figure 1.11.
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Figure 1.11: The role of different G-Protein families.

1.4 GPCR Specific Ligands

The signaling molecule or ligand that binds to the GPCR can be classified into Agonists,
Antagonists, Inverse Agonists, Allosteric Modulator or Biased ligand. The role of each ligand
is further discussed in Figure 1.12.
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Figure 1.12: The role of different ligands binding to GPCRs.

1.5 Research Focus

In Chapter 3, we model and study the dynamics of adrenaline in the orthosteric binding
pocket of β2AR using molecular dynamics, umbrella sampling, and machine learning. We ob-
tain the PMF plot of adrenaline dissociation from the orthosteric binding pocket to study the
energetics of the system. Using a clustering algorithm, we model the structure of these two sta-
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ble states, a meta-stable and most-stable, and study the factors responsible for state transition.
Furthermore, we identify the interacting residues, orientational and conformational dynamics
of adrenaline in the binding pocket. To find the residues responsible for the inward motion
of adrenaline, we calculated pairwise interaction energies and used statistical and machine
learning-based regression methods.

In Chapter 4, we model the β2AR-Gs system and study both the dissociation of Gs upon
the activation of β2AR and the dissociation of GDP from Gα using umbrella sampling and
molecular dynamics. Furthermore, we create base models of adrenaline-β2AR-Gs-GDP/GTP
in their inactive, intermediate, and active states, respectively.

In the next chapter, we discuss the computational methods and tools to model and study
complex GPCR-G-protein systems. We also discuss key concepts, including molecular dynam-
ics, umbrella sampling, and machine learning methods.
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Chapter 2

Computational Methods
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2.6 Statistical Methods and Machine Learning . . . . . . . . . . . . . . . 28

2.1 Overview

The use of computational methods to simulate multi-particle systems predates back to the
1950s. One of the first computational algorithms developed was the Monte Carlo algorithm,
conceptualized in the eighteenth century uses randomness to solve deterministic problems. The
development of such computer-based methods for studying the interactions between proteins
and ligands has been a significant area of focus for computational biophysicists [33] and has
been a continuing area of interest even in the 21st century, as evidenced by a review by Shoichet
and Kobilka in 2011 [34]. In the 1970s and 1980s, molecular dynamics (MD) simulations ma-
terialized as an effective method for studying the motion and dynamics of proteins and other
macromolecules [33]. MD simulations obey the laws of classical mechanics to solve the equa-
tions of motion for a system of interacting atoms/molecules. One of the earliest successful
MD simulations for biophysical systems was in predicting the structure of the protein BPTI
in 1977 [35]. The development of computational methods for studying protein-ligand inter-
actions and discovering new drugs/ligands has continued to gain momentum since the 1990s.
In particular, using virtual screening methods such as molecular docking for drug discovery
became increasingly popular [36]. This method involves screening large databases of potential
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drug molecules against a target protein to identify molecules that bind with high affinity. Using
machine learning algorithms to perform big-data analysis in the 21st century has revolutionized
computational biophysical research, enabling the exploration of complex biological systems at a
remarkable level of detail [37, 38]. Today, computational biophysics has become an integral part
of modern life sciences research, contributing significantly to the understanding and explaining
of the molecular mechanisms behind various biological processes [39]. As supercomputers be-
come faster every year and the field continues to evolve, computational methods will play an
even more significant role in advancing our understanding of biophysical systems.

This chapter introduces key computational methods involved in the study, including Molec-
ular Dynamics, Enhanced Sampling Methods, Statistical Methods and Machine Learning.

2.2 Molecular Dynamics Simulations

Molecular dynamics (MD) simulations are a powerful computational tool used to study
the dynamics and behavior of atoms/molecules over time [40]. MD simulations use classical
mechanics to simulate the motion of particles in a system, where a potential energy function
is used to describe the forces between particles [40]. The potential energy function used in
MD simulations is commonly represented by a force field, a mathematical model describing the
interactions between atoms/molecules [40]. The force field is parameterized using experimental
data or quantum mechanical calculations. The CHARMM, AMBER, and GROMOS force fields
are the most commonly used force fields [40]. The equations of motion for MD simulations is
based on the Newton’s second law of motion, which states that the change of motion of an
object is proportional to the force impressed; and is made in the direction of the straight line
in which the force is impressed [40–42].

The modern form of Newton’s second law states that the time derivative of the momentum
(for constant mass m, becomes ma) is the net force [42].

F = m
dv

dt
= ma (2.1)

where m is the mass of the object, v its velocity and a its acceleration. In an N particle
system, molecular dynamics mandates that the net force be calculated on all the N particles.
Therefore, for any given particle i, the equation becomes,

Fi = miai = mv̇i = mr̈ (2.2)

where Fi is its net force vector, mi is its mass, and ai is its acceleration, v is its velocity and
r its position.
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Figure 2.1: Steps involved in Molecular Dynamics Simulations. Figure adapted from https:
//chryswoods.com/dynamics/dynamics/theory.html

Figure 2.2: An illustration of the inter-atomic forces (only non-bonded interactions). Figure
adapted from http://www.atomsinmotion.com/book/chapter5/md
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To calculate the net force on each atom, all inter-atomic forces need to be summed. For
example, in figure 2.2, the net force on atom 1, F1 is given by the equation 2.3.

F1 = F12 + F13 + F14 + F15 (2.3)

These inter-atomic forces can be written as a derivative of their inter-atomic potentials since
F (r) = −dU

dr . A more generalized equation for the net force on a particle i, at a given time t,
is given by the equation 2.4.

Fi(r) = −∆iUtotal (2.4)

The number of times, each of these inter-atomic forces is computed depends on the Sum(N),
where N is the total number of particles. Assuming each pair is computed, Sum(N)=N(N+1)/2.
However, distance based pair-wise cutoffs between 2 particles are implemented using a switching
function in molecular dynamics softwares to increase efficiency [40]. A pairwise cutoff of 10Å
or 12Å is commonly used, since distances greater than the cutoff distance amount to negligible
inter-atomic forces. The next sub-section comprises the computational determination of the
inter-atomic potential, Utotal, through force-fields.

2.2.1 Force Field

A force field which consists of the functional form and parameter sets of atoms/particles,
provides a computational method to calculate the potential energy of the system and the
force between any two atoms. These parameters are determined from physics and chemistry
experiments, and quantum mechanics. The force fields describe the energy landscape. The
force on a particle is derived from the gradient of the potential energy to the atom/particle’s
coordinates. The potential energy of the system can be represented as the sum of the "bonded"
(covalent bond) terms, and the "non-bonded" (non-covalent interactions) terms. The bonded
terms include the bonds, angles, and torsions (dihedrals + inversions). The non-bonded terms
primarily include the electrostatic and van der Waals energy. Although additional terms could
be added to the potential energy equation to account for improper torsions, cross terms, and
explicit hydrogen bonds, a majority of the mainly used force fields (CHARMM, AMBER,
GROMOS) have the terms mentioned in the equations 2.6 and 2.7 common [40].

Utotal = Ubonded + Unon−bonded (2.5)

Ubonded = Ubond + Uangle + Utorsion (2.6)

Unon−bonded = Uelectrostatic + UvdW (2.7)
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The bonded terms bonds and angles can be approximated with a spring and therefore, the
forces (for bond stretch, angle bend) can be written using the simple Hooke’s law. The Hooke’s
law is given by the equation 2.8.

Fs = kx (2.8)

where Fs is the force required to extend or compress the spring, x is the distance by which the
spring is extended or compressed, and k is the spring constant. Now, the potential energy of
the spring is given by the equation 2.9.

Uspring =
1

2
kx2 (2.9)

Similarly, the potential energy of the bonded terms can be written as follows:

Ubond =
∑

All bonds

1

2
kb(b − b0)

2 (2.10)

Uangle =
∑

All angles

1

2
kθ(θ − θ0)

2 (2.11)

A majority of the force fields use the cosine series expansion to model the torsional term of the
potential energy. They usually include both the dihedral angle between the planes defined by
four atoms/particles and the out of plane inversions.

Utorsion =
∑

All dihedrals

kdihedral(1−cos(nω−γdihedral)+
∑

All inversions

kinversion(1−cos(nω−γinversion)

(2.12)
The electrostatic forces between any two atoms/particles is given by the Coulomb’s law, equa-
tion 2.13. The electrostatic potential energy can be derived from the Coulomb’s law is given in
equation 2.14.

|F | = ke
|qa||qb|

r2
ab

(2.13)

Uelectrostatic =
∑

coulomb

ke
|qa||qb|

rab
(2.14)

The van der Waal’s interaction is usually modelled with the Lennard-Jones potential which
is given in equation 2.15.

UvdW =
∑
vdW

4ϵab

[(
σab

rab

)12

−

(
σab

rab

)6
]

(2.15)

Once the inter-atomic potentials are computed through force-fields, the inter-atomic forces
can be determined (refer equation 2.4). The next step in molecular dynamics involves the
computation of velocities and position, evolving through time with numerical integration.

20



2.2.2 Numerical Integration

In order to calculate the position and velocity of a particle at the next time step, a Taylor
series expansion can be used. The velocity and position at next time-step (∆t) is given by the
following equations 2.16 and 2.17.

v(t + ∆t) = v(t) + a(t)∆t +
1

2

d2v

dt2
∆t2 +

1

3!

d3v

dt3
∆t3 + O(∆t4) + . . . (2.16)

r(t + ∆t) = r(t) + v(t)∆t +
1

2
a(t)∆t2 +

1

3!

d3r

dt3
∆t3 + O(∆t4) + . . . (2.17)

However, the taylor series expansion is computationally expensive to caculate. Therefore, nu-
merical integration methods such as Verlet and Velocity Verlet algorithms are required.

2.2.3 Verlet

In the verlet algorithm, the Taylor series expansion of position is truncated to the first four
terms. Similarly, the position backward in time is written in the following equation 2.18.

r(t − ∆t) = r(t) − v(t)∆t +
1

2
a(t)∆t2 −

1

3!

d3r

dt3
∆t3 + O(∆t4) + . . . (2.18)

Adding the first four terms in equation 2.17 and 2.18, gives, equation 2.19

r(t + ∆t) = 2r(t) − r(t − ∆t) + a(t)∆t2 + O(∆t4) (2.19)

In the Verlet algorithm, the velocities are not required to determine the next position. However,
the calculation of velocity is required for calculating the kinetic energy. One can compute
velocity using the mean value theorem and position, equation 2.20

v(t) =
r(t + ∆t) − r(t − ∆t)

2∆t
+ O(∆t2) (2.20)

The above equation 2.20 compromises accuracy and has an error of O(∆t2) which is a lot worse
than the four-term truncated Taylor series equation 2.16.

2.2.4 Velocity Verlet

The Velocity Verlet algorithm is a numerical integration method. It has a unique property
that it calculates both the position and velocity at the same time. The following are the
equations of the Velocity Verlet algorithm

r(t + ∆t) = r(t) + v(t)∆t +
1

2
a(t)∆t2 (2.21)

v(t + ∆t) = v(t) +
1

2
[a(t + ∆t) + a(t)]∆t + O(∆t3) (2.22)
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It is possible to derive the Velocity Verlet algorithm from the basic verlet algorithm as follows.
Ignoring higher-order error terms, from equation 2.20, we can write r(t − ∆t) as,

r(t − ∆t) = r(t + ∆t) − 2v(t)∆t (2.23)

Now, we substitute, equation 2.23, in equation 2.19, we get the truncated Taylor series expan-
sion of position which is used in the Velocity Verlet algorithm.

r(t + ∆t) = 2r(t) − r(t + ∆t) + 2v(t)∆t + a(t)∆t2 (2.24)

r(t + ∆t) = r(t) + v(t)∆t +
1

2
a(t)∆t2 (2.25)

To compute velocities, we write v(t + ∆t) from equation 2.20 as,

v(t + ∆t) =
r(t + 2∆t) − r(t)

2∆t
(2.26)

Similarly, we write r(t + 2∆t), from equation 2.19 as,

r(t + 2∆t) = 2r(t + ∆t) − r(t) + a(t + ∆t)∆t2 (2.27)

Substituting equation 2.27 in equation 2.26, we get,

v(t + ∆t) =
r(t + ∆t) − r(t)

∆t
+

1

2
a(t + ∆t)∆t (2.28)

Now, we eliminate r(t + ∆t) − r(t) from equation 2.25, to get the velocity, as

v(t + ∆t) = v(t) +
1

2
[a(t + ∆t) + a(t)]∆t (2.29)

Standard implementations of the velocity Verlet algorithm use a "half-timestep" velocity com-
putation. The equations 2.25 and 2.29 can be modified as follows

r(t + ∆t) = r(t) + v(t +
1

2
∆t)∆t (2.30)

v(t + ∆t) = v(t +
1

2
∆t) +

1

2
a(t + ∆t)∆t (2.31)

2.3 Energy Minimization

The spatial arrangement of atoms in the initial structure may not be energetically favorable.
This issue can be addressed through energy minimization, a process that mitigates inter-atomic
forces and guides the system towards a local (point A) or global minimum (point C) on the
potential energy surface (PES). (refer Figure 2.3) When the system reaches its most stable
state, it adopts a conformation corresponding to the global minimum on the PES. In the next
sub-sections, we will discuss in brief the two significant energy minimization algorithms that
have been employed in the thesis.
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Figure 2.3: A figure depicting the different phases during energy minimization. Figure adapted
from https://lammpstube.com/2020/08/05/minimization-of-energy/

2.3.1 Steepest Descent

The steepest descent algorithm is a simple and efficient algorithm primarily used in pre-
liminary energy minimization. In each iteration, a consistent step (η) is taken in the direction
opposite to the local gradient of the potential energy (U(r)). A new configuration (arrangement
of atoms) denoted by rn+1 is generated from current configuration, rn as follows:

rn+1 = rn − η∆U(rn) (2.32)

2.3.2 Conjugate Gradient

The conjugate gradient method involves the selection or computation of successive orthog-
onal (conjugate) direction vectors. In each iteration, a step is taken along the chosen direction
vector, and the step size for the next iteration is determined. Notably, the algorithm ensures
that previously visited directions are not revisited in the future.

Compared to the steepest descent method, the conjugate gradient method may initially
exhibit slower convergence during energy minimization. However, it becomes increasingly ef-
ficient as the system approaches the energy minimum. As a result, it is commonly employed
after initially utilizing the steepest descent algorithm to accelerate the optimization process.
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2.4 Ensembles

An ensemble is a collection or group of individual members, where each member represents
a potential state or outcome of the actual system. In a majority of the real-world situations,
randomness or uncertainty is present [43]. Therefore, rather than focusing on a single outcome
or specific configuration, an ensemble takes into account all possible outcomes or configurations
and assigns probabilities or weights to each of them [43].

In statistical mechanics, an ensemble represents a collection of systems with the same macro-
scopic conditions, such as number of particles (N), temperature (T), total energy (E), pressure
(P), or volume (V). Each individual system within the ensemble corresponds to a different
micro-configuration or micro-state of the particles in the system [43]. On studying the ensem-
ble’s properties and/or behavior as a whole, statistical mechanics provides insights into the
average/expected behavior of the individual systems. (refer Figure 2.4) The four commonly
used statistical ensembles are

1. Microcanonical Ensemble: Constant number of particles (N), volume (V), and total energy
(E)

2. Canonical Ensemble: Constant number of particles (N), volume (V), and temperature (T).
To keep the temperature in a canonical ensemble constant, a thermostat is often used.
Various techniques to control temperature involve velocity-rescaling, Langevin thermo-
stat, Berendensen thermostat, Noose-Hoover thermostat, and Andersen thermostat [43].

3. Grand Canonical Ensemble: Constant chemical potential (µ), volume (V), and tempera-
ture (T)

4. Isobaric-Isothermal Ensemble: Constant number of partices (N), Pressure (P), and Tem-
perature (T). To maintain constant pressure, a barostat is often used. Techniques used
to control temperature include volume-rescaling, Berendensen barostat, and Andersen
barostat [43].
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Figure 2.4: Commonly used statistical ensembles. Figure adapted from https:

//en.wikipedia.org/wiki/Ensemble_%28mathematical_physics%29#/media/File:

Statistical_Ensembles.png

2.5 Free Energy

The term "free energy" was coined by Hermann von Helmholtz in the year 1882 [44]. The
free energy presents the amount of energy available to do thermodynamic work at a constant
temperature [44]. It is usually represented by the Helmholtz free energy, A, or the Gibbs free
energy, G [40]. At constant volume and temperature (canonical ensemble) the free energy is
given by the Helmholtz free energy equation 2.33.

A = U − TS = −
1

β
ln QNV T (2.33)

where A is the Helmholtz free energy, U is the potential energy, T is the temperature, S is the
entropy of the system, and QNV T is the canonical partition function. Similarly, the free energy
used under isobaric-isothermal (constant pressure (P) and temperature (T)) conditions is the
given by the Gibbs Free Energy equation 2.34.

G = U − TS + PV = −
1

β
ln QNP T (2.34)

where G is the Gibbs free energy, U is the potential energy, T is the temperature, S is the
enthalpy of the system, and QNP T is the isobaric-isothermal partition function.

The difference in free energy is essential for any chemical reaction to occur and is crucial
to determine thermodynamic factors such as ligand binding rate constants [45]. However, the
accurate determination of free energies or change in free energies through molecular dynamics
or monte carlo simulations is not possible due to inadequate sampling of high energy regions [40,
45]. Therefore, the use of enhanced sampling techniques such as umbrella sampling is required
to calculate the free energy profile of the system [45].
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2.5.1 Collective Variable

A collective variable (CV) or a reaction coordinate, ε, is a continuous parameter used to
distinguish two different thermodynamic states [45]. It can either be single or multi-dimensional.
Broadly, there are two different types of collective variables commonly used:

1. Geometric CV: Distance, angle, dihedral, RMSD. They are also known as physics-
intuitive/physics-based collective variable [46, 47]. Normally, around 10-100 physics-
based collective variables are required to efficiently sample a biological process due to
the number of conformation changes involved [46]. One can study only a limited number
of conformational changes by using one CV [46, 47].

2. Abstract CV: A linear/non-linear combination of one or more geometric CVs. It is diffi-
cult to interpret the physical meaning of abstract CVs. Various dimensionality reduction
methods, such as Principal Component Analysis (PCA), t-distributed stochastic neighbor
embedding (t-SNE), local linear embedding (LLE), isomap, and diffusion map, are com-
monly employed to extract high-variance CVs from the data [46–48]. Likewise, for the
exploration of slow CVs using lengthy unbiased MD trajectories, Time-lagged Indepen-
dent Component Analysis (TICA), Variational Approach to Markov Processes (VAMP),
Markov State Models (MSMs), and Extended Dynamical Mode Decomposition (EDMD)
have been instrumental [46–48]. Deep learning-based approaches encompass techniques
such as Variational Dynamics Encoders (VDEs), Variational Approach to Markov Pro-
cesses Networks (VAMPnets), Deep Canonical Correlation Analysis (Deep CCA), and
Time-lagged Autoencoders (TAEs) [46, 48].

In this thesis, the main objective is to design tailored geometric collective variables (CVs) for
comprehending dynamic and conformational transformations in GPCR systems. By employing
well-suited collective variables, we can investigate the conformational changes and construct
potential of mean force (PMF) plots associated with them.

2.5.2 Potential of mean force

The potential of mean force (PMF) represents the free energy surface along the reaction
coordinate(s) or chosen collective variable(s) [40, 45]. It is given by the equation

A(ε) = −
1

β
ln Q(ε) + C (2.35)

where A(ε) denotes the free energy along the collective variable, ε and Q(ε) is the corresponding
partition function.
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Figure 2.5: Schematic illustration of the umbrella sampling method. The red dash lines rep-
resent the harmonic bias potentials that are added to the system Hamiltonian at different CV
points (windows) along the CV space. Figure and caption adapted from [50]

2.5.3 Umbrella Sampling

Umbrella Sampling, proposed by Torrie and Valleau in 1977 [49], is an enhanced-sampling
technique widely employed to surmount energy barriers along a chosen collective variable, ε.
The umbrella sampling method involves dividing the sampling space into multiple windows,
each associated with an initial structure positioned along the collective variable. In order to
confine the system within a narrow phase space along the collective variable while ensuring
adequate overlap between adjacent windows, a biasing potential, typically a harmonic bias, is
applied to each window.

The overall potential energy of the system, Ui(ε), including the biasing potential, in the
window i, is given by the equation 2.36

Ui, biased(ε) = Ui, unbiased(r) + Vi(ε) (2.36)

where U(r) represents the original unbiased potential energy function of the system, depen-
dent on the atom coordinates r. The harmonic biasing potential V (ε) for each window i is given
by the equation:

Vi(ε) =
1

2
ki(ε − εi)

2 (2.37)

where ki is the spring constant and εi is the target value of the collective variable for window
i. The PMF of each window in umbrella sampling is given by

Ai(ε) = −KbT ln(P b
i ) − Vi(ε) + Ci (2.38)

Here, P b
i is obtained through sufficient MD simulation, and Ci is a constant independent

of ε, and is equal to −kbT ln < (exp{−βVi(ε)} >. Molecular dynamics simulations of the
biased system are then performed, and the potential of mean force (PMF) is subsequently
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calculated using the weighted histogram analysis method (WHAM) [51] or umbrella integration
[49]. To compute the global probability distribution, WHAM assigns weights to each window
combines individual window to minimize the error of P u(ε) [51]. The following are the WHAM
equations [50, 51]:

P u(ε) =
ΣN

i hi(ε)

ΣN
j nj [βexp(Fj − V (ε)]

(2.39)

Fj = −kbT lnΣqPu(ε)exp(−βV (ε)) (2.40)

where β is the inverse temperature( 1
kbT ), i and j are indexes of the windows, Fj is the factor

determined for window j, nj is the total number of data-points in window j, P b(ε) is the
probability distribution function of the collective variable obtained from the biased simulations,
and P u(ε) is the reference probability distribution function in the absence of bias.

In summary, Umbrella Sampling is an effective enhanced sampling technique that utilizes bi-
ased molecular dynamics simulations with harmonic potentials to sample conformational states
along a chosen collective variable, ε, to compute the potential of mean force (PMF) and pro-
vide valuable insights on the underlying free energy landscape. In this thesis, we use Umbrella
Sampling to compute the PMFs for different GPCR systems to understand the free energy
landscape.

2.6 Statistical Methods and Machine Learning

2.6.1 Correlation

Correlation is a measure of the statistical relationship (or dependence) between variables,
often columns in the a dataset. Correlation coefficient is a value that ranges between -1 and
+1. Here +1 corresponds to positive correlation, which means when x always changes in the
direction of y. Conversely, -1 implies x and y change in the opposite direction to each other, and
0 implies they are not related to each other (independent). Some of the correlation coefficients
used are Pearson’s r, Spearman’s ρ or rs, Cramer’s ϕ, Point-biserial, and Kendall’s τ .

2.6.1.1 Pearson’s Correlation Coefficient

The Pearson’s correlation coefficient, denoted by r, measures the linear relationship between
two variables. It is given by the equation,

r =
Cov(X, Y )

σXσY
(2.41)
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2.6.1.2 Spearman’s Correlation Coefficient

The Spearman’s correlation between two variables is the same as the Pearson’s correlation
between the rank of the two variables. Spearman’s correlation, denoted by rs or ρ, assesses the
monotonic relationships between the two variables regardless of it being linear or non-linear. It
is given by the equation,

rs =
Cov(R(X), R(Y ))

σR(X)σR(Y )
(2.42)

2.6.2 Machine Learning

Machine learning (ML) is a sub-set of Artificial Intelligence (AI), where models are built and
trained on data to learn and make predictions and/or decisions without explicit programming.
Machine learning, often used as a "black-box", is a powerful and useful tool used in protein-
structure prediction, drug discovery, bio-informatics, collective variable discovery, and analysis
of large data amongst others. These include classification, regression, clustering, dimensionality
reduction, In the next subsections, we explore some of the ML methods used in feature selection
in Chapter 3.

2.6.2.1 Linear Regression

Linear Regression is a part of supervised machine learning algorithms which provides a linear
approach in modeling the relationship between the dependent variable (y, also known as the
target variable or response variable) and independent variables ([x1, x2, . . . xn], also known as
predictor variables or features) [52]. It is given by the equation 2.43,

y = β0 + Σn
i=1βi ∗ xi (2.43)

where βi are the regression coefficients or weights. Though linear regression is usually used for
prediction or inference of the dependent variable, it can also be used or feature selection. In
the case of linear regression, the regression coefficients/weights (βi) are the feature importance
scores. They give valuable insights on the strength (magnitude) as well as direction (sign) on the
relationship between the dependent variable (y) and the independent variables ([x1, x2, . . . xn]).

2.6.2.2 Decision Trees

A decision tree is a tree-like hierarchical model wherein each node is a test on a condition with
each branch representing the possible outcome on the test [52]. (refer Figure 2.6) In decision
tree, the feature importance is determined upon calculating the probability of an observation
falling into a particular node. The Breiman feature importance [52, 53] is calculated as follows,

I2
l (t) = ΣN

t=1î2
t I(v(t) = l) (2.44)
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Figure 2.6: A simple decision tree classifying GPCR ligands.

where T is the decision tree, J is the number of internal does, l is the feature for which impor-
tance is calculated, v(t) is the feature for which node t is split, î2 is the reduction in the error
metric used for splitting (usually Mean Squared Error).

2.6.2.3 Random Forest

Random forest is an ensemble of decision trees. Decision trees are combined with the bagging
method with an idea that combining multiple decision trees betters the overall result. In
random forests, the feature importance can be calculated as the average feature importance
across decision trees [52]. (refer equation 2.45) In sci-kit, the feature importance is calculated
using the gini index.

I2
l (t) =

1

M
ΣM

m=1I2
l (T ) (2.45)

where M is the decision trees.

2.6.2.4 XGBoost

XGBoost, also known as extreme gradient boosting, is a recent boosting-based ensemble
machine learning algorithm. It combines multiple weak learning models (like decision trees)
to reduce the overall bias and errors by weighted sampling and merging [54]. The feature
importance in XGBoost can be calculated based on weight (the number of times a feature
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occurs in a tree), gain (average gain of splits using the feature), and cover (average coverage
of splits using the feature).( https://xgboost.readthedocs.io/en/latest/python/python_

api.html#xgboost.Booster.get_score)

2.6.2.5 K Nearest Neighbours

The K Nearest Neighbours (KNN) is a non-parametric supervised machine learning algo-
rithm [52, 55]. In KNN regressor, the output is predicted based on the local interpolation of
targets based on the nearest neighbours of the training set. (https://scikit-learn.org/

stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html) SInce the
feature importance for KNN is not defined directly, one can calculate the feature importance
through permutation importance. It involves permuting the values of a single feature while
keeping the others constant and observing the effect on the model’s performance. By com-
paring the model’s performance before and after the permutation, we can assess the impact
of each feature on the prediction accuracy. Consequently, features causing a significant drop
in performance when permuted are considered more important, as they contribute crucial
information for the model’s predictions.
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Chapter 3

Molecular Dynamics and Machine Learning Study of
Adrenaline Dynamics in the Binding Pocket of GPCR
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3.1 Abstract

GPCRs are the most prominent family of membrane proteins that serve as major targets
for one-third of the drugs produced. A detailed understanding of the molecular mechanism of
drug-induced activation and inhibition of GPCRs is crucial for the rational design of novel ther-
apeutics. The binding of the neurotransmitter adrenaline to the β2-adrenergic receptor (β2AR)
is known to induce a flight or fight cellular response, but much remains to be understood about
binding-induced dynamical changes in β2AR and adrenaline. In this article, we examine the
potential of mean force (PMF) for the unbinding of adrenaline from the orthosteric binding site
of β2AR and the associated dynamics using umbrella sampling and molecular dynamics (MD)
simulations. The calculated PMF reveals a global energy minimum, which corresponds to the
crystal structure of β2AR-adrenaline complex, and a meta-stable state in which the adrenaline
is moved slightly deeper into the binding pocket with a different orientation compared to that
in the crystal structure. The orientational and conformational changes in adrenaline during
the transition between these two states and the underlying driving forces of this transition are
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Figure 3.1: TOC image

also explored. Based on clustering of MD configurations and machine learning-based statistical
analyses of time series of relevant collective variables, the structures and stabilizing interactions
of these two states of the β2AR-adrenaline complex are also investigated.

3.2 Introduction

G-Protein Coupled Receptors (GPCRs) are the prime trans-membrane protein targets for
approximately one-third of all the approved drugs [9–11]. They mediate cells’ response to
hormones and neurotransmitters and play a vital role in regulating sensory functions such
as vision, smell, and taste, and physiological functions such as homeostasis, behavior, and
mood regulation [6–8]. A diverse range of molecular stimuli, including odorants, tastants,
vitamins, neurotransmitters, hormones, pheromones, nucleotides, lipids, and ions, bind to the
GPCRs, and signals are transduced to activate various regulatory processes [56]. The ligands
that bind to GPCRs can be classified based on their functions into agonists, inverse agonists,
antagonists, and allosteric modulators [57]. The ligand-induced conformational changes in
GPCRs are critical for activating and regulating different signaling pathways [58–60].

The binding of an agonist to the orthosteric site close to the extracellular end of the receptor
activates the GPCR [57]. The ligand binding induces conformational changes in GPCR that are
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relayed through the trans-membrane (TM) regions to the G-protein bound at the intracellular
end of the receptor [61]. In the absence of the ligand, the G-protein exists in the inactive state,
in which the Gβ and Gγ sub-units are attached to the GDP-bound Gα sub-unit [62]. However,
upon ligand binding to the receptor, the G-protein changes to the active state, in which the
Gα sub-unit detaches from both the Gβγ dimer and the receptor and GDP is exchanged for
GTP [62]. The agonist binding induced activation of the GPCR and G-protein ultimately leads
to the initiation of various downstream signaling events responsible for cellular functions.

The human β2-adrenergic receptor (β2AR) is a cell surface receptor primarily located in
nerve endings, vascular and bronchial smooth muscle cells, epithelial cells, and immune cells,
thereby playing an essential role in regulating the vascular, pulmonary, cardiac, and metabolic
functions [63].

Adrenaline and noradrenaline are the natural agonists of β2AR, while other adrenergic drugs
commonly used for treating asthma and chronic obstructive pulmonary disease (COPD) mimic
the functions of these natural agonists [64]. One of the major molecular dynamics simulations
study on β2AR by Dror et al. used the special-purpose Anton [65] supercomputer to study the
deactivation process and gain subsequent insights on the activation process [66]. The β2AR

shifted from a crystallographic-obtained agonist-bound active state conformation to an inactive
conformation in a time-scale of 2-50 µs in the absence of a G-Protein or G-Protein mimetic
nanobody [66, 67]. Since then several studies have identified key events in the activation of
β2AR including the outward movement of the trans-membrane helix 6 (TM6), the opening
of the hydrophobic lock, the regulation of different molecular switches, and the collapse of
Na+ binding pocket [68–76]. The ligands initially bind to the extracellular vestibule contain-
ing the residues Tyr7.35, Phe193ECL2, Ala5.39, His6.58, and Val6.59 before entering the binding
pocket [77].The residues Leu3.43, Leu6.40 and Ile6.41 form the hydrophobic lock [68–71], which
upon opening loosens the TM3-TM6 packing and allows the rotation of the TM6 helix during
activation [72]. Here, the Ballesteros-Weinstein (BW) numbering scheme [20] is used to de-
note residues, where Leu6.40 refers to the leucine residue of the sixth trans-membrane helix of
β2AR that is at the 40th position relative to the most conserved residue (Pro6.50 residue) at the
50th position. [78] The aromatic residues in the extracellular ligand binding region are often
conserved, and the rearrangement of their aromatic stacking interactions occurs during acti-
vation [73].The conserved core triad formed by the residues present below the binding pocket,
Phe6.44, Pro5.50, Ile3.40 undergo rearrangement upon agonist binding and may initiate β2AR

signaling cascade [79, 80]. The activation process involves four molecular switches: (i) Trp6.48

toggle/transmission switch, ii) Tyr7.53 toggle switch, (iii) the ionic lock between TM3 and TM6,
and (iv) 3-7 lock between TM3 and TM7 [74]. The activation of β2AR also involves the collapse
of Na+ pocket located around the Asp2.50 residue [75]. The Trp6.48 residue is probably the most
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common switch amongst all GPCRs, and it acts as a rotamer toggle switch and a transmission
switch necessary for the activation of β2AR [81, 82].

Molecular dynamics and enhanced sampling studies suggested that the residues Trp3.28,
Asp3.32, Val3.33, Val3.36, Phe193ECL2, Tyr5.38, Ser5.42, Ser5.43, Ser5.46, Trp6.48, Phe6.51, Phe6.52,
Asn6.55, Tyr7.35, Ile7.36 and Asn7.39 were found to collectively interact with different β2AR

ligands [46, 83–85]. Moreover, the residues Asp3.32 and Asn7.39 frequently formed ionic inter-
actions and hydrogen bonds respectively with the ligands and were therefore suggested to be
key residues for ligand binding [83, 85]. The GPCRmd server hosts unbiased MD trajectories
across various GPCR classes and receptor-ligand complexes, including the β2AR-adrenaline
complex, and offers a protein-ligand interaction network visualization tool [86]. Despite con-
siderable progress, much remains to be understood about the ligand dynamics during and after
the activation of β2AR.

Previous mutagenesis experiments on the human β2AR receptor revealed the importance of
hydrogen bonds formed by residues Asn7.39 and Asn6.55 with L-adrenaline for effective bind-
ing [87, 88]. Similarly, a point mutation involving Asp2.50 with Asn2.50 reduced L-adrenaline
binding affinity by ∼ 140-fold [89], while replacing Asp3.49 with Asn3.49 increased binding affinity
by ∼ 13-fold [90]. The GPCRDB database [14, 91] provides a comprehensive summary of struc-
tural and mutagenesis data related to crucial residues involved in the binding and recognition
of adrenaline and other agonists with the β2AR [92]. This database has proven instrumental
in conducting a thorough comparison between the residues identified through our method and
the data available in GPCRDB [14, 91].

In this paper, we examine the dynamics of adrenaline (ALE) within the binding pocket
of β2AR using umbrella sampling and molecular dynamics simulations of the active state of
adrenaline-bound β2AR. The Trp6.48 residue, which is a highly conserved residue located in the
orthosteric-binding site of β2AR, is used as a reference point, relative to which the translational,
orientational and conformational dynamics of the adrenaline are investigated. Using umbrella
sampling simulations with a suitable distance-based collective variable, we have calculated the
potential of mean force (PMF) for the unbinding adrenaline from the orthosteric binding pocket
of β2AR. The results reveal the presence of a meta-stable state in addition to the most-stable
global energy minimum state for the ligand within the binding pocket of β2AR. Clustering is
used to identify structures representing the aforementioned states. We also used various machine
learning algorithms to identify the most important residues responsible for state transition based
on the pairwise residue interaction energy values between adrenaline and residues in the binding
pocket.
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3.3 Methods

3.3.1 Models

The crystal structures of the adrenaline-free inactive (PDB ID: 2RH1) [93] and the
adrenaline-bound active (PDB ID: 4LDO) [94] states of β2AR were chosen as the starting
configurations for the molecular dynamics simulation of these systems. It is to be noted
that the active-state crystal structure (PDB ID: 4LDO) specifically modelled only the phar-
macologically active and endogenous neurotransmitter L-adrenaline and not its enantiomer
(D-adrenaline) [94–96]. These receptors were inserted into the pre-equilibrated phosphatidyl-
choline (POPC) lipid bilayer using the OPM database [97] and CHARMM-GUI software with
default parameters [98–102]. The total numbers of POPC molecules in the lipid bilayers of the
active and inactive β2AR models are 383 and 319, respectively. The Amber Lipid17 [103] and
AMBER19SB [104] force fields were used for the lipid bilayer and the receptors, respectively.
The Generalized Amber Force Field (GAFF) [105, 106] with the AM1-BCC [107] partial
charges for the adrenaline and the TIP3P [108] model for water were used. A suitable number
of sodium and chloride ions were added to the systems to maintain a salt concentration of 0.15
M. The box dimensions for the resulting models were 110 Å x 110 Å x 140 Å with 36331 water
molecules for the inactive state and 120 Å x 120 Å x 160 Å with 52134 water molecules for the
active state. The GPCRDB database [14, 91] was used to identify residues interacting with
adrenaline and was also used to number the residues in the BW numbering scheme. The final
adrenaline-free inactive β2AR model contained the T4-lysozyme and the adrenaline-bound
active β2AR model contained both the T4-lysozyme and G-protein mimicking Camelid
antibody fragment. These structures stabilize the conformation of β2AR in their inactive [93]
and active state [94]. Moreover, the presence of G-protein or a G-protein mimicking nanobody
increases the lifetime of the structure in the active state[66, 67, 109]. However, caution must
be exercised while interpreting the results, as the obtained free energy profile could differ for
different models based on the presence or absence of the intracellular binding partner[110]. In
this study, the adrenaline-free inactive β2AR model is only used to study any changes in the
dihedral angle of Trp6.48.

3.3.2 Molecular Dynamics Simulation

The potential energies of these membrane models were minimized using the steepest gradi-
ent descent for 10000 cycles and conjugate gradient descent for another 10000 cycles [111, 112].
The energy-minimized systems were gradually heated to 303.15 K at 1 atm pressure and equi-
librated there for 5 ns, followed by a production run of 50 ns under constant temperature
and constant pressure conditions. The temperature was controlled using the Langevin ther-
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Figure 3.2: A snapshot of T4L-adrenaline-bound β2AR with camelid antibody fragment em-
bedded in a hydrated POPC lipid bilayer membrane (head-group (red) and tail groups (green)).
Water molecules are shown in grey color.
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mostat [113], and the pressure was controlled using the anisotropic Berendsen barostat [114].
SHAKE algorithm [115] was used to constrain bonds involving hydrogen atoms. The particle
mesh Ewald [116] approach was used for treating the electrostatic interactions with a real-space
cutoff distance of 10 Å. The equations of motion were integrated using the velocity Verlet al-
gorithm [117] with a time step of 2 fs, with data written every 100 ps. All the simulations,
including the enhanced sampling simulations, were done using the AMBER18 software [118].
Starting from different initial velocities, we performed four additional MD simulations, each
for 25 ns; all these simulations were further extended to 500 ns, resulting in a total simulation
time of 2.5 µs for the adrenaline-bound active β2AR model. All the trajectory analyses were
carried out using the Amber CPPTRAJ [119] and VMD package [120].

3.3.3 Umbrella Sampling

Umbrella sampling (US) simulations were performed on the adrenaline-bound β2AR to ex-
amine the binding energetics of the system. The distance (denoted by d) between the Cα of
Trp6.48 and the nitrogen of adrenaline was chosen as the collective variable (CV) for the umbrella
sampling simulations (Figure 3.3) based on a previously established protocol [121]. Since the
position of Trp6.48 is more or less unchanged and remains conserved during activation, it serves
as a valuable reference for understanding the adrenaline dynamics within the binding pocket of
β2AR. The CV was varied from 4 Å to 20 Å in steps of 0.5 Å, resulting in a total of 33 windows.
The US simulation for each window was carried out in the NPT ensemble for 6 ns under the
same conditions as unbiased MD runs. The spring constant used for the harmonic biasing poten-
tial was 10 kcal/mol/Å2 for production and 200 kcal/mol/Å2 for minimization. The Weighted
Histogram Analysis Method (WHAM) (membrane.urmc.rochester.edu/?page_id=126) was
used to determine the potential of mean force (PMF) from CV trajectories obtained from the
US simulations [51]. The last 5-ns long umbrella sampling trajectory per window was used for
the WHAM.

3.3.4 Adrenaline-Receptor Interaction Energy

In order to characterize the interaction between adrenaline and β2AR, we computed the
pairwise interaction energy between adrenaline and the binding pocket residues of the receptor
using the Linear Interaction Energy [122] (LIE) module from Amber CPPTRAJ package. This
interaction energy is a sum of the van der Waals and electrostatic energies between adrenaline
and a given binding pocket residue of β2AR.
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Figure 3.3: Collective variables: d is the distance between the Cα atom (cyan) of Trp6.48

and the nitrogen atom (blue) of adrenaline (ALE). a and b (yellow arrows) are the vectors
corresponding to the molecular long axes of adrenaline and Trp6.48, respectively.
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3.3.5 Correlation Analysis

Given MD-derived time series of different collective variables and energies of the system, we
examined the correlation between different variables using the Pearson’s correlation (r) [123]
and Spearman’s correlation coefficient (rs) [124], which are defined as follows,

r =
Cov(X, Y )

σXσY
(3.1)

rs =
Cov(R(X), R(Y ))

σR(X)σR(Y )
(3.2)

where, Cov(X, Y ) is the covariance of X and Y, Cov(R(X), R(Y )) denotes the covariance of
rank variables R(X) and R(Y ) of X and Y, respectively, σX , σY , σR(X) and σR(Y ) are the
standard deviation of X, Y , R(X), and R(Y ), respectively.

3.4 Results and Discussion

3.4.0.1 Potential of Mean Force for Drug Dissociation

The umbrella sampling derived potential of mean force (PMF), F (d), for unbinding
adrenaline from the orthosteric binding pocket of β2AR shows a global energy minimum at
d = 12.1 Å, which is close to the value of d calculated from the experimental crystal structure
of adrenaline-bound β2AR (11.84 Å), and a meta-stable minimum at d = 6.8 Å (Figure 3.4).
The meta-stable state is found to be ∼ 3.5 kcal/mol less stable than the state at d = 12.1 Å.
The activation barrier for the transition from the most-stable state to the meta-stable state
is ∼ 4.8 kcal/mol, whereas it is ∼ 1.3 kcal/mol for the reverse transition. The presence of two
energy minima on the PMF indicates that adrenaline can adopt at least two distinct poses at
two different sites within the binding pocket of β2AR. Since the value of d of the meta-stable
state is less than the global energy minimum state, it appears that adrenaline can move deeper
inside the binding pocket of β2AR.

An activation barrier of ∼ 4.8 kcal/mol suggests that the transition from the most-stable
state to the meta-stable state is an activated rare event. The rarity of this transition is evident
in the time series of d obtained from five independent short 25-ns unbiased MD trajectories
(Figure 3.4). Four trajectories (labeled as TJ1-TJ4) sampled only the global energy minimum
basin. In contrast, the other trajectory (labeled as TJ5) exhibited barrier-crossing transitions
between the states within the timescale of the MD simulation. The observed transitions in
TJ5 substantiate the existence of the meta-stable state for the adrenaline-β2AR complex. The
presence of a "shoulder state" (9.5 < d < 11.5) is observed as the system samples around
the local maxima, but is unable to cross the barrier in TJ1 and TJ2. To further examine
the relative stability of the meta-stable state and the structural changes accompanying this
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Figure 3.4: Computed PMF as a function of d (black) is shown along with the time series of d

obtained from the five independent 25 ns unbiased MD trajectories.

41



transition, the trajectories TJ1-5 were further extended to 500 ns. The time series of d (refer
Figure S1a) shows that given sufficient simulation time, all the systems in trajectories TJ1-5
exhibited barrier crossing transitions at least once during the course of the simulation. Most
notably, the system in trajectory TJ5 stayed in the meta-stable state for most of the simulation
time. However, amongst trajectories TJ1-4, only the system in TJ3 managed to stay for a long
period of time (∼ 103 ns) in the meta-stable state after its state transition at ∼ 397 ns.

To characterize and examine the structures of the β2AR-adrenaline complex in the afore-
mentioned states, the K-means clustering algorithm based on RMSD was employed on the
combined simulation trajectory (TJ1-5) totaling 2.5 µs with K=10 iterated over 10000 times
into 10 clusters, namely c0 − c9 with c0 being the most populated cluster, and c9 being the
least populated cluster. Table 3.1 summarizes the results obtained from the clustering analy-
sis. The rationale behind choosing 10 clusters was to strike a balance between capturing the
relevant conformational space of the system (based on the collective variable, d) and avoiding
excessive fragmentation or aggregation of states. It is important to note that alternative clus-
tering algorithms or different numbers of clusters could potentially yield different insights or
interpretations of the data. The clusters that fall near the global-minimum basin, including the
"shoulder state" clusters (9.5 < d < 11.5), are highlighted in bold font in table 3.1, with their
population adding to 55.4% of the total population. Among these clusters, c4 had its mean
d values closest to the most-stable state configuration. Similarly, cluster c2 was closest to the
meta-stable state configuration. The cluster c1 has a mean value of d = 9.14 Å is closest to
the local maximum at around d ≈ 8.8 Å. Therefore, we consider the cluster centroid structures
(Figure 3.5) of c1, c4, and c2 likely correspond to local maximum, most-stable, and meta-stable
states of the adrenaline-β2AR complex, respectively.

(a) (b) (c)

Figure 3.5: Representative median structures of the (a) local energy maximum (cluster c1) (b)
most-stable (cluster c4) and (c) meta-stable (cluster c2) states of the β2AR-adrenaline complex
(magenta) obtained from the K-means clustering algorithm aligned on the β2AR-adrenaline
crystal structure (PDB ID: 4LDO, cyan). Adrenaline is colored in red in the clusters and its
aligned crystallographic poses are colored in yellow.
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Cluster Population (%) σ d (Å) θ (°) δ3(°)
c0 22.1 3.54 11.10 127.59 80.17
c1 18.7 4.62 9.14 99.54 81.87
c2 13.2 5.57 6.74 67.61 80.26
c3 12.6 4.41 7.89 74.66 91.27
c4 8.8 4.24 12.32 106.09 18.34
c5 8.1 4.06 10.26 78.78 53.03
c6 5.9 3.76 9.75 81.24 105.34
c7 5.0 5.43 9.73 63.14 96.54
c8 4.1 4.59 10.63 161.56 82.11
c9 1.4 2.79 10.27 146.53 96.69

Table 3.1: Clusters c0 to c9 in the decreasing order of population with their corresponding
standard deviation (σ) from their respective centroids, and their mean d, θ and δ3 values.

To further understand the transition between the meta-stable and most-stable states, we
examined the changes in adrenaline-β2AR contacts as the system undergoes this transition. For
a given configuration in the trajectory, a residue is said to be in contact with adrenaline if any
of its atoms is within 4.5Å from any of the atoms of adrenaline. A total of 47 contact residues
were identified during the 500 ns molecular dynamics simulation (TJ5). Upon comparing the
cluster-average structures of the most-stable (c4) and meta-stable (c2) states, the following
contact residues Cys6.47, Trp6.48 were removed on state transition from meta-stable state to
the most-stable state. Consequently, the following new contacts with residues His6.58, Val6.59,
Thr195ECL2, Tyr7.43, Tyr5.38, Ala5.39 were formed. The contact with residues Ser5.42, Ser5.43,
Ser5.46, Phe45.52, Val3.33, Phe6.51, Phe6.52, Val3.36, Asn6.55, Thr3.37 remained for both the stable
and meta-stable cluster averaged states. However, studying the formation and loss of contacts
during state transitions only provides information on directly interacting residues within a
particularly short radius (4.5 Å) and may fail to include other critical residues responsible for
state transition outside the given radius. Moreover, it becomes increasingly complex to track
and understand the role of each and every contact residue during the course of a long MD
simulation.

In TJ5, the state transition of the adrenaline-β2AR complex from meta-stable to most-stable
state occurs at ∼ 23-ns. It is anticipated that the system continues to stay in the most-stable
state as its free energy is in the global energy minimum. However, this state transition is
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very short-lived as we observe that the system comes back to the meta-stable state by ∼ 26-ns

instead of staying in the most-stable state (refer Figure S1a). We postulate that this return
to the meta-stable state is probably due to other degrees of freedom that are coupled to d

that are yet to relax to the most-stable state. From the trajectory TJ5, we also observed a
relative orientation motion of adrenaline with respect to Trp6.48 and a conformational change in
adrenaline during the state transition. The orientational and conformational changes exhibited
by adrenaline during the course of the MD simulation are discussed in the following sections.

3.4.0.2 Orientational Dynamics

To investigate the orientational dynamics of adrenaline in the binding pocket, we calculated
the time series of the angle (θ) between the long molecular axes of adrenaline and Trp6.48 from
unbiased MD trajectories. The axis of the least mean square distance of atoms was considered
as the long axis of the molecule in the present study and is denoted by vectors a and b for
adrenaline and Trp6.48, respectively. Subsequently, θ was calculated as the angle between vectors
a and b (shown in Figure 3.3).

The time evolution of θ obtained from MD trajectories (refer Figure S1b) reveals that θ

fluctuates primarily around three different values (∼ 130°, ∼ 90°, and ∼ 70°) and exhibits abrupt
transitions between them at different time intervals. The most populated orientational state
with θ ≈ 130° corresponds to the most-stable state of the system on the PMF profile. In
contrast, the other orientational states ∼ 90°, and ∼ 70° corresponds to the local maximum and
the meta-stable local energy minimum state on the PMF profile respectively. In trajectory TJ3,
as the system transitions from most-stable state to meta-stable state θ changes from ∼ 130° to
∼ 40° and fluctuates erratically between ∼ 5° and ∼ 110° for a short time span (470 ns < t <

486 ns) during the simulation.
The time series of d unambiguously showed that adrenaline and Trp6.48 came closer to each

other during the transition from the most-stable state to the meta-stable state of the system.
The time series of θ indicates that this transition also accompanies a significant reorientation
of adrenaline in the binding pocket of β2AR. A substantial degree of similarity and synchrony
observed between the transitions in d and θ suggests a strong correlation between the orienta-
tional and translational dynamics of adrenaline in the binding pocket of β2AR. This correlation
between d and θ is evident in the d-versus-θ scatter plot shown in Figure 3.6. A sinusoidal
wave is fit on the data points which suggests that the adrenaline appears to rotate relative to
Trp6.48 as it moves deep inside the binding pocket. As the state transitions from meta-stable
state (∼ 70°) to the most-stable state (∼ 130°), the sine equation reduces to a linear correlation.
The cluster centroids of c1, c4, and c2 observed at (d = 9.14Å, θ = 99.54°) and (d = 12.32Å,
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θ = 106.09°), (d = 6.74Å, θ = 67.61°) in the scatter plot correspond to the local-maximum,
most-stable, and the meta-stable states of the system, respectively. (refer Table 3.1)

Figure 3.6: The scatter plot of d versus θ (in turquoise) obtained from all the MD trajectories
generated. The black points are the bin mean values of d with bins from 0° to 180°, with bin
size 15°. The red line y = 9.49 + 2.10 ∗ sin(2.02 ∗ (x ∗ π/180) + 2.98) is the best sinusoidal fit
to the data points.

3.4.0.3 Conformational Dynamics

In order to assess the conformational dynamics of adrenaline and Trp6.48 residue in the
binding pocket of β2AR, we calculated the N − Cα − Cβ − Cγ and O − C − C − N dihedral
angles of Trp6.48 and adrenaline, respectively. Also, the pseudo-dihedral angle (corresponding
to CγALE − NALE − CαT rp6.48 − CγT rp6.48) formed by the molecular planes of adrenaline and
Trp6.48 was also calculated to probe changes in their relative orientations. In what follows, the
N −Cα−Cβ−Cγ, O−C −C −N , and CγALE −NALE −CαT rp6.48 −CγT rp6.48 dihedral angles
are denoted by δ1, δ2, and δ3, respectively.
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(a) (b) (c)

Figure 3.7: Histograms of dihedral angles (a) δ1 (b) δ2 (c) δ3 for 5 x 500 ns adrenaline bound
active state simulations (TJ1-5) shown in black. In (a), the histogram of δ1 for adrenaline-free
inactive state simulation is shown in red.

The crystal structure values for δ1 for inactive (PDB ID: 2RH1) and active state β2AR

(PDB ID: 4LDO) are −73.48° and −83.79° respectively. The histogram of δ1 (refer Figure 3.7a)
indicates that Trp6.48 prefers the gauche(-) conformation with an average dihedral angle of
−75.29° and −61.78° in the inactive state and active state MD simulations respectively. No
noticeable conformational transitions are observed in the time series of δ1 even when adrenaline
came closer to Trp6.48 (refer Figure S2a). This restriction of Trp6.48 to stay in the gauche(-)
conformation was earlier attributed to its steric hindrance from Phe6.52 residue [125].

Unlike Trp6.48, adrenaline exhibits significant conformational changes during the course of
the simulation. The histogram of the dihedral angle, δ2 (refer Figure 3.7b) reveals two major
conformations adopted by adrenaline, ∼ −60° (gauche (-)) and ∼ +60° (gauche (+)). Occasion-
ally, adrenaline also adopts a trans conformation, corresponding to a δ2 value of around ∼ ±180°
(refer Figure S2b). Note that in the experimental crystal structure of the adrenaline-β2AR com-
plex, adrenaline adopts the gauche(-) conformation with δ2 ∼ −60° [126]. The histogram of δ3

which denotes the angle between the molecular planes of Trp6.48 and adrenaline about the
collective variable d showed 3 distinct peaks at ∼ 90°, ∼ 45°, and ∼ 15°(refer Figure 3.7c).

3.4.1 Adrenaline-Receptor Interaction Energy

To identify the key residues that contribute to the state transition, we calculate the residue-
wise interaction energy between the binding site residues and adrenaline. A total of 71 binding
pocket residues that are located within 10Å from the binding pocket were chosen for this
interaction energy calculation. The time series of the total non-bonded energy (a sum of
the electrostatic and van der Waals interactions, denoted by E) between a given residue and
adrenaline was obtained from the unbiased MD trajectories for each chosen binding pocket
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residue. As expected, the highest mean residue-wise interaction energy values belonged to
those residues with strong polar, hydrophobic, hydrogen bonds and van der Waals interactions.

Residues Asp3.32 Val3.33 Asn6.55 Ser5.42 Phe45.52 Phe6.52

Ē (kcal/mol) -7.59 -3.73 -3.59 -2.88 -2.52 -2.16

Table 3.2: Mean residue-wise interaction energy (in kcal/mol) of key binding pocket residues
that interact strongly with adrenaline across all unbiased MD trajectories (TJ1-5).

The recognition of meta-stable states and associated collective variables could be accelerated
and automated using methods such as Principal Component Analysis (PCA), Time-Independent
Component Analysis (TICA), and Variational Approach for Markov Processes (VAMP) [46, 48].
However, it is necessary to note that such methods require large amount of MD data and the
resulting collective variables generated from these methods may be abstract and challenging to
interpret directly [46, 48]. In this study, the collective variable, d is a bio-physics aware feature
as it gives insight on the depth of the ligand within the binding pocket, and also distinguishes
between the meta-stable and most-stable states. Therefore, it can be used for as a target
variable for correlation and machine learning-based studies concerning ligand dynamics [127].

Given the time series of θ, δ1, δ2, δ3, and the residue-wise interaction energy, we examine
which of these time series correlate reasonably well with the time series of d. The calculated
Pearson’s and Spearman’s correlation coefficients for CVs that showed significant correlation
with d are presented in Table 3.3. As observed before, θ shows high correlation with d and
the interaction energies of a few binding pocket residues (Phe6.52, Asn6.55, Trp6.48, Ser5.43

and Ser5.42) also showed reasonable correlation with d. Although these residues appear to be
important for the state transition, a more detailed machine learning-based non-linear correlation
analysis between the interaction energy of individual residues and d is necessary.

Correlation θ Phe6.52 Asn6.55 Trp6.48 Ser5.43 Ser5.42

Pearson 0.62 0.64 0.44 0.40 0.38 0.17
Spearman 0.63 0.56 0.41 0.44 0.37 0.23

Table 3.3: Correlation coefficient values of θ and the residues Phe6.44, Asn6.55, Trp6.48, Ser5.43,
and Ser5.42 with d.

We calculated the feature importance coefficients by fitting the interaction energy versus d

data into the following machine learning regression models: (1) Linear Regression, (2) Decision
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Trees, (3) Random Forest, (4) XGBoost, (5) K Neighbours Regressor [54, 128]. A 10-fold
cross-validation was performed whilst training each of the aforementioned models, and their
average feature importance scores were used to identify and rank the residues that are most
likely responsible for predicting the state of the system.

ML Methods Residues Identified
Linear Regression Phe6.52, Trp6.48, Tyr5.38, Phe6.51, Val3.33

Decision Trees Phe6.52, Trp6.48, Trp3.28, Asp3.32, Asn7.39

Random Forest Phe6.52, Trp6.48, Trp3.28, Asp3.32, Asn7.39

XGBoost Phe6.52, Asn7.39, Trp6.48, Trp3.28, Asp3.32

K Neighbours Asp3.32, Asn7.39, Asn6.55, Phe6.52, Ser5.42

Table 3.4: The five most important residues identified by the ML methods in the decreasing
order of feature importance scores.

All the residues identified in Table 3.4 are also identified in the structural and mutagenesis
data available in the GPCRDB database [14, 91]. Amongst these residues, Phe6.52, Trp6.48,
Asn7.39, Asp3.32 were the four most important residues according to the above ML algorithms.

Phe6.52 participates in edge-to-face aromatic interaction with the ligands and is also coupled
to the rotation of Trp6.48 [125]. Trp6.48 apart from being a transmission switch [81, 82], it
is also a part of the conserved polar network with Asp3.32 and plays a major role in GPCR
activation [79, 127]. Asp3.32 is a part of the 3-7 lock switch and the opening of 3-7 lock is in-
tegral to ligand binding and is one of the first molecular switch to be activated in GPCRs [82].
Asn7.39 forms a hydrogen bond with adrenaline, stabilizing the receptor conformation [94],
which is consistent with prior mutagenesis experiments [87]. Similarly, the K Neighbours algo-
rithm identified Asn6.55 as another important residue which is known to hydrogen bond with
adrenaline, corroborated by mutagenesis experiments [88]. Although the identified residues are
used to determine the movement of adrenaline within the binding pocket, they also play an
significant role in GPCR signaling and activation. Remarkably, all these residues have been
previously identified as important residues in prior studies, solidifying the significance of our
method.
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Figure 3.8: Residues Phe6.52 (blue), Trp6.48 (red), Asn7.39 (orange), and Asp3.32 (yellow) in
top-view were identified as the most important residues by ML methods. Adrenaline (colored
by atom name) is also shown in the Licorice representation.

3.5 Conclusion

As GPCRs are major drug targets, the medicinal and pharmaceutical importance of their
interactions with drugs are widely recognized and researched. However, a detailed elucidation
of the molecular mechanism of drug-induced activation or inhibition of GPCRs is non-trivial
and challenging to probe experimentally. Molecular dynamics simulations have emerged as
a powerful tool to investigate intricate conformational changes that underlie the activation
of these receptors, thereby allowing us to gain detailed insight into the underlying molecular
mechanisms and associated energetics.

In this study, we used umbrella sampling and molecular dynamics simulations to explore
the dynamics of adrenaline in the orthosteric binding pocket of β2AR. Our results revealed the
existence of two distinct stable states for the adrenaline-β2AR complex: a most-stable state
and a meta-stable state that are separated by an energy barrier. Using the K-means clustering
algorithm on multiple unbiased MD trajectories that sampled the energy basins corresponding
to these two states, the most-probable structures corresponding to these states are determined.
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The potential of mean force computed using the umbrella sampling method enabled us to
quantify the relative stability of these states and the activation barriers to transit between
them. We examined the conformational and orientational changes in the binding partners that
occur during the transition between these two stable states.

To better understand the key interactions that govern the transitions between these states,
we computed the pairwise interaction energy between adrenaline and each of the binding pocket
residues of the receptor. Using statistical methods and machine learning-based regression mod-
els, the correlation between the interaction energy of individual binding pocket residues with
adrenaline and the collective variables that describe the transition was examined. Correla-
tion analysis showed that the residues Phe6.52, Asn6.55, Trp6.48, Ser5.43 and, Ser5.42 showed
reasonable correlation with movement of adrenaline within the binding pocket. The results
from machine learning-based analysis revealed that the residues Phe6.52, Trp6.48, Asn7.39, and
Asp3.32 contribute to the motion of adrenaline inside the binding pocket and also govern state
transition. Interestingly, all these residues are known to play a critical role in GPCR signaling
and activation.

In summary, the present work showcases the effectiveness of combining molecular dynamics
and enhanced sampling simulations with machine learning-based statistical methods to charac-
terize the orientational and conformational dynamics of drugs in the binding pockets of GPCRs.
The results and the methodology reported here can provide a basis for an automated pipeline
for molecular-level investigation of ligand dynamics and drug-GPCR interactions and a deeper
understanding of the complex and intricate mechanisms involved in GPCR activation.

3.6 Data and Software Availability

The AMBER software used to perform MD simulations is available at https://ambermd.

org/GetAmber.php. The CHARMM-GUI software used to build the membrane models of the re-
ceptor for input to MD simulations is available at https://www.charmm-gui.org/?doc=input.
The AMBER input files: coordinates, and parameter files used for the current study is pro-
vided in the Supporting Information. The VMD software used for visualization is available
open-source at https://www.ks.uiuc.edu/Research/vmd/. The protein structures of the
adrenaline-free (PDB ID: 2RH1) and adrenaline-bound (PDB ID: 4LDO) β2AR are retrievable
free of charge from the Protein Data Bank (https://www.rcsb.org/). The GPCRDB database
used for BW numbering and identifying interacting residues is available at https://gpcrdb.

org/. The dataset and code used for correlation and machine learning-based regression analysis
is made publicly available at https://github.com/K7S3/GPCR_ML_Residue_Importance.
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3.7 Supporting Information Available

• Time-series of d and θ (Figure S1), Time-series of δ1, δ2, and δ3 (Figure S2), histogram
demonstrating overlap between umbrella sampling windows (Figure S3), comparison with
trajectories in GPCRmd database (Figure S4), centroid structures of all 10 clusters ob-
tained from K-means clustering (Figure S5), and brief overview on the AMBER input
and parameter files included (PDF)

• AMBER coordinates, structures, parameters, restart, and input files, cluster average and
centroid structures (b2ar_ale_dynamics.zip)

This material is available in Appendix: Supporting Information Chapter and is also available
free of charge at https://pubs.acs.org/doi/10.1021/acs.jcim.3c00401.
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Chapter 4

Unraveling G-Protein Activation and GDP binding using
Molecular Dynamics Simulations and Umbrella Sampling
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4.1 Introduction

As we had previously discussed in Chapter 2, the G-Protein Coupled Receptors (GPCRs)
are seven trans-membrane (7 TM) that play a crucial role in cellular signaling and are respon-
sible for vital physiological functions, including taste, vision, olfaction, and neuro-transmission.
They are coupled to the intracellular heterotrimeric G-Protein and also serve as primary drug
targets for around one-third of all the drugs produced. In this study we focus on agonist induced
dynamic and energetic changes with G-Protein. The binding of an agonist induces conforma-
tional changes in the GPCR, and activates the GPCR. Once the GPCR is activated, allosteric
transition is forced wherein the intracellular G-Protein gets activated and is forced to leave the
GPCR. The intracellular G-Protein consists of three sub-units Gα, Gβ, and Gγ. A guanosine
di-phosphate molecule (GDP) is bound to the α sub-unit in the inactive state of G-Protein.
When the G-Protein gets activated, conformational changes occur in the G-Protein, favoring
the dissociation of the GDP molecule in exchange for guanosine tri-phosphate (GTP). The cell
typically maintains a GTP:GDP ratio of 10:1 in the cytoplasm, ensuring a GTP molecule is
readily available for this exchange. Moreover, the binding of the GTP molecule enables confor-
mational changes that allow the dissociation of the active Gα sub-unit (bound to GTP) from
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the Gβγ dimer and the GPCR. Upon dissociation, the Gα and the Gβγ dimer bind to different
effector proteins for the downstream signaling cascade.

In this study, we model the active state β2AR bound to adrenaline and Gs protein. Further,
we employ molecular dynamics, and umbrella sampling to study the dynamical and energetic
changes involved in the adrenaline-induced β2AR activation and the subsequent Gs activation.
Additionally, we also study the dissociation of Gs protein from the β2AR and the dissociation of
GDP from Gα. We also build end state models from completely inactive end states of β2AR-Gs

complex, to their completely active end states in the presence of adrenaline and GDP/GTP
molecules.

4.2 Methods

4.2.1 Models

4.2.1.1 GDP Unbound Model

The crystal structures of the unbound inactive (PDB ID: 2RH1)[93] and the G-Protein bound
(PDB ID: 3SN6)[129] states of the β2 adrenergic receptor were used as initial configurations
for molecular dynamics simulations. These receptors were inserted into the pre-equilibrated
phosphatidylcholine (POPC) lipid bilayer using the OPM database[97] and CHARMM-GUI
software[98–102]. The total numbers of POPC molecules in the lipid bilayers of the G-Protein
bound and unbound β2AR models are 383 and 319, respectively. The Amber Lipid17[103] and
AMBER19SB[104] force fields were used for the lipid bilayer and the receptors, respectively.
The Generalized Amber Force Field (GAFF)[105, 106] with the AM1-BCC[107] partial charges
for the adrenaline and the TIP3P[108] model for water were used. A suitable number of sodium
and chloride ions were added to the systems to maintain a salt concentration of 0.15 M. The
box-dimensions for the resulting models were 110 Å x 110 Å x 140 Å with 36331 water molecules
for the inactive state and 120 Å x 120 Å x 160 Å with 53622 water molecules for the active
state.

4.2.1.2 GDP Bound Model

Two different methods were used to build the GDP bound models: 1) Docking GDP to
G-Protein at its binding site. 2) Use structure alignment with existing PDB structures.

4.2.1.3 Docking Based Model

The GDP binding region on the Gα of G-Protein is determined by guanine recognition motif,
a P-loop that envelops the a and b phosphates of GTP, and two dynamic structural elements
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Figure 4.1: A snapshot of β2 adrenergic receptor bound to G-Protein (based on PDB ID: 3SN6)
embedded in a hydrated POPC lipid bilayer membrane with one head-group PC shown in red
and two tail-groups OL and PA shown in green. Water molecules are shown in grey color.
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called switch I and switch II [130]. Following which, three residues were identified to estimate
the docking site for the GDP on the Gα as shown in figure 4.2.

Figure 4.2: Binding Site Determination for GDP

The geometric center of the three residues was calculated and a bounding box of 20x20x20Å
was used for docking with the SMINA software package[131]. Subsequently, nine docked poses
for the GDP in the binding pocket were produced and the one with the best score to be used as
the starting structure for further simulations. However, docking based method for determining
ligand pose is used only when the crystal structure for the bound state of the ligand is unknown.
In our case, we have both the GDP and GTP bound states available, and therefore we used
structural alignment to model the states.

4.2.1.4 Structure Alignment Based Model

To model the combined adrenaline-β2AR-G-Protein-GDP complex, we combined three dif-
ferent protein structures with PDB IDs: 4LDO, 3SN6, and 6EG8 based on structure alignment
of the common β2AR in the above files. The VMD tool, MultiSeq was used for structure
alignment. The combined structure was modified to include adrenaline, β2AR, G-Protein, and
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GDP. The combined model was then embedded in POPC bilayer and was used as input for
CHARMM-GUI.

4.2.2 Molecular Dynamics Simulation

The potential energies of these membrane models were minimized using steepest gradient
descent for 500000 cycles and conjugate gradient descent for another 500000 cycles[111, 112].
The energy minimized systems were gradually heated to 303.15 K at 1 atm pressure and
equilibrated there for 5 ns, followed by a production run of 50 ns under constant temper-
ature and constant pressure conditions. The temperature was controlled using the Langevin
thermostat[113], and the pressure was controlled using the anisotropic Berendsen barostat[114].
SHAKE algorithm[115] was used to constrain bonds involving hydrogen atoms. The particle
mesh Ewald[116] approach was used for treating the electrostatic interactions with a real-space
cutoff distance of 10 Å. The equations of motion were integrated using the velocity Verlet
algorithm[117] with a time step of 2 fs. All the simulations, including the enhanced sampling
simulations, were done using the AMBER18 software[118]. All the trajectory analyses were
carried out using the Amber CPPTRAJ[119] and VMD package[120].

4.2.3 Umbrella Sampling

Umbrella sampling simulations were performed on the G-Protein bound β2AR systems in the
absence of GDP with different collective variables to study G-Protein dissociation from GPCR.
Similarly, US simulations were performed on G-Protein bound β2AR system in the presence of
GDP to study GDP dissociation.

4.2.3.1 Collective Variables

1. Cd1: Distance (d1) between the Cα of residue Y219 of β2AR and the Y391 Cα of residue
of G-protein.

2. Cd2: Distance (d2) between the GDP’s phosphate groups and the backbone of
Lys52G.H1.1-Thr54G.H1.3 in the Gαq subunit.

The collective variables, d1 was varied from 4.0Å to 30.0Å in steps of 0.5Å resulting in a
total of 53 windows and d2 was varied from 1.0Å to 30.0Å in step of 0.5Å resulting in a total
of 59 windows.

Each US simulation (6 ns trajectory per window) was performed in the NPT ensemble, under
the same conditions as those of unbiased MD runs. The spring constant used for the harmonic
biasing potential was 10 Kcal/mol/Å2 for production and 200 Kcal/mol/Å2 for minimization.
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The Weighted Histogram Analysis Method (WHAM) (membrane.urmc.rochester.edu/?page_

id=126) was used to determine the potential of mean force (PMF) from CV trajectories obtained
from the US simulations. The last 5 ns of the umbrella sampling trajectory per window was
used for the WHAM.

4.2.3.2 Modeling End States

Figure 4.3: The figure shows the three states, R0, Ri, and R1, depicting the GPCR and G-
Protein activation pathway. Created with BioRender.com

Model R0 was prepared by structural alignment of 4 PDB files with PDB IDs: 2RH1,
4LDO, 3SN6, and 6EG8 to include inactive state β2AR bound to GDP-bound Gs. Adrenaline
was translated 25Å in the z-axis from its orthosteric binding site, placing it directly above the
extracellular loop 2 (ECL2), one of the first point of contacts for adrenaline during GPCR
activation. Model Ri was prepared by structural alignment of 3 PDB files with PDB IDs:
4LDO, 3SN6, 6EG8 to include active state β2AR with adrenaline bound at its orthosteric
binding pocket and GDP-bound Gs.
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To prepare the models R0 and Ri for NEB, the inactive and active β2AR were sequence-
aligned to ensure 100% similarity. The missing residues in the sequence-aligned models of
inactive and active β2AR were modelled to a target sequence obtained from the gene encoding
data of β2AR using the online SWISS-MODEL software. Furthermore, the models obtained
were subjected to 500000 cycles of steepest gradient minimization and 500000 cycles of conjugate
gradient minimization.

Model R1 was prepared by structural alignment of 4 PDB files with PDB IDs: 4LDO, 3SN6,
1AZT, 1XHM to include adrenaline-bound active β2AR, GTP-bound Gα and Gβγ sub-units.

The final models R0, Ri, and R1 contained a total of 8459 protein and ligand atoms. These
receptors were inserted into the pre-equilibrated phosphatidylcholine (POPC) lipid bilayer us-
ing the OPM database[97] and CHARMM-GUI software[98–102]. The total numbers of POPC
molecules in the models were 536 molecules. The 79487 water molecules and 536 POPC
molecules. The Amber Lipid17[103] and AMBER19SB[104] force fields were used for the lipid
bilayer and the receptors, respectively. The Generalized Amber Force Field (GAFF)[105, 106]
with the AM1-BCC[107] partial charges for the adrenaline and the TIP3P[108] model for wa-
ter were used. A suitable number of sodium and chloride ions were added to the systems to
maintain a salt concentration of 0.15 M. The box-dimensions for the resulting models were 150
Å x 150 Å x 176 Å with 79487 water molecules. The total number of atoms were same across
R0, Ri and R1, and amounted to 317346 atoms.

4.3 Results and Discussion

4.3.0.1 G-Protein Dissociation

The potential of mean force (PMF) was derived from the umbrella sampling simulations of
dissociating G-Protein from β2AR on the GDP-free (PDB ID: 3SN6) and GDP-bound active-
state β2AR-Gs models. The PMF on the GDP-free model indicates a global energy minimum
of d1 = 12.6Å and the PMF on the GDP-bound model indicates a local energy minimum at
d1 = 12.6Å and a global energy minimum at d1 = 22.2Å as shown in figure 4.4. The value of d
calculated from the GDP-free crystal structure of the G-Protein bound β2AR (PDB ID: 3SN6)
is 12.2Å. There is a steep increase in the free energy F(d) as the G-Protein moves closer in the
binding pocket. However, the same pattern is not observed as the value of d increases. The
free energy increases somewhat similarly as the value of d1 increases till d1 = 16.3Å for the
GDP-free model. Afterwards, the rate of increase in the free energy decreases and the graph
plateaus at higher values of d at around d1 ∼ 30Å for the GDP-free model.

In the GDP-bound model, we can observe two stable states of the system, a meta-stable
state at d1 = 12.6Å and the most-stable state at d = 22.2Å. There is a local maximum
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(a) (b)

Figure 4.4: Free Energy Profile of G-Protein Unbinding (a) in the absence of GDP (b) in the
presence of GDP

at d = 16.0Å and the energy barrier to cross from the meta-stable state to the most-stable
state is around 8 kcal/mol and the free energy required for the reverse transition is around 13
kcal/mol. Moreover, the rate of increase in the free energy F(d) for the GDP-bound model as
the G-Protein moves closer is almost half that of GDP-free model for the same. The binding
of GDP appears to have reduced the overall energy of the system, and also has created a more
stable state further away from the G-Protein’s original binding site. As the value of d increases
greater than d = 22.2Å, there is very minimal increase in the free energy. This indicates that
the binding of GDP to the G-Protein, favours the dissociation of G-Protein from β2AR.

4.3.0.2 GDP Dissociation

Similarly, the potential of mean force derived from the umbrella sampling simulation of the
GDP bound active β2AR-Gs model (Ri) for dissociating the GDP from the binding pocket of
Gα indicates a global energy minimum at d2=5.2Åas shown in figure 4.5. Experimentally, the
free energy required to dissociate GDP from it’s binding pocket is around 10 kcal/mol. This can
also be seen in the PMF plot, the free energy increases gradually till 10 kcal/mol and reaches
a maximum of around 30 kcal/mol at d2 ∼ 20Å. Moreover, a plateau is observed in the free
energy as d2 is increased beyond 20Å. A very steep increase in free energy F(d2) is observed
when GDP is brought closer within the Gα sub-unit.
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Figure 4.5: Free Energy Profile of GDP unbinding.

4.4 Conclusion

In conclusion, the potential of mean force (PMF) calculations obtained from umbrella sam-
pling simulations provide valuable insights into the dissociation process of G-Protein from the
β2AR receptor in both GDP-free and GDP-bound states. In the GDP-free model, the PMF
shows a steep increase in free energy as the G-Protein approaches the binding pocket, with
a plateau observed at higher distances. On the other hand, in the GDP-bound model, two
stable states are identified, with a local energy maximum between them. The binding of GDP
appears to reduce the overall energy and stabilizes the G-Protein in a more distant position.
The PMF analysis suggests that the binding of GDP favors the dissociation of G-Protein from
the β2AR receptor. Additionally, the PMF calculations for GDP dissociation from the Gα

sub-unit indicate a global energy minimum at a certain distance, with a steep increase in free
energy as GDP approaches the binding pocket. These findings enhance our understanding of
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the complex dynamics involved in G-Protein dissociation and provide important information
for drug design targeting the β2AR receptor.

Furthermore, three models (R0, Ri, R1) with equal number of atoms were built by combining
crystal structures of β2AR, G-Protein, and ligands to model inactive, intermediate and active
state of β2AR-Gs systems. These models were further inserted into lipid bilayers, and provide
end points which can be used for further Nudged Elastic Band (NEB) calculations. A future
study using the NEB simulations could provide insights into GPCR and G-Protein signaling
by analyzing the energy landscape and transition pathways, aiding our understanding of both
the GPCR and G-Protein activation and signaling dynamics.
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Chapter 5

Conclusion

In this thesis, we have employed a combination of molecular dynamics (MD) simulations,
enhanced sampling techniques, statistical analysis, and machine learning-based regression mod-
els to gain insights into the intricate mechanisms underlying drug-G protein-coupled receptor
(GPCR) interactions and G-protein dissociation from the β2AR receptor. Our findings shed
light on the conformational changes, energetics, and key residues involved in these processes,
providing a deeper understanding of GPCR activation and signaling dynamics.

In Chapter 3, we focused on investigating the dynamics of adrenaline in the orthosteric
binding pocket of the β2AR receptor using umbrella sampling and MD simulations. Our results
revealed the existence of two distinct stable states for the adrenaline-β2AR complex, separated
by an energy barrier. Through K-means clustering and analysis of multiple unbiased MD trajec-
tories, we identified the most-probable structures corresponding to these states. By quantifying
the relative stability and activation barriers between these states using the potential of mean
force, we gained valuable insights into the energetics of the transition. Moreover, we exam-
ined the conformational and orientational changes occurring in the binding pocket during this
transition.

To better understand the key interactions governing the transition between the stable states,
we computed the pairwise interaction energy between adrenaline and each binding pocket
residue of the receptor. Employing statistical methods and machine learning-based regression
models, we established correlations between the interaction energy of individual residues and
the collective variables describing the transition. Notably, residues Phe6.52, Trp6.48, Asn7.39,
and Asp3.32 emerged as crucial contributors to the motion of adrenaline within the binding
pocket and the overall state transition. Significantly, these residues are known to play critical
roles in GPCR signaling and activation, highlighting their importance in the dynamics of ligand
binding and receptor activation.

In Chapter 4, our focus shifted to the dissociation process of the G-protein from the β2AR

receptor in both GDP-free and GDP-bound states. Through potential of mean force (PMF)
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calculations obtained from umbrella sampling simulations, we gained valuable insights into the
energy landscape and stability of the G-protein dissociation process. In the GDP-free model,
the PMF exhibited a steep increase in free energy as the G-protein approached the binding
pocket, with a plateau observed at higher distances. Conversely, in the GDP-bound model, two
stable states were identified, separated by a local energy maximum. Interestingly, the binding
of GDP appeared to reduce the overall energy and stabilize the G-protein in a more distant
position, favoring its dissociation from the β2AR receptor. Furthermore, PMF calculations for
GDP dissociation from the Gα subunit revealed a global energy minimum at a certain distance,
followed by a steep increase in free energy as GDP approached the binding pocket.

To further enhance our understanding of GPCR and G-protein signaling, we constructed
three models representing the inactive, intermediate, and active states of the β2AR-Gs system.
These models, built by combining crystal structures of the β2AR, G-protein, and ligands, were
inserted into lipid bilayers and can serve as endpoints for future Nudged Elastic Band (NEB)
calculations. We note that further NEB simulations based on the above states may hold the
potential to provide detailed insights into the energy landscape and transition pathways involved
in GPCR and G-protein signaling, offering a comprehensive understanding of their activation
and signaling dynamics.

Overall, this thesis demonstrates the effectiveness of combining MD simulations, enhanced
sampling techniques, statistical analysis, and machine learning approaches to unravel the com-
plex dynamics of ligand-receptor interactions and GPCR signaling. By providing detailed in-
sights into the conformational changes, energetics, and key residues involved, our study con-
tributes to the broader understanding of GPCR activation and the development of novel thera-
peutics targeting GPCRs. The methodologies and findings presented here lay the foundation for
an automated pipeline for investigating ligand dynamics and drug-GPCR interactions, fostering
future research in this field.
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Appendix A

Supporting Information for Chapter 3

A.1 Timeseries of d and θ

(a)

(b)

Figure A.1: Time series of (a) d (b) θ obtained from the 500 ns unbiased MD trajectories
(TJ1-5) represented by colors blue, yellow, brown, green and red respectively
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A.2 Time series of δ1, δ2, and δ3

(a)

(b)

(c)

Figure A.2: Time series of (a) δ1 (b) δ2 (c) δ3 obtained from the 500 ns unbiased MD trajectories
(TJ1-5) represented by colors blue, yellow, brown, green and red respectively
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A.3 Sufficiency of Umbrella Sampling Trajectories

The histogram A.3 shows that there is sufficient overlap between any two consecutive
windows.

Figure A.3: Histograms of 33 Umbrella Sampling windows of collective variable d varying from
4 Å to 20 Å.

A.4 Comparison with GPCRmd Trajectories

Here, we compared our unbiased MD trajectories of adrenaline-bound active state MD
trajectories with the simulations in the GPCRmd database. However, it is important to
acknowledge the distinctions between our model and the one employed in GPCRmd. Our
adrenaline-bound active β2AR model contains additional components, namely T4-lysozyme
and a G-Protein mimetic nanobody, which allows for the stabilization of the receptor in its
active state. Furthermore, our simulations employ a 2 fs timestep and utilize the AMBER
force field in conjunction with the AMBER/18 software, while the trajectories in GPCRmd
(https://submission.gpcrmd.org/view/117/) employ a 4 fs timestep and the CHARMM
36M force field with ACEMD software.

Figure A.4: Timeseries of d of adrenaline-bound active β2AR simulations (TJ1-5) and the 3
trajectories available in GPCRmd database.
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Given these differences, a direct comparison between our results and those from GPCRmd
is limited. Nevertheless, we have compared the time-series of d in both our trajectories and the
GPCRmd and found that the minimum value of d was 8.27Å (refer Figure A.4). This value is
higher than the meta-stable d value, 6.8 Å. However, it is to be noted that the PMF plots for
the same collective variable d could be different based on the nature of the intracellular binding
partner [110].

A.5 K-Means Clustering Analysis

Structures obtained through K-Means Clustering Analysis with K=10 clusters.
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(a) c0 (b) c1

(c) c2 (d) c3

(e) c4 (f) c5

(g) c6 (h) c7

(i) c8 (j) c9

Figure A.5: Figures a-j represent the representative median structures of clusters c0-c9 ob-
tained from the K-means clustering algorithm (magenta) aligned on the β2AR-adrenaline crys-
tal structure (PDB ID: 4LDO, cyan). Adrenaline is colored in red in the clusters and its aligned
crystallographic poses are colored in yellow.
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A.6 Files Included

The following files related to the study of adrenaline dynamics in β2AR are included
in the b2ar_ale_dynamics.zip file available at https://pubs.acs.org/doi/10.1021/

acs.jcim.3c00401. The b2ar_ale_dynamics.zip contains three directories Models,
AMBER_Input_Files, and Clusters.

A.7 Models

The Models directory contains the coordinates, structures, parameters and restart files ob-
tained after embedding the β2AR in POPC bi-layer obtained using CHARMM-GUI. It contains
two sub-directories 2rh1 (adrenaline-free model, corresponding to PDB ID: 2RH1) and 4ldo

(adrenaline-bound model, corresponding to PDB ID: 4LDO).
In the sub-directory, 2rh1, the following files are included:

1. 2rh1_membrane_model.pdb (Coordinate File for unbiased MD)

2. 2rh1_membrane_model.psf (Structure File for unbiased MD)

3. 2rh1_membrane_model.rst7 (AMBER Restart File for further simulations)

4. 2rh1_membrane_model.parm7 (AMBER Parameter File)

In the sub-directory, 4ldo, the following files are included:

1. 4ldo_membrane_model.pdb (Coordinate File for unbiased MD)

2. 4ldo_membrane_model.psf (Structure File for unbiased MD)

3. 4ldo_membrane_model.rst7 (AMBER Restart File for further simulations)

4. 4ldo_membrane_model.parm7 (AMBER Parameter File)

5. complex.pdb (Coordinate File for Umbrella Sampling Runs)

A.8 AMBER Input Files

The AMBER minimization, heating, equilibration and production input files for unbiased
MD simulations is included. Similar protocol was followed for Umbrella Sampling (US) simu-
lations with harmonic restraints whose restraint files are included.

1. 01_Min.in (Input File for Minimization)
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2. 02_Heat.in (Input File for Heating till 100K)

3. 03_Heat.in (Input File for Heating from 100K to 303K)

4. 04_Hold.in (Input File for 5 ns Equilibration run)

5. 05_Prod.in (Input File for 50 ns Production run)

6. rest_min (Restraint File for US Minimization)

7. rest_prod (Restraint File for US Equilibration and Production)

A.9 Clusters

1. rep.c0−9.pdb (Contains the representative structures (cluster centroid) for clusters c0 to
c9)

2. avg.c0−9.pdb (Contains the average structures for clusters c0 to c9)
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