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Abstract

Drought is a natural hazard with a significant impact on the economy, agriculture, and environment. It is

defined as  a  significant  decrease in  water  availability  in  all  its  forms.  Droughts  are  estimated using

drought indices.  Drought indices are numerical measurements that describe the severity of drought by

combining data from one or more variables (indicators),  such as precipitation and evapotranspiration

(ET), into a single number. Standardized Precipitation Evapotranspiration Index (SPEI) and Standardized

precipitation Actual Evapotranspiration Index (SPAEI) are the drought indices used to estimate drought

index, which take both precipitation, potential and actual evapotranspiration into account.  Since ET is a

critical factor in estimating drought, well-grounded ET estimations are required. The major forms of ET

are Potential evapotranspiration (PET) and Actual evapotranspiration (AET). PET is described as the loss

of water from a significant area that is equally covered with short, green crops that are actively growing.

PET is regarded as the maximum amount of evapotranspiration. AET is defined as the total amount of

water used in evaporation and transpiration by a crop during the entire growing season. Various methods

have been developed to estimate PET and AET depending upon the availability of hydro meteorological

variables. Various empirical based methods and hydrological model based simulations of PET and AET

have been developed. Advancement of data-driven algorithms also have been extensively developed to

estimate ET. In this context,  many studies used empirical based estimates of ET for the calculation of

drought  indices.  None of  these studies  analyzed the sensitivity  of  various  ET methods to  assess  the

drought characteristics. Thus, the present study aimed to include various PET and AET methods in the

drought characterization. Various empirical methods, such as  Penman-Monteith, Hargreaves, Turc, and

Priestley-Taylor and data-driven method of Artificial Neural Network (ANN) has been used to estimate

PET. The input variables used to estimate these methods are temperature, wind speed, solar radiation, and

relative humidity which are obtained over the period of 1965 to 2015 for Hyderabad station. ANN model

was trained and tested with climate variables as input variables and various empirical models as reference

models  to  predict  the  best  PET method.  Penman-Monteith,  Hargreaves,  and Turc method performed

better with ANN model estimates. Later, to study the impact of various empirical based PET estimates on

drought estimation, SPEI is calculated using various PET estimates at different time scales.  All other

methods are  compared with the  Penman-Monteith  method,  which is  considered the standard method

because it considers the main meteorological factors. Hargreaves and Turc methods performed better with
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the  standard method and these methods can be useful  in  estimating drought  when minimum data  is

available. 

To assess the drought events accurately by various drought indices it is necessary to predict the

hydro-meteorological variables (PET and AET) precisely. There are several challenges in estimating

AET and PET at  the fine spatial  resolution.  There are various empirical  models (Budyko,  Penman-

Monteith, Hargreaves, and Turc) for estimating AET and PET. Still, these empirical methods does not

account for the catchment characteristics, which may underestimates the actual amount of hydrological

variables. Further, satellite-based remote sensing data are accessible for extracting evapotranspiration

(ET) values. It provides global coverage and continuous observations of land surface variables affecting

ET. Another conceptual based approach to estimate PET and AET at catchment scale is hydrological

model such as  Soil and Water Assessment Tool (SWAT).  The present study aimed to include various

approaches of  empirical  (Budyko,  Penman-Monteith,  Hargreaves,  and Turc),  modeled (SWAT),  and

remote sensing in the drought characterization using SPEI and SPAEI. Remote sensing PET and AET

are considered as standard methods to compare both empirical and modeled PET and AET estimates.

The present  methodology was tested on a dry-sub-humid river catchment of India,  the Tungabhadra

River catchment.  It is recommended to use PET instead of AET when estimating drought indices as

SPEI values performed relatively better than SPAEI. In the present study it is observed that although

PET and AET estimates vary with different models, drought indices SPEI and SPAEI are not differing

much at annual scales. Hargreaves and Penman-Monteith performed better results compared to remote

sensing method in SPEI calculations. And for SPAEI, Budyko and Turc performed better results. Thus,

the present study concludes that empirical models correlated better with the remote sensing data. The

study will  be  prominent  for  ungauged river  basins,  where  detailed hydrological  data  is  limited and

difficult to implement hydrological models, empirical based PET and AET estimates can be better choice

for drought characterization.
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Chapter 1

Introduction

1.1 Background

A drought is a period of time during which a region or area receives less precipitation than usual. Lack of

sufficient precipitation, whether rain or snow, can result in lessened stream flow, crop damage, decreased

soil moisture or groundwater, as well as general water scarcity. Droughts and floods are two of the most

frequent and unavoidable natural calamities that affect people [1]. All life needs access to safe drinking

water, and during a drought, water supplies may become scarce.  Further, crops require water in order to

grow and must be irrigated when not enough precipitation falls to naturally water them. During a drought

period,  making  it  impossible  to  irrigate  crops,  which  leads  to  their  demise. Precipitation  and

Evapotranspiration (ET) are crucial parameters to take into account when assessing drought due to their

close relationship with available water resources in the hydrologic cycle [2]. Since ET is a critical factor

in estimating drought, well-grounded accurate ET estimations are required. ET is when water starting

from an expansive scope of sources is moved from the soil and vegetation layer to the atmosphere. Water

loss from a vegetative surface through the consolidated cycles of plant transpiration, soil, and atmospheric

evaporation. ET from the land surface is critical for maintaining the balance of land surface water-lakes-

reservoirs as well as the energy balance of the earth surface. Since ancient times, people have understood

the  significance  of  ET  in  maintaining  the  hydrologic  cycle  on  a  continental  and  global  scale  and

replenishing freshwater supplies.  Water is lost from the soil surface through evaporation and from the

crop by transpiration. These two processes are combined to form evapotranspiration. When liquid water is

transformed into water vapor and evacuated from a surface into the air, such as a lake, soil, or moist

plants, evaporation takes place. It causes heat loss from the evaporating surface in the form of latent heat,

which can be compensated for by radiative or sensible-heat  transfer or  heat  transfer from within the

evaporating body to the surface. Temperature, wind speed, surface area, and humidity are the four factors

that affect evaporation. Transpiration is the process through which water from plant tissues is lost to the

atmosphere, mostly through a tiny hole called a stomata found in the leaves of plants and grasses. Water

is absorbed from the soil through the roots and transported to the leaves via the vascular system of the

roots, stem, and branches. The water is then transferred from the leaf’s vascular system to the stomatal

walls, where it evaporates. Like direct evaporation, the energy source, vapor pressure gradient, and wind

influence transpiration. Therefore,  radiation, air temperature, humidity, and wind should be considered

when evaluating transpiration. The transpiration rate is also influenced by the soil water content, capacity
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to  transport  water  to  the  roots,  waterlogging,  and  soil  water  salinity.  Evaporation  and  transpiration

coincide, and it is difficult to distinguish between them. The amount of solar radiation that reaches the

soil surface and the amount of water in the topsoil is the main factor affecting how quickly a cropped soil

evaporates. Over the course of the growing season, this fraction falls as the crop matures and the crop

canopy shades a more significant portion of the land. When the crop is tiny, soil evaporation accounts for

most water loss. However, after the crop matures and has completely covered the soil, transpiration takes

over as the primary mechanism.

In order to allocate water effectively, regulate irrigation, analyses the impacts of shifting land use on

water output, evaluate the environment, and create optimal management practices to safeguard surface

and groundwater quantity and quality, accurate measurement of ET is essential. 

1.2 Motivation

Droughts  are  one  of  the  most  weather-related  natural  disasters,  affecting  socioeconomic  and

environmental systems in all temperature zones with varying frequency, severity, and duration [3] [4]. A

variety  of  hydro  meteorological  processes  can  lead  to  droughts  by  suppressing  precipitation  and/or

limiting surface water or groundwater availability, which can lead to conditions that are significantly drier

than usual or that otherwise restrict moisture availability to a point where it could cause damage. Majorly

droughts  are  classified  into:  meteorological,  agricultural,  hydrological,  and  socioeconomic  [5],  [6].

Meteorological drought is mostly a short-term drought occurrence that is brought on by a deficit from a

lack  of  rainfall  [7].  Rainfall  deficit  impact  the  streamflow availabilities  and consequently leading  to

Hydrological drought [8]. It often impacts water levels from average to low, rendering them insufficient

to satisfy the needs of humans and ecosystems [9]. The evaluation of hydrological drought is crucial to

managing  water  supplies.  Because  human  activities  depend  on  either  surface  water  or  groundwater

resources, hydrological drought assessment is critical [10]. Agricultural drought is indicated by the health

of the plants and the pattern of quantitative changes in the soil moisture [11].  

Drought indices serve as both indicators and tool for assessing droughts and their severity.  [12],

[13]. There are many different drought indicators that may be used as tools to monitor meteorological and

hydrological droughts, yet there is no standard technique to describe drought conditions. Depending on

the drought index in question, different input variables are needed for the computation, but they often

include things like precipitation, temperature, the soil  ability to store water,  and other things that are

indicative of the moisture in the system. The Palmer Drought Severity Index (PDSI), Palmer Z-Index,

Standardized  Precipitation  Index  (SPI),  and  Standardized  Precipitation Evapotranspiration  Index

(SPEI) are  a  few  examples  of  meteorological  drought  indexes.  The  goal  of  hydrological  drought
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indicators is to provide a thorough description of the hydrologic effects of delayed drought. Each of these

indices formulae calls for a distinct set of input variables. The most significant and well-known indicators

of hydrological drought are Reclamation Drought Index (RDI), Standardized Runoff Index (SRI). Out of

all drought indices, SPEI is used to estimate meteorological drought using both precipitation and PET.

The climatic water balance is computed using Potential evapotranspiration (PET). Although it has been

demonstrated  that  a  variety  of  meteorological  factors  may  be  employed  to  provide  accurate  PET

calculations, an estimation of the overall water balance is sufficient when referring to drought indices.

Estimating the water balance provides additional data needed for determining Actual evapotranspiration

(AET)  as  well  as  aids  in  keeping  computations  concise.  [14] Originally  suggested  the  SPEI  as  an

enhanced drought index that  is  particularly suitable for research of the impact  of global  warming on

drought severity. Similar steps are used to calculate the SPI and the SPEI. The SPEI, on the other hand,

utilizes  climatic  water  balance,  which is  the  difference between precipitation and PET.  Standardized

Precipitation Actual Evapotranspiration Index (SPAEI) is similar to SPEI, with the difference being the

use of AET in the place of PET. Many studies have used either empirical or hydrological, or remote

sensing evapotranspiration data for drought assessment. The primary motivation of the study is to address

the uncertainty due to evapotranspiration in estimating drought. The study motivated to estimate PET and

AET using different methods which include empirical, hydrological, and remote sensing and calculate

SPEI and SPAEI accordingly as there a necessity to study the sensitivity of PET and AET in drought

assessment. The study compared empirical and hydrological based PET and AET induced drought indices

to remote sensing drought index as a dependable and effective method. 

1.3 Introduction

Drought  indices  depending on PET and AET require  better  estimates  of these complex hydrological

variables. Measurements of evapotranspiration, which combines transpiration and evaporation, can help

to better understand agricultural water needs, irrigation schedules, and watershed management. There are

three types of evapotranspiration: reference evapotranspiration (ETo), AET, and PET. When water is not a

limiting constraint, PET is described as the loss of water from a significant area that is equally covered

with  short,  green  crops  that  are  actively  growing.  It  is  regarded  as  the  maximum  amount  of

evapotranspiration a crop may get in a specific period of time. Under the same climatic circumstances,

PET cannot be greater than evaporation of surface of free water. This is true in humid environments. The

evaporative power of the air, which is affected by temperature, humidity, wind, and radiation, determines

the rate of PET. ETo is a resultant of a standard calculation of the quantity of water transpired by a
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reference crop, usually grass, and evaporated from adjacent soil surfaces. Although both PET and ET o

provide estimates of atmospheric evaporative demand, they are based on different ideas, concepts, and

application fields. They have various equations that can help to differentiate the terms. However, many

researchers  have  treated  PET  and  ETo as  identical  concepts  and  used  similar  equations  for  their

estimation. AET is defined as the total amount of water used in evaporation and transpiration by a crop

during the entire growing season. AET remains less than maximum evapotranspiration when the available

soil  moisture  is  limited.  If  sufficient  water is  available  to  the  crop,  then the AET becomes equal  to

maximum evapotranspiration. 

 SPEI fulfills the requirements of a drought index since it  is a multi-scalar character used to

detect, monitor, and analyze droughts. The SPEI can evaluate drought severity based on its intensity and

length and the beginning and end of drought events, just like the sc-PDSI [15] and the SPI [16]. The SPEI

may be computed throughout various climates, allowing a comparison of drought severity over time and

place. In addition, [17] pointed out that drought indices must be straightforward to construct, statistically

reliable, and have an easy-to-understand computation process. The SPEI complies with every one of these

demands. SPEI is based on the monthly difference between precipitation and PET. This is an example of

a  straightforward  climatic  water  balance  that  is  used  to  compute  the  SPEI  at  various  time  frames.

However, a significant benefit of the SPEI over the most popular drought indices considering ET impact

on drought severity into account is that it can identify various drought types and their effects in relation to

global warming because of its multi-scalar properties. The advantages of SPEI over other indices are that

they compute climatological  anomalies for periods of precise duration,  do not  need any assumptions

about the system being modelled,  and simply require climatological  information,  which is  frequently

accessible and of sufficient quality. Similar to SPEI, a recent drought index of SPAEI is also assessed

based on precipitation and AET. The SPAEI drought index proposal takes into account the combined

impact of the meteorological and actual water budget and has the capacity to assess the consequences of

climatic and hydrological changes.[18]. There are many methods to estimate PET and AET. However, the

choice of PET and AET methods for drought assessment remains challenging. The uncertainty in the

estimation of PET and AET can lead to any variation in the drought indicators. Hence, the study aimed to

analyze drought using different PET and AET methods.   
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1.4 Problem definition

 SPEI and SPAEI are the drought indices used to estimate drought index, which take both precipitation

and evapotranspiration into account.  Most  studies estimated the drought  index using either  empirical

based evapotranspiration estimates. The present study aimed to estimate the drought index of SPEI using

Empirical,  hydrological,  and remote sensing  based  PET and AET estimates.  PET is  estimated  using

Empirical  methods like  Penman-Monteith,  Hargreaves,  Priestley-Taylor,  and Turc.  AET is  calculated

using empirical methods like Budyko and Turc. The hydrological method SWAT estimates both PET and

AET based on the climate data estimates. Machine Learning based estimates of PET and AET were

simulated using Artificial Neural Networks (ANN). Remote sensing based PET and AET estimates of

Moderate  Resolution  Imaging  Spectroradiometer (MODIS)  were  used  to  compare  various  empirical,

modelled (hydrological). Overall, the study aimed to simulate the complex PET and AET processes using

empirical (Penman-Monteith, Hargreaves, Priestley-Taylor, Budyko and Turc), data-driven (ANN) and

hydrological  model  (SWAT).  Further,  the  thesis  aimed  to  study  the  uncertainty  in  the  drought

characterization of SPEI and SPAEI using various PET and AET estimates implemented on Hyderabad

and Tunga-Bhadra River basin, India.  

1.5 Thesis Organization

 Chapter 1 presents an introduction to evapotranspiration model estimates and drought indices.

Problem definition, motivation, and objectives.

 Chapter  2  presents  detailed  literature  on  various  PET,  AET  methods,  and  drought  indices

methods.

 Chapter 3 presents an introduction to the case study and datasets used.

 Chapter  4  presents  the  estimation  of  the  drought  index  using  different  potential

evapotranspiration models at Hyderabad station using SPEI.

 Chapter 5 presents a detailed drought analysis at the Tunga-Bhadra catchment using different

PET/AET methods.

 Chapter  6  presents  a  summary of  the  thesis  work,  conclusions,  and  possible  future  research

extensions.
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                                      Chapter 2

Literature Review

2.1 Introduction 

Drought is a natural hazard with a significant impact on the economy, agriculture, and environment. It is

defined as a significant decrease in water availability in all its forms. Rainfall deficits over a given period

can lead to varying degrees of drought. It  is one of the biggest  threats to human survival.  It  can be

distinguished in intensity, location, duration, and time. It can be considered a multilevel phenomenon

guided by the response time of the basin. It should be noted that hydrological responses to soil moisture,

river discharge, and groundwater discharge vary and have different response times. Therefore, the time

when water deficits accumulate is crucial to determine the prevailing type of drought. Drought is simply

when the soil is arid because of the amount of rainfall. When rainfall is significantly below average for an

extended period of time, a drought ensues. It is a situation where there is a lack of either surface water or

groundwater. Years, months, or even days may pass between droughts. A lack of water, hot, dry winds,

an increase in temperature, and the subsequent evaporation of groundwater bring on drought conditions.

Crop failure is a side effect of droughts as well. Droughts significantly impact the nature and agriculture

of the afflicted areas. Droughts also hurt the local economy in the area. Due to the disruption to our entire

ecosystem, droughts are regarded as a natural calamity. In most places of the world, drought is thought to

be a regular occurrence of the climate. Because of climatic change, common droughts nowadays are more

extreme and unpredictable. Drought can worsen in extremely hot climates, which eventually causes the

liquid in the soil to evaporate. Any area that is hot and dry is not necessarily experiencing a drought.

Drought occurrence is considerably exacerbated by the dry season. Its defining characteristics are low

humidity, watering holes and cracks, and drying rivers. Land and water temperature cause droughts. More

water evaporates as the temperature rises, and severe weather conditions also rise. The overall  water

demand steadily rises as a result of landscapes and crops needing more water to survive and develop.

Drought indices are numerical measurements that describe the severity of drought by combining data

from one  or  more  variables  (indicators),  such  as  precipitation  and  evapotranspiration,  into  a  single

number. Compared to raw indicator data, such an index is easier to use. The form of drought indices

reflects a variety of occurrences and circumstances. They can indicate abnormalities in climate dryness

(mostly based on precipitation) or correspond to postponed repercussions on agriculture and hydrology,

such  as  soil  moisture  loss  or  decreased  reservoir  levels.  Drought  indices  have  evolved  as  the  main

approach for informing relevant parties about the severity of the drought using this rather straightforward
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methodology. Weekly grid-based drought situation maps are now published and made available to the

public using a few well-known indexes. Since a drought index may theoretically be developed based on a

variety  of  variables.  There  are  several  drought  indicators  that  have  been  created  (more  than  150,

[19]).This  is  in  addition  to  ongoing  technological  advancement  (particularly  in  the  field  of  remote-

sensing), the requirement to tailor indices to particular climatic and hydrologic regimes (e.g.,  [14]), and

the recent trend of combining existing indices with new ones to cover more impacts and applications

(e.g.,[20]).  There  are  several  methods  for  characterizing  droughts;  nevertheless,  the  use  of  drought

indicators is common [21]. Drought indices are created by adding many drought indicators to get a single

numerical number. In comparison to raw data from indicators, a drought index offers a holistic picture for

drought analysis and decision-making that is more easily usable [22], the performance of drought indices

varies by application and specific region. Because of the complex definition of droughts, and the lack of

soil  moisture  observations,  several  indices  have  been  developed to characterize  (meteorological,  soil

moisture, and hydrological) drought.  Some examples of meteorological drought indices are the Palmer

Drought Severity Index (PDSI), Palmer Z-Index, the Standardized Precipitation Index (SPI), the SPEI,

and the Effective Drought Index. Out of all drought indices, the SPEI is the most commonly used drought

index as it  is simple and uses only precipitation and PET data,  allowing for a complete approach to

explore the effects of climate change on drought conditions. [14] Developed SPEI, which is sensitive to

long-term trends in temperature change. If such trends are absent, SPEI performs similarly to SPI. The

SPEI is calculated based on the probability that the differences between precipitation and PET are not

exceeded and adjusted using a three-parameter Log-logistic. The SPEI can be estimated on various time

scales to adapt to the typical drought reaction timeframes of the target natural and economic systems,

allowing determination of their drought resilience. The SPEI consideration of the function of temperature

through its impact on PET is a significant benefit over other multiscale drought indices like the SPI. The

SPEI is, therefore, suitable for determining how droughts are affected by global warming. However, the

PET-based drought indices are unable to take into account changes in land and vegetation as well as the

real atmospheric water demand [23]. The transfer of moisture from the land surface to the atmosphere in

response to both energy demand and moisture supply is known as AET [24]. As a result, including AET

in the drought calculation can account for the actual  water availability or remaining quantity of water

accessible in addition to precipitation [25]. The use of AET in the formulation of SPEI has been tried by

few researchers [23], [26], [27]. 

SPEI  and  SPAEI  are  the  advanced  drought  indices  used  to  estimate  drought  based  on

precipitation, PET and AET [14]. Most of the earlier studies used only empirical based PET and AET

estimates  in  the  literature.  However,  PET and AET estimates  can be from data-driven,  modeled and
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remote  sensing.  The sensitivity  of  PET and AET estimates  can  impact  the  drought  characterization.

Therefore, the present study emphasized on addressing the uncertainty of various PET and AET estimates

in the drought characterization.  

2.2 Estimation of Potential and Actual Evapotranspiration

Numerous attempts have been made to simulate evapotranspiration due to its significance in the water

cycle, hydrological management, as well as the expensive and delicate nature of monitoring equipment.

PET, AET, and reference evapotranspiration (ETo) are significant types of evapotranspiration. PET is the

amount of water lost from the surface to the atmosphere if the soil/vegetation mass has an infinite water

supply. PET is the sum of soil evaporation and plant transpiration. It only happens at the potential rate

when the amount of water available for this process is  unlimited. AET is the rate at which water is

removed from a surface  to  the  atmosphere  due  to  the  evapotranspiration  process.  It  is  a  significant

component  of  the  water  balance  and  is  utilized  generally  in  fields  such  as  agronomy,  hydrology,

climatology,  meteorology,  ecology,  and environmental  sciences.  [28]–[31].  Because there is  typically

little  water  available  for  evapotranspiration  and the  exact  rate  of  water  loss  is  relevant,  AET is  the

preferred form of Evapotranspiration in hydrological studies. The reference crop evapotranspiration, also

known as reference evapotranspiration, is the rate of evapotranspiration from a reference surface that is

not  short  of  water.  The hypothetical  grass  reference crop used as  the  reference surface has  a  set  of

features. Due to the ambiguities in other religions definitions, such as possible ET, its usage is severely

forbidden. Although both PET and ET0  provide estimates of atmospheric evaporative demand, they are

based on different ideas, concepts, and application fields. They have different equations that can help to

differentiate the terms. However, many researchers have treated PET and ET 0 as identical concepts and

used similar equations for their estimation [32]–[35]

The estimation of PET is essential due to water constraints, population growth, and the resulting

inflated food supply. This created a responsibility for the accuracy of the demand for agricultural water

needs. Nevertheless, PET has been used to model and simulate structural water bodies, the hydrologic

cycle, and ecosystem equilibrium. PET depends on vegetation-specific characteristics rather than solely

meteorological variables; there was a need for a reference surface independent of vegetation and soil

characteristics.  Researchers frequently select the reference surface (grass) based on the availability of

pertinent  data.  The grass  is  similar  to  many crops  in  bulk  stomatal  resistance  and exchange  values;

however, shorter, trimmed grass has more experimental data. The FAO decided to utilize grass as the

principal worldwide reference surface. The best model to utilize as the default model for computing PET
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was also discussed.  To estimate  PET,  [36] proposed these models  FAO-24 Blaney-Criddle,  FAO-24

Penman, FAO-24 Radiation, and FAO-24 Pan Evaporation methodologies. The Penman-Monteith model

was first proposed by Smith as the standard model for computing PET. This proposal was made based on

the  models  past  performance  and  the  inclusion  of  plant  physiological  and  aerodynamic

micrometeorological  parameters.  The Penman-Monteith equation was formally approved as the FAO-

recommended model with its release in 1998. Due to its physical foundation, it can be applied without

local calibrations across various environments and climate scenarios. Second, the technique is well known

and has been verified with lysimeters in various climatic settings. This equations fundamental flaw is that

it calls for data on numerous climate factors unavailable in many places. The Penman-Monteith equation

primary drawback is its dependence on many meteorological inputs. Apart from the Penman-Monteith

equation, PET is also estimated using three other empirical methods. They are Hargreaves [37], Turc [38],

and Priestley-Taylor  [39]. These empirical models differ in terms of solar radiation, temperature, and

transport  properties  of  natural  surfaces  while  considering  the  physical  processes  of  radiation.  [37]

equation  is  an  empirical  approximation  of  the  PET  calculation  based  on  maximum  and  minimum

temperatures and extra-terrestrial radiation data. This method is a valuable balance between consistency

and minimum data requirements. The Turc  [38] method estimates PET based on the mean temperature

and  solar  radiation.  Priestley-Taylor  equation  can  estimate  regional  monthly  PET  provided  that  the

adjustment factor is adapted to different site conditions. Thus, PET is estimated using Penman-Monteith,

Hargreaves, Priestley-Taylor, and Turc methods. 

Empirical methods which presume that AET is constrained by the energy availability of  PET

during extremely wet conditions and by the water availability of precipitation under very dry conditions

could provide promising solution for drought assessment [38], [40], [41]. Among these methods Budyko

and Turc are widely used for the estimation of AET by several researchers. Although both approaches

seem to be the most appropriate, their use depends greatly on the local characteristics in a particular place.

Furthermore, it is crucial to employ the appropriate techniques for evaluating the critical elements of the

hydrological  cycle and creating a successful  plan for managing water resources the more sensitive a

location or station is to environmental stresses. The Estimation of AET is based on the water availability

in  terms  of  precipitation  (P)  and  estimated  PET  by  Penman-Monteith  as  it  was  adopted  by  the

International Commission on Irrigation and Drainage (ICID) and the American Society of Civil Engineers

(ASCE) as the standard procedure for PET.

As  a  result  of  recent  advancements  in  hydrology  using  computer  technology  and  new

mathematical  methods,  data-driven  modeling  techniques  have  been  developed  as  a  new  way  for
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simulation and prediction. Given the accessibility of meteorological variables, empirical models may be

the most suitable option for calculating the PET. Due to this constraint, some studies have advanced the

evaluation  of  PET models  by  applying  data-driven  algorithms,  including  Artificial  Intelligence  (AI),

machine learning models, and statistical regression techniques [42]. To create more accurate and effective

models to estimate PET, a lot of research has been done. For example, Artificial Neural Network (ANN),

Support Vector Regression (SVR), Gradient Boosting Regression (GBR), Random Forest (RF), and Long

Short Term Memory (LSTM) were the main types of ML models employed for PET estimation [43]–[45].

ANN algorithms have been extensively used in  the field of  PET estimation in recent  years.  For the

estimation  of  PET,  Kumar  [46] created  ANN  models  and  discovered  that  these  models  were  more

accurate in predicting PET than traditional empirical techniques. In more recent research, Ehteram [47]

explored  the  modelling  of  PET  using  ANNs  using  the  Levenberg  Marquardt  training  method  and

concluded that ANNs may be successfully used to simulate PET from available climatic data.  According

to these researchers, the ANN can predict PET even better than the traditional FAO Penman-Monteith

approach.

Several  hydrological  and remote sensing models  are presently employed globally in  PET and

AET estimations [48], [49]. The Soil and Water Assessment Tool (SWAT) and the Moderate Resolution

Imaging Spectroradiometer (MODIS) ET [50] product derived from remotely sensed data from MODIS

instrument aboard the National Aeronautics and Space Administration (NASA) Aqua and Terra satellites

will be assessed in this study as two of the more notable ones.  SWAT is a physically based distributed

hydrological  model  that  simulates  the flow of  a larger river.  SWAT has eight  essential  components:

Hydrology,  weather,  sedimentation,  soil  temperature,  crop  development,  nutrients,  pesticides,  and

agricultural management. From sub-catchment scales to sub-continental scales, SWAT model have been

in used in hydrological modelling. 

The  development  of  remote-sensing  technology  has  inspired  the  expansion  of  satellite  data

operations that provide a range of meteorological characteristics at different scales. Estimates derived

from satellites have the ability to provide the data required for a variety of applications, including drought

monitoring, crop management, and water balance evaluation [51], [52]

The only dataset with fine spatial and temporal resolution suited for small-scale applications is MODIS-

based PET and AET. Evaluation of satellite-based evapotranspiration products is much more constrained

than other  meteorological  metrics.  Many research,  including those conducted in  the  USA,  Australia,

Europe, Africa, and East Asia, serve as examples of the work on estimating evapotranspiration using
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MODIS [53], [54]. Thus, the present study used remote sensing PET and AET which is downloaded from

the Appeears (https://appeears.earthdatacloud.nasa.gov) website. 

2.3 Estimation of Drought Indices

Drought  indices  are  calculated  from  assimilating  drought  indicators  into  a  single  numerical  value.

Compared to raw data from indicators, a drought index offers a holistic picture that is easier to utilize for

drought analysis and decision-making [22]. Out of all drought indices, the SPEI is the most commonly

used drought index as it is simple and uses only precipitation and evapotranspiration data, allowing for a

complete approach to explore the effects of climate change on drought conditions. [14] developed SPEI,

which is sensitive to long-term trends in temperature change. If such trends are absent, SPEI performs

similarly to SPI. SPEI measures drought conditions based on the water balance. The SPEI is calculated

based on the probability that the differences between precipitation and PET  [2] are not exceeded and

adjusted using a three-parameter Log-logistic. The SPEI can be estimated on various time scales to adapt

to  the  typical  drought  reaction  timeframes  of  the  target  natural  and  economic  systems,  allowing

determination of their drought resilience. The SPEI consideration of the function of temperature through

its impact on PET is a significant benefit over other multiscale drought indices like the SPI. The SPEI is,

therefore, suitable for determining how droughts are affected by global warming. However, in water-

limited areas, variations in AET are typically driven more by changes in precipitation than by changes in

PET [55], which may make SPEI less applicable in these areas. Instead of PET, AET is used to compute

the SPAEI. Thus, the present study used both SPEI and SPAEI to estimate the drought.

2.4 Research Gap areas

 Earlier studies used to calculate drought based on only empirical based evapotranspiration data.

 Due to the availability of many methods to estimate PET and AET, it is challenging to choose the

correct method to estimate drought.

 None of the studies analyzed the sensitivity of various ET methods to assess the drought.

2.5 Objectives of the Thesis

The main goal of this research is to study the uncertainty in the drought characterization with various PET

and AET estimates. Thus, the present study aimed to develop different methods to estimate PET and

AET, like Empirical,  Hydrological, Remote sensing, and Machine learning for Hyderabad station and

Tunga-Bhadra catchment. The objectives of the present study are:
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 To assess the applicability of different empirical-based PET methods such as Hargreaves, Turc,

Priestley-Taylor and Penman-Monteith in comparison with the ANN estimates.

 To  provide  a  comprehensive  analysis  of  drought  classification  based  on  SPEI  for  different

potential evapotranspiration models at 12, 6, and 3-month time scales for Hyderabad station.

 To estimate PET/AET at the Tunga-Bhadra catchment using empirical, Hydrological, and remote

sensing methods.

 To study the uncertainty in the drought characterization with various PET, AET estimates using

SPEI and SPAEI at the Tunga-Bhadra catchment.

.
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Chapter 3

Study Area and Data

3.1 Introduction

The present study has selected two study areas with diverse climatological conditions. The first one is

Hyderabad the largest city of the Indian state of Telangana. The second case study considered is Tunga-

Bhadra Catchment. 

3.2 Study area

Hyderabad:

Hyderabad, lies between latitude 17.3850°N and 78.4867°E located on the Deccan Plateau in the northern

part of South India and covers an area of 650 square kilometers (250 sq. mi) in an elevation of 542m.

Based on the Koppen climate classification, the climate is tropical wet and dry, bordering on a hot semi-

arid,  with  an  average  annual  precipitation  of  about  171  mm

(https://en.climate-data.org/asia/india/hyderabad). To study the uncertainty of PET estimates on SPEI, the

present  study used  Hyderabad as  case  study.  To implement  various  PET methods  such  as  Penman-

Monteith  method,  various  meteorological  data  (temperature,  radiation,  etc.)  is  required.  Further,  to

implement data-driven methods to estimate PET, a long-time series data without any missing data points

is required.  Daily meteorological data were obtained from January 1965 through December 2015 (51

years)  (612  months)  from  the  weather  station  situated  in  Professor  Jayashankar  Telangana  State

Agricultural  University,  Rajendranagar  Mandal,  Hyderabad,  Telangana.  The  statistical  values  of  the

meteorological  variables  are  presented  in  Table  3.1.  Five  monthly  meteorological  variables  were

recorded, including (1) maximum air temperature (Tx °C); (2) minimum air temperature (Tn °C); (3) wind

speed  (U2 ms  −1);  (4)  mean  relative  humidity  (RHmean%)  and  (5)  solar  radiation  (Rs,  MJ  m-2 d-1).

Measurements were made at 2m height (air temperature and relative humidity) and 10 m (wind speed)

above the soil surface. Wind speed data at 2 m (U2) were obtained from those taken at 10 m using the log-

wind profile equation.
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Table 3.1: Statistical values of meteorological variables and PET at Hyderabad station

Parameters Tx Tn RHmean U2 Rs PET

Maximum 45.5 33.0 100 189.90 14.45 13.16

Minimum 17.6 5.0 6 0 3.55 0.005

Mean 32.37 19.88 78.43 6.27 9.32 3.76

Standard Deviation 4.1 4.79 14.48 6.18 2.44 1.72

Figure 3.1: Case study: Hyderabad, Telangana, India
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Tunga-Bhadra:
To study the drought analysis including various PET and AET estimates, the present study considered

Tunga-Bhadra river basin, which is a major tributary of Krishna river basin, India is considered. The

Tunga-Bhadra River is formed by the junction of two rivers, the 147 kilometers Tunga River and the 178

kilometers Bhadra River,  rising in the Western Ghats with a confluence at Koodli,  Shimoga district,

Karnataka. It runs as the Tunga-Bhadra for 531 kilometers from Karnataka to Andhra Pradesh until it

joins the river Krishna at Sangameshwaram near Kurnool. The catchment area considered for the present

research work is the part of the Tunga-Bhadra sub-basin of the Krishna river basin that lies upstream of

the Tunga-Bhadra dam and spans over 28,845 Km2 up to the Tunga-Bhadra reservoir, which is at the

outlet of the catchment. The mean sea level elevation of the Tunga-Bhadra river catchment is 641 meters,

and the catchment area lies between the geographical coordinates of  13010’N - 15045’ N and 74050’E –

76030’E.  Tunga-Bhadra, a sub-basin of the Krishna basin, is one of the drought-prone regions of India,

along with an increase in the temperature in that region  [56].  Daily meteorological data (temperature,

wind speed, relative humidity, and solar radiation) were obtained from 2000 to 2013 through climate

forecast system analysis (CFSR) Droughts are more common in this region compared to floods. In the

water  resources  scenario  context,  understanding  the  surface  water  availability  and  demands  and  the

severity of the hydrologic extreme of droughts is essential [57]. The present study focused on modeling

hydrologic variables in various ways for drought severity assessment.

                        

Figure 3.2: Case Study: Tunga-Bhadra catchment
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The various meteorological datasets (precipitation, temperature, wind speed, relative humidity, and solar

radiation), Hydrological datasets (Digital elevation model, Land use and land cover, Streamflow, and soil)

used in the present study are presented in Table 3.2 and 3.3

Table 3.2: Details of the Datasets used in the study

Data Types Year Source

 2012 Shuttle Radar Topography Mission (SRTM)

Land Use Land
Cover(LULC)

2012 SWAT2012 Datasets

Streamflow 2005 to 2013
Advanced Centre for Integrated Water Resources

Management (ACIWRM)

Soil Map 2012 SWAT2012 Datasets

Precipitation 2000 to 2013
Advanced Centre for Integrated Water Resources

Management (ACIWRM)

Temperature, Wind speed,
Relative Humidity,

Solar Radiation
2000 to 2013 Climate Forecast System Reanalysis (CFSR)

Remote Sensing PET and
AET

2000 to 2013
Moderate Resolution Imaging Spectroradiometer

(MODIS)

Table 3.3: Statistical values of meteorological variables and PET at Tunga-Bhadra catchment

Parameters Tx Tn RHmean U2 Rs PET

Maximum 43.26 25.04 96.27 7.83 27.81 8.75

Minimum 18.80 7.05 19.60 0.84 1.24 0.11

Mean 30.37 18.96 67.52 2.75 17.54 2.13

Standard
Deviation

5.09 2.83 19.33 0.84 6.19 1.67
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3.3 Summary

The present study considered urban semi-arid region, Hyderabad as case study to find the uncertainty of

PET estimates in drought assessment using SPEI as presented in chapter 4. Daily meteorological data of

the Hyderabad case study from 1965 to 2015 as discussed in the present chapter has been used to estimate

PET using  various  empirical  methods  of  PET as  presented  in  Chapter  4.  Furthermore,  to  study the

uncertainty  of  various  PET  and  AET  estimates  from  empirical,  hydrological  and  remote  sensing

observations in the drought assessment at catchment scale, the present study considered Tunga-Bhadra

river basin as case study. Climate data from 2000 to 2013 as discussed in the present chapter has been

used to calculate PET and AET using different methods (Chapter 5). Both PET based drought index of

SPEI and AET based drought index of SPAEI has been used to understand the drought characteristics of

Tunga-Bhadra River basin as presented in Chapter 5. 
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Chapter 4

Estimation of Drought Index using different potential

evapotranspiration models at Hyderabad, India

4.1 Introduction

In this present  chapter,  data-driven algorithm ANN is used to compare various empirical  based PET

estimates using various climate variables. Four empirical methods Penman-Monteith, Hargreaves, Turc,

and Priestley-Taylor were used to estimate PET at a daily time scale. The input variables for ANN model

consist of maximum and minimum air temperatures, relative humidity, solar radiation, and wind speed.

ANN model was trained and tested with climate variables as input variables and various empirical models

as reference models to predict the best PET method. Later, to study the impact of various empirical based

PET estimates on drought estimation, the present  study calculated drought using SPEI drought index

using various PET estimates at different time scales. All other methods are compared with the Penman-

Monteith method, which is considered the standard method because it considers the main meteorological

factors. These PET models are used to understand the variation of drought in the period of consideration

(1965-2015) over an urban semi-arid region, Hyderabad, the capital of the Indian state of Telangana. The

accuracy of the SPEI largely depends on the selected PET method.  This chapter provides a detailed

description of PET methods and their impact on drought estimation. 

4.2 Estimation of Potential Evapotranspiration

The PET values for the Hyderabad station are calculated using empirical  methods and a data-driven

model. Empirical methods include FAO Penman-Monteith, Hargreaves, Turc, and Priestly Taylor. ANN

is used as a data-driven model.

4.2.1 FAO Penman-Monteith Method

The FAO Penman-Monteith method is recommended as the standard method. It is a method that has a

good chance of correctly forecasting PET  in  various  regions and climates.  The variables  required to

calculate  using this  method are  temperature,  relative  humidity,  wind speed,  and solar  radiation.  The

equation is given as 
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PET=
0.408∆ (Rn−G )+g(

900
T+273

)U 2(es−ea)

∆+g¿¿

                               

(4.1)

Where Rn is the net radiation at crop surface (MJ m-2 d-1), G is the soil heat flux (MJ m-2  d-1), T is the

average temperature at 2 m height(°C), U2 is wind speed measured at 2 m height [m s-1], (es  - ea) is

pressure deficit for measurement at 2 m height [k Pa],  ∆ is slope vapor pressure curve [k pa°C-1], g  is

psychrometric constant [k pa°C-1], 900 is Coefficient for the reference crop [l J-1  Kg K d-1], 0.34 is wind

coefficient for the reference crop [s m-1]

4.2.2 Hargreaves Method

Hargreaves  equation  for  the  formulation  of  PET can  be  helpful  balance  between  consistency  and

minimum data requirements.  The Hargreaves method is  estimated based on maximum and minimum

temperatures. The equation is given as                                  

PET=0.0023∗Ra∗(T m+17.8 )∗(T d
0.5

)                                                                                          (4.2)

Where Td is the difference between maximum temperature and minimum temperature (°C), Tm is the

mean temperature (°C), and Ra is extra-terrestrial radiation (mm/d).

4.2.3 Turc Method

Turc developed an equation to simplify an older equation for calculating PET. The Turc method estimates

PET   based on mean temperature and solar radiation. The equation is given as

PET=0.013∗(Tm+15 )∗(23.88 R s+50)                                                                                         (4.3)

Where,  Tm is the mean temperature (°C), solar  radiation (Rs) is [0.25 + 0.5 (n/N)] Ra, Ra is  extra-

terrestrial radiation (mm⁄d), n is actual hours of bright sunshine (hrs.), N is maximum possible hours of

sunshine (hrs.).

4.2.4 Priestley-Taylor Method

The Priestley-Taylor model is a condensed version of the original Penman combination equation. This

method estimates PET using net radiation and latent heat of vaporization. The equation is given as

 PET=α (
∆
∆+g

)(
Rn−G

L
)                                                                                                       (4.4)

∆=4098¿¿                                                                                                                     (4.5)
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Where ∆ is slope vapor pressure curve psychrometric constant [k pa°C -1], Rn is the net radiation at crop

surface (MJ m-2 d-1),  α  is  a calibration constant  1.26,  L is  the latent  heat  of  vaporization.  It  can be

considered as 2.45 (MJ/kg), which is constant.

4.2.5 Artificial Neural Networks (ANN)

An artificial neural network (ANN) is an algorithm that was developed to create devices that could mimic

the brain [58]. An interconnected collection of artificial neurons makes up a neural network. Biological

structures can gather, store, and apply experiential knowledge. Like the human brain, the ANN learns

from the instances it encounters. It learns from its experience and errors in a nonlinear parallel processing

manner. ANNs are fully connected neural nets that consist of an input layer, hidden layers (multiple or

single), and output layers. Each node can be considered a neuron. Each neuron is linked to at least one

other neuron, and the weight coefficient measures the strength of each connection, that reflects the degree

of importance of the given connection in the neural network [59] Each node takes the weighted sum of its

inputs which then passes through a nonlinear activation function (like RELU, sigmoid, tanh, etc.), which

then becomes the input of other nodes in the next layer. The neuron is the fundamental calculating entity

that computes several inputs, delivers one output compared with a threshold value, and turns on (fired).

The computational processing is done by internal structural arrangement consisting of hidden layers that

utilize the backpropagation and feed-forward mechanism to deliver output close to accuracy. The error

between the predicted output value and the actual value is back-propagated through the network to update

the weights. This method is proven highly successful in the training of multi-layered neural networks. The

logistic sigmoid transfer function is the most often utilized activation function in neural networks. This

function transforms an input value into an output with a value between 0 and 1. Depending on the sign of

the  threshold weight,  the  impact  of  the  threshold  weights  is  to  move the  curve  to  the  right  or  left,

changing the output value from higher to lower. By computing the weighted total and including bias, the

activation function determines whether a neuron should be turned on. The motive is to introduce non-

linearity into the output of a neuron. In Eq 4.6, the function f represents the activation function, w is the

weight matrix, and x is the input vector set.  (https://medium.com/@ariesiitr/an-artificial-neural-network-

ann-is-a-computational-model-that-is-inspired-by-the-way-biological-c17b07166d4c)

Z=f ( x w )=f (∑
i=1

n

xiw i) x∈d1×n,w∈dn×1 , z∈d1×1 ,                             (4.6)
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Figure 4.1: Structure of ANN used for training a model with hidden layer and weights and the output

layer showing a feed-forward pass- xi wi

This  study used  a  feed-forward backpropagation neural  network.  The weights  are  initially  randomly

assigned. The train: test spilt on the dataset is 7:3. A forward pass is performed for every training data

using the current weights, and the output is calculated for each node. The final output is acquired at the

last node, and the error is calculated with a loss function. Now, a backward pass is performed to estimate

the contribution of each node in error calculated. The error is propagated to every single node using

backpropagation.  Once  the  contribution  of  each  node  has  been  calculated,  the  weights  are  adjusted

accordingly  using  gradient  descent.  The  present  study  used  gradient  descent  with  momentum  and

adaptive linear regression. The procedure is repeated until the loss function gives an error less than the

threshold value, and the weights and bias of the required network are thus obtained. Thus, the model

converges, and a definite result can be obtained for any testing dataset. The data from 1951-2015 were

divided into two subsets of training and testing using the earlier approach. The employed approach for

splitting the data  ensured that  the  sub-datasets  fairly  represented the population to  be modeled.  The

training subset optimized the networks connection weight matrices and bias vectors. Once the network

was trained, the generalization and predictive ability of the network were evaluated using a completely

unseen subset called the testing subset. This method did not presuppose the PET mechanisms physics or

the variables interrelationships. All feasible input variable combinations, a total of 26 combinations, were

considered ANN model input sets. Separate optimum ANN models were created and trained using the
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previously described model creation methodology. The created ANN models prediction accuracy was

compared to determine the most effective and appropriate input combinations for PET estimation. This

strategy sometimes referred to as a trial-and-error process, is a heuristic approach.

4.3 Estimation of Standardized precipitation evapotranspiration index (SPEI)

The standardized Precipitation Evapotranspiration Index (SPEI) takes precipitation and PET into account.

The likelihood that the disparities between precipitation and PET are not exceeded is used to determine

the SPEI, which is then corrected using a three-parameter Log-logistic. Precipitation is a crucial factor

in determining the SPEI, which is used to assess drought conditions. Higher the precipitation can

result in higher SPEI values, indicating wetter conditions. Conversely, lower precipitation can

result  in  lower  SPEI  values,  indicating  drier  conditions.  However,  SPEI  depends  on  the

deviations of both precipitation and potential evapotranspiration. It is estimated at different time

scales.  The SPEI at  different  time scales represents different  climatic water balances.  The difference

between P and PET for a month i is given as

Di=Pi−PET i                                                                                                                         (4.7)

For example, to obtain a 12-month SPEI time series is constructed by the sum of D values from 11

months, i.e., before to the current month.

The calculated Di values are aggregated at different time scales, given as

Dn
k
=∑
i=0

k=1

Pn−1−(PET )n−1                                                                                                               (4.8)

Where k is the aggregate time measure (months), and n is the calculation month. The probability density

function for the logistic distribution is given as

f ( x )=
β
α

(
x−γ
α

)
β−1

[1+(
x−γ
α

)
β

]
−2

                                                                                         (4.9)

Where α, β and γ are the scale, shape, and origin parameters, respectively, for γ> D <∞. The probability

distribution function for the D series is given as follows

f ( x )=[1+(
α
x− y

)
β

]
−1

                                                                                                                    (4.10)

With f(x), the SPEI can be obtained as the standardized values of f(x) where
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SPEI=W−
Co+C1W+C2W

2

1+d1W+d2W
2
+d3W

3

W=√−2 ln (P) For P≤0.5                                                                                                                   

(4.11)

The constants are: C0 = 2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 =

0.001308.

Positive  SPEI  values  indicate  average  humidity  conditions,  while  negative  values  indicate  drier

conditions. A drought is defined when the SPEI value is less than or equal to -1 in a given period. The

drought categories according to SPEI values are given below

Table 4.1: Drought classification based on SPEI values [14]

Moisture Category SPEI Value Drought classification

Extremely wet 2.00 and above No drought

Very Wet 1.50 to 1.99 No drought

Moderately wet 1.00 to 1.49 No drought

Near Normal -0.99 to 0.99 No drought

Moderately dry -1.00 to -1.49 Moderate Drought

Severely dry -1.50 to -1.99 Severe Drought

Extremely dry -2.00 and less Extreme Drought

The original classification thresholds for drought severity categories were developed for the Standardized

Precipitation index (SPI), which is a precipitation-based index. It was introduced by McKee [16]. Based

on his study, there are total of seven categories for drought classification. Later SPEI was introduced by

Vicente-Serrano [14]. It is an extended concept of SPI and uses the same values as classified in Table 4.1.

Many research studies have used the same table for the classification of drought. [60], [61]

4.4 Evaluation metrics 

The accuracy of the ANN models is validated using Root mean square error (RMSE), Mean absolute

error (MAE), and Coefficient of determination (R2).
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RMSE, MAE, and R2 are common metrics used in regression analysis to assess the performance and

goodness of the fit of a model. RMSE measures the average error between predicted and actual observed

values. Lower RMSE values indicate smaller errors and better accuracy of the model, with zero RMSE

indicating a perfect fit.

MAE measures the average absolute difference between predicted and actual observed values. Similar to

RMSE, lower MAE values indicate smaller errors and better accuracy of the model. A MAE value of zero

would indicate a perfect fit.

R2 on other hand, measures the proportion of the total variation in the dependent variable that is

explained by the regression model. R2 values ranges from 0 to 1, with 1 indicating a perfect fit

RMSE=√ 1
N∑

i=1

n

(Oi−S i )
2                                                                                                         (4.12)

MAE=
1
N
∑
i=1

N

(Oi−S i)                                                                                                                (4.13)

R2
=1−

∑
i

(Oi−Si )
2

∑
i

(Oi−Ó)
2                                                         

(4.14)

Where Oiis the observed values, Siis the simulated values, Ó is the mean value of O, and N is the

total number of data points. 

4.5 Results and Discussions

The climate variables considered for estimating daily PET using ANN and  Penman-Monteith  methods

were the daily maximum temperature, minimum temperature, relative humidity, wind speed, and solar

radiation.  Similarly,  the  input  variables  considered  for  the  Turc  and corresponding  ANN model  are

temperature  and  solar  radiation.  For  the  Hargreaves and  corresponding  ANN  model,  maximum

temperature, minimum temperature, and solar radiation are input variables. Furthermore, for the Priestly-

Taylor method, the input variables used in ANN are temperature, solar radiation, and relative humidity.

All these methods uses different combinations of input variables. Since all  these methods are energy
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based methods, these methods are compared under similar climatic and data conditions. The ANN model

used in the present study is Multi-Layered Perceptron (MLP) imported from the scikit-learn library in

python.  The study used three hidden layers  with several  neurons same as the number  of  features  or

parameters,  i.e.,  6  (maximum  air  temperature,  minimum  temperature,  maximum  relative  humidity,

minimum relative  humidity,  wind speed,  and  solar  radiation),  and  ran  the  model  for  500 iterations.

Convergence was obtained for the datasets of all four empirical methods.

The prediction values have been calculated by fitting the test data on the trained model. As the

number of meteorological variables for each empirical method is different, therefore, for each empirical

model, an ANN model was trained, and results were tested. The input vector has the features considered

in each method (Penman-Monteith, Hargreaves, Turc, and Priestley-Taylor) 3 hidden layers have been

used for each method, and the output vector is the expected PET networks hidden layer was determined

using a trial and error method by considering the MAE, RMSE, and R2 values from a test sample. This

study trained ANNs for 500 epochs with one to 6 nodes in the hidden layer. As mentioned, statistical

parameters were calculated using only the real test data set after each training run. The training period is

from 1965 to 2000, and the testing is from 2001 to 2015. The validity and efficiency of the model can be

seen when the training dataset is fit the trained model, and high accuracy and minimal values of RMSE

were obtained. The performance of each empirical model corresponding with the ANN model in terms of

R2, RMSE, and MAE is listed in Table 4.2. From Table 4.2, it can be concluded that Penman-Monteith

method correlated better with the data-driven model. Hargreaves, Turc are correlated comparatively better

than Priestley-Taylor method. As shown in Figure 4.6, some deviations occurred for Priestley-Taylor

method.

The  PET  results  shown in  Figure  4.2  are  calculated  on  an  annual  basis.  In  this  figure,  the

Priestley-Taylor  method  produces  lower  values,  while  Hargreaves  produces  higher  values  with  a

significant difference of about 1200 mm in mean values. The PET  values produced by the Hargreaves

method are close to the Penman-Monteith Method compared to other methods. In this study, the FAO

Penman-Monteith method is considered the reference method as it requires more meteorological data to

calculate. Figure 4.3 to 4.10 shows the comparison between daily PET values from empirical models of

Penman-Monteith, Priestley-Taylor, Hargreaves, Turc, and ANN methodologies for training and testing

datasets. 
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Figure 4.2: Yearly Potential evapotranspiration (PET) using Hargreaves, Penman-Monteith, Priestley-

Taylor, and Turc method

Table 4.2: Statistical summary of testing and training period for ANN

Empirical
Methods

Artificial Neural Network
(Training)

Artificial Neural Network
(Testing)

R2

(0 to 1)
Best is 1

RMSE
(0 to ∞)
Best is 0

MAE
(0 to ∞)
Best is 0

R2

(0 to 1)
Best is 1

RMSE
(0 to ∞)
Best is 0

MAE
(0 to ∞)
Best is 0

Penman-Monteith 0.97 0.02 0.008 0.96 0.03 0.009

Turc 0.96 0.03 0.007 0.95 0.04 0.012

Hargreaves 0.94 0.05 0.015 0.94 0.06 0.017

Priestley Taylor 0.91 0.10 0.022 0.92 0.12 0.025
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               Figure 4.3: Variation in Potential evapotranspiration (PET) for Penman-Monteith method for the first 100

data points using ANN
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Figure 4.4: Variation in Potential evapotranspiration (PET) for Turc method for the

 first 100 data points using ANN
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        Figure 4.5: Variation in Potential evapotranspiration (PET) for Hargreaves method for 

The first 100 data points using ANN

          Figure 4.6: Variation in Potential evapotranspiration (PET) from Priestley – Taylor for 

The first 100 data points using ANN
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       Figure 4.7: Comparison of PET predicted by ANN and Penman-Monteith method 

Values for training and testing periods

Figure 4.3 compares PET daily values predicted by the ANN model versus the PET values of the Penman-

Monteith method for both testing and training periods.  A good correlation was observed with R2 values

higher than 0.96, RMSE as 0.03, and MAE as 0.009 between the Penman-Monteith method and ANN for

the testing period. The trained and tested ANN model performs very well compared to Penman-Monteith

estimates. The comparison shows that neither overestimation nor underestimation was produced in the

range of the values studied. This verifies that the ANN models can be used to estimate PET values. Thus,

compared to all empirical models, the  Penman-Monteith  has been predicted well with the data-driven

algorithm  of  ANN.  It  can  be  noted  that,  as  the  Penman-Monteith  method  accounts  for  all  climate

variables in modeling, such accuracies were expected to be comparable to other empirical models.   
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Figure 4.8: Comparison of PET predicted by ANN for Turc method values 

for training and testing periods.
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Figure 4.9: Comparison of PET predicted by ANN for Hargreaves method values 

for training and testing periods

Figure 4.10: Comparison of PET predicted by ANN for Priestley – Taylor method 

Values for training and testing periods

Furthermore, the present study tried to understand the sensitivity and dependency of each meteorological

variable  on the modeled PET using the  Penman-Monteith  model.  The study plotted the scatter  plots

between each climate variable and PET modeled, as shown in Figure 4.11. 
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        Figure 4.11: Correlation of main meteorological parameters such as temperature, relative humidity, solar

radiation, and wind speed to PET

As shown in Figure 4.11, the temperature, solar radiation, and wind speed, followed by relative humidity,

have the most substantial influence on PET estimations based on the Penman-Monteith model. Therefore,

ANN models were derived based on temperature, solar radiation, and relative humidity as input and the

PET as output variables. Furthermore, the results of the ANN can be significantly influenced by the

number of input data which can lead to significant error and deviation. On the other hand, lowering the

number of neurons in the input layer to three or even two can give us satisfactory results in estimating the

PET. The most critical inputs for accurately estimating PET  using an ANN are temperature and radiation

data [62]. The findings demonstrated that selecting the right ANN design enhances the link between the

dependent and independent variables while minimizing error.

The study results reveal that temperature and solar radiation are the most influencing variables compared

to relative humidity and wind speed for semi-arid climate conditions, as demonstrated in the present

study. Given the intense data requirements for applying the Penman-Monteith model, the study employed

ANN with minimum input variables such as temperature,  solar  radiation, and relative humidity.  The

trained and tested algorithms developed based on empirical models can be valuable tools to predict PET

for  limited data  case  studies.  Analyzing the sensitivity of  each climate variable  on PET,  testing the

statistical dependencies, and data pre-processing to acquire relevant information before developing such

data-driven  algorithms  are  the  most  important  in  the  implementation.  Analysis  of  compensating
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accuracies  with  the  inclusion  of  limited  climate  input  variables  in  the  PET  estimates  compared  to

standard empirical models can be a potential area of research. 

            Figure 4.12: Annual SPEI calculated for the different PET methods.

Table 4.3: Performance statistical indicators of SPEI values calculated by various PET methods against 

the reference method

Method RMSE (mm) MAE (mm) R2

Hargreaves 0.624 0.010 0.76

Priestley-Taylor 0.714 0.029 0.54

Turc 0.508 0.003 0.66

The next step is to calculate SPEI using various PET-based empirical estimates. The SPEI values

calculated for 12 month accumulation period are  shown in Figure 4.12.  Table  4.1 gives  the drought

classification based on SPEI values. If the SPEI value is >-1, there is no drought. If SPEI is in the range

of -1.0 to -1.49, it is Moderate drought; -1.5 to -1.99, it is severe drought; and -2 and less, it is Extreme

drought. The comparison based on statistical performance indices of the results obtained by three PET

methods against  the reference method is  shown in Table 4.3. The RMSE, MAE, and R 2 are used to

calculate the variation in errors. As shown in Figure 4.12, SPEI values are nearly identical, regardless of

the PET calculation method. Slight differences in a few years cannot be considered significant despite
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differences; drought severity remains the same in all cases. SPEI is calculated for 12, 6, and 3-month time

scales. The 6-month time scale distinguishes between summer and winter periods.         

Figure 4.13: SPEI values calculated for the 6-month period (Oct – Mar)

   Figure 4.14: SPEI values calculated for the 6-month periods (Apr - Sep)
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Table 4.4: Performance statistical indicators of SPEI values calculated by various PET methods 

against the reference method for the 6-month periods (October - March, April - September) 

                                                      6-month period, October - March

Method RMSE (mm) MAE (mm) R2

Hargreaves 0.717 0.574 0.61

Priestley-Taylor 0.743 0.592 0.55

Turc 0.706 0.579 0.65

                                                       6-month period, April - September

Method RMSE (mm) MAE (mm) R2

Hargreaves 0.732 0.558 0.78

Priestley-Taylor 0.787 0.597 0.66

Turc 0.768 0.562 0.77

The results for the 6-month period October - March and April - September are shown in Figure 4.13 and

4.14, and the RMSE, MAE, and R2 values are shown in Table 4.4. From Figure 4.13, 4.14 and Table 4.4,

it can be concluded that the SPEI value produced by the three different PET methods are not identical to

those produced by the reference method as expected; deviations occurred in a 6-month period compared

to the annual period. Such deviations may be due to SPEI values calculated over shorter time scales is

more sensitive to short-term variations in precipitation and evapotranspiration compared to longer time

scales. Shorter time scales capture fluctuations in weather patterns and climate conditions and effects of

precipitation  and  evapotranspiration  will  be  influenced  by  previous  and  future  periods  resulting  in

deviations. The same analysis is done for a 3-month period (Oct-Dec, Jan - Mar, Apr-Jun, Jul - Sep). The

3-month SPEI are shown in Figure 4.15 to 4.18, and statistical parameters are shown in Table 4.5. 
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Figure 4.15: SPEI values calculated for the 3-month period (Jan - mar)

Figure 4.16: SPEI values calculated for the 3-month period (Oct - Dec)
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Figure 4.17: SPEI values calculated for the 3-month period (Apr - Jun)
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Figure 4.18: SPEI values calculated for the 3-month period (Jul - Sep)

Table 4.5: Performance statistical indicators of SPEI values calculated by various PET o methods against 

the reference method for the 3-month periods (October - December, January - March, April - June, July - 

September)

3-month period, October - December

Method RMSE (mm) MAE (mm) R2

Hargreaves 0.476 0.405 0.79

Priestley-Taylor 0.808 0.675 0.77
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Turc 0.566 0.531 0.90

3-month period, January - March

Method RMSE (mm) MAE (mm) R2

Hargreaves 0.563 0.416 0.30

Priestley-Taylor 0.610 0.539 0.19

Turc 0.545 0.455 0.54

3-month period, April - June

Method RMSE (mm) MAE (mm) R2

Hargreaves 0.83 0.63 0.48

Priestley-Taylor 1.10 0.89 0.25

Turc 0.97 0.67 0.52

3-month period, July - September

Method RMSE (mm) MAE (mm) R2

Hargreaves 0.407 0.229 0.89

Priestley-Taylor 0.412 0.271 0.83

Turc 0.373 0.204 0.90

Figures 4.15 to 4.18 and Table 4.5 show that SPEI values produced by different PET methods are not

identical  to  the  Penman-Monteith  method.  The  effect  of  the  PET method  on  SPEI  values  is  small.

However, there are some significant deviations for shorter timescale droughts such as at 3 and 6 months

SPEI values. Some variations exist, as observed in the January - March, and April - June periods. In other

cases, the results are satisfactorily close to the reference period. 

4.6 Conclusions

The daily PET over semi-arid climatic conditions over Hyderabad, Telangana, India, was modeled using

the empirical and data-driven model. The daily PET was estimated with the ANN modeling technique

using  four  input  variables  as  maximum and  minimum air  temperatures,  relative  humidity  and  solar
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radiation, and wind speed; three input variables as average air temperature, relative humidity, and solar

radiation; two input variables as temperature and solar radiation. The results were discussed with the

results of alternative methods of PET calculation, such as the combination-based method of Penman-

Monteith, the radiation-based methods of Priestly-Taylor, the temperature-based methods of Hargreaves,

and the Turc method. The correlation coefficient values suggest that temperature is the most important

factor, followed by solar radiation, wind speed, and relative humidity. ANN with all-climate variables as

input  simulated  PET  values  estimated  using  the  Penman-Monteith  method.  Temperature  and  solar

radiation have a maximum correlation with PET estimates of Penman-Monteith models as compared to

relative humidity and wind speed. The Turc model uses temperature and solar radiation as input variables

and has high accuracy with the ANN model. From the figure 4.11, it is concluded that relative humidity

has the less dependency on PET estimates compared to other input variables. The Priestly-Taylor

model considers relative humidity,  temperature,  and solar radiation input  variables. Due to the lower

relative  humidity  dependency  on  the  reference  PET  estimates,  the  Priestly-Taylor  model  has  lower

accuracy with ANN than the Turc model. The study concludes that the empirical models work well with

data-driven algorithms that consider the climate variables highly dependent on the standard reference PET

estimates.  Such studies can be implemented to develop data-driven models statistically dependent  on

reference model PET estimates. 

Further, it can be concluded that when a parameter or an input variable with a lower correlation is added

to the set of features for training over ANN, prediction accuracy will be decreased. The results showed

that ANN provides good agreement with the PET obtained by the Penman-Monteith method. The study

demonstrated that  modeling PET through the ANN technique gave better  estimates that  proved their

performance criterion, i.e., R2 as 0.96. The study concludes that the models performance varies according

to the number of inputs and the predicted time step. Overall, results are of significant practical use when

limited climate data is available to estimate the PET. Penman-Monteith method correlated better with

ANN model as the values of R2, RMSE, and MAE are 0.97, 0.02, and 0.008 respectively. Hargreaves and

Turc also correlated comparatively better than Priestley-Taylor method. Further, to study the impact of

these methods on drought estimation, SPEI is calculated at 12, 6, and 3-month time scales for all methods.

Penman-Monteith  model  estimates  of  SPEI  are  considered  the  standard  reference  method.  All  other

methods  are  compared  with  the  reference  method using  RMSE,  MAE,  and R2.  It  is  shown that  no

significant influence on the results of SPEI was detected by three PET methods (Hargreaves, Priestley-

Taylor, and Turc). Regardless of the reference period, some deviations occurred in the 3-month period of

(Jan - Mar) and (Apr-Jun) for the Priestley-Taylor method. The study shows that SPEI can be reliably

assessed for  various timescales even if  the minimum data is  available.  Hargreaves  and Turc method
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correlated better with the FAO Penman-Monteith method. The Turc model performed marginally better

than the Hargreaves. Thus, the present study concludes the selection of Hargreaves and Turc models will

give a good indication of drought events. These two methods Hargreaves and Turc PET also correlated

better with data driven model. Penman-Monteith gives best results but it requires many input variables to

compute.  Hence,  present  study concludes to use Hargreaves and Turc methods for PET and drought

estimation when minimum data is  available.  Here  in this chapter,  the effect  of  PET  methods on the

drought  indices is  studied for  Hyderabad station.  Furthermore,  to study the effect  of  AET,  which is

another promising variable in the drought assessment in capturing actual water availability in the drought

assessment, the study extended to implemented hydrological model and remote sensing based PET and

AET estimates at catchment scale as explained in the Chapter 5. The study used empirical and SWAT

model to estimate both PET and AET estimates, which can be enforced into the drought indices of SPEI

and SPAEI, implemented with Tunga-Bhadra catchment which is discussed in Chapter 5.  

Chapter 5

Drought Analysis using different potential and actual

evapotranspiration methods for the Tunga-Bhadra catchment, India

5.1 Introduction

To assess the drought events accurately by the various drought indices it is necessary to predict the hydro-

meteorological variables (PET and AET) precisely. There are several challenges in estimating AET and
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PET at  the  fine  spatial  resolution.  There  are  various  empirical  models  (Budyko,  Penman-Monteith,

Hargreaves, and Turc) for estimating AET and PET. Still, these empirical methods does not account for

the catchment characteristics,  which may underestimates the actual  amount of hydrological  variables.

Further, satellite-based remote sensing data are accessible for extracting evapotranspiration (ET) values.

It provides global coverage and continuous observations of land surface variables affecting ET. Another

conceptual based approach to estimate PET and AET at catchment scale is hydrological model such as

SWAT. The present study aimed to include various approaches of empirical (Budyko, Penman-Monteith,

Hargreaves, and Turc), modeled (SWAT), and remote sensing in the drought characterization using SPEI

and SPAEI. Remote sensing PET and AET is considered as standard method to compare both empirical

and modeled PET and AET estimates. The present methodology was tested on a dry-sub-humid river

catchment of India, the Tungabhadra River catchment.

5.2 Methods

The  methodological  approach  of  the  present  research  work  consists  of  two  major  analytical  parts.

Estimation  of  hydro-meteorological  variables  by  different  models  and  drought  assessment  with

standardized drought indices, SPEI, and SPAEI (Fig. 5.1). In this study, it is focused on the generation of

PET and AET by various techniques to identify the drought events using SPEI and SPAEI drought index.

In the first part of the analysis, three approaches were chosen, i.e., empirical models, physically-based

distributed model  (SWAT),  and remote sensing datasets for  the  simulation of PET and AET for  the

Tunga-Bhadra catchment. The climate data,  such as precipitation,  atmospheric temperature, and solar

radiation, is utilized for estimating PET and AET by Empirical models (such as Hargreaves, Penman-

Monteith, Budyko, and Turc). Further, spatial data Digital elevation Model (DEM data) with Land Use

Land Cover and Soil data is utilized in QSWAT for catchment delineation. With the climate inputs, the

data model is set up to run and calibrate with the observed streamflow data. The calibrated model was

used to extract  hydro-meteorological  variables to formulate  SPEI and SPAEI.  Furthermore,  Satellite-

based  remote  sensing  data,  i.e.,  Moderate  Resolution  Imaging  Spectroradiometer  (MODIS)

evapotranspiration  data  sets  (PET  and  AET),  were  downloaded  and  utilized  for  SPEI  and  SPAEI

formulation.  MODIS  data  is  downloaded  from  Appeears (https://appeears.earthdatacloud.nasa.gov)

website. In the second part of this study, SPEI and SPAEI index drought indices are formulated using the

hydro-meteorological  variables estimated by different  models and analyzed its  results  for the various

models. The estimation of hydro-meteorological variables using empirical equations and its simulation by

SWAT, drought index formulation, and analysis over the period is explained in the section below, along

with the comparative analysis of various model results.  
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Figure 5.1. Schematic diagram of the workflow

5.2.1 Estimation of Hydro-meteorological variables by different approaches

In this work, PET and AET are calculated using three methods: Empirical, Modeled and remote sensing.

The first is to use empirical formulae. There are several equations for the formulation of PET among all

FAO-56  Penman-Monteith  [32],  which  was  adopted  as  the  standard  procedure  for  PET  by  the

International Commission of Irrigation and Drainage (ICID), the Food and Agriculture Organization of

the  United  Nations  (FAO),  and  the  American  Society  of  Civil  Engineers  (ASCE),  and  Hargreaves

Method,  which is  chosen to formulate PET and their  comparative analysis due to  its  minimum data

requirement.  AET was  also  estimated  using  the  Budyko and Turc  frameworks.  SWAT was  used  to

simulate PET and AET in the second approach, and in the third approach, these were retrieved from
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remote-sensing-based satellite data sources (MODIS). The empirical equations and SWAT model setup is

explained in the section below.

5.2.2 Estimation of PET and AET by Empirical Methods

PET is  estimated using Penman-Monteith  and Hargreaves  methods.  Equations  for  these methods are

given in Chapter 4.

AET by Budyko Method

The Estimation of AET is based on the water availability in terms of precipitation (P) and estimated PET

by Penman-Monteith as the International Commission adopted it on Irrigation and Drainage (ICID) and

the American Society of Civil Engineers (ASCE) as the standard procedure for PET. In this context, this

study used empirical models which work on the assumption that AET is limited by water availability in

terms of precipitation under very dry conditions and available energy under very wet conditions in terms

of PET [40], [41]. Budyko (1958) developed a relationship between three hydro-meteorological variables,

P,  PET,  and  AET  (Eq.5.1),  which  states  that  the  ratio  of  the  AET  over  precipitation  (AET/P)  is

fundamentally related to the ratio of the PET over precipitation (PET/P) [40], [63] as follows:

AET
P

=1+
PET
P

−¿¿                                                                                          (5.1)

Where the parameter ‘ω’ accounts for the basin characteristics such as soil, vegetation, terrain, etc. Theω’ accounts for the basin characteristics such as soil, vegetation, terrain, etc. The’ accounts for the basin characteristics such as soil, vegetation, terrain, etc. The

original Budyko equation has been modified by several researchers (e.g., [64] and one of the widely used

formulation  is  implemented  by  Zhang  et  al.,  (2004)  for  estimating  the  AET  for  the  Tunga-Bhadra

catchment as follows

AETBudyko   =    ¿                                                                      (5.2)

AET by Turc method

Turc method uses precipitation, PET, and soil and vegetative characteristics implicitly. It is one of the

widely used hydrological equations [38]

AETTurc =  

P

√0.9+
P2

PET2

(5.3)
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Where P is the precipitation, and PET is potential evapotranspiration. The present study used Penman-

Monteith PET for calculating AET, as it is considered a standard method.

5.2.3 Simulation of Hydro-meteorological variables by SWAT

Soil  and  Water  Assessment  Tool,  SWAT,  is  a  physically-based  distributed  hydrological  model  that

simulates the flow of a larger river. The water balance equation governs the land phase of the hydrologic

cycle in SWAT (5.4). The fundamental unit of the SWAT model is the hydrologic response unit (HRU).

HRUs are allocated based on land use, land cover, soil type, and slope of the area. These three factors are

vital in defining the HRU of an area. Dividing the whole catchment into discrete watersheds will simplify

analyzing the characteristics of watersheds. Overall, the SWAT model includes all the details required for

river basin management.

SW t=SW o+∑
i=1

N

(Rday−Q surf−Ea−W seep−Qgw)                                                                          (5.4)

Where  SW tis Soil-water content,SW o is the initial soil water content,  Rday is amount of Precipitation,

Qsurf  is Surface runoff,  Ea is Evapotranspiration,  W seepis water entering the vadose zone from the soil

profile, and Q gw is Return flow. 

For model setup, QSWAT with SWAT Editor 2012 is used to model the hydro-meteorological variables

of PET, AET, and discharge of the Tunga-Bhadra river catchment. Shuttle Radar Topography Mission

(SRTM) Digital  elevation  Model  (DEM)  generates  the  stream  networks   [65] and  delineates  the

catchment area in the QSWAT.

Precipitation, atmospheric temperature, wind velocity, solar radiation, and relative humidity data are used

as  model  input.  SWAT Calibration and Uncertainty Program (SWAT-CUP)  is  an interface  that  was

developed for SWAT. Using this calibration, uncertainty or sensitivity analysis is performed  [66]. The

model performance was based on two objective functions: Nash-Sutcliffe Efficiency and Coefficient of

determination, R2.  The present study conducted a multi-gauge calibration technique to obtain monthly

streamflow for the catchment area. The SWAT model was set up for 1986-2013, starting 2 years as a

warm-up period. However, in this study, our analysis of drought is from 2000 to 2013.

Further, these SWAT simulated hydro-meteorological variables are compared with the calculated values

by empirical model and the satellite datasets; Standardized drought indices are computed for the drought

studies using hydro-meteorological variables extracted by various approaches are discussed in the section
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below. 

5.2.4 Assessment of Meteorological drought by SPEI and SPAEI

SPEI  takes  both  precipitation  and  PET  into  account,  it  combines  the  response  of  drought  to

evapotranspiration.  The  SPEI  is  calculated  based  on  the  probability  that  the  differences  between

precipitation  and PET are  not  exceeded and adjusted  using  a  three-parameter  Log-logistic.  Whereas

SPAEI is calculated based on the probability that the difference between precipitation and AET. Both are

calculated at a 12-month time scale. The SPEI and SPAEI at different time scales represents different

climatic water balances. Equations used to calculate SPEI are discussed in chapter 4. The structure of

SPEI is considered to formulate SPAEI also with the inclusion of AET in the place of PET. That is for

SPAEI is restructured with (P-AET) instead of (P-PET) as explained in Chapter 4.

5.2.5 Evaluation metrics

The  accuracy  of  the  models  is  validated  using  Nash-Sutcliffe  efficiency  (NSE)  and  Coefficient  of

determination (R2).

NSE = 1 –  ∑
i

¿¿¿¿                                                                                             (5.5)

R2
=1−

∑
i

(Oi−Ôi )
2

∑
i

(Oi−Ó)
2

(5.6)

Where Oiis the observed values, Oi ,∼¿ ¿is the simulated values, and Ó is the mean value of O

5.3 Results and Discussions

5.3.1 Variation of Precipitation and Streamflow at Catchment

The annual precipitation and streamflow values extracted from the SWAT model are graphically shown

in Fig. 5.2 for the Tung-Bhadra river catchment. Annual precipitation varies from 720 mm to 1453 mm,
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whereas annual streamflow ranges from 3200-8250 cumecs of the Tunga-Bhadra catchment from 1988 to

2013. A continual drop in precipitation is observed between 2000-2004 (Fig.5.2), with the falling profile

of streamflow in the same year, which specify a severe drought over the catchment area. These years were

also  considered  as  major  long-term  drought  years  in  India  [67],  [68].  The  percentage  of  fall  in

streamflow that is considered as drought will depend on different factors, including location,

climate,  and hydrological  conditions.  However,  a  commonly used threshold is  a  decrease  in

streamflow by 10 to 30% [69]

            Figure 5.2 Variation of Precipitation and Streamflow over Tunga-Bhadra river catchment

5.3.2 Comparative Analysis of PET and AET by various Empirical models,      

Remote sensing, and SWAT over the Catchment

The analysis  of  the  catchment  area  of  PET and AET is  from 2000 to  2013.  Figure  5.3  shows  the

comparative plots of monthly PET over the Tunga-Bhadra catchment. Remote sensing-based PET ranges

from 86.5 mm to 257.7 mm, SWAT simulated PET 56.9 mm to 272.8 mm, Hargreaves PET 62.9 mm to

207 mm, whereas Penman-Monteith PET 55.5 mm to 239.5 mm. There is a significant variation in the

lowest value of PET

estimated by Hargreaves equations and remote-sensing-based PET compared to SWAT and Penman-

Monteith PET. However, the maximum monthly value estimated by the Hargreaves equation has shown a

large deviation with remote sensing and SWAT modeled PET of 50 mm and 65 mm, respectively, which

can show possible deviation in the identification of drought severity with any drought indices. 
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Further, significant variation is also observed in AET (Figure 5.4). AET estimates by Budyko range from

0 to 118.9 mm, Turc AET from 0 to 124.5 mm, SWAT modeled AET ranges from 7 mm to 145 mm, and

remote sensing AET varies from 7 mm to 94.5 mm. 

Figure 5.3: Comparative plot of monthly estimated PET values by SWAT, Remote Sensing, Penman-
Monteith and Hargreaves method

Figure 5.4: Comparative plot of monthly estimated AET values by SWAT, Remote Sensing, Budyko and

Turc framework

Table 5.1: Performance statistical indicators of PET values calculated by various methods against the 

remote sensing method.

Method NSE R2

Penman-Monteith 0.52 0.78
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Hargreaves 0.51 0.76
SWAT 0.61 0.74

Table 5.2: Performance statistical indicators of AET values calculated by various methods against the 

remote sensing method.

Method NSE R2

Budyko 0.50 0.65
Turc 0.52 0.65

SWAT 0.43 0.63

Table  5.1  and 5.2 shows the  comparative  analysis  of  PET and AET estimates  against  the  reference

method, which is the remote sensing method. In this study, the remote sensing method is considered a

standard method as it is satellite-based data. Satellite-based data partially solve the problem by providing

information in a fast and cost-effective way. The results show that PET and AET values produced by

different methods are not identical to the reference method. 

5.3.3 A Comparative Assessment of drought by SPEI and SPAEI using 

Empirical, SWAT, and Remote Sensing models

Despite that there is a large variation in generated PET and AET, it is observed that the average value of

drought indices formulated by using the generated PET and AET  by various methods are nearly the same

(Fig. 5.5 and 5.6) with the values of -1.20 (SPEI) and -1.22 (SPAEI) for the major drought event period

2002 to 2004. However,  a longer duration of drought event is captured by the SPEI index,  which is

formulated using SWAT simulated PET in comparison to other PET-based indices (Fig. 5.7). At the same

time, SPAEI estimated by all four approaches, that is, SWAT, remote sensing, budyko, and turc method

captures the event with nearly same duration (Fig. 5.8). It has been seen that budyko and turc approach

predicts the onset and ends of drought in a similar way.

AET estimated by SWAT, empirical equations, and remote sensing does not affect more than one month

in the detection of an event by SPAEI, i.e., the start and the end of one drought event. Whereas PET

estimates show the larger effect in the detection of the termination period of the event by SPEI. 

SPEI formulated by SWAT-PET terminates the drought event by 15 months; this may be because of a

sudden rise of climatic factors captured by SWAT.
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Figure 5.5: Variation of SPEI drought index using various PET estimates

Figure 5.6: Variation of SPAEI drought index using various AET estimates

Table 5.3: Performance statistical indicators of SPEI values calculated by various methods against the 

remote sensing method

Method NSE R2

Penman-Monteith 0.93 0.93
Hargreaves 0.95 0.95
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SWAT 0.85 0.91

Table 5.4: Performance statistical indicators of SPAEI values calculated by various methods against the 

remote sensing method

Method NSE R2

Budyko 0.75 0.77
Turc 0.74 0.76

SWAT 0.71 0.75

Table  5.3  and  5.4  shows  the  comparative  analysis  of  drought  indices  SPEI  and  SPAEI  against  the

reference method, where satellite-based PET and AETs were used in the drought indices estimation. By

these results, it can be concluded that despite the variations in PET and AET estimates, drought indices

values are nearly the same. SPEI values are nearly identical, regardless of the PET and AET calculation

method. 

Figure 5.7: Drought onset and termination month identified by SPEI drought index by using various PET

estimates for the major drought event periods (2002-2004)
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Figure 5.8: Drought onset and termination month identified by SPAEI drought index by using various

AET estimates for the major drought event periods (2002-2004)

5.3.4 Drought Characteristics Analysis

In this study, the duration and severity of the drought were analyzed. When SPEI values go below zero, or

at a time when SPEI values are negative, a drought event is said to have occurred. The length of the

period during which the SPEI value is consistently negative is the duration of the drought (D). It begins

when the SPEI values are equal to -1 and ends when they become positive. The cumulative SPEI values

throughout the droughts duration determine the drought severity (S). which is defined by

S=−∑
i=1

D

SPEI i                                                                                                                                  (5.7)

The total number of drought events that occurred for PET estimates using Penman-Monteith, Hargreaves,

SWAT, and Remote Sensing are 11, 9, 13, and 7, respectively from Jan 2000 to Dec 2012. Major drought

events occurred using Penman-Monteith from Jun 2001 to Aug 2004 with a severity value of -46.93.

Using Hargreaves, a major event occurred from Jul 2001 to Aug 2004 with a severity value of -45.60.

using SWAT, a major event occurred from May 2001 to Nov 2005 with a severity value of -62.89. and

using remote sensing, the major event occurred from Jun 2001 to Aug 2004 with a severity value of -

43.22.  
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And similarly, for AET total number of drought events using Budyko, Turc, SWAT, and Remote sensing

are 8,  8,  13,  and 12,  respectively from Jan 2000 to Dec 2012.  Major drought events occurred using

Budyko from Jul 2001 to Aug 2004 with a severity value of -46.53. Using Turc, a major event occurred

from Jul 2001 to Aug 2004 with a severity value of -46.48. Using SWAT, the major event occurred from

Jun 2001 to Jul 2004 with a severity value of -51.64. using remote sensing, the major event occurred from

May 2002 to Jul 2004 with a severity value of -39.48. 

5.4 Conclusions 

This study aimed to do drought analysis using different PET and AET models for the Tunga-Bhadra

catchment, India, from 2000 to 2013. PET is estimated using empirical methods of Penman-Monteith and

Hargreaves. AET is estimated using empirical methods of Budyko and Turc. The hydrological method

SWAT is used to estimate both PET and AET. Remote Sensing (MODIS) data for PET and AET is

downloaded from the Appeears  website.  There  is  a  significant  variation in  the  lowest  value of  PET

estimated by Hargreaves equations and remote-sensing-based PET compared to SWAT and Penman-

Monteith PET. However, the maximum monthly value estimated by the Hargreaves equation has shown a

large deviation with remote sensing and SWAT modeled PET. For the study area,  continual drop in

precipitation was observed between the years 2000-2004, with the falling profile of streamflow in the

same year, which specifies major drought events that occurred in those years. After estimating both PET

and AET, drought is estimated using SPEI and SPAEI.  The drought indices values are compared with

remote sensing-based drought indices. Results show that despite variations observed in PET and AET

estimates, drought indices values are nearly identical regardless of the method.  It is observed that the

average value of drought indices formulated by using the generated PET and AET  by various methods

are nearly the same with the values of -1.20 (SPEI) and -1.22 (SPAEI) for the major drought event period

2002 to 2004. Although all methods correlated better with each other, Hargreaves for SPEI and Budyko

for SPAEI performed relatively better with NSE, R2 values of 0.95, 0.95, and 0.75, 0.77, respectively. The

total number of drought events that occurred for PET estimates using Penman, Hargreaves, SWAT, and

Remote Sensing are 11, 9, 13, and 7 respectively. Long duration of drought using PET is captured by

SWAT with a severity value of -62.89 from May 2001 to Nov 2005. All other three methods generated

similar severity values.

And similarly, for AET total number of drought events using Budyko, Turc, SWAT, and Remote sensing

are 8, 8, 13, and 12, respectively. The long duration of drought using AET is captured by SWAT with a

severity value of -51.64 from Jun 2001 to Jul 2004. Budyko and Turc approach predicts the onset and end

of the drought similarly. It is recommended to use PET instead of AET when estimating drought indices
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as  SPEI  values  performed  relatively  better  than  SPAEI.  However  this  conclusion  may  not  be

universally applicable, as the performance of drought indices can vary depending on the specific

characteristics of the study area, data quality and climatic conditions.  Although PET and AET

estimates  vary  with  different  models,  drought  indices  SPEI  and  SPAEI  are  not  differing  much.

Hargreaves  and  Penman-Monteith  performed  better  results  compared  to  reference  method  in  SPEI

calculations. And for SPAEI Budyko and Turc performed better results. Thus, the present study concludes

that empirical models correlated better with the remote sensing data.  

Chapter 6

     Summary and Conclusions

The study aimed to simulate the complex PET and AET processes using empirical (Penman-Monteith,

Hargreaves, Priestley-Taylor, Budyko and Turc), data-driven (ANN) and hydrological model (SWAT).

Further,  the thesis aimed to study the uncertainty in the drought characterization of SPEI and SPAEI

using various PET and AET estimates implemented on Hyderabad and Tunga-Bhadra River basin, India.

The input variables used for PET estimates are temperature, relative humidity, wind speed, and solar

radiation.  Data-driven  model  ANN  is  used  to  estimate  PET  using  these  climate  input  variable

combinations. ANN results are compared with the results of alternate PET methods.  Penman-Monteith

method correlated better with ANN model. Hargreaves and Turc also correlated comparatively better than

Priestley-Taylor  method.  Due  to  the  lower  relative  humidity  dependency on  the  PET estimates,  the

Priestly-Taylor model has lower accuracy with ANN. 
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Further, to study the impact of various PET methods on drought estimation, SPEI is calculated at 12,

6,  and  3-month time scales.  Penman-Monteith  model  estimates  of  SPEI  are  considered the standard

reference method.  All  other methods are compared with the  Penman-Monteith  method using RMSE,

MAE, and R2. It is shown that no significant influence on the results of SPEI was detected by three PET

methods (Hargreaves, Turc, and Priestley-Taylor). Uncertainty in the drought indices was noted in the 3-

month period of (Jan - Mar) and (Apr-Jun) for the Priestley-Taylor method. Hargreaves and Turc methods

correlated better with the standard method of Penman-Monteith model. 

Furthermore, the present study aimed to include different PET and AET estimates for Tunga-Bhadra

catchment scale from the period of 2000 to 2013 simulated by hydrological model, SWAT. Furthermore,

PET is estimated using empirical methods of Penman-Monteith and Hargreaves. AET is estimated using

empirical methods of Budyko and Turc. Remote Sensing (MODIS) based data of PET and AET were

used as  standard method to validate  various  empirical  and modeled data  of  the  present  study.  After

estimating both PET and AET, drought is estimated using SPEI and SPAEI. The drought indices values

are compared with remote sensing-based PET and AET induced drought indices. The research findings of

the study are summarized as follows:

 Penman-Monteith,  Hargreaves,  and Turc methods were correlated better  with the data driven

ANN model with R2 values of 0.97, 0.96 and 0.94 respectively.

 The study also emphasized the influence of climate variables on PET estimations and found that

temperature, solar radiation, and wind speed has more influence than relative humidity.

 SPEI is calculated at different time scales using various PET methods compared with Penman-

Monteith  method and it  is  observed that  Hargreaves  and Turc method performed better  than

Priestley-method.

 Hargreaves and Turc methods can be useful in estimating drought when the minimum data is

available.

 SPEI and SPAEI are calculated using different methods of PET and AET which are empirical,

hydrological,  and  remote  sensing  keeping  remote  sensing  as  standard  method  to  find  the

uncertainty of evapotranspiration in drought estimation.
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 It is observed that average values formulated by using the generated PET and AET by various

methods are nearly the same with the values of -1.20 (SPEI) and -1.22 (SPAEI) for the major

drought event period 2002 to 2004.

 Long duration of drought using PET is captured by SWAT with a severity value of -62.89 from

May 2001 to Nov 2005. Where as for other methods, using Penman-Monteith it was from Jun

2001 to Aug 2004 with a severity value of -46.93. Using Hargreaves it was from Jul 2001 to Aug

2004 with a severity value of -45.60, and using remote sensing it was from Jun 2001 to Aug 2004

with a severity value of -43.22.

 Long duration of drought using AET is captured by SWAT with a severity value of -51.64 from

Jun 2001 to Jul 2004. Where as for other methods, using Budyko it was from Jul 2001 to Aug

2004 with a severity value of -46.53. using Turc it was Jul 2001 to Aug 2004 with a severity

value of -46.48, and using remote sensing it was from May 2002 to Jul 2004 with a severity value

of -39.48

 It was observed that Hargreaves for SPEI and Budyko for SPAEI performed relatively better with

NSE, R2 values of 0.95, 0.95, and 0.75, 0.77, respectively.

 It is recommended to use PET instead of AET when estimating drought indices as SPEI values

performed relatively better than SPAEI.

 In the present study it  is observed that although PET and AET estimates vary with different

models, drought indices SPEI and SPAEI are not differing much, particularly at annual scales.

Significant variability can be noted at shorter-time scales of drought assessments. 

 Hargreaves and Penman-Monteith performed better results compared to remote sensing method

in  SPEI  calculations.  And  for  SPAEI,  Budyko  and  Turc  performed better  results.  Thus,  the

present study concludes that empirical models correlated better with the remote sensing data. 

57



 The results suggest that for ungauged river basins, where detailed hydrological data is limited and

difficult  to  implement  hydrological  models,  empirical  based PET and AET estimates  can be

better choice for drought characterization.
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