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Abstract

Metaverse has gained massive popularity these days owing to its potential in various industries and
research fields such as the health sector, online social interaction, gaming and entertainment, education,
eCommerce transactions, etc. Some of the challenges to be addressed in building a Metaverse, including
human-computer interactions and scene understanding, rely on AI techniques for solutions. However,
most of these methods rely on supervised learning that requires labor-intense annotated data and have
limited generalizability. Self-supervised learning methods offer a viable alternative to overcome these
limitations as well as leverage large amounts of readily available unlabeled raw data, which is often
more abundant and easier to collect. These methods can learn to capture temporal or spatial relation-
ships within data, modeling contextual information, which is valuable for several computer vision tasks.
Hence, these methods can be useful in addressing the challenges of building the Metaverse.

Within the Metaverse, users can interact with each other and a digital environment through avatars.
Using UV parameterized maps of avatars, textures can be accurately applied, resulting in realistic skin,
clothing, and other visual details. They also play a crucial role in the creation of virtual fashion and
design within the Metaverse. This can also benefit the E-Commerce industry, particularly fashion and
apparel, which have experienced tremendous growth in recent years. The Metaverse can provide im-
mersive virtual environments for virtual try-on where users can explore and interact with products more
realistically and engagingly than traditional online shopping.

Given the above advantages, we intend to address the following two challenges in this thesis. First,
we explore self-supervised data-driven methods for UV parameterization of general objects. The ex-
isting methods for surface parameterization of arbitrary 3D objects face challenges when dealing with
closed surfaces and regions of extreme extrinsic curvature. Mapping a surface from 3D to 2D almost
always introduces a certain amount of distortion, and the aim is to keep this distortion as low as possible.
Finding optimal seams that lead to low distortion is another challenge. We present a novel framework
for learning the discretization-agnostic surface parameterization of arbitrary 3D objects with closed and
open surfaces. We evaluate our framework on multiple 3D objects from the publicly available dataset
and report a comparison with conventional methods.

Secondly, utilizing self-supervised methods, we aim to innovate a solution for a 3D virtual try-
on system. The goal is to retarget real, non-parametric garment meshes over a target human body
(parametric or non-parametric). This 3D virtual try-on system needs to generalize to arbitrary body
shapes and poses, modeling topological differences among various categories of garments, along with
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realistic deformations arising out of the physical interaction with the underlying body and resolving
the penetration/intersection of the garment with the underlying body. These systems need to run in
real time with very less delay. We propose a self-supervised method for draping non-parametric, 3D
garment meshes by first obtaining the initial alignment between the garment and the human body by
establishing correspondences via Isomap Embeddings. Further, this coarse retargeting is refined by
training an MLP that preserves the geometry of the garments guided by our novel losses. We propose a
wrinkle generation module to obtain realistic details on the draped garments. We also contribute a new
dataset of real-world reposed garments with realistic noise and topological deformations.

Finally, we discuss the limitations of our work and lay down the potential solutions that can be
explored. We also discuss the future directions that can be pursued based on the findings of our work. We
believe this thesis advances the field of virtual try-on systems significantly while providing a learning-
based solution for parameterization.
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Chapter 1

Introduction

Computer Vision is a field of research focused on enabling computers to understand and analyze the
3D world that is tantamount to human perception, if not better. Some of the most challenging problems
tackled by this field are object detection, video tracking, 3d scene reconstruction and understanding,
human pose estimation and modeling etc. Computer Vision also finds application in various domains
like medical image analysis, animation, VFX in the entertainment industry, autonomous driving, robot
planning and navigation, Virtual and Augmented Reality (VR/AR) and many more.

Figure 1.1: Different applications that use Metaverse.
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In particular, Metaverse has gained massive popularity these days, with tech giants investing heav-
ily in its research and development 1 2. Metaverse is a virtual shared space combining physical and
digital reality, and has numerous applications in various industries and research fields. As humans are
three-dimensional beings, navigating and interacting in 3D through these virtual worlds is easier and
more appealing than with a 2D screen. Hence Metaverse finds applications in like health sector, online
social interaction, gaming and entertainment, education, E-Commerce transactions etc Figure 1.1. The
recent development in the hardware is helpful in making AR/VR devices more accessible to customers.
Computer vision and Artificial Intelligence (AI) play a vital role in the development and progress of
Metaverse. Some of the challenges to be addressed in building a Metaverse including human-computer
interactions, and scene understanding, rely on AI techniques for solutions. However, most of these
methods rely on supervised learning that requires labor intense annotated data and have limited gener-
alizability.

In this thesis, we aim to explore self-supervised methods in 3D computer vision that overcome the
limitations of supervised methods. These methods bypass the need for annotated data, thus allowing to
leverage a large corpus of data for training. In particular, we focus on self-supervised methods for UV
parameterization of general objects and garment retargeting. In case of the former, UV parameterization
refers to the mapping of 3D objects onto 2D planes. These flattened maps are useful for the efficient stor-
age of data associated with a 3D model, such as texture, normals, albedo, depth etc. These texture maps
facilitate easy manipulation of the 3D object appearance by editing the 2D texture maps Figure 1.2.
As a later part, we address the problem of virtual try-on. This problem has got a lot of traction in the
last couple of years owing to the pandemic, resulting in people shifting to the mode of online shopping.
3D virtual try-on allows users to virtually try on or test out different garments and visualize how they
would look or fit on themselves without physically trying them on. It provides a simulated experience
of trying on different styles, sizes, colors, or combinations before making a purchase decision. This can
be extremely immersive especially in a VR setup. However, it involves addressing various challenges
such as generalization to different poses and shapes of people in the image, non-rigid deformations of
garments, generalization to a plethora of garments styles etc. Addressing these challenges can take the
virtual try-on experience to a new level.

1.1 Motivation

Most of the applications of computer vision rely on Supervised Learning methods that have proven
to be powerful tools and are widely used. However, they have several limitations 3. They generally
require a large amount of labeled data for training, which are difficult to acquire, and labeling them can
be time-consuming, expensive, or even infeasible in certain cases, especially when dealing with rare

1https://finance.yahoo.com/news/tech-companies-pouring-billions-vr-175131376.html
2https://www.tomsguide.com/news/apple-vr-and-mixed-reality-headset-release-date-price-specs-and-leaks
3https://medium.com/analytics-vidhya/the-severe-limitations-of-supervised-learning-are-piling-up-eca1ecf3e113
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Figure 1.2: Appearance manipulation of mesh via texture editing.

events or niche domains. The training data needs to be representative of the target population covering a
wide range of scenarios. Incorrect or mislabeled examples can adversely affect the model’s performance
leading to incorrect predictions. Supervised models primarily learn statistical patterns without a deep
understanding of the underlying context. Hence, they may struggle to generalize well to unseen data
that differs significantly from the training data and can be sensitive to noise or errors in the labeled data
Figure 1.3. Overfitting can also occur when a supervised model becomes too complex and starts to
memorize the training data instead of learning general patterns, resulting in poor performance on new,
unseen data.

Self-supervised learning methods offer a viable alternative as they overcome several of the above-
mentioned limitations 4. These methods can leverage large amounts of readily available unlabeled
data, which is often more abundant and easier to collect compared to labeled data. This reduces the
reliance on costly and time-consuming data annotation processes. They also allow models to actively
explore and understand unlabeled data, potentially discovering new patterns or novel aspects of the
data that may not be captured by pre-defined labeled classes. These methods can learn to capture
temporal or spatial relationships within data, modeling contextual information, which is valuable for
several computer vision tasks. Hence, these methods can be useful in addressing the challenges of
building the Metaverse.

Metaverse is expected to be the future universe, with economic projections reaching 800 billion by
2025 and 2.5 trillion by 2030 5. In the Metaverse, users can interact with each other and a digital en-
vironment through avatars, which are computer-generated characters designed to resemble real human
beings. Human modeling is used in the Metaverse to create these digital avatars. Using UV parameter-
ized maps of avatars, textures can be accurately applied, resulting in realistic skin, clothing, and other
visual details. This allows for the customization and personalization of avatars, enhancing their visual
fidelity in the Metaverse. UV parameterization also plays a crucial role in the creation of virtual fashion
and design within the Metaverse. Designers can create 2D patterns that are then mapped onto the UV
coordinates of a human model, allowing for virtual clothing customization and fitting.

4https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
5https://www.plugxr.com/augmented-reality/what-to-expect-in-metaverse-future-2030/
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Figure 1.3: Failure case of supervised method for draping parametric 3D garment on SMPL body mod-

els.

Character modeling in general, plays a significant role in the creation of animated films, television
shows, and video games. Artists use specialized software like Autodesk Maya 6, ZBrush7, or Blender8

to create 3D models of characters. These models serve as the foundation for rigging, animation, and
rendering processes. UV parameterization plays a crucial role in character modeling. It can be beneficial
for rigging and animation purposes as well. When a character model is rigged with a skeleton and control
points for animation, UV parameterization can help preserve texture continuity during deformation.
It also allows artists to apply textures, such as color, detail, and surface properties, onto a character
model. By carefully laying out UV coordinates, animators can ensure that textures remain aligned and
undistorted as the model moves, resulting in seamless and visually appealing animations.

Before mapping textures, the 3D model needs to be unwrapped, which involves flattening the model’s
surface into a 2D representation. This process involves cutting and rearranging the model’s geometry
to minimize distortions and optimize the use of texture space. Several such mapping tasks often in-
clude human priors that cannot be represented concisely through analytical methods, or else require
computationally expensive numerical optimization at runtime. Hence, relying on data-driven methods
while using modern statistical learning for semantic priors, can help approximate optimized solutions
in a single forward pass and have a wide impact. Potential applications encompass tasks like 3D shape
alignment to desired target, inferring high quality texture maps based on examples by artists, and seam-

6https://www.autodesk.in/
7https://www.maxon.net/en/zbrush
8https://www.blender.org/
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Figure 1.4: Example of virtual garment try-on system.

less integration with optimization tasks like physics simulation. This also has the benefit of directly
integrating into the graphics pipeline without the need to convert back and forth between different rep-
resentations. It seems logical to harness deep-neural networks which have proven to be very effective in
complex tasks, to achieve accurate and high-quality results.

The E-Commerce industry, fashion and apparel sectors in particular, have experienced tremendous
growth in recent years, influenced by several factors such as advancements in technology, increasing
internet penetration, changing consumer behavior, and the convenience it offers. Fashion and apparel
e-commerce is expected to continue growing, with estimates that global online fashion sales will reach
$1.2 trillion by 2027 9. The Metaverse can provide immersive virtual environments where users can
explore and interact with products in a more realistic and engaging manner than traditional online shop-
ping. Virtual reality (VR) and augmented reality (AR) technologies can allow shoppers to visualize and
try on products virtually, enhancing the online shopping experience Figure 1.4. They can significantly
reduce the need for customers to return products due to fit or appearance issues. Virtual try-on is a
method to accurately simulate how the garment would look on a given person in terms of texture, color,
fit, and overall appearance. Viewing from multiple views and 3600 visualization is another desired prop-
erty of a virtual try-on system. Given these requirements, it seems optimal to design this virtual try-on
in a 3D setting instead of 2D. Self-supervised methods can be used the leverage the available data to
model a suitable system for 3D virtual try-on.

9https://www.statista.com/topics/9288/fashion-e-commerce-worldwide/#topicOverview
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1.2 Problem Statement

As discussed, given the advantages of self-supervised methods, we address the problem of UV pa-
rameterization of general objects and 3D garment retargeting using these self-supervised learning ap-
proaches. However, using neural networks for inferring on meshes is, to a large extent, an open problem.
Also, learning on 3D surfaces has fundamental issues that make it a harder problem than learning on 2D
images. As opposed to images that have a fixed grid structure, 3D surfaces have significant geometric
and topological variation. A pair of surfaces representing the same geometric shape can have different
discretization making it difficult to establish an association between them. The network should also be
able to account for the lack of ordering of points as well as have equivariance to different spatial orien-
tations of the 3D surface. Thus suitable architectures need to be designed to overcome these challenges.
Some methods choose to work with one fixed triangulation which limits their applications to real-world
data where the triangulation is not known in advance. Hence, the network needs to be designed to cap-
ture the implicit features of the geometric shape. Keeping these challenges in mind, we wish to address
the following two problem statements.

Figure 1.5: The objective is to achieve UV parameterisation and Garment Retargeting.

1.2.1 UV parameterisation

First, we focus on the problem of surface parameterization of arbitrary 3D objects with both closed
and open surfaces via a self-supervised framework. The existing methods for surface parameterization
of arbitrary 3D objects face challenges when dealing with closed surfaces and regions of extreme ex-
trinsic curvature. We aim to develop a novel, self-supervised framework that addresses these issues and
enables the efficient and accurate surface parameterization of arbitrary 3D objects. Mapping a surface
from 3D to 2D almost always introduces a certain amount of distortion, and the aim is to keep this dis-
tortion as low as possible. Finding optimal seams that lead to low distortion is another challenge. The
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objective of this research is to propose a learning-based approach that partitions closed surfaces into
open patches and independently parameterizes them. Additionally, the framework should learn the sur-
face parameterization of open 3D surfaces to a UV plane. The solution should enforce meaningful UV
mapping and achieve desired properties such as isometric, conformal, and area-preserving parameteriza-
tions. The framework should leverage learning-based methods to provide a multi-scale characterization
of the underlying surface, ensuring a global-to-local context for each vertex. Furthermore, the proposed
solution should be discretization agnostic, allow for learning on lower-resolution meshes and enable the
direct inference of parameterization for high-resolution meshes without the need for retraining.

1.2.2 Garment Retargeting

Next, we aim to innovate a self-supervised method that can retarget real, non-parametric garment
meshes over a target human body (either parametric or non-parametric). This 3D virtual try-on sys-
tem needs to generalize to arbitrary body shapes and poses, modeling topological differences among
various categories of garments, along with realistic deformations arising out of the physical interaction
with the underlying body and resolving the penetration/intersection of the garment with the underlying
body. These systems need to run in real time with very less delay. Given a 3D garment mesh and a
target 3D human mesh, the aim is to first estimate correspondences between the two meshes using a
novel representation, which provides an initial placement of the garment around the target body as a
coarse retargeting initialization. Further, realistic garment deformation details need to be added, either
via physics-based simulation methods or via data-driven methods. Unlike existing methods that rely on
skinning, we aim to repose any arbitrary non-parametric garment on any parametric or non-parametric
target body. Finally, as a post-processing step, fine wrinkles and details can be introduced in the retar-
geted garment conditioned on the pose and shape of the target human body. Additionally, due to the
lack of any real-world datasets for 3D garment retargeting, we aim to curate our own dataset, containing
different garments worn by multiple subjects in arbitrary poses. This data can serve as ground truth for
the evaluation of retargeting methods.

1.3 Research Landscape

1.3.1 UV parameterisation

Early methods for mesh parameterization were based on optimization and can be categorized as
single patch, free boundary methods, which include computing a piecewise linear least square solution
of the Cauchy-Reimann equations. One method minimized the Dirichlet energy of the flattened area.
A line of methods aimed at optimizing the angles between the flattened mesh and the input mesh.
Another category of parameterization is single-patch fixed boundary methods that explicitly incorporate
boundary conditions. The above-mentioned categories require the mesh to be homogeneous to a disk
topology. However, global parameterization methods can deal with meshes of arbitrary genus. They
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achieve this by partitioning the closed mesh into multiple open patches or detecting one or more seams
to cut the mesh, making it homogenous to a disk. A class of methods jointly solve for optimal seams and
parameterization. Neural parameterization methods have gained popularity over the past few years due
to their ability to address ill-posed problems. AtlasNet [20], and DGP [63] propose a way of surface
reconstruction and parameterization by training a neural network to represent a single UV chart over
the reconstructed surface. Both methods use a fixed number of patches for the surface parameterization
but require a different neural network for every patch, which is overkill and difficult to scale. A recent
work AUV-Net [12] takes a point cloud as input and learns parameterization of aligned surfaces (e.g.,
faces and humans in T-poses) using a cycle-loss, but requires all the meshes to have similar topology
and same orientation to enable learning. Moreover, the proposed two-patch estimation method is very
naive and cannot scale to an arbitrary number of patches. Another recent method [1] learns intrinsic
mapping of arbitrary surfaces in a supervised setup, where a conventional method acts as the ground
truth. However, no method exists that achieve this in a self-supervised setup.

1.3.2 Garment Retargeting

The current solutions for 3D garment retargeting can be broadly categorized into two types: tra-
ditional graphics simulation pipelines and modern deep learning techniques. The simulation-based
approaches are known for their ability to depict deformations and wrinkles in garments accurately.
However, they often depend on previous frames of reference to determine velocity and acceleration
parameters. This reliance on trajectory information poses a challenge in AR/VR applications where
fashion shoppers want to see how a garment would appear on their digital avatars without having to
provide a specific trajectory. To overcome this limitation, an alternative approach is needed, namely
an arbitrary pose and shape re-targeting technique. Recent advancements in deep learning have made
progress in this direction by using supervised training strategies. These techniques learn the skinning
weights of a parametric garment to drape it onto a parametric human body, with the popular choice being
the SMPL (Skinned Multi-Person Linear) [38] body model. The garments themselves are derived from
the SMPL body mesh. However, there are several issues associated with these approaches. Firstly, they
require a large number of training samples, which are generated by simulating garments on top of the
body mesh using software like Blender. These parametric garments are synthetic and do not accurately
represent garments with diverse topologies. Furthermore, real scans or reconstructed garments from
images are not inherently parametric, making it challenging for the existing methods to handle them.

1.4 Contribution

1. Self-Supervised setup for UV parameterization: We present a novel self-supervised framework
for learning the discretization-agnostic surface parameterization of arbitrary 3D objects with both
closed and open surfaces. We evaluate our framework on multiple 3D objects from the publicly
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available SHREC [Lian et al. 2011] dataset and report superior/faster UV parameterization over
conventional methods.

2. 3D virtual Try-on System: We present a self-supervised framework for retargeting real, non-
parametric 3D garments on an arbitrary target human body. Our novel formulation can retarget
in-the-wild, arbitrary non-parametric garments over parametric as well as non-parametric bodies
in arbitrary pose and shape. We propose a first-of-its-kind real-world 3D garment dataset for
evaluating our proposed framework.

1.5 Thesis Roadmap

In this chapter, we introduced motivation for self-supervised methods, our problem setup, challenges
associated with it, limitations of existing methods, and our contributions.

In Chapter-2, we provide the necessary background for this thesis and briefly summarize the aspects
of various ways to represent 3D data. We provide a clear idea of UV and texture mapping and distinction
between vertex-colored vs textured reconstruction. We also discuss about Skinned Multi Person Linear
model (SMPL) - a parametric human body model which can act as a useful prior.

Chapter-3 focuses on a solution for self-supervised methods for UV parameterization of arbitrary
meshes. Chapter-4 discusses a robust framework for a realistic garment retargeting system in real-time.

Finally, Chapter-5 lays down a discussion of the impact of the proposed methods, it’s limitations as
well as a future direction for research.
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Chapter 2

Background

In this chapter, we provide a brief introduction to relevant concepts and terminologies used in the
thesis. First, we’ll be discussing the representation of 3D geometry. Next, we briefly discuss parameteri-
sation methods and evaluation metric used for the same. We also give a brief introduction to SMPL [38]
representation which is a parametric human body model, used in several cases to either represent a
human body or used as a body prior.

2.1 3D Representations

There exist several representations for digital representation of a 3D shape such as point cloud,
polygonal mesh, voxel grid, implicit surfaces, SDF(sign distance functions) etc. We’ll be discussing
only about the point cloud and mesh as they’re are relevent for the thesis Figure 2.1.

Figure 2.1: 3D representations as point cloud and mesh.
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2.1.1 Point Cloud

Point cloud represents objects or scenes as a set of discrete points in 3D space. Each point in the
cloud corresponds to a specific location in 3D Cartesian coordinates and may be associated with addi-
tional attributes such as color, intensity, or surface normals. In a point cloud with N number of points,
each point Pi ∈ R3 is represented as Pi = {x, y, z} with i = (1, 2, ..., N). The points in a point
cloud are often obtained through 3D scanning techniques or sensors like LiDAR (Light Detection and
Ranging), structured light scanners, or photogrammetry. They are typically considered as an unordered
set, lacking any inherent connectivity information. Point clouds can be converted to mesh for easier
visualisation, rendering and further processing of data. This is achieved using methods like Poisson
surface reconstruction, marching cubes, delaunay triangulation, ball pivoting algorithm etc.

2.1.2 Mesh

The mesh representation, also referred to as a polygon mesh, is a commonly employed data structure
used to depict the surface geometry of 3D objects or scenes. It offers a discrete approximation of the
continuous surface by subdividing it into a set of interconnected polygons. It is composed of vertices,
edges and faces, which together define the shape or topology of the object. A face can have three or
more vertices. A mesh with three vertices per face is called a triangular mesh and four vertices is called
a quad mesh. OBJ is one of the common file format used for storing the polygonal meshes and stores
different elements in the following format:

• Vertices: (x, y, z) coordinates of the points. Vertex color can also be stored per point. Each vertex
in .obj file start with “v”. (e.g. v -1.000000 1.000000 -1.000000 255 255 255).

• Texture Coordinates: Each vertex is assigned a two dimensional texture coordinate for texture
mapping. Each coordinate is represented by “vt” (e.g. vt 0.250000 0.250000).

• Vertex Normals: The normal per vertex, (nx, ny, nz) are represented as vn 1.000000 1.000000,
1.000000.

• Faces: A face in a .obj file stores the indices of the vertices that together form a given face and
the normal vector and texture coordinate of those vertices. A sample of a face is represented as “f
27/1/43 14/3/46 42/11/87”. f is used to declare a face, followed by three groups of three numbers,
seperated by a ‘/’. The first number in each group defines the index of the vertex in the vertex
array. The second number is the index of the textrue coordinate per vertex and the third number
is the index of the vertex normal. The arrays are 1-based in OBJ file format, i.e. first element in
the array has index 1).
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Figure 2.2: Parameterisation of a mesh.

2.2 Parameterisation

As mentioned earlier, parameterisation refers to one-to-one mapping of suitable domain, which in
our case is a 3D mesh to a 2D surface. This has many application in various fields of science and
engineering. However, the main motivation for developing the first parameterisation methods was due
its application in texture mapping for better visual quality of 3D models. Parameterisation is achieved
by flatening or unwarping of a 3D mesh onto a 2D plane. The simple example of unwrapping a cube
is shown in Figure 2.2(b). Once this is done, each face of the mesh can be associated with the texture
information by overlaying the texture image ( called texture map or UV map) onto the parameterised
2D map of the mesh. This process is shown in Figure 2.2(a).

2.3 SMPL: Skinned Multi-Person Linear model

The primary goal of SMPL [38] is to provide a compact and efficient representation of the human
body that can be easily manipulated and animated. It allows for the generation of realistic and con-
trollable human characters, which is crucial in various applications such as animation, virtual reality,
gaming, and biomechanical simulations. To construct the SMPL model, a large-scale dataset of 3D body
scans was used to learn a statistical model of human body shape and pose variations. Using this dataset,
a statistical analysis was performed to derive the low-dimensional shape and pose spaces that are used
in the SMPL model. Separate models are available for men and women.

The SMPL model consists of two main components: shape parameters β⃗ ∈ R3K and pose parameters
θ⃗ ∈ R3K . The shape parameters control the overall body shape and are represented as a low-dimensional
vector. By adjusting these parameters, it is possible to generate a wide variety of body shapes, ranging
from thin to obese individuals. The pose parameters control the articulation of the body joints. They
describe the rotation angles of the different body parts, such as the arms, legs, and torso. By manipulat-
ing these parameters, it is possible to animate the SMPL model, bringing it to life with a wide range of
movements and poses. Thus SMPL enables the creation of diverse characters with different body types.
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Different blend shapes for identity, pose, and soft-tissue dynamics are additively combined with a rest
template T ∈ R3N before being transformed by blend skinning.

Figure 2.3: (a) Template mesh with blend weights indicated by color and joints shown in white. (b)

With identity-driven blendshape contribution only (c) With the addition of of pose blend shapes in

preparation for the split pose; note the expansion of the hips. (d) Deformed vertices reposed by dual

quaternion skinning for the split pose. Figure adopted from [38]

A single SMPL model is composed of N = 6890 vertices and K = 27 joints. The following
notations are used:

• Blend shape function: BS(β⃗) : R|β⃗| → R3N ( This takes as input the shape parameters(β⃗) and
outputs a blend shape sculpting the subject identity. )

• Joint regressor function: J(β⃗) : R|β⃗| → R3N

• Pose-dependent blend shape function: BP (θ⃗) : R|θ⃗| → R3N ( This takes as input pose parameters
(θ⃗) and accounts for pose dependent deformations. )

• Blend skinning function: W (.) ( Linear or Dual-quaternion )

The pose of the body is defined by the standard skeleton rig where ω⃗k ∈ R3 denotes the axis angle
representation with respect to its parent in the Kinematic tree. The SMPL rig has K = 23 joints, hence
a pose θ⃗ = [ω⃗T

0 , ......, ω
T
K ]T defined by |θ⃗| = 3 × 23 + 3 = 72 parameters; 3 for each joints and 3 for

root orientation. In blend skinning, we attach the surface of a mesh to an underlying skeletal structure.
Each vertex in the mesh surface is transformed using a weighted influence of its neighboring bones.
This influence can be defined linearly as in Linear Blend Skinning (LBS).

The process of deformation is shown in Figure 2.3. Then template mesh T and the blend weights
W are plotted in (a). The change in template with shape parameters β is depicted in (b). (c) shows the
deformations in the template mesh according to change in pose θ. (d) shows the final mesh with new
joint locations and deformed vertex obtained by applying blend skinning on the previous mesh (c). The
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new position of the vertices are obtained via the following formula:

t
′
i =

K∑
k=1

wk,iG
′
k(θ, J(β))(ti + bS,i(β) + bP,i(θ)) (2.1)

where Gk(θ, J) is world transformation of joint k and wk,i is the weight associated with vertex i to
joint K. bS,i(β) and bP,i(θ) is vertex i in BS(β) and BP (θ) respectively.

In conclusion, SMPL is a powerful parametric model for representing human body shape and pose. It
has become a cornerstone in computer graphics and computer vision, enabling the generation of realistic
and controllable human characters. Its simplicity, efficiency, and flexibility make it a valuable tool in a
wide range of applications.
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Chapter 3

Discretization-Agnostic Deep Self-Supervised 3D Surface

Parameterization

As mentioned earlier, learning-based surface parameterization has several advantages. In this chap-
ter, we discuss a self-supervised method for achieving this. We present a novel framework for learning
the discretization-agnostic surface parameterization of arbitrary 3D objects with both open and closed
surfaces. Our framework leverages diffusion-enabled global-to-local shape context for each vertex first
to partition the closed surface into multiple patches using the proposed self-supervised PatchNet and
subsequently perform independent UV parameterization of these patches by learning forward and back-
ward UV mapping for individual patches. Thus, our framework enables learning a discretization agnos-
tic parameterization at a lower resolution and then directly inferring the parameterization for a higher-
resolution mesh without retraining. We evaluate our framework on multiple 3D objects from the pub-
licly available SHREC [35] dataset and report superior/faster UV parameterization over conventional
methods.

3.1 Introduction

Estimating the UV parameterization of arbitrary 3D surfaces lies at the core of computer graphics
and geometry processing domain, with a wide range of applications such as 3D modelling, texture-
mapping, remeshing, simulation, etc. Formally, it is defined as the projection of vertices of a tessellated
surface (polygon mesh) onto a 2D map (UV plane). Determining the aforementioned mapping is not a
trivial task and demands a solution with specific properties. The estimated mapping is expected to be
isometric, conformal, and non-overlapping. Existing conventional methods [62, 34, 48, 51, 36] aim to
estimate an object-centric mapping with an iterative optimization process, focusing on minimizing an
energy function explicitly constructed to retain the desired properties. However, they face scalability
issues while dealing with high-resolution object meshes and are also prone to local minima.

With the advent of deep learning, researchers are harnessing the power of neural networks to solve
various ill-posed problems, offering tractable solutions. Neural surface parameterization has recently
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Figure 3.1: UV parameterization for open and closed surfaces estimated via our proposed framework.

been attempted [1] but under supervised, data-driven settings, requiring a large amount of training data.
Such supervised learning solutions get subjected to data bias and hence suffer from poor generalization
to unseen, out-of-distribution samples.

This paper presents a novel, self-supervised framework for learning the discretization-agnostic sur-
face parameterization of arbitrary 3D objects with both open and closed surfaces as shown in Figure 4.1.
First, to handle closed surfaces (e.g., a sphere) or surfaces with regions of extreme extrinsic curvature,
we propose a learning-based partitioning of the given surface into multiple open patches, which are inde-
pendently parameterized. To this end, we employ a self-supervised network that assigns each 3D point
of the surface to one of the patches, trained using losses based on local features (such as face-normals)
and geodesic relationships within the patch.

Subsequently, we propose to learn the surface parameterization of an arbitrary (open) 3D surface to
a UV plane using a Multi-layer Perceptron (MLP). More specifically, given a open 3D surface (patch),
we train the forward MLP to predict per-point UV coordinates independently. In order to ensure a
meaningful UV mapping, we enforce cycle-consistency loss between the input and reconstructed sur-
face by learning a backward mapping (UV-to-3D) MLP. Additional losses are employed to achieve
desired properties of surface parameterization, i.e., isometric, conformal, and area-preserving. A dif-
fusion process [53] over the mesh provides a multi-scale characterization of the underlying surface,
entailing a global-to-local context for each vertex. Hence, the DiffusionNet backbone is used for Patch-
Net, and similarly, respective features are appended while learning surface parameterization to achieve
discretization-agnostic UV mapping. A key advantage of learning a discretization-agnostic parameteri-
zation is that we can learn on meshes at a lower resolution and then directly infer the parameterization
for high resolution meshes without retraining, as shown in Figure 3.3.
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3.2 Background

Conventional Methods for Surface Parameterization: Conventional methods to solve mesh pa-
rameterization generally fall into one of the three categories. The first one is single-patch, fixed boundary
methods, e.g. harmonic parameterization[62], which projects the boundary vertices onto a circle in UV
space and computes two harmonic functions (one for u and one for v coordinate). LSCM[34], which is
a single-patch, free boundary parameterization method, minimizes the conformal (angular) distortion.
Unlike harmonic parameterization, it does not need to have a fixed boundary. Both the aforementioned
categories can only deal with open surfaces with genus 0. The third category is formally known as global
parameterization method, which can deal with meshes of arbitrary genus. They achieve this by cutting
the given mesh into the patch(es) and individually parameterizing each patch. The generated per-patch
maps are discontinuous around the cut when laid down in the UV space. This discontinuity can be seen
as seams on the 3D surface. Another class of global methods try to detect one or more seams to cut the
mesh to make it open and then parameterize it. OptCuts[36] and Boundary-First Flattening[51] fall into
this category. There are global seamless parameterization methods as well, but they are out of the scope
of this work.
Neural Methods for Surface Parameterization: Neural parameterization methods have gained pop-
ularity in the past few years due to advancements in deep learning methodologies and hardware stack.
AtlasNet[20] was one of the first works along these lines, which tries to generalize on different classes
of objects. However, its use case was directed more towards surface reconstruction than surface param-
eterization. Another method, DGP[63], builds upon AtlasNet and proposes an object-centric way of
surface reconstruction by overfitting a neural network representing a local chart parameterization. Both
methods use a fixed number of patches for the surface parameterization but require a different neural
network for every patch, which is overkill and difficult to scale. Another work, AUV-Net[12], takes a
point cloud as input and learns parameterization of aligned surfaces (e.g., faces and humans in T-poses)
using a cycle-loss and smoothness loss. However they require all the geometries of the same category
and in the same orientation. Moreover, their patch estimation method is very naive and can not scale
to an arbitrary number of patches. All the aforementioned learning-based methods sample points in
the UV space and learn to map it to a 3D surface, thereby assuming the UV space itself, hence failing
to produce a plausible UV map. Another very recent method [1] learns intrinsic mapping of arbitrary
surfaces in a supervised fashion where a conventional method acts as the ground truth.

3.3 Method

We now describe the proposed framework in detail. The input to our framework is a mesh M =

{V,F ,NV }, where V , F and NV are the sets of vertex positions, faces and vertex-normals respectively.
Our framework consists of two modules: (i) Patch extraction module and (ii) Surface parameterization
module.
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Figure 3.2: The outline of proposed framework.

3.3.1 Patch Extraction Module

Handling surfaces with regions of high extrinsic curvature or closed topology requires the 3D man-
ifold to be partitioned into multiple open patches to minimize distortion and overlap. Each patch is
defined as Pk = {Vk,Fk,NFk} ( k = 1, 2, ... K ), where Vk ⊆ V is the set of vertices belonging to
Pk. Fk ⊆ F is the set of faces defined on Vk and NFk ⊆ NF is the associated set of face-normals.
We propose PatchNet with parameters ϕpatch, which learns to assign each vertex of M to one of the K
patches, as shown in Figure 3.2. Here, K is a controllable parameter and can vary based on the accept-
able amount of distortion in the input mesh. To learn the parameters ϕpatch, we minimize the following
cosine similarity constraint on the estimated patches:

Lcos =

K∑
k=1

1

|Fk|

1−
 ∑

i,j∈Fk

(n̂i
T n̂j)

2

(3.1)
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Figure 3.3: Discretization-agnostic UV parameterization.

where i, j ∈ Fk are the pair of faces with unit normal vectors n̂i, n̂j ∈ NFk, respectively, and |Fk| is
the number of faces in that patch. The above constraint has the effect of producing locally flat patches.
However, geodesically far-apart triangles with high cosine similarity may be assigned to the same patch,
which is undesirable. To circumvent such disjoint assignments, we minimize the following additional
constraint:

Lgeo =
K∑
k=1

1

|Pk|

 ∑
i,j∈Vk

g(i, j)

 (3.2)

where g(i, j) denotes the geodesic distance between the pair of vertices i & j within the patch and |Pk|
is the number of vertices in that patch. We model PatchNet using DiffusionNet [53] architecture to
achieve multi-scale characterization of the underlying surface, entailing a global-to-local context for all
the vertices. Input to PatchNet is the vertices V and vertex-normals NV , and the output is the predicted
assignment probability for all the vertices to each of theK patches. Subsequently, per-face probabilities
are obtained by taking the mean probabilities of the corresponding face vertices. We further consolidate
the per-face probabilities by taking an average over neighboring faces, and then each face is assigned to
the patch with the highest probability. Note that the whole mesh can be considered as a single patch in
the case of a open surface with extrinsic curvature of low variability. The combined objective function
for patch extraction becomes Lpatch = λcosLcos + λgeoLgeo.
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Figure 3.4: Comparison of error plots for QCE and ASE with other methods. First two categories (a)

Bird, (b) Pliers are taken from SHREC dataset; (c) Armadillo & (d) Spot.

3.3.2 Surface Parameterization Module

Each patch Pk = {Vk,Fk,Nk} is treated as a separate open surface and is independently parame-
terized. Let f : R3 → R2 be the mapping of each vertex v ∈ Vk to a 2D point u on the UV plane. We
propose to represent f using a forward mapping network MLPf with learnable parameters ϕf . First,
the set of vertices Vk for the given patch is passed to the diffusion block to get a global shape encoding
ψ ∈ R128. Per-vertex input given to MLPf is z ∈ R131 (v concatenated with ψ) and the output is
u ∈ R2 (UV coordinate), i.e. u = MLPf (z). Since we do not have corresponding ground truth UV
coordinates, we resort to a self-supervised cycle-consistency loss. We employ another MLPf−1 with
learnable parameters ϕf−1 to represent the backward mapping f−1 : R2 → R3. MLPf−1 takes u
as input and predicts its corresponding 3D position, which ideally should match with the input vertex
position v . We enforce this consistency by minimizing the following cycle loss:

Lcycle =
1

|Vk|
∑
v∈Vk

(
v −MLPf−1(u)

)2 (3.3)

Note that due to presence of non-linear activation functions in MLPf and MLPf−1 , the condition
ϕf .ϕf−1 = I need not hold. Per-vertex prediction can be noisy, resulting in an irregular UV space.
Conditioning the MLPs with the diffusion-based global shape-encoding ψ regularizes the UV predic-
tion and improves the output ofMLPf−1 . We further add losses to enforce desired properties of surface
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Figure 3.5: Additional Qualititative Results

parameterization, namely, Liso provides isometric behaviour, Langle preserves angles of the faces and
Larea preserves face-area (neglecting uniform scaling). The final objective function for surface param-
eterization is given follows:

Luv = λ1Lcycle + λ2Liso + λ3Langle + λ4Larea. (3.4)

3.3.3 Losses

The final objective function for surface parameterization is given as:

Lparam = λ1Lcycle + λ2Liso + λ3Langle + λ4Larea (3.5)

The cycle consistency loss Lcycle imposes bijectivity constaints in the UV space, while the isometric
loss Liso imposes isometricity. The isometric loss Liso is designed to impose isometric constraint in the
UV space. Inspired by [75], the loss ensures that the geodesic distance between a pair of vertices in 3D
space Gd ∈ RV×V is equal to the euclidean distance Ed ∈ RV×V in the UV space. The Liso is given
as:

Liso = ||Gd, Ed|| (3.6)
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BFF OptCuts Ours

Class QCE↓ —ASE—↓ QCE↓ —ASE—↓ QCE↓ —ASE—↓

Laptop 1.046 2.052 1.045 2.005 1.196 2.420

Pliers 1.112 1.909 1.128 1.391 1.274 2.895

Rabbit 1.132 2.116 1.160 2.062 1.183 0.992

Scissors 1.156 1.456 1.122 1.276 1.261 2.728

Bird 2.130 1.103 1.129 1.928 1.262 1.996

Table 3.1: Comparison of QCE and ASE metrics with BFF [51] and OptCuts [36] on SHREC dataset.

where ||.|| represents the L2 norm. This loss is imposed only on geodesic distances less than a certain
threshold σ. We choose σ = 0.2 for all our experiments.

We use Langle loss to reduce conformal error in the UV space. We take an L2 norm between the
angles θ3i=1 per face belonging to F in the 3D space and faces f in UV space, given as:

Langle =
1

|F |

j=|F |∑
j=1

1

3

3∑
i=1

(
cos
(
f jθi

)
− cos

(
F j
θi

))2

(3.7)

where |F | is total the number of faces.

Similarly, Larea loss is used to minimise the area distortion by taking an L2 norm between the areas
ap, aq of the faces f in the 3D space and faces F in UV space, respectively. The loss is given as follows:

Larea =
1

|F |
∑

ap,aq∈f,F

(
ap, aq

)2

(3.8)

3.4 Experiments and Results

3.4.1 Implementation Details

For PatchNet, we use DiffusionNet[53] architecture with 4-blocks, channel width of 128 and 64

eigenbasis vectors for spectral acceleration. We use ReLU activations at intermediate layers and softmax
function after the final output layer. The surface parameterization module uses an 8 layer MLP with
1.3× 106 parameters for both forward and backward MLP with LeakyReLU activations in-between the
layers and tanh at the final output layer. We use the PatchNet loss weights {λcos, λgeo} = [1.0, 1.0] and
the parameterization loss weights {λ1, λ2, λ3, λ4} = [1.0, 1.0, 0.001, 0.001]. We use ADAM optimizer
with a learning rate of 10−3 and batch size of 1 on a single RTX 2080Ti GPU for all our experiments.
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The framework is implemented in PyTorch Lightning, trained on a single RTX 2080Ti GPU. We use
xatlas1 to pack the individual patches into the final UV atlas.

Table 3.2: Comparison of computation time.

(a) Stanford’s Armadillo

Resolution BFF OptCuts Ours

30K 17.41 sec > 10 min 2.92 sec

100K 61.04 sec > 10 min 5.02 sec

(b) Shark [35]

Resolution BFF OptCuts Ours

40K 5 sec 4 sec 3.1 sec

100K 14 sec 12 sec 4.2 sec

3.4.2 EVALUATION METRIC

We use Quasi Conformal Error (QCE) [49] and Area Scaling Error (ASE) [51] for evaluation of the
UV distortions. QCE measures the angular distortion based on the ratio of the singular values of each
face mapping. The ideal QCE value is 1, and a higher value implies distortion. ASE measures the scale
factor of the mapped faces. Negative ASE values imply shrinkage; positives imply increase, and zero
implies no area distortion in mapping.

Figure 3.6: Effect of geodesic loss. Figure 3.7: Effect of DiffusionNet embeddings.

3.5 Additional Qualitative Results

Figure 3.5 shows qualitative results of our framework on arbitrary closed ((a)-(d)) as well as open
meshes. The patches are extracted and parameterized individually for open meshes to form a UV atlas.
In the case of (e), our method estimates a reliable surface parameterization even with high extrinsic
curvature. Moreover, meshes (a), (b) & (c) are the unseen test samples from their respective classes,
which are directly inferred. On the other hand, for meshes (d) & (e), parameterization is obtained
by training a network till convergence. This shows that apart from learning parameterization in an

1https://github.com/mworchel/xatlas-python
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Figure 3.8: Patches are used to obtain multiple open surfaces from closed surfaces. As we increase the

number of patches, the conformal and angular distortion gets reduced.

object-centric way, our framework can also generalize to a specific class/category and perform well on
category-specific samples.

3.6 Results & Evaluation

We compute Quasi-Conformal Error (QCE) and Area Scale Error (ASE) on the final texture atlas for
quantitative and qualitative evaluation. Please refer to the supplementary for their description.
Qualitative Comparison: We compare our framework with BFF[51] and OptCuts[36] in Figure 3.4.
As shown, our framework performs on par with these methods on varying geometrical shapes.
Quantitative Comparison:

In Table 3.1, we compare our framework with BFF[51] and Opt-Cuts[36] on a few classes of SHREC
[35] dataset using QCE and ASE metric. We train our network on 16 meshes for each mentioned class
and compute errors on 4 test sample meshes. Please note that, instead of purely object-centric learning,
we compare on a category-specific generalized network, and our performance is comparable to other
object-centric methods. Such generalization can be attributed to intrinsic characterization encoded in
diffusion features used in our surface parametrization module.
Discretization-agnostic Learning:

Figure 3.3 shows the discretization-agnostic learning capability of our framework. We train on a
mesh with only ∼ 3K vertices and directly infer at high resolutions (∼ 35K and ∼ 100K vertices).
Please note that the error values for high-resolution meshes stay close to the low-resolution mesh, as
observed in the error plots.
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Figure 3.9: Ablation study of different losses. Figure 3.10: Comparison of global and local em-

beddings.

More importantly, discretization-agnostic learning allows us to reduce the computation time signifi-
cantly compared to other methods. Specifically, we train our method on the decimated mesh with ∼ 2K

vertices and compare our computation time with other two methods at higher resolution as shown in
Table 3.2.

3.7 Ablation Study

3.7.1 Patch Extraction Module

Effect of Geodesic Loss:
In section-3.1, we stated that the geodesically far-apart faces with high-cosine similarity might get

assigned to the same patch, producing unwanted patches of extreme curvature. However, incorporating
Lgeo into the objective function tends to sort out this issue as it penalizes the faces geodesically far apart
and belonging to the same patch. This improvement is evident in Figure 3.6.

3.7.2 Surface Parameterization Module

Effect of DiffusionNet Embeddings:
As described in the method section of the main draft, the MLPf and MLPf−1 take a global en-

coding ψ as input along with vertex position. This global encoding/embedding is the combination of
the DiffusionNet features of all the vertices. Instead of using global encoding, per-vertex features from
DiffusionNet can also be passed directly to the MLPs as input. However, we argue that per-vertex fea-
tures are noisy and capture minimal global context, resulting in an irregular UV space and undesired
UV coordinates. It can be observed in Figure 3.7 that when global encoding of DiffusionNet features
is incorporated, the quasi-conformal error (QCE) drops. Moreover, from Figure 3.10, it is clear that
the global encoding ψ provides the better context of the global shape as compared to per-vertex em-
beddings, thereby regularizing the UV space and hence producing better output both qualitatively and
quantitatively (minimal overlapping and lower QCE value).

Effect of No of Patches on Parameterization:
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Figure 3.11: Few limitations of current method.

Figure 3.8 shows the trade-off between distortion (value of QCE and ASE) and the number of
patches. With the increase in the number of patches, the distortion follows an up and down curve
but eventually reduces significantly.

3.7.3 Effect of Loss Functions:

The cycle loss Lcycle is crucial for self-supervised training of the parameterization module. However,
it is not sufficient to get desired properties (isometricity, conformality etc.). Figure 3.9 demonstrate the
effect of additional loss functions, where the QCE value drops when Liso is introduced into the objective
function, and it drops further when Langle & Larea are also included.

3.8 Conclusion

We proposed a novel self-supervised learning-based framework for surface parameterization of open
and closed surfaces. Our framework enables discretization-agnostic learning, enabling parameterization
of meshes with arbitrary topology. We show significant improvement in inference time performance on
high-resolution meshes. We also point out some of the limitations of this method in Figure 3.11. First,
there might be some disconnected small patched after patch prediction. Even with our cycle consistency
loss, some overlaps might still occur as there are no hard constraints to avoid them. In case of geometry
with high extrinsic curvature, the network tends to flatten it as shown in the figure, which is undesirable.
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In such cases, more patches are required. These limitations can be overcome by designing more suitable
losses.

Acknowledgement: We thank Dhawal Sirikonda for helping us with the visualization of the QCE
error metric
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Chapter 4

Dress Me Up: A Dataset and Method for Self-Supervised 3D Garment

Retargeting

Figure 4.1: 3D garment retargeting on real human scans using our approach (left) and our real 3D

garment dataset samples(right)

As discussed earlier, performing virtual try-on in 3D space indeed offers several advantages. How-
ever, given the limited amount of real-world garments available, we explore self-supervised methods to
achieve this task. We discuss a method for draping non-parameterized, 3D garment meshes over human
body meshes of arbitrary shapes and poses. SMPL body model is used to obtain Isomap Embedding
based correspondences between the garment and the human body, to get a coarse alignment between the
two meshes. We perform self-supervised refinement using PointNet embeddings of the coarsely aligned
garment and the SMPL body model to improve the retargeting. We propose novel self-supervised losses
which are used to train an MLP for solving physical interactions with the human body and resolving
intersections between the meshes. Further, we propose wrinkle generation module to generate realistic
wrinkles on the draped garment. We also contribute a new dataset of real-world reposed garments with
realistic noise and topological deformations. This consists of garments captured using 7 Kinect Azure
depth sensors, post-processed using multiview KinectFusion, followed by manual garment extraction.
Some example of dataset is shown in Figure 4.1
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4.1 Introduction

3D human shape and cloth modeling is an active area of research with wide applications in AR/VR
domain. Efforts like [27, 25, 72, 47, 46, 71, 74, 32, 21, 64, 65] reconstruct realistic clothed humans from
images as garments play an important role in inducing realism in digital avatars. However, the majority
of existing works assume the availability of synthetic parametric garment meshes [66, 3, 60]. Some
of the nascent efforts on garment digitization [73, 58, 31, 11, 14, 41, 40, 5] focus on extracting high-
fidelity 3D garments from monocular images. Furthermore, the next key challenge is to learn automated
retargeting or draping of garments over digital avatars, which has use-cases in fashion design, animation,
gaming, and, most importantly, virtual try-on (VTON). Unlike image-based 2D VTON solutions [13,
33], 3D garment retargeting offers a more controllable and elegant solution leading to an immersive
experience for AR/VR environments.

3D garment retargeting aims at realistically draping a 3D garment over a target human body in
varying shapes and poses by inducing geometrical deformations over the garment surface arising due
to such changes. This problem is challenging because of several factors: arbitrary body shapes and
poses, modeling topological differences among various categories of garments along with realistic de-
formations arising out of the physical interaction with the underlying body and resolving the penetra-
tion/intersection of the garment with the underlying body.

Existing solutions for 3D garment retargeting can be largely classified into traditional graphics sim-
ulation pipelines [7, 57, 56] and modern deep learning techniques [9, 6, 8, 10]. While the simulation-
based approaches provide an accurate detailing of deformation and wrinkles, they often rely on the
previous frames of reference to obtain velocity and acceleration parameters. However, a fashion shop-
per on AR/VR application would desire to see how a garment would look when draped onto their digital
avatar. Thus, asking the user to provide a trajectory for an accurate drape might not be feasible solu-
tion and hence requiring an arbitrary pose and shape re-targeting technique. Some of the recent deep
learning-based efforts like [10] have made progress in this direction utilizing supervised training strate-
gies learning the skinning weights of the parametric garment for draping it onto a parametric human
body. They consider SMPL [38] as the parametric body model, and garments are also derived from the
SMPL body mesh [43, 37, 16]. However, there are several issues with such approaches. First, a large
number of training samples are required, generated by simulating garments on top of body mesh using
software, e.g. Blender. The parametric garments are synthetic in nature and fail to model garments with
arbitrary topologies. Additionally, a garment and body extracted from a real scan or reconstructed from
an image (using [73, 58, 5]) are not parametric in nature and the aforementioned approaches cannot
handle them. HOOD is a parallel work that doesn’t handle non-parametric cases, hence not applicable
to real-world settings

In this work, we propose a self-supervised method that can retarget real, non-parametric garment
meshes over a target human body (either parametric or non-parametric). Given a 3D garment mesh
and a target 3D human mesh, we first estimate correspondences between the two meshes using a novel
representation, which provides an initial placement of the garment around the target body as a coarse
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Figure 4.2: Outline of the proposed garment retargeting method.

retargeting initialization. We then employ a self-supervised training strategy, where we refine the coarse
initialization and model shape and pose-specific deformations by minimizing the standard physics-based
losses. Unlike existing methods, our framework doesn’t learn skinning weights, therefore, can repose
any arbitrary non-parametric garment on any parametric or non-parametric target body. Finally, as a
post-processing step, we explore two different approaches for introducing fine wrinkles in the retargeted
garment and provide qualitative comparison between the two. Additionally, due to the lack of any real-
world datasets for 3D garment retargeting, we curate our own dataset captured using a multiview Azure
Kinect RGBD setup, containing different garments worn by multiple subjects in arbitrary poses. Our
dataset serves as the ground truth for evaluating the proposed method for 3D garment retargeting. In
summary, our main contributions are:

• We present a novel framework for retargeting real, non-parametric 3D garments on an arbitrary
target human body.

• Our novel formulation can retarget in-the-wild, non-canonical and non-parametric garments over
any arbitrary target body.

• We propose a first-of-its-kind real-world 3D garment dataset for evaluating our proposed frame-
work.

We plan to release both the dataset and the code to further democratize research in this domain.
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4.2 Related Work

Several 2D VTON methods exist [24, 61, 67, 54], which employ deep generative learning for draping
2D garments over 2D human images. Specifically, such approaches first aim to segment garments from
an input image space, performing an initial thin-plate-spline (TPS) based transformation to roughly
warp and align the garment onto the target image. Then, the transformed garment image is blended
with the target person’s body image to generate a realistic try-on image, generally using image-to-
image translation networks. Generative networks tend to produce blurry results and artifacts; even when
high-resolution modeling [33, 13] is employed. Moreover, 2D VTON methods have limited ability
in terms of adjusting the pose and viewpoint for a more immersive experience. A recently proposed
work StylePose[2] has the ability to repose the clothed humans to a novel viewpoint in image space
leveraging partial 3D priors. However, the work does not allow accurate and view-consistent draping
of the 2D garments over a different person altogether, thereby not meeting the basic requirement of
a VTON solution. Moreover, to our knowledge, any 2D VTON solution would fail to preserve the
accurate geometry of the garment after the transformation.

Clearly, the exploration of 3D space is a more viable option to tackle these challenges. 3D-VTON
solutions offer the ability to preserve the geometry of the garments and easily allow change of garment,
and pose properties and viewpoints. However, there is a significant white space in the area of 3D-VTON
research. 3D VTON can be seen as transforming a garment in 3D Euclidean space, in order to align it
over (or around) a target 3D human body (SMPL mesh, 3D scan etc.), while avoiding intersections of the
garment with the target body. It is highly desirable to model deformations in the garment corresponding
to the target body’s pose and shape. Recently, state-of-the-art works like [69] claim to propose the
first 3D VTON solution by extending the 2D TPS-driven generative pipeline to reconstruct the 3D
geometry, finally blending on a try-on image, with a representation similar to that of Moulding-Human
[18]. Although this allows viewing the draped garment on the target body from arbitrary viewpoints, the
draping is still performed in image space using GANs and hence suffers from limitations such as blurry
artifacts and false geometrical deformations. Additionally, since the method starts from the image of a
garment, extending it to a real-world scan of a 3D garment is not trivial.

On the other hand, several deep learning methods [50, 19] have been proposed, which learn to simu-
late a 3D garment mesh onto a 3D body mesh, as the classical mass-spring model which is computation-
ally expensive and slow. [50] and [9] rely on self-supervised physics-based losses in order to model the
dynamics of a garment due to changes in the underlying body pose. More specifically, these methods
learn to transform the 3D garment mesh over a gradually animating 3D body (a smooth pose-change tra-
jectory). Such a formulation, replicating cloth simulation, will not be able to deal with sudden changes
in the pose and shape.

Methods like TailorNet[43] have made promising progress towards 3D instance try-ons and follow-
up works [14, 16, 37] have extended incorporating a corpus of garments as a latent representation. How-
ever, all of them rely on synthetic or parametric garments rather than dealing with real-world scanned
garments. While it is true that extending these works to real-world garments is challenging, valida-
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Figure 4.3: Results from our method for retargeting 3D garment onto SMPL body meshes of different

poses and shapes (a) - (f); and on non-parametric 3D human scans (g) (h).

tion of the leveraged technique is also a significant challenge. As most commonly available multi-pose
clothed-human datasets either provide synthetic and parametric clothing[4, 44] or lack garment-specific
shape variation[39, 15].

4.3 Method

Figure 4.2 outlines our proposed framework, which has three key modules, namely, Correspondence-
guided coarse retargeting, Self-supervised refined retargeting, and Wrinkle generation. The input gar-
ment and the target body are fed to the first module, which exploits an intrinsic mesh characterization
to estimate dense correspondences between them, providing an initial coarse retargeting. This coarse
retargeted garment is subsequently passed to our self-supervised refinement network, which refines the
garment mesh geometry and introduces target body-specific surface deformations. Finally, the refined,
retargeted garment is further processed with an optional wrinkle generation module to generate pose
and shape-specific wrinkles if required.

4.3.1 Correspondence-Guided Coarse Retargeting

The aim of this module is to perform a coarse retargeting of the garment mesh over the target body
mesh by first establishing dense surface-level correspondences between the two. Utilizing these corre-
spondences, we transform the garment mesh vertices to align with the target body mesh vertices. The
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key idea is to establish dense correspondences which can provide a coarse understanding of how the gar-
ment should be draped on the target body; e.g., sleeves going around the arms, the collar going around
the neck etc. SMPL[38], being a parametric body model, is a natural choice for acting as a medium
for establishing dense surface correspondences, as it can easily model variations in human shapes and
poses. Therefore, we first perform dense non-rigid registration of both garment and target body mesh
with the SMPL mesh. More details on SMPL registration is provided in subsection 4.4.1.

Let the garment mesh be G, target body mesh be T and their corresponding SMPL meshes be MG

and MT , respectively. Establishing correspondences between G and T simply means for each vertex
vi ∈ R3 of G, locating a 3D point xi ∈ R3 on the surface of T , where vi should be coarsely placed.

To achieve this we first define global features ϕi for each vertex qi of the SMPL meshes MG

and MT , extrapolate these features to the vertices of G and T , and then perform correspondence
matching based on these features. More specifically, the task is to estimate a feature vector ϕsmpl =

[ϕ1, ϕ2, ..., ϕ6890] for each vertex qi of SMPL mesh, where ϕi ∈ Rd. ϕsmpl is same for any SMPL mesh
registered with any garment or body, i.e. ϕsmpl = ϕMG = ϕMT . Then, feature vector for each vertex
vi of G is computed as follows:

ϕiG =

∑k
j=1[ϕ

j
MG

/dist(vi, qj)]∑k
j=1[1/dist(vi, qj)]

; qj ∈ N i (4.1)

N i = [q1, q2, ..., qk] (4.2)

where, dist() is the L2 distance, qj is a vertex of ϕMG and jth nearest neighbor of vi in Euclidean
space; and |N i| = k = 32 (set empirically). Similarly, we compute ϕT by extrapolating ϕMT based on
k-nearest neighbor distance.

Few essential aspects to be taken into consideration for choosing appropriate ϕsmpl are as follows,
First, the feature embedding ϕsmpl should incorporate both the local neighborhood information, while
maintaining global structural context. Moreover, it should be concise yet representation-rich to uniquely
characterize the associated surface, especially when extrapolating to the registered garment mesh or
target body mesh. Additionally, ϕsmpl should be continuous over the surface of SMPL mesh to ensure
locally smooth encoding of neighborhood information. We experimented with existing representations
such as CSE[42] and BodyMap[28] to serve the need for ϕsmpl, as they promise to encode global
structural information. However, we empirically found them to produce false matching due to the
repetition of extrapolated features (due to very low dimensionality). A detailed study on this is provided
Table 4.6.2.

Therefore, we develop a new strategy to establish correspondence across different garments and
human body via SMPL, leveraging the intrinsic geometry-based Isomap Embeddings[30]. In order
to encode local neighborhood information, we first compute the pairwise geodesic distance matrix,
|Dgeo| = 6890× 6890, for all pairs of vertices (qi, qj) of the SMPL mesh; i.e.

Dgeo
ij = geodist(qi, qj) (4.3)
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To incorporate global information, we use isometric mapping to fit the vertices of SMPL mesh onto
a d dimensional manifold by extending metric multi-dimensional scaling (MDS) based on Dgeo. This
gives us a d-dimensional representation of each SMPL vertex qi, i.e. ϕsmpl. We empirically found that
setting d=128 ensures sufficient dimensionality to avoid repetitions while extrapolating on the target or
registered mesh. Finally, we estimate ϕG and ϕT using Equation 4.1. These extrapolated features are
termed as Isomap Embeddings.

Based on the estimated Isomap embeddings, we first perform an initial retargeting to coarsely place
the garment around the target body. In particular, for each vertex vi of G, the corresponding 3D target
location xi in the vicinity of T is estimated as follows:

xi =

∑k
j=1[uj/dist(ϕ

i
G , ϕ

j
T )]∑k

j=1[1/dist(ϕ
i
G , ϕ

j
T )]

;ϕjT ∈ N i (4.4)

N i = [ϕ1T , ϕ
2
T , ..., ϕ

k
T ];ϕ

j
T ∈ ϕT (4.5)

where, uj is jth vertex of the target body, dist() is the L2 distance, N i the set of k-nearest neighbors
of ϕiG in ϕT , and |N i| = k = 32. We replace the vertices vi of ϕG with corresponding xi, coarsely
retargeting the garment mesh around the target mesh ϕT . This coarse initialization is then refined using
a self-supervised strategy explained in the next section.

4.3.2 Self-Supervised Refined Retargeting

Given a coarsely retargeted garment mesh, where the garment vertex mesh coordinates vi are re-
placed by their respective correspondence surface points xi on target body mesh, we propose to refine
these vertex positions further to incorporate accurate pose and shape-specific deformations, and also to
restore the structural geometry of the garment. However, supervised learning is not suitable for this
refinement task due to the lack of ground truth pairs on real data. Thus, we resort to a self-supervised
setup where we minimize losses that retain the structural integrity of the garment mesh (namely, retain-
ing edge lengths and relative face orientation) while preserving the coarse retargeting.

Let the refined vertex positions of the garment mesh G′ be v′i = xi + ∆xi. We employ a Multi-
Layer Perceptron (MLP) network to predict per-vertex ∆xi ∈ R3. The per-vertex input to the MLP is
I = {xi , ϕiG , χ

k,i
MT

, ψG , ψT }. Here, xi ∈ R3 is ith vertex-position of the coarsely retargeted mesh
and ϕiG ∈ R128 is the corresponding isomap embedding. Additionally, the MLP also takes k-nearest
neighbours of xi belonging to the vertex set of target body mesh T , denoted as χk,i

MT
(k = 32). In order

to encode a useful global context for both garment and target body, we use two separate PointNet[45]
encoders, which provide 128 dimensional global encoding of the vertices of the garment mesh and
the body mesh, denoted as ψG = PointNetG(vertices(G)) and ψT = PointNetT (vertices(T )),
respectively. Both the encoders are trained jointly with the MLP decoder in a self-supervised fashion to
minimize the following losses:
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Figure 4.4: Results of real garments draped on unseen pose and shape.
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Edge-Length loss: This loss is used to preserve the structural integrity of the garment by constraining
the change in the length of the edges of the original garment mesh, calculated as follows:

Llength =
1

m

m∑
i=1

wi ·
∥∥ei − e′i

∥∥ (4.6)

wi =

0 if ei ∈ J

1 otherwise
(4.7)

where, ei ∈ edges(G), e′i ∈ edges(G′) and m = |edges(G)|. J is the set of edges of the garment mesh
belonging to the special joint locations of the underlying human body, specifically, elbows, armpits,
waist, and knees as shown in Figure 4.16. These are the prominent regions that undergo extreme
deformation due to pose change. Hence, we chose not to preserve edge length around such regions to
allow accurate reposing of the garment.
Correspondence Loss: Edge-length loss has the effect of retaining the original pose and shape of the
garment in order to maintain its structure. We employ an additional loss to constrain this behavior by
ensuring that the correspondences between the refined garment and the target body should be similar as
for the original garment used for coarse retargeting. The predicted residual ∆xi is used to get refined
vertex positions v′i ∈ G. We then compute correspondences x′i for each v′i using Eq. Equation 4.4 and
minimize the L2 norm between xi and x′i, i.e.

Lcorres =
1

n

n∑
i=1

∥∥xi − x′i
∥∥ ; n = |vertices(G)| (4.8)

It ensures that the garment doesn’t deviate too much away from the initial coarse retargeting and remains
in the vicinity of the target body.
Bend Loss: We impose bend loss, introduced in [50], to ensure that the angle between two adjacent
faces is as low as possible. This makes sure that the output is smooth and does not have any weird
deformations or artifacts.

4.3.3 Wrinkle Generation Module

We propose the following two methods for wrinkle generation and provide a detail study of the
effects of these on retargeted garments.

4.3.3.1 Supervised Wrinkle Generator

The retargeted refined garment obtained from the previous module has a smooth surface and lacks
realistic wrinkles, which are an inherent part of garment geometry. Thus, as an optional post-processing
step, we learn to induce plausible wrinkles on the garment mesh, conditioned on the target body pose and
shape. We propose a supervised MLP for generating/inducing pose and shape-specific wrinkles on the
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;

Figure 4.5: Wrinkle generation module architecture.

;

Figure 4.6: Inference on T-shirt.

garment surface by learning from real-world data. We choose DiffusionNet[52] encoder for encoding
garments due to its ability to capture both local high-frequency details as well as the global context by
simulating the diffusion process at multiple scales. We also use PointNet[45] encoder to encode the
vertices of the target body mesh. These 128-dimensional embeddings act as a conditioning prior so that
the wrinkles should be generated based on the geometry of the target body.

Given the refined retargeted garment G′ draped over the target body T , the task is to estimate detailed
garment G′′, which is essentially adding residual to the vertices of G′, i.e. v′′i = v′i + δi, where δi ∈ R3.
For each vertex v′i of G′, we estimate per-vertex DiffusionNet encoding ψG′

i
and for target body mesh

T , we estimate global encoding ψT using PointNet. The MLP-decoder takes vi, ψG′
i
, and ψT as input

and predicts δi.

We train jointly train PointNet, DiffusionNet and MLP-decoder networks in a supervised manner
on THuman2.0 and 3DHumans datasets. As a part of data preparation, we first manually segment and
extract garments GGT from the 3D scans. Then, we perform Laplacian smoothening[17] on the garments
to get rid of wrinkles and other details. During training, the smoothened-out garment Gsmooth and its
underlying SMPL mesh MG are passed to the network to predict per-vertex residual. The residuals are
added to vertices of Gsmooth to obtain Gdetailed. The following losses are used during the training:

L1 Loss: L1 loss minimizes the L1 norm between the vertices of Gdetailed and GGT .

Normal loss: Normal loss maximizes the cosine similarity between the vertex normals of Gdetailed and
GGT . In order to focus the network on areas with high extrinsic curvature, we mask out the loss for
vertices belonging to locally flat regions, based on the normals of their neighborhood vertices.

Laplacian loss: We propose a novel Laplacian loss to capture high-frequency details of the garment.
First, we compute the residual in Laplacian coordinates as:

vlaplacei = v′′i − 1

|Ni|

|Ni|∑
j=1

v′′j (4.9)
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δlaplacei = ||v′′i − vlaplacei || (4.10)

where j is the neighborhood per vertex, ||.|| is euclidean between the original mesh and Laplacian
smoothed mesh. We take the L2 norm between the delta of the ground truth and the predicted calculated
as above. This way, we impose that the network captures the high-frequency details. Once training is
completed, for inference, G′ is passed to the wrinkle generation module to obtain G′′. Result is shown
in Figure 4.6

4.3.3.2 Laplacian Detail Transfer

We observe that our learning-based wrinkle generator network doesn’t preserve garment details
like pockets, collar etc. It also needs to be trained in supervised fashion. Hence we propose De-
tailed Preservation Module that adapt [55], to preserve the high-fidelity geometric details of the input
garment and integrate it with the refined retargeted garment. Given the input garment mesh G with
VG = {v1, v2, ....vN} vertices in R3 where N is the total number of vertices the Laplacian Matrix can
be used to retrieve the high fidelity details of the mesh. For each vertex vi let, Ni = {j|(i, j) ∈ K}
be the neighborhood ring directly connected to vi and degree di be the number of vertices in Ni. The
uniform Laplacian coordinate per vertex is given as:

δi(vi) = vi −
1

di

∑
j∈Nk

vj (4.11)

The above equation can be represented in matrix form: L[v1, v2, ...vN ]T = [δ1, δ2, ...., δN ]T where L
is the uniform Laplacian Matrix given as L = I − D−1A. Here A is the mesh adjacency matrix and
D = diag(d1, d2...dN ) be the degree matrix.

In order to integrate the high-fidelity geometric details from input garment on to retargeted garment,
we first calculate the uniform Laplacian Matrix LG and Laplacian coordinates δG of the input mesh G.
We fix anchor points on the retargeted mesh G′

and recompute the Laplacian matrix as L̂ = [LT
G , 1i]

T

and Laplacian coordinates asˆ= [δG , vi]
T . 1i is the one hot encoding where ith is one. We finally obtain

the retargeted mesh with high fidelity details G′′
with VG′′ vertices by solving a linear system to obtain

the modified vertex positions as VG′′ = L̂−1δ̂. We show the result of Detail Preservation module in
Figure 4.8

We provide a comparison between the two methods in Figure 4.9. We observe that Laplacian Detail
Transfer method better preserves the input details. Hence we use this as post-processing module to get
wrinkles in all the following results.
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Figure 4.7: The figure shows different parametric cloth setting both tops and bottoms draped onto SMPL

extracted from the AMAAS Dataset.
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Figure 4.8: Results of Laplace detail integration.

4.4 Implementation Details

4.4.1 SMPL Registration:

In order to establish the dense correspondences for coarse retargeting of the mesh, we first estimate
the pose & shape of the underlying body in both meshes (the garment as well as the target body). If the
garment or the target body is already present in canonical pose and shape, then the SMPL parameters
can be directly picked from the canonicalized SMPL. In the absence of canonicalized meshes (garments
or target bodies), we employ a similar SMPL fitting strategy as proposed by PAMIR[71] for obtaining
SMPL body parameters. The pipeline of PAMIR extends the SMPL fitting methodology of [59] ex-
ploiting multi-view consistency. The resultants are registered SMPL bodies for both the garment and
target-body meshes. It is to be noted that, despite massive efforts to employ multi-view consistency, the
registration pipeline is far from accurate. Our framework is robust enough to handle noise in pose &
shape parameters. Finally, the estimated pose & shape parameters are used to generate SMPL mesh M,
consisting of 6, 890 vertices and 13, 776 faces. This step is important for estimating isomap embeddings
for each vertex of the garment using k-nearest-neighbor extrapolation of SMPL vertices. The process is
shown in Figure 4.11
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Figure 4.9: Comparison between two proposed wrinkle generation modules.

4.4.2 Refined Retargeting Module

The coarse retargeted mesh obtained using dense correspondence between garment and target body
is refined using a self-supervised Refined Retargeting Module. It is composed of two PointNet encoders
PointNetG and PointNetT for encoding both input garment and target body respectively and an MLP
decoder. The PointNet encoder consists of 5 ResNet blocks with skip connections between each block.
Each ResNet block is an FC (fully connected) layer with ReLu activations. Each encoder outputs a
latent code of 128-dimension. These encodings along with the coarsely initialized garment vertices,
k-neighbours of target mesh, and the iso-embedding of the input garment are fed to the MLP decoder.
The MLP is constituted of six hidden layers with 512 neurons each activated by LeakyReLu functions.
The last layer of MLP is a Tanh.

Apart from feeding PointNet features of the garment and body as input, we also condition every layer
of the MLP with PointNet features similar to ADAIN[26]. The MLP outputs a ∆x value which is added
to the course-retargeted mesh to obtain refined-retargeted mesh.

4.4.3 Supervised Wrinkle Generation Module

As an optional post-processing step, we learn to induce plausible wrinkles on the garment mesh,
conditioned on the target body pose and shape. The smooth input garment is encoded using DiffusionNet
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Figure 4.10: Retargetting 3D garments from CLOTH3D dataset onto non-parametric human bodies

from THumans2.0[68] dataset. Our approach can deal with layered clothing as well.

(a) (b) (c) (d)

Figure 4.11: This shows the propogation of Isoembeddings from intersection points to the whole body.
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Figure 4.12: The figure shows different real scanned garments of our Dress Me Up dataset draped onto

SMPLs of AMAAS dataset

[52] which is effective in learning high-frequency details. The DiffusionNet consists of 4 blocks, with
a channel width of 128 and 128 eigenbasis vectors for spectral acceleration. We use ReLU activations
at intermediate layers and softmax for the final layer. We also use PointNet encoders, similar to one
used in Refine Retargeting Module for encoding target vertices. We use a decoder MLP with six hidden
layers of 512 neurons each. The MLP is activated by LeakyReLu activation in the internal layers and
with a Tanh final layer. The MLP takes the DiffusionNet and PointNet encodings as input and outputs
a δ value per vertex which is added to the input-smooth garment to obtain plausible wrinkles. Refer
Figure 4.5

4.4.4 Datasets

To evaluate our approach, we require ground truth 3D garments to be draped over the target body of
poses and shape variations. However, as mentioned earlier, there is a significant lack of such large-scale
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datasets. CLOTH3D is the only dataset that offers data in the required setting. However, the garments
are synthetic and parametric in nature, draped using a simulated engine. Hence the lack of real-world
aesthetics and noise is prevalent. To address this gap, we capture our own dataset ”DressMeUp” to
validate our approach on a real-world data distribution. We briefly describe both datasets, and additional
details are provided in subsection 4.6.1

CLOTH3D: Cloth3D provides a simulated collection of sequences containing clothed humans, mod-
eled using SMPL meshes and their corresponding parametric garments. They model the animations
in accordance to a large collection of MoCap data. The dataset offers a wide garment range(t-shirts,
tank-tops, trousers etc.) which we broadly group into two categories − TopWear and BottomWear.

DressMeUp (Our Dataset): As stated earlier in section 4.1, there is a need for real-world 3D garment
datasets to validate the proposed methodologies, which contain realistic garments draped on real hu-
mans. To bridge this gap, we captured around ∼ 255 meshes of real garments draped onto humans
of varied poses and body profiles. We show some sample meshes of this dataset in Figure 4.19 and
Figure 4.20. We believe that this dataset provides a more rigorous evaluation, extending beyond the
parametric modeling of clothing and latent garments.

This data was captured using Azure Kinect-based multiview RGBD capture setup. We collected
∼ 255 garments scans, worn by 15 unique subjects, with 44 unique garments. For every garment,
a subject is scanned in 5 different poses. Each pose is captured using a static multi-view(7) RGBD
system. To obtain final mesh reconstructions, we employ multiview Kinect Fusion[29] on the captured
RGBD data. To further rectify the noise of the raw scan, manual post-processing is performed utilizing
the eclectic and elegant toolkit of Meshlab. While post-processing, we also obtain a UV-mapped mesh
of the garment to facilitate texture swapping. Additionally, we perform SMPL registration for each mesh
to approximate the pose and shape. Our dataset captures realistic noise and topological deformations
of real-world garments draped over different subjects under different poses. We believe our dataset can
prove to be extremely useful in the progress of the 3D-VTON domain.

4.4.5 Evaluation Metrics

To quantitatively evaluate our proposed approach, we report widely used metrics like Euclidean Dis-
tance(ED), Normal Consistency(NC), Interpenetration Ratio(IR) and Point-to-Surface Distance(P2S).

Given a 3D garment mesh G to be retargeted and the corresponding GT garment mesh GGT (where
vi ∈ vertices(G) and v̂i ∈ vertices(GGT )), we use the following standard metrics for evaluation:

Euclidean Distance(ED): We compute ED as the average Euclidean distance between the correspond-
ing vertices of input and final retargeted garment mesh, i.e.

ED =
1

n

n∑
i=1

∥vi − v̂i∥ (4.12)

Lower values for ED are desired for better output.
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CLOTH3D

TYPE P2S↓ ED↓ NC↑ IR%↓

x 10−3

topwear 6.901 9.353 0.951 0.009

bottomwear 8.049 9.832 0.943 0.006

OUR CAPTURED DATA

topwear 12.119 12.571 0.854 0.037

bottomwear 6.753 7.314 0.849 0.014

Table 4.1: Quantitative evaluation of topwear-TOPWEAR and bottomwear-BOTTOMWEAR both in the

case of Cloth3D and our Dress-Me-Up data.

Normal Consistency(NC): We compute NC as the average cosine similarity between the corresponding
vertex normals of input and final retargeted garment mesh, i.e.

NC =
1

n

n∑
i=1

ni · n̂i (4.13)

Values close to 1 are desirable for NC.

Interpenetration Ratio(IR): It is computed as the ratio of the area of garment faces inside the body
to the overall area of the garment faces, hence lower values are desired to ensure the least amount of
penetration of the garment mesh with the target body mesh.

Chamfer Distance (CD): Given two sets of points S1 and S2, Chamfer distance measures the dis-
crepancy between them as follows:

CD =
∑
xϵS1

minyϵS2∥x− y∥22 +
∑
yϵS2

minxϵS1∥x− y∥22 (4.14)

In our case, S1 = vertices(G) and S1 = vertices(GGT ).

Point-to-Surface (P2S) Distance: P2S measures the average L2 distance between each vertex of the
garment mesh and the nearest point to it on the target body surface.

4.5 Experimentation and Results

4.5.0.1 Qualitative and Quantitative Results on CLOTH3D:

For evaluation purposes, we randomly select ∼273 random sequences from the CLOTH3D dataset.
We uniformly sample 5 frames per sequence, ensuring that there is a significant pose change among
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Figure 4.13: Comparison of our method with M3DVTON[69] for draping non-parametric garments.

M3DVTON introduces false garment geometry (the sleeve of the t-shirt mapped to the sleeveless part

of the target geometry) to inaccurate geometries.
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the sampled frames. Out of five sampled frames, we take SMPL bodies from the first three for self-
supervised training and use the remaining for evaluation. Additionally, instead of taking garments from
each sequence, we only sample 10 garments out of the available corpus of garments for self-supervised
training, to ensure evaluation is only done on unseen garments. Figure 4.3 shows qualitative results of
our framework on CLOTH3D dataset, where we report retargeting results on three different poses along
with three different shapes. In Figure 4.7, we show results of garments draped onto three distinctive
and challenging SMPL poses obtained from AMAAS[39] dataset. Do note that we also demonstrate our
results of bottom wear. Our framework can retarget arbitrary unseen garments on the target bodies with
varying poses and shapes, as evident from the figures. We also report quantitative metrics mentioned in
subsection 4.4.5 on the evaluation samples of CLOTH3D in Table 4.1. We achieve sufficiently low ED,
P2S, and IR metrics while maintaining high Normal Consistency.

4.5.0.2 Quantitative Results on Our Dataset:

For evaluation of our dataset, we perform self-supervised training on 500 target SMPL meshes from
AMASS dataset to ensure enough pose variation, minimizing losses while learning to drape 10 synthetic
garments from CLOTH3D dataset. Even being trained on synthetic garments, our network is able to
generalize on real garments from our dataset. Table 4.1 reports corresponding evaluation metrics where
we achieve satisfactory performance. The values reported on CLOTH3D are slightly better because
training and evaluation are both done on synthetic garments. However, in the case of our dataset,
training is done on synthetic garments and evaluation on real garments, thereby leaving a window for
an out-of-distribution scenario.

4.5.0.3 Qualitative Results on Real Scans:

Figure 4.4 shows qualitative results of our framework on real garments retargeted to arbitrary SMPL
meshes, and Figure 4.1, Figure 4.15 shows qualitative results on real target human scans. We also show
results of our method on real scans of the THumans2.0 dataset in Figure 4.10. In Figure 4.12, we show
our real-world scan being draped onto SMPLs of AMAAS data. We show the results of DressMeUp
garments draped on real scans of THuman2.0 dataset in Figure 4.21. It is evident from both the figures
that even being trained on synthetic garments and target SMPL meshes, our framework can retarget real
garments on arbitrary real scans (not just SMPL meshes). This highlights the generalization capabilities
of our framework on real-world samples. We can also drape garments on top of other garments, hence
making way for layered clothing as well.

Qualitative Results on Internet Images: We additionally show results on garments extracted from
internet images to highlight the application of our framework towards image-based 3D VTON methods
(e.g. M3DVTON[69]). We use the recently proposed method [73] to extract 3D garments, and [64] to
reconstruct 3D humans from images. Figure 4.14 shows qualitative results of retargeting 3D garments
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Figure 4.14: Qualitative results of our garment retargeting method on non-parametric avatars recon-

structed from internet images.
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(a) Garment (b) Desired-pose

(c) M3DVTON (d) Ours

Figure 4.15: Comparison with M3DVTON. Figure 4.16: Joint Masks

on 3D Humans both reconstructed from images. Note that we only show geometry as both [73] and [64]
don’t retain texture information. This is yet another proof of good generalization of our method.

Table 4.2: Noise ablation in correspondence

estimation.

Noise
P2S↓ ED↓ NC↑ IR%↓

x 10−3

10−4 7.481 9.544 0.934 0.009

10−3 7.521 9.581 0.927 0.009

10−2 10.247 11.97 0.761 0.014

Table 4.3: Ablation on number of input training

samples.

Loss type
P2S↓ ED↓ NC↑ IR%↓

x 10−3

10 garments 6.901 9.353 0.951 0.009

50 garments 7.370 9.511 0.934 0.008

4.5.1 Comparison

M3DVTON: Figure 4.15 shows a comparison of M3DVTON[70] with our framework on random
internet images (as mentioned earlier, we use off-the-shelf methods to extract 3D garments and target
human body). It is evident from the figure that since M3DVTON performs retargeting in 2D space,
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DIG

OURS

Input Garment

Text is not SVG - cannot display

Figure 4.17: Comparison with DIG.

Figure 4.18: (a) Jump and (b) Smooth trajectory.

it doesn’t produce accurate geometric deformations. Moreover, since it uses a supervised keypoint
detection method for initial TPS-based draping, it suffers when the target subject’s garment category
doesn’t match the source garment category. However, our method doesn’t suffer from such limitations
and can retarget arbitrary garments on arbitrary targets. We show additional results in comparison with
the M3DVTON method. Some more examples are shown in Figure 4.13

Draping Implicit Garments(DIG): Figure 4.17 shows qualitative comparison of our method with
DIG[37]. As the training code for DIG, or any other Implicit method, e.g., [16] is not available, we
couldn’t compare quantitatively. However, qualitatively our results are on par if not superior, to DIG as
evident in the figure.

Neural Cloth Simulation: As discussed in section 4.2, simulation-based approaches require a smooth
continuous trajectory to repose the garments from one pose to another. When it comes to going from
one extreme pose to another (jump trajectory), such methods fail to generate accurate deformations and
wrinkles, while also causing severe interpenetrations. We show this effect in Neural Cloth Simulation
[9] in Figure 4.18. Moreover, they offer no provision for draping a garment on an entirely new subject,
hence no compliance for 3DVTON solutions. Whereas, our framework can retarget any garment from
one extreme pose to another extreme pose, even on an entirely new subject.
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Loss type
P2S↓ ED↓ NC↑ IR%↓

x 10−3

Lcorres only 7.406 9.593 0.935 0.0217

Llength 9.614 11.352 0.932 0.058

Lbend only 10.245 11.923 0.928 0.104

Without Lcorres 12.125 13.445 0.929 0.135

Without Llength 10.560 11.940 0.933 0.022

Without Lbend 7.406 9.593 0.935 0.021

Without Joint Mask 10.560 11.941 0.933 0.022

Table 4.4: Effect of different losses.

4.5.2 Ablation Studies

In this section, we discuss the ablation on self-supervised losses of the refinement module and an
ablative study of the supervised wrinkle generation module.

Noise in Correspondence Estimation: We analyze the effect of noise in correspondence estimation
by introducing noise at different levels. For each correspondence pair (vi, xi) we add Gaussian noise
to xi with zero mean and varying standard deviation, i.e. xi = xi + N (0, σ);σ = {0.001, 0.01, 0.1}.
Please note that for brevity we are writing the 3D noise vector as N (0, σ) since xi ∈ R3. We then pass
the noisy coarse initialization to the further modules and compute the evaluation metrics (combined for
topwear and bottomwear), reported in Table 4.2. As can be seen, our framework is robust enough to
handle noise with σ = 0.001, 0.01, where the evaluation metrics are on par with the noise-free setting.
However, with σ = 0.1, the performance of the method drops.

4.5.2.1 Ablation on Self-Supervised Losses

We provide an ablative study of the effect of each loss and report the relevant metrics in the Table 4.4.

4.5.2.2 Ablation on Supervised Wrinkle Generation Module

We provide a quantitative evaluation of the performance of our wrinkle generation network on two
datasets 3DHumans [15] and THuman2.0 [68]. We divide both the datasets into train and test splits and
report the P2S distance, Euclidean distance and Normal Consistency losses. Refer to Table 4.5
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4.6 Discussion

4.6.1 Description of DressMeUp Dataset

We provide our own textured garment dataset, curated using Kinect cameras. The dataset consists of
50 different garments, with 44 unique garments worn by 15 individuals. Each garment is provided in 5
different poses on the same person, resulting in a total of 250 garment meshes. The garments category
include full and half-sleeved Tshirts, Trousers, half-pants, kurta, dress, open shirt etc.

4.6.2 Analysis of Isomap Embeddings

We propose a novel strategy that allows establishing correspondences between different human scans
, garments, or anything that resembles human body structure. SMPL being parametric human body
model, acts as a reasonable medium to establish correspondences across different body shapes, poses
and appearances. As explained in the main draft, once both the garment and the target body (parametric
or non-parametric) are registered with SMPL, where the target body can be an SMPL mesh itself, we
compute 128 dimensional isomap embeddings for each vertex of the garment and target body. Then,
dense correspondences can be established between the two by matching similar 128-dimensional ex-
trapolated features.

We arrive at this choice of feature modeling after carefully studying existing representations for
dense correspondence matching for humans. This problem is specifically tough as humans are de-
formable objects and tend to undergo non-rigid motion. Continuous Surface Embeddings (CSE)[42]
propose a learnable image-based representation of dense correspondences and a model which predicts,
for each pixel in a 2D image, an embedding vector of the corresponding vertex in the object mesh, there-
fore establishing dense correspondences between image pixels and 3D object geometry. The authors
show remarkable results in matching correspondences across RGB human images via 16-dimensional
representation vectors. Recently, BodyMap[28] proposed to extend this approach by extrapolating the
CSE embeddings of SMPLs registered with high-quality human scans in UV space. We started with
BodyMap representation but later found it to produce a lot of false matching, and we decided to analyze
the behavior quantitatively.

The representation for correspondence estimation should be rich and varied enough to avoid rep-
etitions in the feature space when extrapolated, otherwise, different body parts would map nearby in
the embedding space. More specifically, geodesically far-apart vertices should map far apart in the
embedding space and vice-versa. Based on this ideation, we design an evaluation metric, Richness
Score(Rscore) for each vertex vi of SMPL mesh, which is calculated as follows:

Rscorei = (Rneari +Rfari)/2 (4.15)

Rneari =
1

k2

k∑
i=1

min(|N rank
geo −N rank

emb |, k) (4.16)
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Figure 4.19: Topwear: The figure shows visualization of our collected dataset, first three rows depict

the geometry of our collected garment in different poses, while last three shows the textured rendering

of the respective geometries.
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Figure 4.20: BottomWear: The figure shows visualization of our collected dataset, first three rows depict

the geometry of our collected garment in different poses, while last three shows the textured rendering

of the respective geometries.
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Rfari =
1

k2

k∑
i=1

min(|Frank
geo −Frank

emb |, k) (4.17)

where, N rank
geo & N rank

emb denotes the ranks of k-nearest neighbors of vi in both geodesic and em-
bedding space, and similarly, Frank

geo & Frank
emb denotes the ranks of k-farthest neighbors of vi in both

geodesic and embedding space. Thus, Rscore penalizes if the rank of neighbors (k-nearest and k-
farthest) in geodesic and embedding space doesn’t match. We report the values in Table 4.6, where it can
be seen that extrapolating isoembedding values in Euclidean space has better effect than BodyMap[28].
The remaining values show that high dimensionality is preferred. However, empirically, values are
saturated once a significant dimensionality is reached.

Table 4.5: Quantitative evaluation of Wrinkle

Generation Network

3DHUMANS DATASET

TYPE P2S↓ ED↓ NC↑

x 10−3

TW 1.156 2.362 0.8447

BW 0.744 1.077 0.945

THUMAN2.0

TW 1.703 2.632 0.865

BW 1.200 2.264 0.9159

Table 4.6: Analysis of choice of representations for

correspondence estimation. Rscore takes values be-

tween 0 & 1, where lower values are preferred.

Representation Rscore ↓

BodyMap[28] 0.955

16-dim. Isomap Embeddings 0.491

32-dim. Isomap Embeddings 0.473

64-dim. Isomap Embeddings 0.437

128-dim. Isomap Embeddings 0.426

256-dim. Isomap Embeddings 0.424

4.6.3 Applications of the Proposed Framework

• 3D VTON for Arbitrary Garments Our propose framework can be seen as a potential solution
for 3D VTON problem. As evident from our qualitative results, the proposed framework can
generalize well to unseen real and non-parametric garments, and retarget them to arbitrarily posed
and shaped human scans.

• Size-fitting Solutions It is important to note that although we aim to preserve the overall structure
of the garment to be retargeted, the final garment could scale accordingly to the target body. This
is actually preferred as different people wear different sizes (M, L, XL, XXL) of the garments
of the same style. Our framework can drape garments to arbitrary sizes (need not to be discreet)
which is a unique contribution to the size-fitting solution.
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Figure 4.21: The figure shows different real scanned garments of our Dress Me Up dataset draped onto

real-scans of T-humans2.0 human body scans, (a) shows the Dress Me Up’s real-garments and columns

(b) and (d) show scanned humans of Thumans2.0, we employ our proposed framework to drape these

real garments to arbitrary real body scans of Thumans2.0 dataset as visualized in columns (c) and (e).

• Layered Clothing: As can be seen from our qualitative results on real scan, we can easily retarget
garments on top of humans already wearing garments, thereby enabling layered clothing which is
an extremely challenging task.

• Generating Ground Truth Data for 2D VTON Methods Since, we can retarget the 3D garment
into different poses and even on different subjects, and eventually can render them consistently in
form of 2D images, our framework can easily be used for generating photorealistic high-quality
2D VTON datasets from a limited number of 3D data samples. This is another highly useful
application of our framework, and we intend to use it to develop and release such large-scale
datasets in the public domain to accelerate the 2D VTON research as well.

4.6.4 Limitations & Future Work

We proposed a method for self-supervised 3D garment retargeting, and a first-of-its kind 3D VTON
dataset for evaluating our framework. We showed that our novel framework leverages the isomap via
SMPL to establish dense correspondences and initial coarse retargeting, which is then used as a prior
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for training a self-supervised learning technique for refining the retargeting. Being the first method for
retargeting (not just neural rendering) the 3D non-paramteric garment mesh from real-world distribution,
we qualitatively show superior performance to similar State-of-the-Art methods.

Although we can retarget 3D garments on top of arbitrary human scans, currently there is no pro-
vision to remove the underlying garment the subject is already wearing. However, this is an extremely
complex task as it might require reconstructing the underlying human body (for e.g. if a half t-shirt is
to be draped over a subject wearing full t-shirt, removing full t-shirt requires reconstructing the arms
of the subject). Though, we can easily handle noisy SMPL registration, small penetration noise can be
noticed when the geometry of the input garment is bad, especially when the garment is reconstructed
from RGB image using off-the-shelf networks (e.g. [73]). Finally, we aim to model extremely loose and
free-flowing garments, such as long gowns, sarees, etc. We hope our method paves the way for handling
the aforementioned problems we would like to tackle in future.
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Chapter 5

Conclusion

In this chapter, we provide a brief conclusion on what we have achieved so far and the impact of the
proposed methods. We also discuss the potential future direction that can be explored.

5.1 Discussion

In this thesis, we explored self-supervised methods for applications in 3D computer vision which
overcome the major limitations of supervised methods. In particular, we find solutions to the problem
of UV parameterization of general objects and garment retargeting in the 3D setting.

First, we designed a self-supervised framework for surface parameterization with both open and
closed surfaces. We divide the closed surface into multiple patches leveraging a diffusion-enabled en-
coder that captures global-to-local context. The extracted patches, like open and homogenous to disk and
are individually parameterized by learning forward and backward UV mapping for individual patches.
Our framework is also discretization agnostic, enabling inference on meshes of arbitrary resolution. We
show significant improvement in inference time and provide a comparison with existing parameteri-
zation on SHREC11 [35] dataset. Some of the limitations of the current method are that they fail to
parameterise objects with very high extrinsic curvature, can sometimes have disconnected patches and
overlaps. These can be overcome by designing better losses and constraints.

Secondly, we propose a self-supervised method for draping non-parameterized, 3D garment meshes
over human body meshes of arbitrary shapes and poses. We first obtain initial alignment between the
garment and the human body by establishing correspondences via Isomap Embeddings. We further
refine this coarse retargeting by training an MLP that preserves the geometry of the garments guided
by our novel losses. We propose a wrinkle generation module to obtain realistic details on the draped
garments. We also contribute a new dataset of real-world reposed garments with realistic noise and
topological deformations. However, the current method is highly dependent on correspondences, is not
temporally consistent and does not generalise to loose clothing. These are some of the limitations to be
targetted in future works.
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5.2 Impact

This thesis advances the filed of virtual try-on systems significantly while providing a learning-based
solution for parameterization. The proposed methods enable leveraging publicly available data via self-
supervised methods. The proposed methods can be used in several applications in building a Metaverse.
UV parameterization can be further extended to be used in creating, editing, and personalization of
digital avatars. From the business point of view, Garment retargeting has a huge application in the
eCommerce industry, enabling increased sales by reducing returns while saving cost and time. It can
help enhance the online shopping experience to a great extent by facilitating the personalization and
customization of garments. To our best knowledge, we are the first ones to provide a real-world dataset
of the same garments in different poses, setting a benchmark for other future works.

5.3 Future Directions

This thesis paves the way for several explorations in the future. We elaborate on some of the potential
research directions that can be pursued based on this thesis.

• Differentiable Parameterisation: Our current method performs seam estimation and parameter-
ization separately, which is achieved by modules that are individually differentiable. However,
combining both into an end-to-end differentiable pipeline allows it to be used as a plugin for
learning both parameterization and texture map together in methods like [22], [23].

• Learning Texture from images: The UV parameterization method can be extended to make it
controllable so that all the UVs of similar objects are mapped to the same UV space. This will
further allow us to learn a common texture map for similar objects. This work can find applica-
tions that require editing large meshes number of meshes together; like in character modeling or
editing.

• Implicit Learning on garments: Our current method of garment retargeting uses explicit rep-
resentation of the 3D surface by mapping the input mesh to desired retargeted output. Instead,
learning to map the mesh to an implicit representation instead of mesh will help leverage its
advantages, such as flexibility in mesh resolution, memory efficiency, etc.

• Generalisation to loose clothing: Our current garment retargeting method only works for rea-
sonably tight clothing. This method can be further extended for retargeting loose clothing by
learning skinning weights of garments.
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