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Abstract

Embodied AI, where artificial agents interact with their environment through sensors and actuators,
holds immense potential for real-world applications such as robotic assistance. Efficient object navi-
gation and locating strategies are crucial for robotic assistance in real-world environments. However,
existing methodologies often encounter challenges in adapting to dynamic environments and incorpo-
rating human-like reasoning for optimal decision-making. This thesis aims to bridge these gaps by
addressing two fundamental challenges in embodied AI: Multi-Object Navigation (MultiON) and opti-
mal object location within household environments.

First, we tackle MultiON, where a robot is tasked with localizing multiple instances of diverse object
classes in dynamic environments. This is a fundamental task for an assistive robot in a home or a fac-
tory. Existing methods for this task have viewed this as a direct extension of Object Navigation (ON),
the task of localising a single instance of an object class, and are pre-sequenced, i.e., the sequence in
which the object classes are to be explored is provided in advance. This is a strong limitation in prac-
tical applications characterized by dynamic changes. We present Sequence-Agnostic MultiON (SAM),
which is the task of locating an instance each of multiple objects in a household environment in no
pre-defined order. We present a deep reinforcement learning framework for an actor-critic architecture
and a reward specification. It exploits past experiences and seeks to reward progress towards individual
as well as multiple target object classes. We use photo-realistic scenes from Gibson benchmark dataset
in the AI Habitat 3D simulation environment to experimentally show that our method performs better
than a pre-sequenced approach and a state-of-the-art ON method extended to MultiON.

Next, we present CLIPGraphs, a novel method for determining the best room to place or find objects
within home environments. Existing approaches predominantly rely on large language models (LLMs)
or reinforcement learning (RL) policies, neglecting commonsense domain knowledge. CLIPGraphs
effectively integrates domain knowledge, data-driven methods, and multimodal learning to ascertain
object-room affinities. Specifically, it (a) encodes a knowledge graph of prior human preferences about
the room location of different objects in home environments, (b) incorporates vision-language features
to support multimodal queries based on images or text, and (c) uses a graph network to learn object-room
affinities based on embeddings of the prior knowledge and the vision-language features. We demonstrate
that our approach provides better estimates of the most appropriate location of objects from a benchmark
set of object categories in comparison with state-of-the-art baselines.
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Chapter 1

Introduction

In recent years, there has been a surge in research focused on embodied AI and household agents,
driven by the quest to revolutionize household environments. These intelligent systems combine ar-
tificial intelligence with physical bodies, aiming to address a myriad of challenges within homes au-
tonomously. Advanced robotics, computer vision, and machine learning techniques are being employed
in research to imbue these agents with the capability to navigate, understand, and interact with complex
domestic settings. From cleaning and organizing to providing personalized assistance, the ongoing ad-
vancements in embodied AI for household agents hold promise for transforming daily life, ushering in
a new era of smart, responsive, and seamlessly integrated home automation solutions.

Navigating the household presents multifaceted challenges for AI and household agents, encompass-
ing dynamic environments and diverse objects. Agents must discern between objects, handle occlusions,
and understand spatial relationships to execute tasks effectively. Additionally, ensuring user safety and
privacy, and addressing diverse user preferences adds complexity. Overcoming these challenges necessi-
tates advanced algorithms for perception, path planning, and context-aware decision-making, reflecting
the intricate nature of household tasks that demand seamless integration of intelligence and physical
action in a dynamic and unpredictable setting. In this thesis, we explore how humans perform simple
everyday tasks, the thought process behind them and try to incorporate the same kind of commonsense
reasoning in AI agents so that they can attempt to perform mundane daily tasks with an acceptable suc-
cess rate. Specifically, we explore ways to find multiple objects in a household and utilise commonsense
reasoning to encode spatial relationships between objects and rooms.

1.1 Object Goal Navigation and Multi-Object Navigation

Recent advancements in deep learning, computer graphics, and robotics have sparked a growing in-
terest in embodied AI tasks, where artificial agents learn through interaction with their environments.
Among these tasks, searching for and locating objects in indoor settings stands out as they are important
yet mundane tasks that often consume a significant amount of time. Humans have a natural ability to per-
form this task effortlessly, locating items like spectacles, car keys, and an umbrella without specifying
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an order. Furthermore, they can seamlessly transfer this skill to new, unseen environments. Therefore,
Object Navigation research has surged, motivated by this human ability.

Object goal navigation is a task in the field of embodied AI where an agent, typically an autonomous
robot, is tasked with navigating an environment to find a specific object or category of objects. Unlike
traditional navigation tasks where the goal might be a particular location or waypoint (Point Goal Nav-
igation), in object goal navigation, the goal is to locate and reach any instance of a particular object
category within the environment. The agent begins at a random location within the environment and
uses sensors such as cameras and/or depth sensors to perceive its surroundings. It then employs navi-
gation algorithms to plan and execute actions that will lead it towards instances of the specified object
category. Figure 1.1 illustrates the Object Navigation task.

Object goal navigation tasks often involve complex environments with obstacles and varying terrain,
requiring the agent to exhibit robust perception, planning, and navigation capabilities. These tasks are
common in research aimed at developing intelligent robots capable of executing tasks in real-world set-
tings, including search-and-rescue missions, object retrieval in warehouses, and household assistance.
In this thesis, we narrow our focus to the practical application of household assistance. Traditional
approaches to solving object navigation tasks usually require extensive domain expertise, such as a de-
tailed understanding of the environment’s layout. However, this requirement is unfeasible in numerous
real-world scenarios. Therefore, our approach involves constructing an allocentric semantic map of the
world as the agent explores previously unseen environments.

A limitation of object navigation strategies is that they are primarily focused on single objects, thus
limiting their applicability in various indoor scenarios where multiple categories of objects need to be
located within a single search or navigation session. Chapter 3 talks about the Multi-Object Navigation
(MultiON) task, which involves a robot localizing instances of multiple object classes - a task crucial
for assistive robots in various indoor settings. The MultiON task as proposed by Saim Wani et al. [5],
describes the task as “a task framework that involves navigation to an ordered sequence of objects placed
within realistic 3D interiors”. The MultiON task extends the object goal navigation task initially intro-
duced by Zhu et al. [6] and Anderson et al. [7], offering greater flexibility by enabling the selection of
multiple object goals, thus allowing for increased control over task complexity. However, this “ordered
sequence” or pre-sequenced approach limits adaptability because in real-world household settings, we,
as humans, usually tend to locate objects from a list as we find them in the environment, which is often
faster than following the order in which the objects are listed. This is another limitation addressed in
this thesis.

In chapter 3, we present Sequence-Agnostic MultiON (SAM), where the agent is provided with a
list of objects to locate in a household environment without any explicit order specified for finding the
objects. We introduce a deep reinforcement learning framework for SAM, employing an actor-critic
architecture with a refined reward system. The approach proves more adaptable to dynamic scenarios,
emphasizing its potential for practical applications in evolving environments. The motivation for this
work is to encode some commonsense reasoning into the agent so that it can find multiple objects faster.
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(a) Agent is initialised in the Living Room. According to the agent’s observations, it executes actions

from {MOVE_FORWARD, TURN_LEFT, TURN_RIGHT}.

(b) After executing some actions, the agent finally reaches the Kitchen where the goal category stool

is present. After reaching the goal, the agent executes the STOP action.

Figure 1.1: Object Navigation Task: Here, the task for the agent is to reach the goal category stool.

The agent has access to RGB-D camera and a noiseless GPS+ Compass sensor. We can see the explored

area marked in light grey and the goal region marked as red in the occupancy map as the agent moves

to the goal in Figure (b). Adapted from the Habitat 2020 Challenge.
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The framework was evaluated in the AI Habitat 3D simulation environment using the Gibson benchmark
dataset. Our experiments conclusively demonstrate that our framework outperforms pre-sequenced Mul-
tiON and state-of-the-art object navigation methods when adapted for MultiON scenarios.

1.2 Object-Room Affinities

Throughout the evolution of society, humans have exhibited a penchant for organizing their sur-
roundings. While the norms governing the arrangement of our living spaces have evolved, certain
enduring associations persist within the human collective. When tasked with locating an item such as
“Headphones”, humans typically rely on intuitive associations with specific areas, such as the “Home
Office”, “Living Room”, or “Entertainment Room.” This simple thought experiment underscores the
subconscious associations we have formed between objects and the rooms they traditionally occupy.

In Chapter 4, we introduce a novel method for determining the best room to place an object in
for scene rearrangement or to find an object in for Multi-Object Navigation. While state-of-the-art
approaches rely on large language models (LLMs) or reinforcement learning (RL) policies for this
task, our approach, CLIPGraphs, efficiently combines commonsense domain knowledge, data-driven
methods, and recent advances in multimodal learning. Specifically, it (a) encodes a knowledge graph
of prior human preferences about the room location of different objects in home environments, (b)
incorporates vision-language features to support multimodal queries based on images or text, and (c)
uses a graph network to learn object-room affinities based on embeddings of the prior knowledge and
the vision-language features. We demonstrate that our approach provides better estimates of the most
appropriate location of objects from a benchmark set of object categories in comparison with state-of-
the-art baselines.

1.2.1 Traces of Utility in Our Decision-Making Process

The mapping of objects to specific spaces often stems from considerations of “utility.” For instance,
when tasked with finding “an apple” in an unfamiliar house, one instinctively recognizes it as a perish-
able food item, suggesting it should be located in areas designated for food storage and consumption,
such as the Kitchen, Pantry, or Dining Room.

The Familiarity Factor and Decision-Making Time: Examining our inference process in stages can
provide further insight. Consider a scenario where the object to be found has an unknown name, and
its nature—whether it’s a writing instrument, a skincare product, or a magical item from Narnia—is
unclear. In such a situation, a systematic approach involves posing questions to ascertain its utility: Is
it consumable? Is it a cosmetic? Is it an electronic device? This initial understanding of utility guides
the identification of the room where objects with similar utility are typically located, streamlining the
decision-making process with increased familiarity.
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This thought experiment elucidates two significant insights:

• Successfully addressing these questions allows humans to infer the appropriate location for an
object, providing a universal understanding applicable to any household.

• Humans not only possess commendable Object-Room mappings in their cognitive processes but
also leverage object-object relationships, shaped by the co-occurrence of these objects and influ-
enced by their shared utility.

In Chapter 4, our objective is to employ a graph network to cluster commonly encountered household
objects into room categories. The fundamental rationale behind utilizing a Graph Convolutional Net-
work lies in harnessing both Object-Room Relationships and Object-Object Relationships to generate
latent representations indicative of object categorization into rooms based on shared features or utility.

Graph Convolutional Networks utilize not only node features but also incorporate a message-passing
mechanism between neighbouring nodes. This mechanism enables the generation of node representa-
tions that consider information from neighbouring nodes in addition to the inherent node features.

To accomplish this, we leverage the Human Preference Dataset [8] to identify prevalent and univer-
sally accepted object-room mappings. We then integrate this dataset with multimodal CLIP [9] features,
employing them to learn utility-based clustering using our graph network. This approach enables us to
capture both the inherent relationships between objects and the preferences embedded in human cogni-
tion, providing a comprehensive framework for object categorization within domestic spaces.

This categorization, while insightful, is not without its limitations. Human organization of house-
hold items isn’t solely guided by utility; at times, it’s influenced by the “ease of use.” For instance,
although, from a utility perspective, a “water bottle” is typically associated with the “kitchen”, our prac-
tical experiences inform us that it’s more likely to be found in areas where people commonly spend their
time. Retrieving objects in homes with such preferences poses a challenge solely relying on generalized
utility-based categorization.

The complexities of object retrieval under these circumstances fall beyond the scope of this current
work. Addressing such user-specific behaviours in multi-object navigation is a facet we plan to explore
in future endeavours in Multi-Object Navigation.

1.3 Thesis Contributions

The overall contributions of the thesis can be summarized as follows:

1. Development of SAM Framework: The thesis introduces the Sequence Agnostic MultiON
(SAM) framework inspired by human cognition. SAM allows robots to explore environments
without needing to compute a global order of tasks. Instead, it adapts its exploration based on ob-
servations, minimizing distance travelled and task completion time. This framework contributes
by:
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(a) Introducing a method for greedy selection of ‘long-term goals’ to minimize distance to in-
stances of target object classes.

(b) Extending previous work on Object Navigation (ON) to develop a deep reinforcement learn-
ing (RL) framework for SAM, which rewards concurrent progress towards multiple object
classes [4].

2. Introduction of CLIPGraphs Framework: The thesis presents CLIPGraphs, a framework de-
signed to accurately estimate object-room affinities by leveraging commonsense knowledge, data-
driven methods, and multimodal embeddings. This framework incorporates:

(a) A knowledge graph encoding human preferences for the room location of objects in home
environments.

(b) Joint embeddings of image and text features to facilitate multimodal learning and queries
[10].

(c) A graph network that learns object-room affinities based on latent embeddings of the knowl-
edge graph, including image and text feature embeddings.

3. Dataset Contribution: The thesis contributes a dataset of over 8000 image-text pairs, extracted
from the Web for the 268 benchmark object categories described in [8]. This dataset is crucial for
evaluating the CLIPGraphs framework’s ability to accurately estimate the optimal room location
for any given object, which is a crucial step in object navigation and scene rearrangement.

Evaluation and Validation. This thesis evaluates both frameworks rigorously. For SAM, task
completion time and distance travelled are compared against the previous state-of-the-art PSM method.
Experimental results demonstrate significant improvements over baselines, validating the effectiveness
of the proposed framework. For CLIPGraphs, the thesis evaluates the ability to estimate the best room
location for objects.

Contribution to Robotics and AI. Both frameworks contribute to advancing robotics and artificial
intelligence research. SAM enhances robot autonomy by enabling efficient exploration in unknown
environments without predefined sequences. CLIPGraphs improves object navigation and scene re-
arrangement tasks by accurately estimating object-room affinities, leveraging multimodal embeddings
and commonsense knowledge. Overall, the thesis significantly advances the state-of-the-art in robotic
exploration and object navigation tasks through the development and validation of the SAM and CLIP-
Graphs frameworks, along with the creation of the associated dataset, contributing to the broader fields
of robotics, artificial intelligence, and human-robot interaction.

1.4 Thesis Organisation

The chapters in this thesis are as described as follows:
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Ch1: This is the introductory chapter, which discusses the scope of the work carried out in this thesis,
introduces the research problems we are tackling, and outlines the motivation behind some of the
methods we have adopted to solve them.

Ch2: In this chapter, we undertake a thorough review of the literature related to the problems we are
tackling. We also briefly describe a few essential basics which are later used in our proposed
methods.

Ch3: We present the first contribution of this thesis - a framework to solve the Multi-Object Navigation
problem in a sequence-agnostic way.

Ch4: This chapter presents the second contribution of this thesis - a novel method to determine the best
room to place an object in, especially useful for scene rearrangement and object navigation tasks.

Ch5: We conclude with a summary of the methods and results discussed in this thesis and the scope of
extension of this work in the future.
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Chapter 2

Background

In this chapter, we give a brief overview of the related work in embodied AI tasks – single object and
multi-object search tasks, commonsense reasoning and the use of CLIP embeddings to solve embodied
AI tasks.

2.1 Embodied AI tasks

Research in Embodied AI has gained momentum with the availability of datasets containing 3D
scenes of indoor environments, such as Matterport3D [11], Gibson [12], and Habitat-Matterport 3D [13].
These datasets are utilized in AI simulators like Habitat [14] and GibsonEnv [12] to explore various
problems, including PointGoal Navigation [15, 16], where a robot is tasked with moving to a specified
point location; ObjectGoal Navigation [4, 17–19], which involves finding a target object instance in an
unexplored environment; and Visual Language Navigation [20], which requires navigating to a target
scene based on complex instructions and scene descriptions.

Apart from goal navigation tasks, in recent efforts to train embodied agents for human-like activities,
the following tasks have also been explored: scene exploration [21, 22]; embodied QA [23–25]; and
rearrangement [26–28]. ALFRED [29], TEACh [30], and [31] investigate agents’ ability to perform
actions based on natural language instructions, while [32–34] utilize knowledge graphs for visual clas-
sification and detection. While these works include explicit specification of the goal state by a human
agent, recent works have started the inclusion of reasoning with commonsense knowledge to enable
agents to perform these tasks intelligently.

2.2 Object search tasks

Object search tasks, such as Object Navigation (ON), are designed to navigate to specific target ob-
jects swiftly within previously unseen environments. End-to-end reinforcement learning methods have
emerged as the state-of-the-art approach for directly mapping pixels to actions tailored to accomplish
such tasks. Mousavian et al. [35] leveraged semantic visual representations from advanced detectors and
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segmentors for target-driven visual navigation. Zhu et al. [6] proposed a deep reinforcement learning
framework to enhance target and scene generalizability. However, despite their effectiveness, deep rein-
forcement learning methods often struggle to generalize to novel scenarios due to the lack of a semantic
understanding of the environment. In contrast, approaches emphasizing better generalization construct
allocentric maps encoding semantic priors [19, 21, 36, 37].

In this thesis, we shift the focus towards searching for multiple objects, a more relevant challenge
in household navigation scenarios. Real-world navigation often entails locating several objects concur-
rently, making multi-object navigation a practical and pertinent challenge.

2.3 Multiple object search tasks

The goal of the MultiON task [5] is for a robot to localize an instance (each) of more than one ob-
ject class. The original challenge description introduced coloured cylinders in the Habitat environment,
with only one instance of each object class, and provided the sequence in which instances of the target
object classes were to be localized. This reduced MultiON to a fixed sequence of ON tasks, which
we refer to as pre-sequenced MultiON (PSM). Methods for PSM have predominantly developed and
evaluated different map representations and memory architectures. For example, the original paper on
MultiON explored NoMap, Oracle Map, and Learned Map agents under the assumption of noiseless
pose estimation [5]. Also, their RL policy rewarded the agent’s progress toward, as well as the localiza-
tion of, an instance of the target object class under consideration. Kim et al. [38] sought to decouple
mapping from localization, with the policy being a combination of exploration and moving towards a
particular object class instance. There has also been work exploring the role of auxiliary tasks in im-
proving navigation performance, specifically by taking into account object instances that had already
been observed while executing the policy [39]. However, most of these studies only account for one
instance per object class in the environment. Essentially, this means that only a single instance of each
object class, such as “chair,” exists within the environment. Furthermore, these objects are typically
synthetic ones introduced artificially into the environment. Another limitation in these approaches is the
Pre-Sequenced MultiON (PSM) formulation, where the order of object localization is predetermined for
the agent. However, this approach poses practical challenges in real-world scenarios where flexibility is
crucial. Ideally, in such scenarios, we should have the ability to identify and mark an object off our list
even if it is not found in the sequence originally specified.

In contrast to the existing methodologies, Chapter 3 introduces several advancements. Firstly, we
allow for the existence of multiple instances of each object class, thereby better reflecting real-world
scenarios. Additionally, we focus on naturally occurring object classes within Gibson indoor scenes,
eliminating the need for artificially induced objects. Moreover, we alleviate the limitations of the PSM
formulation by shifting our focus to Sequence-Agnostic MultiON, enabling the agent to locate objects
without strict sequential constraints. To achieve this, we adapt a previously established deep network
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architecture for Object Navigation (ON) [4] to consider embeddings of additional inputs and a novel
reward specification.

2.4 Commonsense Reasoning

In the context of rearrangement, Housekeep [8] and TIDEE [40] focus on organising a household
using commonsense reasoning, utilising the training of Large Language Models (LLMs). Meanwhile,
CSR [41] employs reasoning derived from a scene graph to identify objects and changes in room states.
Other works like JARVIS [42], DANLI [43], and LLM-Planner [44] show the effectiveness of prompting
LLMs for language understanding and sub-goal planning using natural language instructions. Further-
more, [45] evaluates the performance of various language models and explores their limitations related
to commonsense in the physical world.

2.5 CLIP for Embodied AI

CLIP (Contrastive Language-Image Pre-training) [9] uses large-scale text-image pairs for training
image and text encoders simultaneously and has shown remarkable performance for object recognition.
The effectiveness of CLIP image and text embeddings for Embodied AI tasks has been evidenced by re-
cent studies [27,46–48] over traditional ResNet-based architectures. [49] demonstrated the use of CLIP
to match objects in a cross-instance setting with visual features as a measure of similarity to complete
tabletop object rearrangement tasks. A recent work, ZSON [50], proposes a zero-shot object naviga-
tion agent that uses CLIP embeddings to localize objects in the environment and navigate towards them
without any additional training. The agent leverages the semantic similarity between the object category
name and the visual features of the object to guide its exploration. Similarly, CLIP was used by [51,52]
for zero-shot vision and language navigation by using natural language expressions for descriptions of
target objects. Recent works [53–57] use pixel-level CLIP features for robotic navigation using language
commands. Furthermore, [58, 59] have demonstrated the use of CLIP visual and language embeddings
for learning robotic scenes, while [60,61] use CLIP for generating 3D scene memories from 2D images
and natural language.

2.6 Graph Convolutional Networks

Graph Convolutional Networks (GCNs) mark a significant advance in deep learning, transforming
how we analyze graph-structured data. Introduced by Kipf and Welling in 2017 [2], GCNs extend prin-
ciples from CNNs to graphs, offering a versatile framework. Unlike traditional CNNs for grid-structured
data, GCNs adapt to irregular graph structures, using the adjacency matrix to capture relationships be-
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Figure 2.1: Left: Illustration of a multi-layer Graph Convolutional Network (GCN) for semi-supervised

learning, featuring C input channels and F feature maps in the output layer. The labels are denoted by

Yi; the black lines show the graph edges. The graph structure is shared across layers. Right: t-SNE

representation of hidden layer activations of a two-layer GCN trained on the Cora dataset [1] using 5%

of labels. Colours denote document class. Source: [2]

tween nodes. This adaptability makes GCNs effective for tasks like node classification, link prediction,
and graph classification.

In GCNs, edges go beyond mere connections; they notably shape node embeddings, especially
in weighted graphs. Edge weights add complexity, serving as a quantitative measure of connection
strength. During processing, a GCN takes a graph with an adjacency matrix as input, where each edge
is associated with a weight. The impact of edge weights on node embeddings becomes evident, with
nodes connected by stronger edges exerting a significant influence. This dynamic information propaga-
tion shapes how nodes are represented within the graph.
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Chapter 3

Sequence-Agnostic Multi-Object Navigation

In this chapter, we introduce a deep reinforcement learning framework for Sequence-Agnostic MultiON,
employing an actor-critic architecture with a refined reward system.

(Published and presented at the IEEE International Conference on Robotics and Automation (ICRA) 2023

held in London, UK. [62])

3.1 Introduction

: bed : chair : couch : dining : toilet : sink

Figure 3.1: Example trajectories of the same episode when agent traverses in Pre-Sequenced MultiON (PSM)

and Sequence Agnostic MultiON (SAM). In this particular episode, the goal objects are specified as {chair, toilet,

couch}. Paths taken by PSM and SAM are shown in red and blue. Semantic annotations for the Gibson Tiny

split [3] have been used here.

Consider the home environment in Figure 3.1 with instances of object classes such as bed and toilet
in different rooms. A core task for an assistive robot in such an environment is to locate instances
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of specific object classes. The Object Goal Navigation (ON) task [6, 19] requires a robot to find an
instance of a single object class in an unknown environment. In contrast, the Multi-Object Navigation
(MultiON) task [5] involves an AI agent being given a list of objects to find in an unknown household
environment. The agent’s objective is to explore and locate one instance of each specified object within
the environment. Thus, the MultiON task is a generalization of the ON task. Both ON and MultiON
tasks are relevant to many practical applications.

Humans perform MultiON tasks with seemingly little effort. For example, a human going for a walk
may need a pair of socks, their house keys, and their pink umbrella. To locate these objects, they build
on prior experience in this and other related (home) environments, to explore a series of locations likely
to contain one or more of these objects. Also, humans try to concurrently minimize the distance to
all target object classes and adapt their exploration based on observations. For example, if keys are
observed unexpectedly on top of the cabinet while searching for socks, the human will stop and confirm
whether these are the house keys. State-of-the-art methods for MultiON, on the other hand, focus on
ON tasks or perform Pre-Sequenced MultiON (PSM) in which the robot is given the sequence in which
the target object classes are to be explored [5]. For example, the robot in Figure 3.1 (left sub-figure) is
given the sequence {chair, toilet, couch} as the MultiON task. It first searches for and finds a chair;
although it spots a couch as it moves near the chair to confirm the chair’s location. It then searches for
a toilet (second object class in the sequence) before coming back to confirm the location of the couch
seen earlier.

Inspired by insights from human cognition, we present a framework for Sequence Agnostic MultiON
(SAM); the robot is neither provided nor forced to compute a global order in which it locates instances
of the target object classes. Instead, the robot explores likely locations of the target objects and auto-
matically adapts its exploration based on observations. In Figure 3.1 (right sub-figure), for example,
the robot observes a chair and a couch nearby. It first confirms the location of the couch before con-
firming the chair’s location, then explores further to locate a toilet; the distance traveled and the task
completion time are substantially less compared with PSM in Figure 3.1 (left sub-figure). Specifically,
our framework makes two key contributions:

1. Instead of computing the globally optimal sequence of trajectories by evaluating all possible paths
through locations in the domain, the robot builds on past experience in environments with a similar
distribution of regions and objects, greedily choosing a series of ‘long -term goals’ in an attempt
to concurrently minimize the distance to an instance of all target object classes.

2. Extends the previous work on ON [4] to develop a deep reinforcement learning (RL) framework
for SAM, introducing a novel reward specification and adapting the actor-critic network to reward
the concurrent progress to instances of multiple object classes, instead of only rewarding the
progress towards identifying an instance of a single object class.

We experimentally evaluated our framework through ablation studies, and quantitative and qualitative
comparisons with relevant baselines using photo-realistic scenes from the Gibson benchmark dataset in
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AI Habitat, a 3D simulation environment [14]. We computed five standard performance measures over
experimental trials involving different number of object classes. These experiments demonstrated the
significantly better performance provided by our framework, compared with the use of a predetermined
sequence of object classes, and with two other methods for selecting long-term goals: random search,
and a state-of-the-art deep RL method for ON [19] extended to MultiON. In particular, our SAM frame-
work provided ≈ 50% reduction in the number of time steps and path length compared with a PSM
baseline.

Figure 3.2: Our framework comprises three primary elements. The Semantic Mapping module utilizes odometry

pose readings and RGB-D observations to create an allocentric semantic map of the local environment. The

Encoder Network receives the semantic map and encodings of the target object classes and extracts the high-level

feature embeddings from the semantic map. An actor-critic network is then trained using the feature embeddings.

This network outputs a long-term goal to search and find an instance of the target object classes. The deterministic

Local Policy uses analytical planners to compute low-level navigation actions to reach the specified long-term

goal.

3.2 Problem Formulation and Framework

This section describes the Sequence-Agnostic MultiON (SAM) task that we are solving and our
proposed framework for the same.

3.2.1 Task Description

In each episode of SAM, the robot must locate an instance (each) of a set G of one or more target
object classes in the environment. The environment consists of at least one (and often two or more)
instance(s) of each object class Gi. At each timestep t in the episode, the robot receives: (a) egocentric
RGB and depth observations of the scene within the robot’s view; (b) the robot’s pose in the domain; and
(c) an one-hot encoding for each object class (out of N = 16 classes) whose instance is to be located.
We use k-ON to refer to an episode with k target object classes. The robot does not have any prior map
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of the domain or the sequence in which the target object classes are to be explored; if such a sequence
is provided, it is a PSM task. An object class is considered to be found when the robot navigates close
(distance to success or target, ds ≤ 1m) to an instance of the class; if no such instance is found within
a maximum number of timesteps, the episode is said to be unsuccessful. The robot can execute one of
these four actions: {MOVE_FORWARD, TURN_LEFT, TURN_RIGHT, STOP}. The MOVE_FORWARD
action moves the robot forward by 0.25m, whereas the TURN actions cause the robot to rotate by 30◦ in
the appropriate direction (LEFT, RIGHT).

3.2.2 Proposed Framework

As stated earlier, we pursue a deep RL formulation of SAM and present a modular approach based
on the actor-critic architecture. Figure 3.2 provides an overview of this framework, which extends the
prior work on ON [4], and comprises three modules:

1. Semantic Mapping: Builds a map of the domain (i.e., metric arrangement of space with obsta-
cles and empty space) from the RGB-D (RGB and depth) data and pose observations. Robot uses
the map to localize itself and processes the RGB-D data to identify and localize specific object
instances in this map.

2. Encoder Network: Receives as input the semantic map (above) and the encodings of target
object classes and extracts high-level features. These features are sent to an Actor-Critic network
that repeatedly computes a ‘long-term goal’, i.e., a region the robot should travel to in search of
an instance of a target object class.

3. Deterministic Local Policy: Uses analytical planners to compute the low-level navigational
actions that need to be taken to reach the current long-term goal region.

The semantic map constructed by the Semantic Mapping module is a matrix of dimension K×M ×M .
This contains K channels of M × M size maps where K = C + 2 and C is the total number of
semantic categories. The first two channels contain the obstacles and the explored areas respectively,
while the remaining channels contain the C object categories. We use the mapping procedure from
a state-of-the-art method for ON [19]. We leverage a pretrained Mask R-CNN model [63] to infer
semantic categories from the RGB data observed. Utilizing the depth observations, we generate point
clouds, associating each point in the point cloud with its corresponding estimated semantic category.
With the help of differentiable geometric computations on each point within the point cloud, we build a
voxel representation that is then transformed into a semantic map of dimension (C+2)×M ×M . The
semantic mapping module is represented in Figure 3.3. We also use random shift augmentation on the
predicted semantic map to promote generalization.

The encoder network takes as input the estimated semantic map from the previous module, the robot’s
current and past locations, the objects found and localized so far, and the encoding of the target object
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Figure 3.3: Semantic Mapping Module: RGB and Depth images undergo a series of operations to generate a

top-down Semantic Map. Source: [4]

classes. The one-hot encoding of multiple object classes was not considered in earlier works [4]. High-
level feature embeddings are extracted by the encoder and then used by the actor network to obtain
a long-term goal, i.e., the next location the robot should move to for the target object search. The
encoder network consists of 4 convolutional layers with 3× 3 kernels and 32 channels [64]. After each
convolutional layer, we apply the ReLU activation. A stride length of 1 is used everywhere. A single
fully-connected layer, normalized by the LayerNorm operation [65], receives the output of these layers.
Also, a hyperbolic tangent non-linear transform is applied to the 50-dim output of the fully-connected
layer. We use orthogonal initialization [66] to initialize the weight matrix of the fully connected layer
and the convolutional layers. The bias is set as zero.

The output of the encoder network is used by the actor-critic network. The actor and critic compo-
nents work with the same weights in the convolutional layers but have separate encoders. The weights
in the convolutional layers can only be updated by the optimizer in the critic network. We apply the
clipped double Q-learning approach introduced by Van Hasselt et al. [67] to the critic network. This
strategy involves representing each Q-function with a three-layer multi-layer perceptron (MLP), incor-
porating ReLU activations after each layer except the last. All the transition states are stored using a
replay buffer. The transition states include the semantic map, target object classes, action, reward, next
semantic map, and the subsequent target object classes. The encoder and actor-critic networks receive
two inputs: (i) a set of transition states obtained from the replay buffer and (ii) the augmented semantic
map. Every 25 timesteps, a new long-term goal is sampled. Note that the parameters of both the actor
and critic networks are revised during training. Once trained, only the actor network is used for testing.
For ease of understanding, only the actor network is labelled in Figure 3.2. The specification of the
reward function, a key contribution of this chapter, is described in Section 3.2.3.

When the actor-critic network provides a long-term goal, the local policy module uses the Fast
Marching Method [68] to guide the robot to this region. Specifically, from the semantic map gener-
ated in the semantic mapping module, the obstacle channel is used to compute the shortest path from
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the current location to the current long-term goal. The robot then computes the low-level navigational
actions to navigate along the computed shortest path.

3.2.3 Reward Function

A key contribution of this work is the reward specification used to train our deep network. Recall that
our objective is to mimic the intuitively appealing sequence-agnostic behaviour of humans engaged in
MultiON tasks. In order to do so, we identified three desired characteristics that we wanted our reward
function to capture:

1. We wanted to encourage the robot to find an instance of each target object class.

2. We wanted to motivate the robot to concurrently reduce the distance to an instance of more than
one object class. However, we did not want it to compute the globally optimal exploration se-
quence by considering all possible sequences because that could be computationally intractable
in practical deployment.

3. We wanted to encode non-procrastination, i.e., minimize the time spent looking for object in-
stances.

Based on these desired characteristics, we formulated the reward function as follows:

Reward = Rsub-goal + αprocess ∗Rprocess + CNR (3.1)

where Rsub−goal is the reward for achieving a ‘sub-goal’, i.e., an instance of one of the target object
classes; Rprocess is the process reward; and CNR is the negative reward, i.e., cost (currently −0.01)
accumulated at every timestep. The value of CNR was set such that the penalty accrued over a typical
episode was small relative to the other parts of the reward function. We used scaling factor αprocess =

0.1 (determined experimentally) to vary the relative influence of Rprocess on the overall behaviour of
the robot.

3.2.3.1 Sub-goal reward

Rsub-goal is the standard reward the robot receives when it localizes an instance of any target object
class. To ensure that this reward is only received at the corresponding timestep, we modelled it as:

Rsub−goal = 1sub−goal ∗ rsub-goal (3.2)

where 1sub−goal is an indicator function that is equal to 1 iff the robot reaches an instance of one of the
target object classes, and rsub−goal is the instantaneous real-valued reward. This can be restated as:

Rsub−goal =

{
rsub−goal if a sub-goal is reached

0 otherwise

}
(3.3)

We experimentally set rsub−goal = 2 to be relatively higher than the other two parts of our reward, in
order to enable the robot to reach the sub-goal with higher priority.
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3.2.3.2 Process reward

We recognized that this part of the reward function may require a trade-off with the first part of the
reward (Rsub-goal), e.g., focusing on the shortest path to a particular region may help the robot obtain
rsub-goal as soon as possible but it may make sense to deviate from this region to another region nearby
if an instance of another target object class is likely to be found there.

We first used the known (i.e., ground truth) location of object instances during training to compute
the distance to the closest instance of each target object class at each timestep. We used this information
to compute, at each timestep t, the total decrease in the geodesic distance to the nearest instance of each
target object class gi:

dt =

N∑
i

(dtgi,t−1 − dtgi,t) (3.4)

where dtgi,t refers to the shortest distance to an instance of object class i at timestep t; and N is the
number of target object classes whose instance remains to be localized in this episode. Once dt is
computed, Rprocess is computed as:

Rprocess =

{
n
N + dt if dtg of n classes decreases
dt otherwise

}
(3.5)

where the additional reward received depends on the fraction of the target object classes to whose in-
stances the robot was able to reduce its distance during the training episode. This part of the reward thus
encourages the robot to greedily attempt to concurrently localize more than one object based on prior
experience in similar environments and on the observations received in the current episode. Note that
the reward function’s components remain the same irrespective of the number of target object classes.
Experimental results (below) demonstrate the benefits of this reward specification and our SAM frame-
work.

3.3 Experimental Setup

We evaluated our SAM framework’s capabilities using photo-realistic benchmark scenes (3D recon-
structions of home environments) from the Gibson dataset in the AI Habitat simulator [14]. We used
the standard ObjectNav Challenge’s 25 scenes during training by setting up ≈ 1000 episodes (total)
of k-ON task, randomly selecting k ∈ [2, 3] target object classes in each episode. The robot’s starting
position is randomly sampled from navigable points in the environment in each episode. For testing,
we generated datasets for 2-ON and 3-ON tasks using five scenes from the Gibson dataset that were
not considered during training. This testing dataset included 200 episodes for each of the five scenes,
resulting in a total of 1000 episodes. We did not explore k-ON tasks for k > 3 in this benchmark dataset,
as the number of scenes containing one or more instances of the target object classes was less for higher
k. Figure 3.4 shows the distribution of object goals in each scene. Every object was chosen almost an
equal number of times in every scene, which shows that our dataset is well randomized and not biased.
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(a) Validation dataset distribution for 2-ON (b) Validation dataset distribution for 3-ON

Figure 3.4: The tables above depict the distribution of goal objects across the 5 unseen scenes utilized as a

validation dataset. Objects with a count of 0 indicate their absence in the respective scene.

As stated in Section 3.2.1, the robot’s observations were in the form of 4 × 640 × 480 RGB-D
images, and the success threshold ds = 1m. The maximum episode length was 1000 and 600 timesteps
for the 3-ON and 2-ON episodes, respectively. The target object classes were those considered by the
state-of-the-art approaches for ON [19]: ‘chair’, ‘couch’, ‘potted plant’, ‘bed’, ‘toilet’ and ‘tv’. We
experimentally evaluated the following hypotheses about our framework:

H1: Our SAM framework traverses shorter paths and takes fewer timesteps when compared with
PSM.

H2: Our SAM framework provides better long-term goals than the state-of-the-art object naviga-
tion baseline extended to multi-object settings.

We considered three baselines for evaluation:

1. Random: The robot pursued the SAM task (i.e., no fixed object class sequence) but it chose an
action randomly in each timestep of each episode. This is a standard comparative benchmark in
literature to understand the margin of improvement by other methods.

2. PSM: The robot was given an order (i.e., sequence) in which it had to explore the target ob-
ject classes; the underlying framework was the deep RL approach we used for ON in the prior
work [4].

3. Multi-Semantic Exploration (M-SemExp): The robot pursued the SAM task, but the underlying
deep RL method extended a state-of-the-art method developed for ON [19] to the MultiON setting.
In particular, the reward was specified as the total decrease in geodesic distance to the nearest
instance of each object gi.

RSemExp = αSemExp ∗
N∑
i

(dtgi,t−1 − dtgi,t) (3.6)
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where dtgi,t is the shortest distance to an instance of object class gi at timestep t; N is the number
of target object classes whose instance remains to be localized.

We have considered five standard performance measures:

(i) Success (%): Fraction of episodes in which the robot successfully localizes an instance of each
target object class within the maximum number of steps allowed.

(ii) Sub-success (%): Ratio of the number of target object classes whose instance has been localized
to the total number of target object classes in an episode.

(iii) Timesteps: The total number of timesteps taken to successfully complete a particular episode.
Any move, such as moving forward or a rotation move, adds a unit to the timestep count.

(iv) Global Path Length (m): The length of the path (in meters) traversed by the robot to successfully
identify an instance of each target object class in an episode.

(v) Global-SPL (G-SPL, %): Ratio of the globally minimum path length (g) and the length of the
actual path taken by our robot in a particular episode; g is computed as the shortest path that visits
one instance of each target object class.

G-SPL = (success) ∗ g

max(g, p)
(3.7)

where p is the length of the actual path traversed by the robot to localize an instance of each target
object class.

Furthermore, we included some qualitative results in Section 3.4.1.

3.4 Experimental Results

This section describes the qualitative and quantitative results of the experimental evaluation of our
SAM framework. Figure 3.5 describes two snapshots of the output we get on executing our framework.

3.4.1 Qualitative Results

Figure 3.6 shows a qualitative comparison of our SAM framework with the PSM baseline in the form
of snapshots for a specific episode. Recall that PSM is provided with the sequence {couch, tv, toilet} in
which the target object classes are to be explored, whereas only the target object classes are known in
the SAM formulation. With our SAM framework, the robot quickly moves toward and localizes a toilet
in timestep 21, a couch by timestep 72, and a TV by timestep 81. With PSM, on the other hand, the
robot takes more than 200 timesteps to complete this task. These results partially support H1.

Figure 3.7 shows a qualitative comparison of the proposed SAM framework and the M-SemExp
baseline. For both methods, a snapshot of the episode was taken when a new long-term goal was chosen.
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(a) Snapshot after the first few timesteps of an episode showing the long-term goal (blue dot)

(b) Snapshot showing the semantic map when a goal object is found. The goal is marked in blue

on the semantic map.

Figure 3.5: The figures show different timestamps of the same episode. In each snapshot, we have the

remaining goal objects to be found on the top as “Unordered Goal List”. The image on the left of each

snapshot shows the agent’s view of the scene at that timestep. The semantic map created so far is shown

on the right side of each snapshot. Additionally, a legend for the semantic map is provided at the bottom

of each snapshot. The semantic map also illustrates the agent’s path in red, with an arrow indicating the

direction of the agent’s movement.
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(a) Sequence-Agnostic MultiON

(b) Pre-Sequenced MultiON

Figure 3.6: Qualitative comparison of the performance of (a) our SAM framework with (b) PSM in

an episode of the MultiON task with three target object classes (couch, tv, toilet) using experiment

snapshots. In every snapshot, we show the scene observation (above) and the semantic map generated

(below). Over the scene image, we have mentioned the timesteps (t) completed and the object that was

found in that snapshot. We can see that our SAM framework results in a smaller number of timesteps.
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(a) SAM framework

(b) Multi-Semantic Exploration

Figure 3.7: Analysis of long-term goals: Example trajectories of the same evaluation episode are

shown, (a) using the SAM framework and (b) using the M-SemExp framework, to demonstrate the

performance of our reward function compared to M-SemExp’s reward function. Comments below each

snapshot describe the events during the pursuit of each specific long-term goal.

Both frameworks were used to search for an unordered list of objects. With the SAM framework, the
agent finds the objects {tv, couch, bed}, with only 4 long-term goals, whereas M-SemExp requires 6
long-term goals. Our SAM framework resulted in a shorter path 11.3m and also completed the task in
86 timesteps, while M-SemExp resulted in a total path length of 19.3m and 182 timesteps. This result
can be summarised in 3.8. These results partially support H2.

3.4.2 Quantitative Results

We then evaluated H1 quantitatively, comparing our SAM framework with the PSM baseline, with
the results averaged over the successful episodes in 200 paired episodes of five scenes summarized in
Table 3.1. Note that both frameworks had the same environment, the same robot starting position and
the same three target object classes in each paired episode. To facilitate a fair comparison, we first ran
each episode with SAM, i.e., with no constraint on the order in which an instance of the target object
classes is to be found. The order in which the robot ended up localizing the target object classes was
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Figure 3.8: Summary of long-term goal analysis of SAM and M-SemExp

then provided as the target sequence for the PSM approach. As shown in Table 3.1, our SAM framework
provided an≈ 50% reduction in the average number of timesteps and the average path length compared
with the PSM framework. This improvement in performance with our SAM framework was strongly
influenced by our design of the reward function for the deep network architecture; see Section 3.2.3.
These results strongly support H1.

To evaluate H2, we compared our SAM framework with the Random and M-SemExp baselines;
recall that the latter was obtained by adapting a state-of-the-art deep RL framework for ON [19]. Ta-
ble 3.2 summarizes the corresponding results for 2-ON and 3-ON tasks. We observed that our SAM
framework provided substantially better performance in all three measures considered. Also, perfor-
mance improved when the number of target object classes increased from 2-ON to 3-ON because of the
associated increase in the maximum number of timesteps and our framework’s attempt to concurrently
reduce the distance to an instance of all target object classes. These results strongly support H2.

3.4.3 Ablation studies

Next, we performed ablation studies to further explore the effect of the maximum number of allowed
timesteps on the performance of our framework compared with the M-SemExp baseline. Specifically,
we varied the maximum permissible number of timesteps from 200-600 for the 2-ON task, and from
300-1000 for the 3-ON task, with the results summarized in Table-3.3 and Table-3.4 respectively. We
observed that the degradation in performance as the maximum number of timesteps is reduced was less
with our framework than with M-SemExp. These results further reinforced the fact that objects are
localized in fewer steps as a result of pursuing a sequence-agnostic approach, and of encouraging the
robot to concurrently reduce the distance to an instance of multiple target object classes. Due to the
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Scene Name
Timesteps ↓ Global Path Length (m) ↓

PSM SAM PSM SAM

Collierville 242 122 29.53 16.16

Corozal 336 179 46.23 27.28

Darden 248 117 31.43 16.08

Markleeville 272 140 35.41 18.87

Wiconisco 389 224 52.81 33.94

Table 3.1: Our SAM framework provides significantly better performance than the PSM framework, with numbers

averaged over 200 paired episodes for each of the five testing scenes.

Method
Success (%) ↑ Sub-success (%) ↑ G-SPL (%) ↑

2-ON 3-ON 2-ON 3-ON 2-ON 3-ON

Random 3.3 4.7 11.5 14.2 0 0

M-SemExp 60.5 61.7 73.1 76.6 30.5 29.8

SAM (ours) 70.7 72.3 82.5 86.9 39.3 39.3

Table 3.2: Our SAM framework results in significantly better performance than the Random and M-SemExp

baselines on three key measures; results averaged over 200 episodes of each of the five testing scenes.

lack of varied objects in the existing data sets (i.e., scenes), for 4-ON, a subset of the data was used
and our framework still provided better results than the M-SemExp baseline in each of the different
timesteps tested upon. For example, the success rate in 800 timesteps for the M-SemExp baseline and
our SAM framework were 61% and 64.6% (respectively) for four target object classes. These results
provide further support for hypothesis H2.

3.5 Summary

Object Navigation (ON) methods aim to locate instances of a single object class, while state-of-
the-art Multi-Object Navigation (MultiON) methods are pre-sequenced (PSM), meaning they follow
a predetermined order for exploring target object classes. This chapter introduces Sequence-Agnostic
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Timesteps
M-SemExp SAM (our method)

Success (%) Sub-success (%) Success (%) Sub-success (%)

600 60.5 73.1 70.7 82.5

300 49.6 67.2 60.3 77.1

200 34.7 56.5 48.6 70.2

Table 3.3: 2-ON Task: Comparison of our SAM framework with the M-SemExp baseline for different values of

the maximum number of timesteps allowed in each episode.

Timesteps
M-SemExp SAM (our method)

Success (%) Sub-success (%) Success (%) Sub-success (%)

1000 61.71 76.6 72.3 86.9

500 41.34 64.6 63.7 84.3

300 32.49 55.0 45.3 76.4

Table 3.4: 3-ON Task: Comparison of our SAM framework with the M-SemExp baseline for different values of

the maximum number of timesteps allowed in each episode.

Multi-object Navigation (SAM), explaining the concept and presenting a deep reinforcement learning-
based framework for its implementation. We describe a tailored reward function for the actor-critic
network, designed to promote sequence-agnostic exploration. Through experiments conducted in the
Habitat 3D simulation environment using scenes from the Gibson dataset, we demonstrate a significant
performance enhancement over three baselines: random action selection, PSM, and an extension of the
SemExp method [19] to MultiON (M-SemExp). Our approach relies solely on imparting commonsense
to a robotic agent through prior experience and reinforcement learning. However, we recognize that
humans benefit from the correlation between objects and rooms in real-world environments, a topic we
will explore in the following chapter.
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Chapter 4

CLIPGraphs

In the previous chapter, we discussed the Multi-Object Navigation task in a household setting. We
also discussed a modular approach based on the actor-critic architecture for this particular task. In this
chapter, we introduce CLIPGraphs, a novel method for determining the best room to place/find an object
in, a precursor for the task of embodied scene rearrangement and object navigation.

(Published and presented at the IEEE International Conference on Robot and Human Interactive Communi-

cation (RO-MAN) 2023, also accepted for the International Conference on Robotics and Automation (ICRA) 2023

Workshop on Pretraining4Robotics.)

4.1 Introduction

Imagine a robot being tasked with tidying up an unfamiliar house. This task is a variant of the scene
rearrangement challenge for embodied AI [26]. To perform this task, the robot must first determine
what tidying up means in this specific house, which requires constructing a representation of the current
state of the house and inferring a possible goal state (i.e., a configuration in which the house is deemed
tidy). Any errors in this step can influence downstream planning and control, resulting in irrecoverable
failure. Computing the most appropriate room location for specific object categories is thus critical to
the successful completion of such tasks.

Human-inhabited environments such as homes and offices are designed to be functional and aesthet-
ically pleasing. A key characteristic of such environments is the semantic organization, i.e., objects are
placed in locations based on their purpose. This enables humans to adapt efficiently to new environ-
ments designed to serve the same purpose. For example, when a person enters a new home and wants
to find sugar to make a cup of coffee, they instinctively look in the kitchen or pantry. We leverage this
semantic organization to enable robots to predict the likely locations of any given object. Specifically,
we leverage recent developments in multimodal (vision-language) representation learning to propose
a flexible approach for learning object-room affinities, i.e., the relative likelihood of any given object
belonging to a particular room in a house, based on image and text input.
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Figure 4.1: Our method leverages semantic organization (e.g., “dumbbells are usually in the exercise room”) to

better compute the most suitable location for any given object.

State-of-the-art methods have used Large Language Models (LLMs) as commonsense reasoning ma-
chinery for this tidy up task [8]. These methods are limited to textual descriptors, which can be chal-
lenging to ground to a specific scene. Moreover, they use ground truth object labels for generating
object-room affinities, which limits their operation outside of the training data distribution. Others have
used reinforcement learning (RL) to compute policies for related tasks such as visual semantic naviga-
tion [4, 19, 50, 55], and Multi-Object Navigation [62, 69, 70], but do not fully leverage knowledge from
different sources in the learning process.

Our framework, CLIPGraphs, seeks to leverage the complementary strengths of commonsense knowl-
edge, data-driven methods, and multimodal embeddings to estimate object-room affinities accurately. It
does so by incorporating:

1. A knowledge graph that encodes human preferences of the room location of objects in home
environments;

2. Joint embeddings of image and text features [10] to support multimodal learning and queries in
the form of images or text; and

3. A graph network that learns object-room affinities over a dataset of common household objects
based on latent embeddings of the knowledge graph that includes the image and text feature
embeddings.

The novelty lies in the combination of these components to achieve the desired objective. We evaluate
our framework’s ability to accurately estimate the optimal room location for any given object, which is
a crucial step in object navigation and scene rearrangement. This is done by creating a dataset of over
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8000 image-text pairs, extracted from the Web for the 268 benchmark object categories described in
[8]. Experimentally, we demonstrate that our framework significantly improves performance compared
to state-of-the-art baselines, which include Large Language Models (LLMs) and language embeddings
encoding common sense knowledge of object locations.

4.2 Datasets

We employed object and room categories, along with their corresponding human annotations, sourced
from Housekeep [8]. In addition, we meticulously curated a visual counterpart for the 268 object cate-
gories mentioned in Housekeep [8].

4.2.1 Human Preference Dataset

The Human Preference Dataset, crafted by Housekeep [8], aims to comprehend individuals’ prefer-
ences for organizing everyday household objects in both orderly and disorderly settings. The dataset
resulted from a study conducted on Amazon MTurk with 372 participants. For each object-room pair,
participants were tasked with classifying the available receptacles of that room into three categories:

• Misplaced: Subset of receptacles where the object is found in untidy houses.

• Correct: Subset of receptacles where the object is found in tidy houses.

• Implausible: Subset of receptacles where the object is unlikely to be found, either in a tidy or
untidy house.

Participants were also asked to rank all the receptacles present in that room. Interested readers are
referred to their paper for detailed information on data collection, filtering processes, and its application
to Scene Rearrangement.

4.2.2 IRONA Dataset

To perform MultiON or scene rearrangement tasks, a robot needs the key ability to accurately com-
pute the appropriate location for any given object. To explore this ability, we created the Images for
Room-Object Nexus through Annotations (IRONA) dataset of 30 RGB images from the Web per object
category. These images consist of white-background catalogue shots corresponding to the same 268 cat-
egories of household objects used by Housekeep [8] for benchmarking the Scene-Rearrangement task.
For each image in the IRONA dataset, the robot is tasked with computing the probability of the object
belonging to each of the 17 room categories.
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4.2.2.1 Rooms

We considered the same 17 room categories as employed by Housekeep [8]:

Rooms

bathroom bedroom childs room

closet corridor dining room

exercise room garage home office

kitchen living room lobby

pantry room playroom storage room

television room utility room

4.2.2.2 Object Categories

The list of 268 object categories we utilized can be accessed here. A representative image of our
IRONA dataset can be seen in Figure 4.2.

4.3 Problem Formulation and Framework

Our framework, called CLIPGraphs, trains a Graph Convolutional Network (GCN) [2] to compute
embeddings that are used to estimate these object-room affinities. Figure 4.3 shows the training pipeline.
It uses a knowledge graph to encode existing information of human preferences (of room location of
objects) for the object categories [8], and incorporates a modified contrastive loss function to compute
better latent embeddings of the image and language encoder features provided by CLIP [9] for the
nodes of the knowledge graph. The resultant node embeddings model the information about the room
location of various objects in the latent space. During inference, the CLIP features generated for any
(test) RGB images are processed by the GCN, with the cosine similarity between the embeddings of the
rooms and the image providing the desired estimate of object-room affinities. We describe the individual
components of our framework below.

4.3.1 Knowledge Graph

In the initial step of our framework, we utilize human-annotated preferences from the Housekeep
data [8]. For each object-room pair, 10 human annotators ranked receptacles based on the likelihood of
correct or incorrect object placement. Consequently, there are 10 opinions (positive, negative, or zero)
for each object-room-receptacle tuple. To ensure reliability, we filter the dataset for good annotator
agreement.
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Figure 4.2: Representative Image Of Our Web Scraped Dataset; 1 image per object category
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Figure 4.3: CLIPGraphs constructs a graph module (bottom-left) using CLIP encoders and passes that to a GCN

Encoder(E) module. The encoder is trained using contrastive loss to create better node embeddings that bring

similar embeddings closer. Visualization of final layer activations confirms the formation of well-defined node

clusters.

Positive (negative) soft scores are computed as the mean of positive (negative) reciprocal preferences
for all receptacles related to a specific object-room pair. We select the room with the highest positive-
scored receptacle to determine ground truth object-room mappings. Other rooms in the domain are
assigned the mean negative soft score of receptacles in that room.

To populate a knowledge graph using available annotated information, we partition the IRONA web-
scraped dataset into training, validation, and test sets with a 15:5:10 ratio of images per object category.
The knowledge graph is instantiated with each image of the training set as a node, along with room
names, resulting in 4037 nodes (268*15 + 17). Five types of edges connect the nodes (see Figure 4.4):
(1) self-edge (edge weight=1); (2) edge between images of the same object (edge weight=1); (3) edge
between two objects in the same ground truth room; (4) edge between an object and its correct room
node; and (5) edge between an object and its incorrect room nodes. Weights for edges of types 4 and 5
are based on the object-room soft scores. Edges of type 3 receive a randomly chosen weight between 0.5

to 0.7, while edges of type 1 and 2 are assigned a weight of 1. Table 4.1 summarizes various information
about our knowledge graph that is being used for training purposes.
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Figure 4.4: An illustration of the five types of edges in our knowledge graph. Coloured edges denote positive

weights, while black ones denote negative weights. Numbers on the edges indicate the edge types.

Statistics About our Knowledge Graph Value

#Nodes 4020 Object Images Nodes & 17 Room Nodes

#Edges 7,66,649

Self Loops Yes

Train Images 268*15 Images

Test Images 268*10 Images

Val Images 268*5 Images

Types of edges weighted undirected

Table 4.1: Statistics for the Knowledge Graph created using the web scraped dataset

4.3.1.1 Nodes

There are currently two types of nodes in our knowledge graph

• Room Nodes: Since we have 17 room categories, there are 17 such nodes. For our proposed
method, the node features for these nodes are generated using the CLIP language encoders.

• Object Nodes: In our proposed method, for each of the 268 object categories, 15 images are
chosen for training, and for each of the 268*15 nodes, we generate node features using the CLIP
image encoders [9]. However, we also create CLIP Language Embeddings for these 268 Object
Categories for baseline comparisons.
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4.3.2 Edge Weights

For assigning edge weights to various edges between our nodes, we use the ranks provided by House-
keep Human Preference Dataset for each object-room-receptacle1 combination. We further calculate
soft scores using algorithm 1, which takes these ranks as input.

For each object-room-receptacle combination, 10 annotators were given just 3 categories to classify
the combinations. Therefore for each object-room-receptacle, there could either be a majority of positive
ranks, negative ranks, or implausible ranks:

1. For any object-room-receptacle combination if a majority of annotators (> 5) gave positive
ranks2; we calculate a positive score

2. For any object-room-receptacle combination if a majority of annotators (> 5) gave negative
ranks3; we calculate a negative score

3. However, if implausible ranks were in majority then we need to modify those a bit. According
to Housekeep [8], an implausible combination was such a combination that could neither occur
in an untidy house nor a tidy house. Therefore, it accounts for the maximum negative object-
room-receptacle affinity. Thus, we assign −1, i.e., the maximum possible negative score to such
object-room-receptacle pairs.

Finally, we would have a dictionary that records whether the majority opinion for every object-room-
receptacle was positive, negative or implausible(−1).

4.3.2.1 Correct Object-Room Mappings

To get the correct object-room mappings, we compare which object-room-receptacle has the highest
positive score for a given object. We assign that room as the correct object-room mapping.4

1”receptacle” was a categorization used by Housekeep [8] to define 128 flat horizontal surfaces in a household where
objects can be found - misplaced or correctly placed

2A receptacle with ”+1” rank is a more appropriate for an object as compared to a receptacle with a ”+2” rank for the same
object-room pair.

3A receptacle with ”-1” rank is a receptacle where humans are more prone to keep objects in an untidy state of the house
as compared to a receptacle with a ”-2” rank for the same object-room pair.

4Our future extension would be to extend this mapping to top-K correct rooms
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4.3.2.2 Incorrect Object-Room Mappings

Once we’ve created the correct object-room GT mapping, the edge weights of the other 16 rooms
will need to be allotted. So, for each such object-room pair, there can be 3 cases:

1. All/majority positive receptacles: We assign −ϵ as edge weights

2. All/majority negative receptacles: We assign the mean of all the negative scored receptacles

3. All/majority implausible receptacles: We assign the mean of all the negative scored receptacles.
(since we had already assigned implausible receptacles with −1)

Algorithm 1 Generating ORR Positive Soft Scores

1: for each object in objects do

2: for each room in rooms do

3: ranks← object− room− receptacle− ranks

4: score dict← {}

5: for each receptacle in the room do

6: combination score← []

7: for each rank given for the combination do

8: if rank > 0 then

9: combination score.append(1/rank)

10: end if

11: end for

12: if len(combination score) >= 5 then

13: score dict[combination] = sum(combination score)/max len pos5

14: else

15: score dict[combination] = 0

16: end if

17: end for

18: end for

19: end for

5For a given object, max len pos/neg/imp is the maximum number of annotators that gave positive/negative/implausible
ranks across all room-receptacle pairs.
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Algorithm 2 Generating ORR Negative Soft Scores

1: for each object in objects do

2: for each room in rooms do

3: ranks← object− room− receptacle− ranks

4: score dict← {}

5: for each receptacle in the room do

6: combination score← []

7: min neg rank = min(all ranks for the ORR combination)

8: for each rank given for the combination do

9: if rank < 0 then

10: rank = rank +min neg rank + 1

11: combination score.append(1/rank)

12: end if

13: end for

14: if len(combination score) >= 5 then

15: score dict[combination] = sum(combination score)/max len neg5

16: else

17: score dict[combination] = 0

18: end if

19: end for

20: end for

21: end for
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Algorithm 3 Generating ORR Implausible Soft Scores

1: for each object in objects do

2: for each room in rooms do

3: ranks← object− room− receptacle− ranks

4: score dict← {}

5: for each receptacle in the room do

6: combination score← []

7: for each rank given for the combination do

8: if rank == 0 then

9: combination score.append(−1)

10: end if

11: end for

12: if len(combination score) >= 5 then

13: score dict[combination] = sum(combination score)/max len imp5

14: else

15: score dict[combination] = 0

16: end if

17: end for

18: end for

19: end for
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For example, for a particular object-room-receptacle combination, the calculation of positive soft
scores is shown:

knife-bottom cabinet ranks: − 1,−3, 0, 1, 3, 2,−2, 5,−1, 4

Filter the negative ranks: 1, 3, 2, 5, 4

Take the reciprocal of ranks:
1

1
+

1

3
+

1

2
+

1

5
+

1

4
= 2.367

Calculate the mean of reciprocal ranks: 2.283/5 = 0.45

For each object, the ground-truth room is decided by choosing the room containing the highest-
positively scored receptacle for that object. Every other room in the domain is assigned the mean
negative soft score(for a given object-room pair) of all the receptacles present in that room.

4.3.2.3 Node embeddings

After creating the basic knowledge graph, we initialize node embeddings using the pretrained CLIP
model’s high-dimensional embeddings. Object nodes are initialized with corresponding CLIP image
encoder embeddings, and room nodes with corresponding CLIP language encoder embeddings. This
captures the appearance of objects and known associations between objects and rooms based on the
large dataset used to train CLIP embeddings.

We experiment with three pretrained CLIP architectures: Vision Transformer (ViT), ResNet-50, and
ConvNeXt. ViT-H/14 [71] is trained on LAION-2B, a 2.3 billion subset of LAION-5B [72] with English
captions. ResNet-50 [73] uses OpenAI’s pretrained weights [9], and ConvNeXt base [74] is pre-trained
on LAION-400m [75], which contains 400 million image-text pairs6. The three CLIP architectures
we utilized, as given by OpenCLIP [10], have the following dimensionalities: ViT-H/14 and RN50,
each with a dimensionality of 1024 features, and ConvNeXt-base with a dimensionality of 512 fea-
tures. These were chosen after taking into consideration the datasets they were trained on and their
performance in other embodied AI tasks. Once CLIP embeddings are associated with knowledge graph
nodes, we proceed to the next steps in our training pipeline.

4.3.3 GCN Training

The next step of training involves feeding node embeddings, each with 512 or 1024 dimensions
depending on the chosen CLIP architecture, and the adjacency matrix (representing the knowledge
graph structure) into a Graph Convolutional Network (GCN) [2]. This step aims to acquire improved
latent space embeddings for our knowledge graph. GCNs excel in capturing non-linear relationships
between nodes and learning from both local and global graph structures. Consequently, nodes with
higher similarity are mapped to points that are closer in the latent embedding space, while dissimilar
nodes are mapped to more distant points in the latent space. For instance, the output 128-dimensional

6Implementation used existing code [76]
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# Hyperparameter Value

1 Node Feature Size 512(ConvNeXt) / 1024 (Others)

2 Output Node Embedding 128

3 GCN [2] Layers 3

4 Learning Rate 10−3

5 Learning Rate Schedule StepLR: step size=1000 , γ = 0.25

6 Temperature 0.01

7 Batch Size [Loss] 15

8 Negatives Per Batch 40

9 Epochs 5k

Table 4.2: Hyperparameter choices for our Graph Based Network to learn latent representations of CLIP

Visual Encoder Features

GCN (object) embedding for a microwave will have a higher cosine similarity with the output 128-
dimensional GCN (language) embedding for the kitchen. Table 4.2 shows the hyperparameters used for
our GCN model.

4.3.3.1 Loss Function

An essential aspect of the training process involves selecting an appropriate loss function. Previous
research has extensively explored functions such as contrastive loss [77], triplet loss [78], and multi-
class N-pair loss [79]. Recent studies have highlighted the advantages of employing the loss function
introduced in the CLIP-Fields method [61]. We adapt this loss function to better leverage the knowledge
graph created using the IRONA dataset and human preference annotations.

Our GCN is trained using a contrastive loss function similar to the one described in the CLIP-Fields
method [61]. The objective is to cluster similar embeddings closer in the latent space and map dissimilar
embeddings to points that are further away in the latent space. We tailor the basic loss function to our
problem formulation and incorporate additional information from edge weights. The loss L is defined
as:

L = −e−weight+• log

(
e(sim+•/T )∑K

i=1 e
(sim–•,i/T )

)
(4.1)

where weight+• is the edge weight between the positive node and the anchor node, sim+• is the cosine
similarity between the anchor and a positive node embedding, and sim–•,i is the cosine similarity be-
tween the anchor node embedding and the ith negative node embedding. T is a temperature term tuned
over a validation set. Section 4.4.5 describes the loss function ablations.
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Figure 4.5: Sampling method used in the loss function; shown for K = 10 and M = 1; we average the loss over

M batches.

We randomly select one of the 17 rooms as our anchor node, choose a positive node (for the numera-
tor in Equation 4.1) by randomly selecting an object within that room, and sample k negative nodes for
the denominator of the loss function from objects located outside the room; Figure 4.5 illustrates this
process. The sampling method is repeated for a batch of samples, and the mean loss is calculated. This
formulation of the loss function minimizes the distance between the anchor node and the positive node
while maximizing the distance with each of the negative nodes, leading to distinct clusters in the graph
embeddings. As mentioned previously, the training pipeline is outlined in Figure 4.3.

4.3.4 Testing

Once the GCN has been trained, the testing pipeline, illustrated in Figure 4.6, is employed for infer-
ence. Similar to the training process, we compute the CLIP image encoder embedding for the test image
and the CLIP language encoder embedding for potential rooms. These embeddings are then fed into the
GCN with only self-edges (in the absence of a knowledge graph) to obtain the output, which gives the
latent space embedding for the test image and potential rooms.
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Subsequently, similarity scores are computed between each image node x⃗ and each of the room(s) y⃗
using the cosine similarity function:

cos(x⃗, y⃗) =
x⃗ · y⃗
||x⃗||·||y⃗||

.
We then average the similarity scores over different images of each object category to get the affinity

score between that object category and each of the candidate rooms.

Figure 4.6: Our inference pipeline processes input RGB images to generate CLIP image embeddings. These

embeddings are processed by the GCN Encoder to produce latent image embeddings. Cosine similarity between

these latent embeddings and previously learned room embeddings determines object-room affinities.

4.4 Experimental Setup and Results

This section describes the experiments we conducted and discusses the corresponding results. We
experimentally evaluate the following hypothesis:

H1: CLIP language embeddings result in better performance than other language encoder embed-
dings;

H2: Multimodal CLIP embeddings, by themselves, do not perform better than language-based
embeddings;

H3: Our framework leads to better performance than (i) the underlying CLIP embedding, (ii) just
the language-based encodings, and (iii) the GPT-3 LLM;

H4: Our framework provides robustness to previously unseen noisy backgrounds.
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We evaluate H1-H3 quantitatively and H4 qualitatively. The performance task was to compute
estimates of object-room affinities for all 268 object categories and 17 rooms in the test split of the
IRONA dataset.

4.4.1 Experimental Setup

Object-room affinities have predominantly been determined by language-based embeddings or hu-
man input in prior work. Since our work combines prior knowledge and multimodal (vision, language)
inputs, our chosen baselines were off-shelf language encoders and the GPT-3 LLM.

We considered two performance measures:

1. mAP: The mean average precision (mAP) is the average of precision scores at different recall
values for each instance of an object category, and the mean over all the object categories.

2. Top k Hit Ratio: The average fraction of object categories for which the ground truth correct
room was among the Top k estimates from our framework.

All claims are statistically significant unless stated otherwise.

4.4.2 Baseline

To obtain baseline results, we query GPT-3 to rank the 17 rooms for each object like this:

Which of the following rooms would you expect to find a knife block in? Please rank in decreasing
order of likelihood: bathroom, bedroom, child room, closet, corridor, dining room, exercise room,
garage, home office, kitchen, living room, lobby, pantry room, playroom, storage room, television
room, utility room.

We use such queries to obtain room rankings for each of 268 objects and use that to obtain baseline
mAP and hit ratio for GPT-3, and the results are shown in Table 4.3

Test mAP ⇑
Hit-Ratio ⇑

Top-1 Top-3 Top-5

GPT-3 0.66 0.52 0.76 0.81

Table 4.3: Results for object-room mappings based on queries to GPT-3

The room rankings for each object category by querying GPT-3 is compiled in the file: gpt pred.txt
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Language Model Test mAP ⇑
Hit-Ratio ⇑

Top-1 Top-3 Top-5

ConvNeXt 0.405 0.223 0.472 0.632

ViT 0.456 0.256 0.576 0.710

RN50 0.453 0.275 0.546 0.643

RoBerta 0.417 0.238 0.491 0.636

GloVE 0.148 0.123 0.208 0.278

Table 4.4: CLIP-based language embeddings perform better than other popular language encoders. These results

support H1.

UnTuned-CLIP Test mAP ⇑
Hit-Ratio ⇑

Top-1 Top-3 Top-5

ConvNeXt 0.41 0.24 0.46 0.62

ViT 0.42 0.25 0.49 0.65

RN50 0.39 0.19 0.45 0.67

Table 4.5: Multimodal CLIP embeddings, by themselves, do not improve performance compared with just the

CLIP-based language embeddings (see Table 4.4). Results support H2.

4.4.3 Quantitative Results

To evaluate H1, we first compared two existing language encoder embeddings (RoBerta [80], GloVE [81])
with just the CLIP-based language embeddings with each of the three CLIP architectures. As shown
in Table 4.4, the CLIP-based language embeddings (particularly the ViT architecture) resulted in better
performance, supporting H1.

Next, we compared the performance of the multimodal (vision, language) CLIP embeddings for each
of the three CLIP architectures. As shown in Table 4.5, performance is comparable but slightly worse
than that in Table 4.4. These results support H2 and motivate the use of GCNs.

Next, we computed the performance of our architecture, i.e., with GCNs trained using the contrastive
loss function and the underlying multimodal CLIP embeddings, with the corresponding results shown
in Table 4.6. The best performance was (once again) with the ViT version of the CLIP architecture.
Also, performance was substantially better than with the multimodal CLIP embeddings (Table 4.5) or
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GCN-CLIP Test mAP ⇑
Hit-Ratio ⇑

Top-1 Top-3 Top-5

ConvNeXt 0.73 0.62 0.81 0.88

ViT 0.85 0.76 0.93 0.97

RN50 0.66 0.53 0.75 0.81

Table 4.6: CLIPGraphs’ use of GCN embeddings of multimodal CLIP features and commonsense knowledge

results in substantially better performance compared with just the CLIP embeddings in Tables 4.4 and 4.5. Results

support H3.

CLIP’s language encoder embeddings (Table 4.4). For example, there is an ≈ 40% increase in mAP
score compared with not using the GCNs. These results partially support H3.

Figure 4.7: Graphical representation of mAP scores for CLIPGraphs and CLip multimodal and language-based

embeddings. Summarized from Tables 4.4, 4.5, 4.6 and 4.7.

We conducted experiments with our framework to further explore the benefits of a multimodal CLIP
representation but with GCN embeddings of only the language-based encoding of CLIP. The results
reported in Table 4.7 show the benefits of using the multimodal CLIP embeddings, which demonstrates
the effectiveness of our model in cross-modal commonsense reasoning. Further, Figure 4.7 shows a
graphical representation comparing the mAP for CLIPGraphs and the underlying CLIP language-based
and multimodal features.

The next experiment compared our framework’s performance with the GPT-3 LLM and a state-
of-the-art language encoder that provided the best performance among language-based encoders. The
results summarized in Table 4.8 show that our framework provides substantially better performance
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GCN-CLIP[Lang] Test mAP ⇑
Hit-Ratio ⇑

Top-1 Top-3 Top-5

ConvNeXt 0.64 0.53 0.69 0.76

ViT 0.77 0.68 0.77 0.83

RN50 0.59 0.46 0.63 0.74

Table 4.7: Using our GCN-based embedding with just the underlying language-based CLIP encoding results in

better performance than in the absence of the GCN embedding, but performance is not as good as when GCNs

are used with the multimodal CLIP embeddings (in Table 4.6).

Test mAP ⇑
Hit-Ratio ⇑

Top-1 Top-3 Top-5

Our [GCN-CLIP] [4.6] 0.85 0.76 0.93 0.97

GPT-3 0.66 0.52 0.76 0.81

Best untrained CLIP model [4.5] 0.42 0.25 0.49 0.65

Best Language Encoder [4.4] 0.456 0.275 0.576 0.71

Table 4.8: Our framework, with GCN and underlying multimodal CLIP embeddings, substantially improves

performance compared with standalone GPT-3 LLM, just the underlying multimodal CLIP embeddings and

language-based encoders; hence, the results strongly support H3.

by fully leveraging prior commonsense knowledge and multimodal CLIP embeddings. These results
strongly support H3.

4.4.4 Qualitative Results

Our model was trained on clean white background images to predict the most appropriate room
for the object in the image. To evaluate its performance on real-world images, we conducted tests on
photographs captured on a mobile phone. These photographs were fed into our model. Additionally,
we tested the model’s ability to generalize by feeding it images of objects not present in the training set.
We present both successful and unsuccessful cases to illustrate its performance.

Figure 4.8 shows the result of using our framework with images of 3 previously seen object cate-
gories but in noisy, previously unseen backgrounds to test our model’s generalization capabilities on
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Figure 4.8: Qualitative result of using our framework with images of previously seen objects but in noisy back-

grounds. In each case, the object’s room association was estimated correctly, demonstrating the broad applicability

of our method. These results support H4.

46



Figure 4.9: Successful placement of previously unseen object categories (absent in the training set) by leveraging

commonsense domain knowledge. Since these categories were unseen, we didn’t have any ground truth available.

Thus, we mention the expected room on the basis of our commonsense.

Figure 4.10: Failure to determine correct room for

object category earpods (not in our train set) because

it was structurally similar to hair dryer category that

was in our training set.

Figure 4.11: Failure with composite object cate-

gories; tools was not a category in our training set,

but they were incorrectly associated with the play

room because they were structurally similar to the toy

toolkit that was in the training set.

real-world noisy images. For this experiment, we used 4 different scenarios - noisy background, low
lighting, occlusion and multiple objects. In each case, the object’s room association was estimated cor-
rectly. Next, Figure 4.9 shows the success cases when our trained framework was used with objects
from previously unseen object categories. Success (i.e., estimating the correct room association for the
objects) can be attributed to leveraging commonsense knowledge extracted from similar images.

Figures 4.10 and 4.11 show some examples of our framework’s limitations. In Figure 4.10, an input
image of earpods (not present in the training set) was mapped to the utility room because our model
has no knowledge of scale, and the image of earpods was similar in appearance to hair dryers that was
known to our framework. Figure 4.11 shows another failure case in which our framework estimated the
room association for actual tools (which it has not seen before) as playroom because the training set
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contained an image of a toy tool kit in a playroom. However, when considered individually, each tool is
associated with the correct room location. These results support hypothesis H4.

4.4.5 Loss Function Ablations

We considered two performance measures:

1. mAP: The average precision is the average of precision scores at different recall values for each
instance of an object category. For a given object, Average Precision is calculated by:

AP =
∑
n

(Rn −Rn−1)Pn

Where Pn and Rn are Precision and Recall values at the nth threshold. Taking a mean over all
the object categories gives us the final mean Average Precision (mAP).

2. Top k Hit Ratio: This represents the average proportion of object categories wherein the ground
truth correct room was included among the Top k estimates produced by our framework. This
measure can be computed as:

Top-k HR =
1

|O|
∑
o∈O

1(Ro ∩ To ̸= ∅)

where O is the set of objects, Ro is the set of top-k rooms recommended for object o, To is the
ground truth room for object o, and 1 is the indicator function that returns 1 if the condition is true
and 0 otherwise.

4.4.5.1 Comparison with existing loss functions

We compare the mAP of existing loss functions with the loss function we use as described in Equa-
tion 4.1 in the following table:

Loss Function mAP

Margin [78] 0.371

Triplet [77] 0.51

Ours 0.85

4.4.5.2 Hyperparameters

We adopted a modified version of the loss function proposed by [61]. The efficacy of our loss
function was contingent on the refinement of our sampling technique. We fine-tuned the following
parameters:
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1. Batch Size
We conducted experiments varying the number of batches containing anchor, positive, and nega-
tive nodes sampled per epoch for loss computation. The figure illustrates that optimal performance
is achieved with a batch size of 15. Consequently, we proceeded with further experiments using
this value. The comparison is presented in Figure 4.12.

Figure 4.12: Variation of testing metrics with number of batches used for contrastive loss

2. Number of Negative Nodes Sampled per Batch for Each Epoch
To assess the impact on model performance, we investigated variations in the number of negative
nodes sampled per anchor point to compute the contrastive loss. The results are depicted in Figure
4.13. The figure shows that the highest performance was observed when the number of negative
samples was set to 40. Therefore, we established a fixed total of 40 negatives per anchor for
subsequent experiments.

4.4.6 Additional plots

Using t-SNE to visualize the high-dimensional embeddings, we observe initial random nodes in
Figure 4.14, where each colour represents objects of a unique room. As the model trains, we observe
clustering in the embedding space to cluster objects belonging to the same room. This is shown in
Figure 4.15. We further zoom into the objects clustered in “Bathroom” in Figure 4.16 and “Pantry” in
Figure 4.17.
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Figure 4.13: Variation of testing metrics with different numbers of negative samples used per anchor.

Figure 4.14: Untrained TSNE

50



Figure 4.15: t-SNE visualization of our embeddings on the test split of the Web Scraped Dataset. The

boxes show images of objects belonging to the same rooms getting clustered. For a more interactive

view of this figure, check out our website: https://clipgraphs.github.io

.
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Figure 4.16: Image showing objects that got clustered

in the t-SNE corresponding to Bathroom room cate-

gory

Figure 4.17: Image showing objects that got clustered

in the t-SNE corresponding to Pantry room category

4.5 Summary

Understanding the relationship between objects and their corresponding rooms is pivotal for tasks
like locating objects in a household (object navigation task) and organising a cluttered space (scene
rearrangement). In this chapter, we introduced CLIPGraphs, a framework that harnesses the com-
bined strengths of commonsense knowledge, data-driven techniques, and multimodal embeddings to
accurately determine object-room affinities. We outlined a knowledge graph that encodes human pref-
erences regarding the spatial arrangement of objects within domestic environments. We used joint
image and text feature embeddings to support multimodal learning and queries in the form of image
or text. Subsequently, we employed a graph network to learn object-room affinities based on latent
embeddings extracted from the knowledge graph, encompassing image and text feature embeddings.
Further, we introduced a new dataset, IRONA, comprising over 8000 image-text pairs sourced from the
Web. We utilized this dataset to assess the efficacy of the CLIPGraphs framework in accurately predict-
ing the optimal room placement for various objects. Through experimentation, we demonstrated that
our framework significantly outperforms state-of-the-art baselines, including Large Language Models
(LLMs) and language embeddings encoding common sense knowledge of object locations.
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Chapter 5

Conclusion

This dissertation undertakes a comprehensive exploration of two critical challenges in the domain
of embodied AI and intelligent household agents. In Chapter 3, we concentrate on addressing the in-
tricate problem of locating multiple objects within a household environment. We described a deep
reinforcement learning-based framework for Sequence-Agnostic Multi-object Navigation (SAM). Tra-
ditional methods for solving Multi-Object Navigation (MultiON) suffer from several limitations: (i)
they consider only one instance of each object class in the environment; (ii) they typically work with
artificial objects; and (iii) they are pre-sequenced (PSM), meaning the order of exploration for target
object classes is predetermined. Our proposed SAM framework aims to overcome these limitations. It
extends the prior deep (actor-critic) reinforcement learning framework for Object Navigation [4], and
incorporates a tailored reward specification that encourages the desired sequence-agnostic operation. It
enables the robot to build on prior experiences in environments similar to the target environment and
concurrently (and greedily) reduce the distance to an instance of each target object class. The experimen-
tal evaluation, conducted within the Habitat 3D simulation environment using realistic scenes from the
Gibson dataset, demonstrates a significant performance enhancement compared to various other meth-
ods tailored for the MultiON problem. These methods include a baseline that selects actions randomly,
PSM, and an extension of the SemExp method for Object Navigation [19] adapted for Multi-Object
Navigation.

Expanding on the MultiON problem, Chapter 4 advances the exploration into scene rearrangement,
a logical progression once objects can be reliably located in a household. In this chapter, we intro-
duce CLIPGraphs, a novel method designed to accurately determine object-room affinities—a funda-
mental prerequisite for scene rearrangement tasks. CLIPGraphs leverages a combination of common-
sense knowledge, data-driven methods, and multimodal embeddings (vision, language) to estimate these
affinities. The framework encodes prior human preferences in a knowledge graph and considers CLIP-
based image and language embeddings of nodes in this graph. It utilizes Graph Convolutional Network
(GCN)-based embeddings of the CLIP embeddings to learn and estimate the object-room affinities. Ex-
perimental evaluation, conducted on our IRONA dataset comprising 8040 images covering 268 bench-
mark object categories, showcases the superior performance of CLIPGraphs in estimating object-room
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affinities compared with language encoder embeddings and the GPT-3 LLM. Additionally, we showed
qualitatively that the framework exhibits robustness in handling previously unseen noisy backgrounds
in object images.

In future endeavours, we aim to expand the application of the MutliON framework to more complex
environments and a broader range of target object classes. Additionally, we plan to explore the integra-
tion of clustering techniques as the number of object classes increases. While our current experiments
have focused on household scenes, we anticipate the relevance of this project in other settings such
as supermarkets or hospitals. We plan to explore the practical implementation of such frameworks on
physical robots, particularly in real-world applications such as Telepresence [82].

The CLIPGraphs framework also opens avenues for further research. We plan to train our model with
top-k correct rooms to generate object-room affinities that would be useful in downstream tasks such
as multi-object navigation and scene rearrangement. This approach mirrors human behaviour, leverag-
ing semantic and utility-based organization principles observed in how we arrange our living spaces.
Additionally, we aspire to develop personalized or task-specific embeddings, enabling the framework
to calculate object-room affinities tailored to individual users, homes, or tasks. This personalized ap-
proach empowers physical robots to tackle complex scene rearrangement tasks and other embodied AI
scenarios characterized by semantic organization. By leveraging the ability of Large Language Models
(LLMs) to incorporate commonsense reasoning derived from extensive and diverse internet datasets, we
aim to fine-tune them for personalized object-room affinities. This involves fine-tuning an LLM with
house arrangement patterns and expecting it to identify patterns that can help personalize the object-
room affinities.

The approaches elucidated in this dissertation lay a robust foundation for addressing embodied AI
challenges with increasing intelligence as AI technologies progress. We anticipate that this work will
not only contribute to the scholarly discourse but also serve as a catalyst for further research in the
burgeoning field of intelligent household agents.
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